SemaType.cpp revision 1de6a6cb485fb58b4fb100282bb3cf298eedacd9
1//===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements type-related semantic analysis.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/ScopeInfo.h"
15#include "clang/Sema/SemaInternal.h"
16#include "clang/Sema/Template.h"
17#include "clang/Basic/OpenCL.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/ASTMutationListener.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/DeclTemplate.h"
23#include "clang/AST/TypeLoc.h"
24#include "clang/AST/TypeLocVisitor.h"
25#include "clang/AST/Expr.h"
26#include "clang/Basic/PartialDiagnostic.h"
27#include "clang/Basic/TargetInfo.h"
28#include "clang/Lex/Preprocessor.h"
29#include "clang/Parse/ParseDiagnostic.h"
30#include "clang/Sema/DeclSpec.h"
31#include "clang/Sema/DelayedDiagnostic.h"
32#include "clang/Sema/Lookup.h"
33#include "llvm/ADT/SmallPtrSet.h"
34#include "llvm/Support/ErrorHandling.h"
35using namespace clang;
36
37/// isOmittedBlockReturnType - Return true if this declarator is missing a
38/// return type because this is a omitted return type on a block literal.
39static bool isOmittedBlockReturnType(const Declarator &D) {
40  if (D.getContext() != Declarator::BlockLiteralContext ||
41      D.getDeclSpec().hasTypeSpecifier())
42    return false;
43
44  if (D.getNumTypeObjects() == 0)
45    return true;   // ^{ ... }
46
47  if (D.getNumTypeObjects() == 1 &&
48      D.getTypeObject(0).Kind == DeclaratorChunk::Function)
49    return true;   // ^(int X, float Y) { ... }
50
51  return false;
52}
53
54/// diagnoseBadTypeAttribute - Diagnoses a type attribute which
55/// doesn't apply to the given type.
56static void diagnoseBadTypeAttribute(Sema &S, const AttributeList &attr,
57                                     QualType type) {
58  bool useExpansionLoc = false;
59
60  unsigned diagID = 0;
61  switch (attr.getKind()) {
62  case AttributeList::AT_objc_gc:
63    diagID = diag::warn_pointer_attribute_wrong_type;
64    useExpansionLoc = true;
65    break;
66
67  case AttributeList::AT_objc_ownership:
68    diagID = diag::warn_objc_object_attribute_wrong_type;
69    useExpansionLoc = true;
70    break;
71
72  default:
73    // Assume everything else was a function attribute.
74    diagID = diag::warn_function_attribute_wrong_type;
75    break;
76  }
77
78  SourceLocation loc = attr.getLoc();
79  StringRef name = attr.getName()->getName();
80
81  // The GC attributes are usually written with macros;  special-case them.
82  if (useExpansionLoc && loc.isMacroID() && attr.getParameterName()) {
83    if (attr.getParameterName()->isStr("strong")) {
84      if (S.findMacroSpelling(loc, "__strong")) name = "__strong";
85    } else if (attr.getParameterName()->isStr("weak")) {
86      if (S.findMacroSpelling(loc, "__weak")) name = "__weak";
87    }
88  }
89
90  S.Diag(loc, diagID) << name << type;
91}
92
93// objc_gc applies to Objective-C pointers or, otherwise, to the
94// smallest available pointer type (i.e. 'void*' in 'void**').
95#define OBJC_POINTER_TYPE_ATTRS_CASELIST \
96    case AttributeList::AT_objc_gc: \
97    case AttributeList::AT_objc_ownership
98
99// Function type attributes.
100#define FUNCTION_TYPE_ATTRS_CASELIST \
101    case AttributeList::AT_noreturn: \
102    case AttributeList::AT_cdecl: \
103    case AttributeList::AT_fastcall: \
104    case AttributeList::AT_stdcall: \
105    case AttributeList::AT_thiscall: \
106    case AttributeList::AT_pascal: \
107    case AttributeList::AT_regparm: \
108    case AttributeList::AT_pcs \
109
110namespace {
111  /// An object which stores processing state for the entire
112  /// GetTypeForDeclarator process.
113  class TypeProcessingState {
114    Sema &sema;
115
116    /// The declarator being processed.
117    Declarator &declarator;
118
119    /// The index of the declarator chunk we're currently processing.
120    /// May be the total number of valid chunks, indicating the
121    /// DeclSpec.
122    unsigned chunkIndex;
123
124    /// Whether there are non-trivial modifications to the decl spec.
125    bool trivial;
126
127    /// Whether we saved the attributes in the decl spec.
128    bool hasSavedAttrs;
129
130    /// The original set of attributes on the DeclSpec.
131    SmallVector<AttributeList*, 2> savedAttrs;
132
133    /// A list of attributes to diagnose the uselessness of when the
134    /// processing is complete.
135    SmallVector<AttributeList*, 2> ignoredTypeAttrs;
136
137  public:
138    TypeProcessingState(Sema &sema, Declarator &declarator)
139      : sema(sema), declarator(declarator),
140        chunkIndex(declarator.getNumTypeObjects()),
141        trivial(true), hasSavedAttrs(false) {}
142
143    Sema &getSema() const {
144      return sema;
145    }
146
147    Declarator &getDeclarator() const {
148      return declarator;
149    }
150
151    unsigned getCurrentChunkIndex() const {
152      return chunkIndex;
153    }
154
155    void setCurrentChunkIndex(unsigned idx) {
156      assert(idx <= declarator.getNumTypeObjects());
157      chunkIndex = idx;
158    }
159
160    AttributeList *&getCurrentAttrListRef() const {
161      assert(chunkIndex <= declarator.getNumTypeObjects());
162      if (chunkIndex == declarator.getNumTypeObjects())
163        return getMutableDeclSpec().getAttributes().getListRef();
164      return declarator.getTypeObject(chunkIndex).getAttrListRef();
165    }
166
167    /// Save the current set of attributes on the DeclSpec.
168    void saveDeclSpecAttrs() {
169      // Don't try to save them multiple times.
170      if (hasSavedAttrs) return;
171
172      DeclSpec &spec = getMutableDeclSpec();
173      for (AttributeList *attr = spec.getAttributes().getList(); attr;
174             attr = attr->getNext())
175        savedAttrs.push_back(attr);
176      trivial &= savedAttrs.empty();
177      hasSavedAttrs = true;
178    }
179
180    /// Record that we had nowhere to put the given type attribute.
181    /// We will diagnose such attributes later.
182    void addIgnoredTypeAttr(AttributeList &attr) {
183      ignoredTypeAttrs.push_back(&attr);
184    }
185
186    /// Diagnose all the ignored type attributes, given that the
187    /// declarator worked out to the given type.
188    void diagnoseIgnoredTypeAttrs(QualType type) const {
189      for (SmallVectorImpl<AttributeList*>::const_iterator
190             i = ignoredTypeAttrs.begin(), e = ignoredTypeAttrs.end();
191           i != e; ++i)
192        diagnoseBadTypeAttribute(getSema(), **i, type);
193    }
194
195    ~TypeProcessingState() {
196      if (trivial) return;
197
198      restoreDeclSpecAttrs();
199    }
200
201  private:
202    DeclSpec &getMutableDeclSpec() const {
203      return const_cast<DeclSpec&>(declarator.getDeclSpec());
204    }
205
206    void restoreDeclSpecAttrs() {
207      assert(hasSavedAttrs);
208
209      if (savedAttrs.empty()) {
210        getMutableDeclSpec().getAttributes().set(0);
211        return;
212      }
213
214      getMutableDeclSpec().getAttributes().set(savedAttrs[0]);
215      for (unsigned i = 0, e = savedAttrs.size() - 1; i != e; ++i)
216        savedAttrs[i]->setNext(savedAttrs[i+1]);
217      savedAttrs.back()->setNext(0);
218    }
219  };
220
221  /// Basically std::pair except that we really want to avoid an
222  /// implicit operator= for safety concerns.  It's also a minor
223  /// link-time optimization for this to be a private type.
224  struct AttrAndList {
225    /// The attribute.
226    AttributeList &first;
227
228    /// The head of the list the attribute is currently in.
229    AttributeList *&second;
230
231    AttrAndList(AttributeList &attr, AttributeList *&head)
232      : first(attr), second(head) {}
233  };
234}
235
236namespace llvm {
237  template <> struct isPodLike<AttrAndList> {
238    static const bool value = true;
239  };
240}
241
242static void spliceAttrIntoList(AttributeList &attr, AttributeList *&head) {
243  attr.setNext(head);
244  head = &attr;
245}
246
247static void spliceAttrOutOfList(AttributeList &attr, AttributeList *&head) {
248  if (head == &attr) {
249    head = attr.getNext();
250    return;
251  }
252
253  AttributeList *cur = head;
254  while (true) {
255    assert(cur && cur->getNext() && "ran out of attrs?");
256    if (cur->getNext() == &attr) {
257      cur->setNext(attr.getNext());
258      return;
259    }
260    cur = cur->getNext();
261  }
262}
263
264static void moveAttrFromListToList(AttributeList &attr,
265                                   AttributeList *&fromList,
266                                   AttributeList *&toList) {
267  spliceAttrOutOfList(attr, fromList);
268  spliceAttrIntoList(attr, toList);
269}
270
271static void processTypeAttrs(TypeProcessingState &state,
272                             QualType &type, bool isDeclSpec,
273                             AttributeList *attrs);
274
275static bool handleFunctionTypeAttr(TypeProcessingState &state,
276                                   AttributeList &attr,
277                                   QualType &type);
278
279static bool handleObjCGCTypeAttr(TypeProcessingState &state,
280                                 AttributeList &attr, QualType &type);
281
282static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
283                                       AttributeList &attr, QualType &type);
284
285static bool handleObjCPointerTypeAttr(TypeProcessingState &state,
286                                      AttributeList &attr, QualType &type) {
287  if (attr.getKind() == AttributeList::AT_objc_gc)
288    return handleObjCGCTypeAttr(state, attr, type);
289  assert(attr.getKind() == AttributeList::AT_objc_ownership);
290  return handleObjCOwnershipTypeAttr(state, attr, type);
291}
292
293/// Given that an objc_gc attribute was written somewhere on a
294/// declaration *other* than on the declarator itself (for which, use
295/// distributeObjCPointerTypeAttrFromDeclarator), and given that it
296/// didn't apply in whatever position it was written in, try to move
297/// it to a more appropriate position.
298static void distributeObjCPointerTypeAttr(TypeProcessingState &state,
299                                          AttributeList &attr,
300                                          QualType type) {
301  Declarator &declarator = state.getDeclarator();
302  for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
303    DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
304    switch (chunk.Kind) {
305    case DeclaratorChunk::Pointer:
306    case DeclaratorChunk::BlockPointer:
307      moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
308                             chunk.getAttrListRef());
309      return;
310
311    case DeclaratorChunk::Paren:
312    case DeclaratorChunk::Array:
313      continue;
314
315    // Don't walk through these.
316    case DeclaratorChunk::Reference:
317    case DeclaratorChunk::Function:
318    case DeclaratorChunk::MemberPointer:
319      goto error;
320    }
321  }
322 error:
323
324  diagnoseBadTypeAttribute(state.getSema(), attr, type);
325}
326
327/// Distribute an objc_gc type attribute that was written on the
328/// declarator.
329static void
330distributeObjCPointerTypeAttrFromDeclarator(TypeProcessingState &state,
331                                            AttributeList &attr,
332                                            QualType &declSpecType) {
333  Declarator &declarator = state.getDeclarator();
334
335  // objc_gc goes on the innermost pointer to something that's not a
336  // pointer.
337  unsigned innermost = -1U;
338  bool considerDeclSpec = true;
339  for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
340    DeclaratorChunk &chunk = declarator.getTypeObject(i);
341    switch (chunk.Kind) {
342    case DeclaratorChunk::Pointer:
343    case DeclaratorChunk::BlockPointer:
344      innermost = i;
345      continue;
346
347    case DeclaratorChunk::Reference:
348    case DeclaratorChunk::MemberPointer:
349    case DeclaratorChunk::Paren:
350    case DeclaratorChunk::Array:
351      continue;
352
353    case DeclaratorChunk::Function:
354      considerDeclSpec = false;
355      goto done;
356    }
357  }
358 done:
359
360  // That might actually be the decl spec if we weren't blocked by
361  // anything in the declarator.
362  if (considerDeclSpec) {
363    if (handleObjCPointerTypeAttr(state, attr, declSpecType)) {
364      // Splice the attribute into the decl spec.  Prevents the
365      // attribute from being applied multiple times and gives
366      // the source-location-filler something to work with.
367      state.saveDeclSpecAttrs();
368      moveAttrFromListToList(attr, declarator.getAttrListRef(),
369               declarator.getMutableDeclSpec().getAttributes().getListRef());
370      return;
371    }
372  }
373
374  // Otherwise, if we found an appropriate chunk, splice the attribute
375  // into it.
376  if (innermost != -1U) {
377    moveAttrFromListToList(attr, declarator.getAttrListRef(),
378                       declarator.getTypeObject(innermost).getAttrListRef());
379    return;
380  }
381
382  // Otherwise, diagnose when we're done building the type.
383  spliceAttrOutOfList(attr, declarator.getAttrListRef());
384  state.addIgnoredTypeAttr(attr);
385}
386
387/// A function type attribute was written somewhere in a declaration
388/// *other* than on the declarator itself or in the decl spec.  Given
389/// that it didn't apply in whatever position it was written in, try
390/// to move it to a more appropriate position.
391static void distributeFunctionTypeAttr(TypeProcessingState &state,
392                                       AttributeList &attr,
393                                       QualType type) {
394  Declarator &declarator = state.getDeclarator();
395
396  // Try to push the attribute from the return type of a function to
397  // the function itself.
398  for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
399    DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
400    switch (chunk.Kind) {
401    case DeclaratorChunk::Function:
402      moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
403                             chunk.getAttrListRef());
404      return;
405
406    case DeclaratorChunk::Paren:
407    case DeclaratorChunk::Pointer:
408    case DeclaratorChunk::BlockPointer:
409    case DeclaratorChunk::Array:
410    case DeclaratorChunk::Reference:
411    case DeclaratorChunk::MemberPointer:
412      continue;
413    }
414  }
415
416  diagnoseBadTypeAttribute(state.getSema(), attr, type);
417}
418
419/// Try to distribute a function type attribute to the innermost
420/// function chunk or type.  Returns true if the attribute was
421/// distributed, false if no location was found.
422static bool
423distributeFunctionTypeAttrToInnermost(TypeProcessingState &state,
424                                      AttributeList &attr,
425                                      AttributeList *&attrList,
426                                      QualType &declSpecType) {
427  Declarator &declarator = state.getDeclarator();
428
429  // Put it on the innermost function chunk, if there is one.
430  for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
431    DeclaratorChunk &chunk = declarator.getTypeObject(i);
432    if (chunk.Kind != DeclaratorChunk::Function) continue;
433
434    moveAttrFromListToList(attr, attrList, chunk.getAttrListRef());
435    return true;
436  }
437
438  if (handleFunctionTypeAttr(state, attr, declSpecType)) {
439    spliceAttrOutOfList(attr, attrList);
440    return true;
441  }
442
443  return false;
444}
445
446/// A function type attribute was written in the decl spec.  Try to
447/// apply it somewhere.
448static void
449distributeFunctionTypeAttrFromDeclSpec(TypeProcessingState &state,
450                                       AttributeList &attr,
451                                       QualType &declSpecType) {
452  state.saveDeclSpecAttrs();
453
454  // Try to distribute to the innermost.
455  if (distributeFunctionTypeAttrToInnermost(state, attr,
456                                            state.getCurrentAttrListRef(),
457                                            declSpecType))
458    return;
459
460  // If that failed, diagnose the bad attribute when the declarator is
461  // fully built.
462  state.addIgnoredTypeAttr(attr);
463}
464
465/// A function type attribute was written on the declarator.  Try to
466/// apply it somewhere.
467static void
468distributeFunctionTypeAttrFromDeclarator(TypeProcessingState &state,
469                                         AttributeList &attr,
470                                         QualType &declSpecType) {
471  Declarator &declarator = state.getDeclarator();
472
473  // Try to distribute to the innermost.
474  if (distributeFunctionTypeAttrToInnermost(state, attr,
475                                            declarator.getAttrListRef(),
476                                            declSpecType))
477    return;
478
479  // If that failed, diagnose the bad attribute when the declarator is
480  // fully built.
481  spliceAttrOutOfList(attr, declarator.getAttrListRef());
482  state.addIgnoredTypeAttr(attr);
483}
484
485/// \brief Given that there are attributes written on the declarator
486/// itself, try to distribute any type attributes to the appropriate
487/// declarator chunk.
488///
489/// These are attributes like the following:
490///   int f ATTR;
491///   int (f ATTR)();
492/// but not necessarily this:
493///   int f() ATTR;
494static void distributeTypeAttrsFromDeclarator(TypeProcessingState &state,
495                                              QualType &declSpecType) {
496  // Collect all the type attributes from the declarator itself.
497  assert(state.getDeclarator().getAttributes() && "declarator has no attrs!");
498  AttributeList *attr = state.getDeclarator().getAttributes();
499  AttributeList *next;
500  do {
501    next = attr->getNext();
502
503    switch (attr->getKind()) {
504    OBJC_POINTER_TYPE_ATTRS_CASELIST:
505      distributeObjCPointerTypeAttrFromDeclarator(state, *attr, declSpecType);
506      break;
507
508    case AttributeList::AT_ns_returns_retained:
509      if (!state.getSema().getLangOpts().ObjCAutoRefCount)
510        break;
511      // fallthrough
512
513    FUNCTION_TYPE_ATTRS_CASELIST:
514      distributeFunctionTypeAttrFromDeclarator(state, *attr, declSpecType);
515      break;
516
517    default:
518      break;
519    }
520  } while ((attr = next));
521}
522
523/// Add a synthetic '()' to a block-literal declarator if it is
524/// required, given the return type.
525static void maybeSynthesizeBlockSignature(TypeProcessingState &state,
526                                          QualType declSpecType) {
527  Declarator &declarator = state.getDeclarator();
528
529  // First, check whether the declarator would produce a function,
530  // i.e. whether the innermost semantic chunk is a function.
531  if (declarator.isFunctionDeclarator()) {
532    // If so, make that declarator a prototyped declarator.
533    declarator.getFunctionTypeInfo().hasPrototype = true;
534    return;
535  }
536
537  // If there are any type objects, the type as written won't name a
538  // function, regardless of the decl spec type.  This is because a
539  // block signature declarator is always an abstract-declarator, and
540  // abstract-declarators can't just be parentheses chunks.  Therefore
541  // we need to build a function chunk unless there are no type
542  // objects and the decl spec type is a function.
543  if (!declarator.getNumTypeObjects() && declSpecType->isFunctionType())
544    return;
545
546  // Note that there *are* cases with invalid declarators where
547  // declarators consist solely of parentheses.  In general, these
548  // occur only in failed efforts to make function declarators, so
549  // faking up the function chunk is still the right thing to do.
550
551  // Otherwise, we need to fake up a function declarator.
552  SourceLocation loc = declarator.getLocStart();
553
554  // ...and *prepend* it to the declarator.
555  declarator.AddInnermostTypeInfo(DeclaratorChunk::getFunction(
556                             /*proto*/ true,
557                             /*variadic*/ false, SourceLocation(),
558                             /*args*/ 0, 0,
559                             /*type quals*/ 0,
560                             /*ref-qualifier*/true, SourceLocation(),
561                             /*const qualifier*/SourceLocation(),
562                             /*volatile qualifier*/SourceLocation(),
563                             /*mutable qualifier*/SourceLocation(),
564                             /*EH*/ EST_None, SourceLocation(), 0, 0, 0, 0,
565                             /*parens*/ loc, loc,
566                             declarator));
567
568  // For consistency, make sure the state still has us as processing
569  // the decl spec.
570  assert(state.getCurrentChunkIndex() == declarator.getNumTypeObjects() - 1);
571  state.setCurrentChunkIndex(declarator.getNumTypeObjects());
572}
573
574/// \brief Convert the specified declspec to the appropriate type
575/// object.
576/// \param D  the declarator containing the declaration specifier.
577/// \returns The type described by the declaration specifiers.  This function
578/// never returns null.
579static QualType ConvertDeclSpecToType(TypeProcessingState &state) {
580  // FIXME: Should move the logic from DeclSpec::Finish to here for validity
581  // checking.
582
583  Sema &S = state.getSema();
584  Declarator &declarator = state.getDeclarator();
585  const DeclSpec &DS = declarator.getDeclSpec();
586  SourceLocation DeclLoc = declarator.getIdentifierLoc();
587  if (DeclLoc.isInvalid())
588    DeclLoc = DS.getLocStart();
589
590  ASTContext &Context = S.Context;
591
592  QualType Result;
593  switch (DS.getTypeSpecType()) {
594  case DeclSpec::TST_void:
595    Result = Context.VoidTy;
596    break;
597  case DeclSpec::TST_char:
598    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
599      Result = Context.CharTy;
600    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed)
601      Result = Context.SignedCharTy;
602    else {
603      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
604             "Unknown TSS value");
605      Result = Context.UnsignedCharTy;
606    }
607    break;
608  case DeclSpec::TST_wchar:
609    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
610      Result = Context.WCharTy;
611    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed) {
612      S.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
613        << DS.getSpecifierName(DS.getTypeSpecType());
614      Result = Context.getSignedWCharType();
615    } else {
616      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
617        "Unknown TSS value");
618      S.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
619        << DS.getSpecifierName(DS.getTypeSpecType());
620      Result = Context.getUnsignedWCharType();
621    }
622    break;
623  case DeclSpec::TST_char16:
624      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
625        "Unknown TSS value");
626      Result = Context.Char16Ty;
627    break;
628  case DeclSpec::TST_char32:
629      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
630        "Unknown TSS value");
631      Result = Context.Char32Ty;
632    break;
633  case DeclSpec::TST_unspecified:
634    // "<proto1,proto2>" is an objc qualified ID with a missing id.
635    if (DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers()) {
636      Result = Context.getObjCObjectType(Context.ObjCBuiltinIdTy,
637                                         (ObjCProtocolDecl**)PQ,
638                                         DS.getNumProtocolQualifiers());
639      Result = Context.getObjCObjectPointerType(Result);
640      break;
641    }
642
643    // If this is a missing declspec in a block literal return context, then it
644    // is inferred from the return statements inside the block.
645    // The declspec is always missing in a lambda expr context; it is either
646    // specified with a trailing return type or inferred.
647    if (declarator.getContext() == Declarator::LambdaExprContext ||
648        isOmittedBlockReturnType(declarator)) {
649      Result = Context.DependentTy;
650      break;
651    }
652
653    // Unspecified typespec defaults to int in C90.  However, the C90 grammar
654    // [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
655    // type-qualifier, or storage-class-specifier.  If not, emit an extwarn.
656    // Note that the one exception to this is function definitions, which are
657    // allowed to be completely missing a declspec.  This is handled in the
658    // parser already though by it pretending to have seen an 'int' in this
659    // case.
660    if (S.getLangOpts().ImplicitInt) {
661      // In C89 mode, we only warn if there is a completely missing declspec
662      // when one is not allowed.
663      if (DS.isEmpty()) {
664        S.Diag(DeclLoc, diag::ext_missing_declspec)
665          << DS.getSourceRange()
666        << FixItHint::CreateInsertion(DS.getLocStart(), "int");
667      }
668    } else if (!DS.hasTypeSpecifier()) {
669      // C99 and C++ require a type specifier.  For example, C99 6.7.2p2 says:
670      // "At least one type specifier shall be given in the declaration
671      // specifiers in each declaration, and in the specifier-qualifier list in
672      // each struct declaration and type name."
