vktSpvAsmInstructionTests.cpp revision 1aece182cbef9abde8437aaf23ee959f3b5e61e0
1/*-------------------------------------------------------------------------
2 * Vulkan Conformance Tests
3 * ------------------------
4 *
5 * Copyright (c) 2015 Google Inc.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and/or associated documentation files (the
9 * "Materials"), to deal in the Materials without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sublicense, and/or sell copies of the Materials, and to
12 * permit persons to whom the Materials are furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice(s) and this permission notice shall be
16 * included in all copies or substantial portions of the Materials.
17 *
18 * The Materials are Confidential Information as defined by the
19 * Khronos Membership Agreement until designated non-confidential by
20 * Khronos, at which point this condition clause shall be removed.
21 *
22 * THE MATERIALS ARE PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
23 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
24 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
25 * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
26 * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
27 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
28 * MATERIALS OR THE USE OR OTHER DEALINGS IN THE MATERIALS.
29 *
30 *//*!
31 * \file
32 * \brief SPIR-V Assembly Tests for Instructions (special opcode/operand)
33 *//*--------------------------------------------------------------------*/
34
35#include "vktSpvAsmInstructionTests.hpp"
36
37#include "tcuCommandLine.hpp"
38#include "tcuFormatUtil.hpp"
39#include "tcuRGBA.hpp"
40#include "tcuStringTemplate.hpp"
41#include "tcuTestLog.hpp"
42#include "tcuVectorUtil.hpp"
43
44#include "vkDefs.hpp"
45#include "vkDeviceUtil.hpp"
46#include "vkMemUtil.hpp"
47#include "vkPlatform.hpp"
48#include "vkPrograms.hpp"
49#include "vkQueryUtil.hpp"
50#include "vkRef.hpp"
51#include "vkRefUtil.hpp"
52#include "vkStrUtil.hpp"
53#include "vkTypeUtil.hpp"
54
55#include "deRandom.hpp"
56#include "deStringUtil.hpp"
57#include "deUniquePtr.hpp"
58#include "tcuStringTemplate.hpp"
59
60#include <cmath>
61#include "vktSpvAsmComputeShaderCase.hpp"
62#include "vktSpvAsmComputeShaderTestUtil.hpp"
63#include "vktTestCaseUtil.hpp"
64
65#include <cmath>
66#include <limits>
67#include <map>
68#include <string>
69#include <sstream>
70
71namespace vkt
72{
73namespace SpirVAssembly
74{
75
76namespace
77{
78
79using namespace vk;
80using std::map;
81using std::string;
82using std::vector;
83using tcu::IVec3;
84using tcu::IVec4;
85using tcu::RGBA;
86using tcu::TestLog;
87using tcu::TestStatus;
88using tcu::Vec4;
89using de::UniquePtr;
90using tcu::StringTemplate;
91using tcu::Vec4;
92
93typedef Unique<VkShaderModule>			ModuleHandleUp;
94typedef de::SharedPtr<ModuleHandleUp>	ModuleHandleSp;
95
96template<typename T>	T			randomScalar	(de::Random& rnd, T minValue, T maxValue);
97template<> inline		float		randomScalar	(de::Random& rnd, float minValue, float maxValue)		{ return rnd.getFloat(minValue, maxValue);	}
98template<> inline		deInt32		randomScalar	(de::Random& rnd, deInt32 minValue, deInt32 maxValue)	{ return rnd.getInt(minValue, maxValue);	}
99
100template<typename T>
101static void fillRandomScalars (de::Random& rnd, T minValue, T maxValue, void* dst, int numValues, int offset = 0)
102{
103	T* const typedPtr = (T*)dst;
104	for (int ndx = 0; ndx < numValues; ndx++)
105		typedPtr[offset + ndx] = randomScalar<T>(rnd, minValue, maxValue);
106}
107
108struct CaseParameter
109{
110	const char*		name;
111	string			param;
112
113	CaseParameter	(const char* case_, const string& param_) : name(case_), param(param_) {}
114};
115
116// Assembly code used for testing OpNop, OpConstant{Null|Composite}, Op[No]Line, OpSource[Continued], OpSourceExtension, OpUndef is based on GLSL source code:
117//
118// #version 430
119//
120// layout(std140, set = 0, binding = 0) readonly buffer Input {
121//   float elements[];
122// } input_data;
123// layout(std140, set = 0, binding = 1) writeonly buffer Output {
124//   float elements[];
125// } output_data;
126//
127// layout (local_size_x = 1, local_size_y = 1, local_size_z = 1) in;
128//
129// void main() {
130//   uint x = gl_GlobalInvocationID.x;
131//   output_data.elements[x] = -input_data.elements[x];
132// }
133
134static const char* const s_ShaderPreamble =
135	"OpCapability Shader\n"
136	"OpMemoryModel Logical GLSL450\n"
137	"OpEntryPoint GLCompute %main \"main\" %id\n"
138	"OpExecutionMode %main LocalSize 1 1 1\n";
139
140static const char* const s_CommonTypes =
141	"%bool      = OpTypeBool\n"
142	"%void      = OpTypeVoid\n"
143	"%voidf     = OpTypeFunction %void\n"
144	"%u32       = OpTypeInt 32 0\n"
145	"%i32       = OpTypeInt 32 1\n"
146	"%f32       = OpTypeFloat 32\n"
147	"%uvec3     = OpTypeVector %u32 3\n"
148	"%fvec3     = OpTypeVector %f32 3\n"
149	"%uvec3ptr  = OpTypePointer Input %uvec3\n"
150	"%f32ptr    = OpTypePointer Uniform %f32\n"
151	"%f32arr    = OpTypeRuntimeArray %f32\n";
152
153// Declares two uniform variables (indata, outdata) of type "struct { float[] }". Depends on type "f32arr" (for "float[]").
154static const char* const s_InputOutputBuffer =
155	"%inbuf     = OpTypeStruct %f32arr\n"
156	"%inbufptr  = OpTypePointer Uniform %inbuf\n"
157	"%indata    = OpVariable %inbufptr Uniform\n"
158	"%outbuf    = OpTypeStruct %f32arr\n"
159	"%outbufptr = OpTypePointer Uniform %outbuf\n"
160	"%outdata   = OpVariable %outbufptr Uniform\n";
161
162// Declares buffer type and layout for uniform variables indata and outdata. Both of them are SSBO bounded to descriptor set 0.
163// indata is at binding point 0, while outdata is at 1.
164static const char* const s_InputOutputBufferTraits =
165	"OpDecorate %inbuf BufferBlock\n"
166	"OpDecorate %indata DescriptorSet 0\n"
167	"OpDecorate %indata Binding 0\n"
168	"OpDecorate %outbuf BufferBlock\n"
169	"OpDecorate %outdata DescriptorSet 0\n"
170	"OpDecorate %outdata Binding 1\n"
171	"OpDecorate %f32arr ArrayStride 4\n"
172	"OpMemberDecorate %inbuf 0 Offset 0\n"
173	"OpMemberDecorate %outbuf 0 Offset 0\n";
174
175tcu::TestCaseGroup* createOpNopGroup (tcu::TestContext& testCtx)
176{
177	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opnop", "Test the OpNop instruction"));
178	ComputeShaderSpec				spec;
179	de::Random						rnd				(deStringHash(group->getName()));
180	const int						numElements		= 100;
181	vector<float>					positiveFloats	(numElements, 0);
182	vector<float>					negativeFloats	(numElements, 0);
183
184	fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
185
186	for (size_t ndx = 0; ndx < numElements; ++ndx)
187		negativeFloats[ndx] = -positiveFloats[ndx];
188
189	spec.assembly =
190		string(s_ShaderPreamble) +
191
192		"OpSource GLSL 430\n"
193		"OpName %main           \"main\"\n"
194		"OpName %id             \"gl_GlobalInvocationID\"\n"
195
196		"OpDecorate %id BuiltIn GlobalInvocationId\n"
197
198		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes)
199
200		+ string(s_InputOutputBuffer) +
201
202		"%id        = OpVariable %uvec3ptr Input\n"
203		"%zero      = OpConstant %i32 0\n"
204
205		"%main      = OpFunction %void None %voidf\n"
206		"%label     = OpLabel\n"
207		"%idval     = OpLoad %uvec3 %id\n"
208		"%x         = OpCompositeExtract %u32 %idval 0\n"
209
210		"             OpNop\n" // Inside a function body
211
212		"%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
213		"%inval     = OpLoad %f32 %inloc\n"
214		"%neg       = OpFNegate %f32 %inval\n"
215		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
216		"             OpStore %outloc %neg\n"
217		"             OpReturn\n"
218		"             OpFunctionEnd\n";
219	spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
220	spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
221	spec.numWorkGroups = IVec3(numElements, 1, 1);
222
223	group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "OpNop appearing at different places", spec));
224
225	return group.release();
226}
227
228tcu::TestCaseGroup* createOpLineGroup (tcu::TestContext& testCtx)
229{
230	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opline", "Test the OpLine instruction"));
231	ComputeShaderSpec				spec;
232	de::Random						rnd				(deStringHash(group->getName()));
233	const int						numElements		= 100;
234	vector<float>					positiveFloats	(numElements, 0);
235	vector<float>					negativeFloats	(numElements, 0);
236
237	fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
238
239	for (size_t ndx = 0; ndx < numElements; ++ndx)
240		negativeFloats[ndx] = -positiveFloats[ndx];
241
242	spec.assembly =
243		string(s_ShaderPreamble) +
244
245		"%fname1 = OpString \"negateInputs.comp\"\n"
246		"%fname2 = OpString \"negateInputs\"\n"
247
248		"OpSource GLSL 430\n"
249		"OpName %main           \"main\"\n"
250		"OpName %id             \"gl_GlobalInvocationID\"\n"
251
252		"OpDecorate %id BuiltIn GlobalInvocationId\n"
253
254		+ string(s_InputOutputBufferTraits) +
255
256		"OpLine %fname1 0 0\n" // At the earliest possible position
257
258		+ string(s_CommonTypes) + string(s_InputOutputBuffer) +
259
260		"OpLine %fname1 0 1\n" // Multiple OpLines in sequence
261		"OpLine %fname2 1 0\n" // Different filenames
262		"OpLine %fname1 1000 100000\n"
263
264		"%id        = OpVariable %uvec3ptr Input\n"
265		"%zero      = OpConstant %i32 0\n"
266
267		"OpLine %fname1 1 1\n" // Before a function
268
269		"%main      = OpFunction %void None %voidf\n"
270		"%label     = OpLabel\n"
271
272		"OpLine %fname1 1 1\n" // In a function
273
274		"%idval     = OpLoad %uvec3 %id\n"
275		"%x         = OpCompositeExtract %u32 %idval 0\n"
276		"%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
277		"%inval     = OpLoad %f32 %inloc\n"
278		"%neg       = OpFNegate %f32 %inval\n"
279		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
280		"             OpStore %outloc %neg\n"
281		"             OpReturn\n"
282		"             OpFunctionEnd\n";
283	spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
284	spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
285	spec.numWorkGroups = IVec3(numElements, 1, 1);
286
287	group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "OpLine appearing at different places", spec));
288
289	return group.release();
290}
291
292tcu::TestCaseGroup* createOpNoLineGroup (tcu::TestContext& testCtx)
293{
294	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opnoline", "Test the OpNoLine instruction"));
295	ComputeShaderSpec				spec;
296	de::Random						rnd				(deStringHash(group->getName()));
297	const int						numElements		= 100;
298	vector<float>					positiveFloats	(numElements, 0);
299	vector<float>					negativeFloats	(numElements, 0);
300
301	fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
302
303	for (size_t ndx = 0; ndx < numElements; ++ndx)
304		negativeFloats[ndx] = -positiveFloats[ndx];
305
306	spec.assembly =
307		string(s_ShaderPreamble) +
308
309		"%fname = OpString \"negateInputs.comp\"\n"
310
311		"OpSource GLSL 430\n"
312		"OpName %main           \"main\"\n"
313		"OpName %id             \"gl_GlobalInvocationID\"\n"
314
315		"OpDecorate %id BuiltIn GlobalInvocationId\n"
316
317		+ string(s_InputOutputBufferTraits) +
318
319		"OpNoLine\n" // At the earliest possible position, without preceding OpLine
320
321		+ string(s_CommonTypes) + string(s_InputOutputBuffer) +
322
323		"OpLine %fname 0 1\n"
324		"OpNoLine\n" // Immediately following a preceding OpLine
325
326		"OpLine %fname 1000 1\n"
327
328		"%id        = OpVariable %uvec3ptr Input\n"
329		"%zero      = OpConstant %i32 0\n"
330
331		"OpNoLine\n" // Contents after the previous OpLine
332
333		"%main      = OpFunction %void None %voidf\n"
334		"%label     = OpLabel\n"
335		"%idval     = OpLoad %uvec3 %id\n"
336		"%x         = OpCompositeExtract %u32 %idval 0\n"
337
338		"OpNoLine\n" // Multiple OpNoLine
339		"OpNoLine\n"
340		"OpNoLine\n"
341
342		"%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
343		"%inval     = OpLoad %f32 %inloc\n"
344		"%neg       = OpFNegate %f32 %inval\n"
345		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
346		"             OpStore %outloc %neg\n"
347		"             OpReturn\n"
348		"             OpFunctionEnd\n";
349	spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
350	spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
351	spec.numWorkGroups = IVec3(numElements, 1, 1);
352
353	group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "OpNoLine appearing at different places", spec));
354
355	return group.release();
356}
357
358tcu::TestCaseGroup* createNoContractionGroup (tcu::TestContext& testCtx)
359{
360	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "nocontraction", "Test the NoContraction decoration"));
361	vector<CaseParameter>			cases;
362	const int						numElements		= 100;
363	vector<float>					inputFloats1	(numElements, 0);
364	vector<float>					inputFloats2	(numElements, 0);
365	vector<float>					outputFloats	(numElements, 0);
366	const StringTemplate			shaderTemplate	(
367		string(s_ShaderPreamble) +
368
369		"OpName %main           \"main\"\n"
370		"OpName %id             \"gl_GlobalInvocationID\"\n"
371
372		"OpDecorate %id BuiltIn GlobalInvocationId\n"
373
374		"${DECORATION}\n"
375
376		"OpDecorate %inbuf1 BufferBlock\n"
377		"OpDecorate %indata1 DescriptorSet 0\n"
378		"OpDecorate %indata1 Binding 0\n"
379		"OpDecorate %inbuf2 BufferBlock\n"
380		"OpDecorate %indata2 DescriptorSet 0\n"
381		"OpDecorate %indata2 Binding 1\n"
382		"OpDecorate %outbuf BufferBlock\n"
383		"OpDecorate %outdata DescriptorSet 0\n"
384		"OpDecorate %outdata Binding 2\n"
385		"OpDecorate %f32arr ArrayStride 4\n"
386		"OpMemberDecorate %inbuf1 0 Offset 0\n"
387		"OpMemberDecorate %inbuf2 0 Offset 0\n"
388		"OpMemberDecorate %outbuf 0 Offset 0\n"
389
390		+ string(s_CommonTypes) +
391
392		"%inbuf1     = OpTypeStruct %f32arr\n"
393		"%inbufptr1  = OpTypePointer Uniform %inbuf1\n"
394		"%indata1    = OpVariable %inbufptr1 Uniform\n"
395		"%inbuf2     = OpTypeStruct %f32arr\n"
396		"%inbufptr2  = OpTypePointer Uniform %inbuf2\n"
397		"%indata2    = OpVariable %inbufptr2 Uniform\n"
398		"%outbuf     = OpTypeStruct %f32arr\n"
399		"%outbufptr  = OpTypePointer Uniform %outbuf\n"
400		"%outdata    = OpVariable %outbufptr Uniform\n"
401
402		"%id         = OpVariable %uvec3ptr Input\n"
403		"%zero       = OpConstant %i32 0\n"
404		"%c_f_m1     = OpConstant %f32 -1.\n"
405
406		"%main       = OpFunction %void None %voidf\n"
407		"%label      = OpLabel\n"
408		"%idval      = OpLoad %uvec3 %id\n"
409		"%x          = OpCompositeExtract %u32 %idval 0\n"
410		"%inloc1     = OpAccessChain %f32ptr %indata1 %zero %x\n"
411		"%inval1     = OpLoad %f32 %inloc1\n"
412		"%inloc2     = OpAccessChain %f32ptr %indata2 %zero %x\n"
413		"%inval2     = OpLoad %f32 %inloc2\n"
414		"%mul        = OpFMul %f32 %inval1 %inval2\n"
415		"%add        = OpFAdd %f32 %mul %c_f_m1\n"
416		"%outloc     = OpAccessChain %f32ptr %outdata %zero %x\n"
417		"              OpStore %outloc %add\n"
418		"              OpReturn\n"
419		"              OpFunctionEnd\n");
420
421	cases.push_back(CaseParameter("multiplication",	"OpDecorate %mul NoContraction"));
422	cases.push_back(CaseParameter("addition",		"OpDecorate %add NoContraction"));
423	cases.push_back(CaseParameter("both",			"OpDecorate %mul NoContraction\nOpDecorate %add NoContraction"));
424
425	for (size_t ndx = 0; ndx < numElements; ++ndx)
426	{
427		inputFloats1[ndx]	= 1.f + std::ldexp(1.f, -23); // 1 + 2^-23.
428		inputFloats2[ndx]	= 1.f - std::ldexp(1.f, -23); // 1 - 2^-23.
429		// Result for (1 + 2^-23) * (1 - 2^-23) - 1. With NoContraction, the multiplication will be
430		// conducted separately and the result is rounded to 1. So the final result will be 0.f.
431		// If the operation is combined into a precise fused multiply-add, then the result would be
432		// 2^-46 (0xa8800000).
433		outputFloats[ndx]	= 0.f;
434	}
435
436	for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
437	{
438		map<string, string>		specializations;
439		ComputeShaderSpec		spec;
440
441		specializations["DECORATION"] = cases[caseNdx].param;
442		spec.assembly = shaderTemplate.specialize(specializations);
443		spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats1)));
444		spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats2)));
445		spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
446		spec.numWorkGroups = IVec3(numElements, 1, 1);
447
448		group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
449	}
450	return group.release();
451}
452
453tcu::TestCaseGroup* createOpFRemGroup (tcu::TestContext& testCtx)
454{
455	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opfrem", "Test the OpFRem instruction"));
456	ComputeShaderSpec				spec;
457	de::Random						rnd				(deStringHash(group->getName()));
458	const int						numElements		= 200;
459	vector<float>					inputFloats1	(numElements, 0);
460	vector<float>					inputFloats2	(numElements, 0);
461	vector<float>					outputFloats	(numElements, 0);
462
463	fillRandomScalars(rnd, -10000.f, 10000.f, &inputFloats1[0], numElements);
464	fillRandomScalars(rnd, -100.f, 100.f, &inputFloats2[0], numElements);
465
466	for (size_t ndx = 0; ndx < numElements; ++ndx)
467	{
468		// Guard against divisors near zero.
469		if (std::fabs(inputFloats2[ndx]) < 1e-3)
470			inputFloats2[ndx] = 8.f;
471
472		// The return value of std::fmod() has the same sign as its first operand, which is how OpFRem spec'd.
473		outputFloats[ndx] = std::fmod(inputFloats1[ndx], inputFloats2[ndx]);
474	}
475
476	spec.assembly =
477		string(s_ShaderPreamble) +
478
479		"OpName %main           \"main\"\n"
480		"OpName %id             \"gl_GlobalInvocationID\"\n"
481
482		"OpDecorate %id BuiltIn GlobalInvocationId\n"
483
484		"OpDecorate %inbuf1 BufferBlock\n"
485		"OpDecorate %indata1 DescriptorSet 0\n"
486		"OpDecorate %indata1 Binding 0\n"
487		"OpDecorate %inbuf2 BufferBlock\n"
488		"OpDecorate %indata2 DescriptorSet 0\n"
489		"OpDecorate %indata2 Binding 1\n"
490		"OpDecorate %outbuf BufferBlock\n"
491		"OpDecorate %outdata DescriptorSet 0\n"
492		"OpDecorate %outdata Binding 2\n"
493		"OpDecorate %f32arr ArrayStride 4\n"
494		"OpMemberDecorate %inbuf1 0 Offset 0\n"
495		"OpMemberDecorate %inbuf2 0 Offset 0\n"
496		"OpMemberDecorate %outbuf 0 Offset 0\n"
497
498		+ string(s_CommonTypes) +
499
500		"%inbuf1     = OpTypeStruct %f32arr\n"
501		"%inbufptr1  = OpTypePointer Uniform %inbuf1\n"
502		"%indata1    = OpVariable %inbufptr1 Uniform\n"
503		"%inbuf2     = OpTypeStruct %f32arr\n"
504		"%inbufptr2  = OpTypePointer Uniform %inbuf2\n"
505		"%indata2    = OpVariable %inbufptr2 Uniform\n"
506		"%outbuf     = OpTypeStruct %f32arr\n"
507		"%outbufptr  = OpTypePointer Uniform %outbuf\n"
508		"%outdata    = OpVariable %outbufptr Uniform\n"
509
510		"%id        = OpVariable %uvec3ptr Input\n"
511		"%zero      = OpConstant %i32 0\n"
512
513		"%main      = OpFunction %void None %voidf\n"
514		"%label     = OpLabel\n"
515		"%idval     = OpLoad %uvec3 %id\n"
516		"%x         = OpCompositeExtract %u32 %idval 0\n"
517		"%inloc1    = OpAccessChain %f32ptr %indata1 %zero %x\n"
518		"%inval1    = OpLoad %f32 %inloc1\n"
519		"%inloc2    = OpAccessChain %f32ptr %indata2 %zero %x\n"
520		"%inval2    = OpLoad %f32 %inloc2\n"
521		"%rem       = OpFRem %f32 %inval1 %inval2\n"
522		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
523		"             OpStore %outloc %rem\n"
524		"             OpReturn\n"
525		"             OpFunctionEnd\n";
526
527	spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats1)));
528	spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats2)));
529	spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
530	spec.numWorkGroups = IVec3(numElements, 1, 1);
531
532	group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "", spec));
533
534	return group.release();
535}
536
537// Copy contents in the input buffer to the output buffer.
538tcu::TestCaseGroup* createOpCopyMemoryGroup (tcu::TestContext& testCtx)
539{
540	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opcopymemory", "Test the OpCopyMemory instruction"));
541	de::Random						rnd				(deStringHash(group->getName()));
542	const int						numElements		= 100;
543
544	// The following case adds vec4(0., 0.5, 1.5, 2.5) to each of the elements in the input buffer and writes output to the output buffer.
545	ComputeShaderSpec				spec1;
546	vector<Vec4>					inputFloats1	(numElements);
547	vector<Vec4>					outputFloats1	(numElements);
548
549	fillRandomScalars(rnd, -200.f, 200.f, &inputFloats1[0], numElements * 4);
550
551	for (size_t ndx = 0; ndx < numElements; ++ndx)
552		outputFloats1[ndx] = inputFloats1[ndx] + Vec4(0.f, 0.5f, 1.5f, 2.5f);
553
554	spec1.assembly =
555		string(s_ShaderPreamble) +
556
557		"OpName %main           \"main\"\n"
558		"OpName %id             \"gl_GlobalInvocationID\"\n"
559
560		"OpDecorate %id BuiltIn GlobalInvocationId\n"
561
562		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
563
564		"%vec4       = OpTypeVector %f32 4\n"
565		"%vec4ptr_u  = OpTypePointer Uniform %vec4\n"
566		"%vec4ptr_f  = OpTypePointer Function %vec4\n"
567		"%vec4arr    = OpTypeRuntimeArray %vec4\n"
568		"%inbuf      = OpTypeStruct %vec4arr\n"
569		"%inbufptr   = OpTypePointer Uniform %inbuf\n"
570		"%indata     = OpVariable %inbufptr Uniform\n"
571		"%outbuf     = OpTypeStruct %vec4arr\n"
572		"%outbufptr  = OpTypePointer Uniform %outbuf\n"
573		"%outdata    = OpVariable %outbufptr Uniform\n"
574
575		"%id         = OpVariable %uvec3ptr Input\n"
576		"%zero       = OpConstant %i32 0\n"
577		"%c_f_0      = OpConstant %f32 0.\n"
578		"%c_f_0_5    = OpConstant %f32 0.5\n"
579		"%c_f_1_5    = OpConstant %f32 1.5\n"
580		"%c_f_2_5    = OpConstant %f32 2.5\n"
581		"%c_vec4     = OpConstantComposite %vec4 %c_f_0 %c_f_0_5 %c_f_1_5 %c_f_2_5\n"
582
583		"%main       = OpFunction %void None %voidf\n"
584		"%label      = OpLabel\n"
585		"%v_vec4     = OpVariable %vec4ptr_f Function\n"
586		"%idval      = OpLoad %uvec3 %id\n"
587		"%x          = OpCompositeExtract %u32 %idval 0\n"
588		"%inloc      = OpAccessChain %vec4ptr_u %indata %zero %x\n"
589		"%outloc     = OpAccessChain %vec4ptr_u %outdata %zero %x\n"
590		"              OpCopyMemory %v_vec4 %inloc\n"
591		"%v_vec4_val = OpLoad %vec4 %v_vec4\n"
592		"%add        = OpFAdd %vec4 %v_vec4_val %c_vec4\n"
593		"              OpStore %outloc %add\n"
594		"              OpReturn\n"
595		"              OpFunctionEnd\n";
596
597	spec1.inputs.push_back(BufferSp(new Vec4Buffer(inputFloats1)));
598	spec1.outputs.push_back(BufferSp(new Vec4Buffer(outputFloats1)));
599	spec1.numWorkGroups = IVec3(numElements, 1, 1);
600
601	group->addChild(new SpvAsmComputeShaderCase(testCtx, "vector", "OpCopyMemory elements of vector type", spec1));
602
603	// The following case copies a float[100] variable from the input buffer to the output buffer.
604	ComputeShaderSpec				spec2;
605	vector<float>					inputFloats2	(numElements);
606	vector<float>					outputFloats2	(numElements);
607
608	fillRandomScalars(rnd, -200.f, 200.f, &inputFloats2[0], numElements);
609
610	for (size_t ndx = 0; ndx < numElements; ++ndx)
611		outputFloats2[ndx] = inputFloats2[ndx];
612
613	spec2.assembly =
614		string(s_ShaderPreamble) +
615
616		"OpName %main           \"main\"\n"
617		"OpName %id             \"gl_GlobalInvocationID\"\n"
618
619		"OpDecorate %id BuiltIn GlobalInvocationId\n"
620
621		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
622
623		"%hundred        = OpConstant %u32 100\n"
624		"%f32arr100      = OpTypeArray %f32 %hundred\n"
625		"%f32arr100ptr_f = OpTypePointer Function %f32arr100\n"
626		"%f32arr100ptr_u = OpTypePointer Uniform %f32arr100\n"
627		"%inbuf          = OpTypeStruct %f32arr100\n"
628		"%inbufptr       = OpTypePointer Uniform %inbuf\n"
629		"%indata         = OpVariable %inbufptr Uniform\n"
630		"%outbuf         = OpTypeStruct %f32arr100\n"
631		"%outbufptr      = OpTypePointer Uniform %outbuf\n"
632		"%outdata        = OpVariable %outbufptr Uniform\n"
633
634		"%id             = OpVariable %uvec3ptr Input\n"
635		"%zero           = OpConstant %i32 0\n"
636
637		"%main           = OpFunction %void None %voidf\n"
638		"%label          = OpLabel\n"
639		"%var            = OpVariable %f32arr100ptr_f Function\n"
640		"%inarr          = OpAccessChain %f32arr100ptr_u %indata %zero\n"
641		"%outarr         = OpAccessChain %f32arr100ptr_u %outdata %zero\n"
642		"                  OpCopyMemory %var %inarr\n"
643		"                  OpCopyMemory %outarr %var\n"
644		"                  OpReturn\n"
645		"                  OpFunctionEnd\n";
646
647	spec2.inputs.push_back(BufferSp(new Float32Buffer(inputFloats2)));
648	spec2.outputs.push_back(BufferSp(new Float32Buffer(outputFloats2)));
649	spec2.numWorkGroups = IVec3(1, 1, 1);
650
651	group->addChild(new SpvAsmComputeShaderCase(testCtx, "array", "OpCopyMemory elements of array type", spec2));
652
653	// The following case copies a struct{vec4, vec4, vec4, vec4} variable from the input buffer to the output buffer.
654	ComputeShaderSpec				spec3;
655	vector<float>					inputFloats3	(16);
656	vector<float>					outputFloats3	(16);
657
658	fillRandomScalars(rnd, -200.f, 200.f, &inputFloats3[0], 16);
659
660	for (size_t ndx = 0; ndx < 16; ++ndx)
661		outputFloats3[ndx] = inputFloats3[ndx];
662
663	spec3.assembly =
664		string(s_ShaderPreamble) +
665
666		"OpName %main           \"main\"\n"
667		"OpName %id             \"gl_GlobalInvocationID\"\n"
668
669		"OpDecorate %id BuiltIn GlobalInvocationId\n"
670		"OpMemberDecorate %inbuf 0 Offset 0\n"
671		"OpMemberDecorate %inbuf 1 Offset 16\n"
672		"OpMemberDecorate %inbuf 2 Offset 32\n"
673		"OpMemberDecorate %inbuf 3 Offset 48\n"
674		"OpMemberDecorate %outbuf 0 Offset 0\n"
675		"OpMemberDecorate %outbuf 1 Offset 16\n"
676		"OpMemberDecorate %outbuf 2 Offset 32\n"
677		"OpMemberDecorate %outbuf 3 Offset 48\n"
678
679		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
680
681		"%vec4      = OpTypeVector %f32 4\n"
682		"%inbuf     = OpTypeStruct %vec4 %vec4 %vec4 %vec4\n"
683		"%inbufptr  = OpTypePointer Uniform %inbuf\n"
684		"%indata    = OpVariable %inbufptr Uniform\n"
685		"%outbuf    = OpTypeStruct %vec4 %vec4 %vec4 %vec4\n"
686		"%outbufptr = OpTypePointer Uniform %outbuf\n"
687		"%outdata   = OpVariable %outbufptr Uniform\n"
688		"%vec4stptr = OpTypePointer Function %inbuf\n"
689
690		"%id        = OpVariable %uvec3ptr Input\n"
691		"%zero      = OpConstant %i32 0\n"
692
693		"%main      = OpFunction %void None %voidf\n"
694		"%label     = OpLabel\n"
695		"%var       = OpVariable %vec4stptr Function\n"
696		"             OpCopyMemory %var %indata\n"
697		"             OpCopyMemory %outdata %var\n"
698		"             OpReturn\n"
699		"             OpFunctionEnd\n";
700
701	spec3.inputs.push_back(BufferSp(new Float32Buffer(inputFloats3)));
702	spec3.outputs.push_back(BufferSp(new Float32Buffer(outputFloats3)));
703	spec3.numWorkGroups = IVec3(1, 1, 1);
704
705	group->addChild(new SpvAsmComputeShaderCase(testCtx, "struct", "OpCopyMemory elements of struct type", spec3));
706
707	// The following case negates multiple float variables from the input buffer and stores the results to the output buffer.
