SemaType.cpp revision f312b1ea179f1c44371f9ee0cd0bc006f612de11
1//===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements type-related semantic analysis.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Template.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/CXXInheritance.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/AST/TypeLoc.h"
21#include "clang/AST/TypeLocVisitor.h"
22#include "clang/AST/Expr.h"
23#include "clang/Basic/PartialDiagnostic.h"
24#include "clang/Basic/TargetInfo.h"
25#include "clang/Sema/DeclSpec.h"
26#include "llvm/ADT/SmallPtrSet.h"
27#include "llvm/Support/ErrorHandling.h"
28using namespace clang;
29
30/// \brief Perform adjustment on the parameter type of a function.
31///
32/// This routine adjusts the given parameter type @p T to the actual
33/// parameter type used by semantic analysis (C99 6.7.5.3p[7,8],
34/// C++ [dcl.fct]p3). The adjusted parameter type is returned.
35QualType Sema::adjustParameterType(QualType T) {
36  // C99 6.7.5.3p7:
37  //   A declaration of a parameter as "array of type" shall be
38  //   adjusted to "qualified pointer to type", where the type
39  //   qualifiers (if any) are those specified within the [ and ] of
40  //   the array type derivation.
41  if (T->isArrayType())
42    return Context.getArrayDecayedType(T);
43
44  // C99 6.7.5.3p8:
45  //   A declaration of a parameter as "function returning type"
46  //   shall be adjusted to "pointer to function returning type", as
47  //   in 6.3.2.1.
48  if (T->isFunctionType())
49    return Context.getPointerType(T);
50
51  return T;
52}
53
54
55
56/// isOmittedBlockReturnType - Return true if this declarator is missing a
57/// return type because this is a omitted return type on a block literal.
58static bool isOmittedBlockReturnType(const Declarator &D) {
59  if (D.getContext() != Declarator::BlockLiteralContext ||
60      D.getDeclSpec().hasTypeSpecifier())
61    return false;
62
63  if (D.getNumTypeObjects() == 0)
64    return true;   // ^{ ... }
65
66  if (D.getNumTypeObjects() == 1 &&
67      D.getTypeObject(0).Kind == DeclaratorChunk::Function)
68    return true;   // ^(int X, float Y) { ... }
69
70  return false;
71}
72
73typedef std::pair<const AttributeList*,QualType> DelayedAttribute;
74typedef llvm::SmallVectorImpl<DelayedAttribute> DelayedAttributeSet;
75
76static void ProcessTypeAttributeList(Sema &S, QualType &Type,
77                                     bool IsDeclSpec,
78                                     const AttributeList *Attrs,
79                                     DelayedAttributeSet &DelayedFnAttrs);
80static bool ProcessFnAttr(Sema &S, QualType &Type, const AttributeList &Attr);
81
82static void ProcessDelayedFnAttrs(Sema &S, QualType &Type,
83                                  DelayedAttributeSet &Attrs) {
84  for (DelayedAttributeSet::iterator I = Attrs.begin(),
85         E = Attrs.end(); I != E; ++I)
86    if (ProcessFnAttr(S, Type, *I->first)) {
87      S.Diag(I->first->getLoc(), diag::warn_function_attribute_wrong_type)
88        << I->first->getName() << I->second;
89      // Avoid any further processing of this attribute.
90      I->first->setInvalid();
91    }
92  Attrs.clear();
93}
94
95static void DiagnoseDelayedFnAttrs(Sema &S, DelayedAttributeSet &Attrs) {
96  for (DelayedAttributeSet::iterator I = Attrs.begin(),
97         E = Attrs.end(); I != E; ++I) {
98    S.Diag(I->first->getLoc(), diag::warn_function_attribute_wrong_type)
99      << I->first->getName() << I->second;
100    // Avoid any further processing of this attribute.
101    I->first->setInvalid();
102  }
103  Attrs.clear();
104}
105
106/// \brief Convert the specified declspec to the appropriate type
107/// object.
108/// \param D  the declarator containing the declaration specifier.
109/// \returns The type described by the declaration specifiers.  This function
110/// never returns null.
111static QualType ConvertDeclSpecToType(Sema &TheSema,
112                                      Declarator &TheDeclarator,
113                                      DelayedAttributeSet &Delayed) {
114  // FIXME: Should move the logic from DeclSpec::Finish to here for validity
115  // checking.
116  const DeclSpec &DS = TheDeclarator.getDeclSpec();
117  SourceLocation DeclLoc = TheDeclarator.getIdentifierLoc();
118  if (DeclLoc.isInvalid())
119    DeclLoc = DS.getSourceRange().getBegin();
120
121  ASTContext &Context = TheSema.Context;
122
123  QualType Result;
124  switch (DS.getTypeSpecType()) {
125  case DeclSpec::TST_void:
126    Result = Context.VoidTy;
127    break;
128  case DeclSpec::TST_char:
129    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
130      Result = Context.CharTy;
131    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed)
132      Result = Context.SignedCharTy;
133    else {
134      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
135             "Unknown TSS value");
136      Result = Context.UnsignedCharTy;
137    }
138    break;
139  case DeclSpec::TST_wchar:
140    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
141      Result = Context.WCharTy;
142    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed) {
143      TheSema.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
144        << DS.getSpecifierName(DS.getTypeSpecType());
145      Result = Context.getSignedWCharType();
146    } else {
147      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
148        "Unknown TSS value");
149      TheSema.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
150        << DS.getSpecifierName(DS.getTypeSpecType());
151      Result = Context.getUnsignedWCharType();
152    }
153    break;
154  case DeclSpec::TST_char16:
155      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
156        "Unknown TSS value");
157      Result = Context.Char16Ty;
158    break;
159  case DeclSpec::TST_char32:
160      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
161        "Unknown TSS value");
162      Result = Context.Char32Ty;
163    break;
164  case DeclSpec::TST_unspecified:
165    // "<proto1,proto2>" is an objc qualified ID with a missing id.
166    if (DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers()) {
167      Result = Context.getObjCObjectType(Context.ObjCBuiltinIdTy,
168                                         (ObjCProtocolDecl**)PQ,
169                                         DS.getNumProtocolQualifiers());
170      Result = Context.getObjCObjectPointerType(Result);
171      break;
172    }
173
174    // If this is a missing declspec in a block literal return context, then it
175    // is inferred from the return statements inside the block.
176    if (isOmittedBlockReturnType(TheDeclarator)) {
177      Result = Context.DependentTy;
178      break;
179    }
180
181    // Unspecified typespec defaults to int in C90.  However, the C90 grammar
182    // [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
183    // type-qualifier, or storage-class-specifier.  If not, emit an extwarn.
184    // Note that the one exception to this is function definitions, which are
185    // allowed to be completely missing a declspec.  This is handled in the
186    // parser already though by it pretending to have seen an 'int' in this
187    // case.
188    if (TheSema.getLangOptions().ImplicitInt) {
189      // In C89 mode, we only warn if there is a completely missing declspec
190      // when one is not allowed.
191      if (DS.isEmpty()) {
192        TheSema.Diag(DeclLoc, diag::ext_missing_declspec)
193          << DS.getSourceRange()
194        << FixItHint::CreateInsertion(DS.getSourceRange().getBegin(), "int");
195      }
196    } else if (!DS.hasTypeSpecifier()) {
197      // C99 and C++ require a type specifier.  For example, C99 6.7.2p2 says:
198      // "At least one type specifier shall be given in the declaration
199      // specifiers in each declaration, and in the specifier-qualifier list in
200      // each struct declaration and type name."
201      // FIXME: Does Microsoft really have the implicit int extension in C++?
202      if (TheSema.getLangOptions().CPlusPlus &&
203          !TheSema.getLangOptions().Microsoft) {
204        TheSema.Diag(DeclLoc, diag::err_missing_type_specifier)
205          << DS.getSourceRange();
206
207        // When this occurs in C++ code, often something is very broken with the
208        // value being declared, poison it as invalid so we don't get chains of
209        // errors.
210        TheDeclarator.setInvalidType(true);
211      } else {
212        TheSema.Diag(DeclLoc, diag::ext_missing_type_specifier)
213          << DS.getSourceRange();
214      }
215    }
216
217    // FALL THROUGH.
218  case DeclSpec::TST_int: {
219    if (DS.getTypeSpecSign() != DeclSpec::TSS_unsigned) {
220      switch (DS.getTypeSpecWidth()) {
221      case DeclSpec::TSW_unspecified: Result = Context.IntTy; break;
222      case DeclSpec::TSW_short:       Result = Context.ShortTy; break;
223      case DeclSpec::TSW_long:        Result = Context.LongTy; break;
224      case DeclSpec::TSW_longlong:
225        Result = Context.LongLongTy;
226
227        // long long is a C99 feature.
228        if (!TheSema.getLangOptions().C99 &&
229            !TheSema.getLangOptions().CPlusPlus0x)
230          TheSema.Diag(DS.getTypeSpecWidthLoc(), diag::ext_longlong);
231        break;
232      }
233    } else {
234      switch (DS.getTypeSpecWidth()) {
235      case DeclSpec::TSW_unspecified: Result = Context.UnsignedIntTy; break;
236      case DeclSpec::TSW_short:       Result = Context.UnsignedShortTy; break;
237      case DeclSpec::TSW_long:        Result = Context.UnsignedLongTy; break;
238      case DeclSpec::TSW_longlong:
239        Result = Context.UnsignedLongLongTy;
240
241        // long long is a C99 feature.
242        if (!TheSema.getLangOptions().C99 &&
243            !TheSema.getLangOptions().CPlusPlus0x)
244          TheSema.Diag(DS.getTypeSpecWidthLoc(), diag::ext_longlong);
245        break;
246      }
247    }
248    break;
249  }
250  case DeclSpec::TST_float: Result = Context.FloatTy; break;
251  case DeclSpec::TST_double:
252    if (DS.getTypeSpecWidth() == DeclSpec::TSW_long)
253      Result = Context.LongDoubleTy;
254    else
255      Result = Context.DoubleTy;
256    break;
257  case DeclSpec::TST_bool: Result = Context.BoolTy; break; // _Bool or bool
258  case DeclSpec::TST_decimal32:    // _Decimal32
259  case DeclSpec::TST_decimal64:    // _Decimal64
260  case DeclSpec::TST_decimal128:   // _Decimal128
261    TheSema.Diag(DS.getTypeSpecTypeLoc(), diag::err_decimal_unsupported);
262    Result = Context.IntTy;
263    TheDeclarator.setInvalidType(true);
264    break;
265  case DeclSpec::TST_class:
266  case DeclSpec::TST_enum:
267  case DeclSpec::TST_union:
268  case DeclSpec::TST_struct: {
269    TypeDecl *D = dyn_cast_or_null<TypeDecl>(DS.getRepAsDecl());
270    if (!D) {
271      // This can happen in C++ with ambiguous lookups.
272      Result = Context.IntTy;
273      TheDeclarator.setInvalidType(true);
274      break;
275    }
276
277    // If the type is deprecated or unavailable, diagnose it.
278    TheSema.DiagnoseUseOfDecl(D, DS.getTypeSpecTypeLoc());
279
280    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
281           DS.getTypeSpecSign() == 0 && "No qualifiers on tag names!");
282
283    // TypeQuals handled by caller.
284    Result = Context.getTypeDeclType(D);
285
286    // In C++, make an ElaboratedType.