673      // FIXME: Does Microsoft really have the implicit int extension in C++?
674      if (S.getLangOpts().CPlusPlus &&
675          !S.getLangOpts().MicrosoftExt) {
676        S.Diag(DeclLoc, diag::err_missing_type_specifier)
677          << DS.getSourceRange();
678
679        // When this occurs in C++ code, often something is very broken with the
680        // value being declared, poison it as invalid so we don't get chains of
681        // errors.
682        declarator.setInvalidType(true);
683      } else {
684        S.Diag(DeclLoc, diag::ext_missing_type_specifier)
685          << DS.getSourceRange();
686      }
687    }
688
689    // FALL THROUGH.
690  case DeclSpec::TST_int: {
691    if (DS.getTypeSpecSign() != DeclSpec::TSS_unsigned) {
692      switch (DS.getTypeSpecWidth()) {
693      case DeclSpec::TSW_unspecified: Result = Context.IntTy; break;
694      case DeclSpec::TSW_short:       Result = Context.ShortTy; break;
695      case DeclSpec::TSW_long:        Result = Context.LongTy; break;
696      case DeclSpec::TSW_longlong:
697        Result = Context.LongLongTy;
698
699        // long long is a C99 feature.
700        if (!S.getLangOpts().C99)
701          S.Diag(DS.getTypeSpecWidthLoc(),
702                 S.getLangOpts().CPlusPlus0x ?
703                   diag::warn_cxx98_compat_longlong : diag::ext_longlong);
704        break;
705      }
706    } else {
707      switch (DS.getTypeSpecWidth()) {
708      case DeclSpec::TSW_unspecified: Result = Context.UnsignedIntTy; break;
709      case DeclSpec::TSW_short:       Result = Context.UnsignedShortTy; break;
710      case DeclSpec::TSW_long:        Result = Context.UnsignedLongTy; break;
711      case DeclSpec::TSW_longlong:
712        Result = Context.UnsignedLongLongTy;
713
714        // long long is a C99 feature.
715        if (!S.getLangOpts().C99)
716          S.Diag(DS.getTypeSpecWidthLoc(),
717                 S.getLangOpts().CPlusPlus0x ?
718                   diag::warn_cxx98_compat_longlong : diag::ext_longlong);
719        break;
720      }
721    }
722    break;
723  }
724  case DeclSpec::TST_int128:
725    if (DS.getTypeSpecSign() == DeclSpec::TSS_unsigned)
726      Result = Context.UnsignedInt128Ty;
727    else
728      Result = Context.Int128Ty;
729    break;
730  case DeclSpec::TST_half: Result = Context.HalfTy; break;
731  case DeclSpec::TST_float: Result = Context.FloatTy; break;
732  case DeclSpec::TST_double:
733    if (DS.getTypeSpecWidth() == DeclSpec::TSW_long)
734      Result = Context.LongDoubleTy;
735    else
736      Result = Context.DoubleTy;
737
738    if (S.getLangOpts().OpenCL && !S.getOpenCLOptions().cl_khr_fp64) {
739      S.Diag(DS.getTypeSpecTypeLoc(), diag::err_double_requires_fp64);
740      declarator.setInvalidType(true);
741    }
742    break;
743  case DeclSpec::TST_bool: Result = Context.BoolTy; break; // _Bool or bool
744  case DeclSpec::TST_decimal32:    // _Decimal32
745  case DeclSpec::TST_decimal64:    // _Decimal64
746  case DeclSpec::TST_decimal128:   // _Decimal128
747    S.Diag(DS.getTypeSpecTypeLoc(), diag::err_decimal_unsupported);
748    Result = Context.IntTy;
749    declarator.setInvalidType(true);
750    break;
751  case DeclSpec::TST_class:
752  case DeclSpec::TST_enum:
753  case DeclSpec::TST_union:
754  case DeclSpec::TST_struct: {
755    TypeDecl *D = dyn_cast_or_null<TypeDecl>(DS.getRepAsDecl());
756    if (!D) {
757      // This can happen in C++ with ambiguous lookups.
758      Result = Context.IntTy;
759      declarator.setInvalidType(true);
760      break;
761    }
762
763    // If the type is deprecated or unavailable, diagnose it.
764    S.DiagnoseUseOfDecl(D, DS.getTypeSpecTypeNameLoc());
765
766    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
767           DS.getTypeSpecSign() == 0 && "No qualifiers on tag names!");
768
769    // TypeQuals handled by caller.
770    Result = Context.getTypeDeclType(D);
771
772    // In both C and C++, make an ElaboratedType.
773    ElaboratedTypeKeyword Keyword
774      = ElaboratedType::getKeywordForTypeSpec(DS.getTypeSpecType());
775    Result = S.getElaboratedType(Keyword, DS.getTypeSpecScope(), Result);
776    break;
777  }
778  case DeclSpec::TST_typename: {
779    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
780           DS.getTypeSpecSign() == 0 &&
781           "Can't handle qualifiers on typedef names yet!");
782    Result = S.GetTypeFromParser(DS.getRepAsType());
783    if (Result.isNull())
784      declarator.setInvalidType(true);
785    else if (DeclSpec::ProtocolQualifierListTy PQ
786               = DS.getProtocolQualifiers()) {
787      if (const ObjCObjectType *ObjT = Result->getAs<ObjCObjectType>()) {
788        // Silently drop any existing protocol qualifiers.
789        // TODO: determine whether that's the right thing to do.
790        if (ObjT->getNumProtocols())
791          Result = ObjT->getBaseType();
792
793        if (DS.getNumProtocolQualifiers())
794          Result = Context.getObjCObjectType(Result,
795                                             (ObjCProtocolDecl**) PQ,
796                                             DS.getNumProtocolQualifiers());
797      } else if (Result->isObjCIdType()) {
798        // id<protocol-list>
799        Result = Context.getObjCObjectType(Context.ObjCBuiltinIdTy,
800                                           (ObjCProtocolDecl**) PQ,
801                                           DS.getNumProtocolQualifiers());
802        Result = Context.getObjCObjectPointerType(Result);
803      } else if (Result->isObjCClassType()) {
804        // Class<protocol-list>
805        Result = Context.getObjCObjectType(Context.ObjCBuiltinClassTy,
806                                           (ObjCProtocolDecl**) PQ,
807                                           DS.getNumProtocolQualifiers());
808        Result = Context.getObjCObjectPointerType(Result);
809      } else {
810        S.Diag(DeclLoc, diag::err_invalid_protocol_qualifiers)
811          << DS.getSourceRange();
812        declarator.setInvalidType(true);
813      }
814    }
815
816    // TypeQuals handled by caller.
817    break;
818  }
819  case DeclSpec::TST_typeofType:
820    // FIXME: Preserve type source info.
821    Result = S.GetTypeFromParser(DS.getRepAsType());
822    assert(!Result.isNull() && "Didn't get a type for typeof?");
823    if (!Result->isDependentType())
824      if (const TagType *TT = Result->getAs<TagType>())
825        S.DiagnoseUseOfDecl(TT->getDecl(), DS.getTypeSpecTypeLoc());
826    // TypeQuals handled by caller.
827    Result = Context.getTypeOfType(Result);
828    break;
829  case DeclSpec::TST_typeofExpr: {
830    Expr *E = DS.getRepAsExpr();
831    assert(E && "Didn't get an expression for typeof?");
832    // TypeQuals handled by caller.
833    Result = S.BuildTypeofExprType(E, DS.getTypeSpecTypeLoc());
834    if (Result.isNull()) {
835      Result = Context.IntTy;
836      declarator.setInvalidType(true);
837    }
838    break;
839  }
840  case DeclSpec::TST_decltype: {
841    Expr *E = DS.getRepAsExpr();
842    assert(E && "Didn't get an expression for decltype?");
843    // TypeQuals handled by caller.
844    Result = S.BuildDecltypeType(E, DS.getTypeSpecTypeLoc());
845    if (Result.isNull()) {
846      Result = Context.IntTy;
847      declarator.setInvalidType(true);
848    }
849    break;
850  }
851  case DeclSpec::TST_underlyingType:
852    Result = S.GetTypeFromParser(DS.getRepAsType());
853    assert(!Result.isNull() && "Didn't get a type for __underlying_type?");
854    Result = S.BuildUnaryTransformType(Result,
855                                       UnaryTransformType::EnumUnderlyingType,
856                                       DS.getTypeSpecTypeLoc());
857    if (Result.isNull()) {
858      Result = Context.IntTy;
859      declarator.setInvalidType(true);
860    }
861    break;
862
863  case DeclSpec::TST_auto: {
864    // TypeQuals handled by caller.
865    Result = Context.getAutoType(QualType());
866    break;
867  }
868
869  case DeclSpec::TST_unknown_anytype:
870    Result = Context.UnknownAnyTy;
871    break;
872
873  case DeclSpec::TST_atomic:
874    Result = S.GetTypeFromParser(DS.getRepAsType());
875    assert(!Result.isNull() && "Didn't get a type for _Atomic?");
876    Result = S.BuildAtomicType(Result, DS.getTypeSpecTypeLoc());
877    if (Result.isNull()) {
878      Result = Context.IntTy;
879      declarator.setInvalidType(true);
880    }
881    break;
882
883  case DeclSpec::TST_error:
884    Result = Context.IntTy;
885    declarator.setInvalidType(true);
886    break;
887  }
888
889  // Handle complex types.
890  if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex) {
891    if (S.getLangOpts().Freestanding)
892      S.Diag(DS.getTypeSpecComplexLoc(), diag::ext_freestanding_complex);
893    Result = Context.getComplexType(Result);
894  } else if (DS.isTypeAltiVecVector()) {
895    unsigned typeSize = static_cast<unsigned>(Context.getTypeSize(Result));
896    assert(typeSize > 0 && "type size for vector must be greater than 0 bits");
897    VectorType::VectorKind VecKind = VectorType::AltiVecVector;
898    if (DS.isTypeAltiVecPixel())
899      VecKind = VectorType::AltiVecPixel;
900    else if (DS.isTypeAltiVecBool())
901      VecKind = VectorType::AltiVecBool;
902    Result = Context.getVectorType(Result, 128/typeSize, VecKind);
903  }
904
905  // FIXME: Imaginary.
906  if (DS.getTypeSpecComplex() == DeclSpec::TSC_imaginary)
907    S.Diag(DS.getTypeSpecComplexLoc(), diag::err_imaginary_not_supported);
908
909  // Before we process any type attributes, synthesize a block literal
910  // function declarator if necessary.
911  if (declarator.getContext() == Declarator::BlockLiteralContext)
912    maybeSynthesizeBlockSignature(state, Result);
913
914  // Apply any type attributes from the decl spec.  This may cause the
915  // list of type attributes to be temporarily saved while the type
916  // attributes are pushed around.
917  if (AttributeList *attrs = DS.getAttributes().getList())
918    processTypeAttrs(state, Result, true, attrs);
919
920  // Apply const/volatile/restrict qualifiers to T.
921  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
922
923    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
924    // or incomplete types shall not be restrict-qualified."  C++ also allows
925    // restrict-qualified references.
926    if (TypeQuals & DeclSpec::TQ_restrict) {
927      if (Result->isAnyPointerType() || Result->isReferenceType()) {
928        QualType EltTy;
929        if (Result->isObjCObjectPointerType())
930          EltTy = Result;
931        else
932          EltTy = Result->isPointerType() ?
933                    Result->getAs<PointerType>()->getPointeeType() :
934                    Result->getAs<ReferenceType>()->getPointeeType();
935
936        // If we have a pointer or reference, the pointee must have an object
937        // incomplete type.
938        if (!EltTy->isIncompleteOrObjectType()) {
939          S.Diag(DS.getRestrictSpecLoc(),
940               diag::err_typecheck_invalid_restrict_invalid_pointee)
941            << EltTy << DS.getSourceRange();
942          TypeQuals &= ~DeclSpec::TQ_restrict; // Remove the restrict qualifier.
943        }
944      } else {
945        S.Diag(DS.getRestrictSpecLoc(),
946               diag::err_typecheck_invalid_restrict_not_pointer)
947          << Result << DS.getSourceRange();
948        TypeQuals &= ~DeclSpec::TQ_restrict; // Remove the restrict qualifier.
949      }
950    }
951
952    // Warn about CV qualifiers on functions: C99 6.7.3p8: "If the specification
953    // of a function type includes any type qualifiers, the behavior is
954    // undefined."
955    if (Result->isFunctionType() && TypeQuals) {
956      // Get some location to point at, either the C or V location.
957      SourceLocation Loc;
958      if (TypeQuals & DeclSpec::TQ_const)
959        Loc = DS.getConstSpecLoc();
960      else if (TypeQuals & DeclSpec::TQ_volatile)
961        Loc = DS.getVolatileSpecLoc();
962      else {
963        assert((TypeQuals & DeclSpec::TQ_restrict) &&
964               "Has CVR quals but not C, V, or R?");
965        Loc = DS.getRestrictSpecLoc();
966      }
967      S.Diag(Loc, diag::warn_typecheck_function_qualifiers)
968        << Result << DS.getSourceRange();
969    }
970
971    // C++ [dcl.ref]p1:
972    //   Cv-qualified references are ill-formed except when the
973    //   cv-qualifiers are introduced through the use of a typedef
974    //   (7.1.3) or of a template type argument (14.3), in which
975    //   case the cv-qualifiers are ignored.
976    // FIXME: Shouldn't we be checking SCS_typedef here?
977    if (DS.getTypeSpecType() == DeclSpec::TST_typename &&
978        TypeQuals && Result->isReferenceType()) {
979      TypeQuals &= ~DeclSpec::TQ_const;
980      TypeQuals &= ~DeclSpec::TQ_volatile;
981    }
982
983    // C90 6.5.3 constraints: "The same type qualifier shall not appear more
984    // than once in the same specifier-list or qualifier-list, either directly
985    // or via one or more typedefs."
986    if (!S.getLangOpts().C99 && !S.getLangOpts().CPlusPlus
987        && TypeQuals & Result.getCVRQualifiers()) {
988      if (TypeQuals & DeclSpec::TQ_const && Result.isConstQualified()) {
989        S.Diag(DS.getConstSpecLoc(), diag::ext_duplicate_declspec)
990          << "const";
991      }
992
993      if (TypeQuals & DeclSpec::TQ_volatile && Result.isVolatileQualified()) {
994        S.Diag(DS.getVolatileSpecLoc(), diag::ext_duplicate_declspec)
995          << "volatile";
996      }
997
998      // C90 doesn't have restrict, so it doesn't force us to produce a warning
999      // in this case.
1000    }
1001
1002    Qualifiers Quals = Qualifiers::fromCVRMask(TypeQuals);
1003    Result = Context.getQualifiedType(Result, Quals);
1004  }
1005
1006  return Result;
1007}
1008
1009static std::string getPrintableNameForEntity(DeclarationName Entity) {
1010  if (Entity)
1011    return Entity.getAsString();
1012
1013  return "type name";
1014}
1015
1016QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
1017                                  Qualifiers Qs) {
1018  // Enforce C99 6.7.3p2: "Types other than pointer types derived from
1019  // object or incomplete types shall not be restrict-qualified."
1020  if (Qs.hasRestrict()) {
1021    unsigned DiagID = 0;
1022    QualType ProblemTy;
1023
1024    const Type *Ty = T->getCanonicalTypeInternal().getTypePtr();
1025    if (const ReferenceType *RTy = dyn_cast<ReferenceType>(Ty)) {
1026      if (!RTy->getPointeeType()->isIncompleteOrObjectType()) {
1027        DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
1028        ProblemTy = T->getAs<ReferenceType>()->getPointeeType();
1029      }
1030    } else if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
1031      if (!PTy->getPointeeType()->isIncompleteOrObjectType()) {
1032        DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
1033        ProblemTy = T->getAs<PointerType>()->getPointeeType();
1034      }
1035    } else if (const MemberPointerType *PTy = dyn_cast<MemberPointerType>(Ty)) {
1036      if (!PTy->getPointeeType()->isIncompleteOrObjectType()) {
1037        DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
1038        ProblemTy = T->getAs<PointerType>()->getPointeeType();
1039      }
1040    } else if (!Ty->isDependentType()) {
1041      // FIXME: this deserves a proper diagnostic
1042      DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
1043      ProblemTy = T;
1044    }
1045
1046    if (DiagID) {
1047      Diag(Loc, DiagID) << ProblemTy;
1048      Qs.removeRestrict();
1049    }
1050  }
1051
1052  return Context.getQualifiedType(T, Qs);
1053}
1054
1055/// \brief Build a paren type including \p T.
1056QualType Sema::BuildParenType(QualType T) {
1057  return Context.getParenType(T);
1058}
1059
1060/// Given that we're building a pointer or reference to the given
1061static QualType inferARCLifetimeForPointee(Sema &S, QualType type,
1062                                           SourceLocation loc,
1063                                           bool isReference) {
1064  // Bail out if retention is unrequired or already specified.
1065  if (!type->isObjCLifetimeType() ||
1066      type.getObjCLifetime() != Qualifiers::OCL_None)
1067    return type;
1068
1069  Qualifiers::ObjCLifetime implicitLifetime = Qualifiers::OCL_None;
1070
1071  // If the object type is const-qualified, we can safely use
1072  // __unsafe_unretained.  This is safe (because there are no read
1073  // barriers), and it'll be safe to coerce anything but __weak* to
1074  // the resulting type.
1075  if (type.isConstQualified()) {
1076    implicitLifetime = Qualifiers::OCL_ExplicitNone;
1077
1078  // Otherwise, check whether the static type does not require
1079  // retaining.  This currently only triggers for Class (possibly
1080  // protocol-qualifed, and arrays thereof).
1081  } else if (type->isObjCARCImplicitlyUnretainedType()) {
1082    implicitLifetime = Qualifiers::OCL_ExplicitNone;
1083
1084  // If we are in an unevaluated context, like sizeof, skip adding a
1085  // qualification.
1086  } else if (S.ExprEvalContexts.back().Context == Sema::Unevaluated) {
1087    return type;
1088
1089  // If that failed, give an error and recover using __strong.  __strong
1090  // is the option most likely to prevent spurious second-order diagnostics,
1091  // like when binding a reference to a field.
1092  } else {
1093    // These types can show up in private ivars in system headers, so
1094    // we need this to not be an error in those cases.  Instead we
1095    // want to delay.
1096    if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
1097      S.DelayedDiagnostics.add(
1098          sema::DelayedDiagnostic::makeForbiddenType(loc,
1099              diag::err_arc_indirect_no_ownership, type, isReference));
1100    } else {
1101      S.Diag(loc, diag::err_arc_indirect_no_ownership) << type << isReference;
1102    }
1103    implicitLifetime = Qualifiers::OCL_Strong;
1104  }
1105  assert(implicitLifetime && "didn't infer any lifetime!");
1106
1107  Qualifiers qs;
1108  qs.addObjCLifetime(implicitLifetime);
1109  return S.Context.getQualifiedType(type, qs);
1110}
1111
1112/// \brief Build a pointer type.
1113///
1114/// \param T The type to which we'll be building a pointer.
1115///
1116/// \param Loc The location of the entity whose type involves this
1117/// pointer type or, if there is no such entity, the location of the
1118/// type that will have pointer type.
1119///
1120/// \param Entity The name of the entity that involves the pointer
1121/// type, if known.
1122///
1123/// \returns A suitable pointer type, if there are no
1124/// errors. Otherwise, returns a NULL type.
1125QualType Sema::BuildPointerType(QualType T,
1126                                SourceLocation Loc, DeclarationName Entity) {
1127  if (T->isReferenceType()) {
1128    // C++ 8.3.2p4: There shall be no ... pointers to references ...
1129    Diag(Loc, diag::err_illegal_decl_pointer_to_reference)
1130      << getPrintableNameForEntity(Entity) << T;
1131    return QualType();
1132  }
1133
1134  assert(!T->isObjCObjectType() && "Should build ObjCObjectPointerType");
1135
1136  // In ARC, it is forbidden to build pointers to unqualified pointers.
1137  if (getLangOpts().ObjCAutoRefCount)
1138    T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ false);
1139
1140  // Build the pointer type.
1141  return Context.getPointerType(T);
1142}
1143
1144/// \brief Build a reference type.
1145///
1146/// \param T The type to which we'll be building a reference.
1147///
1148/// \param Loc The location of the entity whose type involves this
1149/// reference type or, if there is no such entity, the location of the
1150/// type that will have reference type.
1151///
1152/// \param Entity The name of the entity that involves the reference
1153/// type, if known.
1154///
1155/// \returns A suitable reference type, if there are no
1156/// errors. Otherwise, returns a NULL type.
1157QualType Sema::BuildReferenceType(QualType T, bool SpelledAsLValue,
1158                                  SourceLocation Loc,
1159                                  DeclarationName Entity) {
1160  assert(Context.getCanonicalType(T) != Context.OverloadTy &&
1161         "Unresolved overloaded function type");
1162
1163  // C++0x [dcl.ref]p6:
1164  //   If a typedef (7.1.3), a type template-parameter (14.3.1), or a
1165  //   decltype-specifier (7.1.6.2) denotes a type TR that is a reference to a
1166  //   type T, an attempt to create the type "lvalue reference to cv TR" creates
1167  //   the type "lvalue reference to T", while an attempt to create the type
1168  //   "rvalue reference to cv TR" creates the type TR.
1169  bool LValueRef = SpelledAsLValue || T->getAs<LValueReferenceType>();
1170
1171  // C++ [dcl.ref]p4: There shall be no references to references.
1172  //
1173  // According to C++ DR 106, references to references are only
1174  // diagnosed when they are written directly (e.g., "int & &"),
1175  // but not when they happen via a typedef:
1176  //
1177  //   typedef int& intref;
1178  //   typedef intref& intref2;
1179  //
1180  // Parser::ParseDeclaratorInternal diagnoses the case where
1181  // references are written directly; here, we handle the
1182  // collapsing of references-to-references as described in C++0x.
1183  // DR 106 and 540 introduce reference-collapsing into C++98/03.
1184
1185  // C++ [dcl.ref]p1:
1186  //   A declarator that specifies the type "reference to cv void"
1187  //   is ill-formed.
1188  if (T->isVoidType()) {
1189    Diag(Loc, diag::err_reference_to_void);
1190    return QualType();
1191  }
1192
1193  // In ARC, it is forbidden to build references to unqualified pointers.
1194  if (getLangOpts().ObjCAutoRefCount)
1195    T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ true);
1196
1197  // Handle restrict on references.
1198  if (LValueRef)
1199    return Context.getLValueReferenceType(T, SpelledAsLValue);
1200  return Context.getRValueReferenceType(T);
1201}
1202
1203/// Check whether the specified array size makes the array type a VLA.  If so,
1204/// return true, if not, return the size of the array in SizeVal.
1205static bool isArraySizeVLA(Sema &S, Expr *ArraySize, llvm::APSInt &SizeVal) {
1206  // If the size is an ICE, it certainly isn't a VLA. If we're in a GNU mode
1207  // (like gnu99, but not c99) accept any evaluatable value as an extension.
1208  class VLADiagnoser : public Sema::VerifyICEDiagnoser {
1209  public:
1210    VLADiagnoser() : Sema::VerifyICEDiagnoser(true) {}
1211
1212    virtual void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) {
1213    }
1214
1215    virtual void diagnoseFold(Sema &S, SourceLocation Loc, SourceRange SR) {
1216      S.Diag(Loc, diag::ext_vla_folded_to_constant) << SR;
1217    }
1218  } Diagnoser;
1219
1220  return S.VerifyIntegerConstantExpression(ArraySize, &SizeVal, Diagnoser,
1221                                           S.LangOpts.GNUMode).isInvalid();
1222}
1223
1224
1225/// \brief Build an array type.
