SemaType.cpp revision f85e193739c953358c865005855253af4f68a497
1//===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements type-related semantic analysis.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Template.h"
16#include "clang/Basic/OpenCL.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/ASTMutationListener.h"
19#include "clang/AST/CXXInheritance.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/TypeLoc.h"
23#include "clang/AST/TypeLocVisitor.h"
24#include "clang/AST/Expr.h"
25#include "clang/Basic/PartialDiagnostic.h"
26#include "clang/Basic/TargetInfo.h"
27#include "clang/Lex/Preprocessor.h"
28#include "clang/Sema/DeclSpec.h"
29#include "clang/Sema/DelayedDiagnostic.h"
30#include "llvm/ADT/SmallPtrSet.h"
31#include "llvm/Support/ErrorHandling.h"
32using namespace clang;
33
34/// \brief Perform adjustment on the parameter type of a function.
35///
36/// This routine adjusts the given parameter type @p T to the actual
37/// parameter type used by semantic analysis (C99 6.7.5.3p[7,8],
38/// C++ [dcl.fct]p3). The adjusted parameter type is returned.
39QualType Sema::adjustParameterType(QualType T) {
40  // C99 6.7.5.3p7:
41  //   A declaration of a parameter as "array of type" shall be
42  //   adjusted to "qualified pointer to type", where the type
43  //   qualifiers (if any) are those specified within the [ and ] of
44  //   the array type derivation.
45  if (T->isArrayType())
46    return Context.getArrayDecayedType(T);
47
48  // C99 6.7.5.3p8:
49  //   A declaration of a parameter as "function returning type"
50  //   shall be adjusted to "pointer to function returning type", as
51  //   in 6.3.2.1.
52  if (T->isFunctionType())
53    return Context.getPointerType(T);
54
55  return T;
56}
57
58
59
60/// isOmittedBlockReturnType - Return true if this declarator is missing a
61/// return type because this is a omitted return type on a block literal.
62static bool isOmittedBlockReturnType(const Declarator &D) {
63  if (D.getContext() != Declarator::BlockLiteralContext ||
64      D.getDeclSpec().hasTypeSpecifier())
65    return false;
66
67  if (D.getNumTypeObjects() == 0)
68    return true;   // ^{ ... }
69
70  if (D.getNumTypeObjects() == 1 &&
71      D.getTypeObject(0).Kind == DeclaratorChunk::Function)
72    return true;   // ^(int X, float Y) { ... }
73
74  return false;
75}
76
77/// diagnoseBadTypeAttribute - Diagnoses a type attribute which
78/// doesn't apply to the given type.
79static void diagnoseBadTypeAttribute(Sema &S, const AttributeList &attr,
80                                     QualType type) {
81  bool useInstantiationLoc = false;
82
83  unsigned diagID = 0;
84  switch (attr.getKind()) {
85  case AttributeList::AT_objc_gc:
86    diagID = diag::warn_pointer_attribute_wrong_type;
87    useInstantiationLoc = true;
88    break;
89
90  default:
91    // Assume everything else was a function attribute.
92    diagID = diag::warn_function_attribute_wrong_type;
93    break;
94  }
95
96  SourceLocation loc = attr.getLoc();
97  llvm::StringRef name = attr.getName()->getName();
98
99  // The GC attributes are usually written with macros;  special-case them.
100  if (useInstantiationLoc && loc.isMacroID() && attr.getParameterName()) {
101    if (attr.getParameterName()->isStr("strong")) {
102      if (S.findMacroSpelling(loc, "__strong")) name = "__strong";
103    } else if (attr.getParameterName()->isStr("weak")) {
104      if (S.findMacroSpelling(loc, "__weak")) name = "__weak";
105    }
106  }
107
108  S.Diag(loc, diagID) << name << type;
109}
110
111// objc_gc applies to Objective-C pointers or, otherwise, to the
112// smallest available pointer type (i.e. 'void*' in 'void**').
113#define OBJC_POINTER_TYPE_ATTRS_CASELIST \
114    case AttributeList::AT_objc_gc: \
115    case AttributeList::AT_objc_lifetime
116
117// Function type attributes.
118#define FUNCTION_TYPE_ATTRS_CASELIST \
119    case AttributeList::AT_noreturn: \
120    case AttributeList::AT_cdecl: \
121    case AttributeList::AT_fastcall: \
122    case AttributeList::AT_stdcall: \
123    case AttributeList::AT_thiscall: \
124    case AttributeList::AT_pascal: \
125    case AttributeList::AT_regparm: \
126    case AttributeList::AT_pcs \
127
128namespace {
129  /// An object which stores processing state for the entire
130  /// GetTypeForDeclarator process.
131  class TypeProcessingState {
132    Sema &sema;
133
134    /// The declarator being processed.
135    Declarator &declarator;
136
137    /// The index of the declarator chunk we're currently processing.
138    /// May be the total number of valid chunks, indicating the
139    /// DeclSpec.
140    unsigned chunkIndex;
141
142    /// Whether there are non-trivial modifications to the decl spec.
143    bool trivial;
144
145    /// Whether we saved the attributes in the decl spec.
146    bool hasSavedAttrs;
147
148    /// The original set of attributes on the DeclSpec.
149    llvm::SmallVector<AttributeList*, 2> savedAttrs;
150
151    /// A list of attributes to diagnose the uselessness of when the
152    /// processing is complete.
153    llvm::SmallVector<AttributeList*, 2> ignoredTypeAttrs;
154
155  public:
156    TypeProcessingState(Sema &sema, Declarator &declarator)
157      : sema(sema), declarator(declarator),
158        chunkIndex(declarator.getNumTypeObjects()),
159        trivial(true), hasSavedAttrs(false) {}
160
161    Sema &getSema() const {
162      return sema;
163    }
164
165    Declarator &getDeclarator() const {
166      return declarator;
167    }
168
169    unsigned getCurrentChunkIndex() const {
170      return chunkIndex;
171    }
172
173    void setCurrentChunkIndex(unsigned idx) {
174      assert(idx <= declarator.getNumTypeObjects());
175      chunkIndex = idx;
176    }
177
178    AttributeList *&getCurrentAttrListRef() const {
179      assert(chunkIndex <= declarator.getNumTypeObjects());
180      if (chunkIndex == declarator.getNumTypeObjects())
181        return getMutableDeclSpec().getAttributes().getListRef();
182      return declarator.getTypeObject(chunkIndex).getAttrListRef();
183    }
184
185    /// Save the current set of attributes on the DeclSpec.
186    void saveDeclSpecAttrs() {
187      // Don't try to save them multiple times.
188      if (hasSavedAttrs) return;
189
190      DeclSpec &spec = getMutableDeclSpec();
191      for (AttributeList *attr = spec.getAttributes().getList(); attr;
192             attr = attr->getNext())
193        savedAttrs.push_back(attr);
194      trivial &= savedAttrs.empty();
195      hasSavedAttrs = true;
196    }
197
198    /// Record that we had nowhere to put the given type attribute.
199    /// We will diagnose such attributes later.
200    void addIgnoredTypeAttr(AttributeList &attr) {
201      ignoredTypeAttrs.push_back(&attr);
202    }
203
204    /// Diagnose all the ignored type attributes, given that the
205    /// declarator worked out to the given type.
206    void diagnoseIgnoredTypeAttrs(QualType type) const {
207      for (llvm::SmallVectorImpl<AttributeList*>::const_iterator
208             i = ignoredTypeAttrs.begin(), e = ignoredTypeAttrs.end();
209           i != e; ++i)
210        diagnoseBadTypeAttribute(getSema(), **i, type);
211    }
212
213    ~TypeProcessingState() {
214      if (trivial) return;
215
216      restoreDeclSpecAttrs();
217    }
218
219  private:
220    DeclSpec &getMutableDeclSpec() const {
221      return const_cast<DeclSpec&>(declarator.getDeclSpec());
222    }
223
224    void restoreDeclSpecAttrs() {
225      assert(hasSavedAttrs);
226
227      if (savedAttrs.empty()) {
228        getMutableDeclSpec().getAttributes().set(0);
229        return;
230      }
231
232      getMutableDeclSpec().getAttributes().set(savedAttrs[0]);
233      for (unsigned i = 0, e = savedAttrs.size() - 1; i != e; ++i)
234        savedAttrs[i]->setNext(savedAttrs[i+1]);
235      savedAttrs.back()->setNext(0);
236    }
237  };
238
239  /// Basically std::pair except that we really want to avoid an
240  /// implicit operator= for safety concerns.  It's also a minor
241  /// link-time optimization for this to be a private type.
242  struct AttrAndList {
243    /// The attribute.
244    AttributeList &first;
245
246    /// The head of the list the attribute is currently in.
247    AttributeList *&second;
248
249    AttrAndList(AttributeList &attr, AttributeList *&head)
250      : first(attr), second(head) {}
251  };
252}
253
254namespace llvm {
255  template <> struct isPodLike<AttrAndList> {
256    static const bool value = true;
257  };
258}
259
260static void spliceAttrIntoList(AttributeList &attr, AttributeList *&head) {
261  attr.setNext(head);
262  head = &attr;
263}
264
265static void spliceAttrOutOfList(AttributeList &attr, AttributeList *&head) {
266  if (head == &attr) {
267    head = attr.getNext();
268    return;
269  }
270
271  AttributeList *cur = head;
272  while (true) {
273    assert(cur && cur->getNext() && "ran out of attrs?");
274    if (cur->getNext() == &attr) {
275      cur->setNext(attr.getNext());
276      return;
277    }
278    cur = cur->getNext();
279  }
280}
281
282static void moveAttrFromListToList(AttributeList &attr,
283                                   AttributeList *&fromList,
284                                   AttributeList *&toList) {
285  spliceAttrOutOfList(attr, fromList);
286  spliceAttrIntoList(attr, toList);
287}
288
289static void processTypeAttrs(TypeProcessingState &state,
290                             QualType &type, bool isDeclSpec,
291                             AttributeList *attrs);
292
293static bool handleFunctionTypeAttr(TypeProcessingState &state,
294                                   AttributeList &attr,
295                                   QualType &type);
296
297static bool handleObjCGCTypeAttr(TypeProcessingState &state,
298                                 AttributeList &attr, QualType &type);
299
300static bool handleObjCLifetimeTypeAttr(TypeProcessingState &state,
301                                       AttributeList &attr, QualType &type);
302
303static bool handleObjCPointerTypeAttr(TypeProcessingState &state,
304                                      AttributeList &attr, QualType &type) {
305  if (attr.getKind() == AttributeList::AT_objc_gc)
306    return handleObjCGCTypeAttr(state, attr, type);
307  assert(attr.getKind() == AttributeList::AT_objc_lifetime);
308  return handleObjCLifetimeTypeAttr(state, attr, type);
309}
310
311/// Given that an objc_gc attribute was written somewhere on a
312/// declaration *other* than on the declarator itself (for which, use
313/// distributeObjCPointerTypeAttrFromDeclarator), and given that it
314/// didn't apply in whatever position it was written in, try to move
315/// it to a more appropriate position.
316static void distributeObjCPointerTypeAttr(TypeProcessingState &state,
317                                          AttributeList &attr,
318                                          QualType type) {
319  Declarator &declarator = state.getDeclarator();
320  for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
321    DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
322    switch (chunk.Kind) {
323    case DeclaratorChunk::Pointer:
324    case DeclaratorChunk::BlockPointer:
325      moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
326                             chunk.getAttrListRef());
327      return;
328
329    case DeclaratorChunk::Paren:
330    case DeclaratorChunk::Array:
331      continue;
332
333    // Don't walk through these.
334    case DeclaratorChunk::Reference:
335    case DeclaratorChunk::Function:
336    case DeclaratorChunk::MemberPointer:
337      goto error;
338    }
339  }
340 error:
341
342  diagnoseBadTypeAttribute(state.getSema(), attr, type);
343}
344
345/// Distribute an objc_gc type attribute that was written on the
346/// declarator.
347static void
348distributeObjCPointerTypeAttrFromDeclarator(TypeProcessingState &state,
349                                            AttributeList &attr,
350                                            QualType &declSpecType) {
351  Declarator &declarator = state.getDeclarator();
352
353  // objc_gc goes on the innermost pointer to something that's not a
354  // pointer.
355  unsigned innermost = -1U;
356  bool considerDeclSpec = true;
357  for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
358    DeclaratorChunk &chunk = declarator.getTypeObject(i);
359    switch (chunk.Kind) {
360    case DeclaratorChunk::Pointer:
361    case DeclaratorChunk::BlockPointer:
362      innermost = i;
363      continue;
364
365    case DeclaratorChunk::Reference:
366    case DeclaratorChunk::MemberPointer:
367    case DeclaratorChunk::Paren:
368    case DeclaratorChunk::Array:
369      continue;
370
371    case DeclaratorChunk::Function:
372      considerDeclSpec = false;
373      goto done;
374    }
375  }
376 done:
377
378  // That might actually be the decl spec if we weren't blocked by
379  // anything in the declarator.
380  if (considerDeclSpec) {
381    if (handleObjCPointerTypeAttr(state, attr, declSpecType)) {
382      // Splice the attribute into the decl spec.  Prevents the
383      // attribute from being applied multiple times and gives
384      // the source-location-filler something to work with.
385      state.saveDeclSpecAttrs();
386      moveAttrFromListToList(attr, declarator.getAttrListRef(),
387               declarator.getMutableDeclSpec().getAttributes().getListRef());
388      return;
389    }
390  }
391
392  // Otherwise, if we found an appropriate chunk, splice the attribute
393  // into it.
394  if (innermost != -1U) {
395    moveAttrFromListToList(attr, declarator.getAttrListRef(),
396                       declarator.getTypeObject(innermost).getAttrListRef());
397    return;
398  }
399
400  // Otherwise, diagnose when we're done building the type.
401  spliceAttrOutOfList(attr, declarator.getAttrListRef());
402  state.addIgnoredTypeAttr(attr);
403}
404
405/// A function type attribute was written somewhere in a declaration
406/// *other* than on the declarator itself or in the decl spec.  Given
407/// that it didn't apply in whatever position it was written in, try
408/// to move it to a more appropriate position.
409static void distributeFunctionTypeAttr(TypeProcessingState &state,
410                                       AttributeList &attr,
411                                       QualType type) {
412  Declarator &declarator = state.getDeclarator();
413
414  // Try to push the attribute from the return type of a function to
415  // the function itself.
416  for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
417    DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
418    switch (chunk.Kind) {
419    case DeclaratorChunk::Function:
420      moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
421                             chunk.getAttrListRef());
422      return;
423
424    case DeclaratorChunk::Paren:
425    case DeclaratorChunk::Pointer:
426    case DeclaratorChunk::BlockPointer:
427    case DeclaratorChunk::Array:
428    case DeclaratorChunk::Reference:
429    case DeclaratorChunk::MemberPointer:
430      continue;
431    }
432  }
433
434  diagnoseBadTypeAttribute(state.getSema(), attr, type);
435}
436
437/// Try to distribute a function type attribute to the innermost
438/// function chunk or type.  Returns true if the attribute was
439/// distributed, false if no location was found.
440static bool
441distributeFunctionTypeAttrToInnermost(TypeProcessingState &state,
442                                      AttributeList &attr,
443                                      AttributeList *&attrList,
444                                      QualType &declSpecType) {
445  Declarator &declarator = state.getDeclarator();
446
447  // Put it on the innermost function chunk, if there is one.
448  for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
449    DeclaratorChunk &chunk = declarator.getTypeObject(i);
450    if (chunk.Kind != DeclaratorChunk::Function) continue;
451
452    moveAttrFromListToList(attr, attrList, chunk.getAttrListRef());
453    return true;
454  }
455
456  if (handleFunctionTypeAttr(state, attr, declSpecType)) {
457    spliceAttrOutOfList(attr, attrList);
458    return true;
459  }
460
461  return false;
462}
463
464/// A function type attribute was written in the decl spec.  Try to
465/// apply it somewhere.
466static void
467distributeFunctionTypeAttrFromDeclSpec(TypeProcessingState &state,
468                                       AttributeList &attr,
469                                       QualType &declSpecType) {
470  state.saveDeclSpecAttrs();
471
472  // Try to distribute to the innermost.
473  if (distributeFunctionTypeAttrToInnermost(state, attr,
474                                            state.getCurrentAttrListRef(),
475                                            declSpecType))
476    return;
477
478  // If that failed, diagnose the bad attribute when the declarator is
479  // fully built.
480  state.addIgnoredTypeAttr(attr);
481}
482
483/// A function type attribute was written on the declarator.  Try to
484/// apply it somewhere.
485static void
486distributeFunctionTypeAttrFromDeclarator(TypeProcessingState &state,
487                                         AttributeList &attr,
488                                         QualType &declSpecType) {
489  Declarator &declarator = state.getDeclarator();
490
491  // Try to distribute to the innermost.
492  if (distributeFunctionTypeAttrToInnermost(state, attr,
493                                            declarator.getAttrListRef(),
494                                            declSpecType))
495    return;
496
497  // If that failed, diagnose the bad attribute when the declarator is
498  // fully built.
499  spliceAttrOutOfList(attr, declarator.getAttrListRef());
500  state.addIgnoredTypeAttr(attr);
501}
502
503/// \brief Given that there are attributes written on the declarator
504/// itself, try to distribute any type attributes to the appropriate
505/// declarator chunk.
506///
507/// These are attributes like the following:
508///   int f ATTR;
509///   int (f ATTR)();
510/// but not necessarily this:
511///   int f() ATTR;
512static void distributeTypeAttrsFromDeclarator(TypeProcessingState &state,
513                                              QualType &declSpecType) {
514  // Collect all the type attributes from the declarator itself.
515  assert(state.getDeclarator().getAttributes() && "declarator has no attrs!");
516  AttributeList *attr = state.getDeclarator().getAttributes();
517  AttributeList *next;
518  do {
519    next = attr->getNext();
520
521    switch (attr->getKind()) {
522    OBJC_POINTER_TYPE_ATTRS_CASELIST:
523      distributeObjCPointerTypeAttrFromDeclarator(state, *attr, declSpecType);
524      break;
525
526    case AttributeList::AT_ns_returns_retained:
527      if (!state.getSema().getLangOptions().ObjCAutoRefCount)
528        break;
529      // fallthrough
530
531    FUNCTION_TYPE_ATTRS_CASELIST:
532      distributeFunctionTypeAttrFromDeclarator(state, *attr, declSpecType);
533      break;
534
535    default:
536      break;
537    }
538  } while ((attr = next));
539}
540
541/// Add a synthetic '()' to a block-literal declarator if it is
542/// required, given the return type.
543static void maybeSynthesizeBlockSignature(TypeProcessingState &state,
544                                          QualType declSpecType) {
545  Declarator &declarator = state.getDeclarator();
546
547  // First, check whether the declarator would produce a function,
548  // i.e. whether the innermost semantic chunk is a function.
549  if (declarator.isFunctionDeclarator()) {
550    // If so, make that declarator a prototyped declarator.
551    declarator.getFunctionTypeInfo().hasPrototype = true;
552    return;
553  }
554
555  // If there are any type objects, the type as written won't name a
556  // function, regardless of the decl spec type.  This is because a
557  // block signature declarator is always an abstract-declarator, and
558  // abstract-declarators can't just be parentheses chunks.  Therefore
559  // we need to build a function chunk unless there are no type
560  // objects and the decl spec type is a function.
561  if (!declarator.getNumTypeObjects() && declSpecType->isFunctionType())
562    return;
563
564  // Note that there *are* cases with invalid declarators where
565  // declarators consist solely of parentheses.  In general, these
566  // occur only in failed efforts to make function declarators, so
567  // faking up the function chunk is still the right thing to do.
568
569  // Otherwise, we need to fake up a function declarator.
570  SourceLocation loc = declarator.getSourceRange().getBegin();
571
572  // ...and *prepend* it to the declarator.