287    if (TheSema.getLangOptions().CPlusPlus) {
288      ElaboratedTypeKeyword Keyword
289        = ElaboratedType::getKeywordForTypeSpec(DS.getTypeSpecType());
290      Result = TheSema.getElaboratedType(Keyword, DS.getTypeSpecScope(),
291                                         Result);
292    }
293    if (D->isInvalidDecl())
294      TheDeclarator.setInvalidType(true);
295    break;
296  }
297  case DeclSpec::TST_typename: {
298    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
299           DS.getTypeSpecSign() == 0 &&
300           "Can't handle qualifiers on typedef names yet!");
301    Result = TheSema.GetTypeFromParser(DS.getRepAsType());
302    if (Result.isNull())
303      TheDeclarator.setInvalidType(true);
304    else if (DeclSpec::ProtocolQualifierListTy PQ
305               = DS.getProtocolQualifiers()) {
306      if (const ObjCObjectType *ObjT = Result->getAs<ObjCObjectType>()) {
307        // Silently drop any existing protocol qualifiers.
308        // TODO: determine whether that's the right thing to do.
309        if (ObjT->getNumProtocols())
310          Result = ObjT->getBaseType();
311
312        if (DS.getNumProtocolQualifiers())
313          Result = Context.getObjCObjectType(Result,
314                                             (ObjCProtocolDecl**) PQ,
315                                             DS.getNumProtocolQualifiers());
316      } else if (Result->isObjCIdType()) {
317        // id<protocol-list>
318        Result = Context.getObjCObjectType(Context.ObjCBuiltinIdTy,
319                                           (ObjCProtocolDecl**) PQ,
320                                           DS.getNumProtocolQualifiers());
321        Result = Context.getObjCObjectPointerType(Result);
322      } else if (Result->isObjCClassType()) {
323        // Class<protocol-list>
324        Result = Context.getObjCObjectType(Context.ObjCBuiltinClassTy,
325                                           (ObjCProtocolDecl**) PQ,
326                                           DS.getNumProtocolQualifiers());
327        Result = Context.getObjCObjectPointerType(Result);
328      } else {
329        TheSema.Diag(DeclLoc, diag::err_invalid_protocol_qualifiers)
330          << DS.getSourceRange();
331        TheDeclarator.setInvalidType(true);
332      }
333    }
334
335    // TypeQuals handled by caller.
336    break;
337  }
338  case DeclSpec::TST_typeofType:
339    // FIXME: Preserve type source info.
340    Result = TheSema.GetTypeFromParser(DS.getRepAsType());
341    assert(!Result.isNull() && "Didn't get a type for typeof?");
342    // TypeQuals handled by caller.
343    Result = Context.getTypeOfType(Result);
344    break;
345  case DeclSpec::TST_typeofExpr: {
346    Expr *E = DS.getRepAsExpr();
347    assert(E && "Didn't get an expression for typeof?");
348    // TypeQuals handled by caller.
349    Result = TheSema.BuildTypeofExprType(E);
350    if (Result.isNull()) {
351      Result = Context.IntTy;
352      TheDeclarator.setInvalidType(true);
353    }
354    break;
355  }
356  case DeclSpec::TST_decltype: {
357    Expr *E = DS.getRepAsExpr();
358    assert(E && "Didn't get an expression for decltype?");
359    // TypeQuals handled by caller.
360    Result = TheSema.BuildDecltypeType(E);
361    if (Result.isNull()) {
362      Result = Context.IntTy;
363      TheDeclarator.setInvalidType(true);
364    }
365    break;
366  }
367  case DeclSpec::TST_auto: {
368    // TypeQuals handled by caller.
369    Result = Context.UndeducedAutoTy;
370    break;
371  }
372
373  case DeclSpec::TST_error:
374    Result = Context.IntTy;
375    TheDeclarator.setInvalidType(true);
376    break;
377  }
378
379  // Handle complex types.
380  if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex) {
381    if (TheSema.getLangOptions().Freestanding)
382      TheSema.Diag(DS.getTypeSpecComplexLoc(), diag::ext_freestanding_complex);
383    Result = Context.getComplexType(Result);
384  } else if (DS.isTypeAltiVecVector()) {
385    unsigned typeSize = static_cast<unsigned>(Context.getTypeSize(Result));
386    assert(typeSize > 0 && "type size for vector must be greater than 0 bits");
387    VectorType::AltiVecSpecific AltiVecSpec = VectorType::AltiVec;
388    if (DS.isTypeAltiVecPixel())
389      AltiVecSpec = VectorType::Pixel;
390    else if (DS.isTypeAltiVecBool())
391      AltiVecSpec = VectorType::Bool;
392    Result = Context.getVectorType(Result, 128/typeSize, AltiVecSpec);
393  }
394
395  assert(DS.getTypeSpecComplex() != DeclSpec::TSC_imaginary &&
396         "FIXME: imaginary types not supported yet!");
397
398  // See if there are any attributes on the declspec that apply to the type (as
399  // opposed to the decl).
400  if (const AttributeList *AL = DS.getAttributes())
401    ProcessTypeAttributeList(TheSema, Result, true, AL, Delayed);
402
403  // Apply const/volatile/restrict qualifiers to T.
404  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
405
406    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
407    // or incomplete types shall not be restrict-qualified."  C++ also allows
408    // restrict-qualified references.
409    if (TypeQuals & DeclSpec::TQ_restrict) {
410      if (Result->isAnyPointerType() || Result->isReferenceType()) {
411        QualType EltTy;
412        if (Result->isObjCObjectPointerType())
413          EltTy = Result;
414        else
415          EltTy = Result->isPointerType() ?
416                    Result->getAs<PointerType>()->getPointeeType() :
417                    Result->getAs<ReferenceType>()->getPointeeType();
418
419        // If we have a pointer or reference, the pointee must have an object
420        // incomplete type.
421        if (!EltTy->isIncompleteOrObjectType()) {
422          TheSema.Diag(DS.getRestrictSpecLoc(),
423               diag::err_typecheck_invalid_restrict_invalid_pointee)
424            << EltTy << DS.getSourceRange();
425          TypeQuals &= ~DeclSpec::TQ_restrict; // Remove the restrict qualifier.
426        }
427      } else {
428        TheSema.Diag(DS.getRestrictSpecLoc(),
429             diag::err_typecheck_invalid_restrict_not_pointer)
430          << Result << DS.getSourceRange();
431        TypeQuals &= ~DeclSpec::TQ_restrict; // Remove the restrict qualifier.
432      }
433    }
434
435    // Warn about CV qualifiers on functions: C99 6.7.3p8: "If the specification
436    // of a function type includes any type qualifiers, the behavior is
437    // undefined."
438    if (Result->isFunctionType() && TypeQuals) {
439      // Get some location to point at, either the C or V location.
440      SourceLocation Loc;
441      if (TypeQuals & DeclSpec::TQ_const)
442        Loc = DS.getConstSpecLoc();
443      else if (TypeQuals & DeclSpec::TQ_volatile)
444        Loc = DS.getVolatileSpecLoc();
445      else {
446        assert((TypeQuals & DeclSpec::TQ_restrict) &&
447               "Has CVR quals but not C, V, or R?");
448        Loc = DS.getRestrictSpecLoc();
449      }
450      TheSema.Diag(Loc, diag::warn_typecheck_function_qualifiers)
451        << Result << DS.getSourceRange();
452    }
453
454    // C++ [dcl.ref]p1:
455    //   Cv-qualified references are ill-formed except when the
456    //   cv-qualifiers are introduced through the use of a typedef
457    //   (7.1.3) or of a template type argument (14.3), in which
458    //   case the cv-qualifiers are ignored.
459    // FIXME: Shouldn't we be checking SCS_typedef here?
460    if (DS.getTypeSpecType() == DeclSpec::TST_typename &&
461        TypeQuals && Result->isReferenceType()) {
462      TypeQuals &= ~DeclSpec::TQ_const;
463      TypeQuals &= ~DeclSpec::TQ_volatile;
464    }
465
466    Qualifiers Quals = Qualifiers::fromCVRMask(TypeQuals);
467    Result = Context.getQualifiedType(Result, Quals);
468  }
469
470  return Result;
471}
472
473static std::string getPrintableNameForEntity(DeclarationName Entity) {
474  if (Entity)
475    return Entity.getAsString();
476
477  return "type name";
478}
479
480QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
481                                  Qualifiers Qs) {
482  // Enforce C99 6.7.3p2: "Types other than pointer types derived from
483  // object or incomplete types shall not be restrict-qualified."
484  if (Qs.hasRestrict()) {
485    unsigned DiagID = 0;
486    QualType ProblemTy;
487
488    const Type *Ty = T->getCanonicalTypeInternal().getTypePtr();
489    if (const ReferenceType *RTy = dyn_cast<ReferenceType>(Ty)) {
490      if (!RTy->getPointeeType()->isIncompleteOrObjectType()) {
491        DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
492        ProblemTy = T->getAs<ReferenceType>()->getPointeeType();
493      }
494    } else if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
495      if (!PTy->getPointeeType()->isIncompleteOrObjectType()) {
496        DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
497        ProblemTy = T->getAs<PointerType>()->getPointeeType();
498      }
499    } else if (const MemberPointerType *PTy = dyn_cast<MemberPointerType>(Ty)) {
500      if (!PTy->getPointeeType()->isIncompleteOrObjectType()) {
501        DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
502        ProblemTy = T->getAs<PointerType>()->getPointeeType();
503      }
504    } else if (!Ty->isDependentType()) {
505      // FIXME: this deserves a proper diagnostic
506      DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
507      ProblemTy = T;
508    }
509
510    if (DiagID) {
511      Diag(Loc, DiagID) << ProblemTy;
512      Qs.removeRestrict();
513    }
514  }
515
516  return Context.getQualifiedType(T, Qs);
517}
518
519/// \brief Build a pointer type.
520///
521/// \param T The type to which we'll be building a pointer.
522///
523/// \param Loc The location of the entity whose type involves this
524/// pointer type or, if there is no such entity, the location of the
525/// type that will have pointer type.
526///
527/// \param Entity The name of the entity that involves the pointer
528/// type, if known.
529///
530/// \returns A suitable pointer type, if there are no
531/// errors. Otherwise, returns a NULL type.
532QualType Sema::BuildPointerType(QualType T,
533                                SourceLocation Loc, DeclarationName Entity) {
534  if (T->isReferenceType()) {
535    // C++ 8.3.2p4: There shall be no ... pointers to references ...
536    Diag(Loc, diag::err_illegal_decl_pointer_to_reference)
537      << getPrintableNameForEntity(Entity) << T;
538    return QualType();
539  }
540
541  assert(!T->isObjCObjectType() && "Should build ObjCObjectPointerType");
542
543  // Build the pointer type.
544  return Context.getPointerType(T);
545}
546
547/// \brief Build a reference type.
548///
549/// \param T The type to which we'll be building a reference.
550///
551/// \param Loc The location of the entity whose type involves this
552/// reference type or, if there is no such entity, the location of the
553/// type that will have reference type.
554///
555/// \param Entity The name of the entity that involves the reference
556/// type, if known.
557///
558/// \returns A suitable reference type, if there are no
559/// errors. Otherwise, returns a NULL type.
560QualType Sema::BuildReferenceType(QualType T, bool SpelledAsLValue,
561                                  SourceLocation Loc,
562                                  DeclarationName Entity) {
563  bool LValueRef = SpelledAsLValue || T->getAs<LValueReferenceType>();
564
565  // C++0x [dcl.typedef]p9: If a typedef TD names a type that is a
566  //   reference to a type T, and attempt to create the type "lvalue
567  //   reference to cv TD" creates the type "lvalue reference to T".
568  // We use the qualifiers (restrict or none) of the original reference,
569  // not the new ones. This is consistent with GCC.
570
571  // C++ [dcl.ref]p4: There shall be no references to references.