708	ComputeShaderSpec				spec4;
709	vector<float>					inputFloats4	(numElements);
710	vector<float>					outputFloats4	(numElements);
711
712	fillRandomScalars(rnd, -200.f, 200.f, &inputFloats4[0], numElements);
713
714	for (size_t ndx = 0; ndx < numElements; ++ndx)
715		outputFloats4[ndx] = -inputFloats4[ndx];
716
717	spec4.assembly =
718		string(s_ShaderPreamble) +
719
720		"OpName %main           \"main\"\n"
721		"OpName %id             \"gl_GlobalInvocationID\"\n"
722
723		"OpDecorate %id BuiltIn GlobalInvocationId\n"
724
725		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
726
727		"%f32ptr_f  = OpTypePointer Function %f32\n"
728		"%id        = OpVariable %uvec3ptr Input\n"
729		"%zero      = OpConstant %i32 0\n"
730
731		"%main      = OpFunction %void None %voidf\n"
732		"%label     = OpLabel\n"
733		"%var       = OpVariable %f32ptr_f Function\n"
734		"%idval     = OpLoad %uvec3 %id\n"
735		"%x         = OpCompositeExtract %u32 %idval 0\n"
736		"%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
737		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
738		"             OpCopyMemory %var %inloc\n"
739		"%val       = OpLoad %f32 %var\n"
740		"%neg       = OpFNegate %f32 %val\n"
741		"             OpStore %outloc %neg\n"
742		"             OpReturn\n"
743		"             OpFunctionEnd\n";
744
745	spec4.inputs.push_back(BufferSp(new Float32Buffer(inputFloats4)));
746	spec4.outputs.push_back(BufferSp(new Float32Buffer(outputFloats4)));
747	spec4.numWorkGroups = IVec3(numElements, 1, 1);
748
749	group->addChild(new SpvAsmComputeShaderCase(testCtx, "float", "OpCopyMemory elements of float type", spec4));
750
751	return group.release();
752}
753
754tcu::TestCaseGroup* createOpCopyObjectGroup (tcu::TestContext& testCtx)
755{
756	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opcopyobject", "Test the OpCopyObject instruction"));
757	ComputeShaderSpec				spec;
758	de::Random						rnd				(deStringHash(group->getName()));
759	const int						numElements		= 100;
760	vector<float>					inputFloats		(numElements, 0);
761	vector<float>					outputFloats	(numElements, 0);
762
763	fillRandomScalars(rnd, -200.f, 200.f, &inputFloats[0], numElements);
764
765	for (size_t ndx = 0; ndx < numElements; ++ndx)
766		outputFloats[ndx] = inputFloats[ndx] + 7.5f;
767
768	spec.assembly =
769		string(s_ShaderPreamble) +
770
771		"OpName %main           \"main\"\n"
772		"OpName %id             \"gl_GlobalInvocationID\"\n"
773
774		"OpDecorate %id BuiltIn GlobalInvocationId\n"
775
776		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
777
778		"%fvec3    = OpTypeVector %f32 3\n"
779		"%fmat     = OpTypeMatrix %fvec3 3\n"
780		"%three    = OpConstant %u32 3\n"
781		"%farr     = OpTypeArray %f32 %three\n"
782		"%fst      = OpTypeStruct %f32 %f32\n"
783
784		+ string(s_InputOutputBuffer) +
785
786		"%id            = OpVariable %uvec3ptr Input\n"
787		"%zero          = OpConstant %i32 0\n"
788		"%c_f           = OpConstant %f32 1.5\n"
789		"%c_fvec3       = OpConstantComposite %fvec3 %c_f %c_f %c_f\n"
790		"%c_fmat        = OpConstantComposite %fmat %c_fvec3 %c_fvec3 %c_fvec3\n"
791		"%c_farr        = OpConstantComposite %farr %c_f %c_f %c_f\n"
792		"%c_fst         = OpConstantComposite %fst %c_f %c_f\n"
793
794		"%main          = OpFunction %void None %voidf\n"
795		"%label         = OpLabel\n"
796		"%c_f_copy      = OpCopyObject %f32   %c_f\n"
797		"%c_fvec3_copy  = OpCopyObject %fvec3 %c_fvec3\n"
798		"%c_fmat_copy   = OpCopyObject %fmat  %c_fmat\n"
799		"%c_farr_copy   = OpCopyObject %farr  %c_farr\n"
800		"%c_fst_copy    = OpCopyObject %fst   %c_fst\n"
801		"%fvec3_elem    = OpCompositeExtract %f32 %c_fvec3_copy 0\n"
802		"%fmat_elem     = OpCompositeExtract %f32 %c_fmat_copy 1 2\n"
803		"%farr_elem     = OpCompositeExtract %f32 %c_fmat_copy 2\n"
804		"%fst_elem      = OpCompositeExtract %f32 %c_fmat_copy 1\n"
805		// Add up. 1.5 * 5 = 7.5.
806		"%add1          = OpFAdd %f32 %c_f_copy %fvec3_elem\n"
807		"%add2          = OpFAdd %f32 %add1     %fmat_elem\n"
808		"%add3          = OpFAdd %f32 %add2     %farr_elem\n"
809		"%add4          = OpFAdd %f32 %add3     %fst_elem\n"
810
811		"%idval         = OpLoad %uvec3 %id\n"
812		"%x             = OpCompositeExtract %u32 %idval 0\n"
813		"%inloc         = OpAccessChain %f32ptr %indata %zero %x\n"
814		"%outloc        = OpAccessChain %f32ptr %outdata %zero %x\n"
815		"%inval         = OpLoad %f32 %inloc\n"
816		"%add           = OpFAdd %f32 %add4 %inval\n"
817		"                 OpStore %outloc %add\n"
818		"                 OpReturn\n"
819		"                 OpFunctionEnd\n";
820	spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
821	spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
822	spec.numWorkGroups = IVec3(numElements, 1, 1);
823
824	group->addChild(new SpvAsmComputeShaderCase(testCtx, "spotcheck", "OpCopyObject on different types", spec));
825
826	return group.release();
827}
828// Assembly code used for testing OpUnreachable is based on GLSL source code:
829//
830// #version 430
831//
832// layout(std140, set = 0, binding = 0) readonly buffer Input {
833//   float elements[];
834// } input_data;
835// layout(std140, set = 0, binding = 1) writeonly buffer Output {
836//   float elements[];
837// } output_data;
838//
839// void not_called_func() {
840//   // place OpUnreachable here
841// }
842//
843// uint modulo4(uint val) {
844//   switch (val % uint(4)) {
845//     case 0:  return 3;
846//     case 1:  return 2;
847//     case 2:  return 1;
848//     case 3:  return 0;
849//     default: return 100; // place OpUnreachable here
850//   }
851// }
852//
853// uint const5() {
854//   return 5;
855//   // place OpUnreachable here
856// }
857//
858// void main() {
859//   uint x = gl_GlobalInvocationID.x;
860//   if (const5() > modulo4(1000)) {
861//     output_data.elements[x] = -input_data.elements[x];
862//   } else {
863//     // place OpUnreachable here
864//     output_data.elements[x] = input_data.elements[x];
865//   }
866// }
867
868tcu::TestCaseGroup* createOpUnreachableGroup (tcu::TestContext& testCtx)
869{
870	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opunreachable", "Test the OpUnreachable instruction"));
871	ComputeShaderSpec				spec;
872	de::Random						rnd				(deStringHash(group->getName()));
873	const int						numElements		= 100;
874	vector<float>					positiveFloats	(numElements, 0);
875	vector<float>					negativeFloats	(numElements, 0);
876
877	fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
878
879	for (size_t ndx = 0; ndx < numElements; ++ndx)
880		negativeFloats[ndx] = -positiveFloats[ndx];
881
882	spec.assembly =
883		string(s_ShaderPreamble) +
884
885		"OpSource GLSL 430\n"
886		"OpName %main            \"main\"\n"
887		"OpName %func_not_called_func \"not_called_func(\"\n"
888		"OpName %func_modulo4         \"modulo4(u1;\"\n"
889		"OpName %func_const5          \"const5(\"\n"
890		"OpName %id                   \"gl_GlobalInvocationID\"\n"
891
892		"OpDecorate %id BuiltIn GlobalInvocationId\n"
893
894		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
895
896		"%u32ptr    = OpTypePointer Function %u32\n"
897		"%uintfuint = OpTypeFunction %u32 %u32ptr\n"
898		"%unitf     = OpTypeFunction %u32\n"
899
900		"%id        = OpVariable %uvec3ptr Input\n"
901		"%zero      = OpConstant %u32 0\n"
902		"%one       = OpConstant %u32 1\n"
903		"%two       = OpConstant %u32 2\n"
904		"%three     = OpConstant %u32 3\n"
905		"%four      = OpConstant %u32 4\n"
906		"%five      = OpConstant %u32 5\n"
907		"%hundred   = OpConstant %u32 100\n"
908		"%thousand  = OpConstant %u32 1000\n"
909
910		+ string(s_InputOutputBuffer) +
911
912		// Main()
913		"%main   = OpFunction %void None %voidf\n"
914		"%main_entry  = OpLabel\n"
915		"%idval       = OpLoad %uvec3 %id\n"
916		"%x           = OpCompositeExtract %u32 %idval 0\n"
917		"%inloc       = OpAccessChain %f32ptr %indata %zero %x\n"
918		"%inval       = OpLoad %f32 %inloc\n"
919		"%outloc      = OpAccessChain %f32ptr %outdata %zero %x\n"
920		"%ret_const5  = OpFunctionCall %u32 %func_const5\n"
921		"%ret_modulo4 = OpFunctionCall %u32 %func_modulo4 %thousand\n"
922		"%cmp_gt      = OpUGreaterThan %bool %ret_const5 %ret_modulo4\n"
923		"               OpSelectionMerge %if_end None\n"
924		"               OpBranchConditional %cmp_gt %if_true %if_false\n"
925		"%if_true     = OpLabel\n"
926		"%negate      = OpFNegate %f32 %inval\n"
927		"               OpStore %outloc %negate\n"
928		"               OpBranch %if_end\n"
929		"%if_false    = OpLabel\n"
930		"               OpUnreachable\n" // Unreachable else branch for if statement
931		"%if_end      = OpLabel\n"
932		"               OpReturn\n"
933		"               OpFunctionEnd\n"
934
935		// not_called_function()
936		"%func_not_called_func  = OpFunction %void None %voidf\n"
937		"%not_called_func_entry = OpLabel\n"
938		"                         OpUnreachable\n" // Unreachable entry block in not called static function
939		"                         OpFunctionEnd\n"
940
941		// modulo4()
942		"%func_modulo4  = OpFunction %u32 None %uintfuint\n"
943		"%valptr        = OpFunctionParameter %u32ptr\n"
944		"%modulo4_entry = OpLabel\n"
945		"%val           = OpLoad %u32 %valptr\n"
946		"%modulo        = OpUMod %u32 %val %four\n"
947		"                 OpSelectionMerge %switch_merge None\n"
948		"                 OpSwitch %modulo %default 0 %case0 1 %case1 2 %case2 3 %case3\n"
949		"%case0         = OpLabel\n"
950		"                 OpReturnValue %three\n"
951		"%case1         = OpLabel\n"
952		"                 OpReturnValue %two\n"
953		"%case2         = OpLabel\n"
954		"                 OpReturnValue %one\n"
955		"%case3         = OpLabel\n"
956		"                 OpReturnValue %zero\n"
957		"%default       = OpLabel\n"
958		"                 OpUnreachable\n" // Unreachable default case for switch statement
959		"%switch_merge  = OpLabel\n"
960		"                 OpUnreachable\n" // Unreachable merge block for switch statement
961		"                 OpFunctionEnd\n"
962
963		// const5()
964		"%func_const5  = OpFunction %u32 None %unitf\n"
965		"%const5_entry = OpLabel\n"
966		"                OpReturnValue %five\n"
967		"%unreachable  = OpLabel\n"
968		"                OpUnreachable\n" // Unreachable block in function
969		"                OpFunctionEnd\n";
970	spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
971	spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
972	spec.numWorkGroups = IVec3(numElements, 1, 1);
973
974	group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "OpUnreachable appearing at different places", spec));
975
976	return group.release();
977}
978
979// Assembly code used for testing decoration group is based on GLSL source code:
980//
981// #version 430
982//
983// layout(std140, set = 0, binding = 0) readonly buffer Input0 {
984//   float elements[];
985// } input_data0;
986// layout(std140, set = 0, binding = 1) readonly buffer Input1 {
987//   float elements[];
988// } input_data1;
989// layout(std140, set = 0, binding = 2) readonly buffer Input2 {
990//   float elements[];
991// } input_data2;
992// layout(std140, set = 0, binding = 3) readonly buffer Input3 {
993//   float elements[];
994// } input_data3;
995// layout(std140, set = 0, binding = 4) readonly buffer Input4 {
996//   float elements[];
997// } input_data4;
998// layout(std140, set = 0, binding = 5) writeonly buffer Output {
999//   float elements[];
1000// } output_data;
1001//
1002// void main() {
1003//   uint x = gl_GlobalInvocationID.x;
1004//   output_data.elements[x] = input_data0.elements[x] + input_data1.elements[x] + input_data2.elements[x] + input_data3.elements[x] + input_data4.elements[x];
1005// }
1006tcu::TestCaseGroup* createDecorationGroupGroup (tcu::TestContext& testCtx)
1007{
1008	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "decoration_group", "Test the OpDecorationGroup & OpGroupDecorate instruction"));
1009	ComputeShaderSpec				spec;
1010	de::Random						rnd				(deStringHash(group->getName()));
1011	const int						numElements		= 100;
1012	vector<float>					inputFloats0	(numElements, 0);
1013	vector<float>					inputFloats1	(numElements, 0);
1014	vector<float>					inputFloats2	(numElements, 0);
1015	vector<float>					inputFloats3	(numElements, 0);
1016	vector<float>					inputFloats4	(numElements, 0);
1017	vector<float>					outputFloats	(numElements, 0);
1018
1019	fillRandomScalars(rnd, -300.f, 300.f, &inputFloats0[0], numElements);
1020	fillRandomScalars(rnd, -300.f, 300.f, &inputFloats1[0], numElements);
1021	fillRandomScalars(rnd, -300.f, 300.f, &inputFloats2[0], numElements);
1022	fillRandomScalars(rnd, -300.f, 300.f, &inputFloats3[0], numElements);
1023	fillRandomScalars(rnd, -300.f, 300.f, &inputFloats4[0], numElements);
1024
1025	for (size_t ndx = 0; ndx < numElements; ++ndx)
1026		outputFloats[ndx] = inputFloats0[ndx] + inputFloats1[ndx] + inputFloats2[ndx] + inputFloats3[ndx] + inputFloats4[ndx];
1027
1028	spec.assembly =
1029		string(s_ShaderPreamble) +
1030
1031		"OpSource GLSL 430\n"
1032		"OpName %main \"main\"\n"
1033		"OpName %id \"gl_GlobalInvocationID\"\n"
1034
1035		// Not using group decoration on variable.
1036		"OpDecorate %id BuiltIn GlobalInvocationId\n"
1037		// Not using group decoration on type.
1038		"OpDecorate %f32arr ArrayStride 4\n"
1039
1040		"OpDecorate %groups BufferBlock\n"
1041		"OpDecorate %groupm Offset 0\n"
1042		"%groups = OpDecorationGroup\n"
1043		"%groupm = OpDecorationGroup\n"
1044
1045		// Group decoration on multiple structs.
1046		"OpGroupDecorate %groups %outbuf %inbuf0 %inbuf1 %inbuf2 %inbuf3 %inbuf4\n"
1047		// Group decoration on multiple struct members.
1048		"OpGroupMemberDecorate %groupm %outbuf 0 %inbuf0 0 %inbuf1 0 %inbuf2 0 %inbuf3 0 %inbuf4 0\n"
1049
1050		"OpDecorate %group1 DescriptorSet 0\n"
1051		"OpDecorate %group3 DescriptorSet 0\n"
1052		"OpDecorate %group3 NonWritable\n"
1053		"OpDecorate %group3 Restrict\n"
1054		"%group0 = OpDecorationGroup\n"
1055		"%group1 = OpDecorationGroup\n"
1056		"%group3 = OpDecorationGroup\n"
1057
1058		// Applying the same decoration group multiple times.
1059		"OpGroupDecorate %group1 %outdata\n"
1060		"OpGroupDecorate %group1 %outdata\n"
1061		"OpGroupDecorate %group1 %outdata\n"
1062		"OpDecorate %outdata DescriptorSet 0\n"
1063		"OpDecorate %outdata Binding 5\n"
1064		// Applying decoration group containing nothing.
1065		"OpGroupDecorate %group0 %indata0\n"
1066		"OpDecorate %indata0 DescriptorSet 0\n"
1067		"OpDecorate %indata0 Binding 0\n"
1068		// Applying decoration group containing one decoration.
1069		"OpGroupDecorate %group1 %indata1\n"
1070		"OpDecorate %indata1 Binding 1\n"
1071		// Applying decoration group containing multiple decorations.
1072		"OpGroupDecorate %group3 %indata2 %indata3\n"
1073		"OpDecorate %indata2 Binding 2\n"
1074		"OpDecorate %indata3 Binding 3\n"
1075		// Applying multiple decoration groups (with overlapping).
1076		"OpGroupDecorate %group0 %indata4\n"
1077		"OpGroupDecorate %group1 %indata4\n"
1078		"OpGroupDecorate %group3 %indata4\n"
1079		"OpDecorate %indata4 Binding 4\n"
1080
1081		+ string(s_CommonTypes) +
1082
1083		"%id   = OpVariable %uvec3ptr Input\n"
1084		"%zero = OpConstant %i32 0\n"
1085
1086		"%outbuf    = OpTypeStruct %f32arr\n"
1087		"%outbufptr = OpTypePointer Uniform %outbuf\n"
1088		"%outdata   = OpVariable %outbufptr Uniform\n"
1089		"%inbuf0    = OpTypeStruct %f32arr\n"
1090		"%inbuf0ptr = OpTypePointer Uniform %inbuf0\n"
1091		"%indata0   = OpVariable %inbuf0ptr Uniform\n"
1092		"%inbuf1    = OpTypeStruct %f32arr\n"
1093		"%inbuf1ptr = OpTypePointer Uniform %inbuf1\n"
1094		"%indata1   = OpVariable %inbuf1ptr Uniform\n"
1095		"%inbuf2    = OpTypeStruct %f32arr\n"
1096		"%inbuf2ptr = OpTypePointer Uniform %inbuf2\n"
1097		"%indata2   = OpVariable %inbuf2ptr Uniform\n"
1098		"%inbuf3    = OpTypeStruct %f32arr\n"
1099		"%inbuf3ptr = OpTypePointer Uniform %inbuf3\n"
1100		"%indata3   = OpVariable %inbuf3ptr Uniform\n"
1101		"%inbuf4    = OpTypeStruct %f32arr\n"
1102		"%inbufptr  = OpTypePointer Uniform %inbuf4\n"
1103		"%indata4   = OpVariable %inbufptr Uniform\n"
1104
1105		"%main   = OpFunction %void None %voidf\n"
1106		"%label  = OpLabel\n"
1107		"%idval  = OpLoad %uvec3 %id\n"
1108		"%x      = OpCompositeExtract %u32 %idval 0\n"
1109		"%inloc0 = OpAccessChain %f32ptr %indata0 %zero %x\n"
1110		"%inloc1 = OpAccessChain %f32ptr %indata1 %zero %x\n"
1111		"%inloc2 = OpAccessChain %f32ptr %indata2 %zero %x\n"
1112		"%inloc3 = OpAccessChain %f32ptr %indata3 %zero %x\n"
1113		"%inloc4 = OpAccessChain %f32ptr %indata4 %zero %x\n"
1114		"%outloc = OpAccessChain %f32ptr %outdata %zero %x\n"
1115		"%inval0 = OpLoad %f32 %inloc0\n"
1116		"%inval1 = OpLoad %f32 %inloc1\n"
1117		"%inval2 = OpLoad %f32 %inloc2\n"
1118		"%inval3 = OpLoad %f32 %inloc3\n"
1119		"%inval4 = OpLoad %f32 %inloc4\n"
1120		"%add0   = OpFAdd %f32 %inval0 %inval1\n"
1121		"%add1   = OpFAdd %f32 %add0 %inval2\n"
1122		"%add2   = OpFAdd %f32 %add1 %inval3\n"
1123		"%add    = OpFAdd %f32 %add2 %inval4\n"
1124		"          OpStore %outloc %add\n"
1125		"          OpReturn\n"
1126		"          OpFunctionEnd\n";
1127	spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats0)));
1128	spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats1)));
1129	spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats2)));
1130	spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats3)));
1131	spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats4)));
1132	spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
1133	spec.numWorkGroups = IVec3(numElements, 1, 1);
1134
1135	group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "decoration group cases", spec));
1136
1137	return group.release();
1138}
1139
1140struct SpecConstantTwoIntCase
1141{
1142	const char*		caseName;
1143	const char*		scDefinition0;
1144	const char*		scDefinition1;
1145	const char*		scResultType;
1146	const char*		scOperation;
1147	deInt32			scActualValue0;
1148	deInt32			scActualValue1;
1149	const char*		resultOperation;
1150	vector<deInt32>	expectedOutput;
1151
1152					SpecConstantTwoIntCase (const char* name,
1153											const char* definition0,
1154											const char* definition1,
1155											const char* resultType,
1156											const char* operation,
1157											deInt32 value0,
1158											deInt32 value1,
1159											const char* resultOp,
1160											const vector<deInt32>& output)
1161						: caseName			(name)
1162						, scDefinition0		(definition0)
1163						, scDefinition1		(definition1)
1164						, scResultType		(resultType)
1165						, scOperation		(operation)
1166						, scActualValue0	(value0)
1167						, scActualValue1	(value1)
1168						, resultOperation	(resultOp)
1169						, expectedOutput	(output) {}
1170};
1171
1172tcu::TestCaseGroup* createSpecConstantGroup (tcu::TestContext& testCtx)
1173{
1174	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opspecconstantop", "Test the OpSpecConstantOp instruction"));
1175	vector<SpecConstantTwoIntCase>	cases;
1176	de::Random						rnd				(deStringHash(group->getName()));
1177	const int						numElements		= 100;
1178	vector<deInt32>					inputInts		(numElements, 0);
1179	vector<deInt32>					outputInts1		(numElements, 0);
1180	vector<deInt32>					outputInts2		(numElements, 0);
1181	vector<deInt32>					outputInts3		(numElements, 0);
1182	vector<deInt32>					outputInts4		(numElements, 0);
1183	const StringTemplate			shaderTemplate	(
1184		string(s_ShaderPreamble) +
1185
1186		"OpName %main           \"main\"\n"
1187		"OpName %id             \"gl_GlobalInvocationID\"\n"
1188
1189		"OpDecorate %id BuiltIn GlobalInvocationId\n"
1190		"OpDecorate %sc_0  SpecId 0\n"
1191		"OpDecorate %sc_1  SpecId 1\n"
1192
1193		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
1194
1195		"%i32ptr    = OpTypePointer Uniform %i32\n"
1196		"%i32arr    = OpTypeRuntimeArray %i32\n"
1197		"%boolptr   = OpTypePointer Uniform %bool\n"
1198		"%boolarr   = OpTypeRuntimeArray %bool\n"
1199		"%inbuf     = OpTypeStruct %i32arr\n"
1200		"%inbufptr  = OpTypePointer Uniform %inbuf\n"
1201		"%indata    = OpVariable %inbufptr Uniform\n"
1202		"%outbuf    = OpTypeStruct %i32arr\n"
1203		"%outbufptr = OpTypePointer Uniform %outbuf\n"
1204		"%outdata   = OpVariable %outbufptr Uniform\n"
1205
1206		"%id        = OpVariable %uvec3ptr Input\n"
1207		"%zero      = OpConstant %i32 0\n"
1208
1209		"%sc_0      = OpSpecConstant${SC_DEF0}\n"
1210		"%sc_1      = OpSpecConstant${SC_DEF1}\n"
1211		"%sc_final  = OpSpecConstantOp ${SC_RESULT_TYPE} ${SC_OP}\n"
1212
1213		"%main      = OpFunction %void None %voidf\n"
1214		"%label     = OpLabel\n"
1215		"%idval     = OpLoad %uvec3 %id\n"
1216		"%x         = OpCompositeExtract %u32 %idval 0\n"
1217		"%inloc     = OpAccessChain %i32ptr %indata %zero %x\n"
1218		"%inval     = OpLoad %i32 %inloc\n"
1219		"%final     = ${GEN_RESULT}\n"
1220		"%outloc    = OpAccessChain %i32ptr %outdata %zero %x\n"
1221		"             OpStore %outloc %final\n"
1222		"             OpReturn\n"
1223		"             OpFunctionEnd\n");
1224
1225	fillRandomScalars(rnd, -65536, 65536, &inputInts[0], numElements);
1226
1227	for (size_t ndx = 0; ndx < numElements; ++ndx)
1228	{
1229		outputInts1[ndx] = inputInts[ndx] + 42;
1230		outputInts2[ndx] = inputInts[ndx];
1231		outputInts3[ndx] = inputInts[ndx] - 11200;
1232		outputInts4[ndx] = inputInts[ndx] + 1;
1233	}
1234
1235	const char addScToInput[]		= "OpIAdd %i32 %inval %sc_final";
1236	const char selectTrueUsingSc[]	= "OpSelect %i32 %sc_final %inval %zero";
1237	const char selectFalseUsingSc[]	= "OpSelect %i32 %sc_final %zero %inval";
1238
1239	cases.push_back(SpecConstantTwoIntCase("iadd",					" %i32 0",		" %i32 0",		"%i32",		"IAdd                 %sc_0 %sc_1",			62,		-20,	addScToInput,		outputInts1));
1240	cases.push_back(SpecConstantTwoIntCase("isub",					" %i32 0",		" %i32 0",		"%i32",		"ISub                 %sc_0 %sc_1",			100,	58,		addScToInput,		outputInts1));
1241	cases.push_back(SpecConstantTwoIntCase("imul",					" %i32 0",		" %i32 0",		"%i32",		"IMul                 %sc_0 %sc_1",			-2,		-21,	addScToInput,		outputInts1));
1242	cases.push_back(SpecConstantTwoIntCase("sdiv",					" %i32 0",		" %i32 0",		"%i32",		"SDiv                 %sc_0 %sc_1",			-126,	-3,		addScToInput,		outputInts1));
1243	cases.push_back(SpecConstantTwoIntCase("udiv",					" %i32 0",		" %i32 0",		"%i32",		"UDiv                 %sc_0 %sc_1",			126,	3,		addScToInput,		outputInts1));
1244	cases.push_back(SpecConstantTwoIntCase("srem",					" %i32 0",		" %i32 0",		"%i32",		"SRem                 %sc_0 %sc_1",			7,		3,		addScToInput,		outputInts4));
1245	cases.push_back(SpecConstantTwoIntCase("smod",					" %i32 0",		" %i32 0",		"%i32",		"SMod                 %sc_0 %sc_1",			7,		3,		addScToInput,		outputInts4));
1246	cases.push_back(SpecConstantTwoIntCase("umod",					" %i32 0",		" %i32 0",		"%i32",		"UMod                 %sc_0 %sc_1",			342,	50,		addScToInput,		outputInts1));
1247	cases.push_back(SpecConstantTwoIntCase("bitwiseand",			" %i32 0",		" %i32 0",		"%i32",		"BitwiseAnd           %sc_0 %sc_1",			42,		63,		addScToInput,		outputInts1));
1248	cases.push_back(SpecConstantTwoIntCase("bitwiseor",				" %i32 0",		" %i32 0",		"%i32",		"BitwiseOr            %sc_0 %sc_1",			34,		8,		addScToInput,		outputInts1));
1249	cases.push_back(SpecConstantTwoIntCase("bitwisexor",			" %i32 0",		" %i32 0",		"%i32",		"BitwiseXor           %sc_0 %sc_1",			18,		56,		addScToInput,		outputInts1));
1250	cases.push_back(SpecConstantTwoIntCase("shiftrightlogical",		" %i32 0",		" %i32 0",		"%i32",		"ShiftRightLogical    %sc_0 %sc_1",			168,	2,		addScToInput,		outputInts1));
1251	cases.push_back(SpecConstantTwoIntCase("shiftrightarithmetic",	" %i32 0",		" %i32 0",		"%i32",		"ShiftRightArithmetic %sc_0 %sc_1",			168,	2,		addScToInput,		outputInts1));
1252	cases.push_back(SpecConstantTwoIntCase("shiftleftlogical",		" %i32 0",		" %i32 0",		"%i32",		"ShiftLeftLogical     %sc_0 %sc_1",			21,		1,		addScToInput,		outputInts1));
1253	cases.push_back(SpecConstantTwoIntCase("slessthan",				" %i32 0",		" %i32 0",		"%bool",	"SLessThan            %sc_0 %sc_1",			-20,	-10,	selectTrueUsingSc,	outputInts2));
1254	cases.push_back(SpecConstantTwoIntCase("ulessthan",				" %i32 0",		" %i32 0",		"%bool",	"ULessThan            %sc_0 %sc_1",			10,		20,		selectTrueUsingSc,	outputInts2));
1255	cases.push_back(SpecConstantTwoIntCase("sgreaterthan",			" %i32 0",		" %i32 0",		"%bool",	"SGreaterThan         %sc_0 %sc_1",			-1000,	50,		selectFalseUsingSc,	outputInts2));
1256	cases.push_back(SpecConstantTwoIntCase("ugreaterthan",			" %i32 0",		" %i32 0",		"%bool",	"UGreaterThan         %sc_0 %sc_1",			10,		5,		selectTrueUsingSc,	outputInts2));
1257	cases.push_back(SpecConstantTwoIntCase("slessthanequal",		" %i32 0",		" %i32 0",		"%bool",	"SLessThanEqual       %sc_0 %sc_1",			-10,	-10,	selectTrueUsingSc,	outputInts2));
1258	cases.push_back(SpecConstantTwoIntCase("ulessthanequal",		" %i32 0",		" %i32 0",		"%bool",	"ULessThanEqual       %sc_0 %sc_1",			50,		100,	selectTrueUsingSc,	outputInts2));
1259	cases.push_back(SpecConstantTwoIntCase("sgreaterthanequal",		" %i32 0",		" %i32 0",		"%bool",	"SGreaterThanEqual    %sc_0 %sc_1",			-1000,	50,		selectFalseUsingSc,	outputInts2));
1260	cases.push_back(SpecConstantTwoIntCase("ugreaterthanequal",		" %i32 0",		" %i32 0",		"%bool",	"UGreaterThanEqual    %sc_0 %sc_1",			10,		10,		selectTrueUsingSc,	outputInts2));
1261	cases.push_back(SpecConstantTwoIntCase("iequal",				" %i32 0",		" %i32 0",		"%bool",	"IEqual               %sc_0 %sc_1",			42,		24,		selectFalseUsingSc,	outputInts2));
1262	cases.push_back(SpecConstantTwoIntCase("logicaland",			"True %bool",	"True %bool",	"%bool",	"LogicalAnd           %sc_0 %sc_1",			0,		1,		selectFalseUsingSc,	outputInts2));
1263	cases.push_back(SpecConstantTwoIntCase("logicalor",				"False %bool",	"False %bool",	"%bool",	"LogicalOr            %sc_0 %sc_1",			1,		0,		selectTrueUsingSc,	outputInts2));
1264	cases.push_back(SpecConstantTwoIntCase("logicalequal",			"True %bool",	"True %bool",	"%bool",	"LogicalEqual         %sc_0 %sc_1",			0,		1,		selectFalseUsingSc,	outputInts2));
1265	cases.push_back(SpecConstantTwoIntCase("logicalnotequal",		"False %bool",	"False %bool",	"%bool",	"LogicalNotEqual      %sc_0 %sc_1",			1,		0,		selectTrueUsingSc,	outputInts2));
1266	cases.push_back(SpecConstantTwoIntCase("snegate",				" %i32 0",		" %i32 0",		"%i32",		"SNegate              %sc_0",				-42,	0,		addScToInput,		outputInts1));
1267	cases.push_back(SpecConstantTwoIntCase("not",					" %i32 0",		" %i32 0",		"%i32",		"Not                  %sc_0",				-43,	0,		addScToInput,		outputInts1));
1268	cases.push_back(SpecConstantTwoIntCase("logicalnot",			"False %bool",	"False %bool",	"%bool",	"LogicalNot           %sc_0",				1,		0,		selectFalseUsingSc,	outputInts2));
1269	cases.push_back(SpecConstantTwoIntCase("select",				"False %bool",	" %i32 0",		"%i32",		"Select               %sc_0 %sc_1 %zero",	1,		42,		addScToInput,		outputInts1));
1270	// OpSConvert, OpFConvert: these two instructions involve ints/floats of different bitwidths.
