1//===-- sanitizer_allocator.h -----------------------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Specialized memory allocator for ThreadSanitizer, MemorySanitizer, etc.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef SANITIZER_ALLOCATOR_H
15#define SANITIZER_ALLOCATOR_H
16
17#include "sanitizer_internal_defs.h"
18#include "sanitizer_common.h"
19#include "sanitizer_libc.h"
20#include "sanitizer_list.h"
21#include "sanitizer_mutex.h"
22#include "sanitizer_lfstack.h"
23
24namespace __sanitizer {
25
26// Prints error message and kills the program.
27void NORETURN ReportAllocatorCannotReturnNull();
28
29// SizeClassMap maps allocation sizes into size classes and back.
30// Class 0 corresponds to size 0.
31// Classes 1 - 16 correspond to sizes 16 to 256 (size = class_id * 16).
32// Next 4 classes: 256 + i * 64  (i = 1 to 4).
33// Next 4 classes: 512 + i * 128 (i = 1 to 4).
34// ...
35// Next 4 classes: 2^k + i * 2^(k-2) (i = 1 to 4).
36// Last class corresponds to kMaxSize = 1 << kMaxSizeLog.
37//
38// This structure of the size class map gives us:
39//   - Efficient table-free class-to-size and size-to-class functions.
40//   - Difference between two consequent size classes is betweed 14% and 25%
41//
42// This class also gives a hint to a thread-caching allocator about the amount
43// of chunks that need to be cached per-thread:
44//  - kMaxNumCached is the maximal number of chunks per size class.
45//  - (1 << kMaxBytesCachedLog) is the maximal number of bytes per size class.
46//
47// Part of output of SizeClassMap::Print():
48// c00 => s: 0 diff: +0 00% l 0 cached: 0 0; id 0
49// c01 => s: 16 diff: +16 00% l 4 cached: 256 4096; id 1
50// c02 => s: 32 diff: +16 100% l 5 cached: 256 8192; id 2
51// c03 => s: 48 diff: +16 50% l 5 cached: 256 12288; id 3
52// c04 => s: 64 diff: +16 33% l 6 cached: 256 16384; id 4
53// c05 => s: 80 diff: +16 25% l 6 cached: 256 20480; id 5
54// c06 => s: 96 diff: +16 20% l 6 cached: 256 24576; id 6
55// c07 => s: 112 diff: +16 16% l 6 cached: 256 28672; id 7
56//
57// c08 => s: 128 diff: +16 14% l 7 cached: 256 32768; id 8
58// c09 => s: 144 diff: +16 12% l 7 cached: 256 36864; id 9
59// c10 => s: 160 diff: +16 11% l 7 cached: 256 40960; id 10
60// c11 => s: 176 diff: +16 10% l 7 cached: 256 45056; id 11
61// c12 => s: 192 diff: +16 09% l 7 cached: 256 49152; id 12
62// c13 => s: 208 diff: +16 08% l 7 cached: 256 53248; id 13
63// c14 => s: 224 diff: +16 07% l 7 cached: 256 57344; id 14
64// c15 => s: 240 diff: +16 07% l 7 cached: 256 61440; id 15
65//
66// c16 => s: 256 diff: +16 06% l 8 cached: 256 65536; id 16
67// c17 => s: 320 diff: +64 25% l 8 cached: 204 65280; id 17
68// c18 => s: 384 diff: +64 20% l 8 cached: 170 65280; id 18
69// c19 => s: 448 diff: +64 16% l 8 cached: 146 65408; id 19
70//
71// c20 => s: 512 diff: +64 14% l 9 cached: 128 65536; id 20
72// c21 => s: 640 diff: +128 25% l 9 cached: 102 65280; id 21
73// c22 => s: 768 diff: +128 20% l 9 cached: 85 65280; id 22
74// c23 => s: 896 diff: +128 16% l 9 cached: 73 65408; id 23
75//
76// c24 => s: 1024 diff: +128 14% l 10 cached: 64 65536; id 24
77// c25 => s: 1280 diff: +256 25% l 10 cached: 51 65280; id 25
78// c26 => s: 1536 diff: +256 20% l 10 cached: 42 64512; id 26
79// c27 => s: 1792 diff: +256 16% l 10 cached: 36 64512; id 27
80//
81// ...
82//
83// c48 => s: 65536 diff: +8192 14% l 16 cached: 1 65536; id 48
84// c49 => s: 81920 diff: +16384 25% l 16 cached: 1 81920; id 49
85// c50 => s: 98304 diff: +16384 20% l 16 cached: 1 98304; id 50
86// c51 => s: 114688 diff: +16384 16% l 16 cached: 1 114688; id 51
87//
88// c52 => s: 131072 diff: +16384 14% l 17 cached: 1 131072; id 52
89
90template <uptr kMaxSizeLog, uptr kMaxNumCachedT, uptr kMaxBytesCachedLog>
91class SizeClassMap {
92  static const uptr kMinSizeLog = 4;
93  static const uptr kMidSizeLog = kMinSizeLog + 4;
94  static const uptr kMinSize = 1 << kMinSizeLog;
95  static const uptr kMidSize = 1 << kMidSizeLog;
96  static const uptr kMidClass = kMidSize / kMinSize;
97  static const uptr S = 2;
98  static const uptr M = (1 << S) - 1;
99
100 public:
101  static const uptr kMaxNumCached = kMaxNumCachedT;
102  // We transfer chunks between central and thread-local free lists in batches.
103  // For small size classes we allocate batches separately.
104  // For large size classes we use one of the chunks to store the batch.
105  struct TransferBatch {
106    TransferBatch *next;
107    uptr count;
108    void *batch[kMaxNumCached];
109  };
110
111  static const uptr kMaxSize = 1UL << kMaxSizeLog;
112  static const uptr kNumClasses =
113      kMidClass + ((kMaxSizeLog - kMidSizeLog) << S) + 1;
114  COMPILER_CHECK(kNumClasses >= 32 && kNumClasses <= 256);
115  static const uptr kNumClassesRounded =
116      kNumClasses == 32  ? 32 :
117      kNumClasses <= 64  ? 64 :
118      kNumClasses <= 128 ? 128 : 256;
119
120  static uptr Size(uptr class_id) {
121    if (class_id <= kMidClass)
122      return kMinSize * class_id;
123    class_id -= kMidClass;
124    uptr t = kMidSize << (class_id >> S);
125    return t + (t >> S) * (class_id & M);
126  }
127
128  static uptr ClassID(uptr size) {
129    if (size <= kMidSize)
130      return (size + kMinSize - 1) >> kMinSizeLog;
131    if (size > kMaxSize) return 0;
132    uptr l = MostSignificantSetBitIndex(size);
133    uptr hbits = (size >> (l - S)) & M;
134    uptr lbits = size & ((1 << (l - S)) - 1);
135    uptr l1 = l - kMidSizeLog;
136    return kMidClass + (l1 << S) + hbits + (lbits > 0);
137  }
138
139  static uptr MaxCached(uptr class_id) {
140    if (class_id == 0) return 0;
141    uptr n = (1UL << kMaxBytesCachedLog) / Size(class_id);
142    return Max<uptr>(1, Min(kMaxNumCached, n));
143  }
144
145  static void Print() {
146    uptr prev_s = 0;
147    uptr total_cached = 0;
148    for (uptr i = 0; i < kNumClasses; i++) {
149      uptr s = Size(i);
150      if (s >= kMidSize / 2 && (s & (s - 1)) == 0)
151        Printf("\n");
152      uptr d = s - prev_s;
153      uptr p = prev_s ? (d * 100 / prev_s) : 0;
154      uptr l = s ? MostSignificantSetBitIndex(s) : 0;
155      uptr cached = MaxCached(i) * s;
156      Printf("c%02zd => s: %zd diff: +%zd %02zd%% l %zd "
157             "cached: %zd %zd; id %zd\n",
158             i, Size(i), d, p, l, MaxCached(i), cached, ClassID(s));
159      total_cached += cached;
160      prev_s = s;
161    }
162    Printf("Total cached: %zd\n", total_cached);
163  }
164
165  static bool SizeClassRequiresSeparateTransferBatch(uptr class_id) {
166    return Size(class_id) < sizeof(TransferBatch) -
167        sizeof(uptr) * (kMaxNumCached - MaxCached(class_id));
168  }
169
170  static void Validate() {
171    for (uptr c = 1; c < kNumClasses; c++) {
172      // Printf("Validate: c%zd\n", c);
173      uptr s = Size(c);
174      CHECK_NE(s, 0U);
175      CHECK_EQ(ClassID(s), c);
176      if (c != kNumClasses - 1)
177        CHECK_EQ(ClassID(s + 1), c + 1);
178      CHECK_EQ(ClassID(s - 1), c);
179      if (c)
180        CHECK_GT(Size(c), Size(c-1));
181    }
182    CHECK_EQ(ClassID(kMaxSize + 1), 0);
183
184    for (uptr s = 1; s <= kMaxSize; s++) {
185      uptr c = ClassID(s);
186      // Printf("s%zd => c%zd\n", s, c);
187      CHECK_LT(c, kNumClasses);
188      CHECK_GE(Size(c), s);
189      if (c > 0)
190        CHECK_LT(Size(c-1), s);
191    }
192  }
193};
194
195typedef SizeClassMap<17, 128, 16> DefaultSizeClassMap;
196typedef SizeClassMap<17, 64,  14> CompactSizeClassMap;
197template<class SizeClassAllocator> struct SizeClassAllocatorLocalCache;
198
199// Memory allocator statistics
200enum AllocatorStat {
201  AllocatorStatAllocated,
202  AllocatorStatMapped,
203  AllocatorStatCount
204};
205
206typedef uptr AllocatorStatCounters[AllocatorStatCount];
207
208// Per-thread stats, live in per-thread cache.