572  //
573  // According to C++ DR 106, references to references are only
574  // diagnosed when they are written directly (e.g., "int & &"),
575  // but not when they happen via a typedef:
576  //
577  //   typedef int& intref;
578  //   typedef intref& intref2;
579  //
580  // Parser::ParseDeclaratorInternal diagnoses the case where
581  // references are written directly; here, we handle the
582  // collapsing of references-to-references as described in C++
583  // DR 106 and amended by C++ DR 540.
584
585  // C++ [dcl.ref]p1:
586  //   A declarator that specifies the type "reference to cv void"
587  //   is ill-formed.
588  if (T->isVoidType()) {
589    Diag(Loc, diag::err_reference_to_void);
590    return QualType();
591  }
592
593  // Handle restrict on references.
594  if (LValueRef)
595    return Context.getLValueReferenceType(T, SpelledAsLValue);
596  return Context.getRValueReferenceType(T);
597}
598
599/// \brief Build an array type.
600///
601/// \param T The type of each element in the array.
602///
603/// \param ASM C99 array size modifier (e.g., '*', 'static').
604///
605/// \param ArraySize Expression describing the size of the array.
606///
607/// \param Loc The location of the entity whose type involves this
608/// array type or, if there is no such entity, the location of the
609/// type that will have array type.
610///
611/// \param Entity The name of the entity that involves the array
612/// type, if known.
613///
614/// \returns A suitable array type, if there are no errors. Otherwise,
615/// returns a NULL type.
616QualType Sema::BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM,
617                              Expr *ArraySize, unsigned Quals,
618                              SourceRange Brackets, DeclarationName Entity) {
619
620  SourceLocation Loc = Brackets.getBegin();
621  if (getLangOptions().CPlusPlus) {
622    // C++ [dcl.array]p1:
623    //   T is called the array element type; this type shall not be a reference
624    //   type, the (possibly cv-qualified) type void, a function type or an
625    //   abstract class type.
626    //
627    // Note: function types are handled in the common path with C.
628    if (T->isReferenceType()) {
629      Diag(Loc, diag::err_illegal_decl_array_of_references)
630      << getPrintableNameForEntity(Entity) << T;
631      return QualType();
632    }
633
634    if (T->isVoidType()) {
635      Diag(Loc, diag::err_illegal_decl_array_incomplete_type) << T;
636      return QualType();
637    }
638
639    if (RequireNonAbstractType(Brackets.getBegin(), T,
640                               diag::err_array_of_abstract_type))
641      return QualType();
642
643  } else {
644    // C99 6.7.5.2p1: If the element type is an incomplete or function type,
645    // reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
646    if (RequireCompleteType(Loc, T,
647                            diag::err_illegal_decl_array_incomplete_type))
648      return QualType();
649  }
650
651  if (T->isFunctionType()) {
652    Diag(Loc, diag::err_illegal_decl_array_of_functions)
653      << getPrintableNameForEntity(Entity) << T;
654    return QualType();
655  }
656
657  if (Context.getCanonicalType(T) == Context.UndeducedAutoTy) {
658    Diag(Loc,  diag::err_illegal_decl_array_of_auto)
659      << getPrintableNameForEntity(Entity);
660    return QualType();
661  }
662
663  if (const RecordType *EltTy = T->getAs<RecordType>()) {
664    // If the element type is a struct or union that contains a variadic
665    // array, accept it as a GNU extension: C99 6.7.2.1p2.
666    if (EltTy->getDecl()->hasFlexibleArrayMember())
667      Diag(Loc, diag::ext_flexible_array_in_array) << T;
668  } else if (T->isObjCObjectType()) {
669    Diag(Loc, diag::err_objc_array_of_interfaces) << T;
670    return QualType();
671  }
672
673  // C99 6.7.5.2p1: The size expression shall have integer type.
674  if (ArraySize && !ArraySize->isTypeDependent() &&
675      !ArraySize->getType()->isIntegerType()) {
676    Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
677      << ArraySize->getType() << ArraySize->getSourceRange();
678    return QualType();
679  }
680  llvm::APSInt ConstVal(Context.getTypeSize(Context.getSizeType()));
681  if (!ArraySize) {
682    if (ASM == ArrayType::Star)
683      T = Context.getVariableArrayType(T, 0, ASM, Quals, Brackets);
684    else
685      T = Context.getIncompleteArrayType(T, ASM, Quals);
686  } else if (ArraySize->isTypeDependent() || ArraySize->isValueDependent()) {
687    T = Context.getDependentSizedArrayType(T, ArraySize, ASM, Quals, Brackets);
688  } else if (!ArraySize->isIntegerConstantExpr(ConstVal, Context) ||
689             (!T->isDependentType() && !T->isIncompleteType() &&
690              !T->isConstantSizeType())) {
691    // Per C99, a variable array is an array with either a non-constant
692    // size or an element type that has a non-constant-size
693    T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
694  } else {
695    // C99 6.7.5.2p1: If the expression is a constant expression, it shall
696    // have a value greater than zero.
697    if (ConstVal.isSigned() && ConstVal.isNegative()) {
698      Diag(ArraySize->getLocStart(),
699           diag::err_typecheck_negative_array_size)
700        << ArraySize->getSourceRange();
701      return QualType();
702    }
703    if (ConstVal == 0) {
704      // GCC accepts zero sized static arrays. We allow them when
705      // we're not in a SFINAE context.
706      Diag(ArraySize->getLocStart(),
707           isSFINAEContext()? diag::err_typecheck_zero_array_size
708                            : diag::ext_typecheck_zero_array_size)
709        << ArraySize->getSourceRange();
710    } else if (!T->isDependentType() && !T->isVariablyModifiedType() &&
711               !T->isIncompleteType()) {
712      // Is the array too large?
713      unsigned ActiveSizeBits
714        = ConstantArrayType::getNumAddressingBits(Context, T, ConstVal);
715      if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context))
716        Diag(ArraySize->getLocStart(), diag::err_array_too_large)
717          << ConstVal.toString(10)
718          << ArraySize->getSourceRange();
719    }
720
721    T = Context.getConstantArrayType(T, ConstVal, ASM, Quals);
722  }
723  // If this is not C99, extwarn about VLA's and C99 array size modifiers.
724  if (!getLangOptions().C99) {
725    if (T->isVariableArrayType()) {
726      // Prohibit the use of non-POD types in VLAs.
727      if (!T->isDependentType() &&
728          !Context.getBaseElementType(T)->isPODType()) {
729        Diag(Loc, diag::err_vla_non_pod)
730          << Context.getBaseElementType(T);
731        return QualType();
732      }
733      // Prohibit the use of VLAs during template argument deduction.
734      else if (isSFINAEContext()) {
735        Diag(Loc, diag::err_vla_in_sfinae);
736        return QualType();
737      }
738      // Just extwarn about VLAs.
739      else
740        Diag(Loc, diag::ext_vla);
741    } else if (ASM != ArrayType::Normal || Quals != 0)
742      Diag(Loc,
743           getLangOptions().CPlusPlus? diag::err_c99_array_usage_cxx
744                                     : diag::ext_c99_array_usage);
745  }
746
747  return T;
748}
749
750/// \brief Build an ext-vector type.
751///
752/// Run the required checks for the extended vector type.
753QualType Sema::BuildExtVectorType(QualType T, Expr *ArraySize,
754                                  SourceLocation AttrLoc) {
755  // unlike gcc's vector_size attribute, we do not allow vectors to be defined
756  // in conjunction with complex types (pointers, arrays, functions, etc.).
757  if (!T->isDependentType() &&
758      !T->isIntegerType() && !T->isRealFloatingType()) {
759    Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << T;
760    return QualType();
761  }
762
763  if (!ArraySize->isTypeDependent() && !ArraySize->isValueDependent()) {
764    llvm::APSInt vecSize(32);
765    if (!ArraySize->isIntegerConstantExpr(vecSize, Context)) {
766      Diag(AttrLoc, diag::err_attribute_argument_not_int)
767        << "ext_vector_type" << ArraySize->getSourceRange();
768      return QualType();
769    }
770
771    // unlike gcc's vector_size attribute, the size is specified as the
772    // number of elements, not the number of bytes.
773    unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue());
774
775    if (vectorSize == 0) {
776      Diag(AttrLoc, diag::err_attribute_zero_size)
777      << ArraySize->getSourceRange();
778      return QualType();
779    }
780
781    if (!T->isDependentType())
782      return Context.getExtVectorType(T, vectorSize);
783  }
784
785  return Context.getDependentSizedExtVectorType(T, ArraySize, AttrLoc);
786}
787
788/// \brief Build a function type.
789///
790/// This routine checks the function type according to C++ rules and
791/// under the assumption that the result type and parameter types have
792/// just been instantiated from a template. It therefore duplicates
793/// some of the behavior of GetTypeForDeclarator, but in a much
794/// simpler form that is only suitable for this narrow use case.
795///
796/// \param T The return type of the function.
797///
798/// \param ParamTypes The parameter types of the function. This array
799/// will be modified to account for adjustments to the types of the
800/// function parameters.
801///
802/// \param NumParamTypes The number of parameter types in ParamTypes.
803///
804/// \param Variadic Whether this is a variadic function type.
805///
806/// \param Quals The cvr-qualifiers to be applied to the function type.
807///
808/// \param Loc The location of the entity whose type involves this
809/// function type or, if there is no such entity, the location of the
810/// type that will have function type.
811///
812/// \param Entity The name of the entity that involves the function
813/// type, if known.
814///
815/// \returns A suitable function type, if there are no
816/// errors. Otherwise, returns a NULL type.
817QualType Sema::BuildFunctionType(QualType T,
818                                 QualType *ParamTypes,
819                                 unsigned NumParamTypes,
820                                 bool Variadic, unsigned Quals,
821                                 SourceLocation Loc, DeclarationName Entity,
822                                 const FunctionType::ExtInfo &Info) {
823  if (T->isArrayType() || T->isFunctionType()) {
824    Diag(Loc, diag::err_func_returning_array_function)
825      << T->isFunctionType() << T;
826    return QualType();
827  }
828
829  bool Invalid = false;
830  for (unsigned Idx = 0; Idx < NumParamTypes; ++Idx) {
831    QualType ParamType = adjustParameterType(ParamTypes[Idx]);
832    if (ParamType->isVoidType()) {
833      Diag(Loc, diag::err_param_with_void_type);
834      Invalid = true;
835    }
836
837    ParamTypes[Idx] = ParamType;
838  }
839
840  if (Invalid)
841    return QualType();
842
843  return Context.getFunctionType(T, ParamTypes, NumParamTypes, Variadic,
844                                 Quals, false, false, 0, 0, Info);
845}
846
847/// \brief Build a member pointer type \c T Class::*.
848///
849/// \param T the type to which the member pointer refers.
850/// \param Class the class type into which the member pointer points.
851/// \param CVR Qualifiers applied to the member pointer type
852/// \param Loc the location where this type begins
853/// \param Entity the name of the entity that will have this member pointer type
854///
855/// \returns a member pointer type, if successful, or a NULL type if there was
856/// an error.
857QualType Sema::BuildMemberPointerType(QualType T, QualType Class,
858                                      SourceLocation Loc,
859                                      DeclarationName Entity) {
860  // Verify that we're not building a pointer to pointer to function with
861  // exception specification.
862  if (CheckDistantExceptionSpec(T)) {
863    Diag(Loc, diag::err_distant_exception_spec);
864
865    // FIXME: If we're doing this as part of template instantiation,
866    // we should return immediately.
867
868    // Build the type anyway, but use the canonical type so that the
869    // exception specifiers are stripped off.
870    T = Context.getCanonicalType(T);
871  }
872
873  // C++ 8.3.3p3: A pointer to member shall not point to ... a member
874  //   with reference type, or "cv void."
