NeonEmitter.cpp revision 944f09ff9b33637465906e1aeadcfa405d66331d
1//===- NeonEmitter.cpp - Generate arm_neon.h for use with clang -*- C++ -*-===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This tablegen backend is responsible for emitting arm_neon.h, which includes 11// a declaration and definition of each function specified by the ARM NEON 12// compiler interface. See ARM document DUI0348B. 13// 14// Each NEON instruction is implemented in terms of 1 or more functions which 15// are suffixed with the element type of the input vectors. Functions may be 16// implemented in terms of generic vector operations such as +, *, -, etc. or 17// by calling a __builtin_-prefixed function which will be handled by clang's 18// CodeGen library. 19// 20// Additional validation code can be generated by this file when runHeader() is 21// called, rather than the normal run() entry point. A complete set of tests 22// for Neon intrinsics can be generated by calling the runTests() entry point. 23// 24//===----------------------------------------------------------------------===// 25 26#include "llvm/ADT/DenseMap.h" 27#include "llvm/ADT/SmallString.h" 28#include "llvm/ADT/SmallVector.h" 29#include "llvm/ADT/StringExtras.h" 30#include "llvm/ADT/StringMap.h" 31#include "llvm/Support/ErrorHandling.h" 32#include "llvm/TableGen/Error.h" 33#include "llvm/TableGen/Record.h" 34#include "llvm/TableGen/TableGenBackend.h" 35#include <string> 36using namespace llvm; 37 38enum OpKind { 39 OpNone, 40 OpUnavailable, 41 OpAdd, 42 OpAddl, 43 OpAddw, 44 OpSub, 45 OpSubl, 46 OpSubw, 47 OpMul, 48 OpMla, 49 OpMlal, 50 OpMls, 51 OpMlsl, 52 OpMulN, 53 OpMlaN, 54 OpMlsN, 55 OpMlalN, 56 OpMlslN, 57 OpMulLane, 58 OpMullLane, 59 OpMlaLane, 60 OpMlsLane, 61 OpMlalLane, 62 OpMlslLane, 63 OpQDMullLane, 64 OpQDMlalLane, 65 OpQDMlslLane, 66 OpQDMulhLane, 67 OpQRDMulhLane, 68 OpEq, 69 OpGe, 70 OpLe, 71 OpGt, 72 OpLt, 73 OpNeg, 74 OpNot, 75 OpAnd, 76 OpOr, 77 OpXor, 78 OpAndNot, 79 OpOrNot, 80 OpCast, 81 OpConcat, 82 OpDup, 83 OpDupLane, 84 OpHi, 85 OpLo, 86 OpSelect, 87 OpRev16, 88 OpRev32, 89 OpRev64, 90 OpReinterpret, 91 OpAbdl, 92 OpAba, 93 OpAbal, 94 OpDiv 95}; 96 97enum ClassKind { 98 ClassNone, 99 ClassI, // generic integer instruction, e.g., "i8" suffix 100 ClassS, // signed/unsigned/poly, e.g., "s8", "u8" or "p8" suffix 101 ClassW, // width-specific instruction, e.g., "8" suffix 102 ClassB, // bitcast arguments with enum argument to specify type 103 ClassL, // Logical instructions which are op instructions 104 // but we need to not emit any suffix for in our 105 // tests. 106 ClassNoTest // Instructions which we do not test since they are 107 // not TRUE instructions. 108}; 109 110/// NeonTypeFlags - Flags to identify the types for overloaded Neon 111/// builtins. These must be kept in sync with the flags in 112/// include/clang/Basic/TargetBuiltins.h. 113namespace { 114class NeonTypeFlags { 115 enum { 116 EltTypeMask = 0xf, 117 UnsignedFlag = 0x10, 118 QuadFlag = 0x20 119 }; 120 uint32_t Flags; 121 122public: 123 enum EltType { 124 Int8, 125 Int16, 126 Int32, 127 Int64, 128 Poly8, 129 Poly16, 130 Float16, 131 Float32, 132 Float64 133 }; 134 135 NeonTypeFlags(unsigned F) : Flags(F) {} 136 NeonTypeFlags(EltType ET, bool IsUnsigned, bool IsQuad) : Flags(ET) { 137 if (IsUnsigned) 138 Flags |= UnsignedFlag; 139 if (IsQuad) 140 Flags |= QuadFlag; 141 } 142 143 uint32_t getFlags() const { return Flags; } 144}; 145} // end anonymous namespace 146 147namespace { 148class NeonEmitter { 149 RecordKeeper &Records; 150 StringMap<OpKind> OpMap; 151 DenseMap<Record*, ClassKind> ClassMap; 152 153public: 154 NeonEmitter(RecordKeeper &R) : Records(R) { 155 OpMap["OP_NONE"] = OpNone; 156 OpMap["OP_UNAVAILABLE"] = OpUnavailable; 157 OpMap["OP_ADD"] = OpAdd; 158 OpMap["OP_ADDL"] = OpAddl; 159 OpMap["OP_ADDW"] = OpAddw; 160 OpMap["OP_SUB"] = OpSub; 161 OpMap["OP_SUBL"] = OpSubl; 162 OpMap["OP_SUBW"] = OpSubw; 163 OpMap["OP_MUL"] = OpMul; 164 OpMap["OP_MLA"] = OpMla; 165 OpMap["OP_MLAL"] = OpMlal; 166 OpMap["OP_MLS"] = OpMls; 167 OpMap["OP_MLSL"] = OpMlsl; 168 OpMap["OP_MUL_N"] = OpMulN; 169 OpMap["OP_MLA_N"] = OpMlaN; 170 OpMap["OP_MLS_N"] = OpMlsN; 171 OpMap["OP_MLAL_N"] = OpMlalN; 172 OpMap["OP_MLSL_N"] = OpMlslN; 173 OpMap["OP_MUL_LN"]= OpMulLane; 174 OpMap["OP_MULL_LN"] = OpMullLane; 175 OpMap["OP_MLA_LN"]= OpMlaLane; 176 OpMap["OP_MLS_LN"]= OpMlsLane; 177 OpMap["OP_MLAL_LN"] = OpMlalLane; 178 OpMap["OP_MLSL_LN"] = OpMlslLane; 179 OpMap["OP_QDMULL_LN"] = OpQDMullLane; 180 OpMap["OP_QDMLAL_LN"] = OpQDMlalLane; 181 OpMap["OP_QDMLSL_LN"] = OpQDMlslLane; 182 OpMap["OP_QDMULH_LN"] = OpQDMulhLane; 183 OpMap["OP_QRDMULH_LN"] = OpQRDMulhLane; 184 OpMap["OP_EQ"] = OpEq; 185 OpMap["OP_GE"] = OpGe; 186 OpMap["OP_LE"] = OpLe; 187 OpMap["OP_GT"] = OpGt; 188 OpMap["OP_LT"] = OpLt; 189 OpMap["OP_NEG"] = OpNeg; 190 OpMap["OP_NOT"] = OpNot; 191 OpMap["OP_AND"] = OpAnd; 192 OpMap["OP_OR"] = OpOr; 193 OpMap["OP_XOR"] = OpXor; 194 OpMap["OP_ANDN"] = OpAndNot; 195 OpMap["OP_ORN"] = OpOrNot; 196 OpMap["OP_CAST"] = OpCast; 197 OpMap["OP_CONC"] = OpConcat; 198 OpMap["OP_HI"] = OpHi; 199 OpMap["OP_LO"] = OpLo; 200 OpMap["OP_DUP"] = OpDup; 201 OpMap["OP_DUP_LN"] = OpDupLane; 202 OpMap["OP_SEL"] = OpSelect; 203 OpMap["OP_REV16"] = OpRev16; 204 OpMap["OP_REV32"] = OpRev32; 205 OpMap["OP_REV64"] = OpRev64; 206 OpMap["OP_REINT"] = OpReinterpret; 207 OpMap["OP_ABDL"] = OpAbdl; 208 OpMap["OP_ABA"] = OpAba; 209 OpMap["OP_ABAL"] = OpAbal; 210 OpMap["OP_DIV"] = OpDiv; 211 212 Record *SI = R.getClass("SInst"); 213 Record *II = R.getClass("IInst"); 214 Record *WI = R.getClass("WInst"); 215 Record *SOpI = R.getClass("SOpInst"); 216 Record *IOpI = R.getClass("IOpInst"); 217 Record *WOpI = R.getClass("WOpInst"); 218 Record *LOpI = R.getClass("LOpInst"); 219 Record *NoTestOpI = R.getClass("NoTestOpInst"); 220 221 ClassMap[SI] = ClassS; 222 ClassMap[II] = ClassI; 223 ClassMap[WI] = ClassW; 224 ClassMap[SOpI] = ClassS; 225 ClassMap[IOpI] = ClassI; 226 ClassMap[WOpI] = ClassW; 227 ClassMap[LOpI] = ClassL; 228 ClassMap[NoTestOpI] = ClassNoTest; 229 } 230 231 // run - Emit arm_neon.h.inc 232 void run(raw_ostream &o); 233 234 // runHeader - Emit all the __builtin prototypes used in arm_neon.h 235 void runHeader(raw_ostream &o); 236 237 // runTests - Emit tests for all the Neon intrinsics. 238 void runTests(raw_ostream &o); 239 240private: 241 void emitIntrinsic(raw_ostream &OS, Record *R, 242 StringMap<ClassKind> &EmittedMap); 243 void genBuiltinsDef(raw_ostream &OS, StringMap<ClassKind> &A64IntrinsicMap, 244 bool isA64GenBuiltinDef); 245 void genOverloadTypeCheckCode(raw_ostream &OS, 246 StringMap<ClassKind> &A64IntrinsicMap, 247 bool isA64TypeCheck); 248 void genIntrinsicRangeCheckCode(raw_ostream &OS, 249 StringMap<ClassKind> &A64IntrinsicMap, 250 bool isA64RangeCheck); 251 void genTargetTest(raw_ostream &OS, StringMap<OpKind> &EmittedMap, 252 bool isA64TestGen); 253}; 254} // end anonymous namespace 255 256/// ParseTypes - break down a string such as "fQf" into a vector of StringRefs, 257/// which each StringRef representing a single type declared in the string. 258/// for "fQf" we would end up with 2 StringRefs, "f", and "Qf", representing 259/// 2xfloat and 4xfloat respectively. 260static void ParseTypes(Record *r, std::string &s, 261 SmallVectorImpl<StringRef> &TV) { 262 const char *data = s.data(); 263 int len = 0; 264 265 for (unsigned i = 0, e = s.size(); i != e; ++i, ++len) { 266 if (data[len] == 'P' || data[len] == 'Q' || data[len] == 'U' 267 || data[len] == 'H' || data[len] == 'S') 268 continue; 269 270 switch (data[len]) { 271 case 'c': 272 case 's': 273 case 'i': 274 case 'l': 275 case 'h': 276 case 'f': 277 case 'd': 278 break; 279 default: 280 PrintFatalError(r->getLoc(), 281 "Unexpected letter: " + std::string(data + len, 1)); 282 } 283 TV.push_back(StringRef(data, len + 1)); 284 data += len + 1; 285 len = -1; 286 } 287} 288 289/// Widen - Convert a type code into the next wider type. char -> short, 290/// short -> int, etc. 291static char Widen(const char t) { 292 switch (t) { 293 case 'c': 294 return 's'; 295 case 's': 296 return 'i'; 297 case 'i': 298 return 'l'; 299 case 'h': 300 return 'f'; 301 default: 302 PrintFatalError("unhandled type in widen!"); 303 } 304} 305 306/// Narrow - Convert a type code into the next smaller type. short -> char, 307/// float -> half float, etc. 308static char Narrow(const char t) { 309 switch (t) { 310 case 's': 311 return 'c'; 312 case 'i': 313 return 's'; 314 case 'l': 315 return 'i'; 316 case 'f': 317 return 'h'; 318 default: 319 PrintFatalError("unhandled type in narrow!"); 320 } 321} 322 323/// For a particular StringRef, return the base type code, and whether it has 324/// the quad-vector, polynomial, or unsigned modifiers set. 325static char ClassifyType(StringRef ty, bool &quad, bool &poly, bool &usgn) { 326 unsigned off = 0; 327 // ignore scalar. 328 if (ty[off] == 'S') { 329 ++off; 330 } 331 // remember quad. 332 if (ty[off] == 'Q' || ty[off] == 'H') { 333 quad = true; 334 ++off; 335 } 336 337 // remember poly. 338 if (ty[off] == 'P') { 339 poly = true; 340 ++off; 341 } 342 343 // remember unsigned. 