209class AllocatorStats {
210 public:
211  void Init() {
212    internal_memset(this, 0, sizeof(*this));
213  }
214  void InitLinkerInitialized() {}
215
216  void Add(AllocatorStat i, uptr v) {
217    v += atomic_load(&stats_[i], memory_order_relaxed);
218    atomic_store(&stats_[i], v, memory_order_relaxed);
219  }
220
221  void Sub(AllocatorStat i, uptr v) {
222    v = atomic_load(&stats_[i], memory_order_relaxed) - v;
223    atomic_store(&stats_[i], v, memory_order_relaxed);
224  }
225
226  void Set(AllocatorStat i, uptr v) {
227    atomic_store(&stats_[i], v, memory_order_relaxed);
228  }
229
230  uptr Get(AllocatorStat i) const {
231    return atomic_load(&stats_[i], memory_order_relaxed);
232  }
233
234 private:
235  friend class AllocatorGlobalStats;
236  AllocatorStats *next_;
237  AllocatorStats *prev_;
238  atomic_uintptr_t stats_[AllocatorStatCount];
239};
240
241// Global stats, used for aggregation and querying.
242class AllocatorGlobalStats : public AllocatorStats {
243 public:
244  void InitLinkerInitialized() {
245    next_ = this;
246    prev_ = this;
247  }
248  void Init() {
249    internal_memset(this, 0, sizeof(*this));
250    InitLinkerInitialized();
251  }
252
253  void Register(AllocatorStats *s) {
254    SpinMutexLock l(&mu_);
255    s->next_ = next_;
256    s->prev_ = this;
257    next_->prev_ = s;
258    next_ = s;
259  }
260
261  void Unregister(AllocatorStats *s) {
262    SpinMutexLock l(&mu_);
263    s->prev_->next_ = s->next_;
264    s->next_->prev_ = s->prev_;
265    for (int i = 0; i < AllocatorStatCount; i++)
266      Add(AllocatorStat(i), s->Get(AllocatorStat(i)));
267  }
268
269  void Get(AllocatorStatCounters s) const {
270    internal_memset(s, 0, AllocatorStatCount * sizeof(uptr));
271    SpinMutexLock l(&mu_);
272    const AllocatorStats *stats = this;
273    for (;;) {
274      for (int i = 0; i < AllocatorStatCount; i++)
275        s[i] += stats->Get(AllocatorStat(i));
276      stats = stats->next_;
277      if (stats == this)
278        break;
279    }
280    // All stats must be non-negative.
281    for (int i = 0; i < AllocatorStatCount; i++)
282      s[i] = ((sptr)s[i]) >= 0 ? s[i] : 0;
283  }
284
285 private:
286  mutable SpinMutex mu_;
287};
288
289// Allocators call these callbacks on mmap/munmap.
290struct NoOpMapUnmapCallback {
291  void OnMap(uptr p, uptr size) const { }
292  void OnUnmap(uptr p, uptr size) const { }
293};
294
295// Callback type for iterating over chunks.
296typedef void (*ForEachChunkCallback)(uptr chunk, void *arg);
297
298// SizeClassAllocator64 -- allocator for 64-bit address space.
299//
300// Space: a portion of address space of kSpaceSize bytes starting at SpaceBeg.
301// If kSpaceBeg is ~0 then SpaceBeg is chosen dynamically my mmap.
302// Otherwise SpaceBeg=kSpaceBeg (fixed address).
303// kSpaceSize is a power of two.
304// At the beginning the entire space is mprotect-ed, then small parts of it
305// are mapped on demand.
306//
307// Region: a part of Space dedicated to a single size class.
308// There are kNumClasses Regions of equal size.
309//
310// UserChunk: a piece of memory returned to user.
311// MetaChunk: kMetadataSize bytes of metadata associated with a UserChunk.