875  if (T->isReferenceType()) {
876    Diag(Loc, diag::err_illegal_decl_mempointer_to_reference)
877      << (Entity? Entity.getAsString() : "type name") << T;
878    return QualType();
879  }
880
881  if (T->isVoidType()) {
882    Diag(Loc, diag::err_illegal_decl_mempointer_to_void)
883      << (Entity? Entity.getAsString() : "type name");
884    return QualType();
885  }
886
887  if (!Class->isDependentType() && !Class->isRecordType()) {
888    Diag(Loc, diag::err_mempointer_in_nonclass_type) << Class;
889    return QualType();
890  }
891
892  // In the Microsoft ABI, the class is allowed to be an incomplete
893  // type. In such cases, the compiler makes a worst-case assumption.
894  // We make no such assumption right now, so emit an error if the
895  // class isn't a complete type.
896  if (Context.Target.getCXXABI() == CXXABI_Microsoft &&
897      RequireCompleteType(Loc, Class, diag::err_incomplete_type))
898    return QualType();
899
900  return Context.getMemberPointerType(T, Class.getTypePtr());
901}
902
903/// \brief Build a block pointer type.
904///
905/// \param T The type to which we'll be building a block pointer.
906///
907/// \param CVR The cvr-qualifiers to be applied to the block pointer type.
908///
909/// \param Loc The location of the entity whose type involves this
910/// block pointer type or, if there is no such entity, the location of the
911/// type that will have block pointer type.
912///
913/// \param Entity The name of the entity that involves the block pointer
914/// type, if known.
915///
916/// \returns A suitable block pointer type, if there are no
917/// errors. Otherwise, returns a NULL type.
918QualType Sema::BuildBlockPointerType(QualType T,
919                                     SourceLocation Loc,
920                                     DeclarationName Entity) {
921  if (!T->isFunctionType()) {
922    Diag(Loc, diag::err_nonfunction_block_type);
923    return QualType();
924  }
925
926  return Context.getBlockPointerType(T);
927}
928
929QualType Sema::GetTypeFromParser(ParsedType Ty, TypeSourceInfo **TInfo) {
930  QualType QT = Ty.get();
931  if (QT.isNull()) {
932    if (TInfo) *TInfo = 0;
933    return QualType();
934  }
935
936  TypeSourceInfo *DI = 0;
937  if (LocInfoType *LIT = dyn_cast<LocInfoType>(QT)) {
938    QT = LIT->getType();
939    DI = LIT->getTypeSourceInfo();
940  }
941
942  if (TInfo) *TInfo = DI;
943  return QT;
944}
945
946/// GetTypeForDeclarator - Convert the type for the specified
947/// declarator to Type instances.
948///
949/// If OwnedDecl is non-NULL, and this declarator's decl-specifier-seq
950/// owns the declaration of a type (e.g., the definition of a struct
951/// type), then *OwnedDecl will receive the owned declaration.
952///
953/// The result of this call will never be null, but the associated
954/// type may be a null type if there's an unrecoverable error.
955TypeSourceInfo *Sema::GetTypeForDeclarator(Declarator &D, Scope *S,
956                                           TagDecl **OwnedDecl) {
957  // Determine the type of the declarator. Not all forms of declarator
958  // have a type.
959  QualType T;
960  TypeSourceInfo *ReturnTypeInfo = 0;
961
962  llvm::SmallVector<DelayedAttribute,4> FnAttrsFromDeclSpec;
963
964  switch (D.getName().getKind()) {
965  case UnqualifiedId::IK_Identifier:
966  case UnqualifiedId::IK_OperatorFunctionId:
967  case UnqualifiedId::IK_LiteralOperatorId:
968  case UnqualifiedId::IK_TemplateId:
969    T = ConvertDeclSpecToType(*this, D, FnAttrsFromDeclSpec);
970
971    if (!D.isInvalidType() && D.getDeclSpec().isTypeSpecOwned()) {
972      TagDecl* Owned = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
973      // Owned is embedded if it was defined here, or if it is the
974      // very first (i.e., canonical) declaration of this tag type.
975      Owned->setEmbeddedInDeclarator(Owned->isDefinition() ||
976                                     Owned->isCanonicalDecl());
977      if (OwnedDecl) *OwnedDecl = Owned;
978    }
979    break;
980
981  case UnqualifiedId::IK_ConstructorName:
982  case UnqualifiedId::IK_ConstructorTemplateId:
983  case UnqualifiedId::IK_DestructorName:
984    // Constructors and destructors don't have return types. Use
985    // "void" instead.
986    T = Context.VoidTy;
987    break;
988
989  case UnqualifiedId::IK_ConversionFunctionId:
990    // The result type of a conversion function is the type that it
991    // converts to.
992    T = GetTypeFromParser(D.getName().ConversionFunctionId,
993                          &ReturnTypeInfo);
994    break;
995  }
996
997  if (T.isNull())
998    return Context.getNullTypeSourceInfo();
999
1000  if (T == Context.UndeducedAutoTy) {
1001    int Error = -1;
1002
1003    switch (D.getContext()) {
1004    case Declarator::KNRTypeListContext:
1005      assert(0 && "K&R type lists aren't allowed in C++");
1006      break;
1007    case Declarator::PrototypeContext:
1008      Error = 0; // Function prototype
1009      break;
1010    case Declarator::MemberContext:
1011      switch (cast<TagDecl>(CurContext)->getTagKind()) {
1012      case TTK_Enum: assert(0 && "unhandled tag kind"); break;
1013      case TTK_Struct: Error = 1; /* Struct member */ break;
1014      case TTK_Union:  Error = 2; /* Union member */ break;
1015      case TTK_Class:  Error = 3; /* Class member */ break;
1016      }
1017      break;
1018    case Declarator::CXXCatchContext:
1019      Error = 4; // Exception declaration
1020      break;
1021    case Declarator::TemplateParamContext:
1022      Error = 5; // Template parameter
1023      break;
1024    case Declarator::BlockLiteralContext:
1025      Error = 6;  // Block literal
1026      break;
1027    case Declarator::FileContext:
1028    case Declarator::BlockContext:
1029    case Declarator::ForContext:
1030    case Declarator::ConditionContext:
1031    case Declarator::TypeNameContext:
1032      break;
1033    }
1034
1035    if (Error != -1) {
1036      Diag(D.getDeclSpec().getTypeSpecTypeLoc(), diag::err_auto_not_allowed)
1037        << Error;
1038      T = Context.IntTy;
1039      D.setInvalidType(true);
1040    }
1041  }
1042
1043  // The name we're declaring, if any.
1044  DeclarationName Name;
1045  if (D.getIdentifier())
1046    Name = D.getIdentifier();
1047
1048  llvm::SmallVector<DelayedAttribute,4> FnAttrsFromPreviousChunk;
1049
1050  // Walk the DeclTypeInfo, building the recursive type as we go.
1051  // DeclTypeInfos are ordered from the identifier out, which is
1052  // opposite of what we want :).
1053  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
1054    DeclaratorChunk &DeclType = D.getTypeObject(e-i-1);
1055    switch (DeclType.Kind) {
1056    default: assert(0 && "Unknown decltype!");
1057    case DeclaratorChunk::BlockPointer:
1058      // If blocks are disabled, emit an error.
1059      if (!LangOpts.Blocks)
1060        Diag(DeclType.Loc, diag::err_blocks_disable);
1061
1062      T = BuildBlockPointerType(T, D.getIdentifierLoc(), Name);
1063      if (DeclType.Cls.TypeQuals)
1064        T = BuildQualifiedType(T, DeclType.Loc, DeclType.Cls.TypeQuals);
1065      break;
1066    case DeclaratorChunk::Pointer:
1067      // Verify that we're not building a pointer to pointer to function with
1068      // exception specification.
1069      if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) {
1070        Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
1071        D.setInvalidType(true);
1072        // Build the type anyway.
1073      }
1074      if (getLangOptions().ObjC1 && T->getAs<ObjCObjectType>()) {
1075        T = Context.getObjCObjectPointerType(T);
1076        if (DeclType.Ptr.TypeQuals)
1077          T = BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
1078        break;
1079      }
1080      T = BuildPointerType(T, DeclType.Loc, Name);
1081      if (DeclType.Ptr.TypeQuals)
1082        T = BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
1083      break;
1084    case DeclaratorChunk::Reference: {
1085      // Verify that we're not building a reference to pointer to function with
1086      // exception specification.
1087      if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) {
1088        Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
1089        D.setInvalidType(true);
1090        // Build the type anyway.
1091      }
1092      T = BuildReferenceType(T, DeclType.Ref.LValueRef, DeclType.Loc, Name);
1093
1094      Qualifiers Quals;
1095      if (DeclType.Ref.HasRestrict)
1096        T = BuildQualifiedType(T, DeclType.Loc, Qualifiers::Restrict);
1097      break;
1098    }
1099    case DeclaratorChunk::Array: {
1100      // Verify that we're not building an array of pointers to function with
1101      // exception specification.
1102      if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) {
1103        Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
1104        D.setInvalidType(true);
1105        // Build the type anyway.
1106      }
1107      DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
1108      Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
1109      ArrayType::ArraySizeModifier ASM;
1110      if (ATI.isStar)
1111        ASM = ArrayType::Star;
1112      else if (ATI.hasStatic)
1113        ASM = ArrayType::Static;
1114      else
1115        ASM = ArrayType::Normal;
1116      if (ASM == ArrayType::Star &&
1117          D.getContext() != Declarator::PrototypeContext) {
1118        // FIXME: This check isn't quite right: it allows star in prototypes
1119        // for function definitions, and disallows some edge cases detailed
1120        // in http://gcc.gnu.org/ml/gcc-patches/2009-02/msg00133.html
1121        Diag(DeclType.Loc, diag::err_array_star_outside_prototype);
1122        ASM = ArrayType::Normal;
1123        D.setInvalidType(true);
1124      }
1125      T = BuildArrayType(T, ASM, ArraySize,
1126                         Qualifiers::fromCVRMask(ATI.TypeQuals),
1127                         SourceRange(DeclType.Loc, DeclType.EndLoc), Name);
1128      break;
1129    }
1130    case DeclaratorChunk::Function: {
1131      // If the function declarator has a prototype (i.e. it is not () and
1132      // does not have a K&R-style identifier list), then the arguments are part
1133      // of the type, otherwise the argument list is ().
1134      const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
1135
1136      // C99 6.7.5.3p1: The return type may not be a function or array type.
1137      // For conversion functions, we'll diagnose this particular error later.
1138      if ((T->isArrayType() || T->isFunctionType()) &&
1139          (D.getName().getKind() != UnqualifiedId::IK_ConversionFunctionId)) {
1140        Diag(DeclType.Loc, diag::err_func_returning_array_function)
1141          << T->isFunctionType() << T;
1142        T = Context.IntTy;
1143        D.setInvalidType(true);
1144      }
1145
1146      // cv-qualifiers on return types are pointless except when the type is a
1147      // class type in C++.
