vktSpvAsmInstructionTests.cpp revision 1078af7ff955c8e8052ee1113d65ae8f669eb4b0
1/*-------------------------------------------------------------------------
2 * Vulkan Conformance Tests
3 * ------------------------
4 *
5 * Copyright (c) 2015 Google Inc.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and/or associated documentation files (the
9 * "Materials"), to deal in the Materials without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sublicense, and/or sell copies of the Materials, and to
12 * permit persons to whom the Materials are furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice(s) and this permission notice shall be
16 * included in all copies or substantial portions of the Materials.
17 *
18 * The Materials are Confidential Information as defined by the
19 * Khronos Membership Agreement until designated non-confidential by
20 * Khronos, at which point this condition clause shall be removed.
21 *
22 * THE MATERIALS ARE PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
23 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
24 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
25 * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
26 * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
27 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
28 * MATERIALS OR THE USE OR OTHER DEALINGS IN THE MATERIALS.
29 *
30 *//*!
31 * \file
32 * \brief SPIR-V Assembly Tests for Instructions (special opcode/operand)
33 *//*--------------------------------------------------------------------*/
34
35#include "vktSpvAsmInstructionTests.hpp"
36
37#include "tcuCommandLine.hpp"
38#include "tcuFormatUtil.hpp"
39#include "tcuRGBA.hpp"
40#include "tcuStringTemplate.hpp"
41#include "tcuTestLog.hpp"
42#include "tcuVectorUtil.hpp"
43
44#include "vkDefs.hpp"
45#include "vkDeviceUtil.hpp"
46#include "vkMemUtil.hpp"
47#include "vkPlatform.hpp"
48#include "vkPrograms.hpp"
49#include "vkQueryUtil.hpp"
50#include "vkRef.hpp"
51#include "vkRefUtil.hpp"
52#include "vkStrUtil.hpp"
53#include "vkTypeUtil.hpp"
54
55#include "deRandom.hpp"
56#include "deStringUtil.hpp"
57#include "deUniquePtr.hpp"
58#include "tcuStringTemplate.hpp"
59
60#include <cmath>
61#include "vktSpvAsmComputeShaderCase.hpp"
62#include "vktSpvAsmComputeShaderTestUtil.hpp"
63#include "vktTestCaseUtil.hpp"
64
65#include <cmath>
66#include <limits>
67#include <map>
68#include <string>
69#include <sstream>
70
71namespace vkt
72{
73namespace SpirVAssembly
74{
75
76namespace
77{
78
79using namespace vk;
80using std::map;
81using std::string;
82using std::vector;
83using tcu::IVec3;
84using tcu::IVec4;
85using tcu::RGBA;
86using tcu::TestLog;
87using tcu::TestStatus;
88using tcu::Vec4;
89using de::UniquePtr;
90using tcu::StringTemplate;
91using tcu::Vec4;
92
93typedef Unique<VkShaderModule>			ModuleHandleUp;
94typedef de::SharedPtr<ModuleHandleUp>	ModuleHandleSp;
95
96template<typename T>	T			randomScalar	(de::Random& rnd, T minValue, T maxValue);
97template<> inline		float		randomScalar	(de::Random& rnd, float minValue, float maxValue)		{ return rnd.getFloat(minValue, maxValue);	}
98template<> inline		deInt32		randomScalar	(de::Random& rnd, deInt32 minValue, deInt32 maxValue)	{ return rnd.getInt(minValue, maxValue);	}
99
100template<typename T>
101static void fillRandomScalars (de::Random& rnd, T minValue, T maxValue, void* dst, int numValues, int offset = 0)
102{
103	T* const typedPtr = (T*)dst;
104	for (int ndx = 0; ndx < numValues; ndx++)
105		typedPtr[offset + ndx] = randomScalar<T>(rnd, minValue, maxValue);
106}
107
108struct CaseParameter
109{
110	const char*		name;
111	string			param;
112
113	CaseParameter	(const char* case_, const string& param_) : name(case_), param(param_) {}
114};
115
116// Assembly code used for testing OpNop, OpConstant{Null|Composite}, Op[No]Line, OpSource[Continued], OpSourceExtension, OpUndef is based on GLSL source code:
117//
118// #version 430
119//
120// layout(std140, set = 0, binding = 0) readonly buffer Input {
121//   float elements[];
122// } input_data;
123// layout(std140, set = 0, binding = 1) writeonly buffer Output {
124//   float elements[];
125// } output_data;
126//
127// layout (local_size_x = 1, local_size_y = 1, local_size_z = 1) in;
128//
129// void main() {
130//   uint x = gl_GlobalInvocationID.x;
131//   output_data.elements[x] = -input_data.elements[x];
132// }
133
134static const char* const s_ShaderPreamble =
135	"OpCapability Shader\n"
136	"OpMemoryModel Logical GLSL450\n"
137	"OpEntryPoint GLCompute %main \"main\" %id\n"
138	"OpExecutionMode %main LocalSize 1 1 1\n";
139
140static const char* const s_CommonTypes =
141	"%bool      = OpTypeBool\n"
142	"%void      = OpTypeVoid\n"
143	"%voidf     = OpTypeFunction %void\n"
144	"%u32       = OpTypeInt 32 0\n"
145	"%i32       = OpTypeInt 32 1\n"
146	"%f32       = OpTypeFloat 32\n"
147	"%uvec3     = OpTypeVector %u32 3\n"
148	"%uvec3ptr  = OpTypePointer Input %uvec3\n"
149	"%f32ptr    = OpTypePointer Uniform %f32\n"
150	"%f32arr    = OpTypeRuntimeArray %f32\n";
151
152// Declares two uniform variables (indata, outdata) of type "struct { float[] }". Depends on type "f32arr" (for "float[]").
153static const char* const s_InputOutputBuffer =
154	"%inbuf     = OpTypeStruct %f32arr\n"
155	"%inbufptr  = OpTypePointer Uniform %inbuf\n"
156	"%indata    = OpVariable %inbufptr Uniform\n"
157	"%outbuf    = OpTypeStruct %f32arr\n"
158	"%outbufptr = OpTypePointer Uniform %outbuf\n"
159	"%outdata   = OpVariable %outbufptr Uniform\n";
160
161// Declares buffer type and layout for uniform variables indata and outdata. Both of them are SSBO bounded to descriptor set 0.
162// indata is at binding point 0, while outdata is at 1.
163static const char* const s_InputOutputBufferTraits =
164	"OpDecorate %inbuf BufferBlock\n"
165	"OpDecorate %indata DescriptorSet 0\n"
166	"OpDecorate %indata Binding 0\n"
167	"OpDecorate %outbuf BufferBlock\n"
168	"OpDecorate %outdata DescriptorSet 0\n"
169	"OpDecorate %outdata Binding 1\n"
170	"OpDecorate %f32arr ArrayStride 4\n"
171	"OpMemberDecorate %inbuf 0 Offset 0\n"
172	"OpMemberDecorate %outbuf 0 Offset 0\n";
173
174tcu::TestCaseGroup* createOpNopGroup (tcu::TestContext& testCtx)
175{
176	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opnop", "Test the OpNop instruction"));
177	ComputeShaderSpec				spec;
178	de::Random						rnd				(deStringHash(group->getName()));
179	const int						numElements		= 100;
180	vector<float>					positiveFloats	(numElements, 0);
181	vector<float>					negativeFloats	(numElements, 0);
182
183	fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
184
185	for (size_t ndx = 0; ndx < numElements; ++ndx)
186		negativeFloats[ndx] = -positiveFloats[ndx];
187
188	spec.assembly =
189		string(s_ShaderPreamble) +
190
191		"OpSource GLSL 430\n"
192		"OpName %main           \"main\"\n"
193		"OpName %id             \"gl_GlobalInvocationID\"\n"
194
195		"OpDecorate %id BuiltIn GlobalInvocationId\n"
196
197		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes)
198
199		+ string(s_InputOutputBuffer) +
200
201		"%id        = OpVariable %uvec3ptr Input\n"
202		"%zero      = OpConstant %i32 0\n"
203
204		"%main      = OpFunction %void None %voidf\n"
205		"%label     = OpLabel\n"
206		"%idval     = OpLoad %uvec3 %id\n"
207		"%x         = OpCompositeExtract %u32 %idval 0\n"
208
209		"             OpNop\n" // Inside a function body
210
211		"%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
212		"%inval     = OpLoad %f32 %inloc\n"
213		"%neg       = OpFNegate %f32 %inval\n"
214		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
215		"             OpStore %outloc %neg\n"
216		"             OpReturn\n"
217		"             OpFunctionEnd\n";
218	spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
219	spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
220	spec.numWorkGroups = IVec3(numElements, 1, 1);
221
222	group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "OpNop appearing at different places", spec));
223
224	return group.release();
225}
226
227tcu::TestCaseGroup* createOpLineGroup (tcu::TestContext& testCtx)
228{
229	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opline", "Test the OpLine instruction"));
230	ComputeShaderSpec				spec;
231	de::Random						rnd				(deStringHash(group->getName()));
232	const int						numElements		= 100;
233	vector<float>					positiveFloats	(numElements, 0);
234	vector<float>					negativeFloats	(numElements, 0);
235
236	fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
237
238	for (size_t ndx = 0; ndx < numElements; ++ndx)
239		negativeFloats[ndx] = -positiveFloats[ndx];
240
241	spec.assembly =
242		string(s_ShaderPreamble) +
243
244		"%fname1 = OpString \"negateInputs.comp\"\n"
245		"%fname2 = OpString \"negateInputs\"\n"
246
247		"OpSource GLSL 430\n"
248		"OpName %main           \"main\"\n"
249		"OpName %id             \"gl_GlobalInvocationID\"\n"
250
251		"OpDecorate %id BuiltIn GlobalInvocationId\n"
252
253		+ string(s_InputOutputBufferTraits) +
254
255		"OpLine %fname1 0 0\n" // At the earliest possible position
256
257		+ string(s_CommonTypes) + string(s_InputOutputBuffer) +
258
259		"OpLine %fname1 0 1\n" // Multiple OpLines in sequence
260		"OpLine %fname2 1 0\n" // Different filenames
261		"OpLine %fname1 1000 100000\n"
262
263		"%id        = OpVariable %uvec3ptr Input\n"
264		"%zero      = OpConstant %i32 0\n"
265
266		"OpLine %fname1 1 1\n" // Before a function
267
268		"%main      = OpFunction %void None %voidf\n"
269		"%label     = OpLabel\n"
270
271		"OpLine %fname1 1 1\n" // In a function
272
273		"%idval     = OpLoad %uvec3 %id\n"
274		"%x         = OpCompositeExtract %u32 %idval 0\n"
275		"%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
276		"%inval     = OpLoad %f32 %inloc\n"
277		"%neg       = OpFNegate %f32 %inval\n"
278		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
279		"             OpStore %outloc %neg\n"
280		"             OpReturn\n"
281		"             OpFunctionEnd\n";
282	spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
283	spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
284	spec.numWorkGroups = IVec3(numElements, 1, 1);
285
286	group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "OpLine appearing at different places", spec));
287
288	return group.release();
289}
290
291tcu::TestCaseGroup* createOpNoLineGroup (tcu::TestContext& testCtx)
292{
293	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opnoline", "Test the OpNoLine instruction"));
294	ComputeShaderSpec				spec;
295	de::Random						rnd				(deStringHash(group->getName()));
296	const int						numElements		= 100;
297	vector<float>					positiveFloats	(numElements, 0);
298	vector<float>					negativeFloats	(numElements, 0);
299
300	fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
301
302	for (size_t ndx = 0; ndx < numElements; ++ndx)
303		negativeFloats[ndx] = -positiveFloats[ndx];
304
305	spec.assembly =
306		string(s_ShaderPreamble) +
307
308		"%fname = OpString \"negateInputs.comp\"\n"
309
310		"OpSource GLSL 430\n"
311		"OpName %main           \"main\"\n"
312		"OpName %id             \"gl_GlobalInvocationID\"\n"
313
314		"OpDecorate %id BuiltIn GlobalInvocationId\n"
315
316		+ string(s_InputOutputBufferTraits) +
317
318		"OpNoLine\n" // At the earliest possible position, without preceding OpLine
319
320		+ string(s_CommonTypes) + string(s_InputOutputBuffer) +
321
322		"OpLine %fname 0 1\n"
323		"OpNoLine\n" // Immediately following a preceding OpLine
324
325		"OpLine %fname 1000 1\n"
326
327		"%id        = OpVariable %uvec3ptr Input\n"
328		"%zero      = OpConstant %i32 0\n"
329
330		"OpNoLine\n" // Contents after the previous OpLine
331
332		"%main      = OpFunction %void None %voidf\n"
333		"%label     = OpLabel\n"
334		"%idval     = OpLoad %uvec3 %id\n"
335		"%x         = OpCompositeExtract %u32 %idval 0\n"
336
337		"OpNoLine\n" // Multiple OpNoLine
338		"OpNoLine\n"
339		"OpNoLine\n"
340
341		"%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
342		"%inval     = OpLoad %f32 %inloc\n"
343		"%neg       = OpFNegate %f32 %inval\n"
344		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
345		"             OpStore %outloc %neg\n"
346		"             OpReturn\n"
347		"             OpFunctionEnd\n";
348	spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
349	spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
350	spec.numWorkGroups = IVec3(numElements, 1, 1);
351
352	group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "OpNoLine appearing at different places", spec));
353
354	return group.release();
355}
356
357tcu::TestCaseGroup* createNoContractionGroup (tcu::TestContext& testCtx)
358{
359	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "nocontraction", "Test the NoContraction decoration"));
360	vector<CaseParameter>			cases;
361	const int						numElements		= 100;
362	vector<float>					inputFloats1	(numElements, 0);
363	vector<float>					inputFloats2	(numElements, 0);
364	vector<float>					outputFloats	(numElements, 0);
365	const StringTemplate			shaderTemplate	(
366		string(s_ShaderPreamble) +
367
368		"OpName %main           \"main\"\n"
369		"OpName %id             \"gl_GlobalInvocationID\"\n"
370
371		"OpDecorate %id BuiltIn GlobalInvocationId\n"
372
373		"${DECORATION}\n"
374
375		"OpDecorate %inbuf1 BufferBlock\n"
376		"OpDecorate %indata1 DescriptorSet 0\n"
377		"OpDecorate %indata1 Binding 0\n"
378		"OpDecorate %inbuf2 BufferBlock\n"
379		"OpDecorate %indata2 DescriptorSet 0\n"
380		"OpDecorate %indata2 Binding 1\n"
381		"OpDecorate %outbuf BufferBlock\n"
382		"OpDecorate %outdata DescriptorSet 0\n"
383		"OpDecorate %outdata Binding 2\n"
384		"OpDecorate %f32arr ArrayStride 4\n"
385		"OpMemberDecorate %inbuf1 0 Offset 0\n"
386		"OpMemberDecorate %inbuf2 0 Offset 0\n"
387		"OpMemberDecorate %outbuf 0 Offset 0\n"
388
389		+ string(s_CommonTypes) +
390
391		"%inbuf1     = OpTypeStruct %f32arr\n"
392		"%inbufptr1  = OpTypePointer Uniform %inbuf1\n"
393		"%indata1    = OpVariable %inbufptr1 Uniform\n"
394		"%inbuf2     = OpTypeStruct %f32arr\n"
395		"%inbufptr2  = OpTypePointer Uniform %inbuf2\n"
396		"%indata2    = OpVariable %inbufptr2 Uniform\n"
397		"%outbuf     = OpTypeStruct %f32arr\n"
398		"%outbufptr  = OpTypePointer Uniform %outbuf\n"
399		"%outdata    = OpVariable %outbufptr Uniform\n"
400
401		"%id         = OpVariable %uvec3ptr Input\n"
402		"%zero       = OpConstant %i32 0\n"
403		"%c_f_m1     = OpConstant %f32 -1.\n"
404
405		"%main       = OpFunction %void None %voidf\n"
406		"%label      = OpLabel\n"
407		"%idval      = OpLoad %uvec3 %id\n"
408		"%x          = OpCompositeExtract %u32 %idval 0\n"
409		"%inloc1     = OpAccessChain %f32ptr %indata1 %zero %x\n"
410		"%inval1     = OpLoad %f32 %inloc1\n"
411		"%inloc2     = OpAccessChain %f32ptr %indata2 %zero %x\n"
412		"%inval2     = OpLoad %f32 %inloc2\n"
413		"%mul        = OpFMul %f32 %inval1 %inval2\n"
414		"%add        = OpFAdd %f32 %mul %c_f_m1\n"
415		"%outloc     = OpAccessChain %f32ptr %outdata %zero %x\n"
416		"              OpStore %outloc %add\n"
417		"              OpReturn\n"
418		"              OpFunctionEnd\n");
419
420	cases.push_back(CaseParameter("multiplication",	"OpDecorate %mul NoContraction"));
421	cases.push_back(CaseParameter("addition",		"OpDecorate %add NoContraction"));
422	cases.push_back(CaseParameter("both",			"OpDecorate %mul NoContraction\nOpDecorate %add NoContraction"));
423
424	for (size_t ndx = 0; ndx < numElements; ++ndx)
425	{
426		inputFloats1[ndx]	= 1.f + std::ldexp(1.f, -23); // 1 + 2^-23.
427		inputFloats2[ndx]	= 1.f - std::ldexp(1.f, -23); // 1 - 2^-23.
428		// Result for (1 + 2^-23) * (1 - 2^-23) - 1. With NoContraction, the multiplication will be
429		// conducted separately and the result is rounded to 1. So the final result will be 0.f.
430		// If the operation is combined into a precise fused multiply-add, then the result would be
431		// 2^-46 (0xa8800000).
432		outputFloats[ndx]	= 0.f;
433	}
434
435	for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
436	{
437		map<string, string>		specializations;
438		ComputeShaderSpec		spec;
439
440		specializations["DECORATION"] = cases[caseNdx].param;
441		spec.assembly = shaderTemplate.specialize(specializations);
442		spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats1)));
443		spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats2)));
444		spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
445		spec.numWorkGroups = IVec3(numElements, 1, 1);
446
447		group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
448	}
449	return group.release();
450}
451
452tcu::TestCaseGroup* createOpFRemGroup (tcu::TestContext& testCtx)
453{
454	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opfrem", "Test the OpFRem instruction"));
455	ComputeShaderSpec				spec;
456	de::Random						rnd				(deStringHash(group->getName()));
457	const int						numElements		= 200;
458	vector<float>					inputFloats1	(numElements, 0);
459	vector<float>					inputFloats2	(numElements, 0);
460	vector<float>					outputFloats	(numElements, 0);
461
462	fillRandomScalars(rnd, -10000.f, 10000.f, &inputFloats1[0], numElements);
463	fillRandomScalars(rnd, -100.f, 100.f, &inputFloats2[0], numElements);
464
465	for (size_t ndx = 0; ndx < numElements; ++ndx)
466	{
467		// Guard against divisors near zero.
468		if (std::fabs(inputFloats2[ndx]) < 1e-3)
469			inputFloats2[ndx] = 8.f;
470
471		// The return value of std::fmod() has the same sign as its first operand, which is how OpFRem spec'd.
472		outputFloats[ndx] = std::fmod(inputFloats1[ndx], inputFloats2[ndx]);
473	}
474
475	spec.assembly =
476		string(s_ShaderPreamble) +
477
478		"OpName %main           \"main\"\n"
479		"OpName %id             \"gl_GlobalInvocationID\"\n"
480
481		"OpDecorate %id BuiltIn GlobalInvocationId\n"
482
483		"OpDecorate %inbuf1 BufferBlock\n"
484		"OpDecorate %indata1 DescriptorSet 0\n"
485		"OpDecorate %indata1 Binding 0\n"
486		"OpDecorate %inbuf2 BufferBlock\n"
487		"OpDecorate %indata2 DescriptorSet 0\n"
488		"OpDecorate %indata2 Binding 1\n"
489		"OpDecorate %outbuf BufferBlock\n"
490		"OpDecorate %outdata DescriptorSet 0\n"
491		"OpDecorate %outdata Binding 2\n"
492		"OpDecorate %f32arr ArrayStride 4\n"
493		"OpMemberDecorate %inbuf1 0 Offset 0\n"
494		"OpMemberDecorate %inbuf2 0 Offset 0\n"
495		"OpMemberDecorate %outbuf 0 Offset 0\n"
496
497		+ string(s_CommonTypes) +
498
499		"%inbuf1     = OpTypeStruct %f32arr\n"
500		"%inbufptr1  = OpTypePointer Uniform %inbuf1\n"
501		"%indata1    = OpVariable %inbufptr1 Uniform\n"
502		"%inbuf2     = OpTypeStruct %f32arr\n"
503		"%inbufptr2  = OpTypePointer Uniform %inbuf2\n"
504		"%indata2    = OpVariable %inbufptr2 Uniform\n"
505		"%outbuf     = OpTypeStruct %f32arr\n"
506		"%outbufptr  = OpTypePointer Uniform %outbuf\n"
507		"%outdata    = OpVariable %outbufptr Uniform\n"
508
509		"%id        = OpVariable %uvec3ptr Input\n"
510		"%zero      = OpConstant %i32 0\n"
511
512		"%main      = OpFunction %void None %voidf\n"
513		"%label     = OpLabel\n"
514		"%idval     = OpLoad %uvec3 %id\n"
515		"%x         = OpCompositeExtract %u32 %idval 0\n"
516		"%inloc1    = OpAccessChain %f32ptr %indata1 %zero %x\n"
517		"%inval1    = OpLoad %f32 %inloc1\n"
518		"%inloc2    = OpAccessChain %f32ptr %indata2 %zero %x\n"
519		"%inval2    = OpLoad %f32 %inloc2\n"
520		"%rem       = OpFRem %f32 %inval1 %inval2\n"
521		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
522		"             OpStore %outloc %rem\n"
523		"             OpReturn\n"
524		"             OpFunctionEnd\n";
525
526	spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats1)));
527	spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats2)));
528	spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
529	spec.numWorkGroups = IVec3(numElements, 1, 1);
530
531	group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "", spec));
532
533	return group.release();
534}
535
536// Copy contents in the input buffer to the output buffer.
537tcu::TestCaseGroup* createOpCopyMemoryGroup (tcu::TestContext& testCtx)
538{
539	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opcopymemory", "Test the OpCopyMemory instruction"));
540	de::Random						rnd				(deStringHash(group->getName()));
541	const int						numElements		= 100;
542
543	// The following case adds vec4(0., 0.5, 1.5, 2.5) to each of the elements in the input buffer and writes output to the output buffer.
544	ComputeShaderSpec				spec1;
545	vector<Vec4>					inputFloats1	(numElements);
546	vector<Vec4>					outputFloats1	(numElements);
547
548	fillRandomScalars(rnd, -200.f, 200.f, &inputFloats1[0], numElements * 4);
549
550	for (size_t ndx = 0; ndx < numElements; ++ndx)
551		outputFloats1[ndx] = inputFloats1[ndx] + Vec4(0.f, 0.5f, 1.5f, 2.5f);
552
553	spec1.assembly =
554		string(s_ShaderPreamble) +
555
556		"OpName %main           \"main\"\n"
557		"OpName %id             \"gl_GlobalInvocationID\"\n"
558
559		"OpDecorate %id BuiltIn GlobalInvocationId\n"
560
561		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
562
563		"%vec4       = OpTypeVector %f32 4\n"
564		"%vec4ptr_u  = OpTypePointer Uniform %vec4\n"
565		"%vec4ptr_f  = OpTypePointer Function %vec4\n"
566		"%vec4arr    = OpTypeRuntimeArray %vec4\n"
567		"%inbuf      = OpTypeStruct %vec4arr\n"
568		"%inbufptr   = OpTypePointer Uniform %inbuf\n"
569		"%indata     = OpVariable %inbufptr Uniform\n"
570		"%outbuf     = OpTypeStruct %vec4arr\n"
571		"%outbufptr  = OpTypePointer Uniform %outbuf\n"
572		"%outdata    = OpVariable %outbufptr Uniform\n"
573
574		"%id         = OpVariable %uvec3ptr Input\n"
575		"%zero       = OpConstant %i32 0\n"
576		"%c_f_0      = OpConstant %f32 0.\n"
577		"%c_f_0_5    = OpConstant %f32 0.5\n"
578		"%c_f_1_5    = OpConstant %f32 1.5\n"
579		"%c_f_2_5    = OpConstant %f32 2.5\n"
580		"%c_vec4     = OpConstantComposite %vec4 %c_f_0 %c_f_0_5 %c_f_1_5 %c_f_2_5\n"
581
582		"%main       = OpFunction %void None %voidf\n"
583		"%label      = OpLabel\n"
584		"%v_vec4     = OpVariable %vec4ptr_f Function\n"
585		"%idval      = OpLoad %uvec3 %id\n"
586		"%x          = OpCompositeExtract %u32 %idval 0\n"
587		"%inloc      = OpAccessChain %vec4ptr_u %indata %zero %x\n"
588		"%outloc     = OpAccessChain %vec4ptr_u %outdata %zero %x\n"
589		"              OpCopyMemory %v_vec4 %inloc\n"
590		"%v_vec4_val = OpLoad %vec4 %v_vec4\n"
591		"%add        = OpFAdd %vec4 %v_vec4_val %c_vec4\n"
592		"              OpStore %outloc %add\n"
593		"              OpReturn\n"
594		"              OpFunctionEnd\n";
595
596	spec1.inputs.push_back(BufferSp(new Vec4Buffer(inputFloats1)));
597	spec1.outputs.push_back(BufferSp(new Vec4Buffer(outputFloats1)));
598	spec1.numWorkGroups = IVec3(numElements, 1, 1);
599
600	group->addChild(new SpvAsmComputeShaderCase(testCtx, "vector", "OpCopyMemory elements of vector type", spec1));
601
602	// The following case copies a float[100] variable from the input buffer to the output buffer.
603	ComputeShaderSpec				spec2;
604	vector<float>					inputFloats2	(numElements);
605	vector<float>					outputFloats2	(numElements);
606
607	fillRandomScalars(rnd, -200.f, 200.f, &inputFloats2[0], numElements);
608
609	for (size_t ndx = 0; ndx < numElements; ++ndx)
610		outputFloats2[ndx] = inputFloats2[ndx];
611
612	spec2.assembly =
613		string(s_ShaderPreamble) +
614
615		"OpName %main           \"main\"\n"
616		"OpName %id             \"gl_GlobalInvocationID\"\n"
617
618		"OpDecorate %id BuiltIn GlobalInvocationId\n"
619
620		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
621
622		"%hundred        = OpConstant %u32 100\n"
623		"%f32arr100      = OpTypeArray %f32 %hundred\n"
624		"%f32arr100ptr_f = OpTypePointer Function %f32arr100\n"
625		"%f32arr100ptr_u = OpTypePointer Uniform %f32arr100\n"
626		"%inbuf          = OpTypeStruct %f32arr100\n"
627		"%inbufptr       = OpTypePointer Uniform %inbuf\n"
628		"%indata         = OpVariable %inbufptr Uniform\n"
629		"%outbuf         = OpTypeStruct %f32arr100\n"
630		"%outbufptr      = OpTypePointer Uniform %outbuf\n"
631		"%outdata        = OpVariable %outbufptr Uniform\n"
632
633		"%id             = OpVariable %uvec3ptr Input\n"
634		"%zero           = OpConstant %i32 0\n"
635
636		"%main           = OpFunction %void None %voidf\n"
637		"%label          = OpLabel\n"
638		"%var            = OpVariable %f32arr100ptr_f Function\n"
639		"%inarr          = OpAccessChain %f32arr100ptr_u %indata %zero\n"
640		"%outarr         = OpAccessChain %f32arr100ptr_u %outdata %zero\n"
641		"                  OpCopyMemory %var %inarr\n"
642		"                  OpCopyMemory %outarr %var\n"
643		"                  OpReturn\n"
644		"                  OpFunctionEnd\n";
645
646	spec2.inputs.push_back(BufferSp(new Float32Buffer(inputFloats2)));
647	spec2.outputs.push_back(BufferSp(new Float32Buffer(outputFloats2)));
648	spec2.numWorkGroups = IVec3(1, 1, 1);
649
650	group->addChild(new SpvAsmComputeShaderCase(testCtx, "array", "OpCopyMemory elements of array type", spec2));
651
652	// The following case copies a struct{vec4, vec4, vec4, vec4} variable from the input buffer to the output buffer.
653	ComputeShaderSpec				spec3;
654	vector<float>					inputFloats3	(16);
655	vector<float>					outputFloats3	(16);
656
657	fillRandomScalars(rnd, -200.f, 200.f, &inputFloats3[0], 16);
658
659	for (size_t ndx = 0; ndx < 16; ++ndx)
660		outputFloats3[ndx] = -inputFloats3[ndx];
661
662	spec3.assembly =
663		string(s_ShaderPreamble) +
664
665		"OpName %main           \"main\"\n"
666		"OpName %id             \"gl_GlobalInvocationID\"\n"
667
668		"OpDecorate %id BuiltIn GlobalInvocationId\n"
669
670		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
671
672		"%vec4      = OpTypeVector %f32 4\n"
673		"%inbuf     = OpTypeStruct %vec4 %vec4 %vec4 %vec4\n"
674		"%inbufptr  = OpTypePointer Uniform %inbuf\n"
675		"%indata    = OpVariable %inbufptr Uniform\n"
676		"%outbuf    = OpTypeStruct %vec4 %vec4 %vec4 %vec4\n"
677		"%outbufptr = OpTypePointer Uniform %outbuf\n"
678		"%outdata   = OpVariable %outbufptr Uniform\n"
679		"%vec4stptr = OpTypePointer Function %inbuf\n"
680
681		"%id        = OpVariable %uvec3ptr Input\n"
682		"%zero      = OpConstant %i32 0\n"
683
684		"%main      = OpFunction %void None %voidf\n"
685		"%label     = OpLabel\n"
686		"%var       = OpVariable %vec4stptr Function\n"
687		"             OpCopyMemory %var %indata\n"
688		"             OpCopyMemory %outdata %var\n"
689		"             OpReturn\n"
690		"             OpFunctionEnd\n";
691
692	spec3.inputs.push_back(BufferSp(new Float32Buffer(inputFloats3)));
693	spec3.outputs.push_back(BufferSp(new Float32Buffer(outputFloats3)));
694	spec3.numWorkGroups = IVec3(1, 1, 1);
695
696	group->addChild(new SpvAsmComputeShaderCase(testCtx, "struct", "OpCopyMemory elements of struct type", spec3));
697
698	// The following case negates multiple float variables from the input buffer and stores the results to the output buffer.
699	ComputeShaderSpec				spec4;
700	vector<float>					inputFloats4	(numElements);
701	vector<float>					outputFloats4	(numElements);
702
703	fillRandomScalars(rnd, -200.f, 200.f, &inputFloats4[0], numElements);
704
705	for (size_t ndx = 0; ndx < numElements; ++ndx)
706		outputFloats4[ndx] = -inputFloats4[ndx];
707
708	spec4.assembly =
709		string(s_ShaderPreamble) +
710
711		"OpName %main           \"main\"\n"
712		"OpName %id             \"gl_GlobalInvocationID\"\n"
713
714		"OpDecorate %id BuiltIn GlobalInvocationId\n"
715
716		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
717
718		"%f32ptr_f  = OpTypePointer Function %f32\n"
719		"%id        = OpVariable %uvec3ptr Input\n"
720		"%zero      = OpConstant %i32 0\n"
721
722		"%main      = OpFunction %void None %voidf\n"
723		"%label     = OpLabel\n"
724		"%var       = OpVariable %f32ptr_f Function\n"
725		"%idval     = OpLoad %uvec3 %id\n"
726		"%x         = OpCompositeExtract %u32 %idval 0\n"
727		"%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
728		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
729		"             OpCopyMemory %var %inloc\n"
730		"%val       = OpLoad %f32 %var\n"
731		"%neg       = OpFNegate %f32 %val\n"
732		"             OpStore %outloc %neg\n"
733		"             OpReturn\n"
734		"             OpFunctionEnd\n";
735
736	spec4.inputs.push_back(BufferSp(new Float32Buffer(inputFloats4)));
737	spec4.outputs.push_back(BufferSp(new Float32Buffer(outputFloats4)));
738	spec4.numWorkGroups = IVec3(numElements, 1, 1);
739
740	group->addChild(new SpvAsmComputeShaderCase(testCtx, "float", "OpCopyMemory elements of float type", spec4));
741
742	return group.release();
743}
744
745tcu::TestCaseGroup* createOpCopyObjectGroup (tcu::TestContext& testCtx)
746{
747	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opcopyobject", "Test the OpCopyObject instruction"));
748	ComputeShaderSpec				spec;
749	de::Random						rnd				(deStringHash(group->getName()));
750	const int						numElements		= 100;
751	vector<float>					inputFloats		(numElements, 0);
752	vector<float>					outputFloats	(numElements, 0);
753
754	fillRandomScalars(rnd, -200.f, 200.f, &inputFloats[0], numElements);
755
756	for (size_t ndx = 0; ndx < numElements; ++ndx)
757		outputFloats[ndx] = inputFloats[ndx] + 7.5f;
758
759	spec.assembly =
760		string(s_ShaderPreamble) +
761
762		"OpName %main           \"main\"\n"
763		"OpName %id             \"gl_GlobalInvocationID\"\n"
764
765		"OpDecorate %id BuiltIn GlobalInvocationId\n"
766
767		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
768
769		"%fvec3    = OpTypeVector %f32 3\n"
770		"%fmat     = OpTypeMatrix %fvec3 3\n"
771		"%three    = OpConstant %u32 3\n"
772		"%farr     = OpTypeArray %f32 %three\n"
773		"%fst      = OpTypeStruct %f32 %f32\n"
774
775		+ string(s_InputOutputBuffer) +
776
777		"%id            = OpVariable %uvec3ptr Input\n"
778		"%zero          = OpConstant %i32 0\n"
779		"%c_f           = OpConstant %f32 1.5\n"
780		"%c_fvec3       = OpConstantComposite %fvec3 %c_f %c_f %c_f\n"
781		"%c_fmat        = OpConstantComposite %fmat %c_fvec3 %c_fvec3 %c_fvec3\n"
782		"%c_farr        = OpConstantComposite %farr %c_f %c_f %c_f\n"
783		"%c_fst         = OpConstantComposite %fst %c_f %c_f\n"
784
785		"%main          = OpFunction %void None %voidf\n"
786		"%label         = OpLabel\n"
787		"%c_f_copy      = OpCopyObject %f32   %c_f\n"
788		"%c_fvec3_copy  = OpCopyObject %fvec3 %c_fvec3\n"
789		"%c_fmat_copy   = OpCopyObject %fmat  %c_fmat\n"
790		"%c_farr_copy   = OpCopyObject %farr  %c_farr\n"
791		"%c_fst_copy    = OpCopyObject %fst   %c_fst\n"
792		"%fvec3_elem    = OpCompositeExtract %f32 %c_fvec3_copy 0\n"
793		"%fmat_elem     = OpCompositeExtract %f32 %c_fmat_copy 1 2\n"
794		"%farr_elem     = OpCompositeExtract %f32 %c_fmat_copy 2\n"
795		"%fst_elem      = OpCompositeExtract %f32 %c_fmat_copy 1\n"
796		// Add up. 1.5 * 5 = 7.5.
797		"%add1          = OpFAdd %f32 %c_f_copy %fvec3_elem\n"
798		"%add2          = OpFAdd %f32 %add1     %fmat_elem\n"
799		"%add3          = OpFAdd %f32 %add2     %farr_elem\n"
800		"%add4          = OpFAdd %f32 %add3     %fst_elem\n"
801
802		"%idval         = OpLoad %uvec3 %id\n"
803		"%x             = OpCompositeExtract %u32 %idval 0\n"
804		"%inloc         = OpAccessChain %f32ptr %indata %zero %x\n"
805		"%outloc        = OpAccessChain %f32ptr %outdata %zero %x\n"
806		"%inval         = OpLoad %f32 %inloc\n"
807		"%add           = OpFAdd %f32 %add4 %inval\n"
808		"                 OpStore %outloc %add\n"
809		"                 OpReturn\n"
810		"                 OpFunctionEnd\n";
811	spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
812	spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
813	spec.numWorkGroups = IVec3(numElements, 1, 1);
814
815	group->addChild(new SpvAsmComputeShaderCase(testCtx, "spotcheck", "OpCopyObject on different types", spec));
816
817	return group.release();
818}
819// Assembly code used for testing OpUnreachable is based on GLSL source code:
820//
821// #version 430
822//
823// layout(std140, set = 0, binding = 0) readonly buffer Input {
824//   float elements[];
825// } input_data;
826// layout(std140, set = 0, binding = 1) writeonly buffer Output {
827//   float elements[];
828// } output_data;
829//
830// void not_called_func() {
831//   // place OpUnreachable here
832// }
833//
834// uint modulo4(uint val) {
835//   switch (val % uint(4)) {
836//     case 0:  return 3;
837//     case 1:  return 2;
838//     case 2:  return 1;
839//     case 3:  return 0;
840//     default: return 100; // place OpUnreachable here
841//   }
842// }
843//
844// uint const5() {
845//   return 5;
846//   // place OpUnreachable here
847// }
848//
849// void main() {
850//   uint x = gl_GlobalInvocationID.x;
851//   if (const5() > modulo4(1000)) {
852//     output_data.elements[x] = -input_data.elements[x];
853//   } else {
854//     // place OpUnreachable here
855//     output_data.elements[x] = input_data.elements[x];
856//   }
857// }
858
859tcu::TestCaseGroup* createOpUnreachableGroup (tcu::TestContext& testCtx)
860{
861	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opunreachable", "Test the OpUnreachable instruction"));
862	ComputeShaderSpec				spec;
863	de::Random						rnd				(deStringHash(group->getName()));
864	const int						numElements		= 100;
865	vector<float>					positiveFloats	(numElements, 0);
866	vector<float>					negativeFloats	(numElements, 0);
867
868	fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
869
870	for (size_t ndx = 0; ndx < numElements; ++ndx)
871		negativeFloats[ndx] = -positiveFloats[ndx];
872
873	spec.assembly =
874		string(s_ShaderPreamble) +
875
876		"OpSource GLSL 430\n"
877		"OpName %main            \"main\"\n"
878		"OpName %func_not_called_func \"not_called_func(\"\n"
879		"OpName %func_modulo4         \"modulo4(u1;\"\n"
880		"OpName %func_const5          \"const5(\"\n"
881		"OpName %id                   \"gl_GlobalInvocationID\"\n"
882
883		"OpDecorate %id BuiltIn GlobalInvocationId\n"
884
885		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
886
887		"%u32ptr    = OpTypePointer Function %u32\n"
888		"%uintfuint = OpTypeFunction %u32 %u32ptr\n"
889		"%unitf     = OpTypeFunction %u32\n"
890
891		"%id        = OpVariable %uvec3ptr Input\n"
892		"%zero      = OpConstant %u32 0\n"
893		"%one       = OpConstant %u32 1\n"
894		"%two       = OpConstant %u32 2\n"
895		"%three     = OpConstant %u32 3\n"
896		"%four      = OpConstant %u32 4\n"
897		"%five      = OpConstant %u32 5\n"
898		"%hundred   = OpConstant %u32 100\n"
899		"%thousand  = OpConstant %u32 1000\n"
900
901		+ string(s_InputOutputBuffer) +
902
903		// Main()
904		"%main   = OpFunction %void None %voidf\n"
905		"%main_entry  = OpLabel\n"
906		"%idval       = OpLoad %uvec3 %id\n"
907		"%x           = OpCompositeExtract %u32 %idval 0\n"
908		"%inloc       = OpAccessChain %f32ptr %indata %zero %x\n"
909		"%inval       = OpLoad %f32 %inloc\n"
910		"%outloc      = OpAccessChain %f32ptr %outdata %zero %x\n"
911		"%ret_const5  = OpFunctionCall %u32 %func_const5\n"
912		"%ret_modulo4 = OpFunctionCall %u32 %func_modulo4 %thousand\n"
913		"%cmp_gt      = OpUGreaterThan %bool %ret_const5 %ret_modulo4\n"
914		"               OpSelectionMerge %if_end None\n"
915		"               OpBranchConditional %cmp_gt %if_true %if_false\n"
916		"%if_true     = OpLabel\n"
917		"%negate      = OpFNegate %f32 %inval\n"
918		"               OpStore %outloc %negate\n"
919		"               OpBranch %if_end\n"
920		"%if_false    = OpLabel\n"
921		"               OpUnreachable\n" // Unreachable else branch for if statement
922		"%if_end      = OpLabel\n"
923		"               OpReturn\n"
924		"               OpFunctionEnd\n"
925
926		// not_called_function()
927		"%func_not_called_func  = OpFunction %void None %voidf\n"
928		"%not_called_func_entry = OpLabel\n"
929		"                         OpUnreachable\n" // Unreachable entry block in not called static function
930		"                         OpFunctionEnd\n"
931
932		// modulo4()
933		"%func_modulo4  = OpFunction %u32 None %uintfuint\n"
934		"%valptr        = OpFunctionParameter %u32ptr\n"
935		"%modulo4_entry = OpLabel\n"
936		"%val           = OpLoad %u32 %valptr\n"
937		"%modulo        = OpUMod %u32 %val %four\n"
938		"                 OpSelectionMerge %switch_merge None\n"
939		"                 OpSwitch %modulo %default 0 %case0 1 %case1 2 %case2 3 %case3\n"
940		"%case0         = OpLabel\n"
941		"                 OpReturnValue %three\n"
942		"%case1         = OpLabel\n"
943		"                 OpReturnValue %two\n"
944		"%case2         = OpLabel\n"
945		"                 OpReturnValue %one\n"
946		"%case3         = OpLabel\n"
947		"                 OpReturnValue %zero\n"
948		"%default       = OpLabel\n"
949		"                 OpUnreachable\n" // Unreachable default case for switch statement
950		"%switch_merge  = OpLabel\n"
951		"                 OpUnreachable\n" // Unreachable merge block for switch statement
952		"                 OpFunctionEnd\n"
953
954		// const5()
955		"%func_const5  = OpFunction %u32 None %unitf\n"
956		"%const5_entry = OpLabel\n"
957		"                OpReturnValue %five\n"
958		"%unreachable  = OpLabel\n"
959		"                OpUnreachable\n" // Unreachable block in function
960		"                OpFunctionEnd\n";
961	spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
962	spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
963	spec.numWorkGroups = IVec3(numElements, 1, 1);
964
965	group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "OpUnreachable appearing at different places", spec));
966
967	return group.release();
968}
969
970// Assembly code used for testing decoration group is based on GLSL source code:
971//
972// #version 430
973//
974// layout(std140, set = 0, binding = 0) readonly buffer Input0 {
975//   float elements[];
976// } input_data0;
977// layout(std140, set = 0, binding = 1) readonly buffer Input1 {
978//   float elements[];
979// } input_data1;
980// layout(std140, set = 0, binding = 2) readonly buffer Input2 {
981//   float elements[];
982// } input_data2;
983// layout(std140, set = 0, binding = 3) readonly buffer Input3 {
984//   float elements[];
985// } input_data3;
986// layout(std140, set = 0, binding = 4) readonly buffer Input4 {
987//   float elements[];
988// } input_data4;
989// layout(std140, set = 0, binding = 5) writeonly buffer Output {
990//   float elements[];
991// } output_data;
992//
993// void main() {
994//   uint x = gl_GlobalInvocationID.x;
995//   output_data.elements[x] = input_data0.elements[x] + input_data1.elements[x] + input_data2.elements[x] + input_data3.elements[x] + input_data4.elements[x];
996// }
997tcu::TestCaseGroup* createDecorationGroupGroup (tcu::TestContext& testCtx)
998{
999	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "decoration_group", "Test the OpDecorationGroup & OpGroupDecorate instruction"));
1000	ComputeShaderSpec				spec;
1001	de::Random						rnd				(deStringHash(group->getName()));
1002	const int						numElements		= 100;
1003	vector<float>					inputFloats0	(numElements, 0);
1004	vector<float>					inputFloats1	(numElements, 0);
1005	vector<float>					inputFloats2	(numElements, 0);
1006	vector<float>					inputFloats3	(numElements, 0);
1007	vector<float>					inputFloats4	(numElements, 0);
1008	vector<float>					outputFloats	(numElements, 0);
1009
1010	fillRandomScalars(rnd, -300.f, 300.f, &inputFloats0[0], numElements);
1011	fillRandomScalars(rnd, -300.f, 300.f, &inputFloats1[0], numElements);
1012	fillRandomScalars(rnd, -300.f, 300.f, &inputFloats2[0], numElements);
1013	fillRandomScalars(rnd, -300.f, 300.f, &inputFloats3[0], numElements);
1014	fillRandomScalars(rnd, -300.f, 300.f, &inputFloats4[0], numElements);
1015
1016	for (size_t ndx = 0; ndx < numElements; ++ndx)
1017		outputFloats[ndx] = inputFloats0[ndx] + inputFloats1[ndx] + inputFloats2[ndx] + inputFloats3[ndx] + inputFloats4[ndx];
1018
1019	spec.assembly =
1020		string(s_ShaderPreamble) +
1021
1022		"OpSource GLSL 430\n"
1023		"OpName %main \"main\"\n"
1024		"OpName %id \"gl_GlobalInvocationID\"\n"
1025
1026		// Not using group decoration on variable.
1027		"OpDecorate %id BuiltIn GlobalInvocationId\n"
1028		// Not using group decoration on type.
1029		"OpDecorate %f32arr ArrayStride 4\n"
1030
1031		"OpDecorate %groups BufferBlock\n"
1032		"OpDecorate %groupm Offset 0\n"
1033		"%groups = OpDecorationGroup\n"
1034		"%groupm = OpDecorationGroup\n"
1035
1036		// Group decoration on multiple structs.
1037		"OpGroupDecorate %groups %outbuf %inbuf0 %inbuf1 %inbuf2 %inbuf3 %inbuf4\n"
1038		// Group decoration on multiple struct members.
1039		"OpGroupMemberDecorate %groupm %outbuf 0 %inbuf0 0 %inbuf1 0 %inbuf2 0 %inbuf3 0 %inbuf4 0\n"
1040
1041		"OpDecorate %group1 DescriptorSet 0\n"
1042		"OpDecorate %group3 DescriptorSet 0\n"
1043		"OpDecorate %group3 NonWritable\n"
1044		"OpDecorate %group3 Restrict\n"
1045		"%group0 = OpDecorationGroup\n"
1046		"%group1 = OpDecorationGroup\n"
1047		"%group3 = OpDecorationGroup\n"
1048
1049		// Applying the same decoration group multiple times.
1050		"OpGroupDecorate %group1 %outdata\n"
1051		"OpGroupDecorate %group1 %outdata\n"
1052		"OpGroupDecorate %group1 %outdata\n"
1053		"OpDecorate %outdata DescriptorSet 0\n"
1054		"OpDecorate %outdata Binding 5\n"
1055		// Applying decoration group containing nothing.
1056		"OpGroupDecorate %group0 %indata0\n"
1057		"OpDecorate %indata0 DescriptorSet 0\n"
1058		"OpDecorate %indata0 Binding 0\n"
1059		// Applying decoration group containing one decoration.
1060		"OpGroupDecorate %group1 %indata1\n"
1061		"OpDecorate %indata1 Binding 1\n"
1062		// Applying decoration group containing multiple decorations.
1063		"OpGroupDecorate %group3 %indata2 %indata3\n"
1064		"OpDecorate %indata2 Binding 2\n"
1065		"OpDecorate %indata3 Binding 3\n"
1066		// Applying multiple decoration groups (with overlapping).