573  declarator.AddInnermostTypeInfo(DeclaratorChunk::getFunction(
574                             /*proto*/ true,
575                             /*variadic*/ false, SourceLocation(),
576                             /*args*/ 0, 0,
577                             /*type quals*/ 0,
578                             /*ref-qualifier*/true, SourceLocation(),
579                             /*EH*/ EST_None, SourceLocation(), 0, 0, 0, 0,
580                             /*parens*/ loc, loc,
581                             declarator));
582
583  // For consistency, make sure the state still has us as processing
584  // the decl spec.
585  assert(state.getCurrentChunkIndex() == declarator.getNumTypeObjects() - 1);
586  state.setCurrentChunkIndex(declarator.getNumTypeObjects());
587}
588
589/// \brief Convert the specified declspec to the appropriate type
590/// object.
591/// \param D  the declarator containing the declaration specifier.
592/// \returns The type described by the declaration specifiers.  This function
593/// never returns null.
594static QualType ConvertDeclSpecToType(Sema &S, TypeProcessingState &state) {
595  // FIXME: Should move the logic from DeclSpec::Finish to here for validity
596  // checking.
597
598  Declarator &declarator = state.getDeclarator();
599  const DeclSpec &DS = declarator.getDeclSpec();
600  SourceLocation DeclLoc = declarator.getIdentifierLoc();
601  if (DeclLoc.isInvalid())
602    DeclLoc = DS.getSourceRange().getBegin();
603
604  ASTContext &Context = S.Context;
605
606  QualType Result;
607  switch (DS.getTypeSpecType()) {
608  case DeclSpec::TST_void:
609    Result = Context.VoidTy;
610    break;
611  case DeclSpec::TST_char:
612    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
613      Result = Context.CharTy;
614    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed)
615      Result = Context.SignedCharTy;
616    else {
617      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
618             "Unknown TSS value");
619      Result = Context.UnsignedCharTy;
620    }
621    break;
622  case DeclSpec::TST_wchar:
623    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
624      Result = Context.WCharTy;
625    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed) {
626      S.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
627        << DS.getSpecifierName(DS.getTypeSpecType());
628      Result = Context.getSignedWCharType();
629    } else {
630      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
631        "Unknown TSS value");
632      S.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
633        << DS.getSpecifierName(DS.getTypeSpecType());
634      Result = Context.getUnsignedWCharType();
635    }
636    break;
637  case DeclSpec::TST_char16:
638      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
639        "Unknown TSS value");
640      Result = Context.Char16Ty;
641    break;
642  case DeclSpec::TST_char32:
643      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
644        "Unknown TSS value");
645      Result = Context.Char32Ty;
646    break;
647  case DeclSpec::TST_unspecified:
648    // "<proto1,proto2>" is an objc qualified ID with a missing id.
649    if (DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers()) {
650      Result = Context.getObjCObjectType(Context.ObjCBuiltinIdTy,
651                                         (ObjCProtocolDecl**)PQ,
652                                         DS.getNumProtocolQualifiers());
653      Result = Context.getObjCObjectPointerType(Result);
654      break;
655    }
656
657    // If this is a missing declspec in a block literal return context, then it
658    // is inferred from the return statements inside the block.
659    if (isOmittedBlockReturnType(declarator)) {
660      Result = Context.DependentTy;
661      break;
662    }
663
664    // Unspecified typespec defaults to int in C90.  However, the C90 grammar
665    // [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
666    // type-qualifier, or storage-class-specifier.  If not, emit an extwarn.
667    // Note that the one exception to this is function definitions, which are
668    // allowed to be completely missing a declspec.  This is handled in the
669    // parser already though by it pretending to have seen an 'int' in this
670    // case.
671    if (S.getLangOptions().ImplicitInt) {
672      // In C89 mode, we only warn if there is a completely missing declspec
673      // when one is not allowed.
674      if (DS.isEmpty()) {
675        S.Diag(DeclLoc, diag::ext_missing_declspec)
676          << DS.getSourceRange()
677        << FixItHint::CreateInsertion(DS.getSourceRange().getBegin(), "int");
678      }
679    } else if (!DS.hasTypeSpecifier()) {
680      // C99 and C++ require a type specifier.  For example, C99 6.7.2p2 says:
681      // "At least one type specifier shall be given in the declaration
682      // specifiers in each declaration, and in the specifier-qualifier list in
683      // each struct declaration and type name."
684      // FIXME: Does Microsoft really have the implicit int extension in C++?
685      if (S.getLangOptions().CPlusPlus &&
686          !S.getLangOptions().Microsoft) {
687        S.Diag(DeclLoc, diag::err_missing_type_specifier)
688          << DS.getSourceRange();
689
690        // When this occurs in C++ code, often something is very broken with the
691        // value being declared, poison it as invalid so we don't get chains of
692        // errors.
693        declarator.setInvalidType(true);
694      } else {
695        S.Diag(DeclLoc, diag::ext_missing_type_specifier)
696          << DS.getSourceRange();
697      }
698    }
699
700    // FALL THROUGH.
701  case DeclSpec::TST_int: {
702    if (DS.getTypeSpecSign() != DeclSpec::TSS_unsigned) {
703      switch (DS.getTypeSpecWidth()) {
704      case DeclSpec::TSW_unspecified: Result = Context.IntTy; break;
705      case DeclSpec::TSW_short:       Result = Context.ShortTy; break;
706      case DeclSpec::TSW_long:        Result = Context.LongTy; break;
707      case DeclSpec::TSW_longlong:
708        Result = Context.LongLongTy;
709
710        // long long is a C99 feature.
711        if (!S.getLangOptions().C99 &&
712            !S.getLangOptions().CPlusPlus0x)
713          S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_longlong);
714        break;
715      }
716    } else {
717      switch (DS.getTypeSpecWidth()) {
718      case DeclSpec::TSW_unspecified: Result = Context.UnsignedIntTy; break;
719      case DeclSpec::TSW_short:       Result = Context.UnsignedShortTy; break;
720      case DeclSpec::TSW_long:        Result = Context.UnsignedLongTy; break;
721      case DeclSpec::TSW_longlong:
722        Result = Context.UnsignedLongLongTy;
723
724        // long long is a C99 feature.
725        if (!S.getLangOptions().C99 &&
726            !S.getLangOptions().CPlusPlus0x)
727          S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_longlong);
728        break;
729      }
730    }
731    break;
732  }
733  case DeclSpec::TST_float: Result = Context.FloatTy; break;
734  case DeclSpec::TST_double:
735    if (DS.getTypeSpecWidth() == DeclSpec::TSW_long)
736      Result = Context.LongDoubleTy;
737    else
738      Result = Context.DoubleTy;
739
740    if (S.getLangOptions().OpenCL && !S.getOpenCLOptions().cl_khr_fp64) {
741      S.Diag(DS.getTypeSpecTypeLoc(), diag::err_double_requires_fp64);
742      declarator.setInvalidType(true);
743    }
744    break;
745  case DeclSpec::TST_bool: Result = Context.BoolTy; break; // _Bool or bool
746  case DeclSpec::TST_decimal32:    // _Decimal32
747  case DeclSpec::TST_decimal64:    // _Decimal64
748  case DeclSpec::TST_decimal128:   // _Decimal128
749    S.Diag(DS.getTypeSpecTypeLoc(), diag::err_decimal_unsupported);
750    Result = Context.IntTy;
751    declarator.setInvalidType(true);
752    break;
753  case DeclSpec::TST_class:
754  case DeclSpec::TST_enum:
755  case DeclSpec::TST_union:
756  case DeclSpec::TST_struct: {
757    TypeDecl *D = dyn_cast_or_null<TypeDecl>(DS.getRepAsDecl());
758    if (!D) {
759      // This can happen in C++ with ambiguous lookups.
760      Result = Context.IntTy;
761      declarator.setInvalidType(true);
762      break;
763    }
764
765    // If the type is deprecated or unavailable, diagnose it.
766    S.DiagnoseUseOfDecl(D, DS.getTypeSpecTypeNameLoc());
767
768    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
769           DS.getTypeSpecSign() == 0 && "No qualifiers on tag names!");
770
771    // TypeQuals handled by caller.
772    Result = Context.getTypeDeclType(D);
773
774    // In both C and C++, make an ElaboratedType.
775    ElaboratedTypeKeyword Keyword
776      = ElaboratedType::getKeywordForTypeSpec(DS.getTypeSpecType());
777    Result = S.getElaboratedType(Keyword, DS.getTypeSpecScope(), Result);
778
779    if (D->isInvalidDecl())
780      declarator.setInvalidType(true);
781    break;
782  }
783  case DeclSpec::TST_typename: {
784    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
785           DS.getTypeSpecSign() == 0 &&
786           "Can't handle qualifiers on typedef names yet!");
787    Result = S.GetTypeFromParser(DS.getRepAsType());
788    if (Result.isNull())
789      declarator.setInvalidType(true);
790    else if (DeclSpec::ProtocolQualifierListTy PQ
791               = DS.getProtocolQualifiers()) {
792      if (const ObjCObjectType *ObjT = Result->getAs<ObjCObjectType>()) {
793        // Silently drop any existing protocol qualifiers.
794        // TODO: determine whether that's the right thing to do.
795        if (ObjT->getNumProtocols())
796          Result = ObjT->getBaseType();
797
798        if (DS.getNumProtocolQualifiers())
799          Result = Context.getObjCObjectType(Result,
800                                             (ObjCProtocolDecl**) PQ,
801                                             DS.getNumProtocolQualifiers());
802      } else if (Result->isObjCIdType()) {
803        // id<protocol-list>
804        Result = Context.getObjCObjectType(Context.ObjCBuiltinIdTy,
805                                           (ObjCProtocolDecl**) PQ,
806                                           DS.getNumProtocolQualifiers());
807        Result = Context.getObjCObjectPointerType(Result);
808      } else if (Result->isObjCClassType()) {
809        // Class<protocol-list>
810        Result = Context.getObjCObjectType(Context.ObjCBuiltinClassTy,
811                                           (ObjCProtocolDecl**) PQ,
812                                           DS.getNumProtocolQualifiers());
813        Result = Context.getObjCObjectPointerType(Result);
814      } else {
815        S.Diag(DeclLoc, diag::err_invalid_protocol_qualifiers)
816          << DS.getSourceRange();
817        declarator.setInvalidType(true);
818      }
819    }
820
821    // TypeQuals handled by caller.
822    break;
823  }
824  case DeclSpec::TST_typeofType:
825    // FIXME: Preserve type source info.
826    Result = S.GetTypeFromParser(DS.getRepAsType());
827    assert(!Result.isNull() && "Didn't get a type for typeof?");
828    if (!Result->isDependentType())
829      if (const TagType *TT = Result->getAs<TagType>())
830        S.DiagnoseUseOfDecl(TT->getDecl(), DS.getTypeSpecTypeLoc());
831    // TypeQuals handled by caller.
832    Result = Context.getTypeOfType(Result);
833    break;
834  case DeclSpec::TST_typeofExpr: {
835    Expr *E = DS.getRepAsExpr();
836    assert(E && "Didn't get an expression for typeof?");
837    // TypeQuals handled by caller.
838    Result = S.BuildTypeofExprType(E, DS.getTypeSpecTypeLoc());
839    if (Result.isNull()) {
840      Result = Context.IntTy;
841      declarator.setInvalidType(true);
842    }
843    break;
844  }
845  case DeclSpec::TST_decltype: {
846    Expr *E = DS.getRepAsExpr();
847    assert(E && "Didn't get an expression for decltype?");
848    // TypeQuals handled by caller.
849    Result = S.BuildDecltypeType(E, DS.getTypeSpecTypeLoc());
850    if (Result.isNull()) {
851      Result = Context.IntTy;
852      declarator.setInvalidType(true);
853    }
854    break;
855  }
856  case DeclSpec::TST_underlyingType:
857    Result = S.GetTypeFromParser(DS.getRepAsType());
858    assert(!Result.isNull() && "Didn't get a type for __underlying_type?");
859    Result = S.BuildUnaryTransformType(Result,
860                                       UnaryTransformType::EnumUnderlyingType,
861                                       DS.getTypeSpecTypeLoc());
862    if (Result.isNull()) {
863      Result = Context.IntTy;
864      declarator.setInvalidType(true);
865    }
866    break;
867
868  case DeclSpec::TST_auto: {
869    // TypeQuals handled by caller.
870    Result = Context.getAutoType(QualType());
871    break;
872  }
873
874  case DeclSpec::TST_unknown_anytype:
875    Result = Context.UnknownAnyTy;
876    break;
877
878  case DeclSpec::TST_error:
879    Result = Context.IntTy;
880    declarator.setInvalidType(true);
881    break;
882  }
883
884  // Handle complex types.
885  if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex) {
886    if (S.getLangOptions().Freestanding)
887      S.Diag(DS.getTypeSpecComplexLoc(), diag::ext_freestanding_complex);
888    Result = Context.getComplexType(Result);
889  } else if (DS.isTypeAltiVecVector()) {
890    unsigned typeSize = static_cast<unsigned>(Context.getTypeSize(Result));
891    assert(typeSize > 0 && "type size for vector must be greater than 0 bits");
892    VectorType::VectorKind VecKind = VectorType::AltiVecVector;
893    if (DS.isTypeAltiVecPixel())
894      VecKind = VectorType::AltiVecPixel;
895    else if (DS.isTypeAltiVecBool())
896      VecKind = VectorType::AltiVecBool;
897    Result = Context.getVectorType(Result, 128/typeSize, VecKind);
898  }
899
900  // FIXME: Imaginary.
901  if (DS.getTypeSpecComplex() == DeclSpec::TSC_imaginary)
902    S.Diag(DS.getTypeSpecComplexLoc(), diag::err_imaginary_not_supported);
903
904  // Before we process any type attributes, synthesize a block literal
905  // function declarator if necessary.
906  if (declarator.getContext() == Declarator::BlockLiteralContext)
907    maybeSynthesizeBlockSignature(state, Result);
908
909  // Apply any type attributes from the decl spec.  This may cause the
910  // list of type attributes to be temporarily saved while the type
911  // attributes are pushed around.
912  if (AttributeList *attrs = DS.getAttributes().getList())
913    processTypeAttrs(state, Result, true, attrs);
914
915  // Apply const/volatile/restrict qualifiers to T.
916  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
917
918    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
919    // or incomplete types shall not be restrict-qualified."  C++ also allows
920    // restrict-qualified references.
921    if (TypeQuals & DeclSpec::TQ_restrict) {
922      if (Result->isAnyPointerType() || Result->isReferenceType()) {
923        QualType EltTy;
924        if (Result->isObjCObjectPointerType())
925          EltTy = Result;
926        else
927          EltTy = Result->isPointerType() ?
928                    Result->getAs<PointerType>()->getPointeeType() :
929                    Result->getAs<ReferenceType>()->getPointeeType();
930
931        // If we have a pointer or reference, the pointee must have an object
932        // incomplete type.
933        if (!EltTy->isIncompleteOrObjectType()) {
934          S.Diag(DS.getRestrictSpecLoc(),
935               diag::err_typecheck_invalid_restrict_invalid_pointee)
936            << EltTy << DS.getSourceRange();
937          TypeQuals &= ~DeclSpec::TQ_restrict; // Remove the restrict qualifier.
938        }
939      } else {
940        S.Diag(DS.getRestrictSpecLoc(),
941               diag::err_typecheck_invalid_restrict_not_pointer)
942          << Result << DS.getSourceRange();
943        TypeQuals &= ~DeclSpec::TQ_restrict; // Remove the restrict qualifier.
944      }
945    }
946
947    // Warn about CV qualifiers on functions: C99 6.7.3p8: "If the specification
948    // of a function type includes any type qualifiers, the behavior is
949    // undefined."
950    if (Result->isFunctionType() && TypeQuals) {
951      // Get some location to point at, either the C or V location.
952      SourceLocation Loc;
953      if (TypeQuals & DeclSpec::TQ_const)
954        Loc = DS.getConstSpecLoc();
955      else if (TypeQuals & DeclSpec::TQ_volatile)
956        Loc = DS.getVolatileSpecLoc();
957      else {
958        assert((TypeQuals & DeclSpec::TQ_restrict) &&
959               "Has CVR quals but not C, V, or R?");
960        Loc = DS.getRestrictSpecLoc();
961      }
962      S.Diag(Loc, diag::warn_typecheck_function_qualifiers)
963        << Result << DS.getSourceRange();
964    }
965
966    // C++ [dcl.ref]p1:
967    //   Cv-qualified references are ill-formed except when the
968    //   cv-qualifiers are introduced through the use of a typedef
969    //   (7.1.3) or of a template type argument (14.3), in which
970    //   case the cv-qualifiers are ignored.
971    // FIXME: Shouldn't we be checking SCS_typedef here?
972    if (DS.getTypeSpecType() == DeclSpec::TST_typename &&
973        TypeQuals && Result->isReferenceType()) {
974      TypeQuals &= ~DeclSpec::TQ_const;
975      TypeQuals &= ~DeclSpec::TQ_volatile;
976    }
977
978    Qualifiers Quals = Qualifiers::fromCVRMask(TypeQuals);
979    Result = Context.getQualifiedType(Result, Quals);
980  }
981
982  return Result;
983}
984
985static std::string getPrintableNameForEntity(DeclarationName Entity) {
986  if (Entity)
987    return Entity.getAsString();
988
989  return "type name";
990}
991
992QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
993                                  Qualifiers Qs) {
994  // Enforce C99 6.7.3p2: "Types other than pointer types derived from
995  // object or incomplete types shall not be restrict-qualified."
996  if (Qs.hasRestrict()) {
997    unsigned DiagID = 0;
998    QualType ProblemTy;
999
1000    const Type *Ty = T->getCanonicalTypeInternal().getTypePtr();
1001    if (const ReferenceType *RTy = dyn_cast<ReferenceType>(Ty)) {
1002      if (!RTy->getPointeeType()->isIncompleteOrObjectType()) {
1003        DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
1004        ProblemTy = T->getAs<ReferenceType>()->getPointeeType();
1005      }
1006    } else if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
1007      if (!PTy->getPointeeType()->isIncompleteOrObjectType()) {
1008        DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
1009        ProblemTy = T->getAs<PointerType>()->getPointeeType();
1010      }
1011    } else if (const MemberPointerType *PTy = dyn_cast<MemberPointerType>(Ty)) {
1012      if (!PTy->getPointeeType()->isIncompleteOrObjectType()) {
1013        DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
1014        ProblemTy = T->getAs<PointerType>()->getPointeeType();
1015      }
1016    } else if (!Ty->isDependentType()) {
1017      // FIXME: this deserves a proper diagnostic
1018      DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
1019      ProblemTy = T;
1020    }
1021
1022    if (DiagID) {
1023      Diag(Loc, DiagID) << ProblemTy;
1024      Qs.removeRestrict();
1025    }
1026  }
1027
1028  return Context.getQualifiedType(T, Qs);
1029}
1030
1031/// \brief Build a paren type including \p T.
1032QualType Sema::BuildParenType(QualType T) {
1033  return Context.getParenType(T);
1034}
1035
1036/// Given that we're building a pointer or reference to the given
1037static QualType inferARCLifetimeForPointee(Sema &S, QualType type,
1038                                           SourceLocation loc,
1039                                           bool isReference) {
1040  // Bail out if retention is unrequired or already specified.
1041  if (!type->isObjCLifetimeType() ||
1042      type.getObjCLifetime() != Qualifiers::OCL_None)
1043    return type;
1044
1045  Qualifiers::ObjCLifetime implicitLifetime = Qualifiers::OCL_None;
1046
1047  // If the object type is const-qualified, we can safely use
1048  // __unsafe_unretained.  This is safe (because there are no read
1049  // barriers), and it'll be safe to coerce anything but __weak* to
1050  // the resulting type.
1051  if (type.isConstQualified()) {
1052    implicitLifetime = Qualifiers::OCL_ExplicitNone;
1053
1054  // Otherwise, check whether the static type does not require
1055  // retaining.  This currently only triggers for Class (possibly
1056  // protocol-qualifed, and arrays thereof).