1148      if (T.getCVRQualifiers() && D.getDeclSpec().getTypeQualifiers() &&
1149          (!getLangOptions().CPlusPlus ||
1150           (!T->isDependentType() && !T->isRecordType()))) {
1151        unsigned Quals = D.getDeclSpec().getTypeQualifiers();
1152        std::string QualStr;
1153        unsigned NumQuals = 0;
1154        SourceLocation Loc;
1155        if (Quals & Qualifiers::Const) {
1156          Loc = D.getDeclSpec().getConstSpecLoc();
1157          ++NumQuals;
1158          QualStr = "const";
1159        }
1160        if (Quals & Qualifiers::Volatile) {
1161          if (NumQuals == 0) {
1162            Loc = D.getDeclSpec().getVolatileSpecLoc();
1163            QualStr = "volatile";
1164          } else
1165            QualStr += " volatile";
1166          ++NumQuals;
1167        }
1168        if (Quals & Qualifiers::Restrict) {
1169          if (NumQuals == 0) {
1170            Loc = D.getDeclSpec().getRestrictSpecLoc();
1171            QualStr = "restrict";
1172          } else
1173            QualStr += " restrict";
1174          ++NumQuals;
1175        }
1176        assert(NumQuals > 0 && "No known qualifiers?");
1177
1178        SemaDiagnosticBuilder DB = Diag(Loc, diag::warn_qual_return_type);
1179        DB << QualStr << NumQuals;
1180        if (Quals & Qualifiers::Const)
1181          DB << FixItHint::CreateRemoval(D.getDeclSpec().getConstSpecLoc());
1182        if (Quals & Qualifiers::Volatile)
1183          DB << FixItHint::CreateRemoval(D.getDeclSpec().getVolatileSpecLoc());
1184        if (Quals & Qualifiers::Restrict)
1185          DB << FixItHint::CreateRemoval(D.getDeclSpec().getRestrictSpecLoc());
1186      }
1187
1188      if (getLangOptions().CPlusPlus && D.getDeclSpec().isTypeSpecOwned()) {
1189        // C++ [dcl.fct]p6:
1190        //   Types shall not be defined in return or parameter types.
1191        TagDecl *Tag = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
1192        if (Tag->isDefinition())
1193          Diag(Tag->getLocation(), diag::err_type_defined_in_result_type)
1194            << Context.getTypeDeclType(Tag);
1195      }
1196
1197      // Exception specs are not allowed in typedefs. Complain, but add it
1198      // anyway.
1199      if (FTI.hasExceptionSpec &&
1200          D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1201        Diag(FTI.getThrowLoc(), diag::err_exception_spec_in_typedef);
1202
1203      if (!FTI.NumArgs && !FTI.isVariadic && !getLangOptions().CPlusPlus) {
1204        // Simple void foo(), where the incoming T is the result type.
1205        T = Context.getFunctionNoProtoType(T);
1206      } else {
1207        // We allow a zero-parameter variadic function in C if the
1208        // function is marked with the "overloadable" attribute. Scan
1209        // for this attribute now.
1210        if (!FTI.NumArgs && FTI.isVariadic && !getLangOptions().CPlusPlus) {
1211          bool Overloadable = false;
1212          for (const AttributeList *Attrs = D.getAttributes();
1213               Attrs; Attrs = Attrs->getNext()) {
1214            if (Attrs->getKind() == AttributeList::AT_overloadable) {
1215              Overloadable = true;
1216              break;
1217            }
1218          }
1219
1220          if (!Overloadable)
1221            Diag(FTI.getEllipsisLoc(), diag::err_ellipsis_first_arg);
1222        }
1223
1224        if (FTI.NumArgs && FTI.ArgInfo[0].Param == 0) {
1225          // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function
1226          // definition.
1227          Diag(FTI.ArgInfo[0].IdentLoc, diag::err_ident_list_in_fn_declaration);
1228          D.setInvalidType(true);
1229          break;
1230        }
1231
1232        // Otherwise, we have a function with an argument list that is
1233        // potentially variadic.
1234        llvm::SmallVector<QualType, 16> ArgTys;
1235        ArgTys.reserve(FTI.NumArgs);
1236
1237        for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
1238          ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
1239          QualType ArgTy = Param->getType();
1240          assert(!ArgTy.isNull() && "Couldn't parse type?");
1241
1242          // Adjust the parameter type.
1243          assert((ArgTy == adjustParameterType(ArgTy)) && "Unadjusted type?");
1244
1245          // Look for 'void'.  void is allowed only as a single argument to a
1246          // function with no other parameters (C99 6.7.5.3p10).  We record
1247          // int(void) as a FunctionProtoType with an empty argument list.
1248          if (ArgTy->isVoidType()) {
1249            // If this is something like 'float(int, void)', reject it.  'void'
1250            // is an incomplete type (C99 6.2.5p19) and function decls cannot
1251            // have arguments of incomplete type.
1252            if (FTI.NumArgs != 1 || FTI.isVariadic) {
1253              Diag(DeclType.Loc, diag::err_void_only_param);
1254              ArgTy = Context.IntTy;
1255              Param->setType(ArgTy);
1256            } else if (FTI.ArgInfo[i].Ident) {
1257              // Reject, but continue to parse 'int(void abc)'.
1258              Diag(FTI.ArgInfo[i].IdentLoc,
1259                   diag::err_param_with_void_type);
1260              ArgTy = Context.IntTy;
1261              Param->setType(ArgTy);
1262            } else {
1263              // Reject, but continue to parse 'float(const void)'.
1264              if (ArgTy.hasQualifiers())
1265                Diag(DeclType.Loc, diag::err_void_param_qualified);
1266
1267              // Do not add 'void' to the ArgTys list.
1268              break;
1269            }
1270          } else if (!FTI.hasPrototype) {
1271            if (ArgTy->isPromotableIntegerType()) {
1272              ArgTy = Context.getPromotedIntegerType(ArgTy);
1273            } else if (const BuiltinType* BTy = ArgTy->getAs<BuiltinType>()) {
1274              if (BTy->getKind() == BuiltinType::Float)
1275                ArgTy = Context.DoubleTy;
1276            }
1277          }
1278
1279          ArgTys.push_back(ArgTy);
1280        }
1281
1282        llvm::SmallVector<QualType, 4> Exceptions;
1283        Exceptions.reserve(FTI.NumExceptions);
1284        for (unsigned ei = 0, ee = FTI.NumExceptions; ei != ee; ++ei) {
1285          // FIXME: Preserve type source info.
1286          QualType ET = GetTypeFromParser(FTI.Exceptions[ei].Ty);
1287          // Check that the type is valid for an exception spec, and drop it if
1288          // not.
1289          if (!CheckSpecifiedExceptionType(ET, FTI.Exceptions[ei].Range))
1290            Exceptions.push_back(ET);
1291        }
1292
1293        T = Context.getFunctionType(T, ArgTys.data(), ArgTys.size(),
1294                                    FTI.isVariadic, FTI.TypeQuals,
1295                                    FTI.hasExceptionSpec,
1296                                    FTI.hasAnyExceptionSpec,
1297                                    Exceptions.size(), Exceptions.data(),
1298                                    FunctionType::ExtInfo());
1299      }
1300
1301      // For GCC compatibility, we allow attributes that apply only to
1302      // function types to be placed on a function's return type
1303      // instead (as long as that type doesn't happen to be function
1304      // or function-pointer itself).
1305      ProcessDelayedFnAttrs(*this, T, FnAttrsFromPreviousChunk);
1306
1307      break;
1308    }
1309    case DeclaratorChunk::MemberPointer:
1310      // The scope spec must refer to a class, or be dependent.
1311      CXXScopeSpec &SS = DeclType.Mem.Scope();
1312      QualType ClsType;
1313      if (SS.isInvalid()) {
1314        // Avoid emitting extra errors if we already errored on the scope.
1315        D.setInvalidType(true);
1316      } else if (isDependentScopeSpecifier(SS) ||
1317                 dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS))) {
1318        NestedNameSpecifier *NNS
1319          = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1320        NestedNameSpecifier *NNSPrefix = NNS->getPrefix();
1321        switch (NNS->getKind()) {
1322        case NestedNameSpecifier::Identifier:
1323          ClsType = Context.getDependentNameType(ETK_None, NNSPrefix,
1324                                                 NNS->getAsIdentifier());
1325          break;
1326
1327        case NestedNameSpecifier::Namespace:
1328        case NestedNameSpecifier::Global:
1329          llvm_unreachable("Nested-name-specifier must name a type");
1330          break;
1331
1332        case NestedNameSpecifier::TypeSpec:
1333        case NestedNameSpecifier::TypeSpecWithTemplate:
1334          ClsType = QualType(NNS->getAsType(), 0);
1335          // Note: if NNS is dependent, then its prefix (if any) is already
1336          // included in ClsType; this does not hold if the NNS is
1337          // nondependent: in this case (if there is indeed a prefix)
1338          // ClsType needs to be wrapped into an elaborated type.
1339          if (NNSPrefix && !NNS->isDependent())
1340            ClsType = Context.getElaboratedType(ETK_None, NNSPrefix, ClsType);
1341          break;
1342        }
1343      } else {
1344        Diag(DeclType.Mem.Scope().getBeginLoc(),
1345             diag::err_illegal_decl_mempointer_in_nonclass)
1346          << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name")
1347          << DeclType.Mem.Scope().getRange();
1348        D.setInvalidType(true);
1349      }
1350
1351      if (!ClsType.isNull())
1352        T = BuildMemberPointerType(T, ClsType, DeclType.Loc, D.getIdentifier());
1353      if (T.isNull()) {
1354        T = Context.IntTy;
1355        D.setInvalidType(true);
1356      } else if (DeclType.Mem.TypeQuals) {
1357        T = BuildQualifiedType(T, DeclType.Loc, DeclType.Mem.TypeQuals);
1358      }
1359      break;
1360    }
1361
1362    if (T.isNull()) {
1363      D.setInvalidType(true);
1364      T = Context.IntTy;
1365    }
1366
1367    DiagnoseDelayedFnAttrs(*this, FnAttrsFromPreviousChunk);
1368
1369    // See if there are any attributes on this declarator chunk.
1370    if (const AttributeList *AL = DeclType.getAttrs())
1371      ProcessTypeAttributeList(*this, T, false, AL, FnAttrsFromPreviousChunk);
1372  }
1373
1374  if (getLangOptions().CPlusPlus && T->isFunctionType()) {
1375    const FunctionProtoType *FnTy = T->getAs<FunctionProtoType>();
1376    assert(FnTy && "Why oh why is there not a FunctionProtoType here?");
1377
1378    // C++ 8.3.5p4: A cv-qualifier-seq shall only be part of the function type
1379    // for a nonstatic member function, the function type to which a pointer
1380    // to member refers, or the top-level function type of a function typedef
1381    // declaration.
1382    bool FreeFunction = (D.getContext() != Declarator::MemberContext &&
1383        (!D.getCXXScopeSpec().isSet() ||
1384         !computeDeclContext(D.getCXXScopeSpec(), /*FIXME:*/true)->isRecord()));
1385    if (FnTy->getTypeQuals() != 0 &&
1386        D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
1387        (FreeFunction ||
1388         D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static)) {
1389      if (D.isFunctionDeclarator())
1390        Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_function_type);
1391      else
1392        Diag(D.getIdentifierLoc(),
1393             diag::err_invalid_qualified_typedef_function_type_use)
1394          << FreeFunction;
1395
1396      // Strip the cv-quals from the type.
1397      T = Context.getFunctionType(FnTy->getResultType(), FnTy->arg_type_begin(),
1398                                  FnTy->getNumArgs(), FnTy->isVariadic(), 0,
1399                                  false, false, 0, 0, FunctionType::ExtInfo());
1400    }
1401  }
1402
1403  // If there's a constexpr specifier, treat it as a top-level const.
1404  if (D.getDeclSpec().isConstexprSpecified()) {
1405    T.addConst();
1406  }
1407
1408  // Process any function attributes we might have delayed from the
1409  // declaration-specifiers.
1410  ProcessDelayedFnAttrs(*this, T, FnAttrsFromDeclSpec);
1411
1412  // If there were any type attributes applied to the decl itself, not
1413  // the type, apply them to the result type.  But don't do this for
1414  // block-literal expressions, which are parsed wierdly.
