divxc3.c revision 799172d60d32feb1acba1a6867f3a9c39a999e5c
1/* ===-- divxc3.c - Implement __divxc3 -------------------------------------=== 2 * 3 * The LLVM Compiler Infrastructure 4 * 5 * This file is dual licensed under the MIT and the University of Illinois Open 6 * Source Licenses. See LICENSE.TXT for details. 7 * 8 * ===----------------------------------------------------------------------=== 9 * 10 * This file implements __divxc3 for the compiler_rt library. 11 * 12 */ 13 14#if !_ARCH_PPC 15 16#include "int_lib.h" 17#include "int_math.h" 18 19/* Returns: the quotient of (a + ib) / (c + id) */ 20 21COMPILER_RT_ABI Lcomplex 22__divxc3(long double __a, long double __b, long double __c, long double __d) 23{ 24 int __ilogbw = 0; 25 long double __logbw = crt_logbl(crt_fmaxl(crt_fabsl(__c), crt_fabsl(__d))); 26 if (crt_isfinite(__logbw)) 27 { 28 __ilogbw = (int)__logbw; 29 __c = crt_scalbnl(__c, -__ilogbw); 30 __d = crt_scalbnl(__d, -__ilogbw); 31 } 32 long double __denom = __c * __c + __d * __d; 33 Lcomplex z; 34 COMPLEX_REAL(z) = crt_scalbnl((__a * __c + __b * __d) / __denom, -__ilogbw); 35 COMPLEX_IMAGINARY(z) = crt_scalbnl((__b * __c - __a * __d) / __denom, -__ilogbw); 36 if (crt_isnan(COMPLEX_REAL(z)) && crt_isnan(COMPLEX_IMAGINARY(z))) 37 { 38 if ((__denom == 0) && (!crt_isnan(__a) || !crt_isnan(__b))) 39 { 40 COMPLEX_REAL(z) = crt_copysignl(CRT_INFINITY, __c) * __a; 41 COMPLEX_IMAGINARY(z) = crt_copysignl(CRT_INFINITY, __c) * __b; 42 } 43 else if ((crt_isinf(__a) || crt_isinf(__b)) && 44 crt_isfinite(__c) && crt_isfinite(__d)) 45 { 46 __a = crt_copysignl(crt_isinf(__a) ? 1 : 0, __a); 47 __b = crt_copysignl(crt_isinf(__b) ? 1 : 0, __b); 48 COMPLEX_REAL(z) = CRT_INFINITY * (__a * __c + __b * __d); 49 COMPLEX_IMAGINARY(z) = CRT_INFINITY * (__b * __c - __a * __d); 50 } 51 else if (crt_isinf(__logbw) && __logbw > 0 && 52 crt_isfinite(__a) && crt_isfinite(__b)) 53 { 54 __c = crt_copysignl(crt_isinf(__c) ? 1 : 0, __c); 55 __d = crt_copysignl(crt_isinf(__d) ? 1 : 0, __d); 56 COMPLEX_REAL(z) = 0 * (__a * __c + __b * __d); 57 COMPLEX_IMAGINARY(z) = 0 * (__b * __c - __a * __d); 58 } 59 } 60 return z; 61} 62 63#endif 64