1271
1272	for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
1273	{
1274		map<string, string>		specializations;
1275		ComputeShaderSpec		spec;
1276
1277		specializations["SC_DEF0"]			= cases[caseNdx].scDefinition0;
1278		specializations["SC_DEF1"]			= cases[caseNdx].scDefinition1;
1279		specializations["SC_RESULT_TYPE"]	= cases[caseNdx].scResultType;
1280		specializations["SC_OP"]			= cases[caseNdx].scOperation;
1281		specializations["GEN_RESULT"]		= cases[caseNdx].resultOperation;
1282
1283		spec.assembly = shaderTemplate.specialize(specializations);
1284		spec.inputs.push_back(BufferSp(new Int32Buffer(inputInts)));
1285		spec.outputs.push_back(BufferSp(new Int32Buffer(cases[caseNdx].expectedOutput)));
1286		spec.numWorkGroups = IVec3(numElements, 1, 1);
1287		spec.specConstants.push_back(cases[caseNdx].scActualValue0);
1288		spec.specConstants.push_back(cases[caseNdx].scActualValue1);
1289
1290		group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].caseName, cases[caseNdx].caseName, spec));
1291	}
1292
1293	ComputeShaderSpec				spec;
1294
1295	spec.assembly =
1296		string(s_ShaderPreamble) +
1297
1298		"OpName %main           \"main\"\n"
1299		"OpName %id             \"gl_GlobalInvocationID\"\n"
1300
1301		"OpDecorate %id BuiltIn GlobalInvocationId\n"
1302		"OpDecorate %sc_0  SpecId 0\n"
1303		"OpDecorate %sc_1  SpecId 1\n"
1304		"OpDecorate %sc_2  SpecId 2\n"
1305
1306		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
1307
1308		"%ivec3     = OpTypeVector %i32 3\n"
1309		"%i32ptr    = OpTypePointer Uniform %i32\n"
1310		"%i32arr    = OpTypeRuntimeArray %i32\n"
1311		"%boolptr   = OpTypePointer Uniform %bool\n"
1312		"%boolarr   = OpTypeRuntimeArray %bool\n"
1313		"%inbuf     = OpTypeStruct %i32arr\n"
1314		"%inbufptr  = OpTypePointer Uniform %inbuf\n"
1315		"%indata    = OpVariable %inbufptr Uniform\n"
1316		"%outbuf    = OpTypeStruct %i32arr\n"
1317		"%outbufptr = OpTypePointer Uniform %outbuf\n"
1318		"%outdata   = OpVariable %outbufptr Uniform\n"
1319
1320		"%id        = OpVariable %uvec3ptr Input\n"
1321		"%zero      = OpConstant %i32 0\n"
1322		"%ivec3_0   = OpConstantComposite %ivec3 %zero %zero %zero\n"
1323
1324		"%sc_0        = OpSpecConstant %i32 0\n"
1325		"%sc_1        = OpSpecConstant %i32 0\n"
1326		"%sc_2        = OpSpecConstant %i32 0\n"
1327		"%sc_vec3_0   = OpSpecConstantOp %ivec3 CompositeInsert  %sc_0        %ivec3_0   0\n"     // (sc_0, 0, 0)
1328		"%sc_vec3_1   = OpSpecConstantOp %ivec3 CompositeInsert  %sc_1        %ivec3_0   1\n"     // (0, sc_1, 0)
1329		"%sc_vec3_2   = OpSpecConstantOp %ivec3 CompositeInsert  %sc_2        %ivec3_0   2\n"     // (0, 0, sc_2)
1330		"%sc_vec3_01  = OpSpecConstantOp %ivec3 VectorShuffle    %sc_vec3_0   %sc_vec3_1 1 0 4\n" // (0,    sc_0, sc_1)
1331		"%sc_vec3_012 = OpSpecConstantOp %ivec3 VectorShuffle    %sc_vec3_01  %sc_vec3_2 5 1 2\n" // (sc_2, sc_0, sc_1)
1332		"%sc_ext_0    = OpSpecConstantOp %i32   CompositeExtract %sc_vec3_012            0\n"     // sc_2
1333		"%sc_ext_1    = OpSpecConstantOp %i32   CompositeExtract %sc_vec3_012            1\n"     // sc_0
1334		"%sc_ext_2    = OpSpecConstantOp %i32   CompositeExtract %sc_vec3_012            2\n"     // sc_1
1335		"%sc_sub      = OpSpecConstantOp %i32   ISub             %sc_ext_0    %sc_ext_1\n"        // (sc_2 - sc_0)
1336		"%sc_final    = OpSpecConstantOp %i32   IMul             %sc_sub      %sc_ext_2\n"        // (sc_2 - sc_0) * sc_1
1337
1338		"%main      = OpFunction %void None %voidf\n"
1339		"%label     = OpLabel\n"
1340		"%idval     = OpLoad %uvec3 %id\n"
1341		"%x         = OpCompositeExtract %u32 %idval 0\n"
1342		"%inloc     = OpAccessChain %i32ptr %indata %zero %x\n"
1343		"%inval     = OpLoad %i32 %inloc\n"
1344		"%final     = OpIAdd %i32 %inval %sc_final\n"
1345		"%outloc    = OpAccessChain %i32ptr %outdata %zero %x\n"
1346		"             OpStore %outloc %final\n"
1347		"             OpReturn\n"
1348		"             OpFunctionEnd\n";
1349	spec.inputs.push_back(BufferSp(new Int32Buffer(inputInts)));
1350	spec.outputs.push_back(BufferSp(new Int32Buffer(outputInts3)));
1351	spec.numWorkGroups = IVec3(numElements, 1, 1);
1352	spec.specConstants.push_back(123);
1353	spec.specConstants.push_back(56);
1354	spec.specConstants.push_back(-77);
1355
1356	group->addChild(new SpvAsmComputeShaderCase(testCtx, "vector_related", "VectorShuffle, CompositeExtract, & CompositeInsert", spec));
1357
1358	return group.release();
1359}
1360
1361tcu::TestCaseGroup* createOpPhiGroup (tcu::TestContext& testCtx)
1362{
1363	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opphi", "Test the OpPhi instruction"));
1364	ComputeShaderSpec				spec1;
1365	ComputeShaderSpec				spec2;
1366	ComputeShaderSpec				spec3;
1367	de::Random						rnd				(deStringHash(group->getName()));
1368	const int						numElements		= 100;
1369	vector<float>					inputFloats		(numElements, 0);
1370	vector<float>					outputFloats1	(numElements, 0);
1371	vector<float>					outputFloats2	(numElements, 0);
1372	vector<float>					outputFloats3	(numElements, 0);
1373
1374	fillRandomScalars(rnd, -300.f, 300.f, &inputFloats[0], numElements);
1375
1376	for (size_t ndx = 0; ndx < numElements; ++ndx)
1377	{
1378		switch (ndx % 3)
1379		{
1380			case 0:		outputFloats1[ndx] = inputFloats[ndx] + 5.5f;	break;
1381			case 1:		outputFloats1[ndx] = inputFloats[ndx] + 20.5f;	break;
1382			case 2:		outputFloats1[ndx] = inputFloats[ndx] + 1.75f;	break;
1383			default:	break;
1384		}
1385		outputFloats2[ndx] = inputFloats[ndx] + 6.5f * 3;
1386		outputFloats3[ndx] = 8.5f - inputFloats[ndx];
1387	}
1388
1389	spec1.assembly =
1390		string(s_ShaderPreamble) +
1391
1392		"OpSource GLSL 430\n"
1393		"OpName %main \"main\"\n"
1394		"OpName %id \"gl_GlobalInvocationID\"\n"
1395
1396		"OpDecorate %id BuiltIn GlobalInvocationId\n"
1397
1398		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
1399
1400		"%id = OpVariable %uvec3ptr Input\n"
1401		"%zero       = OpConstant %i32 0\n"
1402		"%three      = OpConstant %u32 3\n"
1403		"%constf5p5  = OpConstant %f32 5.5\n"
1404		"%constf20p5 = OpConstant %f32 20.5\n"
1405		"%constf1p75 = OpConstant %f32 1.75\n"
1406		"%constf8p5  = OpConstant %f32 8.5\n"
1407		"%constf6p5  = OpConstant %f32 6.5\n"
1408
1409		"%main     = OpFunction %void None %voidf\n"
1410		"%entry    = OpLabel\n"
1411		"%idval    = OpLoad %uvec3 %id\n"
1412		"%x        = OpCompositeExtract %u32 %idval 0\n"
1413		"%selector = OpUMod %u32 %x %three\n"
1414		"            OpSelectionMerge %phi None\n"
1415		"            OpSwitch %selector %default 0 %case0 1 %case1 2 %case2\n"
1416
1417		// Case 1 before OpPhi.
1418		"%case1    = OpLabel\n"
1419		"            OpBranch %phi\n"
1420
1421		"%default  = OpLabel\n"
1422		"            OpUnreachable\n"
1423
1424		"%phi      = OpLabel\n"
1425		"%operand  = OpPhi %f32   %constf1p75 %case2   %constf20p5 %case1   %constf5p5 %case0\n" // not in the order of blocks
1426		"%inloc    = OpAccessChain %f32ptr %indata %zero %x\n"
1427		"%inval    = OpLoad %f32 %inloc\n"
1428		"%add      = OpFAdd %f32 %inval %operand\n"
1429		"%outloc   = OpAccessChain %f32ptr %outdata %zero %x\n"
1430		"            OpStore %outloc %add\n"
1431		"            OpReturn\n"
1432
1433		// Case 0 after OpPhi.
1434		"%case0    = OpLabel\n"
1435		"            OpBranch %phi\n"
1436
1437
1438		// Case 2 after OpPhi.
1439		"%case2    = OpLabel\n"
1440		"            OpBranch %phi\n"
1441
1442		"            OpFunctionEnd\n";
1443	spec1.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
1444	spec1.outputs.push_back(BufferSp(new Float32Buffer(outputFloats1)));
1445	spec1.numWorkGroups = IVec3(numElements, 1, 1);
1446
1447	group->addChild(new SpvAsmComputeShaderCase(testCtx, "block", "out-of-order and unreachable blocks for OpPhi", spec1));
1448
1449	spec2.assembly =
1450		string(s_ShaderPreamble) +
1451
1452		"OpName %main \"main\"\n"
1453		"OpName %id \"gl_GlobalInvocationID\"\n"
1454
1455		"OpDecorate %id BuiltIn GlobalInvocationId\n"
1456
1457		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
1458
1459		"%id         = OpVariable %uvec3ptr Input\n"
1460		"%zero       = OpConstant %i32 0\n"
1461		"%one        = OpConstant %i32 1\n"
1462		"%three      = OpConstant %i32 3\n"
1463		"%constf6p5  = OpConstant %f32 6.5\n"
1464
1465		"%main       = OpFunction %void None %voidf\n"
1466		"%entry      = OpLabel\n"
1467		"%idval      = OpLoad %uvec3 %id\n"
1468		"%x          = OpCompositeExtract %u32 %idval 0\n"
1469		"%inloc      = OpAccessChain %f32ptr %indata %zero %x\n"
1470		"%outloc     = OpAccessChain %f32ptr %outdata %zero %x\n"
1471		"%inval      = OpLoad %f32 %inloc\n"
1472		"              OpBranch %phi\n"
1473
1474		"%phi        = OpLabel\n"
1475		"%step       = OpPhi %i32 %zero  %entry %step_next  %phi\n"
1476		"%accum      = OpPhi %f32 %inval %entry %accum_next %phi\n"
1477		"%step_next  = OpIAdd %i32 %step %one\n"
1478		"%accum_next = OpFAdd %f32 %accum %constf6p5\n"
1479		"%still_loop = OpSLessThan %bool %step %three\n"
1480		"              OpLoopMerge %exit %phi None\n"
1481		"              OpBranchConditional %still_loop %phi %exit\n"
1482
1483		"%exit       = OpLabel\n"
1484		"              OpStore %outloc %accum\n"
1485		"              OpReturn\n"
1486		"              OpFunctionEnd\n";
1487	spec2.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
1488	spec2.outputs.push_back(BufferSp(new Float32Buffer(outputFloats2)));
1489	spec2.numWorkGroups = IVec3(numElements, 1, 1);
1490
1491	group->addChild(new SpvAsmComputeShaderCase(testCtx, "induction", "The usual way induction variables are handled in LLVM IR", spec2));
1492
1493	spec3.assembly =
1494		string(s_ShaderPreamble) +
1495
1496		"OpName %main \"main\"\n"
1497		"OpName %id \"gl_GlobalInvocationID\"\n"
1498
1499		"OpDecorate %id BuiltIn GlobalInvocationId\n"
1500
1501		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
1502
1503		"%f32ptr_f   = OpTypePointer Function %f32\n"
1504		"%id         = OpVariable %uvec3ptr Input\n"
1505		"%true       = OpConstantTrue %bool\n"
1506		"%false      = OpConstantFalse %bool\n"
1507		"%zero       = OpConstant %i32 0\n"
1508		"%constf8p5  = OpConstant %f32 8.5\n"
1509
1510		"%main       = OpFunction %void None %voidf\n"
1511		"%entry      = OpLabel\n"
1512		"%b          = OpVariable %f32ptr_f Function %constf8p5\n"
1513		"%idval      = OpLoad %uvec3 %id\n"
1514		"%x          = OpCompositeExtract %u32 %idval 0\n"
1515		"%inloc      = OpAccessChain %f32ptr %indata %zero %x\n"
1516		"%outloc     = OpAccessChain %f32ptr %outdata %zero %x\n"
1517		"%a_init     = OpLoad %f32 %inloc\n"
1518		"%b_init     = OpLoad %f32 %b\n"
1519		"              OpBranch %phi\n"
1520
1521		"%phi        = OpLabel\n"
1522		"%still_loop = OpPhi %bool %true   %entry %false  %phi\n"
1523		"%a_next     = OpPhi %f32  %a_init %entry %b_next %phi\n"
1524		"%b_next     = OpPhi %f32  %b_init %entry %a_next %phi\n"
1525		"              OpLoopMerge %exit %phi None\n"
1526		"              OpBranchConditional %still_loop %phi %exit\n"
1527
1528		"%exit       = OpLabel\n"
1529		"%sub        = OpFSub %f32 %a_next %b_next\n"
1530		"              OpStore %outloc %sub\n"
1531		"              OpReturn\n"
1532		"              OpFunctionEnd\n";
1533	spec3.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
1534	spec3.outputs.push_back(BufferSp(new Float32Buffer(outputFloats3)));
1535	spec3.numWorkGroups = IVec3(numElements, 1, 1);
1536
1537	group->addChild(new SpvAsmComputeShaderCase(testCtx, "swap", "Swap the values of two variables using OpPhi", spec3));
1538
1539	return group.release();
1540}
1541
1542// Assembly code used for testing block order is based on GLSL source code:
1543//
1544// #version 430
1545//
1546// layout(std140, set = 0, binding = 0) readonly buffer Input {
1547//   float elements[];
1548// } input_data;
1549// layout(std140, set = 0, binding = 1) writeonly buffer Output {
1550//   float elements[];
1551// } output_data;
1552//
1553// void main() {
1554//   uint x = gl_GlobalInvocationID.x;
1555//   output_data.elements[x] = input_data.elements[x];
1556//   if (x > uint(50)) {
1557//     switch (x % uint(3)) {
1558//       case 0: output_data.elements[x] += 1.5f; break;
1559//       case 1: output_data.elements[x] += 42.f; break;
1560//       case 2: output_data.elements[x] -= 27.f; break;
1561//       default: break;
1562//     }
1563//   } else {
1564//     output_data.elements[x] = -input_data.elements[x];
1565//   }
1566// }
1567tcu::TestCaseGroup* createBlockOrderGroup (tcu::TestContext& testCtx)
1568{
1569	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "block_order", "Test block orders"));
1570	ComputeShaderSpec				spec;
1571	de::Random						rnd				(deStringHash(group->getName()));
1572	const int						numElements		= 100;
1573	vector<float>					inputFloats		(numElements, 0);
1574	vector<float>					outputFloats	(numElements, 0);
1575
1576	fillRandomScalars(rnd, -100.f, 100.f, &inputFloats[0], numElements);
1577
1578	for (size_t ndx = 0; ndx <= 50; ++ndx)
1579		outputFloats[ndx] = -inputFloats[ndx];
1580
1581	for (size_t ndx = 51; ndx < numElements; ++ndx)
1582	{
1583		switch (ndx % 3)
1584		{
1585			case 0:		outputFloats[ndx] = inputFloats[ndx] + 1.5f; break;
1586			case 1:		outputFloats[ndx] = inputFloats[ndx] + 42.f; break;
1587			case 2:		outputFloats[ndx] = inputFloats[ndx] - 27.f; break;
1588			default:	break;
1589		}
1590	}
1591
1592	spec.assembly =
1593		string(s_ShaderPreamble) +
1594
1595		"OpSource GLSL 430\n"
1596		"OpName %main \"main\"\n"
1597		"OpName %id \"gl_GlobalInvocationID\"\n"
1598
1599		"OpDecorate %id BuiltIn GlobalInvocationId\n"
1600
1601		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
1602
1603		"%u32ptr       = OpTypePointer Function %u32\n"
1604		"%u32ptr_input = OpTypePointer Input %u32\n"
1605
1606		+ string(s_InputOutputBuffer) +
1607
1608		"%id        = OpVariable %uvec3ptr Input\n"
1609		"%zero      = OpConstant %i32 0\n"
1610		"%const3    = OpConstant %u32 3\n"
1611		"%const50   = OpConstant %u32 50\n"
1612		"%constf1p5 = OpConstant %f32 1.5\n"
1613		"%constf27  = OpConstant %f32 27.0\n"
1614		"%constf42  = OpConstant %f32 42.0\n"
1615
1616		"%main = OpFunction %void None %voidf\n"
1617
1618		// entry block.
1619		"%entry    = OpLabel\n"
1620
1621		// Create a temporary variable to hold the value of gl_GlobalInvocationID.x.
1622		"%xvar     = OpVariable %u32ptr Function\n"
1623		"%xptr     = OpAccessChain %u32ptr_input %id %zero\n"
1624		"%x        = OpLoad %u32 %xptr\n"
1625		"            OpStore %xvar %x\n"
1626
1627		"%cmp      = OpUGreaterThan %bool %x %const50\n"
1628		"            OpSelectionMerge %if_merge None\n"
1629		"            OpBranchConditional %cmp %if_true %if_false\n"
1630
1631		// Merge block for switch-statement: placed at the beginning.
1632		"%switch_merge = OpLabel\n"
1633		"                OpBranch %if_merge\n"
1634
1635		// Case 1 for switch-statement.
1636		"%case1    = OpLabel\n"
1637		"%x_1      = OpLoad %u32 %xvar\n"
1638		"%inloc_1  = OpAccessChain %f32ptr %indata %zero %x_1\n"
1639		"%inval_1  = OpLoad %f32 %inloc_1\n"
1640		"%addf42   = OpFAdd %f32 %inval_1 %constf42\n"
1641		"%outloc_1 = OpAccessChain %f32ptr %outdata %zero %x_1\n"
1642		"            OpStore %outloc_1 %addf42\n"
1643		"            OpBranch %switch_merge\n"
1644
1645		// False branch for if-statement: placed in the middle of switch cases and before true branch.
1646		"%if_false = OpLabel\n"
1647		"%x_f      = OpLoad %u32 %xvar\n"
1648		"%inloc_f  = OpAccessChain %f32ptr %indata %zero %x_f\n"
1649		"%inval_f  = OpLoad %f32 %inloc_f\n"
1650		"%negate   = OpFNegate %f32 %inval_f\n"
1651		"%outloc_f = OpAccessChain %f32ptr %outdata %zero %x_f\n"
1652		"            OpStore %outloc_f %negate\n"
1653		"            OpBranch %if_merge\n"
1654
1655		// Merge block for if-statement: placed in the middle of true and false branch.
1656		"%if_merge = OpLabel\n"
1657		"            OpReturn\n"
1658
1659		// True branch for if-statement: placed in the middle of swtich cases and after the false branch.
1660		"%if_true  = OpLabel\n"
1661		"%xval_t   = OpLoad %u32 %xvar\n"
1662		"%mod      = OpUMod %u32 %xval_t %const3\n"
1663		"            OpSelectionMerge %switch_merge None\n"
1664		"            OpSwitch %mod %default 0 %case0 1 %case1 2 %case2\n"
1665
1666		// Case 2 for switch-statement.
1667		"%case2    = OpLabel\n"
1668		"%x_2      = OpLoad %u32 %xvar\n"
1669		"%inloc_2  = OpAccessChain %f32ptr %indata %zero %x_2\n"
1670		"%inval_2  = OpLoad %f32 %inloc_2\n"
1671		"%subf27   = OpFSub %f32 %inval_2 %constf27\n"
1672		"%outloc_2 = OpAccessChain %f32ptr %outdata %zero %x_2\n"
1673		"            OpStore %outloc_2 %subf27\n"
1674		"            OpBranch %switch_merge\n"
1675
1676		// Default case for switch-statement: placed in the middle of normal cases.
1677		"%default = OpLabel\n"
1678		"           OpBranch %switch_merge\n"
1679
1680		// Case 0 for switch-statement: out of order.
1681		"%case0    = OpLabel\n"
1682		"%x_0      = OpLoad %u32 %xvar\n"
1683		"%inloc_0  = OpAccessChain %f32ptr %indata %zero %x_0\n"
1684		"%inval_0  = OpLoad %f32 %inloc_0\n"
1685		"%addf1p5  = OpFAdd %f32 %inval_0 %constf1p5\n"
1686		"%outloc_0 = OpAccessChain %f32ptr %outdata %zero %x_0\n"
1687		"            OpStore %outloc_0 %addf1p5\n"
1688		"            OpBranch %switch_merge\n"
1689
1690		"            OpFunctionEnd\n";
1691	spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
1692	spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
1693	spec.numWorkGroups = IVec3(numElements, 1, 1);
1694
1695	group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "various out-of-order blocks", spec));
1696
1697	return group.release();
1698}
1699
1700tcu::TestCaseGroup* createMultipleShaderGroup (tcu::TestContext& testCtx)
1701{
1702	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "multiple_shaders", "Test multiple shaders in the same module"));
1703	ComputeShaderSpec				spec1;
1704	ComputeShaderSpec				spec2;
1705	de::Random						rnd				(deStringHash(group->getName()));
1706	const int						numElements		= 100;
1707	vector<float>					inputFloats		(numElements, 0);
1708	vector<float>					outputFloats1	(numElements, 0);
1709	vector<float>					outputFloats2	(numElements, 0);
1710	fillRandomScalars(rnd, -500.f, 500.f, &inputFloats[0], numElements);
1711
1712	for (size_t ndx = 0; ndx < numElements; ++ndx)
1713	{
1714		outputFloats1[ndx] = inputFloats[ndx] + inputFloats[ndx];
1715		outputFloats2[ndx] = -inputFloats[ndx];
1716	}
1717
1718	const string assembly(
1719		"OpCapability Shader\n"
1720		"OpMemoryModel Logical GLSL450\n"
1721		"OpEntryPoint GLCompute %comp_main1 \"entrypoint1\" %id\n"
1722		"OpEntryPoint GLCompute %comp_main2 \"entrypoint2\" %id\n"
1723		// A module cannot have two OpEntryPoint instructions with the same Execution Model and the same Name string.
1724		"OpEntryPoint Vertex    %vert_main  \"entrypoint2\" %vert_builtins %vertexID %instanceID\n"
1725		"OpExecutionMode %comp_main1 LocalSize 1 1 1\n"
1726		"OpExecutionMode %comp_main2 LocalSize 1 1 1\n"
1727
1728		"OpName %comp_main1              \"entrypoint1\"\n"
1729		"OpName %comp_main2              \"entrypoint2\"\n"
1730		"OpName %vert_main               \"entrypoint2\"\n"
1731		"OpName %id                      \"gl_GlobalInvocationID\"\n"
1732		"OpName %vert_builtin_st         \"gl_PerVertex\"\n"
1733		"OpName %vertexID                \"gl_VertexID\"\n"
1734		"OpName %instanceID              \"gl_InstanceID\"\n"
1735		"OpMemberName %vert_builtin_st 0 \"gl_Position\"\n"
1736		"OpMemberName %vert_builtin_st 1 \"gl_PointSize\"\n"
1737		"OpMemberName %vert_builtin_st 2 \"gl_ClipDistance\"\n"
1738
1739		"OpDecorate %id                      BuiltIn GlobalInvocationId\n"
1740		"OpDecorate %vertexID                BuiltIn VertexId\n"
1741		"OpDecorate %instanceID              BuiltIn InstanceId\n"
1742		"OpDecorate %vert_builtin_st         Block\n"
1743		"OpMemberDecorate %vert_builtin_st 0 BuiltIn Position\n"
1744		"OpMemberDecorate %vert_builtin_st 1 BuiltIn PointSize\n"
1745		"OpMemberDecorate %vert_builtin_st 2 BuiltIn ClipDistance\n"
1746
1747		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
1748
1749		"%zero       = OpConstant %i32 0\n"
1750		"%one        = OpConstant %u32 1\n"
1751		"%c_f32_1    = OpConstant %f32 1\n"
1752
1753		"%i32ptr              = OpTypePointer Input %i32\n"
1754		"%vec4                = OpTypeVector %f32 4\n"
1755		"%vec4ptr             = OpTypePointer Output %vec4\n"
1756		"%f32arr1             = OpTypeArray %f32 %one\n"
1757		"%vert_builtin_st     = OpTypeStruct %vec4 %f32 %f32arr1\n"
1758		"%vert_builtin_st_ptr = OpTypePointer Output %vert_builtin_st\n"
1759		"%vert_builtins       = OpVariable %vert_builtin_st_ptr Output\n"
1760
1761		"%id         = OpVariable %uvec3ptr Input\n"
1762		"%vertexID   = OpVariable %i32ptr Input\n"
1763		"%instanceID = OpVariable %i32ptr Input\n"
1764		"%c_vec4_1   = OpConstantComposite %vec4 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_1\n"
1765
1766		// gl_Position = vec4(1.);
1767		"%vert_main  = OpFunction %void None %voidf\n"
1768		"%vert_entry = OpLabel\n"
1769		"%position   = OpAccessChain %vec4ptr %vert_builtins %zero\n"
1770		"              OpStore %position %c_vec4_1\n"
1771		"              OpReturn\n"
1772		"              OpFunctionEnd\n"
1773
1774		// Double inputs.