1415  if (D.getContext() != Declarator::BlockLiteralContext)
1416    if (const AttributeList *Attrs = D.getAttributes())
1417      ProcessTypeAttributeList(*this, T, false, Attrs,
1418                               FnAttrsFromPreviousChunk);
1419
1420  DiagnoseDelayedFnAttrs(*this, FnAttrsFromPreviousChunk);
1421
1422  if (T.isNull())
1423    return Context.getNullTypeSourceInfo();
1424  else if (D.isInvalidType())
1425    return Context.getTrivialTypeSourceInfo(T);
1426  return GetTypeSourceInfoForDeclarator(D, T, ReturnTypeInfo);
1427}
1428
1429namespace {
1430  class TypeSpecLocFiller : public TypeLocVisitor<TypeSpecLocFiller> {
1431    const DeclSpec &DS;
1432
1433  public:
1434    TypeSpecLocFiller(const DeclSpec &DS) : DS(DS) {}
1435
1436    void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
1437      Visit(TL.getUnqualifiedLoc());
1438    }
1439    void VisitTypedefTypeLoc(TypedefTypeLoc TL) {
1440      TL.setNameLoc(DS.getTypeSpecTypeLoc());
1441    }
1442    void VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) {
1443      TL.setNameLoc(DS.getTypeSpecTypeLoc());
1444    }
1445    void VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) {
1446      // Handle the base type, which might not have been written explicitly.
1447      if (DS.getTypeSpecType() == DeclSpec::TST_unspecified) {
1448        TL.setHasBaseTypeAsWritten(false);
1449        TL.getBaseLoc().initialize(SourceLocation());
1450      } else {
1451        TL.setHasBaseTypeAsWritten(true);
1452        Visit(TL.getBaseLoc());
1453      }
1454
1455      // Protocol qualifiers.
1456      if (DS.getProtocolQualifiers()) {
1457        assert(TL.getNumProtocols() > 0);
1458        assert(TL.getNumProtocols() == DS.getNumProtocolQualifiers());
1459        TL.setLAngleLoc(DS.getProtocolLAngleLoc());
1460        TL.setRAngleLoc(DS.getSourceRange().getEnd());
1461        for (unsigned i = 0, e = DS.getNumProtocolQualifiers(); i != e; ++i)
1462          TL.setProtocolLoc(i, DS.getProtocolLocs()[i]);
1463      } else {
1464        assert(TL.getNumProtocols() == 0);
1465        TL.setLAngleLoc(SourceLocation());
1466        TL.setRAngleLoc(SourceLocation());
1467      }
1468    }
1469    void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
1470      TL.setStarLoc(SourceLocation());
1471      Visit(TL.getPointeeLoc());
1472    }
1473    void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc TL) {
1474      TypeSourceInfo *TInfo = 0;
1475      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
1476
1477      // If we got no declarator info from previous Sema routines,
1478      // just fill with the typespec loc.
1479      if (!TInfo) {
1480        TL.initialize(DS.getTypeSpecTypeLoc());
1481        return;
1482      }
1483
1484      TypeLoc OldTL = TInfo->getTypeLoc();
1485      if (TInfo->getType()->getAs<ElaboratedType>()) {
1486        ElaboratedTypeLoc ElabTL = cast<ElaboratedTypeLoc>(OldTL);
1487        TemplateSpecializationTypeLoc NamedTL =
1488          cast<TemplateSpecializationTypeLoc>(ElabTL.getNamedTypeLoc());
1489        TL.copy(NamedTL);
1490      }
1491      else
1492        TL.copy(cast<TemplateSpecializationTypeLoc>(OldTL));
1493    }
1494    void VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) {
1495      assert(DS.getTypeSpecType() == DeclSpec::TST_typeofExpr);
1496      TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
1497      TL.setParensRange(DS.getTypeofParensRange());
1498    }
1499    void VisitTypeOfTypeLoc(TypeOfTypeLoc TL) {
1500      assert(DS.getTypeSpecType() == DeclSpec::TST_typeofType);
1501      TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
1502      TL.setParensRange(DS.getTypeofParensRange());
1503      assert(DS.getRepAsType());
1504      TypeSourceInfo *TInfo = 0;
1505      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
1506      TL.setUnderlyingTInfo(TInfo);
1507    }
1508    void VisitBuiltinTypeLoc(BuiltinTypeLoc TL) {
1509      // By default, use the source location of the type specifier.
1510      TL.setBuiltinLoc(DS.getTypeSpecTypeLoc());
1511      if (TL.needsExtraLocalData()) {
1512        // Set info for the written builtin specifiers.
1513        TL.getWrittenBuiltinSpecs() = DS.getWrittenBuiltinSpecs();
1514        // Try to have a meaningful source location.
1515        if (TL.getWrittenSignSpec() != TSS_unspecified)
1516          // Sign spec loc overrides the others (e.g., 'unsigned long').
1517          TL.setBuiltinLoc(DS.getTypeSpecSignLoc());
1518        else if (TL.getWrittenWidthSpec() != TSW_unspecified)
1519          // Width spec loc overrides type spec loc (e.g., 'short int').
1520          TL.setBuiltinLoc(DS.getTypeSpecWidthLoc());
1521      }
1522    }
1523    void VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) {
1524      ElaboratedTypeKeyword Keyword
1525        = TypeWithKeyword::getKeywordForTypeSpec(DS.getTypeSpecType());
1526      if (Keyword == ETK_Typename) {
1527        TypeSourceInfo *TInfo = 0;
1528        Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
1529        if (TInfo) {
1530          TL.copy(cast<ElaboratedTypeLoc>(TInfo->getTypeLoc()));
1531          return;
1532        }
1533      }
1534      TL.setKeywordLoc(Keyword != ETK_None
1535                       ? DS.getTypeSpecTypeLoc()
1536                       : SourceLocation());
1537      const CXXScopeSpec& SS = DS.getTypeSpecScope();
1538      TL.setQualifierRange(SS.isEmpty() ? SourceRange(): SS.getRange());
1539      Visit(TL.getNextTypeLoc().getUnqualifiedLoc());
1540    }
1541    void VisitDependentNameTypeLoc(DependentNameTypeLoc TL) {
1542      ElaboratedTypeKeyword Keyword
1543        = TypeWithKeyword::getKeywordForTypeSpec(DS.getTypeSpecType());
1544      if (Keyword == ETK_Typename) {
1545        TypeSourceInfo *TInfo = 0;
1546        Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
1547        if (TInfo) {
1548          TL.copy(cast<DependentNameTypeLoc>(TInfo->getTypeLoc()));
1549          return;
1550        }
1551      }
1552      TL.setKeywordLoc(Keyword != ETK_None
1553                       ? DS.getTypeSpecTypeLoc()
1554                       : SourceLocation());
1555      const CXXScopeSpec& SS = DS.getTypeSpecScope();
1556      TL.setQualifierRange(SS.isEmpty() ? SourceRange() : SS.getRange());
1557      // FIXME: load appropriate source location.
1558      TL.setNameLoc(DS.getTypeSpecTypeLoc());
1559    }
1560    void VisitDependentTemplateSpecializationTypeLoc(
1561                                 DependentTemplateSpecializationTypeLoc TL) {
1562      ElaboratedTypeKeyword Keyword
1563        = TypeWithKeyword::getKeywordForTypeSpec(DS.getTypeSpecType());
1564      if (Keyword == ETK_Typename) {
1565        TypeSourceInfo *TInfo = 0;
1566        Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
1567        if (TInfo) {
1568          TL.copy(cast<DependentTemplateSpecializationTypeLoc>(
1569                    TInfo->getTypeLoc()));
1570          return;
1571        }
1572      }
1573      TL.initializeLocal(SourceLocation());
1574      TL.setKeywordLoc(Keyword != ETK_None
1575                       ? DS.getTypeSpecTypeLoc()
1576                       : SourceLocation());
1577      const CXXScopeSpec& SS = DS.getTypeSpecScope();
1578      TL.setQualifierRange(SS.isEmpty() ? SourceRange() : SS.getRange());
1579      // FIXME: load appropriate source location.
1580      TL.setNameLoc(DS.getTypeSpecTypeLoc());
1581    }
1582
1583    void VisitTypeLoc(TypeLoc TL) {
1584      // FIXME: add other typespec types and change this to an assert.
1585      TL.initialize(DS.getTypeSpecTypeLoc());
1586    }
1587  };
1588
1589  class DeclaratorLocFiller : public TypeLocVisitor<DeclaratorLocFiller> {
1590    const DeclaratorChunk &Chunk;
1591
1592  public:
1593    DeclaratorLocFiller(const DeclaratorChunk &Chunk) : Chunk(Chunk) {}
1594
1595    void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
1596      llvm_unreachable("qualified type locs not expected here!");
1597    }
1598
1599    void VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) {
1600      assert(Chunk.Kind == DeclaratorChunk::BlockPointer);
1601      TL.setCaretLoc(Chunk.Loc);
1602    }
1603    void VisitPointerTypeLoc(PointerTypeLoc TL) {
1604      assert(Chunk.Kind == DeclaratorChunk::Pointer);
1605      TL.setStarLoc(Chunk.Loc);
1606    }
1607    void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
1608      assert(Chunk.Kind == DeclaratorChunk::Pointer);
1609      TL.setStarLoc(Chunk.Loc);
1610    }
1611    void VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) {
1612      assert(Chunk.Kind == DeclaratorChunk::MemberPointer);
1613      TL.setStarLoc(Chunk.Loc);
1614      // FIXME: nested name specifier
1615    }
1616    void VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) {
1617      assert(Chunk.Kind == DeclaratorChunk::Reference);
1618      // 'Amp' is misleading: this might have been originally
1619      /// spelled with AmpAmp.
1620      TL.setAmpLoc(Chunk.Loc);
1621    }
1622    void VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) {
1623      assert(Chunk.Kind == DeclaratorChunk::Reference);
1624      assert(!Chunk.Ref.LValueRef);
1625      TL.setAmpAmpLoc(Chunk.Loc);
1626    }
1627    void VisitArrayTypeLoc(ArrayTypeLoc TL) {
1628      assert(Chunk.Kind == DeclaratorChunk::Array);
1629      TL.setLBracketLoc(Chunk.Loc);
1630      TL.setRBracketLoc(Chunk.EndLoc);
1631      TL.setSizeExpr(static_cast<Expr*>(Chunk.Arr.NumElts));
1632    }
1633    void VisitFunctionTypeLoc(FunctionTypeLoc TL) {
1634      assert(Chunk.Kind == DeclaratorChunk::Function);
1635      TL.setLParenLoc(Chunk.Loc);
1636      TL.setRParenLoc(Chunk.EndLoc);
1637
1638      const DeclaratorChunk::FunctionTypeInfo &FTI = Chunk.Fun;
1639      for (unsigned i = 0, e = TL.getNumArgs(), tpi = 0; i != e; ++i) {
1640        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
1641        TL.setArg(tpi++, Param);
1642      }
1643      // FIXME: exception specs
1644    }
1645
1646    void VisitTypeLoc(TypeLoc TL) {
1647      llvm_unreachable("unsupported TypeLoc kind in declarator!");
1648    }
1649  };
1650}
1651
1652/// \brief Create and instantiate a TypeSourceInfo with type source information.
1653///
1654/// \param T QualType referring to the type as written in source code.
1655///
1656/// \param ReturnTypeInfo For declarators whose return type does not show
1657/// up in the normal place in the declaration specifiers (such as a C++
1658/// conversion function), this pointer will refer to a type source information
1659/// for that return type.