1057  } else if (type->isObjCARCImplicitlyUnretainedType()) {
1058    implicitLifetime = Qualifiers::OCL_ExplicitNone;
1059
1060  // If that failed, give an error and recover using __autoreleasing.
1061  } else {
1062    // These types can show up in private ivars in system headers, so
1063    // we need this to not be an error in those cases.  Instead we
1064    // want to delay.
1065    if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
1066      S.DelayedDiagnostics.add(
1067          sema::DelayedDiagnostic::makeForbiddenType(loc,
1068              diag::err_arc_indirect_no_lifetime, type, isReference));
1069    } else {
1070      S.Diag(loc, diag::err_arc_indirect_no_lifetime) << type << isReference;
1071    }
1072    implicitLifetime = Qualifiers::OCL_Autoreleasing;
1073  }
1074  assert(implicitLifetime && "didn't infer any lifetime!");
1075
1076  Qualifiers qs;
1077  qs.addObjCLifetime(implicitLifetime);
1078  return S.Context.getQualifiedType(type, qs);
1079}
1080
1081/// \brief Build a pointer type.
1082///
1083/// \param T The type to which we'll be building a pointer.
1084///
1085/// \param Loc The location of the entity whose type involves this
1086/// pointer type or, if there is no such entity, the location of the
1087/// type that will have pointer type.
1088///
1089/// \param Entity The name of the entity that involves the pointer
1090/// type, if known.
1091///
1092/// \returns A suitable pointer type, if there are no
1093/// errors. Otherwise, returns a NULL type.
1094QualType Sema::BuildPointerType(QualType T,
1095                                SourceLocation Loc, DeclarationName Entity) {
1096  if (T->isReferenceType()) {
1097    // C++ 8.3.2p4: There shall be no ... pointers to references ...
1098    Diag(Loc, diag::err_illegal_decl_pointer_to_reference)
1099      << getPrintableNameForEntity(Entity) << T;
1100    return QualType();
1101  }
1102
1103  assert(!T->isObjCObjectType() && "Should build ObjCObjectPointerType");
1104
1105  // In ARC, it is forbidden to build pointers to unqualified pointers.
1106  if (getLangOptions().ObjCAutoRefCount)
1107    T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ false);
1108
1109  // Build the pointer type.
1110  return Context.getPointerType(T);
1111}
1112
1113/// \brief Build a reference type.
1114///
1115/// \param T The type to which we'll be building a reference.
1116///
1117/// \param Loc The location of the entity whose type involves this
1118/// reference type or, if there is no such entity, the location of the
1119/// type that will have reference type.
1120///
1121/// \param Entity The name of the entity that involves the reference
1122/// type, if known.
1123///
1124/// \returns A suitable reference type, if there are no
1125/// errors. Otherwise, returns a NULL type.
1126QualType Sema::BuildReferenceType(QualType T, bool SpelledAsLValue,
1127                                  SourceLocation Loc,
1128                                  DeclarationName Entity) {
1129  assert(Context.getCanonicalType(T) != Context.OverloadTy &&
1130         "Unresolved overloaded function type");
1131
1132  // C++0x [dcl.ref]p6:
1133  //   If a typedef (7.1.3), a type template-parameter (14.3.1), or a
1134  //   decltype-specifier (7.1.6.2) denotes a type TR that is a reference to a
1135  //   type T, an attempt to create the type "lvalue reference to cv TR" creates
1136  //   the type "lvalue reference to T", while an attempt to create the type
1137  //   "rvalue reference to cv TR" creates the type TR.
1138  bool LValueRef = SpelledAsLValue || T->getAs<LValueReferenceType>();
1139
1140  // C++ [dcl.ref]p4: There shall be no references to references.
1141  //
1142  // According to C++ DR 106, references to references are only
1143  // diagnosed when they are written directly (e.g., "int & &"),
1144  // but not when they happen via a typedef:
1145  //
1146  //   typedef int& intref;
1147  //   typedef intref& intref2;
1148  //
1149  // Parser::ParseDeclaratorInternal diagnoses the case where
1150  // references are written directly; here, we handle the
1151  // collapsing of references-to-references as described in C++0x.
1152  // DR 106 and 540 introduce reference-collapsing into C++98/03.
1153
1154  // C++ [dcl.ref]p1:
1155  //   A declarator that specifies the type "reference to cv void"
1156  //   is ill-formed.
1157  if (T->isVoidType()) {
1158    Diag(Loc, diag::err_reference_to_void);
1159    return QualType();
1160  }
1161
1162  // In ARC, it is forbidden to build references to unqualified pointers.
1163  if (getLangOptions().ObjCAutoRefCount)
1164    T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ true);
1165
1166  // Handle restrict on references.
1167  if (LValueRef)
1168    return Context.getLValueReferenceType(T, SpelledAsLValue);
1169  return Context.getRValueReferenceType(T);
1170}
1171
1172/// Check whether the specified array size makes the array type a VLA.  If so,
1173/// return true, if not, return the size of the array in SizeVal.
1174static bool isArraySizeVLA(Expr *ArraySize, llvm::APSInt &SizeVal, Sema &S) {
1175  // If the size is an ICE, it certainly isn't a VLA.
1176  if (ArraySize->isIntegerConstantExpr(SizeVal, S.Context))
1177    return false;
1178
1179  // If we're in a GNU mode (like gnu99, but not c99) accept any evaluatable
1180  // value as an extension.
1181  Expr::EvalResult Result;
1182  if (S.LangOpts.GNUMode && ArraySize->Evaluate(Result, S.Context)) {
1183    if (!Result.hasSideEffects() && Result.Val.isInt()) {
1184      SizeVal = Result.Val.getInt();
1185      S.Diag(ArraySize->getLocStart(), diag::ext_vla_folded_to_constant);
1186      return false;
1187    }
1188  }
1189
1190  return true;
1191}
1192
1193
1194/// \brief Build an array type.
1195///
1196/// \param T The type of each element in the array.
1197///
1198/// \param ASM C99 array size modifier (e.g., '*', 'static').
1199///
1200/// \param ArraySize Expression describing the size of the array.
1201///
1202/// \param Loc The location of the entity whose type involves this
1203/// array type or, if there is no such entity, the location of the
1204/// type that will have array type.
1205///
1206/// \param Entity The name of the entity that involves the array
1207/// type, if known.
1208///
1209/// \returns A suitable array type, if there are no errors. Otherwise,
1210/// returns a NULL type.
1211QualType Sema::BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM,
1212                              Expr *ArraySize, unsigned Quals,
1213                              SourceRange Brackets, DeclarationName Entity) {
1214
1215  SourceLocation Loc = Brackets.getBegin();
1216  if (getLangOptions().CPlusPlus) {
1217    // C++ [dcl.array]p1:
1218    //   T is called the array element type; this type shall not be a reference
1219    //   type, the (possibly cv-qualified) type void, a function type or an
1220    //   abstract class type.
1221    //
1222    // Note: function types are handled in the common path with C.
1223    if (T->isReferenceType()) {
1224      Diag(Loc, diag::err_illegal_decl_array_of_references)
1225      << getPrintableNameForEntity(Entity) << T;
1226      return QualType();
1227    }
1228
1229    if (T->isVoidType()) {
1230      Diag(Loc, diag::err_illegal_decl_array_incomplete_type) << T;
1231      return QualType();
1232    }
1233
1234    if (RequireNonAbstractType(Brackets.getBegin(), T,
1235                               diag::err_array_of_abstract_type))
1236      return QualType();
1237
1238  } else {
1239    // C99 6.7.5.2p1: If the element type is an incomplete or function type,
1240    // reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
1241    if (RequireCompleteType(Loc, T,
1242                            diag::err_illegal_decl_array_incomplete_type))
1243      return QualType();
1244  }
1245
1246  if (T->isFunctionType()) {
1247    Diag(Loc, diag::err_illegal_decl_array_of_functions)
1248      << getPrintableNameForEntity(Entity) << T;
1249    return QualType();
1250  }
1251
1252  if (T->getContainedAutoType()) {
1253    Diag(Loc, diag::err_illegal_decl_array_of_auto)
1254      << getPrintableNameForEntity(Entity) << T;
1255    return QualType();
1256  }
1257
1258  if (const RecordType *EltTy = T->getAs<RecordType>()) {
1259    // If the element type is a struct or union that contains a variadic
1260    // array, accept it as a GNU extension: C99 6.7.2.1p2.
1261    if (EltTy->getDecl()->hasFlexibleArrayMember())
1262      Diag(Loc, diag::ext_flexible_array_in_array) << T;
1263  } else if (T->isObjCObjectType()) {
1264    Diag(Loc, diag::err_objc_array_of_interfaces) << T;
1265    return QualType();
1266  }
1267
1268  // Do lvalue-to-rvalue conversions on the array size expression.
1269  if (ArraySize && !ArraySize->isRValue()) {
1270    ExprResult Result = DefaultLvalueConversion(ArraySize);
1271    if (Result.isInvalid())
1272      return QualType();
1273
1274    ArraySize = Result.take();
1275  }
1276
1277  // C99 6.7.5.2p1: The size expression shall have integer type.
1278  // TODO: in theory, if we were insane, we could allow contextual
1279  // conversions to integer type here.
1280  if (ArraySize && !ArraySize->isTypeDependent() &&
1281      !ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
1282    Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
1283      << ArraySize->getType() << ArraySize->getSourceRange();
1284    return QualType();
1285  }
1286  llvm::APSInt ConstVal(Context.getTypeSize(Context.getSizeType()));
1287  if (!ArraySize) {
1288    if (ASM == ArrayType::Star)
1289      T = Context.getVariableArrayType(T, 0, ASM, Quals, Brackets);
1290    else
1291      T = Context.getIncompleteArrayType(T, ASM, Quals);
1292  } else if (ArraySize->isTypeDependent() || ArraySize->isValueDependent()) {
1293    T = Context.getDependentSizedArrayType(T, ArraySize, ASM, Quals, Brackets);
1294  } else if (!T->isDependentType() && !T->isIncompleteType() &&
1295             !T->isConstantSizeType()) {
1296    // C99: an array with an element type that has a non-constant-size is a VLA.
1297    T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
1298  } else if (isArraySizeVLA(ArraySize, ConstVal, *this)) {
1299    // C99: an array with a non-ICE size is a VLA.  We accept any expression
1300    // that we can fold to a non-zero positive value as an extension.
1301    T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
1302  } else {
1303    // C99 6.7.5.2p1: If the expression is a constant expression, it shall
1304    // have a value greater than zero.
1305    if (ConstVal.isSigned() && ConstVal.isNegative()) {
1306      if (Entity)
1307        Diag(ArraySize->getLocStart(), diag::err_decl_negative_array_size)
1308          << getPrintableNameForEntity(Entity) << ArraySize->getSourceRange();
1309      else
1310        Diag(ArraySize->getLocStart(), diag::err_typecheck_negative_array_size)
1311          << ArraySize->getSourceRange();
1312      return QualType();
1313    }
1314    if (ConstVal == 0) {
1315      // GCC accepts zero sized static arrays. We allow them when
1316      // we're not in a SFINAE context.
1317      Diag(ArraySize->getLocStart(),
1318           isSFINAEContext()? diag::err_typecheck_zero_array_size
1319                            : diag::ext_typecheck_zero_array_size)
1320        << ArraySize->getSourceRange();
1321    } else if (!T->isDependentType() && !T->isVariablyModifiedType() &&
1322               !T->isIncompleteType()) {
1323      // Is the array too large?
1324      unsigned ActiveSizeBits
1325        = ConstantArrayType::getNumAddressingBits(Context, T, ConstVal);
1326      if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context))
1327        Diag(ArraySize->getLocStart(), diag::err_array_too_large)
1328          << ConstVal.toString(10)
1329          << ArraySize->getSourceRange();
1330    }
1331
1332    T = Context.getConstantArrayType(T, ConstVal, ASM, Quals);
1333  }
1334  // If this is not C99, extwarn about VLA's and C99 array size modifiers.
1335  if (!getLangOptions().C99) {
1336    if (T->isVariableArrayType()) {
1337      // Prohibit the use of non-POD types in VLAs.
1338      QualType BaseT = Context.getBaseElementType(T);
1339      if (!T->isDependentType() &&
1340          !BaseT.isPODType(Context) &&
1341          !BaseT->isObjCLifetimeType()) {
1342        Diag(Loc, diag::err_vla_non_pod)
1343          << BaseT;
1344        return QualType();
1345      }
1346      // Prohibit the use of VLAs during template argument deduction.
1347      else if (isSFINAEContext()) {
1348        Diag(Loc, diag::err_vla_in_sfinae);
1349        return QualType();
1350      }
1351      // Just extwarn about VLAs.
1352      else
1353        Diag(Loc, diag::ext_vla);
1354    } else if (ASM != ArrayType::Normal || Quals != 0)
1355      Diag(Loc,
1356           getLangOptions().CPlusPlus? diag::err_c99_array_usage_cxx
1357                                     : diag::ext_c99_array_usage);
1358  }
1359
1360  return T;
1361}
1362
1363/// \brief Build an ext-vector type.
1364///
1365/// Run the required checks for the extended vector type.
1366QualType Sema::BuildExtVectorType(QualType T, Expr *ArraySize,
1367                                  SourceLocation AttrLoc) {
1368  // unlike gcc's vector_size attribute, we do not allow vectors to be defined
1369  // in conjunction with complex types (pointers, arrays, functions, etc.).
1370  if (!T->isDependentType() &&
1371      !T->isIntegerType() && !T->isRealFloatingType()) {
1372    Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << T;
1373    return QualType();
1374  }
1375
1376  if (!ArraySize->isTypeDependent() && !ArraySize->isValueDependent()) {
1377    llvm::APSInt vecSize(32);
1378    if (!ArraySize->isIntegerConstantExpr(vecSize, Context)) {
1379      Diag(AttrLoc, diag::err_attribute_argument_not_int)
1380        << "ext_vector_type" << ArraySize->getSourceRange();
1381      return QualType();
1382    }
1383
1384    // unlike gcc's vector_size attribute, the size is specified as the
1385    // number of elements, not the number of bytes.
1386    unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue());
1387
1388    if (vectorSize == 0) {
1389      Diag(AttrLoc, diag::err_attribute_zero_size)
1390      << ArraySize->getSourceRange();
1391      return QualType();
1392    }
1393
1394    return Context.getExtVectorType(T, vectorSize);
1395  }
1396
1397  return Context.getDependentSizedExtVectorType(T, ArraySize, AttrLoc);
1398}
1399
1400/// \brief Build a function type.
1401///
1402/// This routine checks the function type according to C++ rules and
1403/// under the assumption that the result type and parameter types have
1404/// just been instantiated from a template. It therefore duplicates
1405/// some of the behavior of GetTypeForDeclarator, but in a much
1406/// simpler form that is only suitable for this narrow use case.
1407///
1408/// \param T The return type of the function.
1409///
1410/// \param ParamTypes The parameter types of the function. This array
1411/// will be modified to account for adjustments to the types of the
1412/// function parameters.
1413///
1414/// \param NumParamTypes The number of parameter types in ParamTypes.
1415///
1416/// \param Variadic Whether this is a variadic function type.
1417///
1418/// \param Quals The cvr-qualifiers to be applied to the function type.
1419///
1420/// \param Loc The location of the entity whose type involves this
1421/// function type or, if there is no such entity, the location of the
1422/// type that will have function type.
1423///
1424/// \param Entity The name of the entity that involves the function
1425/// type, if known.
1426///
1427/// \returns A suitable function type, if there are no
1428/// errors. Otherwise, returns a NULL type.
1429QualType Sema::BuildFunctionType(QualType T,
1430                                 QualType *ParamTypes,
1431                                 unsigned NumParamTypes,
1432                                 bool Variadic, unsigned Quals,
1433                                 RefQualifierKind RefQualifier,
1434                                 SourceLocation Loc, DeclarationName Entity,
1435                                 FunctionType::ExtInfo Info) {
1436  if (T->isArrayType() || T->isFunctionType()) {
1437    Diag(Loc, diag::err_func_returning_array_function)
1438      << T->isFunctionType() << T;
1439    return QualType();
1440  }
1441
1442  bool Invalid = false;
1443  for (unsigned Idx = 0; Idx < NumParamTypes; ++Idx) {
1444    QualType ParamType = adjustParameterType(ParamTypes[Idx]);
1445    if (ParamType->isVoidType()) {
1446      Diag(Loc, diag::err_param_with_void_type);
1447      Invalid = true;
1448    }
1449
1450    ParamTypes[Idx] = ParamType;
1451  }
1452
1453  if (Invalid)
1454    return QualType();
1455
1456  FunctionProtoType::ExtProtoInfo EPI;
1457  EPI.Variadic = Variadic;
1458  EPI.TypeQuals = Quals;
1459  EPI.RefQualifier = RefQualifier;
1460  EPI.ExtInfo = Info;
1461
1462  return Context.getFunctionType(T, ParamTypes, NumParamTypes, EPI);
1463}
1464
1465/// \brief Build a member pointer type \c T Class::*.
1466///
1467/// \param T the type to which the member pointer refers.
1468/// \param Class the class type into which the member pointer points.
1469/// \param CVR Qualifiers applied to the member pointer type
1470/// \param Loc the location where this type begins
1471/// \param Entity the name of the entity that will have this member pointer type
1472///
1473/// \returns a member pointer type, if successful, or a NULL type if there was
1474/// an error.
1475QualType Sema::BuildMemberPointerType(QualType T, QualType Class,
1476                                      SourceLocation Loc,
1477                                      DeclarationName Entity) {
1478  // Verify that we're not building a pointer to pointer to function with
1479  // exception specification.
1480  if (CheckDistantExceptionSpec(T)) {
1481    Diag(Loc, diag::err_distant_exception_spec);
1482
1483    // FIXME: If we're doing this as part of template instantiation,
1484    // we should return immediately.
1485
1486    // Build the type anyway, but use the canonical type so that the
1487    // exception specifiers are stripped off.
1488    T = Context.getCanonicalType(T);
1489  }
1490
1491  // C++ 8.3.3p3: A pointer to member shall not point to ... a member
1492  //   with reference type, or "cv void."
1493  if (T->isReferenceType()) {
1494    Diag(Loc, diag::err_illegal_decl_mempointer_to_reference)
1495      << (Entity? Entity.getAsString() : "type name") << T;
1496    return QualType();
1497  }
1498
1499  if (T->isVoidType()) {
1500    Diag(Loc, diag::err_illegal_decl_mempointer_to_void)
1501      << (Entity? Entity.getAsString() : "type name");
1502    return QualType();
1503  }
1504
1505  if (!Class->isDependentType() && !Class->isRecordType()) {
1506    Diag(Loc, diag::err_mempointer_in_nonclass_type) << Class;
1507    return QualType();
1508  }
1509
1510  // In the Microsoft ABI, the class is allowed to be an incomplete
1511  // type. In such cases, the compiler makes a worst-case assumption.
1512  // We make no such assumption right now, so emit an error if the
1513  // class isn't a complete type.
1514  if (Context.Target.getCXXABI() == CXXABI_Microsoft &&
1515      RequireCompleteType(Loc, Class, diag::err_incomplete_type))
1516    return QualType();
1517
1518  return Context.getMemberPointerType(T, Class.getTypePtr());
1519}
1520
1521/// \brief Build a block pointer type.
1522///
1523/// \param T The type to which we'll be building a block pointer.
1524///
1525/// \param CVR The cvr-qualifiers to be applied to the block pointer type.
1526///
1527/// \param Loc The location of the entity whose type involves this
1528/// block pointer type or, if there is no such entity, the location of the
1529/// type that will have block pointer type.
1530///
1531/// \param Entity The name of the entity that involves the block pointer
1532/// type, if known.
1533///
1534/// \returns A suitable block pointer type, if there are no
1535/// errors. Otherwise, returns a NULL type.