1775		"%comp_main1  = OpFunction %void None %voidf\n"
1776		"%comp1_entry = OpLabel\n"
1777		"%idval1      = OpLoad %uvec3 %id\n"
1778		"%x1          = OpCompositeExtract %u32 %idval1 0\n"
1779		"%inloc1      = OpAccessChain %f32ptr %indata %zero %x1\n"
1780		"%inval1      = OpLoad %f32 %inloc1\n"
1781		"%add         = OpFAdd %f32 %inval1 %inval1\n"
1782		"%outloc1     = OpAccessChain %f32ptr %outdata %zero %x1\n"
1783		"               OpStore %outloc1 %add\n"
1784		"               OpReturn\n"
1785		"               OpFunctionEnd\n"
1786
1787		// Negate inputs.
1788		"%comp_main2  = OpFunction %void None %voidf\n"
1789		"%comp2_entry = OpLabel\n"
1790		"%idval2      = OpLoad %uvec3 %id\n"
1791		"%x2          = OpCompositeExtract %u32 %idval2 0\n"
1792		"%inloc2      = OpAccessChain %f32ptr %indata %zero %x2\n"
1793		"%inval2      = OpLoad %f32 %inloc2\n"
1794		"%neg         = OpFNegate %f32 %inval2\n"
1795		"%outloc2     = OpAccessChain %f32ptr %outdata %zero %x2\n"
1796		"               OpStore %outloc2 %neg\n"
1797		"               OpReturn\n"
1798		"               OpFunctionEnd\n");
1799
1800	spec1.assembly = assembly;
1801	spec1.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
1802	spec1.outputs.push_back(BufferSp(new Float32Buffer(outputFloats1)));
1803	spec1.numWorkGroups = IVec3(numElements, 1, 1);
1804	spec1.entryPoint = "entrypoint1";
1805
1806	spec2.assembly = assembly;
1807	spec2.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
1808	spec2.outputs.push_back(BufferSp(new Float32Buffer(outputFloats2)));
1809	spec2.numWorkGroups = IVec3(numElements, 1, 1);
1810	spec2.entryPoint = "entrypoint2";
1811
1812	group->addChild(new SpvAsmComputeShaderCase(testCtx, "shader1", "multiple shaders in the same module", spec1));
1813	group->addChild(new SpvAsmComputeShaderCase(testCtx, "shader2", "multiple shaders in the same module", spec2));
1814
1815	return group.release();
1816}
1817
1818inline std::string makeLongUTF8String (size_t num4ByteChars)
1819{
1820	// An example of a longest valid UTF-8 character.  Be explicit about the
1821	// character type because Microsoft compilers can otherwise interpret the
1822	// character string as being over wide (16-bit) characters. Ideally, we
1823	// would just use a C++11 UTF-8 string literal, but we want to support older
1824	// Microsoft compilers.
1825	const std::basic_string<char> earthAfrica("\xF0\x9F\x8C\x8D");
1826	std::string longString;
1827	longString.reserve(num4ByteChars * 4);
1828	for (size_t count = 0; count < num4ByteChars; count++)
1829	{
1830		longString += earthAfrica;
1831	}
1832	return longString;
1833}
1834
1835tcu::TestCaseGroup* createOpSourceGroup (tcu::TestContext& testCtx)
1836{
1837	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opsource", "Tests the OpSource & OpSourceContinued instruction"));
1838	vector<CaseParameter>			cases;
1839	de::Random						rnd				(deStringHash(group->getName()));
1840	const int						numElements		= 100;
1841	vector<float>					positiveFloats	(numElements, 0);
1842	vector<float>					negativeFloats	(numElements, 0);
1843	const StringTemplate			shaderTemplate	(
1844		"OpCapability Shader\n"
1845		"OpMemoryModel Logical GLSL450\n"
1846
1847		"OpEntryPoint GLCompute %main \"main\" %id\n"
1848		"OpExecutionMode %main LocalSize 1 1 1\n"
1849
1850		"${SOURCE}\n"
1851
1852		"OpName %main           \"main\"\n"
1853		"OpName %id             \"gl_GlobalInvocationID\"\n"
1854
1855		"OpDecorate %id BuiltIn GlobalInvocationId\n"
1856
1857		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
1858
1859		"%id        = OpVariable %uvec3ptr Input\n"
1860		"%zero      = OpConstant %i32 0\n"
1861
1862		"%main      = OpFunction %void None %voidf\n"
1863		"%label     = OpLabel\n"
1864		"%idval     = OpLoad %uvec3 %id\n"
1865		"%x         = OpCompositeExtract %u32 %idval 0\n"
1866		"%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
1867		"%inval     = OpLoad %f32 %inloc\n"
1868		"%neg       = OpFNegate %f32 %inval\n"
1869		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
1870		"             OpStore %outloc %neg\n"
1871		"             OpReturn\n"
1872		"             OpFunctionEnd\n");
1873
1874	cases.push_back(CaseParameter("unknown_source",							"OpSource Unknown 0"));
1875	cases.push_back(CaseParameter("wrong_source",							"OpSource OpenCL_C 210"));
1876	cases.push_back(CaseParameter("normal_filename",						"%fname = OpString \"filename\"\n"
1877																			"OpSource GLSL 430 %fname"));
1878	cases.push_back(CaseParameter("empty_filename",							"%fname = OpString \"\"\n"
1879																			"OpSource GLSL 430 %fname"));
1880	cases.push_back(CaseParameter("normal_source_code",						"%fname = OpString \"filename\"\n"
1881																			"OpSource GLSL 430 %fname \"#version 430\nvoid main() {}\""));
1882	cases.push_back(CaseParameter("empty_source_code",						"%fname = OpString \"filename\"\n"
1883																			"OpSource GLSL 430 %fname \"\""));
1884	cases.push_back(CaseParameter("long_source_code",						"%fname = OpString \"filename\"\n"
1885																			"OpSource GLSL 430 %fname \"" + makeLongUTF8String(65530) + "ccc\"")); // word count: 65535
1886	cases.push_back(CaseParameter("utf8_source_code",						"%fname = OpString \"filename\"\n"
1887																			"OpSource GLSL 430 %fname \"\xE2\x98\x82\xE2\x98\x85\"")); // umbrella & black star symbol
1888	cases.push_back(CaseParameter("normal_sourcecontinued",					"%fname = OpString \"filename\"\n"
1889																			"OpSource GLSL 430 %fname \"#version 430\nvo\"\n"
1890																			"OpSourceContinued \"id main() {}\""));
1891	cases.push_back(CaseParameter("empty_sourcecontinued",					"%fname = OpString \"filename\"\n"
1892																			"OpSource GLSL 430 %fname \"#version 430\nvoid main() {}\"\n"
1893																			"OpSourceContinued \"\""));
1894	cases.push_back(CaseParameter("long_sourcecontinued",					"%fname = OpString \"filename\"\n"
1895																			"OpSource GLSL 430 %fname \"#version 430\nvoid main() {}\"\n"
1896																			"OpSourceContinued \"" + makeLongUTF8String(65533) + "ccc\"")); // word count: 65535
1897	cases.push_back(CaseParameter("utf8_sourcecontinued",					"%fname = OpString \"filename\"\n"
1898																			"OpSource GLSL 430 %fname \"#version 430\nvoid main() {}\"\n"
1899																			"OpSourceContinued \"\xE2\x98\x8E\xE2\x9A\x91\"")); // white telephone & black flag symbol
1900	cases.push_back(CaseParameter("multi_sourcecontinued",					"%fname = OpString \"filename\"\n"
1901																			"OpSource GLSL 430 %fname \"#version 430\n\"\n"
1902																			"OpSourceContinued \"void\"\n"
1903																			"OpSourceContinued \"main()\"\n"
1904																			"OpSourceContinued \"{}\""));
1905	cases.push_back(CaseParameter("empty_source_before_sourcecontinued",	"%fname = OpString \"filename\"\n"
1906																			"OpSource GLSL 430 %fname \"\"\n"
1907																			"OpSourceContinued \"#version 430\nvoid main() {}\""));
1908
1909	fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
1910
1911	for (size_t ndx = 0; ndx < numElements; ++ndx)
1912		negativeFloats[ndx] = -positiveFloats[ndx];
1913
1914	for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
1915	{
1916		map<string, string>		specializations;
1917		ComputeShaderSpec		spec;
1918
1919		specializations["SOURCE"] = cases[caseNdx].param;
1920		spec.assembly = shaderTemplate.specialize(specializations);
1921		spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
1922		spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
1923		spec.numWorkGroups = IVec3(numElements, 1, 1);
1924
1925		group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
1926	}
1927
1928	return group.release();
1929}
1930
1931tcu::TestCaseGroup* createOpSourceExtensionGroup (tcu::TestContext& testCtx)
1932{
1933	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opsourceextension", "Tests the OpSource instruction"));
1934	vector<CaseParameter>			cases;
1935	de::Random						rnd				(deStringHash(group->getName()));
1936	const int						numElements		= 100;
1937	vector<float>					inputFloats		(numElements, 0);
1938	vector<float>					outputFloats	(numElements, 0);
1939	const StringTemplate			shaderTemplate	(
1940		string(s_ShaderPreamble) +
1941
1942		"OpSourceExtension \"${EXTENSION}\"\n"
1943
1944		"OpName %main           \"main\"\n"
1945		"OpName %id             \"gl_GlobalInvocationID\"\n"
1946
1947		"OpDecorate %id BuiltIn GlobalInvocationId\n"
1948
1949		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
1950
1951		"%id        = OpVariable %uvec3ptr Input\n"
1952		"%zero      = OpConstant %i32 0\n"
1953
1954		"%main      = OpFunction %void None %voidf\n"
1955		"%label     = OpLabel\n"
1956		"%idval     = OpLoad %uvec3 %id\n"
1957		"%x         = OpCompositeExtract %u32 %idval 0\n"
1958		"%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
1959		"%inval     = OpLoad %f32 %inloc\n"
1960		"%neg       = OpFNegate %f32 %inval\n"
1961		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
1962		"             OpStore %outloc %neg\n"
1963		"             OpReturn\n"
1964		"             OpFunctionEnd\n");
1965
1966	cases.push_back(CaseParameter("empty_extension",	""));
1967	cases.push_back(CaseParameter("real_extension",		"GL_ARB_texture_rectangle"));
1968	cases.push_back(CaseParameter("fake_extension",		"GL_ARB_im_the_ultimate_extension"));
1969	cases.push_back(CaseParameter("utf8_extension",		"GL_ARB_\xE2\x98\x82\xE2\x98\x85"));
1970	cases.push_back(CaseParameter("long_extension",		makeLongUTF8String(65533) + "ccc")); // word count: 65535
1971
1972	fillRandomScalars(rnd, -200.f, 200.f, &inputFloats[0], numElements);
1973
1974	for (size_t ndx = 0; ndx < numElements; ++ndx)
1975		outputFloats[ndx] = -inputFloats[ndx];
1976
1977	for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
1978	{
1979		map<string, string>		specializations;
1980		ComputeShaderSpec		spec;
1981
1982		specializations["EXTENSION"] = cases[caseNdx].param;
1983		spec.assembly = shaderTemplate.specialize(specializations);
1984		spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
1985		spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
1986		spec.numWorkGroups = IVec3(numElements, 1, 1);
1987
1988		group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
1989	}
1990
1991	return group.release();
1992}
1993
1994// Checks that a compute shader can generate a constant null value of various types, without exercising a computation on it.
1995tcu::TestCaseGroup* createOpConstantNullGroup (tcu::TestContext& testCtx)
1996{
1997	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opconstantnull", "Tests the OpConstantNull instruction"));
1998	vector<CaseParameter>			cases;
1999	de::Random						rnd				(deStringHash(group->getName()));
2000	const int						numElements		= 100;
2001	vector<float>					positiveFloats	(numElements, 0);
2002	vector<float>					negativeFloats	(numElements, 0);
2003	const StringTemplate			shaderTemplate	(
2004		string(s_ShaderPreamble) +
2005
2006		"OpSource GLSL 430\n"
2007		"OpName %main           \"main\"\n"
2008		"OpName %id             \"gl_GlobalInvocationID\"\n"
2009
2010		"OpDecorate %id BuiltIn GlobalInvocationId\n"
2011
2012		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
2013
2014		"${TYPE}\n"
2015		"%null      = OpConstantNull %type\n"
2016
2017		"%id        = OpVariable %uvec3ptr Input\n"
2018		"%zero      = OpConstant %i32 0\n"
2019
2020		"%main      = OpFunction %void None %voidf\n"
2021		"%label     = OpLabel\n"
2022		"%idval     = OpLoad %uvec3 %id\n"
2023		"%x         = OpCompositeExtract %u32 %idval 0\n"
2024		"%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
2025		"%inval     = OpLoad %f32 %inloc\n"
2026		"%neg       = OpFNegate %f32 %inval\n"
2027		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
2028		"             OpStore %outloc %neg\n"
2029		"             OpReturn\n"
2030		"             OpFunctionEnd\n");
2031
2032	cases.push_back(CaseParameter("bool",			"%type = OpTypeBool"));
2033	cases.push_back(CaseParameter("sint32",			"%type = OpTypeInt 32 1"));
2034	cases.push_back(CaseParameter("uint32",			"%type = OpTypeInt 32 0"));
2035	cases.push_back(CaseParameter("float32",		"%type = OpTypeFloat 32"));
2036	cases.push_back(CaseParameter("vec4float32",	"%type = OpTypeVector %f32 4"));
2037	cases.push_back(CaseParameter("vec3bool",		"%type = OpTypeVector %bool 3"));
2038	cases.push_back(CaseParameter("vec2uint32",		"%type = OpTypeVector %u32 2"));
2039	cases.push_back(CaseParameter("matrix",			"%type = OpTypeMatrix %fvec3 3"));
2040	cases.push_back(CaseParameter("array",			"%100 = OpConstant %u32 100\n"
2041													"%type = OpTypeArray %i32 %100"));
2042	cases.push_back(CaseParameter("struct",			"%type = OpTypeStruct %f32 %i32 %u32"));
2043	cases.push_back(CaseParameter("pointer",		"%type = OpTypePointer Function %i32"));
2044
2045	fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
2046
2047	for (size_t ndx = 0; ndx < numElements; ++ndx)
2048		negativeFloats[ndx] = -positiveFloats[ndx];
2049
2050	for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
2051	{
2052		map<string, string>		specializations;
2053		ComputeShaderSpec		spec;
2054
2055		specializations["TYPE"] = cases[caseNdx].param;
2056		spec.assembly = shaderTemplate.specialize(specializations);
2057		spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
2058		spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
2059		spec.numWorkGroups = IVec3(numElements, 1, 1);
2060
2061		group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
2062	}
2063
2064	return group.release();
2065}
2066
2067// Checks that a compute shader can generate a constant composite value of various types, without exercising a computation on it.
2068tcu::TestCaseGroup* createOpConstantCompositeGroup (tcu::TestContext& testCtx)
2069{
2070	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opconstantcomposite", "Tests the OpConstantComposite instruction"));
2071	vector<CaseParameter>			cases;
2072	de::Random						rnd				(deStringHash(group->getName()));
2073	const int						numElements		= 100;
2074	vector<float>					positiveFloats	(numElements, 0);
2075	vector<float>					negativeFloats	(numElements, 0);
2076	const StringTemplate			shaderTemplate	(
2077		string(s_ShaderPreamble) +
2078
2079		"OpSource GLSL 430\n"
2080		"OpName %main           \"main\"\n"
2081		"OpName %id             \"gl_GlobalInvocationID\"\n"
2082
2083		"OpDecorate %id BuiltIn GlobalInvocationId\n"
2084
2085		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
2086
2087		"%id        = OpVariable %uvec3ptr Input\n"
2088		"%zero      = OpConstant %i32 0\n"
2089
2090		"${CONSTANT}\n"
2091
2092		"%main      = OpFunction %void None %voidf\n"
2093		"%label     = OpLabel\n"
2094		"%idval     = OpLoad %uvec3 %id\n"
2095		"%x         = OpCompositeExtract %u32 %idval 0\n"
2096		"%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
2097		"%inval     = OpLoad %f32 %inloc\n"
2098		"%neg       = OpFNegate %f32 %inval\n"
2099		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
2100		"             OpStore %outloc %neg\n"
2101		"             OpReturn\n"
2102		"             OpFunctionEnd\n");
2103
2104	cases.push_back(CaseParameter("vector",			"%five = OpConstant %u32 5\n"
2105													"%const = OpConstantComposite %uvec3 %five %zero %five"));
2106	cases.push_back(CaseParameter("matrix",			"%m3uvec3 = OpTypeMatrix %fvec3 3\n"
2107													"%ten = OpConstant %u32 10\n"
2108													"%vec = OpConstantComposite %uvec3 %ten %zero %ten\n"
2109													"%mat = OpConstantComposite %m3uvec3 %vec %vec %vec"));
2110	cases.push_back(CaseParameter("struct",			"%m2vec3 = OpTypeMatrix %fvec3 2\n"
2111													"%struct = OpTypeStruct %u32 %f32 %uvec3 %m2vec3\n"
2112													"%one = OpConstant %u32 1\n"
2113													"%point5 = OpConstant %f32 0.5\n"
2114													"%vec = OpConstantComposite %uvec3 %one %one %zero\n"
2115													"%mat = OpConstantComposite %m2vec3 %vec %vec\n"
2116													"%const = OpConstantComposite %struct %one %point5 %vec %mat"));
2117	cases.push_back(CaseParameter("nested_struct",	"%st1 = OpTypeStruct %u32 %f32\n"
2118													"%st2 = OpTypeStruct %i32 %i32\n"
2119													"%struct = OpTypeStruct %st1 %st2\n"
2120													"%point5 = OpConstant %f32 0.5\n"
2121													"%one = OpConstant %u32 1\n"
2122													"%ten = OpConstant %i32 10\n"
2123													"%st1val = OpConstantComposite %st1 %one %point5\n"
2124													"%st2val = OpConstantComposite %st2 %ten %ten\n"
2125													"%const = OpConstantComposite %struct %st1val %st2val"));
2126
2127	fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
2128
2129	for (size_t ndx = 0; ndx < numElements; ++ndx)
2130		negativeFloats[ndx] = -positiveFloats[ndx];
2131
2132	for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
2133	{
2134		map<string, string>		specializations;
2135		ComputeShaderSpec		spec;
2136
2137		specializations["CONSTANT"] = cases[caseNdx].param;
2138		spec.assembly = shaderTemplate.specialize(specializations);
2139		spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
2140		spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
2141		spec.numWorkGroups = IVec3(numElements, 1, 1);
2142
2143		group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
2144	}
2145
2146	return group.release();
2147}
2148
2149// Creates a floating point number with the given exponent, and significand
2150// bits set. It can only create normalized numbers. Only the least significant
2151// 24 bits of the significand will be examined. The final bit of the
2152// significand will also be ignored. This allows alignment to be written
2153// similarly to C99 hex-floats.
2154// For example if you wanted to write 0x1.7f34p-12 you would call
2155// constructNormalizedFloat(-12, 0x7f3400)
2156float constructNormalizedFloat (deInt32 exponent, deUint32 significand)
2157{
2158	float f = 1.0f;
2159
2160	for (deInt32 idx = 0; idx < 23; ++idx)
2161	{
2162		f += ((significand & 0x800000) == 0) ? 0.f : std::ldexp(1.0f, -idx);
2163		significand <<= 1;
2164	}
2165
2166	return std::ldexp(f, exponent);
2167}
2168
2169// Compare instruction for the OpQuantizeF16 compute exact case.
2170// Returns true if the output is what is expected from the test case.
2171bool compareOpQuantizeF16ComputeExactCase (const std::vector<BufferSp>&, const vector<AllocationSp>& outputAllocs, const std::vector<BufferSp>& expectedOutputs)
2172{
2173	if (outputAllocs.size() != 1)
2174		return false;
2175
2176	// We really just need this for size because we cannot compare Nans.
2177	const BufferSp&	expectedOutput	= expectedOutputs[0];
2178	const float*	outputAsFloat	= static_cast<const float*>(outputAllocs[0]->getHostPtr());;
2179
2180	if (expectedOutput->getNumBytes() != 4*sizeof(float)) {
2181		return false;
2182	}
2183
2184	if (*outputAsFloat != constructNormalizedFloat(8, 0x304000) &&
2185		*outputAsFloat != constructNormalizedFloat(8, 0x300000)) {
2186		return false;
2187	}
2188
2189	if (*outputAsFloat != -constructNormalizedFloat(-7, 0x600000) &&
2190		*outputAsFloat != -constructNormalizedFloat(-7, 0x604000)) {
2191		return false;
2192	}
2193
2194	if (*outputAsFloat != constructNormalizedFloat(2, 0x01C000) &&
2195		*outputAsFloat != constructNormalizedFloat(2, 0x020000)) {
2196		return false;
2197	}
2198
2199	if (*outputAsFloat != constructNormalizedFloat(1, 0xFFC000) &&
2200		*outputAsFloat != constructNormalizedFloat(2, 0x000000)) {
2201		return false;
2202	}
2203
2204	return true;
2205}
2206
2207// Checks that every output from a test-case is a float NaN.
2208bool compareNan (const std::vector<BufferSp>&, const vector<AllocationSp>& outputAllocs, const std::vector<BufferSp>& expectedOutputs)
2209{
2210	if (outputAllocs.size() != 1)
2211		return false;
2212
2213	// We really just need this for size because we cannot compare Nans.
2214	const BufferSp& expectedOutput		= expectedOutputs[0];
2215	const float* output_as_float		= static_cast<const float*>(outputAllocs[0]->getHostPtr());;
2216
2217	for (size_t idx = 0; idx < expectedOutput->getNumBytes() / sizeof(float); ++idx)
2218	{
2219		if (!isnan(output_as_float[idx]))
2220		{
2221			return false;
2222		}
2223	}
2224
2225	return true;
2226}
2227
2228// Checks that a compute shader can generate a constant composite value of various types, without exercising a computation on it.
2229tcu::TestCaseGroup* createOpQuantizeToF16Group (tcu::TestContext& testCtx)
2230{
2231	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opquantize", "Tests the OpQuantizeToF16 instruction"));
2232
2233	const std::string shader (
2234		string(s_ShaderPreamble) +
2235
2236		"OpSource GLSL 430\n"
2237		"OpName %main           \"main\"\n"
2238		"OpName %id             \"gl_GlobalInvocationID\"\n"
2239
2240		"OpDecorate %id BuiltIn GlobalInvocationId\n"
2241
2242		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
2243
2244		"%id        = OpVariable %uvec3ptr Input\n"
2245		"%zero      = OpConstant %i32 0\n"
2246
2247		"%main      = OpFunction %void None %voidf\n"
2248		"%label     = OpLabel\n"
2249		"%idval     = OpLoad %uvec3 %id\n"
2250		"%x         = OpCompositeExtract %u32 %idval 0\n"
2251		"%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
2252		"%inval     = OpLoad %f32 %inloc\n"
2253		"%quant     = OpQuantizeToF16 %f32 %inval\n"
2254		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
2255		"             OpStore %outloc %quant\n"
2256		"             OpReturn\n"
2257		"             OpFunctionEnd\n");
2258
2259	{
2260		ComputeShaderSpec	spec;
2261		const deUint32		numElements		= 100;
2262		vector<float>		infinities;
2263		vector<float>		results;
2264
2265		infinities.reserve(numElements);
2266		results.reserve(numElements);
2267
2268		for (size_t idx = 0; idx < numElements; ++idx)
2269		{
2270			switch(idx % 4)
2271			{
2272				case 0:
2273					infinities.push_back(std::numeric_limits<float>::infinity());
2274					results.push_back(std::numeric_limits<float>::infinity());
2275					break;
2276				case 1:
2277					infinities.push_back(-std::numeric_limits<float>::infinity());
2278					results.push_back(-std::numeric_limits<float>::infinity());
2279					break;
2280				case 2:
2281					infinities.push_back(std::ldexp(1.0f, 16));
2282					results.push_back(std::numeric_limits<float>::infinity());
2283					break;
2284				case 3:
2285					infinities.push_back(std::ldexp(-1.0f, 32));
2286					results.push_back(-std::numeric_limits<float>::infinity());
2287					break;
2288			}
2289		}
2290
2291		spec.inputs.push_back(BufferSp(new Float32Buffer(infinities)));
2292		spec.outputs.push_back(BufferSp(new Float32Buffer(results)));
2293		spec.numWorkGroups = IVec3(numElements, 1, 1);
2294
2295		group->addChild(new SpvAsmComputeShaderCase(
2296			testCtx, "infinities", "Check that infinities propagated and created", spec));
2297	}
2298
2299	{
2300		ComputeShaderSpec	spec;
2301		vector<float>		nans;
2302		const deUint32		numElements		= 100;
2303
2304		nans.reserve(numElements);
2305
2306		for (size_t idx = 0; idx < numElements; ++idx)
2307		{
2308			if (idx % 2 == 0)
2309			{
2310				nans.push_back(std::numeric_limits<float>::quiet_NaN());
2311			}
2312			else
2313			{
2314				nans.push_back(-std::numeric_limits<float>::quiet_NaN());
2315			}
2316		}
2317
2318		spec.inputs.push_back(BufferSp(new Float32Buffer(nans)));
2319		spec.outputs.push_back(BufferSp(new Float32Buffer(nans)));
2320		spec.numWorkGroups = IVec3(numElements, 1, 1);
2321		spec.verifyIO = &compareNan;
2322
2323		group->addChild(new SpvAsmComputeShaderCase(
2324			testCtx, "propagated_nans", "Check that nans are propagated", spec));
2325	}
2326
2327	{
2328		ComputeShaderSpec	spec;
2329		vector<float>		small;
2330		vector<float>		zeros;
2331		const deUint32		numElements		= 100;
2332
2333		small.reserve(numElements);
2334		zeros.reserve(numElements);
2335
2336		for (size_t idx = 0; idx < numElements; ++idx)
2337		{
2338			switch(idx % 6)
2339			{
2340				case 0:
2341					small.push_back(0.f);
2342					zeros.push_back(0.f);
2343					break;
2344				case 1:
2345					small.push_back(-0.f);
2346					zeros.push_back(-0.f);
2347					break;
2348				case 2:
2349					small.push_back(std::ldexp(1.0f, -16));
2350					zeros.push_back(0.f);
2351					break;
2352				case 3:
2353					small.push_back(std::ldexp(-1.0f, -32));
2354					zeros.push_back(-0.f);
2355					break;
2356				case 4:
2357					small.push_back(std::ldexp(1.0f, -127));
2358					zeros.push_back(0.f);
2359					break;
2360				case 5:
2361					small.push_back(-std::ldexp(1.0f, -128));
2362					zeros.push_back(-0.f);
2363					break;
2364			}
2365		}
2366
2367		spec.inputs.push_back(BufferSp(new Float32Buffer(small)));
2368		spec.outputs.push_back(BufferSp(new Float32Buffer(zeros)));
2369		spec.numWorkGroups = IVec3(numElements, 1, 1);
2370
2371		group->addChild(new SpvAsmComputeShaderCase(
2372			testCtx, "flush_to_zero", "Check that values are zeroed correctly", spec));
2373	}
2374
2375	{
2376		ComputeShaderSpec	spec;
2377		vector<float>		exact;
2378		const deUint32		numElements		= 200;
2379
2380		exact.reserve(numElements);
2381
2382		for (size_t idx = 0; idx < numElements; ++idx)
2383			exact.push_back(static_cast<float>(idx - 100));
2384
2385		spec.inputs.push_back(BufferSp(new Float32Buffer(exact)));
2386		spec.outputs.push_back(BufferSp(new Float32Buffer(exact)));
2387		spec.numWorkGroups = IVec3(numElements, 1, 1);
2388
2389		group->addChild(new SpvAsmComputeShaderCase(
2390			testCtx, "exact", "Check that values exactly preserved where appropriate", spec));
2391	}
2392
2393	{
2394		ComputeShaderSpec	spec;
2395		vector<float>		inputs;
2396		const deUint32		numElements		= 4;
2397
2398		inputs.push_back(constructNormalizedFloat(8,	0x300300));
2399		inputs.push_back(-constructNormalizedFloat(-7,	0x600800));
2400		inputs.push_back(constructNormalizedFloat(2,	0x01E000));
2401		inputs.push_back(constructNormalizedFloat(1,	0xFFE000));
2402
2403		spec.verifyIO = &compareOpQuantizeF16ComputeExactCase;
2404		spec.inputs.push_back(BufferSp(new Float32Buffer(inputs)));
2405		spec.outputs.push_back(BufferSp(new Float32Buffer(inputs)));
2406		spec.numWorkGroups = IVec3(numElements, 1, 1);
2407
2408		group->addChild(new SpvAsmComputeShaderCase(
2409			testCtx, "rounded", "Check that are rounded when needed", spec));
2410	}
2411
2412	return group.release();
2413}
2414
2415// Performs a bitwise copy of source to the destination type Dest.