1226///
1227/// \param T The type of each element in the array.
1228///
1229/// \param ASM C99 array size modifier (e.g., '*', 'static').
1230///
1231/// \param ArraySize Expression describing the size of the array.
1232///
1233/// \param Loc The location of the entity whose type involves this
1234/// array type or, if there is no such entity, the location of the
1235/// type that will have array type.
1236///
1237/// \param Entity The name of the entity that involves the array
1238/// type, if known.
1239///
1240/// \returns A suitable array type, if there are no errors. Otherwise,
1241/// returns a NULL type.
1242QualType Sema::BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM,
1243                              Expr *ArraySize, unsigned Quals,
1244                              SourceRange Brackets, DeclarationName Entity) {
1245
1246  SourceLocation Loc = Brackets.getBegin();
1247  if (getLangOpts().CPlusPlus) {
1248    // C++ [dcl.array]p1:
1249    //   T is called the array element type; this type shall not be a reference
1250    //   type, the (possibly cv-qualified) type void, a function type or an
1251    //   abstract class type.
1252    //
1253    // Note: function types are handled in the common path with C.
1254    if (T->isReferenceType()) {
1255      Diag(Loc, diag::err_illegal_decl_array_of_references)
1256      << getPrintableNameForEntity(Entity) << T;
1257      return QualType();
1258    }
1259
1260    if (T->isVoidType()) {
1261      Diag(Loc, diag::err_illegal_decl_array_incomplete_type) << T;
1262      return QualType();
1263    }
1264
1265    if (RequireNonAbstractType(Brackets.getBegin(), T,
1266                               diag::err_array_of_abstract_type))
1267      return QualType();
1268
1269  } else {
1270    // C99 6.7.5.2p1: If the element type is an incomplete or function type,
1271    // reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
1272    if (RequireCompleteType(Loc, T,
1273                            diag::err_illegal_decl_array_incomplete_type))
1274      return QualType();
1275  }
1276
1277  if (T->isFunctionType()) {
1278    Diag(Loc, diag::err_illegal_decl_array_of_functions)
1279      << getPrintableNameForEntity(Entity) << T;
1280    return QualType();
1281  }
1282
1283  if (T->getContainedAutoType()) {
1284    Diag(Loc, diag::err_illegal_decl_array_of_auto)
1285      << getPrintableNameForEntity(Entity) << T;
1286    return QualType();
1287  }
1288
1289  if (const RecordType *EltTy = T->getAs<RecordType>()) {
1290    // If the element type is a struct or union that contains a variadic
1291    // array, accept it as a GNU extension: C99 6.7.2.1p2.
1292    if (EltTy->getDecl()->hasFlexibleArrayMember())
1293      Diag(Loc, diag::ext_flexible_array_in_array) << T;
1294  } else if (T->isObjCObjectType()) {
1295    Diag(Loc, diag::err_objc_array_of_interfaces) << T;
1296    return QualType();
1297  }
1298
1299  // Do placeholder conversions on the array size expression.
1300  if (ArraySize && ArraySize->hasPlaceholderType()) {
1301    ExprResult Result = CheckPlaceholderExpr(ArraySize);
1302    if (Result.isInvalid()) return QualType();
1303    ArraySize = Result.take();
1304  }
1305
1306  // Do lvalue-to-rvalue conversions on the array size expression.
1307  if (ArraySize && !ArraySize->isRValue()) {
1308    ExprResult Result = DefaultLvalueConversion(ArraySize);
1309    if (Result.isInvalid())
1310      return QualType();
1311
1312    ArraySize = Result.take();
1313  }
1314
1315  // C99 6.7.5.2p1: The size expression shall have integer type.
1316  // C++11 allows contextual conversions to such types.
1317  if (!getLangOpts().CPlusPlus0x &&
1318      ArraySize && !ArraySize->isTypeDependent() &&
1319      !ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
1320    Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
1321      << ArraySize->getType() << ArraySize->getSourceRange();
1322    return QualType();
1323  }
1324
1325  llvm::APSInt ConstVal(Context.getTypeSize(Context.getSizeType()));
1326  if (!ArraySize) {
1327    if (ASM == ArrayType::Star)
1328      T = Context.getVariableArrayType(T, 0, ASM, Quals, Brackets);
1329    else
1330      T = Context.getIncompleteArrayType(T, ASM, Quals);
1331  } else if (ArraySize->isTypeDependent() || ArraySize->isValueDependent()) {
1332    T = Context.getDependentSizedArrayType(T, ArraySize, ASM, Quals, Brackets);
1333  } else if ((!T->isDependentType() && !T->isIncompleteType() &&
1334              !T->isConstantSizeType()) ||
1335             isArraySizeVLA(*this, ArraySize, ConstVal)) {
1336    // Even in C++11, don't allow contextual conversions in the array bound
1337    // of a VLA.
1338    if (getLangOpts().CPlusPlus0x &&
1339        !ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
1340      Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
1341        << ArraySize->getType() << ArraySize->getSourceRange();
1342      return QualType();
1343    }
1344
1345    // C99: an array with an element type that has a non-constant-size is a VLA.
1346    // C99: an array with a non-ICE size is a VLA.  We accept any expression
1347    // that we can fold to a non-zero positive value as an extension.
1348    T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
1349  } else {
1350    // C99 6.7.5.2p1: If the expression is a constant expression, it shall
1351    // have a value greater than zero.
1352    if (ConstVal.isSigned() && ConstVal.isNegative()) {
1353      if (Entity)
1354        Diag(ArraySize->getLocStart(), diag::err_decl_negative_array_size)
1355          << getPrintableNameForEntity(Entity) << ArraySize->getSourceRange();
1356      else
1357        Diag(ArraySize->getLocStart(), diag::err_typecheck_negative_array_size)
1358          << ArraySize->getSourceRange();
1359      return QualType();
1360    }
1361    if (ConstVal == 0) {
1362      // GCC accepts zero sized static arrays. We allow them when
1363      // we're not in a SFINAE context.
1364      Diag(ArraySize->getLocStart(),
1365           isSFINAEContext()? diag::err_typecheck_zero_array_size
1366                            : diag::ext_typecheck_zero_array_size)
1367        << ArraySize->getSourceRange();
1368
1369      if (ASM == ArrayType::Static) {
1370        Diag(ArraySize->getLocStart(),
1371             diag::warn_typecheck_zero_static_array_size)
1372          << ArraySize->getSourceRange();
1373        ASM = ArrayType::Normal;
1374      }
1375    } else if (!T->isDependentType() && !T->isVariablyModifiedType() &&
1376               !T->isIncompleteType()) {
1377      // Is the array too large?
1378      unsigned ActiveSizeBits
1379        = ConstantArrayType::getNumAddressingBits(Context, T, ConstVal);
1380      if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context))
1381        Diag(ArraySize->getLocStart(), diag::err_array_too_large)
1382          << ConstVal.toString(10)
1383          << ArraySize->getSourceRange();
1384    }
1385
1386    T = Context.getConstantArrayType(T, ConstVal, ASM, Quals);
1387  }
1388  // If this is not C99, extwarn about VLA's and C99 array size modifiers.
1389  if (!getLangOpts().C99) {
1390    if (T->isVariableArrayType()) {
1391      // Prohibit the use of non-POD types in VLAs.
1392      QualType BaseT = Context.getBaseElementType(T);
1393      if (!T->isDependentType() &&
1394          !BaseT.isPODType(Context) &&
1395          !BaseT->isObjCLifetimeType()) {
1396        Diag(Loc, diag::err_vla_non_pod)
1397          << BaseT;
1398        return QualType();
1399      }
1400      // Prohibit the use of VLAs during template argument deduction.
1401      else if (isSFINAEContext()) {
1402        Diag(Loc, diag::err_vla_in_sfinae);
1403        return QualType();
1404      }
1405      // Just extwarn about VLAs.
1406      else
1407        Diag(Loc, diag::ext_vla);
1408    } else if (ASM != ArrayType::Normal || Quals != 0)
1409      Diag(Loc,
1410           getLangOpts().CPlusPlus? diag::err_c99_array_usage_cxx
1411                                     : diag::ext_c99_array_usage) << ASM;
1412  }
1413
1414  return T;
1415}
1416
1417/// \brief Build an ext-vector type.
1418///
1419/// Run the required checks for the extended vector type.
1420QualType Sema::BuildExtVectorType(QualType T, Expr *ArraySize,
1421                                  SourceLocation AttrLoc) {
1422  // unlike gcc's vector_size attribute, we do not allow vectors to be defined
1423  // in conjunction with complex types (pointers, arrays, functions, etc.).
1424  if (!T->isDependentType() &&
1425      !T->isIntegerType() && !T->isRealFloatingType()) {
1426    Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << T;
1427    return QualType();
1428  }
1429
1430  if (!ArraySize->isTypeDependent() && !ArraySize->isValueDependent()) {
1431    llvm::APSInt vecSize(32);
1432    if (!ArraySize->isIntegerConstantExpr(vecSize, Context)) {
1433      Diag(AttrLoc, diag::err_attribute_argument_not_int)
1434        << "ext_vector_type" << ArraySize->getSourceRange();
1435      return QualType();
1436    }
1437
1438    // unlike gcc's vector_size attribute, the size is specified as the
1439    // number of elements, not the number of bytes.
1440    unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue());
1441
1442    if (vectorSize == 0) {
1443      Diag(AttrLoc, diag::err_attribute_zero_size)
1444      << ArraySize->getSourceRange();
1445      return QualType();
1446    }
1447
1448    return Context.getExtVectorType(T, vectorSize);
1449  }
1450
1451  return Context.getDependentSizedExtVectorType(T, ArraySize, AttrLoc);
1452}
1453
1454/// \brief Build a function type.
1455///
1456/// This routine checks the function type according to C++ rules and
1457/// under the assumption that the result type and parameter types have
1458/// just been instantiated from a template. It therefore duplicates
1459/// some of the behavior of GetTypeForDeclarator, but in a much
1460/// simpler form that is only suitable for this narrow use case.
1461///
1462/// \param T The return type of the function.
1463///
1464/// \param ParamTypes The parameter types of the function. This array
1465/// will be modified to account for adjustments to the types of the
1466/// function parameters.
1467///
1468/// \param NumParamTypes The number of parameter types in ParamTypes.
1469///
1470/// \param Variadic Whether this is a variadic function type.
1471///
1472/// \param HasTrailingReturn Whether this function has a trailing return type.
1473///
1474/// \param Quals The cvr-qualifiers to be applied to the function type.
1475///
1476/// \param Loc The location of the entity whose type involves this
1477/// function type or, if there is no such entity, the location of the
1478/// type that will have function type.
1479///
1480/// \param Entity The name of the entity that involves the function
1481/// type, if known.
1482///
1483/// \returns A suitable function type, if there are no
1484/// errors. Otherwise, returns a NULL type.
1485QualType Sema::BuildFunctionType(QualType T,
1486                                 QualType *ParamTypes,
1487                                 unsigned NumParamTypes,
1488                                 bool Variadic, bool HasTrailingReturn,
1489                                 unsigned Quals,
1490                                 RefQualifierKind RefQualifier,
1491                                 SourceLocation Loc, DeclarationName Entity,
1492                                 FunctionType::ExtInfo Info) {
1493  if (T->isArrayType() || T->isFunctionType()) {
1494    Diag(Loc, diag::err_func_returning_array_function)
1495      << T->isFunctionType() << T;
1496    return QualType();
1497  }
1498
1499  // Functions cannot return half FP.
1500  if (T->isHalfType()) {
1501    Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 1 <<
1502      FixItHint::CreateInsertion(Loc, "*");
1503    return QualType();
1504  }
1505
1506  bool Invalid = false;
1507  for (unsigned Idx = 0; Idx < NumParamTypes; ++Idx) {
1508    // FIXME: Loc is too inprecise here, should use proper locations for args.
1509    QualType ParamType = Context.getAdjustedParameterType(ParamTypes[Idx]);
1510    if (ParamType->isVoidType()) {
1511      Diag(Loc, diag::err_param_with_void_type);
1512      Invalid = true;
1513    } else if (ParamType->isHalfType()) {
1514      // Disallow half FP arguments.
1515      Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 0 <<
1516        FixItHint::CreateInsertion(Loc, "*");
1517      Invalid = true;
1518    }
1519
1520    ParamTypes[Idx] = ParamType;
1521  }
1522
1523  if (Invalid)
1524    return QualType();
1525
1526  FunctionProtoType::ExtProtoInfo EPI;
1527  EPI.Variadic = Variadic;
1528  EPI.HasTrailingReturn = HasTrailingReturn;
1529  EPI.TypeQuals = Quals;
1530  EPI.RefQualifier = RefQualifier;
1531  EPI.ExtInfo = Info;
1532
1533  return Context.getFunctionType(T, ParamTypes, NumParamTypes, EPI);
1534}
1535
1536/// \brief Build a member pointer type \c T Class::*.
1537///
1538/// \param T the type to which the member pointer refers.
1539/// \param Class the class type into which the member pointer points.
1540/// \param Loc the location where this type begins
1541/// \param Entity the name of the entity that will have this member pointer type
1542///
1543/// \returns a member pointer type, if successful, or a NULL type if there was
1544/// an error.
1545QualType Sema::BuildMemberPointerType(QualType T, QualType Class,
1546                                      SourceLocation Loc,
1547                                      DeclarationName Entity) {
1548  // Verify that we're not building a pointer to pointer to function with
1549  // exception specification.
1550  if (CheckDistantExceptionSpec(T)) {
1551    Diag(Loc, diag::err_distant_exception_spec);
1552
1553    // FIXME: If we're doing this as part of template instantiation,
1554    // we should return immediately.
1555
1556    // Build the type anyway, but use the canonical type so that the
1557    // exception specifiers are stripped off.
1558    T = Context.getCanonicalType(T);
1559  }
1560
1561  // C++ 8.3.3p3: A pointer to member shall not point to ... a member
1562  //   with reference type, or "cv void."
1563  if (T->isReferenceType()) {
1564    Diag(Loc, diag::err_illegal_decl_mempointer_to_reference)
1565      << (Entity? Entity.getAsString() : "type name") << T;
1566    return QualType();
1567  }
1568
1569  if (T->isVoidType()) {
1570    Diag(Loc, diag::err_illegal_decl_mempointer_to_void)
1571      << (Entity? Entity.getAsString() : "type name");
1572    return QualType();
1573  }
1574
1575  if (!Class->isDependentType() && !Class->isRecordType()) {
1576    Diag(Loc, diag::err_mempointer_in_nonclass_type) << Class;
1577    return QualType();
1578  }
1579
1580  // In the Microsoft ABI, the class is allowed to be an incomplete
1581  // type. In such cases, the compiler makes a worst-case assumption.
1582  // We make no such assumption right now, so emit an error if the
1583  // class isn't a complete type.
1584  if (Context.getTargetInfo().getCXXABI() == CXXABI_Microsoft &&
1585      RequireCompleteType(Loc, Class, diag::err_incomplete_type))
1586    return QualType();
1587
1588  return Context.getMemberPointerType(T, Class.getTypePtr());
1589}
1590
1591/// \brief Build a block pointer type.
1592///
1593/// \param T The type to which we'll be building a block pointer.
1594///
1595/// \param CVR The cvr-qualifiers to be applied to the block pointer type.
1596///
1597/// \param Loc The location of the entity whose type involves this
1598/// block pointer type or, if there is no such entity, the location of the
1599/// type that will have block pointer type.
1600///
1601/// \param Entity The name of the entity that involves the block pointer
1602/// type, if known.
1603///
1604/// \returns A suitable block pointer type, if there are no
1605/// errors. Otherwise, returns a NULL type.
1606QualType Sema::BuildBlockPointerType(QualType T,
1607                                     SourceLocation Loc,
1608                                     DeclarationName Entity) {
1609  if (!T->isFunctionType()) {
1610    Diag(Loc, diag::err_nonfunction_block_type);
1611    return QualType();
1612  }
1613
1614  return Context.getBlockPointerType(T);
1615}
1616
1617QualType Sema::GetTypeFromParser(ParsedType Ty, TypeSourceInfo **TInfo) {
1618  QualType QT = Ty.get();
1619  if (QT.isNull()) {
1620    if (TInfo) *TInfo = 0;
1621    return QualType();
1622  }
1623
1624  TypeSourceInfo *DI = 0;
1625  if (const LocInfoType *LIT = dyn_cast<LocInfoType>(QT)) {
1626    QT = LIT->getType();
1627    DI = LIT->getTypeSourceInfo();
1628  }
1629
1630  if (TInfo) *TInfo = DI;
1631  return QT;
1632}
1633
1634static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
1635                                            Qualifiers::ObjCLifetime ownership,
1636                                            unsigned chunkIndex);
1637
1638/// Given that this is the declaration of a parameter under ARC,
1639/// attempt to infer attributes and such for pointer-to-whatever
1640/// types.
1641static void inferARCWriteback(TypeProcessingState &state,
1642                              QualType &declSpecType) {
1643  Sema &S = state.getSema();
1644  Declarator &declarator = state.getDeclarator();
1645
1646  // TODO: should we care about decl qualifiers?
1647
1648  // Check whether the declarator has the expected form.  We walk
1649  // from the inside out in order to make the block logic work.
1650  unsigned outermostPointerIndex = 0;
1651  bool isBlockPointer = false;
1652  unsigned numPointers = 0;
1653  for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
1654    unsigned chunkIndex = i;
1655    DeclaratorChunk &chunk = declarator.getTypeObject(chunkIndex);
1656    switch (chunk.Kind) {
1657    case DeclaratorChunk::Paren:
1658      // Ignore parens.
1659      break;
1660
1661    case DeclaratorChunk::Reference:
1662    case DeclaratorChunk::Pointer:
1663      // Count the number of pointers.  Treat references
1664      // interchangeably as pointers; if they're mis-ordered, normal
1665      // type building will discover that.
1666      outermostPointerIndex = chunkIndex;
1667      numPointers++;
1668      break;
1669
1670    case DeclaratorChunk::BlockPointer:
1671      // If we have a pointer to block pointer, that's an acceptable
1672      // indirect reference; anything else is not an application of
1673      // the rules.
1674      if (numPointers != 1) return;
1675      numPointers++;
1676      outermostPointerIndex = chunkIndex;
1677      isBlockPointer = true;
1678
1679      // We don't care about pointer structure in return values here.
1680      goto done;
1681
1682    case DeclaratorChunk::Array: // suppress if written (id[])?
1683    case DeclaratorChunk::Function:
1684    case DeclaratorChunk::MemberPointer:
1685      return;
1686    }
1687  }
1688 done:
1689
1690  // If we have *one* pointer, then we want to throw the qualifier on
1691  // the declaration-specifiers, which means that it needs to be a
1692  // retainable object type.
1693  if (numPointers == 1) {
1694    // If it's not a retainable object type, the rule doesn't apply.
1695    if (!declSpecType->isObjCRetainableType()) return;
1696
1697    // If it already has lifetime, don't do anything.
1698    if (declSpecType.getObjCLifetime()) return;
1699
1700    // Otherwise, modify the type in-place.
1701    Qualifiers qs;
1702
1703    if (declSpecType->isObjCARCImplicitlyUnretainedType())
1704      qs.addObjCLifetime(Qualifiers::OCL_ExplicitNone);
1705    else
1706      qs.addObjCLifetime(Qualifiers::OCL_Autoreleasing);
1707    declSpecType = S.Context.getQualifiedType(declSpecType, qs);
1708
1709  // If we have *two* pointers, then we want to throw the qualifier on
1710  // the outermost pointer.
1711  } else if (numPointers == 2) {
1712    // If we don't have a block pointer, we need to check whether the
1713    // declaration-specifiers gave us something that will turn into a
1714    // retainable object pointer after we slap the first pointer on it.
1715    if (!isBlockPointer && !declSpecType->isObjCObjectType())
1716      return;
1717
1718    // Look for an explicit lifetime attribute there.
1719    DeclaratorChunk &chunk = declarator.getTypeObject(outermostPointerIndex);
1720    if (chunk.Kind != DeclaratorChunk::Pointer &&
1721        chunk.Kind != DeclaratorChunk::BlockPointer)
1722      return;
1723    for (const AttributeList *attr = chunk.getAttrs(); attr;
1724           attr = attr->getNext())
1725      if (attr->getKind() == AttributeList::AT_objc_ownership)
1726        return;
1727
1728    transferARCOwnershipToDeclaratorChunk(state, Qualifiers::OCL_Autoreleasing,
1729                                          outermostPointerIndex);
1730
1731  // Any other number of pointers/references does not trigger the rule.
1732  } else return;
1733
1734  // TODO: mark whether we did this inference?
1735}
1736
1737static void DiagnoseIgnoredQualifiers(unsigned Quals,
1738                                      SourceLocation ConstQualLoc,
1739                                      SourceLocation VolatileQualLoc,
1740                                      SourceLocation RestrictQualLoc,
1741                                      Sema& S) {
1742  std::string QualStr;
1743  unsigned NumQuals = 0;
1744  SourceLocation Loc;
1745
1746  FixItHint ConstFixIt;
1747  FixItHint VolatileFixIt;
1748  FixItHint RestrictFixIt;
1749
1750  const SourceManager &SM = S.getSourceManager();
1751
1752  // FIXME: The locations here are set kind of arbitrarily. It'd be nicer to
1753  // find a range and grow it to encompass all the qualifiers, regardless of
1754  // the order in which they textually appear.
1755  if (Quals & Qualifiers::Const) {
1756    ConstFixIt = FixItHint::CreateRemoval(ConstQualLoc);
1757    QualStr = "const";
1758    ++NumQuals;
1759    if (!Loc.isValid() || SM.isBeforeInTranslationUnit(ConstQualLoc, Loc))
1760      Loc = ConstQualLoc;
1761  }
1762  if (Quals & Qualifiers::Volatile) {
1763    VolatileFixIt = FixItHint::CreateRemoval(VolatileQualLoc);
1764    QualStr += (NumQuals == 0 ? "volatile" : " volatile");
1765    ++NumQuals;
1766    if (!Loc.isValid() || SM.isBeforeInTranslationUnit(VolatileQualLoc, Loc))
1767      Loc = VolatileQualLoc;
1768  }
1769  if (Quals & Qualifiers::Restrict) {
1770    RestrictFixIt = FixItHint::CreateRemoval(RestrictQualLoc);
1771    QualStr += (NumQuals == 0 ? "restrict" : " restrict");
1772    ++NumQuals;
1773    if (!Loc.isValid() || SM.isBeforeInTranslationUnit(RestrictQualLoc, Loc))
1774      Loc = RestrictQualLoc;
1775  }
1776
1777  assert(NumQuals > 0 && "No known qualifiers?");
1778
1779  S.Diag(Loc, diag::warn_qual_return_type)
1780    << QualStr << NumQuals << ConstFixIt << VolatileFixIt << RestrictFixIt;
1781}
1782
1783static QualType GetDeclSpecTypeForDeclarator(TypeProcessingState &state,
1784                                             TypeSourceInfo *&ReturnTypeInfo) {
1785  Sema &SemaRef = state.getSema();
1786  Declarator &D = state.getDeclarator();
1787  QualType T;
1788  ReturnTypeInfo = 0;
1789
1790  // The TagDecl owned by the DeclSpec.