312//
313// A Region looks like this:
314// UserChunk1 ... UserChunkN <gap> MetaChunkN ... MetaChunk1
315template <const uptr kSpaceBeg, const uptr kSpaceSize,
316          const uptr kMetadataSize, class SizeClassMap,
317          class MapUnmapCallback = NoOpMapUnmapCallback>
318class SizeClassAllocator64 {
319 public:
320  typedef typename SizeClassMap::TransferBatch Batch;
321  typedef SizeClassAllocator64<kSpaceBeg, kSpaceSize, kMetadataSize,
322      SizeClassMap, MapUnmapCallback> ThisT;
323  typedef SizeClassAllocatorLocalCache<ThisT> AllocatorCache;
324
325  void Init() {
326    uptr TotalSpaceSize = kSpaceSize + AdditionalSize();
327    if (kUsingConstantSpaceBeg) {
328      CHECK_EQ(kSpaceBeg, reinterpret_cast<uptr>(
329                              MmapFixedNoAccess(kSpaceBeg, TotalSpaceSize)));
330    } else {
331      NonConstSpaceBeg =
332          reinterpret_cast<uptr>(MmapNoAccess(TotalSpaceSize));
333      CHECK_NE(NonConstSpaceBeg, ~(uptr)0);
334    }
335    MapWithCallback(SpaceEnd(), AdditionalSize());
336  }
337
338  void MapWithCallback(uptr beg, uptr size) {
339    CHECK_EQ(beg, reinterpret_cast<uptr>(MmapFixedOrDie(beg, size)));
340    MapUnmapCallback().OnMap(beg, size);
341  }
342
343  void UnmapWithCallback(uptr beg, uptr size) {
344    MapUnmapCallback().OnUnmap(beg, size);
345    UnmapOrDie(reinterpret_cast<void *>(beg), size);
346  }
347
348  static bool CanAllocate(uptr size, uptr alignment) {
349    return size <= SizeClassMap::kMaxSize &&
350      alignment <= SizeClassMap::kMaxSize;
351  }
352
353  NOINLINE Batch* AllocateBatch(AllocatorStats *stat, AllocatorCache *c,
354                                uptr class_id) {
355    CHECK_LT(class_id, kNumClasses);
356    RegionInfo *region = GetRegionInfo(class_id);
357    Batch *b = region->free_list.Pop();
358    if (!b)
359      b = PopulateFreeList(stat, c, class_id, region);
360    region->n_allocated += b->count;
361    return b;
362  }
363
364  NOINLINE void DeallocateBatch(AllocatorStats *stat, uptr class_id, Batch *b) {
365    RegionInfo *region = GetRegionInfo(class_id);
366    CHECK_GT(b->count, 0);
367    region->free_list.Push(b);
368    region->n_freed += b->count;
369  }
370
371  bool PointerIsMine(const void *p) {
372    uptr P = reinterpret_cast<uptr>(p);
373    if (kUsingConstantSpaceBeg && (kSpaceBeg % kSpaceSize) == 0)
374      return P / kSpaceSize == kSpaceBeg / kSpaceSize;
375    return P >= SpaceBeg() && P < SpaceEnd();
376  }
377
378  uptr GetSizeClass(const void *p) {
379    if (kUsingConstantSpaceBeg && (kSpaceBeg % kSpaceSize) == 0)
380      return ((reinterpret_cast<uptr>(p)) / kRegionSize) % kNumClassesRounded;
381    return ((reinterpret_cast<uptr>(p) - SpaceBeg()) / kRegionSize) %
382           kNumClassesRounded;
383  }
384
385  void *GetBlockBegin(const void *p) {
386    uptr class_id = GetSizeClass(p);
387    uptr size = SizeClassMap::Size(class_id);
388    if (!size) return nullptr;
389    uptr chunk_idx = GetChunkIdx((uptr)p, size);
390    uptr reg_beg = (uptr)p & ~(kRegionSize - 1);
391    uptr beg = chunk_idx * size;
392    uptr next_beg = beg + size;
393    if (class_id >= kNumClasses) return nullptr;
394    RegionInfo *region = GetRegionInfo(class_id);
395    if (region->mapped_user >= next_beg)
396      return reinterpret_cast<void*>(reg_beg + beg);
397    return nullptr;
398  }
399
400  uptr GetActuallyAllocatedSize(void *p) {
401    CHECK(PointerIsMine(p));
402    return SizeClassMap::Size(GetSizeClass(p));
403  }
404
405  uptr ClassID(uptr size) { return SizeClassMap::ClassID(size); }
406
407  void *GetMetaData(const void *p) {
408    uptr class_id = GetSizeClass(p);
409    uptr size = SizeClassMap::Size(class_id);
410    uptr chunk_idx = GetChunkIdx(reinterpret_cast<uptr>(p), size);
411    return reinterpret_cast<void *>(SpaceBeg() +
412                                    (kRegionSize * (class_id + 1)) -
413                                    (1 + chunk_idx) * kMetadataSize);
414  }
415
416  uptr TotalMemoryUsed() {
417    uptr res = 0;
418    for (uptr i = 0; i < kNumClasses; i++)
419      res += GetRegionInfo(i)->allocated_user;
420    return res;
421  }
422
423  // Test-only.
424  void TestOnlyUnmap() {
425    UnmapWithCallback(SpaceBeg(), kSpaceSize + AdditionalSize());
426  }
427
428  void PrintStats() {
429    uptr total_mapped = 0;
430    uptr n_allocated = 0;
431    uptr n_freed = 0;
432    for (uptr class_id = 1; class_id < kNumClasses; class_id++) {
433      RegionInfo *region = GetRegionInfo(class_id);
434      total_mapped += region->mapped_user;
435      n_allocated += region->n_allocated;
436      n_freed += region->n_freed;
437    }
438    Printf("Stats: SizeClassAllocator64: %zdM mapped in %zd allocations; "
439           "remains %zd\n",
440           total_mapped >> 20, n_allocated, n_allocated - n_freed);
441    for (uptr class_id = 1; class_id < kNumClasses; class_id++) {
442      RegionInfo *region = GetRegionInfo(class_id);
443      if (region->mapped_user == 0) continue;
444      Printf("  %02zd (%zd): total: %zd K allocs: %zd remains: %zd\n",
445             class_id,
446             SizeClassMap::Size(class_id),
447             region->mapped_user >> 10,
448             region->n_allocated,
449             region->n_allocated - region->n_freed);
450    }
451  }
452
453  // ForceLock() and ForceUnlock() are needed to implement Darwin malloc zone
454  // introspection API.
455  void ForceLock() {
456    for (uptr i = 0; i < kNumClasses; i++) {
457      GetRegionInfo(i)->mutex.Lock();
458    }
459  }
460
461  void ForceUnlock() {
462    for (int i = (int)kNumClasses - 1; i >= 0; i--) {
463      GetRegionInfo(i)->mutex.Unlock();
464    }
465  }
466
467  // Iterate over all existing chunks.
468  // The allocator must be locked when calling this function.
469  void ForEachChunk(ForEachChunkCallback callback, void *arg) {
470    for (uptr class_id = 1; class_id < kNumClasses; class_id++) {
471      RegionInfo *region = GetRegionInfo(class_id);
472      uptr chunk_size = SizeClassMap::Size(class_id);
473      uptr region_beg = SpaceBeg() + class_id * kRegionSize;
474      for (uptr chunk = region_beg;
475           chunk < region_beg + region->allocated_user;
476           chunk += chunk_size) {
477        // Too slow: CHECK_EQ((void *)chunk, GetBlockBegin((void *)chunk));
478        callback(chunk, arg);
479      }
480    }
481  }
482
483  static uptr AdditionalSize() {
484    return RoundUpTo(sizeof(RegionInfo) * kNumClassesRounded,
485                     GetPageSizeCached());
486  }
487
488  typedef SizeClassMap SizeClassMapT;
489  static const uptr kNumClasses = SizeClassMap::kNumClasses;
490  static const uptr kNumClassesRounded = SizeClassMap::kNumClassesRounded;
491
492 private:
493  static const uptr kRegionSize = kSpaceSize / kNumClassesRounded;
494
495  static const bool kUsingConstantSpaceBeg = kSpaceBeg != ~(uptr)0;
496  uptr NonConstSpaceBeg;
497  uptr SpaceBeg() const {
498    return kUsingConstantSpaceBeg ? kSpaceBeg : NonConstSpaceBeg;
499  }
500  uptr SpaceEnd() const { return  SpaceBeg() + kSpaceSize; }
501  // kRegionSize must be >= 2^32.
502  COMPILER_CHECK((kRegionSize) >= (1ULL << (SANITIZER_WORDSIZE / 2)));
503  // Populate the free list with at most this number of bytes at once
504  // or with one element if its size is greater.
505  static const uptr kPopulateSize = 1 << 14;
506  // Call mmap for user memory with at least this size.
507  static const uptr kUserMapSize = 1 << 16;
508  // Call mmap for metadata memory with at least this size.
509  static const uptr kMetaMapSize = 1 << 16;
510
511  struct RegionInfo {
512    BlockingMutex mutex;
513    LFStack<Batch> free_list;
514    uptr allocated_user;  // Bytes allocated for user memory.
515    uptr allocated_meta;  // Bytes allocated for metadata.
516    uptr mapped_user;  // Bytes mapped for user memory.
517    uptr mapped_meta;  // Bytes mapped for metadata.
518    uptr n_allocated, n_freed;  // Just stats.
519  };
520  COMPILER_CHECK(sizeof(RegionInfo) >= kCacheLineSize);
521
522  RegionInfo *GetRegionInfo(uptr class_id) {
523    CHECK_LT(class_id, kNumClasses);
524    RegionInfo *regions =
525        reinterpret_cast<RegionInfo *>(SpaceBeg() + kSpaceSize);
526    return &regions[class_id];
527  }
528
529  static uptr GetChunkIdx(uptr chunk, uptr size) {
530    uptr offset = chunk % kRegionSize;
531    // Here we divide by a non-constant. This is costly.
532    // size always fits into 32-bits. If the offset fits too, use 32-bit div.