2416template <typename Dest, typename Src>
2417Dest bitwiseCast(Src source)
2418{
2419  Dest dest;
2420  DE_STATIC_ASSERT(sizeof(source) == sizeof(dest));
2421  deMemcpy(&dest, &source, sizeof(dest));
2422  return dest;
2423}
2424
2425tcu::TestCaseGroup* createSpecConstantOpQuantizeToF16Group (tcu::TestContext& testCtx)
2426{
2427	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opspecconstantop_opquantize", "Tests the OpQuantizeToF16 opcode for the OpSpecConstantOp instruction"));
2428
2429	const std::string shader (
2430		string(s_ShaderPreamble) +
2431
2432		"OpName %main           \"main\"\n"
2433		"OpName %id             \"gl_GlobalInvocationID\"\n"
2434
2435		"OpDecorate %id BuiltIn GlobalInvocationId\n"
2436
2437		"OpDecorate %sc_0  SpecId 0\n"
2438		"OpDecorate %sc_1  SpecId 1\n"
2439		"OpDecorate %sc_2  SpecId 2\n"
2440		"OpDecorate %sc_3  SpecId 3\n"
2441		"OpDecorate %sc_4  SpecId 4\n"
2442		"OpDecorate %sc_5  SpecId 5\n"
2443
2444		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
2445
2446		"%id        = OpVariable %uvec3ptr Input\n"
2447		"%zero      = OpConstant %i32 0\n"
2448		"%c_u32_6   = OpConstant %u32 6\n"
2449
2450		"%sc_0      = OpSpecConstant %f32 0.\n"
2451		"%sc_1      = OpSpecConstant %f32 0.\n"
2452		"%sc_2      = OpSpecConstant %f32 0.\n"
2453		"%sc_3      = OpSpecConstant %f32 0.\n"
2454		"%sc_4      = OpSpecConstant %f32 0.\n"
2455		"%sc_5      = OpSpecConstant %f32 0.\n"
2456
2457		"%sc_0_quant = OpSpecConstantOp %f32 QuantizeToF16 %sc_0\n"
2458		"%sc_1_quant = OpSpecConstantOp %f32 QuantizeToF16 %sc_1\n"
2459		"%sc_2_quant = OpSpecConstantOp %f32 QuantizeToF16 %sc_2\n"
2460		"%sc_3_quant = OpSpecConstantOp %f32 QuantizeToF16 %sc_3\n"
2461		"%sc_4_quant = OpSpecConstantOp %f32 QuantizeToF16 %sc_4\n"
2462		"%sc_5_quant = OpSpecConstantOp %f32 QuantizeToF16 %sc_5\n"
2463
2464		"%main      = OpFunction %void None %voidf\n"
2465		"%label     = OpLabel\n"
2466		"%idval     = OpLoad %uvec3 %id\n"
2467		"%x         = OpCompositeExtract %u32 %idval 0\n"
2468		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
2469		"%selector  = OpUMod %u32 %x %c_u32_6\n"
2470		"            OpSelectionMerge %exit None\n"
2471		"            OpSwitch %selector %exit 0 %case0 1 %case1 2 %case2 3 %case3 4 %case4 5 %case5\n"
2472
2473		"%case0     = OpLabel\n"
2474		"             OpStore %outloc %sc_0_quant\n"
2475		"             OpBranch %exit\n"
2476
2477		"%case1     = OpLabel\n"
2478		"             OpStore %outloc %sc_1_quant\n"
2479		"             OpBranch %exit\n"
2480
2481		"%case2     = OpLabel\n"
2482		"             OpStore %outloc %sc_2_quant\n"
2483		"             OpBranch %exit\n"
2484
2485		"%case3     = OpLabel\n"
2486		"             OpStore %outloc %sc_3_quant\n"
2487		"             OpBranch %exit\n"
2488
2489		"%case4     = OpLabel\n"
2490		"             OpStore %outloc %sc_4_quant\n"
2491		"             OpBranch %exit\n"
2492
2493		"%case5     = OpLabel\n"
2494		"             OpStore %outloc %sc_5_quant\n"
2495		"             OpBranch %exit\n"
2496
2497		"%exit      = OpLabel\n"
2498		"             OpReturn\n"
2499
2500		"             OpFunctionEnd\n");
2501
2502	{
2503		ComputeShaderSpec	spec;
2504		const deUint8		numCases	= 4;
2505		vector<float>		inputs		(numCases, 0.f);
2506		vector<float>		outputs;
2507
2508		spec.numWorkGroups = IVec3(numCases, 1, 1);
2509
2510		spec.specConstants.push_back(bitwiseCast<deUint32>(std::numeric_limits<float>::infinity()));
2511		spec.specConstants.push_back(bitwiseCast<deUint32>(-std::numeric_limits<float>::infinity()));
2512		spec.specConstants.push_back(bitwiseCast<deUint32>(std::ldexp(1.0f, 16)));
2513		spec.specConstants.push_back(bitwiseCast<deUint32>(std::ldexp(-1.0f, 32)));
2514
2515		outputs.push_back(std::numeric_limits<float>::infinity());
2516		outputs.push_back(-std::numeric_limits<float>::infinity());
2517		outputs.push_back(std::numeric_limits<float>::infinity());
2518		outputs.push_back(-std::numeric_limits<float>::infinity());
2519
2520		spec.inputs.push_back(BufferSp(new Float32Buffer(inputs)));
2521		spec.outputs.push_back(BufferSp(new Float32Buffer(outputs)));
2522
2523		group->addChild(new SpvAsmComputeShaderCase(
2524			testCtx, "infinities", "Check that infinities propagated and created", spec));
2525	}
2526
2527	{
2528		ComputeShaderSpec	spec;
2529		const deUint8		numCases	= 2;
2530		vector<float>		inputs		(numCases, 0.f);
2531		vector<float>		outputs;
2532
2533		spec.numWorkGroups	= IVec3(numCases, 1, 1);
2534		spec.verifyIO		= &compareNan;
2535
2536		outputs.push_back(std::numeric_limits<float>::quiet_NaN());
2537		outputs.push_back(-std::numeric_limits<float>::quiet_NaN());
2538
2539		for (deUint8 idx = 0; idx < numCases; ++idx)
2540			spec.specConstants.push_back(bitwiseCast<deUint32>(outputs[idx]));
2541
2542		spec.inputs.push_back(BufferSp(new Float32Buffer(inputs)));
2543		spec.outputs.push_back(BufferSp(new Float32Buffer(outputs)));
2544
2545		group->addChild(new SpvAsmComputeShaderCase(
2546			testCtx, "propagated_nans", "Check that nans are propagated", spec));
2547	}
2548
2549	{
2550		ComputeShaderSpec	spec;
2551		const deUint8		numCases	= 6;
2552		vector<float>		inputs		(numCases, 0.f);
2553		vector<float>		outputs;
2554
2555		spec.numWorkGroups	= IVec3(numCases, 1, 1);
2556
2557		spec.specConstants.push_back(bitwiseCast<deUint32>(0.f));
2558		spec.specConstants.push_back(bitwiseCast<deUint32>(-0.f));
2559		spec.specConstants.push_back(bitwiseCast<deUint32>(std::ldexp(1.0f, -16)));
2560		spec.specConstants.push_back(bitwiseCast<deUint32>(std::ldexp(-1.0f, -32)));
2561		spec.specConstants.push_back(bitwiseCast<deUint32>(std::ldexp(1.0f, -127)));
2562		spec.specConstants.push_back(bitwiseCast<deUint32>(-std::ldexp(1.0f, -128)));
2563
2564		outputs.push_back(0.f);
2565		outputs.push_back(-0.f);
2566		outputs.push_back(0.f);
2567		outputs.push_back(-0.f);
2568		outputs.push_back(0.f);
2569		outputs.push_back(-0.f);
2570
2571		spec.inputs.push_back(BufferSp(new Float32Buffer(inputs)));
2572		spec.outputs.push_back(BufferSp(new Float32Buffer(outputs)));
2573
2574		group->addChild(new SpvAsmComputeShaderCase(
2575			testCtx, "flush_to_zero", "Check that values are zeroed correctly", spec));
2576	}
2577
2578	{
2579		ComputeShaderSpec	spec;
2580		const deUint8		numCases	= 6;
2581		vector<float>		inputs		(numCases, 0.f);
2582		vector<float>		outputs;
2583
2584		spec.numWorkGroups	= IVec3(numCases, 1, 1);
2585
2586		for (deUint8 idx = 0; idx < 6; ++idx)
2587		{
2588			const float f = static_cast<float>(idx * 10 - 30) / 4.f;
2589			spec.specConstants.push_back(bitwiseCast<deUint32>(f));
2590			outputs.push_back(f);
2591		}
2592
2593		spec.inputs.push_back(BufferSp(new Float32Buffer(inputs)));
2594		spec.outputs.push_back(BufferSp(new Float32Buffer(outputs)));
2595
2596		group->addChild(new SpvAsmComputeShaderCase(
2597			testCtx, "exact", "Check that values exactly preserved where appropriate", spec));
2598	}
2599
2600	{
2601		ComputeShaderSpec	spec;
2602		const deUint8		numCases	= 4;
2603		vector<float>		inputs		(numCases, 0.f);
2604		vector<float>		outputs;
2605
2606		spec.numWorkGroups	= IVec3(numCases, 1, 1);
2607		spec.verifyIO		= &compareOpQuantizeF16ComputeExactCase;
2608
2609		outputs.push_back(constructNormalizedFloat(8, 0x300300));
2610		outputs.push_back(-constructNormalizedFloat(-7, 0x600800));
2611		outputs.push_back(constructNormalizedFloat(2, 0x01E000));
2612		outputs.push_back(constructNormalizedFloat(1, 0xFFE000));
2613
2614		for (deUint8 idx = 0; idx < numCases; ++idx)
2615			spec.specConstants.push_back(bitwiseCast<deUint32>(outputs[idx]));
2616
2617		spec.inputs.push_back(BufferSp(new Float32Buffer(inputs)));
2618		spec.outputs.push_back(BufferSp(new Float32Buffer(outputs)));
2619
2620		group->addChild(new SpvAsmComputeShaderCase(
2621			testCtx, "rounded", "Check that are rounded when needed", spec));
2622	}
2623
2624	return group.release();
2625}
2626
2627// Checks that constant null/composite values can be used in computation.
2628tcu::TestCaseGroup* createOpConstantUsageGroup (tcu::TestContext& testCtx)
2629{
2630	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opconstantnullcomposite", "Spotcheck the OpConstantNull & OpConstantComposite instruction"));
2631	ComputeShaderSpec				spec;
2632	de::Random						rnd				(deStringHash(group->getName()));
2633	const int						numElements		= 100;
2634	vector<float>					positiveFloats	(numElements, 0);
2635	vector<float>					negativeFloats	(numElements, 0);
2636
2637	fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
2638
2639	for (size_t ndx = 0; ndx < numElements; ++ndx)
2640		negativeFloats[ndx] = -positiveFloats[ndx];
2641
2642	spec.assembly =
2643		"OpCapability Shader\n"
2644		"%std450 = OpExtInstImport \"GLSL.std.450\"\n"
2645		"OpMemoryModel Logical GLSL450\n"
2646		"OpEntryPoint GLCompute %main \"main\" %id\n"
2647		"OpExecutionMode %main LocalSize 1 1 1\n"
2648
2649		"OpSource GLSL 430\n"
2650		"OpName %main           \"main\"\n"
2651		"OpName %id             \"gl_GlobalInvocationID\"\n"
2652
2653		"OpDecorate %id BuiltIn GlobalInvocationId\n"
2654
2655		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
2656
2657		"%fvec3     = OpTypeVector %f32 3\n"
2658		"%fmat      = OpTypeMatrix %fvec3 3\n"
2659		"%ten       = OpConstant %u32 10\n"
2660		"%f32arr10  = OpTypeArray %f32 %ten\n"
2661		"%fst       = OpTypeStruct %f32 %f32\n"
2662
2663		+ string(s_InputOutputBuffer) +
2664
2665		"%id        = OpVariable %uvec3ptr Input\n"
2666		"%zero      = OpConstant %i32 0\n"
2667
2668		// Create a bunch of null values
2669		"%unull     = OpConstantNull %u32\n"
2670		"%fnull     = OpConstantNull %f32\n"
2671		"%vnull     = OpConstantNull %fvec3\n"
2672		"%mnull     = OpConstantNull %fmat\n"
2673		"%anull     = OpConstantNull %f32arr10\n"
2674		"%snull     = OpConstantComposite %fst %fnull %fnull\n"
2675
2676		"%main      = OpFunction %void None %voidf\n"
2677		"%label     = OpLabel\n"
2678		"%idval     = OpLoad %uvec3 %id\n"
2679		"%x         = OpCompositeExtract %u32 %idval 0\n"
2680		"%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
2681		"%inval     = OpLoad %f32 %inloc\n"
2682		"%neg       = OpFNegate %f32 %inval\n"
2683
2684		// Get the abs() of (a certain element of) those null values
2685		"%unull_cov = OpConvertUToF %f32 %unull\n"
2686		"%unull_abs = OpExtInst %f32 %std450 FAbs %unull_cov\n"
2687		"%fnull_abs = OpExtInst %f32 %std450 FAbs %fnull\n"
2688		"%vnull_0   = OpCompositeExtract %f32 %vnull 0\n"
2689		"%vnull_abs = OpExtInst %f32 %std450 FAbs %vnull_0\n"
2690		"%mnull_12  = OpCompositeExtract %f32 %mnull 1 2\n"
2691		"%mnull_abs = OpExtInst %f32 %std450 FAbs %mnull_12\n"
2692		"%anull_3   = OpCompositeExtract %f32 %anull 3\n"
2693		"%anull_abs = OpExtInst %f32 %std450 FAbs %anull_3\n"
2694		"%snull_1   = OpCompositeExtract %f32 %snull 1\n"
2695		"%snull_abs = OpExtInst %f32 %std450 FAbs %snull_1\n"
2696
2697		// Add them all
2698		"%add1      = OpFAdd %f32 %neg  %unull_abs\n"
2699		"%add2      = OpFAdd %f32 %add1 %fnull_abs\n"
2700		"%add3      = OpFAdd %f32 %add2 %vnull_abs\n"
2701		"%add4      = OpFAdd %f32 %add3 %mnull_abs\n"
2702		"%add5      = OpFAdd %f32 %add4 %anull_abs\n"
2703		"%final     = OpFAdd %f32 %add5 %snull_abs\n"
2704
2705		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
2706		"             OpStore %outloc %final\n" // write to output
2707		"             OpReturn\n"
2708		"             OpFunctionEnd\n";
2709	spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
2710	spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
2711	spec.numWorkGroups = IVec3(numElements, 1, 1);
2712
2713	group->addChild(new SpvAsmComputeShaderCase(testCtx, "spotcheck", "Check that values constructed via OpConstantNull & OpConstantComposite can be used", spec));
2714
2715	return group.release();
2716}
2717
2718// Assembly code used for testing loop control is based on GLSL source code:
2719// #version 430
2720//
2721// layout(std140, set = 0, binding = 0) readonly buffer Input {
2722//   float elements[];
2723// } input_data;
2724// layout(std140, set = 0, binding = 1) writeonly buffer Output {
2725//   float elements[];
2726// } output_data;
2727//
2728// void main() {
2729//   uint x = gl_GlobalInvocationID.x;
2730//   output_data.elements[x] = input_data.elements[x];
2731//   for (uint i = 0; i < 4; ++i)
2732//     output_data.elements[x] += 1.f;
2733// }
2734tcu::TestCaseGroup* createLoopControlGroup (tcu::TestContext& testCtx)
2735{
2736	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "loop_control", "Tests loop control cases"));
2737	vector<CaseParameter>			cases;
2738	de::Random						rnd				(deStringHash(group->getName()));
2739	const int						numElements		= 100;
2740	vector<float>					inputFloats		(numElements, 0);
2741	vector<float>					outputFloats	(numElements, 0);
2742	const StringTemplate			shaderTemplate	(
2743		string(s_ShaderPreamble) +
2744
2745		"OpSource GLSL 430\n"
2746		"OpName %main \"main\"\n"
2747		"OpName %id \"gl_GlobalInvocationID\"\n"
2748
2749		"OpDecorate %id BuiltIn GlobalInvocationId\n"
2750
2751		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
2752
2753		"%u32ptr      = OpTypePointer Function %u32\n"
2754
2755		"%id          = OpVariable %uvec3ptr Input\n"
2756		"%zero        = OpConstant %i32 0\n"
2757		"%uzero       = OpConstant %u32 0\n"
2758		"%one         = OpConstant %i32 1\n"
2759		"%constf1     = OpConstant %f32 1.0\n"
2760		"%four        = OpConstant %u32 4\n"
2761
2762		"%main        = OpFunction %void None %voidf\n"
2763		"%entry       = OpLabel\n"
2764		"%i           = OpVariable %u32ptr Function\n"
2765		"               OpStore %i %uzero\n"
2766
2767		"%idval       = OpLoad %uvec3 %id\n"
2768		"%x           = OpCompositeExtract %u32 %idval 0\n"
2769		"%inloc       = OpAccessChain %f32ptr %indata %zero %x\n"
2770		"%inval       = OpLoad %f32 %inloc\n"
2771		"%outloc      = OpAccessChain %f32ptr %outdata %zero %x\n"
2772		"               OpStore %outloc %inval\n"
2773		"               OpBranch %loop_entry\n"
2774
2775		"%loop_entry  = OpLabel\n"
2776		"%i_val       = OpLoad %u32 %i\n"
2777		"%cmp_lt      = OpULessThan %bool %i_val %four\n"
2778		"               OpLoopMerge %loop_merge %loop_entry ${CONTROL}\n"
2779		"               OpBranchConditional %cmp_lt %loop_body %loop_merge\n"
2780		"%loop_body   = OpLabel\n"
2781		"%outval      = OpLoad %f32 %outloc\n"
2782		"%addf1       = OpFAdd %f32 %outval %constf1\n"
2783		"               OpStore %outloc %addf1\n"
2784		"%new_i       = OpIAdd %u32 %i_val %one\n"
2785		"               OpStore %i %new_i\n"
2786		"               OpBranch %loop_entry\n"
2787		"%loop_merge  = OpLabel\n"
2788		"               OpReturn\n"
2789		"               OpFunctionEnd\n");
2790
2791	cases.push_back(CaseParameter("none",				"None"));
2792	cases.push_back(CaseParameter("unroll",				"Unroll"));
2793	cases.push_back(CaseParameter("dont_unroll",		"DontUnroll"));
2794	cases.push_back(CaseParameter("unroll_dont_unroll",	"Unroll|DontUnroll"));
2795
2796	fillRandomScalars(rnd, -100.f, 100.f, &inputFloats[0], numElements);
2797
2798	for (size_t ndx = 0; ndx < numElements; ++ndx)
2799		outputFloats[ndx] = inputFloats[ndx] + 4.f;
2800
2801	for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
2802	{
2803		map<string, string>		specializations;
2804		ComputeShaderSpec		spec;
2805
2806		specializations["CONTROL"] = cases[caseNdx].param;
2807		spec.assembly = shaderTemplate.specialize(specializations);
2808		spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
2809		spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
2810		spec.numWorkGroups = IVec3(numElements, 1, 1);
2811
2812		group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
2813	}
2814
2815	return group.release();
2816}
2817
2818// Assembly code used for testing selection control is based on GLSL source code:
2819// #version 430
2820//
2821// layout(std140, set = 0, binding = 0) readonly buffer Input {
2822//   float elements[];
2823// } input_data;
2824// layout(std140, set = 0, binding = 1) writeonly buffer Output {
2825//   float elements[];
2826// } output_data;
2827//
2828// void main() {
2829//   uint x = gl_GlobalInvocationID.x;
2830//   float val = input_data.elements[x];
2831//   if (val > 10.f)
2832//     output_data.elements[x] = val + 1.f;
2833//   else
2834//     output_data.elements[x] = val - 1.f;
2835// }
2836tcu::TestCaseGroup* createSelectionControlGroup (tcu::TestContext& testCtx)
2837{
2838	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "selection_control", "Tests selection control cases"));
2839	vector<CaseParameter>			cases;
2840	de::Random						rnd				(deStringHash(group->getName()));
2841	const int						numElements		= 100;
2842	vector<float>					inputFloats		(numElements, 0);
2843	vector<float>					outputFloats	(numElements, 0);
2844	const StringTemplate			shaderTemplate	(
2845		string(s_ShaderPreamble) +
2846
2847		"OpSource GLSL 430\n"
2848		"OpName %main \"main\"\n"
2849		"OpName %id \"gl_GlobalInvocationID\"\n"
2850
2851		"OpDecorate %id BuiltIn GlobalInvocationId\n"
2852
2853		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
2854
2855		"%id       = OpVariable %uvec3ptr Input\n"
2856		"%zero     = OpConstant %i32 0\n"
2857		"%constf1  = OpConstant %f32 1.0\n"
2858		"%constf10 = OpConstant %f32 10.0\n"
2859
2860		"%main     = OpFunction %void None %voidf\n"
2861		"%entry    = OpLabel\n"
2862		"%idval    = OpLoad %uvec3 %id\n"
2863		"%x        = OpCompositeExtract %u32 %idval 0\n"
2864		"%inloc    = OpAccessChain %f32ptr %indata %zero %x\n"
2865		"%inval    = OpLoad %f32 %inloc\n"
2866		"%outloc   = OpAccessChain %f32ptr %outdata %zero %x\n"
2867		"%cmp_gt   = OpFOrdGreaterThan %bool %inval %constf10\n"
2868
2869		"            OpSelectionMerge %if_end ${CONTROL}\n"
2870		"            OpBranchConditional %cmp_gt %if_true %if_false\n"
2871		"%if_true  = OpLabel\n"
2872		"%addf1    = OpFAdd %f32 %inval %constf1\n"
2873		"            OpStore %outloc %addf1\n"
2874		"            OpBranch %if_end\n"
2875		"%if_false = OpLabel\n"
2876		"%subf1    = OpFSub %f32 %inval %constf1\n"
2877		"            OpStore %outloc %subf1\n"
2878		"            OpBranch %if_end\n"
2879		"%if_end   = OpLabel\n"
2880		"            OpReturn\n"
2881		"            OpFunctionEnd\n");
2882
2883	cases.push_back(CaseParameter("none",					"None"));
2884	cases.push_back(CaseParameter("flatten",				"Flatten"));
2885	cases.push_back(CaseParameter("dont_flatten",			"DontFlatten"));
2886	cases.push_back(CaseParameter("flatten_dont_flatten",	"DontFlatten|Flatten"));
2887
2888	fillRandomScalars(rnd, -100.f, 100.f, &inputFloats[0], numElements);
2889
2890	for (size_t ndx = 0; ndx < numElements; ++ndx)
2891		outputFloats[ndx] = inputFloats[ndx] + (inputFloats[ndx] > 10.f ? 1.f : -1.f);
2892
2893	for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
2894	{
2895		map<string, string>		specializations;
2896		ComputeShaderSpec		spec;
2897
2898		specializations["CONTROL"] = cases[caseNdx].param;
2899		spec.assembly = shaderTemplate.specialize(specializations);
2900		spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
2901		spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
2902		spec.numWorkGroups = IVec3(numElements, 1, 1);
2903
2904		group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
2905	}
2906
2907	return group.release();
2908}
2909
2910// Assembly code used for testing function control is based on GLSL source code:
2911//
2912// #version 430
2913//
2914// layout(std140, set = 0, binding = 0) readonly buffer Input {
2915//   float elements[];
2916// } input_data;
2917// layout(std140, set = 0, binding = 1) writeonly buffer Output {
2918//   float elements[];
2919// } output_data;
2920//
2921// float const10() { return 10.f; }
2922//
2923// void main() {
2924//   uint x = gl_GlobalInvocationID.x;
2925//   output_data.elements[x] = input_data.elements[x] + const10();
2926// }
2927tcu::TestCaseGroup* createFunctionControlGroup (tcu::TestContext& testCtx)
2928{
2929	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "function_control", "Tests function control cases"));
2930	vector<CaseParameter>			cases;
2931	de::Random						rnd				(deStringHash(group->getName()));
2932	const int						numElements		= 100;
2933	vector<float>					inputFloats		(numElements, 0);
2934	vector<float>					outputFloats	(numElements, 0);
2935	const StringTemplate			shaderTemplate	(
2936		string(s_ShaderPreamble) +
2937
2938		"OpSource GLSL 430\n"
2939		"OpName %main \"main\"\n"
2940		"OpName %func_const10 \"const10(\"\n"
2941		"OpName %id \"gl_GlobalInvocationID\"\n"
2942
2943		"OpDecorate %id BuiltIn GlobalInvocationId\n"
2944
2945		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
2946
2947		"%f32f = OpTypeFunction %f32\n"
2948		"%id = OpVariable %uvec3ptr Input\n"
2949		"%zero = OpConstant %i32 0\n"
2950		"%constf10 = OpConstant %f32 10.0\n"
2951
2952		"%main         = OpFunction %void None %voidf\n"
2953		"%entry        = OpLabel\n"
2954		"%idval        = OpLoad %uvec3 %id\n"
2955		"%x            = OpCompositeExtract %u32 %idval 0\n"
2956		"%inloc        = OpAccessChain %f32ptr %indata %zero %x\n"
2957		"%inval        = OpLoad %f32 %inloc\n"
2958		"%ret_10       = OpFunctionCall %f32 %func_const10\n"
2959		"%fadd         = OpFAdd %f32 %inval %ret_10\n"
2960		"%outloc       = OpAccessChain %f32ptr %outdata %zero %x\n"
2961		"                OpStore %outloc %fadd\n"
2962		"                OpReturn\n"
2963		"                OpFunctionEnd\n"
2964
2965		"%func_const10 = OpFunction %f32 ${CONTROL} %f32f\n"
2966		"%label        = OpLabel\n"
2967		"                OpReturnValue %constf10\n"
2968		"                OpFunctionEnd\n");
2969
2970	cases.push_back(CaseParameter("none",						"None"));
2971	cases.push_back(CaseParameter("inline",						"Inline"));
2972	cases.push_back(CaseParameter("dont_inline",				"DontInline"));
2973	cases.push_back(CaseParameter("pure",						"Pure"));
2974	cases.push_back(CaseParameter("const",						"Const"));
2975	cases.push_back(CaseParameter("inline_pure",				"Inline|Pure"));
2976	cases.push_back(CaseParameter("const_dont_inline",			"Const|DontInline"));
2977	cases.push_back(CaseParameter("inline_dont_inline",			"Inline|DontInline"));
2978	cases.push_back(CaseParameter("pure_inline_dont_inline",	"Pure|Inline|DontInline"));
2979
2980	fillRandomScalars(rnd, -100.f, 100.f, &inputFloats[0], numElements);
2981
2982	for (size_t ndx = 0; ndx < numElements; ++ndx)
2983		outputFloats[ndx] = inputFloats[ndx] + 10.f;
2984
2985	for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
2986	{
2987		map<string, string>		specializations;
2988		ComputeShaderSpec		spec;
2989
2990		specializations["CONTROL"] = cases[caseNdx].param;
2991		spec.assembly = shaderTemplate.specialize(specializations);
2992		spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
2993		spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
2994		spec.numWorkGroups = IVec3(numElements, 1, 1);
2995
2996		group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
2997	}
2998
2999	return group.release();
3000}
3001
3002tcu::TestCaseGroup* createMemoryAccessGroup (tcu::TestContext& testCtx)
3003{
3004	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "memory_access", "Tests memory access cases"));
3005	vector<CaseParameter>			cases;
3006	de::Random						rnd				(deStringHash(group->getName()));
3007	const int						numElements		= 100;
3008	vector<float>					inputFloats		(numElements, 0);
3009	vector<float>					outputFloats	(numElements, 0);
3010	const StringTemplate			shaderTemplate	(
3011		string(s_ShaderPreamble) +
3012
3013		"OpSource GLSL 430\n"
3014		"OpName %main           \"main\"\n"
3015		"OpName %id             \"gl_GlobalInvocationID\"\n"
3016
3017		"OpDecorate %id BuiltIn GlobalInvocationId\n"
3018
3019		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
3020
3021		"%f32ptr_f  = OpTypePointer Function %f32\n"
3022
3023		"%id        = OpVariable %uvec3ptr Input\n"
3024		"%zero      = OpConstant %i32 0\n"
3025		"%four      = OpConstant %i32 4\n"
3026
3027		"%main      = OpFunction %void None %voidf\n"
3028		"%label     = OpLabel\n"
3029		"%copy      = OpVariable %f32ptr_f Function\n"
3030		"%idval     = OpLoad %uvec3 %id ${ACCESS}\n"
3031		"%x         = OpCompositeExtract %u32 %idval 0\n"
3032		"%inloc     = OpAccessChain %f32ptr %indata  %zero %x\n"
3033		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
3034		"             OpCopyMemory %copy %inloc ${ACCESS}\n"
3035		"%val1      = OpLoad %f32 %copy\n"
3036		"%val2      = OpLoad %f32 %inloc\n"
3037		"%add       = OpFAdd %f32 %val1 %val2\n"
3038		"             OpStore %outloc %add ${ACCESS}\n"
3039		"             OpReturn\n"
3040		"             OpFunctionEnd\n");
3041
3042	cases.push_back(CaseParameter("null",					""));
3043	cases.push_back(CaseParameter("none",					"None"));
3044	cases.push_back(CaseParameter("volatile",				"Volatile"));
3045	cases.push_back(CaseParameter("aligned",				"Aligned 4"));
3046	cases.push_back(CaseParameter("nontemporal",			"Nontemporal"));
3047	cases.push_back(CaseParameter("aligned_nontemporal",	"Aligned|Nontemporal 4"));
3048	cases.push_back(CaseParameter("aligned_volatile",		"Volatile|Aligned 4"));
3049
3050	fillRandomScalars(rnd, -100.f, 100.f, &inputFloats[0], numElements);
3051
3052	for (size_t ndx = 0; ndx < numElements; ++ndx)
3053		outputFloats[ndx] = inputFloats[ndx] + inputFloats[ndx];
3054
3055	for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
3056	{
3057		map<string, string>		specializations;
3058		ComputeShaderSpec		spec;
3059
3060		specializations["ACCESS"] = cases[caseNdx].param;
3061		spec.assembly = shaderTemplate.specialize(specializations);
3062		spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
3063		spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
3064		spec.numWorkGroups = IVec3(numElements, 1, 1);
3065
3066		group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
3067	}
3068
3069	return group.release();
3070}
3071
3072// Checks that we can get undefined values for various types, without exercising a computation with it.