1791  TagDecl *OwnedTagDecl = 0;
1792
1793  switch (D.getName().getKind()) {
1794  case UnqualifiedId::IK_ImplicitSelfParam:
1795  case UnqualifiedId::IK_OperatorFunctionId:
1796  case UnqualifiedId::IK_Identifier:
1797  case UnqualifiedId::IK_LiteralOperatorId:
1798  case UnqualifiedId::IK_TemplateId:
1799    T = ConvertDeclSpecToType(state);
1800
1801    if (!D.isInvalidType() && D.getDeclSpec().isTypeSpecOwned()) {
1802      OwnedTagDecl = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
1803      // Owned declaration is embedded in declarator.
1804      OwnedTagDecl->setEmbeddedInDeclarator(true);
1805    }
1806    break;
1807
1808  case UnqualifiedId::IK_ConstructorName:
1809  case UnqualifiedId::IK_ConstructorTemplateId:
1810  case UnqualifiedId::IK_DestructorName:
1811    // Constructors and destructors don't have return types. Use
1812    // "void" instead.
1813    T = SemaRef.Context.VoidTy;
1814    break;
1815
1816  case UnqualifiedId::IK_ConversionFunctionId:
1817    // The result type of a conversion function is the type that it
1818    // converts to.
1819    T = SemaRef.GetTypeFromParser(D.getName().ConversionFunctionId,
1820                                  &ReturnTypeInfo);
1821    break;
1822  }
1823
1824  if (D.getAttributes())
1825    distributeTypeAttrsFromDeclarator(state, T);
1826
1827  // C++11 [dcl.spec.auto]p5: reject 'auto' if it is not in an allowed context.
1828  // In C++11, a function declarator using 'auto' must have a trailing return
1829  // type (this is checked later) and we can skip this. In other languages
1830  // using auto, we need to check regardless.
1831  if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
1832      (!SemaRef.getLangOpts().CPlusPlus0x || !D.isFunctionDeclarator())) {
1833    int Error = -1;
1834
1835    switch (D.getContext()) {
1836    case Declarator::KNRTypeListContext:
1837      llvm_unreachable("K&R type lists aren't allowed in C++");
1838    case Declarator::LambdaExprContext:
1839      llvm_unreachable("Can't specify a type specifier in lambda grammar");
1840    case Declarator::ObjCParameterContext:
1841    case Declarator::ObjCResultContext:
1842    case Declarator::PrototypeContext:
1843      Error = 0; // Function prototype
1844      break;
1845    case Declarator::MemberContext:
1846      if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static)
1847        break;
1848      switch (cast<TagDecl>(SemaRef.CurContext)->getTagKind()) {
1849      case TTK_Enum: llvm_unreachable("unhandled tag kind");
1850      case TTK_Struct: Error = 1; /* Struct member */ break;
1851      case TTK_Union:  Error = 2; /* Union member */ break;
1852      case TTK_Class:  Error = 3; /* Class member */ break;
1853      }
1854      break;
1855    case Declarator::CXXCatchContext:
1856    case Declarator::ObjCCatchContext:
1857      Error = 4; // Exception declaration
1858      break;
1859    case Declarator::TemplateParamContext:
1860      Error = 5; // Template parameter
1861      break;
1862    case Declarator::BlockLiteralContext:
1863      Error = 6; // Block literal
1864      break;
1865    case Declarator::TemplateTypeArgContext:
1866      Error = 7; // Template type argument
1867      break;
1868    case Declarator::AliasDeclContext:
1869    case Declarator::AliasTemplateContext:
1870      Error = 9; // Type alias
1871      break;
1872    case Declarator::TrailingReturnContext:
1873      Error = 10; // Function return type
1874      break;
1875    case Declarator::TypeNameContext:
1876      Error = 11; // Generic
1877      break;
1878    case Declarator::FileContext:
1879    case Declarator::BlockContext:
1880    case Declarator::ForContext:
1881    case Declarator::ConditionContext:
1882    case Declarator::CXXNewContext:
1883      break;
1884    }
1885
1886    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1887      Error = 8;
1888
1889    // In Objective-C it is an error to use 'auto' on a function declarator.
1890    if (D.isFunctionDeclarator())
1891      Error = 10;
1892
1893    // C++11 [dcl.spec.auto]p2: 'auto' is always fine if the declarator
1894    // contains a trailing return type. That is only legal at the outermost
1895    // level. Check all declarator chunks (outermost first) anyway, to give
1896    // better diagnostics.
1897    if (SemaRef.getLangOpts().CPlusPlus0x && Error != -1) {
1898      for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
1899        unsigned chunkIndex = e - i - 1;
1900        state.setCurrentChunkIndex(chunkIndex);
1901        DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex);
1902        if (DeclType.Kind == DeclaratorChunk::Function) {
1903          const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
1904          if (FTI.TrailingReturnType) {
1905            Error = -1;
1906            break;
1907          }
1908        }
1909      }
1910    }
1911
1912    if (Error != -1) {
1913      SemaRef.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
1914                   diag::err_auto_not_allowed)
1915        << Error;
1916      T = SemaRef.Context.IntTy;
1917      D.setInvalidType(true);
1918    } else
1919      SemaRef.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
1920                   diag::warn_cxx98_compat_auto_type_specifier);
1921  }
1922
1923  if (SemaRef.getLangOpts().CPlusPlus &&
1924      OwnedTagDecl && OwnedTagDecl->isCompleteDefinition()) {
1925    // Check the contexts where C++ forbids the declaration of a new class
1926    // or enumeration in a type-specifier-seq.
1927    switch (D.getContext()) {
1928    case Declarator::TrailingReturnContext:
1929      // Class and enumeration definitions are syntactically not allowed in
1930      // trailing return types.
1931      llvm_unreachable("parser should not have allowed this");
1932      break;
1933    case Declarator::FileContext:
1934    case Declarator::MemberContext:
1935    case Declarator::BlockContext:
1936    case Declarator::ForContext:
1937    case Declarator::BlockLiteralContext:
1938    case Declarator::LambdaExprContext:
1939      // C++11 [dcl.type]p3:
1940      //   A type-specifier-seq shall not define a class or enumeration unless
1941      //   it appears in the type-id of an alias-declaration (7.1.3) that is not
1942      //   the declaration of a template-declaration.
1943    case Declarator::AliasDeclContext:
1944      break;
1945    case Declarator::AliasTemplateContext:
1946      SemaRef.Diag(OwnedTagDecl->getLocation(),
1947             diag::err_type_defined_in_alias_template)
1948        << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
1949      break;
1950    case Declarator::TypeNameContext:
1951    case Declarator::TemplateParamContext:
1952    case Declarator::CXXNewContext:
1953    case Declarator::CXXCatchContext:
1954    case Declarator::ObjCCatchContext:
1955    case Declarator::TemplateTypeArgContext:
1956      SemaRef.Diag(OwnedTagDecl->getLocation(),
1957             diag::err_type_defined_in_type_specifier)
1958        << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
1959      break;
1960    case Declarator::PrototypeContext:
1961    case Declarator::ObjCParameterContext:
1962    case Declarator::ObjCResultContext:
1963    case Declarator::KNRTypeListContext:
1964      // C++ [dcl.fct]p6:
1965      //   Types shall not be defined in return or parameter types.
1966      SemaRef.Diag(OwnedTagDecl->getLocation(),
1967                   diag::err_type_defined_in_param_type)
1968        << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
1969      break;
1970    case Declarator::ConditionContext:
1971      // C++ 6.4p2:
1972      // The type-specifier-seq shall not contain typedef and shall not declare
1973      // a new class or enumeration.
1974      SemaRef.Diag(OwnedTagDecl->getLocation(),
1975                   diag::err_type_defined_in_condition);
1976      break;
1977    }
1978  }
1979
1980  return T;
1981}
1982
1983static std::string getFunctionQualifiersAsString(const FunctionProtoType *FnTy){
1984  std::string Quals =
1985    Qualifiers::fromCVRMask(FnTy->getTypeQuals()).getAsString();
1986
1987  switch (FnTy->getRefQualifier()) {
1988  case RQ_None:
1989    break;
1990
1991  case RQ_LValue:
1992    if (!Quals.empty())
1993      Quals += ' ';
1994    Quals += '&';
1995    break;
1996
1997  case RQ_RValue:
1998    if (!Quals.empty())
1999      Quals += ' ';
2000    Quals += "&&";
2001    break;
2002  }
2003
2004  return Quals;
2005}
2006
2007/// Check that the function type T, which has a cv-qualifier or a ref-qualifier,
2008/// can be contained within the declarator chunk DeclType, and produce an
2009/// appropriate diagnostic if not.
2010static void checkQualifiedFunction(Sema &S, QualType T,
2011                                   DeclaratorChunk &DeclType) {
2012  // C++98 [dcl.fct]p4 / C++11 [dcl.fct]p6: a function type with a
2013  // cv-qualifier or a ref-qualifier can only appear at the topmost level
2014  // of a type.
2015  int DiagKind = -1;
2016  switch (DeclType.Kind) {
2017  case DeclaratorChunk::Paren:
2018  case DeclaratorChunk::MemberPointer:
2019    // These cases are permitted.
2020    return;
2021  case DeclaratorChunk::Array:
2022  case DeclaratorChunk::Function:
2023    // These cases don't allow function types at all; no need to diagnose the
2024    // qualifiers separately.
2025    return;
2026  case DeclaratorChunk::BlockPointer:
2027    DiagKind = 0;
2028    break;
2029  case DeclaratorChunk::Pointer:
2030    DiagKind = 1;
2031    break;
2032  case DeclaratorChunk::Reference:
2033    DiagKind = 2;
2034    break;
2035  }
2036
2037  assert(DiagKind != -1);
2038  S.Diag(DeclType.Loc, diag::err_compound_qualified_function_type)
2039    << DiagKind << isa<FunctionType>(T.IgnoreParens()) << T
2040    << getFunctionQualifiersAsString(T->castAs<FunctionProtoType>());
2041}
2042
2043static TypeSourceInfo *GetFullTypeForDeclarator(TypeProcessingState &state,
2044                                                QualType declSpecType,
2045                                                TypeSourceInfo *TInfo) {
2046
2047  QualType T = declSpecType;
2048  Declarator &D = state.getDeclarator();
2049  Sema &S = state.getSema();
2050  ASTContext &Context = S.Context;
2051  const LangOptions &LangOpts = S.getLangOpts();
2052
2053  bool ImplicitlyNoexcept = false;
2054  if (D.getName().getKind() == UnqualifiedId::IK_OperatorFunctionId &&
2055      LangOpts.CPlusPlus0x) {
2056    OverloadedOperatorKind OO = D.getName().OperatorFunctionId.Operator;
2057    /// In C++0x, deallocation functions (normal and array operator delete)
2058    /// are implicitly noexcept.
2059    if (OO == OO_Delete || OO == OO_Array_Delete)
2060      ImplicitlyNoexcept = true;
2061  }
2062
2063  // The name we're declaring, if any.
2064  DeclarationName Name;
2065  if (D.getIdentifier())
2066    Name = D.getIdentifier();
2067
2068  // Does this declaration declare a typedef-name?
2069  bool IsTypedefName =
2070    D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef ||
2071    D.getContext() == Declarator::AliasDeclContext ||
2072    D.getContext() == Declarator::AliasTemplateContext;
2073
2074  // Does T refer to a function type with a cv-qualifier or a ref-qualifier?
2075  bool IsQualifiedFunction = T->isFunctionProtoType() &&
2076      (T->castAs<FunctionProtoType>()->getTypeQuals() != 0 ||
2077       T->castAs<FunctionProtoType>()->getRefQualifier() != RQ_None);
2078
2079  // Walk the DeclTypeInfo, building the recursive type as we go.
2080  // DeclTypeInfos are ordered from the identifier out, which is
2081  // opposite of what we want :).
2082  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
2083    unsigned chunkIndex = e - i - 1;
2084    state.setCurrentChunkIndex(chunkIndex);
2085    DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex);
2086    if (IsQualifiedFunction) {
2087      checkQualifiedFunction(S, T, DeclType);
2088      IsQualifiedFunction = DeclType.Kind == DeclaratorChunk::Paren;
2089    }
2090    switch (DeclType.Kind) {
2091    case DeclaratorChunk::Paren:
2092      T = S.BuildParenType(T);
2093      break;
2094    case DeclaratorChunk::BlockPointer:
2095      // If blocks are disabled, emit an error.
2096      if (!LangOpts.Blocks)
2097        S.Diag(DeclType.Loc, diag::err_blocks_disable);
2098
2099      T = S.BuildBlockPointerType(T, D.getIdentifierLoc(), Name);
2100      if (DeclType.Cls.TypeQuals)
2101        T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Cls.TypeQuals);
2102      break;
2103    case DeclaratorChunk::Pointer:
2104      // Verify that we're not building a pointer to pointer to function with
2105      // exception specification.
2106      if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
2107        S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
2108        D.setInvalidType(true);
2109        // Build the type anyway.
2110      }
2111      if (LangOpts.ObjC1 && T->getAs<ObjCObjectType>()) {
2112        T = Context.getObjCObjectPointerType(T);
2113        if (DeclType.Ptr.TypeQuals)
2114          T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
2115        break;
2116      }
2117      T = S.BuildPointerType(T, DeclType.Loc, Name);
2118      if (DeclType.Ptr.TypeQuals)
2119        T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
2120
2121      break;
2122    case DeclaratorChunk::Reference: {
2123      // Verify that we're not building a reference to pointer to function with
2124      // exception specification.
2125      if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
2126        S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
2127        D.setInvalidType(true);
2128        // Build the type anyway.
2129      }
2130      T = S.BuildReferenceType(T, DeclType.Ref.LValueRef, DeclType.Loc, Name);
2131
2132      Qualifiers Quals;
2133      if (DeclType.Ref.HasRestrict)
2134        T = S.BuildQualifiedType(T, DeclType.Loc, Qualifiers::Restrict);
2135      break;
2136    }
2137    case DeclaratorChunk::Array: {
2138      // Verify that we're not building an array of pointers to function with
2139      // exception specification.
2140      if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
2141        S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
2142        D.setInvalidType(true);
2143        // Build the type anyway.
2144      }
2145      DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
2146      Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
2147      ArrayType::ArraySizeModifier ASM;
2148      if (ATI.isStar)
2149        ASM = ArrayType::Star;
2150      else if (ATI.hasStatic)
2151        ASM = ArrayType::Static;
2152      else
2153        ASM = ArrayType::Normal;
2154      if (ASM == ArrayType::Star && !D.isPrototypeContext()) {
2155        // FIXME: This check isn't quite right: it allows star in prototypes
2156        // for function definitions, and disallows some edge cases detailed
2157        // in http://gcc.gnu.org/ml/gcc-patches/2009-02/msg00133.html
2158        S.Diag(DeclType.Loc, diag::err_array_star_outside_prototype);
2159        ASM = ArrayType::Normal;
2160        D.setInvalidType(true);
2161      }
2162      T = S.BuildArrayType(T, ASM, ArraySize, ATI.TypeQuals,
2163                           SourceRange(DeclType.Loc, DeclType.EndLoc), Name);
2164      break;
2165    }
2166    case DeclaratorChunk::Function: {
2167      // If the function declarator has a prototype (i.e. it is not () and
2168      // does not have a K&R-style identifier list), then the arguments are part
2169      // of the type, otherwise the argument list is ().
2170      const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
2171      IsQualifiedFunction = FTI.TypeQuals || FTI.hasRefQualifier();
2172
2173      // Check for auto functions and trailing return type and adjust the
2174      // return type accordingly.
2175      if (!D.isInvalidType()) {
2176        // trailing-return-type is only required if we're declaring a function,
2177        // and not, for instance, a pointer to a function.
2178        if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
2179            !FTI.TrailingReturnType && chunkIndex == 0) {
2180          S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
2181               diag::err_auto_missing_trailing_return);
2182          T = Context.IntTy;
2183          D.setInvalidType(true);
2184        } else if (FTI.TrailingReturnType) {
2185          // T must be exactly 'auto' at this point. See CWG issue 681.
2186          if (isa<ParenType>(T)) {
2187            S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
2188                 diag::err_trailing_return_in_parens)
2189              << T << D.getDeclSpec().getSourceRange();
2190            D.setInvalidType(true);
2191          } else if (D.getContext() != Declarator::LambdaExprContext &&
2192                     (T.hasQualifiers() || !isa<AutoType>(T))) {
2193            S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
2194                 diag::err_trailing_return_without_auto)
2195              << T << D.getDeclSpec().getSourceRange();
2196            D.setInvalidType(true);
2197          }
2198
2199          T = S.GetTypeFromParser(
2200            ParsedType::getFromOpaquePtr(FTI.TrailingReturnType),
2201            &TInfo);
2202        }
2203      }
2204
2205      // C99 6.7.5.3p1: The return type may not be a function or array type.
2206      // For conversion functions, we'll diagnose this particular error later.
2207      if ((T->isArrayType() || T->isFunctionType()) &&
2208          (D.getName().getKind() != UnqualifiedId::IK_ConversionFunctionId)) {
2209        unsigned diagID = diag::err_func_returning_array_function;
2210        // Last processing chunk in block context means this function chunk
2211        // represents the block.
2212        if (chunkIndex == 0 &&
2213            D.getContext() == Declarator::BlockLiteralContext)
2214          diagID = diag::err_block_returning_array_function;
2215        S.Diag(DeclType.Loc, diagID) << T->isFunctionType() << T;
2216        T = Context.IntTy;
2217        D.setInvalidType(true);
2218      }
2219
2220      // Do not allow returning half FP value.
2221      // FIXME: This really should be in BuildFunctionType.
2222      if (T->isHalfType()) {
2223        S.Diag(D.getIdentifierLoc(),
2224             diag::err_parameters_retval_cannot_have_fp16_type) << 1
2225          << FixItHint::CreateInsertion(D.getIdentifierLoc(), "*");
2226        D.setInvalidType(true);
2227      }
2228
2229      // cv-qualifiers on return types are pointless except when the type is a
2230      // class type in C++.
2231      if (isa<PointerType>(T) && T.getLocalCVRQualifiers() &&
2232          (D.getName().getKind() != UnqualifiedId::IK_ConversionFunctionId) &&
2233          (!LangOpts.CPlusPlus || !T->isDependentType())) {
2234        assert(chunkIndex + 1 < e && "No DeclaratorChunk for the return type?");
2235        DeclaratorChunk ReturnTypeChunk = D.getTypeObject(chunkIndex + 1);
2236        assert(ReturnTypeChunk.Kind == DeclaratorChunk::Pointer);
2237
2238        DeclaratorChunk::PointerTypeInfo &PTI = ReturnTypeChunk.Ptr;
2239
2240        DiagnoseIgnoredQualifiers(PTI.TypeQuals,
2241            SourceLocation::getFromRawEncoding(PTI.ConstQualLoc),
2242            SourceLocation::getFromRawEncoding(PTI.VolatileQualLoc),
2243            SourceLocation::getFromRawEncoding(PTI.RestrictQualLoc),
2244            S);
2245
2246      } else if (T.getCVRQualifiers() && D.getDeclSpec().getTypeQualifiers() &&
2247          (!LangOpts.CPlusPlus ||
2248           (!T->isDependentType() && !T->isRecordType()))) {
2249
2250        DiagnoseIgnoredQualifiers(D.getDeclSpec().getTypeQualifiers(),
2251                                  D.getDeclSpec().getConstSpecLoc(),
2252                                  D.getDeclSpec().getVolatileSpecLoc(),
2253                                  D.getDeclSpec().getRestrictSpecLoc(),
2254                                  S);
2255      }
2256
2257      if (LangOpts.CPlusPlus && D.getDeclSpec().isTypeSpecOwned()) {
2258        // C++ [dcl.fct]p6:
2259        //   Types shall not be defined in return or parameter types.
2260        TagDecl *Tag = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
2261        if (Tag->isCompleteDefinition())
2262          S.Diag(Tag->getLocation(), diag::err_type_defined_in_result_type)
2263            << Context.getTypeDeclType(Tag);
2264      }
2265
2266      // Exception specs are not allowed in typedefs. Complain, but add it
2267      // anyway.
2268      if (IsTypedefName && FTI.getExceptionSpecType())
2269        S.Diag(FTI.getExceptionSpecLoc(), diag::err_exception_spec_in_typedef)
2270          << (D.getContext() == Declarator::AliasDeclContext ||
2271              D.getContext() == Declarator::AliasTemplateContext);
2272
2273      if (!FTI.NumArgs && !FTI.isVariadic && !LangOpts.CPlusPlus) {
2274        // Simple void foo(), where the incoming T is the result type.
2275        T = Context.getFunctionNoProtoType(T);
2276      } else {
2277        // We allow a zero-parameter variadic function in C if the
2278        // function is marked with the "overloadable" attribute. Scan
2279        // for this attribute now.
2280        if (!FTI.NumArgs && FTI.isVariadic && !LangOpts.CPlusPlus) {
2281          bool Overloadable = false;
2282          for (const AttributeList *Attrs = D.getAttributes();
2283               Attrs; Attrs = Attrs->getNext()) {
2284            if (Attrs->getKind() == AttributeList::AT_overloadable) {
2285              Overloadable = true;
2286              break;
2287            }
2288          }
2289
2290          if (!Overloadable)
2291            S.Diag(FTI.getEllipsisLoc(), diag::err_ellipsis_first_arg);
2292        }
2293
2294        if (FTI.NumArgs && FTI.ArgInfo[0].Param == 0) {
2295          // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function
2296          // definition.
2297          S.Diag(FTI.ArgInfo[0].IdentLoc, diag::err_ident_list_in_fn_declaration);
2298          D.setInvalidType(true);
2299          break;
2300        }
2301
2302        FunctionProtoType::ExtProtoInfo EPI;
2303        EPI.Variadic = FTI.isVariadic;
2304        EPI.HasTrailingReturn = FTI.TrailingReturnType;
2305        EPI.TypeQuals = FTI.TypeQuals;
2306        EPI.RefQualifier = !FTI.hasRefQualifier()? RQ_None
2307                    : FTI.RefQualifierIsLValueRef? RQ_LValue
2308                    : RQ_RValue;
2309
2310        // Otherwise, we have a function with an argument list that is
2311        // potentially variadic.
2312        SmallVector<QualType, 16> ArgTys;
2313        ArgTys.reserve(FTI.NumArgs);
2314
2315        SmallVector<bool, 16> ConsumedArguments;
2316        ConsumedArguments.reserve(FTI.NumArgs);
2317        bool HasAnyConsumedArguments = false;
2318
2319        for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2320          ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
2321          QualType ArgTy = Param->getType();
2322          assert(!ArgTy.isNull() && "Couldn't parse type?");
2323
2324          // Adjust the parameter type.
2325          assert((ArgTy == Context.getAdjustedParameterType(ArgTy)) &&
2326                 "Unadjusted type?");
2327
2328          // Look for 'void'.  void is allowed only as a single argument to a
2329          // function with no other parameters (C99 6.7.5.3p10).  We record
2330          // int(void) as a FunctionProtoType with an empty argument list.
2331          if (ArgTy->isVoidType()) {
2332            // If this is something like 'float(int, void)', reject it.  'void'
2333            // is an incomplete type (C99 6.2.5p19) and function decls cannot
2334            // have arguments of incomplete type.
2335            if (FTI.NumArgs != 1 || FTI.isVariadic) {
2336              S.Diag(DeclType.Loc, diag::err_void_only_param);
2337              ArgTy = Context.IntTy;
2338              Param->setType(ArgTy);
2339            } else if (FTI.ArgInfo[i].Ident) {
2340              // Reject, but continue to parse 'int(void abc)'.