344 if (ty[off] == 'U') { 345 usgn = true; 346 ++off; 347 } 348 349 // base type to get the type string for. 350 return ty[off]; 351} 352 353/// ModType - Transform a type code and its modifiers based on a mod code. The 354/// mod code definitions may be found at the top of arm_neon.td. 355static char ModType(const char mod, char type, bool &quad, bool &poly, 356 bool &usgn, bool &scal, bool &cnst, bool &pntr) { 357 switch (mod) { 358 case 't': 359 if (poly) { 360 poly = false; 361 usgn = true; 362 } 363 break; 364 case 'u': 365 usgn = true; 366 poly = false; 367 if (type == 'f') 368 type = 'i'; 369 if (type == 'd') 370 type = 'l'; 371 break; 372 case 'x': 373 usgn = false; 374 poly = false; 375 if (type == 'f') 376 type = 'i'; 377 break; 378 case 'f': 379 if (type == 'h') 380 quad = true; 381 type = 'f'; 382 usgn = false; 383 break; 384 case 'g': 385 quad = false; 386 break; 387 case 'w': 388 type = Widen(type); 389 quad = true; 390 break; 391 case 'n': 392 type = Widen(type); 393 break; 394 case 'i': 395 type = 'i'; 396 scal = true; 397 break; 398 case 'l': 399 type = 'l'; 400 scal = true; 401 usgn = true; 402 break; 403 case 's': 404 case 'a': 405 scal = true; 406 break; 407 case 'k': 408 quad = true; 409 break; 410 case 'c': 411 cnst = true; 412 case 'p': 413 pntr = true; 414 scal = true; 415 break; 416 case 'h': 417 type = Narrow(type); 418 if (type == 'h') 419 quad = false; 420 break; 421 case 'e': 422 type = Narrow(type); 423 usgn = true; 424 break; 425 default: 426 break; 427 } 428 return type; 429} 430 431/// TypeString - for a modifier and type, generate the name of the typedef for 432/// that type. QUc -> uint8x8_t. 433static std::string TypeString(const char mod, StringRef typestr) { 434 bool quad = false; 435 bool poly = false; 436 bool usgn = false; 437 bool scal = false; 438 bool cnst = false; 439 bool pntr = false; 440 441 if (mod == 'v') 442 return "void"; 443 if (mod == 'i') 444 return "int"; 445 446 // base type to get the type string for. 447 char type = ClassifyType(typestr, quad, poly, usgn); 448 449 // Based on the modifying character, change the type and width if necessary. 450 type = ModType(mod, type, quad, poly, usgn, scal, cnst, pntr); 451 452 SmallString<128> s; 453 454 if (usgn) 455 s.push_back('u'); 456 457 switch (type) { 458 case 'c': 459 s += poly ? "poly8" : "int8"; 460 if (scal) 461 break; 462 s += quad ? "x16" : "x8"; 463 break; 464 case 's': 465 s += poly ? "poly16" : "int16"; 466 if (scal) 467 break; 468 s += quad ? "x8" : "x4"; 469 break; 470 case 'i': 471 s += "int32"; 472 if (scal) 473 break; 474 s += quad ? "x4" : "x2"; 475 break; 476 case 'l': 477 s += "int64"; 478 if (scal) 479 break; 480 s += quad ? "x2" : "x1"; 481 break; 482 case 'h': 483 s += "float16"; 484 if (scal) 485 break; 486 s += quad ? "x8" : "x4"; 487 break; 488 case 'f': 489 s += "float32"; 490 if (scal) 491 break; 492 s += quad ? "x4" : "x2"; 493 break; 494 case 'd': 495 s += "float64"; 496 if (scal) 497 break; 498 s += quad ? "x2" : "x1"; 499 break; 500 501 default: 502 PrintFatalError("unhandled type!"); 503 } 504 505 if (mod == '2') 506 s += "x2"; 507 if (mod == '3') 508 s += "x3"; 509 if (mod == '4') 510 s += "x4"; 511 512 // Append _t, finishing the type string typedef type. 513 s += "_t"; 514 515 if (cnst) 516 s += " const"; 517 518 if (pntr) 519 s += " *"; 520 521 return s.str(); 522} 523 524/// BuiltinTypeString - for a modifier and type, generate the clang 525/// BuiltinsARM.def prototype code for the function. See the top of clang's 526/// Builtins.def for a description of the type strings. 527static std::string BuiltinTypeString(const char mod, StringRef typestr, 528 ClassKind ck, bool ret) { 529 bool quad = false; 530 bool poly = false; 531 bool usgn = false; 532 bool scal = false; 533 bool cnst = false; 534 bool pntr = false; 535 536 if (mod == 'v') 537 return "v"; // void 538 if (mod == 'i') 539 return "i"; // int 540 541 // base type to get the type string for. 542 char type = ClassifyType(typestr, quad, poly, usgn); 543 544 // Based on the modifying character, change the type and width if necessary. 545 type = ModType(mod, type, quad, poly, usgn, scal, cnst, pntr); 546 547 // All pointers are void* pointers. Change type to 'v' now. 548 if (pntr) { 549 usgn = false; 550 poly = false; 551 type = 'v'; 552 } 553 // Treat half-float ('h') types as unsigned short ('s') types. 554 if (type == 'h') { 555 type = 's'; 556 usgn = true; 557 } 558 usgn = usgn | poly | ((ck == ClassI || ck == ClassW) && scal && type != 'f'); 559 560 if (scal) { 561 SmallString<128> s; 562 563 if (usgn) 564 s.push_back('U'); 565 else if (type == 'c') 566 s.push_back('S'); // make chars explicitly signed 567 568 if (type == 'l') // 64-bit long 569 s += "LLi"; 570 else 571 s.push_back(type); 572 573 if (cnst) 574 s.push_back('C'); 575 if (pntr) 576 s.push_back('*'); 577 return s.str(); 578 } 579 580 // Since the return value must be one type, return a vector type of the 581 // appropriate width which we will bitcast. An exception is made for 582 // returning structs of 2, 3, or 4 vectors which are returned in a sret-like 583 // fashion, storing them to a pointer arg. 584 if (ret) { 585 if (mod >= '2' && mod <= '4') 586 return "vv*"; // void result with void* first argument 587 if (mod == 'f' || (ck != ClassB && type == 'f')) 588 return quad ? "V4f" : "V2f"; 589 if (ck != ClassB && type == 's') 590 return quad ? "V8s" : "V4s"; 591 if (ck != ClassB && type == 'i') 592 return quad ? "V4i" : "V2i"; 593 if (ck != ClassB && type == 'l') 594 return quad ? "V2LLi" : "V1LLi"; 595 596 return quad ? "V16Sc" : "V8Sc"; 597 } 598 599 // Non-return array types are passed as individual vectors. 600 if (mod == '2') 601 return quad ? "V16ScV16Sc" : "V8ScV8Sc"; 602 if (mod == '3') 603 return quad ? "V16ScV16ScV16Sc" : "V8ScV8ScV8Sc"; 604 if (mod == '4') 605 return quad ? "V16ScV16ScV16ScV16Sc" : "V8ScV8ScV8ScV8Sc"; 606 607 if (mod == 'f' || (ck != ClassB && type == 'f')) 608 return quad ? "V4f" : "V2f"; 609 if (ck != ClassB && type == 's') 610 return quad ? "V8s" : "V4s"; 611 if (ck != ClassB && type == 'i') 612 return quad ? "V4i" : "V2i"; 613 if (ck != ClassB && type == 'l') 614 return quad ? "V2LLi" : "V1LLi"; 615 616 return quad ? "V16Sc" : "V8Sc"; 617} 618 619/// InstructionTypeCode - Computes the ARM argument character code and 620/// quad status for a specific type string and ClassKind. 621static void InstructionTypeCode(const StringRef &typeStr, 622 const ClassKind ck, 623 bool &quad, 624 std::string &typeCode) { 625 bool poly = false; 626 bool usgn = false; 627 char type = ClassifyType(typeStr, quad, poly, usgn); 628 629 switch (type) { 630 case 'c': 631 switch (ck) { 632 case ClassS: typeCode = poly ? "p8" : usgn ? "u8" : "s8"; break; 633 case ClassI: typeCode = "i8"; break; 634 case ClassW: typeCode = "8"; break; 635 default: break; 636 } 637 break; 638 case 's': 639 switch (ck) { 640 case ClassS: typeCode = poly ? "p16" : usgn ? "u16" : "s16"; break; 641 case ClassI: typeCode = "i16"; break; 642 case ClassW: typeCode = "16"; break; 643 default: break; 644 } 645 break; 646 case 'i': 647 switch (ck) { 648 case ClassS: typeCode = usgn ? "u32" : "s32"; break; 649 case ClassI: typeCode = "i32"; break; 650 case ClassW: typeCode = "32"; break; 651 default: break; 652 } 653 break; 654 case 'l': 655 switch (ck) { 656 case ClassS: typeCode = usgn ? "u64" : "s64"; break; 657 case ClassI: typeCode = "i64"; break; 658 case ClassW: typeCode = "64"; break; 659 default: break; 660 } 661 break; 662 case 'h': 663 switch (ck) { 664 case ClassS: 665 case ClassI: typeCode = "f16"; break; 666 case ClassW: typeCode = "16"; break; 667 default: break; 668 } 669 break; 670 case 'f': 671 switch (ck) { 672 case ClassS: 673 case ClassI: typeCode = "f32"; break; 674 case ClassW: typeCode = "32"; break; 675 default: break; 676 } 677 break; 678 case 'd': 679 switch (ck) { 680 case ClassS: 681 case ClassI: 682 typeCode += "f64"; 683 break; 684 case ClassW: 685 PrintFatalError("unhandled type!"); 686 default: 687 break; 688 } 689 break; 690 default: 691 PrintFatalError("unhandled type!"); 692 } 693} 694 695static char Insert_BHSD_Suffix(StringRef typestr){ 696 unsigned off = 0; 697 if(typestr[off++] == 'S'){ 698 while(typestr[off] == 'Q' || typestr[off] == 'H'|| 699 typestr[off] == 'P' || typestr[off] == 'U') 700 ++off; 701 switch (typestr[off]){ 702 default : break; 703 case 'c' : return 'b'; 704 case 's' : return 'h'; 705 case 'i' : 706 case 'f' : return 's'; 707 case 'l' : 708 case 'd' : return 'd'; 709 } 710 } 711 return 0; 712} 713 714/// MangleName - Append a type or width suffix to a base neon function name, 715/// and insert a 'q' in the appropriate location if type string starts with 'Q'. 716/// E.g. turn "vst2_lane" into "vst2q_lane_f32", etc. 717/// Insert proper 'b' 'h' 's' 'd' if prefix 'S' is used. 718static std::string MangleName(const std::string &name, StringRef typestr, 719 ClassKind ck) { 720 if (name == "vcvt_f32_f16") 721 return name; 722 723 bool quad = false; 724 std::string typeCode = ""; 725 726 InstructionTypeCode(typestr, ck, quad, typeCode); 727 728 std::string s = name; 729 730 if (typeCode.size() > 0) { 731 s += "_" + typeCode; 732 } 733 734 if (ck == ClassB) 735 s += "_v"; 736 737 // Insert a 'q' before the first '_' character so that it ends up before 738 // _lane or _n on vector-scalar operations. 739 if (typestr.find("Q") != StringRef::npos) { 740 size_t pos = s.find('_'); 741 s = s.insert(pos, "q"); 742 } 743 char ins = Insert_BHSD_Suffix(typestr); 744 if(ins){ 745 size_t pos = s.find('_'); 746 s = s.insert(pos, &ins, 1); 747 } 748 749 return s; 750} 751 752static void PreprocessInstruction(const StringRef &Name, 753 const std::string &InstName, 754 std::string &Prefix, 755 bool &HasNPostfix, 756 bool &HasLanePostfix, 757 bool &HasDupPostfix, 758 bool &IsSpecialVCvt, 759 size_t &TBNumber) { 760 // All of our instruction name fields from arm_neon.td are of the form 761 // <instructionname>_... 762 // Thus we grab our instruction name via computation of said Prefix. 763 const size_t PrefixEnd = Name.find_first_of('_'); 764 // If InstName is passed in, we use that instead of our name Prefix. 765 Prefix = InstName.size() == 0? Name.slice(0, PrefixEnd).str() : InstName; 766 767 const StringRef Postfix = Name.slice(PrefixEnd, Name.size()); 768 769 HasNPostfix = Postfix.count("_n"); 770 HasLanePostfix = Postfix.count("_lane"); 771 HasDupPostfix = Postfix.count("_dup"); 772 IsSpecialVCvt = Postfix.size() != 0 && Name.count("vcvt"); 773 774 if (InstName.compare("vtbl") == 0 || 775 InstName.compare("vtbx") == 0) { 776 // If we have a vtblN/vtbxN instruction, use the instruction's ASCII 777 // encoding to get its true value. 