3073tcu::TestCaseGroup* createOpUndefGroup (tcu::TestContext& testCtx)
3074{
3075	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opundef", "Tests the OpUndef instruction"));
3076	vector<CaseParameter>			cases;
3077	de::Random						rnd				(deStringHash(group->getName()));
3078	const int						numElements		= 100;
3079	vector<float>					positiveFloats	(numElements, 0);
3080	vector<float>					negativeFloats	(numElements, 0);
3081	const StringTemplate			shaderTemplate	(
3082		string(s_ShaderPreamble) +
3083
3084		"OpSource GLSL 430\n"
3085		"OpName %main           \"main\"\n"
3086		"OpName %id             \"gl_GlobalInvocationID\"\n"
3087
3088		"OpDecorate %id BuiltIn GlobalInvocationId\n"
3089
3090		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
3091
3092		"${TYPE}\n"
3093
3094		"%id        = OpVariable %uvec3ptr Input\n"
3095		"%zero      = OpConstant %i32 0\n"
3096
3097		"%main      = OpFunction %void None %voidf\n"
3098		"%label     = OpLabel\n"
3099
3100		"%undef     = OpUndef %type\n"
3101
3102		"%idval     = OpLoad %uvec3 %id\n"
3103		"%x         = OpCompositeExtract %u32 %idval 0\n"
3104
3105		"%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
3106		"%inval     = OpLoad %f32 %inloc\n"
3107		"%neg       = OpFNegate %f32 %inval\n"
3108		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
3109		"             OpStore %outloc %neg\n"
3110		"             OpReturn\n"
3111		"             OpFunctionEnd\n");
3112
3113	cases.push_back(CaseParameter("bool",			"%type = OpTypeBool"));
3114	cases.push_back(CaseParameter("sint32",			"%type = OpTypeInt 32 1"));
3115	cases.push_back(CaseParameter("uint32",			"%type = OpTypeInt 32 0"));
3116	cases.push_back(CaseParameter("float32",		"%type = OpTypeFloat 32"));
3117	cases.push_back(CaseParameter("vec4float32",	"%type = OpTypeVector %f32 4"));
3118	cases.push_back(CaseParameter("vec2uint32",		"%type = OpTypeVector %u32 2"));
3119	cases.push_back(CaseParameter("matrix",			"%type = OpTypeMatrix %fvec3 3"));
3120	cases.push_back(CaseParameter("image",			"%type = OpTypeImage %f32 2D 0 0 0 0 Unknown"));
3121	cases.push_back(CaseParameter("sampler",		"%type = OpTypeSampler"));
3122	cases.push_back(CaseParameter("sampledimage",	"%img = OpTypeImage %f32 2D 0 0 0 0 Unknown\n"
3123													"%type = OpTypeSampledImage %img"));
3124	cases.push_back(CaseParameter("array",			"%100 = OpConstant %u32 100\n"
3125													"%type = OpTypeArray %i32 %100"));
3126	cases.push_back(CaseParameter("runtimearray",	"%type = OpTypeRuntimeArray %f32"));
3127	cases.push_back(CaseParameter("struct",			"%type = OpTypeStruct %f32 %i32 %u32"));
3128	cases.push_back(CaseParameter("pointer",		"%type = OpTypePointer Function %i32"));
3129
3130	fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
3131
3132	for (size_t ndx = 0; ndx < numElements; ++ndx)
3133		negativeFloats[ndx] = -positiveFloats[ndx];
3134
3135	for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
3136	{
3137		map<string, string>		specializations;
3138		ComputeShaderSpec		spec;
3139
3140		specializations["TYPE"] = cases[caseNdx].param;
3141		spec.assembly = shaderTemplate.specialize(specializations);
3142		spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
3143		spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
3144		spec.numWorkGroups = IVec3(numElements, 1, 1);
3145
3146		group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
3147	}
3148
3149		return group.release();
3150}
3151typedef std::pair<std::string, VkShaderStageFlagBits>	EntryToStage;
3152typedef map<string, vector<EntryToStage> >				ModuleMap;
3153typedef map<VkShaderStageFlagBits, vector<deInt32> >	StageToSpecConstantMap;
3154
3155// Context for a specific test instantiation. For example, an instantiation
3156// may test colors yellow/magenta/cyan/mauve in a tesselation shader
3157// with an entry point named 'main_to_the_main'
3158struct InstanceContext
3159{
3160	// Map of modules to what entry_points we care to use from those modules.
3161	ModuleMap				moduleMap;
3162	RGBA					inputColors[4];
3163	RGBA					outputColors[4];
3164	// Concrete SPIR-V code to test via boilerplate specialization.
3165	map<string, string>		testCodeFragments;
3166	StageToSpecConstantMap	specConstants;
3167	bool					hasTessellation;
3168	VkShaderStageFlagBits	requiredStages;
3169
3170	InstanceContext (const RGBA (&inputs)[4], const RGBA (&outputs)[4], const map<string, string>& testCodeFragments_, const StageToSpecConstantMap& specConstants_)
3171		: testCodeFragments		(testCodeFragments_)
3172		, specConstants			(specConstants_)
3173		, hasTessellation		(false)
3174		, requiredStages		(static_cast<VkShaderStageFlagBits>(0))
3175	{
3176		inputColors[0]		= inputs[0];
3177		inputColors[1]		= inputs[1];
3178		inputColors[2]		= inputs[2];
3179		inputColors[3]		= inputs[3];
3180
3181		outputColors[0]		= outputs[0];
3182		outputColors[1]		= outputs[1];
3183		outputColors[2]		= outputs[2];
3184		outputColors[3]		= outputs[3];
3185	}
3186
3187	InstanceContext (const InstanceContext& other)
3188		: moduleMap			(other.moduleMap)
3189		, testCodeFragments	(other.testCodeFragments)
3190		, specConstants		(other.specConstants)
3191		, hasTessellation	(other.hasTessellation)
3192		, requiredStages    (other.requiredStages)
3193	{
3194		inputColors[0]		= other.inputColors[0];
3195		inputColors[1]		= other.inputColors[1];
3196		inputColors[2]		= other.inputColors[2];
3197		inputColors[3]		= other.inputColors[3];
3198
3199		outputColors[0]		= other.outputColors[0];
3200		outputColors[1]		= other.outputColors[1];
3201		outputColors[2]		= other.outputColors[2];
3202		outputColors[3]		= other.outputColors[3];
3203	}
3204};
3205
3206// A description of a shader to be used for a single stage of the graphics pipeline.
3207struct ShaderElement
3208{
3209	// The module that contains this shader entrypoint.
3210	string					moduleName;
3211
3212	// The name of the entrypoint.
3213	string					entryName;
3214
3215	// Which shader stage this entry point represents.
3216	VkShaderStageFlagBits	stage;
3217
3218	ShaderElement (const string& moduleName_, const string& entryPoint_, VkShaderStageFlagBits shaderStage_)
3219		: moduleName(moduleName_)
3220		, entryName(entryPoint_)
3221		, stage(shaderStage_)
3222	{
3223	}
3224};
3225
3226void getDefaultColors (RGBA (&colors)[4])
3227{
3228	colors[0] = RGBA::white();
3229	colors[1] = RGBA::red();
3230	colors[2] = RGBA::green();
3231	colors[3] = RGBA::blue();
3232}
3233
3234void getHalfColorsFullAlpha (RGBA (&colors)[4])
3235{
3236	colors[0] = RGBA(127, 127, 127, 255);
3237	colors[1] = RGBA(127, 0,   0,	255);
3238	colors[2] = RGBA(0,	  127, 0,	255);
3239	colors[3] = RGBA(0,	  0,   127, 255);
3240}
3241
3242void getInvertedDefaultColors (RGBA (&colors)[4])
3243{
3244	colors[0] = RGBA(0,		0,		0,		255);
3245	colors[1] = RGBA(0,		255,	255,	255);
3246	colors[2] = RGBA(255,	0,		255,	255);
3247	colors[3] = RGBA(255,	255,	0,		255);
3248}
3249
3250// Turns a statically sized array of ShaderElements into an instance-context
3251// by setting up the mapping of modules to their contained shaders and stages.
3252// The inputs and expected outputs are given by inputColors and outputColors
3253template<size_t N>
3254InstanceContext createInstanceContext (const ShaderElement (&elements)[N], const RGBA (&inputColors)[4], const RGBA (&outputColors)[4], const map<string, string>& testCodeFragments, const StageToSpecConstantMap& specConstants)
3255{
3256	InstanceContext ctx (inputColors, outputColors, testCodeFragments, specConstants);
3257	for (size_t i = 0; i < N; ++i)
3258	{
3259		ctx.moduleMap[elements[i].moduleName].push_back(std::make_pair(elements[i].entryName, elements[i].stage));
3260		ctx.requiredStages = static_cast<VkShaderStageFlagBits>(ctx.requiredStages | elements[i].stage);
3261	}
3262	return ctx;
3263}
3264
3265template<size_t N>
3266inline InstanceContext createInstanceContext (const ShaderElement (&elements)[N], RGBA (&inputColors)[4], const RGBA (&outputColors)[4], const map<string, string>& testCodeFragments)
3267{
3268	return createInstanceContext(elements, inputColors, outputColors, testCodeFragments, StageToSpecConstantMap());
3269}
3270
3271// The same as createInstanceContext above, but with default colors.
3272template<size_t N>
3273InstanceContext createInstanceContext (const ShaderElement (&elements)[N], const map<string, string>& testCodeFragments)
3274{
3275	RGBA defaultColors[4];
3276	getDefaultColors(defaultColors);
3277	return createInstanceContext(elements, defaultColors, defaultColors, testCodeFragments);
3278}
3279
3280// For the current InstanceContext, constructs the required modules and shader stage create infos.
3281void createPipelineShaderStages (const DeviceInterface& vk, const VkDevice vkDevice, InstanceContext& instance, Context& context, vector<ModuleHandleSp>& modules, vector<VkPipelineShaderStageCreateInfo>& createInfos)
3282{
3283	for (ModuleMap::const_iterator moduleNdx = instance.moduleMap.begin(); moduleNdx != instance.moduleMap.end(); ++moduleNdx)
3284	{
3285		const ModuleHandleSp mod(new Unique<VkShaderModule>(createShaderModule(vk, vkDevice, context.getBinaryCollection().get(moduleNdx->first), 0)));
3286		modules.push_back(ModuleHandleSp(mod));
3287		for (vector<EntryToStage>::const_iterator shaderNdx = moduleNdx->second.begin(); shaderNdx != moduleNdx->second.end(); ++shaderNdx)
3288		{
3289			const EntryToStage&						stage			= *shaderNdx;
3290			const VkPipelineShaderStageCreateInfo	shaderParam		=
3291			{
3292				VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,	//	VkStructureType			sType;
3293				DE_NULL,												//	const void*				pNext;
3294				(VkPipelineShaderStageCreateFlags)0,
3295				stage.second,											//	VkShaderStageFlagBits	stage;
3296				**modules.back(),										//	VkShaderModule			module;
3297				stage.first.c_str(),									//	const char*				pName;
3298				(const VkSpecializationInfo*)DE_NULL,
3299			};
3300			createInfos.push_back(shaderParam);
3301		}
3302	}
3303}
3304
3305#define SPIRV_ASSEMBLY_TYPES																	\
3306	"%void = OpTypeVoid\n"																		\
3307	"%bool = OpTypeBool\n"																		\
3308																								\
3309	"%i32 = OpTypeInt 32 1\n"																	\
3310	"%u32 = OpTypeInt 32 0\n"																	\
3311																								\
3312	"%f32 = OpTypeFloat 32\n"																	\
3313	"%v3f32 = OpTypeVector %f32 3\n"															\
3314	"%v4f32 = OpTypeVector %f32 4\n"															\
3315																								\
3316	"%v4f32_function = OpTypeFunction %v4f32 %v4f32\n"											\
3317	"%fun = OpTypeFunction %void\n"																\
3318																								\
3319	"%ip_f32 = OpTypePointer Input %f32\n"														\
3320	"%ip_i32 = OpTypePointer Input %i32\n"														\
3321	"%ip_v3f32 = OpTypePointer Input %v3f32\n"													\
3322	"%ip_v4f32 = OpTypePointer Input %v4f32\n"													\
3323																								\
3324	"%op_f32 = OpTypePointer Output %f32\n"														\
3325	"%op_v4f32 = OpTypePointer Output %v4f32\n"													\
3326																								\
3327	"%fp_f32   = OpTypePointer Function %f32\n"													\
3328	"%fp_i32   = OpTypePointer Function %i32\n"													\
3329	"%fp_v4f32 = OpTypePointer Function %v4f32\n"
3330
3331#define SPIRV_ASSEMBLY_CONSTANTS																\
3332	"%c_f32_1 = OpConstant %f32 1.0\n"															\
3333	"%c_f32_0 = OpConstant %f32 0.0\n"															\
3334	"%c_f32_0_5 = OpConstant %f32 0.5\n"														\
3335	"%c_f32_n1  = OpConstant %f32 -1.\n"														\
3336	"%c_f32_7 = OpConstant %f32 7.0\n"															\
3337	"%c_f32_8 = OpConstant %f32 8.0\n"															\
3338	"%c_i32_0 = OpConstant %i32 0\n"															\
3339	"%c_i32_1 = OpConstant %i32 1\n"															\
3340	"%c_i32_2 = OpConstant %i32 2\n"															\
3341	"%c_i32_3 = OpConstant %i32 3\n"															\
3342	"%c_i32_4 = OpConstant %i32 4\n"															\
3343	"%c_u32_0 = OpConstant %u32 0\n"															\
3344	"%c_u32_1 = OpConstant %u32 1\n"															\
3345	"%c_u32_2 = OpConstant %u32 2\n"															\
3346	"%c_u32_3 = OpConstant %u32 3\n"															\
3347	"%c_u32_32 = OpConstant %u32 32\n"															\
3348	"%c_u32_4 = OpConstant %u32 4\n"															\
3349	"%c_u32_31_bits = OpConstant %u32 0x7FFFFFFF\n"												\
3350	"%c_v4f32_1_1_1_1 = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_1\n"		\
3351	"%c_v4f32_1_0_0_1 = OpConstantComposite %v4f32 %c_f32_1 %c_f32_0 %c_f32_0 %c_f32_1\n"		\
3352	"%c_v4f32_0_5_0_5_0_5_0_5 = OpConstantComposite %v4f32 %c_f32_0_5 %c_f32_0_5 %c_f32_0_5 %c_f32_0_5\n"
3353
3354#define SPIRV_ASSEMBLY_ARRAYS																	\
3355	"%a1f32 = OpTypeArray %f32 %c_u32_1\n"														\
3356	"%a2f32 = OpTypeArray %f32 %c_u32_2\n"														\
3357	"%a3v4f32 = OpTypeArray %v4f32 %c_u32_3\n"													\
3358	"%a4f32 = OpTypeArray %f32 %c_u32_4\n"														\
3359	"%a32v4f32 = OpTypeArray %v4f32 %c_u32_32\n"												\
3360	"%ip_a3v4f32 = OpTypePointer Input %a3v4f32\n"												\
3361	"%ip_a32v4f32 = OpTypePointer Input %a32v4f32\n"											\
3362	"%op_a2f32 = OpTypePointer Output %a2f32\n"													\
3363	"%op_a3v4f32 = OpTypePointer Output %a3v4f32\n"												\
3364	"%op_a4f32 = OpTypePointer Output %a4f32\n"
3365
3366// Creates vertex-shader assembly by specializing a boilerplate StringTemplate
3367// on fragments, which must (at least) map "testfun" to an OpFunction definition
3368// for %test_code that takes and returns a %v4f32.  Boilerplate IDs are prefixed
3369// with "BP_" to avoid collisions with fragments.
3370//
3371// It corresponds roughly to this GLSL:
3372//;
3373// layout(location = 0) in vec4 position;
3374// layout(location = 1) in vec4 color;
3375// layout(location = 1) out highp vec4 vtxColor;
3376// void main (void) { gl_Position = position; vtxColor = test_func(color); }
3377string makeVertexShaderAssembly(const map<string, string>& fragments)
3378{
3379// \todo [2015-11-23 awoloszyn] Remove OpName once these have stabalized
3380	static const char vertexShaderBoilerplate[] =
3381		"OpCapability Shader\n"
3382		"OpMemoryModel Logical GLSL450\n"
3383		"OpEntryPoint Vertex %main \"main\" %BP_stream %BP_position %BP_vtx_color %BP_color %BP_gl_VertexID %BP_gl_InstanceID\n"
3384		"${debug:opt}\n"
3385		"OpName %main \"main\"\n"
3386		"OpName %BP_gl_PerVertex \"gl_PerVertex\"\n"
3387		"OpMemberName %BP_gl_PerVertex 0 \"gl_Position\"\n"
3388		"OpMemberName %BP_gl_PerVertex 1 \"gl_PointSize\"\n"
3389		"OpMemberName %BP_gl_PerVertex 2 \"gl_ClipDistance\"\n"
3390		"OpMemberName %BP_gl_PerVertex 3 \"gl_CullDistance\"\n"
3391		"OpName %test_code \"testfun(vf4;\"\n"
3392		"OpName %BP_stream \"\"\n"
3393		"OpName %BP_position \"position\"\n"
3394		"OpName %BP_vtx_color \"vtxColor\"\n"
3395		"OpName %BP_color \"color\"\n"
3396		"OpName %BP_gl_VertexID \"gl_VertexID\"\n"
3397		"OpName %BP_gl_InstanceID \"gl_InstanceID\"\n"
3398		"OpMemberDecorate %BP_gl_PerVertex 0 BuiltIn Position\n"
3399		"OpMemberDecorate %BP_gl_PerVertex 1 BuiltIn PointSize\n"
3400		"OpMemberDecorate %BP_gl_PerVertex 2 BuiltIn ClipDistance\n"
3401		"OpMemberDecorate %BP_gl_PerVertex 3 BuiltIn CullDistance\n"
3402		"OpDecorate %BP_gl_PerVertex Block\n"
3403		"OpDecorate %BP_position Location 0\n"
3404		"OpDecorate %BP_vtx_color Location 1\n"
3405		"OpDecorate %BP_color Location 1\n"
3406		"OpDecorate %BP_gl_VertexID BuiltIn VertexId\n"
3407		"OpDecorate %BP_gl_InstanceID BuiltIn InstanceId\n"
3408		"${decoration:opt}\n"
3409		SPIRV_ASSEMBLY_TYPES
3410		SPIRV_ASSEMBLY_CONSTANTS
3411		SPIRV_ASSEMBLY_ARRAYS
3412		"%BP_gl_PerVertex = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
3413		"%BP_op_gl_PerVertex = OpTypePointer Output %BP_gl_PerVertex\n"
3414		"%BP_stream = OpVariable %BP_op_gl_PerVertex Output\n"
3415		"%BP_position = OpVariable %ip_v4f32 Input\n"
3416		"%BP_vtx_color = OpVariable %op_v4f32 Output\n"
3417		"%BP_color = OpVariable %ip_v4f32 Input\n"
3418		"%BP_gl_VertexID = OpVariable %ip_i32 Input\n"
3419		"%BP_gl_InstanceID = OpVariable %ip_i32 Input\n"
3420		"${pre_main:opt}\n"
3421		"%main = OpFunction %void None %fun\n"
3422		"%BP_label = OpLabel\n"
3423		"%BP_pos = OpLoad %v4f32 %BP_position\n"
3424		"%BP_gl_pos = OpAccessChain %op_v4f32 %BP_stream %c_i32_0\n"
3425		"OpStore %BP_gl_pos %BP_pos\n"
3426		"%BP_col = OpLoad %v4f32 %BP_color\n"
3427		"%BP_col_transformed = OpFunctionCall %v4f32 %test_code %BP_col\n"
3428		"OpStore %BP_vtx_color %BP_col_transformed\n"
3429		"OpReturn\n"
3430		"OpFunctionEnd\n"
3431		"${testfun}\n";
3432	return tcu::StringTemplate(vertexShaderBoilerplate).specialize(fragments);
3433}
3434
3435// Creates tess-control-shader assembly by specializing a boilerplate
3436// StringTemplate on fragments, which must (at least) map "testfun" to an
3437// OpFunction definition for %test_code that takes and returns a %v4f32.
3438// Boilerplate IDs are prefixed with "BP_" to avoid collisions with fragments.
3439//
3440// It roughly corresponds to the following GLSL.
3441//
3442// #version 450
3443// layout(vertices = 3) out;
3444// layout(location = 1) in vec4 in_color[];
3445// layout(location = 1) out vec4 out_color[];
3446//
3447// void main() {
3448//   out_color[gl_InvocationID] = testfun(in_color[gl_InvocationID]);
3449//   gl_out[gl_InvocationID].gl_Position = gl_in[gl_InvocationID].gl_Position;
3450//   if (gl_InvocationID == 0) {
3451//     gl_TessLevelOuter[0] = 1.0;
3452//     gl_TessLevelOuter[1] = 1.0;
3453//     gl_TessLevelOuter[2] = 1.0;
3454//     gl_TessLevelInner[0] = 1.0;
3455//   }
3456// }
3457string makeTessControlShaderAssembly (const map<string, string>& fragments)
3458{
3459	static const char tessControlShaderBoilerplate[] =
3460		"OpCapability Tessellation\n"
3461		"OpMemoryModel Logical GLSL450\n"
3462		"OpEntryPoint TessellationControl %BP_main \"main\" %BP_out_color %BP_gl_InvocationID %BP_in_color %BP_gl_out %BP_gl_in %BP_gl_TessLevelOuter %BP_gl_TessLevelInner\n"
3463		"OpExecutionMode %BP_main OutputVertices 3\n"
3464		"${debug:opt}\n"
3465		"OpName %BP_main \"main\"\n"
3466		"OpName %test_code \"testfun(vf4;\"\n"
3467		"OpName %BP_out_color \"out_color\"\n"
3468		"OpName %BP_gl_InvocationID \"gl_InvocationID\"\n"
3469		"OpName %BP_in_color \"in_color\"\n"
3470		"OpName %BP_gl_PerVertex \"gl_PerVertex\"\n"
3471		"OpMemberName %BP_gl_PerVertex 0 \"gl_Position\"\n"
3472		"OpMemberName %BP_gl_PerVertex 1 \"gl_PointSize\"\n"
3473		"OpMemberName %BP_gl_PerVertex 2 \"gl_ClipDistance\"\n"
3474		"OpMemberName %BP_gl_PerVertex 3 \"gl_CullDistance\"\n"
3475		"OpName %BP_gl_out \"gl_out\"\n"
3476		"OpName %BP_gl_PVOut \"gl_PerVertex\"\n"
3477		"OpMemberName %BP_gl_PVOut 0 \"gl_Position\"\n"
3478		"OpMemberName %BP_gl_PVOut 1 \"gl_PointSize\"\n"
3479		"OpMemberName %BP_gl_PVOut 2 \"gl_ClipDistance\"\n"
3480		"OpMemberName %BP_gl_PVOut 3 \"gl_CullDistance\"\n"
3481		"OpName %BP_gl_in \"gl_in\"\n"
3482		"OpName %BP_gl_TessLevelOuter \"gl_TessLevelOuter\"\n"
3483		"OpName %BP_gl_TessLevelInner \"gl_TessLevelInner\"\n"
3484		"OpDecorate %BP_out_color Location 1\n"
3485		"OpDecorate %BP_gl_InvocationID BuiltIn InvocationId\n"
3486		"OpDecorate %BP_in_color Location 1\n"
3487		"OpMemberDecorate %BP_gl_PerVertex 0 BuiltIn Position\n"
3488		"OpMemberDecorate %BP_gl_PerVertex 1 BuiltIn PointSize\n"
3489		"OpMemberDecorate %BP_gl_PerVertex 2 BuiltIn ClipDistance\n"
3490		"OpMemberDecorate %BP_gl_PerVertex 3 BuiltIn CullDistance\n"
3491		"OpDecorate %BP_gl_PerVertex Block\n"
3492		"OpMemberDecorate %BP_gl_PVOut 0 BuiltIn Position\n"
3493		"OpMemberDecorate %BP_gl_PVOut 1 BuiltIn PointSize\n"
3494		"OpMemberDecorate %BP_gl_PVOut 2 BuiltIn ClipDistance\n"
3495		"OpMemberDecorate %BP_gl_PVOut 3 BuiltIn CullDistance\n"
3496		"OpDecorate %BP_gl_PVOut Block\n"
3497		"OpDecorate %BP_gl_TessLevelOuter Patch\n"
3498		"OpDecorate %BP_gl_TessLevelOuter BuiltIn TessLevelOuter\n"
3499		"OpDecorate %BP_gl_TessLevelInner Patch\n"
3500		"OpDecorate %BP_gl_TessLevelInner BuiltIn TessLevelInner\n"
3501		"${decoration:opt}\n"
3502		SPIRV_ASSEMBLY_TYPES
3503		SPIRV_ASSEMBLY_CONSTANTS
3504		SPIRV_ASSEMBLY_ARRAYS
3505		"%BP_out_color = OpVariable %op_a3v4f32 Output\n"
3506		"%BP_gl_InvocationID = OpVariable %ip_i32 Input\n"
3507		"%BP_in_color = OpVariable %ip_a32v4f32 Input\n"
3508		"%BP_gl_PerVertex = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
3509		"%BP_a3_gl_PerVertex = OpTypeArray %BP_gl_PerVertex %c_u32_3\n"
3510		"%BP_op_a3_gl_PerVertex = OpTypePointer Output %BP_a3_gl_PerVertex\n"
3511		"%BP_gl_out = OpVariable %BP_op_a3_gl_PerVertex Output\n"
3512		"%BP_gl_PVOut = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
3513		"%BP_a32_gl_PVOut = OpTypeArray %BP_gl_PVOut %c_u32_32\n"
3514		"%BP_ip_a32_gl_PVOut = OpTypePointer Input %BP_a32_gl_PVOut\n"
3515		"%BP_gl_in = OpVariable %BP_ip_a32_gl_PVOut Input\n"
3516		"%BP_gl_TessLevelOuter = OpVariable %op_a4f32 Output\n"
3517		"%BP_gl_TessLevelInner = OpVariable %op_a2f32 Output\n"
3518		"${pre_main:opt}\n"
3519
3520		"%BP_main = OpFunction %void None %fun\n"
3521		"%BP_label = OpLabel\n"
3522
3523		"%BP_gl_Invoc = OpLoad %i32 %BP_gl_InvocationID\n"
3524
3525		"%BP_in_col_loc = OpAccessChain %ip_v4f32 %BP_in_color %BP_gl_Invoc\n"
3526		"%BP_out_col_loc = OpAccessChain %op_v4f32 %BP_out_color %BP_gl_Invoc\n"
3527		"%BP_in_col_val = OpLoad %v4f32 %BP_in_col_loc\n"
3528		"%BP_clr_transformed = OpFunctionCall %v4f32 %test_code %BP_in_col_val\n"
3529		"OpStore %BP_out_col_loc %BP_clr_transformed\n"
3530
3531		"%BP_in_pos_loc = OpAccessChain %ip_v4f32 %BP_gl_in %BP_gl_Invoc %c_i32_0\n"
3532		"%BP_out_pos_loc = OpAccessChain %op_v4f32 %BP_gl_out %BP_gl_Invoc %c_i32_0\n"
3533		"%BP_in_pos_val = OpLoad %v4f32 %BP_in_pos_loc\n"
3534		"OpStore %BP_out_pos_loc %BP_in_pos_val\n"
3535
3536		"%BP_cmp = OpIEqual %bool %BP_gl_Invoc %c_i32_0\n"
3537		"OpSelectionMerge %BP_merge_label None\n"
3538		"OpBranchConditional %BP_cmp %BP_if_label %BP_merge_label\n"
3539		"%BP_if_label = OpLabel\n"
3540		"%BP_gl_TessLevelOuterPos_0 = OpAccessChain %op_f32 %BP_gl_TessLevelOuter %c_i32_0\n"
3541		"%BP_gl_TessLevelOuterPos_1 = OpAccessChain %op_f32 %BP_gl_TessLevelOuter %c_i32_1\n"
3542		"%BP_gl_TessLevelOuterPos_2 = OpAccessChain %op_f32 %BP_gl_TessLevelOuter %c_i32_2\n"
3543		"%BP_gl_TessLevelInnerPos_0 = OpAccessChain %op_f32 %BP_gl_TessLevelInner %c_i32_0\n"
3544		"OpStore %BP_gl_TessLevelOuterPos_0 %c_f32_1\n"
3545		"OpStore %BP_gl_TessLevelOuterPos_1 %c_f32_1\n"
3546		"OpStore %BP_gl_TessLevelOuterPos_2 %c_f32_1\n"
3547		"OpStore %BP_gl_TessLevelInnerPos_0 %c_f32_1\n"
3548		"OpBranch %BP_merge_label\n"
3549		"%BP_merge_label = OpLabel\n"
3550		"OpReturn\n"
3551		"OpFunctionEnd\n"
3552		"${testfun}\n";
3553	return tcu::StringTemplate(tessControlShaderBoilerplate).specialize(fragments);
3554}
3555
3556// Creates tess-evaluation-shader assembly by specializing a boilerplate
3557// StringTemplate on fragments, which must (at least) map "testfun" to an
3558// OpFunction definition for %test_code that takes and returns a %v4f32.
3559// Boilerplate IDs are prefixed with "BP_" to avoid collisions with fragments.
3560//
3561// It roughly corresponds to the following glsl.