2341              S.Diag(FTI.ArgInfo[i].IdentLoc,
2342                   diag::err_param_with_void_type);
2343              ArgTy = Context.IntTy;
2344              Param->setType(ArgTy);
2345            } else {
2346              // Reject, but continue to parse 'float(const void)'.
2347              if (ArgTy.hasQualifiers())
2348                S.Diag(DeclType.Loc, diag::err_void_param_qualified);
2349
2350              // Do not add 'void' to the ArgTys list.
2351              break;
2352            }
2353          } else if (ArgTy->isHalfType()) {
2354            // Disallow half FP arguments.
2355            // FIXME: This really should be in BuildFunctionType.
2356            S.Diag(Param->getLocation(),
2357               diag::err_parameters_retval_cannot_have_fp16_type) << 0
2358            << FixItHint::CreateInsertion(Param->getLocation(), "*");
2359            D.setInvalidType();
2360          } else if (!FTI.hasPrototype) {
2361            if (ArgTy->isPromotableIntegerType()) {
2362              ArgTy = Context.getPromotedIntegerType(ArgTy);
2363              Param->setKNRPromoted(true);
2364            } else if (const BuiltinType* BTy = ArgTy->getAs<BuiltinType>()) {
2365              if (BTy->getKind() == BuiltinType::Float) {
2366                ArgTy = Context.DoubleTy;
2367                Param->setKNRPromoted(true);
2368              }
2369            }
2370          }
2371
2372          if (LangOpts.ObjCAutoRefCount) {
2373            bool Consumed = Param->hasAttr<NSConsumedAttr>();
2374            ConsumedArguments.push_back(Consumed);
2375            HasAnyConsumedArguments |= Consumed;
2376          }
2377
2378          ArgTys.push_back(ArgTy);
2379        }
2380
2381        if (HasAnyConsumedArguments)
2382          EPI.ConsumedArguments = ConsumedArguments.data();
2383
2384        SmallVector<QualType, 4> Exceptions;
2385        SmallVector<ParsedType, 2> DynamicExceptions;
2386        SmallVector<SourceRange, 2> DynamicExceptionRanges;
2387        Expr *NoexceptExpr = 0;
2388
2389        if (FTI.getExceptionSpecType() == EST_Dynamic) {
2390          // FIXME: It's rather inefficient to have to split into two vectors
2391          // here.
2392          unsigned N = FTI.NumExceptions;
2393          DynamicExceptions.reserve(N);
2394          DynamicExceptionRanges.reserve(N);
2395          for (unsigned I = 0; I != N; ++I) {
2396            DynamicExceptions.push_back(FTI.Exceptions[I].Ty);
2397            DynamicExceptionRanges.push_back(FTI.Exceptions[I].Range);
2398          }
2399        } else if (FTI.getExceptionSpecType() == EST_ComputedNoexcept) {
2400          NoexceptExpr = FTI.NoexceptExpr;
2401        }
2402
2403        S.checkExceptionSpecification(FTI.getExceptionSpecType(),
2404                                      DynamicExceptions,
2405                                      DynamicExceptionRanges,
2406                                      NoexceptExpr,
2407                                      Exceptions,
2408                                      EPI);
2409
2410        if (FTI.getExceptionSpecType() == EST_None &&
2411            ImplicitlyNoexcept && chunkIndex == 0) {
2412          // Only the outermost chunk is marked noexcept, of course.
2413          EPI.ExceptionSpecType = EST_BasicNoexcept;
2414        }
2415
2416        T = Context.getFunctionType(T, ArgTys.data(), ArgTys.size(), EPI);
2417      }
2418
2419      break;
2420    }
2421    case DeclaratorChunk::MemberPointer:
2422      // The scope spec must refer to a class, or be dependent.
2423      CXXScopeSpec &SS = DeclType.Mem.Scope();
2424      QualType ClsType;
2425      if (SS.isInvalid()) {
2426        // Avoid emitting extra errors if we already errored on the scope.
2427        D.setInvalidType(true);
2428      } else if (S.isDependentScopeSpecifier(SS) ||
2429                 dyn_cast_or_null<CXXRecordDecl>(S.computeDeclContext(SS))) {
2430        NestedNameSpecifier *NNS
2431          = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
2432        NestedNameSpecifier *NNSPrefix = NNS->getPrefix();
2433        switch (NNS->getKind()) {
2434        case NestedNameSpecifier::Identifier:
2435          ClsType = Context.getDependentNameType(ETK_None, NNSPrefix,
2436                                                 NNS->getAsIdentifier());
2437          break;
2438
2439        case NestedNameSpecifier::Namespace:
2440        case NestedNameSpecifier::NamespaceAlias:
2441        case NestedNameSpecifier::Global:
2442          llvm_unreachable("Nested-name-specifier must name a type");
2443
2444        case NestedNameSpecifier::TypeSpec:
2445        case NestedNameSpecifier::TypeSpecWithTemplate:
2446          ClsType = QualType(NNS->getAsType(), 0);
2447          // Note: if the NNS has a prefix and ClsType is a nondependent
2448          // TemplateSpecializationType, then the NNS prefix is NOT included
2449          // in ClsType; hence we wrap ClsType into an ElaboratedType.
2450          // NOTE: in particular, no wrap occurs if ClsType already is an
2451          // Elaborated, DependentName, or DependentTemplateSpecialization.
2452          if (NNSPrefix && isa<TemplateSpecializationType>(NNS->getAsType()))
2453            ClsType = Context.getElaboratedType(ETK_None, NNSPrefix, ClsType);
2454          break;
2455        }
2456      } else {
2457        S.Diag(DeclType.Mem.Scope().getBeginLoc(),
2458             diag::err_illegal_decl_mempointer_in_nonclass)
2459          << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name")
2460          << DeclType.Mem.Scope().getRange();
2461        D.setInvalidType(true);
2462      }
2463
2464      if (!ClsType.isNull())
2465        T = S.BuildMemberPointerType(T, ClsType, DeclType.Loc, D.getIdentifier());
2466      if (T.isNull()) {
2467        T = Context.IntTy;
2468        D.setInvalidType(true);
2469      } else if (DeclType.Mem.TypeQuals) {
2470        T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Mem.TypeQuals);
2471      }
2472      break;
2473    }
2474
2475    if (T.isNull()) {
2476      D.setInvalidType(true);
2477      T = Context.IntTy;
2478    }
2479
2480    // See if there are any attributes on this declarator chunk.
2481    if (AttributeList *attrs = const_cast<AttributeList*>(DeclType.getAttrs()))
2482      processTypeAttrs(state, T, false, attrs);
2483  }
2484
2485  if (LangOpts.CPlusPlus && T->isFunctionType()) {
2486    const FunctionProtoType *FnTy = T->getAs<FunctionProtoType>();
2487    assert(FnTy && "Why oh why is there not a FunctionProtoType here?");
2488
2489    // C++ 8.3.5p4:
2490    //   A cv-qualifier-seq shall only be part of the function type
2491    //   for a nonstatic member function, the function type to which a pointer
2492    //   to member refers, or the top-level function type of a function typedef
2493    //   declaration.
2494    //
2495    // Core issue 547 also allows cv-qualifiers on function types that are
2496    // top-level template type arguments.
2497    bool FreeFunction;
2498    if (!D.getCXXScopeSpec().isSet()) {
2499      FreeFunction = ((D.getContext() != Declarator::MemberContext &&
2500                       D.getContext() != Declarator::LambdaExprContext) ||
2501                      D.getDeclSpec().isFriendSpecified());
2502    } else {
2503      DeclContext *DC = S.computeDeclContext(D.getCXXScopeSpec());
2504      FreeFunction = (DC && !DC->isRecord());
2505    }
2506
2507    // C++0x [dcl.constexpr]p8: A constexpr specifier for a non-static member
2508    // function that is not a constructor declares that function to be const.
2509    if (D.getDeclSpec().isConstexprSpecified() && !FreeFunction &&
2510        D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static &&
2511        D.getName().getKind() != UnqualifiedId::IK_ConstructorName &&
2512        D.getName().getKind() != UnqualifiedId::IK_ConstructorTemplateId &&
2513        !(FnTy->getTypeQuals() & DeclSpec::TQ_const)) {
2514      // Rebuild function type adding a 'const' qualifier.
2515      FunctionProtoType::ExtProtoInfo EPI = FnTy->getExtProtoInfo();
2516      EPI.TypeQuals |= DeclSpec::TQ_const;
2517      T = Context.getFunctionType(FnTy->getResultType(),
2518                                  FnTy->arg_type_begin(),
2519                                  FnTy->getNumArgs(), EPI);
2520    }
2521
2522    // C++11 [dcl.fct]p6 (w/DR1417):
2523    // An attempt to specify a function type with a cv-qualifier-seq or a
2524    // ref-qualifier (including by typedef-name) is ill-formed unless it is:
2525    //  - the function type for a non-static member function,
2526    //  - the function type to which a pointer to member refers,
2527    //  - the top-level function type of a function typedef declaration or
2528    //    alias-declaration,
2529    //  - the type-id in the default argument of a type-parameter, or
2530    //  - the type-id of a template-argument for a type-parameter
2531    if (IsQualifiedFunction &&
2532        !(!FreeFunction &&
2533          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static) &&
2534        !IsTypedefName &&
2535        D.getContext() != Declarator::TemplateTypeArgContext) {
2536      SourceLocation Loc = D.getLocStart();
2537      SourceRange RemovalRange;
2538      unsigned I;
2539      if (D.isFunctionDeclarator(I)) {
2540        SmallVector<SourceLocation, 4> RemovalLocs;
2541        const DeclaratorChunk &Chunk = D.getTypeObject(I);
2542        assert(Chunk.Kind == DeclaratorChunk::Function);
2543        if (Chunk.Fun.hasRefQualifier())
2544          RemovalLocs.push_back(Chunk.Fun.getRefQualifierLoc());
2545        if (Chunk.Fun.TypeQuals & Qualifiers::Const)
2546          RemovalLocs.push_back(Chunk.Fun.getConstQualifierLoc());
2547        if (Chunk.Fun.TypeQuals & Qualifiers::Volatile)
2548          RemovalLocs.push_back(Chunk.Fun.getVolatileQualifierLoc());
2549        // FIXME: We do not track the location of the __restrict qualifier.
2550        //if (Chunk.Fun.TypeQuals & Qualifiers::Restrict)
2551        //  RemovalLocs.push_back(Chunk.Fun.getRestrictQualifierLoc());
2552        if (!RemovalLocs.empty()) {
2553          std::sort(RemovalLocs.begin(), RemovalLocs.end(),
2554                    SourceManager::LocBeforeThanCompare(S.getSourceManager()));
2555          RemovalRange = SourceRange(RemovalLocs.front(), RemovalLocs.back());
2556          Loc = RemovalLocs.front();
2557        }
2558      }
2559
2560      S.Diag(Loc, diag::err_invalid_qualified_function_type)
2561        << FreeFunction << D.isFunctionDeclarator() << T
2562        << getFunctionQualifiersAsString(FnTy)
2563        << FixItHint::CreateRemoval(RemovalRange);
2564
2565      // Strip the cv-qualifiers and ref-qualifiers from the type.
2566      FunctionProtoType::ExtProtoInfo EPI = FnTy->getExtProtoInfo();
2567      EPI.TypeQuals = 0;
2568      EPI.RefQualifier = RQ_None;
2569
2570      T = Context.getFunctionType(FnTy->getResultType(),
2571                                  FnTy->arg_type_begin(),
2572                                  FnTy->getNumArgs(), EPI);
2573    }
2574  }
2575
2576  // Apply any undistributed attributes from the declarator.
2577  if (!T.isNull())
2578    if (AttributeList *attrs = D.getAttributes())
2579      processTypeAttrs(state, T, false, attrs);
2580
2581  // Diagnose any ignored type attributes.
2582  if (!T.isNull()) state.diagnoseIgnoredTypeAttrs(T);
2583
2584  // C++0x [dcl.constexpr]p9:
2585  //  A constexpr specifier used in an object declaration declares the object
2586  //  as const.
2587  if (D.getDeclSpec().isConstexprSpecified() && T->isObjectType()) {
2588    T.addConst();
2589  }
2590
2591  // If there was an ellipsis in the declarator, the declaration declares a
2592  // parameter pack whose type may be a pack expansion type.
2593  if (D.hasEllipsis() && !T.isNull()) {
2594    // C++0x [dcl.fct]p13:
2595    //   A declarator-id or abstract-declarator containing an ellipsis shall
2596    //   only be used in a parameter-declaration. Such a parameter-declaration
2597    //   is a parameter pack (14.5.3). [...]
2598    switch (D.getContext()) {
2599    case Declarator::PrototypeContext:
2600      // C++0x [dcl.fct]p13:
2601      //   [...] When it is part of a parameter-declaration-clause, the
2602      //   parameter pack is a function parameter pack (14.5.3). The type T
2603      //   of the declarator-id of the function parameter pack shall contain
2604      //   a template parameter pack; each template parameter pack in T is
2605      //   expanded by the function parameter pack.
2606      //
2607      // We represent function parameter packs as function parameters whose
2608      // type is a pack expansion.
2609      if (!T->containsUnexpandedParameterPack()) {
2610        S.Diag(D.getEllipsisLoc(),
2611             diag::err_function_parameter_pack_without_parameter_packs)
2612          << T <<  D.getSourceRange();
2613        D.setEllipsisLoc(SourceLocation());
2614      } else {
2615        T = Context.getPackExpansionType(T, llvm::Optional<unsigned>());
2616      }
2617      break;
2618
2619    case Declarator::TemplateParamContext:
2620      // C++0x [temp.param]p15:
2621      //   If a template-parameter is a [...] is a parameter-declaration that
2622      //   declares a parameter pack (8.3.5), then the template-parameter is a
2623      //   template parameter pack (14.5.3).
2624      //
2625      // Note: core issue 778 clarifies that, if there are any unexpanded
2626      // parameter packs in the type of the non-type template parameter, then
2627      // it expands those parameter packs.
2628      if (T->containsUnexpandedParameterPack())
2629        T = Context.getPackExpansionType(T, llvm::Optional<unsigned>());
2630      else
2631        S.Diag(D.getEllipsisLoc(),
2632               LangOpts.CPlusPlus0x
2633                 ? diag::warn_cxx98_compat_variadic_templates
2634                 : diag::ext_variadic_templates);
2635      break;
2636
2637    case Declarator::FileContext:
2638    case Declarator::KNRTypeListContext:
2639    case Declarator::ObjCParameterContext:  // FIXME: special diagnostic here?
2640    case Declarator::ObjCResultContext:     // FIXME: special diagnostic here?
2641    case Declarator::TypeNameContext:
2642    case Declarator::CXXNewContext:
2643    case Declarator::AliasDeclContext:
2644    case Declarator::AliasTemplateContext:
2645    case Declarator::MemberContext:
2646    case Declarator::BlockContext:
2647    case Declarator::ForContext:
2648    case Declarator::ConditionContext:
2649    case Declarator::CXXCatchContext:
2650    case Declarator::ObjCCatchContext:
2651    case Declarator::BlockLiteralContext:
2652    case Declarator::LambdaExprContext:
2653    case Declarator::TrailingReturnContext:
2654    case Declarator::TemplateTypeArgContext:
2655      // FIXME: We may want to allow parameter packs in block-literal contexts
2656      // in the future.
2657      S.Diag(D.getEllipsisLoc(), diag::err_ellipsis_in_declarator_not_parameter);
2658      D.setEllipsisLoc(SourceLocation());
2659      break;
2660    }
2661  }
2662
2663  if (T.isNull())
2664    return Context.getNullTypeSourceInfo();
2665  else if (D.isInvalidType())
2666    return Context.getTrivialTypeSourceInfo(T);
2667
2668  return S.GetTypeSourceInfoForDeclarator(D, T, TInfo);
2669}
2670
2671/// GetTypeForDeclarator - Convert the type for the specified
2672/// declarator to Type instances.
2673///
2674/// The result of this call will never be null, but the associated
2675/// type may be a null type if there's an unrecoverable error.
2676TypeSourceInfo *Sema::GetTypeForDeclarator(Declarator &D, Scope *S) {
2677  // Determine the type of the declarator. Not all forms of declarator
2678  // have a type.
2679
2680  TypeProcessingState state(*this, D);
2681
2682  TypeSourceInfo *ReturnTypeInfo = 0;
2683  QualType T = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
2684  if (T.isNull())
2685    return Context.getNullTypeSourceInfo();
2686
2687  if (D.isPrototypeContext() && getLangOpts().ObjCAutoRefCount)
2688    inferARCWriteback(state, T);
2689
2690  return GetFullTypeForDeclarator(state, T, ReturnTypeInfo);
2691}
2692
2693static void transferARCOwnershipToDeclSpec(Sema &S,
2694                                           QualType &declSpecTy,
2695                                           Qualifiers::ObjCLifetime ownership) {
2696  if (declSpecTy->isObjCRetainableType() &&
2697      declSpecTy.getObjCLifetime() == Qualifiers::OCL_None) {
2698    Qualifiers qs;
2699    qs.addObjCLifetime(ownership);
2700    declSpecTy = S.Context.getQualifiedType(declSpecTy, qs);
2701  }
2702}
2703
2704static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
2705                                            Qualifiers::ObjCLifetime ownership,
2706                                            unsigned chunkIndex) {
2707  Sema &S = state.getSema();
2708  Declarator &D = state.getDeclarator();
2709
2710  // Look for an explicit lifetime attribute.
2711  DeclaratorChunk &chunk = D.getTypeObject(chunkIndex);
2712  for (const AttributeList *attr = chunk.getAttrs(); attr;
2713         attr = attr->getNext())
2714    if (attr->getKind() == AttributeList::AT_objc_ownership)
2715      return;
2716
2717  const char *attrStr = 0;
2718  switch (ownership) {
2719  case Qualifiers::OCL_None: llvm_unreachable("no ownership!");
2720  case Qualifiers::OCL_ExplicitNone: attrStr = "none"; break;
2721  case Qualifiers::OCL_Strong: attrStr = "strong"; break;
2722  case Qualifiers::OCL_Weak: attrStr = "weak"; break;
2723  case Qualifiers::OCL_Autoreleasing: attrStr = "autoreleasing"; break;
2724  }
2725
2726  // If there wasn't one, add one (with an invalid source location
2727  // so that we don't make an AttributedType for it).
2728  AttributeList *attr = D.getAttributePool()
2729    .create(&S.Context.Idents.get("objc_ownership"), SourceLocation(),
2730            /*scope*/ 0, SourceLocation(),
2731            &S.Context.Idents.get(attrStr), SourceLocation(),
2732            /*args*/ 0, 0,
2733            /*declspec*/ false, /*C++0x*/ false);
2734  spliceAttrIntoList(*attr, chunk.getAttrListRef());
2735
2736  // TODO: mark whether we did this inference?
2737}
2738
2739/// \brief Used for transfering ownership in casts resulting in l-values.
2740static void transferARCOwnership(TypeProcessingState &state,
2741                                 QualType &declSpecTy,
2742                                 Qualifiers::ObjCLifetime ownership) {
2743  Sema &S = state.getSema();
2744  Declarator &D = state.getDeclarator();
2745
2746  int inner = -1;
2747  bool hasIndirection = false;
2748  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
2749    DeclaratorChunk &chunk = D.getTypeObject(i);
2750    switch (chunk.Kind) {
2751    case DeclaratorChunk::Paren:
2752      // Ignore parens.
2753      break;
2754
2755    case DeclaratorChunk::Array:
2756    case DeclaratorChunk::Reference:
2757    case DeclaratorChunk::Pointer:
2758      if (inner != -1)
2759        hasIndirection = true;
2760      inner = i;
2761      break;
2762
2763    case DeclaratorChunk::BlockPointer:
2764      if (inner != -1)
2765        transferARCOwnershipToDeclaratorChunk(state, ownership, i);
2766      return;
2767
2768    case DeclaratorChunk::Function:
2769    case DeclaratorChunk::MemberPointer:
2770      return;
2771    }
2772  }
2773
2774  if (inner == -1)
2775    return;
2776
2777  DeclaratorChunk &chunk = D.getTypeObject(inner);
2778  if (chunk.Kind == DeclaratorChunk::Pointer) {
2779    if (declSpecTy->isObjCRetainableType())
2780      return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
2781    if (declSpecTy->isObjCObjectType() && hasIndirection)
2782      return transferARCOwnershipToDeclaratorChunk(state, ownership, inner);
2783  } else {
2784    assert(chunk.Kind == DeclaratorChunk::Array ||
2785           chunk.Kind == DeclaratorChunk::Reference);
2786    return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
2787  }
2788}
2789
2790TypeSourceInfo *Sema::GetTypeForDeclaratorCast(Declarator &D, QualType FromTy) {
2791  TypeProcessingState state(*this, D);
2792
2793  TypeSourceInfo *ReturnTypeInfo = 0;
2794  QualType declSpecTy = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
2795  if (declSpecTy.isNull())
2796    return Context.getNullTypeSourceInfo();
2797
2798  if (getLangOpts().ObjCAutoRefCount) {
2799    Qualifiers::ObjCLifetime ownership = Context.getInnerObjCOwnership(FromTy);
2800    if (ownership != Qualifiers::OCL_None)
2801      transferARCOwnership(state, declSpecTy, ownership);
2802  }
2803
2804  return GetFullTypeForDeclarator(state, declSpecTy, ReturnTypeInfo);
2805}
2806
2807/// Map an AttributedType::Kind to an AttributeList::Kind.
2808static AttributeList::Kind getAttrListKind(AttributedType::Kind kind) {
2809  switch (kind) {
2810  case AttributedType::attr_address_space:
2811    return AttributeList::AT_address_space;
2812  case AttributedType::attr_regparm:
2813    return AttributeList::AT_regparm;
2814  case AttributedType::attr_vector_size:
2815    return AttributeList::AT_vector_size;
2816  case AttributedType::attr_neon_vector_type:
2817    return AttributeList::AT_neon_vector_type;
2818  case AttributedType::attr_neon_polyvector_type:
2819    return AttributeList::AT_neon_polyvector_type;
2820  case AttributedType::attr_objc_gc:
2821    return AttributeList::AT_objc_gc;
2822  case AttributedType::attr_objc_ownership:
2823    return AttributeList::AT_objc_ownership;
2824  case AttributedType::attr_noreturn:
2825    return AttributeList::AT_noreturn;
2826  case AttributedType::attr_cdecl:
2827    return AttributeList::AT_cdecl;
2828  case AttributedType::attr_fastcall:
2829    return AttributeList::AT_fastcall;
2830  case AttributedType::attr_stdcall:
2831    return AttributeList::AT_stdcall;
2832  case AttributedType::attr_thiscall:
2833    return AttributeList::AT_thiscall;
2834  case AttributedType::attr_pascal:
2835    return AttributeList::AT_pascal;
2836  case AttributedType::attr_pcs:
2837    return AttributeList::AT_pcs;
2838  }
2839  llvm_unreachable("unexpected attribute kind!");
2840}
2841
2842static void fillAttributedTypeLoc(AttributedTypeLoc TL,
2843                                  const AttributeList *attrs) {
2844  AttributedType::Kind kind = TL.getAttrKind();
2845
2846  assert(attrs && "no type attributes in the expected location!");
2847  AttributeList::Kind parsedKind = getAttrListKind(kind);
2848  while (attrs->getKind() != parsedKind) {
2849    attrs = attrs->getNext();
2850    assert(attrs && "no matching attribute in expected location!");
2851  }
2852
2853  TL.setAttrNameLoc(attrs->getLoc());
2854  if (TL.hasAttrExprOperand())
2855    TL.setAttrExprOperand(attrs->getArg(0));
2856  else if (TL.hasAttrEnumOperand())
2857    TL.setAttrEnumOperandLoc(attrs->getParameterLoc());
2858
2859  // FIXME: preserve this information to here.