533    if (offset >> (SANITIZER_WORDSIZE / 2))
534      return offset / size;
535    return (u32)offset / (u32)size;
536  }
537
538  NOINLINE Batch* PopulateFreeList(AllocatorStats *stat, AllocatorCache *c,
539                                   uptr class_id, RegionInfo *region) {
540    BlockingMutexLock l(&region->mutex);
541    Batch *b = region->free_list.Pop();
542    if (b)
543      return b;
544    uptr size = SizeClassMap::Size(class_id);
545    uptr count = size < kPopulateSize ? SizeClassMap::MaxCached(class_id) : 1;
546    uptr beg_idx = region->allocated_user;
547    uptr end_idx = beg_idx + count * size;
548    uptr region_beg = SpaceBeg() + kRegionSize * class_id;
549    if (end_idx + size > region->mapped_user) {
550      // Do the mmap for the user memory.
551      uptr map_size = kUserMapSize;
552      while (end_idx + size > region->mapped_user + map_size)
553        map_size += kUserMapSize;
554      CHECK_GE(region->mapped_user + map_size, end_idx);
555      MapWithCallback(region_beg + region->mapped_user, map_size);
556      stat->Add(AllocatorStatMapped, map_size);
557      region->mapped_user += map_size;
558    }
559    uptr total_count = (region->mapped_user - beg_idx - size)
560        / size / count * count;
561    region->allocated_meta += total_count * kMetadataSize;
562    if (region->allocated_meta > region->mapped_meta) {
563      uptr map_size = kMetaMapSize;
564      while (region->allocated_meta > region->mapped_meta + map_size)
565        map_size += kMetaMapSize;
566      // Do the mmap for the metadata.
567      CHECK_GE(region->mapped_meta + map_size, region->allocated_meta);
568      MapWithCallback(region_beg + kRegionSize -
569                      region->mapped_meta - map_size, map_size);
570      region->mapped_meta += map_size;
571    }
572    CHECK_LE(region->allocated_meta, region->mapped_meta);
573    if (region->mapped_user + region->mapped_meta > kRegionSize) {
574      Printf("%s: Out of memory. Dying. ", SanitizerToolName);
575      Printf("The process has exhausted %zuMB for size class %zu.\n",
576          kRegionSize / 1024 / 1024, size);
577      Die();
578    }
579    for (;;) {
580      if (SizeClassMap::SizeClassRequiresSeparateTransferBatch(class_id))
581        b = (Batch*)c->Allocate(this, SizeClassMap::ClassID(sizeof(Batch)));
582      else
583        b = (Batch*)(region_beg + beg_idx);
584      b->count = count;
585      for (uptr i = 0; i < count; i++)
586        b->batch[i] = (void*)(region_beg + beg_idx + i * size);
587      region->allocated_user += count * size;
588      CHECK_LE(region->allocated_user, region->mapped_user);
589      beg_idx += count * size;
590      if (beg_idx + count * size + size > region->mapped_user)
591        break;
592      CHECK_GT(b->count, 0);
593      region->free_list.Push(b);
594    }
595    return b;
596  }
597};
598
599// Maps integers in rage [0, kSize) to u8 values.
600template<u64 kSize>
601class FlatByteMap {
602 public:
603  void TestOnlyInit() {
604    internal_memset(map_, 0, sizeof(map_));
605  }
606
607  void set(uptr idx, u8 val) {
608    CHECK_LT(idx, kSize);
609    CHECK_EQ(0U, map_[idx]);
610    map_[idx] = val;
611  }
612  u8 operator[] (uptr idx) {
613    CHECK_LT(idx, kSize);
614    // FIXME: CHECK may be too expensive here.
615    return map_[idx];
616  }
617 private:
618  u8 map_[kSize];
619};
620
621// TwoLevelByteMap maps integers in range [0, kSize1*kSize2) to u8 values.
622// It is implemented as a two-dimensional array: array of kSize1 pointers
623// to kSize2-byte arrays. The secondary arrays are mmaped on demand.
624// Each value is initially zero and can be set to something else only once.
625// Setting and getting values from multiple threads is safe w/o extra locking.
626template <u64 kSize1, u64 kSize2, class MapUnmapCallback = NoOpMapUnmapCallback>
627class TwoLevelByteMap {
628 public:
629  void TestOnlyInit() {
630    internal_memset(map1_, 0, sizeof(map1_));
631    mu_.Init();
632  }
633
634  void TestOnlyUnmap() {
635    for (uptr i = 0; i < kSize1; i++) {
636      u8 *p = Get(i);
637      if (!p) continue;
638      MapUnmapCallback().OnUnmap(reinterpret_cast<uptr>(p), kSize2);
639      UnmapOrDie(p, kSize2);
640    }
641  }
642
643  uptr size() const { return kSize1 * kSize2; }
644  uptr size1() const { return kSize1; }
645  uptr size2() const { return kSize2; }
646
647  void set(uptr idx, u8 val) {
648    CHECK_LT(idx, kSize1 * kSize2);
649    u8 *map2 = GetOrCreate(idx / kSize2);
650    CHECK_EQ(0U, map2[idx % kSize2]);
651    map2[idx % kSize2] = val;
652  }
653
654  u8 operator[] (uptr idx) const {
655    CHECK_LT(idx, kSize1 * kSize2);
656    u8 *map2 = Get(idx / kSize2);
657    if (!map2) return 0;
658    return map2[idx % kSize2];
659  }
660
661 private:
662  u8 *Get(uptr idx) const {
663    CHECK_LT(idx, kSize1);
664    return reinterpret_cast<u8 *>(
665        atomic_load(&map1_[idx], memory_order_acquire));
666  }
667
668  u8 *GetOrCreate(uptr idx) {
669    u8 *res = Get(idx);
670    if (!res) {
671      SpinMutexLock l(&mu_);
672      if (!(res = Get(idx))) {
673        res = (u8*)MmapOrDie(kSize2, "TwoLevelByteMap");
674        MapUnmapCallback().OnMap(reinterpret_cast<uptr>(res), kSize2);
675        atomic_store(&map1_[idx], reinterpret_cast<uptr>(res),
676                     memory_order_release);
677      }
678    }
679    return res;
680  }
681
682  atomic_uintptr_t map1_[kSize1];
683  StaticSpinMutex mu_;
684};
685
686// SizeClassAllocator32 -- allocator for 32-bit address space.
687// This allocator can theoretically be used on 64-bit arch, but there it is less
688// efficient than SizeClassAllocator64.
689//
690// [kSpaceBeg, kSpaceBeg + kSpaceSize) is the range of addresses which can
691// be returned by MmapOrDie().
692//
693// Region:
694//   a result of a single call to MmapAlignedOrDie(kRegionSize, kRegionSize).
695// Since the regions are aligned by kRegionSize, there are exactly
696// kNumPossibleRegions possible regions in the address space and so we keep
697// a ByteMap possible_regions to store the size classes of each Region.
698// 0 size class means the region is not used by the allocator.
699//
700// One Region is used to allocate chunks of a single size class.
701// A Region looks like this:
702// UserChunk1 .. UserChunkN <gap> MetaChunkN .. MetaChunk1
703//
704// In order to avoid false sharing the objects of this class should be
705// chache-line aligned.