1536QualType Sema::BuildBlockPointerType(QualType T,
1537                                     SourceLocation Loc,
1538                                     DeclarationName Entity) {
1539  if (!T->isFunctionType()) {
1540    Diag(Loc, diag::err_nonfunction_block_type);
1541    return QualType();
1542  }
1543
1544  return Context.getBlockPointerType(T);
1545}
1546
1547QualType Sema::GetTypeFromParser(ParsedType Ty, TypeSourceInfo **TInfo) {
1548  QualType QT = Ty.get();
1549  if (QT.isNull()) {
1550    if (TInfo) *TInfo = 0;
1551    return QualType();
1552  }
1553
1554  TypeSourceInfo *DI = 0;
1555  if (const LocInfoType *LIT = dyn_cast<LocInfoType>(QT)) {
1556    QT = LIT->getType();
1557    DI = LIT->getTypeSourceInfo();
1558  }
1559
1560  if (TInfo) *TInfo = DI;
1561  return QT;
1562}
1563
1564/// Given that this is the declaration of a parameter under ARC,
1565/// attempt to infer attributes and such for pointer-to-whatever
1566/// types.
1567static void inferARCWriteback(TypeProcessingState &state,
1568                              QualType &declSpecType) {
1569  Sema &S = state.getSema();
1570  Declarator &declarator = state.getDeclarator();
1571
1572  // TODO: should we care about decl qualifiers?
1573
1574  // Check whether the declarator has the expected form.  We walk
1575  // from the inside out in order to make the block logic work.
1576  unsigned outermostPointerIndex = 0;
1577  bool isBlockPointer = false;
1578  unsigned numPointers = 0;
1579  for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
1580    unsigned chunkIndex = i;
1581    DeclaratorChunk &chunk = declarator.getTypeObject(chunkIndex);
1582    switch (chunk.Kind) {
1583    case DeclaratorChunk::Paren:
1584      // Ignore parens.
1585      break;
1586
1587    case DeclaratorChunk::Reference:
1588    case DeclaratorChunk::Pointer:
1589      // Count the number of pointers.  Treat references
1590      // interchangeably as pointers; if they're mis-ordered, normal
1591      // type building will discover that.
1592      outermostPointerIndex = chunkIndex;
1593      numPointers++;
1594      break;
1595
1596    case DeclaratorChunk::BlockPointer:
1597      // If we have a pointer to block pointer, that's an acceptable
1598      // indirect reference; anything else is not an application of
1599      // the rules.
1600      if (numPointers != 1) return;
1601      numPointers++;
1602      outermostPointerIndex = chunkIndex;
1603      isBlockPointer = true;
1604
1605      // We don't care about pointer structure in return values here.
1606      goto done;
1607
1608    case DeclaratorChunk::Array: // suppress if written (id[])?
1609    case DeclaratorChunk::Function:
1610    case DeclaratorChunk::MemberPointer:
1611      return;
1612    }
1613  }
1614 done:
1615
1616  // If we have *one* pointer, then we want to throw the qualifier on
1617  // the declaration-specifiers, which means that it needs to be a
1618  // retainable object type.
1619  if (numPointers == 1) {
1620    // If it's not a retainable object type, the rule doesn't apply.
1621    if (!declSpecType->isObjCRetainableType()) return;
1622
1623    // If it already has lifetime, don't do anything.
1624    if (declSpecType.getObjCLifetime()) return;
1625
1626    // Otherwise, modify the type in-place.
1627    Qualifiers qs;
1628
1629    if (declSpecType->isObjCARCImplicitlyUnretainedType())
1630      qs.addObjCLifetime(Qualifiers::OCL_ExplicitNone);
1631    else
1632      qs.addObjCLifetime(Qualifiers::OCL_Autoreleasing);
1633    declSpecType = S.Context.getQualifiedType(declSpecType, qs);
1634
1635  // If we have *two* pointers, then we want to throw the qualifier on
1636  // the outermost pointer.
1637  } else if (numPointers == 2) {
1638    // If we don't have a block pointer, we need to check whether the
1639    // declaration-specifiers gave us something that will turn into a
1640    // retainable object pointer after we slap the first pointer on it.
1641    if (!isBlockPointer && !declSpecType->isObjCObjectType())
1642      return;
1643
1644    // Look for an explicit lifetime attribute there.
1645    DeclaratorChunk &chunk = declarator.getTypeObject(outermostPointerIndex);
1646    assert(chunk.Kind == DeclaratorChunk::Pointer ||
1647           chunk.Kind == DeclaratorChunk::BlockPointer);
1648    for (const AttributeList *attr = chunk.getAttrs(); attr;
1649           attr = attr->getNext())
1650      if (attr->getKind() == AttributeList::AT_objc_lifetime)
1651        return;
1652
1653    // If there wasn't one, add one (with an invalid source location
1654    // so that we don't make an AttributedType for it).
1655    AttributeList *attr = declarator.getAttributePool()
1656      .create(&S.Context.Idents.get("objc_lifetime"), SourceLocation(),
1657              /*scope*/ 0, SourceLocation(),
1658              &S.Context.Idents.get("autoreleasing"), SourceLocation(),
1659              /*args*/ 0, 0,
1660              /*declspec*/ false, /*C++0x*/ false);
1661    spliceAttrIntoList(*attr, chunk.getAttrListRef());
1662
1663  // Any other number of pointers/references does not trigger the rule.
1664  } else return;
1665
1666  // TODO: mark whether we did this inference?
1667}
1668
1669static void DiagnoseIgnoredQualifiers(unsigned Quals,
1670                                      SourceLocation ConstQualLoc,
1671                                      SourceLocation VolatileQualLoc,
1672                                      SourceLocation RestrictQualLoc,
1673                                      Sema& S) {
1674  std::string QualStr;
1675  unsigned NumQuals = 0;
1676  SourceLocation Loc;
1677
1678  FixItHint ConstFixIt;
1679  FixItHint VolatileFixIt;
1680  FixItHint RestrictFixIt;
1681
1682  const SourceManager &SM = S.getSourceManager();
1683
1684  // FIXME: The locations here are set kind of arbitrarily. It'd be nicer to
1685  // find a range and grow it to encompass all the qualifiers, regardless of
1686  // the order in which they textually appear.
1687  if (Quals & Qualifiers::Const) {
1688    ConstFixIt = FixItHint::CreateRemoval(ConstQualLoc);
1689    QualStr = "const";
1690    ++NumQuals;
1691    if (!Loc.isValid() || SM.isBeforeInTranslationUnit(ConstQualLoc, Loc))
1692      Loc = ConstQualLoc;
1693  }
1694  if (Quals & Qualifiers::Volatile) {
1695    VolatileFixIt = FixItHint::CreateRemoval(VolatileQualLoc);
1696    QualStr += (NumQuals == 0 ? "volatile" : " volatile");
1697    ++NumQuals;
1698    if (!Loc.isValid() || SM.isBeforeInTranslationUnit(VolatileQualLoc, Loc))
1699      Loc = VolatileQualLoc;
1700  }
1701  if (Quals & Qualifiers::Restrict) {
1702    RestrictFixIt = FixItHint::CreateRemoval(RestrictQualLoc);
1703    QualStr += (NumQuals == 0 ? "restrict" : " restrict");
1704    ++NumQuals;
1705    if (!Loc.isValid() || SM.isBeforeInTranslationUnit(RestrictQualLoc, Loc))
1706      Loc = RestrictQualLoc;
1707  }
1708
1709  assert(NumQuals > 0 && "No known qualifiers?");
1710
1711  S.Diag(Loc, diag::warn_qual_return_type)
1712    << QualStr << NumQuals << ConstFixIt << VolatileFixIt << RestrictFixIt;
1713}
1714
1715/// GetTypeForDeclarator - Convert the type for the specified
1716/// declarator to Type instances.
1717///
1718/// If OwnedDecl is non-NULL, and this declarator's decl-specifier-seq
1719/// owns the declaration of a type (e.g., the definition of a struct
1720/// type), then *OwnedDecl will receive the owned declaration.
1721///
1722/// The result of this call will never be null, but the associated
1723/// type may be a null type if there's an unrecoverable error.
1724TypeSourceInfo *Sema::GetTypeForDeclarator(Declarator &D, Scope *S,
1725                                           TagDecl **OwnedDecl,
1726                                           bool AutoAllowedInTypeName) {
1727  // Determine the type of the declarator. Not all forms of declarator
1728  // have a type.
1729  QualType T;
1730  TypeSourceInfo *ReturnTypeInfo = 0;
1731
1732  TypeProcessingState state(*this, D);
1733
1734  // In C++0x, deallocation functions (normal and array operator delete)
1735  // are implicitly noexcept.
1736  bool ImplicitlyNoexcept = false;
1737
1738  switch (D.getName().getKind()) {
1739  case UnqualifiedId::IK_OperatorFunctionId:
1740    if (getLangOptions().CPlusPlus0x) {
1741      OverloadedOperatorKind OO = D.getName().OperatorFunctionId.Operator;
1742      if (OO == OO_Delete || OO == OO_Array_Delete)
1743        ImplicitlyNoexcept = true;
1744    }
1745    // Intentional fall-through.
1746  case UnqualifiedId::IK_Identifier:
1747  case UnqualifiedId::IK_LiteralOperatorId:
1748  case UnqualifiedId::IK_TemplateId:
1749    T = ConvertDeclSpecToType(*this, state);
1750
1751    if (!D.isInvalidType() && D.getDeclSpec().isTypeSpecOwned()) {
1752      TagDecl* Owned = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
1753      // Owned declaration is embedded in declarator.
1754      Owned->setEmbeddedInDeclarator(true);
1755      if (OwnedDecl) *OwnedDecl = Owned;
1756    }
1757    break;
1758
1759  case UnqualifiedId::IK_ConstructorName:
1760  case UnqualifiedId::IK_ConstructorTemplateId:
1761  case UnqualifiedId::IK_DestructorName:
1762    // Constructors and destructors don't have return types. Use
1763    // "void" instead.
1764    T = Context.VoidTy;
1765    break;
1766
1767  case UnqualifiedId::IK_ConversionFunctionId:
1768    // The result type of a conversion function is the type that it
1769    // converts to.
1770    T = GetTypeFromParser(D.getName().ConversionFunctionId,
1771                          &ReturnTypeInfo);
1772    break;
1773  }
1774
1775  if (D.getAttributes())
1776    distributeTypeAttrsFromDeclarator(state, T);
1777
1778  if (D.isPrototypeContext() && getLangOptions().ObjCAutoRefCount)
1779    inferARCWriteback(state, T);
1780
1781  // C++0x [dcl.spec.auto]p5: reject 'auto' if it is not in an allowed context.
1782  // In C++0x, a function declarator using 'auto' must have a trailing return
1783  // type (this is checked later) and we can skip this. In other languages
1784  // using auto, we need to check regardless.
1785  if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
1786      (!getLangOptions().CPlusPlus0x || !D.isFunctionDeclarator())) {
1787    int Error = -1;
1788
1789    switch (D.getContext()) {
1790    case Declarator::KNRTypeListContext:
1791      assert(0 && "K&R type lists aren't allowed in C++");
1792      break;
1793    case Declarator::ObjCPrototypeContext:
1794    case Declarator::PrototypeContext:
1795      Error = 0; // Function prototype
1796      break;
1797    case Declarator::MemberContext:
1798      if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static)
1799        break;
1800      switch (cast<TagDecl>(CurContext)->getTagKind()) {
1801      case TTK_Enum: assert(0 && "unhandled tag kind"); break;
1802      case TTK_Struct: Error = 1; /* Struct member */ break;
1803      case TTK_Union:  Error = 2; /* Union member */ break;
1804      case TTK_Class:  Error = 3; /* Class member */ break;
1805      }
1806      break;
1807    case Declarator::CXXCatchContext:
1808      Error = 4; // Exception declaration
1809      break;
1810    case Declarator::TemplateParamContext:
1811      Error = 5; // Template parameter
1812      break;
1813    case Declarator::BlockLiteralContext:
1814      Error = 6; // Block literal
1815      break;
1816    case Declarator::TemplateTypeArgContext:
1817      Error = 7; // Template type argument
1818      break;
1819    case Declarator::AliasDeclContext:
1820    case Declarator::AliasTemplateContext:
1821      Error = 9; // Type alias
1822      break;
1823    case Declarator::TypeNameContext:
1824      if (!AutoAllowedInTypeName)
1825        Error = 11; // Generic
1826      break;
1827    case Declarator::FileContext:
1828    case Declarator::BlockContext:
1829    case Declarator::ForContext:
1830    case Declarator::ConditionContext:
1831      break;
1832    }
1833
1834    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1835      Error = 8;
1836
1837    // In Objective-C it is an error to use 'auto' on a function declarator.
1838    if (D.isFunctionDeclarator())
1839      Error = 10;
1840
1841    // C++0x [dcl.spec.auto]p2: 'auto' is always fine if the declarator
1842    // contains a trailing return type. That is only legal at the outermost
1843    // level. Check all declarator chunks (outermost first) anyway, to give
1844    // better diagnostics.
1845    if (getLangOptions().CPlusPlus0x && Error != -1) {
1846      for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
1847        unsigned chunkIndex = e - i - 1;
1848        state.setCurrentChunkIndex(chunkIndex);
1849        DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex);
1850        if (DeclType.Kind == DeclaratorChunk::Function) {
1851          const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
1852          if (FTI.TrailingReturnType) {
1853            Error = -1;
1854            break;
1855          }
1856        }
1857      }
1858    }
1859
1860    if (Error != -1) {
1861      Diag(D.getDeclSpec().getTypeSpecTypeLoc(), diag::err_auto_not_allowed)
1862        << Error;
1863      T = Context.IntTy;
1864      D.setInvalidType(true);
1865    }
1866  }
1867
1868  if (T.isNull())
1869    return Context.getNullTypeSourceInfo();
1870
1871  // The name we're declaring, if any.
1872  DeclarationName Name;
1873  if (D.getIdentifier())
1874    Name = D.getIdentifier();
1875
1876  // Does this declaration declare a typedef-name?
1877  bool IsTypedefName =
1878    D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef ||
1879    D.getContext() == Declarator::AliasDeclContext ||
1880    D.getContext() == Declarator::AliasTemplateContext;
1881
1882  // Walk the DeclTypeInfo, building the recursive type as we go.
1883  // DeclTypeInfos are ordered from the identifier out, which is
1884  // opposite of what we want :).
1885  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
1886    unsigned chunkIndex = e - i - 1;
1887    state.setCurrentChunkIndex(chunkIndex);
1888    DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex);
1889    switch (DeclType.Kind) {
1890    default: assert(0 && "Unknown decltype!");
1891    case DeclaratorChunk::Paren:
1892      T = BuildParenType(T);
1893      break;
1894    case DeclaratorChunk::BlockPointer:
1895      // If blocks are disabled, emit an error.
1896      if (!LangOpts.Blocks)
1897        Diag(DeclType.Loc, diag::err_blocks_disable);
1898
1899      T = BuildBlockPointerType(T, D.getIdentifierLoc(), Name);
1900      if (DeclType.Cls.TypeQuals)
1901        T = BuildQualifiedType(T, DeclType.Loc, DeclType.Cls.TypeQuals);
1902      break;
1903    case DeclaratorChunk::Pointer:
1904      // Verify that we're not building a pointer to pointer to function with
1905      // exception specification.
1906      if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) {
1907        Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
1908        D.setInvalidType(true);
1909        // Build the type anyway.
1910      }
1911      if (getLangOptions().ObjC1 && T->getAs<ObjCObjectType>()) {
1912        T = Context.getObjCObjectPointerType(T);
1913        if (DeclType.Ptr.TypeQuals)
1914          T = BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
1915        break;
1916      }
1917      T = BuildPointerType(T, DeclType.Loc, Name);
1918      if (DeclType.Ptr.TypeQuals)
1919        T = BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
1920
1921      break;
1922    case DeclaratorChunk::Reference: {
1923      // Verify that we're not building a reference to pointer to function with
1924      // exception specification.
1925      if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) {
1926        Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
1927        D.setInvalidType(true);
1928        // Build the type anyway.
1929      }
1930      T = BuildReferenceType(T, DeclType.Ref.LValueRef, DeclType.Loc, Name);
1931
1932      Qualifiers Quals;
1933      if (DeclType.Ref.HasRestrict)
1934        T = BuildQualifiedType(T, DeclType.Loc, Qualifiers::Restrict);
1935      break;
1936    }
1937    case DeclaratorChunk::Array: {
1938      // Verify that we're not building an array of pointers to function with
1939      // exception specification.
1940      if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) {
1941        Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
1942        D.setInvalidType(true);
1943        // Build the type anyway.
1944      }
1945      DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
1946      Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
1947      ArrayType::ArraySizeModifier ASM;
1948      if (ATI.isStar)
1949        ASM = ArrayType::Star;
1950      else if (ATI.hasStatic)
1951        ASM = ArrayType::Static;
1952      else
1953        ASM = ArrayType::Normal;
1954      if (ASM == ArrayType::Star && !D.isPrototypeContext()) {
1955        // FIXME: This check isn't quite right: it allows star in prototypes
1956        // for function definitions, and disallows some edge cases detailed
1957        // in http://gcc.gnu.org/ml/gcc-patches/2009-02/msg00133.html
1958        Diag(DeclType.Loc, diag::err_array_star_outside_prototype);
1959        ASM = ArrayType::Normal;
1960        D.setInvalidType(true);
1961      }
1962      T = BuildArrayType(T, ASM, ArraySize,
1963                         Qualifiers::fromCVRMask(ATI.TypeQuals),
1964                         SourceRange(DeclType.Loc, DeclType.EndLoc), Name);
1965      break;
1966    }
1967    case DeclaratorChunk::Function: {
1968      // If the function declarator has a prototype (i.e. it is not () and
1969      // does not have a K&R-style identifier list), then the arguments are part
1970      // of the type, otherwise the argument list is ().
1971      const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
1972
1973      // Check for auto functions and trailing return type and adjust the
1974      // return type accordingly.
1975      if (!D.isInvalidType()) {
1976        // trailing-return-type is only required if we're declaring a function,
1977        // and not, for instance, a pointer to a function.
1978        if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
1979            !FTI.TrailingReturnType && chunkIndex == 0) {
1980          Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
1981               diag::err_auto_missing_trailing_return);
1982          T = Context.IntTy;
1983          D.setInvalidType(true);
1984        } else if (FTI.TrailingReturnType) {
1985          // T must be exactly 'auto' at this point. See CWG issue 681.
1986          if (isa<ParenType>(T)) {
1987            Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
1988                 diag::err_trailing_return_in_parens)
1989              << T << D.getDeclSpec().getSourceRange();
1990            D.setInvalidType(true);
1991          } else if (T.hasQualifiers() || !isa<AutoType>(T)) {
1992            Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
1993                 diag::err_trailing_return_without_auto)
1994              << T << D.getDeclSpec().getSourceRange();
1995            D.setInvalidType(true);
1996          }
1997
1998          T = GetTypeFromParser(
1999            ParsedType::getFromOpaquePtr(FTI.TrailingReturnType),
2000            &ReturnTypeInfo);
2001        }
2002      }
2003
2004      // C99 6.7.5.3p1: The return type may not be a function or array type.
2005      // For conversion functions, we'll diagnose this particular error later.
2006      if ((T->isArrayType() || T->isFunctionType()) &&
2007          (D.getName().getKind() != UnqualifiedId::IK_ConversionFunctionId)) {
2008        unsigned diagID = diag::err_func_returning_array_function;
2009        // Last processing chunk in block context means this function chunk
2010        // represents the block.
2011        if (chunkIndex == 0 &&
2012            D.getContext() == Declarator::BlockLiteralContext)
2013          diagID = diag::err_block_returning_array_function;
2014        Diag(DeclType.Loc, diagID) << T->isFunctionType() << T;
2015        T = Context.IntTy;
2016        D.setInvalidType(true);
2017      }
2018
2019      // cv-qualifiers on return types are pointless except when the type is a
2020      // class type in C++.