778 TBNumber = Name[Name.size()-1] - 48; 779 } 780} 781 782/// GenerateRegisterCheckPatternsForLoadStores - Given a bunch of data we have 783/// extracted, generate a FileCheck pattern for a Load Or Store 784static void 785GenerateRegisterCheckPatternForLoadStores(const StringRef &NameRef, 786 const std::string& OutTypeCode, 787 const bool &IsQuad, 788 const bool &HasDupPostfix, 789 const bool &HasLanePostfix, 790 const size_t Count, 791 std::string &RegisterSuffix) { 792 const bool IsLDSTOne = NameRef.count("vld1") || NameRef.count("vst1"); 793 // If N == 3 || N == 4 and we are dealing with a quad instruction, Clang 794 // will output a series of v{ld,st}1s, so we have to handle it specially. 795 if ((Count == 3 || Count == 4) && IsQuad) { 796 RegisterSuffix += "{"; 797 for (size_t i = 0; i < Count; i++) { 798 RegisterSuffix += "d{{[0-9]+}}"; 799 if (HasDupPostfix) { 800 RegisterSuffix += "[]"; 801 } 802 if (HasLanePostfix) { 803 RegisterSuffix += "[{{[0-9]+}}]"; 804 } 805 if (i < Count-1) { 806 RegisterSuffix += ", "; 807 } 808 } 809 RegisterSuffix += "}"; 810 } else { 811 812 // Handle normal loads and stores. 813 RegisterSuffix += "{"; 814 for (size_t i = 0; i < Count; i++) { 815 RegisterSuffix += "d{{[0-9]+}}"; 816 if (HasDupPostfix) { 817 RegisterSuffix += "[]"; 818 } 819 if (HasLanePostfix) { 820 RegisterSuffix += "[{{[0-9]+}}]"; 821 } 822 if (IsQuad && !HasLanePostfix) { 823 RegisterSuffix += ", d{{[0-9]+}}"; 824 if (HasDupPostfix) { 825 RegisterSuffix += "[]"; 826 } 827 } 828 if (i < Count-1) { 829 RegisterSuffix += ", "; 830 } 831 } 832 RegisterSuffix += "}, [r{{[0-9]+}}"; 833 834 // We only include the alignment hint if we have a vld1.*64 or 835 // a dup/lane instruction. 836 if (IsLDSTOne) { 837 if ((HasLanePostfix || HasDupPostfix) && OutTypeCode != "8") { 838 RegisterSuffix += ":" + OutTypeCode; 839 } 840 } 841 842 RegisterSuffix += "]"; 843 } 844} 845 846static bool HasNPostfixAndScalarArgs(const StringRef &NameRef, 847 const bool &HasNPostfix) { 848 return (NameRef.count("vmla") || 849 NameRef.count("vmlal") || 850 NameRef.count("vmlsl") || 851 NameRef.count("vmull") || 852 NameRef.count("vqdmlal") || 853 NameRef.count("vqdmlsl") || 854 NameRef.count("vqdmulh") || 855 NameRef.count("vqdmull") || 856 NameRef.count("vqrdmulh")) && HasNPostfix; 857} 858 859static bool IsFiveOperandLaneAccumulator(const StringRef &NameRef, 860 const bool &HasLanePostfix) { 861 return (NameRef.count("vmla") || 862 NameRef.count("vmls") || 863 NameRef.count("vmlal") || 864 NameRef.count("vmlsl") || 865 (NameRef.count("vmul") && NameRef.size() == 3)|| 866 NameRef.count("vqdmlal") || 867 NameRef.count("vqdmlsl") || 868 NameRef.count("vqdmulh") || 869 NameRef.count("vqrdmulh")) && HasLanePostfix; 870} 871 872static bool IsSpecialLaneMultiply(const StringRef &NameRef, 873 const bool &HasLanePostfix, 874 const bool &IsQuad) { 875 const bool IsVMulOrMulh = (NameRef.count("vmul") || NameRef.count("mulh")) 876 && IsQuad; 877 const bool IsVMull = NameRef.count("mull") && !IsQuad; 878 return (IsVMulOrMulh || IsVMull) && HasLanePostfix; 879} 880 881static void NormalizeProtoForRegisterPatternCreation(const std::string &Name, 882 const std::string &Proto, 883 const bool &HasNPostfix, 884 const bool &IsQuad, 885 const bool &HasLanePostfix, 886 const bool &HasDupPostfix, 887 std::string &NormedProto) { 888 // Handle generic case. 889 const StringRef NameRef(Name); 890 for (size_t i = 0, end = Proto.size(); i < end; i++) { 891 switch (Proto[i]) { 892 case 'u': 893 case 'f': 894 case 'd': 895 case 's': 896 case 'x': 897 case 't': 898 case 'n': 899 NormedProto += IsQuad? 'q' : 'd'; 900 break; 901 case 'w': 902 case 'k': 903 NormedProto += 'q'; 904 break; 905 case 'g': 906 case 'h': 907 case 'e': 908 NormedProto += 'd'; 909 break; 910 case 'i': 911 NormedProto += HasLanePostfix? 'a' : 'i'; 912 break; 913 case 'a': 914 if (HasLanePostfix) { 915 NormedProto += 'a'; 916 } else if (HasNPostfixAndScalarArgs(NameRef, HasNPostfix)) { 917 NormedProto += IsQuad? 'q' : 'd'; 918 } else { 919 NormedProto += 'i'; 920 } 921 break; 922 } 923 } 924 925 // Handle Special Cases. 926 const bool IsNotVExt = !NameRef.count("vext"); 927 const bool IsVPADAL = NameRef.count("vpadal"); 928 const bool Is5OpLaneAccum = IsFiveOperandLaneAccumulator(NameRef, 929 HasLanePostfix); 930 const bool IsSpecialLaneMul = IsSpecialLaneMultiply(NameRef, HasLanePostfix, 931 IsQuad); 932 933 if (IsSpecialLaneMul) { 934 // If 935 NormedProto[2] = NormedProto[3]; 936 NormedProto.erase(3); 937 } else if (NormedProto.size() == 4 && 938 NormedProto[0] == NormedProto[1] && 939 IsNotVExt) { 940 // If NormedProto.size() == 4 and the first two proto characters are the 941 // same, ignore the first. 942 NormedProto = NormedProto.substr(1, 3); 943 } else if (Is5OpLaneAccum) { 944 // If we have a 5 op lane accumulator operation, we take characters 1,2,4 945 std::string tmp = NormedProto.substr(1,2); 946 tmp += NormedProto[4]; 947 NormedProto = tmp; 948 } else if (IsVPADAL) { 949 // If we have VPADAL, ignore the first character. 950 NormedProto = NormedProto.substr(0, 2); 951 } else if (NameRef.count("vdup") && NormedProto.size() > 2) { 952 // If our instruction is a dup instruction, keep only the first and 953 // last characters. 954 std::string tmp = ""; 955 tmp += NormedProto[0]; 956 tmp += NormedProto[NormedProto.size()-1]; 957 NormedProto = tmp; 958 } 959} 960 961/// GenerateRegisterCheckPatterns - Given a bunch of data we have 962/// extracted, generate a FileCheck pattern to check that an 963/// instruction's arguments are correct. 964static void GenerateRegisterCheckPattern(const std::string &Name, 965 const std::string &Proto, 966 const std::string &OutTypeCode, 967 const bool &HasNPostfix, 968 const bool &IsQuad, 969 const bool &HasLanePostfix, 970 const bool &HasDupPostfix, 971 const size_t &TBNumber, 972 std::string &RegisterSuffix) { 973 974 RegisterSuffix = ""; 975 976 const StringRef NameRef(Name); 977 const StringRef ProtoRef(Proto); 978 979 if ((NameRef.count("vdup") || NameRef.count("vmov")) && HasNPostfix) { 980 return; 981 } 982 983 const bool IsLoadStore = NameRef.count("vld") || NameRef.count("vst"); 984 const bool IsTBXOrTBL = NameRef.count("vtbl") || NameRef.count("vtbx"); 985 986 if (IsLoadStore) { 987 // Grab N value from v{ld,st}N using its ascii representation. 988 const size_t Count = NameRef[3] - 48; 989 990 GenerateRegisterCheckPatternForLoadStores(NameRef, OutTypeCode, IsQuad, 991 HasDupPostfix, HasLanePostfix, 992 Count, RegisterSuffix); 993 } else if (IsTBXOrTBL) { 994 RegisterSuffix += "d{{[0-9]+}}, {"; 995 for (size_t i = 0; i < TBNumber-1; i++) { 996 RegisterSuffix += "d{{[0-9]+}}, "; 997 } 998 RegisterSuffix += "d{{[0-9]+}}}, d{{[0-9]+}}"; 999 } else { 1000 // Handle a normal instruction. 1001 if (NameRef.count("vget") || NameRef.count("vset")) 1002 return; 1003 1004 // We first normalize our proto, since we only need to emit 4 1005 // different types of checks, yet have more than 4 proto types 1006 // that map onto those 4 patterns. 1007 std::string NormalizedProto(""); 1008 NormalizeProtoForRegisterPatternCreation(Name, Proto, HasNPostfix, IsQuad, 1009 HasLanePostfix, HasDupPostfix, 1010 NormalizedProto); 1011 1012 for (size_t i = 0, end = NormalizedProto.size(); i < end; i++) { 1013 const char &c = NormalizedProto[i]; 1014 switch (c) { 1015 case 'q': 1016 RegisterSuffix += "q{{[0-9]+}}, "; 1017 break; 1018 1019 case 'd': 1020 RegisterSuffix += "d{{[0-9]+}}, "; 1021 break; 1022 1023 case 'i': 1024 RegisterSuffix += "#{{[0-9]+}}, "; 1025 break; 1026 1027 case 'a': 1028 RegisterSuffix += "d{{[0-9]+}}[{{[0-9]}}], "; 1029 break; 1030 } 1031 } 1032 1033 // Remove extra ", ". 1034 RegisterSuffix = RegisterSuffix.substr(0, RegisterSuffix.size()-2); 1035 } 1036} 1037 1038/// GenerateChecksForIntrinsic - Given a specific instruction name + 1039/// typestr + class kind, generate the proper set of FileCheck 1040/// Patterns to check for. We could just return a string, but instead 1041/// use a vector since it provides us with the extra flexibility of 1042/// emitting multiple checks, which comes in handy for certain cases 1043/// like mla where we want to check for 2 different instructions. 1044static void GenerateChecksForIntrinsic(const std::string &Name, 1045 const std::string &Proto, 1046 StringRef &OutTypeStr, 1047 StringRef &InTypeStr, 1048 ClassKind Ck, 1049 const std::string &InstName, 1050 bool IsHiddenLOp, 1051 std::vector<std::string>& Result) { 1052 1053 // If Ck is a ClassNoTest instruction, just return so no test is 1054 // emitted. 1055 if(Ck == ClassNoTest) 1056 return; 1057 1058 if (Name == "vcvt_f32_f16") { 1059 Result.push_back("vcvt.f32.f16"); 1060 return; 1061 } 1062 1063 1064 // Now we preprocess our instruction given the data we have to get the 1065 // data that we need. 1066 // Create a StringRef for String Manipulation of our Name. 1067 const StringRef NameRef(Name); 1068 // Instruction Prefix. 1069 std::string Prefix; 1070 // The type code for our out type string. 1071 std::string OutTypeCode; 1072 // To handle our different cases, we need to check for different postfixes. 1073 // Is our instruction a quad instruction. 1074 bool IsQuad = false; 1075 // Our instruction is of the form <instructionname>_n. 1076 bool HasNPostfix = false; 1077 // Our instruction is of the form <instructionname>_lane. 1078 bool HasLanePostfix = false; 1079 // Our instruction is of the form <instructionname>_dup. 1080 bool HasDupPostfix = false; 1081 // Our instruction is a vcvt instruction which requires special handling. 1082 bool IsSpecialVCvt = false; 1083 // If we have a vtbxN or vtblN instruction, this is set to N. 1084 size_t TBNumber = -1; 1085 // Register Suffix 1086 std::string RegisterSuffix; 1087 1088 PreprocessInstruction(NameRef, InstName, Prefix, 1089 HasNPostfix, HasLanePostfix, HasDupPostfix, 1090 IsSpecialVCvt, TBNumber); 1091 1092 InstructionTypeCode(OutTypeStr, Ck, IsQuad, OutTypeCode); 1093 GenerateRegisterCheckPattern(Name, Proto, OutTypeCode, HasNPostfix, IsQuad, 1094 HasLanePostfix, HasDupPostfix, TBNumber, 1095 RegisterSuffix); 1096 1097 // In the following section, we handle a bunch of special cases. You can tell 1098 // a special case by the fact we are returning early. 1099 1100 // If our instruction is a logical instruction without postfix or a 1101 // hidden LOp just return the current Prefix. 