706template <const uptr kSpaceBeg, const u64 kSpaceSize,
707          const uptr kMetadataSize, class SizeClassMap,
708          const uptr kRegionSizeLog,
709          class ByteMap,
710          class MapUnmapCallback = NoOpMapUnmapCallback>
711class SizeClassAllocator32 {
712 public:
713  typedef typename SizeClassMap::TransferBatch Batch;
714  typedef SizeClassAllocator32<kSpaceBeg, kSpaceSize, kMetadataSize,
715      SizeClassMap, kRegionSizeLog, ByteMap, MapUnmapCallback> ThisT;
716  typedef SizeClassAllocatorLocalCache<ThisT> AllocatorCache;
717
718  void Init() {
719    possible_regions.TestOnlyInit();
720    internal_memset(size_class_info_array, 0, sizeof(size_class_info_array));
721  }
722
723  void *MapWithCallback(uptr size) {
724    size = RoundUpTo(size, GetPageSizeCached());
725    void *res = MmapOrDie(size, "SizeClassAllocator32");
726    MapUnmapCallback().OnMap((uptr)res, size);
727    return res;
728  }
729
730  void UnmapWithCallback(uptr beg, uptr size) {
731    MapUnmapCallback().OnUnmap(beg, size);
732    UnmapOrDie(reinterpret_cast<void *>(beg), size);
733  }
734
735  static bool CanAllocate(uptr size, uptr alignment) {
736    return size <= SizeClassMap::kMaxSize &&
737      alignment <= SizeClassMap::kMaxSize;
738  }
739
740  void *GetMetaData(const void *p) {
741    CHECK(PointerIsMine(p));
742    uptr mem = reinterpret_cast<uptr>(p);
743    uptr beg = ComputeRegionBeg(mem);
744    uptr size = SizeClassMap::Size(GetSizeClass(p));
745    u32 offset = mem - beg;
746    uptr n = offset / (u32)size;  // 32-bit division
747    uptr meta = (beg + kRegionSize) - (n + 1) * kMetadataSize;
748    return reinterpret_cast<void*>(meta);
749  }
750
751  NOINLINE Batch* AllocateBatch(AllocatorStats *stat, AllocatorCache *c,
752                                uptr class_id) {
753    CHECK_LT(class_id, kNumClasses);
754    SizeClassInfo *sci = GetSizeClassInfo(class_id);
755    SpinMutexLock l(&sci->mutex);
756    if (sci->free_list.empty())
757      PopulateFreeList(stat, c, sci, class_id);
758    CHECK(!sci->free_list.empty());
759    Batch *b = sci->free_list.front();
760    sci->free_list.pop_front();
761    return b;
762  }
763
764  NOINLINE void DeallocateBatch(AllocatorStats *stat, uptr class_id, Batch *b) {
765    CHECK_LT(class_id, kNumClasses);
766    SizeClassInfo *sci = GetSizeClassInfo(class_id);
767    SpinMutexLock l(&sci->mutex);
768    CHECK_GT(b->count, 0);
769    sci->free_list.push_front(b);
770  }
771
772  bool PointerIsMine(const void *p) {
773    uptr mem = reinterpret_cast<uptr>(p);
774    if (mem < kSpaceBeg || mem >= kSpaceBeg + kSpaceSize)
775      return false;
776    return GetSizeClass(p) != 0;
777  }
778
779  uptr GetSizeClass(const void *p) {
780    return possible_regions[ComputeRegionId(reinterpret_cast<uptr>(p))];
781  }
782
783  void *GetBlockBegin(const void *p) {
784    CHECK(PointerIsMine(p));
785    uptr mem = reinterpret_cast<uptr>(p);
786    uptr beg = ComputeRegionBeg(mem);
787    uptr size = SizeClassMap::Size(GetSizeClass(p));
788    u32 offset = mem - beg;
789    u32 n = offset / (u32)size;  // 32-bit division
790    uptr res = beg + (n * (u32)size);
791    return reinterpret_cast<void*>(res);
792  }
793
794  uptr GetActuallyAllocatedSize(void *p) {
795    CHECK(PointerIsMine(p));
796    return SizeClassMap::Size(GetSizeClass(p));
797  }
798
799  uptr ClassID(uptr size) { return SizeClassMap::ClassID(size); }
800
801  uptr TotalMemoryUsed() {
802    // No need to lock here.
803    uptr res = 0;
804    for (uptr i = 0; i < kNumPossibleRegions; i++)
805      if (possible_regions[i])
806        res += kRegionSize;
807    return res;
808  }
809
810  void TestOnlyUnmap() {
811    for (uptr i = 0; i < kNumPossibleRegions; i++)
812      if (possible_regions[i])
813        UnmapWithCallback((i * kRegionSize), kRegionSize);
814  }
815
816  // ForceLock() and ForceUnlock() are needed to implement Darwin malloc zone
817  // introspection API.
818  void ForceLock() {
819    for (uptr i = 0; i < kNumClasses; i++) {
820      GetSizeClassInfo(i)->mutex.Lock();
821    }
822  }
823
824  void ForceUnlock() {
825    for (int i = kNumClasses - 1; i >= 0; i--) {
826      GetSizeClassInfo(i)->mutex.Unlock();
827    }
828  }
829
830  // Iterate over all existing chunks.
831  // The allocator must be locked when calling this function.
832  void ForEachChunk(ForEachChunkCallback callback, void *arg) {
833    for (uptr region = 0; region < kNumPossibleRegions; region++)
834      if (possible_regions[region]) {
835        uptr chunk_size = SizeClassMap::Size(possible_regions[region]);
836        uptr max_chunks_in_region = kRegionSize / (chunk_size + kMetadataSize);
837        uptr region_beg = region * kRegionSize;
838        for (uptr chunk = region_beg;
839             chunk < region_beg + max_chunks_in_region * chunk_size;
840             chunk += chunk_size) {
841          // Too slow: CHECK_EQ((void *)chunk, GetBlockBegin((void *)chunk));
842          callback(chunk, arg);
843        }
844      }
845  }
846
847  void PrintStats() {
848  }
849
850  static uptr AdditionalSize() {
851    return 0;
852  }
853
854  typedef SizeClassMap SizeClassMapT;
855  static const uptr kNumClasses = SizeClassMap::kNumClasses;
856
857 private:
858  static const uptr kRegionSize = 1 << kRegionSizeLog;
859  static const uptr kNumPossibleRegions = kSpaceSize / kRegionSize;
860
861  struct SizeClassInfo {
862    SpinMutex mutex;
863    IntrusiveList<Batch> free_list;
864    char padding[kCacheLineSize - sizeof(uptr) - sizeof(IntrusiveList<Batch>)];
865  };
866  COMPILER_CHECK(sizeof(SizeClassInfo) == kCacheLineSize);
867
868  uptr ComputeRegionId(uptr mem) {
869    uptr res = mem >> kRegionSizeLog;
870    CHECK_LT(res, kNumPossibleRegions);
871    return res;
872  }
873
874  uptr ComputeRegionBeg(uptr mem) {
875    return mem & ~(kRegionSize - 1);
876  }
877
878  uptr AllocateRegion(AllocatorStats *stat, uptr class_id) {
879    CHECK_LT(class_id, kNumClasses);
880    uptr res = reinterpret_cast<uptr>(MmapAlignedOrDie(kRegionSize, kRegionSize,
881                                      "SizeClassAllocator32"));
882    MapUnmapCallback().OnMap(res, kRegionSize);
883    stat->Add(AllocatorStatMapped, kRegionSize);
884    CHECK_EQ(0U, (res & (kRegionSize - 1)));
885    possible_regions.set(ComputeRegionId(res), static_cast<u8>(class_id));
886    return res;
887  }
888
889  SizeClassInfo *GetSizeClassInfo(uptr class_id) {
890    CHECK_LT(class_id, kNumClasses);
891    return &size_class_info_array[class_id];
892  }
893
894  void PopulateFreeList(AllocatorStats *stat, AllocatorCache *c,
895                        SizeClassInfo *sci, uptr class_id) {
896    uptr size = SizeClassMap::Size(class_id);
897    uptr reg = AllocateRegion(stat, class_id);
898    uptr n_chunks = kRegionSize / (size + kMetadataSize);
899    uptr max_count = SizeClassMap::MaxCached(class_id);
900    Batch *b = nullptr;
901    for (uptr i = reg; i < reg + n_chunks * size; i += size) {
902      if (!b) {
903        if (SizeClassMap::SizeClassRequiresSeparateTransferBatch(class_id))
904          b = (Batch*)c->Allocate(this, SizeClassMap::ClassID(sizeof(Batch)));
905        else
906          b = (Batch*)i;
907        b->count = 0;
908      }
909      b->batch[b->count++] = (void*)i;
910      if (b->count == max_count) {
911        CHECK_GT(b->count, 0);
912        sci->free_list.push_back(b);
913        b = nullptr;
914      }
915    }
916    if (b) {
917      CHECK_GT(b->count, 0);
918      sci->free_list.push_back(b);
919    }
920  }
921
922  ByteMap possible_regions;
923  SizeClassInfo size_class_info_array[kNumClasses];
924};
925
926// Objects of this type should be used as local caches for SizeClassAllocator64
927// or SizeClassAllocator32. Since the typical use of this class is to have one
928// object per thread in TLS, is has to be POD.