3562//
3563// #version 450
3564//
3565// layout(triangles, equal_spacing, ccw) in;
3566// layout(location = 1) in vec4 in_color[];
3567// layout(location = 1) out vec4 out_color;
3568//
3569// #define interpolate(val)
3570//   vec4(gl_TessCoord.x) * val[0] + vec4(gl_TessCoord.y) * val[1] +
3571//          vec4(gl_TessCoord.z) * val[2]
3572//
3573// void main() {
3574//   gl_Position = vec4(gl_TessCoord.x) * gl_in[0].gl_Position +
3575//                  vec4(gl_TessCoord.y) * gl_in[1].gl_Position +
3576//                  vec4(gl_TessCoord.z) * gl_in[2].gl_Position;
3577//   out_color = testfun(interpolate(in_color));
3578// }
3579string makeTessEvalShaderAssembly(const map<string, string>& fragments)
3580{
3581	static const char tessEvalBoilerplate[] =
3582		"OpCapability Tessellation\n"
3583		"OpMemoryModel Logical GLSL450\n"
3584		"OpEntryPoint TessellationEvaluation %BP_main \"main\" %BP_stream %BP_gl_TessCoord %BP_gl_in %BP_out_color %BP_in_color\n"
3585		"OpExecutionMode %BP_main Triangles\n"
3586		"OpExecutionMode %BP_main SpacingEqual\n"
3587		"OpExecutionMode %BP_main VertexOrderCcw\n"
3588		"${debug:opt}\n"
3589		"OpName %BP_main \"main\"\n"
3590		"OpName %test_code \"testfun(vf4;\"\n"
3591		"OpName %BP_gl_PerVertexOut \"gl_PerVertex\"\n"
3592		"OpMemberName %BP_gl_PerVertexOut 0 \"gl_Position\"\n"
3593		"OpMemberName %BP_gl_PerVertexOut 1 \"gl_PointSize\"\n"
3594		"OpMemberName %BP_gl_PerVertexOut 2 \"gl_ClipDistance\"\n"
3595		"OpMemberName %BP_gl_PerVertexOut 3 \"gl_CullDistance\"\n"
3596		"OpName %BP_stream \"\"\n"
3597		"OpName %BP_gl_TessCoord \"gl_TessCoord\"\n"
3598		"OpName %BP_gl_PerVertexIn \"gl_PerVertex\"\n"
3599		"OpMemberName %BP_gl_PerVertexIn 0 \"gl_Position\"\n"
3600		"OpMemberName %BP_gl_PerVertexIn 1 \"gl_PointSize\"\n"
3601		"OpMemberName %BP_gl_PerVertexIn 2 \"gl_ClipDistance\"\n"
3602		"OpMemberName %BP_gl_PerVertexIn 3 \"gl_CullDistance\"\n"
3603		"OpName %BP_gl_in \"gl_in\"\n"
3604		"OpName %BP_out_color \"out_color\"\n"
3605		"OpName %BP_in_color \"in_color\"\n"
3606		"OpMemberDecorate %BP_gl_PerVertexOut 0 BuiltIn Position\n"
3607		"OpMemberDecorate %BP_gl_PerVertexOut 1 BuiltIn PointSize\n"
3608		"OpMemberDecorate %BP_gl_PerVertexOut 2 BuiltIn ClipDistance\n"
3609		"OpMemberDecorate %BP_gl_PerVertexOut 3 BuiltIn CullDistance\n"
3610		"OpDecorate %BP_gl_PerVertexOut Block\n"
3611		"OpDecorate %BP_gl_TessCoord BuiltIn TessCoord\n"
3612		"OpMemberDecorate %BP_gl_PerVertexIn 0 BuiltIn Position\n"
3613		"OpMemberDecorate %BP_gl_PerVertexIn 1 BuiltIn PointSize\n"
3614		"OpMemberDecorate %BP_gl_PerVertexIn 2 BuiltIn ClipDistance\n"
3615		"OpMemberDecorate %BP_gl_PerVertexIn 3 BuiltIn CullDistance\n"
3616		"OpDecorate %BP_gl_PerVertexIn Block\n"
3617		"OpDecorate %BP_out_color Location 1\n"
3618		"OpDecorate %BP_in_color Location 1\n"
3619		"${decoration:opt}\n"
3620		SPIRV_ASSEMBLY_TYPES
3621		SPIRV_ASSEMBLY_CONSTANTS
3622		SPIRV_ASSEMBLY_ARRAYS
3623		"%BP_gl_PerVertexOut = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
3624		"%BP_op_gl_PerVertexOut = OpTypePointer Output %BP_gl_PerVertexOut\n"
3625		"%BP_stream = OpVariable %BP_op_gl_PerVertexOut Output\n"
3626		"%BP_gl_TessCoord = OpVariable %ip_v3f32 Input\n"
3627		"%BP_gl_PerVertexIn = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
3628		"%BP_a32_gl_PerVertexIn = OpTypeArray %BP_gl_PerVertexIn %c_u32_32\n"
3629		"%BP_ip_a32_gl_PerVertexIn = OpTypePointer Input %BP_a32_gl_PerVertexIn\n"
3630		"%BP_gl_in = OpVariable %BP_ip_a32_gl_PerVertexIn Input\n"
3631		"%BP_out_color = OpVariable %op_v4f32 Output\n"
3632		"%BP_in_color = OpVariable %ip_a32v4f32 Input\n"
3633		"${pre_main:opt}\n"
3634		"%BP_main = OpFunction %void None %fun\n"
3635		"%BP_label = OpLabel\n"
3636		"%BP_gl_TC_0 = OpAccessChain %ip_f32 %BP_gl_TessCoord %c_u32_0\n"
3637		"%BP_gl_TC_1 = OpAccessChain %ip_f32 %BP_gl_TessCoord %c_u32_1\n"
3638		"%BP_gl_TC_2 = OpAccessChain %ip_f32 %BP_gl_TessCoord %c_u32_2\n"
3639		"%BP_gl_in_gl_Pos_0 = OpAccessChain %ip_v4f32 %BP_gl_in %c_i32_0 %c_i32_0\n"
3640		"%BP_gl_in_gl_Pos_1 = OpAccessChain %ip_v4f32 %BP_gl_in %c_i32_1 %c_i32_0\n"
3641		"%BP_gl_in_gl_Pos_2 = OpAccessChain %ip_v4f32 %BP_gl_in %c_i32_2 %c_i32_0\n"
3642
3643		"%BP_gl_OPos = OpAccessChain %op_v4f32 %BP_stream %c_i32_0\n"
3644		"%BP_in_color_0 = OpAccessChain %ip_v4f32 %BP_in_color %c_i32_0\n"
3645		"%BP_in_color_1 = OpAccessChain %ip_v4f32 %BP_in_color %c_i32_1\n"
3646		"%BP_in_color_2 = OpAccessChain %ip_v4f32 %BP_in_color %c_i32_2\n"
3647
3648		"%BP_TC_W_0 = OpLoad %f32 %BP_gl_TC_0\n"
3649		"%BP_TC_W_1 = OpLoad %f32 %BP_gl_TC_1\n"
3650		"%BP_TC_W_2 = OpLoad %f32 %BP_gl_TC_2\n"
3651		"%BP_v4f32_TC_0 = OpCompositeConstruct %v4f32 %BP_TC_W_0 %BP_TC_W_0 %BP_TC_W_0 %BP_TC_W_0\n"
3652		"%BP_v4f32_TC_1 = OpCompositeConstruct %v4f32 %BP_TC_W_1 %BP_TC_W_1 %BP_TC_W_1 %BP_TC_W_1\n"
3653		"%BP_v4f32_TC_2 = OpCompositeConstruct %v4f32 %BP_TC_W_2 %BP_TC_W_2 %BP_TC_W_2 %BP_TC_W_2\n"
3654
3655		"%BP_gl_IP_0 = OpLoad %v4f32 %BP_gl_in_gl_Pos_0\n"
3656		"%BP_gl_IP_1 = OpLoad %v4f32 %BP_gl_in_gl_Pos_1\n"
3657		"%BP_gl_IP_2 = OpLoad %v4f32 %BP_gl_in_gl_Pos_2\n"
3658
3659		"%BP_IP_W_0 = OpFMul %v4f32 %BP_v4f32_TC_0 %BP_gl_IP_0\n"
3660		"%BP_IP_W_1 = OpFMul %v4f32 %BP_v4f32_TC_1 %BP_gl_IP_1\n"
3661		"%BP_IP_W_2 = OpFMul %v4f32 %BP_v4f32_TC_2 %BP_gl_IP_2\n"
3662
3663		"%BP_pos_sum_0 = OpFAdd %v4f32 %BP_IP_W_0 %BP_IP_W_1\n"
3664		"%BP_pos_sum_1 = OpFAdd %v4f32 %BP_pos_sum_0 %BP_IP_W_2\n"
3665
3666		"OpStore %BP_gl_OPos %BP_pos_sum_1\n"
3667
3668		"%BP_IC_0 = OpLoad %v4f32 %BP_in_color_0\n"
3669		"%BP_IC_1 = OpLoad %v4f32 %BP_in_color_1\n"
3670		"%BP_IC_2 = OpLoad %v4f32 %BP_in_color_2\n"
3671
3672		"%BP_IC_W_0 = OpFMul %v4f32 %BP_v4f32_TC_0 %BP_IC_0\n"
3673		"%BP_IC_W_1 = OpFMul %v4f32 %BP_v4f32_TC_1 %BP_IC_1\n"
3674		"%BP_IC_W_2 = OpFMul %v4f32 %BP_v4f32_TC_2 %BP_IC_2\n"
3675
3676		"%BP_col_sum_0 = OpFAdd %v4f32 %BP_IC_W_0 %BP_IC_W_1\n"
3677		"%BP_col_sum_1 = OpFAdd %v4f32 %BP_col_sum_0 %BP_IC_W_2\n"
3678
3679		"%BP_clr_transformed = OpFunctionCall %v4f32 %test_code %BP_col_sum_1\n"
3680
3681		"OpStore %BP_out_color %BP_clr_transformed\n"
3682		"OpReturn\n"
3683		"OpFunctionEnd\n"
3684		"${testfun}\n";
3685	return tcu::StringTemplate(tessEvalBoilerplate).specialize(fragments);
3686}
3687
3688// Creates geometry-shader assembly by specializing a boilerplate StringTemplate
3689// on fragments, which must (at least) map "testfun" to an OpFunction definition
3690// for %test_code that takes and returns a %v4f32.  Boilerplate IDs are prefixed
3691// with "BP_" to avoid collisions with fragments.
3692//
3693// Derived from this GLSL:
3694//
3695// #version 450
3696// layout(triangles) in;
3697// layout(triangle_strip, max_vertices = 3) out;
3698//
3699// layout(location = 1) in vec4 in_color[];
3700// layout(location = 1) out vec4 out_color;
3701//
3702// void main() {
3703//   gl_Position = gl_in[0].gl_Position;
3704//   out_color = test_fun(in_color[0]);
3705//   EmitVertex();
3706//   gl_Position = gl_in[1].gl_Position;
3707//   out_color = test_fun(in_color[1]);
3708//   EmitVertex();
3709//   gl_Position = gl_in[2].gl_Position;
3710//   out_color = test_fun(in_color[2]);
3711//   EmitVertex();
3712//   EndPrimitive();
3713// }
3714string makeGeometryShaderAssembly(const map<string, string>& fragments)
3715{
3716	static const char geometryShaderBoilerplate[] =
3717		"OpCapability Geometry\n"
3718		"OpMemoryModel Logical GLSL450\n"
3719		"OpEntryPoint Geometry %BP_main \"main\" %BP_out_gl_position %BP_gl_in %BP_out_color %BP_in_color\n"
3720		"OpExecutionMode %BP_main Triangles\n"
3721		"OpExecutionMode %BP_main Invocations 0\n"
3722		"OpExecutionMode %BP_main OutputTriangleStrip\n"
3723		"OpExecutionMode %BP_main OutputVertices 3\n"
3724		"${debug:opt}\n"
3725		"OpName %BP_main \"main\"\n"
3726		"OpName %BP_per_vertex_in \"gl_PerVertex\"\n"
3727		"OpMemberName %BP_per_vertex_in 0 \"gl_Position\"\n"
3728		"OpMemberName %BP_per_vertex_in 1 \"gl_PointSize\"\n"
3729		"OpMemberName %BP_per_vertex_in 2 \"gl_ClipDistance\"\n"
3730		"OpMemberName %BP_per_vertex_in 3 \"gl_CullDistance\"\n"
3731		"OpName %BP_gl_in \"gl_in\"\n"
3732		"OpName %BP_out_color \"out_color\"\n"
3733		"OpName %BP_in_color \"in_color\"\n"
3734		"OpName %test_code \"testfun(vf4;\"\n"
3735		"OpDecorate %BP_out_gl_position BuiltIn Position\n"
3736		"OpMemberDecorate %BP_per_vertex_in 0 BuiltIn Position\n"
3737		"OpMemberDecorate %BP_per_vertex_in 1 BuiltIn PointSize\n"
3738		"OpMemberDecorate %BP_per_vertex_in 2 BuiltIn ClipDistance\n"
3739		"OpMemberDecorate %BP_per_vertex_in 3 BuiltIn CullDistance\n"
3740		"OpDecorate %BP_per_vertex_in Block\n"
3741		"OpDecorate %BP_out_color Location 1\n"
3742		"OpDecorate %BP_out_color Stream 0\n"
3743		"OpDecorate %BP_in_color Location 1\n"
3744		"${decoration:opt}\n"
3745		SPIRV_ASSEMBLY_TYPES
3746		SPIRV_ASSEMBLY_CONSTANTS
3747		SPIRV_ASSEMBLY_ARRAYS
3748		"%BP_per_vertex_in = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
3749		"%BP_a3_per_vertex_in = OpTypeArray %BP_per_vertex_in %c_u32_3\n"
3750		"%BP_ip_a3_per_vertex_in = OpTypePointer Input %BP_a3_per_vertex_in\n"
3751
3752		"%BP_gl_in = OpVariable %BP_ip_a3_per_vertex_in Input\n"
3753		"%BP_out_color = OpVariable %op_v4f32 Output\n"
3754		"%BP_in_color = OpVariable %ip_a3v4f32 Input\n"
3755		"%BP_out_gl_position = OpVariable %op_v4f32 Output\n"
3756		"${pre_main:opt}\n"
3757
3758		"%BP_main = OpFunction %void None %fun\n"
3759		"%BP_label = OpLabel\n"
3760		"%BP_gl_in_0_gl_position = OpAccessChain %ip_v4f32 %BP_gl_in %c_i32_0 %c_i32_0\n"
3761		"%BP_gl_in_1_gl_position = OpAccessChain %ip_v4f32 %BP_gl_in %c_i32_1 %c_i32_0\n"
3762		"%BP_gl_in_2_gl_position = OpAccessChain %ip_v4f32 %BP_gl_in %c_i32_2 %c_i32_0\n"
3763
3764		"%BP_in_position_0 = OpLoad %v4f32 %BP_gl_in_0_gl_position\n"
3765		"%BP_in_position_1 = OpLoad %v4f32 %BP_gl_in_1_gl_position\n"
3766		"%BP_in_position_2 = OpLoad %v4f32 %BP_gl_in_2_gl_position \n"
3767
3768		"%BP_in_color_0_ptr = OpAccessChain %ip_v4f32 %BP_in_color %c_i32_0\n"
3769		"%BP_in_color_1_ptr = OpAccessChain %ip_v4f32 %BP_in_color %c_i32_1\n"
3770		"%BP_in_color_2_ptr = OpAccessChain %ip_v4f32 %BP_in_color %c_i32_2\n"
3771
3772		"%BP_in_color_0 = OpLoad %v4f32 %BP_in_color_0_ptr\n"
3773		"%BP_in_color_1 = OpLoad %v4f32 %BP_in_color_1_ptr\n"
3774		"%BP_in_color_2 = OpLoad %v4f32 %BP_in_color_2_ptr\n"
3775
3776		"%BP_transformed_in_color_0 = OpFunctionCall %v4f32 %test_code %BP_in_color_0\n"
3777		"%BP_transformed_in_color_1 = OpFunctionCall %v4f32 %test_code %BP_in_color_1\n"
3778		"%BP_transformed_in_color_2 = OpFunctionCall %v4f32 %test_code %BP_in_color_2\n"
3779
3780
3781		"OpStore %BP_out_gl_position %BP_in_position_0\n"
3782		"OpStore %BP_out_color %BP_transformed_in_color_0\n"
3783		"OpEmitVertex\n"
3784
3785		"OpStore %BP_out_gl_position %BP_in_position_1\n"
3786		"OpStore %BP_out_color %BP_transformed_in_color_1\n"
3787		"OpEmitVertex\n"
3788
3789		"OpStore %BP_out_gl_position %BP_in_position_2\n"
3790		"OpStore %BP_out_color %BP_transformed_in_color_2\n"
3791		"OpEmitVertex\n"
3792
3793		"OpEndPrimitive\n"
3794		"OpReturn\n"
3795		"OpFunctionEnd\n"
3796		"${testfun}\n";
3797	return tcu::StringTemplate(geometryShaderBoilerplate).specialize(fragments);
3798}
3799
3800// Creates fragment-shader assembly by specializing a boilerplate StringTemplate
3801// on fragments, which must (at least) map "testfun" to an OpFunction definition
3802// for %test_code that takes and returns a %v4f32.  Boilerplate IDs are prefixed
3803// with "BP_" to avoid collisions with fragments.
3804//
3805// Derived from this GLSL:
3806//
3807// layout(location = 1) in highp vec4 vtxColor;
3808// layout(location = 0) out highp vec4 fragColor;
3809// highp vec4 testfun(highp vec4 x) { return x; }
3810// void main(void) { fragColor = testfun(vtxColor); }
3811//
3812// with modifications including passing vtxColor by value and ripping out
3813// testfun() definition.
3814string makeFragmentShaderAssembly(const map<string, string>& fragments)
3815{
3816	static const char fragmentShaderBoilerplate[] =
3817		"OpCapability Shader\n"
3818		"OpMemoryModel Logical GLSL450\n"
3819		"OpEntryPoint Fragment %BP_main \"main\" %BP_vtxColor %BP_fragColor\n"
3820		"OpExecutionMode %BP_main OriginUpperLeft\n"
3821		"${debug:opt}\n"
3822		"OpName %BP_main \"main\"\n"
3823		"OpName %BP_fragColor \"fragColor\"\n"
3824		"OpName %BP_vtxColor \"vtxColor\"\n"
3825		"OpName %test_code \"testfun(vf4;\"\n"
3826		"OpDecorate %BP_fragColor Location 0\n"
3827		"OpDecorate %BP_vtxColor Location 1\n"
3828		"${decoration:opt}\n"
3829		SPIRV_ASSEMBLY_TYPES
3830		SPIRV_ASSEMBLY_CONSTANTS
3831		SPIRV_ASSEMBLY_ARRAYS
3832		"%BP_fragColor = OpVariable %op_v4f32 Output\n"
3833		"%BP_vtxColor = OpVariable %ip_v4f32 Input\n"
3834		"${pre_main:opt}\n"
3835		"%BP_main = OpFunction %void None %fun\n"
3836		"%BP_label_main = OpLabel\n"
3837		"%BP_tmp1 = OpLoad %v4f32 %BP_vtxColor\n"
3838		"%BP_tmp2 = OpFunctionCall %v4f32 %test_code %BP_tmp1\n"
3839		"OpStore %BP_fragColor %BP_tmp2\n"
3840		"OpReturn\n"
3841		"OpFunctionEnd\n"
3842		"${testfun}\n";
3843	return tcu::StringTemplate(fragmentShaderBoilerplate).specialize(fragments);
3844}
3845
3846// Creates fragments that specialize into a simple pass-through shader (of any kind).
3847map<string, string> passthruFragments(void)
3848{
3849	map<string, string> fragments;
3850	fragments["testfun"] =
3851		// A %test_code function that returns its argument unchanged.
3852		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
3853		"%param1 = OpFunctionParameter %v4f32\n"
3854		"%label_testfun = OpLabel\n"
3855		"OpReturnValue %param1\n"
3856		"OpFunctionEnd\n";
3857	return fragments;
3858}
3859
3860// Adds shader assembly text to dst.spirvAsmSources for all shader kinds.
3861// Vertex shader gets custom code from context, the rest are pass-through.
3862void addShaderCodeCustomVertex(vk::SourceCollections& dst, InstanceContext context)
3863{
3864	map<string, string> passthru = passthruFragments();
3865	dst.spirvAsmSources.add("vert") << makeVertexShaderAssembly(context.testCodeFragments);
3866	dst.spirvAsmSources.add("frag") << makeFragmentShaderAssembly(passthru);
3867}
3868
3869// Adds shader assembly text to dst.spirvAsmSources for all shader kinds.
3870// Tessellation control shader gets custom code from context, the rest are
3871// pass-through.
3872void addShaderCodeCustomTessControl(vk::SourceCollections& dst, InstanceContext context)
3873{
3874	map<string, string> passthru = passthruFragments();
3875	dst.spirvAsmSources.add("vert") << makeVertexShaderAssembly(passthru);
3876	dst.spirvAsmSources.add("tessc") << makeTessControlShaderAssembly(context.testCodeFragments);
3877	dst.spirvAsmSources.add("tesse") << makeTessEvalShaderAssembly(passthru);
3878	dst.spirvAsmSources.add("frag") << makeFragmentShaderAssembly(passthru);
3879}
3880
3881// Adds shader assembly text to dst.spirvAsmSources for all shader kinds.
3882// Tessellation evaluation shader gets custom code from context, the rest are
3883// pass-through.
3884void addShaderCodeCustomTessEval(vk::SourceCollections& dst, InstanceContext context)
3885{
3886	map<string, string> passthru = passthruFragments();
3887	dst.spirvAsmSources.add("vert") << makeVertexShaderAssembly(passthru);
3888	dst.spirvAsmSources.add("tessc") << makeTessControlShaderAssembly(passthru);
3889	dst.spirvAsmSources.add("tesse") << makeTessEvalShaderAssembly(context.testCodeFragments);
3890	dst.spirvAsmSources.add("frag") << makeFragmentShaderAssembly(passthru);
3891}
3892
3893// Adds shader assembly text to dst.spirvAsmSources for all shader kinds.
3894// Geometry shader gets custom code from context, the rest are pass-through.
3895void addShaderCodeCustomGeometry(vk::SourceCollections& dst, InstanceContext context)
3896{
3897	map<string, string> passthru = passthruFragments();
3898	dst.spirvAsmSources.add("vert") << makeVertexShaderAssembly(passthru);
3899	dst.spirvAsmSources.add("geom") << makeGeometryShaderAssembly(context.testCodeFragments);
3900	dst.spirvAsmSources.add("frag") << makeFragmentShaderAssembly(passthru);
3901}
3902
3903// Adds shader assembly text to dst.spirvAsmSources for all shader kinds.
3904// Fragment shader gets custom code from context, the rest are pass-through.