1660TypeSourceInfo *
1661Sema::GetTypeSourceInfoForDeclarator(Declarator &D, QualType T,
1662                                     TypeSourceInfo *ReturnTypeInfo) {
1663  TypeSourceInfo *TInfo = Context.CreateTypeSourceInfo(T);
1664  UnqualTypeLoc CurrTL = TInfo->getTypeLoc().getUnqualifiedLoc();
1665
1666  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
1667    DeclaratorLocFiller(D.getTypeObject(i)).Visit(CurrTL);
1668    CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
1669  }
1670
1671  // If we have different source information for the return type, use
1672  // that.  This really only applies to C++ conversion functions.
1673  if (ReturnTypeInfo) {
1674    TypeLoc TL = ReturnTypeInfo->getTypeLoc();
1675    assert(TL.getFullDataSize() == CurrTL.getFullDataSize());
1676    memcpy(CurrTL.getOpaqueData(), TL.getOpaqueData(), TL.getFullDataSize());
1677  } else {
1678    TypeSpecLocFiller(D.getDeclSpec()).Visit(CurrTL);
1679  }
1680
1681  return TInfo;
1682}
1683
1684/// \brief Create a LocInfoType to hold the given QualType and TypeSourceInfo.
1685ParsedType Sema::CreateParsedType(QualType T, TypeSourceInfo *TInfo) {
1686  // FIXME: LocInfoTypes are "transient", only needed for passing to/from Parser
1687  // and Sema during declaration parsing. Try deallocating/caching them when
1688  // it's appropriate, instead of allocating them and keeping them around.
1689  LocInfoType *LocT = (LocInfoType*)BumpAlloc.Allocate(sizeof(LocInfoType), 8);
1690  new (LocT) LocInfoType(T, TInfo);
1691  assert(LocT->getTypeClass() != T->getTypeClass() &&
1692         "LocInfoType's TypeClass conflicts with an existing Type class");
1693  return ParsedType::make(QualType(LocT, 0));
1694}
1695
1696void LocInfoType::getAsStringInternal(std::string &Str,
1697                                      const PrintingPolicy &Policy) const {
1698  assert(false && "LocInfoType leaked into the type system; an opaque TypeTy*"
1699         " was used directly instead of getting the QualType through"
1700         " GetTypeFromParser");
1701}
1702
1703TypeResult Sema::ActOnTypeName(Scope *S, Declarator &D) {
1704  // C99 6.7.6: Type names have no identifier.  This is already validated by
1705  // the parser.
1706  assert(D.getIdentifier() == 0 && "Type name should have no identifier!");
1707
1708  TagDecl *OwnedTag = 0;
1709  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedTag);
1710  QualType T = TInfo->getType();
1711  if (D.isInvalidType())
1712    return true;
1713
1714  if (getLangOptions().CPlusPlus) {
1715    // Check that there are no default arguments (C++ only).
1716    CheckExtraCXXDefaultArguments(D);
1717
1718    // C++0x [dcl.type]p3:
1719    //   A type-specifier-seq shall not define a class or enumeration
1720    //   unless it appears in the type-id of an alias-declaration
1721    //   (7.1.3).
1722    if (OwnedTag && OwnedTag->isDefinition())
1723      Diag(OwnedTag->getLocation(), diag::err_type_defined_in_type_specifier)
1724        << Context.getTypeDeclType(OwnedTag);
1725  }
1726
1727  return CreateParsedType(T, TInfo);
1728}
1729
1730
1731
1732//===----------------------------------------------------------------------===//
1733// Type Attribute Processing
1734//===----------------------------------------------------------------------===//
1735
1736/// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
1737/// specified type.  The attribute contains 1 argument, the id of the address
1738/// space for the type.
1739static void HandleAddressSpaceTypeAttribute(QualType &Type,
1740                                            const AttributeList &Attr, Sema &S){
1741
1742  // If this type is already address space qualified, reject it.
1743  // Clause 6.7.3 - Type qualifiers: "No type shall be qualified by qualifiers
1744  // for two or more different address spaces."
1745  if (Type.getAddressSpace()) {
1746    S.Diag(Attr.getLoc(), diag::err_attribute_address_multiple_qualifiers);
1747    Attr.setInvalid();
1748    return;
1749  }
1750
1751  // Check the attribute arguments.
1752  if (Attr.getNumArgs() != 1) {
1753    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
1754    Attr.setInvalid();
1755    return;
1756  }
1757  Expr *ASArgExpr = static_cast<Expr *>(Attr.getArg(0));
1758  llvm::APSInt addrSpace(32);
1759  if (ASArgExpr->isTypeDependent() || ASArgExpr->isValueDependent() ||
1760      !ASArgExpr->isIntegerConstantExpr(addrSpace, S.Context)) {
1761    S.Diag(Attr.getLoc(), diag::err_attribute_address_space_not_int)
1762      << ASArgExpr->getSourceRange();
1763    Attr.setInvalid();
1764    return;
1765  }
1766
1767  // Bounds checking.
1768  if (addrSpace.isSigned()) {
1769    if (addrSpace.isNegative()) {
1770      S.Diag(Attr.getLoc(), diag::err_attribute_address_space_negative)
1771        << ASArgExpr->getSourceRange();
1772      Attr.setInvalid();
1773      return;
1774    }
1775    addrSpace.setIsSigned(false);
1776  }
1777  llvm::APSInt max(addrSpace.getBitWidth());
1778  max = Qualifiers::MaxAddressSpace;
1779  if (addrSpace > max) {
1780    S.Diag(Attr.getLoc(), diag::err_attribute_address_space_too_high)
1781      << Qualifiers::MaxAddressSpace << ASArgExpr->getSourceRange();
1782    Attr.setInvalid();
1783    return;
1784  }
1785
1786  unsigned ASIdx = static_cast<unsigned>(addrSpace.getZExtValue());
1787  Type = S.Context.getAddrSpaceQualType(Type, ASIdx);
1788}
1789
1790/// HandleObjCGCTypeAttribute - Process an objc's gc attribute on the
1791/// specified type.  The attribute contains 1 argument, weak or strong.
1792static void HandleObjCGCTypeAttribute(QualType &Type,
1793                                      const AttributeList &Attr, Sema &S) {
1794  if (Type.getObjCGCAttr() != Qualifiers::GCNone) {
1795    S.Diag(Attr.getLoc(), diag::err_attribute_multiple_objc_gc);
1796    Attr.setInvalid();
1797    return;
1798  }
1799
1800  // Check the attribute arguments.
1801  if (!Attr.getParameterName()) {
1802    S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string)
1803      << "objc_gc" << 1;
1804    Attr.setInvalid();
1805    return;
1806  }
1807  Qualifiers::GC GCAttr;
1808  if (Attr.getNumArgs() != 0) {
1809    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
1810    Attr.setInvalid();
1811    return;
1812  }
1813  if (Attr.getParameterName()->isStr("weak"))
1814    GCAttr = Qualifiers::Weak;
1815  else if (Attr.getParameterName()->isStr("strong"))
1816    GCAttr = Qualifiers::Strong;
1817  else {
1818    S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported)
1819      << "objc_gc" << Attr.getParameterName();
1820    Attr.setInvalid();
1821    return;
1822  }
1823
1824  Type = S.Context.getObjCGCQualType(Type, GCAttr);
1825}
1826
1827static QualType GetResultType(QualType T) {
1828  if (const PointerType *PT = T->getAs<PointerType>())
1829    T = PT->getPointeeType();
1830  else if (const BlockPointerType *BT = T->getAs<BlockPointerType>())
1831    T = BT->getPointeeType();
1832  return T->getAs<FunctionType>()->getResultType();
1833}
1834
1835/// Process an individual function attribute.  Returns true if the
1836/// attribute does not make sense to apply to this type.
1837bool ProcessFnAttr(Sema &S, QualType &Type, const AttributeList &Attr) {
1838  if (Attr.getKind() == AttributeList::AT_noreturn) {
1839    // Complain immediately if the arg count is wrong.
1840    if (Attr.getNumArgs() != 0) {
1841      S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
1842      Attr.setInvalid();
1843      return false;
1844    }
1845
1846    // Delay if this is not a function or pointer to block.
1847    if (!Type->isFunctionPointerType()
1848        && !Type->isBlockPointerType()
1849        && !Type->isFunctionType())
1850      return true;
1851
1852    if (!GetResultType(Type)->isVoidType()) {
1853      S.Diag(Attr.getLoc(), diag::warn_noreturn_function_has_nonvoid_result)
1854        << (Type->isBlockPointerType() ? /* blocks */ 1 : /* functions */ 0);
1855    }
1856
1857    // Otherwise we can process right away.
1858    Type = S.Context.getNoReturnType(Type);
1859    return false;
1860  }
1861
1862  if (Attr.getKind() == AttributeList::AT_regparm) {
1863    // The warning is emitted elsewhere
1864    if (Attr.getNumArgs() != 1) {
1865      return false;
1866    }
1867
1868    // Delay if this is not a function or pointer to block.
1869    if (!Type->isFunctionPointerType()
1870        && !Type->isBlockPointerType()
1871        && !Type->isFunctionType())
1872      return true;
1873
1874    // Otherwise we can process right away.
1875    Expr *NumParamsExpr = static_cast<Expr *>(Attr.getArg(0));
1876    llvm::APSInt NumParams(32);
1877
1878    // The warning is emitted elsewhere
1879    if (NumParamsExpr->isTypeDependent() || NumParamsExpr->isValueDependent() ||
1880        !NumParamsExpr->isIntegerConstantExpr(NumParams, S.Context))
1881      return false;
1882
1883    Type = S.Context.getRegParmType(Type, NumParams.getZExtValue());
1884    return false;
1885  }
1886
1887  // Otherwise, a calling convention.
1888  if (Attr.getNumArgs() != 0) {
1889    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
1890    Attr.setInvalid();
1891    return false;
1892  }
1893
1894  QualType T = Type;
1895  if (const PointerType *PT = Type->getAs<PointerType>())
1896    T = PT->getPointeeType();
1897  const FunctionType *Fn = T->getAs<FunctionType>();
1898
1899  // Delay if the type didn't work out to a function.
1900  if (!Fn) return true;
1901
1902  // TODO: diagnose uses of these conventions on the wrong target.
1903  CallingConv CC;
1904  switch (Attr.getKind()) {
1905  case AttributeList::AT_cdecl: CC = CC_C; break;
1906  case AttributeList::AT_fastcall: CC = CC_X86FastCall; break;
1907  case AttributeList::AT_stdcall: CC = CC_X86StdCall; break;
1908  case AttributeList::AT_thiscall: CC = CC_X86ThisCall; break;
1909  default: llvm_unreachable("unexpected attribute kind"); return false;
1910  }
1911
1912  CallingConv CCOld = Fn->getCallConv();
1913  if (S.Context.getCanonicalCallConv(CC) ==
1914      S.Context.getCanonicalCallConv(CCOld)) {
1915    Attr.setInvalid();
1916    return false;
1917  }
1918
1919  if (CCOld != CC_Default) {
1920    // Should we diagnose reapplications of the same convention?
1921    S.Diag(Attr.getLoc(), diag::err_attributes_are_not_compatible)
1922      << FunctionType::getNameForCallConv(CC)
1923      << FunctionType::getNameForCallConv(CCOld);
1924    Attr.setInvalid();
1925    return false;
1926  }
1927
1928  // Diagnose the use of X86 fastcall on varargs or unprototyped functions.