929template<class SizeClassAllocator>
930struct SizeClassAllocatorLocalCache {
931  typedef SizeClassAllocator Allocator;
932  static const uptr kNumClasses = SizeClassAllocator::kNumClasses;
933
934  void Init(AllocatorGlobalStats *s) {
935    stats_.Init();
936    if (s)
937      s->Register(&stats_);
938  }
939
940  void Destroy(SizeClassAllocator *allocator, AllocatorGlobalStats *s) {
941    Drain(allocator);
942    if (s)
943      s->Unregister(&stats_);
944  }
945
946  void *Allocate(SizeClassAllocator *allocator, uptr class_id) {
947    CHECK_NE(class_id, 0UL);
948    CHECK_LT(class_id, kNumClasses);
949    stats_.Add(AllocatorStatAllocated, SizeClassMap::Size(class_id));
950    PerClass *c = &per_class_[class_id];
951    if (UNLIKELY(c->count == 0))
952      Refill(allocator, class_id);
953    void *res = c->batch[--c->count];
954    PREFETCH(c->batch[c->count - 1]);
955    return res;
956  }
957
958  void Deallocate(SizeClassAllocator *allocator, uptr class_id, void *p) {
959    CHECK_NE(class_id, 0UL);
960    CHECK_LT(class_id, kNumClasses);
961    // If the first allocator call on a new thread is a deallocation, then
962    // max_count will be zero, leading to check failure.
963    InitCache();
964    stats_.Sub(AllocatorStatAllocated, SizeClassMap::Size(class_id));
965    PerClass *c = &per_class_[class_id];
966    CHECK_NE(c->max_count, 0UL);
967    if (UNLIKELY(c->count == c->max_count))
968      Drain(allocator, class_id);
969    c->batch[c->count++] = p;
970  }
971
972  void Drain(SizeClassAllocator *allocator) {
973    for (uptr class_id = 0; class_id < kNumClasses; class_id++) {
974      PerClass *c = &per_class_[class_id];
975      while (c->count > 0)
976        Drain(allocator, class_id);
977    }
978  }
979
980  // private:
981  typedef typename SizeClassAllocator::SizeClassMapT SizeClassMap;
982  typedef typename SizeClassMap::TransferBatch Batch;
983  struct PerClass {
984    uptr count;
985    uptr max_count;
986    void *batch[2 * SizeClassMap::kMaxNumCached];
987  };
988  PerClass per_class_[kNumClasses];
989  AllocatorStats stats_;
990
991  void InitCache() {
992    if (per_class_[1].max_count)
993      return;
994    for (uptr i = 0; i < kNumClasses; i++) {
995      PerClass *c = &per_class_[i];
996      c->max_count = 2 * SizeClassMap::MaxCached(i);
997    }
998  }
999
1000  NOINLINE void Refill(SizeClassAllocator *allocator, uptr class_id) {
1001    InitCache();
1002    PerClass *c = &per_class_[class_id];
1003    Batch *b = allocator->AllocateBatch(&stats_, this, class_id);
1004    CHECK_GT(b->count, 0);
1005    for (uptr i = 0; i < b->count; i++)
1006      c->batch[i] = b->batch[i];
1007    c->count = b->count;
1008    if (SizeClassMap::SizeClassRequiresSeparateTransferBatch(class_id))
1009      Deallocate(allocator, SizeClassMap::ClassID(sizeof(Batch)), b);
1010  }
1011
1012  NOINLINE void Drain(SizeClassAllocator *allocator, uptr class_id) {
1013    InitCache();
1014    PerClass *c = &per_class_[class_id];
1015    Batch *b;
1016    if (SizeClassMap::SizeClassRequiresSeparateTransferBatch(class_id))
1017      b = (Batch*)Allocate(allocator, SizeClassMap::ClassID(sizeof(Batch)));
1018    else
1019      b = (Batch*)c->batch[0];
1020    uptr cnt = Min(c->max_count / 2, c->count);
1021    for (uptr i = 0; i < cnt; i++) {
1022      b->batch[i] = c->batch[i];
1023      c->batch[i] = c->batch[i + c->max_count / 2];
1024    }
1025    b->count = cnt;
1026    c->count -= cnt;
1027    CHECK_GT(b->count, 0);
1028    allocator->DeallocateBatch(&stats_, class_id, b);
1029  }
1030};
1031
1032// This class can (de)allocate only large chunks of memory using mmap/unmap.
1033// The main purpose of this allocator is to cover large and rare allocation
1034// sizes not covered by more efficient allocators (e.g. SizeClassAllocator64).
1035template <class MapUnmapCallback = NoOpMapUnmapCallback>
1036class LargeMmapAllocator {
1037 public:
1038  void InitLinkerInitialized(bool may_return_null) {
1039    page_size_ = GetPageSizeCached();
1040    atomic_store(&may_return_null_, may_return_null, memory_order_relaxed);
1041  }
1042
1043  void Init(bool may_return_null) {
1044    internal_memset(this, 0, sizeof(*this));
1045    InitLinkerInitialized(may_return_null);
1046  }
1047
1048  void *Allocate(AllocatorStats *stat, uptr size, uptr alignment) {
1049    CHECK(IsPowerOfTwo(alignment));
1050    uptr map_size = RoundUpMapSize(size);
1051    if (alignment > page_size_)
1052      map_size += alignment;
1053    // Overflow.
1054    if (map_size < size)
1055      return ReturnNullOrDie();
1056    uptr map_beg = reinterpret_cast<uptr>(
1057        MmapOrDie(map_size, "LargeMmapAllocator"));
1058    CHECK(IsAligned(map_beg, page_size_));
1059    MapUnmapCallback().OnMap(map_beg, map_size);
1060    uptr map_end = map_beg + map_size;
1061    uptr res = map_beg + page_size_;
1062    if (res & (alignment - 1))  // Align.