1067		"OpGroupDecorate %group0 %indata4\n"
1068		"OpGroupDecorate %group1 %indata4\n"
1069		"OpGroupDecorate %group3 %indata4\n"
1070		"OpDecorate %indata4 Binding 4\n"
1071
1072		+ string(s_CommonTypes) +
1073
1074		"%id   = OpVariable %uvec3ptr Input\n"
1075		"%zero = OpConstant %i32 0\n"
1076
1077		"%outbuf    = OpTypeStruct %f32arr\n"
1078		"%outbufptr = OpTypePointer Uniform %outbuf\n"
1079		"%outdata   = OpVariable %outbufptr Uniform\n"
1080		"%inbuf0    = OpTypeStruct %f32arr\n"
1081		"%inbuf0ptr = OpTypePointer Uniform %inbuf0\n"
1082		"%indata0   = OpVariable %inbuf0ptr Uniform\n"
1083		"%inbuf1    = OpTypeStruct %f32arr\n"
1084		"%inbuf1ptr = OpTypePointer Uniform %inbuf1\n"
1085		"%indata1   = OpVariable %inbuf1ptr Uniform\n"
1086		"%inbuf2    = OpTypeStruct %f32arr\n"
1087		"%inbuf2ptr = OpTypePointer Uniform %inbuf2\n"
1088		"%indata2   = OpVariable %inbuf2ptr Uniform\n"
1089		"%inbuf3    = OpTypeStruct %f32arr\n"
1090		"%inbuf3ptr = OpTypePointer Uniform %inbuf3\n"
1091		"%indata3   = OpVariable %inbuf3ptr Uniform\n"
1092		"%inbuf4    = OpTypeStruct %f32arr\n"
1093		"%inbufptr  = OpTypePointer Uniform %inbuf4\n"
1094		"%indata4   = OpVariable %inbufptr Uniform\n"
1095
1096		"%main   = OpFunction %void None %voidf\n"
1097		"%label  = OpLabel\n"
1098		"%idval  = OpLoad %uvec3 %id\n"
1099		"%x      = OpCompositeExtract %u32 %idval 0\n"
1100		"%inloc0 = OpAccessChain %f32ptr %indata0 %zero %x\n"
1101		"%inloc1 = OpAccessChain %f32ptr %indata1 %zero %x\n"
1102		"%inloc2 = OpAccessChain %f32ptr %indata2 %zero %x\n"
1103		"%inloc3 = OpAccessChain %f32ptr %indata3 %zero %x\n"
1104		"%inloc4 = OpAccessChain %f32ptr %indata4 %zero %x\n"
1105		"%outloc = OpAccessChain %f32ptr %outdata %zero %x\n"
1106		"%inval0 = OpLoad %f32 %inloc0\n"
1107		"%inval1 = OpLoad %f32 %inloc1\n"
1108		"%inval2 = OpLoad %f32 %inloc2\n"
1109		"%inval3 = OpLoad %f32 %inloc3\n"
1110		"%inval4 = OpLoad %f32 %inloc4\n"
1111		"%add0   = OpFAdd %f32 %inval0 %inval1\n"
1112		"%add1   = OpFAdd %f32 %add0 %inval2\n"
1113		"%add2   = OpFAdd %f32 %add1 %inval3\n"
1114		"%add    = OpFAdd %f32 %add2 %inval4\n"
1115		"          OpStore %outloc %add\n"
1116		"          OpReturn\n"
1117		"          OpFunctionEnd\n";
1118	spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats0)));
1119	spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats1)));
1120	spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats2)));
1121	spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats3)));
1122	spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats4)));
1123	spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
1124	spec.numWorkGroups = IVec3(numElements, 1, 1);
1125
1126	group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "decoration group cases", spec));
1127
1128	return group.release();
1129}
1130
1131struct SpecConstantTwoIntCase
1132{
1133	const char*		caseName;
1134	const char*		scDefinition0;
1135	const char*		scDefinition1;
1136	const char*		scResultType;
1137	const char*		scOperation;
1138	deInt32			scActualValue0;
1139	deInt32			scActualValue1;
1140	const char*		resultOperation;
1141	vector<deInt32>	expectedOutput;
1142
1143					SpecConstantTwoIntCase (const char* name,
1144											const char* definition0,
1145											const char* definition1,
1146											const char* resultType,
1147											const char* operation,
1148											deInt32 value0,
1149											deInt32 value1,
1150											const char* resultOp,
1151											const vector<deInt32>& output)
1152						: caseName			(name)
1153						, scDefinition0		(definition0)
1154						, scDefinition1		(definition1)
1155						, scResultType		(resultType)
1156						, scOperation		(operation)
1157						, scActualValue0	(value0)
1158						, scActualValue1	(value1)
1159						, resultOperation	(resultOp)
1160						, expectedOutput	(output) {}
1161};
1162
1163tcu::TestCaseGroup* createSpecConstantGroup (tcu::TestContext& testCtx)
1164{
1165	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opspecconstantop", "Test the OpSpecConstantOp instruction"));
1166	vector<SpecConstantTwoIntCase>	cases;
1167	de::Random						rnd				(deStringHash(group->getName()));
1168	const int						numElements		= 100;
1169	vector<deInt32>					inputInts		(numElements, 0);
1170	vector<deInt32>					outputInts1		(numElements, 0);
1171	vector<deInt32>					outputInts2		(numElements, 0);
1172	vector<deInt32>					outputInts3		(numElements, 0);
1173	vector<deInt32>					outputInts4		(numElements, 0);
1174	vector<deInt32>					outputInts5		(numElements, 0);
1175	const StringTemplate			shaderTemplate	(
1176		string(s_ShaderPreamble) +
1177
1178		"OpName %main           \"main\"\n"
1179		"OpName %id             \"gl_GlobalInvocationID\"\n"
1180
1181		"OpDecorate %id BuiltIn GlobalInvocationId\n"
1182		"OpDecorate %sc_0  SpecId 0\n"
1183		"OpDecorate %sc_1  SpecId 1\n"
1184
1185		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
1186
1187		"%i32ptr    = OpTypePointer Uniform %i32\n"
1188		"%i32arr    = OpTypeRuntimeArray %i32\n"
1189		"%boolptr   = OpTypePointer Uniform %bool\n"
1190		"%boolarr   = OpTypeRuntimeArray %bool\n"
1191		"%inbuf     = OpTypeStruct %i32arr\n"
1192		"%inbufptr  = OpTypePointer Uniform %inbuf\n"
1193		"%indata    = OpVariable %inbufptr Uniform\n"
1194		"%outbuf    = OpTypeStruct %i32arr\n"
1195		"%outbufptr = OpTypePointer Uniform %outbuf\n"
1196		"%outdata   = OpVariable %outbufptr Uniform\n"
1197
1198		"%id        = OpVariable %uvec3ptr Input\n"
1199		"%zero      = OpConstant %i32 0\n"
1200
1201		"%sc_0      = OpSpecConstant${SC_DEF0}\n"
1202		"%sc_1      = OpSpecConstant${SC_DEF1}\n"
1203		"%sc_final  = OpSpecConstantOp ${SC_RESULT_TYPE} ${SC_OP}\n"
1204
1205		"%main      = OpFunction %void None %voidf\n"
1206		"%label     = OpLabel\n"
1207		"%idval     = OpLoad %uvec3 %id\n"
1208		"%x         = OpCompositeExtract %u32 %idval 0\n"
1209		"%inloc     = OpAccessChain %i32ptr %indata %zero %x\n"
1210		"%inval     = OpLoad %i32 %inloc\n"
1211		"%final     = ${GEN_RESULT}\n"
1212		"%outloc    = OpAccessChain %i32ptr %outdata %zero %x\n"
1213		"             OpStore %outloc %final\n"
1214		"             OpReturn\n"
1215		"             OpFunctionEnd\n");
1216
1217	fillRandomScalars(rnd, -65536, 65536, &inputInts[0], numElements);
1218
1219	for (size_t ndx = 0; ndx < numElements; ++ndx)
1220	{
1221		outputInts1[ndx] = inputInts[ndx] + 42;
1222		outputInts2[ndx] = inputInts[ndx];
1223		outputInts3[ndx] = inputInts[ndx] - 11200;
1224		outputInts4[ndx] = inputInts[ndx] + 1;
1225		outputInts5[ndx] = inputInts[ndx] - 2;
1226	}
1227
1228	const char addScToInput[]		= "OpIAdd %i32 %inval %sc_final";
1229	const char selectTrueUsingSc[]	= "OpSelect %i32 %sc_final %inval %zero";
1230	const char selectFalseUsingSc[]	= "OpSelect %i32 %sc_final %zero %inval";
1231
1232	cases.push_back(SpecConstantTwoIntCase("iadd",					" %i32 0",		" %i32 0",		"%i32",		"IAdd                 %sc_0 %sc_1",			62,		-20,	addScToInput,		outputInts1));
1233	cases.push_back(SpecConstantTwoIntCase("isub",					" %i32 0",		" %i32 0",		"%i32",		"ISub                 %sc_0 %sc_1",			100,	58,		addScToInput,		outputInts1));
1234	cases.push_back(SpecConstantTwoIntCase("imul",					" %i32 0",		" %i32 0",		"%i32",		"IMul                 %sc_0 %sc_1",			-2,		-21,	addScToInput,		outputInts1));
1235	cases.push_back(SpecConstantTwoIntCase("sdiv",					" %i32 0",		" %i32 0",		"%i32",		"SDiv                 %sc_0 %sc_1",			-126,	-3,		addScToInput,		outputInts1));
1236	cases.push_back(SpecConstantTwoIntCase("udiv",					" %i32 0",		" %i32 0",		"%i32",		"UDiv                 %sc_0 %sc_1",			126,	3,		addScToInput,		outputInts1));
1237	cases.push_back(SpecConstantTwoIntCase("srem",					" %i32 0",		" %i32 0",		"%i32",		"SRem                 %sc_0 %sc_1",			7,		-3,		addScToInput,		outputInts4));
1238	cases.push_back(SpecConstantTwoIntCase("smod",					" %i32 0",		" %i32 0",		"%i32",		"SMod                 %sc_0 %sc_1",			7,		-3,		addScToInput,		outputInts5));
1239	cases.push_back(SpecConstantTwoIntCase("umod",					" %i32 0",		" %i32 0",		"%i32",		"UMod                 %sc_0 %sc_1",			342,	50,		addScToInput,		outputInts1));
1240	cases.push_back(SpecConstantTwoIntCase("bitwiseand",			" %i32 0",		" %i32 0",		"%i32",		"BitwiseAnd           %sc_0 %sc_1",			42,		63,		addScToInput,		outputInts1));
1241	cases.push_back(SpecConstantTwoIntCase("bitwiseor",				" %i32 0",		" %i32 0",		"%i32",		"BitwiseOr            %sc_0 %sc_1",			34,		8,		addScToInput,		outputInts1));
1242	cases.push_back(SpecConstantTwoIntCase("bitwisexor",			" %i32 0",		" %i32 0",		"%i32",		"BitwiseAnd           %sc_0 %sc_1",			18,		56,		addScToInput,		outputInts1));
1243	cases.push_back(SpecConstantTwoIntCase("shiftrightlogical",		" %i32 0",		" %i32 0",		"%i32",		"ShiftRightLogical    %sc_0 %sc_1",			168,	2,		addScToInput,		outputInts1));
1244	cases.push_back(SpecConstantTwoIntCase("shiftrightarithmetic",	" %i32 0",		" %i32 0",		"%i32",		"ShiftRightArithmetic %sc_0 %sc_1",			168,	2,		addScToInput,		outputInts1));
1245	cases.push_back(SpecConstantTwoIntCase("shiftleftlogical",		" %i32 0",		" %i32 0",		"%i32",		"ShiftLeftLogical     %sc_0 %sc_1",			21,		1,		addScToInput,		outputInts1));
1246	cases.push_back(SpecConstantTwoIntCase("slessthan",				" %i32 0",		" %i32 0",		"%bool",	"SLessThan            %sc_0 %sc_1",			-20,	-10,	selectTrueUsingSc,	outputInts2));
1247	cases.push_back(SpecConstantTwoIntCase("ulessthan",				" %i32 0",		" %i32 0",		"%bool",	"ULessThan            %sc_0 %sc_1",			10,		20,		selectTrueUsingSc,	outputInts2));
1248	cases.push_back(SpecConstantTwoIntCase("sgreaterthan",			" %i32 0",		" %i32 0",		"%bool",	"SGreaterThan         %sc_0 %sc_1",			-1000,	50,		selectFalseUsingSc,	outputInts2));
1249	cases.push_back(SpecConstantTwoIntCase("ugreaterthan",			" %i32 0",		" %i32 0",		"%bool",	"UGreaterThan         %sc_0 %sc_1",			10,		5,		selectTrueUsingSc,	outputInts2));
1250	cases.push_back(SpecConstantTwoIntCase("slessthanequal",		" %i32 0",		" %i32 0",		"%bool",	"SLessThanEqual       %sc_0 %sc_1",			-10,	-10,	selectTrueUsingSc,	outputInts2));
1251	cases.push_back(SpecConstantTwoIntCase("ulessthanequal",		" %i32 0",		" %i32 0",		"%bool",	"ULessThanEqual       %sc_0 %sc_1",			50,		100,	selectTrueUsingSc,	outputInts2));
1252	cases.push_back(SpecConstantTwoIntCase("sgreaterthanequal",		" %i32 0",		" %i32 0",		"%bool",	"SGreaterThanEqual    %sc_0 %sc_1",			-1000,	50,		selectFalseUsingSc,	outputInts2));
1253	cases.push_back(SpecConstantTwoIntCase("ugreaterthanequal",		" %i32 0",		" %i32 0",		"%bool",	"UGreaterThanEqual    %sc_0 %sc_1",			10,		10,		selectTrueUsingSc,	outputInts2));
1254	cases.push_back(SpecConstantTwoIntCase("iequal",				" %i32 0",		" %i32 0",		"%bool",	"IEqual               %sc_0 %sc_1",			42,		24,		selectFalseUsingSc,	outputInts2));
1255	cases.push_back(SpecConstantTwoIntCase("logicaland",			"True %bool",	"True %bool",	"%bool",	"LogicalAnd           %sc_0 %sc_1",			0,		1,		selectFalseUsingSc,	outputInts2));
1256	cases.push_back(SpecConstantTwoIntCase("logicalor",				"False %bool",	"False %bool",	"%bool",	"LogicalOr            %sc_0 %sc_1",			1,		0,		selectTrueUsingSc,	outputInts2));
1257	cases.push_back(SpecConstantTwoIntCase("logicalequal",			"True %bool",	"True %bool",	"%bool",	"LogicalEqual         %sc_0 %sc_1",			0,		1,		selectFalseUsingSc,	outputInts2));
1258	cases.push_back(SpecConstantTwoIntCase("logicalnotequal",		"False %bool",	"False %bool",	"%bool",	"LogicalNotEqual      %sc_0 %sc_1",			1,		0,		selectTrueUsingSc,	outputInts2));
1259	cases.push_back(SpecConstantTwoIntCase("snegate",				" %i32 0",		" %i32 0",		"%i32",		"SNegate              %sc_0",				-42,	0,		addScToInput,		outputInts1));
1260	cases.push_back(SpecConstantTwoIntCase("not",					" %i32 0",		" %i32 0",		"%i32",		"Not                  %sc_0",				-43,	0,		addScToInput,		outputInts1));
1261	cases.push_back(SpecConstantTwoIntCase("logicalnot",			"False %bool",	"False %bool",	"%bool",	"LogicalNot           %sc_0",				1,		0,		selectFalseUsingSc,	outputInts2));
1262	cases.push_back(SpecConstantTwoIntCase("select",				"False %bool",	" %i32 0",		"%i32",		"Select               %sc_0 %sc_1 %zero",	1,		42,		addScToInput,		outputInts1));
1263	// OpSConvert, OpFConvert: these two instructions involve ints/floats of different bitwidths.
1264
1265	for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
1266	{
1267		map<string, string>		specializations;
1268		ComputeShaderSpec		spec;
1269
1270		specializations["SC_DEF0"]			= cases[caseNdx].scDefinition0;
1271		specializations["SC_DEF1"]			= cases[caseNdx].scDefinition1;
1272		specializations["SC_RESULT_TYPE"]	= cases[caseNdx].scResultType;
1273		specializations["SC_OP"]			= cases[caseNdx].scOperation;
1274		specializations["GEN_RESULT"]		= cases[caseNdx].resultOperation;
1275
1276		spec.assembly = shaderTemplate.specialize(specializations);
1277		spec.inputs.push_back(BufferSp(new Int32Buffer(inputInts)));
1278		spec.outputs.push_back(BufferSp(new Int32Buffer(cases[caseNdx].expectedOutput)));
1279		spec.numWorkGroups = IVec3(numElements, 1, 1);
1280		spec.specConstants.push_back(cases[caseNdx].scActualValue0);
1281		spec.specConstants.push_back(cases[caseNdx].scActualValue1);
1282
1283		group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].caseName, cases[caseNdx].caseName, spec));
1284	}
1285
1286	ComputeShaderSpec				spec;
1287
1288	spec.assembly =
1289		string(s_ShaderPreamble) +
1290
1291		"OpName %main           \"main\"\n"
1292		"OpName %id             \"gl_GlobalInvocationID\"\n"
1293
1294		"OpDecorate %id BuiltIn GlobalInvocationId\n"
1295		"OpDecorate %sc_0  SpecId 0\n"
1296		"OpDecorate %sc_1  SpecId 1\n"
1297		"OpDecorate %sc_2  SpecId 2\n"
1298
1299		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
1300
1301		"%ivec3     = OpTypeVector %i32 3\n"
1302		"%i32ptr    = OpTypePointer Uniform %i32\n"
1303		"%i32arr    = OpTypeRuntimeArray %i32\n"
1304		"%boolptr   = OpTypePointer Uniform %bool\n"
1305		"%boolarr   = OpTypeRuntimeArray %bool\n"
1306		"%inbuf     = OpTypeStruct %i32arr\n"
1307		"%inbufptr  = OpTypePointer Uniform %inbuf\n"
1308		"%indata    = OpVariable %inbufptr Uniform\n"
1309		"%outbuf    = OpTypeStruct %i32arr\n"
1310		"%outbufptr = OpTypePointer Uniform %outbuf\n"
1311		"%outdata   = OpVariable %outbufptr Uniform\n"
1312
1313		"%id        = OpVariable %uvec3ptr Input\n"
1314		"%zero      = OpConstant %i32 0\n"
1315		"%ivec3_0   = OpConstantComposite %ivec3 %zero %zero %zero\n"
1316
1317		"%sc_0        = OpSpecConstant %i32 0\n"
1318		"%sc_1        = OpSpecConstant %i32 0\n"
1319		"%sc_2        = OpSpecConstant %i32 0\n"
1320		"%sc_vec3_0   = OpSpecConstantOp %ivec3 CompositeInsert  %sc_0        %ivec3_0   0\n"     // (sc_0, 0, 0)
1321		"%sc_vec3_1   = OpSpecConstantOp %ivec3 CompositeInsert  %sc_1        %ivec3_0   1\n"     // (0, sc_1, 0)
1322		"%sc_vec3_2   = OpSpecConstantOp %ivec3 CompositeInsert  %sc_2        %ivec3_0   2\n"     // (0, 0, sc_2)
1323		"%sc_vec3_01  = OpSpecConstantOp %ivec3 VectorShuffle    %sc_vec3_0   %sc_vec3_1 1 0 4\n" // (0,    sc_0, sc_1)
1324		"%sc_vec3_012 = OpSpecConstantOp %ivec3 VectorShuffle    %sc_vec3_01  %sc_vec3_2 5 1 2\n" // (sc_2, sc_0, sc_1)
1325		"%sc_ext_0    = OpSpecConstantOp %i32   CompositeExtract %sc_vec3_012            0\n"     // sc_2
1326		"%sc_ext_1    = OpSpecConstantOp %i32   CompositeExtract %sc_vec3_012            1\n"     // sc_0
1327		"%sc_ext_2    = OpSpecConstantOp %i32   CompositeExtract %sc_vec3_012            2\n"     // sc_1
1328		"%sc_sub      = OpSpecConstantOp %i32   ISub             %sc_ext_0    %sc_ext_1\n"        // (sc_2 - sc_0)
1329		"%sc_final    = OpSpecConstantOp %i32   IMul             %sc_sub      %sc_ext_2\n"        // (sc_2 - sc_0) * sc_1
1330
1331		"%main      = OpFunction %void None %voidf\n"
1332		"%label     = OpLabel\n"
1333		"%idval     = OpLoad %uvec3 %id\n"
1334		"%x         = OpCompositeExtract %u32 %idval 0\n"
1335		"%inloc     = OpAccessChain %i32ptr %indata %zero %x\n"
1336		"%inval     = OpLoad %i32 %inloc\n"
1337		"%final     = OpIAdd %i32 %inval %sc_final\n"
1338		"%outloc    = OpAccessChain %i32ptr %outdata %zero %x\n"
1339		"             OpStore %outloc %final\n"
1340		"             OpReturn\n"
1341		"             OpFunctionEnd\n";
1342	spec.inputs.push_back(BufferSp(new Int32Buffer(inputInts)));
1343	spec.outputs.push_back(BufferSp(new Int32Buffer(outputInts3)));
1344	spec.numWorkGroups = IVec3(numElements, 1, 1);
1345	spec.specConstants.push_back(123);
1346	spec.specConstants.push_back(56);
1347	spec.specConstants.push_back(-77);
1348
1349	group->addChild(new SpvAsmComputeShaderCase(testCtx, "vector_related", "VectorShuffle, CompositeExtract, & CompositeInsert", spec));
1350
1351	return group.release();
1352}
1353
1354tcu::TestCaseGroup* createOpPhiGroup (tcu::TestContext& testCtx)
1355{
1356	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opphi", "Test the OpPhi instruction"));
1357	ComputeShaderSpec				spec1;
1358	ComputeShaderSpec				spec2;
1359	ComputeShaderSpec				spec3;
1360	de::Random						rnd				(deStringHash(group->getName()));
1361	const int						numElements		= 100;
1362	vector<float>					inputFloats		(numElements, 0);
1363	vector<float>					outputFloats1	(numElements, 0);
1364	vector<float>					outputFloats2	(numElements, 0);
1365	vector<float>					outputFloats3	(numElements, 0);
1366
1367	fillRandomScalars(rnd, -300.f, 300.f, &inputFloats[0], numElements);
1368
1369	for (size_t ndx = 0; ndx < numElements; ++ndx)
1370	{
1371		switch (ndx % 3)
1372		{
1373			case 0:		outputFloats1[ndx] = inputFloats[ndx] + 5.5f;	break;
1374			case 1:		outputFloats1[ndx] = inputFloats[ndx] + 20.5f;	break;
1375			case 2:		outputFloats1[ndx] = inputFloats[ndx] + 1.75f;	break;
1376			default:	break;
1377		}
1378		outputFloats2[ndx] = inputFloats[ndx] + 6.5f * 3;
1379		outputFloats3[ndx] = 8.5f - inputFloats[ndx];
1380	}
1381
1382	spec1.assembly =
1383		string(s_ShaderPreamble) +
1384
1385		"OpSource GLSL 430\n"
1386		"OpName %main \"main\"\n"
1387		"OpName %id \"gl_GlobalInvocationID\"\n"
1388
1389		"OpDecorate %id BuiltIn GlobalInvocationId\n"
1390
1391		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
1392
1393		"%id = OpVariable %uvec3ptr Input\n"
1394		"%zero       = OpConstant %i32 0\n"
1395		"%three      = OpConstant %u32 3\n"
1396		"%constf5p5  = OpConstant %f32 5.5\n"
1397		"%constf20p5 = OpConstant %f32 20.5\n"
1398		"%constf1p75 = OpConstant %f32 1.75\n"
1399		"%constf8p5  = OpConstant %f32 8.5\n"
1400		"%constf6p5  = OpConstant %f32 6.5\n"
1401
1402		"%main     = OpFunction %void None %voidf\n"
1403		"%entry    = OpLabel\n"
1404		"%idval    = OpLoad %uvec3 %id\n"
1405		"%x        = OpCompositeExtract %u32 %idval 0\n"
1406		"%selector = OpUMod %u32 %x %three\n"
1407		"            OpSelectionMerge %phi None\n"
1408		"            OpSwitch %selector %default 0 %case0 1 %case1 2 %case2\n"
1409
1410		// Case 1 before OpPhi.
1411		"%case1    = OpLabel\n"
1412		"            OpBranch %phi\n"
1413
1414		"%default  = OpLabel\n"
1415		"            OpUnreachable\n"
1416
1417		"%phi      = OpLabel\n"
1418		"%operand  = OpPhi %f32   %constf1p75 %case2   %constf20p5 %case1   %constf5p5 %case0\n" // not in the order of blocks
1419		"%inloc    = OpAccessChain %f32ptr %indata %zero %x\n"
1420		"%inval    = OpLoad %f32 %inloc\n"
1421		"%add      = OpFAdd %f32 %inval %operand\n"
1422		"%outloc   = OpAccessChain %f32ptr %outdata %zero %x\n"
1423		"            OpStore %outloc %add\n"
1424		"            OpReturn\n"
1425
1426		// Case 0 after OpPhi.
1427		"%case0    = OpLabel\n"
1428		"            OpBranch %phi\n"
1429
1430
1431		// Case 2 after OpPhi.
1432		"%case2    = OpLabel\n"
1433		"            OpBranch %phi\n"
1434
1435		"            OpFunctionEnd\n";
1436	spec1.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
1437	spec1.outputs.push_back(BufferSp(new Float32Buffer(outputFloats1)));
1438	spec1.numWorkGroups = IVec3(numElements, 1, 1);
1439
1440	group->addChild(new SpvAsmComputeShaderCase(testCtx, "block", "out-of-order and unreachable blocks for OpPhi", spec1));
1441
1442	spec2.assembly =
1443		string(s_ShaderPreamble) +
1444
1445		"OpName %main \"main\"\n"
1446		"OpName %id \"gl_GlobalInvocationID\"\n"
1447
1448		"OpDecorate %id BuiltIn GlobalInvocationId\n"
1449
1450		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
1451
1452		"%id         = OpVariable %uvec3ptr Input\n"
1453		"%zero       = OpConstant %i32 0\n"
1454		"%one        = OpConstant %i32 1\n"
1455		"%three      = OpConstant %i32 3\n"
1456		"%constf6p5  = OpConstant %f32 6.5\n"
1457
1458		"%main       = OpFunction %void None %voidf\n"
1459		"%entry      = OpLabel\n"
1460		"%idval      = OpLoad %uvec3 %id\n"
1461		"%x          = OpCompositeExtract %u32 %idval 0\n"
1462		"%inloc      = OpAccessChain %f32ptr %indata %zero %x\n"
1463		"%outloc     = OpAccessChain %f32ptr %outdata %zero %x\n"
1464		"%inval      = OpLoad %f32 %inloc\n"
1465		"              OpBranch %phi\n"
1466
1467		"%phi        = OpLabel\n"
1468		"%step       = OpPhi %i32 %zero  %entry %step_next  %phi\n"
1469		"%accum      = OpPhi %f32 %inval %entry %accum_next %phi\n"
1470		"%step_next  = OpIAdd %i32 %step %one\n"
1471		"%accum_next = OpFAdd %f32 %accum %constf6p5\n"
1472		"%still_loop = OpSLessThan %bool %step %three\n"
1473		"              OpLoopMerge %exit %phi None\n"
1474		"              OpBranchConditional %still_loop %phi %exit\n"
1475
1476		"%exit       = OpLabel\n"
1477		"              OpStore %outloc %accum\n"
1478		"              OpReturn\n"
1479		"              OpFunctionEnd\n";
1480	spec2.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
1481	spec2.outputs.push_back(BufferSp(new Float32Buffer(outputFloats2)));
1482	spec2.numWorkGroups = IVec3(numElements, 1, 1);
1483
1484	group->addChild(new SpvAsmComputeShaderCase(testCtx, "induction", "The usual way induction variables are handled in LLVM IR", spec2));
1485
1486	spec3.assembly =
1487		string(s_ShaderPreamble) +
1488
1489		"OpName %main \"main\"\n"
1490		"OpName %id \"gl_GlobalInvocationID\"\n"
1491
1492		"OpDecorate %id BuiltIn GlobalInvocationId\n"
1493
1494		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
1495
1496		"%f32ptr_f   = OpTypePointer Function %f32\n"
1497		"%id         = OpVariable %uvec3ptr Input\n"
1498		"%true       = OpConstantTrue %bool\n"
1499		"%false      = OpConstantFalse %bool\n"
1500		"%zero       = OpConstant %i32 0\n"
1501		"%constf8p5  = OpConstant %f32 8.5\n"
1502
1503		"%main       = OpFunction %void None %voidf\n"
1504		"%entry      = OpLabel\n"
1505		"%b          = OpVariable %f32ptr_f Function %constf8p5\n"
1506		"%idval      = OpLoad %uvec3 %id\n"
1507		"%x          = OpCompositeExtract %u32 %idval 0\n"
1508		"%inloc      = OpAccessChain %f32ptr %indata %zero %x\n"
1509		"%outloc     = OpAccessChain %f32ptr %outdata %zero %x\n"
1510		"%a_init     = OpLoad %f32 %inloc\n"
1511		"%b_init     = OpLoad %f32 %b\n"
1512		"              OpBranch %phi\n"
1513
1514		"%phi        = OpLabel\n"
1515		"%still_loop = OpPhi %bool %true   %entry %false  %phi\n"
1516		"%a_next     = OpPhi %f32  %a_init %entry %b_next %phi\n"
1517		"%b_next     = OpPhi %f32  %b_init %entry %a_next %phi\n"
1518		"              OpLoopMerge %exit %phi None\n"
1519		"              OpBranchConditional %still_loop %phi %exit\n"
1520
1521		"%exit       = OpLabel\n"
1522		"%sub        = OpFSub %f32 %a_next %b_next\n"
1523		"              OpStore %outloc %sub\n"
1524		"              OpReturn\n"
1525		"              OpFunctionEnd\n";
1526	spec3.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
1527	spec3.outputs.push_back(BufferSp(new Float32Buffer(outputFloats3)));
1528	spec3.numWorkGroups = IVec3(numElements, 1, 1);
1529
1530	group->addChild(new SpvAsmComputeShaderCase(testCtx, "swap", "Swap the values of two variables using OpPhi", spec3));
1531
1532	return group.release();
1533}
1534
1535// Assembly code used for testing block order is based on GLSL source code:
1536//
1537// #version 430
1538//
1539// layout(std140, set = 0, binding = 0) readonly buffer Input {
1540//   float elements[];
1541// } input_data;
1542// layout(std140, set = 0, binding = 1) writeonly buffer Output {
1543//   float elements[];
1544// } output_data;
1545//
1546// void main() {
1547//   uint x = gl_GlobalInvocationID.x;
1548//   output_data.elements[x] = input_data.elements[x];
1549//   if (x > uint(50)) {
1550//     switch (x % uint(3)) {
1551//       case 0: output_data.elements[x] += 1.5f; break;
1552//       case 1: output_data.elements[x] += 42.f; break;
1553//       case 2: output_data.elements[x] -= 27.f; break;
1554//       default: break;
1555//     }
1556//   } else {
1557//     output_data.elements[x] = -input_data.elements[x];
1558//   }
1559// }
1560tcu::TestCaseGroup* createBlockOrderGroup (tcu::TestContext& testCtx)
1561{
1562	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "block_order", "Test block orders"));
1563	ComputeShaderSpec				spec;
1564	de::Random						rnd				(deStringHash(group->getName()));
1565	const int						numElements		= 100;
1566	vector<float>					inputFloats		(numElements, 0);
1567	vector<float>					outputFloats	(numElements, 0);
1568
1569	fillRandomScalars(rnd, -100.f, 100.f, &inputFloats[0], numElements);
1570
1571	for (size_t ndx = 0; ndx <= 50; ++ndx)
1572		outputFloats[ndx] = -inputFloats[ndx];
1573
1574	for (size_t ndx = 51; ndx < numElements; ++ndx)
1575	{
1576		switch (ndx % 3)
1577		{
1578			case 0:		outputFloats[ndx] = inputFloats[ndx] + 1.5f; break;
1579			case 1:		outputFloats[ndx] = inputFloats[ndx] + 42.f; break;
1580			case 2:		outputFloats[ndx] = inputFloats[ndx] - 27.f; break;
1581			default:	break;
1582		}
1583	}
1584
1585	spec.assembly =
1586		string(s_ShaderPreamble) +
1587
1588		"OpSource GLSL 430\n"
1589		"OpName %main \"main\"\n"
1590		"OpName %id \"gl_GlobalInvocationID\"\n"
1591
1592		"OpDecorate %id BuiltIn GlobalInvocationId\n"
1593
1594		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
1595
1596		"%u32ptr       = OpTypePointer Function %u32\n"
1597		"%u32ptr_input = OpTypePointer Input %u32\n"
1598
1599		+ string(s_InputOutputBuffer) +
1600
1601		"%id        = OpVariable %uvec3ptr Input\n"
1602		"%zero      = OpConstant %i32 0\n"
1603		"%const3    = OpConstant %u32 3\n"
1604		"%const50   = OpConstant %u32 50\n"
1605		"%constf1p5 = OpConstant %f32 1.5\n"
1606		"%constf27  = OpConstant %f32 27.0\n"
1607		"%constf42  = OpConstant %f32 42.0\n"
1608
1609		"%main = OpFunction %void None %voidf\n"
1610
1611		// entry block.
1612		"%entry    = OpLabel\n"
1613
1614		// Create a temporary variable to hold the value of gl_GlobalInvocationID.x.
1615		"%xvar     = OpVariable %u32ptr Function\n"
1616		"%xptr     = OpAccessChain %u32ptr_input %id %zero\n"
1617		"%x        = OpLoad %u32 %xptr\n"
1618		"            OpStore %xvar %x\n"
1619
1620		"%cmp      = OpUGreaterThan %bool %x %const50\n"
1621		"            OpSelectionMerge %if_merge None\n"
1622		"            OpBranchConditional %cmp %if_true %if_false\n"
1623
1624		// Merge block for switch-statement: placed at the beginning.
1625		"%switch_merge = OpLabel\n"
1626		"                OpBranch %if_merge\n"
1627
1628		// Case 1 for switch-statement.
1629		"%case1    = OpLabel\n"
1630		"%x_1      = OpLoad %u32 %xvar\n"
1631		"%inloc_1  = OpAccessChain %f32ptr %indata %zero %x_1\n"
1632		"%inval_1  = OpLoad %f32 %inloc_1\n"
1633		"%addf42   = OpFAdd %f32 %inval_1 %constf42\n"
1634		"%outloc_1 = OpAccessChain %f32ptr %outdata %zero %x_1\n"
1635		"            OpStore %outloc_1 %addf42\n"
1636		"            OpBranch %switch_merge\n"
1637
1638		// False branch for if-statement: placed in the middle of switch cases and before true branch.
1639		"%if_false = OpLabel\n"
1640		"%x_f      = OpLoad %u32 %xvar\n"
1641		"%inloc_f  = OpAccessChain %f32ptr %indata %zero %x_f\n"
1642		"%inval_f  = OpLoad %f32 %inloc_f\n"
1643		"%negate   = OpFNegate %f32 %inval_f\n"
1644		"%outloc_f = OpAccessChain %f32ptr %outdata %zero %x_f\n"
1645		"            OpStore %outloc_f %negate\n"
1646		"            OpBranch %if_merge\n"
1647
1648		// Merge block for if-statement: placed in the middle of true and false branch.
1649		"%if_merge = OpLabel\n"
1650		"            OpReturn\n"
1651
1652		// True branch for if-statement: placed in the middle of swtich cases and after the false branch.
1653		"%if_true  = OpLabel\n"
1654		"%xval_t   = OpLoad %u32 %xvar\n"
1655		"%mod      = OpUMod %u32 %xval_t %const3\n"
1656		"            OpSelectionMerge %switch_merge None\n"
1657		"            OpSwitch %mod %default 0 %case0 1 %case1 2 %case2\n"
1658
1659		// Case 2 for switch-statement.
1660		"%case2    = OpLabel\n"
1661		"%x_2      = OpLoad %u32 %xvar\n"
1662		"%inloc_2  = OpAccessChain %f32ptr %indata %zero %x_2\n"
1663		"%inval_2  = OpLoad %f32 %inloc_2\n"
1664		"%subf27   = OpFSub %f32 %inval_2 %constf27\n"
1665		"%outloc_2 = OpAccessChain %f32ptr %outdata %zero %x_2\n"
1666		"            OpStore %outloc_2 %subf27\n"
1667		"            OpBranch %switch_merge\n"
1668
1669		// Default case for switch-statement: placed in the middle of normal cases.
1670		"%default = OpLabel\n"
1671		"           OpBranch %switch_merge\n"
1672
1673		// Case 0 for switch-statement: out of order.
1674		"%case0    = OpLabel\n"
1675		"%x_0      = OpLoad %u32 %xvar\n"
1676		"%inloc_0  = OpAccessChain %f32ptr %indata %zero %x_0\n"
1677		"%inval_0  = OpLoad %f32 %inloc_0\n"
1678		"%addf1p5  = OpFAdd %f32 %inval_0 %constf1p5\n"
1679		"%outloc_0 = OpAccessChain %f32ptr %outdata %zero %x_0\n"
1680		"            OpStore %outloc_0 %addf1p5\n"
1681		"            OpBranch %switch_merge\n"
1682
1683		"            OpFunctionEnd\n";
1684	spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
1685	spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
1686	spec.numWorkGroups = IVec3(numElements, 1, 1);
1687
1688	group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "various out-of-order blocks", spec));
1689
1690	return group.release();
1691}
1692
1693tcu::TestCaseGroup* createMultipleShaderGroup (tcu::TestContext& testCtx)
1694{
1695	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "multiple_shaders", "Test multiple shaders in the same module"));
1696	ComputeShaderSpec				spec1;
1697	ComputeShaderSpec				spec2;
1698	de::Random						rnd				(deStringHash(group->getName()));
1699	const int						numElements		= 100;
1700	vector<float>					inputFloats		(numElements, 0);
1701	vector<float>					outputFloats1	(numElements, 0);
1702	vector<float>					outputFloats2	(numElements, 0);
1703	fillRandomScalars(rnd, -500.f, 500.f, &inputFloats[0], numElements);
1704
1705	for (size_t ndx = 0; ndx < numElements; ++ndx)
1706	{
1707		outputFloats1[ndx] = inputFloats[ndx] + inputFloats[ndx];
1708		outputFloats2[ndx] = -inputFloats[ndx];
1709	}
1710
1711	const string assembly(
1712		"OpCapability Shader\n"
1713		"OpMemoryModel Logical GLSL450\n"
1714		"OpEntryPoint GLCompute %comp_main1 \"entrypoint1\" %id\n"
1715		"OpEntryPoint GLCompute %comp_main2 \"entrypoint2\" %id\n"
1716		// A module cannot have two OpEntryPoint instructions with the same Execution Model and the same Name string.
1717		"OpEntryPoint Vertex    %vert_main  \"entrypoint2\" %vert_builtins %vertexID %instanceID\n"
1718		"OpExecutionMode %vert_main LocalSize 1 1 1\n"
1719
1720		"OpName %comp_main1              \"entrypoint1\"\n"
1721		"OpName %comp_main2              \"entrypoint2\"\n"
1722		"OpName %vert_main               \"entrypoint2\"\n"
1723		"OpName %id                      \"gl_GlobalInvocationID\"\n"
1724		"OpName %vert_builtin_st         \"gl_PerVertex\"\n"
1725		"OpName %vertexID                \"gl_VertexID\"\n"
1726		"OpName %instanceID              \"gl_InstanceID\"\n"
1727		"OpMemberName %vert_builtin_st 0 \"gl_Position\"\n"
1728		"OpMemberName %vert_builtin_st 1 \"gl_PointSize\"\n"
1729		"OpMemberName %vert_builtin_st 2 \"gl_ClipDistance\"\n"
1730
1731		"OpDecorate %id                      BuiltIn GlobalInvocationId\n"
1732		"OpDecorate %vertexID                BuiltIn VertexId\n"
1733		"OpDecorate %instanceID              BuiltIn InstanceId\n"
1734		"OpDecorate %vert_builtin_st         Block\n"
1735		"OpMemberDecorate %vert_builtin_st 0 BuiltIn Position\n"
1736		"OpMemberDecorate %vert_builtin_st 1 BuiltIn PointSize\n"
1737		"OpMemberDecorate %vert_builtin_st 2 BuiltIn ClipDistance\n"
1738
1739		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
1740
1741		"%i32ptr              = OpTypePointer Input %i32\n"
1742		"%vec4                = OpTypeVector %f32 4\n"
1743		"%vec4ptr             = OpTypePointer Output %vec4\n"
1744		"%f32arr1             = OpTypeArray %f32 %one\n"
1745		"%vert_builtin_st     = OpTypeStruct %vec4 %f32 %f32arr1\n"
1746		"%vert_builtin_st_ptr = OpTypePointer Output %vert_builtin_st\n"
1747		"%vert_builtins       = OpVariable %vert_builtin_st_ptr Output\n"
1748
1749		"%id         = OpVariable %uvec3ptr Input\n"
1750		"%vertexID   = OpVariable %i32ptr Input\n"
1751		"%instanceID = OpVariable %i32ptr Input\n"
1752		"%zero       = OpConstant %i32 0\n"
1753		"%one        = OpConstant %u32 1\n"
1754		"%c_f32_1    = OpConstant %f32 1\n"
1755		"%c_vec4_1   = OpConstantComposite %vec4 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_1\n"
1756
1757		// gl_Position = vec4(1.);
1758		"%vert_main  = OpFunction %void None %voidf\n"
1759		"%vert_entry = OpLabel\n"
1760		"%position   = OpAccessChain %vec4ptr %vert_builtins %zero\n"
1761		"              OpStore %position %c_vec4_1\n"
1762		"              OpReturn\n"
1763		"              OpFunctionEnd\n"
1764
1765		// Double inputs.
1766		"%comp_main1  = OpFunction %void None %voidf\n"
1767		"%comp1_entry = OpLabel\n"
1768		"%idval1      = OpLoad %uvec3 %id\n"
1769		"%x1          = OpCompositeExtract %u32 %idval1 0\n"
1770		"%inloc1      = OpAccessChain %f32ptr %indata %zero %x1\n"
1771		"%inval1      = OpLoad %f32 %inloc1\n"
1772		"%add         = OpFAdd %f32 %inval1 %inval1\n"
1773		"%outloc1     = OpAccessChain %f32ptr %outdata %zero %x1\n"
1774		"               OpStore %outloc1 %add\n"
1775		"               OpReturn\n"
1776		"               OpFunctionEnd\n"
1777
1778		// Negate inputs.
1779		"%comp_main2  = OpFunction %void None %voidf\n"
1780		"%comp2_entry = OpLabel\n"
1781		"%idval2      = OpLoad %uvec3 %id\n"
1782		"%x2          = OpCompositeExtract %u32 %idval2 0\n"
1783		"%inloc2      = OpAccessChain %f32ptr %indata %zero %x2\n"
1784		"%inval2      = OpLoad %f32 %inloc2\n"
1785		"%neg         = OpFNegate %f32 %inval2\n"
1786		"%outloc2     = OpAccessChain %f32ptr %outdata %zero %x2\n"
1787		"               OpStore %outloc2 %neg\n"
1788		"               OpReturn\n"
1789		"               OpFunctionEnd\n");
1790
1791	spec1.assembly = assembly;
1792	spec1.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
1793	spec1.outputs.push_back(BufferSp(new Float32Buffer(outputFloats1)));
1794	spec1.numWorkGroups = IVec3(numElements, 1, 1);
1795	spec1.entryPoint = "entrypoint1";
1796
1797	spec2.assembly = assembly;
1798	spec2.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
1799	spec2.outputs.push_back(BufferSp(new Float32Buffer(outputFloats2)));
1800	spec2.numWorkGroups = IVec3(numElements, 1, 1);
1801	spec2.entryPoint = "entrypoint2";
1802
1803	group->addChild(new SpvAsmComputeShaderCase(testCtx, "shader1", "multiple shaders in the same module", spec1));
1804	group->addChild(new SpvAsmComputeShaderCase(testCtx, "shader2", "multiple shaders in the same module", spec2));
1805
1806	return group.release();
1807}
1808
1809inline std::string makeLongUTF8String (size_t num4ByteChars)
1810{
1811	// An example of a longest valid UTF-8 character.  Be explicit about the
1812	// character type because Microsoft compilers can otherwise interpret the
1813	// character string as being over wide (16-bit) characters. Ideally, we
1814	// would just use a C++11 UTF-8 string literal, but we want to support older
1815	// Microsoft compilers.
1816	const std::basic_string<char> earthAfrica("\xF0\x9F\x8C\x8D");
1817	std::string longString;
1818	longString.reserve(num4ByteChars * 4);
1819	for (size_t count = 0; count < num4ByteChars; count++)
1820	{
1821		longString += earthAfrica;
1822	}
1823	return longString;
1824}
1825
1826tcu::TestCaseGroup* createOpSourceGroup (tcu::TestContext& testCtx)
1827{
1828	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opsource", "Tests the OpSource & OpSourceContinued instruction"));
1829	vector<CaseParameter>			cases;
1830	de::Random						rnd				(deStringHash(group->getName()));
1831	const int						numElements		= 100;
1832	vector<float>					positiveFloats	(numElements, 0);
1833	vector<float>					negativeFloats	(numElements, 0);
1834	const StringTemplate			shaderTemplate	(
1835		"OpCapability Shader\n"
1836		"OpMemoryModel Logical GLSL450\n"
1837
1838		"OpEntryPoint GLCompute %main \"main\" %id\n"
1839		"OpExecutionMode %main LocalSize 1 1 1\n"
1840
1841		"${SOURCE}\n"
1842
1843		"OpName %main           \"main\"\n"
1844		"OpName %id             \"gl_GlobalInvocationID\"\n"
1845
1846		"OpDecorate %id BuiltIn GlobalInvocationId\n"
1847
1848		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
1849
1850		"%id        = OpVariable %uvec3ptr Input\n"
1851		"%zero      = OpConstant %i32 0\n"
1852
1853		"%main      = OpFunction %void None %voidf\n"
1854		"%label     = OpLabel\n"
1855		"%idval     = OpLoad %uvec3 %id\n"
1856		"%x         = OpCompositeExtract %u32 %idval 0\n"
1857		"%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
1858		"%inval     = OpLoad %f32 %inloc\n"
1859		"%neg       = OpFNegate %f32 %inval\n"
1860		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
1861		"             OpStore %outloc %neg\n"
1862		"             OpReturn\n"
1863		"             OpFunctionEnd\n");
1864
1865	cases.push_back(CaseParameter("unknown_source",							"OpSource Unknown 0"));
1866	cases.push_back(CaseParameter("wrong_source",							"OpSource OpenCL_C 210"));
1867	cases.push_back(CaseParameter("normal_filename",						"%fname = OpString \"filename\"\n"
1868																			"OpSource GLSL 430 %fname"));
1869	cases.push_back(CaseParameter("empty_filename",							"%fname = OpString \"\"\n"
1870																			"OpSource GLSL 430 %fname"));
1871	cases.push_back(CaseParameter("normal_source_code",						"%fname = OpString \"filename\"\n"
1872																			"OpSource GLSL 430 %fname \"#version 430\nvoid main() {}\""));
1873	cases.push_back(CaseParameter("empty_source_code",						"%fname = OpString \"filename\"\n"
1874																			"OpSource GLSL 430 %fname \"\""));
1875	cases.push_back(CaseParameter("long_source_code",						"%fname = OpString \"filename\"\n"
1876																			"OpSource GLSL 430 %fname \"" + makeLongUTF8String(65530) + "ccc\"")); // word count: 65535
1877	cases.push_back(CaseParameter("utf8_source_code",						"%fname = OpString \"filename\"\n"
1878																			"OpSource GLSL 430 %fname \"\xE2\x98\x82\xE2\x98\x85\"")); // umbrella & black star symbol
1879	cases.push_back(CaseParameter("normal_sourcecontinued",					"%fname = OpString \"filename\"\n"
1880																			"OpSource GLSL 430 %fname \"#version 430\nvo\"\n"
1881																			"OpSourceContinued \"id main() {}\""));
1882	cases.push_back(CaseParameter("empty_sourcecontinued",					"%fname = OpString \"filename\"\n"
1883																			"OpSource GLSL 430 %fname \"#version 430\nvoid main() {}\"\n"
1884																			"OpSourceContinued \"\""));
1885	cases.push_back(CaseParameter("long_sourcecontinued",					"%fname = OpString \"filename\"\n"
1886																			"OpSource GLSL 430 %fname \"#version 430\nvoid main() {}\"\n"
1887																			"OpSourceContinued \"" + makeLongUTF8String(65533) + "ccc\"")); // word count: 65535
1888	cases.push_back(CaseParameter("utf8_sourcecontinued",					"%fname = OpString \"filename\"\n"
1889																			"OpSource GLSL 430 %fname \"#version 430\nvoid main() {}\"\n"
1890																			"OpSourceContinued \"\xE2\x98\x8E\xE2\x9A\x91\"")); // white telephone & black flag symbol
1891	cases.push_back(CaseParameter("multi_sourcecontinued",					"%fname = OpString \"filename\"\n"
1892																			"OpSource GLSL 430 %fname \"#version 430\n\"\n"
1893																			"OpSourceContinued \"void\"\n"
1894																			"OpSourceContinued \"main()\"\n"
1895																			"OpSourceContinued \"{}\""));
1896	cases.push_back(CaseParameter("empty_source_before_sourcecontinued",	"%fname = OpString \"filename\"\n"
1897																			"OpSource GLSL 430 %fname \"\"\n"
1898																			"OpSourceContinued \"#version 430\nvoid main() {}\""));
1899
1900	fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
1901
1902	for (size_t ndx = 0; ndx < numElements; ++ndx)
1903		negativeFloats[ndx] = -positiveFloats[ndx];
1904
1905	for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
1906	{
1907		map<string, string>		specializations;
1908		ComputeShaderSpec		spec;
1909
1910		specializations["SOURCE"] = cases[caseNdx].param;
1911		spec.assembly = shaderTemplate.specialize(specializations);
1912		spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
1913		spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
1914		spec.numWorkGroups = IVec3(numElements, 1, 1);
1915
1916		group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
1917	}
1918
1919	return group.release();
1920}
1921
1922tcu::TestCaseGroup* createOpSourceExtensionGroup (tcu::TestContext& testCtx)
1923{
1924	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opsourceextension", "Tests the OpSource instruction"));
1925	vector<CaseParameter>			cases;
1926	de::Random						rnd				(deStringHash(group->getName()));
1927	const int						numElements		= 100;
1928	vector<float>					inputFloats		(numElements, 0);
1929	vector<float>					outputFloats	(numElements, 0);
1930	const StringTemplate			shaderTemplate	(
1931		string(s_ShaderPreamble) +
1932
1933		"OpSourceExtension \"${EXTENSION}\"\n"
1934
1935		"OpName %main           \"main\"\n"
1936		"OpName %id             \"gl_GlobalInvocationID\"\n"
1937
1938		"OpDecorate %id BuiltIn GlobalInvocationId\n"
1939
1940		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
1941
1942		"%id        = OpVariable %uvec3ptr Input\n"
1943		"%zero      = OpConstant %i32 0\n"
1944
1945		"%main      = OpFunction %void None %voidf\n"
1946		"%label     = OpLabel\n"
1947		"%idval     = OpLoad %uvec3 %id\n"
1948		"%x         = OpCompositeExtract %u32 %idval 0\n"
1949		"%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
1950		"%inval     = OpLoad %f32 %inloc\n"
1951		"%neg       = OpFNegate %f32 %inval\n"
1952		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
1953		"             OpStore %outloc %neg\n"
1954		"             OpReturn\n"
1955		"             OpFunctionEnd\n");
1956
1957	cases.push_back(CaseParameter("empty_extension",	""));
1958	cases.push_back(CaseParameter("real_extension",		"GL_ARB_texture_rectangle"));
1959	cases.push_back(CaseParameter("fake_extension",		"GL_ARB_im_the_ultimate_extension"));
1960	cases.push_back(CaseParameter("utf8_extension",		"GL_ARB_\xE2\x98\x82\xE2\x98\x85"));
1961	cases.push_back(CaseParameter("long_extension",		makeLongUTF8String(65533) + "ccc")); // word count: 65535
1962
1963	fillRandomScalars(rnd, -200.f, 200.f, &inputFloats[0], numElements);
1964
1965	for (size_t ndx = 0; ndx < numElements; ++ndx)
1966		outputFloats[ndx] = -inputFloats[ndx];
1967
1968	for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
1969	{
1970		map<string, string>		specializations;
1971		ComputeShaderSpec		spec;
1972
1973		specializations["EXTENSION"] = cases[caseNdx].param;
1974		spec.assembly = shaderTemplate.specialize(specializations);
1975		spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
1976		spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
1977		spec.numWorkGroups = IVec3(numElements, 1, 1);
1978
1979		group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
1980	}
1981
1982	return group.release();
1983}
1984
1985// Checks that a compute shader can generate a constant null value of various types, without exercising a computation on it.
1986tcu::TestCaseGroup* createOpConstantNullGroup (tcu::TestContext& testCtx)
1987{
1988	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opconstantnull", "Tests the OpConstantNull instruction"));
1989	vector<CaseParameter>			cases;
1990	de::Random						rnd				(deStringHash(group->getName()));
1991	const int						numElements		= 100;
1992	vector<float>					positiveFloats	(numElements, 0);
1993	vector<float>					negativeFloats	(numElements, 0);
1994	const StringTemplate			shaderTemplate	(
1995		string(s_ShaderPreamble) +
1996
1997		"OpSource GLSL 430\n"
1998		"OpName %main           \"main\"\n"
1999		"OpName %id             \"gl_GlobalInvocationID\"\n"
2000
2001		"OpDecorate %id BuiltIn GlobalInvocationId\n"
2002
2003		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
2004
2005		"${TYPE}\n"
2006		"%null      = OpConstantNull %type\n"
2007
2008		"%id        = OpVariable %uvec3ptr Input\n"
2009		"%zero      = OpConstant %i32 0\n"
2010
2011		"%main      = OpFunction %void None %voidf\n"
2012		"%label     = OpLabel\n"
2013		"%idval     = OpLoad %uvec3 %id\n"
2014		"%x         = OpCompositeExtract %u32 %idval 0\n"
2015		"%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
2016		"%inval     = OpLoad %f32 %inloc\n"
2017		"%neg       = OpFNegate %f32 %inval\n"
2018		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
2019		"             OpStore %outloc %neg\n"
2020		"             OpReturn\n"
2021		"             OpFunctionEnd\n");
2022
2023	cases.push_back(CaseParameter("bool",			"%type = OpTypeBool"));
2024	cases.push_back(CaseParameter("sint32",			"%type = OpTypeInt 32 1"));
2025	cases.push_back(CaseParameter("uint32",			"%type = OpTypeInt 32 0"));
2026	cases.push_back(CaseParameter("float32",		"%type = OpTypeFloat 32"));
2027	cases.push_back(CaseParameter("vec4float32",	"%type = OpTypeVector %f32 4"));
2028	cases.push_back(CaseParameter("vec3bool",		"%type = OpTypeVector %bool 3"));
2029	cases.push_back(CaseParameter("vec2uint32",		"%type = OpTypeVector %u32 2"));
2030	cases.push_back(CaseParameter("matrix",			"%type = OpTypeMatrix %uvec3 3"));
2031	cases.push_back(CaseParameter("array",			"%100 = OpConstant %u32 100\n"
2032													"%type = OpTypeArray %i32 %100"));
2033	cases.push_back(CaseParameter("runtimearray",	"%type = OpTypeRuntimeArray %f32"));
2034	cases.push_back(CaseParameter("struct",			"%type = OpTypeStruct %f32 %i32 %u32"));
2035	cases.push_back(CaseParameter("pointer",		"%type = OpTypePointer Function %i32"));
2036
2037	fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
2038
2039	for (size_t ndx = 0; ndx < numElements; ++ndx)
2040		negativeFloats[ndx] = -positiveFloats[ndx];
2041
2042	for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
2043	{
2044		map<string, string>		specializations;
2045		ComputeShaderSpec		spec;
2046
2047		specializations["TYPE"] = cases[caseNdx].param;
2048		spec.assembly = shaderTemplate.specialize(specializations);
2049		spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
2050		spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
2051		spec.numWorkGroups = IVec3(numElements, 1, 1);
2052
2053		group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
2054	}
2055
2056	return group.release();
2057}
2058
2059// Checks that a compute shader can generate a constant composite value of various types, without exercising a computation on it.