2021      if (isa<PointerType>(T) && T.getLocalCVRQualifiers() &&
2022          (D.getName().getKind() != UnqualifiedId::IK_ConversionFunctionId) &&
2023          (!getLangOptions().CPlusPlus || !T->isDependentType())) {
2024        assert(chunkIndex + 1 < e && "No DeclaratorChunk for the return type?");
2025        DeclaratorChunk ReturnTypeChunk = D.getTypeObject(chunkIndex + 1);
2026        assert(ReturnTypeChunk.Kind == DeclaratorChunk::Pointer);
2027
2028        DeclaratorChunk::PointerTypeInfo &PTI = ReturnTypeChunk.Ptr;
2029
2030        DiagnoseIgnoredQualifiers(PTI.TypeQuals,
2031            SourceLocation::getFromRawEncoding(PTI.ConstQualLoc),
2032            SourceLocation::getFromRawEncoding(PTI.VolatileQualLoc),
2033            SourceLocation::getFromRawEncoding(PTI.RestrictQualLoc),
2034            *this);
2035
2036      } else if (T.getCVRQualifiers() && D.getDeclSpec().getTypeQualifiers() &&
2037          (!getLangOptions().CPlusPlus ||
2038           (!T->isDependentType() && !T->isRecordType()))) {
2039
2040        DiagnoseIgnoredQualifiers(D.getDeclSpec().getTypeQualifiers(),
2041                                  D.getDeclSpec().getConstSpecLoc(),
2042                                  D.getDeclSpec().getVolatileSpecLoc(),
2043                                  D.getDeclSpec().getRestrictSpecLoc(),
2044                                  *this);
2045      }
2046
2047      if (getLangOptions().CPlusPlus && D.getDeclSpec().isTypeSpecOwned()) {
2048        // C++ [dcl.fct]p6:
2049        //   Types shall not be defined in return or parameter types.
2050        TagDecl *Tag = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
2051        if (Tag->isDefinition())
2052          Diag(Tag->getLocation(), diag::err_type_defined_in_result_type)
2053            << Context.getTypeDeclType(Tag);
2054      }
2055
2056      // Exception specs are not allowed in typedefs. Complain, but add it
2057      // anyway.
2058      if (IsTypedefName && FTI.getExceptionSpecType())
2059        Diag(FTI.getExceptionSpecLoc(), diag::err_exception_spec_in_typedef)
2060          << (D.getContext() == Declarator::AliasDeclContext ||
2061              D.getContext() == Declarator::AliasTemplateContext);
2062
2063      if (!FTI.NumArgs && !FTI.isVariadic && !getLangOptions().CPlusPlus) {
2064        // Simple void foo(), where the incoming T is the result type.
2065        T = Context.getFunctionNoProtoType(T);
2066      } else {
2067        // We allow a zero-parameter variadic function in C if the
2068        // function is marked with the "overloadable" attribute. Scan
2069        // for this attribute now.
2070        if (!FTI.NumArgs && FTI.isVariadic && !getLangOptions().CPlusPlus) {
2071          bool Overloadable = false;
2072          for (const AttributeList *Attrs = D.getAttributes();
2073               Attrs; Attrs = Attrs->getNext()) {
2074            if (Attrs->getKind() == AttributeList::AT_overloadable) {
2075              Overloadable = true;
2076              break;
2077            }
2078          }
2079
2080          if (!Overloadable)
2081            Diag(FTI.getEllipsisLoc(), diag::err_ellipsis_first_arg);
2082        }
2083
2084        if (FTI.NumArgs && FTI.ArgInfo[0].Param == 0) {
2085          // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function
2086          // definition.
2087          Diag(FTI.ArgInfo[0].IdentLoc, diag::err_ident_list_in_fn_declaration);
2088          D.setInvalidType(true);
2089          break;
2090        }
2091
2092        FunctionProtoType::ExtProtoInfo EPI;
2093        EPI.Variadic = FTI.isVariadic;
2094        EPI.TypeQuals = FTI.TypeQuals;
2095        EPI.RefQualifier = !FTI.hasRefQualifier()? RQ_None
2096                    : FTI.RefQualifierIsLValueRef? RQ_LValue
2097                    : RQ_RValue;
2098
2099        // Otherwise, we have a function with an argument list that is
2100        // potentially variadic.
2101        llvm::SmallVector<QualType, 16> ArgTys;
2102        ArgTys.reserve(FTI.NumArgs);
2103
2104        llvm::SmallVector<bool, 16> ConsumedArguments;
2105        ConsumedArguments.reserve(FTI.NumArgs);
2106        bool HasAnyConsumedArguments = false;
2107
2108        for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2109          ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
2110          QualType ArgTy = Param->getType();
2111          assert(!ArgTy.isNull() && "Couldn't parse type?");
2112
2113          // Adjust the parameter type.
2114          assert((ArgTy == adjustParameterType(ArgTy)) && "Unadjusted type?");
2115
2116          // Look for 'void'.  void is allowed only as a single argument to a
2117          // function with no other parameters (C99 6.7.5.3p10).  We record
2118          // int(void) as a FunctionProtoType with an empty argument list.
2119          if (ArgTy->isVoidType()) {
2120            // If this is something like 'float(int, void)', reject it.  'void'
2121            // is an incomplete type (C99 6.2.5p19) and function decls cannot
2122            // have arguments of incomplete type.
2123            if (FTI.NumArgs != 1 || FTI.isVariadic) {
2124              Diag(DeclType.Loc, diag::err_void_only_param);
2125              ArgTy = Context.IntTy;
2126              Param->setType(ArgTy);
2127            } else if (FTI.ArgInfo[i].Ident) {
2128              // Reject, but continue to parse 'int(void abc)'.
2129              Diag(FTI.ArgInfo[i].IdentLoc,
2130                   diag::err_param_with_void_type);
2131              ArgTy = Context.IntTy;
2132              Param->setType(ArgTy);
2133            } else {
2134              // Reject, but continue to parse 'float(const void)'.
2135              if (ArgTy.hasQualifiers())
2136                Diag(DeclType.Loc, diag::err_void_param_qualified);
2137
2138              // Do not add 'void' to the ArgTys list.
2139              break;
2140            }
2141          } else if (!FTI.hasPrototype) {
2142            if (ArgTy->isPromotableIntegerType()) {
2143              ArgTy = Context.getPromotedIntegerType(ArgTy);
2144              Param->setKNRPromoted(true);
2145            } else if (const BuiltinType* BTy = ArgTy->getAs<BuiltinType>()) {
2146              if (BTy->getKind() == BuiltinType::Float) {
2147                ArgTy = Context.DoubleTy;
2148                Param->setKNRPromoted(true);
2149              }
2150            }
2151          }
2152
2153          if (getLangOptions().ObjCAutoRefCount) {
2154            bool Consumed = Param->hasAttr<NSConsumedAttr>();
2155            ConsumedArguments.push_back(Consumed);
2156            HasAnyConsumedArguments |= Consumed;
2157          }
2158
2159          ArgTys.push_back(ArgTy);
2160        }
2161
2162        if (HasAnyConsumedArguments)
2163          EPI.ConsumedArguments = ConsumedArguments.data();
2164
2165        llvm::SmallVector<QualType, 4> Exceptions;
2166        EPI.ExceptionSpecType = FTI.getExceptionSpecType();
2167        if (FTI.getExceptionSpecType() == EST_Dynamic) {
2168          Exceptions.reserve(FTI.NumExceptions);
2169          for (unsigned ei = 0, ee = FTI.NumExceptions; ei != ee; ++ei) {
2170            // FIXME: Preserve type source info.
2171            QualType ET = GetTypeFromParser(FTI.Exceptions[ei].Ty);
2172            // Check that the type is valid for an exception spec, and
2173            // drop it if not.
2174            if (!CheckSpecifiedExceptionType(ET, FTI.Exceptions[ei].Range))
2175              Exceptions.push_back(ET);
2176          }
2177          EPI.NumExceptions = Exceptions.size();
2178          EPI.Exceptions = Exceptions.data();
2179        } else if (FTI.getExceptionSpecType() == EST_ComputedNoexcept) {
2180          // If an error occurred, there's no expression here.
2181          if (Expr *NoexceptExpr = FTI.NoexceptExpr) {
2182            assert((NoexceptExpr->isTypeDependent() ||
2183                    NoexceptExpr->getType()->getCanonicalTypeUnqualified() ==
2184                        Context.BoolTy) &&
2185                 "Parser should have made sure that the expression is boolean");
2186            SourceLocation ErrLoc;
2187            llvm::APSInt Dummy;
2188            if (!NoexceptExpr->isValueDependent() &&
2189                !NoexceptExpr->isIntegerConstantExpr(Dummy, Context, &ErrLoc,
2190                                                     /*evaluated*/false))
2191              Diag(ErrLoc, diag::err_noexcept_needs_constant_expression)
2192                  << NoexceptExpr->getSourceRange();
2193            else
2194              EPI.NoexceptExpr = NoexceptExpr;
2195          }
2196        } else if (FTI.getExceptionSpecType() == EST_None &&
2197                   ImplicitlyNoexcept && chunkIndex == 0) {
2198          // Only the outermost chunk is marked noexcept, of course.
2199          EPI.ExceptionSpecType = EST_BasicNoexcept;
2200        }
2201
2202        T = Context.getFunctionType(T, ArgTys.data(), ArgTys.size(), EPI);
2203      }
2204
2205      break;
2206    }
2207    case DeclaratorChunk::MemberPointer:
2208      // The scope spec must refer to a class, or be dependent.
2209      CXXScopeSpec &SS = DeclType.Mem.Scope();
2210      QualType ClsType;
2211      if (SS.isInvalid()) {
2212        // Avoid emitting extra errors if we already errored on the scope.
2213        D.setInvalidType(true);
2214      } else if (isDependentScopeSpecifier(SS) ||
2215                 dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS))) {
2216        NestedNameSpecifier *NNS
2217          = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
2218        NestedNameSpecifier *NNSPrefix = NNS->getPrefix();
2219        switch (NNS->getKind()) {
2220        case NestedNameSpecifier::Identifier:
2221          ClsType = Context.getDependentNameType(ETK_None, NNSPrefix,
2222                                                 NNS->getAsIdentifier());
2223          break;
2224
2225        case NestedNameSpecifier::Namespace:
2226        case NestedNameSpecifier::NamespaceAlias:
2227        case NestedNameSpecifier::Global:
2228          llvm_unreachable("Nested-name-specifier must name a type");
2229          break;
2230
2231        case NestedNameSpecifier::TypeSpec:
2232        case NestedNameSpecifier::TypeSpecWithTemplate:
2233          ClsType = QualType(NNS->getAsType(), 0);
2234          // Note: if the NNS has a prefix and ClsType is a nondependent
2235          // TemplateSpecializationType, then the NNS prefix is NOT included
2236          // in ClsType; hence we wrap ClsType into an ElaboratedType.
2237          // NOTE: in particular, no wrap occurs if ClsType already is an
2238          // Elaborated, DependentName, or DependentTemplateSpecialization.
2239          if (NNSPrefix && isa<TemplateSpecializationType>(NNS->getAsType()))
2240            ClsType = Context.getElaboratedType(ETK_None, NNSPrefix, ClsType);
2241          break;
2242        }
2243      } else {
2244        Diag(DeclType.Mem.Scope().getBeginLoc(),
2245             diag::err_illegal_decl_mempointer_in_nonclass)
2246          << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name")
2247          << DeclType.Mem.Scope().getRange();
2248        D.setInvalidType(true);
2249      }
2250
2251      if (!ClsType.isNull())
2252        T = BuildMemberPointerType(T, ClsType, DeclType.Loc, D.getIdentifier());
2253      if (T.isNull()) {
2254        T = Context.IntTy;
2255        D.setInvalidType(true);
2256      } else if (DeclType.Mem.TypeQuals) {
2257        T = BuildQualifiedType(T, DeclType.Loc, DeclType.Mem.TypeQuals);
2258      }
2259      break;
2260    }
2261
2262    if (T.isNull()) {
2263      D.setInvalidType(true);
2264      T = Context.IntTy;
2265    }
2266
2267    // See if there are any attributes on this declarator chunk.
2268    if (AttributeList *attrs = const_cast<AttributeList*>(DeclType.getAttrs()))
2269      processTypeAttrs(state, T, false, attrs);
2270  }
2271
2272  if (getLangOptions().CPlusPlus && T->isFunctionType()) {
2273    const FunctionProtoType *FnTy = T->getAs<FunctionProtoType>();
2274    assert(FnTy && "Why oh why is there not a FunctionProtoType here?");
2275
2276    // C++ 8.3.5p4:
2277    //   A cv-qualifier-seq shall only be part of the function type
2278    //   for a nonstatic member function, the function type to which a pointer
2279    //   to member refers, or the top-level function type of a function typedef
2280    //   declaration.
2281    //
2282    // Core issue 547 also allows cv-qualifiers on function types that are
2283    // top-level template type arguments.
2284    bool FreeFunction;
2285    if (!D.getCXXScopeSpec().isSet()) {
2286      FreeFunction = (D.getContext() != Declarator::MemberContext ||
2287                      D.getDeclSpec().isFriendSpecified());
2288    } else {
2289      DeclContext *DC = computeDeclContext(D.getCXXScopeSpec());
2290      FreeFunction = (DC && !DC->isRecord());
2291    }
2292
2293    // C++0x [dcl.fct]p6:
2294    //   A ref-qualifier shall only be part of the function type for a
2295    //   non-static member function, the function type to which a pointer to
2296    //   member refers, or the top-level function type of a function typedef
2297    //   declaration.
2298    if ((FnTy->getTypeQuals() != 0 || FnTy->getRefQualifier()) &&
2299        !(D.getContext() == Declarator::TemplateTypeArgContext &&
2300          !D.isFunctionDeclarator()) && !IsTypedefName &&
2301        (FreeFunction ||
2302         D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static)) {
2303      if (D.getContext() == Declarator::TemplateTypeArgContext) {
2304        // Accept qualified function types as template type arguments as a GNU
2305        // extension. This is also the subject of C++ core issue 547.
2306        std::string Quals;
2307        if (FnTy->getTypeQuals() != 0)
2308          Quals = Qualifiers::fromCVRMask(FnTy->getTypeQuals()).getAsString();
2309
2310        switch (FnTy->getRefQualifier()) {
2311        case RQ_None:
2312          break;
2313
2314        case RQ_LValue:
2315          if (!Quals.empty())
2316            Quals += ' ';
2317          Quals += '&';
2318          break;
2319
2320        case RQ_RValue:
2321          if (!Quals.empty())
2322            Quals += ' ';
2323          Quals += "&&";
2324          break;
2325        }
2326
2327        Diag(D.getIdentifierLoc(),
2328             diag::ext_qualified_function_type_template_arg)
2329          << Quals;
2330      } else {
2331        if (FnTy->getTypeQuals() != 0) {
2332          if (D.isFunctionDeclarator())
2333            Diag(D.getIdentifierLoc(),
2334                 diag::err_invalid_qualified_function_type);
2335          else
2336            Diag(D.getIdentifierLoc(),
2337                 diag::err_invalid_qualified_typedef_function_type_use)
2338              << FreeFunction;
2339        }
2340
2341        if (FnTy->getRefQualifier()) {
2342          if (D.isFunctionDeclarator()) {
2343            SourceLocation Loc = D.getIdentifierLoc();
2344            for (unsigned I = 0, N = D.getNumTypeObjects(); I != N; ++I) {
2345              const DeclaratorChunk &Chunk = D.getTypeObject(N-I-1);
2346              if (Chunk.Kind == DeclaratorChunk::Function &&
2347                  Chunk.Fun.hasRefQualifier()) {
2348                Loc = Chunk.Fun.getRefQualifierLoc();
2349                break;
2350              }
2351            }
2352
2353            Diag(Loc, diag::err_invalid_ref_qualifier_function_type)
2354              << (FnTy->getRefQualifier() == RQ_LValue)
2355              << FixItHint::CreateRemoval(Loc);
2356          } else {
2357            Diag(D.getIdentifierLoc(),
2358                 diag::err_invalid_ref_qualifier_typedef_function_type_use)
2359              << FreeFunction
2360              << (FnTy->getRefQualifier() == RQ_LValue);
2361          }
2362        }
2363
2364        // Strip the cv-qualifiers and ref-qualifiers from the type.
2365        FunctionProtoType::ExtProtoInfo EPI = FnTy->getExtProtoInfo();
2366        EPI.TypeQuals = 0;
2367        EPI.RefQualifier = RQ_None;
2368
2369        T = Context.getFunctionType(FnTy->getResultType(),
2370                                    FnTy->arg_type_begin(),
2371                                    FnTy->getNumArgs(), EPI);
2372      }
2373    }
2374  }
2375
2376  // Apply any undistributed attributes from the declarator.
2377  if (!T.isNull())
2378    if (AttributeList *attrs = D.getAttributes())
2379      processTypeAttrs(state, T, false, attrs);
2380
2381  // Diagnose any ignored type attributes.
2382  if (!T.isNull()) state.diagnoseIgnoredTypeAttrs(T);
2383
2384  // C++0x [dcl.constexpr]p9:
2385  //  A constexpr specifier used in an object declaration declares the object
2386  //  as const.
2387  if (D.getDeclSpec().isConstexprSpecified() && T->isObjectType()) {
2388    T.addConst();
2389  }
2390
2391  // If there was an ellipsis in the declarator, the declaration declares a
2392  // parameter pack whose type may be a pack expansion type.
2393  if (D.hasEllipsis() && !T.isNull()) {
2394    // C++0x [dcl.fct]p13:
2395    //   A declarator-id or abstract-declarator containing an ellipsis shall
2396    //   only be used in a parameter-declaration. Such a parameter-declaration
2397    //   is a parameter pack (14.5.3). [...]
2398    switch (D.getContext()) {
2399    case Declarator::PrototypeContext:
2400      // C++0x [dcl.fct]p13:
2401      //   [...] When it is part of a parameter-declaration-clause, the
2402      //   parameter pack is a function parameter pack (14.5.3). The type T
2403      //   of the declarator-id of the function parameter pack shall contain
2404      //   a template parameter pack; each template parameter pack in T is
2405      //   expanded by the function parameter pack.
2406      //
2407      // We represent function parameter packs as function parameters whose
2408      // type is a pack expansion.
2409      if (!T->containsUnexpandedParameterPack()) {
2410        Diag(D.getEllipsisLoc(),
2411             diag::err_function_parameter_pack_without_parameter_packs)
2412          << T <<  D.getSourceRange();
2413        D.setEllipsisLoc(SourceLocation());
2414      } else {
2415        T = Context.getPackExpansionType(T, llvm::Optional<unsigned>());
2416      }
2417      break;
2418
2419    case Declarator::TemplateParamContext:
2420      // C++0x [temp.param]p15:
2421      //   If a template-parameter is a [...] is a parameter-declaration that
2422      //   declares a parameter pack (8.3.5), then the template-parameter is a
2423      //   template parameter pack (14.5.3).
2424      //
2425      // Note: core issue 778 clarifies that, if there are any unexpanded
2426      // parameter packs in the type of the non-type template parameter, then
2427      // it expands those parameter packs.
2428      if (T->containsUnexpandedParameterPack())
2429        T = Context.getPackExpansionType(T, llvm::Optional<unsigned>());
2430      else if (!getLangOptions().CPlusPlus0x)
2431        Diag(D.getEllipsisLoc(), diag::ext_variadic_templates);
2432      break;
2433
2434    case Declarator::FileContext:
2435    case Declarator::KNRTypeListContext:
2436    case Declarator::ObjCPrototypeContext: // FIXME: special diagnostic here?
2437    case Declarator::TypeNameContext:
2438    case Declarator::AliasDeclContext:
2439    case Declarator::AliasTemplateContext:
2440    case Declarator::MemberContext:
2441    case Declarator::BlockContext:
2442    case Declarator::ForContext:
2443    case Declarator::ConditionContext:
2444    case Declarator::CXXCatchContext:
2445    case Declarator::BlockLiteralContext:
2446    case Declarator::TemplateTypeArgContext:
2447      // FIXME: We may want to allow parameter packs in block-literal contexts
2448      // in the future.