1102 if (Ck == ClassL || IsHiddenLOp) { 1103 Result.push_back(Prefix + " " + RegisterSuffix); 1104 return; 1105 } 1106 1107 // If we have a vmov, due to the many different cases, some of which 1108 // vary within the different intrinsics generated for a single 1109 // instruction type, just output a vmov. (e.g. given an instruction 1110 // A, A.u32 might be vmov and A.u8 might be vmov.8). 1111 // 1112 // FIXME: Maybe something can be done about this. The two cases that we care 1113 // about are vmov as an LType and vmov as a WType. 1114 if (Prefix == "vmov") { 1115 Result.push_back(Prefix + " " + RegisterSuffix); 1116 return; 1117 } 1118 1119 // In the following section, we handle special cases. 1120 1121 if (OutTypeCode == "64") { 1122 // If we have a 64 bit vdup/vext and are handling an uint64x1_t 1123 // type, the intrinsic will be optimized away, so just return 1124 // nothing. On the other hand if we are handling an uint64x2_t 1125 // (i.e. quad instruction), vdup/vmov instructions should be 1126 // emitted. 1127 if (Prefix == "vdup" || Prefix == "vext") { 1128 if (IsQuad) { 1129 Result.push_back("{{vmov|vdup}}"); 1130 } 1131 return; 1132 } 1133 1134 // v{st,ld}{2,3,4}_{u,s}64 emit v{st,ld}1.64 instructions with 1135 // multiple register operands. 1136 bool MultiLoadPrefix = Prefix == "vld2" || Prefix == "vld3" 1137 || Prefix == "vld4"; 1138 bool MultiStorePrefix = Prefix == "vst2" || Prefix == "vst3" 1139 || Prefix == "vst4"; 1140 if (MultiLoadPrefix || MultiStorePrefix) { 1141 Result.push_back(NameRef.slice(0, 3).str() + "1.64"); 1142 return; 1143 } 1144 1145 // v{st,ld}1_{lane,dup}_{u64,s64} use vldr/vstr/vmov/str instead of 1146 // emitting said instructions. So return a check for 1147 // vldr/vstr/vmov/str instead. 1148 if (HasLanePostfix || HasDupPostfix) { 1149 if (Prefix == "vst1") { 1150 Result.push_back("{{str|vstr|vmov}}"); 1151 return; 1152 } else if (Prefix == "vld1") { 1153 Result.push_back("{{ldr|vldr|vmov}}"); 1154 return; 1155 } 1156 } 1157 } 1158 1159 // vzip.32/vuzp.32 are the same instruction as vtrn.32 and are 1160 // sometimes disassembled as vtrn.32. We use a regex to handle both 1161 // cases. 1162 if ((Prefix == "vzip" || Prefix == "vuzp") && OutTypeCode == "32") { 1163 Result.push_back("{{vtrn|" + Prefix + "}}.32 " + RegisterSuffix); 1164 return; 1165 } 1166 1167 // Currently on most ARM processors, we do not use vmla/vmls for 1168 // quad floating point operations. Instead we output vmul + vadd. So 1169 // check if we have one of those instructions and just output a 1170 // check for vmul. 1171 if (OutTypeCode == "f32") { 1172 if (Prefix == "vmls") { 1173 Result.push_back("vmul." + OutTypeCode + " " + RegisterSuffix); 1174 Result.push_back("vsub." + OutTypeCode); 1175 return; 1176 } else if (Prefix == "vmla") { 1177 Result.push_back("vmul." + OutTypeCode + " " + RegisterSuffix); 1178 Result.push_back("vadd." + OutTypeCode); 1179 return; 1180 } 1181 } 1182 1183 // If we have vcvt, get the input type from the instruction name 1184 // (which should be of the form instname_inputtype) and append it 1185 // before the output type. 1186 if (Prefix == "vcvt") { 1187 const std::string inTypeCode = NameRef.substr(NameRef.find_last_of("_")+1); 1188 Prefix += "." + inTypeCode; 1189 } 1190 1191 // Append output type code to get our final mangled instruction. 1192 Prefix += "." + OutTypeCode; 1193 1194 Result.push_back(Prefix + " " + RegisterSuffix); 1195} 1196 1197/// UseMacro - Examine the prototype string to determine if the intrinsic 1198/// should be defined as a preprocessor macro instead of an inline function. 1199static bool UseMacro(const std::string &proto) { 1200 // If this builtin takes an immediate argument, we need to #define it rather 1201 // than use a standard declaration, so that SemaChecking can range check 1202 // the immediate passed by the user. 1203 if (proto.find('i') != std::string::npos) 1204 return true; 1205 1206 // Pointer arguments need to use macros to avoid hiding aligned attributes 1207 // from the pointer type. 1208 if (proto.find('p') != std::string::npos || 1209 proto.find('c') != std::string::npos) 1210 return true; 1211 1212 return false; 1213} 1214 1215/// MacroArgUsedDirectly - Return true if argument i for an intrinsic that is 1216/// defined as a macro should be accessed directly instead of being first 1217/// assigned to a local temporary. 1218static bool MacroArgUsedDirectly(const std::string &proto, unsigned i) { 1219 // True for constant ints (i), pointers (p) and const pointers (c). 1220 return (proto[i] == 'i' || proto[i] == 'p' || proto[i] == 'c'); 1221} 1222 1223// Generate the string "(argtype a, argtype b, ...)" 1224static std::string GenArgs(const std::string &proto, StringRef typestr) { 1225 bool define = UseMacro(proto); 1226 char arg = 'a'; 1227 1228 std::string s; 1229 s += "("; 1230 1231 for (unsigned i = 1, e = proto.size(); i != e; ++i, ++arg) { 1232 if (define) { 1233 // Some macro arguments are used directly instead of being assigned 1234 // to local temporaries; prepend an underscore prefix to make their 1235 // names consistent with the local temporaries. 1236 if (MacroArgUsedDirectly(proto, i)) 1237 s += "__"; 1238 } else { 1239 s += TypeString(proto[i], typestr) + " __"; 1240 } 1241 s.push_back(arg); 1242 if ((i + 1) < e) 1243 s += ", "; 1244 } 1245 1246 s += ")"; 1247 return s; 1248} 1249 1250// Macro arguments are not type-checked like inline function arguments, so 1251// assign them to local temporaries to get the right type checking. 1252static std::string GenMacroLocals(const std::string &proto, StringRef typestr) { 1253 char arg = 'a'; 1254 std::string s; 1255 bool generatedLocal = false; 1256 1257 for (unsigned i = 1, e = proto.size(); i != e; ++i, ++arg) { 1258 // Do not create a temporary for an immediate argument. 1259 // That would defeat the whole point of using a macro! 1260 if (MacroArgUsedDirectly(proto, i)) 1261 continue; 1262 generatedLocal = true; 1263 1264 s += TypeString(proto[i], typestr) + " __"; 1265 s.push_back(arg); 1266 s += " = ("; 1267 s.push_back(arg); 1268 s += "); "; 1269 } 1270 1271 if (generatedLocal) 1272 s += "\\\n "; 1273 return s; 1274} 1275 1276// Use the vmovl builtin to sign-extend or zero-extend a vector. 1277static std::string Extend(StringRef typestr, const std::string &a) { 1278 std::string s; 1279 s = MangleName("vmovl", typestr, ClassS); 1280 s += "(" + a + ")"; 1281 return s; 1282} 1283 1284static std::string Duplicate(unsigned nElts, StringRef typestr, 1285 const std::string &a) { 1286 std::string s; 1287 1288 s = "(" + TypeString('d', typestr) + "){ "; 1289 for (unsigned i = 0; i != nElts; ++i) { 1290 s += a; 1291 if ((i + 1) < nElts) 1292 s += ", "; 1293 } 1294 s += " }"; 1295 1296 return s; 1297} 1298 1299static std::string SplatLane(unsigned nElts, const std::string &vec, 1300 const std::string &lane) { 1301 std::string s = "__builtin_shufflevector(" + vec + ", " + vec; 1302 for (unsigned i = 0; i < nElts; ++i) 1303 s += ", " + lane; 1304 s += ")"; 1305 return s; 1306} 1307 1308static unsigned GetNumElements(StringRef typestr, bool &quad) { 1309 quad = false; 1310 bool dummy = false; 1311 char type = ClassifyType(typestr, quad, dummy, dummy); 1312 unsigned nElts = 0; 1313 switch (type) { 1314 case 'c': nElts = 8; break; 1315 case 's': nElts = 4; break; 1316 case 'i': nElts = 2; break; 1317 case 'l': nElts = 1; break; 1318 case 'h': nElts = 4; break; 1319 case 'f': nElts = 2; break; 1320 case 'd': 1321 nElts = 1; 1322 break; 1323 default: 1324 PrintFatalError("unhandled type!"); 1325 } 1326 if (quad) nElts <<= 1; 1327 return nElts; 1328} 1329 1330// Generate the definition for this intrinsic, e.g. "a + b" for OpAdd. 1331static std::string GenOpString(OpKind op, const std::string &proto, 1332 StringRef typestr) { 1333 bool quad; 1334 unsigned nElts = GetNumElements(typestr, quad); 1335 bool define = UseMacro(proto); 1336 1337 std::string ts = TypeString(proto[0], typestr); 1338 std::string s; 1339 if (!define) { 1340 s = "return "; 1341 } 1342 1343 switch(op) { 1344 case OpAdd: 1345 s += "__a + __b;"; 1346 break; 1347 case OpAddl: 1348 s += Extend(typestr, "__a") + " + " + Extend(typestr, "__b") + ";"; 1349 break; 1350 case OpAddw: 1351 s += "__a + " + Extend(typestr, "__b") + ";"; 1352 break; 1353 case OpSub: 1354 s += "__a - __b;"; 1355 break; 1356 case OpSubl: 1357 s += Extend(typestr, "__a") + " - " + Extend(typestr, "__b") + ";"; 1358 break; 1359 case OpSubw: 1360 s += "__a - " + Extend(typestr, "__b") + ";"; 1361 break; 1362 case OpMulN: 1363 s += "__a * " + Duplicate(nElts, typestr, "__b") + ";"; 1364 break; 1365 case OpMulLane: 1366 s += "__a * " + SplatLane(nElts, "__b", "__c") + ";"; 1367 break; 1368 case OpMul: 1369 s += "__a * __b;"; 1370 break; 1371 case OpMullLane: 1372 s += MangleName("vmull", typestr, ClassS) + "(__a, " + 1373 SplatLane(nElts, "__b", "__c") + ");"; 1374 break; 1375 case OpMlaN: 1376 s += "__a + (__b * " + Duplicate(nElts, typestr, "__c") + ");"; 1377 break; 1378 case OpMlaLane: 1379 s += "__a + (__b * " + SplatLane(nElts, "__c", "__d") + ");"; 1380 break; 1381 case OpMla: 1382 s += "__a + (__b * __c);"; 1383 break; 1384 case OpMlalN: 1385 s += "__a + " + MangleName("vmull", typestr, ClassS) + "(__b, " + 1386 Duplicate(nElts, typestr, "__c") + ");"; 1387 break; 1388 case OpMlalLane: 1389 s += "__a + " + MangleName("vmull", typestr, ClassS) + "(__b, " + 1390 SplatLane(nElts, "__c", "__d") + ");"; 1391 break; 1392 case OpMlal: 1393 s += "__a + " + MangleName("vmull", typestr, ClassS) + "(__b, __c);"; 1394 break; 1395 case OpMlsN: 1396 s += "__a - (__b * " + Duplicate(nElts, typestr, "__c") + ");"; 1397 break; 1398 case OpMlsLane: 1399 s += "__a - (__b * " + SplatLane(nElts, "__c", "__d") + ");"; 1400 break; 1401 case OpMls: 1402 s += "__a - (__b * __c);"; 1403 break; 1404 case OpMlslN: 1405 s += "__a - " + MangleName("vmull", typestr, ClassS) + "(__b, " + 1406 Duplicate(nElts, typestr, "__c") + ");"; 1407 break; 1408 case OpMlslLane: 1409 s += "__a - " + MangleName("vmull", typestr, ClassS) + "(__b, " + 1410 SplatLane(nElts, "__c", "__d") + ");"; 1411 break; 1412 case OpMlsl: 1413 s += "__a - " + MangleName("vmull", typestr, ClassS) + "(__b, __c);"; 1414 break; 1415 case OpQDMullLane: 1416 s += MangleName("vqdmull", typestr, ClassS) + "(__a, " + 1417 SplatLane(nElts, "__b", "__c") + ");"; 1418 break; 1419 case OpQDMlalLane: 1420 s += MangleName("vqdmlal", typestr, ClassS) + "(__a, __b, " + 1421 SplatLane(nElts, "__c", "__d") + ");"; 1422 break; 1423 case OpQDMlslLane: 1424 s += MangleName("vqdmlsl", typestr, ClassS) + "(__a, __b, " + 1425 SplatLane(nElts, "__c", "__d") + ");"; 1426 break; 1427 case OpQDMulhLane: 1428 s += MangleName("vqdmulh", typestr, ClassS) + "(__a, " + 1429 SplatLane(nElts, "__b", "__c") + ");"; 1430 break; 1431 case OpQRDMulhLane: 1432 s += MangleName("vqrdmulh", typestr, ClassS) + "(__a, " + 1433 SplatLane(nElts, "__b", "__c") + ");"; 1434 break; 1435 case OpEq: 1436 s += "(" + ts + ")(__a == __b);"; 1437 break; 1438 case OpGe: 1439 s += "(" + ts + ")(__a >= __b);"; 1440 break; 1441 case OpLe: 1442 s += "(" + ts + ")(__a <= __b);"; 1443 break; 1444 case OpGt: 1445 s += "(" + ts + ")(__a > __b);"; 1446 break; 1447 case OpLt: 1448 s += "(" + ts + ")(__a < __b);"; 1449 break; 1450 case OpNeg: 1451 s += " -__a;"; 1452 break; 1453 case OpNot: 1454 s += " ~__a;"; 1455 break; 1456 case OpAnd: 1457 s += "__a & __b;"; 1458 break; 1459 case OpOr: 1460 s += "__a | __b;"; 1461 break; 1462 case OpXor: 1463 s += "__a ^ __b;"; 1464 break; 1465 case OpAndNot: 1466 s += "__a & ~__b;"; 1467 break; 1468 case OpOrNot: 1469 s += "__a | ~__b;"; 1470 break; 1471 case OpCast: 1472 s += "(" + ts + ")__a;"; 1473 break; 1474 case OpConcat: 1475 s += "(" + ts + ")__builtin_shufflevector((int64x1_t)__a"; 1476 s += ", (int64x1_t)__b, 0, 1);"; 1477 break; 1478 case OpHi: 1479 // nElts is for the result vector, so the source is twice that number. 1480 s += "__builtin_shufflevector(__a, __a"; 1481 for (unsigned i = nElts; i < nElts * 2; ++i) 1482 s += ", " + utostr(i); 1483 s+= ");"; 1484 break; 1485 case OpLo: 1486 s += "__builtin_shufflevector(__a, __a"; 1487 for (unsigned i = 0; i < nElts; ++i) 1488 s += ", " + utostr(i); 1489 s+= ");"; 1490 break; 1491 case OpDup: 1492 s += Duplicate(nElts, typestr, "__a") + ";"; 1493 break; 1494 case OpDupLane: 1495 s += SplatLane(nElts, "__a", "__b") + ";"; 1496 break; 1497 case OpSelect: 1498 // ((0 & 1) | (~0 & 2)) 1499 s += "(" + ts + ")"; 1500 ts = TypeString(proto[1], typestr); 1501 s += "((__a & (" + ts + ")__b) | "; 1502 s += "(~__a & (" + ts + ")__c));"; 1503 break; 1504 case OpRev16: 1505 s += "__builtin_shufflevector(__a, __a"; 1506 for (unsigned i = 2; i <= nElts; i += 2) 1507 for (unsigned j = 0; j != 2; ++j) 1508 s += ", " + utostr(i - j - 1); 1509 s += ");"; 1510 break; 1511 case OpRev32: { 1512 unsigned WordElts = nElts >> (1 + (int)quad); 1513 s += "__builtin_shufflevector(__a, __a"; 1514 for (unsigned i = WordElts; i <= nElts; i += WordElts) 1515 for (unsigned j = 0; j != WordElts; ++j) 1516 s += ", " + utostr(i - j - 1); 1517 s += ");"; 1518 break; 1519 } 1520 case OpRev64: { 1521 unsigned DblWordElts = nElts >> (int)quad; 1522 s += "__builtin_shufflevector(__a, __a"; 1523 for (unsigned i = DblWordElts; i <= nElts; i += DblWordElts) 1524 for (unsigned j = 0; j != DblWordElts; ++j) 1525 s += ", " + utostr(i - j - 1); 1526 s += ");"; 1527 break; 1528 } 1529 case OpAbdl: { 1530 std::string abd = MangleName("vabd", typestr, ClassS) + "(__a, __b)"; 1531 if (typestr[0] != 'U') { 1532 // vabd results are always unsigned and must be zero-extended. 1533 std::string utype = "U" + typestr.str(); 1534 s += "(" + TypeString(proto[0], typestr) + ")"; 1535 abd = "(" + TypeString('d', utype) + ")" + abd; 1536 s += Extend(utype, abd) + ";"; 1537 } else { 1538 s += Extend(typestr, abd) + ";"; 1539 } 1540 break; 1541 } 1542 case OpAba: 1543 s += "__a + " + MangleName("vabd", typestr, ClassS) + "(__b, __c);"; 1544 break; 1545 case OpAbal: { 1546 s += "__a + "; 1547 std::string abd = MangleName("vabd", typestr, ClassS) + "(__b, __c)"; 1548 if (typestr[0] != 'U') { 1549 // vabd results are always unsigned and must be zero-extended. 1550 std::string utype = "U" + typestr.str(); 1551 s += "(" + TypeString(proto[0], typestr) + ")"; 1552 abd = "(" + TypeString('d', utype) + ")" + abd; 1553 s += Extend(utype, abd) + ";"; 1554 } else { 1555 s += Extend(typestr, abd) + ";"; 1556 } 1557 break; 1558 } 1559 case OpDiv: 1560 s += "__a / __b;"; 1561 break; 1562 default: 1563 PrintFatalError("unknown OpKind!"); 1564 } 1565 return s; 1566} 1567 1568static unsigned GetNeonEnum(const std::string &proto, StringRef typestr) { 1569 unsigned mod = proto[0]; 1570 1571 if (mod == 'v' || mod == 'f') 1572 mod = proto[1]; 1573 1574 bool quad = false; 1575 bool poly = false; 1576 bool usgn = false; 1577 bool scal = false; 1578 bool cnst = false; 1579 bool pntr = false; 1580 1581 // Base type to get the type string for. 1582 char type = ClassifyType(typestr, quad, poly, usgn); 1583 1584 // Based on the modifying character, change the type and width if necessary. 1585 type = ModType(mod, type, quad, poly, usgn, scal, cnst, pntr); 1586 1587 NeonTypeFlags::EltType ET; 1588 switch (type) { 1589 case 'c': 1590 ET = poly ? NeonTypeFlags::Poly8 : NeonTypeFlags::Int8; 1591 break; 1592 case 's': 1593 ET = poly ? NeonTypeFlags::Poly16 : NeonTypeFlags::Int16; 1594 break; 1595 case 'i': 1596 ET = NeonTypeFlags::Int32; 1597 break; 1598 case 'l': 1599 ET = NeonTypeFlags::Int64; 1600 break; 1601 case 'h': 1602 ET = NeonTypeFlags::Float16; 1603 break; 1604 case 'f': 1605 ET = NeonTypeFlags::Float32; 1606 break; 1607 case 'd': 1608 ET = NeonTypeFlags::Float64; 1609 break; 1610 default: 1611 PrintFatalError("unhandled type!"); 1612 } 1613 NeonTypeFlags Flags(ET, usgn, quad && proto[1] != 'g'); 1614 return Flags.getFlags(); 1615} 1616 1617// Generate the definition for this intrinsic, e.g. __builtin_neon_cls(a) 1618static std::string GenBuiltin(const std::string &name, const std::string &proto, 1619 StringRef typestr, ClassKind ck) { 1620 std::string s; 1621 1622 // If this builtin returns a struct 2, 3, or 4 vectors, pass it as an implicit 1623 // sret-like argument. 1624 bool sret = (proto[0] >= '2' && proto[0] <= '4'); 1625 1626 bool define = UseMacro(proto); 1627 1628 // Check if the prototype has a scalar operand with the type of the vector 1629 // elements. If not, bitcasting the args will take care of arg checking. 1630 // The actual signedness etc. will be taken care of with special enums. 1631 if (proto.find('s') == std::string::npos) 1632 ck = ClassB; 1633 1634 if (proto[0] != 'v') { 1635 std::string ts = TypeString(proto[0], typestr); 1636 1637 if (define) { 1638 if (sret) 1639 s += ts + " r; "; 1640 else 1641 s += "(" + ts + ")"; 1642 } else if (sret) { 1643 s += ts + " r; "; 1644 } else { 1645 s += "return (" + ts + ")"; 1646 } 1647 } 1648 1649 bool splat = proto.find('a') != std::string::npos; 1650 1651 s += "__builtin_neon_"; 1652 if (splat) { 1653 // Call the non-splat builtin: chop off the "_n" suffix from the name. 1654 std::string vname(name, 0, name.size()-2); 1655 s += MangleName(vname, typestr, ck); 1656 } else { 1657 s += MangleName(name, typestr, ck); 1658 } 1659 s += "("; 1660 1661 // Pass the address of the return variable as the first argument to sret-like 1662 // builtins. 1663 if (sret) 1664 s += "&r, "; 1665 1666 char arg = 'a'; 1667 for (unsigned i = 1, e = proto.size(); i != e; ++i, ++arg) { 1668 std::string args = std::string(&arg, 1); 1669 1670 // Use the local temporaries instead of the macro arguments. 1671 args = "__" + args; 1672 1673 bool argQuad = false; 1674 bool argPoly = false; 1675 bool argUsgn = false; 1676 bool argScalar = false; 1677 bool dummy = false; 1678 char argType = ClassifyType(typestr, argQuad, argPoly, argUsgn); 1679 argType = ModType(proto[i], argType, argQuad, argPoly, argUsgn, argScalar, 1680 dummy, dummy); 1681 1682 // Handle multiple-vector values specially, emitting each subvector as an 1683 // argument to the __builtin. 1684 if (proto[i] >= '2' && proto[i] <= '4') { 1685 // Check if an explicit cast is needed. 1686 if (argType != 'c' || argPoly || argUsgn) 1687 args = (argQuad ? "(int8x16_t)" : "(int8x8_t)") + args; 1688 1689 for (unsigned vi = 0, ve = proto[i] - '0'; vi != ve; ++vi) { 1690 s += args + ".val[" + utostr(vi) + "]"; 1691 if ((vi + 1) < ve) 1692 s += ", "; 1693 } 1694 if ((i + 1) < e) 1695 s += ", "; 1696 1697 continue; 1698 } 1699 1700 if (splat && (i + 1) == e) 1701 args = Duplicate(GetNumElements(typestr, argQuad), typestr, args); 1702 1703 // Check if an explicit cast is needed. 1704 if ((splat || !argScalar) && 1705 ((ck == ClassB && argType != 'c') || argPoly || argUsgn)) { 1706 std::string argTypeStr = "c"; 1707 if (ck != ClassB) 1708 argTypeStr = argType; 1709 if (argQuad) 1710 argTypeStr = "Q" + argTypeStr; 1711 args = "(" + TypeString('d', argTypeStr) + ")" + args; 1712 } 1713 1714 s += args; 1715 if ((i + 1) < e) 1716 s += ", "; 1717 } 1718 1719 // Extra constant integer to hold type class enum for this function, e.g. s8 1720 if (ck == ClassB) 1721 s += ", " + utostr(GetNeonEnum(proto, typestr)); 1722 1723 s += ");"; 1724 1725 if (proto[0] != 'v' && sret) { 1726 if (define) 1727 s += " r;"; 1728 else 1729 s += " return r;"; 1730 } 1731 return s; 1732} 1733 1734static std::string GenBuiltinDef(const std::string &name, 1735 const std::string &proto, 1736 StringRef typestr, ClassKind ck) { 1737 std::string s("BUILTIN(__builtin_neon_"); 1738 1739 // If all types are the same size, bitcasting the args will take care 1740 // of arg checking. The actual signedness etc. will be taken care of with 1741 // special enums. 