2060tcu::TestCaseGroup* createOpConstantCompositeGroup (tcu::TestContext& testCtx)
2061{
2062	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opconstantcomposite", "Tests the OpConstantComposite instruction"));
2063	vector<CaseParameter>			cases;
2064	de::Random						rnd				(deStringHash(group->getName()));
2065	const int						numElements		= 100;
2066	vector<float>					positiveFloats	(numElements, 0);
2067	vector<float>					negativeFloats	(numElements, 0);
2068	const StringTemplate			shaderTemplate	(
2069		string(s_ShaderPreamble) +
2070
2071		"OpSource GLSL 430\n"
2072		"OpName %main           \"main\"\n"
2073		"OpName %id             \"gl_GlobalInvocationID\"\n"
2074
2075		"OpDecorate %id BuiltIn GlobalInvocationId\n"
2076
2077		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
2078
2079		"%id        = OpVariable %uvec3ptr Input\n"
2080		"%zero      = OpConstant %i32 0\n"
2081
2082		"${CONSTANT}\n"
2083
2084		"%main      = OpFunction %void None %voidf\n"
2085		"%label     = OpLabel\n"
2086		"%idval     = OpLoad %uvec3 %id\n"
2087		"%x         = OpCompositeExtract %u32 %idval 0\n"
2088		"%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
2089		"%inval     = OpLoad %f32 %inloc\n"
2090		"%neg       = OpFNegate %f32 %inval\n"
2091		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
2092		"             OpStore %outloc %neg\n"
2093		"             OpReturn\n"
2094		"             OpFunctionEnd\n");
2095
2096	cases.push_back(CaseParameter("vector",			"%five = OpConstant %u32 5\n"
2097													"%const = OpConstantComposite %uvec3 %five %zero %five"));
2098	cases.push_back(CaseParameter("matrix",			"%m3uvec3 = OpTypeMatrix %uvec3 3\n"
2099													"%ten = OpConstant %u32 10\n"
2100													"%vec = OpConstantComposite %uvec3 %ten %zero %ten\n"
2101													"%mat = OpConstantComposite %m3uvec3 %vec %vec %vec"));
2102	cases.push_back(CaseParameter("struct",			"%m2vec3 = OpTypeMatrix %uvec3 2\n"
2103													"%struct = OpTypeStruct %u32 %f32 %uvec3 %m2vec3\n"
2104													"%one = OpConstant %u32 1\n"
2105													"%point5 = OpConstant %f32 0.5\n"
2106													"%vec = OpConstantComposite %uvec3 %one %one %zero\n"
2107													"%mat = OpConstantComposite %m2vec3 %vec %vec\n"
2108													"%const = OpConstantComposite %struct %one %point5 %vec %mat"));
2109	cases.push_back(CaseParameter("nested_struct",	"%st1 = OpTypeStruct %u32 %f32\n"
2110													"%st2 = OpTypeStruct %i32 %i32\n"
2111													"%struct = OpTypeStruct %st1 %st2\n"
2112													"%point5 = OpConstant %f32 0.5\n"
2113													"%one = OpConstant %u32 1\n"
2114													"%ten = OpConstant %i32 10\n"
2115													"%st1val = OpConstantComposite %st1 %one %point5\n"
2116													"%st2val = OpConstantComposite %st2 %ten %ten\n"
2117													"%const = OpConstantComposite %struct %st1val %st2val"));
2118
2119	fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
2120
2121	for (size_t ndx = 0; ndx < numElements; ++ndx)
2122		negativeFloats[ndx] = -positiveFloats[ndx];
2123
2124	for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
2125	{
2126		map<string, string>		specializations;
2127		ComputeShaderSpec		spec;
2128
2129		specializations["CONSTANT"] = cases[caseNdx].param;
2130		spec.assembly = shaderTemplate.specialize(specializations);
2131		spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
2132		spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
2133		spec.numWorkGroups = IVec3(numElements, 1, 1);
2134
2135		group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
2136	}
2137
2138	return group.release();
2139}
2140
2141// Creates a floating point number with the given exponent, and significand
2142// bits set. It can only create normalized numbers. Only the least significant
2143// 24 bits of the significand will be examined. The final bit of the
2144// significand will also be ignored. This allows alignment to be written
2145// similarly to C99 hex-floats.
2146// For example if you wanted to write 0x1.7f34p-12 you would call
2147// constructNormalizedFloat(-12, 0x7f3400)
2148float constructNormalizedFloat (deInt32 exponent, deUint32 significand)
2149{
2150	float f = 1.0f;
2151
2152	for (deInt32 idx = 0; idx < 23; ++idx)
2153	{
2154		f += ((significand & 0x800000) == 0) ? 0.f : std::ldexp(1.0f, -idx);
2155		significand <<= 1;
2156	}
2157
2158	return std::ldexp(f, exponent);
2159}
2160
2161// Compare instruction for the OpQuantizeF16 compute exact case.
2162// Returns true if the output is what is expected from the test case.
2163bool compareOpQuantizeF16ComputeExactCase (const std::vector<BufferSp>&, const vector<AllocationSp>& outputAllocs, const std::vector<BufferSp>& expectedOutputs)
2164{
2165	if (outputAllocs.size() != 1)
2166		return false;
2167
2168	// We really just need this for size because we cannot compare Nans.
2169	const BufferSp&	expectedOutput	= expectedOutputs[0];
2170	const float*	outputAsFloat	= static_cast<const float*>(outputAllocs[0]->getHostPtr());;
2171
2172	if (expectedOutput->getNumBytes() != 4*sizeof(float)) {
2173		return false;
2174	}
2175
2176	if (*outputAsFloat != constructNormalizedFloat(8, 0x304000) &&
2177		*outputAsFloat != constructNormalizedFloat(8, 0x300000)) {
2178		return false;
2179	}
2180
2181	if (*outputAsFloat != -constructNormalizedFloat(-7, 0x600000) &&
2182		*outputAsFloat != -constructNormalizedFloat(-7, 0x604000)) {
2183		return false;
2184	}
2185
2186	if (*outputAsFloat != constructNormalizedFloat(2, 0x01C000) &&
2187		*outputAsFloat != constructNormalizedFloat(2, 0x020000)) {
2188		return false;
2189	}
2190
2191	if (*outputAsFloat != constructNormalizedFloat(1, 0xFFC000) &&
2192		*outputAsFloat != constructNormalizedFloat(2, 0x000000)) {
2193		return false;
2194	}
2195
2196	return true;
2197}
2198
2199// Checks that every output from a test-case is a float NaN.
2200bool compareNan (const std::vector<BufferSp>&, const vector<AllocationSp>& outputAllocs, const std::vector<BufferSp>& expectedOutputs)
2201{
2202	if (outputAllocs.size() != 1)
2203		return false;
2204
2205	// We really just need this for size because we cannot compare Nans.
2206	const BufferSp& expectedOutput		= expectedOutputs[0];
2207	const float* output_as_float		= static_cast<const float*>(outputAllocs[0]->getHostPtr());;
2208
2209	for (size_t idx = 0; idx < expectedOutput->getNumBytes() / sizeof(float); ++idx)
2210	{
2211		if (!isnan(output_as_float[idx]))
2212		{
2213			return false;
2214		}
2215	}
2216
2217	return true;
2218}
2219
2220// Checks that a compute shader can generate a constant composite value of various types, without exercising a computation on it.
2221tcu::TestCaseGroup* createOpQuantizeToF16Group (tcu::TestContext& testCtx)
2222{
2223	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opquantize", "Tests the OpQuantizeToF16 instruction"));
2224
2225	const std::string shader (
2226		string(s_ShaderPreamble) +
2227
2228		"OpSource GLSL 430\n"
2229		"OpName %main           \"main\"\n"
2230		"OpName %id             \"gl_GlobalInvocationID\"\n"
2231
2232		"OpDecorate %id BuiltIn GlobalInvocationId\n"
2233
2234		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
2235
2236		"%id        = OpVariable %uvec3ptr Input\n"
2237		"%zero      = OpConstant %i32 0\n"
2238
2239		"%main      = OpFunction %void None %voidf\n"
2240		"%label     = OpLabel\n"
2241		"%idval     = OpLoad %uvec3 %id\n"
2242		"%x         = OpCompositeExtract %u32 %idval 0\n"
2243		"%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
2244		"%inval     = OpLoad %f32 %inloc\n"
2245		"%quant     = OpQuantizeToF16 %f32 %inval\n"
2246		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
2247		"             OpStore %outloc %quant\n"
2248		"             OpReturn\n"
2249		"             OpFunctionEnd\n");
2250
2251	{
2252		ComputeShaderSpec	spec;
2253		const deUint32		numElements		= 100;
2254		vector<float>		infinities;
2255		vector<float>		results;
2256
2257		infinities.reserve(numElements);
2258		results.reserve(numElements);
2259
2260		for (size_t idx = 0; idx < numElements; ++idx)
2261		{
2262			switch(idx % 4)
2263			{
2264				case 0:
2265					infinities.push_back(std::numeric_limits<float>::infinity());
2266					results.push_back(std::numeric_limits<float>::infinity());
2267					break;
2268				case 1:
2269					infinities.push_back(-std::numeric_limits<float>::infinity());
2270					results.push_back(-std::numeric_limits<float>::infinity());
2271					break;
2272				case 2:
2273					infinities.push_back(std::ldexp(1.0f, 16));
2274					results.push_back(std::numeric_limits<float>::infinity());
2275					break;
2276				case 3:
2277					infinities.push_back(std::ldexp(-1.0f, 32));
2278					results.push_back(-std::numeric_limits<float>::infinity());
2279					break;
2280			}
2281		}
2282
2283		spec.inputs.push_back(BufferSp(new Float32Buffer(infinities)));
2284		spec.outputs.push_back(BufferSp(new Float32Buffer(results)));
2285		spec.numWorkGroups = IVec3(numElements, 1, 1);
2286
2287		group->addChild(new SpvAsmComputeShaderCase(
2288			testCtx, "infinities", "Check that infinities propagated and created", spec));
2289	}
2290
2291	{
2292		ComputeShaderSpec	spec;
2293		vector<float>		nans;
2294		const deUint32		numElements		= 100;
2295
2296		nans.reserve(numElements);
2297
2298		for (size_t idx = 0; idx < numElements; ++idx)
2299		{
2300			if (idx % 2 == 0)
2301			{
2302				nans.push_back(std::numeric_limits<float>::quiet_NaN());
2303			}
2304			else
2305			{
2306				nans.push_back(-std::numeric_limits<float>::quiet_NaN());
2307			}
2308		}
2309
2310		spec.inputs.push_back(BufferSp(new Float32Buffer(nans)));
2311		spec.outputs.push_back(BufferSp(new Float32Buffer(nans)));
2312		spec.numWorkGroups = IVec3(numElements, 1, 1);
2313		spec.verifyIO = &compareNan;
2314
2315		group->addChild(new SpvAsmComputeShaderCase(
2316			testCtx, "propagated_nans", "Check that nans are propagated", spec));
2317	}
2318
2319	{
2320		ComputeShaderSpec	spec;
2321		vector<float>		small;
2322		vector<float>		zeros;
2323		const deUint32		numElements		= 100;
2324
2325		small.reserve(numElements);
2326		zeros.reserve(numElements);
2327
2328		for (size_t idx = 0; idx < numElements; ++idx)
2329		{
2330			switch(idx % 6)
2331			{
2332				case 0:
2333					small.push_back(0.f);
2334					zeros.push_back(0.f);
2335					break;
2336				case 1:
2337					small.push_back(-0.f);
2338					zeros.push_back(-0.f);
2339					break;
2340				case 2:
2341					small.push_back(std::ldexp(1.0f, -16));
2342					zeros.push_back(0.f);
2343					break;
2344				case 3:
2345					small.push_back(std::ldexp(-1.0f, -32));
2346					zeros.push_back(-0.f);
2347					break;
2348				case 4:
2349					small.push_back(std::ldexp(1.0f, -127));
2350					zeros.push_back(0.f);
2351					break;
2352				case 5:
2353					small.push_back(-std::ldexp(1.0f, -128));
2354					zeros.push_back(-0.f);
2355					break;
2356			}
2357		}
2358
2359		spec.inputs.push_back(BufferSp(new Float32Buffer(small)));
2360		spec.outputs.push_back(BufferSp(new Float32Buffer(zeros)));
2361		spec.numWorkGroups = IVec3(numElements, 1, 1);
2362
2363		group->addChild(new SpvAsmComputeShaderCase(
2364			testCtx, "flush_to_zero", "Check that values are zeroed correctly", spec));
2365	}
2366
2367	{
2368		ComputeShaderSpec	spec;
2369		vector<float>		exact;
2370		const deUint32		numElements		= 200;
2371
2372		exact.reserve(numElements);
2373
2374		for (size_t idx = 0; idx < numElements; ++idx)
2375			exact.push_back(static_cast<float>(idx - 100));
2376
2377		spec.inputs.push_back(BufferSp(new Float32Buffer(exact)));
2378		spec.outputs.push_back(BufferSp(new Float32Buffer(exact)));
2379		spec.numWorkGroups = IVec3(numElements, 1, 1);
2380
2381		group->addChild(new SpvAsmComputeShaderCase(
2382			testCtx, "exact", "Check that values exactly preserved where appropriate", spec));
2383	}
2384
2385	{
2386		ComputeShaderSpec	spec;
2387		vector<float>		inputs;
2388		const deUint32		numElements		= 4;
2389
2390		inputs.push_back(constructNormalizedFloat(8,	0x300300));
2391		inputs.push_back(-constructNormalizedFloat(-7,	0x600800));
2392		inputs.push_back(constructNormalizedFloat(2,	0x01E000));
2393		inputs.push_back(constructNormalizedFloat(1,	0xFFE000));
2394
2395		spec.verifyIO = &compareOpQuantizeF16ComputeExactCase;
2396		spec.inputs.push_back(BufferSp(new Float32Buffer(inputs)));
2397		spec.outputs.push_back(BufferSp(new Float32Buffer(inputs)));
2398		spec.numWorkGroups = IVec3(numElements, 1, 1);
2399
2400		group->addChild(new SpvAsmComputeShaderCase(
2401			testCtx, "rounded", "Check that are rounded when needed", spec));
2402	}
2403
2404	return group.release();
2405}
2406
2407// Performs a bitwise copy of source to the destination type Dest.
2408template <typename Dest, typename Src>
2409Dest bitwiseCast(Src source)
2410{
2411  Dest dest;
2412  DE_STATIC_ASSERT(sizeof(source) == sizeof(dest));
2413  deMemcpy(&dest, &source, sizeof(dest));
2414  return dest;
2415}
2416
2417tcu::TestCaseGroup* createSpecConstantOpQuantizeToF16Group (tcu::TestContext& testCtx)
2418{
2419	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opspecconstantop_opquantize", "Tests the OpQuantizeToF16 opcode for the OpSpecConstantOp instruction"));
2420
2421	const std::string shader (
2422		string(s_ShaderPreamble) +
2423
2424		"OpName %main           \"main\"\n"
2425		"OpName %id             \"gl_GlobalInvocationID\"\n"
2426
2427		"OpDecorate %id BuiltIn GlobalInvocationId\n"
2428
2429		"OpDecorate %sc_0  SpecId 0\n"
2430		"OpDecorate %sc_1  SpecId 1\n"
2431		"OpDecorate %sc_2  SpecId 2\n"
2432		"OpDecorate %sc_3  SpecId 3\n"
2433		"OpDecorate %sc_4  SpecId 4\n"
2434		"OpDecorate %sc_5  SpecId 5\n"
2435
2436		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
2437
2438		"%id        = OpVariable %uvec3ptr Input\n"
2439		"%zero      = OpConstant %i32 0\n"
2440		"%c_u32_6   = OpConstant %u32 6\n"
2441
2442		"%sc_0      = OpSpecConstant %f32 0.\n"
2443		"%sc_1      = OpSpecConstant %f32 0.\n"
2444		"%sc_2      = OpSpecConstant %f32 0.\n"
2445		"%sc_3      = OpSpecConstant %f32 0.\n"
2446		"%sc_4      = OpSpecConstant %f32 0.\n"
2447		"%sc_5      = OpSpecConstant %f32 0.\n"
2448
2449		"%sc_0_quant = OpSpecConstantOp %f32 QuantizeToF16 %sc_0\n"
2450		"%sc_1_quant = OpSpecConstantOp %f32 QuantizeToF16 %sc_1\n"
2451		"%sc_2_quant = OpSpecConstantOp %f32 QuantizeToF16 %sc_2\n"
2452		"%sc_3_quant = OpSpecConstantOp %f32 QuantizeToF16 %sc_3\n"
2453		"%sc_4_quant = OpSpecConstantOp %f32 QuantizeToF16 %sc_4\n"
2454		"%sc_5_quant = OpSpecConstantOp %f32 QuantizeToF16 %sc_5\n"
2455
2456		"%main      = OpFunction %void None %voidf\n"
2457		"%label     = OpLabel\n"
2458		"%idval     = OpLoad %uvec3 %id\n"
2459		"%x         = OpCompositeExtract %u32 %idval 0\n"
2460		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
2461		"%selector  = OpUMod %u32 %x %c_u32_6\n"
2462		"            OpSelectionMerge %exit None\n"
2463		"            OpSwitch %selector %exit 0 %case0 1 %case1 2 %case2 3 %case3 4 %case4 5 %case5\n"
2464
2465		"%case0     = OpLabel\n"
2466		"             OpStore %outloc %sc_0_quant\n"
2467		"             OpBranch %exit\n"
2468
2469		"%case1     = OpLabel\n"
2470		"             OpStore %outloc %sc_1_quant\n"
2471		"             OpBranch %exit\n"
2472
2473		"%case2     = OpLabel\n"
2474		"             OpStore %outloc %sc_2_quant\n"
2475		"             OpBranch %exit\n"
2476
2477		"%case3     = OpLabel\n"
2478		"             OpStore %outloc %sc_3_quant\n"
2479		"             OpBranch %exit\n"
2480
2481		"%case4     = OpLabel\n"
2482		"             OpStore %outloc %sc_4_quant\n"
2483		"             OpBranch %exit\n"
2484
2485		"%case5     = OpLabel\n"
2486		"             OpStore %outloc %sc_5_quant\n"
2487		"             OpBranch %exit\n"
2488
2489		"%exit      = OpLabel\n"
2490		"             OpReturn\n"
2491
2492		"             OpFunctionEnd\n");
2493
2494	{
2495		ComputeShaderSpec	spec;
2496		const deUint8		numCases	= 4;
2497		vector<float>		inputs		(numCases, 0.f);
2498		vector<float>		outputs;
2499
2500		spec.numWorkGroups = IVec3(numCases, 1, 1);
2501
2502		spec.specConstants.push_back(bitwiseCast<deUint32>(std::numeric_limits<float>::infinity()));
2503		spec.specConstants.push_back(bitwiseCast<deUint32>(-std::numeric_limits<float>::infinity()));
2504		spec.specConstants.push_back(bitwiseCast<deUint32>(std::ldexp(1.0f, 16)));
2505		spec.specConstants.push_back(bitwiseCast<deUint32>(std::ldexp(-1.0f, 32)));
2506
2507		outputs.push_back(std::numeric_limits<float>::infinity());
2508		outputs.push_back(-std::numeric_limits<float>::infinity());
2509		outputs.push_back(std::numeric_limits<float>::infinity());
2510		outputs.push_back(-std::numeric_limits<float>::infinity());
2511
2512		spec.inputs.push_back(BufferSp(new Float32Buffer(inputs)));
2513		spec.outputs.push_back(BufferSp(new Float32Buffer(outputs)));
2514
2515		group->addChild(new SpvAsmComputeShaderCase(
2516			testCtx, "infinities", "Check that infinities propagated and created", spec));
2517	}
2518
2519	{
2520		ComputeShaderSpec	spec;
2521		const deUint8		numCases	= 2;
2522		vector<float>		inputs		(numCases, 0.f);
2523		vector<float>		outputs;
2524
2525		spec.numWorkGroups	= IVec3(numCases, 1, 1);
2526		spec.verifyIO		= &compareNan;
2527
2528		outputs.push_back(std::numeric_limits<float>::quiet_NaN());
2529		outputs.push_back(-std::numeric_limits<float>::quiet_NaN());
2530
2531		for (deUint8 idx = 0; idx < numCases; ++idx)
2532			spec.specConstants.push_back(bitwiseCast<deUint32>(outputs[idx]));
2533
2534		spec.inputs.push_back(BufferSp(new Float32Buffer(inputs)));
2535		spec.outputs.push_back(BufferSp(new Float32Buffer(outputs)));
2536
2537		group->addChild(new SpvAsmComputeShaderCase(
2538			testCtx, "propagated_nans", "Check that nans are propagated", spec));
2539	}
2540
2541	{
2542		ComputeShaderSpec	spec;
2543		const deUint8		numCases	= 6;
2544		vector<float>		inputs		(numCases, 0.f);
2545		vector<float>		outputs;
2546
2547		spec.numWorkGroups	= IVec3(numCases, 1, 1);
2548
2549		spec.specConstants.push_back(bitwiseCast<deUint32>(0.f));
2550		spec.specConstants.push_back(bitwiseCast<deUint32>(-0.f));
2551		spec.specConstants.push_back(bitwiseCast<deUint32>(std::ldexp(1.0f, -16)));
2552		spec.specConstants.push_back(bitwiseCast<deUint32>(std::ldexp(-1.0f, -32)));
2553		spec.specConstants.push_back(bitwiseCast<deUint32>(std::ldexp(1.0f, -127)));
2554		spec.specConstants.push_back(bitwiseCast<deUint32>(-std::ldexp(1.0f, -128)));
2555
2556		outputs.push_back(0.f);
2557		outputs.push_back(-0.f);
2558		outputs.push_back(0.f);
2559		outputs.push_back(-0.f);
2560		outputs.push_back(0.f);
2561		outputs.push_back(-0.f);
2562
2563		spec.inputs.push_back(BufferSp(new Float32Buffer(inputs)));
2564		spec.outputs.push_back(BufferSp(new Float32Buffer(outputs)));
2565
2566		group->addChild(new SpvAsmComputeShaderCase(
2567			testCtx, "flush_to_zero", "Check that values are zeroed correctly", spec));
2568	}
2569
2570	{
2571		ComputeShaderSpec	spec;
2572		const deUint8		numCases	= 6;
2573		vector<float>		inputs		(numCases, 0.f);
2574		vector<float>		outputs;
2575
2576		spec.numWorkGroups	= IVec3(numCases, 1, 1);
2577
2578		for (deUint8 idx = 0; idx < 6; ++idx)
2579		{
2580			const float f = static_cast<float>(idx * 10 - 30) / 4.f;
2581			spec.specConstants.push_back(bitwiseCast<deUint32>(f));
2582			outputs.push_back(f);
2583		}
2584
2585		spec.inputs.push_back(BufferSp(new Float32Buffer(inputs)));
2586		spec.outputs.push_back(BufferSp(new Float32Buffer(outputs)));
2587
2588		group->addChild(new SpvAsmComputeShaderCase(
2589			testCtx, "exact", "Check that values exactly preserved where appropriate", spec));
2590	}
2591
2592	{
2593		ComputeShaderSpec	spec;
2594		const deUint8		numCases	= 4;
2595		vector<float>		inputs		(numCases, 0.f);
2596		vector<float>		outputs;
2597
2598		spec.numWorkGroups	= IVec3(numCases, 1, 1);
2599		spec.verifyIO		= &compareOpQuantizeF16ComputeExactCase;
2600
2601		outputs.push_back(constructNormalizedFloat(8, 0x300300));
2602		outputs.push_back(-constructNormalizedFloat(-7, 0x600800));
2603		outputs.push_back(constructNormalizedFloat(2, 0x01E000));
2604		outputs.push_back(constructNormalizedFloat(1, 0xFFE000));
2605
2606		for (deUint8 idx = 0; idx < numCases; ++idx)
2607			spec.specConstants.push_back(bitwiseCast<deUint32>(outputs[idx]));
2608
2609		spec.inputs.push_back(BufferSp(new Float32Buffer(inputs)));
2610		spec.outputs.push_back(BufferSp(new Float32Buffer(outputs)));
2611
2612		group->addChild(new SpvAsmComputeShaderCase(
2613			testCtx, "rounded", "Check that are rounded when needed", spec));
2614	}
2615
2616	return group.release();
2617}
2618
2619// Checks that constant null/composite values can be used in computation.
2620tcu::TestCaseGroup* createOpConstantUsageGroup (tcu::TestContext& testCtx)
2621{
2622	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opconstantnullcomposite", "Spotcheck the OpConstantNull & OpConstantComposite instruction"));
2623	ComputeShaderSpec				spec;
2624	de::Random						rnd				(deStringHash(group->getName()));
2625	const int						numElements		= 100;
2626	vector<float>					positiveFloats	(numElements, 0);
2627	vector<float>					negativeFloats	(numElements, 0);
2628
2629	fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
2630
2631	for (size_t ndx = 0; ndx < numElements; ++ndx)
2632		negativeFloats[ndx] = -positiveFloats[ndx];
2633
2634	spec.assembly =
2635		"OpCapability Shader\n"
2636		"%std450 = OpExtInstImport \"GLSL.std.450\"\n"
2637		"OpMemoryModel Logical GLSL450\n"
2638		"OpEntryPoint GLCompute %main \"main\" %id\n"
2639		"OpExecutionMode %main LocalSize 1 1 1\n"
2640
2641		"OpSource GLSL 430\n"
2642		"OpName %main           \"main\"\n"
2643		"OpName %id             \"gl_GlobalInvocationID\"\n"
2644
2645		"OpDecorate %id BuiltIn GlobalInvocationId\n"
2646
2647		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
2648
2649		"%fvec3     = OpTypeVector %f32 3\n"
2650		"%fmat      = OpTypeMatrix %fvec3 3\n"
2651		"%ten       = OpConstant %u32 10\n"
2652		"%f32arr10  = OpTypeArray %f32 %ten\n"
2653		"%fst       = OpTypeStruct %f32 %f32\n"
2654
2655		+ string(s_InputOutputBuffer) +
2656
2657		"%id        = OpVariable %uvec3ptr Input\n"
2658		"%zero      = OpConstant %i32 0\n"
2659
2660		// Create a bunch of null values
2661		"%unull     = OpConstantNull %u32\n"
2662		"%fnull     = OpConstantNull %f32\n"
2663		"%vnull     = OpConstantNull %fvec3\n"
2664		"%mnull     = OpConstantNull %fmat\n"
2665		"%anull     = OpConstantNull %f32arr10\n"
2666		"%snull     = OpConstantComposite %fst %fnull %fnull\n"
2667
2668		"%main      = OpFunction %void None %voidf\n"
2669		"%label     = OpLabel\n"
2670		"%idval     = OpLoad %uvec3 %id\n"
2671		"%x         = OpCompositeExtract %u32 %idval 0\n"
2672		"%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
2673		"%inval     = OpLoad %f32 %inloc\n"
2674		"%neg       = OpFNegate %f32 %inval\n"
2675
2676		// Get the abs() of (a certain element of) those null values
2677		"%unull_cov = OpConvertUToF %f32 %unull\n"
2678		"%unull_abs = OpExtInst %f32 %std450 FAbs %unull_cov\n"
2679		"%fnull_abs = OpExtInst %f32 %std450 FAbs %fnull\n"
2680		"%vnull_0   = OpCompositeExtract %f32 %vnull 0\n"
2681		"%vnull_abs = OpExtInst %f32 %std450 FAbs %vnull_0\n"
2682		"%mnull_12  = OpCompositeExtract %f32 %mnull 1 2\n"
2683		"%mnull_abs = OpExtInst %f32 %std450 FAbs %mnull_12\n"
2684		"%anull_3   = OpCompositeExtract %f32 %anull 3\n"
2685		"%anull_abs = OpExtInst %f32 %std450 FAbs %anull_3\n"
2686		"%snull_1   = OpCompositeExtract %f32 %snull 1\n"
2687		"%snull_abs = OpExtInst %f32 %std450 FAbs %snull_1\n"
2688
2689		// Add them all
2690		"%add1      = OpFAdd %f32 %neg  %unull_abs\n"
2691		"%add2      = OpFAdd %f32 %add1 %fnull_abs\n"
2692		"%add3      = OpFAdd %f32 %add2 %vnull_abs\n"
2693		"%add4      = OpFAdd %f32 %add3 %mnull_abs\n"
2694		"%add5      = OpFAdd %f32 %add4 %anull_abs\n"
2695		"%final     = OpFAdd %f32 %add5 %snull_abs\n"
2696
2697		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
2698		"             OpStore %outloc %final\n" // write to output
2699		"             OpReturn\n"
2700		"             OpFunctionEnd\n";
2701	spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
2702	spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
2703	spec.numWorkGroups = IVec3(numElements, 1, 1);
2704
2705	group->addChild(new SpvAsmComputeShaderCase(testCtx, "spotcheck", "Check that values constructed via OpConstantNull & OpConstantComposite can be used", spec));
2706
2707	return group.release();
2708}
2709
2710// Assembly code used for testing loop control is based on GLSL source code:
2711// #version 430
2712//
2713// layout(std140, set = 0, binding = 0) readonly buffer Input {
2714//   float elements[];
2715// } input_data;
2716// layout(std140, set = 0, binding = 1) writeonly buffer Output {
2717//   float elements[];
2718// } output_data;
2719//
2720// void main() {
2721//   uint x = gl_GlobalInvocationID.x;
2722//   output_data.elements[x] = input_data.elements[x];
2723//   for (uint i = 0; i < 4; ++i)
2724//     output_data.elements[x] += 1.f;
2725// }
2726tcu::TestCaseGroup* createLoopControlGroup (tcu::TestContext& testCtx)
2727{
2728	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "loop_control", "Tests loop control cases"));
2729	vector<CaseParameter>			cases;
2730	de::Random						rnd				(deStringHash(group->getName()));
2731	const int						numElements		= 100;
2732	vector<float>					inputFloats		(numElements, 0);
2733	vector<float>					outputFloats	(numElements, 0);
2734	const StringTemplate			shaderTemplate	(
2735		string(s_ShaderPreamble) +
2736
2737		"OpSource GLSL 430\n"
2738		"OpName %main \"main\"\n"
2739		"OpName %id \"gl_GlobalInvocationID\"\n"
2740
2741		"OpDecorate %id BuiltIn GlobalInvocationId\n"
2742
2743		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
2744
2745		"%u32ptr      = OpTypePointer Function %u32\n"
2746
2747		"%id          = OpVariable %uvec3ptr Input\n"
2748		"%zero        = OpConstant %i32 0\n"
2749		"%one         = OpConstant %i32 1\n"
2750		"%constf1     = OpConstant %f32 1.0\n"
2751		"%four        = OpConstant %u32 4\n"
2752
2753		"%main        = OpFunction %void None %voidf\n"
2754		"%entry       = OpLabel\n"
2755		"%i           = OpVariable %u32ptr Function\n"
2756		"               OpStore %i %zero\n"
2757
2758		"%idval       = OpLoad %uvec3 %id\n"
2759		"%x           = OpCompositeExtract %u32 %idval 0\n"
2760		"%inloc       = OpAccessChain %f32ptr %indata %zero %x\n"
2761		"%inval       = OpLoad %f32 %inloc\n"
2762		"%outloc      = OpAccessChain %f32ptr %outdata %zero %x\n"
2763		"               OpStore %outloc %inval\n"
2764		"               OpBranch %loop_entry\n"
2765
2766		"%loop_entry  = OpLabel\n"
2767		"%i_val       = OpLoad %u32 %i\n"
2768		"%cmp_lt      = OpULessThan %bool %i_val %four\n"
2769		"               OpLoopMerge %loop_merge %loop_entry ${CONTROL}\n"
2770		"               OpBranchConditional %cmp_lt %loop_body %loop_merge\n"
2771		"%loop_body   = OpLabel\n"
2772		"%outval      = OpLoad %f32 %outloc\n"
2773		"%addf1       = OpFAdd %f32 %outval %constf1\n"
2774		"               OpStore %outloc %addf1\n"
2775		"%new_i       = OpIAdd %u32 %i_val %one\n"
2776		"               OpStore %i %new_i\n"
2777		"               OpBranch %loop_entry\n"
2778		"%loop_merge  = OpLabel\n"
2779		"               OpReturn\n"
2780		"               OpFunctionEnd\n");
2781
2782	cases.push_back(CaseParameter("none",				"None"));
2783	cases.push_back(CaseParameter("unroll",				"Unroll"));
2784	cases.push_back(CaseParameter("dont_unroll",		"DontUnroll"));
2785	cases.push_back(CaseParameter("unroll_dont_unroll",	"Unroll|DontUnroll"));
2786
2787	fillRandomScalars(rnd, -100.f, 100.f, &inputFloats[0], numElements);
2788
2789	for (size_t ndx = 0; ndx < numElements; ++ndx)
2790		outputFloats[ndx] = inputFloats[ndx] + 4.f;
2791
2792	for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
2793	{
2794		map<string, string>		specializations;
2795		ComputeShaderSpec		spec;
2796
2797		specializations["CONTROL"] = cases[caseNdx].param;
2798		spec.assembly = shaderTemplate.specialize(specializations);
2799		spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
2800		spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
2801		spec.numWorkGroups = IVec3(numElements, 1, 1);
2802
2803		group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
2804	}
2805
2806	return group.release();
2807}
2808
2809// Assembly code used for testing selection control is based on GLSL source code:
2810// #version 430
2811//
2812// layout(std140, set = 0, binding = 0) readonly buffer Input {
2813//   float elements[];
2814// } input_data;
2815// layout(std140, set = 0, binding = 1) writeonly buffer Output {
2816//   float elements[];
2817// } output_data;
2818//
2819// void main() {
2820//   uint x = gl_GlobalInvocationID.x;
2821//   float val = input_data.elements[x];
2822//   if (val > 10.f)
2823//     output_data.elements[x] = val + 1.f;
2824//   else
2825//     output_data.elements[x] = val - 1.f;
2826// }
2827tcu::TestCaseGroup* createSelectionControlGroup (tcu::TestContext& testCtx)
2828{
2829	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "selection_control", "Tests selection control cases"));
2830	vector<CaseParameter>			cases;
2831	de::Random						rnd				(deStringHash(group->getName()));
2832	const int						numElements		= 100;
2833	vector<float>					inputFloats		(numElements, 0);
2834	vector<float>					outputFloats	(numElements, 0);
2835	const StringTemplate			shaderTemplate	(
2836		string(s_ShaderPreamble) +
2837
2838		"OpSource GLSL 430\n"
2839		"OpName %main \"main\"\n"
2840		"OpName %id \"gl_GlobalInvocationID\"\n"
2841
2842		"OpDecorate %id BuiltIn GlobalInvocationId\n"
2843
2844		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
2845
2846		"%id       = OpVariable %uvec3ptr Input\n"
2847		"%zero     = OpConstant %i32 0\n"
2848		"%constf1  = OpConstant %f32 1.0\n"
2849		"%constf10 = OpConstant %f32 10.0\n"
2850
2851		"%main     = OpFunction %void None %voidf\n"
2852		"%entry    = OpLabel\n"
2853		"%idval    = OpLoad %uvec3 %id\n"
2854		"%x        = OpCompositeExtract %u32 %idval 0\n"
2855		"%inloc    = OpAccessChain %f32ptr %indata %zero %x\n"
2856		"%inval    = OpLoad %f32 %inloc\n"
2857		"%outloc   = OpAccessChain %f32ptr %outdata %zero %x\n"
2858		"%cmp_gt   = OpFOrdGreaterThan %bool %inval %constf10\n"
2859
2860		"            OpSelectionMerge %if_end ${CONTROL}\n"
2861		"            OpBranchConditional %cmp_gt %if_true %if_false\n"
2862		"%if_true  = OpLabel\n"
2863		"%addf1    = OpFAdd %f32 %inval %constf1\n"
2864		"            OpStore %outloc %addf1\n"
2865		"            OpBranch %if_end\n"
2866		"%if_false = OpLabel\n"
2867		"%subf1    = OpFSub %f32 %inval %constf1\n"
2868		"            OpStore %outloc %subf1\n"
2869		"            OpBranch %if_end\n"
2870		"%if_end   = OpLabel\n"
2871		"            OpReturn\n"
2872		"            OpFunctionEnd\n");
2873
2874	cases.push_back(CaseParameter("none",					"None"));
2875	cases.push_back(CaseParameter("flatten",				"Flatten"));
2876	cases.push_back(CaseParameter("dont_flatten",			"DontFlatten"));
2877	cases.push_back(CaseParameter("flatten_dont_flatten",	"DontFlatten|Flatten"));
2878
2879	fillRandomScalars(rnd, -100.f, 100.f, &inputFloats[0], numElements);
2880
2881	for (size_t ndx = 0; ndx < numElements; ++ndx)
2882		outputFloats[ndx] = inputFloats[ndx] + (inputFloats[ndx] > 10.f ? 1.f : -1.f);
2883
2884	for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
2885	{
2886		map<string, string>		specializations;
2887		ComputeShaderSpec		spec;
2888
2889		specializations["CONTROL"] = cases[caseNdx].param;
2890		spec.assembly = shaderTemplate.specialize(specializations);
2891		spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
2892		spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
2893		spec.numWorkGroups = IVec3(numElements, 1, 1);
2894
2895		group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
2896	}
2897
2898	return group.release();
2899}
2900
2901// Assembly code used for testing function control is based on GLSL source code:
2902//
2903// #version 430
2904//
2905// layout(std140, set = 0, binding = 0) readonly buffer Input {
2906//   float elements[];
2907// } input_data;
2908// layout(std140, set = 0, binding = 1) writeonly buffer Output {
2909//   float elements[];
2910// } output_data;
2911//
2912// float const10() { return 10.f; }
2913//
2914// void main() {
2915//   uint x = gl_GlobalInvocationID.x;
2916//   output_data.elements[x] = input_data.elements[x] + const10();
2917// }
2918tcu::TestCaseGroup* createFunctionControlGroup (tcu::TestContext& testCtx)
2919{
2920	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "function_control", "Tests function control cases"));
2921	vector<CaseParameter>			cases;
2922	de::Random						rnd				(deStringHash(group->getName()));
2923	const int						numElements		= 100;
2924	vector<float>					inputFloats		(numElements, 0);
2925	vector<float>					outputFloats	(numElements, 0);
2926	const StringTemplate			shaderTemplate	(
2927		string(s_ShaderPreamble) +
2928
2929		"OpSource GLSL 430\n"
2930		"OpName %main \"main\"\n"
2931		"OpName %func_const10 \"const10(\"\n"
2932		"OpName %id \"gl_GlobalInvocationID\"\n"
2933
2934		"OpDecorate %id BuiltIn GlobalInvocationId\n"
2935
2936		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
2937
2938		"%f32f = OpTypeFunction %f32\n"
2939		"%id = OpVariable %uvec3ptr Input\n"
2940		"%zero = OpConstant %i32 0\n"
2941		"%constf10 = OpConstant %f32 10.0\n"
2942
2943		"%main         = OpFunction %void None %voidf\n"
2944		"%entry        = OpLabel\n"
2945		"%idval        = OpLoad %uvec3 %id\n"
2946		"%x            = OpCompositeExtract %u32 %idval 0\n"
2947		"%inloc        = OpAccessChain %f32ptr %indata %zero %x\n"
2948		"%inval        = OpLoad %f32 %inloc\n"
2949		"%ret_10       = OpFunctionCall %f32 %func_const10\n"
2950		"%fadd         = OpFAdd %f32 %inval %ret_10\n"
2951		"%outloc       = OpAccessChain %f32ptr %outdata %zero %x\n"
2952		"                OpStore %outloc %fadd\n"
2953		"                OpReturn\n"
2954		"                OpFunctionEnd\n"
2955
2956		"%func_const10 = OpFunction %f32 ${CONTROL} %f32f\n"
2957		"%label        = OpLabel\n"
2958		"                OpReturnValue %constf10\n"
2959		"                OpFunctionEnd\n");
2960
2961	cases.push_back(CaseParameter("none",						"None"));
2962	cases.push_back(CaseParameter("inline",						"Inline"));
2963	cases.push_back(CaseParameter("dont_inline",				"DontInline"));
2964	cases.push_back(CaseParameter("pure",						"Pure"));
2965	cases.push_back(CaseParameter("const",						"Const"));
2966	cases.push_back(CaseParameter("inline_pure",				"Inline|Pure"));
2967	cases.push_back(CaseParameter("const_dont_inline",			"Const|DontInline"));
2968	cases.push_back(CaseParameter("inline_dont_inline",			"Inline|DontInline"));
2969	cases.push_back(CaseParameter("pure_inline_dont_inline",	"Pure|Inline|DontInline"));
2970
2971	fillRandomScalars(rnd, -100.f, 100.f, &inputFloats[0], numElements);
2972
2973	for (size_t ndx = 0; ndx < numElements; ++ndx)
2974		outputFloats[ndx] = inputFloats[ndx] + 10.f;
2975
2976	for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
2977	{
2978		map<string, string>		specializations;
2979		ComputeShaderSpec		spec;
2980
2981		specializations["CONTROL"] = cases[caseNdx].param;
2982		spec.assembly = shaderTemplate.specialize(specializations);
2983		spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
2984		spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
2985		spec.numWorkGroups = IVec3(numElements, 1, 1);
2986
2987		group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
2988	}
2989
2990	return group.release();
2991}
2992
2993tcu::TestCaseGroup* createMemoryAccessGroup (tcu::TestContext& testCtx)
2994{
2995	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "memory_access", "Tests memory access cases"));
2996	vector<CaseParameter>			cases;
2997	de::Random						rnd				(deStringHash(group->getName()));
2998	const int						numElements		= 100;
2999	vector<float>					inputFloats		(numElements, 0);
3000	vector<float>					outputFloats	(numElements, 0);
3001	const StringTemplate			shaderTemplate	(
3002		string(s_ShaderPreamble) +
3003
3004		"OpSource GLSL 430\n"
3005		"OpName %main           \"main\"\n"
3006		"OpName %id             \"gl_GlobalInvocationID\"\n"
3007
3008		"OpDecorate %id BuiltIn GlobalInvocationId\n"
3009
3010		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
3011
3012		"%f32ptr_f  = OpTypePointer Function %f32\n"
3013
3014		"%id        = OpVariable %uvec3ptr Input\n"
3015		"%zero      = OpConstant %i32 0\n"
3016		"%four      = OpConstant %i32 4\n"
3017
3018		"%main      = OpFunction %void None %voidf\n"
3019		"%label     = OpLabel\n"
3020		"%copy      = OpVariable %f32ptr_f Function\n"
3021		"%idval     = OpLoad %uvec3 %id ${ACCESS}\n"
3022		"%x         = OpCompositeExtract %u32 %idval 0\n"
3023		"%inloc     = OpAccessChain %f32ptr %indata  %zero %x\n"
3024		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
3025		"             OpCopyMemory %copy %inloc ${ACCESS}\n"
3026		"%val1      = OpLoad %f32 %copy\n"
3027		"%val2      = OpLoad %f32 %inloc\n"
3028		"%add       = OpFAdd %f32 %val1 %val2\n"
3029		"             OpStore %outloc %add ${ACCESS}\n"
3030		"             OpReturn\n"
3031		"             OpFunctionEnd\n");
3032
3033	cases.push_back(CaseParameter("null",					""));
3034	cases.push_back(CaseParameter("none",					"None"));
3035	cases.push_back(CaseParameter("volatile",				"Volatile"));
3036	cases.push_back(CaseParameter("aligned",				"Aligned 4"));
3037	cases.push_back(CaseParameter("nontemporal",			"Nontemporal"));
3038	cases.push_back(CaseParameter("aligned_nontemporal",	"Aligned|Nontemporal 4"));
3039	cases.push_back(CaseParameter("aligned_volatile",		"Volatile|Aligned 4"));
3040
3041	fillRandomScalars(rnd, -100.f, 100.f, &inputFloats[0], numElements);
3042
3043	for (size_t ndx = 0; ndx < numElements; ++ndx)
3044		outputFloats[ndx] = inputFloats[ndx] + inputFloats[ndx];
3045
3046	for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
3047	{
3048		map<string, string>		specializations;
3049		ComputeShaderSpec		spec;
3050
3051		specializations["ACCESS"] = cases[caseNdx].param;
3052		spec.assembly = shaderTemplate.specialize(specializations);
3053		spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
3054		spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
3055		spec.numWorkGroups = IVec3(numElements, 1, 1);
3056
3057		group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
3058	}
3059
3060	return group.release();
3061}
3062
3063// Checks that we can get undefined values for various types, without exercising a computation with it.
3064tcu::TestCaseGroup* createOpUndefGroup (tcu::TestContext& testCtx)
3065{
3066	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opundef", "Tests the OpUndef instruction"));
3067	vector<CaseParameter>			cases;
3068	de::Random						rnd				(deStringHash(group->getName()));
3069	const int						numElements		= 100;
3070	vector<float>					positiveFloats	(numElements, 0);
3071	vector<float>					negativeFloats	(numElements, 0);
3072	const StringTemplate			shaderTemplate	(
3073		string(s_ShaderPreamble) +
3074
3075		"OpSource GLSL 430\n"
3076		"OpName %main           \"main\"\n"
3077		"OpName %id             \"gl_GlobalInvocationID\"\n"
3078
3079		"OpDecorate %id BuiltIn GlobalInvocationId\n"
3080
3081		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
3082
3083		"${TYPE}\n"
3084
3085		"%id        = OpVariable %uvec3ptr Input\n"
3086		"%zero      = OpConstant %i32 0\n"
3087
3088		"%main      = OpFunction %void None %voidf\n"
3089		"%label     = OpLabel\n"
3090
3091		"%undef     = OpUndef %type\n"
3092
3093		"%idval     = OpLoad %uvec3 %id\n"
3094		"%x         = OpCompositeExtract %u32 %idval 0\n"
3095
3096		"%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
3097		"%inval     = OpLoad %f32 %inloc\n"
3098		"%neg       = OpFNegate %f32 %inval\n"
3099		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
3100		"             OpStore %outloc %neg\n"
3101		"             OpReturn\n"
3102		"             OpFunctionEnd\n");
3103
3104	cases.push_back(CaseParameter("bool",			"%type = OpTypeBool"));
3105	cases.push_back(CaseParameter("sint32",			"%type = OpTypeInt 32 1"));
3106	cases.push_back(CaseParameter("uint32",			"%type = OpTypeInt 32 0"));
3107	cases.push_back(CaseParameter("float32",		"%type = OpTypeFloat 32"));
3108	cases.push_back(CaseParameter("vec4float32",	"%type = OpTypeVector %f32 4"));
3109	cases.push_back(CaseParameter("vec2uint32",		"%type = OpTypeVector %u32 2"));
3110	cases.push_back(CaseParameter("matrix",			"%type = OpTypeMatrix %uvec3 3"));
3111	cases.push_back(CaseParameter("image",			"%type = OpTypeImage %f32 2D 0 0 0 0 Unknown"));
3112	cases.push_back(CaseParameter("sampler",		"%type = OpTypeSampler"));
3113	cases.push_back(CaseParameter("sampledimage",	"%img = OpTypeImage %f32 2D 0 0 0 0 Unknown\n"
3114													"%type = OpTypeSampledImage %img"));
3115	cases.push_back(CaseParameter("array",			"%100 = OpConstant %u32 100\n"
3116													"%type = OpTypeArray %i32 %100"));
3117	cases.push_back(CaseParameter("runtimearray",	"%type = OpTypeRuntimeArray %f32"));
3118	cases.push_back(CaseParameter("struct",			"%type = OpTypeStruct %f32 %i32 %u32"));
3119	cases.push_back(CaseParameter("pointer",		"%type = OpTypePointer Function %i32"));
3120	cases.push_back(CaseParameter("function",		"%type = OpTypeFunction %void %i32 %f32"));
3121
3122	fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
3123
3124	for (size_t ndx = 0; ndx < numElements; ++ndx)
3125		negativeFloats[ndx] = -positiveFloats[ndx];
3126
3127	for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
3128	{
3129		map<string, string>		specializations;
3130		ComputeShaderSpec		spec;
3131
3132		specializations["TYPE"] = cases[caseNdx].param;
3133		spec.assembly = shaderTemplate.specialize(specializations);
3134		spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
3135		spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
3136		spec.numWorkGroups = IVec3(numElements, 1, 1);
3137
3138		group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
3139	}
3140
3141		return group.release();
3142}
3143typedef std::pair<std::string, VkShaderStageFlagBits>	EntryToStage;
3144typedef map<string, vector<EntryToStage> >				ModuleMap;
3145typedef map<VkShaderStageFlagBits, vector<deInt32> >	StageToSpecConstantMap;
3146
3147// Context for a specific test instantiation. For example, an instantiation
3148// may test colors yellow/magenta/cyan/mauve in a tesselation shader
3149// with an entry point named 'main_to_the_main'
3150struct InstanceContext
3151{
3152	// Map of modules to what entry_points we care to use from those modules.
3153	ModuleMap				moduleMap;
3154	RGBA					inputColors[4];
3155	RGBA					outputColors[4];
3156	// Concrete SPIR-V code to test via boilerplate specialization.
3157	map<string, string>		testCodeFragments;
3158	StageToSpecConstantMap	specConstants;
3159	bool					hasTessellation;
3160	VkShaderStageFlagBits	requiredStages;
3161
3162	InstanceContext (const RGBA (&inputs)[4], const RGBA (&outputs)[4], const map<string, string>& testCodeFragments_, const StageToSpecConstantMap& specConstants_)
3163		: testCodeFragments		(testCodeFragments_)
3164		, specConstants			(specConstants_)
3165		, hasTessellation		(false)
3166		, requiredStages		(static_cast<VkShaderStageFlagBits>(0))
3167	{
3168		inputColors[0]		= inputs[0];
3169		inputColors[1]		= inputs[1];
3170		inputColors[2]		= inputs[2];
3171		inputColors[3]		= inputs[3];
3172
3173		outputColors[0]		= outputs[0];
3174		outputColors[1]		= outputs[1];
3175		outputColors[2]		= outputs[2];
3176		outputColors[3]		= outputs[3];
3177	}
3178
3179	InstanceContext (const InstanceContext& other)
3180		: moduleMap			(other.moduleMap)
3181		, testCodeFragments	(other.testCodeFragments)
3182		, specConstants		(other.specConstants)
3183		, hasTessellation	(other.hasTessellation)
3184		, requiredStages    (other.requiredStages)
3185	{
3186		inputColors[0]		= other.inputColors[0];
3187		inputColors[1]		= other.inputColors[1];
3188		inputColors[2]		= other.inputColors[2];
3189		inputColors[3]		= other.inputColors[3];
3190
3191		outputColors[0]		= other.outputColors[0];
3192		outputColors[1]		= other.outputColors[1];
3193		outputColors[2]		= other.outputColors[2];
3194		outputColors[3]		= other.outputColors[3];
3195	}
3196};
3197
3198// A description of a shader to be used for a single stage of the graphics pipeline.
3199struct ShaderElement
3200{
3201	// The module that contains this shader entrypoint.
3202	string					moduleName;
3203
3204	// The name of the entrypoint.
3205	string					entryName;
3206
3207	// Which shader stage this entry point represents.
3208	VkShaderStageFlagBits	stage;
3209
3210	ShaderElement (const string& moduleName_, const string& entryPoint_, VkShaderStageFlagBits shaderStage_)
3211		: moduleName(moduleName_)
3212		, entryName(entryPoint_)
3213		, stage(shaderStage_)
3214	{
3215	}
3216};
3217
3218void getDefaultColors (RGBA (&colors)[4])
3219{
3220	colors[0] = RGBA::white();
3221	colors[1] = RGBA::red();
3222	colors[2] = RGBA::green();
3223	colors[3] = RGBA::blue();
3224}
3225
3226void getHalfColorsFullAlpha (RGBA (&colors)[4])
3227{
3228	colors[0] = RGBA(127, 127, 127, 255);
3229	colors[1] = RGBA(127, 0,   0,	255);
3230	colors[2] = RGBA(0,	  127, 0,	255);
3231	colors[3] = RGBA(0,	  0,   127, 255);
3232}
3233
3234void getInvertedDefaultColors (RGBA (&colors)[4])
3235{
3236	colors[0] = RGBA(0,		0,		0,		255);
3237	colors[1] = RGBA(0,		255,	255,	255);
3238	colors[2] = RGBA(255,	0,		255,	255);
3239	colors[3] = RGBA(255,	255,	0,		255);
3240}
3241
3242// Turns a statically sized array of ShaderElements into an instance-context
3243// by setting up the mapping of modules to their contained shaders and stages.
3244// The inputs and expected outputs are given by inputColors and outputColors
3245template<size_t N>
3246InstanceContext createInstanceContext (const ShaderElement (&elements)[N], const RGBA (&inputColors)[4], const RGBA (&outputColors)[4], const map<string, string>& testCodeFragments, const StageToSpecConstantMap& specConstants)
3247{
3248	InstanceContext ctx (inputColors, outputColors, testCodeFragments, specConstants);
3249	for (size_t i = 0; i < N; ++i)
3250	{
3251		ctx.moduleMap[elements[i].moduleName].push_back(std::make_pair(elements[i].entryName, elements[i].stage));
3252		ctx.requiredStages = static_cast<VkShaderStageFlagBits>(ctx.requiredStages | elements[i].stage);
3253	}
3254	return ctx;
3255}
3256
3257template<size_t N>
3258inline InstanceContext createInstanceContext (const ShaderElement (&elements)[N], RGBA (&inputColors)[4], const RGBA (&outputColors)[4], const map<string, string>& testCodeFragments)
3259{
3260	return createInstanceContext(elements, inputColors, outputColors, testCodeFragments, StageToSpecConstantMap());
3261}
3262
3263// The same as createInstanceContext above, but with default colors.