1929  if (CC == CC_X86FastCall) {
1930    if (isa<FunctionNoProtoType>(Fn)) {
1931      S.Diag(Attr.getLoc(), diag::err_cconv_knr)
1932        << FunctionType::getNameForCallConv(CC);
1933      Attr.setInvalid();
1934      return false;
1935    }
1936
1937    const FunctionProtoType *FnP = cast<FunctionProtoType>(Fn);
1938    if (FnP->isVariadic()) {
1939      S.Diag(Attr.getLoc(), diag::err_cconv_varargs)
1940        << FunctionType::getNameForCallConv(CC);
1941      Attr.setInvalid();
1942      return false;
1943    }
1944  }
1945
1946  Type = S.Context.getCallConvType(Type, CC);
1947  return false;
1948}
1949
1950/// HandleVectorSizeAttribute - this attribute is only applicable to integral
1951/// and float scalars, although arrays, pointers, and function return values are
1952/// allowed in conjunction with this construct. Aggregates with this attribute
1953/// are invalid, even if they are of the same size as a corresponding scalar.
1954/// The raw attribute should contain precisely 1 argument, the vector size for
1955/// the variable, measured in bytes. If curType and rawAttr are well formed,
1956/// this routine will return a new vector type.
1957static void HandleVectorSizeAttr(QualType& CurType, const AttributeList &Attr,
1958                                 Sema &S) {
1959  // Check the attribute arugments.
1960  if (Attr.getNumArgs() != 1) {
1961    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
1962    Attr.setInvalid();
1963    return;
1964  }
1965  Expr *sizeExpr = static_cast<Expr *>(Attr.getArg(0));
1966  llvm::APSInt vecSize(32);
1967  if (sizeExpr->isTypeDependent() || sizeExpr->isValueDependent() ||
1968      !sizeExpr->isIntegerConstantExpr(vecSize, S.Context)) {
1969    S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
1970      << "vector_size" << sizeExpr->getSourceRange();
1971    Attr.setInvalid();
1972    return;
1973  }
1974  // the base type must be integer or float, and can't already be a vector.
1975  if (!CurType->isIntegerType() && !CurType->isRealFloatingType()) {
1976    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << CurType;
1977    Attr.setInvalid();
1978    return;
1979  }
1980  unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
1981  // vecSize is specified in bytes - convert to bits.
1982  unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue() * 8);
1983
1984  // the vector size needs to be an integral multiple of the type size.
1985  if (vectorSize % typeSize) {
1986    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_size)
1987      << sizeExpr->getSourceRange();
1988    Attr.setInvalid();
1989    return;
1990  }
1991  if (vectorSize == 0) {
1992    S.Diag(Attr.getLoc(), diag::err_attribute_zero_size)
1993      << sizeExpr->getSourceRange();
1994    Attr.setInvalid();
1995    return;
1996  }
1997
1998  // Success! Instantiate the vector type, the number of elements is > 0, and
1999  // not required to be a power of 2, unlike GCC.
2000  CurType = S.Context.getVectorType(CurType, vectorSize/typeSize,
2001                                    VectorType::NotAltiVec);
2002}
2003
2004void ProcessTypeAttributeList(Sema &S, QualType &Result,
2005                              bool IsDeclSpec, const AttributeList *AL,
2006                              DelayedAttributeSet &FnAttrs) {
2007  // Scan through and apply attributes to this type where it makes sense.  Some
2008  // attributes (such as __address_space__, __vector_size__, etc) apply to the
2009  // type, but others can be present in the type specifiers even though they
2010  // apply to the decl.  Here we apply type attributes and ignore the rest.
2011  for (; AL; AL = AL->getNext()) {
2012    // Skip attributes that were marked to be invalid.
2013    if (AL->isInvalid())
2014      continue;
2015
2016    // If this is an attribute we can handle, do so now,
2017    // otherwise, add it to the FnAttrs list for rechaining.
2018    switch (AL->getKind()) {
2019    default: break;
2020
2021    case AttributeList::AT_address_space:
2022      HandleAddressSpaceTypeAttribute(Result, *AL, S);
2023      break;
2024    case AttributeList::AT_objc_gc:
2025      HandleObjCGCTypeAttribute(Result, *AL, S);
2026      break;
2027    case AttributeList::AT_vector_size:
2028      HandleVectorSizeAttr(Result, *AL, S);
2029      break;
2030
2031    case AttributeList::AT_noreturn:
2032    case AttributeList::AT_cdecl:
2033    case AttributeList::AT_fastcall:
2034    case AttributeList::AT_stdcall:
2035    case AttributeList::AT_thiscall:
2036    case AttributeList::AT_regparm:
2037      // Don't process these on the DeclSpec.
2038      if (IsDeclSpec ||
2039          ProcessFnAttr(S, Result, *AL))
2040        FnAttrs.push_back(DelayedAttribute(AL, Result));
2041      break;
2042    }
2043  }
2044}
2045
2046/// @brief Ensure that the type T is a complete type.
2047///
2048/// This routine checks whether the type @p T is complete in any
2049/// context where a complete type is required. If @p T is a complete
2050/// type, returns false. If @p T is a class template specialization,
2051/// this routine then attempts to perform class template
2052/// instantiation. If instantiation fails, or if @p T is incomplete
2053/// and cannot be completed, issues the diagnostic @p diag (giving it
2054/// the type @p T) and returns true.
2055///
2056/// @param Loc  The location in the source that the incomplete type
2057/// diagnostic should refer to.
2058///
2059/// @param T  The type that this routine is examining for completeness.
2060///
2061/// @param PD The partial diagnostic that will be printed out if T is not a
2062/// complete type.
2063///
2064/// @returns @c true if @p T is incomplete and a diagnostic was emitted,
2065/// @c false otherwise.
2066bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
2067                               const PartialDiagnostic &PD,
2068                               std::pair<SourceLocation,
2069                                         PartialDiagnostic> Note) {
2070  unsigned diag = PD.getDiagID();
2071
2072  // FIXME: Add this assertion to make sure we always get instantiation points.
2073  //  assert(!Loc.isInvalid() && "Invalid location in RequireCompleteType");
2074  // FIXME: Add this assertion to help us flush out problems with
2075  // checking for dependent types and type-dependent expressions.
2076  //
2077  //  assert(!T->isDependentType() &&
2078  //         "Can't ask whether a dependent type is complete");
2079
2080  // If we have a complete type, we're done.
2081  if (!T->isIncompleteType())
2082    return false;
2083
2084  // If we have a class template specialization or a class member of a
2085  // class template specialization, or an array with known size of such,
2086  // try to instantiate it.
2087  QualType MaybeTemplate = T;
2088  if (const ConstantArrayType *Array = Context.getAsConstantArrayType(T))
2089    MaybeTemplate = Array->getElementType();
2090  if (const RecordType *Record = MaybeTemplate->getAs<RecordType>()) {
2091    if (ClassTemplateSpecializationDecl *ClassTemplateSpec
2092          = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
2093      if (ClassTemplateSpec->getSpecializationKind() == TSK_Undeclared)
2094        return InstantiateClassTemplateSpecialization(Loc, ClassTemplateSpec,
2095                                                      TSK_ImplicitInstantiation,
2096                                                      /*Complain=*/diag != 0);
2097    } else if (CXXRecordDecl *Rec
2098                 = dyn_cast<CXXRecordDecl>(Record->getDecl())) {
2099      if (CXXRecordDecl *Pattern = Rec->getInstantiatedFromMemberClass()) {
2100        MemberSpecializationInfo *MSInfo = Rec->getMemberSpecializationInfo();
2101        assert(MSInfo && "Missing member specialization information?");
2102        // This record was instantiated from a class within a template.
2103        if (MSInfo->getTemplateSpecializationKind()
2104                                               != TSK_ExplicitSpecialization)
2105          return InstantiateClass(Loc, Rec, Pattern,
2106                                  getTemplateInstantiationArgs(Rec),
2107                                  TSK_ImplicitInstantiation,
2108                                  /*Complain=*/diag != 0);
2109      }
2110    }
2111  }
2112
2113  if (diag == 0)
2114    return true;
2115
2116  const TagType *Tag = 0;
2117  if (const RecordType *Record = T->getAs<RecordType>())
2118    Tag = Record;
2119  else if (const EnumType *Enum = T->getAs<EnumType>())
2120    Tag = Enum;
2121
2122  // Avoid diagnosing invalid decls as incomplete.
2123  if (Tag && Tag->getDecl()->isInvalidDecl())
2124    return true;
2125
2126  // We have an incomplete type. Produce a diagnostic.
2127  Diag(Loc, PD) << T;
2128
2129  // If we have a note, produce it.
2130  if (!Note.first.isInvalid())
2131    Diag(Note.first, Note.second);
2132
2133  // If the type was a forward declaration of a class/struct/union
2134  // type, produce a note.
2135  if (Tag && !Tag->getDecl()->isInvalidDecl())
2136    Diag(Tag->getDecl()->getLocation(),
2137         Tag->isBeingDefined() ? diag::note_type_being_defined
2138                               : diag::note_forward_declaration)
2139        << QualType(Tag, 0);
2140
2141  return true;
2142}
2143
2144bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
2145                               const PartialDiagnostic &PD) {
2146  return RequireCompleteType(Loc, T, PD,
2147                             std::make_pair(SourceLocation(), PDiag(0)));
2148}
2149
2150bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
2151                               unsigned DiagID) {
2152  return RequireCompleteType(Loc, T, PDiag(DiagID),
2153                             std::make_pair(SourceLocation(), PDiag(0)));
2154}
2155
2156/// \brief Retrieve a version of the type 'T' that is elaborated by Keyword
2157/// and qualified by the nested-name-specifier contained in SS.
2158QualType Sema::getElaboratedType(ElaboratedTypeKeyword Keyword,
2159                                 const CXXScopeSpec &SS, QualType T) {
2160  if (T.isNull())
2161    return T;
2162  NestedNameSpecifier *NNS;
2163  if (SS.isValid())
2164    NNS = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
2165  else {
2166    if (Keyword == ETK_None)
2167      return T;
2168    NNS = 0;
2169  }
2170  return Context.getElaboratedType(Keyword, NNS, T);
2171}
2172
2173QualType Sema::BuildTypeofExprType(Expr *E) {
2174  if (E->getType() == Context.OverloadTy) {
2175    // C++ [temp.arg.explicit]p3 allows us to resolve a template-id to a
2176    // function template specialization wherever deduction cannot occur.
2177    if (FunctionDecl *Specialization
2178        = ResolveSingleFunctionTemplateSpecialization(E)) {
2179      // The access doesn't really matter in this case.
2180      DeclAccessPair Found = DeclAccessPair::make(Specialization,
2181                                                  Specialization->getAccess());
2182      E = FixOverloadedFunctionReference(E, Found, Specialization);
2183      if (!E)
2184        return QualType();
2185    } else {
2186      Diag(E->getLocStart(),
2187           diag::err_cannot_determine_declared_type_of_overloaded_function)
2188        << false << E->getSourceRange();
2189      return QualType();
2190    }
2191  }
2192
2193  return Context.getTypeOfExprType(E);
2194}
2195
2196QualType Sema::BuildDecltypeType(Expr *E) {
2197  if (E->getType() == Context.OverloadTy) {
2198    // C++ [temp.arg.explicit]p3 allows us to resolve a template-id to a
2199    // function template specialization wherever deduction cannot occur.
2200    if (FunctionDecl *Specialization
2201          = ResolveSingleFunctionTemplateSpecialization(E)) {
2202      // The access doesn't really matter in this case.
2203      DeclAccessPair Found = DeclAccessPair::make(Specialization,
2204                                                  Specialization->getAccess());
2205      E = FixOverloadedFunctionReference(E, Found, Specialization);
2206      if (!E)
2207        return QualType();
2208    } else {
2209      Diag(E->getLocStart(),
2210           diag::err_cannot_determine_declared_type_of_overloaded_function)
2211        << true << E->getSourceRange();
2212      return QualType();
2213    }
2214  }
2215
2216  return Context.getDecltypeType(E);
2217}
2218