1742 if (proto.find('s') == std::string::npos) 1743 ck = ClassB; 1744 1745 s += MangleName(name, typestr, ck); 1746 s += ", \""; 1747 1748 for (unsigned i = 0, e = proto.size(); i != e; ++i) 1749 s += BuiltinTypeString(proto[i], typestr, ck, i == 0); 1750 1751 // Extra constant integer to hold type class enum for this function, e.g. s8 1752 if (ck == ClassB) 1753 s += "i"; 1754 1755 s += "\", \"n\")"; 1756 return s; 1757} 1758 1759static std::string GenIntrinsic(const std::string &name, 1760 const std::string &proto, 1761 StringRef outTypeStr, StringRef inTypeStr, 1762 OpKind kind, ClassKind classKind) { 1763 assert(!proto.empty() && ""); 1764 bool define = UseMacro(proto) && kind != OpUnavailable; 1765 std::string s; 1766 1767 // static always inline + return type 1768 if (define) 1769 s += "#define "; 1770 else 1771 s += "__ai " + TypeString(proto[0], outTypeStr) + " "; 1772 1773 // Function name with type suffix 1774 std::string mangledName = MangleName(name, outTypeStr, ClassS); 1775 if (outTypeStr != inTypeStr) { 1776 // If the input type is different (e.g., for vreinterpret), append a suffix 1777 // for the input type. String off a "Q" (quad) prefix so that MangleName 1778 // does not insert another "q" in the name. 1779 unsigned typeStrOff = (inTypeStr[0] == 'Q' ? 1 : 0); 1780 StringRef inTypeNoQuad = inTypeStr.substr(typeStrOff); 1781 mangledName = MangleName(mangledName, inTypeNoQuad, ClassS); 1782 } 1783 s += mangledName; 1784 1785 // Function arguments 1786 s += GenArgs(proto, inTypeStr); 1787 1788 // Definition. 1789 if (define) { 1790 s += " __extension__ ({ \\\n "; 1791 s += GenMacroLocals(proto, inTypeStr); 1792 } else if (kind == OpUnavailable) { 1793 s += " __attribute__((unavailable));\n"; 1794 return s; 1795 } else 1796 s += " {\n "; 1797 1798 if (kind != OpNone) 1799 s += GenOpString(kind, proto, outTypeStr); 1800 else 1801 s += GenBuiltin(name, proto, outTypeStr, classKind); 1802 if (define) 1803 s += " })"; 1804 else 1805 s += " }"; 1806 s += "\n"; 1807 return s; 1808} 1809 1810/// run - Read the records in arm_neon.td and output arm_neon.h. arm_neon.h 1811/// is comprised of type definitions and function declarations. 1812void NeonEmitter::run(raw_ostream &OS) { 1813 OS << 1814 "/*===---- arm_neon.h - ARM Neon intrinsics ------------------------------" 1815 "---===\n" 1816 " *\n" 1817 " * Permission is hereby granted, free of charge, to any person obtaining " 1818 "a copy\n" 1819 " * of this software and associated documentation files (the \"Software\")," 1820 " to deal\n" 1821 " * in the Software without restriction, including without limitation the " 1822 "rights\n" 1823 " * to use, copy, modify, merge, publish, distribute, sublicense, " 1824 "and/or sell\n" 1825 " * copies of the Software, and to permit persons to whom the Software is\n" 1826 " * furnished to do so, subject to the following conditions:\n" 1827 " *\n" 1828 " * The above copyright notice and this permission notice shall be " 1829 "included in\n" 1830 " * all copies or substantial portions of the Software.\n" 1831 " *\n" 1832 " * THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, " 1833 "EXPRESS OR\n" 1834 " * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF " 1835 "MERCHANTABILITY,\n" 1836 " * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT " 1837 "SHALL THE\n" 1838 " * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR " 1839 "OTHER\n" 1840 " * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, " 1841 "ARISING FROM,\n" 1842 " * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER " 1843 "DEALINGS IN\n" 1844 " * THE SOFTWARE.\n" 1845 " *\n" 1846 " *===--------------------------------------------------------------------" 1847 "---===\n" 1848 " */\n\n"; 1849 1850 OS << "#ifndef __ARM_NEON_H\n"; 1851 OS << "#define __ARM_NEON_H\n\n"; 1852 1853 OS << "#if !defined(__ARM_NEON__) && !defined(__AARCH_FEATURE_ADVSIMD)\n"; 1854 OS << "#error \"NEON support not enabled\"\n"; 1855 OS << "#endif\n\n"; 1856 1857 OS << "#include <stdint.h>\n\n"; 1858 1859 // Emit NEON-specific scalar typedefs. 1860 OS << "typedef float float32_t;\n"; 1861 OS << "typedef __fp16 float16_t;\n"; 1862 1863 OS << "#ifdef __aarch64__\n"; 1864 OS << "typedef double float64_t;\n"; 1865 OS << "#endif\n\n"; 1866 1867 // For now, signedness of polynomial types depends on target 1868 OS << "#ifdef __aarch64__\n"; 1869 OS << "typedef uint8_t poly8_t;\n"; 1870 OS << "typedef uint16_t poly16_t;\n"; 1871 OS << "#else\n"; 1872 OS << "typedef int8_t poly8_t;\n"; 1873 OS << "typedef int16_t poly16_t;\n"; 1874 OS << "#endif\n"; 1875 1876 // Emit Neon vector typedefs. 1877 std::string TypedefTypes( 1878 "cQcsQsiQilQlUcQUcUsQUsUiQUiUlQUlhQhfQfQdPcQPcPsQPs"); 1879 SmallVector<StringRef, 24> TDTypeVec; 1880 ParseTypes(0, TypedefTypes, TDTypeVec); 1881 1882 // Emit vector typedefs. 1883 for (unsigned i = 0, e = TDTypeVec.size(); i != e; ++i) { 1884 bool dummy, quad = false, poly = false; 1885 char type = ClassifyType(TDTypeVec[i], quad, poly, dummy); 1886 bool isA64 = false; 1887 1888 if (type == 'd' && quad) 1889 isA64 = true; 1890 1891 if (isA64) 1892 OS << "#ifdef __aarch64__\n"; 1893 1894 if (poly) 1895 OS << "typedef __attribute__((neon_polyvector_type("; 1896 else 1897 OS << "typedef __attribute__((neon_vector_type("; 1898 1899 unsigned nElts = GetNumElements(TDTypeVec[i], quad); 1900 OS << utostr(nElts) << "))) "; 1901 if (nElts < 10) 1902 OS << " "; 1903 1904 OS << TypeString('s', TDTypeVec[i]); 1905 OS << " " << TypeString('d', TDTypeVec[i]) << ";\n"; 1906 1907 if (isA64) 1908 OS << "#endif\n"; 1909 } 1910 OS << "\n"; 1911 1912 // Emit struct typedefs. 1913 for (unsigned vi = 2; vi != 5; ++vi) { 1914 for (unsigned i = 0, e = TDTypeVec.size(); i != e; ++i) { 1915 bool dummy, quad = false, poly = false; 1916 char type = ClassifyType(TDTypeVec[i], quad, poly, dummy); 1917 bool isA64 = false; 1918 1919 if (type == 'd' && quad) 1920 isA64 = true; 1921 1922 if (isA64) 1923 OS << "#ifdef __aarch64__\n"; 1924 1925 std::string ts = TypeString('d', TDTypeVec[i]); 1926 std::string vs = TypeString('0' + vi, TDTypeVec[i]); 1927 OS << "typedef struct " << vs << " {\n"; 1928 OS << " " << ts << " val"; 1929 OS << "[" << utostr(vi) << "]"; 1930 OS << ";\n} "; 1931 OS << vs << ";\n"; 1932 1933 if (isA64) 1934 OS << "#endif\n"; 1935 1936 OS << "\n"; 1937 } 1938 } 1939 1940 OS<<"#define __ai static inline __attribute__((__always_inline__, __nodebug__))\n\n"; 1941 1942 std::vector<Record*> RV = Records.getAllDerivedDefinitions("Inst"); 1943 1944 StringMap<ClassKind> EmittedMap; 1945 1946 // Emit vmovl, vmull and vabd intrinsics first so they can be used by other 1947 // intrinsics. (Some of the saturating multiply instructions are also 1948 // used to implement the corresponding "_lane" variants, but tablegen 1949 // sorts the records into alphabetical order so that the "_lane" variants 1950 // come after the intrinsics they use.) 1951 emitIntrinsic(OS, Records.getDef("VMOVL"), EmittedMap); 1952 emitIntrinsic(OS, Records.getDef("VMULL"), EmittedMap); 1953 emitIntrinsic(OS, Records.getDef("VABD"), EmittedMap); 1954 1955 // ARM intrinsics must be emitted before AArch64 intrinsics to ensure 1956 // common intrinsics appear only once in the output stream. 1957 // The check for uniquiness is done in emitIntrinsic. 1958 // Emit ARM intrinsics. 1959 for (unsigned i = 0, e = RV.size(); i != e; ++i) { 1960 Record *R = RV[i]; 1961 1962 // Skip AArch64 intrinsics; they will be emitted at the end. 1963 bool isA64 = R->getValueAsBit("isA64"); 1964 if (isA64) 1965 continue; 1966 1967 if (R->getName() != "VMOVL" && R->getName() != "VMULL" && 1968 R->getName() != "VABD") 1969 emitIntrinsic(OS, R, EmittedMap); 1970 } 1971 1972 // Emit AArch64-specific intrinsics. 1973 OS << "#ifdef __aarch64__\n"; 1974 1975 for (unsigned i = 0, e = RV.size(); i != e; ++i) { 1976 Record *R = RV[i]; 1977 1978 // Skip ARM intrinsics already included above. 1979 bool isA64 = R->getValueAsBit("isA64"); 1980 if (!isA64) 1981 continue; 1982 1983 emitIntrinsic(OS, R, EmittedMap); 1984 } 1985 1986 OS << "#endif\n\n"; 1987 1988 OS << "#undef __ai\n\n"; 1989 OS << "#endif /* __ARM_NEON_H */\n"; 1990} 1991 1992/// emitIntrinsic - Write out the arm_neon.h header file definitions for the 1993/// intrinsics specified by record R checking for intrinsic uniqueness. 1994void NeonEmitter::emitIntrinsic(raw_ostream &OS, Record *R, 1995 StringMap<ClassKind> &EmittedMap) { 1996 std::string name = R->getValueAsString("Name"); 1997 std::string Proto = R->getValueAsString("Prototype"); 1998 std::string Types = R->getValueAsString("Types"); 1999 2000 SmallVector<StringRef, 16> TypeVec; 2001 ParseTypes(R, Types, TypeVec); 2002 2003 OpKind kind = OpMap[R->getValueAsDef("Operand")->getName()]; 2004 2005 ClassKind classKind = ClassNone; 2006 if (R->getSuperClasses().size() >= 2) 2007 classKind = ClassMap[R->getSuperClasses()[1]]; 2008 if (classKind == ClassNone && kind == OpNone) 2009 PrintFatalError(R->getLoc(), "Builtin has no class kind"); 2010 2011 for (unsigned ti = 0, te = TypeVec.size(); ti != te; ++ti) { 2012 if (kind == OpReinterpret) { 2013 bool outQuad = false; 2014 bool dummy = false; 2015 (void)ClassifyType(TypeVec[ti], outQuad, dummy, dummy); 2016 for (unsigned srcti = 0, srcte = TypeVec.size(); 2017 srcti != srcte; ++srcti) { 2018 bool inQuad = false; 2019 (void)ClassifyType(TypeVec[srcti], inQuad, dummy, dummy); 2020 if (srcti == ti || inQuad != outQuad) 2021 continue; 2022 std::string s = GenIntrinsic(name, Proto, TypeVec[ti], TypeVec[srcti], 2023 OpCast, ClassS); 2024 if (EmittedMap.count(s)) 2025 continue; 2026 EmittedMap[s] = ClassS; 2027 OS << s; 2028 } 2029 } else { 2030 std::string s = 2031 GenIntrinsic(name, Proto, TypeVec[ti], TypeVec[ti], kind, classKind); 2032 if (EmittedMap.count(s)) 2033 continue; 2034 EmittedMap[s] = classKind; 2035 OS << s; 2036 } 2037 } 2038 OS << "\n"; 2039} 2040 2041static unsigned RangeFromType(const char mod, StringRef typestr) { 2042 // base type to get the type string for. 2043 bool quad = false, dummy = false; 2044 char type = ClassifyType(typestr, quad, dummy, dummy); 2045 type = ModType(mod, type, quad, dummy, dummy, dummy, dummy, dummy); 2046 2047 switch (type) { 2048 case 'c': 2049 return (8 << (int)quad) - 1; 2050 case 'h': 2051 case 's': 2052 return (4 << (int)quad) - 1; 2053 case 'f': 2054 case 'i': 2055 return (2 << (int)quad) - 1; 2056 case 'l': 2057 return (1 << (int)quad) - 1; 2058 default: 2059 PrintFatalError("unhandled type!"); 2060 } 2061} 2062 2063/// Generate the ARM and AArch64 intrinsic range checking code for 2064/// shift/lane immediates, checking for unique declarations. 