3264template<size_t N>
3265InstanceContext createInstanceContext (const ShaderElement (&elements)[N], const map<string, string>& testCodeFragments)
3266{
3267	RGBA defaultColors[4];
3268	getDefaultColors(defaultColors);
3269	return createInstanceContext(elements, defaultColors, defaultColors, testCodeFragments);
3270}
3271
3272// For the current InstanceContext, constructs the required modules and shader stage create infos.
3273void createPipelineShaderStages (const DeviceInterface& vk, const VkDevice vkDevice, InstanceContext& instance, Context& context, vector<ModuleHandleSp>& modules, vector<VkPipelineShaderStageCreateInfo>& createInfos)
3274{
3275	for (ModuleMap::const_iterator moduleNdx = instance.moduleMap.begin(); moduleNdx != instance.moduleMap.end(); ++moduleNdx)
3276	{
3277		const ModuleHandleSp mod(new Unique<VkShaderModule>(createShaderModule(vk, vkDevice, context.getBinaryCollection().get(moduleNdx->first), 0)));
3278		modules.push_back(ModuleHandleSp(mod));
3279		for (vector<EntryToStage>::const_iterator shaderNdx = moduleNdx->second.begin(); shaderNdx != moduleNdx->second.end(); ++shaderNdx)
3280		{
3281			const EntryToStage&						stage			= *shaderNdx;
3282			const VkPipelineShaderStageCreateInfo	shaderParam		=
3283			{
3284				VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,	//	VkStructureType			sType;
3285				DE_NULL,												//	const void*				pNext;
3286				(VkPipelineShaderStageCreateFlags)0,
3287				stage.second,											//	VkShaderStageFlagBits	stage;
3288				**modules.back(),										//	VkShaderModule			module;
3289				stage.first.c_str(),									//	const char*				pName;
3290				(const VkSpecializationInfo*)DE_NULL,
3291			};
3292			createInfos.push_back(shaderParam);
3293		}
3294	}
3295}
3296
3297#define SPIRV_ASSEMBLY_TYPES																	\
3298	"%void = OpTypeVoid\n"																		\
3299	"%bool = OpTypeBool\n"																		\
3300																								\
3301	"%i32 = OpTypeInt 32 1\n"																	\
3302	"%u32 = OpTypeInt 32 0\n"																	\
3303																								\
3304	"%f32 = OpTypeFloat 32\n"																	\
3305	"%v3f32 = OpTypeVector %f32 3\n"															\
3306	"%v4f32 = OpTypeVector %f32 4\n"															\
3307																								\
3308	"%v4f32_function = OpTypeFunction %v4f32 %v4f32\n"											\
3309	"%fun = OpTypeFunction %void\n"																\
3310																								\
3311	"%ip_f32 = OpTypePointer Input %f32\n"														\
3312	"%ip_i32 = OpTypePointer Input %i32\n"														\
3313	"%ip_v3f32 = OpTypePointer Input %v3f32\n"													\
3314	"%ip_v4f32 = OpTypePointer Input %v4f32\n"													\
3315																								\
3316	"%op_f32 = OpTypePointer Output %f32\n"														\
3317	"%op_v4f32 = OpTypePointer Output %v4f32\n"													\
3318																								\
3319	"%fp_f32   = OpTypePointer Function %f32\n"													\
3320	"%fp_i32   = OpTypePointer Function %i32\n"													\
3321	"%fp_v4f32 = OpTypePointer Function %v4f32\n"
3322
3323#define SPIRV_ASSEMBLY_CONSTANTS																\
3324	"%c_f32_1 = OpConstant %f32 1.0\n"															\
3325	"%c_f32_0 = OpConstant %f32 0.0\n"															\
3326	"%c_f32_0_5 = OpConstant %f32 0.5\n"														\
3327	"%c_f32_n1  = OpConstant %f32 -1.\n"														\
3328	"%c_f32_7 = OpConstant %f32 7.0\n"															\
3329	"%c_f32_8 = OpConstant %f32 8.0\n"															\
3330	"%c_i32_0 = OpConstant %i32 0\n"															\
3331	"%c_i32_1 = OpConstant %i32 1\n"															\
3332	"%c_i32_2 = OpConstant %i32 2\n"															\
3333	"%c_i32_3 = OpConstant %i32 3\n"															\
3334	"%c_i32_4 = OpConstant %i32 4\n"															\
3335	"%c_u32_0 = OpConstant %u32 0\n"															\
3336	"%c_u32_1 = OpConstant %u32 1\n"															\
3337	"%c_u32_2 = OpConstant %u32 2\n"															\
3338	"%c_u32_3 = OpConstant %u32 3\n"															\
3339	"%c_u32_32 = OpConstant %u32 32\n"															\
3340	"%c_u32_4 = OpConstant %u32 4\n"															\
3341	"%c_u32_31_bits = OpConstant %u32 0x7FFFFFFF\n"												\
3342	"%c_v4f32_1_1_1_1 = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_1\n"		\
3343	"%c_v4f32_1_0_0_1 = OpConstantComposite %v4f32 %c_f32_1 %c_f32_0 %c_f32_0 %c_f32_1\n"		\
3344	"%c_v4f32_0_5_0_5_0_5_0_5 = OpConstantComposite %v4f32 %c_f32_0_5 %c_f32_0_5 %c_f32_0_5 %c_f32_0_5\n"
3345
3346#define SPIRV_ASSEMBLY_ARRAYS																	\
3347	"%a1f32 = OpTypeArray %f32 %c_u32_1\n"														\
3348	"%a2f32 = OpTypeArray %f32 %c_u32_2\n"														\
3349	"%a3v4f32 = OpTypeArray %v4f32 %c_u32_3\n"													\
3350	"%a4f32 = OpTypeArray %f32 %c_u32_4\n"														\
3351	"%a32v4f32 = OpTypeArray %v4f32 %c_u32_32\n"												\
3352	"%ip_a3v4f32 = OpTypePointer Input %a3v4f32\n"												\
3353	"%ip_a32v4f32 = OpTypePointer Input %a32v4f32\n"											\
3354	"%op_a2f32 = OpTypePointer Output %a2f32\n"													\
3355	"%op_a3v4f32 = OpTypePointer Output %a3v4f32\n"												\
3356	"%op_a4f32 = OpTypePointer Output %a4f32\n"
3357
3358// Creates vertex-shader assembly by specializing a boilerplate StringTemplate
3359// on fragments, which must (at least) map "testfun" to an OpFunction definition
3360// for %test_code that takes and returns a %v4f32.  Boilerplate IDs are prefixed
3361// with "BP_" to avoid collisions with fragments.
3362//
3363// It corresponds roughly to this GLSL:
3364//;
3365// layout(location = 0) in vec4 position;
3366// layout(location = 1) in vec4 color;
3367// layout(location = 1) out highp vec4 vtxColor;
3368// void main (void) { gl_Position = position; vtxColor = test_func(color); }
3369string makeVertexShaderAssembly(const map<string, string>& fragments)
3370{
3371// \todo [2015-11-23 awoloszyn] Remove OpName once these have stabalized
3372	static const char vertexShaderBoilerplate[] =
3373		"OpCapability Shader\n"
3374		"OpMemoryModel Logical GLSL450\n"
3375		"OpEntryPoint Vertex %main \"main\" %BP_stream %BP_position %BP_vtx_color %BP_color %BP_gl_VertexID %BP_gl_InstanceID\n"
3376		"${debug:opt}\n"
3377		"OpName %main \"main\"\n"
3378		"OpName %BP_gl_PerVertex \"gl_PerVertex\"\n"
3379		"OpMemberName %BP_gl_PerVertex 0 \"gl_Position\"\n"
3380		"OpMemberName %BP_gl_PerVertex 1 \"gl_PointSize\"\n"
3381		"OpMemberName %BP_gl_PerVertex 2 \"gl_ClipDistance\"\n"
3382		"OpMemberName %BP_gl_PerVertex 3 \"gl_CullDistance\"\n"
3383		"OpName %test_code \"testfun(vf4;\"\n"
3384		"OpName %BP_stream \"\"\n"
3385		"OpName %BP_position \"position\"\n"
3386		"OpName %BP_vtx_color \"vtxColor\"\n"
3387		"OpName %BP_color \"color\"\n"
3388		"OpName %BP_gl_VertexID \"gl_VertexID\"\n"
3389		"OpName %BP_gl_InstanceID \"gl_InstanceID\"\n"
3390		"OpMemberDecorate %BP_gl_PerVertex 0 BuiltIn Position\n"
3391		"OpMemberDecorate %BP_gl_PerVertex 1 BuiltIn PointSize\n"
3392		"OpMemberDecorate %BP_gl_PerVertex 2 BuiltIn ClipDistance\n"
3393		"OpMemberDecorate %BP_gl_PerVertex 3 BuiltIn CullDistance\n"
3394		"OpDecorate %BP_gl_PerVertex Block\n"
3395		"OpDecorate %BP_position Location 0\n"
3396		"OpDecorate %BP_vtx_color Location 1\n"
3397		"OpDecorate %BP_color Location 1\n"
3398		"OpDecorate %BP_gl_VertexID BuiltIn VertexId\n"
3399		"OpDecorate %BP_gl_InstanceID BuiltIn InstanceId\n"
3400		"${decoration:opt}\n"
3401		SPIRV_ASSEMBLY_TYPES
3402		SPIRV_ASSEMBLY_CONSTANTS
3403		SPIRV_ASSEMBLY_ARRAYS
3404		"%BP_gl_PerVertex = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
3405		"%BP_op_gl_PerVertex = OpTypePointer Output %BP_gl_PerVertex\n"
3406		"%BP_stream = OpVariable %BP_op_gl_PerVertex Output\n"
3407		"%BP_position = OpVariable %ip_v4f32 Input\n"
3408		"%BP_vtx_color = OpVariable %op_v4f32 Output\n"
3409		"%BP_color = OpVariable %ip_v4f32 Input\n"
3410		"%BP_gl_VertexID = OpVariable %ip_i32 Input\n"
3411		"%BP_gl_InstanceID = OpVariable %ip_i32 Input\n"
3412		"${pre_main:opt}\n"
3413		"%main = OpFunction %void None %fun\n"
3414		"%BP_label = OpLabel\n"
3415		"%BP_pos = OpLoad %v4f32 %BP_position\n"
3416		"%BP_gl_pos = OpAccessChain %op_v4f32 %BP_stream %c_i32_0\n"
3417		"OpStore %BP_gl_pos %BP_pos\n"
3418		"%BP_col = OpLoad %v4f32 %BP_color\n"
3419		"%BP_col_transformed = OpFunctionCall %v4f32 %test_code %BP_col\n"
3420		"OpStore %BP_vtx_color %BP_col_transformed\n"
3421		"OpReturn\n"
3422		"OpFunctionEnd\n"
3423		"${testfun}\n";
3424	return tcu::StringTemplate(vertexShaderBoilerplate).specialize(fragments);
3425}
3426
3427// Creates tess-control-shader assembly by specializing a boilerplate
3428// StringTemplate on fragments, which must (at least) map "testfun" to an
3429// OpFunction definition for %test_code that takes and returns a %v4f32.
3430// Boilerplate IDs are prefixed with "BP_" to avoid collisions with fragments.
3431//
3432// It roughly corresponds to the following GLSL.
3433//
3434// #version 450
3435// layout(vertices = 3) out;
3436// layout(location = 1) in vec4 in_color[];
3437// layout(location = 1) out vec4 out_color[];
3438//
3439// void main() {
3440//   out_color[gl_InvocationID] = testfun(in_color[gl_InvocationID]);
3441//   gl_out[gl_InvocationID].gl_Position = gl_in[gl_InvocationID].gl_Position;
3442//   if (gl_InvocationID == 0) {
3443//     gl_TessLevelOuter[0] = 1.0;
3444//     gl_TessLevelOuter[1] = 1.0;
3445//     gl_TessLevelOuter[2] = 1.0;
3446//     gl_TessLevelInner[0] = 1.0;
3447//   }
3448// }
3449string makeTessControlShaderAssembly (const map<string, string>& fragments)
3450{
3451	static const char tessControlShaderBoilerplate[] =
3452		"OpCapability Tessellation\n"
3453		"OpMemoryModel Logical GLSL450\n"
3454		"OpEntryPoint TessellationControl %BP_main \"main\" %BP_out_color %BP_gl_InvocationID %BP_in_color %BP_gl_out %BP_gl_in %BP_gl_TessLevelOuter %BP_gl_TessLevelInner\n"
3455		"OpExecutionMode %BP_main OutputVertices 3\n"
3456		"${debug:opt}\n"
3457		"OpName %BP_main \"main\"\n"
3458		"OpName %test_code \"testfun(vf4;\"\n"
3459		"OpName %BP_out_color \"out_color\"\n"
3460		"OpName %BP_gl_InvocationID \"gl_InvocationID\"\n"
3461		"OpName %BP_in_color \"in_color\"\n"
3462		"OpName %BP_gl_PerVertex \"gl_PerVertex\"\n"
3463		"OpMemberName %BP_gl_PerVertex 0 \"gl_Position\"\n"
3464		"OpMemberName %BP_gl_PerVertex 1 \"gl_PointSize\"\n"
3465		"OpMemberName %BP_gl_PerVertex 2 \"gl_ClipDistance\"\n"
3466		"OpMemberName %BP_gl_PerVertex 3 \"gl_CullDistance\"\n"
3467		"OpName %BP_gl_out \"gl_out\"\n"
3468		"OpName %BP_gl_PVOut \"gl_PerVertex\"\n"
3469		"OpMemberName %BP_gl_PVOut 0 \"gl_Position\"\n"
3470		"OpMemberName %BP_gl_PVOut 1 \"gl_PointSize\"\n"
3471		"OpMemberName %BP_gl_PVOut 2 \"gl_ClipDistance\"\n"
3472		"OpMemberName %BP_gl_PVOut 3 \"gl_CullDistance\"\n"
3473		"OpName %BP_gl_in \"gl_in\"\n"
3474		"OpName %BP_gl_TessLevelOuter \"gl_TessLevelOuter\"\n"
3475		"OpName %BP_gl_TessLevelInner \"gl_TessLevelInner\"\n"
3476		"OpDecorate %BP_out_color Location 1\n"
3477		"OpDecorate %BP_gl_InvocationID BuiltIn InvocationId\n"
3478		"OpDecorate %BP_in_color Location 1\n"
3479		"OpMemberDecorate %BP_gl_PerVertex 0 BuiltIn Position\n"
3480		"OpMemberDecorate %BP_gl_PerVertex 1 BuiltIn PointSize\n"
3481		"OpMemberDecorate %BP_gl_PerVertex 2 BuiltIn ClipDistance\n"
3482		"OpMemberDecorate %BP_gl_PerVertex 3 BuiltIn CullDistance\n"
3483		"OpDecorate %BP_gl_PerVertex Block\n"
3484		"OpMemberDecorate %BP_gl_PVOut 0 BuiltIn Position\n"
3485		"OpMemberDecorate %BP_gl_PVOut 1 BuiltIn PointSize\n"
3486		"OpMemberDecorate %BP_gl_PVOut 2 BuiltIn ClipDistance\n"
3487		"OpMemberDecorate %BP_gl_PVOut 3 BuiltIn CullDistance\n"
3488		"OpDecorate %BP_gl_PVOut Block\n"
3489		"OpDecorate %BP_gl_TessLevelOuter Patch\n"
3490		"OpDecorate %BP_gl_TessLevelOuter BuiltIn TessLevelOuter\n"
3491		"OpDecorate %BP_gl_TessLevelInner Patch\n"
3492		"OpDecorate %BP_gl_TessLevelInner BuiltIn TessLevelInner\n"
3493		"${decoration:opt}\n"
3494		SPIRV_ASSEMBLY_TYPES
3495		SPIRV_ASSEMBLY_CONSTANTS
3496		SPIRV_ASSEMBLY_ARRAYS
3497		"%BP_out_color = OpVariable %op_a3v4f32 Output\n"
3498		"%BP_gl_InvocationID = OpVariable %ip_i32 Input\n"
3499		"%BP_in_color = OpVariable %ip_a32v4f32 Input\n"
3500		"%BP_gl_PerVertex = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
3501		"%BP_a3_gl_PerVertex = OpTypeArray %BP_gl_PerVertex %c_u32_3\n"
3502		"%BP_op_a3_gl_PerVertex = OpTypePointer Output %BP_a3_gl_PerVertex\n"
3503		"%BP_gl_out = OpVariable %BP_op_a3_gl_PerVertex Output\n"
3504		"%BP_gl_PVOut = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
3505		"%BP_a32_gl_PVOut = OpTypeArray %BP_gl_PVOut %c_u32_32\n"
3506		"%BP_ip_a32_gl_PVOut = OpTypePointer Input %BP_a32_gl_PVOut\n"
3507		"%BP_gl_in = OpVariable %BP_ip_a32_gl_PVOut Input\n"
3508		"%BP_gl_TessLevelOuter = OpVariable %op_a4f32 Output\n"
3509		"%BP_gl_TessLevelInner = OpVariable %op_a2f32 Output\n"
3510		"${pre_main:opt}\n"
3511
3512		"%BP_main = OpFunction %void None %fun\n"
3513		"%BP_label = OpLabel\n"
3514
3515		"%BP_gl_Invoc = OpLoad %i32 %BP_gl_InvocationID\n"
3516
3517		"%BP_in_col_loc = OpAccessChain %ip_v4f32 %BP_in_color %BP_gl_Invoc\n"
3518		"%BP_out_col_loc = OpAccessChain %op_v4f32 %BP_out_color %BP_gl_Invoc\n"
3519		"%BP_in_col_val = OpLoad %v4f32 %BP_in_col_loc\n"
3520		"%BP_clr_transformed = OpFunctionCall %v4f32 %test_code %BP_in_col_val\n"
3521		"OpStore %BP_out_col_loc %BP_clr_transformed\n"
3522
3523		"%BP_in_pos_loc = OpAccessChain %ip_v4f32 %BP_gl_in %BP_gl_Invoc %c_i32_0\n"
3524		"%BP_out_pos_loc = OpAccessChain %op_v4f32 %BP_gl_out %BP_gl_Invoc %c_i32_0\n"
3525		"%BP_in_pos_val = OpLoad %v4f32 %BP_in_pos_loc\n"
3526		"OpStore %BP_out_pos_loc %BP_in_pos_val\n"
3527
3528		"%BP_cmp = OpIEqual %bool %BP_gl_Invoc %c_i32_0\n"
3529		"OpSelectionMerge %BP_merge_label None\n"
3530		"OpBranchConditional %BP_cmp %BP_if_label %BP_merge_label\n"
3531		"%BP_if_label = OpLabel\n"
3532		"%BP_gl_TessLevelOuterPos_0 = OpAccessChain %op_f32 %BP_gl_TessLevelOuter %c_i32_0\n"
3533		"%BP_gl_TessLevelOuterPos_1 = OpAccessChain %op_f32 %BP_gl_TessLevelOuter %c_i32_1\n"
3534		"%BP_gl_TessLevelOuterPos_2 = OpAccessChain %op_f32 %BP_gl_TessLevelOuter %c_i32_2\n"
3535		"%BP_gl_TessLevelInnerPos_0 = OpAccessChain %op_f32 %BP_gl_TessLevelInner %c_i32_0\n"
3536		"OpStore %BP_gl_TessLevelOuterPos_0 %c_f32_1\n"
3537		"OpStore %BP_gl_TessLevelOuterPos_1 %c_f32_1\n"
3538		"OpStore %BP_gl_TessLevelOuterPos_2 %c_f32_1\n"
3539		"OpStore %BP_gl_TessLevelInnerPos_0 %c_f32_1\n"
3540		"OpBranch %BP_merge_label\n"
3541		"%BP_merge_label = OpLabel\n"
3542		"OpReturn\n"
3543		"OpFunctionEnd\n"
3544		"${testfun}\n";
3545	return tcu::StringTemplate(tessControlShaderBoilerplate).specialize(fragments);
3546}
3547
3548// Creates tess-evaluation-shader assembly by specializing a boilerplate
3549// StringTemplate on fragments, which must (at least) map "testfun" to an
3550// OpFunction definition for %test_code that takes and returns a %v4f32.
3551// Boilerplate IDs are prefixed with "BP_" to avoid collisions with fragments.
3552//
3553// It roughly corresponds to the following glsl.
3554//
3555// #version 450
3556//
3557// layout(triangles, equal_spacing, ccw) in;
3558// layout(location = 1) in vec4 in_color[];
3559// layout(location = 1) out vec4 out_color;
3560//
3561// #define interpolate(val)
3562//   vec4(gl_TessCoord.x) * val[0] + vec4(gl_TessCoord.y) * val[1] +
3563//          vec4(gl_TessCoord.z) * val[2]
3564//
3565// void main() {
3566//   gl_Position = vec4(gl_TessCoord.x) * gl_in[0].gl_Position +
3567//                  vec4(gl_TessCoord.y) * gl_in[1].gl_Position +
3568//                  vec4(gl_TessCoord.z) * gl_in[2].gl_Position;
3569//   out_color = testfun(interpolate(in_color));
3570// }
3571string makeTessEvalShaderAssembly(const map<string, string>& fragments)
3572{
3573	static const char tessEvalBoilerplate[] =
3574		"OpCapability Tessellation\n"
3575		"OpMemoryModel Logical GLSL450\n"
3576		"OpEntryPoint TessellationEvaluation %BP_main \"main\" %BP_stream %BP_gl_TessCoord %BP_gl_in %BP_out_color %BP_in_color\n"
3577		"OpExecutionMode %BP_main Triangles\n"
3578		"OpExecutionMode %BP_main SpacingEqual\n"
3579		"OpExecutionMode %BP_main VertexOrderCcw\n"
3580		"${debug:opt}\n"
3581		"OpName %BP_main \"main\"\n"
3582		"OpName %test_code \"testfun(vf4;\"\n"
3583		"OpName %BP_gl_PerVertexOut \"gl_PerVertex\"\n"
3584		"OpMemberName %BP_gl_PerVertexOut 0 \"gl_Position\"\n"
3585		"OpMemberName %BP_gl_PerVertexOut 1 \"gl_PointSize\"\n"
3586		"OpMemberName %BP_gl_PerVertexOut 2 \"gl_ClipDistance\"\n"
3587		"OpMemberName %BP_gl_PerVertexOut 3 \"gl_CullDistance\"\n"
3588		"OpName %BP_stream \"\"\n"
3589		"OpName %BP_gl_TessCoord \"gl_TessCoord\"\n"
3590		"OpName %BP_gl_PerVertexIn \"gl_PerVertex\"\n"
3591		"OpMemberName %BP_gl_PerVertexIn 0 \"gl_Position\"\n"
3592		"OpMemberName %BP_gl_PerVertexIn 1 \"gl_PointSize\"\n"
3593		"OpMemberName %BP_gl_PerVertexIn 2 \"gl_ClipDistance\"\n"
3594		"OpMemberName %BP_gl_PerVertexIn 3 \"gl_CullDistance\"\n"
3595		"OpName %BP_gl_in \"gl_in\"\n"
3596		"OpName %BP_out_color \"out_color\"\n"
3597		"OpName %BP_in_color \"in_color\"\n"
3598		"OpMemberDecorate %BP_gl_PerVertexOut 0 BuiltIn Position\n"
3599		"OpMemberDecorate %BP_gl_PerVertexOut 1 BuiltIn PointSize\n"
3600		"OpMemberDecorate %BP_gl_PerVertexOut 2 BuiltIn ClipDistance\n"
3601		"OpMemberDecorate %BP_gl_PerVertexOut 3 BuiltIn CullDistance\n"
3602		"OpDecorate %BP_gl_PerVertexOut Block\n"
3603		"OpDecorate %BP_gl_TessCoord BuiltIn TessCoord\n"
3604		"OpMemberDecorate %BP_gl_PerVertexIn 0 BuiltIn Position\n"
3605		"OpMemberDecorate %BP_gl_PerVertexIn 1 BuiltIn PointSize\n"
3606		"OpMemberDecorate %BP_gl_PerVertexIn 2 BuiltIn ClipDistance\n"
3607		"OpMemberDecorate %BP_gl_PerVertexIn 3 BuiltIn CullDistance\n"
3608		"OpDecorate %BP_gl_PerVertexIn Block\n"
3609		"OpDecorate %BP_out_color Location 1\n"
3610		"OpDecorate %BP_in_color Location 1\n"
3611		"${decoration:opt}\n"
3612		SPIRV_ASSEMBLY_TYPES
3613		SPIRV_ASSEMBLY_CONSTANTS
3614		SPIRV_ASSEMBLY_ARRAYS
3615		"%BP_gl_PerVertexOut = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
3616		"%BP_op_gl_PerVertexOut = OpTypePointer Output %BP_gl_PerVertexOut\n"
3617		"%BP_stream = OpVariable %BP_op_gl_PerVertexOut Output\n"
3618		"%BP_gl_TessCoord = OpVariable %ip_v3f32 Input\n"
3619		"%BP_gl_PerVertexIn = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
3620		"%BP_a32_gl_PerVertexIn = OpTypeArray %BP_gl_PerVertexIn %c_u32_32\n"
3621		"%BP_ip_a32_gl_PerVertexIn = OpTypePointer Input %BP_a32_gl_PerVertexIn\n"
3622		"%BP_gl_in = OpVariable %BP_ip_a32_gl_PerVertexIn Input\n"
3623		"%BP_out_color = OpVariable %op_v4f32 Output\n"
3624		"%BP_in_color = OpVariable %ip_a32v4f32 Input\n"
3625		"${pre_main:opt}\n"
3626		"%BP_main = OpFunction %void None %fun\n"
3627		"%BP_label = OpLabel\n"
3628		"%BP_gl_TC_0 = OpAccessChain %ip_f32 %BP_gl_TessCoord %c_u32_0\n"
3629		"%BP_gl_TC_1 = OpAccessChain %ip_f32 %BP_gl_TessCoord %c_u32_1\n"
3630		"%BP_gl_TC_2 = OpAccessChain %ip_f32 %BP_gl_TessCoord %c_u32_2\n"
3631		"%BP_gl_in_gl_Pos_0 = OpAccessChain %ip_v4f32 %BP_gl_in %c_i32_0 %c_i32_0\n"
3632		"%BP_gl_in_gl_Pos_1 = OpAccessChain %ip_v4f32 %BP_gl_in %c_i32_1 %c_i32_0\n"
3633		"%BP_gl_in_gl_Pos_2 = OpAccessChain %ip_v4f32 %BP_gl_in %c_i32_2 %c_i32_0\n"
3634
3635		"%BP_gl_OPos = OpAccessChain %op_v4f32 %BP_stream %c_i32_0\n"
3636		"%BP_in_color_0 = OpAccessChain %ip_v4f32 %BP_in_color %c_i32_0\n"
3637		"%BP_in_color_1 = OpAccessChain %ip_v4f32 %BP_in_color %c_i32_1\n"
3638		"%BP_in_color_2 = OpAccessChain %ip_v4f32 %BP_in_color %c_i32_2\n"
3639
3640		"%BP_TC_W_0 = OpLoad %f32 %BP_gl_TC_0\n"
3641		"%BP_TC_W_1 = OpLoad %f32 %BP_gl_TC_1\n"
3642		"%BP_TC_W_2 = OpLoad %f32 %BP_gl_TC_2\n"
3643		"%BP_v4f32_TC_0 = OpCompositeConstruct %v4f32 %BP_TC_W_0 %BP_TC_W_0 %BP_TC_W_0 %BP_TC_W_0\n"
3644		"%BP_v4f32_TC_1 = OpCompositeConstruct %v4f32 %BP_TC_W_1 %BP_TC_W_1 %BP_TC_W_1 %BP_TC_W_1\n"
3645		"%BP_v4f32_TC_2 = OpCompositeConstruct %v4f32 %BP_TC_W_2 %BP_TC_W_2 %BP_TC_W_2 %BP_TC_W_2\n"
3646
3647		"%BP_gl_IP_0 = OpLoad %v4f32 %BP_gl_in_gl_Pos_0\n"
3648		"%BP_gl_IP_1 = OpLoad %v4f32 %BP_gl_in_gl_Pos_1\n"
3649		"%BP_gl_IP_2 = OpLoad %v4f32 %BP_gl_in_gl_Pos_2\n"
3650
3651		"%BP_IP_W_0 = OpFMul %v4f32 %BP_v4f32_TC_0 %BP_gl_IP_0\n"
3652		"%BP_IP_W_1 = OpFMul %v4f32 %BP_v4f32_TC_1 %BP_gl_IP_1\n"
3653		"%BP_IP_W_2 = OpFMul %v4f32 %BP_v4f32_TC_2 %BP_gl_IP_2\n"
3654
3655		"%BP_pos_sum_0 = OpFAdd %v4f32 %BP_IP_W_0 %BP_IP_W_1\n"
3656		"%BP_pos_sum_1 = OpFAdd %v4f32 %BP_pos_sum_0 %BP_IP_W_2\n"
3657
3658		"OpStore %BP_gl_OPos %BP_pos_sum_1\n"
3659
3660		"%BP_IC_0 = OpLoad %v4f32 %BP_in_color_0\n"
3661		"%BP_IC_1 = OpLoad %v4f32 %BP_in_color_1\n"
3662		"%BP_IC_2 = OpLoad %v4f32 %BP_in_color_2\n"
3663
3664		"%BP_IC_W_0 = OpFMul %v4f32 %BP_v4f32_TC_0 %BP_IC_0\n"
3665		"%BP_IC_W_1 = OpFMul %v4f32 %BP_v4f32_TC_1 %BP_IC_1\n"
3666		"%BP_IC_W_2 = OpFMul %v4f32 %BP_v4f32_TC_2 %BP_IC_2\n"
3667
3668		"%BP_col_sum_0 = OpFAdd %v4f32 %BP_IC_W_0 %BP_IC_W_1\n"
3669		"%BP_col_sum_1 = OpFAdd %v4f32 %BP_col_sum_0 %BP_IC_W_2\n"
3670
3671		"%BP_clr_transformed = OpFunctionCall %v4f32 %test_code %BP_col_sum_1\n"
3672
3673		"OpStore %BP_out_color %BP_clr_transformed\n"
3674		"OpReturn\n"
3675		"OpFunctionEnd\n"
3676		"${testfun}\n";
3677	return tcu::StringTemplate(tessEvalBoilerplate).specialize(fragments);
3678}
3679
3680// Creates geometry-shader assembly by specializing a boilerplate StringTemplate
3681// on fragments, which must (at least) map "testfun" to an OpFunction definition
3682// for %test_code that takes and returns a %v4f32.  Boilerplate IDs are prefixed
3683// with "BP_" to avoid collisions with fragments.
3684//
3685// Derived from this GLSL:
3686//
3687// #version 450
3688// layout(triangles) in;
3689// layout(triangle_strip, max_vertices = 3) out;
3690//
3691// layout(location = 1) in vec4 in_color[];
3692// layout(location = 1) out vec4 out_color;
3693//
3694// void main() {
3695//   gl_Position = gl_in[0].gl_Position;
3696//   out_color = test_fun(in_color[0]);
3697//   EmitVertex();
3698//   gl_Position = gl_in[1].gl_Position;
3699//   out_color = test_fun(in_color[1]);
3700//   EmitVertex();
3701//   gl_Position = gl_in[2].gl_Position;
3702//   out_color = test_fun(in_color[2]);
3703//   EmitVertex();
3704//   EndPrimitive();
3705// }
3706string makeGeometryShaderAssembly(const map<string, string>& fragments)
3707{
3708	static const char geometryShaderBoilerplate[] =
3709		"OpCapability Geometry\n"
3710		"OpMemoryModel Logical GLSL450\n"
3711		"OpEntryPoint Geometry %BP_main \"main\" %BP_out_gl_position %BP_gl_in %BP_out_color %BP_in_color\n"
3712		"OpExecutionMode %BP_main Triangles\n"
3713		"OpExecutionMode %BP_main Invocations 0\n"
3714		"OpExecutionMode %BP_main OutputTriangleStrip\n"
3715		"OpExecutionMode %BP_main OutputVertices 3\n"
3716		"${debug:opt}\n"
3717		"OpName %BP_main \"main\"\n"
3718		"OpName %BP_per_vertex_in \"gl_PerVertex\"\n"
3719		"OpMemberName %BP_per_vertex_in 0 \"gl_Position\"\n"
3720		"OpMemberName %BP_per_vertex_in 1 \"gl_PointSize\"\n"
3721		"OpMemberName %BP_per_vertex_in 2 \"gl_ClipDistance\"\n"
3722		"OpMemberName %BP_per_vertex_in 3 \"gl_CullDistance\"\n"
3723		"OpName %BP_gl_in \"gl_in\"\n"
3724		"OpName %BP_out_color \"out_color\"\n"
3725		"OpName %BP_in_color \"in_color\"\n"
3726		"OpName %test_code \"testfun(vf4;\"\n"
3727		"OpDecorate %BP_out_gl_position BuiltIn Position\n"
3728		"OpMemberDecorate %BP_per_vertex_in 0 BuiltIn Position\n"
3729		"OpMemberDecorate %BP_per_vertex_in 1 BuiltIn PointSize\n"
3730		"OpMemberDecorate %BP_per_vertex_in 2 BuiltIn ClipDistance\n"
3731		"OpMemberDecorate %BP_per_vertex_in 3 BuiltIn CullDistance\n"
3732		"OpDecorate %BP_per_vertex_in Block\n"
3733		"OpDecorate %BP_out_color Location 1\n"
3734		"OpDecorate %BP_out_color Stream 0\n"
3735		"OpDecorate %BP_in_color Location 1\n"
3736		"${decoration:opt}\n"
3737		SPIRV_ASSEMBLY_TYPES
3738		SPIRV_ASSEMBLY_CONSTANTS
3739		SPIRV_ASSEMBLY_ARRAYS
3740		"%BP_per_vertex_in = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
3741		"%BP_a3_per_vertex_in = OpTypeArray %BP_per_vertex_in %c_u32_3\n"
3742		"%BP_ip_a3_per_vertex_in = OpTypePointer Input %BP_a3_per_vertex_in\n"
3743
3744		"%BP_gl_in = OpVariable %BP_ip_a3_per_vertex_in Input\n"
3745		"%BP_out_color = OpVariable %op_v4f32 Output\n"
3746		"%BP_in_color = OpVariable %ip_a3v4f32 Input\n"
3747		"%BP_out_gl_position = OpVariable %op_v4f32 Output\n"
3748		"${pre_main:opt}\n"
3749
3750		"%BP_main = OpFunction %void None %fun\n"
3751		"%BP_label = OpLabel\n"
3752		"%BP_gl_in_0_gl_position = OpAccessChain %ip_v4f32 %BP_gl_in %c_i32_0 %c_i32_0\n"
3753		"%BP_gl_in_1_gl_position = OpAccessChain %ip_v4f32 %BP_gl_in %c_i32_1 %c_i32_0\n"
3754		"%BP_gl_in_2_gl_position = OpAccessChain %ip_v4f32 %BP_gl_in %c_i32_2 %c_i32_0\n"
3755
3756		"%BP_in_position_0 = OpLoad %v4f32 %BP_gl_in_0_gl_position\n"
3757		"%BP_in_position_1 = OpLoad %v4f32 %BP_gl_in_1_gl_position\n"
3758		"%BP_in_position_2 = OpLoad %v4f32 %BP_gl_in_2_gl_position \n"
3759
3760		"%BP_in_color_0_ptr = OpAccessChain %ip_v4f32 %BP_in_color %c_i32_0\n"
3761		"%BP_in_color_1_ptr = OpAccessChain %ip_v4f32 %BP_in_color %c_i32_1\n"
3762		"%BP_in_color_2_ptr = OpAccessChain %ip_v4f32 %BP_in_color %c_i32_2\n"
3763
3764		"%BP_in_color_0 = OpLoad %v4f32 %BP_in_color_0_ptr\n"
3765		"%BP_in_color_1 = OpLoad %v4f32 %BP_in_color_1_ptr\n"
3766		"%BP_in_color_2 = OpLoad %v4f32 %BP_in_color_2_ptr\n"
3767
3768		"%BP_transformed_in_color_0 = OpFunctionCall %v4f32 %test_code %BP_in_color_0\n"
3769		"%BP_transformed_in_color_1 = OpFunctionCall %v4f32 %test_code %BP_in_color_1\n"
3770		"%BP_transformed_in_color_2 = OpFunctionCall %v4f32 %test_code %BP_in_color_2\n"
3771
3772
3773		"OpStore %BP_out_gl_position %BP_in_position_0\n"
3774		"OpStore %BP_out_color %BP_transformed_in_color_0\n"
3775		"OpEmitVertex\n"
3776
3777		"OpStore %BP_out_gl_position %BP_in_position_1\n"
3778		"OpStore %BP_out_color %BP_transformed_in_color_1\n"
3779		"OpEmitVertex\n"
3780
3781		"OpStore %BP_out_gl_position %BP_in_position_2\n"
3782		"OpStore %BP_out_color %BP_transformed_in_color_2\n"
3783		"OpEmitVertex\n"
3784
3785		"OpEndPrimitive\n"
3786		"OpReturn\n"
3787		"OpFunctionEnd\n"
3788		"${testfun}\n";
3789	return tcu::StringTemplate(geometryShaderBoilerplate).specialize(fragments);
3790}
3791
3792// Creates fragment-shader assembly by specializing a boilerplate StringTemplate
3793// on fragments, which must (at least) map "testfun" to an OpFunction definition
3794// for %test_code that takes and returns a %v4f32.  Boilerplate IDs are prefixed
3795// with "BP_" to avoid collisions with fragments.
3796//
3797// Derived from this GLSL:
3798//
3799// layout(location = 1) in highp vec4 vtxColor;
3800// layout(location = 0) out highp vec4 fragColor;
3801// highp vec4 testfun(highp vec4 x) { return x; }
3802// void main(void) { fragColor = testfun(vtxColor); }
3803//
3804// with modifications including passing vtxColor by value and ripping out
3805// testfun() definition.
3806string makeFragmentShaderAssembly(const map<string, string>& fragments)
3807{
3808	static const char fragmentShaderBoilerplate[] =
3809		"OpCapability Shader\n"
3810		"OpMemoryModel Logical GLSL450\n"
3811		"OpEntryPoint Fragment %BP_main \"main\" %BP_vtxColor %BP_fragColor\n"
3812		"OpExecutionMode %BP_main OriginUpperLeft\n"
3813		"${debug:opt}\n"
3814		"OpName %BP_main \"main\"\n"
3815		"OpName %BP_fragColor \"fragColor\"\n"
3816		"OpName %BP_vtxColor \"vtxColor\"\n"
3817		"OpName %test_code \"testfun(vf4;\"\n"
3818		"OpDecorate %BP_fragColor Location 0\n"
3819		"OpDecorate %BP_vtxColor Location 1\n"
3820		"${decoration:opt}\n"
3821		SPIRV_ASSEMBLY_TYPES
3822		SPIRV_ASSEMBLY_CONSTANTS
3823		SPIRV_ASSEMBLY_ARRAYS
3824		"%BP_fragColor = OpVariable %op_v4f32 Output\n"
3825		"%BP_vtxColor = OpVariable %ip_v4f32 Input\n"
3826		"${pre_main:opt}\n"
3827		"%BP_main = OpFunction %void None %fun\n"
3828		"%BP_label_main = OpLabel\n"
3829		"%BP_tmp1 = OpLoad %v4f32 %BP_vtxColor\n"
3830		"%BP_tmp2 = OpFunctionCall %v4f32 %test_code %BP_tmp1\n"
3831		"OpStore %BP_fragColor %BP_tmp2\n"
3832		"OpReturn\n"
3833		"OpFunctionEnd\n"
3834		"${testfun}\n";
3835	return tcu::StringTemplate(fragmentShaderBoilerplate).specialize(fragments);
3836}
3837
3838// Creates fragments that specialize into a simple pass-through shader (of any kind).
3839map<string, string> passthruFragments(void)
3840{
3841	map<string, string> fragments;
3842	fragments["testfun"] =
3843		// A %test_code function that returns its argument unchanged.
3844		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
3845		"%param1 = OpFunctionParameter %v4f32\n"
3846		"%label_testfun = OpLabel\n"
3847		"OpReturnValue %param1\n"
3848		"OpFunctionEnd\n";
3849	return fragments;
3850}
3851
3852// Adds shader assembly text to dst.spirvAsmSources for all shader kinds.
3853// Vertex shader gets custom code from context, the rest are pass-through.
3854void addShaderCodeCustomVertex(vk::SourceCollections& dst, InstanceContext context)
3855{
3856	map<string, string> passthru = passthruFragments();
3857	dst.spirvAsmSources.add("vert") << makeVertexShaderAssembly(context.testCodeFragments);
3858	dst.spirvAsmSources.add("frag") << makeFragmentShaderAssembly(passthru);
3859}
3860
3861// Adds shader assembly text to dst.spirvAsmSources for all shader kinds.
3862// Tessellation control shader gets custom code from context, the rest are
3863// pass-through.
3864void addShaderCodeCustomTessControl(vk::SourceCollections& dst, InstanceContext context)
3865{
3866	map<string, string> passthru = passthruFragments();
3867	dst.spirvAsmSources.add("vert") << makeVertexShaderAssembly(passthru);
3868	dst.spirvAsmSources.add("tessc") << makeTessControlShaderAssembly(context.testCodeFragments);
3869	dst.spirvAsmSources.add("tesse") << makeTessEvalShaderAssembly(passthru);
3870	dst.spirvAsmSources.add("frag") << makeFragmentShaderAssembly(passthru);
3871}
3872
3873// Adds shader assembly text to dst.spirvAsmSources for all shader kinds.
3874// Tessellation evaluation shader gets custom code from context, the rest are
3875// pass-through.
3876void addShaderCodeCustomTessEval(vk::SourceCollections& dst, InstanceContext context)
3877{
3878	map<string, string> passthru = passthruFragments();
3879	dst.spirvAsmSources.add("vert") << makeVertexShaderAssembly(passthru);
3880	dst.spirvAsmSources.add("tessc") << makeTessControlShaderAssembly(passthru);
3881	dst.spirvAsmSources.add("tesse") << makeTessEvalShaderAssembly(context.testCodeFragments);
3882	dst.spirvAsmSources.add("frag") << makeFragmentShaderAssembly(passthru);
3883}
3884
3885// Adds shader assembly text to dst.spirvAsmSources for all shader kinds.
3886// Geometry shader gets custom code from context, the rest are pass-through.
3887void addShaderCodeCustomGeometry(vk::SourceCollections& dst, InstanceContext context)
3888{
3889	map<string, string> passthru = passthruFragments();
3890	dst.spirvAsmSources.add("vert") << makeVertexShaderAssembly(passthru);
3891	dst.spirvAsmSources.add("geom") << makeGeometryShaderAssembly(context.testCodeFragments);
3892	dst.spirvAsmSources.add("frag") << makeFragmentShaderAssembly(passthru);
3893}
3894
3895// Adds shader assembly text to dst.spirvAsmSources for all shader kinds.
3896// Fragment shader gets custom code from context, the rest are pass-through.