2449      Diag(D.getEllipsisLoc(), diag::err_ellipsis_in_declarator_not_parameter);
2450      D.setEllipsisLoc(SourceLocation());
2451      break;
2452    }
2453  }
2454
2455  if (T.isNull())
2456    return Context.getNullTypeSourceInfo();
2457  else if (D.isInvalidType())
2458    return Context.getTrivialTypeSourceInfo(T);
2459  return GetTypeSourceInfoForDeclarator(D, T, ReturnTypeInfo);
2460}
2461
2462/// Map an AttributedType::Kind to an AttributeList::Kind.
2463static AttributeList::Kind getAttrListKind(AttributedType::Kind kind) {
2464  switch (kind) {
2465  case AttributedType::attr_address_space:
2466    return AttributeList::AT_address_space;
2467  case AttributedType::attr_regparm:
2468    return AttributeList::AT_regparm;
2469  case AttributedType::attr_vector_size:
2470    return AttributeList::AT_vector_size;
2471  case AttributedType::attr_neon_vector_type:
2472    return AttributeList::AT_neon_vector_type;
2473  case AttributedType::attr_neon_polyvector_type:
2474    return AttributeList::AT_neon_polyvector_type;
2475  case AttributedType::attr_objc_gc:
2476    return AttributeList::AT_objc_gc;
2477  case AttributedType::attr_objc_lifetime:
2478    return AttributeList::AT_objc_lifetime;
2479  case AttributedType::attr_noreturn:
2480    return AttributeList::AT_noreturn;
2481  case AttributedType::attr_cdecl:
2482    return AttributeList::AT_cdecl;
2483  case AttributedType::attr_fastcall:
2484    return AttributeList::AT_fastcall;
2485  case AttributedType::attr_stdcall:
2486    return AttributeList::AT_stdcall;
2487  case AttributedType::attr_thiscall:
2488    return AttributeList::AT_thiscall;
2489  case AttributedType::attr_pascal:
2490    return AttributeList::AT_pascal;
2491  case AttributedType::attr_pcs:
2492    return AttributeList::AT_pcs;
2493  }
2494  llvm_unreachable("unexpected attribute kind!");
2495  return AttributeList::Kind();
2496}
2497
2498static void fillAttributedTypeLoc(AttributedTypeLoc TL,
2499                                  const AttributeList *attrs) {
2500  AttributedType::Kind kind = TL.getAttrKind();
2501
2502  assert(attrs && "no type attributes in the expected location!");
2503  AttributeList::Kind parsedKind = getAttrListKind(kind);
2504  while (attrs->getKind() != parsedKind) {
2505    attrs = attrs->getNext();
2506    assert(attrs && "no matching attribute in expected location!");
2507  }
2508
2509  TL.setAttrNameLoc(attrs->getLoc());
2510  if (TL.hasAttrExprOperand())
2511    TL.setAttrExprOperand(attrs->getArg(0));
2512  else if (TL.hasAttrEnumOperand())
2513    TL.setAttrEnumOperandLoc(attrs->getParameterLoc());
2514
2515  // FIXME: preserve this information to here.
2516  if (TL.hasAttrOperand())
2517    TL.setAttrOperandParensRange(SourceRange());
2518}
2519
2520namespace {
2521  class TypeSpecLocFiller : public TypeLocVisitor<TypeSpecLocFiller> {
2522    ASTContext &Context;
2523    const DeclSpec &DS;
2524
2525  public:
2526    TypeSpecLocFiller(ASTContext &Context, const DeclSpec &DS)
2527      : Context(Context), DS(DS) {}
2528
2529    void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
2530      fillAttributedTypeLoc(TL, DS.getAttributes().getList());
2531      Visit(TL.getModifiedLoc());
2532    }
2533    void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
2534      Visit(TL.getUnqualifiedLoc());
2535    }
2536    void VisitTypedefTypeLoc(TypedefTypeLoc TL) {
2537      TL.setNameLoc(DS.getTypeSpecTypeLoc());
2538    }
2539    void VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) {
2540      TL.setNameLoc(DS.getTypeSpecTypeLoc());
2541    }
2542    void VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) {
2543      // Handle the base type, which might not have been written explicitly.
2544      if (DS.getTypeSpecType() == DeclSpec::TST_unspecified) {
2545        TL.setHasBaseTypeAsWritten(false);
2546        TL.getBaseLoc().initialize(Context, SourceLocation());
2547      } else {
2548        TL.setHasBaseTypeAsWritten(true);
2549        Visit(TL.getBaseLoc());
2550      }
2551
2552      // Protocol qualifiers.
2553      if (DS.getProtocolQualifiers()) {
2554        assert(TL.getNumProtocols() > 0);
2555        assert(TL.getNumProtocols() == DS.getNumProtocolQualifiers());
2556        TL.setLAngleLoc(DS.getProtocolLAngleLoc());
2557        TL.setRAngleLoc(DS.getSourceRange().getEnd());
2558        for (unsigned i = 0, e = DS.getNumProtocolQualifiers(); i != e; ++i)
2559          TL.setProtocolLoc(i, DS.getProtocolLocs()[i]);
2560      } else {
2561        assert(TL.getNumProtocols() == 0);
2562        TL.setLAngleLoc(SourceLocation());
2563        TL.setRAngleLoc(SourceLocation());
2564      }
2565    }
2566    void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
2567      TL.setStarLoc(SourceLocation());
2568      Visit(TL.getPointeeLoc());
2569    }
2570    void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc TL) {
2571      TypeSourceInfo *TInfo = 0;
2572      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
2573
2574      // If we got no declarator info from previous Sema routines,
2575      // just fill with the typespec loc.
2576      if (!TInfo) {
2577        TL.initialize(Context, DS.getTypeSpecTypeNameLoc());
2578        return;
2579      }
2580
2581      TypeLoc OldTL = TInfo->getTypeLoc();
2582      if (TInfo->getType()->getAs<ElaboratedType>()) {
2583        ElaboratedTypeLoc ElabTL = cast<ElaboratedTypeLoc>(OldTL);
2584        TemplateSpecializationTypeLoc NamedTL =
2585          cast<TemplateSpecializationTypeLoc>(ElabTL.getNamedTypeLoc());
2586        TL.copy(NamedTL);
2587      }
2588      else
2589        TL.copy(cast<TemplateSpecializationTypeLoc>(OldTL));
2590    }
2591    void VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) {
2592      assert(DS.getTypeSpecType() == DeclSpec::TST_typeofExpr);
2593      TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
2594      TL.setParensRange(DS.getTypeofParensRange());
2595    }
2596    void VisitTypeOfTypeLoc(TypeOfTypeLoc TL) {
2597      assert(DS.getTypeSpecType() == DeclSpec::TST_typeofType);
2598      TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
2599      TL.setParensRange(DS.getTypeofParensRange());
2600      assert(DS.getRepAsType());
2601      TypeSourceInfo *TInfo = 0;
2602      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
2603      TL.setUnderlyingTInfo(TInfo);
2604    }
2605    void VisitUnaryTransformTypeLoc(UnaryTransformTypeLoc TL) {
2606      // FIXME: This holds only because we only have one unary transform.
2607      assert(DS.getTypeSpecType() == DeclSpec::TST_underlyingType);
2608      TL.setKWLoc(DS.getTypeSpecTypeLoc());
2609      TL.setParensRange(DS.getTypeofParensRange());
2610      assert(DS.getRepAsType());
2611      TypeSourceInfo *TInfo = 0;
2612      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
2613      TL.setUnderlyingTInfo(TInfo);
2614    }
2615    void VisitBuiltinTypeLoc(BuiltinTypeLoc TL) {
2616      // By default, use the source location of the type specifier.
2617      TL.setBuiltinLoc(DS.getTypeSpecTypeLoc());
2618      if (TL.needsExtraLocalData()) {
2619        // Set info for the written builtin specifiers.
2620        TL.getWrittenBuiltinSpecs() = DS.getWrittenBuiltinSpecs();
2621        // Try to have a meaningful source location.
2622        if (TL.getWrittenSignSpec() != TSS_unspecified)
2623          // Sign spec loc overrides the others (e.g., 'unsigned long').
2624          TL.setBuiltinLoc(DS.getTypeSpecSignLoc());
2625        else if (TL.getWrittenWidthSpec() != TSW_unspecified)
2626          // Width spec loc overrides type spec loc (e.g., 'short int').
2627          TL.setBuiltinLoc(DS.getTypeSpecWidthLoc());
2628      }
2629    }
2630    void VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) {
2631      ElaboratedTypeKeyword Keyword
2632        = TypeWithKeyword::getKeywordForTypeSpec(DS.getTypeSpecType());
2633      if (DS.getTypeSpecType() == TST_typename) {
2634        TypeSourceInfo *TInfo = 0;
2635        Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
2636        if (TInfo) {
2637          TL.copy(cast<ElaboratedTypeLoc>(TInfo->getTypeLoc()));
2638          return;
2639        }
2640      }
2641      TL.setKeywordLoc(Keyword != ETK_None
2642                       ? DS.getTypeSpecTypeLoc()
2643                       : SourceLocation());
2644      const CXXScopeSpec& SS = DS.getTypeSpecScope();
2645      TL.setQualifierLoc(SS.getWithLocInContext(Context));
2646      Visit(TL.getNextTypeLoc().getUnqualifiedLoc());
2647    }
2648    void VisitDependentNameTypeLoc(DependentNameTypeLoc TL) {
2649      ElaboratedTypeKeyword Keyword
2650        = TypeWithKeyword::getKeywordForTypeSpec(DS.getTypeSpecType());
2651      if (DS.getTypeSpecType() == TST_typename) {
2652        TypeSourceInfo *TInfo = 0;
2653        Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
2654        if (TInfo) {
2655          TL.copy(cast<DependentNameTypeLoc>(TInfo->getTypeLoc()));
2656          return;
2657        }
2658      }
2659      TL.setKeywordLoc(Keyword != ETK_None
2660                       ? DS.getTypeSpecTypeLoc()
2661                       : SourceLocation());
2662      const CXXScopeSpec& SS = DS.getTypeSpecScope();
2663      TL.setQualifierLoc(SS.getWithLocInContext(Context));
2664      TL.setNameLoc(DS.getTypeSpecTypeNameLoc());
2665    }
2666    void VisitDependentTemplateSpecializationTypeLoc(
2667                                 DependentTemplateSpecializationTypeLoc TL) {
2668      ElaboratedTypeKeyword Keyword
2669        = TypeWithKeyword::getKeywordForTypeSpec(DS.getTypeSpecType());
2670      if (Keyword == ETK_Typename) {
2671        TypeSourceInfo *TInfo = 0;
2672        Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
2673        if (TInfo) {
2674          TL.copy(cast<DependentTemplateSpecializationTypeLoc>(
2675                    TInfo->getTypeLoc()));
2676          return;
2677        }
2678      }
2679      TL.initializeLocal(Context, SourceLocation());
2680      TL.setKeywordLoc(Keyword != ETK_None
2681                       ? DS.getTypeSpecTypeLoc()
2682                       : SourceLocation());
2683      const CXXScopeSpec& SS = DS.getTypeSpecScope();
2684      TL.setQualifierLoc(SS.getWithLocInContext(Context));
2685      TL.setNameLoc(DS.getTypeSpecTypeNameLoc());
2686    }
2687    void VisitTagTypeLoc(TagTypeLoc TL) {
2688      TL.setNameLoc(DS.getTypeSpecTypeNameLoc());
2689    }
2690
2691    void VisitTypeLoc(TypeLoc TL) {
2692      // FIXME: add other typespec types and change this to an assert.
2693      TL.initialize(Context, DS.getTypeSpecTypeLoc());
2694    }
2695  };
2696
2697  class DeclaratorLocFiller : public TypeLocVisitor<DeclaratorLocFiller> {
2698    ASTContext &Context;
2699    const DeclaratorChunk &Chunk;
2700
2701  public:
2702    DeclaratorLocFiller(ASTContext &Context, const DeclaratorChunk &Chunk)
2703      : Context(Context), Chunk(Chunk) {}
2704
2705    void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
2706      llvm_unreachable("qualified type locs not expected here!");
2707    }
2708
2709    void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
2710      fillAttributedTypeLoc(TL, Chunk.getAttrs());
2711    }
2712    void VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) {
2713      assert(Chunk.Kind == DeclaratorChunk::BlockPointer);
2714      TL.setCaretLoc(Chunk.Loc);
2715    }
2716    void VisitPointerTypeLoc(PointerTypeLoc TL) {
2717      assert(Chunk.Kind == DeclaratorChunk::Pointer);
2718      TL.setStarLoc(Chunk.Loc);
2719    }
2720    void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
2721      assert(Chunk.Kind == DeclaratorChunk::Pointer);
2722      TL.setStarLoc(Chunk.Loc);
2723    }
2724    void VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) {
2725      assert(Chunk.Kind == DeclaratorChunk::MemberPointer);
2726      const CXXScopeSpec& SS = Chunk.Mem.Scope();
2727      NestedNameSpecifierLoc NNSLoc = SS.getWithLocInContext(Context);
2728
2729      const Type* ClsTy = TL.getClass();
2730      QualType ClsQT = QualType(ClsTy, 0);
2731      TypeSourceInfo *ClsTInfo = Context.CreateTypeSourceInfo(ClsQT, 0);
2732      // Now copy source location info into the type loc component.
2733      TypeLoc ClsTL = ClsTInfo->getTypeLoc();
2734      switch (NNSLoc.getNestedNameSpecifier()->getKind()) {
2735      case NestedNameSpecifier::Identifier:
2736        assert(isa<DependentNameType>(ClsTy) && "Unexpected TypeLoc");
2737        {
2738          DependentNameTypeLoc DNTLoc = cast<DependentNameTypeLoc>(ClsTL);
2739          DNTLoc.setKeywordLoc(SourceLocation());
2740          DNTLoc.setQualifierLoc(NNSLoc.getPrefix());
2741          DNTLoc.setNameLoc(NNSLoc.getLocalBeginLoc());
2742        }
2743        break;
2744
2745      case NestedNameSpecifier::TypeSpec:
2746      case NestedNameSpecifier::TypeSpecWithTemplate:
2747        if (isa<ElaboratedType>(ClsTy)) {
2748          ElaboratedTypeLoc ETLoc = *cast<ElaboratedTypeLoc>(&ClsTL);
2749          ETLoc.setKeywordLoc(SourceLocation());
2750          ETLoc.setQualifierLoc(NNSLoc.getPrefix());
2751          TypeLoc NamedTL = ETLoc.getNamedTypeLoc();
2752          NamedTL.initializeFullCopy(NNSLoc.getTypeLoc());
2753        } else {
2754          ClsTL.initializeFullCopy(NNSLoc.getTypeLoc());
2755        }
2756        break;
2757
2758      case NestedNameSpecifier::Namespace:
2759      case NestedNameSpecifier::NamespaceAlias:
2760      case NestedNameSpecifier::Global:
2761        llvm_unreachable("Nested-name-specifier must name a type");
2762        break;
2763      }
2764
2765      // Finally fill in MemberPointerLocInfo fields.
2766      TL.setStarLoc(Chunk.Loc);
2767      TL.setClassTInfo(ClsTInfo);
2768    }
2769    void VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) {
2770      assert(Chunk.Kind == DeclaratorChunk::Reference);
2771      // 'Amp' is misleading: this might have been originally
2772      /// spelled with AmpAmp.
2773      TL.setAmpLoc(Chunk.Loc);
2774    }
2775    void VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) {
2776      assert(Chunk.Kind == DeclaratorChunk::Reference);
2777      assert(!Chunk.Ref.LValueRef);
2778      TL.setAmpAmpLoc(Chunk.Loc);
2779    }
2780    void VisitArrayTypeLoc(ArrayTypeLoc TL) {
2781      assert(Chunk.Kind == DeclaratorChunk::Array);
2782      TL.setLBracketLoc(Chunk.Loc);
2783      TL.setRBracketLoc(Chunk.EndLoc);
2784      TL.setSizeExpr(static_cast<Expr*>(Chunk.Arr.NumElts));
2785    }
2786    void VisitFunctionTypeLoc(FunctionTypeLoc TL) {
2787      assert(Chunk.Kind == DeclaratorChunk::Function);
2788      TL.setLocalRangeBegin(Chunk.Loc);
2789      TL.setLocalRangeEnd(Chunk.EndLoc);
2790      TL.setTrailingReturn(!!Chunk.Fun.TrailingReturnType);
2791
2792      const DeclaratorChunk::FunctionTypeInfo &FTI = Chunk.Fun;
2793      for (unsigned i = 0, e = TL.getNumArgs(), tpi = 0; i != e; ++i) {
2794        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
2795        TL.setArg(tpi++, Param);
2796      }
2797      // FIXME: exception specs
2798    }
2799    void VisitParenTypeLoc(ParenTypeLoc TL) {
2800      assert(Chunk.Kind == DeclaratorChunk::Paren);
2801      TL.setLParenLoc(Chunk.Loc);
2802      TL.setRParenLoc(Chunk.EndLoc);
2803    }
2804
2805    void VisitTypeLoc(TypeLoc TL) {
2806      llvm_unreachable("unsupported TypeLoc kind in declarator!");
2807    }
2808  };
2809}
2810
2811/// \brief Create and instantiate a TypeSourceInfo with type source information.
2812///
2813/// \param T QualType referring to the type as written in source code.
2814///
2815/// \param ReturnTypeInfo For declarators whose return type does not show
2816/// up in the normal place in the declaration specifiers (such as a C++
2817/// conversion function), this pointer will refer to a type source information
2818/// for that return type.
2819TypeSourceInfo *
2820Sema::GetTypeSourceInfoForDeclarator(Declarator &D, QualType T,
2821                                     TypeSourceInfo *ReturnTypeInfo) {
2822  TypeSourceInfo *TInfo = Context.CreateTypeSourceInfo(T);
2823  UnqualTypeLoc CurrTL = TInfo->getTypeLoc().getUnqualifiedLoc();
2824
2825  // Handle parameter packs whose type is a pack expansion.
2826  if (isa<PackExpansionType>(T)) {
2827    cast<PackExpansionTypeLoc>(CurrTL).setEllipsisLoc(D.getEllipsisLoc());
2828    CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
2829  }
2830
2831  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
2832    while (isa<AttributedTypeLoc>(CurrTL)) {
2833      AttributedTypeLoc TL = cast<AttributedTypeLoc>(CurrTL);
2834      fillAttributedTypeLoc(TL, D.getTypeObject(i).getAttrs());
2835      CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
2836    }
2837
2838    DeclaratorLocFiller(Context, D.getTypeObject(i)).Visit(CurrTL);
2839    CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
2840  }
2841
2842  // If we have different source information for the return type, use
2843  // that.  This really only applies to C++ conversion functions.
2844  if (ReturnTypeInfo) {
2845    TypeLoc TL = ReturnTypeInfo->getTypeLoc();
2846    assert(TL.getFullDataSize() == CurrTL.getFullDataSize());
2847    memcpy(CurrTL.getOpaqueData(), TL.getOpaqueData(), TL.getFullDataSize());
2848  } else {
2849    TypeSpecLocFiller(Context, D.getDeclSpec()).Visit(CurrTL);
2850  }
2851
2852  return TInfo;
2853}
2854
2855/// \brief Create a LocInfoType to hold the given QualType and TypeSourceInfo.
2856ParsedType Sema::CreateParsedType(QualType T, TypeSourceInfo *TInfo) {
2857  // FIXME: LocInfoTypes are "transient", only needed for passing to/from Parser
2858  // and Sema during declaration parsing. Try deallocating/caching them when
2859  // it's appropriate, instead of allocating them and keeping them around.