2065void 2066NeonEmitter::genIntrinsicRangeCheckCode(raw_ostream &OS, 2067 StringMap<ClassKind> &A64IntrinsicMap, 2068 bool isA64RangeCheck) { 2069 std::vector<Record *> RV = Records.getAllDerivedDefinitions("Inst"); 2070 StringMap<OpKind> EmittedMap; 2071 2072 // Generate the intrinsic range checking code for shift/lane immediates. 2073 if (isA64RangeCheck) 2074 OS << "#ifdef GET_NEON_AARCH64_IMMEDIATE_CHECK\n"; 2075 else 2076 OS << "#ifdef GET_NEON_IMMEDIATE_CHECK\n"; 2077 2078 for (unsigned i = 0, e = RV.size(); i != e; ++i) { 2079 Record *R = RV[i]; 2080 2081 OpKind k = OpMap[R->getValueAsDef("Operand")->getName()]; 2082 if (k != OpNone) 2083 continue; 2084 2085 std::string name = R->getValueAsString("Name"); 2086 std::string Proto = R->getValueAsString("Prototype"); 2087 std::string Types = R->getValueAsString("Types"); 2088 std::string Rename = name + "@" + Proto; 2089 2090 // Functions with 'a' (the splat code) in the type prototype should not get 2091 // their own builtin as they use the non-splat variant. 2092 if (Proto.find('a') != std::string::npos) 2093 continue; 2094 2095 // Functions which do not have an immediate do not need to have range 2096 // checking code emitted. 2097 size_t immPos = Proto.find('i'); 2098 if (immPos == std::string::npos) 2099 continue; 2100 2101 SmallVector<StringRef, 16> TypeVec; 2102 ParseTypes(R, Types, TypeVec); 2103 2104 if (R->getSuperClasses().size() < 2) 2105 PrintFatalError(R->getLoc(), "Builtin has no class kind"); 2106 2107 ClassKind ck = ClassMap[R->getSuperClasses()[1]]; 2108 2109 // Do not include AArch64 range checks if not generating code for AArch64. 2110 bool isA64 = R->getValueAsBit("isA64"); 2111 if (!isA64RangeCheck && isA64) 2112 continue; 2113 2114 // Include ARM range checks in AArch64 but only if ARM intrinsics are not 2115 // redefined by AArch64 to handle new types. 2116 if (isA64RangeCheck && !isA64 && A64IntrinsicMap.count(Rename)) { 2117 ClassKind &A64CK = A64IntrinsicMap[Rename]; 2118 if (A64CK == ck && ck != ClassNone) 2119 continue; 2120 } 2121 2122 for (unsigned ti = 0, te = TypeVec.size(); ti != te; ++ti) { 2123 std::string namestr, shiftstr, rangestr; 2124 2125 if (R->getValueAsBit("isVCVT_N")) { 2126 // VCVT between floating- and fixed-point values takes an immediate 2127 // in the range 1 to 32. 2128 ck = ClassB; 2129 rangestr = "l = 1; u = 31"; // upper bound = l + u 2130 } else if (Proto.find('s') == std::string::npos) { 2131 // Builtins which are overloaded by type will need to have their upper 2132 // bound computed at Sema time based on the type constant. 2133 ck = ClassB; 2134 if (R->getValueAsBit("isShift")) { 2135 shiftstr = ", true"; 2136 2137 // Right shifts have an 'r' in the name, left shifts do not. 2138 if (name.find('r') != std::string::npos) 2139 rangestr = "l = 1; "; 2140 } 2141 rangestr += "u = RFT(TV" + shiftstr + ")"; 2142 } else { 2143 // The immediate generally refers to a lane in the preceding argument. 2144 assert(immPos > 0 && "unexpected immediate operand"); 2145 rangestr = 2146 "u = " + utostr(RangeFromType(Proto[immPos - 1], TypeVec[ti])); 2147 } 2148 // Make sure cases appear only once by uniquing them in a string map. 2149 namestr = MangleName(name, TypeVec[ti], ck); 2150 if (EmittedMap.count(namestr)) 2151 continue; 2152 EmittedMap[namestr] = OpNone; 2153 2154 // Calculate the index of the immediate that should be range checked. 2155 unsigned immidx = 0; 2156 2157 // Builtins that return a struct of multiple vectors have an extra 2158 // leading arg for the struct return. 2159 if (Proto[0] >= '2' && Proto[0] <= '4') 2160 ++immidx; 2161 2162 // Add one to the index for each argument until we reach the immediate 2163 // to be checked. Structs of vectors are passed as multiple arguments. 2164 for (unsigned ii = 1, ie = Proto.size(); ii != ie; ++ii) { 2165 switch (Proto[ii]) { 2166 default: 2167 immidx += 1; 2168 break; 2169 case '2': 2170 immidx += 2; 2171 break; 2172 case '3': 2173 immidx += 3; 2174 break; 2175 case '4': 2176 immidx += 4; 2177 break; 2178 case 'i': 2179 ie = ii + 1; 2180 break; 2181 } 2182 } 2183 if (isA64RangeCheck) 2184 OS << "case AArch64::BI__builtin_neon_"; 2185 else 2186 OS << "case ARM::BI__builtin_neon_"; 2187 OS << MangleName(name, TypeVec[ti], ck) << ": i = " << immidx << "; " 2188 << rangestr << "; break;\n"; 2189 } 2190 } 2191 OS << "#endif\n\n"; 2192} 2193 2194/// Generate the ARM and AArch64 overloaded type checking code for 2195/// SemaChecking.cpp, checking for unique builtin declarations. 2196void 2197NeonEmitter::genOverloadTypeCheckCode(raw_ostream &OS, 2198 StringMap<ClassKind> &A64IntrinsicMap, 2199 bool isA64TypeCheck) { 2200 std::vector<Record *> RV = Records.getAllDerivedDefinitions("Inst"); 2201 StringMap<OpKind> EmittedMap; 2202 2203 // Generate the overloaded type checking code for SemaChecking.cpp 2204 if (isA64TypeCheck) 2205 OS << "#ifdef GET_NEON_AARCH64_OVERLOAD_CHECK\n"; 2206 else 2207 OS << "#ifdef GET_NEON_OVERLOAD_CHECK\n"; 2208 2209 for (unsigned i = 0, e = RV.size(); i != e; ++i) { 2210 Record *R = RV[i]; 2211 OpKind k = OpMap[R->getValueAsDef("Operand")->getName()]; 2212 if (k != OpNone) 2213 continue; 2214 2215 std::string Proto = R->getValueAsString("Prototype"); 2216 std::string Types = R->getValueAsString("Types"); 2217 std::string name = R->getValueAsString("Name"); 2218 std::string Rename = name + "@" + Proto; 2219 2220 // Functions with 'a' (the splat code) in the type prototype should not get 2221 // their own builtin as they use the non-splat variant. 2222 if (Proto.find('a') != std::string::npos) 2223 continue; 2224 2225 // Functions which have a scalar argument cannot be overloaded, no need to 2226 // check them if we are emitting the type checking code. 2227 if (Proto.find('s') != std::string::npos) 2228 continue; 2229 2230 SmallVector<StringRef, 16> TypeVec; 2231 ParseTypes(R, Types, TypeVec); 2232 2233 if (R->getSuperClasses().size() < 2) 2234 PrintFatalError(R->getLoc(), "Builtin has no class kind"); 2235 2236 // Do not include AArch64 type checks if not generating code for AArch64. 2237 bool isA64 = R->getValueAsBit("isA64"); 2238 if (!isA64TypeCheck && isA64) 2239 continue; 2240 2241 // Include ARM type check in AArch64 but only if ARM intrinsics 2242 // are not redefined in AArch64 to handle new types, e.g. "vabd" is a SIntr 2243 // redefined in AArch64 to handle an additional 2 x f64 type. 2244 ClassKind ck = ClassMap[R->getSuperClasses()[1]]; 2245 if (isA64TypeCheck && !isA64 && A64IntrinsicMap.count(Rename)) { 2246 ClassKind &A64CK = A64IntrinsicMap[Rename]; 2247 if (A64CK == ck && ck != ClassNone) 2248 continue; 2249 } 2250 2251 int si = -1, qi = -1; 2252 uint64_t mask = 0, qmask = 0; 2253 for (unsigned ti = 0, te = TypeVec.size(); ti != te; ++ti) { 2254 // Generate the switch case(s) for this builtin for the type validation. 2255 bool quad = false, poly = false, usgn = false; 2256 (void) ClassifyType(TypeVec[ti], quad, poly, usgn); 2257 2258 if (quad) { 2259 qi = ti; 2260 qmask |= 1ULL << GetNeonEnum(Proto, TypeVec[ti]); 2261 } else { 2262 si = ti; 2263 mask |= 1ULL << GetNeonEnum(Proto, TypeVec[ti]); 2264 } 2265 } 2266 2267 // Check if the builtin function has a pointer or const pointer argument. 2268 int PtrArgNum = -1; 2269 bool HasConstPtr = false; 2270 for (unsigned arg = 1, arge = Proto.size(); arg != arge; ++arg) { 2271 char ArgType = Proto[arg]; 2272 if (ArgType == 'c') { 2273 HasConstPtr = true; 2274 PtrArgNum = arg - 1; 2275 break; 2276 } 2277 if (ArgType == 'p') { 2278 PtrArgNum = arg - 1; 2279 break; 2280 } 2281 } 2282 // For sret builtins, adjust the pointer argument index. 2283 if (PtrArgNum >= 0 && (Proto[0] >= '2' && Proto[0] <= '4')) 2284 PtrArgNum += 1; 2285 2286 // Omit type checking for the pointer arguments of vld1_lane, vld1_dup, 2287 // and vst1_lane intrinsics. Using a pointer to the vector element 2288 // type with one of those operations causes codegen to select an aligned 2289 // load/store instruction. If you want an unaligned operation, 2290 // the pointer argument needs to have less alignment than element type, 2291 // so just accept any pointer type. 2292 if (name == "vld1_lane" || name == "vld1_dup" || name == "vst1_lane") { 2293 PtrArgNum = -1; 2294 HasConstPtr = false; 2295 } 2296 2297 if (mask) { 2298 if (isA64TypeCheck) 2299 OS << "case AArch64::BI__builtin_neon_"; 2300 else 2301 OS << "case ARM::BI__builtin_neon_"; 2302 OS << MangleName(name, TypeVec[si], ClassB) << ": mask = " 2303 << "0x" << utohexstr(mask) << "ULL"; 2304 if (PtrArgNum >= 0) 2305 OS << "; PtrArgNum = " << PtrArgNum; 2306 if (HasConstPtr) 2307 OS << "; HasConstPtr = true"; 2308 OS << "; break;\n"; 2309 } 2310 if (qmask) { 2311 if (isA64TypeCheck) 2312 OS << "case AArch64::BI__builtin_neon_"; 2313 else 2314 OS << "case ARM::BI__builtin_neon_"; 2315 OS << MangleName(name, TypeVec[qi], ClassB) << ": mask = " 2316 << "0x" << utohexstr(qmask) << "ULL"; 2317 if (PtrArgNum >= 0) 2318 OS << "; PtrArgNum = " << PtrArgNum; 2319 if (HasConstPtr) 2320 OS << "; HasConstPtr = true"; 2321 OS << "; break;\n"; 2322 } 2323 } 2324 OS << "#endif\n\n"; 2325} 2326 2327/// genBuiltinsDef: Generate the BuiltinsARM.def and BuiltinsAArch64.def 2328/// declaration of builtins, checking for unique builtin declarations. 2329void NeonEmitter::genBuiltinsDef(raw_ostream &OS, 2330 StringMap<ClassKind> &A64IntrinsicMap, 2331 bool isA64GenBuiltinDef) { 2332 std::vector<Record *> RV = Records.getAllDerivedDefinitions("Inst"); 2333 StringMap<OpKind> EmittedMap; 2334 2335 // Generate BuiltinsARM.def and BuiltinsAArch64.def 2336 if (isA64GenBuiltinDef) 2337 OS << "#ifdef GET_NEON_AARCH64_BUILTINS\n"; 2338 else 2339 OS << "#ifdef GET_NEON_BUILTINS\n"; 2340 2341 for (unsigned i = 0, e = RV.size(); i != e; ++i) { 2342 Record *R = RV[i]; 2343 OpKind k = OpMap[R->getValueAsDef("Operand")->getName()]; 2344 if (k != OpNone) 2345 continue; 2346 2347 std::string Proto = R->getValueAsString("Prototype"); 2348 std::string name = R->getValueAsString("Name"); 2349 std::string Rename = name + "@" + Proto; 2350 2351 // Functions with 'a' (the splat code) in the type prototype should not get 2352 // their own builtin as they use the non-splat variant. 