3897void addShaderCodeCustomFragment(vk::SourceCollections& dst, InstanceContext context)
3898{
3899	map<string, string> passthru = passthruFragments();
3900	dst.spirvAsmSources.add("vert") << makeVertexShaderAssembly(passthru);
3901	dst.spirvAsmSources.add("frag") << makeFragmentShaderAssembly(context.testCodeFragments);
3902}
3903
3904void createCombinedModule(vk::SourceCollections& dst, InstanceContext)
3905{
3906	// \todo [2015-12-07 awoloszyn] Make tessellation / geometry conditional
3907	// \todo [2015-12-07 awoloszyn] Remove OpName and OpMemberName at some point
3908	dst.spirvAsmSources.add("module") <<
3909		"OpCapability Shader\n"
3910		"OpCapability Geometry\n"
3911		"OpCapability Tessellation\n"
3912		"OpMemoryModel Logical GLSL450\n"
3913
3914		"OpEntryPoint Vertex %vert_main \"main\" %vert_Position %vert_vtxColor %vert_color %vert_vtxPosition %vert_vertex_id %vert_instance_id\n"
3915		"OpEntryPoint Geometry %geom_main \"main\" %geom_out_gl_position %geom_gl_in %geom_out_color %geom_in_color\n"
3916		"OpEntryPoint TessellationControl %tessc_main \"main\" %tessc_out_color %tessc_gl_InvocationID %tessc_in_color %tessc_out_position %tessc_in_position %tessc_gl_TessLevelOuter %tessc_gl_TessLevelInner\n"
3917		"OpEntryPoint TessellationEvaluation %tesse_main \"main\" %tesse_stream %tesse_gl_tessCoord %tesse_in_position %tesse_out_color %tesse_in_color \n"
3918		"OpEntryPoint Fragment %frag_main \"main\" %frag_vtxColor %frag_fragColor\n"
3919
3920		"OpExecutionMode %geom_main Triangles\n"
3921		"OpExecutionMode %geom_main Invocations 0\n"
3922		"OpExecutionMode %geom_main OutputTriangleStrip\n"
3923		"OpExecutionMode %geom_main OutputVertices 3\n"
3924
3925		"OpExecutionMode %tessc_main OutputVertices 3\n"
3926
3927		"OpExecutionMode %tesse_main Triangles\n"
3928
3929		"OpExecutionMode %frag_main OriginUpperLeft\n"
3930
3931		"; Vertex decorations\n"
3932		"OpName %vert_main \"main\"\n"
3933		"OpName %vert_vtxPosition \"vtxPosition\"\n"
3934		"OpName %vert_Position \"position\"\n"
3935		"OpName %vert_vtxColor \"vtxColor\"\n"
3936		"OpName %vert_color \"color\"\n"
3937		"OpName %vert_vertex_id \"gl_VertexID\"\n"
3938		"OpName %vert_instance_id \"gl_InstanceID\"\n"
3939		"OpDecorate %vert_vtxPosition Location 2\n"
3940		"OpDecorate %vert_Position Location 0\n"
3941		"OpDecorate %vert_vtxColor Location 1\n"
3942		"OpDecorate %vert_color Location 1\n"
3943		"OpDecorate %vert_vertex_id BuiltIn VertexId\n"
3944		"OpDecorate %vert_instance_id BuiltIn InstanceId\n"
3945
3946		"; Geometry decorations\n"
3947		"OpName %geom_main \"main\"\n"
3948		"OpName %geom_per_vertex_in \"gl_PerVertex\"\n"
3949		"OpMemberName %geom_per_vertex_in 0 \"gl_Position\"\n"
3950		"OpMemberName %geom_per_vertex_in 1 \"gl_PointSize\"\n"
3951		"OpMemberName %geom_per_vertex_in 2 \"gl_ClipDistance\"\n"
3952		"OpMemberName %geom_per_vertex_in 3 \"gl_CullDistance\"\n"
3953		"OpName %geom_gl_in \"gl_in\"\n"
3954		"OpName %geom_out_color \"out_color\"\n"
3955		"OpName %geom_in_color \"in_color\"\n"
3956		"OpDecorate %geom_out_gl_position BuiltIn Position\n"
3957		"OpMemberDecorate %geom_per_vertex_in 0 BuiltIn Position\n"
3958		"OpMemberDecorate %geom_per_vertex_in 1 BuiltIn PointSize\n"
3959		"OpMemberDecorate %geom_per_vertex_in 2 BuiltIn ClipDistance\n"
3960		"OpMemberDecorate %geom_per_vertex_in 3 BuiltIn CullDistance\n"
3961		"OpDecorate %geom_per_vertex_in Block\n"
3962		"OpDecorate %geom_out_color Location 1\n"
3963		"OpDecorate %geom_out_color Stream 0\n"
3964		"OpDecorate %geom_in_color Location 1\n"
3965
3966		"; Tessellation Control decorations\n"
3967		"OpName %tessc_main \"main\"\n"
3968		"OpName %tessc_out_color \"out_color\"\n"
3969		"OpName %tessc_gl_InvocationID \"gl_InvocationID\"\n"
3970		"OpName %tessc_in_color \"in_color\"\n"
3971		"OpName %tessc_out_position \"out_position\"\n"
3972		"OpName %tessc_in_position \"in_position\"\n"
3973		"OpName %tessc_gl_TessLevelOuter \"gl_TessLevelOuter\"\n"
3974		"OpName %tessc_gl_TessLevelInner \"gl_TessLevelInner\"\n"
3975		"OpDecorate %tessc_out_color Location 1\n"
3976		"OpDecorate %tessc_gl_InvocationID BuiltIn InvocationId\n"
3977		"OpDecorate %tessc_in_color Location 1\n"
3978		"OpDecorate %tessc_out_position Location 2\n"
3979		"OpDecorate %tessc_in_position Location 2\n"
3980		"OpDecorate %tessc_gl_TessLevelOuter Patch\n"
3981		"OpDecorate %tessc_gl_TessLevelOuter BuiltIn TessLevelOuter\n"
3982		"OpDecorate %tessc_gl_TessLevelInner Patch\n"
3983		"OpDecorate %tessc_gl_TessLevelInner BuiltIn TessLevelInner\n"
3984
3985		"; Tessellation Evaluation decorations\n"
3986		"OpName %tesse_main \"main\"\n"
3987		"OpName %tesse_per_vertex_out \"gl_PerVertex\"\n"
3988		"OpMemberName %tesse_per_vertex_out 0 \"gl_Position\"\n"
3989		"OpMemberName %tesse_per_vertex_out 1 \"gl_PointSize\"\n"
3990		"OpMemberName %tesse_per_vertex_out 2 \"gl_ClipDistance\"\n"
3991		"OpMemberName %tesse_per_vertex_out 3 \"gl_CullDistance\"\n"
3992		"OpName %tesse_stream \"\"\n"
3993		"OpName %tesse_gl_tessCoord \"gl_TessCoord\"\n"
3994		"OpName %tesse_in_position \"in_position\"\n"
3995		"OpName %tesse_out_color \"out_color\"\n"
3996		"OpName %tesse_in_color \"in_color\"\n"
3997		"OpMemberDecorate %tesse_per_vertex_out 0 BuiltIn Position\n"
3998		"OpMemberDecorate %tesse_per_vertex_out 1 BuiltIn PointSize\n"
3999		"OpMemberDecorate %tesse_per_vertex_out 2 BuiltIn ClipDistance\n"
4000		"OpMemberDecorate %tesse_per_vertex_out 3 BuiltIn CullDistance\n"
4001		"OpDecorate %tesse_per_vertex_out Block\n"
4002		"OpDecorate %tesse_gl_tessCoord BuiltIn TessCoord\n"
4003		"OpDecorate %tesse_in_position Location 2\n"
4004		"OpDecorate %tesse_out_color Location 1\n"
4005		"OpDecorate %tesse_in_color Location 1\n"
4006
4007		"; Fragment decorations\n"
4008		"OpName %frag_main \"main\"\n"
4009		"OpName %frag_fragColor \"fragColor\"\n"
4010		"OpName %frag_vtxColor \"vtxColor\"\n"
4011		"OpDecorate %frag_fragColor Location 0\n"
4012		"OpDecorate %frag_vtxColor Location 1\n"
4013
4014		SPIRV_ASSEMBLY_TYPES
4015		SPIRV_ASSEMBLY_CONSTANTS
4016		SPIRV_ASSEMBLY_ARRAYS
4017
4018		"; Vertex Variables\n"
4019		"%vert_vtxPosition = OpVariable %op_v4f32 Output\n"
4020		"%vert_Position = OpVariable %ip_v4f32 Input\n"
4021		"%vert_vtxColor = OpVariable %op_v4f32 Output\n"
4022		"%vert_color = OpVariable %ip_v4f32 Input\n"
4023		"%vert_vertex_id = OpVariable %ip_i32 Input\n"
4024		"%vert_instance_id = OpVariable %ip_i32 Input\n"
4025
4026		"; Geometry Variables\n"
4027		"%geom_per_vertex_in = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
4028		"%geom_a3_per_vertex_in = OpTypeArray %geom_per_vertex_in %c_u32_3\n"
4029		"%geom_ip_a3_per_vertex_in = OpTypePointer Input %geom_a3_per_vertex_in\n"
4030		"%geom_gl_in = OpVariable %geom_ip_a3_per_vertex_in Input\n"
4031		"%geom_out_color = OpVariable %op_v4f32 Output\n"
4032		"%geom_in_color = OpVariable %ip_a3v4f32 Input\n"
4033		"%geom_out_gl_position = OpVariable %op_v4f32 Output\n"
4034
4035		"; Tessellation Control Variables\n"
4036		"%tessc_out_color = OpVariable %op_a3v4f32 Output\n"
4037		"%tessc_gl_InvocationID = OpVariable %ip_i32 Input\n"
4038		"%tessc_in_color = OpVariable %ip_a32v4f32 Input\n"
4039		"%tessc_out_position = OpVariable %op_a3v4f32 Output\n"
4040		"%tessc_in_position = OpVariable %ip_a32v4f32 Input\n"
4041		"%tessc_gl_TessLevelOuter = OpVariable %op_a4f32 Output\n"
4042		"%tessc_gl_TessLevelInner = OpVariable %op_a2f32 Output\n"
4043
4044		"; Tessellation Evaluation Decorations\n"
4045		"%tesse_per_vertex_out = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
4046		"%tesse_op_per_vertex_out = OpTypePointer Output %tesse_per_vertex_out\n"
4047		"%tesse_stream = OpVariable %tesse_op_per_vertex_out Output\n"
4048		"%tesse_gl_tessCoord = OpVariable %ip_v3f32 Input\n"
4049		"%tesse_in_position = OpVariable %ip_a32v4f32 Input\n"
4050		"%tesse_out_color = OpVariable %op_v4f32 Output\n"
4051		"%tesse_in_color = OpVariable %ip_a32v4f32 Input\n"
4052
4053		"; Fragment Variables\n"
4054		"%frag_fragColor = OpVariable %op_v4f32 Output\n"
4055		"%frag_vtxColor = OpVariable %ip_v4f32 Input\n"
4056
4057		"; Vertex Entry\n"
4058		"%vert_main = OpFunction %void None %fun\n"
4059		"%vert_label = OpLabel\n"
4060		"%vert_tmp_position = OpLoad %v4f32 %vert_Position\n"
4061		"OpStore %vert_vtxPosition %vert_tmp_position\n"
4062		"%vert_tmp_color = OpLoad %v4f32 %vert_color\n"
4063		"OpStore %vert_vtxColor %vert_tmp_color\n"
4064		"OpReturn\n"
4065		"OpFunctionEnd\n"
4066
4067		"; Geometry Entry\n"
4068		"%geom_main = OpFunction %void None %fun\n"
4069		"%geom_label = OpLabel\n"
4070		"%geom_gl_in_0_gl_position = OpAccessChain %ip_v4f32 %geom_gl_in %c_i32_0 %c_i32_0\n"
4071		"%geom_gl_in_1_gl_position = OpAccessChain %ip_v4f32 %geom_gl_in %c_i32_1 %c_i32_0\n"
4072		"%geom_gl_in_2_gl_position = OpAccessChain %ip_v4f32 %geom_gl_in %c_i32_2 %c_i32_0\n"
4073		"%geom_in_position_0 = OpLoad %v4f32 %geom_gl_in_0_gl_position\n"
4074		"%geom_in_position_1 = OpLoad %v4f32 %geom_gl_in_1_gl_position\n"
4075		"%geom_in_position_2 = OpLoad %v4f32 %geom_gl_in_2_gl_position \n"
4076		"%geom_in_color_0_ptr = OpAccessChain %ip_v4f32 %geom_in_color %c_i32_0\n"
4077		"%geom_in_color_1_ptr = OpAccessChain %ip_v4f32 %geom_in_color %c_i32_1\n"
4078		"%geom_in_color_2_ptr = OpAccessChain %ip_v4f32 %geom_in_color %c_i32_2\n"
4079		"%geom_in_color_0 = OpLoad %v4f32 %geom_in_color_0_ptr\n"
4080		"%geom_in_color_1 = OpLoad %v4f32 %geom_in_color_1_ptr\n"
4081		"%geom_in_color_2 = OpLoad %v4f32 %geom_in_color_2_ptr\n"
4082		"OpStore %geom_out_gl_position %geom_in_position_0\n"
4083		"OpStore %geom_out_color %geom_in_color_0\n"
4084		"OpEmitVertex\n"
4085		"OpStore %geom_out_gl_position %geom_in_position_1\n"
4086		"OpStore %geom_out_color %geom_in_color_1\n"
4087		"OpEmitVertex\n"
4088		"OpStore %geom_out_gl_position %geom_in_position_2\n"
4089		"OpStore %geom_out_color %geom_in_color_2\n"
4090		"OpEmitVertex\n"
4091		"OpEndPrimitive\n"
4092		"OpReturn\n"
4093		"OpFunctionEnd\n"
4094
4095		"; Tessellation Control Entry\n"
4096		"%tessc_main = OpFunction %void None %fun\n"
4097		"%tessc_label = OpLabel\n"
4098		"%tessc_invocation_id = OpLoad %i32 %tessc_gl_InvocationID\n"
4099		"%tessc_in_color_ptr = OpAccessChain %ip_v4f32 %tessc_in_color %tessc_invocation_id\n"
4100		"%tessc_in_position_ptr = OpAccessChain %ip_v4f32 %tessc_in_position %tessc_invocation_id\n"
4101		"%tessc_in_color_val = OpLoad %v4f32 %tessc_in_color_ptr\n"
4102		"%tessc_in_position_val = OpLoad %v4f32 %tessc_in_position_ptr\n"
4103		"%tessc_out_color_ptr = OpAccessChain %op_v4f32 %tessc_out_color %tessc_invocation_id\n"
4104		"%tessc_out_position_ptr = OpAccessChain %op_v4f32 %tessc_out_position %tessc_invocation_id\n"
4105		"OpStore %tessc_out_color_ptr %tessc_in_color_val\n"
4106		"OpStore %tessc_out_position_ptr %tessc_in_position_val\n"
4107		"%tessc_is_first_invocation = OpIEqual %bool %tessc_invocation_id %c_i32_0\n"
4108		"OpSelectionMerge %tessc_merge_label None\n"
4109		"OpBranchConditional %tessc_is_first_invocation %tessc_first_invocation %tessc_merge_label\n"
4110		"%tessc_first_invocation = OpLabel\n"
4111		"%tessc_tess_outer_0 = OpAccessChain %op_f32 %tessc_gl_TessLevelOuter %c_i32_0\n"
4112		"%tessc_tess_outer_1 = OpAccessChain %op_f32 %tessc_gl_TessLevelOuter %c_i32_1\n"
4113		"%tessc_tess_outer_2 = OpAccessChain %op_f32 %tessc_gl_TessLevelOuter %c_i32_2\n"
4114		"%tessc_tess_inner = OpAccessChain %op_f32 %tessc_gl_TessLevelInner %c_i32_0\n"
4115		"OpStore %tessc_tess_outer_0 %c_f32_1\n"
4116		"OpStore %tessc_tess_outer_1 %c_f32_1\n"
4117		"OpStore %tessc_tess_outer_2 %c_f32_1\n"
4118		"OpStore %tessc_tess_inner %c_f32_1\n"
4119		"OpBranch %tessc_merge_label\n"
4120		"%tessc_merge_label = OpLabel\n"
4121		"OpReturn\n"
4122		"OpFunctionEnd\n"
4123
4124		"; Tessellation Evaluation Entry\n"
4125		"%tesse_main = OpFunction %void None %fun\n"
4126		"%tesse_label = OpLabel\n"
4127		"%tesse_tc_0_ptr = OpAccessChain %ip_f32 %tesse_gl_tessCoord %c_u32_0\n"
4128		"%tesse_tc_1_ptr = OpAccessChain %ip_f32 %tesse_gl_tessCoord %c_u32_1\n"
4129		"%tesse_tc_2_ptr = OpAccessChain %ip_f32 %tesse_gl_tessCoord %c_u32_2\n"
4130		"%tesse_tc_0 = OpLoad %f32 %tesse_tc_0_ptr\n"
4131		"%tesse_tc_1 = OpLoad %f32 %tesse_tc_1_ptr\n"
4132		"%tesse_tc_2 = OpLoad %f32 %tesse_tc_2_ptr\n"
4133		"%tesse_in_pos_0_ptr = OpAccessChain %ip_v4f32 %tesse_in_position %c_i32_0\n"
4134		"%tesse_in_pos_1_ptr = OpAccessChain %ip_v4f32 %tesse_in_position %c_i32_1\n"
4135		"%tesse_in_pos_2_ptr = OpAccessChain %ip_v4f32 %tesse_in_position %c_i32_2\n"
4136		"%tesse_in_pos_0 = OpLoad %v4f32 %tesse_in_pos_0_ptr\n"
4137		"%tesse_in_pos_1 = OpLoad %v4f32 %tesse_in_pos_1_ptr\n"
4138		"%tesse_in_pos_2 = OpLoad %v4f32 %tesse_in_pos_2_ptr\n"
4139		"%tesse_in_pos_0_weighted = OpVectorTimesScalar %v4f32 %tesse_tc_0 %tesse_in_pos_0\n"
4140		"%tesse_in_pos_1_weighted = OpVectorTimesScalar %v4f32 %tesse_tc_1 %tesse_in_pos_1\n"
4141		"%tesse_in_pos_2_weighted = OpVectorTimesScalar %v4f32 %tesse_tc_2 %tesse_in_pos_2\n"
4142		"%tesse_out_pos_ptr = OpAccessChain %op_v4f32 %tesse_stream %c_i32_0\n"
4143		"%tesse_in_pos_0_plus_pos_1 = OpFAdd %v4f32 %tesse_in_pos_0_weighted %tesse_in_pos_1_weighted\n"
4144		"%tesse_computed_out = OpFAdd %v4f32 %tesse_in_pos_0_plus_pos_1 %tesse_in_pos_2_weighted\n"
4145		"OpStore %tesse_out_pos_ptr %tesse_computed_out\n"
4146		"%tesse_in_clr_0_ptr = OpAccessChain %ip_v4f32 %tesse_in_color %c_i32_0\n"
4147		"%tesse_in_clr_1_ptr = OpAccessChain %ip_v4f32 %tesse_in_color %c_i32_1\n"
4148		"%tesse_in_clr_2_ptr = OpAccessChain %ip_v4f32 %tesse_in_color %c_i32_2\n"
4149		"%tesse_in_clr_0 = OpLoad %v4f32 %tesse_in_clr_0_ptr\n"
4150		"%tesse_in_clr_1 = OpLoad %v4f32 %tesse_in_clr_1_ptr\n"
4151		"%tesse_in_clr_2 = OpLoad %v4f32 %tesse_in_clr_2_ptr\n"
4152		"%tesse_in_clr_0_weighted = OpVectorTimesScalar %v4f32 %tesse_tc_0 %tesse_in_clr_0\n"
4153		"%tesse_in_clr_1_weighted = OpVectorTimesScalar %v4f32 %tesse_tc_1 %tesse_in_clr_1\n"
4154		"%tesse_in_clr_2_weighted = OpVectorTimesScalar %v4f32 %tesse_tc_2 %tesse_in_clr_2\n"
4155		"%tesse_in_clr_0_plus_col_1 = OpFAdd %v4f32 %tesse_in_clr_0_weighted %tesse_in_clr_1_weighted\n"
4156		"%tesse_computed_clr = OpFAdd %v4f32 %tesse_in_clr_0_plus_col_1 %tesse_in_clr_2_weighted\n"
4157		"OpStore %tesse_out_color %tesse_computed_clr\n"
4158		"OpReturn\n"
4159		"OpFunctionEnd\n"
4160
4161		"; Fragment Entry\n"
4162		"%frag_main = OpFunction %void None %fun\n"
4163		"%frag_label_main = OpLabel\n"
4164		"%frag_tmp1 = OpLoad %v4f32 %frag_vtxColor\n"
4165		"OpStore %frag_fragColor %frag_tmp1\n"
4166		"OpReturn\n"
4167		"OpFunctionEnd\n";
4168}
4169
4170// This has two shaders of each stage. The first
4171// is a passthrough, the second inverts the color.
4172void createMultipleEntries(vk::SourceCollections& dst, InstanceContext)
4173{
4174	dst.spirvAsmSources.add("vert") <<
4175	// This module contains 2 vertex shaders. One that is a passthrough
4176	// and a second that inverts the color of the output (1.0 - color).
4177		"OpCapability Shader\n"
4178		"OpMemoryModel Logical GLSL450\n"
4179		"OpEntryPoint Vertex %main \"vert1\" %Position %vtxColor %color %vtxPosition %vertex_id %instance_id\n"
4180		"OpEntryPoint Vertex %main2 \"vert2\" %Position %vtxColor %color %vtxPosition %vertex_id %instance_id\n"
4181
4182		"OpName %main \"frag1\"\n"
4183		"OpName %main2 \"frag2\"\n"
4184		"OpName %vtxPosition \"vtxPosition\"\n"
4185		"OpName %Position \"position\"\n"
4186		"OpName %vtxColor \"vtxColor\"\n"
4187		"OpName %color \"color\"\n"
4188		"OpName %vertex_id \"gl_VertexID\"\n"
4189		"OpName %instance_id \"gl_InstanceID\"\n"
4190
4191		"OpDecorate %vtxPosition Location 2\n"
4192		"OpDecorate %Position Location 0\n"
4193		"OpDecorate %vtxColor Location 1\n"
4194		"OpDecorate %color Location 1\n"
4195		"OpDecorate %vertex_id BuiltIn VertexId\n"
4196		"OpDecorate %instance_id BuiltIn InstanceId\n"
4197		SPIRV_ASSEMBLY_TYPES
4198		SPIRV_ASSEMBLY_CONSTANTS
4199		SPIRV_ASSEMBLY_ARRAYS
4200		"%cval = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_0\n"
4201		"%vtxPosition = OpVariable %op_v4f32 Output\n"
4202		"%Position = OpVariable %ip_v4f32 Input\n"
4203		"%vtxColor = OpVariable %op_v4f32 Output\n"
4204		"%color = OpVariable %ip_v4f32 Input\n"
4205		"%vertex_id = OpVariable %ip_i32 Input\n"
4206		"%instance_id = OpVariable %ip_i32 Input\n"
4207
4208		"%main = OpFunction %void None %fun\n"
4209		"%label = OpLabel\n"
4210		"%tmp_position = OpLoad %v4f32 %Position\n"
4211		"OpStore %vtxPosition %tmp_position\n"
4212		"%tmp_color = OpLoad %v4f32 %color\n"
4213		"OpStore %vtxColor %tmp_color\n"
4214		"OpReturn\n"
4215		"OpFunctionEnd\n"
4216
4217		"%main2 = OpFunction %void None %fun\n"
4218		"%label2 = OpLabel\n"
4219		"%tmp_position2 = OpLoad %v4f32 %Position\n"
4220		"OpStore %vtxPosition %tmp_position2\n"
4221		"%tmp_color2 = OpLoad %v4f32 %color\n"
4222		"%tmp_color3 = OpFSub %v4f32 %cval %tmp_color2\n"
4223		"OpStore %vtxColor %tmp_color3\n"
4224		"OpReturn\n"
4225		"OpFunctionEnd\n";
4226
4227	dst.spirvAsmSources.add("frag") <<
4228		// This is a single module that contains 2 fragment shaders.
4229		// One that passes color through and the other that inverts the output
4230		// color (1.0 - color).
4231		"OpCapability Shader\n"
4232		"OpMemoryModel Logical GLSL450\n"
4233		"OpEntryPoint Fragment %main \"frag1\" %vtxColor %fragColor\n"
4234		"OpEntryPoint Fragment %main2 \"frag2\" %vtxColor %fragColor\n"
4235		"OpExecutionMode %main OriginUpperLeft\n"
4236		"OpExecutionMode %main2 OriginUpperLeft\n"
4237
4238		"OpName %main \"frag1\"\n"
4239		"OpName %main2 \"frag2\"\n"
4240		"OpName %fragColor \"fragColor\"\n"
4241		"OpName %vtxColor \"vtxColor\"\n"
4242		"OpDecorate %fragColor Location 0\n"
4243		"OpDecorate %vtxColor Location 1\n"
4244		SPIRV_ASSEMBLY_TYPES
4245		SPIRV_ASSEMBLY_CONSTANTS
4246		SPIRV_ASSEMBLY_ARRAYS
4247		"%cval = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_0\n"
4248		"%fragColor = OpVariable %op_v4f32 Output\n"
4249		"%vtxColor = OpVariable %ip_v4f32 Input\n"
4250
4251		"%main = OpFunction %void None %fun\n"
4252		"%label_main = OpLabel\n"
4253		"%tmp1 = OpLoad %v4f32 %vtxColor\n"
4254		"OpStore %fragColor %tmp1\n"
4255		"OpReturn\n"
4256		"OpFunctionEnd\n"
4257
4258		"%main2 = OpFunction %void None %fun\n"
4259		"%label_main2 = OpLabel\n"
4260		"%tmp2 = OpLoad %v4f32 %vtxColor\n"
4261		"%tmp3 = OpFSub %v4f32 %cval %tmp2\n"
4262		"OpStore %fragColor %tmp3\n"
4263		"OpReturn\n"
4264		"OpFunctionEnd\n";
4265
4266	dst.spirvAsmSources.add("geom") <<
4267		"OpCapability Geometry\n"
4268		"OpMemoryModel Logical GLSL450\n"
4269		"OpEntryPoint Geometry %geom1_main \"geom1\" %out_gl_position %gl_in %out_color %in_color\n"
4270		"OpEntryPoint Geometry %geom2_main \"geom2\" %out_gl_position %gl_in %out_color %in_color\n"
4271		"OpExecutionMode %geom1_main Triangles\n"
4272		"OpExecutionMode %geom2_main Triangles\n"
4273		"OpExecutionMode %geom1_main Invocations 0\n"
4274		"OpExecutionMode %geom2_main Invocations 0\n"
4275		"OpExecutionMode %geom1_main OutputTriangleStrip\n"
4276		"OpExecutionMode %geom2_main OutputTriangleStrip\n"
4277		"OpExecutionMode %geom1_main OutputVertices 3\n"
4278		"OpExecutionMode %geom2_main OutputVertices 3\n"
4279		"OpName %geom1_main \"geom1\"\n"
4280		"OpName %geom2_main \"geom2\"\n"
4281		"OpName %per_vertex_in \"gl_PerVertex\"\n"
4282		"OpMemberName %per_vertex_in 0 \"gl_Position\"\n"
4283		"OpMemberName %per_vertex_in 1 \"gl_PointSize\"\n"
4284		"OpMemberName %per_vertex_in 2 \"gl_ClipDistance\"\n"
4285		"OpMemberName %per_vertex_in 3 \"gl_CullDistance\"\n"
4286		"OpName %gl_in \"gl_in\"\n"
4287		"OpName %out_color \"out_color\"\n"
4288		"OpName %in_color \"in_color\"\n"
4289		"OpDecorate %out_gl_position BuiltIn Position\n"
4290		"OpMemberDecorate %per_vertex_in 0 BuiltIn Position\n"
4291		"OpMemberDecorate %per_vertex_in 1 BuiltIn PointSize\n"
4292		"OpMemberDecorate %per_vertex_in 2 BuiltIn ClipDistance\n"
4293		"OpMemberDecorate %per_vertex_in 3 BuiltIn CullDistance\n"
4294		"OpDecorate %per_vertex_in Block\n"
4295		"OpDecorate %out_color Location 1\n"
4296		"OpDecorate %out_color Stream 0\n"
4297		"OpDecorate %in_color Location 1\n"
4298		SPIRV_ASSEMBLY_TYPES
4299		SPIRV_ASSEMBLY_CONSTANTS
4300		SPIRV_ASSEMBLY_ARRAYS
4301		"%cval = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_0\n"
4302		"%per_vertex_in = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
4303		"%a3_per_vertex_in = OpTypeArray %per_vertex_in %c_u32_3\n"
4304		"%ip_a3_per_vertex_in = OpTypePointer Input %a3_per_vertex_in\n"
4305		"%gl_in = OpVariable %ip_a3_per_vertex_in Input\n"
4306		"%out_color = OpVariable %op_v4f32 Output\n"
4307		"%in_color = OpVariable %ip_a3v4f32 Input\n"
4308		"%out_gl_position = OpVariable %op_v4f32 Output\n"
4309
4310		"%geom1_main = OpFunction %void None %fun\n"
4311		"%geom1_label = OpLabel\n"
4312		"%geom1_gl_in_0_gl_position = OpAccessChain %ip_v4f32 %gl_in %c_i32_0 %c_i32_0\n"
4313		"%geom1_gl_in_1_gl_position = OpAccessChain %ip_v4f32 %gl_in %c_i32_1 %c_i32_0\n"
4314		"%geom1_gl_in_2_gl_position = OpAccessChain %ip_v4f32 %gl_in %c_i32_2 %c_i32_0\n"
4315		"%geom1_in_position_0 = OpLoad %v4f32 %geom1_gl_in_0_gl_position\n"
4316		"%geom1_in_position_1 = OpLoad %v4f32 %geom1_gl_in_1_gl_position\n"
4317		"%geom1_in_position_2 = OpLoad %v4f32 %geom1_gl_in_2_gl_position \n"
4318		"%geom1_in_color_0_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_0\n"
4319		"%geom1_in_color_1_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_1\n"
4320		"%geom1_in_color_2_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_2\n"
4321		"%geom1_in_color_0 = OpLoad %v4f32 %geom1_in_color_0_ptr\n"
4322		"%geom1_in_color_1 = OpLoad %v4f32 %geom1_in_color_1_ptr\n"
4323		"%geom1_in_color_2 = OpLoad %v4f32 %geom1_in_color_2_ptr\n"
4324		"OpStore %out_gl_position %geom1_in_position_0\n"
4325		"OpStore %out_color %geom1_in_color_0\n"
4326		"OpEmitVertex\n"
4327		"OpStore %out_gl_position %geom1_in_position_1\n"
4328		"OpStore %out_color %geom1_in_color_1\n"
4329		"OpEmitVertex\n"
4330		"OpStore %out_gl_position %geom1_in_position_2\n"
4331		"OpStore %out_color %geom1_in_color_2\n"
4332		"OpEmitVertex\n"
4333		"OpEndPrimitive\n"
4334		"OpReturn\n"
4335		"OpFunctionEnd\n"
4336
4337		"%geom2_main = OpFunction %void None %fun\n"
4338		"%geom2_label = OpLabel\n"
4339		"%geom2_gl_in_0_gl_position = OpAccessChain %ip_v4f32 %gl_in %c_i32_0 %c_i32_0\n"
4340		"%geom2_gl_in_1_gl_position = OpAccessChain %ip_v4f32 %gl_in %c_i32_1 %c_i32_0\n"
4341		"%geom2_gl_in_2_gl_position = OpAccessChain %ip_v4f32 %gl_in %c_i32_2 %c_i32_0\n"
4342		"%geom2_in_position_0 = OpLoad %v4f32 %geom2_gl_in_0_gl_position\n"
4343		"%geom2_in_position_1 = OpLoad %v4f32 %geom2_gl_in_1_gl_position\n"
4344		"%geom2_in_position_2 = OpLoad %v4f32 %geom2_gl_in_2_gl_position \n"
4345		"%geom2_in_color_0_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_0\n"
4346		"%geom2_in_color_1_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_1\n"
4347		"%geom2_in_color_2_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_2\n"
4348		"%geom2_in_color_0 = OpLoad %v4f32 %geom2_in_color_0_ptr\n"
4349		"%geom2_in_color_1 = OpLoad %v4f32 %geom2_in_color_1_ptr\n"
4350		"%geom2_in_color_2 = OpLoad %v4f32 %geom2_in_color_2_ptr\n"
4351		"%geom2_transformed_in_color_0 = OpFSub %v4f32 %cval %geom2_in_color_0\n"
4352		"%geom2_transformed_in_color_1 = OpFSub %v4f32 %cval %geom2_in_color_1\n"
4353		"%geom2_transformed_in_color_2 = OpFSub %v4f32 %cval %geom2_in_color_2\n"
4354		"OpStore %out_gl_position %geom2_in_position_0\n"
4355		"OpStore %out_color %geom2_transformed_in_color_0\n"
4356		"OpEmitVertex\n"
4357		"OpStore %out_gl_position %geom2_in_position_1\n"
4358		"OpStore %out_color %geom2_transformed_in_color_1\n"
4359		"OpEmitVertex\n"
4360		"OpStore %out_gl_position %geom2_in_position_2\n"
4361		"OpStore %out_color %geom2_transformed_in_color_2\n"
4362		"OpEmitVertex\n"
4363		"OpEndPrimitive\n"
4364		"OpReturn\n"
4365		"OpFunctionEnd\n";
4366
4367	dst.spirvAsmSources.add("tessc") <<
4368		"OpCapability Tessellation\n"
4369		"OpMemoryModel Logical GLSL450\n"
4370		"OpEntryPoint TessellationControl %tessc1_main \"tessc1\" %out_color %gl_InvocationID %in_color %out_position %in_position %gl_TessLevelOuter %gl_TessLevelInner\n"
4371		"OpEntryPoint TessellationControl %tessc2_main \"tessc2\" %out_color %gl_InvocationID %in_color %out_position %in_position %gl_TessLevelOuter %gl_TessLevelInner\n"
4372		"OpExecutionMode %tessc1_main OutputVertices 3\n"
4373		"OpExecutionMode %tessc2_main OutputVertices 3\n"
4374		"OpName %tessc1_main \"tessc1\"\n"
4375		"OpName %tessc2_main \"tessc2\"\n"
4376		"OpName %out_color \"out_color\"\n"
4377		"OpName %gl_InvocationID \"gl_InvocationID\"\n"
4378		"OpName %in_color \"in_color\"\n"
4379		"OpName %out_position \"out_position\"\n"
4380		"OpName %in_position \"in_position\"\n"
4381		"OpName %gl_TessLevelOuter \"gl_TessLevelOuter\"\n"
4382		"OpName %gl_TessLevelInner \"gl_TessLevelInner\"\n"
4383		"OpDecorate %out_color Location 1\n"
4384		"OpDecorate %gl_InvocationID BuiltIn InvocationId\n"
4385		"OpDecorate %in_color Location 1\n"
4386		"OpDecorate %out_position Location 2\n"
4387		"OpDecorate %in_position Location 2\n"
4388		"OpDecorate %gl_TessLevelOuter Patch\n"
4389		"OpDecorate %gl_TessLevelOuter BuiltIn TessLevelOuter\n"
4390		"OpDecorate %gl_TessLevelInner Patch\n"
4391		"OpDecorate %gl_TessLevelInner BuiltIn TessLevelInner\n"
4392		SPIRV_ASSEMBLY_TYPES
4393		SPIRV_ASSEMBLY_CONSTANTS
4394		SPIRV_ASSEMBLY_ARRAYS
4395		"%cval = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_0\n"
4396		"%out_color = OpVariable %op_a3v4f32 Output\n"
4397		"%gl_InvocationID = OpVariable %ip_i32 Input\n"
4398		"%in_color = OpVariable %ip_a32v4f32 Input\n"
4399		"%out_position = OpVariable %op_a3v4f32 Output\n"
4400		"%in_position = OpVariable %ip_a32v4f32 Input\n"
4401		"%gl_TessLevelOuter = OpVariable %op_a4f32 Output\n"
4402		"%gl_TessLevelInner = OpVariable %op_a2f32 Output\n"
4403
4404		"%tessc1_main = OpFunction %void None %fun\n"
4405		"%tessc1_label = OpLabel\n"
4406		"%tessc1_invocation_id = OpLoad %i32 %gl_InvocationID\n"
4407		"%tessc1_in_color_ptr = OpAccessChain %ip_v4f32 %in_color %tessc1_invocation_id\n"
4408		"%tessc1_in_position_ptr = OpAccessChain %ip_v4f32 %in_position %tessc1_invocation_id\n"
4409		"%tessc1_in_color_val = OpLoad %v4f32 %tessc1_in_color_ptr\n"
4410		"%tessc1_in_position_val = OpLoad %v4f32 %tessc1_in_position_ptr\n"
4411		"%tessc1_out_color_ptr = OpAccessChain %op_v4f32 %out_color %tessc1_invocation_id\n"
4412		"%tessc1_out_position_ptr = OpAccessChain %op_v4f32 %out_position %tessc1_invocation_id\n"
4413		"OpStore %tessc1_out_color_ptr %tessc1_in_color_val\n"
4414		"OpStore %tessc1_out_position_ptr %tessc1_in_position_val\n"
4415		"%tessc1_is_first_invocation = OpIEqual %bool %tessc1_invocation_id %c_i32_0\n"
4416		"OpSelectionMerge %tessc1_merge_label None\n"
4417		"OpBranchConditional %tessc1_is_first_invocation %tessc1_first_invocation %tessc1_merge_label\n"
4418		"%tessc1_first_invocation = OpLabel\n"
4419		"%tessc1_tess_outer_0 = OpAccessChain %op_f32 %gl_TessLevelOuter %c_i32_0\n"
4420		"%tessc1_tess_outer_1 = OpAccessChain %op_f32 %gl_TessLevelOuter %c_i32_1\n"
4421		"%tessc1_tess_outer_2 = OpAccessChain %op_f32 %gl_TessLevelOuter %c_i32_2\n"
4422		"%tessc1_tess_inner = OpAccessChain %op_f32 %gl_TessLevelInner %c_i32_0\n"
4423		"OpStore %tessc1_tess_outer_0 %c_f32_1\n"
4424		"OpStore %tessc1_tess_outer_1 %c_f32_1\n"
4425		"OpStore %tessc1_tess_outer_2 %c_f32_1\n"
4426		"OpStore %tessc1_tess_inner %c_f32_1\n"
4427		"OpBranch %tessc1_merge_label\n"
4428		"%tessc1_merge_label = OpLabel\n"
4429		"OpReturn\n"
4430		"OpFunctionEnd\n"
4431
4432		"%tessc2_main = OpFunction %void None %fun\n"
4433		"%tessc2_label = OpLabel\n"
4434		"%tessc2_invocation_id = OpLoad %i32 %gl_InvocationID\n"
4435		"%tessc2_in_color_ptr = OpAccessChain %ip_v4f32 %in_color %tessc2_invocation_id\n"
4436		"%tessc2_in_position_ptr = OpAccessChain %ip_v4f32 %in_position %tessc2_invocation_id\n"
4437		"%tessc2_in_color_val = OpLoad %v4f32 %tessc2_in_color_ptr\n"
4438		"%tessc2_in_position_val = OpLoad %v4f32 %tessc2_in_position_ptr\n"
4439		"%tessc2_out_color_ptr = OpAccessChain %op_v4f32 %out_color %tessc2_invocation_id\n"
4440		"%tessc2_out_position_ptr = OpAccessChain %op_v4f32 %out_position %tessc2_invocation_id\n"
4441		"%tessc2_transformed_color = OpFSub %v4f32 %cval %tessc2_in_color_val\n"
4442		"OpStore %tessc2_out_color_ptr %tessc2_transformed_color\n"
4443		"OpStore %tessc2_out_position_ptr %tessc2_in_position_val\n"
4444		"%tessc2_is_first_invocation = OpIEqual %bool %tessc2_invocation_id %c_i32_0\n"
4445		"OpSelectionMerge %tessc2_merge_label None\n"
4446		"OpBranchConditional %tessc2_is_first_invocation %tessc2_first_invocation %tessc2_merge_label\n"
4447		"%tessc2_first_invocation = OpLabel\n"
4448		"%tessc2_tess_outer_0 = OpAccessChain %op_f32 %gl_TessLevelOuter %c_i32_0\n"
4449		"%tessc2_tess_outer_1 = OpAccessChain %op_f32 %gl_TessLevelOuter %c_i32_1\n"
4450		"%tessc2_tess_outer_2 = OpAccessChain %op_f32 %gl_TessLevelOuter %c_i32_2\n"
4451		"%tessc2_tess_inner = OpAccessChain %op_f32 %gl_TessLevelInner %c_i32_0\n"
4452		"OpStore %tessc2_tess_outer_0 %c_f32_1\n"
4453		"OpStore %tessc2_tess_outer_1 %c_f32_1\n"
4454		"OpStore %tessc2_tess_outer_2 %c_f32_1\n"
4455		"OpStore %tessc2_tess_inner %c_f32_1\n"
4456		"OpBranch %tessc2_merge_label\n"
4457		"%tessc2_merge_label = OpLabel\n"
4458		"OpReturn\n"
4459		"OpFunctionEnd\n";
4460
4461	dst.spirvAsmSources.add("tesse") <<
4462		"OpCapability Tessellation\n"
4463		"OpMemoryModel Logical GLSL450\n"
4464		"OpEntryPoint TessellationEvaluation %tesse1_main \"tesse1\" %stream %gl_tessCoord %in_position %out_color %in_color \n"
4465		"OpEntryPoint TessellationEvaluation %tesse2_main \"tesse2\" %stream %gl_tessCoord %in_position %out_color %in_color \n"
4466		"OpExecutionMode %tesse1_main Triangles\n"
4467		"OpExecutionMode %tesse2_main Triangles\n"
4468		"OpName %tesse1_main \"tesse1\"\n"
4469		"OpName %tesse2_main \"tesse2\"\n"
4470		"OpName %per_vertex_out \"gl_PerVertex\"\n"
4471		"OpMemberName %per_vertex_out 0 \"gl_Position\"\n"
4472		"OpMemberName %per_vertex_out 1 \"gl_PointSize\"\n"
4473		"OpMemberName %per_vertex_out 2 \"gl_ClipDistance\"\n"
4474		"OpMemberName %per_vertex_out 3 \"gl_CullDistance\"\n"
4475		"OpName %stream \"\"\n"
4476		"OpName %gl_tessCoord \"gl_TessCoord\"\n"
4477		"OpName %in_position \"in_position\"\n"
4478		"OpName %out_color \"out_color\"\n"
4479		"OpName %in_color \"in_color\"\n"
4480		"OpMemberDecorate %per_vertex_out 0 BuiltIn Position\n"
4481		"OpMemberDecorate %per_vertex_out 1 BuiltIn PointSize\n"
4482		"OpMemberDecorate %per_vertex_out 2 BuiltIn ClipDistance\n"
4483		"OpMemberDecorate %per_vertex_out 3 BuiltIn CullDistance\n"
4484		"OpDecorate %per_vertex_out Block\n"
4485		"OpDecorate %gl_tessCoord BuiltIn TessCoord\n"
4486		"OpDecorate %in_position Location 2\n"
4487		"OpDecorate %out_color Location 1\n"
4488		"OpDecorate %in_color Location 1\n"
4489		SPIRV_ASSEMBLY_TYPES
4490		SPIRV_ASSEMBLY_CONSTANTS
4491		SPIRV_ASSEMBLY_ARRAYS
4492		"%cval = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_0\n"
4493		"%per_vertex_out = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
4494		"%op_per_vertex_out = OpTypePointer Output %per_vertex_out\n"
4495		"%stream = OpVariable %op_per_vertex_out Output\n"
4496		"%gl_tessCoord = OpVariable %ip_v3f32 Input\n"
4497		"%in_position = OpVariable %ip_a32v4f32 Input\n"
4498		"%out_color = OpVariable %op_v4f32 Output\n"
4499		"%in_color = OpVariable %ip_a32v4f32 Input\n"
4500
4501		"%tesse1_main = OpFunction %void None %fun\n"
4502		"%tesse1_label = OpLabel\n"
4503		"%tesse1_tc_0_ptr = OpAccessChain %ip_f32 %gl_tessCoord %c_u32_0\n"
4504		"%tesse1_tc_1_ptr = OpAccessChain %ip_f32 %gl_tessCoord %c_u32_1\n"
4505		"%tesse1_tc_2_ptr = OpAccessChain %ip_f32 %gl_tessCoord %c_u32_2\n"
4506		"%tesse1_tc_0 = OpLoad %f32 %tesse1_tc_0_ptr\n"
4507		"%tesse1_tc_1 = OpLoad %f32 %tesse1_tc_1_ptr\n"
4508		"%tesse1_tc_2 = OpLoad %f32 %tesse1_tc_2_ptr\n"
4509		"%tesse1_in_pos_0_ptr = OpAccessChain %ip_v4f32 %in_position %c_i32_0\n"
4510		"%tesse1_in_pos_1_ptr = OpAccessChain %ip_v4f32 %in_position %c_i32_1\n"
4511		"%tesse1_in_pos_2_ptr = OpAccessChain %ip_v4f32 %in_position %c_i32_2\n"
4512		"%tesse1_in_pos_0 = OpLoad %v4f32 %tesse1_in_pos_0_ptr\n"
4513		"%tesse1_in_pos_1 = OpLoad %v4f32 %tesse1_in_pos_1_ptr\n"
4514		"%tesse1_in_pos_2 = OpLoad %v4f32 %tesse1_in_pos_2_ptr\n"
4515		"%tesse1_in_pos_0_weighted = OpVectorTimesScalar %v4f32 %tesse1_tc_0 %tesse1_in_pos_0\n"
4516		"%tesse1_in_pos_1_weighted = OpVectorTimesScalar %v4f32 %tesse1_tc_1 %tesse1_in_pos_1\n"
4517		"%tesse1_in_pos_2_weighted = OpVectorTimesScalar %v4f32 %tesse1_tc_2 %tesse1_in_pos_2\n"
4518		"%tesse1_out_pos_ptr = OpAccessChain %op_v4f32 %stream %c_i32_0\n"
4519		"%tesse1_in_pos_0_plus_pos_1 = OpFAdd %v4f32 %tesse1_in_pos_0_weighted %tesse1_in_pos_1_weighted\n"
4520		"%tesse1_computed_out = OpFAdd %v4f32 %tesse1_in_pos_0_plus_pos_1 %tesse1_in_pos_2_weighted\n"
4521		"OpStore %tesse1_out_pos_ptr %tesse1_computed_out\n"
4522		"%tesse1_in_clr_0_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_0\n"
4523		"%tesse1_in_clr_1_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_1\n"
4524		"%tesse1_in_clr_2_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_2\n"
4525		"%tesse1_in_clr_0 = OpLoad %v4f32 %tesse1_in_clr_0_ptr\n"
4526		"%tesse1_in_clr_1 = OpLoad %v4f32 %tesse1_in_clr_1_ptr\n"
4527		"%tesse1_in_clr_2 = OpLoad %v4f32 %tesse1_in_clr_2_ptr\n"
4528		"%tesse1_in_clr_0_weighted = OpVectorTimesScalar %v4f32 %tesse1_tc_0 %tesse1_in_clr_0\n"
4529		"%tesse1_in_clr_1_weighted = OpVectorTimesScalar %v4f32 %tesse1_tc_1 %tesse1_in_clr_1\n"
4530		"%tesse1_in_clr_2_weighted = OpVectorTimesScalar %v4f32 %tesse1_tc_2 %tesse1_in_clr_2\n"
4531		"%tesse1_in_clr_0_plus_col_1 = OpFAdd %v4f32 %tesse1_in_clr_0_weighted %tesse1_in_clr_1_weighted\n"
4532		"%tesse1_computed_clr = OpFAdd %v4f32 %tesse1_in_clr_0_plus_col_1 %tesse1_in_clr_2_weighted\n"
4533		"OpStore %out_color %tesse1_computed_clr\n"
4534		"OpReturn\n"
4535		"OpFunctionEnd\n"
4536
4537		"%tesse2_main = OpFunction %void None %fun\n"
4538		"%tesse2_label = OpLabel\n"
4539		"%tesse2_tc_0_ptr = OpAccessChain %ip_f32 %gl_tessCoord %c_u32_0\n"
4540		"%tesse2_tc_1_ptr = OpAccessChain %ip_f32 %gl_tessCoord %c_u32_1\n"
4541		"%tesse2_tc_2_ptr = OpAccessChain %ip_f32 %gl_tessCoord %c_u32_2\n"
4542		"%tesse2_tc_0 = OpLoad %f32 %tesse2_tc_0_ptr\n"
4543		"%tesse2_tc_1 = OpLoad %f32 %tesse2_tc_1_ptr\n"
4544		"%tesse2_tc_2 = OpLoad %f32 %tesse2_tc_2_ptr\n"
4545		"%tesse2_in_pos_0_ptr = OpAccessChain %ip_v4f32 %in_position %c_i32_0\n"
4546		"%tesse2_in_pos_1_ptr = OpAccessChain %ip_v4f32 %in_position %c_i32_1\n"
4547		"%tesse2_in_pos_2_ptr = OpAccessChain %ip_v4f32 %in_position %c_i32_2\n"
4548		"%tesse2_in_pos_0 = OpLoad %v4f32 %tesse2_in_pos_0_ptr\n"
4549		"%tesse2_in_pos_1 = OpLoad %v4f32 %tesse2_in_pos_1_ptr\n"
4550		"%tesse2_in_pos_2 = OpLoad %v4f32 %tesse2_in_pos_2_ptr\n"
4551		"%tesse2_in_pos_0_weighted = OpVectorTimesScalar %v4f32 %tesse2_tc_0 %tesse2_in_pos_0\n"
4552		"%tesse2_in_pos_1_weighted = OpVectorTimesScalar %v4f32 %tesse2_tc_1 %tesse2_in_pos_1\n"
4553		"%tesse2_in_pos_2_weighted = OpVectorTimesScalar %v4f32 %tesse2_tc_2 %tesse2_in_pos_2\n"
4554		"%tesse2_out_pos_ptr = OpAccessChain %op_v4f32 %stream %c_i32_0\n"
4555		"%tesse2_in_pos_0_plus_pos_1 = OpFAdd %v4f32 %tesse2_in_pos_0_weighted %tesse2_in_pos_1_weighted\n"
4556		"%tesse2_computed_out = OpFAdd %v4f32 %tesse2_in_pos_0_plus_pos_1 %tesse2_in_pos_2_weighted\n"
4557		"OpStore %tesse2_out_pos_ptr %tesse2_computed_out\n"
4558		"%tesse2_in_clr_0_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_0\n"
4559		"%tesse2_in_clr_1_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_1\n"
4560		"%tesse2_in_clr_2_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_2\n"
4561		"%tesse2_in_clr_0 = OpLoad %v4f32 %tesse2_in_clr_0_ptr\n"
4562		"%tesse2_in_clr_1 = OpLoad %v4f32 %tesse2_in_clr_1_ptr\n"
4563		"%tesse2_in_clr_2 = OpLoad %v4f32 %tesse2_in_clr_2_ptr\n"
4564		"%tesse2_in_clr_0_weighted = OpVectorTimesScalar %v4f32 %tesse2_tc_0 %tesse2_in_clr_0\n"
4565		"%tesse2_in_clr_1_weighted = OpVectorTimesScalar %v4f32 %tesse2_tc_1 %tesse2_in_clr_1\n"
4566		"%tesse2_in_clr_2_weighted = OpVectorTimesScalar %v4f32 %tesse2_tc_2 %tesse2_in_clr_2\n"
4567		"%tesse2_in_clr_0_plus_col_1 = OpFAdd %v4f32 %tesse2_in_clr_0_weighted %tesse2_in_clr_1_weighted\n"
4568		"%tesse2_computed_clr = OpFAdd %v4f32 %tesse2_in_clr_0_plus_col_1 %tesse2_in_clr_2_weighted\n"
4569		"%tesse2_clr_transformed = OpFSub %v4f32 %cval %tesse2_computed_clr\n"
4570		"OpStore %out_color %tesse2_clr_transformed\n"
4571		"OpReturn\n"
4572		"OpFunctionEnd\n";
4573}
4574
4575// Sets up and runs a Vulkan pipeline, then spot-checks the resulting image.
4576// Feeds the pipeline a set of colored triangles, which then must occur in the
4577// rendered image.  The surface is cleared before executing the pipeline, so
4578// whatever the shaders draw can be directly spot-checked.
4579TestStatus runAndVerifyDefaultPipeline (Context& context, InstanceContext instance)
4580{
4581	const VkDevice								vkDevice				= context.getDevice();
4582	const DeviceInterface&						vk						= context.getDeviceInterface();
4583	const VkQueue								queue					= context.getUniversalQueue();
4584	const deUint32								queueFamilyIndex		= context.getUniversalQueueFamilyIndex();
4585	const tcu::IVec2							renderSize				(256, 256);
4586	vector<ModuleHandleSp>						modules;
4587	map<VkShaderStageFlagBits, VkShaderModule>	moduleByStage;
4588	const int									testSpecificSeed		= 31354125;
4589	const int									seed					= context.getTestContext().getCommandLine().getBaseSeed() ^ testSpecificSeed;
4590	bool										supportsGeometry		= false;
4591	bool										supportsTessellation	= false;
4592	bool										hasTessellation         = false;
4593
4594	const VkPhysicalDeviceFeatures&				features				= context.getDeviceFeatures();
4595	supportsGeometry		= features.geometryShader;
4596	supportsTessellation	= features.tessellationShader;
4597	hasTessellation			= (instance.requiredStages & VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT) ||
4598								(instance.requiredStages & VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT);
4599
4600	if (hasTessellation && !supportsTessellation)
4601	{
4602		throw tcu::NotSupportedError(std::string("Tessellation not supported"));
4603	}
4604
4605	if ((instance.requiredStages & VK_SHADER_STAGE_GEOMETRY_BIT) &&
4606		!supportsGeometry)
4607	{
4608		throw tcu::NotSupportedError(std::string("Geometry not supported"));
4609	}
4610
4611	de::Random(seed).shuffle(instance.inputColors, instance.inputColors+4);
4612	de::Random(seed).shuffle(instance.outputColors, instance.outputColors+4);
4613	const Vec4								vertexData[]			=
4614	{
4615		// Upper left corner:
4616		Vec4(-1.0f, -1.0f, 0.0f, 1.0f), instance.inputColors[0].toVec(),
4617		Vec4(-0.5f, -1.0f, 0.0f, 1.0f), instance.inputColors[0].toVec(),
4618		Vec4(-1.0f, -0.5f, 0.0f, 1.0f), instance.inputColors[0].toVec(),
4619
4620		// Upper right corner:
4621		Vec4(+0.5f, -1.0f, 0.0f, 1.0f), instance.inputColors[1].toVec(),
4622		Vec4(+1.0f, -1.0f, 0.0f, 1.0f), instance.inputColors[1].toVec(),
4623		Vec4(+1.0f, -0.5f, 0.0f, 1.0f), instance.inputColors[1].toVec(),
4624
4625		// Lower left corner:
4626		Vec4(-1.0f, +0.5f, 0.0f, 1.0f), instance.inputColors[2].toVec(),
4627		Vec4(-0.5f, +1.0f, 0.0f, 1.0f), instance.inputColors[2].toVec(),
4628		Vec4(-1.0f, +1.0f, 0.0f, 1.0f), instance.inputColors[2].toVec(),
4629
4630		// Lower right corner:
4631		Vec4(+1.0f, +0.5f, 0.0f, 1.0f), instance.inputColors[3].toVec(),
4632		Vec4(+1.0f, +1.0f, 0.0f, 1.0f), instance.inputColors[3].toVec(),
4633		Vec4(+0.5f, +1.0f, 0.0f, 1.0f), instance.inputColors[3].toVec()
4634	};
4635	const size_t							singleVertexDataSize	= 2 * sizeof(Vec4);
4636	const size_t							vertexCount				= sizeof(vertexData) / singleVertexDataSize;
4637
4638	const VkBufferCreateInfo				vertexBufferParams		=
4639	{
4640		VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO,	//	VkStructureType		sType;
4641		DE_NULL,								//	const void*			pNext;
4642		0u,										//	VkBufferCreateFlags	flags;
4643		(VkDeviceSize)sizeof(vertexData),		//	VkDeviceSize		size;
4644		VK_BUFFER_USAGE_VERTEX_BUFFER_BIT,		//	VkBufferUsageFlags	usage;
4645		VK_SHARING_MODE_EXCLUSIVE,				//	VkSharingMode		sharingMode;
4646		1u,										//	deUint32			queueFamilyCount;
4647		&queueFamilyIndex,						//	const deUint32*		pQueueFamilyIndices;
4648	};
4649	const Unique<VkBuffer>					vertexBuffer			(createBuffer(vk, vkDevice, &vertexBufferParams));
4650	const UniquePtr<Allocation>				vertexBufferMemory		(context.getDefaultAllocator().allocate(getBufferMemoryRequirements(vk, vkDevice, *vertexBuffer), MemoryRequirement::HostVisible));
4651
4652	VK_CHECK(vk.bindBufferMemory(vkDevice, *vertexBuffer, vertexBufferMemory->getMemory(), vertexBufferMemory->getOffset()));
4653
4654	const VkDeviceSize						imageSizeBytes			= (VkDeviceSize)(sizeof(deUint32)*renderSize.x()*renderSize.y());
4655	const VkBufferCreateInfo				readImageBufferParams	=
4656	{
4657		VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO,		//	VkStructureType		sType;
4658		DE_NULL,									//	const void*			pNext;
4659		0u,											//	VkBufferCreateFlags	flags;
4660		imageSizeBytes,								//	VkDeviceSize		size;
4661		VK_BUFFER_USAGE_TRANSFER_DST_BIT,			//	VkBufferUsageFlags	usage;
4662		VK_SHARING_MODE_EXCLUSIVE,					//	VkSharingMode		sharingMode;
4663		1u,											//	deUint32			queueFamilyCount;
4664		&queueFamilyIndex,							//	const deUint32*		pQueueFamilyIndices;
4665	};
4666	const Unique<VkBuffer>					readImageBuffer			(createBuffer(vk, vkDevice, &readImageBufferParams));
4667	const UniquePtr<Allocation>				readImageBufferMemory	(context.getDefaultAllocator().allocate(getBufferMemoryRequirements(vk, vkDevice, *readImageBuffer), MemoryRequirement::HostVisible));
4668
4669	VK_CHECK(vk.bindBufferMemory(vkDevice, *readImageBuffer, readImageBufferMemory->getMemory(), readImageBufferMemory->getOffset()));
4670
4671	const VkImageCreateInfo					imageParams				=
4672	{
4673		VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,									//	VkStructureType		sType;
4674		DE_NULL,																//	const void*			pNext;
4675		0u,																		//	VkImageCreateFlags	flags;
4676		VK_IMAGE_TYPE_2D,														//	VkImageType			imageType;
4677		VK_FORMAT_R8G8B8A8_UNORM,												//	VkFormat			format;
4678		{ renderSize.x(), renderSize.y(), 1 },									//	VkExtent3D			extent;
4679		1u,																		//	deUint32			mipLevels;
4680		1u,																		//	deUint32			arraySize;
4681		VK_SAMPLE_COUNT_1_BIT,													//	deUint32			samples;
4682		VK_IMAGE_TILING_OPTIMAL,												//	VkImageTiling		tiling;
4683		VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT|VK_IMAGE_USAGE_TRANSFER_SRC_BIT,	//	VkImageUsageFlags	usage;
4684		VK_SHARING_MODE_EXCLUSIVE,												//	VkSharingMode		sharingMode;
4685		1u,																		//	deUint32			queueFamilyCount;
4686		&queueFamilyIndex,														//	const deUint32*		pQueueFamilyIndices;
4687		VK_IMAGE_LAYOUT_UNDEFINED,												//	VkImageLayout		initialLayout;
4688	};
4689
4690	const Unique<VkImage>					image					(createImage(vk, vkDevice, &imageParams));
4691	const UniquePtr<Allocation>				imageMemory				(context.getDefaultAllocator().allocate(getImageMemoryRequirements(vk, vkDevice, *image), MemoryRequirement::Any));
4692
4693	VK_CHECK(vk.bindImageMemory(vkDevice, *image, imageMemory->getMemory(), imageMemory->getOffset()));
4694
4695	const VkAttachmentDescription			colorAttDesc			=
4696	{
4697		0u,												//	VkAttachmentDescriptionFlags	flags;
4698		VK_FORMAT_R8G8B8A8_UNORM,						//	VkFormat						format;
4699		VK_SAMPLE_COUNT_1_BIT,							//	deUint32						samples;
4700		VK_ATTACHMENT_LOAD_OP_CLEAR,					//	VkAttachmentLoadOp				loadOp;
4701		VK_ATTACHMENT_STORE_OP_STORE,					//	VkAttachmentStoreOp				storeOp;
4702		VK_ATTACHMENT_LOAD_OP_DONT_CARE,				//	VkAttachmentLoadOp				stencilLoadOp;
4703		VK_ATTACHMENT_STORE_OP_DONT_CARE,				//	VkAttachmentStoreOp				stencilStoreOp;
4704		VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,		//	VkImageLayout					initialLayout;
4705		VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,		//	VkImageLayout					finalLayout;
4706	};
4707	const VkAttachmentReference				colorAttRef				=
4708	{
4709		0u,												//	deUint32		attachment;
4710		VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,		//	VkImageLayout	layout;
4711	};
4712	const VkSubpassDescription				subpassDesc				=
4713	{
4714		0u,												//	VkSubpassDescriptionFlags		flags;
4715		VK_PIPELINE_BIND_POINT_GRAPHICS,				//	VkPipelineBindPoint				pipelineBindPoint;
4716		0u,												//	deUint32						inputCount;
4717		DE_NULL,										//	const VkAttachmentReference*	pInputAttachments;
4718		1u,												//	deUint32						colorCount;
4719		&colorAttRef,									//	const VkAttachmentReference*	pColorAttachments;
4720		DE_NULL,										//	const VkAttachmentReference*	pResolveAttachments;
4721		DE_NULL,										//	const VkAttachmentReference*	pDepthStencilAttachment;
4722		0u,												//	deUint32						preserveCount;
4723		DE_NULL,										//	const VkAttachmentReference*	pPreserveAttachments;
4724
4725	};
4726	const VkRenderPassCreateInfo			renderPassParams		=
4727	{
4728		VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO,		//	VkStructureType					sType;
4729		DE_NULL,										//	const void*						pNext;
4730		(VkRenderPassCreateFlags)0,
4731		1u,												//	deUint32						attachmentCount;
4732		&colorAttDesc,									//	const VkAttachmentDescription*	pAttachments;
4733		1u,												//	deUint32						subpassCount;
4734		&subpassDesc,									//	const VkSubpassDescription*		pSubpasses;
4735		0u,												//	deUint32						dependencyCount;
4736		DE_NULL,										//	const VkSubpassDependency*		pDependencies;
4737	};
4738	const Unique<VkRenderPass>				renderPass				(createRenderPass(vk, vkDevice, &renderPassParams));
4739
4740	const VkImageViewCreateInfo				colorAttViewParams		=
4741	{
4742		VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,		//	VkStructureType				sType;
4743		DE_NULL,										//	const void*					pNext;
4744		0u,												//	VkImageViewCreateFlags		flags;
4745		*image,											//	VkImage						image;
4746		VK_IMAGE_VIEW_TYPE_2D,							//	VkImageViewType				viewType;
4747		VK_FORMAT_R8G8B8A8_UNORM,						//	VkFormat					format;
4748		{
4749			VK_COMPONENT_SWIZZLE_R,
4750			VK_COMPONENT_SWIZZLE_G,
4751			VK_COMPONENT_SWIZZLE_B,
4752			VK_COMPONENT_SWIZZLE_A
4753		},												//	VkChannelMapping			channels;
4754		{
4755			VK_IMAGE_ASPECT_COLOR_BIT,						//	VkImageAspectFlags	aspectMask;
4756			0u,												//	deUint32			baseMipLevel;
4757			1u,												//	deUint32			mipLevels;
4758			0u,												//	deUint32			baseArrayLayer;
4759			1u,												//	deUint32			arraySize;
4760		},												//	VkImageSubresourceRange		subresourceRange;
4761	};
4762	const Unique<VkImageView>				colorAttView			(createImageView(vk, vkDevice, &colorAttViewParams));
4763
4764
4765	// Pipeline layout
4766	const VkPipelineLayoutCreateInfo		pipelineLayoutParams	=
4767	{
4768		VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,			//	VkStructureType					sType;
4769		DE_NULL,												//	const void*						pNext;
4770		(VkPipelineLayoutCreateFlags)0,
4771		0u,														//	deUint32						descriptorSetCount;
4772		DE_NULL,												//	const VkDescriptorSetLayout*	pSetLayouts;
4773		0u,														//	deUint32						pushConstantRangeCount;
4774		DE_NULL,												//	const VkPushConstantRange*		pPushConstantRanges;
4775	};
4776	const Unique<VkPipelineLayout>			pipelineLayout			(createPipelineLayout(vk, vkDevice, &pipelineLayoutParams));
4777
4778	// Pipeline
4779	vector<VkPipelineShaderStageCreateInfo>		shaderStageParams;
4780	// We need these vectors to make sure that information about specialization constants for each stage can outlive createGraphicsPipeline().