2860  LocInfoType *LocT = (LocInfoType*)BumpAlloc.Allocate(sizeof(LocInfoType),
2861                                                       TypeAlignment);
2862  new (LocT) LocInfoType(T, TInfo);
2863  assert(LocT->getTypeClass() != T->getTypeClass() &&
2864         "LocInfoType's TypeClass conflicts with an existing Type class");
2865  return ParsedType::make(QualType(LocT, 0));
2866}
2867
2868void LocInfoType::getAsStringInternal(std::string &Str,
2869                                      const PrintingPolicy &Policy) const {
2870  assert(false && "LocInfoType leaked into the type system; an opaque TypeTy*"
2871         " was used directly instead of getting the QualType through"
2872         " GetTypeFromParser");
2873}
2874
2875TypeResult Sema::ActOnTypeName(Scope *S, Declarator &D) {
2876  // C99 6.7.6: Type names have no identifier.  This is already validated by
2877  // the parser.
2878  assert(D.getIdentifier() == 0 && "Type name should have no identifier!");
2879
2880  TagDecl *OwnedTag = 0;
2881  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedTag);
2882  QualType T = TInfo->getType();
2883  if (D.isInvalidType())
2884    return true;
2885
2886  if (getLangOptions().CPlusPlus) {
2887    // Check that there are no default arguments (C++ only).
2888    CheckExtraCXXDefaultArguments(D);
2889
2890    // C++0x [dcl.type]p3:
2891    //   A type-specifier-seq shall not define a class or enumeration unless
2892    //   it appears in the type-id of an alias-declaration (7.1.3) that is not
2893    //   the declaration of a template-declaration.
2894    if (OwnedTag && OwnedTag->isDefinition()) {
2895      if (D.getContext() == Declarator::AliasTemplateContext)
2896        Diag(OwnedTag->getLocation(), diag::err_type_defined_in_alias_template)
2897          << Context.getTypeDeclType(OwnedTag);
2898      else if (D.getContext() != Declarator::AliasDeclContext)
2899        Diag(OwnedTag->getLocation(), diag::err_type_defined_in_type_specifier)
2900          << Context.getTypeDeclType(OwnedTag);
2901    }
2902  }
2903
2904  return CreateParsedType(T, TInfo);
2905}
2906
2907//===----------------------------------------------------------------------===//
2908// Type Attribute Processing
2909//===----------------------------------------------------------------------===//
2910
2911/// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
2912/// specified type.  The attribute contains 1 argument, the id of the address
2913/// space for the type.
2914static void HandleAddressSpaceTypeAttribute(QualType &Type,
2915                                            const AttributeList &Attr, Sema &S){
2916
2917  // If this type is already address space qualified, reject it.
2918  // Clause 6.7.3 - Type qualifiers: "No type shall be qualified by qualifiers
2919  // for two or more different address spaces."
2920  if (Type.getAddressSpace()) {
2921    S.Diag(Attr.getLoc(), diag::err_attribute_address_multiple_qualifiers);
2922    Attr.setInvalid();
2923    return;
2924  }
2925
2926  // Check the attribute arguments.
2927  if (Attr.getNumArgs() != 1) {
2928    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
2929    Attr.setInvalid();
2930    return;
2931  }
2932  Expr *ASArgExpr = static_cast<Expr *>(Attr.getArg(0));
2933  llvm::APSInt addrSpace(32);
2934  if (ASArgExpr->isTypeDependent() || ASArgExpr->isValueDependent() ||
2935      !ASArgExpr->isIntegerConstantExpr(addrSpace, S.Context)) {
2936    S.Diag(Attr.getLoc(), diag::err_attribute_address_space_not_int)
2937      << ASArgExpr->getSourceRange();
2938    Attr.setInvalid();
2939    return;
2940  }
2941
2942  // Bounds checking.
2943  if (addrSpace.isSigned()) {
2944    if (addrSpace.isNegative()) {
2945      S.Diag(Attr.getLoc(), diag::err_attribute_address_space_negative)
2946        << ASArgExpr->getSourceRange();
2947      Attr.setInvalid();
2948      return;
2949    }
2950    addrSpace.setIsSigned(false);
2951  }
2952  llvm::APSInt max(addrSpace.getBitWidth());
2953  max = Qualifiers::MaxAddressSpace;
2954  if (addrSpace > max) {
2955    S.Diag(Attr.getLoc(), diag::err_attribute_address_space_too_high)
2956      << Qualifiers::MaxAddressSpace << ASArgExpr->getSourceRange();
2957    Attr.setInvalid();
2958    return;
2959  }
2960
2961  unsigned ASIdx = static_cast<unsigned>(addrSpace.getZExtValue());
2962  Type = S.Context.getAddrSpaceQualType(Type, ASIdx);
2963}
2964
2965/// handleObjCLifetimeTypeAttr - Process an objc_lifetime
2966/// attribute on the specified type.
2967///
2968/// Returns 'true' if the attribute was handled.
2969static bool handleObjCLifetimeTypeAttr(TypeProcessingState &state,
2970                                       AttributeList &attr,
2971                                       QualType &type) {
2972  if (!type->isObjCRetainableType() && !type->isDependentType())
2973    return false;
2974
2975  Sema &S = state.getSema();
2976
2977  if (type.getQualifiers().getObjCLifetime()) {
2978    S.Diag(attr.getLoc(), diag::err_attr_objc_lifetime_redundant)
2979      << type;
2980    return true;
2981  }
2982
2983  if (!attr.getParameterName()) {
2984    S.Diag(attr.getLoc(), diag::err_attribute_argument_n_not_string)
2985      << "objc_lifetime" << 1;
2986    attr.setInvalid();
2987    return true;
2988  }
2989
2990  Qualifiers::ObjCLifetime lifetime;
2991  if (attr.getParameterName()->isStr("none"))
2992    lifetime = Qualifiers::OCL_ExplicitNone;
2993  else if (attr.getParameterName()->isStr("strong"))
2994    lifetime = Qualifiers::OCL_Strong;
2995  else if (attr.getParameterName()->isStr("weak"))
2996    lifetime = Qualifiers::OCL_Weak;
2997  else if (attr.getParameterName()->isStr("autoreleasing"))
2998    lifetime = Qualifiers::OCL_Autoreleasing;
2999  else {
3000    S.Diag(attr.getLoc(), diag::warn_attribute_type_not_supported)
3001      << "objc_lifetime" << attr.getParameterName();
3002    attr.setInvalid();
3003    return true;
3004  }
3005
3006  // Consume lifetime attributes without further comment outside of
3007  // ARC mode.
3008  if (!S.getLangOptions().ObjCAutoRefCount)
3009    return true;
3010
3011  Qualifiers qs;
3012  qs.setObjCLifetime(lifetime);
3013  QualType origType = type;
3014  type = S.Context.getQualifiedType(type, qs);
3015
3016  // If we have a valid source location for the attribute, use an
3017  // AttributedType instead.
3018  if (attr.getLoc().isValid())
3019    type = S.Context.getAttributedType(AttributedType::attr_objc_lifetime,
3020                                       origType, type);
3021
3022  // Forbid __weak if we don't have a runtime.
3023  if (lifetime == Qualifiers::OCL_Weak &&
3024      S.getLangOptions().ObjCNoAutoRefCountRuntime) {
3025
3026    // Actually, delay this until we know what we're parsing.
3027    if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
3028      S.DelayedDiagnostics.add(
3029          sema::DelayedDiagnostic::makeForbiddenType(attr.getLoc(),
3030              diag::err_arc_weak_no_runtime, type, /*ignored*/ 0));
3031    } else {
3032      S.Diag(attr.getLoc(), diag::err_arc_weak_no_runtime);
3033    }
3034
3035    attr.setInvalid();
3036    return true;
3037  }
3038
3039  return true;
3040}
3041
3042/// handleObjCGCTypeAttr - Process the __attribute__((objc_gc)) type
3043/// attribute on the specified type.  Returns true to indicate that
3044/// the attribute was handled, false to indicate that the type does
3045/// not permit the attribute.
3046static bool handleObjCGCTypeAttr(TypeProcessingState &state,
3047                                 AttributeList &attr,
3048                                 QualType &type) {
3049  Sema &S = state.getSema();
3050
3051  // Delay if this isn't some kind of pointer.
3052  if (!type->isPointerType() &&
3053      !type->isObjCObjectPointerType() &&
3054      !type->isBlockPointerType())
3055    return false;
3056
3057  if (type.getObjCGCAttr() != Qualifiers::GCNone) {
3058    S.Diag(attr.getLoc(), diag::err_attribute_multiple_objc_gc);
3059    attr.setInvalid();
3060    return true;
3061  }
3062
3063  // Check the attribute arguments.
3064  if (!attr.getParameterName()) {
3065    S.Diag(attr.getLoc(), diag::err_attribute_argument_n_not_string)
3066      << "objc_gc" << 1;
3067    attr.setInvalid();
3068    return true;
3069  }
3070  Qualifiers::GC GCAttr;
3071  if (attr.getNumArgs() != 0) {
3072    S.Diag(attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
3073    attr.setInvalid();
3074    return true;
3075  }
3076  if (attr.getParameterName()->isStr("weak"))
3077    GCAttr = Qualifiers::Weak;
3078  else if (attr.getParameterName()->isStr("strong"))
3079    GCAttr = Qualifiers::Strong;
3080  else {
3081    S.Diag(attr.getLoc(), diag::warn_attribute_type_not_supported)
3082      << "objc_gc" << attr.getParameterName();
3083    attr.setInvalid();
3084    return true;
3085  }
3086
3087  QualType origType = type;
3088  type = S.Context.getObjCGCQualType(origType, GCAttr);
3089
3090  // Make an attributed type to preserve the source information.
3091  if (attr.getLoc().isValid())
3092    type = S.Context.getAttributedType(AttributedType::attr_objc_gc,
3093                                       origType, type);
3094
3095  return true;
3096}
3097
3098namespace {
3099  /// A helper class to unwrap a type down to a function for the
3100  /// purposes of applying attributes there.
3101  ///
3102  /// Use:
3103  ///   FunctionTypeUnwrapper unwrapped(SemaRef, T);
3104  ///   if (unwrapped.isFunctionType()) {
3105  ///     const FunctionType *fn = unwrapped.get();
3106  ///     // change fn somehow
3107  ///     T = unwrapped.wrap(fn);
3108  ///   }
3109  struct FunctionTypeUnwrapper {
3110    enum WrapKind {
3111      Desugar,
3112      Parens,
3113      Pointer,
3114      BlockPointer,
3115      Reference,
3116      MemberPointer
3117    };
3118
3119    QualType Original;
3120    const FunctionType *Fn;
3121    llvm::SmallVector<unsigned char /*WrapKind*/, 8> Stack;
3122
3123    FunctionTypeUnwrapper(Sema &S, QualType T) : Original(T) {
3124      while (true) {
3125        const Type *Ty = T.getTypePtr();
3126        if (isa<FunctionType>(Ty)) {
3127          Fn = cast<FunctionType>(Ty);
3128          return;
3129        } else if (isa<ParenType>(Ty)) {
3130          T = cast<ParenType>(Ty)->getInnerType();
3131          Stack.push_back(Parens);
3132        } else if (isa<PointerType>(Ty)) {
3133          T = cast<PointerType>(Ty)->getPointeeType();
3134          Stack.push_back(Pointer);
3135        } else if (isa<BlockPointerType>(Ty)) {
3136          T = cast<BlockPointerType>(Ty)->getPointeeType();
3137          Stack.push_back(BlockPointer);
3138        } else if (isa<MemberPointerType>(Ty)) {
3139          T = cast<MemberPointerType>(Ty)->getPointeeType();
3140          Stack.push_back(MemberPointer);
3141        } else if (isa<ReferenceType>(Ty)) {
3142          T = cast<ReferenceType>(Ty)->getPointeeType();
3143          Stack.push_back(Reference);
3144        } else {
3145          const Type *DTy = Ty->getUnqualifiedDesugaredType();
3146          if (Ty == DTy) {
3147            Fn = 0;
3148            return;
3149          }
3150
3151          T = QualType(DTy, 0);
3152          Stack.push_back(Desugar);
3153        }
3154      }
3155    }
3156
3157    bool isFunctionType() const { return (Fn != 0); }
3158    const FunctionType *get() const { return Fn; }
3159
3160    QualType wrap(Sema &S, const FunctionType *New) {
3161      // If T wasn't modified from the unwrapped type, do nothing.
3162      if (New == get()) return Original;
3163
3164      Fn = New;
3165      return wrap(S.Context, Original, 0);
3166    }
3167
3168  private:
3169    QualType wrap(ASTContext &C, QualType Old, unsigned I) {
3170      if (I == Stack.size())
3171        return C.getQualifiedType(Fn, Old.getQualifiers());
3172
3173      // Build up the inner type, applying the qualifiers from the old
3174      // type to the new type.
3175      SplitQualType SplitOld = Old.split();
3176
3177      // As a special case, tail-recurse if there are no qualifiers.
3178      if (SplitOld.second.empty())
3179        return wrap(C, SplitOld.first, I);
3180      return C.getQualifiedType(wrap(C, SplitOld.first, I), SplitOld.second);
3181    }
3182
3183    QualType wrap(ASTContext &C, const Type *Old, unsigned I) {
3184      if (I == Stack.size()) return QualType(Fn, 0);
3185
3186      switch (static_cast<WrapKind>(Stack[I++])) {
3187      case Desugar:
3188        // This is the point at which we potentially lose source
3189        // information.
3190        return wrap(C, Old->getUnqualifiedDesugaredType(), I);
3191
3192      case Parens: {
3193        QualType New = wrap(C, cast<ParenType>(Old)->getInnerType(), I);
3194        return C.getParenType(New);
3195      }
3196
3197      case Pointer: {
3198        QualType New = wrap(C, cast<PointerType>(Old)->getPointeeType(), I);
3199        return C.getPointerType(New);
3200      }
3201
3202      case BlockPointer: {
3203        QualType New = wrap(C, cast<BlockPointerType>(Old)->getPointeeType(),I);
3204        return C.getBlockPointerType(New);
3205      }
3206
3207      case MemberPointer: {
3208        const MemberPointerType *OldMPT = cast<MemberPointerType>(Old);
3209        QualType New = wrap(C, OldMPT->getPointeeType(), I);
3210        return C.getMemberPointerType(New, OldMPT->getClass());
3211      }
3212
3213      case Reference: {
3214        const ReferenceType *OldRef = cast<ReferenceType>(Old);
3215        QualType New = wrap(C, OldRef->getPointeeType(), I);
3216        if (isa<LValueReferenceType>(OldRef))
3217          return C.getLValueReferenceType(New, OldRef->isSpelledAsLValue());
3218        else
3219          return C.getRValueReferenceType(New);
3220      }
3221      }
3222
3223      llvm_unreachable("unknown wrapping kind");
3224      return QualType();
3225    }
3226  };
3227}
3228
3229/// Process an individual function attribute.  Returns true to
3230/// indicate that the attribute was handled, false if it wasn't.
3231static bool handleFunctionTypeAttr(TypeProcessingState &state,
3232                                   AttributeList &attr,
3233                                   QualType &type) {
3234  Sema &S = state.getSema();
3235
3236  FunctionTypeUnwrapper unwrapped(S, type);
3237
3238  if (attr.getKind() == AttributeList::AT_noreturn) {
3239    if (S.CheckNoReturnAttr(attr))
3240      return true;
3241
3242    // Delay if this is not a function type.
3243    if (!unwrapped.isFunctionType())
3244      return false;
3245
3246    // Otherwise we can process right away.
3247    FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withNoReturn(true);
3248    type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
3249    return true;
3250  }
3251
3252  // ns_returns_retained is not always a type attribute, but if we got
3253  // here, we're treating it as one right now.
3254  if (attr.getKind() == AttributeList::AT_ns_returns_retained) {
3255    assert(S.getLangOptions().ObjCAutoRefCount &&
3256           "ns_returns_retained treated as type attribute in non-ARC");
3257    if (attr.getNumArgs()) return true;
3258
3259    // Delay if this is not a function type.
3260    if (!unwrapped.isFunctionType())
3261      return false;
3262
3263    FunctionType::ExtInfo EI
3264      = unwrapped.get()->getExtInfo().withProducesResult(true);
3265    type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
3266    return true;
3267  }
3268
3269  if (attr.getKind() == AttributeList::AT_regparm) {
3270    unsigned value;
3271    if (S.CheckRegparmAttr(attr, value))
3272      return true;
3273
3274    // Delay if this is not a function type.
3275    if (!unwrapped.isFunctionType())
3276      return false;
3277
3278    // Diagnose regparm with fastcall.
3279    const FunctionType *fn = unwrapped.get();
3280    CallingConv CC = fn->getCallConv();
3281    if (CC == CC_X86FastCall) {
3282      S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
3283        << FunctionType::getNameForCallConv(CC)
3284        << "regparm";
3285      attr.setInvalid();
3286      return true;
3287    }
3288
3289    FunctionType::ExtInfo EI =
3290      unwrapped.get()->getExtInfo().withRegParm(value);
3291    type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
3292    return true;
3293  }
3294
3295  // Otherwise, a calling convention.
3296  CallingConv CC;
3297  if (S.CheckCallingConvAttr(attr, CC))
3298    return true;
3299
3300  // Delay if the type didn't work out to a function.
3301  if (!unwrapped.isFunctionType()) return false;
3302
3303  const FunctionType *fn = unwrapped.get();
3304  CallingConv CCOld = fn->getCallConv();
3305  if (S.Context.getCanonicalCallConv(CC) ==
3306      S.Context.getCanonicalCallConv(CCOld)) {
3307    FunctionType::ExtInfo EI= unwrapped.get()->getExtInfo().withCallingConv(CC);
3308    type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
3309    return true;
3310  }
3311
3312  if (CCOld != CC_Default) {
3313    // Should we diagnose reapplications of the same convention?
3314    S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
3315      << FunctionType::getNameForCallConv(CC)
3316      << FunctionType::getNameForCallConv(CCOld);
3317    attr.setInvalid();
3318    return true;
3319  }
3320
3321  // Diagnose the use of X86 fastcall on varargs or unprototyped functions.
3322  if (CC == CC_X86FastCall) {
3323    if (isa<FunctionNoProtoType>(fn)) {
3324      S.Diag(attr.getLoc(), diag::err_cconv_knr)
3325        << FunctionType::getNameForCallConv(CC);
3326      attr.setInvalid();
3327      return true;
3328    }
3329
3330    const FunctionProtoType *FnP = cast<FunctionProtoType>(fn);
3331    if (FnP->isVariadic()) {
3332      S.Diag(attr.getLoc(), diag::err_cconv_varargs)
3333        << FunctionType::getNameForCallConv(CC);
3334      attr.setInvalid();
3335      return true;
3336    }
3337
3338    // Also diagnose fastcall with regparm.
3339    if (fn->getHasRegParm()) {
3340      S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
3341        << "regparm"
3342        << FunctionType::getNameForCallConv(CC);
3343      attr.setInvalid();
3344      return true;
3345    }
3346  }
3347
3348  FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withCallingConv(CC);
3349  type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
3350  return true;
3351}
3352
3353/// Handle OpenCL image access qualifiers: read_only, write_only, read_write
3354static void HandleOpenCLImageAccessAttribute(QualType& CurType,
3355                                             const AttributeList &Attr,
3356                                             Sema &S) {
3357  // Check the attribute arguments.