2353 if (Proto.find('a') != std::string::npos) 2354 continue; 2355 2356 std::string Types = R->getValueAsString("Types"); 2357 SmallVector<StringRef, 16> TypeVec; 2358 ParseTypes(R, Types, TypeVec); 2359 2360 if (R->getSuperClasses().size() < 2) 2361 PrintFatalError(R->getLoc(), "Builtin has no class kind"); 2362 2363 ClassKind ck = ClassMap[R->getSuperClasses()[1]]; 2364 2365 // Do not include AArch64 BUILTIN() macros if not generating 2366 // code for AArch64 2367 bool isA64 = R->getValueAsBit("isA64"); 2368 if (!isA64GenBuiltinDef && isA64) 2369 continue; 2370 2371 // Include ARM BUILTIN() macros in AArch64 but only if ARM intrinsics 2372 // are not redefined in AArch64 to handle new types, e.g. "vabd" is a SIntr 2373 // redefined in AArch64 to handle an additional 2 x f64 type. 2374 if (isA64GenBuiltinDef && !isA64 && A64IntrinsicMap.count(Rename)) { 2375 ClassKind &A64CK = A64IntrinsicMap[Rename]; 2376 if (A64CK == ck && ck != ClassNone) 2377 continue; 2378 } 2379 2380 for (unsigned ti = 0, te = TypeVec.size(); ti != te; ++ti) { 2381 // Generate the declaration for this builtin, ensuring 2382 // that each unique BUILTIN() macro appears only once in the output 2383 // stream. 2384 std::string bd = GenBuiltinDef(name, Proto, TypeVec[ti], ck); 2385 if (EmittedMap.count(bd)) 2386 continue; 2387 2388 EmittedMap[bd] = OpNone; 2389 OS << bd << "\n"; 2390 } 2391 } 2392 OS << "#endif\n\n"; 2393} 2394 2395/// runHeader - Emit a file with sections defining: 2396/// 1. the NEON section of BuiltinsARM.def and BuiltinsAArch64.def. 2397/// 2. the SemaChecking code for the type overload checking. 2398/// 3. the SemaChecking code for validation of intrinsic immediate arguments. 2399void NeonEmitter::runHeader(raw_ostream &OS) { 2400 std::vector<Record *> RV = Records.getAllDerivedDefinitions("Inst"); 2401 2402 // build a map of AArch64 intriniscs to be used in uniqueness checks. 2403 StringMap<ClassKind> A64IntrinsicMap; 2404 for (unsigned i = 0, e = RV.size(); i != e; ++i) { 2405 Record *R = RV[i]; 2406 2407 bool isA64 = R->getValueAsBit("isA64"); 2408 if (!isA64) 2409 continue; 2410 2411 ClassKind CK = ClassNone; 2412 if (R->getSuperClasses().size() >= 2) 2413 CK = ClassMap[R->getSuperClasses()[1]]; 2414 2415 std::string Name = R->getValueAsString("Name"); 2416 std::string Proto = R->getValueAsString("Prototype"); 2417 std::string Rename = Name + "@" + Proto; 2418 if (A64IntrinsicMap.count(Rename)) 2419 continue; 2420 A64IntrinsicMap[Rename] = CK; 2421 } 2422 2423 // Generate BuiltinsARM.def for ARM 2424 genBuiltinsDef(OS, A64IntrinsicMap, false); 2425 2426 // Generate BuiltinsAArch64.def for AArch64 2427 genBuiltinsDef(OS, A64IntrinsicMap, true); 2428 2429 // Generate ARM overloaded type checking code for SemaChecking.cpp 2430 genOverloadTypeCheckCode(OS, A64IntrinsicMap, false); 2431 2432 // Generate AArch64 overloaded type checking code for SemaChecking.cpp 2433 genOverloadTypeCheckCode(OS, A64IntrinsicMap, true); 2434 2435 // Generate ARM range checking code for shift/lane immediates. 2436 genIntrinsicRangeCheckCode(OS, A64IntrinsicMap, false); 2437 2438 // Generate the AArch64 range checking code for shift/lane immediates. 2439 genIntrinsicRangeCheckCode(OS, A64IntrinsicMap, true); 2440} 2441 2442/// GenTest - Write out a test for the intrinsic specified by the name and 2443/// type strings, including the embedded patterns for FileCheck to match. 2444static std::string GenTest(const std::string &name, 2445 const std::string &proto, 2446 StringRef outTypeStr, StringRef inTypeStr, 2447 bool isShift, bool isHiddenLOp, 2448 ClassKind ck, const std::string &InstName, 2449 bool isA64, 2450 std::string & testFuncProto) { 2451 assert(!proto.empty() && ""); 2452 std::string s; 2453 2454 // Function name with type suffix 2455 std::string mangledName = MangleName(name, outTypeStr, ClassS); 2456 if (outTypeStr != inTypeStr) { 2457 // If the input type is different (e.g., for vreinterpret), append a suffix 2458 // for the input type. String off a "Q" (quad) prefix so that MangleName 2459 // does not insert another "q" in the name. 2460 unsigned typeStrOff = (inTypeStr[0] == 'Q' ? 1 : 0); 2461 StringRef inTypeNoQuad = inTypeStr.substr(typeStrOff); 2462 mangledName = MangleName(mangledName, inTypeNoQuad, ClassS); 2463 } 2464 2465 // todo: GenerateChecksForIntrinsic does not generate CHECK 2466 // for aarch64 instructions yet 2467 std::vector<std::string> FileCheckPatterns; 2468 if (!isA64) { 2469 GenerateChecksForIntrinsic(name, proto, outTypeStr, inTypeStr, ck, InstName, 2470 isHiddenLOp, FileCheckPatterns); 2471 s+= "// CHECK_ARM: test_" + mangledName + "\n"; 2472 } 2473 s += "// CHECK_AARCH64: test_" + mangledName + "\n"; 2474 2475 // Emit the FileCheck patterns. 2476 // If for any reason we do not want to emit a check, mangledInst 2477 // will be the empty string. 2478 if (FileCheckPatterns.size()) { 2479 for (std::vector<std::string>::const_iterator i = FileCheckPatterns.begin(), 2480 e = FileCheckPatterns.end(); 2481 i != e; 2482 ++i) { 2483 s += "// CHECK_ARM: " + *i + "\n"; 2484 } 2485 } 2486 2487 // Emit the start of the test function. 2488 2489 testFuncProto = TypeString(proto[0], outTypeStr) + " test_" + mangledName + "("; 2490 char arg = 'a'; 2491 std::string comma; 2492 for (unsigned i = 1, e = proto.size(); i != e; ++i, ++arg) { 2493 // Do not create arguments for values that must be immediate constants. 2494 if (proto[i] == 'i') 2495 continue; 2496 testFuncProto += comma + TypeString(proto[i], inTypeStr) + " "; 2497 testFuncProto.push_back(arg); 2498 comma = ", "; 2499 } 2500 testFuncProto += ")"; 2501 2502 s+= testFuncProto; 2503 s+= " {\n "; 2504 2505 if (proto[0] != 'v') 2506 s += "return "; 2507 s += mangledName + "("; 2508 arg = 'a'; 2509 for (unsigned i = 1, e = proto.size(); i != e; ++i, ++arg) { 2510 if (proto[i] == 'i') { 2511 // For immediate operands, test the maximum value. 2512 if (isShift) 2513 s += "1"; // FIXME 2514 else 2515 // The immediate generally refers to a lane in the preceding argument. 2516 s += utostr(RangeFromType(proto[i-1], inTypeStr)); 2517 } else { 2518 s.push_back(arg); 2519 } 2520 if ((i + 1) < e) 2521 s += ", "; 2522 } 2523 s += ");\n}\n\n"; 2524 return s; 2525} 2526 2527/// Write out all intrinsic tests for the specified target, checking 2528/// for intrinsic test uniqueness. 2529void NeonEmitter::genTargetTest(raw_ostream &OS, StringMap<OpKind> &EmittedMap, 2530 bool isA64GenTest) { 2531 if (isA64GenTest) 2532 OS << "#ifdef __aarch64__\n"; 2533 2534 std::vector<Record *> RV = Records.getAllDerivedDefinitions("Inst"); 2535 for (unsigned i = 0, e = RV.size(); i != e; ++i) { 2536 Record *R = RV[i]; 2537 std::string name = R->getValueAsString("Name"); 2538 std::string Proto = R->getValueAsString("Prototype"); 2539 std::string Types = R->getValueAsString("Types"); 2540 bool isShift = R->getValueAsBit("isShift"); 2541 std::string InstName = R->getValueAsString("InstName"); 2542 bool isHiddenLOp = R->getValueAsBit("isHiddenLInst"); 2543 bool isA64 = R->getValueAsBit("isA64"); 2544 2545 // do not include AArch64 intrinsic test if not generating 2546 // code for AArch64 2547 if (!isA64GenTest && isA64) 2548 continue; 2549 2550 SmallVector<StringRef, 16> TypeVec; 2551 ParseTypes(R, Types, TypeVec); 2552 2553 ClassKind ck = ClassMap[R->getSuperClasses()[1]]; 2554 OpKind kind = OpMap[R->getValueAsDef("Operand")->getName()]; 2555 if (kind == OpUnavailable) 2556 continue; 2557 for (unsigned ti = 0, te = TypeVec.size(); ti != te; ++ti) { 2558 if (kind == OpReinterpret) { 2559 bool outQuad = false; 2560 bool dummy = false; 2561 (void)ClassifyType(TypeVec[ti], outQuad, dummy, dummy); 2562 for (unsigned srcti = 0, srcte = TypeVec.size(); 2563 srcti != srcte; ++srcti) { 2564 bool inQuad = false; 2565 (void)ClassifyType(TypeVec[srcti], inQuad, dummy, dummy); 2566 if (srcti == ti || inQuad != outQuad) 2567 continue; 2568 std::string testFuncProto; 2569 std::string s = GenTest(name, Proto, TypeVec[ti], TypeVec[srcti], 2570 isShift, isHiddenLOp, ck, InstName, isA64, 2571 testFuncProto); 2572 if (EmittedMap.count(testFuncProto)) 2573 continue; 2574 EmittedMap[testFuncProto] = kind; 2575 OS << s << "\n"; 2576 } 2577 } else { 2578 std::string testFuncProto; 2579 std::string s = GenTest(name, Proto, TypeVec[ti], TypeVec[ti], isShift, 2580 isHiddenLOp, ck, InstName, isA64, testFuncProto); 2581 if (EmittedMap.count(testFuncProto)) 2582 continue; 2583 EmittedMap[testFuncProto] = kind; 2584 OS << s << "\n"; 2585 } 2586 } 2587 } 2588 2589 if (isA64GenTest) 2590 OS << "#endif\n"; 2591} 2592/// runTests - Write out a complete set of tests for all of the Neon 2593/// intrinsics. 2594void NeonEmitter::runTests(raw_ostream &OS) { 2595 OS << "// RUN: %clang_cc1 -triple thumbv7s-apple-darwin -target-abi " 2596 "apcs-gnu\\\n" 2597 "// RUN: -target-cpu swift -ffreestanding -Os -S -o - %s\\\n" 2598 "// RUN: | FileCheck %s -check-prefix=CHECK_ARM\n" 2599 "\n" 2600 "// RUN: %clang_cc1 -triple aarch64-none-linux-gnu \\\n" 2601 "// RUN -target-feature +neon -ffreestanding -S -o - %s \\\n" 2602 "// RUN: | FileCheck %s -check-prefix=CHECK_AARCH64\n" 2603 "\n" 2604 "// REQUIRES: long_tests\n" 2605 "\n" 2606 "#include <arm_neon.h>\n" 2607 "\n"; 2608 2609 // ARM tests must be emitted before AArch64 tests to ensure 2610 // tests for intrinsics that are common to ARM and AArch64 2611 // appear only once in the output stream. 2612 // The check for uniqueness is done in genTargetTest. 2613 StringMap<OpKind> EmittedMap; 2614 2615 genTargetTest(OS, EmittedMap, false); 2616 2617 genTargetTest(OS, EmittedMap, true); 2618} 2619 2620namespace clang { 2621void EmitNeon(RecordKeeper &Records, raw_ostream &OS) { 2622 NeonEmitter(Records).run(OS); 2623} 2624void EmitNeonSema(RecordKeeper &Records, raw_ostream &OS) { 2625 NeonEmitter(Records).runHeader(OS); 2626} 2627void EmitNeonTest(RecordKeeper &Records, raw_ostream &OS) { 2628 NeonEmitter(Records).runTests(OS); 2629} 2630} // End namespace clang 2631