4781	vector<vector<VkSpecializationMapEntry> >	specConstantEntries;
4782	vector<VkSpecializationInfo>				specializationInfos;
4783	createPipelineShaderStages(vk, vkDevice, instance, context, modules, shaderStageParams);
4784
4785	// And we don't want the reallocation of these vectors to invalidate pointers pointing to their contents.
4786	specConstantEntries.reserve(shaderStageParams.size());
4787	specializationInfos.reserve(shaderStageParams.size());
4788
4789	// Patch the specialization info field in PipelineShaderStageCreateInfos.
4790	for (vector<VkPipelineShaderStageCreateInfo>::iterator stageInfo = shaderStageParams.begin(); stageInfo != shaderStageParams.end(); ++stageInfo)
4791	{
4792		const StageToSpecConstantMap::const_iterator stageIt = instance.specConstants.find(stageInfo->stage);
4793
4794		if (stageIt != instance.specConstants.end())
4795		{
4796			const size_t						numSpecConstants	= stageIt->second.size();
4797			vector<VkSpecializationMapEntry>	entries;
4798			VkSpecializationInfo				specInfo;
4799
4800			entries.resize(numSpecConstants);
4801
4802			// Only support 32-bit integers as spec constants now. And their constant IDs are numbered sequentially starting from 0.
4803			for (size_t ndx = 0; ndx < numSpecConstants; ++ndx)
4804			{
4805				entries[ndx].constantID	= (deUint32)ndx;
4806				entries[ndx].offset		= deUint32(ndx * sizeof(deInt32));
4807				entries[ndx].size		= sizeof(deInt32);
4808			}
4809
4810			specConstantEntries.push_back(entries);
4811
4812			specInfo.mapEntryCount	= (deUint32)numSpecConstants;
4813			specInfo.pMapEntries	= specConstantEntries.back().data();
4814			specInfo.dataSize		= numSpecConstants * sizeof(deInt32);
4815			specInfo.pData			= stageIt->second.data();
4816			specializationInfos.push_back(specInfo);
4817
4818			stageInfo->pSpecializationInfo = &specializationInfos.back();
4819		}
4820	}
4821	const VkPipelineDepthStencilStateCreateInfo	depthStencilParams		=
4822	{
4823		VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO,	//	VkStructureType		sType;
4824		DE_NULL,													//	const void*			pNext;
4825		(VkPipelineDepthStencilStateCreateFlags)0,
4826		DE_FALSE,													//	deUint32			depthTestEnable;
4827		DE_FALSE,													//	deUint32			depthWriteEnable;
4828		VK_COMPARE_OP_ALWAYS,										//	VkCompareOp			depthCompareOp;
4829		DE_FALSE,													//	deUint32			depthBoundsTestEnable;
4830		DE_FALSE,													//	deUint32			stencilTestEnable;
4831		{
4832			VK_STENCIL_OP_KEEP,											//	VkStencilOp	stencilFailOp;
4833			VK_STENCIL_OP_KEEP,											//	VkStencilOp	stencilPassOp;
4834			VK_STENCIL_OP_KEEP,											//	VkStencilOp	stencilDepthFailOp;
4835			VK_COMPARE_OP_ALWAYS,										//	VkCompareOp	stencilCompareOp;
4836			0u,															//	deUint32	stencilCompareMask;
4837			0u,															//	deUint32	stencilWriteMask;
4838			0u,															//	deUint32	stencilReference;
4839		},															//	VkStencilOpState	front;
4840		{
4841			VK_STENCIL_OP_KEEP,											//	VkStencilOp	stencilFailOp;
4842			VK_STENCIL_OP_KEEP,											//	VkStencilOp	stencilPassOp;
4843			VK_STENCIL_OP_KEEP,											//	VkStencilOp	stencilDepthFailOp;
4844			VK_COMPARE_OP_ALWAYS,										//	VkCompareOp	stencilCompareOp;
4845			0u,															//	deUint32	stencilCompareMask;
4846			0u,															//	deUint32	stencilWriteMask;
4847			0u,															//	deUint32	stencilReference;
4848		},															//	VkStencilOpState	back;
4849		-1.0f,														//	float				minDepthBounds;
4850		+1.0f,														//	float				maxDepthBounds;
4851	};
4852	const VkViewport						viewport0				=
4853	{
4854		0.0f,														//	float	originX;
4855		0.0f,														//	float	originY;
4856		(float)renderSize.x(),										//	float	width;
4857		(float)renderSize.y(),										//	float	height;
4858		0.0f,														//	float	minDepth;
4859		1.0f,														//	float	maxDepth;
4860	};
4861	const VkRect2D							scissor0				=
4862	{
4863		{
4864			0u,															//	deInt32	x;
4865			0u,															//	deInt32	y;
4866		},															//	VkOffset2D	offset;
4867		{
4868			renderSize.x(),												//	deInt32	width;
4869			renderSize.y(),												//	deInt32	height;
4870		},															//	VkExtent2D	extent;
4871	};
4872	const VkPipelineViewportStateCreateInfo		viewportParams			=
4873	{
4874		VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO,		//	VkStructureType		sType;
4875		DE_NULL,													//	const void*			pNext;
4876		(VkPipelineViewportStateCreateFlags)0,
4877		1u,															//	deUint32			viewportCount;
4878		&viewport0,
4879		1u,
4880		&scissor0
4881	};
4882	const VkSampleMask							sampleMask				= ~0u;
4883	const VkPipelineMultisampleStateCreateInfo	multisampleParams		=
4884	{
4885		VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO,	//	VkStructureType			sType;
4886		DE_NULL,													//	const void*				pNext;
4887		(VkPipelineMultisampleStateCreateFlags)0,
4888		VK_SAMPLE_COUNT_1_BIT,										//	VkSampleCountFlagBits	rasterSamples;
4889		DE_FALSE,													//	deUint32				sampleShadingEnable;
4890		0.0f,														//	float					minSampleShading;
4891		&sampleMask,												//	const VkSampleMask*		pSampleMask;
4892		DE_FALSE,													//	VkBool32				alphaToCoverageEnable;
4893		DE_FALSE,													//	VkBool32				alphaToOneEnable;
4894	};
4895	const VkPipelineRasterizationStateCreateInfo	rasterParams		=
4896	{
4897		VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO,	//	VkStructureType	sType;
4898		DE_NULL,													//	const void*		pNext;
4899		(VkPipelineRasterizationStateCreateFlags)0,
4900		DE_TRUE,													//	deUint32		depthClipEnable;
4901		DE_FALSE,													//	deUint32		rasterizerDiscardEnable;
4902		VK_POLYGON_MODE_FILL,										//	VkFillMode		fillMode;
4903		VK_CULL_MODE_NONE,											//	VkCullMode		cullMode;
4904		VK_FRONT_FACE_COUNTER_CLOCKWISE,							//	VkFrontFace		frontFace;
4905		VK_FALSE,													//	VkBool32		depthBiasEnable;
4906		0.0f,														//	float			depthBias;
4907		0.0f,														//	float			depthBiasClamp;
4908		0.0f,														//	float			slopeScaledDepthBias;
4909		1.0f,														//	float			lineWidth;
4910	};
4911	const VkPrimitiveTopology topology = hasTessellation? VK_PRIMITIVE_TOPOLOGY_PATCH_LIST: VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
4912	const VkPipelineInputAssemblyStateCreateInfo	inputAssemblyParams	=
4913	{
4914		VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO,	//	VkStructureType		sType;
4915		DE_NULL,														//	const void*			pNext;
4916		(VkPipelineInputAssemblyStateCreateFlags)0,
4917		topology,														//	VkPrimitiveTopology	topology;
4918		DE_FALSE,														//	deUint32			primitiveRestartEnable;
4919	};
4920	const VkVertexInputBindingDescription		vertexBinding0 =
4921	{
4922		0u,									// deUint32					binding;
4923		deUint32(singleVertexDataSize),		// deUint32					strideInBytes;
4924		VK_VERTEX_INPUT_RATE_VERTEX			// VkVertexInputStepRate	stepRate;
4925	};
4926	const VkVertexInputAttributeDescription		vertexAttrib0[2] =
4927	{
4928		{
4929			0u,									// deUint32	location;
4930			0u,									// deUint32	binding;
4931			VK_FORMAT_R32G32B32A32_SFLOAT,		// VkFormat	format;
4932			0u									// deUint32	offsetInBytes;
4933		},
4934		{
4935			1u,									// deUint32	location;
4936			0u,									// deUint32	binding;
4937			VK_FORMAT_R32G32B32A32_SFLOAT,		// VkFormat	format;
4938			sizeof(Vec4),						// deUint32	offsetInBytes;
4939		}
4940	};
4941
4942	const VkPipelineVertexInputStateCreateInfo	vertexInputStateParams	=
4943	{
4944		VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO,	//	VkStructureType								sType;
4945		DE_NULL,													//	const void*									pNext;
4946		(VkPipelineVertexInputStateCreateFlags)0,
4947		1u,															//	deUint32									bindingCount;
4948		&vertexBinding0,											//	const VkVertexInputBindingDescription*		pVertexBindingDescriptions;
4949		2u,															//	deUint32									attributeCount;
4950		vertexAttrib0,												//	const VkVertexInputAttributeDescription*	pVertexAttributeDescriptions;
4951	};
4952	const VkPipelineColorBlendAttachmentState	attBlendParams			=
4953	{
4954		DE_FALSE,													//	deUint32		blendEnable;
4955		VK_BLEND_FACTOR_ONE,										//	VkBlend			srcBlendColor;
4956		VK_BLEND_FACTOR_ZERO,										//	VkBlend			destBlendColor;
4957		VK_BLEND_OP_ADD,											//	VkBlendOp		blendOpColor;
4958		VK_BLEND_FACTOR_ONE,										//	VkBlend			srcBlendAlpha;
4959		VK_BLEND_FACTOR_ZERO,										//	VkBlend			destBlendAlpha;
4960		VK_BLEND_OP_ADD,											//	VkBlendOp		blendOpAlpha;
4961		(VK_COLOR_COMPONENT_R_BIT|
4962		 VK_COLOR_COMPONENT_G_BIT|
4963		 VK_COLOR_COMPONENT_B_BIT|
4964		 VK_COLOR_COMPONENT_A_BIT),									//	VkChannelFlags	channelWriteMask;
4965	};
4966	const VkPipelineColorBlendStateCreateInfo	blendParams				=
4967	{
4968		VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO,	//	VkStructureType								sType;
4969		DE_NULL,													//	const void*									pNext;
4970		(VkPipelineColorBlendStateCreateFlags)0,
4971		DE_FALSE,													//	VkBool32									logicOpEnable;
4972		VK_LOGIC_OP_COPY,											//	VkLogicOp									logicOp;
4973		1u,															//	deUint32									attachmentCount;
4974		&attBlendParams,											//	const VkPipelineColorBlendAttachmentState*	pAttachments;
4975		{ 0.0f, 0.0f, 0.0f, 0.0f },									//	float										blendConst[4];
4976	};
4977	const VkPipelineDynamicStateCreateInfo	dynamicStateInfo		=
4978	{
4979		VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO,	//	VkStructureType			sType;
4980		DE_NULL,												//	const void*				pNext;
4981		(VkPipelineDynamicStateCreateFlags)0,
4982		0u,														//	deUint32				dynamicStateCount;
4983		DE_NULL													//	const VkDynamicState*	pDynamicStates;
4984	};
4985
4986	const VkPipelineTessellationStateCreateInfo	tessellationState	=
4987	{
4988		VK_STRUCTURE_TYPE_PIPELINE_TESSELLATION_STATE_CREATE_INFO,
4989		DE_NULL,
4990		(VkPipelineTesselationStateCreateFlags)0,
4991		3u
4992	};
4993
4994	const VkPipelineTessellationStateCreateInfo* tessellationInfo	=	hasTessellation ? &tessellationState: DE_NULL;
4995	const VkGraphicsPipelineCreateInfo		pipelineParams			=
4996	{
4997		VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO,		//	VkStructureType									sType;
4998		DE_NULL,												//	const void*										pNext;
4999		0u,														//	VkPipelineCreateFlags							flags;
5000		(deUint32)shaderStageParams.size(),						//	deUint32										stageCount;
5001		&shaderStageParams[0],									//	const VkPipelineShaderStageCreateInfo*			pStages;
5002		&vertexInputStateParams,								//	const VkPipelineVertexInputStateCreateInfo*		pVertexInputState;
5003		&inputAssemblyParams,									//	const VkPipelineInputAssemblyStateCreateInfo*	pInputAssemblyState;
5004		tessellationInfo,										//	const VkPipelineTessellationStateCreateInfo*	pTessellationState;
5005		&viewportParams,										//	const VkPipelineViewportStateCreateInfo*		pViewportState;
5006		&rasterParams,											//	const VkPipelineRasterStateCreateInfo*			pRasterState;
5007		&multisampleParams,										//	const VkPipelineMultisampleStateCreateInfo*		pMultisampleState;
5008		&depthStencilParams,									//	const VkPipelineDepthStencilStateCreateInfo*	pDepthStencilState;
5009		&blendParams,											//	const VkPipelineColorBlendStateCreateInfo*		pColorBlendState;
5010		&dynamicStateInfo,										//	const VkPipelineDynamicStateCreateInfo*			pDynamicState;
5011		*pipelineLayout,										//	VkPipelineLayout								layout;
5012		*renderPass,											//	VkRenderPass									renderPass;
5013		0u,														//	deUint32										subpass;
5014		DE_NULL,												//	VkPipeline										basePipelineHandle;
5015		0u,														//	deInt32											basePipelineIndex;
5016	};
5017
5018	const Unique<VkPipeline>				pipeline				(createGraphicsPipeline(vk, vkDevice, DE_NULL, &pipelineParams));
5019
5020	// Framebuffer
5021	const VkFramebufferCreateInfo			framebufferParams		=
5022	{
5023		VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO,				//	VkStructureType		sType;
5024		DE_NULL,												//	const void*			pNext;
5025		(VkFramebufferCreateFlags)0,
5026		*renderPass,											//	VkRenderPass		renderPass;
5027		1u,														//	deUint32			attachmentCount;
5028		&*colorAttView,											//	const VkImageView*	pAttachments;
5029		(deUint32)renderSize.x(),								//	deUint32			width;
5030		(deUint32)renderSize.y(),								//	deUint32			height;
5031		1u,														//	deUint32			layers;
5032	};
5033	const Unique<VkFramebuffer>				framebuffer				(createFramebuffer(vk, vkDevice, &framebufferParams));
5034
5035	const VkCommandPoolCreateInfo			cmdPoolParams			=
5036	{
5037		VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO,					//	VkStructureType			sType;
5038		DE_NULL,													//	const void*				pNext;
5039		VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT,				//	VkCmdPoolCreateFlags	flags;
5040		queueFamilyIndex,											//	deUint32				queueFamilyIndex;
5041	};
5042	const Unique<VkCommandPool>				cmdPool					(createCommandPool(vk, vkDevice, &cmdPoolParams));
5043
5044	// Command buffer
5045	const VkCommandBufferAllocateInfo		cmdBufParams			=
5046	{
5047		VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO,			//	VkStructureType			sType;
5048		DE_NULL,												//	const void*				pNext;
5049		*cmdPool,												//	VkCmdPool				pool;
5050		VK_COMMAND_BUFFER_LEVEL_PRIMARY,						//	VkCmdBufferLevel		level;
5051		1u,														//	deUint32				count;
5052	};
5053	const Unique<VkCommandBuffer>			cmdBuf					(allocateCommandBuffer(vk, vkDevice, &cmdBufParams));
5054
5055	const VkCommandBufferBeginInfo			cmdBufBeginParams		=
5056	{
5057		VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO,			//	VkStructureType				sType;
5058		DE_NULL,												//	const void*					pNext;
5059		(VkCommandBufferUsageFlags)0,
5060		DE_NULL,												//	VkRenderPass				renderPass;
5061		0u,														//	deUint32					subpass;
5062		DE_NULL,												//	VkFramebuffer				framebuffer;
5063		VK_FALSE,												//	VkBool32					occlusionQueryEnable;
5064		(VkQueryControlFlags)0,
5065		(VkQueryPipelineStatisticFlags)0,
5066	};
5067
5068	// Record commands
5069	VK_CHECK(vk.beginCommandBuffer(*cmdBuf, &cmdBufBeginParams));
5070
5071	{
5072		const VkMemoryBarrier		vertFlushBarrier	=
5073		{
5074			VK_STRUCTURE_TYPE_MEMORY_BARRIER,			//	VkStructureType		sType;
5075			DE_NULL,									//	const void*			pNext;
5076			VK_ACCESS_HOST_WRITE_BIT,					//	VkMemoryOutputFlags	outputMask;
5077			VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT,		//	VkMemoryInputFlags	inputMask;
5078		};
5079		const VkImageMemoryBarrier	colorAttBarrier		=
5080		{
5081			VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,		//	VkStructureType			sType;
5082			DE_NULL,									//	const void*				pNext;
5083			0u,											//	VkMemoryOutputFlags		outputMask;
5084			VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,		//	VkMemoryInputFlags		inputMask;
5085			VK_IMAGE_LAYOUT_UNDEFINED,					//	VkImageLayout			oldLayout;
5086			VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,	//	VkImageLayout			newLayout;
5087			queueFamilyIndex,							//	deUint32				srcQueueFamilyIndex;
5088			queueFamilyIndex,							//	deUint32				destQueueFamilyIndex;
5089			*image,										//	VkImage					image;
5090			{
5091				VK_IMAGE_ASPECT_COLOR_BIT,					//	VkImageAspect	aspect;
5092				0u,											//	deUint32		baseMipLevel;
5093				1u,											//	deUint32		mipLevels;
5094				0u,											//	deUint32		baseArraySlice;
5095				1u,											//	deUint32		arraySize;
5096			}											//	VkImageSubresourceRange	subresourceRange;
5097		};
5098		const void*				barriers[]				= { &vertFlushBarrier, &colorAttBarrier };
5099		vk.cmdPipelineBarrier(*cmdBuf, VK_PIPELINE_STAGE_HOST_BIT, VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT, DE_FALSE, (deUint32)DE_LENGTH_OF_ARRAY(barriers), barriers);
5100	}
5101
5102	{
5103		const VkClearValue			clearValue		= makeClearValueColorF32(0.125f, 0.25f, 0.75f, 1.0f);
5104		const VkRenderPassBeginInfo	passBeginParams	=
5105		{
5106			VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO,			//	VkStructureType		sType;
5107			DE_NULL,											//	const void*			pNext;
5108			*renderPass,										//	VkRenderPass		renderPass;
5109			*framebuffer,										//	VkFramebuffer		framebuffer;
5110			{ { 0, 0 }, { renderSize.x(), renderSize.y() } },	//	VkRect2D			renderArea;
5111			1u,													//	deUint32			clearValueCount;
5112			&clearValue,										//	const VkClearValue*	pClearValues;
5113		};
5114		vk.cmdBeginRenderPass(*cmdBuf, &passBeginParams, VK_SUBPASS_CONTENTS_INLINE);
5115	}
5116
5117	vk.cmdBindPipeline(*cmdBuf, VK_PIPELINE_BIND_POINT_GRAPHICS, *pipeline);
5118	{
5119		const VkDeviceSize bindingOffset = 0;
5120		vk.cmdBindVertexBuffers(*cmdBuf, 0u, 1u, &vertexBuffer.get(), &bindingOffset);
5121	}
5122	vk.cmdDraw(*cmdBuf, deUint32(vertexCount), 1u /*run pipeline once*/, 0u /*first vertex*/, 0u /*first instanceIndex*/);
5123	vk.cmdEndRenderPass(*cmdBuf);
5124
5125	{
5126		const VkImageMemoryBarrier	renderFinishBarrier	=
5127		{
5128			VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,		//	VkStructureType			sType;
5129			DE_NULL,									//	const void*				pNext;
5130			VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,		//	VkMemoryOutputFlags		outputMask;
5131			VK_ACCESS_TRANSFER_READ_BIT,				//	VkMemoryInputFlags		inputMask;
5132			VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,	//	VkImageLayout			oldLayout;
5133			VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,		//	VkImageLayout			newLayout;
5134			queueFamilyIndex,							//	deUint32				srcQueueFamilyIndex;
5135			queueFamilyIndex,							//	deUint32				destQueueFamilyIndex;
5136			*image,										//	VkImage					image;
5137			{
5138				VK_IMAGE_ASPECT_COLOR_BIT,					//	VkImageAspectFlags	aspectMask;
5139				0u,											//	deUint32			baseMipLevel;
5140				1u,											//	deUint32			mipLevels;
5141				0u,											//	deUint32			baseArraySlice;
5142				1u,											//	deUint32			arraySize;
5143			}											//	VkImageSubresourceRange	subresourceRange;
5144		};
5145		const void*				barriers[]				= { &renderFinishBarrier };
5146		vk.cmdPipelineBarrier(*cmdBuf, VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, DE_FALSE, (deUint32)DE_LENGTH_OF_ARRAY(barriers), barriers);
5147	}
5148
5149	{
5150		const VkBufferImageCopy	copyParams	=
5151		{
5152			(VkDeviceSize)0u,						//	VkDeviceSize			bufferOffset;
5153			(deUint32)renderSize.x(),				//	deUint32				bufferRowLength;
5154			(deUint32)renderSize.y(),				//	deUint32				bufferImageHeight;
5155			{
5156				VK_IMAGE_ASPECT_COLOR_BIT,				//	VkImageAspect		aspect;
5157				0u,										//	deUint32			mipLevel;
5158				0u,										//	deUint32			arrayLayer;
5159				1u,										//	deUint32			arraySize;
5160			},										//	VkImageSubresourceCopy	imageSubresource;
5161			{ 0u, 0u, 0u },							//	VkOffset3D				imageOffset;
5162			{ renderSize.x(), renderSize.y(), 1u }	//	VkExtent3D				imageExtent;
5163		};
5164		vk.cmdCopyImageToBuffer(*cmdBuf, *image, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, *readImageBuffer, 1u, &copyParams);
5165	}
5166
5167	{
5168		const VkBufferMemoryBarrier	copyFinishBarrier	=
5169		{
5170			VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER,	//	VkStructureType		sType;
5171			DE_NULL,									//	const void*			pNext;
5172			VK_ACCESS_TRANSFER_WRITE_BIT,				//	VkMemoryOutputFlags	outputMask;
5173			VK_ACCESS_HOST_READ_BIT,					//	VkMemoryInputFlags	inputMask;
5174			queueFamilyIndex,							//	deUint32			srcQueueFamilyIndex;
5175			queueFamilyIndex,							//	deUint32			destQueueFamilyIndex;
5176			*readImageBuffer,							//	VkBuffer			buffer;
5177			0u,											//	VkDeviceSize		offset;
5178			imageSizeBytes								//	VkDeviceSize		size;
5179		};
5180		const void*				barriers[]				= { &copyFinishBarrier };
5181		vk.cmdPipelineBarrier(*cmdBuf, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_HOST_BIT, DE_FALSE, (deUint32)DE_LENGTH_OF_ARRAY(barriers), barriers);
5182	}
5183
5184	VK_CHECK(vk.endCommandBuffer(*cmdBuf));
5185
5186	// Upload vertex data
5187	{
5188		const VkMappedMemoryRange	range			=
5189		{
5190			VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE,	//	VkStructureType	sType;
5191			DE_NULL,								//	const void*		pNext;
5192			vertexBufferMemory->getMemory(),		//	VkDeviceMemory	mem;
5193			0,										//	VkDeviceSize	offset;
5194			(VkDeviceSize)sizeof(vertexData),		//	VkDeviceSize	size;
5195		};
5196		void*						vertexBufPtr	= vertexBufferMemory->getHostPtr();
5197
5198		deMemcpy(vertexBufPtr, &vertexData[0], sizeof(vertexData));
5199		VK_CHECK(vk.flushMappedMemoryRanges(vkDevice, 1u, &range));
5200	}
5201
5202	// Submit & wait for completion
5203	{
5204		const VkFenceCreateInfo	fenceParams	=
5205		{
5206			VK_STRUCTURE_TYPE_FENCE_CREATE_INFO,	//	VkStructureType		sType;
5207			DE_NULL,								//	const void*			pNext;
5208			0u,										//	VkFenceCreateFlags	flags;
5209		};
5210		const Unique<VkFence>	fence		(createFence(vk, vkDevice, &fenceParams));
5211		const VkSubmitInfo		submitInfo	=
5212		{
5213			VK_STRUCTURE_TYPE_SUBMIT_INFO,
5214			DE_NULL,
5215			0u,
5216			(const VkSemaphore*)DE_NULL,
5217			1u,
5218			&cmdBuf.get(),
5219			0u,
5220			(const VkSemaphore*)DE_NULL,
5221		};
5222
5223		VK_CHECK(vk.queueSubmit(queue, 1u, &submitInfo, *fence));
5224		VK_CHECK(vk.waitForFences(vkDevice, 1u, &fence.get(), DE_TRUE, ~0ull));
5225	}
5226
5227	const void* imagePtr	= readImageBufferMemory->getHostPtr();
5228	const tcu::ConstPixelBufferAccess pixelBuffer(tcu::TextureFormat(tcu::TextureFormat::RGBA, tcu::TextureFormat::UNORM_INT8),
5229												  renderSize.x(), renderSize.y(), 1, imagePtr);
5230	// Log image
5231	{
5232		const VkMappedMemoryRange	range		=
5233		{
5234			VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE,	//	VkStructureType	sType;
5235			DE_NULL,								//	const void*		pNext;
5236			readImageBufferMemory->getMemory(),		//	VkDeviceMemory	mem;
5237			0,										//	VkDeviceSize	offset;
5238			imageSizeBytes,							//	VkDeviceSize	size;
5239		};
5240
5241		VK_CHECK(vk.invalidateMappedMemoryRanges(vkDevice, 1u, &range));
5242		context.getTestContext().getLog() << TestLog::Image("Result", "Result", pixelBuffer);
5243	}
5244
5245	const RGBA threshold(1, 1, 1, 1);
5246	const RGBA upperLeft(pixelBuffer.getPixel(1, 1));
5247	if (!tcu::compareThreshold(upperLeft, instance.outputColors[0], threshold))
5248		return TestStatus::fail("Upper left corner mismatch");
5249
5250	const RGBA upperRight(pixelBuffer.getPixel(pixelBuffer.getWidth() - 1, 1));
5251	if (!tcu::compareThreshold(upperRight, instance.outputColors[1], threshold))
5252		return TestStatus::fail("Upper right corner mismatch");
5253
5254	const RGBA lowerLeft(pixelBuffer.getPixel(1, pixelBuffer.getHeight() - 1));
5255	if (!tcu::compareThreshold(lowerLeft, instance.outputColors[2], threshold))
5256		return TestStatus::fail("Lower left corner mismatch");
5257
5258	const RGBA lowerRight(pixelBuffer.getPixel(pixelBuffer.getWidth() - 1, pixelBuffer.getHeight() - 1));
5259	if (!tcu::compareThreshold(lowerRight, instance.outputColors[3], threshold))
5260		return TestStatus::fail("Lower right corner mismatch");
5261
5262	return TestStatus::pass("Rendered output matches input");
5263}
5264
5265void createTestsForAllStages (const std::string& name, const RGBA (&inputColors)[4], const RGBA (&outputColors)[4], const map<string, string>& testCodeFragments, const vector<deInt32>& specConstants, tcu::TestCaseGroup* tests)
5266{
5267	const ShaderElement		vertFragPipelineStages[]		=
5268	{
5269		ShaderElement("vert", "main", VK_SHADER_STAGE_VERTEX_BIT),
5270		ShaderElement("frag", "main", VK_SHADER_STAGE_FRAGMENT_BIT),
5271	};
5272
5273	const ShaderElement		tessPipelineStages[]			=
5274	{
5275		ShaderElement("vert", "main", VK_SHADER_STAGE_VERTEX_BIT),
5276		ShaderElement("tessc", "main", VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT),
5277		ShaderElement("tesse", "main", VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT),
5278		ShaderElement("frag", "main", VK_SHADER_STAGE_FRAGMENT_BIT),
5279	};
5280
5281	const ShaderElement		geomPipelineStages[]				=
5282	{
5283		ShaderElement("vert", "main", VK_SHADER_STAGE_VERTEX_BIT),
5284		ShaderElement("geom", "main", VK_SHADER_STAGE_GEOMETRY_BIT),
5285		ShaderElement("frag", "main", VK_SHADER_STAGE_FRAGMENT_BIT),
5286	};
5287
5288	StageToSpecConstantMap	specConstantMap;
5289
5290	specConstantMap[VK_SHADER_STAGE_VERTEX_BIT] = specConstants;
5291	addFunctionCaseWithPrograms<InstanceContext>(tests, name + "_vert", "", addShaderCodeCustomVertex, runAndVerifyDefaultPipeline,
5292												 createInstanceContext(vertFragPipelineStages, inputColors, outputColors, testCodeFragments, specConstantMap));
5293
5294	specConstantMap.clear();
5295	specConstantMap[VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT] = specConstants;
5296	addFunctionCaseWithPrograms<InstanceContext>(tests, name + "_tessc", "", addShaderCodeCustomTessControl, runAndVerifyDefaultPipeline,
5297												 createInstanceContext(tessPipelineStages, inputColors, outputColors, testCodeFragments, specConstantMap));
5298
5299	specConstantMap.clear();
5300	specConstantMap[VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT] = specConstants;
5301	addFunctionCaseWithPrograms<InstanceContext>(tests, name + "_tesse", "", addShaderCodeCustomTessEval, runAndVerifyDefaultPipeline,
5302												 createInstanceContext(tessPipelineStages, inputColors, outputColors, testCodeFragments, specConstantMap));
5303
5304	specConstantMap.clear();
5305	specConstantMap[VK_SHADER_STAGE_GEOMETRY_BIT] = specConstants;
5306	addFunctionCaseWithPrograms<InstanceContext>(tests, name + "_geom", "", addShaderCodeCustomGeometry, runAndVerifyDefaultPipeline,
5307												 createInstanceContext(geomPipelineStages, inputColors, outputColors, testCodeFragments, specConstantMap));
5308
5309	specConstantMap.clear();
5310	specConstantMap[VK_SHADER_STAGE_FRAGMENT_BIT] = specConstants;
5311	addFunctionCaseWithPrograms<InstanceContext>(tests, name + "_frag", "", addShaderCodeCustomFragment, runAndVerifyDefaultPipeline,
5312												 createInstanceContext(vertFragPipelineStages, inputColors, outputColors, testCodeFragments, specConstantMap));
5313}
5314
5315inline void createTestsForAllStages (const std::string& name, const RGBA (&inputColors)[4], const RGBA (&outputColors)[4], const map<string, string>& testCodeFragments, tcu::TestCaseGroup* tests)
5316{
5317	vector<deInt32> noSpecConstants;
5318	createTestsForAllStages(name, inputColors, outputColors, testCodeFragments, noSpecConstants, tests);
5319}
5320
5321} // anonymous
5322
5323tcu::TestCaseGroup* createOpSourceTests (tcu::TestContext& testCtx)
5324{
5325	struct NameCodePair { string name, code; };
5326	RGBA							defaultColors[4];
5327	de::MovePtr<tcu::TestCaseGroup> opSourceTests			(new tcu::TestCaseGroup(testCtx, "opsource", "OpSource instruction"));
5328	const std::string				opsourceGLSLWithFile	= "%opsrcfile = OpString \"foo.vert\"\nOpSource GLSL 450 %opsrcfile ";
5329	map<string, string>				fragments				= passthruFragments();
5330	const NameCodePair				tests[]					=
5331	{
5332		{"unknown", "OpSource Unknown 321"},
5333		{"essl", "OpSource ESSL 310"},
5334		{"glsl", "OpSource GLSL 450"},
5335		{"opencl_cpp", "OpSource OpenCL_CPP 120"},
5336		{"opencl_c", "OpSource OpenCL_C 120"},
5337		{"multiple", "OpSource GLSL 450\nOpSource GLSL 450"},
5338		{"file", opsourceGLSLWithFile},
5339		{"source", opsourceGLSLWithFile + "\"void main(){}\""},
5340		// Longest possible source string: SPIR-V limits instructions to 65535
5341		// words, of which the first 4 are opsourceGLSLWithFile; the rest will
5342		// contain 65530 UTF8 characters (one word each) plus one last word
5343		// containing 3 ASCII characters and \0.
5344		{"longsource", opsourceGLSLWithFile + '"' + makeLongUTF8String(65530) + "ccc" + '"'}
5345	};
5346
5347	getDefaultColors(defaultColors);
5348	for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(NameCodePair); ++testNdx)
5349	{
5350		fragments["debug"] = tests[testNdx].code;
5351		createTestsForAllStages(tests[testNdx].name, defaultColors, defaultColors, fragments, opSourceTests.get());
5352	}
5353
5354	return opSourceTests.release();
5355}
5356
5357tcu::TestCaseGroup* createOpSourceContinuedTests (tcu::TestContext& testCtx)
5358{
5359	struct NameCodePair { string name, code; };
5360	RGBA								defaultColors[4];
5361	de::MovePtr<tcu::TestCaseGroup>		opSourceTests		(new tcu::TestCaseGroup(testCtx, "opsourcecontinued", "OpSourceContinued instruction"));
5362	map<string, string>					fragments			= passthruFragments();
5363	const std::string					opsource			= "%opsrcfile = OpString \"foo.vert\"\nOpSource GLSL 450 %opsrcfile \"void main(){}\"\n";
5364	const NameCodePair					tests[]				=
5365	{
5366		{"empty", opsource + "OpSourceContinued \"\""},
5367		{"short", opsource + "OpSourceContinued \"abcde\""},
5368		{"multiple", opsource + "OpSourceContinued \"abcde\"\nOpSourceContinued \"fghij\""},
5369		// Longest possible source string: SPIR-V limits instructions to 65535
5370		// words, of which the first one is OpSourceContinued/length; the rest
5371		// will contain 65533 UTF8 characters (one word each) plus one last word
5372		// containing 3 ASCII characters and \0.
5373		{"long", opsource + "OpSourceContinued \"" + makeLongUTF8String(65533) + "ccc\""}
5374	};
5375
5376	getDefaultColors(defaultColors);
5377	for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(NameCodePair); ++testNdx)
5378	{
5379		fragments["debug"] = tests[testNdx].code;
5380		createTestsForAllStages(tests[testNdx].name, defaultColors, defaultColors, fragments, opSourceTests.get());
5381	}
5382
5383	return opSourceTests.release();
5384}
5385
5386tcu::TestCaseGroup* createOpNoLineTests(tcu::TestContext& testCtx)
5387{
5388	RGBA								 defaultColors[4];
5389	de::MovePtr<tcu::TestCaseGroup>		 opLineTests		 (new tcu::TestCaseGroup(testCtx, "opnoline", "OpNoLine instruction"));
5390	map<string, string>					 fragments;
5391	getDefaultColors(defaultColors);
5392	fragments["debug"]			=
5393		"%name = OpString \"name\"\n";
5394
5395	fragments["pre_main"]	=
5396		"OpNoLine\n"
5397		"OpNoLine\n"
5398		"OpLine %name 1 1\n"
5399		"OpNoLine\n"
5400		"OpLine %name 1 1\n"
5401		"OpLine %name 1 1\n"
5402		"%second_function = OpFunction %v4f32 None %v4f32_function\n"
5403		"OpNoLine\n"
5404		"OpLine %name 1 1\n"
5405		"OpNoLine\n"
5406		"OpLine %name 1 1\n"
5407		"OpLine %name 1 1\n"
5408		"%second_param1 = OpFunctionParameter %v4f32\n"
5409		"OpNoLine\n"
5410		"OpNoLine\n"
5411		"%label_secondfunction = OpLabel\n"
5412		"OpNoLine\n"
5413		"OpReturnValue %second_param1\n"
5414		"OpFunctionEnd\n"
5415		"OpNoLine\n"
5416		"OpNoLine\n";
5417
5418	fragments["testfun"]		=
5419		// A %test_code function that returns its argument unchanged.
5420		"OpNoLine\n"
5421		"OpNoLine\n"
5422		"OpLine %name 1 1\n"
5423		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
5424		"OpNoLine\n"
5425		"%param1 = OpFunctionParameter %v4f32\n"
5426		"OpNoLine\n"
5427		"OpNoLine\n"
5428		"%label_testfun = OpLabel\n"
5429		"OpNoLine\n"
5430		"%val1 = OpFunctionCall %v4f32 %second_function %param1\n"
5431		"OpReturnValue %val1\n"
5432		"OpFunctionEnd\n"
5433		"OpLine %name 1 1\n"
5434		"OpNoLine\n";
5435
5436	createTestsForAllStages("opnoline", defaultColors, defaultColors, fragments, opLineTests.get());
5437
5438	return opLineTests.release();
5439}
5440
5441
5442tcu::TestCaseGroup* createOpLineTests(tcu::TestContext& testCtx)
5443{
5444	RGBA													defaultColors[4];
5445	de::MovePtr<tcu::TestCaseGroup>							opLineTests			(new tcu::TestCaseGroup(testCtx, "opline", "OpLine instruction"));
5446	map<string, string>										fragments;
5447	std::vector<std::pair<std::string, std::string> >		problemStrings;
5448
5449	problemStrings.push_back(std::make_pair<std::string, std::string>("empty_name", ""));
5450	problemStrings.push_back(std::make_pair<std::string, std::string>("short_name", "short_name"));
5451	problemStrings.push_back(std::make_pair<std::string, std::string>("long_name", makeLongUTF8String(65530) + "ccc"));
5452	getDefaultColors(defaultColors);
5453
5454	fragments["debug"]			=
5455		"%other_name = OpString \"other_name\"\n";
5456
5457	fragments["pre_main"]	=
5458		"OpLine %file_name 32 0\n"
5459		"OpLine %file_name 32 32\n"
5460		"OpLine %file_name 32 40\n"
5461		"OpLine %other_name 32 40\n"
5462		"OpLine %other_name 0 100\n"
5463		"OpLine %other_name 0 4294967295\n"
5464		"OpLine %other_name 4294967295 0\n"
5465		"OpLine %other_name 32 40\n"
5466		"OpLine %file_name 0 0\n"
5467		"%second_function = OpFunction %v4f32 None %v4f32_function\n"
5468		"OpLine %file_name 1 0\n"
5469		"%second_param1 = OpFunctionParameter %v4f32\n"
5470		"OpLine %file_name 1 3\n"
5471		"OpLine %file_name 1 2\n"
5472		"%label_secondfunction = OpLabel\n"
5473		"OpLine %file_name 0 2\n"
5474		"OpReturnValue %second_param1\n"
5475		"OpFunctionEnd\n"
5476		"OpLine %file_name 0 2\n"
5477		"OpLine %file_name 0 2\n";
5478
5479	fragments["testfun"]		=
5480		// A %test_code function that returns its argument unchanged.
5481		"OpLine %file_name 1 0\n"
5482		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
5483		"OpLine %file_name 16 330\n"
5484		"%param1 = OpFunctionParameter %v4f32\n"
5485		"OpLine %file_name 14 442\n"
5486		"%label_testfun = OpLabel\n"
5487		"OpLine %file_name 11 1024\n"
5488		"%val1 = OpFunctionCall %v4f32 %second_function %param1\n"
5489		"OpLine %file_name 2 97\n"
5490		"OpReturnValue %val1\n"
5491		"OpFunctionEnd\n"
5492		"OpLine %file_name 5 32\n";
5493
5494	for (size_t i = 0; i < problemStrings.size(); ++i)
5495	{
5496		map<string, string> testFragments = fragments;
5497		testFragments["debug"] += "%file_name = OpString \"" + problemStrings[i].second + "\"\n";
5498		createTestsForAllStages(string("opline") + "_" + problemStrings[i].first, defaultColors, defaultColors, testFragments, opLineTests.get());
5499	}
5500
5501	return opLineTests.release();
5502}
5503
5504tcu::TestCaseGroup* createOpConstantNullTests(tcu::TestContext& testCtx)
5505{
5506	de::MovePtr<tcu::TestCaseGroup> opConstantNullTests		(new tcu::TestCaseGroup(testCtx, "opconstantnull", "OpConstantNull instruction"));
5507	RGBA							colors[4];
5508
5509
5510	const char						functionStart[] =
5511		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
5512		"%param1 = OpFunctionParameter %v4f32\n"
5513		"%lbl    = OpLabel\n";
5514
5515	const char						functionEnd[]	=
5516		"OpReturnValue %transformed_param\n"
5517		"OpFunctionEnd\n";
5518
5519	struct NameConstantsCode
5520	{
5521		string name;
5522		string constants;
5523		string code;
5524	};
5525
5526	NameConstantsCode tests[] =
5527	{
5528		{
5529			"vec4",
5530			"%cnull = OpConstantNull %v4f32\n",
5531			"%transformed_param = OpFAdd %v4f32 %param1 %cnull\n"
5532		},
5533		{
5534			"float",
5535			"%cnull = OpConstantNull %f32\n",
5536			"%vp = OpVariable %fp_v4f32 Function\n"
5537			"%v  = OpLoad %v4f32 %vp\n"
5538			"%v0 = OpVectorInsertDynamic %v4f32 %v %cnull %c_i32_0\n"
5539			"%v1 = OpVectorInsertDynamic %v4f32 %v0 %cnull %c_i32_1\n"
5540			"%v2 = OpVectorInsertDynamic %v4f32 %v1 %cnull %c_i32_2\n"
5541			"%v3 = OpVectorInsertDynamic %v4f32 %v2 %cnull %c_i32_3\n"
5542			"%transformed_param = OpFAdd %v4f32 %param1 %v3\n"
5543		},
5544		{
5545			"bool",
5546			"%cnull             = OpConstantNull %bool\n",
5547			"%v                 = OpVariable %fp_v4f32 Function\n"
5548			"                     OpStore %v %param1\n"
5549			"                     OpSelectionMerge %false_label None\n"
5550			"                     OpBranchConditional %cnull %true_label %false_label\n"
5551			"%true_label        = OpLabel\n"
5552			"                     OpStore %v %c_v4f32_0_5_0_5_0_5_0_5\n"
5553			"                     OpBranch %false_label\n"
5554			"%false_label       = OpLabel\n"
5555			"%transformed_param = OpLoad %v4f32 %v\n"
5556		},
5557		{
5558			"i32",
5559			"%cnull             = OpConstantNull %i32\n",
5560			"%v                 = OpVariable %fp_v4f32 Function %c_v4f32_0_5_0_5_0_5_0_5\n"
5561			"%b                 = OpIEqual %bool %cnull %c_i32_0\n"
5562			"                     OpSelectionMerge %false_label None\n"
5563			"                     OpBranchConditional %b %true_label %false_label\n"
5564			"%true_label        = OpLabel\n"
5565			"                     OpStore %v %param1\n"
5566			"                     OpBranch %false_label\n"
5567			"%false_label       = OpLabel\n"
5568			"%transformed_param = OpLoad %v4f32 %v\n"
5569		},
5570		{
5571			"struct",
5572			"%stype             = OpTypeStruct %f32 %v4f32\n"
5573			"%fp_stype          = OpTypePointer Function %stype\n"
5574			"%cnull             = OpConstantNull %stype\n",
5575			"%v                 = OpVariable %fp_stype Function %cnull\n"
5576			"%f                 = OpAccessChain %fp_v4f32 %v %c_i32_1\n"
5577			"%f_val             = OpLoad %v4f32 %f\n"
5578			"%transformed_param = OpFAdd %v4f32 %param1 %f_val\n"
5579		},
5580		{
5581			"array",
5582			"%a4_v4f32          = OpTypeArray %v4f32 %c_u32_4\n"
5583			"%fp_a4_v4f32       = OpTypePointer Function %a4_v4f32\n"
5584			"%cnull             = OpConstantNull %a4_v4f32\n",
5585			"%v                 = OpVariable %fp_a4_v4f32 Function %cnull\n"
5586			"%f                 = OpAccessChain %fp_v4f32 %v %c_u32_0\n"
5587			"%f1                = OpAccessChain %fp_v4f32 %v %c_u32_1\n"
5588			"%f2                = OpAccessChain %fp_v4f32 %v %c_u32_2\n"
5589			"%f3                = OpAccessChain %fp_v4f32 %v %c_u32_3\n"
5590			"%f_val             = OpLoad %v4f32 %f\n"
5591			"%f1_val            = OpLoad %v4f32 %f1\n"
5592			"%f2_val            = OpLoad %v4f32 %f2\n"
5593			"%f3_val            = OpLoad %v4f32 %f3\n"
5594			"%t0                = OpFAdd %v4f32 %param1 %f_val\n"
5595			"%t1                = OpFAdd %v4f32 %t0 %f1_val\n"
5596			"%t2                = OpFAdd %v4f32 %t1 %f2_val\n"
5597			"%transformed_param = OpFAdd %v4f32 %t2 %f3_val\n"
5598		},
5599		{
5600			"matrix",
5601			"%mat4x4_f32        = OpTypeMatrix %v4f32 4\n"
5602			"%cnull             = OpConstantNull %mat4x4_f32\n",
5603			// Our null matrix * any vector should result in a zero vector.