2860  if (TL.hasAttrOperand())
2861    TL.setAttrOperandParensRange(SourceRange());
2862}
2863
2864namespace {
2865  class TypeSpecLocFiller : public TypeLocVisitor<TypeSpecLocFiller> {
2866    ASTContext &Context;
2867    const DeclSpec &DS;
2868
2869  public:
2870    TypeSpecLocFiller(ASTContext &Context, const DeclSpec &DS)
2871      : Context(Context), DS(DS) {}
2872
2873    void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
2874      fillAttributedTypeLoc(TL, DS.getAttributes().getList());
2875      Visit(TL.getModifiedLoc());
2876    }
2877    void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
2878      Visit(TL.getUnqualifiedLoc());
2879    }
2880    void VisitTypedefTypeLoc(TypedefTypeLoc TL) {
2881      TL.setNameLoc(DS.getTypeSpecTypeLoc());
2882    }
2883    void VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) {
2884      TL.setNameLoc(DS.getTypeSpecTypeLoc());
2885      // FIXME. We should have DS.getTypeSpecTypeEndLoc(). But, it requires
2886      // addition field. What we have is good enough for dispay of location
2887      // of 'fixit' on interface name.
2888      TL.setNameEndLoc(DS.getLocEnd());
2889    }
2890    void VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) {
2891      // Handle the base type, which might not have been written explicitly.
2892      if (DS.getTypeSpecType() == DeclSpec::TST_unspecified) {
2893        TL.setHasBaseTypeAsWritten(false);
2894        TL.getBaseLoc().initialize(Context, SourceLocation());
2895      } else {
2896        TL.setHasBaseTypeAsWritten(true);
2897        Visit(TL.getBaseLoc());
2898      }
2899
2900      // Protocol qualifiers.
2901      if (DS.getProtocolQualifiers()) {
2902        assert(TL.getNumProtocols() > 0);
2903        assert(TL.getNumProtocols() == DS.getNumProtocolQualifiers());
2904        TL.setLAngleLoc(DS.getProtocolLAngleLoc());
2905        TL.setRAngleLoc(DS.getSourceRange().getEnd());
2906        for (unsigned i = 0, e = DS.getNumProtocolQualifiers(); i != e; ++i)
2907          TL.setProtocolLoc(i, DS.getProtocolLocs()[i]);
2908      } else {
2909        assert(TL.getNumProtocols() == 0);
2910        TL.setLAngleLoc(SourceLocation());
2911        TL.setRAngleLoc(SourceLocation());
2912      }
2913    }
2914    void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
2915      TL.setStarLoc(SourceLocation());
2916      Visit(TL.getPointeeLoc());
2917    }
2918    void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc TL) {
2919      TypeSourceInfo *TInfo = 0;
2920      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
2921
2922      // If we got no declarator info from previous Sema routines,
2923      // just fill with the typespec loc.
2924      if (!TInfo) {
2925        TL.initialize(Context, DS.getTypeSpecTypeNameLoc());
2926        return;
2927      }
2928
2929      TypeLoc OldTL = TInfo->getTypeLoc();
2930      if (TInfo->getType()->getAs<ElaboratedType>()) {
2931        ElaboratedTypeLoc ElabTL = cast<ElaboratedTypeLoc>(OldTL);
2932        TemplateSpecializationTypeLoc NamedTL =
2933          cast<TemplateSpecializationTypeLoc>(ElabTL.getNamedTypeLoc());
2934        TL.copy(NamedTL);
2935      }
2936      else
2937        TL.copy(cast<TemplateSpecializationTypeLoc>(OldTL));
2938    }
2939    void VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) {
2940      assert(DS.getTypeSpecType() == DeclSpec::TST_typeofExpr);
2941      TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
2942      TL.setParensRange(DS.getTypeofParensRange());
2943    }
2944    void VisitTypeOfTypeLoc(TypeOfTypeLoc TL) {
2945      assert(DS.getTypeSpecType() == DeclSpec::TST_typeofType);
2946      TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
2947      TL.setParensRange(DS.getTypeofParensRange());
2948      assert(DS.getRepAsType());
2949      TypeSourceInfo *TInfo = 0;
2950      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
2951      TL.setUnderlyingTInfo(TInfo);
2952    }
2953    void VisitUnaryTransformTypeLoc(UnaryTransformTypeLoc TL) {
2954      // FIXME: This holds only because we only have one unary transform.
2955      assert(DS.getTypeSpecType() == DeclSpec::TST_underlyingType);
2956      TL.setKWLoc(DS.getTypeSpecTypeLoc());
2957      TL.setParensRange(DS.getTypeofParensRange());
2958      assert(DS.getRepAsType());
2959      TypeSourceInfo *TInfo = 0;
2960      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
2961      TL.setUnderlyingTInfo(TInfo);
2962    }
2963    void VisitBuiltinTypeLoc(BuiltinTypeLoc TL) {
2964      // By default, use the source location of the type specifier.
2965      TL.setBuiltinLoc(DS.getTypeSpecTypeLoc());
2966      if (TL.needsExtraLocalData()) {
2967        // Set info for the written builtin specifiers.
2968        TL.getWrittenBuiltinSpecs() = DS.getWrittenBuiltinSpecs();
2969        // Try to have a meaningful source location.
2970        if (TL.getWrittenSignSpec() != TSS_unspecified)
2971          // Sign spec loc overrides the others (e.g., 'unsigned long').
2972          TL.setBuiltinLoc(DS.getTypeSpecSignLoc());
2973        else if (TL.getWrittenWidthSpec() != TSW_unspecified)
2974          // Width spec loc overrides type spec loc (e.g., 'short int').
2975          TL.setBuiltinLoc(DS.getTypeSpecWidthLoc());
2976      }
2977    }
2978    void VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) {
2979      ElaboratedTypeKeyword Keyword
2980        = TypeWithKeyword::getKeywordForTypeSpec(DS.getTypeSpecType());
2981      if (DS.getTypeSpecType() == TST_typename) {
2982        TypeSourceInfo *TInfo = 0;
2983        Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
2984        if (TInfo) {
2985          TL.copy(cast<ElaboratedTypeLoc>(TInfo->getTypeLoc()));
2986          return;
2987        }
2988      }
2989      TL.setElaboratedKeywordLoc(Keyword != ETK_None
2990                                 ? DS.getTypeSpecTypeLoc()
2991                                 : SourceLocation());
2992      const CXXScopeSpec& SS = DS.getTypeSpecScope();
2993      TL.setQualifierLoc(SS.getWithLocInContext(Context));
2994      Visit(TL.getNextTypeLoc().getUnqualifiedLoc());
2995    }
2996    void VisitDependentNameTypeLoc(DependentNameTypeLoc TL) {
2997      assert(DS.getTypeSpecType() == TST_typename);
2998      TypeSourceInfo *TInfo = 0;
2999      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
3000      assert(TInfo);
3001      TL.copy(cast<DependentNameTypeLoc>(TInfo->getTypeLoc()));
3002    }
3003    void VisitDependentTemplateSpecializationTypeLoc(
3004                                 DependentTemplateSpecializationTypeLoc TL) {
3005      assert(DS.getTypeSpecType() == TST_typename);
3006      TypeSourceInfo *TInfo = 0;
3007      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
3008      assert(TInfo);
3009      TL.copy(cast<DependentTemplateSpecializationTypeLoc>(
3010                TInfo->getTypeLoc()));
3011    }
3012    void VisitTagTypeLoc(TagTypeLoc TL) {
3013      TL.setNameLoc(DS.getTypeSpecTypeNameLoc());
3014    }
3015    void VisitAtomicTypeLoc(AtomicTypeLoc TL) {
3016      TL.setKWLoc(DS.getTypeSpecTypeLoc());
3017      TL.setParensRange(DS.getTypeofParensRange());
3018
3019      TypeSourceInfo *TInfo = 0;
3020      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
3021      TL.getValueLoc().initializeFullCopy(TInfo->getTypeLoc());
3022    }
3023
3024    void VisitTypeLoc(TypeLoc TL) {
3025      // FIXME: add other typespec types and change this to an assert.
3026      TL.initialize(Context, DS.getTypeSpecTypeLoc());
3027    }
3028  };
3029
3030  class DeclaratorLocFiller : public TypeLocVisitor<DeclaratorLocFiller> {
3031    ASTContext &Context;
3032    const DeclaratorChunk &Chunk;
3033
3034  public:
3035    DeclaratorLocFiller(ASTContext &Context, const DeclaratorChunk &Chunk)
3036      : Context(Context), Chunk(Chunk) {}
3037
3038    void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
3039      llvm_unreachable("qualified type locs not expected here!");
3040    }
3041
3042    void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
3043      fillAttributedTypeLoc(TL, Chunk.getAttrs());
3044    }
3045    void VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) {
3046      assert(Chunk.Kind == DeclaratorChunk::BlockPointer);
3047      TL.setCaretLoc(Chunk.Loc);
3048    }
3049    void VisitPointerTypeLoc(PointerTypeLoc TL) {
3050      assert(Chunk.Kind == DeclaratorChunk::Pointer);
3051      TL.setStarLoc(Chunk.Loc);
3052    }
3053    void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
3054      assert(Chunk.Kind == DeclaratorChunk::Pointer);
3055      TL.setStarLoc(Chunk.Loc);
3056    }
3057    void VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) {
3058      assert(Chunk.Kind == DeclaratorChunk::MemberPointer);
3059      const CXXScopeSpec& SS = Chunk.Mem.Scope();
3060      NestedNameSpecifierLoc NNSLoc = SS.getWithLocInContext(Context);
3061
3062      const Type* ClsTy = TL.getClass();
3063      QualType ClsQT = QualType(ClsTy, 0);
3064      TypeSourceInfo *ClsTInfo = Context.CreateTypeSourceInfo(ClsQT, 0);
3065      // Now copy source location info into the type loc component.
3066      TypeLoc ClsTL = ClsTInfo->getTypeLoc();
3067      switch (NNSLoc.getNestedNameSpecifier()->getKind()) {
3068      case NestedNameSpecifier::Identifier:
3069        assert(isa<DependentNameType>(ClsTy) && "Unexpected TypeLoc");
3070        {
3071          DependentNameTypeLoc DNTLoc = cast<DependentNameTypeLoc>(ClsTL);
3072          DNTLoc.setElaboratedKeywordLoc(SourceLocation());
3073          DNTLoc.setQualifierLoc(NNSLoc.getPrefix());
3074          DNTLoc.setNameLoc(NNSLoc.getLocalBeginLoc());
3075        }
3076        break;
3077
3078      case NestedNameSpecifier::TypeSpec:
3079      case NestedNameSpecifier::TypeSpecWithTemplate:
3080        if (isa<ElaboratedType>(ClsTy)) {
3081          ElaboratedTypeLoc ETLoc = *cast<ElaboratedTypeLoc>(&ClsTL);
3082          ETLoc.setElaboratedKeywordLoc(SourceLocation());
3083          ETLoc.setQualifierLoc(NNSLoc.getPrefix());
3084          TypeLoc NamedTL = ETLoc.getNamedTypeLoc();
3085          NamedTL.initializeFullCopy(NNSLoc.getTypeLoc());
3086        } else {
3087          ClsTL.initializeFullCopy(NNSLoc.getTypeLoc());
3088        }
3089        break;
3090
3091      case NestedNameSpecifier::Namespace:
3092      case NestedNameSpecifier::NamespaceAlias:
3093      case NestedNameSpecifier::Global:
3094        llvm_unreachable("Nested-name-specifier must name a type");
3095      }
3096
3097      // Finally fill in MemberPointerLocInfo fields.
3098      TL.setStarLoc(Chunk.Loc);
3099      TL.setClassTInfo(ClsTInfo);
3100    }
3101    void VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) {
3102      assert(Chunk.Kind == DeclaratorChunk::Reference);
3103      // 'Amp' is misleading: this might have been originally
3104      /// spelled with AmpAmp.
3105      TL.setAmpLoc(Chunk.Loc);
3106    }
3107    void VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) {
3108      assert(Chunk.Kind == DeclaratorChunk::Reference);
3109      assert(!Chunk.Ref.LValueRef);
3110      TL.setAmpAmpLoc(Chunk.Loc);
3111    }
3112    void VisitArrayTypeLoc(ArrayTypeLoc TL) {
3113      assert(Chunk.Kind == DeclaratorChunk::Array);
3114      TL.setLBracketLoc(Chunk.Loc);
3115      TL.setRBracketLoc(Chunk.EndLoc);
3116      TL.setSizeExpr(static_cast<Expr*>(Chunk.Arr.NumElts));
3117    }
3118    void VisitFunctionTypeLoc(FunctionTypeLoc TL) {
3119      assert(Chunk.Kind == DeclaratorChunk::Function);
3120      TL.setLocalRangeBegin(Chunk.Loc);
3121      TL.setLocalRangeEnd(Chunk.EndLoc);
3122      TL.setTrailingReturn(!!Chunk.Fun.TrailingReturnType);
3123
3124      const DeclaratorChunk::FunctionTypeInfo &FTI = Chunk.Fun;
3125      for (unsigned i = 0, e = TL.getNumArgs(), tpi = 0; i != e; ++i) {
3126        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
3127        TL.setArg(tpi++, Param);
3128      }
3129      // FIXME: exception specs
3130    }
3131    void VisitParenTypeLoc(ParenTypeLoc TL) {
3132      assert(Chunk.Kind == DeclaratorChunk::Paren);
3133      TL.setLParenLoc(Chunk.Loc);
3134      TL.setRParenLoc(Chunk.EndLoc);
3135    }
3136
3137    void VisitTypeLoc(TypeLoc TL) {
3138      llvm_unreachable("unsupported TypeLoc kind in declarator!");
3139    }
3140  };
3141}
3142
3143/// \brief Create and instantiate a TypeSourceInfo with type source information.
3144///
3145/// \param T QualType referring to the type as written in source code.
3146///
3147/// \param ReturnTypeInfo For declarators whose return type does not show
3148/// up in the normal place in the declaration specifiers (such as a C++
3149/// conversion function), this pointer will refer to a type source information
3150/// for that return type.
3151TypeSourceInfo *
3152Sema::GetTypeSourceInfoForDeclarator(Declarator &D, QualType T,
3153                                     TypeSourceInfo *ReturnTypeInfo) {
3154  TypeSourceInfo *TInfo = Context.CreateTypeSourceInfo(T);
3155  UnqualTypeLoc CurrTL = TInfo->getTypeLoc().getUnqualifiedLoc();
3156
3157  // Handle parameter packs whose type is a pack expansion.
3158  if (isa<PackExpansionType>(T)) {
3159    cast<PackExpansionTypeLoc>(CurrTL).setEllipsisLoc(D.getEllipsisLoc());
3160    CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
3161  }
3162
3163  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
3164    while (isa<AttributedTypeLoc>(CurrTL)) {
3165      AttributedTypeLoc TL = cast<AttributedTypeLoc>(CurrTL);
3166      fillAttributedTypeLoc(TL, D.getTypeObject(i).getAttrs());
3167      CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
3168    }
3169
3170    DeclaratorLocFiller(Context, D.getTypeObject(i)).Visit(CurrTL);
3171    CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
3172  }
3173
3174  // If we have different source information for the return type, use
3175  // that.  This really only applies to C++ conversion functions.
3176  if (ReturnTypeInfo) {
3177    TypeLoc TL = ReturnTypeInfo->getTypeLoc();
3178    assert(TL.getFullDataSize() == CurrTL.getFullDataSize());
3179    memcpy(CurrTL.getOpaqueData(), TL.getOpaqueData(), TL.getFullDataSize());
3180  } else {
3181    TypeSpecLocFiller(Context, D.getDeclSpec()).Visit(CurrTL);
3182  }
3183
3184  return TInfo;
3185}
3186
3187/// \brief Create a LocInfoType to hold the given QualType and TypeSourceInfo.
3188ParsedType Sema::CreateParsedType(QualType T, TypeSourceInfo *TInfo) {
3189  // FIXME: LocInfoTypes are "transient", only needed for passing to/from Parser
3190  // and Sema during declaration parsing. Try deallocating/caching them when
3191  // it's appropriate, instead of allocating them and keeping them around.
3192  LocInfoType *LocT = (LocInfoType*)BumpAlloc.Allocate(sizeof(LocInfoType),
3193                                                       TypeAlignment);
3194  new (LocT) LocInfoType(T, TInfo);
3195  assert(LocT->getTypeClass() != T->getTypeClass() &&
3196         "LocInfoType's TypeClass conflicts with an existing Type class");
3197  return ParsedType::make(QualType(LocT, 0));
3198}
3199
3200void LocInfoType::getAsStringInternal(std::string &Str,
3201                                      const PrintingPolicy &Policy) const {
3202  llvm_unreachable("LocInfoType leaked into the type system; an opaque TypeTy*"
3203         " was used directly instead of getting the QualType through"
3204         " GetTypeFromParser");
3205}
3206
3207TypeResult Sema::ActOnTypeName(Scope *S, Declarator &D) {
3208  // C99 6.7.6: Type names have no identifier.  This is already validated by
3209  // the parser.
3210  assert(D.getIdentifier() == 0 && "Type name should have no identifier!");
3211
3212  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3213  QualType T = TInfo->getType();
3214  if (D.isInvalidType())
3215    return true;
3216
3217  // Make sure there are no unused decl attributes on the declarator.
3218  // We don't want to do this for ObjC parameters because we're going
3219  // to apply them to the actual parameter declaration.
3220  if (D.getContext() != Declarator::ObjCParameterContext)
3221    checkUnusedDeclAttributes(D);
3222
3223  if (getLangOpts().CPlusPlus) {
3224    // Check that there are no default arguments (C++ only).
3225    CheckExtraCXXDefaultArguments(D);
3226  }
3227
3228  return CreateParsedType(T, TInfo);
3229}
3230
3231ParsedType Sema::ActOnObjCInstanceType(SourceLocation Loc) {
3232  QualType T = Context.getObjCInstanceType();
3233  TypeSourceInfo *TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
3234  return CreateParsedType(T, TInfo);
3235}
3236
3237
3238//===----------------------------------------------------------------------===//
3239// Type Attribute Processing
3240//===----------------------------------------------------------------------===//
3241
3242/// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
3243/// specified type.  The attribute contains 1 argument, the id of the address
3244/// space for the type.
3245static void HandleAddressSpaceTypeAttribute(QualType &Type,
3246                                            const AttributeList &Attr, Sema &S){
3247
3248  // If this type is already address space qualified, reject it.
3249  // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "No type shall be qualified by
3250  // qualifiers for two or more different address spaces."
3251  if (Type.getAddressSpace()) {
3252    S.Diag(Attr.getLoc(), diag::err_attribute_address_multiple_qualifiers);
3253    Attr.setInvalid();
3254    return;
3255  }
3256
3257  // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "A function type shall not be
3258  // qualified by an address-space qualifier."
3259  if (Type->isFunctionType()) {
3260    S.Diag(Attr.getLoc(), diag::err_attribute_address_function_type);
3261    Attr.setInvalid();
3262    return;
3263  }
3264
3265  // Check the attribute arguments.
3266  if (Attr.getNumArgs() != 1) {
3267    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
3268    Attr.setInvalid();
3269    return;
3270  }
3271  Expr *ASArgExpr = static_cast<Expr *>(Attr.getArg(0));
3272  llvm::APSInt addrSpace(32);
3273  if (ASArgExpr->isTypeDependent() || ASArgExpr->isValueDependent() ||
3274      !ASArgExpr->isIntegerConstantExpr(addrSpace, S.Context)) {
3275    S.Diag(Attr.getLoc(), diag::err_attribute_address_space_not_int)
3276      << ASArgExpr->getSourceRange();
3277    Attr.setInvalid();
3278    return;
3279  }
3280
3281  // Bounds checking.
3282  if (addrSpace.isSigned()) {
3283    if (addrSpace.isNegative()) {
3284      S.Diag(Attr.getLoc(), diag::err_attribute_address_space_negative)
3285        << ASArgExpr->getSourceRange();
3286      Attr.setInvalid();
3287      return;
3288    }
3289    addrSpace.setIsSigned(false);
3290  }
3291  llvm::APSInt max(addrSpace.getBitWidth());
3292  max = Qualifiers::MaxAddressSpace;
3293  if (addrSpace > max) {
3294    S.Diag(Attr.getLoc(), diag::err_attribute_address_space_too_high)
3295      << Qualifiers::MaxAddressSpace << ASArgExpr->getSourceRange();
3296    Attr.setInvalid();
3297    return;
3298  }
3299
3300  unsigned ASIdx = static_cast<unsigned>(addrSpace.getZExtValue());
3301  Type = S.Context.getAddrSpaceQualType(Type, ASIdx);
3302}
3303
3304/// Does this type have a "direct" ownership qualifier?  That is,
3305/// is it written like "__strong id", as opposed to something like
3306/// "typeof(foo)", where that happens to be strong?
3307static bool hasDirectOwnershipQualifier(QualType type) {
3308  // Fast path: no qualifier at all.
3309  assert(type.getQualifiers().hasObjCLifetime());
3310
3311  while (true) {
3312    // __strong id
3313    if (const AttributedType *attr = dyn_cast<AttributedType>(type)) {
3314      if (attr->getAttrKind() == AttributedType::attr_objc_ownership)
3315        return true;
3316
3317      type = attr->getModifiedType();
3318
3319    // X *__strong (...)
3320    } else if (const ParenType *paren = dyn_cast<ParenType>(type)) {
3321      type = paren->getInnerType();
3322
3323    // That's it for things we want to complain about.  In particular,
3324    // we do not want to look through typedefs, typeof(expr),
3325    // typeof(type), or any other way that the type is somehow
3326    // abstracted.
3327    } else {
3328
3329      return false;
3330    }
3331  }
3332}
3333
3334/// handleObjCOwnershipTypeAttr - Process an objc_ownership
3335/// attribute on the specified type.
3336///
3337/// Returns 'true' if the attribute was handled.
3338static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
3339                                       AttributeList &attr,
3340                                       QualType &type) {
3341  bool NonObjCPointer = false;
3342
3343  if (!type->isDependentType()) {
3344    if (const PointerType *ptr = type->getAs<PointerType>()) {
3345      QualType pointee = ptr->getPointeeType();
3346      if (pointee->isObjCRetainableType() || pointee->isPointerType())
3347        return false;
3348      // It is important not to lose the source info that there was an attribute
3349      // applied to non-objc pointer. We will create an attributed type but
3350      // its type will be the same as the original type.
3351      NonObjCPointer = true;
3352    } else if (!type->isObjCRetainableType()) {
3353      return false;
3354    }
3355  }
3356
3357  Sema &S = state.getSema();
3358  SourceLocation AttrLoc = attr.getLoc();
3359  if (AttrLoc.isMacroID())
3360    AttrLoc = S.getSourceManager().getImmediateExpansionRange(AttrLoc).first;
3361
3362  if (!attr.getParameterName()) {
3363    S.Diag(AttrLoc, diag::err_attribute_argument_n_not_string)
3364      << "objc_ownership" << 1;
3365    attr.setInvalid();
3366    return true;
3367  }
3368
3369  // Consume lifetime attributes without further comment outside of
3370  // ARC mode.