1063      res += alignment - (res & (alignment - 1));
1064    CHECK(IsAligned(res, alignment));
1065    CHECK(IsAligned(res, page_size_));
1066    CHECK_GE(res + size, map_beg);
1067    CHECK_LE(res + size, map_end);
1068    Header *h = GetHeader(res);
1069    h->size = size;
1070    h->map_beg = map_beg;
1071    h->map_size = map_size;
1072    uptr size_log = MostSignificantSetBitIndex(map_size);
1073    CHECK_LT(size_log, ARRAY_SIZE(stats.by_size_log));
1074    {
1075      SpinMutexLock l(&mutex_);
1076      uptr idx = n_chunks_++;
1077      chunks_sorted_ = false;
1078      CHECK_LT(idx, kMaxNumChunks);
1079      h->chunk_idx = idx;
1080      chunks_[idx] = h;
1081      stats.n_allocs++;
1082      stats.currently_allocated += map_size;
1083      stats.max_allocated = Max(stats.max_allocated, stats.currently_allocated);
1084      stats.by_size_log[size_log]++;
1085      stat->Add(AllocatorStatAllocated, map_size);
1086      stat->Add(AllocatorStatMapped, map_size);
1087    }
1088    return reinterpret_cast<void*>(res);
1089  }
1090
1091  void *ReturnNullOrDie() {
1092    if (atomic_load(&may_return_null_, memory_order_acquire))
1093      return nullptr;
1094    ReportAllocatorCannotReturnNull();
1095  }
1096
1097  void SetMayReturnNull(bool may_return_null) {
1098    atomic_store(&may_return_null_, may_return_null, memory_order_release);
1099  }
1100
1101  void Deallocate(AllocatorStats *stat, void *p) {
1102    Header *h = GetHeader(p);
1103    {
1104      SpinMutexLock l(&mutex_);
1105      uptr idx = h->chunk_idx;
1106      CHECK_EQ(chunks_[idx], h);
1107      CHECK_LT(idx, n_chunks_);
1108      chunks_[idx] = chunks_[n_chunks_ - 1];
1109      chunks_[idx]->chunk_idx = idx;
1110      n_chunks_--;
1111      chunks_sorted_ = false;
1112      stats.n_frees++;
1113      stats.currently_allocated -= h->map_size;
1114      stat->Sub(AllocatorStatAllocated, h->map_size);
1115      stat->Sub(AllocatorStatMapped, h->map_size);
1116    }
1117    MapUnmapCallback().OnUnmap(h->map_beg, h->map_size);
1118    UnmapOrDie(reinterpret_cast<void*>(h->map_beg), h->map_size);
1119  }
1120
1121  uptr TotalMemoryUsed() {
1122    SpinMutexLock l(&mutex_);
1123    uptr res = 0;
1124    for (uptr i = 0; i < n_chunks_; i++) {
1125      Header *h = chunks_[i];
1126      CHECK_EQ(h->chunk_idx, i);
1127      res += RoundUpMapSize(h->size);
1128    }
1129    return res;
1130  }
1131
1132  bool PointerIsMine(const void *p) {
1133    return GetBlockBegin(p) != nullptr;
1134  }
1135
1136  uptr GetActuallyAllocatedSize(void *p) {
1137    return RoundUpTo(GetHeader(p)->size, page_size_);
1138  }
1139
1140  // At least page_size_/2 metadata bytes is available.
1141  void *GetMetaData(const void *p) {
1142    // Too slow: CHECK_EQ(p, GetBlockBegin(p));
1143    if (!IsAligned(reinterpret_cast<uptr>(p), page_size_)) {
1144      Printf("%s: bad pointer %p\n", SanitizerToolName, p);
1145      CHECK(IsAligned(reinterpret_cast<uptr>(p), page_size_));
1146    }
1147    return GetHeader(p) + 1;
1148  }
1149
1150  void *GetBlockBegin(const void *ptr) {
1151    uptr p = reinterpret_cast<uptr>(ptr);
1152    SpinMutexLock l(&mutex_);
1153    uptr nearest_chunk = 0;
1154    // Cache-friendly linear search.
1155    for (uptr i = 0; i < n_chunks_; i++) {
1156      uptr ch = reinterpret_cast<uptr>(chunks_[i]);
1157      if (p < ch) continue;  // p is at left to this chunk, skip it.
1158      if (p - ch < p - nearest_chunk)
1159        nearest_chunk = ch;
1160    }
1161    if (!nearest_chunk)
1162      return nullptr;
1163    Header *h = reinterpret_cast<Header *>(nearest_chunk);
1164    CHECK_GE(nearest_chunk, h->map_beg);
1165    CHECK_LT(nearest_chunk, h->map_beg + h->map_size);
1166    CHECK_LE(nearest_chunk, p);
1167    if (h->map_beg + h->map_size <= p)
1168      return nullptr;
1169    return GetUser(h);
1170  }
1171
1172  // This function does the same as GetBlockBegin, but is much faster.
1173  // Must be called with the allocator locked.
1174  void *GetBlockBeginFastLocked(void *ptr) {
1175    mutex_.CheckLocked();
1176    uptr p = reinterpret_cast<uptr>(ptr);
1177    uptr n = n_chunks_;
1178    if (!n) return nullptr;
1179    if (!chunks_sorted_) {
1180      // Do one-time sort. chunks_sorted_ is reset in Allocate/Deallocate.
1181      SortArray(reinterpret_cast<uptr*>(chunks_), n);
1182      for (uptr i = 0; i < n; i++)
1183        chunks_[i]->chunk_idx = i;
1184      chunks_sorted_ = true;
1185      min_mmap_ = reinterpret_cast<uptr>(chunks_[0]);
1186      max_mmap_ = reinterpret_cast<uptr>(chunks_[n - 1]) +
1187          chunks_[n - 1]->map_size;
1188    }
1189    if (p < min_mmap_ || p >= max_mmap_)
1190      return nullptr;
1191    uptr beg = 0, end = n - 1;
1192    // This loop is a log(n) lower_bound. It does not check for the exact match
1193    // to avoid expensive cache-thrashing loads.
1194    while (end - beg >= 2) {
1195      uptr mid = (beg + end) / 2;  // Invariant: mid >= beg + 1
1196      if (p < reinterpret_cast<uptr>(chunks_[mid]))
1197        end = mid - 1;  // We are not interested in chunks_[mid].
1198      else
1199        beg = mid;  // chunks_[mid] may still be what we want.
1200    }
1201
1202    if (beg < end) {
1203      CHECK_EQ(beg + 1, end);
1204      // There are 2 chunks left, choose one.
1205      if (p >= reinterpret_cast<uptr>(chunks_[end]))
1206        beg = end;
1207    }
1208
1209    Header *h = chunks_[beg];
1210    if (h->map_beg + h->map_size <= p || p < h->map_beg)
1211      return nullptr;
1212    return GetUser(h);
1213  }
1214
1215  void PrintStats() {
1216    Printf("Stats: LargeMmapAllocator: allocated %zd times, "
1217           "remains %zd (%zd K) max %zd M; by size logs: ",
1218           stats.n_allocs, stats.n_allocs - stats.n_frees,
1219           stats.currently_allocated >> 10, stats.max_allocated >> 20);
1220    for (uptr i = 0; i < ARRAY_SIZE(stats.by_size_log); i++) {
1221      uptr c = stats.by_size_log[i];
1222      if (!c) continue;
1223      Printf("%zd:%zd; ", i, c);
1224    }
1225    Printf("\n");
1226  }
1227
1228  // ForceLock() and ForceUnlock() are needed to implement Darwin malloc zone
1229  // introspection API.
1230  void ForceLock() {
1231    mutex_.Lock();
1232  }
1233
1234  void ForceUnlock() {
1235    mutex_.Unlock();
1236  }
1237
1238  // Iterate over all existing chunks.
1239  // The allocator must be locked when calling this function.
1240  void ForEachChunk(ForEachChunkCallback callback, void *arg) {
1241    for (uptr i = 0; i < n_chunks_; i++)
1242      callback(reinterpret_cast<uptr>(GetUser(chunks_[i])), arg);
1243  }
1244
1245 private:
1246  static const int kMaxNumChunks = 1 << FIRST_32_SECOND_64(15, 18);
1247  struct Header {
1248    uptr map_beg;
1249    uptr map_size;
1250    uptr size;
1251    uptr chunk_idx;
1252  };
1253
1254  Header *GetHeader(uptr p) {
1255    CHECK(IsAligned(p, page_size_));
1256    return reinterpret_cast<Header*>(p - page_size_);
1257  }
1258  Header *GetHeader(const void *p) {
1259    return GetHeader(reinterpret_cast<uptr>(p));
1260  }
1261
1262  void *GetUser(Header *h) {
1263    CHECK(IsAligned((uptr)h, page_size_));
1264    return reinterpret_cast<void*>(reinterpret_cast<uptr>(h) + page_size_);
1265  }
1266
1267  uptr RoundUpMapSize(uptr size) {
1268    return RoundUpTo(size, page_size_) + page_size_;
1269  }
1270
1271  uptr page_size_;
1272  Header *chunks_[kMaxNumChunks];
1273  uptr n_chunks_;
1274  uptr min_mmap_, max_mmap_;
1275  bool chunks_sorted_;
1276  struct Stats {
1277    uptr n_allocs, n_frees, currently_allocated, max_allocated, by_size_log[64];
1278  } stats;
1279  atomic_uint8_t may_return_null_;
1280  SpinMutex mutex_;
1281};
1282
1283// This class implements a complete memory allocator by using two
1284// internal allocators:
1285// PrimaryAllocator is efficient, but may not allocate some sizes (alignments).