5604			"%v                 = OpVectorTimesMatrix %v4f32 %param1 %cnull\n"
5605			"%transformed_param = OpFAdd %v4f32 %param1 %v\n"
5606		}
5607	};
5608
5609	getHalfColorsFullAlpha(colors);
5610
5611	for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(NameConstantsCode); ++testNdx)
5612	{
5613		map<string, string> fragments;
5614		fragments["pre_main"] = tests[testNdx].constants;
5615		fragments["testfun"] = string(functionStart) + tests[testNdx].code + functionEnd;
5616		createTestsForAllStages(tests[testNdx].name, colors, colors, fragments, opConstantNullTests.get());
5617	}
5618	return opConstantNullTests.release();
5619}
5620tcu::TestCaseGroup* createOpConstantCompositeTests(tcu::TestContext& testCtx)
5621{
5622	de::MovePtr<tcu::TestCaseGroup> opConstantCompositeTests		(new tcu::TestCaseGroup(testCtx, "opconstantcomposite", "OpConstantComposite instruction"));
5623	RGBA							inputColors[4];
5624	RGBA							outputColors[4];
5625
5626
5627	const char						functionStart[]	 =
5628		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
5629		"%param1 = OpFunctionParameter %v4f32\n"
5630		"%lbl    = OpLabel\n";
5631
5632	const char						functionEnd[]		=
5633		"OpReturnValue %transformed_param\n"
5634		"OpFunctionEnd\n";
5635
5636	struct NameConstantsCode
5637	{
5638		string name;
5639		string constants;
5640		string code;
5641	};
5642
5643	NameConstantsCode tests[] =
5644	{
5645		{
5646			"vec4",
5647
5648			"%cval              = OpConstantComposite %v4f32 %c_f32_0_5 %c_f32_0_5 %c_f32_0_5 %c_f32_0\n",
5649			"%transformed_param = OpFAdd %v4f32 %param1 %cval\n"
5650		},
5651		{
5652			"struct",
5653
5654			"%stype             = OpTypeStruct %v4f32 %f32\n"
5655			"%fp_stype          = OpTypePointer Function %stype\n"
5656			"%f32_n_1           = OpConstant %f32 -1.0\n"
5657			"%f32_1_5           = OpConstant %f32 !0x3fc00000\n" // +1.5
5658			"%cvec              = OpConstantComposite %v4f32 %f32_1_5 %f32_1_5 %f32_1_5 %c_f32_1\n"
5659			"%cval              = OpConstantComposite %stype %cvec %f32_n_1\n",
5660
5661			"%v                 = OpVariable %fp_stype Function %cval\n"
5662			"%vec_ptr           = OpAccessChain %fp_v4f32 %v %c_u32_0\n"
5663			"%f32_ptr           = OpAccessChain %fp_v4f32 %v %c_u32_1\n"
5664			"%vec_val           = OpLoad %v4f32 %vec_ptr\n"
5665			"%f32_val           = OpLoad %v4f32 %f32_ptr\n"
5666			"%tmp1              = OpVectorTimesScalar %v4f32 %c_v4f32_1_1_1_1 %f32_val\n" // vec4(-1)
5667			"%tmp2              = OpFAdd %v4f32 %tmp1 %param1\n" // param1 + vec4(-1)
5668			"%transformed_param = OpFAdd %v4f32 %tmp2 %vec_val\n" // param1 + vec4(-1) + vec4(1.5, 1.5, 1.5, 1.0)
5669		},
5670		{
5671			// [1|0|0|0.5] [x] = x + 0.5
5672			// [0|1|0|0.5] [y] = y + 0.5
5673			// [0|0|1|0.5] [z] = z + 0.5
5674			// [0|0|0|1  ] [1] = 1
5675			"matrix",
5676
5677			"%mat4x4_f32          = OpTypeMatrix %v4f32 4\n"
5678		    "%v4f32_1_0_0_0       = OpConstantComposite %v4f32 %c_f32_1 %c_f32_0 %c_f32_0 %c_f32_0\n"
5679		    "%v4f32_0_1_0_0       = OpConstantComposite %v4f32 %c_f32_0 %c_f32_1 %c_f32_0 %c_f32_0\n"
5680		    "%v4f32_0_0_1_0       = OpConstantComposite %v4f32 %c_f32_0 %c_f32_0 %c_f32_1 %c_f32_0\n"
5681		    "%v4f32_0_5_0_5_0_5_1 = OpConstantComposite %v4f32 %c_f32_0_5 %c_f32_0_5 %c_f32_0_5 %c_f32_1\n"
5682			"%cval                = OpConstantComposite %mat4x4_f32 %v4f32_1_0_0_0 %v4f32_0_1_0_0 %v4f32_0_0_1_0 %v4f32_0_5_0_5_0_5_1\n",
5683
5684			"%transformed_param   = OpMatrixTimesVector %v4f32 %cval %param1\n"
5685		},
5686		{
5687			"array",
5688
5689			"%c_v4f32_1_1_1_0     = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_0\n"
5690			"%fp_a4f32            = OpTypePointer Function %a4f32\n"
5691			"%f32_n_1             = OpConstant %f32 -1.0\n"
5692			"%f32_1_5             = OpConstant %f32 !0x3fc00000\n" // +1.5
5693			"%carr                = OpConstantComposite %a4f32 %c_f32_0 %f32_n_1 %f32_1_5 %c_f32_0\n",
5694
5695			"%v                   = OpVariable %fp_a4f32 Function %carr\n"
5696			"%f                   = OpAccessChain %fp_f32 %v %c_u32_0\n"
5697			"%f1                  = OpAccessChain %fp_f32 %v %c_u32_1\n"
5698			"%f2                  = OpAccessChain %fp_f32 %v %c_u32_2\n"
5699			"%f3                  = OpAccessChain %fp_f32 %v %c_u32_3\n"
5700			"%f_val               = OpLoad %f32 %f\n"
5701			"%f1_val              = OpLoad %f32 %f1\n"
5702			"%f2_val              = OpLoad %f32 %f2\n"
5703			"%f3_val              = OpLoad %f32 %f3\n"
5704			"%ftot1               = OpFAdd %f32 %f_val %f1_val\n"
5705			"%ftot2               = OpFAdd %f32 %ftot1 %f2_val\n"
5706			"%ftot3               = OpFAdd %f32 %ftot2 %f3_val\n"  // 0 - 1 + 1.5 + 0
5707			"%add_vec             = OpVectorTimesScalar %v4f32 %c_v4f32_1_1_1_0 %ftot3\n"
5708			"%transformed_param   = OpFAdd %v4f32 %param1 %add_vec\n"
5709		},
5710		{
5711			//
5712			// [
5713			//   {
5714			//      0.0,
5715			//      [ 1.0, 1.0, 1.0, 1.0]
5716			//   },
5717			//   {
5718			//      1.0,
5719			//      [ 0.0, 0.5, 0.0, 0.0]
5720			//   }, //     ^^^
5721			//   {
5722			//      0.0,
5723			//      [ 1.0, 1.0, 1.0, 1.0]
5724			//   }
5725			// ]
5726			"array_of_struct_of_array",
5727
5728			"%c_v4f32_1_1_1_0     = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_0\n"
5729			"%fp_a4f32            = OpTypePointer Function %a4f32\n"
5730			"%stype               = OpTypeStruct %f32 %a4f32\n"
5731			"%a3stype             = OpTypeArray %stype %c_u32_3\n"
5732			"%fp_a3stype          = OpTypePointer Function %a3stype\n"
5733			"%ca4f32_0            = OpConstantComposite %a4f32 %c_f32_0 %c_f32_0_5 %c_f32_0 %c_f32_0\n"
5734			"%ca4f32_1            = OpConstantComposite %a4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_1\n"
5735			"%cstype1             = OpConstantComposite %stype %c_f32_0 %ca4f32_1\n"
5736			"%cstype2             = OpConstantComposite %stype %c_f32_1 %ca4f32_0\n"
5737			"%carr                = OpConstantComposite %a3stype %cstype1 %cstype2 %cstype1",
5738
5739			"%v                   = OpVariable %fp_a3stype Function %carr\n"
5740			"%f                   = OpAccessChain %fp_f32 %v %c_u32_1 %c_u32_1 %c_u32_1\n"
5741			"%add_vec             = OpVectorTimesScalar %v4f32 %c_v4f32_1_1_1_0 %f\n"
5742			"%transformed_param   = OpFAdd %v4f32 %param1 %add_vec\n"
5743		}
5744	};
5745
5746	getHalfColorsFullAlpha(inputColors);
5747	outputColors[0] = RGBA(255, 255, 255, 255);
5748	outputColors[1] = RGBA(255, 127, 127, 255);
5749	outputColors[2] = RGBA(127, 255, 127, 255);
5750	outputColors[3] = RGBA(127, 127, 255, 255);
5751
5752	for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(NameConstantsCode); ++testNdx)
5753	{
5754		map<string, string> fragments;
5755		fragments["pre_main"] = tests[testNdx].constants;
5756		fragments["testfun"] = string(functionStart) + tests[testNdx].code + functionEnd;
5757		createTestsForAllStages(tests[testNdx].name, inputColors, outputColors, fragments, opConstantCompositeTests.get());
5758	}
5759	return opConstantCompositeTests.release();
5760}
5761
5762tcu::TestCaseGroup* createSelectionBlockOrderTests(tcu::TestContext& testCtx)
5763{
5764	de::MovePtr<tcu::TestCaseGroup> group				(new tcu::TestCaseGroup(testCtx, "selection_block_order", "Out-of-order blocks for selection"));
5765	RGBA							inputColors[4];
5766	RGBA							outputColors[4];
5767	map<string, string>				fragments;
5768
5769	// vec4 test_code(vec4 param) {
5770	//   vec4 result = param;
5771	//   for (int i = 0; i < 4; ++i) {
5772	//     if (i == 0) result[i] = 0.;
5773	//     else        result[i] = 1. - result[i];
5774	//   }
5775	//   return result;
5776	// }
5777	const char						function[]			=
5778		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
5779		"%param1    = OpFunctionParameter %v4f32\n"
5780		"%lbl       = OpLabel\n"
5781		"%iptr      = OpVariable %fp_i32 Function\n"
5782		"             OpStore %iptr %c_i32_0\n"
5783		"%result    = OpVariable %fp_v4f32 Function\n"
5784		"             OpStore %result %param1\n"
5785		"             OpBranch %loop\n"
5786
5787		// Loop entry block.
5788		"%loop      = OpLabel\n"
5789		"%ival      = OpLoad %i32 %iptr\n"
5790		"%lt_4      = OpSLessThan %bool %ival %c_i32_4\n"
5791		"             OpLoopMerge %exit %loop None\n"
5792		"             OpBranchConditional %lt_4 %if_entry %exit\n"
5793
5794		// Merge block for loop.
5795		"%exit      = OpLabel\n"
5796		"%ret       = OpLoad %v4f32 %result\n"
5797		"             OpReturnValue %ret\n"
5798
5799		// If-statement entry block.
5800		"%if_entry  = OpLabel\n"
5801		"%loc       = OpAccessChain %fp_f32 %result %ival\n"
5802		"%eq_0      = OpIEqual %bool %ival %c_i32_0\n"
5803		"             OpSelectionMerge %if_exit None\n"
5804		"             OpBranchConditional %eq_0 %if_true %if_false\n"
5805
5806		// False branch for if-statement.
5807		"%if_false  = OpLabel\n"
5808		"%val       = OpLoad %f32 %loc\n"
5809		"%sub       = OpFSub %f32 %c_f32_1 %val\n"
5810		"             OpStore %loc %sub\n"
5811		"             OpBranch %if_exit\n"
5812
5813		// Merge block for if-statement.
5814		"%if_exit   = OpLabel\n"
5815		"%ival_next = OpIAdd %i32 %ival %c_i32_1\n"
5816		"             OpStore %iptr %ival_next\n"
5817		"             OpBranch %loop\n"
5818
5819		// True branch for if-statement.
5820		"%if_true   = OpLabel\n"
5821		"             OpStore %loc %c_f32_0\n"
5822		"             OpBranch %if_exit\n"
5823
5824		"             OpFunctionEnd\n";
5825
5826	fragments["testfun"]	= function;
5827
5828	inputColors[0]			= RGBA(127, 127, 127, 0);
5829	inputColors[1]			= RGBA(127, 0,   0,   0);
5830	inputColors[2]			= RGBA(0,   127, 0,   0);
5831	inputColors[3]			= RGBA(0,   0,   127, 0);
5832
5833	outputColors[0]			= RGBA(0, 128, 128, 255);
5834	outputColors[1]			= RGBA(0, 255, 255, 255);
5835	outputColors[2]			= RGBA(0, 128, 255, 255);
5836	outputColors[3]			= RGBA(0, 255, 128, 255);
5837
5838	createTestsForAllStages("out_of_order", inputColors, outputColors, fragments, group.get());
5839
5840	return group.release();
5841}
5842
5843tcu::TestCaseGroup* createSwitchBlockOrderTests(tcu::TestContext& testCtx)
5844{
5845	de::MovePtr<tcu::TestCaseGroup> group				(new tcu::TestCaseGroup(testCtx, "switch_block_order", "Out-of-order blocks for switch"));
5846	RGBA							inputColors[4];
5847	RGBA							outputColors[4];
5848	map<string, string>				fragments;
5849
5850	const char						typesAndConstants[]	=
5851		"%c_f32_p2  = OpConstant %f32 0.2\n"
5852		"%c_f32_p4  = OpConstant %f32 0.4\n"
5853		"%c_f32_p6  = OpConstant %f32 0.6\n"
5854		"%c_f32_p8  = OpConstant %f32 0.8\n";
5855
5856	// vec4 test_code(vec4 param) {
5857	//   vec4 result = param;
5858	//   for (int i = 0; i < 4; ++i) {
5859	//     switch (i) {
5860	//       case 0: result[i] += .2; break;
5861	//       case 1: result[i] += .6; break;
5862	//       case 2: result[i] += .4; break;
5863	//       case 3: result[i] += .8; break;
5864	//       default: break; // unreachable
5865	//     }
5866	//   }
5867	//   return result;
5868	// }
5869	const char						function[]			=
5870		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
5871		"%param1    = OpFunctionParameter %v4f32\n"
5872		"%lbl       = OpLabel\n"
5873		"%iptr      = OpVariable %fp_i32 Function\n"
5874		"             OpStore %iptr %c_i32_0\n"
5875		"%result    = OpVariable %fp_v4f32 Function\n"
5876		"             OpStore %result %param1\n"
5877		"             OpBranch %loop\n"
5878
5879		// Loop entry block.
5880		"%loop      = OpLabel\n"
5881		"%ival      = OpLoad %i32 %iptr\n"
5882		"%lt_4      = OpSLessThan %bool %ival %c_i32_4\n"
5883		"             OpLoopMerge %exit %loop None\n"
5884		"             OpBranchConditional %lt_4 %switch_entry %exit\n"
5885
5886		// Merge block for loop.
5887		"%exit      = OpLabel\n"
5888		"%ret       = OpLoad %v4f32 %result\n"
5889		"             OpReturnValue %ret\n"
5890
5891		// Switch-statement entry block.
5892		"%switch_entry   = OpLabel\n"
5893		"%loc            = OpAccessChain %fp_f32 %result %ival\n"
5894		"%val            = OpLoad %f32 %loc\n"
5895		"                  OpSelectionMerge %switch_exit None\n"
5896		"                  OpSwitch %ival %switch_default 0 %case0 1 %case1 2 %case2 3 %case3\n"
5897
5898		"%case2          = OpLabel\n"
5899		"%addp4          = OpFAdd %f32 %val %c_f32_p4\n"
5900		"                  OpStore %loc %addp4\n"
5901		"                  OpBranch %switch_exit\n"
5902
5903		"%switch_default = OpLabel\n"
5904		"                  OpUnreachable\n"
5905
5906		"%case3          = OpLabel\n"
5907		"%addp8          = OpFAdd %f32 %val %c_f32_p8\n"
5908		"                  OpStore %loc %addp8\n"
5909		"                  OpBranch %switch_exit\n"
5910
5911		"%case0          = OpLabel\n"
5912		"%addp2          = OpFAdd %f32 %val %c_f32_p2\n"
5913		"                  OpStore %loc %addp2\n"
5914		"                  OpBranch %switch_exit\n"
5915
5916		// Merge block for switch-statement.
5917		"%switch_exit    = OpLabel\n"
5918		"%ival_next      = OpIAdd %i32 %ival %c_i32_1\n"
5919		"                  OpStore %iptr %ival_next\n"
5920		"                  OpBranch %loop\n"
5921
5922		"%case1          = OpLabel\n"
5923		"%addp6          = OpFAdd %f32 %val %c_f32_p6\n"
5924		"                  OpStore %loc %addp6\n"
5925		"                  OpBranch %switch_exit\n"
5926
5927		"                  OpFunctionEnd\n";
5928
5929	fragments["pre_main"]	= typesAndConstants;
5930	fragments["testfun"]	= function;
5931
5932	inputColors[0]			= RGBA(127, 27,  127, 51);
5933	inputColors[1]			= RGBA(127, 0,   0,   51);
5934	inputColors[2]			= RGBA(0,   27,  0,   51);
5935	inputColors[3]			= RGBA(0,   0,   127, 51);
5936
5937	outputColors[0]			= RGBA(178, 180, 229, 255);
5938	outputColors[1]			= RGBA(178, 153, 102, 255);
5939	outputColors[2]			= RGBA(51,  180, 102, 255);
5940	outputColors[3]			= RGBA(51,  153, 229, 255);
5941
5942	createTestsForAllStages("out_of_order", inputColors, outputColors, fragments, group.get());
5943
5944	return group.release();
5945}
5946
5947tcu::TestCaseGroup* createDecorationGroupTests(tcu::TestContext& testCtx)
5948{
5949	de::MovePtr<tcu::TestCaseGroup> group				(new tcu::TestCaseGroup(testCtx, "decoration_group", "Decoration group tests"));
5950	RGBA							inputColors[4];
5951	RGBA							outputColors[4];
5952	map<string, string>				fragments;
5953
5954	const char						decorations[]		=
5955		"OpDecorate %array_group         ArrayStride 4\n"
5956		"OpDecorate %struct_member_group Offset 0\n"
5957		"%array_group         = OpDecorationGroup\n"
5958		"%struct_member_group = OpDecorationGroup\n"
5959
5960		"OpDecorate %group1 RelaxedPrecision\n"
5961		"OpDecorate %group3 RelaxedPrecision\n"
5962		"OpDecorate %group3 Invariant\n"
5963		"OpDecorate %group3 Restrict\n"
5964		"%group0 = OpDecorationGroup\n"
5965		"%group1 = OpDecorationGroup\n"
5966		"%group3 = OpDecorationGroup\n";
5967
5968	const char						typesAndConstants[]	=
5969		"%a3f32     = OpTypeArray %f32 %c_u32_3\n"
5970		"%struct1   = OpTypeStruct %a3f32\n"
5971		"%struct2   = OpTypeStruct %a3f32\n"
5972		"%fp_struct1 = OpTypePointer Function %struct1\n"
5973		"%fp_struct2 = OpTypePointer Function %struct2\n"
5974		"%c_f32_2    = OpConstant %f32 2.\n"
5975		"%c_f32_n2   = OpConstant %f32 -2.\n"
5976
5977		"%c_a3f32_1 = OpConstantComposite %a3f32 %c_f32_1 %c_f32_2 %c_f32_1\n"
5978		"%c_a3f32_2 = OpConstantComposite %a3f32 %c_f32_n1 %c_f32_n2 %c_f32_n1\n"
5979		"%c_struct1 = OpConstantComposite %struct1 %c_a3f32_1\n"
5980		"%c_struct2 = OpConstantComposite %struct2 %c_a3f32_2\n";
5981
5982	const char						function[]			=
5983		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
5984		"%param     = OpFunctionParameter %v4f32\n"
5985		"%entry     = OpLabel\n"
5986		"%result    = OpVariable %fp_v4f32 Function\n"
5987		"             OpStore %result %param\n"
5988		"%v_struct1 = OpVariable %fp_struct1 Function\n"
5989		"             OpStore %v_struct1 %c_struct1\n"
5990		"%v_struct2 = OpVariable %fp_struct2 Function\n"
5991		"             OpStore %v_struct2 %c_struct2\n"
5992		"%ptr1      = OpAccessChain %fp_f32 %v_struct1 %c_i32_0 %c_i32_1\n"
5993		"%val1      = OpLoad %f32 %ptr1\n"
5994		"%ptr2      = OpAccessChain %fp_f32 %v_struct2 %c_i32_0 %c_i32_2\n"
5995		"%val2      = OpLoad %f32 %ptr2\n"
5996		"%addvalues = OpFAdd %f32 %val1 %val2\n"
5997		"%ptr       = OpAccessChain %fp_f32 %result %c_i32_1\n"
5998		"%val       = OpLoad %f32 %ptr\n"
5999		"%addresult = OpFAdd %f32 %addvalues %val\n"
6000		"             OpStore %ptr %addresult\n"
6001		"%ret       = OpLoad %v4f32 %result\n"
6002		"             OpReturnValue %ret\n"
6003		"             OpFunctionEnd\n";
6004
6005	struct CaseNameDecoration
6006	{
6007		string name;
6008		string decoration;
6009	};
6010
6011	CaseNameDecoration tests[] =
6012	{
6013		{
6014			"same_decoration_group_on_multiple_types",
6015			"OpGroupMemberDecorate %struct_member_group %struct1 0 %struct2 0\n"
6016		},
6017		{
6018			"empty_decoration_group",
6019			"OpGroupDecorate %group0      %a3f32\n"
6020			"OpGroupDecorate %group0      %result\n"
6021		},
6022		{
6023			"one_element_decoration_group",
6024			"OpGroupDecorate %array_group %a3f32\n"
6025		},
6026		{
6027			"multiple_elements_decoration_group",
6028			"OpGroupDecorate %group3      %v_struct1\n"
6029		},
6030		{
6031			"multiple_decoration_groups_on_same_variable",
6032			"OpGroupDecorate %group0      %v_struct2\n"
6033			"OpGroupDecorate %group1      %v_struct2\n"
6034			"OpGroupDecorate %group3      %v_struct2\n"
6035		},
6036		{
6037			"same_decoration_group_multiple_times",
6038			"OpGroupDecorate %group1      %addvalues\n"
6039			"OpGroupDecorate %group1      %addvalues\n"
6040			"OpGroupDecorate %group1      %addvalues\n"
6041		},
6042
6043	};
6044
6045	getHalfColorsFullAlpha(inputColors);
6046	getHalfColorsFullAlpha(outputColors);
6047
6048	for (size_t idx = 0; idx < (sizeof(tests) / sizeof(tests[0])); ++idx)
6049	{
6050		fragments["decoration"]	= decorations + tests[idx].decoration;
6051		fragments["pre_main"]	= typesAndConstants;
6052		fragments["testfun"]	= function;
6053
6054		createTestsForAllStages(tests[idx].name, inputColors, outputColors, fragments, group.get());
6055	}
6056
6057	return group.release();
6058}
6059
6060struct SpecConstantTwoIntGraphicsCase
6061{
6062	const char*		caseName;
6063	const char*		scDefinition0;
6064	const char*		scDefinition1;
6065	const char*		scResultType;
6066	const char*		scOperation;
6067	deInt32			scActualValue0;
6068	deInt32			scActualValue1;
6069	const char*		resultOperation;
6070	RGBA			expectedColors[4];
6071
6072					SpecConstantTwoIntGraphicsCase (const char* name,
6073											const char* definition0,
6074											const char* definition1,
6075											const char* resultType,
6076											const char* operation,
6077											deInt32		value0,
6078											deInt32		value1,
6079											const char* resultOp,
6080											const RGBA	(&output)[4])
6081						: caseName			(name)
6082						, scDefinition0		(definition0)
6083						, scDefinition1		(definition1)
6084						, scResultType		(resultType)
6085						, scOperation		(operation)
6086						, scActualValue0	(value0)
6087						, scActualValue1	(value1)
6088						, resultOperation	(resultOp)
6089	{
6090		expectedColors[0] = output[0];
6091		expectedColors[1] = output[1];
6092		expectedColors[2] = output[2];
6093		expectedColors[3] = output[3];
6094	}
6095};
6096
6097tcu::TestCaseGroup* createSpecConstantTests (tcu::TestContext& testCtx)
6098{
6099	de::MovePtr<tcu::TestCaseGroup> group				(new tcu::TestCaseGroup(testCtx, "opspecconstantop", "Test the OpSpecConstantOp instruction"));
6100	vector<SpecConstantTwoIntGraphicsCase>	cases;
6101	RGBA							inputColors[4];
6102	RGBA							outputColors0[4];
6103	RGBA							outputColors1[4];
6104	RGBA							outputColors2[4];
6105
6106	const char	decorations1[]			=
6107		"OpDecorate %sc_0  SpecId 0\n"
6108		"OpDecorate %sc_1  SpecId 1\n";
6109
6110	const char	typesAndConstants1[]	=
6111		"%sc_0      = OpSpecConstant${SC_DEF0}\n"
6112		"%sc_1      = OpSpecConstant${SC_DEF1}\n"
6113		"%sc_op     = OpSpecConstantOp ${SC_RESULT_TYPE} ${SC_OP}\n";
6114
6115	const char	function1[]				=
6116		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
6117		"%param     = OpFunctionParameter %v4f32\n"
6118		"%label     = OpLabel\n"
6119		"%result    = OpVariable %fp_v4f32 Function\n"
6120		"             OpStore %result %param\n"
6121		"%gen       = ${GEN_RESULT}\n"
6122		"%index     = OpIAdd %i32 %gen %c_i32_1\n"
6123		"%loc       = OpAccessChain %fp_f32 %result %index\n"
6124		"%val       = OpLoad %f32 %loc\n"
6125		"%add       = OpFAdd %f32 %val %c_f32_0_5\n"
6126		"             OpStore %loc %add\n"
6127		"%ret       = OpLoad %v4f32 %result\n"
6128		"             OpReturnValue %ret\n"
6129		"             OpFunctionEnd\n";
6130
6131	inputColors[0] = RGBA(127, 127, 127, 255);
6132	inputColors[1] = RGBA(127, 0,   0,   255);
6133	inputColors[2] = RGBA(0,   127, 0,   255);
6134	inputColors[3] = RGBA(0,   0,   127, 255);
6135
6136	// Derived from inputColors[x] by adding 128 to inputColors[x][0].
6137	outputColors0[0] = RGBA(255, 127, 127, 255);
6138	outputColors0[1] = RGBA(255, 0,   0,   255);
6139	outputColors0[2] = RGBA(128, 127, 0,   255);
6140	outputColors0[3] = RGBA(128, 0,   127, 255);
6141
6142	// Derived from inputColors[x] by adding 128 to inputColors[x][1].
6143	outputColors1[0] = RGBA(127, 255, 127, 255);
6144	outputColors1[1] = RGBA(127, 128, 0,   255);
6145	outputColors1[2] = RGBA(0,   255, 0,   255);
6146	outputColors1[3] = RGBA(0,   128, 127, 255);
6147
6148	// Derived from inputColors[x] by adding 128 to inputColors[x][2].
6149	outputColors2[0] = RGBA(127, 127, 255, 255);
6150	outputColors2[1] = RGBA(127, 0,   128, 255);
6151	outputColors2[2] = RGBA(0,   127, 128, 255);
6152	outputColors2[3] = RGBA(0,   0,   255, 255);
6153
6154	const char addZeroToSc[]		= "OpIAdd %i32 %c_i32_0 %sc_op";
6155	const char selectTrueUsingSc[]	= "OpSelect %i32 %sc_op %c_i32_1 %c_i32_0";
6156	const char selectFalseUsingSc[]	= "OpSelect %i32 %sc_op %c_i32_0 %c_i32_1";
6157
6158	cases.push_back(SpecConstantTwoIntGraphicsCase("iadd",					" %i32 0",		" %i32 0",		"%i32",		"IAdd                 %sc_0 %sc_1",				19,		-20,	addZeroToSc,		outputColors0));
6159	cases.push_back(SpecConstantTwoIntGraphicsCase("isub",					" %i32 0",		" %i32 0",		"%i32",		"ISub                 %sc_0 %sc_1",				19,		20,		addZeroToSc,		outputColors0));
6160	cases.push_back(SpecConstantTwoIntGraphicsCase("imul",					" %i32 0",		" %i32 0",		"%i32",		"IMul                 %sc_0 %sc_1",				-1,		-1,		addZeroToSc,		outputColors2));
6161	cases.push_back(SpecConstantTwoIntGraphicsCase("sdiv",					" %i32 0",		" %i32 0",		"%i32",		"SDiv                 %sc_0 %sc_1",				-126,	126,	addZeroToSc,		outputColors0));
6162	cases.push_back(SpecConstantTwoIntGraphicsCase("udiv",					" %i32 0",		" %i32 0",		"%i32",		"UDiv                 %sc_0 %sc_1",				126,	126,	addZeroToSc,		outputColors2));
6163	cases.push_back(SpecConstantTwoIntGraphicsCase("srem",					" %i32 0",		" %i32 0",		"%i32",		"SRem                 %sc_0 %sc_1",				-3,		2,		addZeroToSc,		outputColors0));
6164	cases.push_back(SpecConstantTwoIntGraphicsCase("smod",					" %i32 0",		" %i32 0",		"%i32",		"SMod                 %sc_0 %sc_1",				-3,		2,		addZeroToSc,		outputColors2));
6165	cases.push_back(SpecConstantTwoIntGraphicsCase("umod",					" %i32 0",		" %i32 0",		"%i32",		"UMod                 %sc_0 %sc_1",				1001,	500,	addZeroToSc,		outputColors2));
6166	cases.push_back(SpecConstantTwoIntGraphicsCase("bitwiseand",			" %i32 0",		" %i32 0",		"%i32",		"BitwiseAnd           %sc_0 %sc_1",				0x33,	0x0d,	addZeroToSc,		outputColors2));
6167	cases.push_back(SpecConstantTwoIntGraphicsCase("bitwiseor",				" %i32 0",		" %i32 0",		"%i32",		"BitwiseOr            %sc_0 %sc_1",				0,		1,		addZeroToSc,		outputColors2));
6168	cases.push_back(SpecConstantTwoIntGraphicsCase("bitwisexor",			" %i32 0",		" %i32 0",		"%i32",		"BitwiseAnd           %sc_0 %sc_1",				0x2e,	0x2f,	addZeroToSc,		outputColors2));
6169	cases.push_back(SpecConstantTwoIntGraphicsCase("shiftrightlogical",		" %i32 0",		" %i32 0",		"%i32",		"ShiftRightLogical    %sc_0 %sc_1",				2,		1,		addZeroToSc,		outputColors2));
6170	cases.push_back(SpecConstantTwoIntGraphicsCase("shiftrightarithmetic",	" %i32 0",		" %i32 0",		"%i32",		"ShiftRightArithmetic %sc_0 %sc_1",				-4,		2,		addZeroToSc,		outputColors0));
6171	cases.push_back(SpecConstantTwoIntGraphicsCase("shiftleftlogical",		" %i32 0",		" %i32 0",		"%i32",		"ShiftLeftLogical     %sc_0 %sc_1",				1,		0,		addZeroToSc,		outputColors2));
6172	cases.push_back(SpecConstantTwoIntGraphicsCase("slessthan",				" %i32 0",		" %i32 0",		"%bool",	"SLessThan            %sc_0 %sc_1",				-20,	-10,	selectTrueUsingSc,	outputColors2));
6173	cases.push_back(SpecConstantTwoIntGraphicsCase("ulessthan",				" %i32 0",		" %i32 0",		"%bool",	"ULessThan            %sc_0 %sc_1",				10,		20,		selectTrueUsingSc,	outputColors2));
6174	cases.push_back(SpecConstantTwoIntGraphicsCase("sgreaterthan",			" %i32 0",		" %i32 0",		"%bool",	"SGreaterThan         %sc_0 %sc_1",				-1000,	50,		selectFalseUsingSc,	outputColors2));
6175	cases.push_back(SpecConstantTwoIntGraphicsCase("ugreaterthan",			" %i32 0",		" %i32 0",		"%bool",	"UGreaterThan         %sc_0 %sc_1",				10,		5,		selectTrueUsingSc,	outputColors2));
6176	cases.push_back(SpecConstantTwoIntGraphicsCase("slessthanequal",		" %i32 0",		" %i32 0",		"%bool",	"SLessThanEqual       %sc_0 %sc_1",				-10,	-10,	selectTrueUsingSc,	outputColors2));
6177	cases.push_back(SpecConstantTwoIntGraphicsCase("ulessthanequal",		" %i32 0",		" %i32 0",		"%bool",	"ULessThanEqual       %sc_0 %sc_1",				50,		100,	selectTrueUsingSc,	outputColors2));
6178	cases.push_back(SpecConstantTwoIntGraphicsCase("sgreaterthanequal",		" %i32 0",		" %i32 0",		"%bool",	"SGreaterThanEqual    %sc_0 %sc_1",				-1000,	50,		selectFalseUsingSc,	outputColors2));
6179	cases.push_back(SpecConstantTwoIntGraphicsCase("ugreaterthanequal",		" %i32 0",		" %i32 0",		"%bool",	"UGreaterThanEqual    %sc_0 %sc_1",				10,		10,		selectTrueUsingSc,	outputColors2));
6180	cases.push_back(SpecConstantTwoIntGraphicsCase("iequal",				" %i32 0",		" %i32 0",		"%bool",	"IEqual               %sc_0 %sc_1",				42,		24,		selectFalseUsingSc,	outputColors2));
6181	cases.push_back(SpecConstantTwoIntGraphicsCase("logicaland",			"True %bool",	"True %bool",	"%bool",	"LogicalAnd           %sc_0 %sc_1",				0,		1,		selectFalseUsingSc,	outputColors2));
6182	cases.push_back(SpecConstantTwoIntGraphicsCase("logicalor",				"False %bool",	"False %bool",	"%bool",	"LogicalOr            %sc_0 %sc_1",				1,		0,		selectTrueUsingSc,	outputColors2));
6183	cases.push_back(SpecConstantTwoIntGraphicsCase("logicalequal",			"True %bool",	"True %bool",	"%bool",	"LogicalEqual         %sc_0 %sc_1",				0,		1,		selectFalseUsingSc,	outputColors2));
6184	cases.push_back(SpecConstantTwoIntGraphicsCase("logicalnotequal",		"False %bool",	"False %bool",	"%bool",	"LogicalNotEqual      %sc_0 %sc_1",				1,		0,		selectTrueUsingSc,	outputColors2));
6185	cases.push_back(SpecConstantTwoIntGraphicsCase("snegate",				" %i32 0",		" %i32 0",		"%i32",		"SNegate              %sc_0",					-1,		0,		addZeroToSc,		outputColors2));
6186	cases.push_back(SpecConstantTwoIntGraphicsCase("not",					" %i32 0",		" %i32 0",		"%i32",		"Not                  %sc_0",					-2,		0,		addZeroToSc,		outputColors2));
6187	cases.push_back(SpecConstantTwoIntGraphicsCase("logicalnot",			"False %bool",	"False %bool",	"%bool",	"LogicalNot           %sc_0",					1,		0,		selectFalseUsingSc,	outputColors2));
6188	cases.push_back(SpecConstantTwoIntGraphicsCase("select",				"False %bool",	" %i32 0",		"%i32",		"Select               %sc_0 %sc_1 %c_i32_0",	1,		1,		addZeroToSc,		outputColors2));
6189	// OpSConvert, OpFConvert: these two instructions involve ints/floats of different bitwidths.
6190	// \todo[2015-12-1 antiagainst] OpQuantizeToF16
6191
6192	for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
6193	{
6194		map<string, string>	specializations;
6195		map<string, string>	fragments;
6196		vector<deInt32>		specConstants;
6197
6198		specializations["SC_DEF0"]			= cases[caseNdx].scDefinition0;
6199		specializations["SC_DEF1"]			= cases[caseNdx].scDefinition1;
6200		specializations["SC_RESULT_TYPE"]	= cases[caseNdx].scResultType;
6201		specializations["SC_OP"]			= cases[caseNdx].scOperation;
6202		specializations["GEN_RESULT"]		= cases[caseNdx].resultOperation;
6203
6204		fragments["decoration"]				= tcu::StringTemplate(decorations1).specialize(specializations);
6205		fragments["pre_main"]				= tcu::StringTemplate(typesAndConstants1).specialize(specializations);
6206		fragments["testfun"]				= tcu::StringTemplate(function1).specialize(specializations);
6207
6208		specConstants.push_back(cases[caseNdx].scActualValue0);
6209		specConstants.push_back(cases[caseNdx].scActualValue1);
6210
6211		createTestsForAllStages(cases[caseNdx].caseName, inputColors, cases[caseNdx].expectedColors, fragments, specConstants, group.get());
6212	}
6213
6214	const char	decorations2[]			=
6215		"OpDecorate %sc_0  SpecId 0\n"
6216		"OpDecorate %sc_1  SpecId 1\n"
6217		"OpDecorate %sc_2  SpecId 2\n";
6218
6219	const char	typesAndConstants2[]	=
6220		"%v3i32     = OpTypeVector %i32 3\n"
6221
6222		"%sc_0      = OpSpecConstant %i32 0\n"
6223		"%sc_1      = OpSpecConstant %i32 0\n"
6224		"%sc_2      = OpSpecConstant %i32 0\n"
6225
6226		"%vec3_0      = OpConstantComposite %v3i32 %c_i32_0 %c_i32_0 %c_i32_0\n"
6227		"%sc_vec3_0   = OpSpecConstantOp %v3i32 CompositeInsert  %sc_0        %vec3_0    0\n"     // (sc_0, 0, 0)
6228		"%sc_vec3_1   = OpSpecConstantOp %v3i32 CompositeInsert  %sc_1        %vec3_0    1\n"     // (0, sc_1, 0)
6229		"%sc_vec3_2   = OpSpecConstantOp %v3i32 CompositeInsert  %sc_2        %vec3_0    2\n"     // (0, 0, sc_2)
6230		"%sc_vec3_01  = OpSpecConstantOp %v3i32 VectorShuffle    %sc_vec3_0   %sc_vec3_1 1 0 4\n" // (0,    sc_0, sc_1)
6231		"%sc_vec3_012 = OpSpecConstantOp %v3i32 VectorShuffle    %sc_vec3_01  %sc_vec3_2 5 1 2\n" // (sc_2, sc_0, sc_1)
6232		"%sc_ext_0    = OpSpecConstantOp %i32   CompositeExtract %sc_vec3_012            0\n"     // sc_2
6233		"%sc_ext_1    = OpSpecConstantOp %i32   CompositeExtract %sc_vec3_012            1\n"     // sc_0
6234		"%sc_ext_2    = OpSpecConstantOp %i32   CompositeExtract %sc_vec3_012            2\n"     // sc_1
6235		"%sc_sub      = OpSpecConstantOp %i32   ISub             %sc_ext_0    %sc_ext_1\n"        // (sc_2 - sc_0)
6236		"%sc_final    = OpSpecConstantOp %i32   IMul             %sc_sub      %sc_ext_2\n";       // (sc_2 - sc_0) * sc_1
6237
6238	const char	function2[]				=
6239		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
6240		"%param     = OpFunctionParameter %v4f32\n"
6241		"%label     = OpLabel\n"
6242		"%result    = OpVariable %fp_v4f32 Function\n"
6243		"             OpStore %result %param\n"
6244		"%loc       = OpAccessChain %fp_f32 %result %sc_final\n"
6245		"%val       = OpLoad %f32 %loc\n"
6246		"%add       = OpFAdd %f32 %val %c_f32_0_5\n"
6247		"             OpStore %loc %add\n"
6248		"%ret       = OpLoad %v4f32 %result\n"
6249		"             OpReturnValue %ret\n"
6250		"             OpFunctionEnd\n";
6251
6252	map<string, string>	fragments;
6253	vector<deInt32>		specConstants;
6254
6255	fragments["decoration"]	= decorations2;
6256	fragments["pre_main"]	= typesAndConstants2;
6257	fragments["testfun"]	= function2;
6258
6259	specConstants.push_back(56789);
6260	specConstants.push_back(-2);
6261	specConstants.push_back(56788);
6262
6263	createTestsForAllStages("vector_related", inputColors, outputColors2, fragments, specConstants, group.get());
6264
6265	return group.release();
6266}
6267
6268tcu::TestCaseGroup* createOpPhiTests(tcu::TestContext& testCtx)
6269{
6270	de::MovePtr<tcu::TestCaseGroup> group				(new tcu::TestCaseGroup(testCtx, "opphi", "Test the OpPhi instruction"));
6271	RGBA							inputColors[4];
6272	RGBA							outputColors1[4];
6273	RGBA							outputColors2[4];
6274	RGBA							outputColors3[4];
6275	map<string, string>				fragments1;
6276	map<string, string>				fragments2;
6277	map<string, string>				fragments3;
6278
6279	const char	typesAndConstants1[]	=
6280		"%c_f32_p2  = OpConstant %f32 0.2\n"
6281		"%c_f32_p4  = OpConstant %f32 0.4\n"
6282		"%c_f32_p6  = OpConstant %f32 0.6\n"
6283		"%c_f32_p8  = OpConstant %f32 0.8\n";
6284
6285	// vec4 test_code(vec4 param) {
6286	//   vec4 result = param;
6287	//   for (int i = 0; i < 4; ++i) {
6288	//     float operand;
6289	//     switch (i) {
6290	//       case 0: operand = .2; break;
6291	//       case 1: operand = .6; break;
6292	//       case 2: operand = .4; break;
6293	//       case 3: operand = .0; break;
6294	//       default: break; // unreachable
6295	//     }
6296	//     result[i] += operand;
6297	//   }
6298	//   return result;
6299	// }
6300	const char	function1[]				=
6301		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
6302		"%param1    = OpFunctionParameter %v4f32\n"
6303		"%lbl       = OpLabel\n"
6304		"%iptr      = OpVariable %fp_i32 Function\n"
6305		"             OpStore %iptr %c_i32_0\n"
6306		"%result    = OpVariable %fp_v4f32 Function\n"
6307		"             OpStore %result %param1\n"
6308		"             OpBranch %loop\n"
6309
6310		"%loop      = OpLabel\n"
6311		"%ival      = OpLoad %i32 %iptr\n"
6312		"%lt_4      = OpSLessThan %bool %ival %c_i32_4\n"
6313		"             OpLoopMerge %exit %loop None\n"
6314		"             OpBranchConditional %lt_4 %entry %exit\n"
6315
6316		"%entry     = OpLabel\n"
6317		"%loc       = OpAccessChain %fp_f32 %result %ival\n"
6318		"%val       = OpLoad %f32 %loc\n"
6319		"             OpSelectionMerge %phi None\n"
6320		"             OpSwitch %ival %default 0 %case0 1 %case1 2 %case2 3 %case3\n"
6321
6322		"%case0     = OpLabel\n"
6323		"             OpBranch %phi\n"
6324		"%case1     = OpLabel\n"
6325		"             OpBranch %phi\n"
6326		"%case2     = OpLabel\n"
6327		"             OpBranch %phi\n"
6328		"%case3     = OpLabel\n"
6329		"             OpBranch %phi\n"
6330
6331		"%default   = OpLabel\n"
6332		"             OpUnreachable\n"
6333
6334		"%phi       = OpLabel\n"
6335		"%operand   = OpPhi %f32 %c_f32_p4 %case2 %c_f32_p6 %case1 %c_f32_p2 %case0 %c_f32_0 %case3\n" // not in the order of blocks
6336		"%add       = OpFAdd %f32 %val %operand\n"
6337		"             OpStore %loc %add\n"
6338		"%ival_next = OpIAdd %i32 %ival %c_i32_1\n"
6339		"             OpStore %iptr %ival_next\n"
6340		"             OpBranch %loop\n"
6341
6342		"%exit      = OpLabel\n"
6343		"%ret       = OpLoad %v4f32 %result\n"
6344		"             OpReturnValue %ret\n"
6345
6346		"             OpFunctionEnd\n";
6347
6348	fragments1["pre_main"]	= typesAndConstants1;
6349	fragments1["testfun"]	= function1;
6350
6351	getHalfColorsFullAlpha(inputColors);
6352
6353	outputColors1[0]		= RGBA(178, 180, 229, 255);
6354	outputColors1[1]		= RGBA(178, 153, 102, 255);
6355	outputColors1[2]		= RGBA(51,  180, 102, 255);
6356	outputColors1[3]		= RGBA(51,  153, 229, 255);
6357
6358	createTestsForAllStages("out_of_order", inputColors, outputColors1, fragments1, group.get());
6359
6360	const char	typesAndConstants2[]	=
6361		"%c_f32_p2  = OpConstant %f32 0.2\n";
6362
6363	// Add .4 to the second element of the given parameter.
6364	const char	function2[]				=
6365		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
6366		"%param     = OpFunctionParameter %v4f32\n"
6367		"%entry     = OpLabel\n"
6368		"%result    = OpVariable %fp_v4f32 Function\n"
6369		"             OpStore %result %param\n"
6370		"%loc       = OpAccessChain %fp_f32 %result %c_i32_1\n"
6371		"%val       = OpLoad %f32 %loc\n"
6372		"             OpBranch %phi\n"
6373
6374		"%phi        = OpLabel\n"
6375		"%step       = OpPhi %i32 %c_i32_0  %entry %step_next  %phi\n"
6376		"%accum      = OpPhi %f32 %val      %entry %accum_next %phi\n"
6377		"%step_next  = OpIAdd %i32 %step  %c_i32_1\n"
6378		"%accum_next = OpFAdd %f32 %accum %c_f32_p2\n"
6379		"%still_loop = OpSLessThan %bool %step %c_i32_2\n"
6380		"              OpLoopMerge %exit %phi None\n"
6381		"              OpBranchConditional %still_loop %phi %exit\n"
6382
6383		"%exit       = OpLabel\n"
6384		"              OpStore %loc %accum\n"
6385		"%ret        = OpLoad %v4f32 %result\n"
6386		"              OpReturnValue %ret\n"
6387
6388		"              OpFunctionEnd\n";
6389
6390	fragments2["pre_main"]	= typesAndConstants2;
6391	fragments2["testfun"]	= function2;
6392
6393	outputColors2[0]			= RGBA(127, 229, 127, 255);
6394	outputColors2[1]			= RGBA(127, 102, 0,   255);
6395	outputColors2[2]			= RGBA(0,   229, 0,   255);
6396	outputColors2[3]			= RGBA(0,   102, 127, 255);
6397
6398	createTestsForAllStages("induction", inputColors, outputColors2, fragments2, group.get());
6399
6400	const char	typesAndConstants3[]	=
6401		"%true      = OpConstantTrue %bool\n"
6402		"%false     = OpConstantFalse %bool\n"
6403		"%c_f32_p2  = OpConstant %f32 0.2\n";
6404
6405	// Swap the second and the third element of the given parameter.
6406	const char	function3[]				=
6407		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
6408		"%param     = OpFunctionParameter %v4f32\n"
6409		"%entry     = OpLabel\n"
6410		"%result    = OpVariable %fp_v4f32 Function\n"
6411		"             OpStore %result %param\n"
6412		"%a_loc     = OpAccessChain %fp_f32 %result %c_i32_1\n"
6413		"%a_init    = OpLoad %f32 %a_loc\n"
6414		"%b_loc     = OpAccessChain %fp_f32 %result %c_i32_2\n"
6415		"%b_init    = OpLoad %f32 %b_loc\n"
6416		"             OpBranch %phi\n"
6417
6418		"%phi        = OpLabel\n"
6419		"%still_loop = OpPhi %bool %true   %entry %false  %phi\n"
6420		"%a_next     = OpPhi %f32  %a_init %entry %b_next %phi\n"
6421		"%b_next     = OpPhi %f32  %b_init %entry %a_next %phi\n"
6422		"              OpLoopMerge %exit %phi None\n"
6423		"              OpBranchConditional %still_loop %phi %exit\n"
6424
6425		"%exit       = OpLabel\n"
6426		"              OpStore %a_loc %a_next\n"
6427		"              OpStore %b_loc %b_next\n"
6428		"%ret        = OpLoad %v4f32 %result\n"
6429		"              OpReturnValue %ret\n"
6430
6431		"              OpFunctionEnd\n";
6432
6433	fragments3["pre_main"]	= typesAndConstants3;
6434	fragments3["testfun"]	= function3;
6435
6436	outputColors3[0]			= RGBA(127, 127, 127, 255);
6437	outputColors3[1]			= RGBA(127, 0,   0,   255);
6438	outputColors3[2]			= RGBA(0,   0,   127, 255);
6439	outputColors3[3]			= RGBA(0,   127, 0,   255);
6440
6441	createTestsForAllStages("swap", inputColors, outputColors3, fragments3, group.get());
6442
6443	return group.release();
6444}
6445
6446tcu::TestCaseGroup* createNoContractionTests(tcu::TestContext& testCtx)
6447{
6448	de::MovePtr<tcu::TestCaseGroup> group			(new tcu::TestCaseGroup(testCtx, "nocontraction", "Test the NoContraction decoration"));
6449	RGBA							inputColors[4];
6450	RGBA							outputColors[4];
6451
6452	// With NoContraction, (1 + 2^-23) * (1 - 2^-23) - 1 should be conducted as a multiplication and an addition separately.
6453	// For the multiplication, the result is 1 - 2^-46, which is out of the precision range for 32-bit float. (32-bit float
6454	// only have 23-bit fraction.) So it will be rounded to 1. Then the final result is 0. On the contrary, the result will
6455	// be 2^-46, which is a normalized number perfectly representable as 32-bit float.
6456	const char						constantsAndTypes[]	 =
6457		"%c_vec4_0       = OpConstantComposite %v4f32 %c_f32_0 %c_f32_0 %c_f32_0 %c_f32_1\n"
6458		"%c_vec4_1       = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_1\n"
6459		"%c_f32_1pl2_23  = OpConstant %f32 0x1.000002p+0\n" // 1 + 2^-23
6460		"%c_f32_1mi2_23  = OpConstant %f32 0x1.fffffcp-1\n" // 1 - 2^-23
6461		;
6462
6463	const char						function[]	 =
6464		"%test_code      = OpFunction %v4f32 None %v4f32_function\n"
6465		"%param          = OpFunctionParameter %v4f32\n"
6466		"%label          = OpLabel\n"
6467		"%var1           = OpVariable %fp_f32 Function %c_f32_1pl2_23\n"
6468		"%var2           = OpVariable %fp_f32 Function\n"
6469		"%red            = OpCompositeExtract %f32 %param 0\n"
6470		"%plus_red       = OpFAdd %f32 %c_f32_1mi2_23 %red\n"
6471		"                  OpStore %var2 %plus_red\n"
6472		"%val1           = OpLoad %f32 %var1\n"
6473		"%val2           = OpLoad %f32 %var2\n"
6474		"%mul            = OpFMul %f32 %val1 %val2\n"
6475		"%add            = OpFAdd %f32 %mul %c_f32_n1\n"
6476		"%is0            = OpFOrdEqual %bool %add %c_f32_0\n"
6477		"%ret            = OpSelect %v4f32 %is0 %c_vec4_0 %c_vec4_1\n"
6478		"                  OpReturnValue %ret\n"
6479		"                  OpFunctionEnd\n";
6480
6481	struct CaseNameDecoration
6482	{
6483		string name;
6484		string decoration;
6485	};
6486
6487
6488	CaseNameDecoration tests[] = {
6489		{"multiplication",	"OpDecorate %mul NoContraction"},
6490		{"addition",		"OpDecorate %add NoContraction"},
6491		{"both",			"OpDecorate %mul NoContraction\nOpDecorate %add NoContraction"},
6492	};
6493
6494	getHalfColorsFullAlpha(inputColors);
6495
6496	for (deUint8 idx = 0; idx < 4; ++idx)
6497	{
6498		inputColors[idx].setRed(0);
6499		outputColors[idx] = RGBA(0, 0, 0, 255);
6500	}
6501
6502	for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(CaseNameDecoration); ++testNdx)
6503	{
6504		map<string, string> fragments;
6505
6506		fragments["decoration"] = tests[testNdx].decoration;
6507		fragments["pre_main"] = constantsAndTypes;
6508		fragments["testfun"] = function;
6509
6510		createTestsForAllStages(tests[testNdx].name, inputColors, outputColors, fragments, group.get());
6511	}
6512
6513	return group.release();
6514}
6515
6516tcu::TestCaseGroup* createMemoryAccessTests(tcu::TestContext& testCtx)
6517{
6518	de::MovePtr<tcu::TestCaseGroup> memoryAccessTests (new tcu::TestCaseGroup(testCtx, "opmemoryaccess", "Memory Semantics"));
6519	RGBA							colors[4];
6520
6521	const char						constantsAndTypes[]	 =
6522		"%c_a2f32_1         = OpConstantComposite %a2f32 %c_f32_1 %c_f32_1\n"
6523		"%fp_a2f32          = OpTypePointer Function %a2f32\n"
6524		"%stype             = OpTypeStruct  %v4f32 %a2f32 %f32\n"
6525		"%fp_stype          = OpTypePointer Function %stype\n";
6526
6527	const char						function[]	 =
6528		"%test_code         = OpFunction %v4f32 None %v4f32_function\n"
6529		"%param1            = OpFunctionParameter %v4f32\n"
6530		"%lbl               = OpLabel\n"
6531		"%v1                = OpVariable %fp_v4f32 Function\n"
6532		"                     OpStore %v1 %c_v4f32_1_1_1_1\n"
6533		"%v2                = OpVariable %fp_a2f32 Function\n"
6534		"                     OpStore %v2 %c_a2f32_1\n"
6535		"%v3                = OpVariable %fp_f32 Function\n"
6536		"                     OpStore %v3 %c_f32_1\n"
6537
6538		"%v                 = OpVariable %fp_stype Function\n"
6539		"%vv                = OpVariable %fp_stype Function\n"
6540		"%vvv               = OpVariable %fp_f32 Function\n"
6541
6542		"%p_v4f32          = OpAccessChain %fp_v4f32 %v %c_u32_0\n"
6543		"%p_a2f32          = OpAccessChain %fp_a2f32 %v %c_u32_1\n"
6544		"%p_f32            = OpAccessChain %fp_f32 %v %c_u32_2\n"
6545		"%v1_v             = OpLoad %v4f32 %v1 ${access_type}\n"
6546		"%v2_v             = OpLoad %a2f32 %v2 ${access_type}\n"
6547		"%v3_v             = OpLoad %f32 %v3 ${access_type}\n"
6548
6549		"                    OpStore %p_v4f32 %v1_v ${access_type}\n"
6550		"                    OpStore %p_a2f32 %v2_v ${access_type}\n"
6551		"                    OpStore %p_f32 %v3_v ${access_type}\n"
6552
6553		"                    OpCopyMemory %vv %v ${access_type}\n"
6554		"                    OpCopyMemory %vvv %p_f32 ${access_type}\n"
6555
6556		"%p_f32_2          = OpAccessChain %fp_f32 %vv %c_u32_2\n"
6557		"%v_f32_2          = OpLoad %f32 %p_f32_2\n"
6558		"%v_f32_3          = OpLoad %f32 %vvv\n"
6559
6560		"%ret1             = OpVectorTimesScalar %v4f32 %param1 %v_f32_2\n"
6561		"%ret2             = OpVectorTimesScalar %v4f32 %ret1 %v_f32_3\n"
6562		"                    OpReturnValue %ret2\n"
6563		"                    OpFunctionEnd\n";
6564
6565	struct NameMemoryAccess
6566	{
6567		string name;
6568		string accessType;
6569	};
6570
6571
6572	NameMemoryAccess tests[] =
6573	{
6574		{ "none", "" },
6575		{ "volatile", "Volatile" },
6576		{ "aligned",  "Aligned 1" },
6577		{ "volatile_aligned",  "Volatile|Aligned 1" },
6578		{ "nontemporal_aligned",  "Nontemporal|Aligned 1" },
6579		{ "volatile_nontemporal",  "Volatile|Nontemporal" },
6580		{ "volatile_nontermporal_aligned",  "Volatile|Nontemporal|Aligned 1" },
6581	};
6582
6583	getHalfColorsFullAlpha(colors);
6584
6585	for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(NameMemoryAccess); ++testNdx)
6586	{
6587		map<string, string> fragments;
6588		map<string, string> memoryAccess;
6589		memoryAccess["access_type"] = tests[testNdx].accessType;
6590
6591		fragments["pre_main"] = constantsAndTypes;
6592		fragments["testfun"] = tcu::StringTemplate(function).specialize(memoryAccess);
6593		createTestsForAllStages(tests[testNdx].name, colors, colors, fragments, memoryAccessTests.get());
6594	}
6595	return memoryAccessTests.release();
6596}
6597tcu::TestCaseGroup* createOpUndefTests(tcu::TestContext& testCtx)
6598{
6599	de::MovePtr<tcu::TestCaseGroup>		opUndefTests		 (new tcu::TestCaseGroup(testCtx, "opundef", "Test OpUndef"));
6600	RGBA								defaultColors[4];
6601	map<string, string>					fragments;
6602	getDefaultColors(defaultColors);
6603
6604	// First, simple cases that don't do anything with the OpUndef result.