3371  if (!S.getLangOpts().ObjCAutoRefCount)
3372    return true;
3373
3374  Qualifiers::ObjCLifetime lifetime;
3375  if (attr.getParameterName()->isStr("none"))
3376    lifetime = Qualifiers::OCL_ExplicitNone;
3377  else if (attr.getParameterName()->isStr("strong"))
3378    lifetime = Qualifiers::OCL_Strong;
3379  else if (attr.getParameterName()->isStr("weak"))
3380    lifetime = Qualifiers::OCL_Weak;
3381  else if (attr.getParameterName()->isStr("autoreleasing"))
3382    lifetime = Qualifiers::OCL_Autoreleasing;
3383  else {
3384    S.Diag(AttrLoc, diag::warn_attribute_type_not_supported)
3385      << "objc_ownership" << attr.getParameterName();
3386    attr.setInvalid();
3387    return true;
3388  }
3389
3390  SplitQualType underlyingType = type.split();
3391
3392  // Check for redundant/conflicting ownership qualifiers.
3393  if (Qualifiers::ObjCLifetime previousLifetime
3394        = type.getQualifiers().getObjCLifetime()) {
3395    // If it's written directly, that's an error.
3396    if (hasDirectOwnershipQualifier(type)) {
3397      S.Diag(AttrLoc, diag::err_attr_objc_ownership_redundant)
3398        << type;
3399      return true;
3400    }
3401
3402    // Otherwise, if the qualifiers actually conflict, pull sugar off
3403    // until we reach a type that is directly qualified.
3404    if (previousLifetime != lifetime) {
3405      // This should always terminate: the canonical type is
3406      // qualified, so some bit of sugar must be hiding it.
3407      while (!underlyingType.Quals.hasObjCLifetime()) {
3408        underlyingType = underlyingType.getSingleStepDesugaredType();
3409      }
3410      underlyingType.Quals.removeObjCLifetime();
3411    }
3412  }
3413
3414  underlyingType.Quals.addObjCLifetime(lifetime);
3415
3416  if (NonObjCPointer) {
3417    StringRef name = attr.getName()->getName();
3418    switch (lifetime) {
3419    case Qualifiers::OCL_None:
3420    case Qualifiers::OCL_ExplicitNone:
3421      break;
3422    case Qualifiers::OCL_Strong: name = "__strong"; break;
3423    case Qualifiers::OCL_Weak: name = "__weak"; break;
3424    case Qualifiers::OCL_Autoreleasing: name = "__autoreleasing"; break;
3425    }
3426    S.Diag(AttrLoc, diag::warn_objc_object_attribute_wrong_type)
3427      << name << type;
3428  }
3429
3430  QualType origType = type;
3431  if (!NonObjCPointer)
3432    type = S.Context.getQualifiedType(underlyingType);
3433
3434  // If we have a valid source location for the attribute, use an
3435  // AttributedType instead.
3436  if (AttrLoc.isValid())
3437    type = S.Context.getAttributedType(AttributedType::attr_objc_ownership,
3438                                       origType, type);
3439
3440  // Forbid __weak if the runtime doesn't support it.
3441  if (lifetime == Qualifiers::OCL_Weak &&
3442      !S.getLangOpts().ObjCRuntimeHasWeak && !NonObjCPointer) {
3443
3444    // Actually, delay this until we know what we're parsing.
3445    if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
3446      S.DelayedDiagnostics.add(
3447          sema::DelayedDiagnostic::makeForbiddenType(
3448              S.getSourceManager().getExpansionLoc(AttrLoc),
3449              diag::err_arc_weak_no_runtime, type, /*ignored*/ 0));
3450    } else {
3451      S.Diag(AttrLoc, diag::err_arc_weak_no_runtime);
3452    }
3453
3454    attr.setInvalid();
3455    return true;
3456  }
3457
3458  // Forbid __weak for class objects marked as
3459  // objc_arc_weak_reference_unavailable
3460  if (lifetime == Qualifiers::OCL_Weak) {
3461    QualType T = type;
3462    while (const PointerType *ptr = T->getAs<PointerType>())
3463      T = ptr->getPointeeType();
3464    if (const ObjCObjectPointerType *ObjT = T->getAs<ObjCObjectPointerType>()) {
3465      ObjCInterfaceDecl *Class = ObjT->getInterfaceDecl();
3466      if (Class->isArcWeakrefUnavailable()) {
3467          S.Diag(AttrLoc, diag::err_arc_unsupported_weak_class);
3468          S.Diag(ObjT->getInterfaceDecl()->getLocation(),
3469                 diag::note_class_declared);
3470      }
3471    }
3472  }
3473
3474  return true;
3475}
3476
3477/// handleObjCGCTypeAttr - Process the __attribute__((objc_gc)) type
3478/// attribute on the specified type.  Returns true to indicate that
3479/// the attribute was handled, false to indicate that the type does
3480/// not permit the attribute.
3481static bool handleObjCGCTypeAttr(TypeProcessingState &state,
3482                                 AttributeList &attr,
3483                                 QualType &type) {
3484  Sema &S = state.getSema();
3485
3486  // Delay if this isn't some kind of pointer.
3487  if (!type->isPointerType() &&
3488      !type->isObjCObjectPointerType() &&
3489      !type->isBlockPointerType())
3490    return false;
3491
3492  if (type.getObjCGCAttr() != Qualifiers::GCNone) {
3493    S.Diag(attr.getLoc(), diag::err_attribute_multiple_objc_gc);
3494    attr.setInvalid();
3495    return true;
3496  }
3497
3498  // Check the attribute arguments.
3499  if (!attr.getParameterName()) {
3500    S.Diag(attr.getLoc(), diag::err_attribute_argument_n_not_string)
3501      << "objc_gc" << 1;
3502    attr.setInvalid();
3503    return true;
3504  }
3505  Qualifiers::GC GCAttr;
3506  if (attr.getNumArgs() != 0) {
3507    S.Diag(attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
3508    attr.setInvalid();
3509    return true;
3510  }
3511  if (attr.getParameterName()->isStr("weak"))
3512    GCAttr = Qualifiers::Weak;
3513  else if (attr.getParameterName()->isStr("strong"))
3514    GCAttr = Qualifiers::Strong;
3515  else {
3516    S.Diag(attr.getLoc(), diag::warn_attribute_type_not_supported)
3517      << "objc_gc" << attr.getParameterName();
3518    attr.setInvalid();
3519    return true;
3520  }
3521
3522  QualType origType = type;
3523  type = S.Context.getObjCGCQualType(origType, GCAttr);
3524
3525  // Make an attributed type to preserve the source information.
3526  if (attr.getLoc().isValid())
3527    type = S.Context.getAttributedType(AttributedType::attr_objc_gc,
3528                                       origType, type);
3529
3530  return true;
3531}
3532
3533namespace {
3534  /// A helper class to unwrap a type down to a function for the
3535  /// purposes of applying attributes there.
3536  ///
3537  /// Use:
3538  ///   FunctionTypeUnwrapper unwrapped(SemaRef, T);
3539  ///   if (unwrapped.isFunctionType()) {
3540  ///     const FunctionType *fn = unwrapped.get();
3541  ///     // change fn somehow
3542  ///     T = unwrapped.wrap(fn);
3543  ///   }
3544  struct FunctionTypeUnwrapper {
3545    enum WrapKind {
3546      Desugar,
3547      Parens,
3548      Pointer,
3549      BlockPointer,
3550      Reference,
3551      MemberPointer
3552    };
3553
3554    QualType Original;
3555    const FunctionType *Fn;
3556    SmallVector<unsigned char /*WrapKind*/, 8> Stack;
3557
3558    FunctionTypeUnwrapper(Sema &S, QualType T) : Original(T) {
3559      while (true) {
3560        const Type *Ty = T.getTypePtr();
3561        if (isa<FunctionType>(Ty)) {
3562          Fn = cast<FunctionType>(Ty);
3563          return;
3564        } else if (isa<ParenType>(Ty)) {
3565          T = cast<ParenType>(Ty)->getInnerType();
3566          Stack.push_back(Parens);
3567        } else if (isa<PointerType>(Ty)) {
3568          T = cast<PointerType>(Ty)->getPointeeType();
3569          Stack.push_back(Pointer);
3570        } else if (isa<BlockPointerType>(Ty)) {
3571          T = cast<BlockPointerType>(Ty)->getPointeeType();
3572          Stack.push_back(BlockPointer);
3573        } else if (isa<MemberPointerType>(Ty)) {
3574          T = cast<MemberPointerType>(Ty)->getPointeeType();
3575          Stack.push_back(MemberPointer);
3576        } else if (isa<ReferenceType>(Ty)) {
3577          T = cast<ReferenceType>(Ty)->getPointeeType();
3578          Stack.push_back(Reference);
3579        } else {
3580          const Type *DTy = Ty->getUnqualifiedDesugaredType();
3581          if (Ty == DTy) {
3582            Fn = 0;
3583            return;
3584          }
3585
3586          T = QualType(DTy, 0);
3587          Stack.push_back(Desugar);
3588        }
3589      }
3590    }
3591
3592    bool isFunctionType() const { return (Fn != 0); }
3593    const FunctionType *get() const { return Fn; }
3594
3595    QualType wrap(Sema &S, const FunctionType *New) {
3596      // If T wasn't modified from the unwrapped type, do nothing.
3597      if (New == get()) return Original;
3598
3599      Fn = New;
3600      return wrap(S.Context, Original, 0);
3601    }
3602
3603  private:
3604    QualType wrap(ASTContext &C, QualType Old, unsigned I) {
3605      if (I == Stack.size())
3606        return C.getQualifiedType(Fn, Old.getQualifiers());
3607
3608      // Build up the inner type, applying the qualifiers from the old
3609      // type to the new type.
3610      SplitQualType SplitOld = Old.split();
3611
3612      // As a special case, tail-recurse if there are no qualifiers.
3613      if (SplitOld.Quals.empty())
3614        return wrap(C, SplitOld.Ty, I);
3615      return C.getQualifiedType(wrap(C, SplitOld.Ty, I), SplitOld.Quals);
3616    }
3617
3618    QualType wrap(ASTContext &C, const Type *Old, unsigned I) {
3619      if (I == Stack.size()) return QualType(Fn, 0);
3620
3621      switch (static_cast<WrapKind>(Stack[I++])) {
3622      case Desugar:
3623        // This is the point at which we potentially lose source
3624        // information.
3625        return wrap(C, Old->getUnqualifiedDesugaredType(), I);
3626
3627      case Parens: {
3628        QualType New = wrap(C, cast<ParenType>(Old)->getInnerType(), I);
3629        return C.getParenType(New);
3630      }
3631
3632      case Pointer: {
3633        QualType New = wrap(C, cast<PointerType>(Old)->getPointeeType(), I);
3634        return C.getPointerType(New);
3635      }
3636
3637      case BlockPointer: {
3638        QualType New = wrap(C, cast<BlockPointerType>(Old)->getPointeeType(),I);
3639        return C.getBlockPointerType(New);
3640      }
3641
3642      case MemberPointer: {
3643        const MemberPointerType *OldMPT = cast<MemberPointerType>(Old);
3644        QualType New = wrap(C, OldMPT->getPointeeType(), I);
3645        return C.getMemberPointerType(New, OldMPT->getClass());
3646      }
3647
3648      case Reference: {
3649        const ReferenceType *OldRef = cast<ReferenceType>(Old);
3650        QualType New = wrap(C, OldRef->getPointeeType(), I);
3651        if (isa<LValueReferenceType>(OldRef))
3652          return C.getLValueReferenceType(New, OldRef->isSpelledAsLValue());
3653        else
3654          return C.getRValueReferenceType(New);
3655      }
3656      }
3657
3658      llvm_unreachable("unknown wrapping kind");
3659    }
3660  };
3661}
3662
3663/// Process an individual function attribute.  Returns true to
3664/// indicate that the attribute was handled, false if it wasn't.
3665static bool handleFunctionTypeAttr(TypeProcessingState &state,
3666                                   AttributeList &attr,
3667                                   QualType &type) {
3668  Sema &S = state.getSema();
3669
3670  FunctionTypeUnwrapper unwrapped(S, type);
3671
3672  if (attr.getKind() == AttributeList::AT_noreturn) {
3673    if (S.CheckNoReturnAttr(attr))
3674      return true;
3675
3676    // Delay if this is not a function type.
3677    if (!unwrapped.isFunctionType())
3678      return false;
3679
3680    // Otherwise we can process right away.
3681    FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withNoReturn(true);
3682    type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
3683    return true;
3684  }
3685
3686  // ns_returns_retained is not always a type attribute, but if we got
3687  // here, we're treating it as one right now.
3688  if (attr.getKind() == AttributeList::AT_ns_returns_retained) {
3689    assert(S.getLangOpts().ObjCAutoRefCount &&
3690           "ns_returns_retained treated as type attribute in non-ARC");
3691    if (attr.getNumArgs()) return true;
3692
3693    // Delay if this is not a function type.
3694    if (!unwrapped.isFunctionType())
3695      return false;
3696
3697    FunctionType::ExtInfo EI
3698      = unwrapped.get()->getExtInfo().withProducesResult(true);
3699    type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
3700    return true;
3701  }
3702
3703  if (attr.getKind() == AttributeList::AT_regparm) {
3704    unsigned value;
3705    if (S.CheckRegparmAttr(attr, value))
3706      return true;
3707
3708    // Delay if this is not a function type.
3709    if (!unwrapped.isFunctionType())
3710      return false;
3711
3712    // Diagnose regparm with fastcall.
3713    const FunctionType *fn = unwrapped.get();
3714    CallingConv CC = fn->getCallConv();
3715    if (CC == CC_X86FastCall) {
3716      S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
3717        << FunctionType::getNameForCallConv(CC)
3718        << "regparm";
3719      attr.setInvalid();
3720      return true;
3721    }
3722
3723    FunctionType::ExtInfo EI =
3724      unwrapped.get()->getExtInfo().withRegParm(value);
3725    type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
3726    return true;
3727  }
3728
3729  // Otherwise, a calling convention.
3730  CallingConv CC;
3731  if (S.CheckCallingConvAttr(attr, CC))
3732    return true;
3733
3734  // Delay if the type didn't work out to a function.
3735  if (!unwrapped.isFunctionType()) return false;
3736
3737  const FunctionType *fn = unwrapped.get();
3738  CallingConv CCOld = fn->getCallConv();
3739  if (S.Context.getCanonicalCallConv(CC) ==
3740      S.Context.getCanonicalCallConv(CCOld)) {
3741    FunctionType::ExtInfo EI= unwrapped.get()->getExtInfo().withCallingConv(CC);
3742    type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
3743    return true;
3744  }
3745
3746  if (CCOld != (S.LangOpts.MRTD ? CC_X86StdCall : CC_Default)) {
3747    // Should we diagnose reapplications of the same convention?
3748    S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
3749      << FunctionType::getNameForCallConv(CC)
3750      << FunctionType::getNameForCallConv(CCOld);
3751    attr.setInvalid();
3752    return true;
3753  }
3754
3755  // Diagnose the use of X86 fastcall on varargs or unprototyped functions.
3756  if (CC == CC_X86FastCall) {
3757    if (isa<FunctionNoProtoType>(fn)) {
3758      S.Diag(attr.getLoc(), diag::err_cconv_knr)
3759        << FunctionType::getNameForCallConv(CC);
3760      attr.setInvalid();
3761      return true;
3762    }
3763
3764    const FunctionProtoType *FnP = cast<FunctionProtoType>(fn);
3765    if (FnP->isVariadic()) {
3766      S.Diag(attr.getLoc(), diag::err_cconv_varargs)
3767        << FunctionType::getNameForCallConv(CC);
3768      attr.setInvalid();
3769      return true;
3770    }
3771
3772    // Also diagnose fastcall with regparm.
3773    if (fn->getHasRegParm()) {
3774      S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
3775        << "regparm"
3776        << FunctionType::getNameForCallConv(CC);
3777      attr.setInvalid();
3778      return true;
3779    }
3780  }
3781
3782  FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withCallingConv(CC);
3783  type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
3784  return true;
3785}
3786
3787/// Handle OpenCL image access qualifiers: read_only, write_only, read_write
3788static void HandleOpenCLImageAccessAttribute(QualType& CurType,
3789                                             const AttributeList &Attr,
3790                                             Sema &S) {
3791  // Check the attribute arguments.
3792  if (Attr.getNumArgs() != 1) {
3793    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
3794    Attr.setInvalid();
3795    return;
3796  }
3797  Expr *sizeExpr = static_cast<Expr *>(Attr.getArg(0));
3798  llvm::APSInt arg(32);
3799  if (sizeExpr->isTypeDependent() || sizeExpr->isValueDependent() ||
3800      !sizeExpr->isIntegerConstantExpr(arg, S.Context)) {
3801    S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
3802      << "opencl_image_access" << sizeExpr->getSourceRange();
3803    Attr.setInvalid();
3804    return;
3805  }
3806  unsigned iarg = static_cast<unsigned>(arg.getZExtValue());
3807  switch (iarg) {
3808  case CLIA_read_only:
3809  case CLIA_write_only:
3810  case CLIA_read_write:
3811    // Implemented in a separate patch
3812    break;
3813  default:
3814    // Implemented in a separate patch
3815    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_size)
3816      << sizeExpr->getSourceRange();
3817    Attr.setInvalid();
3818    break;
3819  }
3820}
3821
3822/// HandleVectorSizeAttribute - this attribute is only applicable to integral
3823/// and float scalars, although arrays, pointers, and function return values are
3824/// allowed in conjunction with this construct. Aggregates with this attribute
3825/// are invalid, even if they are of the same size as a corresponding scalar.
3826/// The raw attribute should contain precisely 1 argument, the vector size for
3827/// the variable, measured in bytes. If curType and rawAttr are well formed,
3828/// this routine will return a new vector type.
3829static void HandleVectorSizeAttr(QualType& CurType, const AttributeList &Attr,
3830                                 Sema &S) {
3831  // Check the attribute arguments.
3832  if (Attr.getNumArgs() != 1) {
3833    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
3834    Attr.setInvalid();
3835    return;
3836  }
3837  Expr *sizeExpr = static_cast<Expr *>(Attr.getArg(0));
3838  llvm::APSInt vecSize(32);
3839  if (sizeExpr->isTypeDependent() || sizeExpr->isValueDependent() ||
3840      !sizeExpr->isIntegerConstantExpr(vecSize, S.Context)) {
3841    S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
3842      << "vector_size" << sizeExpr->getSourceRange();
3843    Attr.setInvalid();
3844    return;
3845  }
3846  // the base type must be integer or float, and can't already be a vector.
3847  if (!CurType->isIntegerType() && !CurType->isRealFloatingType()) {
3848    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << CurType;
3849    Attr.setInvalid();
3850    return;
3851  }
3852  unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
3853  // vecSize is specified in bytes - convert to bits.
3854  unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue() * 8);
3855
3856  // the vector size needs to be an integral multiple of the type size.
3857  if (vectorSize % typeSize) {
3858    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_size)
3859      << sizeExpr->getSourceRange();
3860    Attr.setInvalid();
3861    return;
3862  }
3863  if (vectorSize == 0) {
3864    S.Diag(Attr.getLoc(), diag::err_attribute_zero_size)
3865      << sizeExpr->getSourceRange();
3866    Attr.setInvalid();
3867    return;
3868  }
3869
3870  // Success! Instantiate the vector type, the number of elements is > 0, and
3871  // not required to be a power of 2, unlike GCC.
3872  CurType = S.Context.getVectorType(CurType, vectorSize/typeSize,
3873                                    VectorType::GenericVector);
3874}
3875
3876/// \brief Process the OpenCL-like ext_vector_type attribute when it occurs on
3877/// a type.
3878static void HandleExtVectorTypeAttr(QualType &CurType,
3879                                    const AttributeList &Attr,
3880                                    Sema &S) {
3881  Expr *sizeExpr;
3882
3883  // Special case where the argument is a template id.
3884  if (Attr.getParameterName()) {
3885    CXXScopeSpec SS;
3886    SourceLocation TemplateKWLoc;
3887    UnqualifiedId id;
3888    id.setIdentifier(Attr.getParameterName(), Attr.getLoc());
3889
3890    ExprResult Size = S.ActOnIdExpression(S.getCurScope(), SS, TemplateKWLoc,
3891                                          id, false, false);
3892    if (Size.isInvalid())
3893      return;
3894
3895    sizeExpr = Size.get();
3896  } else {
3897    // check the attribute arguments.
3898    if (Attr.getNumArgs() != 1) {
3899      S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
3900      return;
3901    }
3902    sizeExpr = Attr.getArg(0);
3903  }
3904
3905  // Create the vector type.
3906  QualType T = S.BuildExtVectorType(CurType, sizeExpr, Attr.getLoc());
3907  if (!T.isNull())
3908    CurType = T;
3909}
3910
3911/// HandleNeonVectorTypeAttr - The "neon_vector_type" and
3912/// "neon_polyvector_type" attributes are used to create vector types that
3913/// are mangled according to ARM's ABI.  Otherwise, these types are identical
3914/// to those created with the "vector_size" attribute.  Unlike "vector_size"
3915/// the argument to these Neon attributes is the number of vector elements,
3916/// not the vector size in bytes.  The vector width and element type must
3917/// match one of the standard Neon vector types.
3918static void HandleNeonVectorTypeAttr(QualType& CurType,
3919                                     const AttributeList &Attr, Sema &S,
3920                                     VectorType::VectorKind VecKind,
3921                                     const char *AttrName) {
3922  // Check the attribute arguments.
3923  if (Attr.getNumArgs() != 1) {
3924    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
3925    Attr.setInvalid();
3926    return;
3927  }
3928  // The number of elements must be an ICE.
3929  Expr *numEltsExpr = static_cast<Expr *>(Attr.getArg(0));
3930  llvm::APSInt numEltsInt(32);
3931  if (numEltsExpr->isTypeDependent() || numEltsExpr->isValueDependent() ||
3932      !numEltsExpr->isIntegerConstantExpr(numEltsInt, S.Context)) {
3933    S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
3934      << AttrName << numEltsExpr->getSourceRange();
3935    Attr.setInvalid();
3936    return;
3937  }
3938  // Only certain element types are supported for Neon vectors.
3939  const BuiltinType* BTy = CurType->getAs<BuiltinType>();
3940  if (!BTy ||
3941      (VecKind == VectorType::NeonPolyVector &&
3942       BTy->getKind() != BuiltinType::SChar &&
3943       BTy->getKind() != BuiltinType::Short) ||
3944      (BTy->getKind() != BuiltinType::SChar &&
3945       BTy->getKind() != BuiltinType::UChar &&
3946       BTy->getKind() != BuiltinType::Short &&
3947       BTy->getKind() != BuiltinType::UShort &&
3948       BTy->getKind() != BuiltinType::Int &&
3949       BTy->getKind() != BuiltinType::UInt &&
3950       BTy->getKind() != BuiltinType::LongLong &&
3951       BTy->getKind() != BuiltinType::ULongLong &&
3952       BTy->getKind() != BuiltinType::Float)) {
3953    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) <<CurType;
3954    Attr.setInvalid();
3955    return;
3956  }
3957  // The total size of the vector must be 64 or 128 bits.
3958  unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
3959  unsigned numElts = static_cast<unsigned>(numEltsInt.getZExtValue());
3960  unsigned vecSize = typeSize * numElts;
3961  if (vecSize != 64 && vecSize != 128) {
3962    S.Diag(Attr.getLoc(), diag::err_attribute_bad_neon_vector_size) << CurType;
3963    Attr.setInvalid();
3964    return;
3965  }
3966
3967  CurType = S.Context.getVectorType(CurType, numElts, VecKind);
3968}
3969
3970static void processTypeAttrs(TypeProcessingState &state, QualType &type,
3971                             bool isDeclSpec, AttributeList *attrs) {
3972  // Scan through and apply attributes to this type where it makes sense.  Some
3973  // attributes (such as __address_space__, __vector_size__, etc) apply to the
3974  // type, but others can be present in the type specifiers even though they
3975  // apply to the decl.  Here we apply type attributes and ignore the rest.