1286//  When allocating 2^x bytes it should return 2^x aligned chunk.
1287// PrimaryAllocator is used via a local AllocatorCache.
1288// SecondaryAllocator can allocate anything, but is not efficient.
1289template <class PrimaryAllocator, class AllocatorCache,
1290          class SecondaryAllocator>  // NOLINT
1291class CombinedAllocator {
1292 public:
1293  void InitCommon(bool may_return_null) {
1294    primary_.Init();
1295    atomic_store(&may_return_null_, may_return_null, memory_order_relaxed);
1296  }
1297
1298  void InitLinkerInitialized(bool may_return_null) {
1299    secondary_.InitLinkerInitialized(may_return_null);
1300    stats_.InitLinkerInitialized();
1301    InitCommon(may_return_null);
1302  }
1303
1304  void Init(bool may_return_null) {
1305    secondary_.Init(may_return_null);
1306    stats_.Init();
1307    InitCommon(may_return_null);
1308  }
1309
1310  void *Allocate(AllocatorCache *cache, uptr size, uptr alignment,
1311                 bool cleared = false, bool check_rss_limit = false) {
1312    // Returning 0 on malloc(0) may break a lot of code.
1313    if (size == 0)
1314      size = 1;
1315    if (size + alignment < size)
1316      return ReturnNullOrDie();
1317    if (check_rss_limit && RssLimitIsExceeded())
1318      return ReturnNullOrDie();
1319    if (alignment > 8)
1320      size = RoundUpTo(size, alignment);
1321    void *res;
1322    bool from_primary = primary_.CanAllocate(size, alignment);
1323    if (from_primary)
1324      res = cache->Allocate(&primary_, primary_.ClassID(size));
1325    else
1326      res = secondary_.Allocate(&stats_, size, alignment);
1327    if (alignment > 8)
1328      CHECK_EQ(reinterpret_cast<uptr>(res) & (alignment - 1), 0);
1329    if (cleared && res && from_primary)
1330      internal_bzero_aligned16(res, RoundUpTo(size, 16));
1331    return res;
1332  }
1333
1334  bool MayReturnNull() const {
1335    return atomic_load(&may_return_null_, memory_order_acquire);
1336  }
1337
1338  void *ReturnNullOrDie() {
1339    if (MayReturnNull())
1340      return nullptr;
1341    ReportAllocatorCannotReturnNull();
1342  }
1343
1344  void SetMayReturnNull(bool may_return_null) {
1345    secondary_.SetMayReturnNull(may_return_null);
1346    atomic_store(&may_return_null_, may_return_null, memory_order_release);
1347  }
1348
1349  bool RssLimitIsExceeded() {
1350    return atomic_load(&rss_limit_is_exceeded_, memory_order_acquire);
1351  }
1352
1353  void SetRssLimitIsExceeded(bool rss_limit_is_exceeded) {
1354    atomic_store(&rss_limit_is_exceeded_, rss_limit_is_exceeded,
1355                 memory_order_release);
1356  }
1357
1358  void Deallocate(AllocatorCache *cache, void *p) {
1359    if (!p) return;
1360    if (primary_.PointerIsMine(p))
1361      cache->Deallocate(&primary_, primary_.GetSizeClass(p), p);
1362    else
1363      secondary_.Deallocate(&stats_, p);
1364  }
1365
1366  void *Reallocate(AllocatorCache *cache, void *p, uptr new_size,
1367                   uptr alignment) {
1368    if (!p)
1369      return Allocate(cache, new_size, alignment);
1370    if (!new_size) {
1371      Deallocate(cache, p);
1372      return nullptr;
1373    }
1374    CHECK(PointerIsMine(p));
1375    uptr old_size = GetActuallyAllocatedSize(p);
1376    uptr memcpy_size = Min(new_size, old_size);
1377    void *new_p = Allocate(cache, new_size, alignment);
1378    if (new_p)
1379      internal_memcpy(new_p, p, memcpy_size);
1380    Deallocate(cache, p);
1381    return new_p;
1382  }
1383
1384  bool PointerIsMine(void *p) {
1385    if (primary_.PointerIsMine(p))
1386      return true;
1387    return secondary_.PointerIsMine(p);
1388  }
1389
1390  bool FromPrimary(void *p) {
1391    return primary_.PointerIsMine(p);
1392  }
1393
1394  void *GetMetaData(const void *p) {
1395    if (primary_.PointerIsMine(p))
1396      return primary_.GetMetaData(p);
1397    return secondary_.GetMetaData(p);
1398  }
1399
1400  void *GetBlockBegin(const void *p) {
1401    if (primary_.PointerIsMine(p))
1402      return primary_.GetBlockBegin(p);
1403    return secondary_.GetBlockBegin(p);
1404  }
1405
1406  // This function does the same as GetBlockBegin, but is much faster.
1407  // Must be called with the allocator locked.
1408  void *GetBlockBeginFastLocked(void *p) {
1409    if (primary_.PointerIsMine(p))
1410      return primary_.GetBlockBegin(p);
1411    return secondary_.GetBlockBeginFastLocked(p);
1412  }
1413
1414  uptr GetActuallyAllocatedSize(void *p) {
1415    if (primary_.PointerIsMine(p))
1416      return primary_.GetActuallyAllocatedSize(p);
1417    return secondary_.GetActuallyAllocatedSize(p);
1418  }
1419
1420  uptr TotalMemoryUsed() {
1421    return primary_.TotalMemoryUsed() + secondary_.TotalMemoryUsed();
1422  }
1423
1424  void TestOnlyUnmap() { primary_.TestOnlyUnmap(); }
1425
1426  void InitCache(AllocatorCache *cache) {
1427    cache->Init(&stats_);
1428  }
1429
1430  void DestroyCache(AllocatorCache *cache) {
1431    cache->Destroy(&primary_, &stats_);
1432  }
1433
1434  void SwallowCache(AllocatorCache *cache) {
1435    cache->Drain(&primary_);
1436  }
1437
1438  void GetStats(AllocatorStatCounters s) const {
1439    stats_.Get(s);
1440  }
1441
1442  void PrintStats() {
1443    primary_.PrintStats();
1444    secondary_.PrintStats();
1445  }
1446
1447  // ForceLock() and ForceUnlock() are needed to implement Darwin malloc zone
1448  // introspection API.
1449  void ForceLock() {
1450    primary_.ForceLock();
1451    secondary_.ForceLock();
1452  }
1453
1454  void ForceUnlock() {
1455    secondary_.ForceUnlock();
1456    primary_.ForceUnlock();
1457  }
1458
1459  // Iterate over all existing chunks.
1460  // The allocator must be locked when calling this function.
1461  void ForEachChunk(ForEachChunkCallback callback, void *arg) {
1462    primary_.ForEachChunk(callback, arg);
1463    secondary_.ForEachChunk(callback, arg);
1464  }
1465
1466 private:
1467  PrimaryAllocator primary_;
1468  SecondaryAllocator secondary_;
1469  AllocatorGlobalStats stats_;
1470  atomic_uint8_t may_return_null_;
1471  atomic_uint8_t rss_limit_is_exceeded_;
1472};
1473
1474// Returns true if calloc(size, n) should return 0 due to overflow in size*n.
1475bool CallocShouldReturnNullDueToOverflow(uptr size, uptr n);
1476
1477} // namespace __sanitizer
1478
1479#endif // SANITIZER_ALLOCATOR_H
1480