6605	fragments["testfun"] =
6606		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
6607		"%param1 = OpFunctionParameter %v4f32\n"
6608		"%label_testfun = OpLabel\n"
6609		"%undef = OpUndef %type\n"
6610		"OpReturnValue %param1\n"
6611		"OpFunctionEnd\n"
6612		;
6613	struct NameCodePair { string name, code; };
6614	const NameCodePair tests[] =
6615	{
6616		{"bool", "%type = OpTypeBool"},
6617		{"vec2uint32", "%type = OpTypeVector %u32 2"},
6618		{"image", "%type = OpTypeImage %f32 2D 0 0 0 0 Unknown"},
6619		{"sampler", "%type = OpTypeSampler"},
6620		{"sampledimage", "%img = OpTypeImage %f32 2D 0 0 0 0 Unknown\n" "%type = OpTypeSampledImage %img"},
6621		{"function", "%type = OpTypeFunction %void %i32 %f32"},
6622		{"pointer", "%type = OpTypePointer Function %i32"},
6623		{"runtimearray", "%type = OpTypeRuntimeArray %f32"},
6624		{"array", "%c_u32_100 = OpConstant %u32 100\n" "%type = OpTypeArray %i32 %c_u32_100"},
6625		{"struct", "%type = OpTypeStruct %f32 %i32 %u32"}};
6626	for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(NameCodePair); ++testNdx)
6627	{
6628		fragments["pre_main"] = tests[testNdx].code;
6629		createTestsForAllStages(tests[testNdx].name, defaultColors, defaultColors, fragments, opUndefTests.get());
6630	}
6631	fragments.clear();
6632
6633	fragments["testfun"] =
6634		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
6635		"%param1 = OpFunctionParameter %v4f32\n"
6636		"%label_testfun = OpLabel\n"
6637		"%undef = OpUndef %f32\n"
6638		"%zero = OpFMul %f32 %undef %c_f32_0\n"
6639		"%a = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
6640		"%b = OpFAdd %f32 %a %zero\n"
6641		"%ret = OpVectorInsertDynamic %v4f32 %param1 %b %c_i32_0\n"
6642		"OpReturnValue %ret\n"
6643		"OpFunctionEnd\n"
6644		;
6645	createTestsForAllStages("float32", defaultColors, defaultColors, fragments, opUndefTests.get());
6646
6647	fragments["testfun"] =
6648		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
6649		"%param1 = OpFunctionParameter %v4f32\n"
6650		"%label_testfun = OpLabel\n"
6651		"%undef = OpUndef %i32\n"
6652		"%zero = OpIMul %i32 %undef %c_i32_0\n"
6653		"%a = OpVectorExtractDynamic %f32 %param1 %zero\n"
6654		"%ret = OpVectorInsertDynamic %v4f32 %param1 %a %c_i32_0\n"
6655		"OpReturnValue %ret\n"
6656		"OpFunctionEnd\n"
6657		;
6658	createTestsForAllStages("sint32", defaultColors, defaultColors, fragments, opUndefTests.get());
6659
6660	fragments["testfun"] =
6661		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
6662		"%param1 = OpFunctionParameter %v4f32\n"
6663		"%label_testfun = OpLabel\n"
6664		"%undef = OpUndef %u32\n"
6665		"%zero = OpIMul %u32 %undef %c_i32_0\n"
6666		"%a = OpVectorExtractDynamic %f32 %param1 %zero\n"
6667		"%ret = OpVectorInsertDynamic %v4f32 %param1 %a %c_i32_0\n"
6668		"OpReturnValue %ret\n"
6669		"OpFunctionEnd\n"
6670		;
6671	createTestsForAllStages("uint32", defaultColors, defaultColors, fragments, opUndefTests.get());
6672
6673	fragments["testfun"] =
6674		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
6675		"%param1 = OpFunctionParameter %v4f32\n"
6676		"%label_testfun = OpLabel\n"
6677		"%undef = OpUndef %v4f32\n"
6678		"%vzero = OpVectorTimesScalar %v4f32 %undef %c_f32_0\n"
6679		"%zero_0 = OpVectorExtractDynamic %f32 %vzero %c_i32_0\n"
6680		"%zero_1 = OpVectorExtractDynamic %f32 %vzero %c_i32_1\n"
6681		"%zero_2 = OpVectorExtractDynamic %f32 %vzero %c_i32_2\n"
6682		"%zero_3 = OpVectorExtractDynamic %f32 %vzero %c_i32_3\n"
6683		"%param1_0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
6684		"%param1_1 = OpVectorExtractDynamic %f32 %param1 %c_i32_1\n"
6685		"%param1_2 = OpVectorExtractDynamic %f32 %param1 %c_i32_2\n"
6686		"%param1_3 = OpVectorExtractDynamic %f32 %param1 %c_i32_3\n"
6687		"%sum_0 = OpFAdd %f32 %param1_0 %zero_0\n"
6688		"%sum_1 = OpFAdd %f32 %param1_1 %zero_1\n"
6689		"%sum_2 = OpFAdd %f32 %param1_2 %zero_2\n"
6690		"%sum_3 = OpFAdd %f32 %param1_3 %zero_3\n"
6691		"%ret3 = OpVectorInsertDynamic %v4f32 %param1 %sum_3 %c_i32_3\n"
6692		"%ret2 = OpVectorInsertDynamic %v4f32 %ret3 %sum_2 %c_i32_2\n"
6693		"%ret1 = OpVectorInsertDynamic %v4f32 %ret2 %sum_1 %c_i32_1\n"
6694		"%ret = OpVectorInsertDynamic %v4f32 %ret1 %sum_0 %c_i32_0\n"
6695		"OpReturnValue %ret\n"
6696		"OpFunctionEnd\n"
6697		;
6698	createTestsForAllStages("vec4float32", defaultColors, defaultColors, fragments, opUndefTests.get());
6699
6700	fragments["pre_main"] =
6701		"%v2f32 = OpTypeVector %f32 2\n"
6702		"%m2x2f32 = OpTypeMatrix %v2f32 2\n";
6703	fragments["testfun"] =
6704		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
6705		"%param1 = OpFunctionParameter %v4f32\n"
6706		"%label_testfun = OpLabel\n"
6707		"%undef = OpUndef %m2x2f32\n"
6708		"%mzero = OpMatrixTimesScalar %m2x2f32 %undef %c_f32_0\n"
6709		"%zero_0 = OpCompositeExtract %f32 %mzero 0 0\n"
6710		"%zero_1 = OpCompositeExtract %f32 %mzero 0 1\n"
6711		"%zero_2 = OpCompositeExtract %f32 %mzero 1 0\n"
6712		"%zero_3 = OpCompositeExtract %f32 %mzero 1 1\n"
6713		"%param1_0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
6714		"%param1_1 = OpVectorExtractDynamic %f32 %param1 %c_i32_1\n"
6715		"%param1_2 = OpVectorExtractDynamic %f32 %param1 %c_i32_2\n"
6716		"%param1_3 = OpVectorExtractDynamic %f32 %param1 %c_i32_3\n"
6717		"%sum_0 = OpFAdd %f32 %param1_0 %zero_0\n"
6718		"%sum_1 = OpFAdd %f32 %param1_1 %zero_1\n"
6719		"%sum_2 = OpFAdd %f32 %param1_2 %zero_2\n"
6720		"%sum_3 = OpFAdd %f32 %param1_3 %zero_3\n"
6721		"%ret3 = OpVectorInsertDynamic %v4f32 %param1 %sum_3 %c_i32_3\n"
6722		"%ret2 = OpVectorInsertDynamic %v4f32 %ret3 %sum_2 %c_i32_2\n"
6723		"%ret1 = OpVectorInsertDynamic %v4f32 %ret2 %sum_1 %c_i32_1\n"
6724		"%ret = OpVectorInsertDynamic %v4f32 %ret1 %sum_0 %c_i32_0\n"
6725		"OpReturnValue %ret\n"
6726		"OpFunctionEnd\n"
6727		;
6728	createTestsForAllStages("matrix", defaultColors, defaultColors, fragments, opUndefTests.get());
6729
6730	return opUndefTests.release();
6731}
6732
6733void createOpQuantizeSingleOptionTests(tcu::TestCaseGroup* testCtx)
6734{
6735	const RGBA		inputColors[4]		=
6736	{
6737		RGBA(0,		0,		0,		255),
6738		RGBA(0,		0,		255,	255),
6739		RGBA(0,		255,	0,		255),
6740		RGBA(0,		255,	255,	255)
6741	};
6742
6743	const RGBA		expectedColors[4]	=
6744	{
6745		RGBA(255,	 0,		 0,		 255),
6746		RGBA(255,	 0,		 0,		 255),
6747		RGBA(255,	 0,		 0,		 255),
6748		RGBA(255,	 0,		 0,		 255)
6749	};
6750
6751	const struct SingleFP16Possibility
6752	{
6753		const char* name;
6754		const char* constant;
6755		float		valueAsFloat;
6756		const char* condition;
6757		// condition must evaluate to true after %test_constant = OpQuantizeToF16(%constant)
6758	}				tests[]				=
6759	{
6760		{
6761			"negative",
6762			"-0x1.3p1\n",
6763			-constructNormalizedFloat(1, 0x300000),
6764			"%cond = OpFOrdEqual %bool %c %test_constant\n"
6765		}, // -19
6766		{
6767			"positive",
6768			"0x1.0p7\n",
6769			constructNormalizedFloat(7, 0x000000),
6770			"%cond = OpFOrdEqual %bool %c %test_constant\n"
6771		},  // +128
6772		// SPIR-V requires that OpQuantizeToF16 flushes
6773		// any numbers that would end up denormalized in F16 to zero.
6774		{
6775			"denorm",
6776			"0x0.0006p-126\n",
6777			std::ldexp(1.5f, -140),
6778			"%cond = OpFOrdEqual %bool %c %c_f32_0\n"
6779		},  // denorm
6780		{
6781			"negative_denorm",
6782			"-0x0.0006p-126\n",
6783			-std::ldexp(1.5f, -140),
6784			"%cond = OpFOrdEqual %bool %c %c_f32_0\n"
6785		}, // -denorm
6786		{
6787			"too_small",
6788			"0x1.0p-16\n",
6789			std::ldexp(1.0f, -16),
6790			"%cond = OpFOrdEqual %bool %c %c_f32_0\n"
6791		},      // too small negative
6792		{
6793			"negative_too_small",
6794			"-0x1.0p-32\n",
6795			-std::ldexp(1.0f, -32),
6796			"%cond = OpFOrdEqual %bool %c %c_f32_0\n"
6797		},     // too small positive
6798		{
6799			"negative_inf",
6800			"-0x1.0p128\n",
6801			-std::ldexp(1.0f, 128),
6802			"%cond = OpFOrdEqual %bool %c %c_f32_0\n"
6803
6804			"%gz = OpFOrdLessThan %bool %c %c_f32_0\n"
6805			"%inf = OpIsInf %bool %c\n"
6806			"%cond = OpLogicalAnd %bool %gz %inf\n"
6807		},     // -inf to -inf
6808		{
6809			"inf",
6810			"0x1.0p128\n",
6811			std::ldexp(1.0f, 128),
6812
6813			"%gz = OpFOrdGreaterThan %bool %c %c_f32_0\n"
6814			"%inf = OpIsInf %bool %c\n"
6815			"%cond = OpLogicalAnd %bool %gz %inf\n"
6816		},     // +inf to +inf
6817		{
6818			"round_to_negative_inf",
6819			"-0x1.0p32\n",
6820			-std::ldexp(1.0f, 32),
6821
6822			"%gz = OpFOrdLessThan %bool %c %c_f32_0\n"
6823			"%inf = OpIsInf %bool %c\n"
6824			"%cond = OpLogicalAnd %bool %gz %inf\n"
6825		},     // round to -inf
6826		{
6827			"round_to_inf",
6828			"0x1.0p16\n",
6829			std::ldexp(1.0f, 16),
6830
6831			"%gz = OpFOrdGreaterThan %bool %c %c_f32_0\n"
6832			"%inf = OpIsInf %bool %c\n"
6833			"%cond = OpLogicalAnd %bool %gz %inf\n"
6834		},     // round to +inf
6835		{
6836			"nan",
6837			"0x1.1p128\n",
6838			std::numeric_limits<float>::quiet_NaN(),
6839
6840			"%nan = OpIsNan %bool %c\n"
6841			"%as_int = OpBitcast %i32 %c\n"
6842			"%positive = OpSGreaterThan %bool %as_int %c_i32_0\n"
6843			"%cond = OpLogicalAnd %bool %nan %positive\n"
6844		}, // nan
6845		{
6846			"negative_nan",
6847			"-0x1.0001p128\n",
6848			std::numeric_limits<float>::quiet_NaN(),
6849
6850			"%nan = OpIsNan %bool %c\n"
6851			"%as_int = OpBitcast %i32 %c\n"
6852			"%negative = OpSLessThan %bool %as_int %c_i32_0\n"
6853			"%cond = OpLogicalAnd %bool %nan %negative\n"
6854		} // -nan
6855	};
6856	const char*		constants			=
6857		"%test_constant = OpConstant %f32\n";
6858
6859	StringTemplate	function			(
6860		"%test_code     = OpFunction %v4f32 None %v4f32_function\n"
6861		"%param1        = OpFunctionParameter %v4f32\n"
6862		"%label_testfun = OpLabel\n"
6863		"%a             = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
6864		"%b             = OpFAdd %f32 %test_constant %a\n"
6865		"%c             = OpQuantizeToF16 %f32 %b\n"
6866		"${condition}\n"
6867		"%retval        = OpSelect %v4f32 %cond %c_v4f32_1_0_0_1 %param1"
6868		"                 OpReturnValue %retval\n"
6869		"OpFunctionEnd\n"
6870	);
6871
6872	const char*		specDecorations		= "OpDecorate %test_constant SpecId 0\n";
6873	const char*		specConstants		=
6874			"%test_constant = OpSpecConstant %f32 0.\n"
6875			"%c             = OpSpecConstantOp %f32 QuantizeToF16 %test_constant\n";
6876
6877	StringTemplate	specConstantFunction(
6878		"%test_code     = OpFunction %v4f32 None %v4f32_function\n"
6879		"%param1        = OpFunctionParameter %v4f32\n"
6880		"%label_testfun = OpLabel\n"
6881		"${condition}\n"
6882		"%retval        = OpSelect %v4f32 %cond %c_v4f32_1_0_0_1 %param1"
6883		"                 OpReturnValue %retval\n"
6884		"OpFunctionEnd\n"
6885	);
6886
6887	for (size_t idx = 0; idx < (sizeof(tests)/sizeof(tests[0])); ++idx)
6888	{
6889		map<string, string>								codeSpecialization;
6890		map<string, string>								fragments;
6891		codeSpecialization["condition"]					= tests[idx].condition;
6892		fragments["testfun"]							= function.specialize(codeSpecialization);
6893		fragments["pre_main"]							= string(constants) + tests[idx].constant + "\n";
6894		createTestsForAllStages(tests[idx].name, inputColors, expectedColors, fragments, testCtx);
6895	}
6896
6897	for (size_t idx = 0; idx < (sizeof(tests)/sizeof(tests[0])); ++idx)
6898	{
6899		map<string, string>								codeSpecialization;
6900		map<string, string>								fragments;
6901		vector<deInt32>									passConstants;
6902		deInt32											specConstant;
6903
6904		codeSpecialization["condition"]					= tests[idx].condition;
6905		fragments["testfun"]							= specConstantFunction.specialize(codeSpecialization);
6906		fragments["decoration"]							= specDecorations;
6907		fragments["pre_main"]							= specConstants;
6908
6909		memcpy(&specConstant, &tests[idx].valueAsFloat, sizeof(float));
6910		passConstants.push_back(specConstant);
6911
6912		createTestsForAllStages(string("spec_const_") + tests[idx].name, inputColors, expectedColors, fragments, passConstants, testCtx);
6913	}
6914}
6915
6916void createOpQuantizeTwoPossibilityTests(tcu::TestCaseGroup* testCtx)
6917{
6918	RGBA inputColors[4] =  {
6919		RGBA(0,		0,		0,		255),
6920		RGBA(0,		0,		255,	255),
6921		RGBA(0,		255,	0,		255),
6922		RGBA(0,		255,	255,	255)
6923	};
6924
6925	RGBA expectedColors[4] =
6926	{
6927		RGBA(255,	 0,		 0,		 255),
6928		RGBA(255,	 0,		 0,		 255),
6929		RGBA(255,	 0,		 0,		 255),
6930		RGBA(255,	 0,		 0,		 255)
6931	};
6932
6933	struct DualFP16Possibility
6934	{
6935		const char* name;
6936		const char* input;
6937		float		inputAsFloat;
6938		const char* possibleOutput1;
6939		const char* possibleOutput2;
6940	} tests[] = {
6941		{
6942			"positive_round_up_or_round_down",
6943			"0x1.3003p8",
6944			constructNormalizedFloat(8, 0x300300),
6945			"0x1.304p8",
6946			"0x1.3p8"
6947		},
6948		{
6949			"negative_round_up_or_round_down",
6950			"-0x1.6008p-7",
6951			-constructNormalizedFloat(8, 0x600800),
6952			"-0x1.6p-7",
6953			"-0x1.604p-7"
6954		},
6955		{
6956			"carry_bit",
6957			"0x1.01ep2",
6958			constructNormalizedFloat(8, 0x01e000),
6959			"0x1.01cp2",
6960			"0x1.02p2"
6961		},
6962		{
6963			"carry_to_exponent",
6964			"0x1.feep1",
6965			constructNormalizedFloat(8, 0xfee000),
6966			"0x1.ffcp1",
6967			"0x1.0p2"
6968		},
6969	};
6970	StringTemplate constants (
6971		"%input_const = OpConstant %f32 ${input}\n"
6972		"%possible_solution1 = OpConstant %f32 ${output1}\n"
6973		"%possible_solution2 = OpConstant %f32 ${output2}\n"
6974		);
6975
6976	StringTemplate specConstants (
6977		"%input_const = OpSpecConstant %f32 0.\n"
6978		"%possible_solution1 = OpConstant %f32 ${output1}\n"
6979		"%possible_solution2 = OpConstant %f32 ${output2}\n"
6980	);
6981
6982	const char* specDecorations = "OpDecorate %input_const  SpecId 0\n";
6983
6984	const char* function  =
6985		"%test_code     = OpFunction %v4f32 None %v4f32_function\n"
6986		"%param1        = OpFunctionParameter %v4f32\n"
6987		"%label_testfun = OpLabel\n"
6988		"%a             = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
6989		// For the purposes of this test we assume that 0.f will always get
6990		// faithfully passed through the pipeline stages.
6991		"%b             = OpFAdd %f32 %input_const %a\n"
6992		"%c             = OpQuantizeToF16 %f32 %b\n"
6993		"%eq_1          = OpFOrdEqual %bool %c %possible_solution1\n"
6994		"%eq_2          = OpFOrdEqual %bool %c %possible_solution2\n"
6995		"%cond          = OpLogicalOr %bool %eq_1 %eq_2\n"
6996		"%retval        = OpSelect %v4f32 %cond %c_v4f32_1_0_0_1 %param1"
6997		"                 OpReturnValue %retval\n"
6998		"OpFunctionEnd\n";
6999
7000	for(size_t idx = 0; idx < (sizeof(tests)/sizeof(tests[0])); ++idx) {
7001		map<string, string>									fragments;
7002		map<string, string>									constantSpecialization;
7003
7004		constantSpecialization["input"]						= tests[idx].input;
7005		constantSpecialization["output1"]					= tests[idx].possibleOutput1;
7006		constantSpecialization["output2"]					= tests[idx].possibleOutput2;
7007		fragments["testfun"]								= function;
7008		fragments["pre_main"]								= constants.specialize(constantSpecialization);
7009		createTestsForAllStages(tests[idx].name, inputColors, expectedColors, fragments, testCtx);
7010	}
7011
7012	for(size_t idx = 0; idx < (sizeof(tests)/sizeof(tests[0])); ++idx) {
7013		map<string, string>									fragments;
7014		map<string, string>									constantSpecialization;
7015		vector<deInt32>										passConstants;
7016		deInt32												specConstant;
7017
7018		constantSpecialization["output1"]					= tests[idx].possibleOutput1;
7019		constantSpecialization["output2"]					= tests[idx].possibleOutput2;
7020		fragments["testfun"]								= function;
7021		fragments["decoration"]								= specDecorations;
7022		fragments["pre_main"]								= specConstants.specialize(constantSpecialization);
7023
7024		memcpy(&specConstant, &tests[idx].inputAsFloat, sizeof(float));
7025		passConstants.push_back(specConstant);
7026
7027		createTestsForAllStages(string("spec_const_") + tests[idx].name, inputColors, expectedColors, fragments, passConstants, testCtx);
7028	}
7029}
7030
7031tcu::TestCaseGroup* createOpQuantizeTests(tcu::TestContext& testCtx)
7032{
7033	de::MovePtr<tcu::TestCaseGroup> opQuantizeTests (new tcu::TestCaseGroup(testCtx, "opquantize", "Test OpQuantizeToF16"));
7034	createOpQuantizeSingleOptionTests(opQuantizeTests.get());
7035	createOpQuantizeTwoPossibilityTests(opQuantizeTests.get());
7036	return opQuantizeTests.release();
7037}
7038
7039struct ShaderPermutation
7040{
7041	deUint8 vertexPermutation;
7042	deUint8 geometryPermutation;
7043	deUint8 tesscPermutation;
7044	deUint8 tessePermutation;
7045	deUint8 fragmentPermutation;
7046};
7047
7048ShaderPermutation getShaderPermutation(deUint8 inputValue)
7049{
7050	ShaderPermutation	permutation =
7051	{
7052		static_cast<deUint8>(inputValue & 0x10? 1u: 0u),
7053		static_cast<deUint8>(inputValue & 0x08? 1u: 0u),
7054		static_cast<deUint8>(inputValue & 0x04? 1u: 0u),
7055		static_cast<deUint8>(inputValue & 0x02? 1u: 0u),
7056		static_cast<deUint8>(inputValue & 0x01? 1u: 0u)
7057	};
7058	return permutation;
7059}
7060
7061tcu::TestCaseGroup* createModuleTests(tcu::TestContext& testCtx)
7062{
7063	RGBA								defaultColors[4];
7064	RGBA								invertedColors[4];
7065	de::MovePtr<tcu::TestCaseGroup>		moduleTests			(new tcu::TestCaseGroup(testCtx, "module", "Multiple entry points into shaders"));
7066
7067	const ShaderElement					combinedPipeline[]	=
7068	{
7069		ShaderElement("module", "main", VK_SHADER_STAGE_VERTEX_BIT),
7070		ShaderElement("module", "main", VK_SHADER_STAGE_GEOMETRY_BIT),
7071		ShaderElement("module", "main", VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT),
7072		ShaderElement("module", "main", VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT),
7073		ShaderElement("module", "main", VK_SHADER_STAGE_FRAGMENT_BIT)
7074	};
7075
7076	getDefaultColors(defaultColors);
7077	getInvertedDefaultColors(invertedColors);
7078	addFunctionCaseWithPrograms<InstanceContext>(moduleTests.get(), "same_module", "", createCombinedModule, runAndVerifyDefaultPipeline, createInstanceContext(combinedPipeline, map<string, string>()));
7079
7080	const char* numbers[] =
7081	{
7082		"1", "2"
7083	};
7084
7085	for (deInt8 idx = 0; idx < 32; ++idx)
7086	{
7087		ShaderPermutation			permutation		= getShaderPermutation(idx);
7088		string						name			= string("vert") + numbers[permutation.vertexPermutation] + "_geom" + numbers[permutation.geometryPermutation] + "_tessc" + numbers[permutation.tesscPermutation] + "_tesse" + numbers[permutation.tessePermutation] + "_frag" + numbers[permutation.fragmentPermutation];
7089		const ShaderElement			pipeline[]		=
7090		{
7091			ShaderElement("vert",	string("vert") +	numbers[permutation.vertexPermutation],		VK_SHADER_STAGE_VERTEX_BIT),
7092			ShaderElement("geom",	string("geom") +	numbers[permutation.geometryPermutation],	VK_SHADER_STAGE_GEOMETRY_BIT),
7093			ShaderElement("tessc",	string("tessc") +	numbers[permutation.tesscPermutation],		VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT),
7094			ShaderElement("tesse",	string("tesse") +	numbers[permutation.tessePermutation],		VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT),
7095			ShaderElement("frag",	string("frag") +	numbers[permutation.fragmentPermutation],	VK_SHADER_STAGE_FRAGMENT_BIT)
7096		};
7097
7098		// If there are an even number of swaps, then it should be no-op.
7099		// If there are an odd number, the color should be flipped.
7100		if ((permutation.vertexPermutation + permutation.geometryPermutation + permutation.tesscPermutation + permutation.tessePermutation + permutation.fragmentPermutation) % 2 == 0)
7101		{
7102			addFunctionCaseWithPrograms<InstanceContext>(moduleTests.get(), name, "", createMultipleEntries, runAndVerifyDefaultPipeline, createInstanceContext(pipeline, defaultColors, defaultColors, map<string, string>()));
7103		}
7104		else
7105		{
7106			addFunctionCaseWithPrograms<InstanceContext>(moduleTests.get(), name, "", createMultipleEntries, runAndVerifyDefaultPipeline, createInstanceContext(pipeline, defaultColors, invertedColors, map<string, string>()));
7107		}
7108	}
7109	return moduleTests.release();
7110}
7111
7112tcu::TestCaseGroup* createLoopTests(tcu::TestContext& testCtx)
7113{
7114	de::MovePtr<tcu::TestCaseGroup> testGroup(new tcu::TestCaseGroup(testCtx, "loop", "Looping control flow"));
7115	RGBA defaultColors[4];
7116	getDefaultColors(defaultColors);
7117	map<string, string> fragments;
7118	fragments["pre_main"] =
7119		"%c_f32_5 = OpConstant %f32 5.\n";
7120
7121	// A loop with a single block. The Continue Target is the loop block
7122	// itself. In SPIR-V terms, the "loop construct" contains no blocks at all
7123	// -- the "continue construct" forms the entire loop.
7124	fragments["testfun"] =
7125		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
7126		"%param1 = OpFunctionParameter %v4f32\n"
7127
7128		"%entry = OpLabel\n"
7129		"%val0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
7130		"OpBranch %loop\n"
7131
7132		";adds and subtracts 1.0 to %val in alternate iterations\n"
7133		"%loop = OpLabel\n"
7134		"%count = OpPhi %i32 %c_i32_4 %entry %count__ %loop\n"
7135		"%delta = OpPhi %f32 %c_f32_1 %entry %minus_delta %loop\n"
7136		"%val1 = OpPhi %f32 %val0 %entry %val %loop\n"
7137		"%val = OpFAdd %f32 %val1 %delta\n"
7138		"%minus_delta = OpFSub %f32 %c_f32_0 %delta\n"
7139		"%count__ = OpISub %i32 %count %c_i32_1\n"
7140		"%again = OpSGreaterThan %bool %count__ %c_i32_0\n"
7141		"OpLoopMerge %exit %loop None\n"
7142		"OpBranchConditional %again %loop %exit\n"
7143
7144		"%exit = OpLabel\n"
7145		"%result = OpVectorInsertDynamic %v4f32 %param1 %val %c_i32_0\n"
7146		"OpReturnValue %result\n"
7147
7148		"OpFunctionEnd\n"
7149		;
7150	createTestsForAllStages("single_block", defaultColors, defaultColors, fragments, testGroup.get());
7151
7152	// Body comprised of multiple basic blocks.
7153	const StringTemplate multiBlock(
7154		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
7155		"%param1 = OpFunctionParameter %v4f32\n"
7156
7157		"%entry = OpLabel\n"
7158		"%val0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
7159		"OpBranch %loop\n"
7160
7161		";adds and subtracts 1.0 to %val in alternate iterations\n"
7162		"%loop = OpLabel\n"
7163		"%count = OpPhi %i32 %c_i32_4 %entry %count__ %gather\n"
7164		"%delta = OpPhi %f32 %c_f32_1 %entry %delta_next %gather\n"
7165		"%val1 = OpPhi %f32 %val0 %entry %val %gather\n"
7166		// There are several possibilities for the Continue Target below.  Each
7167		// will be specialized into a separate test case.
7168		"OpLoopMerge %exit ${continue_target} None\n"
7169		"OpBranch %if\n"
7170
7171		"%if = OpLabel\n"
7172		";delta_next = (delta > 0) ? -1 : 1;\n"
7173		"%gt0 = OpFOrdGreaterThan %bool %delta %c_f32_0\n"
7174		"OpSelectionMerge %gather DontFlatten\n"
7175		"OpBranchConditional %gt0 %even %odd ;tells us if %count is even or odd\n"
7176
7177		"%odd = OpLabel\n"
7178		"OpBranch %gather\n"
7179
7180		"%even = OpLabel\n"
7181		"OpBranch %gather\n"
7182
7183		"%gather = OpLabel\n"
7184		"%delta_next = OpPhi %f32 %c_f32_n1 %even %c_f32_1 %odd\n"
7185		"%val = OpFAdd %f32 %val1 %delta\n"
7186		"%count__ = OpISub %i32 %count %c_i32_1\n"
7187		"%again = OpSGreaterThan %bool %count__ %c_i32_0\n"
7188		"OpBranchConditional %again %loop %exit\n"
7189
7190		"%exit = OpLabel\n"
7191		"%result = OpVectorInsertDynamic %v4f32 %param1 %val %c_i32_0\n"
7192		"OpReturnValue %result\n"
7193
7194		"OpFunctionEnd\n");
7195
7196	map<string, string> continue_target;
7197
7198	// The Continue Target is the loop block itself.
7199	continue_target["continue_target"] = "%loop";
7200	fragments["testfun"] = multiBlock.specialize(continue_target);
7201	createTestsForAllStages("multi_block_continue_construct", defaultColors, defaultColors, fragments, testGroup.get());
7202
7203	// The Continue Target is at the end of the loop.
7204	continue_target["continue_target"] = "%gather";
7205	fragments["testfun"] = multiBlock.specialize(continue_target);
7206	createTestsForAllStages("multi_block_loop_construct", defaultColors, defaultColors, fragments, testGroup.get());
7207
7208	// A loop with continue statement.
7209	fragments["testfun"] =
7210		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
7211		"%param1 = OpFunctionParameter %v4f32\n"
7212
7213		"%entry = OpLabel\n"
7214		"%val0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
7215		"OpBranch %loop\n"
7216
7217		";adds 4, 3, and 1 to %val0 (skips 2)\n"
7218		"%loop = OpLabel\n"
7219		"%count = OpPhi %i32 %c_i32_4 %entry %count__ %continue\n"
7220		"%val1 = OpPhi %f32 %val0 %entry %val %continue\n"
7221		"OpLoopMerge %exit %continue None\n"
7222		"OpBranch %if\n"
7223
7224		"%if = OpLabel\n"
7225		";skip if %count==2\n"
7226		"%eq2 = OpIEqual %bool %count %c_i32_2\n"
7227		"OpSelectionMerge %continue DontFlatten\n"
7228		"OpBranchConditional %eq2 %continue %body\n"
7229
7230		"%body = OpLabel\n"
7231		"%fcount = OpConvertSToF %f32 %count\n"
7232		"%val2 = OpFAdd %f32 %val1 %fcount\n"
7233		"OpBranch %continue\n"
7234
7235		"%continue = OpLabel\n"
7236		"%val = OpPhi %f32 %val2 %body %val1 %if\n"
7237		"%count__ = OpISub %i32 %count %c_i32_1\n"
7238		"%again = OpSGreaterThan %bool %count__ %c_i32_0\n"
7239		"OpBranchConditional %again %loop %exit\n"
7240
7241		"%exit = OpLabel\n"
7242		"%same = OpFSub %f32 %val %c_f32_8\n"
7243		"%result = OpVectorInsertDynamic %v4f32 %param1 %same %c_i32_0\n"
7244		"OpReturnValue %result\n"
7245		"OpFunctionEnd\n";
7246	createTestsForAllStages("continue", defaultColors, defaultColors, fragments, testGroup.get());
7247
7248	// A loop with early exit.  May be specialized with either break or return.
7249	StringTemplate earlyExitLoop(
7250		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
7251		"%param1 = OpFunctionParameter %v4f32\n"
7252
7253		"%entry = OpLabel\n"
7254		";param1 components are between 0 and 1, so dot product is 4 or less\n"
7255		"%dot = OpDot %f32 %param1 %param1\n"
7256		"%div = OpFDiv %f32 %dot %c_f32_5\n"
7257		"%zero = OpConvertFToU %u32 %div\n"
7258		"%two = OpIAdd %i32 %zero %c_i32_2\n"
7259		"%val0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
7260		"OpBranch %loop\n"
7261
7262		";adds 4 and 3 to %val0 (exits early)\n"
7263		"%loop = OpLabel\n"
7264		"%count = OpPhi %i32 %c_i32_4 %entry %count__ %continue\n"
7265		"%val1 = OpPhi %f32 %val0 %entry %val %continue\n"
7266		"OpLoopMerge %exit %continue None\n"
7267		"OpBranch %if\n"
7268
7269		"%if = OpLabel\n"
7270		";end loop if %count==%two\n"
7271		"%above2 = OpSGreaterThan %bool %count %two\n"
7272		"OpSelectionMerge %continue DontFlatten\n"
7273		// This can either branch to %exit or to another block with OpReturnValue %param1.
7274		"OpBranchConditional %above2 %body ${branch_destination}\n"
7275
7276		"%body = OpLabel\n"
7277		"%fcount = OpConvertSToF %f32 %count\n"
7278		"%val2 = OpFAdd %f32 %val1 %fcount\n"
7279		"OpBranch %continue\n"
7280
7281		"%continue = OpLabel\n"
7282		"%val = OpPhi %f32 %val2 %body %val1 %if\n"
7283		"%count__ = OpISub %i32 %count %c_i32_1\n"
7284		"%again = OpSGreaterThan %bool %count__ %c_i32_0\n"
7285		"OpBranchConditional %again %loop %exit\n"
7286
7287		"%exit = OpLabel\n"
7288		"%same = OpFSub %f32 %val %c_f32_7\n"
7289		"%result = OpVectorInsertDynamic %v4f32 %param1 %same %c_i32_0\n"
7290		"OpReturnValue %result\n"
7291		"OpFunctionEnd\n");
7292
7293	map<string, string> branch_destination;
7294
7295	// A loop with break.
7296	branch_destination["branch_destination"] = "%exit";
7297	fragments["testfun"] = earlyExitLoop.specialize(branch_destination);
7298	createTestsForAllStages("break", defaultColors, defaultColors, fragments, testGroup.get());
7299
7300	// A loop with return.
7301	branch_destination["branch_destination"] = "%early_exit\n"
7302		"%early_exit = OpLabel\n"
7303		"OpReturnValue %param1\n";
7304	fragments["testfun"] = earlyExitLoop.specialize(branch_destination);
7305	createTestsForAllStages("return", defaultColors, defaultColors, fragments, testGroup.get());
7306
7307	return testGroup.release();
7308}
7309
7310// Adds a new test to group using custom fragments for the tessellation-control
7311// stage and passthrough fragments for all other stages.  Uses default colors
7312// for input and expected output.
7313void addTessCtrlTest(tcu::TestCaseGroup* group, const char* name, const map<string, string>& fragments)
7314{
7315	RGBA defaultColors[4];
7316	getDefaultColors(defaultColors);
7317	const ShaderElement pipelineStages[] =
7318	{
7319		ShaderElement("vert", "main", VK_SHADER_STAGE_VERTEX_BIT),
7320		ShaderElement("tessc", "main", VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT),
7321		ShaderElement("tesse", "main", VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT),
7322		ShaderElement("geom", "main", VK_SHADER_STAGE_GEOMETRY_BIT),
7323		ShaderElement("frag", "main", VK_SHADER_STAGE_FRAGMENT_BIT),
7324	};
7325
7326	addFunctionCaseWithPrograms<InstanceContext>(group, name, "", addShaderCodeCustomTessControl,
7327												 runAndVerifyDefaultPipeline, createInstanceContext(
7328													 pipelineStages, defaultColors, defaultColors, fragments, StageToSpecConstantMap()));
7329}
7330
7331// A collection of tests putting OpControlBarrier in places GLSL forbids but SPIR-V allows.
7332tcu::TestCaseGroup* createBarrierTests(tcu::TestContext& testCtx)
7333{
7334	de::MovePtr<tcu::TestCaseGroup> testGroup(new tcu::TestCaseGroup(testCtx, "barrier", "OpControlBarrier"));
7335	map<string, string> fragments;
7336
7337	// A barrier inside a function body.
7338	fragments["pre_main"] =
7339		"%Workgroup = OpConstant %i32 2\n"
7340		"%SequentiallyConsistent = OpConstant %i32 0x10\n";
7341	fragments["testfun"] =
7342		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
7343		"%param1 = OpFunctionParameter %v4f32\n"
7344		"%label_testfun = OpLabel\n"
7345		"OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
7346		"OpReturnValue %param1\n"
7347		"OpFunctionEnd\n";
7348	addTessCtrlTest(testGroup.get(), "in_function", fragments);
7349
7350	// Common setup code for the following tests.
7351	fragments["pre_main"] =
7352		"%Workgroup = OpConstant %i32 2\n"
7353		"%SequentiallyConsistent = OpConstant %i32 0x10\n"
7354		"%c_f32_5 = OpConstant %f32 5.\n";
7355	const string setupPercentZero =	 // Begins %test_code function with code that sets %zero to 0u but cannot be optimized away.
7356		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
7357		"%param1 = OpFunctionParameter %v4f32\n"
7358		"%entry = OpLabel\n"
7359		";param1 components are between 0 and 1, so dot product is 4 or less\n"
7360		"%dot = OpDot %f32 %param1 %param1\n"
7361		"%div = OpFDiv %f32 %dot %c_f32_5\n"
7362		"%zero = OpConvertFToU %u32 %div\n";
7363
7364	// Barriers inside OpSwitch branches.
7365	fragments["testfun"] =
7366		setupPercentZero +
7367		"OpSelectionMerge %switch_exit None\n"
7368		"OpSwitch %zero %switch_default 0 %case0 1 %case1 ;should always go to %case0\n"
7369
7370		"%case1 = OpLabel\n"
7371		";This barrier should never be executed, but its presence makes test failure more likely when there's a bug.\n"
7372		"OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
7373		"%wrong_branch_alert1 = OpVectorInsertDynamic %v4f32 %param1 %c_f32_0_5 %c_i32_0\n"
7374		"OpBranch %switch_exit\n"
7375
7376		"%switch_default = OpLabel\n"
7377		"%wrong_branch_alert2 = OpVectorInsertDynamic %v4f32 %param1 %c_f32_0_5 %c_i32_0\n"
7378		";This barrier should never be executed, but its presence makes test failure more likely when there's a bug.\n"
7379		"OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
7380		"OpBranch %switch_exit\n"
7381
7382		"%case0 = OpLabel\n"
7383		"OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
7384		"OpBranch %switch_exit\n"
7385
7386		"%switch_exit = OpLabel\n"
7387		"%ret = OpPhi %v4f32 %param1 %case0 %wrong_branch_alert1 %case1 %wrong_branch_alert2 %switch_default\n"
7388		"OpReturnValue %ret\n"
7389		"OpFunctionEnd\n";
7390	addTessCtrlTest(testGroup.get(), "in_switch", fragments);
7391
7392	// Barriers inside if-then-else.
7393	fragments["testfun"] =
7394		setupPercentZero +
7395		"%eq0 = OpIEqual %bool %zero %c_u32_0\n"
7396		"OpSelectionMerge %exit DontFlatten\n"
7397		"OpBranchConditional %eq0 %then %else\n"
7398
7399		"%else = OpLabel\n"
7400		";This barrier should never be executed, but its presence makes test failure more likely when there's a bug.\n"
7401		"OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
7402		"%wrong_branch_alert = OpVectorInsertDynamic %v4f32 %param1 %c_f32_0_5 %c_i32_0\n"
7403		"OpBranch %exit\n"
7404
7405		"%then = OpLabel\n"
7406		"OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
7407		"OpBranch %exit\n"
7408
7409		"%exit = OpLabel\n"
7410		"%ret = OpPhi %v4f32 %param1 %then %wrong_branch_alert %else\n"
7411		"OpReturnValue %ret\n"
7412		"OpFunctionEnd\n";
7413	addTessCtrlTest(testGroup.get(), "in_if", fragments);
7414
7415	// A barrier after control-flow reconvergence, tempting the compiler to attempt something like this:
7416	// http://lists.llvm.org/pipermail/llvm-dev/2009-October/026317.html.
7417	fragments["testfun"] =
7418		setupPercentZero +
7419		"%thread_id = OpLoad %i32 %BP_gl_InvocationID\n"
7420		"%thread0 = OpIEqual %bool %thread_id %c_i32_0\n"
7421		"OpSelectionMerge %exit DontFlatten\n"
7422		"OpBranchConditional %thread0 %then %else\n"
7423
7424		"%else = OpLabel\n"
7425		"%val0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
7426		"OpBranch %exit\n"
7427
7428		"%then = OpLabel\n"
7429		"%val1 = OpVectorExtractDynamic %f32 %param1 %zero\n"
7430		"OpBranch %exit\n"
7431
7432		"%exit = OpLabel\n"
7433		"%val = OpPhi %f32 %val0 %else %val1 %then\n"
7434		"OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
7435		"%ret = OpVectorInsertDynamic %v4f32 %param1 %val %zero\n"
7436		"OpReturnValue %ret\n"
7437		"OpFunctionEnd\n";
7438	addTessCtrlTest(testGroup.get(), "after_divergent_if", fragments);
7439
7440	// A barrier inside a loop.
7441	fragments["pre_main"] =
7442		"%Workgroup = OpConstant %i32 2\n"
7443		"%SequentiallyConsistent = OpConstant %i32 0x10\n"
7444		"%c_f32_10 = OpConstant %f32 10.\n";
7445	fragments["testfun"] =
7446		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
7447		"%param1 = OpFunctionParameter %v4f32\n"
7448		"%entry = OpLabel\n"
7449		"%val0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
7450		"OpBranch %loop\n"
7451
7452		";adds 4, 3, 2, and 1 to %val0\n"
7453		"%loop = OpLabel\n"
7454		"%count = OpPhi %i32 %c_i32_4 %entry %count__ %loop\n"
7455		"%val1 = OpPhi %f32 %val0 %entry %val %loop\n"
7456		"OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
7457		"%fcount = OpConvertSToF %f32 %count\n"
7458		"%val = OpFAdd %f32 %val1 %fcount\n"
7459		"%count__ = OpISub %i32 %count %c_i32_1\n"
7460		"%again = OpSGreaterThan %bool %count__ %c_i32_0\n"
7461		"OpLoopMerge %exit %loop None\n"
7462		"OpBranchConditional %again %loop %exit\n"
7463
7464		"%exit = OpLabel\n"
7465		"%same = OpFSub %f32 %val %c_f32_10\n"
7466		"%ret = OpVectorInsertDynamic %v4f32 %param1 %same %c_i32_0\n"
7467		"OpReturnValue %ret\n"
7468		"OpFunctionEnd\n";
7469	addTessCtrlTest(testGroup.get(), "in_loop", fragments);
7470
7471	return testGroup.release();
7472}
7473
7474// Test for the OpFRem instruction.
7475tcu::TestCaseGroup* createFRemTests(tcu::TestContext& testCtx)
7476{
7477	de::MovePtr<tcu::TestCaseGroup>		testGroup(new tcu::TestCaseGroup(testCtx, "frem", "OpFRem"));
7478	map<string, string>					fragments;
7479	RGBA								inputColors[4];
7480	RGBA								outputColors[4];
7481
7482	fragments["pre_main"]				 =
7483		"%c_f32_3 = OpConstant %f32 3.0\n"
7484		"%c_f32_n3 = OpConstant %f32 -3.0\n"
7485		"%c_f32_4 = OpConstant %f32 4.0\n"
7486		"%c_f32_p75 = OpConstant %f32 0.75\n"
7487		"%c_v4f32_p75_p75_p75_p75 = OpConstantComposite %v4f32 %c_f32_p75 %c_f32_p75 %c_f32_p75 %c_f32_p75 \n"
7488		"%c_v4f32_4_4_4_4 = OpConstantComposite %v4f32 %c_f32_4 %c_f32_4 %c_f32_4 %c_f32_4\n"
7489		"%c_v4f32_3_n3_3_n3 = OpConstantComposite %v4f32 %c_f32_3 %c_f32_n3 %c_f32_3 %c_f32_n3\n";
7490
7491	// The test does the following.
7492	// vec4 result = (param1 * 8.0) - 4.0;
7493	// return (frem(result.x,3) + 0.75, frem(result.y, -3) + 0.75, 0, 1)
7494	fragments["testfun"]				 =
7495		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
7496		"%param1 = OpFunctionParameter %v4f32\n"
7497		"%label_testfun = OpLabel\n"
7498		"%v_times_8 = OpVectorTimesScalar %v4f32 %param1 %c_f32_8\n"
7499		"%minus_4 = OpFSub %v4f32 %v_times_8 %c_v4f32_4_4_4_4\n"
7500		"%frem = OpFRem %v4f32 %minus_4 %c_v4f32_3_n3_3_n3\n"
7501		"%added = OpFAdd %v4f32 %frem %c_v4f32_p75_p75_p75_p75\n"
7502		"%xyz_1 = OpVectorInsertDynamic %v4f32 %added %c_f32_1 %c_i32_3\n"
7503		"%xy_0_1 = OpVectorInsertDynamic %v4f32 %xyz_1 %c_f32_0 %c_i32_2\n"
7504		"OpReturnValue %xy_0_1\n"
7505		"OpFunctionEnd\n";
7506
7507
7508	inputColors[0]		= RGBA(16,	16,		0, 255);
7509	inputColors[1]		= RGBA(232, 232,	0, 255);
7510	inputColors[2]		= RGBA(232, 16,		0, 255);
7511	inputColors[3]		= RGBA(16,	232,	0, 255);
7512
7513	outputColors[0]		= RGBA(64,	64,		0, 255);
7514	outputColors[1]		= RGBA(255, 255,	0, 255);
7515	outputColors[2]		= RGBA(255, 64,		0, 255);
7516	outputColors[3]		= RGBA(64,	255,	0, 255);
7517
7518	createTestsForAllStages("frem", inputColors, outputColors, fragments, testGroup.get());
7519	return testGroup.release();
7520}
7521
7522tcu::TestCaseGroup* createInstructionTests (tcu::TestContext& testCtx)
7523{
7524	de::MovePtr<tcu::TestCaseGroup> instructionTests	(new tcu::TestCaseGroup(testCtx, "instruction", "Instructions with special opcodes/operands"));
7525	de::MovePtr<tcu::TestCaseGroup> computeTests		(new tcu::TestCaseGroup(testCtx, "compute", "Compute Instructions with special opcodes/operands"));
7526	de::MovePtr<tcu::TestCaseGroup> graphicsTests		(new tcu::TestCaseGroup(testCtx, "graphics", "Graphics Instructions with special opcodes/operands"));
7527
7528	computeTests->addChild(createOpNopGroup(testCtx));
7529	computeTests->addChild(createOpLineGroup(testCtx));
7530	computeTests->addChild(createOpNoLineGroup(testCtx));
7531	computeTests->addChild(createOpConstantNullGroup(testCtx));
7532	computeTests->addChild(createOpConstantCompositeGroup(testCtx));
7533	computeTests->addChild(createOpConstantUsageGroup(testCtx));
7534	computeTests->addChild(createSpecConstantGroup(testCtx));
7535	computeTests->addChild(createOpSourceGroup(testCtx));
7536	computeTests->addChild(createOpSourceExtensionGroup(testCtx));
7537	computeTests->addChild(createDecorationGroupGroup(testCtx));
7538	computeTests->addChild(createOpPhiGroup(testCtx));
7539	computeTests->addChild(createLoopControlGroup(testCtx));
7540	computeTests->addChild(createFunctionControlGroup(testCtx));
7541	computeTests->addChild(createSelectionControlGroup(testCtx));
7542	computeTests->addChild(createBlockOrderGroup(testCtx));
7543	computeTests->addChild(createMultipleShaderGroup(testCtx));
7544	computeTests->addChild(createMemoryAccessGroup(testCtx));
7545	computeTests->addChild(createOpCopyMemoryGroup(testCtx));
7546	computeTests->addChild(createOpCopyObjectGroup(testCtx));
7547	computeTests->addChild(createNoContractionGroup(testCtx));
7548	computeTests->addChild(createOpUndefGroup(testCtx));
7549	computeTests->addChild(createOpUnreachableGroup(testCtx));
7550	computeTests ->addChild(createOpQuantizeToF16Group(testCtx));
7551	computeTests ->addChild(createOpFRemGroup(testCtx));
7552
7553	RGBA defaultColors[4];
7554	getDefaultColors(defaultColors);
7555
7556	de::MovePtr<tcu::TestCaseGroup> opnopTests (new tcu::TestCaseGroup(testCtx, "opnop", "Test OpNop"));
7557	map<string, string> opNopFragments;
7558	opNopFragments["testfun"] =
7559		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
7560		"%param1 = OpFunctionParameter %v4f32\n"
7561		"%label_testfun = OpLabel\n"
7562		"OpNop\n"
7563		"OpNop\n"
7564		"OpNop\n"
7565		"OpNop\n"
7566		"OpNop\n"
7567		"OpNop\n"
7568		"OpNop\n"
7569		"OpNop\n"
7570		"%a = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
7571		"%b = OpFAdd %f32 %a %a\n"
7572		"OpNop\n"
7573		"%c = OpFSub %f32 %b %a\n"
7574		"%ret = OpVectorInsertDynamic %v4f32 %param1 %c %c_i32_0\n"
7575		"OpNop\n"
7576		"OpNop\n"
7577		"OpReturnValue %ret\n"
7578		"OpFunctionEnd\n"
7579		;
7580	createTestsForAllStages("opnop", defaultColors, defaultColors, opNopFragments, opnopTests.get());
7581
7582
7583	graphicsTests->addChild(opnopTests.release());
7584	graphicsTests->addChild(createOpSourceTests(testCtx));
7585	graphicsTests->addChild(createOpSourceContinuedTests(testCtx));
7586	graphicsTests->addChild(createOpLineTests(testCtx));
7587	graphicsTests->addChild(createOpNoLineTests(testCtx));
7588	graphicsTests->addChild(createOpConstantNullTests(testCtx));
7589	graphicsTests->addChild(createOpConstantCompositeTests(testCtx));
7590	graphicsTests->addChild(createMemoryAccessTests(testCtx));
7591	graphicsTests->addChild(createOpUndefTests(testCtx));
7592	graphicsTests->addChild(createSelectionBlockOrderTests(testCtx));
7593	graphicsTests->addChild(createModuleTests(testCtx));
7594	graphicsTests->addChild(createSwitchBlockOrderTests(testCtx));
7595	graphicsTests->addChild(createOpPhiTests(testCtx));
7596	graphicsTests->addChild(createNoContractionTests(testCtx));
7597	graphicsTests->addChild(createOpQuantizeTests(testCtx));
7598	graphicsTests->addChild(createLoopTests(testCtx));
7599	graphicsTests->addChild(createSpecConstantTests(testCtx));
7600	graphicsTests->addChild(createSpecConstantOpQuantizeToF16Group(testCtx));
7601	graphicsTests->addChild(createBarrierTests(testCtx));
7602	graphicsTests->addChild(createDecorationGroupTests(testCtx));
7603	graphicsTests->addChild(createFRemTests(testCtx));
7604
7605	instructionTests->addChild(computeTests.release());
7606	instructionTests->addChild(graphicsTests.release());
7607
7608	return instructionTests.release();
7609}
7610
7611} // SpirVAssembly
7612} // vkt
7613