3358  if (Attr.getNumArgs() != 1) {
3359    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
3360    Attr.setInvalid();
3361    return;
3362  }
3363  Expr *sizeExpr = static_cast<Expr *>(Attr.getArg(0));
3364  llvm::APSInt arg(32);
3365  if (sizeExpr->isTypeDependent() || sizeExpr->isValueDependent() ||
3366      !sizeExpr->isIntegerConstantExpr(arg, S.Context)) {
3367    S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
3368      << "opencl_image_access" << sizeExpr->getSourceRange();
3369    Attr.setInvalid();
3370    return;
3371  }
3372  unsigned iarg = static_cast<unsigned>(arg.getZExtValue());
3373  switch (iarg) {
3374  case CLIA_read_only:
3375  case CLIA_write_only:
3376  case CLIA_read_write:
3377    // Implemented in a separate patch
3378    break;
3379  default:
3380    // Implemented in a separate patch
3381    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_size)
3382      << sizeExpr->getSourceRange();
3383    Attr.setInvalid();
3384    break;
3385  }
3386}
3387
3388/// HandleVectorSizeAttribute - this attribute is only applicable to integral
3389/// and float scalars, although arrays, pointers, and function return values are
3390/// allowed in conjunction with this construct. Aggregates with this attribute
3391/// are invalid, even if they are of the same size as a corresponding scalar.
3392/// The raw attribute should contain precisely 1 argument, the vector size for
3393/// the variable, measured in bytes. If curType and rawAttr are well formed,
3394/// this routine will return a new vector type.
3395static void HandleVectorSizeAttr(QualType& CurType, const AttributeList &Attr,
3396                                 Sema &S) {
3397  // Check the attribute arguments.
3398  if (Attr.getNumArgs() != 1) {
3399    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
3400    Attr.setInvalid();
3401    return;
3402  }
3403  Expr *sizeExpr = static_cast<Expr *>(Attr.getArg(0));
3404  llvm::APSInt vecSize(32);
3405  if (sizeExpr->isTypeDependent() || sizeExpr->isValueDependent() ||
3406      !sizeExpr->isIntegerConstantExpr(vecSize, S.Context)) {
3407    S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
3408      << "vector_size" << sizeExpr->getSourceRange();
3409    Attr.setInvalid();
3410    return;
3411  }
3412  // the base type must be integer or float, and can't already be a vector.
3413  if (!CurType->isIntegerType() && !CurType->isRealFloatingType()) {
3414    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << CurType;
3415    Attr.setInvalid();
3416    return;
3417  }
3418  unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
3419  // vecSize is specified in bytes - convert to bits.
3420  unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue() * 8);
3421
3422  // the vector size needs to be an integral multiple of the type size.
3423  if (vectorSize % typeSize) {
3424    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_size)
3425      << sizeExpr->getSourceRange();
3426    Attr.setInvalid();
3427    return;
3428  }
3429  if (vectorSize == 0) {
3430    S.Diag(Attr.getLoc(), diag::err_attribute_zero_size)
3431      << sizeExpr->getSourceRange();
3432    Attr.setInvalid();
3433    return;
3434  }
3435
3436  // Success! Instantiate the vector type, the number of elements is > 0, and
3437  // not required to be a power of 2, unlike GCC.
3438  CurType = S.Context.getVectorType(CurType, vectorSize/typeSize,
3439                                    VectorType::GenericVector);
3440}
3441
3442/// \brief Process the OpenCL-like ext_vector_type attribute when it occurs on
3443/// a type.
3444static void HandleExtVectorTypeAttr(QualType &CurType,
3445                                    const AttributeList &Attr,
3446                                    Sema &S) {
3447  Expr *sizeExpr;
3448
3449  // Special case where the argument is a template id.
3450  if (Attr.getParameterName()) {
3451    CXXScopeSpec SS;
3452    UnqualifiedId id;
3453    id.setIdentifier(Attr.getParameterName(), Attr.getLoc());
3454
3455    ExprResult Size = S.ActOnIdExpression(S.getCurScope(), SS, id, false,
3456                                          false);
3457    if (Size.isInvalid())
3458      return;
3459
3460    sizeExpr = Size.get();
3461  } else {
3462    // check the attribute arguments.
3463    if (Attr.getNumArgs() != 1) {
3464      S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
3465      return;
3466    }
3467    sizeExpr = Attr.getArg(0);
3468  }
3469
3470  // Create the vector type.
3471  QualType T = S.BuildExtVectorType(CurType, sizeExpr, Attr.getLoc());
3472  if (!T.isNull())
3473    CurType = T;
3474}
3475
3476/// HandleNeonVectorTypeAttr - The "neon_vector_type" and
3477/// "neon_polyvector_type" attributes are used to create vector types that
3478/// are mangled according to ARM's ABI.  Otherwise, these types are identical
3479/// to those created with the "vector_size" attribute.  Unlike "vector_size"
3480/// the argument to these Neon attributes is the number of vector elements,
3481/// not the vector size in bytes.  The vector width and element type must
3482/// match one of the standard Neon vector types.
3483static void HandleNeonVectorTypeAttr(QualType& CurType,
3484                                     const AttributeList &Attr, Sema &S,
3485                                     VectorType::VectorKind VecKind,
3486                                     const char *AttrName) {
3487  // Check the attribute arguments.
3488  if (Attr.getNumArgs() != 1) {
3489    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
3490    Attr.setInvalid();
3491    return;
3492  }
3493  // The number of elements must be an ICE.
3494  Expr *numEltsExpr = static_cast<Expr *>(Attr.getArg(0));
3495  llvm::APSInt numEltsInt(32);
3496  if (numEltsExpr->isTypeDependent() || numEltsExpr->isValueDependent() ||
3497      !numEltsExpr->isIntegerConstantExpr(numEltsInt, S.Context)) {
3498    S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
3499      << AttrName << numEltsExpr->getSourceRange();
3500    Attr.setInvalid();
3501    return;
3502  }
3503  // Only certain element types are supported for Neon vectors.
3504  const BuiltinType* BTy = CurType->getAs<BuiltinType>();
3505  if (!BTy ||
3506      (VecKind == VectorType::NeonPolyVector &&
3507       BTy->getKind() != BuiltinType::SChar &&
3508       BTy->getKind() != BuiltinType::Short) ||
3509      (BTy->getKind() != BuiltinType::SChar &&
3510       BTy->getKind() != BuiltinType::UChar &&
3511       BTy->getKind() != BuiltinType::Short &&
3512       BTy->getKind() != BuiltinType::UShort &&
3513       BTy->getKind() != BuiltinType::Int &&
3514       BTy->getKind() != BuiltinType::UInt &&
3515       BTy->getKind() != BuiltinType::LongLong &&
3516       BTy->getKind() != BuiltinType::ULongLong &&
3517       BTy->getKind() != BuiltinType::Float)) {
3518    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) <<CurType;
3519    Attr.setInvalid();
3520    return;
3521  }
3522  // The total size of the vector must be 64 or 128 bits.
3523  unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
3524  unsigned numElts = static_cast<unsigned>(numEltsInt.getZExtValue());
3525  unsigned vecSize = typeSize * numElts;
3526  if (vecSize != 64 && vecSize != 128) {
3527    S.Diag(Attr.getLoc(), diag::err_attribute_bad_neon_vector_size) << CurType;
3528    Attr.setInvalid();
3529    return;
3530  }
3531
3532  CurType = S.Context.getVectorType(CurType, numElts, VecKind);
3533}
3534
3535static void processTypeAttrs(TypeProcessingState &state, QualType &type,
3536                             bool isDeclSpec, AttributeList *attrs) {
3537  // Scan through and apply attributes to this type where it makes sense.  Some
3538  // attributes (such as __address_space__, __vector_size__, etc) apply to the
3539  // type, but others can be present in the type specifiers even though they
3540  // apply to the decl.  Here we apply type attributes and ignore the rest.
3541
3542  AttributeList *next;
3543  do {
3544    AttributeList &attr = *attrs;
3545    next = attr.getNext();
3546
3547    // Skip attributes that were marked to be invalid.
3548    if (attr.isInvalid())
3549      continue;
3550
3551    // If this is an attribute we can handle, do so now,
3552    // otherwise, add it to the FnAttrs list for rechaining.
3553    switch (attr.getKind()) {
3554    default: break;
3555
3556    case AttributeList::AT_address_space:
3557      HandleAddressSpaceTypeAttribute(type, attr, state.getSema());
3558      break;
3559    OBJC_POINTER_TYPE_ATTRS_CASELIST:
3560      if (!handleObjCPointerTypeAttr(state, attr, type))
3561        distributeObjCPointerTypeAttr(state, attr, type);
3562      break;
3563    case AttributeList::AT_vector_size:
3564      HandleVectorSizeAttr(type, attr, state.getSema());
3565      break;
3566    case AttributeList::AT_ext_vector_type:
3567      if (state.getDeclarator().getDeclSpec().getStorageClassSpec()
3568            != DeclSpec::SCS_typedef)
3569        HandleExtVectorTypeAttr(type, attr, state.getSema());
3570      break;
3571    case AttributeList::AT_neon_vector_type:
3572      HandleNeonVectorTypeAttr(type, attr, state.getSema(),
3573                               VectorType::NeonVector, "neon_vector_type");
3574      break;
3575    case AttributeList::AT_neon_polyvector_type:
3576      HandleNeonVectorTypeAttr(type, attr, state.getSema(),
3577                               VectorType::NeonPolyVector,
3578                               "neon_polyvector_type");
3579      break;
3580    case AttributeList::AT_opencl_image_access:
3581      HandleOpenCLImageAccessAttribute(type, attr, state.getSema());
3582      break;
3583
3584    case AttributeList::AT_ns_returns_retained:
3585      if (!state.getSema().getLangOptions().ObjCAutoRefCount)
3586	break;
3587      // fallthrough into the function attrs
3588
3589    FUNCTION_TYPE_ATTRS_CASELIST:
3590      // Never process function type attributes as part of the
3591      // declaration-specifiers.
3592      if (isDeclSpec)
3593        distributeFunctionTypeAttrFromDeclSpec(state, attr, type);
3594
3595      // Otherwise, handle the possible delays.
3596      else if (!handleFunctionTypeAttr(state, attr, type))
3597        distributeFunctionTypeAttr(state, attr, type);
3598      break;
3599    }
3600  } while ((attrs = next));
3601}
3602
3603/// \brief Ensure that the type of the given expression is complete.
3604///
3605/// This routine checks whether the expression \p E has a complete type. If the
3606/// expression refers to an instantiable construct, that instantiation is
3607/// performed as needed to complete its type. Furthermore
3608/// Sema::RequireCompleteType is called for the expression's type (or in the
3609/// case of a reference type, the referred-to type).
3610///
3611/// \param E The expression whose type is required to be complete.
3612/// \param PD The partial diagnostic that will be printed out if the type cannot
3613/// be completed.
3614///
3615/// \returns \c true if the type of \p E is incomplete and diagnosed, \c false
3616/// otherwise.
3617bool Sema::RequireCompleteExprType(Expr *E, const PartialDiagnostic &PD,
3618                                   std::pair<SourceLocation,
3619                                             PartialDiagnostic> Note) {
3620  QualType T = E->getType();
3621
3622  // Fast path the case where the type is already complete.
3623  if (!T->isIncompleteType())
3624    return false;
3625
3626  // Incomplete array types may be completed by the initializer attached to
3627  // their definitions. For static data members of class templates we need to
3628  // instantiate the definition to get this initializer and complete the type.
3629  if (T->isIncompleteArrayType()) {
3630    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
3631      if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
3632        if (Var->isStaticDataMember() &&
3633            Var->getInstantiatedFromStaticDataMember()) {
3634
3635          MemberSpecializationInfo *MSInfo = Var->getMemberSpecializationInfo();
3636          assert(MSInfo && "Missing member specialization information?");
3637          if (MSInfo->getTemplateSpecializationKind()
3638                != TSK_ExplicitSpecialization) {
3639            // If we don't already have a point of instantiation, this is it.
3640            if (MSInfo->getPointOfInstantiation().isInvalid()) {
3641              MSInfo->setPointOfInstantiation(E->getLocStart());
3642
3643              // This is a modification of an existing AST node. Notify
3644              // listeners.
3645              if (ASTMutationListener *L = getASTMutationListener())
3646                L->StaticDataMemberInstantiated(Var);
3647            }
3648
3649            InstantiateStaticDataMemberDefinition(E->getExprLoc(), Var);
3650
3651            // Update the type to the newly instantiated definition's type both
3652            // here and within the expression.
3653            if (VarDecl *Def = Var->getDefinition()) {
3654              DRE->setDecl(Def);
3655              T = Def->getType();
3656              DRE->setType(T);
3657              E->setType(T);
3658            }
3659          }
3660
3661          // We still go on to try to complete the type independently, as it
3662          // may also require instantiations or diagnostics if it remains
3663          // incomplete.
3664        }
3665      }
3666    }
3667  }
3668
3669  // FIXME: Are there other cases which require instantiating something other
3670  // than the type to complete the type of an expression?
3671
3672  // Look through reference types and complete the referred type.
3673  if (const ReferenceType *Ref = T->getAs<ReferenceType>())
3674    T = Ref->getPointeeType();
3675
3676  return RequireCompleteType(E->getExprLoc(), T, PD, Note);
3677}
3678
3679/// @brief Ensure that the type T is a complete type.
3680///
3681/// This routine checks whether the type @p T is complete in any
3682/// context where a complete type is required. If @p T is a complete
3683/// type, returns false. If @p T is a class template specialization,
3684/// this routine then attempts to perform class template
3685/// instantiation. If instantiation fails, or if @p T is incomplete
3686/// and cannot be completed, issues the diagnostic @p diag (giving it
3687/// the type @p T) and returns true.
3688///
3689/// @param Loc  The location in the source that the incomplete type
3690/// diagnostic should refer to.
3691///
3692/// @param T  The type that this routine is examining for completeness.
3693///
3694/// @param PD The partial diagnostic that will be printed out if T is not a
3695/// complete type.
3696///
3697/// @returns @c true if @p T is incomplete and a diagnostic was emitted,
3698/// @c false otherwise.
3699bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
3700                               const PartialDiagnostic &PD,
3701                               std::pair<SourceLocation,
3702                                         PartialDiagnostic> Note) {
3703  unsigned diag = PD.getDiagID();
3704
3705  // FIXME: Add this assertion to make sure we always get instantiation points.
3706  //  assert(!Loc.isInvalid() && "Invalid location in RequireCompleteType");
3707  // FIXME: Add this assertion to help us flush out problems with
3708  // checking for dependent types and type-dependent expressions.
3709  //
3710  //  assert(!T->isDependentType() &&
3711  //         "Can't ask whether a dependent type is complete");
3712
3713  // If we have a complete type, we're done.
3714  if (!T->isIncompleteType())
3715    return false;
3716
3717  // If we have a class template specialization or a class member of a
3718  // class template specialization, or an array with known size of such,
3719  // try to instantiate it.
3720  QualType MaybeTemplate = T;
3721  if (const ConstantArrayType *Array = Context.getAsConstantArrayType(T))
3722    MaybeTemplate = Array->getElementType();
3723  if (const RecordType *Record = MaybeTemplate->getAs<RecordType>()) {
3724    if (ClassTemplateSpecializationDecl *ClassTemplateSpec
3725          = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
3726      if (ClassTemplateSpec->getSpecializationKind() == TSK_Undeclared)
3727        return InstantiateClassTemplateSpecialization(Loc, ClassTemplateSpec,
3728                                                      TSK_ImplicitInstantiation,
3729                                                      /*Complain=*/diag != 0);
3730    } else if (CXXRecordDecl *Rec
3731                 = dyn_cast<CXXRecordDecl>(Record->getDecl())) {
3732      if (CXXRecordDecl *Pattern = Rec->getInstantiatedFromMemberClass()) {
3733        MemberSpecializationInfo *MSInfo = Rec->getMemberSpecializationInfo();
3734        assert(MSInfo && "Missing member specialization information?");
3735        // This record was instantiated from a class within a template.
3736        if (MSInfo->getTemplateSpecializationKind()
3737                                               != TSK_ExplicitSpecialization)
3738          return InstantiateClass(Loc, Rec, Pattern,
3739                                  getTemplateInstantiationArgs(Rec),
3740                                  TSK_ImplicitInstantiation,
3741                                  /*Complain=*/diag != 0);
3742      }
3743    }
3744  }
3745
3746  if (diag == 0)
3747    return true;
3748
3749  const TagType *Tag = T->getAs<TagType>();
3750
3751  // Avoid diagnosing invalid decls as incomplete.
3752  if (Tag && Tag->getDecl()->isInvalidDecl())
3753    return true;
3754
3755  // Give the external AST source a chance to complete the type.
3756  if (Tag && Tag->getDecl()->hasExternalLexicalStorage()) {
3757    Context.getExternalSource()->CompleteType(Tag->getDecl());
3758    if (!Tag->isIncompleteType())
3759      return false;
3760  }
3761
3762  // We have an incomplete type. Produce a diagnostic.
3763  Diag(Loc, PD) << T;
3764
3765  // If we have a note, produce it.
3766  if (!Note.first.isInvalid())
3767    Diag(Note.first, Note.second);
3768
3769  // If the type was a forward declaration of a class/struct/union
3770  // type, produce a note.
3771  if (Tag && !Tag->getDecl()->isInvalidDecl())
3772    Diag(Tag->getDecl()->getLocation(),
3773         Tag->isBeingDefined() ? diag::note_type_being_defined
3774                               : diag::note_forward_declaration)
3775        << QualType(Tag, 0);
3776
3777  return true;
3778}
3779
3780bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
3781                               const PartialDiagnostic &PD) {
3782  return RequireCompleteType(Loc, T, PD,
3783                             std::make_pair(SourceLocation(), PDiag(0)));
3784}
3785
3786bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
3787                               unsigned DiagID) {
3788  return RequireCompleteType(Loc, T, PDiag(DiagID),
3789                             std::make_pair(SourceLocation(), PDiag(0)));
3790}
3791
3792/// \brief Retrieve a version of the type 'T' that is elaborated by Keyword
3793/// and qualified by the nested-name-specifier contained in SS.
3794QualType Sema::getElaboratedType(ElaboratedTypeKeyword Keyword,
3795                                 const CXXScopeSpec &SS, QualType T) {
3796  if (T.isNull())
3797    return T;
3798  NestedNameSpecifier *NNS;
3799  if (SS.isValid())
3800    NNS = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3801  else {
3802    if (Keyword == ETK_None)
3803      return T;
3804    NNS = 0;
3805  }
3806  return Context.getElaboratedType(Keyword, NNS, T);
3807}
3808
3809QualType Sema::BuildTypeofExprType(Expr *E, SourceLocation Loc) {
3810  ExprResult ER = CheckPlaceholderExpr(E);
3811  if (ER.isInvalid()) return QualType();
3812  E = ER.take();
3813
3814  if (!E->isTypeDependent()) {
3815    QualType T = E->getType();
3816    if (const TagType *TT = T->getAs<TagType>())
3817      DiagnoseUseOfDecl(TT->getDecl(), E->getExprLoc());
3818  }
3819  return Context.getTypeOfExprType(E);
3820}
3821
3822QualType Sema::BuildDecltypeType(Expr *E, SourceLocation Loc) {
3823  ExprResult ER = CheckPlaceholderExpr(E);
3824  if (ER.isInvalid()) return QualType();
3825  E = ER.take();
3826
3827  return Context.getDecltypeType(E);
3828}
3829
3830QualType Sema::BuildUnaryTransformType(QualType BaseType,
3831                                       UnaryTransformType::UTTKind UKind,
3832                                       SourceLocation Loc) {
3833  switch (UKind) {
3834  case UnaryTransformType::EnumUnderlyingType:
3835    if (!BaseType->isDependentType() && !BaseType->isEnumeralType()) {
3836      Diag(Loc, diag::err_only_enums_have_underlying_types);
3837      return QualType();
3838    } else {
3839      QualType Underlying = BaseType;
3840      if (!BaseType->isDependentType()) {
3841        EnumDecl *ED = BaseType->getAs<EnumType>()->getDecl();
3842        assert(ED && "EnumType has no EnumDecl");
3843        DiagnoseUseOfDecl(ED, Loc);
3844        Underlying = ED->getIntegerType();
3845      }
3846      assert(!Underlying.isNull());
3847      return Context.getUnaryTransformType(BaseType, Underlying,
3848                                        UnaryTransformType::EnumUnderlyingType);
3849    }
3850  }
3851  llvm_unreachable("unknown unary transform type");
3852}
3853