3976
3977  AttributeList *next;
3978  do {
3979    AttributeList &attr = *attrs;
3980    next = attr.getNext();
3981
3982    // Skip attributes that were marked to be invalid.
3983    if (attr.isInvalid())
3984      continue;
3985
3986    // If this is an attribute we can handle, do so now,
3987    // otherwise, add it to the FnAttrs list for rechaining.
3988    switch (attr.getKind()) {
3989    default: break;
3990
3991    case AttributeList::AT_may_alias:
3992      // FIXME: This attribute needs to actually be handled, but if we ignore
3993      // it it breaks large amounts of Linux software.
3994      attr.setUsedAsTypeAttr();
3995      break;
3996    case AttributeList::AT_address_space:
3997      HandleAddressSpaceTypeAttribute(type, attr, state.getSema());
3998      attr.setUsedAsTypeAttr();
3999      break;
4000    OBJC_POINTER_TYPE_ATTRS_CASELIST:
4001      if (!handleObjCPointerTypeAttr(state, attr, type))
4002        distributeObjCPointerTypeAttr(state, attr, type);
4003      attr.setUsedAsTypeAttr();
4004      break;
4005    case AttributeList::AT_vector_size:
4006      HandleVectorSizeAttr(type, attr, state.getSema());
4007      attr.setUsedAsTypeAttr();
4008      break;
4009    case AttributeList::AT_ext_vector_type:
4010      if (state.getDeclarator().getDeclSpec().getStorageClassSpec()
4011            != DeclSpec::SCS_typedef)
4012        HandleExtVectorTypeAttr(type, attr, state.getSema());
4013      attr.setUsedAsTypeAttr();
4014      break;
4015    case AttributeList::AT_neon_vector_type:
4016      HandleNeonVectorTypeAttr(type, attr, state.getSema(),
4017                               VectorType::NeonVector, "neon_vector_type");
4018      attr.setUsedAsTypeAttr();
4019      break;
4020    case AttributeList::AT_neon_polyvector_type:
4021      HandleNeonVectorTypeAttr(type, attr, state.getSema(),
4022                               VectorType::NeonPolyVector,
4023                               "neon_polyvector_type");
4024      attr.setUsedAsTypeAttr();
4025      break;
4026    case AttributeList::AT_opencl_image_access:
4027      HandleOpenCLImageAccessAttribute(type, attr, state.getSema());
4028      attr.setUsedAsTypeAttr();
4029      break;
4030
4031    case AttributeList::AT_ns_returns_retained:
4032      if (!state.getSema().getLangOpts().ObjCAutoRefCount)
4033	break;
4034      // fallthrough into the function attrs
4035
4036    FUNCTION_TYPE_ATTRS_CASELIST:
4037      attr.setUsedAsTypeAttr();
4038
4039      // Never process function type attributes as part of the
4040      // declaration-specifiers.
4041      if (isDeclSpec)
4042        distributeFunctionTypeAttrFromDeclSpec(state, attr, type);
4043
4044      // Otherwise, handle the possible delays.
4045      else if (!handleFunctionTypeAttr(state, attr, type))
4046        distributeFunctionTypeAttr(state, attr, type);
4047      break;
4048    }
4049  } while ((attrs = next));
4050}
4051
4052/// \brief Ensure that the type of the given expression is complete.
4053///
4054/// This routine checks whether the expression \p E has a complete type. If the
4055/// expression refers to an instantiable construct, that instantiation is
4056/// performed as needed to complete its type. Furthermore
4057/// Sema::RequireCompleteType is called for the expression's type (or in the
4058/// case of a reference type, the referred-to type).
4059///
4060/// \param E The expression whose type is required to be complete.
4061/// \param Diagnoser The object that will emit a diagnostic if the type is
4062/// incomplete.
4063///
4064/// \returns \c true if the type of \p E is incomplete and diagnosed, \c false
4065/// otherwise.
4066bool Sema::RequireCompleteExprType(Expr *E, TypeDiagnoser &Diagnoser){
4067  QualType T = E->getType();
4068
4069  // Fast path the case where the type is already complete.
4070  if (!T->isIncompleteType())
4071    return false;
4072
4073  // Incomplete array types may be completed by the initializer attached to
4074  // their definitions. For static data members of class templates we need to
4075  // instantiate the definition to get this initializer and complete the type.
4076  if (T->isIncompleteArrayType()) {
4077    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
4078      if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
4079        if (Var->isStaticDataMember() &&
4080            Var->getInstantiatedFromStaticDataMember()) {
4081
4082          MemberSpecializationInfo *MSInfo = Var->getMemberSpecializationInfo();
4083          assert(MSInfo && "Missing member specialization information?");
4084          if (MSInfo->getTemplateSpecializationKind()
4085                != TSK_ExplicitSpecialization) {
4086            // If we don't already have a point of instantiation, this is it.
4087            if (MSInfo->getPointOfInstantiation().isInvalid()) {
4088              MSInfo->setPointOfInstantiation(E->getLocStart());
4089
4090              // This is a modification of an existing AST node. Notify
4091              // listeners.
4092              if (ASTMutationListener *L = getASTMutationListener())
4093                L->StaticDataMemberInstantiated(Var);
4094            }
4095
4096            InstantiateStaticDataMemberDefinition(E->getExprLoc(), Var);
4097
4098            // Update the type to the newly instantiated definition's type both
4099            // here and within the expression.
4100            if (VarDecl *Def = Var->getDefinition()) {
4101              DRE->setDecl(Def);
4102              T = Def->getType();
4103              DRE->setType(T);
4104              E->setType(T);
4105            }
4106          }
4107
4108          // We still go on to try to complete the type independently, as it
4109          // may also require instantiations or diagnostics if it remains
4110          // incomplete.
4111        }
4112      }
4113    }
4114  }
4115
4116  // FIXME: Are there other cases which require instantiating something other
4117  // than the type to complete the type of an expression?
4118
4119  // Look through reference types and complete the referred type.
4120  if (const ReferenceType *Ref = T->getAs<ReferenceType>())
4121    T = Ref->getPointeeType();
4122
4123  return RequireCompleteType(E->getExprLoc(), T, Diagnoser);
4124}
4125
4126namespace {
4127  struct TypeDiagnoserDiag : Sema::TypeDiagnoser {
4128    unsigned DiagID;
4129
4130    TypeDiagnoserDiag(unsigned DiagID)
4131      : Sema::TypeDiagnoser(DiagID == 0), DiagID(DiagID) {}
4132
4133    virtual void diagnose(Sema &S, SourceLocation Loc, QualType T) {
4134      if (Suppressed) return;
4135      S.Diag(Loc, DiagID) << T;
4136    }
4137  };
4138}
4139
4140bool Sema::RequireCompleteExprType(Expr *E, unsigned DiagID) {
4141  TypeDiagnoserDiag Diagnoser(DiagID);
4142  return RequireCompleteExprType(E, Diagnoser);
4143}
4144
4145/// @brief Ensure that the type T is a complete type.
4146///
4147/// This routine checks whether the type @p T is complete in any
4148/// context where a complete type is required. If @p T is a complete
4149/// type, returns false. If @p T is a class template specialization,
4150/// this routine then attempts to perform class template
4151/// instantiation. If instantiation fails, or if @p T is incomplete
4152/// and cannot be completed, issues the diagnostic @p diag (giving it
4153/// the type @p T) and returns true.
4154///
4155/// @param Loc  The location in the source that the incomplete type
4156/// diagnostic should refer to.
4157///
4158/// @param T  The type that this routine is examining for completeness.
4159///
4160/// @param PD The partial diagnostic that will be printed out if T is not a
4161/// complete type.
4162///
4163/// @returns @c true if @p T is incomplete and a diagnostic was emitted,
4164/// @c false otherwise.
4165bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
4166                               TypeDiagnoser &Diagnoser) {
4167  // FIXME: Add this assertion to make sure we always get instantiation points.
4168  //  assert(!Loc.isInvalid() && "Invalid location in RequireCompleteType");
4169  // FIXME: Add this assertion to help us flush out problems with
4170  // checking for dependent types and type-dependent expressions.
4171  //
4172  //  assert(!T->isDependentType() &&
4173  //         "Can't ask whether a dependent type is complete");
4174
4175  // If we have a complete type, we're done.
4176  NamedDecl *Def = 0;
4177  if (!T->isIncompleteType(&Def)) {
4178    // If we know about the definition but it is not visible, complain.
4179    if (!Diagnoser.Suppressed && Def && !LookupResult::isVisible(Def)) {
4180      // Suppress this error outside of a SFINAE context if we've already
4181      // emitted the error once for this type. There's no usefulness in
4182      // repeating the diagnostic.
4183      // FIXME: Add a Fix-It that imports the corresponding module or includes
4184      // the header.
4185      if (isSFINAEContext() || HiddenDefinitions.insert(Def)) {
4186        Diag(Loc, diag::err_module_private_definition) << T;
4187        Diag(Def->getLocation(), diag::note_previous_definition);
4188      }
4189    }
4190
4191    return false;
4192  }
4193
4194  const TagType *Tag = T->getAs<TagType>();
4195  const ObjCInterfaceType *IFace = 0;
4196
4197  if (Tag) {
4198    // Avoid diagnosing invalid decls as incomplete.
4199    if (Tag->getDecl()->isInvalidDecl())
4200      return true;
4201
4202    // Give the external AST source a chance to complete the type.
4203    if (Tag->getDecl()->hasExternalLexicalStorage()) {
4204      Context.getExternalSource()->CompleteType(Tag->getDecl());
4205      if (!Tag->isIncompleteType())
4206        return false;
4207    }
4208  }
4209  else if ((IFace = T->getAs<ObjCInterfaceType>())) {
4210    // Avoid diagnosing invalid decls as incomplete.
4211    if (IFace->getDecl()->isInvalidDecl())
4212      return true;
4213
4214    // Give the external AST source a chance to complete the type.
4215    if (IFace->getDecl()->hasExternalLexicalStorage()) {
4216      Context.getExternalSource()->CompleteType(IFace->getDecl());
4217      if (!IFace->isIncompleteType())
4218        return false;
4219    }
4220  }
4221
4222  // If we have a class template specialization or a class member of a
4223  // class template specialization, or an array with known size of such,
4224  // try to instantiate it.
4225  QualType MaybeTemplate = T;
4226  while (const ConstantArrayType *Array
4227           = Context.getAsConstantArrayType(MaybeTemplate))
4228    MaybeTemplate = Array->getElementType();
4229  if (const RecordType *Record = MaybeTemplate->getAs<RecordType>()) {
4230    if (ClassTemplateSpecializationDecl *ClassTemplateSpec
4231          = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
4232      if (ClassTemplateSpec->getSpecializationKind() == TSK_Undeclared)
4233        return InstantiateClassTemplateSpecialization(Loc, ClassTemplateSpec,
4234                                                      TSK_ImplicitInstantiation,
4235                                            /*Complain=*/!Diagnoser.Suppressed);
4236    } else if (CXXRecordDecl *Rec
4237                 = dyn_cast<CXXRecordDecl>(Record->getDecl())) {
4238      CXXRecordDecl *Pattern = Rec->getInstantiatedFromMemberClass();
4239      if (!Rec->isBeingDefined() && Pattern) {
4240        MemberSpecializationInfo *MSI = Rec->getMemberSpecializationInfo();
4241        assert(MSI && "Missing member specialization information?");
4242        // This record was instantiated from a class within a template.
4243        if (MSI->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
4244          return InstantiateClass(Loc, Rec, Pattern,
4245                                  getTemplateInstantiationArgs(Rec),
4246                                  TSK_ImplicitInstantiation,
4247                                  /*Complain=*/!Diagnoser.Suppressed);
4248      }
4249    }
4250  }
4251
4252  if (Diagnoser.Suppressed)
4253    return true;
4254
4255  // We have an incomplete type. Produce a diagnostic.
4256  Diagnoser.diagnose(*this, Loc, T);
4257
4258  // If the type was a forward declaration of a class/struct/union
4259  // type, produce a note.
4260  if (Tag && !Tag->getDecl()->isInvalidDecl())
4261    Diag(Tag->getDecl()->getLocation(),
4262         Tag->isBeingDefined() ? diag::note_type_being_defined
4263                               : diag::note_forward_declaration)
4264      << QualType(Tag, 0);
4265
4266  // If the Objective-C class was a forward declaration, produce a note.
4267  if (IFace && !IFace->getDecl()->isInvalidDecl())
4268    Diag(IFace->getDecl()->getLocation(), diag::note_forward_class);
4269
4270  return true;
4271}
4272
4273bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
4274                               unsigned DiagID) {
4275  TypeDiagnoserDiag Diagnoser(DiagID);
4276  return RequireCompleteType(Loc, T, Diagnoser);
4277}
4278
4279/// @brief Ensure that the type T is a literal type.
4280///
4281/// This routine checks whether the type @p T is a literal type. If @p T is an
4282/// incomplete type, an attempt is made to complete it. If @p T is a literal
4283/// type, or @p AllowIncompleteType is true and @p T is an incomplete type,
4284/// returns false. Otherwise, this routine issues the diagnostic @p PD (giving
4285/// it the type @p T), along with notes explaining why the type is not a
4286/// literal type, and returns true.
4287///
4288/// @param Loc  The location in the source that the non-literal type
4289/// diagnostic should refer to.
4290///
4291/// @param T  The type that this routine is examining for literalness.
4292///
4293/// @param Diagnoser Emits a diagnostic if T is not a literal type.
4294///
4295/// @returns @c true if @p T is not a literal type and a diagnostic was emitted,
4296/// @c false otherwise.
4297bool Sema::RequireLiteralType(SourceLocation Loc, QualType T,
4298                              TypeDiagnoser &Diagnoser) {
4299  assert(!T->isDependentType() && "type should not be dependent");
4300
4301  QualType ElemType = Context.getBaseElementType(T);
4302  RequireCompleteType(Loc, ElemType, 0);
4303
4304  if (T->isLiteralType())
4305    return false;
4306
4307  if (Diagnoser.Suppressed)
4308    return true;
4309
4310  Diagnoser.diagnose(*this, Loc, T);
4311
4312  if (T->isVariableArrayType())
4313    return true;
4314
4315  const RecordType *RT = ElemType->getAs<RecordType>();
4316  if (!RT)
4317    return true;
4318
4319  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
4320
4321  // A partially-defined class type can't be a literal type, because a literal
4322  // class type must have a trivial destructor (which can't be checked until
4323  // the class definition is complete).
4324  if (!RD->isCompleteDefinition()) {
4325    RequireCompleteType(Loc, ElemType, diag::note_non_literal_incomplete, T);
4326    return true;
4327  }
4328
4329  // If the class has virtual base classes, then it's not an aggregate, and
4330  // cannot have any constexpr constructors or a trivial default constructor,
4331  // so is non-literal. This is better to diagnose than the resulting absence
4332  // of constexpr constructors.
4333  if (RD->getNumVBases()) {
4334    Diag(RD->getLocation(), diag::note_non_literal_virtual_base)
4335      << RD->isStruct() << RD->getNumVBases();
4336    for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
4337           E = RD->vbases_end(); I != E; ++I)
4338      Diag(I->getLocStart(),
4339           diag::note_constexpr_virtual_base_here) << I->getSourceRange();
4340  } else if (!RD->isAggregate() && !RD->hasConstexprNonCopyMoveConstructor() &&
4341             !RD->hasTrivialDefaultConstructor()) {
4342    Diag(RD->getLocation(), diag::note_non_literal_no_constexpr_ctors) << RD;
4343  } else if (RD->hasNonLiteralTypeFieldsOrBases()) {
4344    for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
4345         E = RD->bases_end(); I != E; ++I) {
4346      if (!I->getType()->isLiteralType()) {
4347        Diag(I->getLocStart(),
4348             diag::note_non_literal_base_class)
4349          << RD << I->getType() << I->getSourceRange();
4350        return true;
4351      }
4352    }
4353    for (CXXRecordDecl::field_iterator I = RD->field_begin(),
4354         E = RD->field_end(); I != E; ++I) {
4355      if (!I->getType()->isLiteralType() ||
4356          I->getType().isVolatileQualified()) {
4357        Diag(I->getLocation(), diag::note_non_literal_field)
4358          << RD << &*I << I->getType()
4359          << I->getType().isVolatileQualified();
4360        return true;
4361      }
4362    }
4363  } else if (!RD->hasTrivialDestructor()) {
4364    // All fields and bases are of literal types, so have trivial destructors.
4365    // If this class's destructor is non-trivial it must be user-declared.
4366    CXXDestructorDecl *Dtor = RD->getDestructor();
4367    assert(Dtor && "class has literal fields and bases but no dtor?");
4368    if (!Dtor)
4369      return true;
4370
4371    Diag(Dtor->getLocation(), Dtor->isUserProvided() ?
4372         diag::note_non_literal_user_provided_dtor :
4373         diag::note_non_literal_nontrivial_dtor) << RD;
4374  }
4375
4376  return true;
4377}
4378
4379bool Sema::RequireLiteralType(SourceLocation Loc, QualType T, unsigned DiagID) {
4380  TypeDiagnoserDiag Diagnoser(DiagID);
4381  return RequireLiteralType(Loc, T, Diagnoser);
4382}
4383
4384/// \brief Retrieve a version of the type 'T' that is elaborated by Keyword
4385/// and qualified by the nested-name-specifier contained in SS.
4386QualType Sema::getElaboratedType(ElaboratedTypeKeyword Keyword,
4387                                 const CXXScopeSpec &SS, QualType T) {
4388  if (T.isNull())
4389    return T;
4390  NestedNameSpecifier *NNS;
4391  if (SS.isValid())
4392    NNS = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
4393  else {
4394    if (Keyword == ETK_None)
4395      return T;
4396    NNS = 0;
4397  }
4398  return Context.getElaboratedType(Keyword, NNS, T);
4399}
4400
4401QualType Sema::BuildTypeofExprType(Expr *E, SourceLocation Loc) {
4402  ExprResult ER = CheckPlaceholderExpr(E);
4403  if (ER.isInvalid()) return QualType();
4404  E = ER.take();
4405
4406  if (!E->isTypeDependent()) {
4407    QualType T = E->getType();
4408    if (const TagType *TT = T->getAs<TagType>())
4409      DiagnoseUseOfDecl(TT->getDecl(), E->getExprLoc());
4410  }
4411  return Context.getTypeOfExprType(E);
4412}
4413
4414/// getDecltypeForExpr - Given an expr, will return the decltype for
4415/// that expression, according to the rules in C++11
4416/// [dcl.type.simple]p4 and C++11 [expr.lambda.prim]p18.
4417static QualType getDecltypeForExpr(Sema &S, Expr *E) {
4418  if (E->isTypeDependent())
4419    return S.Context.DependentTy;
4420
4421  // C++11 [dcl.type.simple]p4:
4422  //   The type denoted by decltype(e) is defined as follows:
4423  //
4424  //     - if e is an unparenthesized id-expression or an unparenthesized class
4425  //       member access (5.2.5), decltype(e) is the type of the entity named
4426  //       by e. If there is no such entity, or if e names a set of overloaded
4427  //       functions, the program is ill-formed;
4428  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
4429    if (const ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl()))
4430      return VD->getType();
4431  }
4432  if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
4433    if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
4434      return FD->getType();
4435  }
4436
4437  // C++11 [expr.lambda.prim]p18:
4438  //   Every occurrence of decltype((x)) where x is a possibly
4439  //   parenthesized id-expression that names an entity of automatic
4440  //   storage duration is treated as if x were transformed into an
4441  //   access to a corresponding data member of the closure type that
4442  //   would have been declared if x were an odr-use of the denoted
4443  //   entity.
4444  using namespace sema;
4445  if (S.getCurLambda()) {
4446    if (isa<ParenExpr>(E)) {
4447      if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
4448        if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
4449          QualType T = S.getCapturedDeclRefType(Var, DRE->getLocation());
4450          if (!T.isNull())
4451            return S.Context.getLValueReferenceType(T);
4452        }
4453      }
4454    }
4455  }
4456
4457
4458  // C++11 [dcl.type.simple]p4:
4459  //   [...]
4460  QualType T = E->getType();
4461  switch (E->getValueKind()) {
4462  //     - otherwise, if e is an xvalue, decltype(e) is T&&, where T is the
4463  //       type of e;
4464  case VK_XValue: T = S.Context.getRValueReferenceType(T); break;
4465  //     - otherwise, if e is an lvalue, decltype(e) is T&, where T is the
4466  //       type of e;
4467  case VK_LValue: T = S.Context.getLValueReferenceType(T); break;
4468  //  - otherwise, decltype(e) is the type of e.
4469  case VK_RValue: break;
4470  }
4471
4472  return T;
4473}
4474
4475QualType Sema::BuildDecltypeType(Expr *E, SourceLocation Loc) {
4476  ExprResult ER = CheckPlaceholderExpr(E);
4477  if (ER.isInvalid()) return QualType();
4478  E = ER.take();
4479
4480  return Context.getDecltypeType(E, getDecltypeForExpr(*this, E));
4481}
4482
4483QualType Sema::BuildUnaryTransformType(QualType BaseType,
4484                                       UnaryTransformType::UTTKind UKind,
4485                                       SourceLocation Loc) {
4486  switch (UKind) {
4487  case UnaryTransformType::EnumUnderlyingType:
4488    if (!BaseType->isDependentType() && !BaseType->isEnumeralType()) {
4489      Diag(Loc, diag::err_only_enums_have_underlying_types);
4490      return QualType();
4491    } else {
4492      QualType Underlying = BaseType;
4493      if (!BaseType->isDependentType()) {
4494        EnumDecl *ED = BaseType->getAs<EnumType>()->getDecl();
4495        assert(ED && "EnumType has no EnumDecl");
4496        DiagnoseUseOfDecl(ED, Loc);
4497        Underlying = ED->getIntegerType();
4498      }
4499      assert(!Underlying.isNull());
4500      return Context.getUnaryTransformType(BaseType, Underlying,
4501                                        UnaryTransformType::EnumUnderlyingType);
4502    }
4503  }
4504  llvm_unreachable("unknown unary transform type");
4505}
4506
4507QualType Sema::BuildAtomicType(QualType T, SourceLocation Loc) {
4508  if (!T->isDependentType()) {
4509    // FIXME: It isn't entirely clear whether incomplete atomic types
4510    // are allowed or not; for simplicity, ban them for the moment.
4511    if (RequireCompleteType(Loc, T, diag::err_atomic_specifier_bad_type, 0))
4512      return QualType();
4513
4514    int DisallowedKind = -1;
4515    if (T->isArrayType())
4516      DisallowedKind = 1;
4517    else if (T->isFunctionType())
4518      DisallowedKind = 2;
4519    else if (T->isReferenceType())
4520      DisallowedKind = 3;
4521    else if (T->isAtomicType())
4522      DisallowedKind = 4;
4523    else if (T.hasQualifiers())
4524      DisallowedKind = 5;
4525    else if (!T.isTriviallyCopyableType(Context))
4526      // Some other non-trivially-copyable type (probably a C++ class)
4527      DisallowedKind = 6;
4528
4529    if (DisallowedKind != -1) {
4530      Diag(Loc, diag::err_atomic_specifier_bad_type) << DisallowedKind << T;
4531      return QualType();
4532    }
4533
4534    // FIXME: Do we need any handling for ARC here?
4535  }
4536
4537  // Build the pointer type.
4538  return Context.getAtomicType(T);
4539}
4540