3905void addShaderCodeCustomFragment(vk::SourceCollections& dst, InstanceContext context)
3906{
3907	map<string, string> passthru = passthruFragments();
3908	dst.spirvAsmSources.add("vert") << makeVertexShaderAssembly(passthru);
3909	dst.spirvAsmSources.add("frag") << makeFragmentShaderAssembly(context.testCodeFragments);
3910}
3911
3912void createCombinedModule(vk::SourceCollections& dst, InstanceContext)
3913{
3914	// \todo [2015-12-07 awoloszyn] Make tessellation / geometry conditional
3915	// \todo [2015-12-07 awoloszyn] Remove OpName and OpMemberName at some point
3916	dst.spirvAsmSources.add("module") <<
3917		"OpCapability Shader\n"
3918		"OpCapability Geometry\n"
3919		"OpCapability Tessellation\n"
3920		"OpMemoryModel Logical GLSL450\n"
3921
3922		"OpEntryPoint Vertex %vert_main \"main\" %vert_Position %vert_vtxColor %vert_color %vert_vtxPosition %vert_vertex_id %vert_instance_id\n"
3923		"OpEntryPoint Geometry %geom_main \"main\" %geom_out_gl_position %geom_gl_in %geom_out_color %geom_in_color\n"
3924		"OpEntryPoint TessellationControl %tessc_main \"main\" %tessc_out_color %tessc_gl_InvocationID %tessc_in_color %tessc_out_position %tessc_in_position %tessc_gl_TessLevelOuter %tessc_gl_TessLevelInner\n"
3925		"OpEntryPoint TessellationEvaluation %tesse_main \"main\" %tesse_stream %tesse_gl_tessCoord %tesse_in_position %tesse_out_color %tesse_in_color \n"
3926		"OpEntryPoint Fragment %frag_main \"main\" %frag_vtxColor %frag_fragColor\n"
3927
3928		"OpExecutionMode %geom_main Triangles\n"
3929		"OpExecutionMode %geom_main Invocations 0\n"
3930		"OpExecutionMode %geom_main OutputTriangleStrip\n"
3931		"OpExecutionMode %geom_main OutputVertices 3\n"
3932
3933		"OpExecutionMode %tessc_main OutputVertices 3\n"
3934
3935		"OpExecutionMode %tesse_main Triangles\n"
3936
3937		"OpExecutionMode %frag_main OriginUpperLeft\n"
3938
3939		"; Vertex decorations\n"
3940		"OpName %vert_main \"main\"\n"
3941		"OpName %vert_vtxPosition \"vtxPosition\"\n"
3942		"OpName %vert_Position \"position\"\n"
3943		"OpName %vert_vtxColor \"vtxColor\"\n"
3944		"OpName %vert_color \"color\"\n"
3945		"OpName %vert_vertex_id \"gl_VertexID\"\n"
3946		"OpName %vert_instance_id \"gl_InstanceID\"\n"
3947		"OpDecorate %vert_vtxPosition Location 2\n"
3948		"OpDecorate %vert_Position Location 0\n"
3949		"OpDecorate %vert_vtxColor Location 1\n"
3950		"OpDecorate %vert_color Location 1\n"
3951		"OpDecorate %vert_vertex_id BuiltIn VertexId\n"
3952		"OpDecorate %vert_instance_id BuiltIn InstanceId\n"
3953
3954		"; Geometry decorations\n"
3955		"OpName %geom_main \"main\"\n"
3956		"OpName %geom_per_vertex_in \"gl_PerVertex\"\n"
3957		"OpMemberName %geom_per_vertex_in 0 \"gl_Position\"\n"
3958		"OpMemberName %geom_per_vertex_in 1 \"gl_PointSize\"\n"
3959		"OpMemberName %geom_per_vertex_in 2 \"gl_ClipDistance\"\n"
3960		"OpMemberName %geom_per_vertex_in 3 \"gl_CullDistance\"\n"
3961		"OpName %geom_gl_in \"gl_in\"\n"
3962		"OpName %geom_out_color \"out_color\"\n"
3963		"OpName %geom_in_color \"in_color\"\n"
3964		"OpDecorate %geom_out_gl_position BuiltIn Position\n"
3965		"OpMemberDecorate %geom_per_vertex_in 0 BuiltIn Position\n"
3966		"OpMemberDecorate %geom_per_vertex_in 1 BuiltIn PointSize\n"
3967		"OpMemberDecorate %geom_per_vertex_in 2 BuiltIn ClipDistance\n"
3968		"OpMemberDecorate %geom_per_vertex_in 3 BuiltIn CullDistance\n"
3969		"OpDecorate %geom_per_vertex_in Block\n"
3970		"OpDecorate %geom_out_color Location 1\n"
3971		"OpDecorate %geom_out_color Stream 0\n"
3972		"OpDecorate %geom_in_color Location 1\n"
3973
3974		"; Tessellation Control decorations\n"
3975		"OpName %tessc_main \"main\"\n"
3976		"OpName %tessc_out_color \"out_color\"\n"
3977		"OpName %tessc_gl_InvocationID \"gl_InvocationID\"\n"
3978		"OpName %tessc_in_color \"in_color\"\n"
3979		"OpName %tessc_out_position \"out_position\"\n"
3980		"OpName %tessc_in_position \"in_position\"\n"
3981		"OpName %tessc_gl_TessLevelOuter \"gl_TessLevelOuter\"\n"
3982		"OpName %tessc_gl_TessLevelInner \"gl_TessLevelInner\"\n"
3983		"OpDecorate %tessc_out_color Location 1\n"
3984		"OpDecorate %tessc_gl_InvocationID BuiltIn InvocationId\n"
3985		"OpDecorate %tessc_in_color Location 1\n"
3986		"OpDecorate %tessc_out_position Location 2\n"
3987		"OpDecorate %tessc_in_position Location 2\n"
3988		"OpDecorate %tessc_gl_TessLevelOuter Patch\n"
3989		"OpDecorate %tessc_gl_TessLevelOuter BuiltIn TessLevelOuter\n"
3990		"OpDecorate %tessc_gl_TessLevelInner Patch\n"
3991		"OpDecorate %tessc_gl_TessLevelInner BuiltIn TessLevelInner\n"
3992
3993		"; Tessellation Evaluation decorations\n"
3994		"OpName %tesse_main \"main\"\n"
3995		"OpName %tesse_per_vertex_out \"gl_PerVertex\"\n"
3996		"OpMemberName %tesse_per_vertex_out 0 \"gl_Position\"\n"
3997		"OpMemberName %tesse_per_vertex_out 1 \"gl_PointSize\"\n"
3998		"OpMemberName %tesse_per_vertex_out 2 \"gl_ClipDistance\"\n"
3999		"OpMemberName %tesse_per_vertex_out 3 \"gl_CullDistance\"\n"
4000		"OpName %tesse_stream \"\"\n"
4001		"OpName %tesse_gl_tessCoord \"gl_TessCoord\"\n"
4002		"OpName %tesse_in_position \"in_position\"\n"
4003		"OpName %tesse_out_color \"out_color\"\n"
4004		"OpName %tesse_in_color \"in_color\"\n"
4005		"OpMemberDecorate %tesse_per_vertex_out 0 BuiltIn Position\n"
4006		"OpMemberDecorate %tesse_per_vertex_out 1 BuiltIn PointSize\n"
4007		"OpMemberDecorate %tesse_per_vertex_out 2 BuiltIn ClipDistance\n"
4008		"OpMemberDecorate %tesse_per_vertex_out 3 BuiltIn CullDistance\n"
4009		"OpDecorate %tesse_per_vertex_out Block\n"
4010		"OpDecorate %tesse_gl_tessCoord BuiltIn TessCoord\n"
4011		"OpDecorate %tesse_in_position Location 2\n"
4012		"OpDecorate %tesse_out_color Location 1\n"
4013		"OpDecorate %tesse_in_color Location 1\n"
4014
4015		"; Fragment decorations\n"
4016		"OpName %frag_main \"main\"\n"
4017		"OpName %frag_fragColor \"fragColor\"\n"
4018		"OpName %frag_vtxColor \"vtxColor\"\n"
4019		"OpDecorate %frag_fragColor Location 0\n"
4020		"OpDecorate %frag_vtxColor Location 1\n"
4021
4022		SPIRV_ASSEMBLY_TYPES
4023		SPIRV_ASSEMBLY_CONSTANTS
4024		SPIRV_ASSEMBLY_ARRAYS
4025
4026		"; Vertex Variables\n"
4027		"%vert_vtxPosition = OpVariable %op_v4f32 Output\n"
4028		"%vert_Position = OpVariable %ip_v4f32 Input\n"
4029		"%vert_vtxColor = OpVariable %op_v4f32 Output\n"
4030		"%vert_color = OpVariable %ip_v4f32 Input\n"
4031		"%vert_vertex_id = OpVariable %ip_i32 Input\n"
4032		"%vert_instance_id = OpVariable %ip_i32 Input\n"
4033
4034		"; Geometry Variables\n"
4035		"%geom_per_vertex_in = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
4036		"%geom_a3_per_vertex_in = OpTypeArray %geom_per_vertex_in %c_u32_3\n"
4037		"%geom_ip_a3_per_vertex_in = OpTypePointer Input %geom_a3_per_vertex_in\n"
4038		"%geom_gl_in = OpVariable %geom_ip_a3_per_vertex_in Input\n"
4039		"%geom_out_color = OpVariable %op_v4f32 Output\n"
4040		"%geom_in_color = OpVariable %ip_a3v4f32 Input\n"
4041		"%geom_out_gl_position = OpVariable %op_v4f32 Output\n"
4042
4043		"; Tessellation Control Variables\n"
4044		"%tessc_out_color = OpVariable %op_a3v4f32 Output\n"
4045		"%tessc_gl_InvocationID = OpVariable %ip_i32 Input\n"
4046		"%tessc_in_color = OpVariable %ip_a32v4f32 Input\n"
4047		"%tessc_out_position = OpVariable %op_a3v4f32 Output\n"
4048		"%tessc_in_position = OpVariable %ip_a32v4f32 Input\n"
4049		"%tessc_gl_TessLevelOuter = OpVariable %op_a4f32 Output\n"
4050		"%tessc_gl_TessLevelInner = OpVariable %op_a2f32 Output\n"
4051
4052		"; Tessellation Evaluation Decorations\n"
4053		"%tesse_per_vertex_out = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
4054		"%tesse_op_per_vertex_out = OpTypePointer Output %tesse_per_vertex_out\n"
4055		"%tesse_stream = OpVariable %tesse_op_per_vertex_out Output\n"
4056		"%tesse_gl_tessCoord = OpVariable %ip_v3f32 Input\n"
4057		"%tesse_in_position = OpVariable %ip_a32v4f32 Input\n"
4058		"%tesse_out_color = OpVariable %op_v4f32 Output\n"
4059		"%tesse_in_color = OpVariable %ip_a32v4f32 Input\n"
4060
4061		"; Fragment Variables\n"
4062		"%frag_fragColor = OpVariable %op_v4f32 Output\n"
4063		"%frag_vtxColor = OpVariable %ip_v4f32 Input\n"
4064
4065		"; Vertex Entry\n"
4066		"%vert_main = OpFunction %void None %fun\n"
4067		"%vert_label = OpLabel\n"
4068		"%vert_tmp_position = OpLoad %v4f32 %vert_Position\n"
4069		"OpStore %vert_vtxPosition %vert_tmp_position\n"
4070		"%vert_tmp_color = OpLoad %v4f32 %vert_color\n"
4071		"OpStore %vert_vtxColor %vert_tmp_color\n"
4072		"OpReturn\n"
4073		"OpFunctionEnd\n"
4074
4075		"; Geometry Entry\n"
4076		"%geom_main = OpFunction %void None %fun\n"
4077		"%geom_label = OpLabel\n"
4078		"%geom_gl_in_0_gl_position = OpAccessChain %ip_v4f32 %geom_gl_in %c_i32_0 %c_i32_0\n"
4079		"%geom_gl_in_1_gl_position = OpAccessChain %ip_v4f32 %geom_gl_in %c_i32_1 %c_i32_0\n"
4080		"%geom_gl_in_2_gl_position = OpAccessChain %ip_v4f32 %geom_gl_in %c_i32_2 %c_i32_0\n"
4081		"%geom_in_position_0 = OpLoad %v4f32 %geom_gl_in_0_gl_position\n"
4082		"%geom_in_position_1 = OpLoad %v4f32 %geom_gl_in_1_gl_position\n"
4083		"%geom_in_position_2 = OpLoad %v4f32 %geom_gl_in_2_gl_position \n"
4084		"%geom_in_color_0_ptr = OpAccessChain %ip_v4f32 %geom_in_color %c_i32_0\n"
4085		"%geom_in_color_1_ptr = OpAccessChain %ip_v4f32 %geom_in_color %c_i32_1\n"
4086		"%geom_in_color_2_ptr = OpAccessChain %ip_v4f32 %geom_in_color %c_i32_2\n"
4087		"%geom_in_color_0 = OpLoad %v4f32 %geom_in_color_0_ptr\n"
4088		"%geom_in_color_1 = OpLoad %v4f32 %geom_in_color_1_ptr\n"
4089		"%geom_in_color_2 = OpLoad %v4f32 %geom_in_color_2_ptr\n"
4090		"OpStore %geom_out_gl_position %geom_in_position_0\n"
4091		"OpStore %geom_out_color %geom_in_color_0\n"
4092		"OpEmitVertex\n"
4093		"OpStore %geom_out_gl_position %geom_in_position_1\n"
4094		"OpStore %geom_out_color %geom_in_color_1\n"
4095		"OpEmitVertex\n"
4096		"OpStore %geom_out_gl_position %geom_in_position_2\n"
4097		"OpStore %geom_out_color %geom_in_color_2\n"
4098		"OpEmitVertex\n"
4099		"OpEndPrimitive\n"
4100		"OpReturn\n"
4101		"OpFunctionEnd\n"
4102
4103		"; Tessellation Control Entry\n"
4104		"%tessc_main = OpFunction %void None %fun\n"
4105		"%tessc_label = OpLabel\n"
4106		"%tessc_invocation_id = OpLoad %i32 %tessc_gl_InvocationID\n"
4107		"%tessc_in_color_ptr = OpAccessChain %ip_v4f32 %tessc_in_color %tessc_invocation_id\n"
4108		"%tessc_in_position_ptr = OpAccessChain %ip_v4f32 %tessc_in_position %tessc_invocation_id\n"
4109		"%tessc_in_color_val = OpLoad %v4f32 %tessc_in_color_ptr\n"
4110		"%tessc_in_position_val = OpLoad %v4f32 %tessc_in_position_ptr\n"
4111		"%tessc_out_color_ptr = OpAccessChain %op_v4f32 %tessc_out_color %tessc_invocation_id\n"
4112		"%tessc_out_position_ptr = OpAccessChain %op_v4f32 %tessc_out_position %tessc_invocation_id\n"
4113		"OpStore %tessc_out_color_ptr %tessc_in_color_val\n"
4114		"OpStore %tessc_out_position_ptr %tessc_in_position_val\n"
4115		"%tessc_is_first_invocation = OpIEqual %bool %tessc_invocation_id %c_i32_0\n"
4116		"OpSelectionMerge %tessc_merge_label None\n"
4117		"OpBranchConditional %tessc_is_first_invocation %tessc_first_invocation %tessc_merge_label\n"
4118		"%tessc_first_invocation = OpLabel\n"
4119		"%tessc_tess_outer_0 = OpAccessChain %op_f32 %tessc_gl_TessLevelOuter %c_i32_0\n"
4120		"%tessc_tess_outer_1 = OpAccessChain %op_f32 %tessc_gl_TessLevelOuter %c_i32_1\n"
4121		"%tessc_tess_outer_2 = OpAccessChain %op_f32 %tessc_gl_TessLevelOuter %c_i32_2\n"
4122		"%tessc_tess_inner = OpAccessChain %op_f32 %tessc_gl_TessLevelInner %c_i32_0\n"
4123		"OpStore %tessc_tess_outer_0 %c_f32_1\n"
4124		"OpStore %tessc_tess_outer_1 %c_f32_1\n"
4125		"OpStore %tessc_tess_outer_2 %c_f32_1\n"
4126		"OpStore %tessc_tess_inner %c_f32_1\n"
4127		"OpBranch %tessc_merge_label\n"
4128		"%tessc_merge_label = OpLabel\n"
4129		"OpReturn\n"
4130		"OpFunctionEnd\n"
4131
4132		"; Tessellation Evaluation Entry\n"
4133		"%tesse_main = OpFunction %void None %fun\n"
4134		"%tesse_label = OpLabel\n"
4135		"%tesse_tc_0_ptr = OpAccessChain %ip_f32 %tesse_gl_tessCoord %c_u32_0\n"
4136		"%tesse_tc_1_ptr = OpAccessChain %ip_f32 %tesse_gl_tessCoord %c_u32_1\n"
4137		"%tesse_tc_2_ptr = OpAccessChain %ip_f32 %tesse_gl_tessCoord %c_u32_2\n"
4138		"%tesse_tc_0 = OpLoad %f32 %tesse_tc_0_ptr\n"
4139		"%tesse_tc_1 = OpLoad %f32 %tesse_tc_1_ptr\n"
4140		"%tesse_tc_2 = OpLoad %f32 %tesse_tc_2_ptr\n"
4141		"%tesse_in_pos_0_ptr = OpAccessChain %ip_v4f32 %tesse_in_position %c_i32_0\n"
4142		"%tesse_in_pos_1_ptr = OpAccessChain %ip_v4f32 %tesse_in_position %c_i32_1\n"
4143		"%tesse_in_pos_2_ptr = OpAccessChain %ip_v4f32 %tesse_in_position %c_i32_2\n"
4144		"%tesse_in_pos_0 = OpLoad %v4f32 %tesse_in_pos_0_ptr\n"
4145		"%tesse_in_pos_1 = OpLoad %v4f32 %tesse_in_pos_1_ptr\n"
4146		"%tesse_in_pos_2 = OpLoad %v4f32 %tesse_in_pos_2_ptr\n"
4147		"%tesse_in_pos_0_weighted = OpVectorTimesScalar %v4f32 %tesse_tc_0 %tesse_in_pos_0\n"
4148		"%tesse_in_pos_1_weighted = OpVectorTimesScalar %v4f32 %tesse_tc_1 %tesse_in_pos_1\n"
4149		"%tesse_in_pos_2_weighted = OpVectorTimesScalar %v4f32 %tesse_tc_2 %tesse_in_pos_2\n"
4150		"%tesse_out_pos_ptr = OpAccessChain %op_v4f32 %tesse_stream %c_i32_0\n"
4151		"%tesse_in_pos_0_plus_pos_1 = OpFAdd %v4f32 %tesse_in_pos_0_weighted %tesse_in_pos_1_weighted\n"
4152		"%tesse_computed_out = OpFAdd %v4f32 %tesse_in_pos_0_plus_pos_1 %tesse_in_pos_2_weighted\n"
4153		"OpStore %tesse_out_pos_ptr %tesse_computed_out\n"
4154		"%tesse_in_clr_0_ptr = OpAccessChain %ip_v4f32 %tesse_in_color %c_i32_0\n"
4155		"%tesse_in_clr_1_ptr = OpAccessChain %ip_v4f32 %tesse_in_color %c_i32_1\n"
4156		"%tesse_in_clr_2_ptr = OpAccessChain %ip_v4f32 %tesse_in_color %c_i32_2\n"
4157		"%tesse_in_clr_0 = OpLoad %v4f32 %tesse_in_clr_0_ptr\n"
4158		"%tesse_in_clr_1 = OpLoad %v4f32 %tesse_in_clr_1_ptr\n"
4159		"%tesse_in_clr_2 = OpLoad %v4f32 %tesse_in_clr_2_ptr\n"
4160		"%tesse_in_clr_0_weighted = OpVectorTimesScalar %v4f32 %tesse_tc_0 %tesse_in_clr_0\n"
4161		"%tesse_in_clr_1_weighted = OpVectorTimesScalar %v4f32 %tesse_tc_1 %tesse_in_clr_1\n"
4162		"%tesse_in_clr_2_weighted = OpVectorTimesScalar %v4f32 %tesse_tc_2 %tesse_in_clr_2\n"
4163		"%tesse_in_clr_0_plus_col_1 = OpFAdd %v4f32 %tesse_in_clr_0_weighted %tesse_in_clr_1_weighted\n"
4164		"%tesse_computed_clr = OpFAdd %v4f32 %tesse_in_clr_0_plus_col_1 %tesse_in_clr_2_weighted\n"
4165		"OpStore %tesse_out_color %tesse_computed_clr\n"
4166		"OpReturn\n"
4167		"OpFunctionEnd\n"
4168
4169		"; Fragment Entry\n"
4170		"%frag_main = OpFunction %void None %fun\n"
4171		"%frag_label_main = OpLabel\n"
4172		"%frag_tmp1 = OpLoad %v4f32 %frag_vtxColor\n"
4173		"OpStore %frag_fragColor %frag_tmp1\n"
4174		"OpReturn\n"
4175		"OpFunctionEnd\n";
4176}
4177
4178// This has two shaders of each stage. The first
4179// is a passthrough, the second inverts the color.
4180void createMultipleEntries(vk::SourceCollections& dst, InstanceContext)
4181{
4182	dst.spirvAsmSources.add("vert") <<
4183	// This module contains 2 vertex shaders. One that is a passthrough
4184	// and a second that inverts the color of the output (1.0 - color).
4185		"OpCapability Shader\n"
4186		"OpMemoryModel Logical GLSL450\n"
4187		"OpEntryPoint Vertex %main \"vert1\" %Position %vtxColor %color %vtxPosition %vertex_id %instance_id\n"
4188		"OpEntryPoint Vertex %main2 \"vert2\" %Position %vtxColor %color %vtxPosition %vertex_id %instance_id\n"
4189
4190		"OpName %main \"frag1\"\n"
4191		"OpName %main2 \"frag2\"\n"
4192		"OpName %vtxPosition \"vtxPosition\"\n"
4193		"OpName %Position \"position\"\n"
4194		"OpName %vtxColor \"vtxColor\"\n"
4195		"OpName %color \"color\"\n"
4196		"OpName %vertex_id \"gl_VertexID\"\n"
4197		"OpName %instance_id \"gl_InstanceID\"\n"
4198
4199		"OpDecorate %vtxPosition Location 2\n"
4200		"OpDecorate %Position Location 0\n"
4201		"OpDecorate %vtxColor Location 1\n"
4202		"OpDecorate %color Location 1\n"
4203		"OpDecorate %vertex_id BuiltIn VertexId\n"
4204		"OpDecorate %instance_id BuiltIn InstanceId\n"
4205		SPIRV_ASSEMBLY_TYPES
4206		SPIRV_ASSEMBLY_CONSTANTS
4207		SPIRV_ASSEMBLY_ARRAYS
4208		"%cval = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_0\n"
4209		"%vtxPosition = OpVariable %op_v4f32 Output\n"
4210		"%Position = OpVariable %ip_v4f32 Input\n"
4211		"%vtxColor = OpVariable %op_v4f32 Output\n"
4212		"%color = OpVariable %ip_v4f32 Input\n"
4213		"%vertex_id = OpVariable %ip_i32 Input\n"
4214		"%instance_id = OpVariable %ip_i32 Input\n"
4215
4216		"%main = OpFunction %void None %fun\n"
4217		"%label = OpLabel\n"
4218		"%tmp_position = OpLoad %v4f32 %Position\n"
4219		"OpStore %vtxPosition %tmp_position\n"
4220		"%tmp_color = OpLoad %v4f32 %color\n"
4221		"OpStore %vtxColor %tmp_color\n"
4222		"OpReturn\n"
4223		"OpFunctionEnd\n"
4224
4225		"%main2 = OpFunction %void None %fun\n"
4226		"%label2 = OpLabel\n"
4227		"%tmp_position2 = OpLoad %v4f32 %Position\n"
4228		"OpStore %vtxPosition %tmp_position2\n"
4229		"%tmp_color2 = OpLoad %v4f32 %color\n"
4230		"%tmp_color3 = OpFSub %v4f32 %cval %tmp_color2\n"
4231		"OpStore %vtxColor %tmp_color3\n"
4232		"OpReturn\n"
4233		"OpFunctionEnd\n";
4234
4235	dst.spirvAsmSources.add("frag") <<
4236		// This is a single module that contains 2 fragment shaders.
4237		// One that passes color through and the other that inverts the output
4238		// color (1.0 - color).
4239		"OpCapability Shader\n"
4240		"OpMemoryModel Logical GLSL450\n"
4241		"OpEntryPoint Fragment %main \"frag1\" %vtxColor %fragColor\n"
4242		"OpEntryPoint Fragment %main2 \"frag2\" %vtxColor %fragColor\n"
4243		"OpExecutionMode %main OriginUpperLeft\n"
4244		"OpExecutionMode %main2 OriginUpperLeft\n"
4245
4246		"OpName %main \"frag1\"\n"
4247		"OpName %main2 \"frag2\"\n"
4248		"OpName %fragColor \"fragColor\"\n"
4249		"OpName %vtxColor \"vtxColor\"\n"
4250		"OpDecorate %fragColor Location 0\n"
4251		"OpDecorate %vtxColor Location 1\n"
4252		SPIRV_ASSEMBLY_TYPES
4253		SPIRV_ASSEMBLY_CONSTANTS
4254		SPIRV_ASSEMBLY_ARRAYS
4255		"%cval = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_0\n"
4256		"%fragColor = OpVariable %op_v4f32 Output\n"
4257		"%vtxColor = OpVariable %ip_v4f32 Input\n"
4258
4259		"%main = OpFunction %void None %fun\n"
4260		"%label_main = OpLabel\n"
4261		"%tmp1 = OpLoad %v4f32 %vtxColor\n"
4262		"OpStore %fragColor %tmp1\n"
4263		"OpReturn\n"
4264		"OpFunctionEnd\n"
4265
4266		"%main2 = OpFunction %void None %fun\n"
4267		"%label_main2 = OpLabel\n"
4268		"%tmp2 = OpLoad %v4f32 %vtxColor\n"
4269		"%tmp3 = OpFSub %v4f32 %cval %tmp2\n"
4270		"OpStore %fragColor %tmp3\n"
4271		"OpReturn\n"
4272		"OpFunctionEnd\n";
4273
4274	dst.spirvAsmSources.add("geom") <<
4275		"OpCapability Geometry\n"
4276		"OpMemoryModel Logical GLSL450\n"
4277		"OpEntryPoint Geometry %geom1_main \"geom1\" %out_gl_position %gl_in %out_color %in_color\n"
4278		"OpEntryPoint Geometry %geom2_main \"geom2\" %out_gl_position %gl_in %out_color %in_color\n"
4279		"OpExecutionMode %geom1_main Triangles\n"
4280		"OpExecutionMode %geom2_main Triangles\n"
4281		"OpExecutionMode %geom1_main Invocations 0\n"
4282		"OpExecutionMode %geom2_main Invocations 0\n"
4283		"OpExecutionMode %geom1_main OutputTriangleStrip\n"
4284		"OpExecutionMode %geom2_main OutputTriangleStrip\n"
4285		"OpExecutionMode %geom1_main OutputVertices 3\n"
4286		"OpExecutionMode %geom2_main OutputVertices 3\n"
4287		"OpName %geom1_main \"geom1\"\n"
4288		"OpName %geom2_main \"geom2\"\n"
4289		"OpName %per_vertex_in \"gl_PerVertex\"\n"
4290		"OpMemberName %per_vertex_in 0 \"gl_Position\"\n"
4291		"OpMemberName %per_vertex_in 1 \"gl_PointSize\"\n"
4292		"OpMemberName %per_vertex_in 2 \"gl_ClipDistance\"\n"
4293		"OpMemberName %per_vertex_in 3 \"gl_CullDistance\"\n"
4294		"OpName %gl_in \"gl_in\"\n"
4295		"OpName %out_color \"out_color\"\n"
4296		"OpName %in_color \"in_color\"\n"
4297		"OpDecorate %out_gl_position BuiltIn Position\n"
4298		"OpMemberDecorate %per_vertex_in 0 BuiltIn Position\n"
4299		"OpMemberDecorate %per_vertex_in 1 BuiltIn PointSize\n"
4300		"OpMemberDecorate %per_vertex_in 2 BuiltIn ClipDistance\n"
4301		"OpMemberDecorate %per_vertex_in 3 BuiltIn CullDistance\n"
4302		"OpDecorate %per_vertex_in Block\n"
4303		"OpDecorate %out_color Location 1\n"
4304		"OpDecorate %out_color Stream 0\n"
4305		"OpDecorate %in_color Location 1\n"
4306		SPIRV_ASSEMBLY_TYPES
4307		SPIRV_ASSEMBLY_CONSTANTS
4308		SPIRV_ASSEMBLY_ARRAYS
4309		"%cval = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_0\n"
4310		"%per_vertex_in = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
4311		"%a3_per_vertex_in = OpTypeArray %per_vertex_in %c_u32_3\n"
4312		"%ip_a3_per_vertex_in = OpTypePointer Input %a3_per_vertex_in\n"
4313		"%gl_in = OpVariable %ip_a3_per_vertex_in Input\n"
4314		"%out_color = OpVariable %op_v4f32 Output\n"
4315		"%in_color = OpVariable %ip_a3v4f32 Input\n"
4316		"%out_gl_position = OpVariable %op_v4f32 Output\n"
4317
4318		"%geom1_main = OpFunction %void None %fun\n"
4319		"%geom1_label = OpLabel\n"
4320		"%geom1_gl_in_0_gl_position = OpAccessChain %ip_v4f32 %gl_in %c_i32_0 %c_i32_0\n"
4321		"%geom1_gl_in_1_gl_position = OpAccessChain %ip_v4f32 %gl_in %c_i32_1 %c_i32_0\n"
4322		"%geom1_gl_in_2_gl_position = OpAccessChain %ip_v4f32 %gl_in %c_i32_2 %c_i32_0\n"
4323		"%geom1_in_position_0 = OpLoad %v4f32 %geom1_gl_in_0_gl_position\n"
4324		"%geom1_in_position_1 = OpLoad %v4f32 %geom1_gl_in_1_gl_position\n"
4325		"%geom1_in_position_2 = OpLoad %v4f32 %geom1_gl_in_2_gl_position \n"
4326		"%geom1_in_color_0_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_0\n"
4327		"%geom1_in_color_1_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_1\n"
4328		"%geom1_in_color_2_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_2\n"
4329		"%geom1_in_color_0 = OpLoad %v4f32 %geom1_in_color_0_ptr\n"
4330		"%geom1_in_color_1 = OpLoad %v4f32 %geom1_in_color_1_ptr\n"
4331		"%geom1_in_color_2 = OpLoad %v4f32 %geom1_in_color_2_ptr\n"
4332		"OpStore %out_gl_position %geom1_in_position_0\n"
4333		"OpStore %out_color %geom1_in_color_0\n"
4334		"OpEmitVertex\n"
4335		"OpStore %out_gl_position %geom1_in_position_1\n"
4336		"OpStore %out_color %geom1_in_color_1\n"
4337		"OpEmitVertex\n"
4338		"OpStore %out_gl_position %geom1_in_position_2\n"
4339		"OpStore %out_color %geom1_in_color_2\n"
4340		"OpEmitVertex\n"
4341		"OpEndPrimitive\n"
4342		"OpReturn\n"
4343		"OpFunctionEnd\n"
4344
4345		"%geom2_main = OpFunction %void None %fun\n"
4346		"%geom2_label = OpLabel\n"
4347		"%geom2_gl_in_0_gl_position = OpAccessChain %ip_v4f32 %gl_in %c_i32_0 %c_i32_0\n"
4348		"%geom2_gl_in_1_gl_position = OpAccessChain %ip_v4f32 %gl_in %c_i32_1 %c_i32_0\n"
4349		"%geom2_gl_in_2_gl_position = OpAccessChain %ip_v4f32 %gl_in %c_i32_2 %c_i32_0\n"
4350		"%geom2_in_position_0 = OpLoad %v4f32 %geom2_gl_in_0_gl_position\n"
4351		"%geom2_in_position_1 = OpLoad %v4f32 %geom2_gl_in_1_gl_position\n"
4352		"%geom2_in_position_2 = OpLoad %v4f32 %geom2_gl_in_2_gl_position \n"
4353		"%geom2_in_color_0_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_0\n"
4354		"%geom2_in_color_1_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_1\n"
4355		"%geom2_in_color_2_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_2\n"
4356		"%geom2_in_color_0 = OpLoad %v4f32 %geom2_in_color_0_ptr\n"
4357		"%geom2_in_color_1 = OpLoad %v4f32 %geom2_in_color_1_ptr\n"
4358		"%geom2_in_color_2 = OpLoad %v4f32 %geom2_in_color_2_ptr\n"
4359		"%geom2_transformed_in_color_0 = OpFSub %v4f32 %cval %geom2_in_color_0\n"
4360		"%geom2_transformed_in_color_1 = OpFSub %v4f32 %cval %geom2_in_color_1\n"
4361		"%geom2_transformed_in_color_2 = OpFSub %v4f32 %cval %geom2_in_color_2\n"
4362		"OpStore %out_gl_position %geom2_in_position_0\n"
4363		"OpStore %out_color %geom2_transformed_in_color_0\n"
4364		"OpEmitVertex\n"
4365		"OpStore %out_gl_position %geom2_in_position_1\n"
4366		"OpStore %out_color %geom2_transformed_in_color_1\n"
4367		"OpEmitVertex\n"
4368		"OpStore %out_gl_position %geom2_in_position_2\n"
4369		"OpStore %out_color %geom2_transformed_in_color_2\n"
4370		"OpEmitVertex\n"
4371		"OpEndPrimitive\n"
4372		"OpReturn\n"
4373		"OpFunctionEnd\n";
4374
4375	dst.spirvAsmSources.add("tessc") <<
4376		"OpCapability Tessellation\n"
4377		"OpMemoryModel Logical GLSL450\n"
4378		"OpEntryPoint TessellationControl %tessc1_main \"tessc1\" %out_color %gl_InvocationID %in_color %out_position %in_position %gl_TessLevelOuter %gl_TessLevelInner\n"
4379		"OpEntryPoint TessellationControl %tessc2_main \"tessc2\" %out_color %gl_InvocationID %in_color %out_position %in_position %gl_TessLevelOuter %gl_TessLevelInner\n"
4380		"OpExecutionMode %tessc1_main OutputVertices 3\n"
4381		"OpExecutionMode %tessc2_main OutputVertices 3\n"
4382		"OpName %tessc1_main \"tessc1\"\n"
4383		"OpName %tessc2_main \"tessc2\"\n"
4384		"OpName %out_color \"out_color\"\n"
4385		"OpName %gl_InvocationID \"gl_InvocationID\"\n"
4386		"OpName %in_color \"in_color\"\n"
4387		"OpName %out_position \"out_position\"\n"
4388		"OpName %in_position \"in_position\"\n"
4389		"OpName %gl_TessLevelOuter \"gl_TessLevelOuter\"\n"
4390		"OpName %gl_TessLevelInner \"gl_TessLevelInner\"\n"
4391		"OpDecorate %out_color Location 1\n"
4392		"OpDecorate %gl_InvocationID BuiltIn InvocationId\n"
4393		"OpDecorate %in_color Location 1\n"
4394		"OpDecorate %out_position Location 2\n"
4395		"OpDecorate %in_position Location 2\n"
4396		"OpDecorate %gl_TessLevelOuter Patch\n"
4397		"OpDecorate %gl_TessLevelOuter BuiltIn TessLevelOuter\n"
4398		"OpDecorate %gl_TessLevelInner Patch\n"
4399		"OpDecorate %gl_TessLevelInner BuiltIn TessLevelInner\n"
4400		SPIRV_ASSEMBLY_TYPES
4401		SPIRV_ASSEMBLY_CONSTANTS
4402		SPIRV_ASSEMBLY_ARRAYS
4403		"%cval = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_0\n"
4404		"%out_color = OpVariable %op_a3v4f32 Output\n"
4405		"%gl_InvocationID = OpVariable %ip_i32 Input\n"
4406		"%in_color = OpVariable %ip_a32v4f32 Input\n"
4407		"%out_position = OpVariable %op_a3v4f32 Output\n"
4408		"%in_position = OpVariable %ip_a32v4f32 Input\n"
4409		"%gl_TessLevelOuter = OpVariable %op_a4f32 Output\n"
4410		"%gl_TessLevelInner = OpVariable %op_a2f32 Output\n"
4411
4412		"%tessc1_main = OpFunction %void None %fun\n"
4413		"%tessc1_label = OpLabel\n"
4414		"%tessc1_invocation_id = OpLoad %i32 %gl_InvocationID\n"
4415		"%tessc1_in_color_ptr = OpAccessChain %ip_v4f32 %in_color %tessc1_invocation_id\n"
4416		"%tessc1_in_position_ptr = OpAccessChain %ip_v4f32 %in_position %tessc1_invocation_id\n"
4417		"%tessc1_in_color_val = OpLoad %v4f32 %tessc1_in_color_ptr\n"
4418		"%tessc1_in_position_val = OpLoad %v4f32 %tessc1_in_position_ptr\n"
4419		"%tessc1_out_color_ptr = OpAccessChain %op_v4f32 %out_color %tessc1_invocation_id\n"
4420		"%tessc1_out_position_ptr = OpAccessChain %op_v4f32 %out_position %tessc1_invocation_id\n"
4421		"OpStore %tessc1_out_color_ptr %tessc1_in_color_val\n"
4422		"OpStore %tessc1_out_position_ptr %tessc1_in_position_val\n"
4423		"%tessc1_is_first_invocation = OpIEqual %bool %tessc1_invocation_id %c_i32_0\n"
4424		"OpSelectionMerge %tessc1_merge_label None\n"
4425		"OpBranchConditional %tessc1_is_first_invocation %tessc1_first_invocation %tessc1_merge_label\n"
4426		"%tessc1_first_invocation = OpLabel\n"
4427		"%tessc1_tess_outer_0 = OpAccessChain %op_f32 %gl_TessLevelOuter %c_i32_0\n"
4428		"%tessc1_tess_outer_1 = OpAccessChain %op_f32 %gl_TessLevelOuter %c_i32_1\n"
4429		"%tessc1_tess_outer_2 = OpAccessChain %op_f32 %gl_TessLevelOuter %c_i32_2\n"
4430		"%tessc1_tess_inner = OpAccessChain %op_f32 %gl_TessLevelInner %c_i32_0\n"
4431		"OpStore %tessc1_tess_outer_0 %c_f32_1\n"
4432		"OpStore %tessc1_tess_outer_1 %c_f32_1\n"
4433		"OpStore %tessc1_tess_outer_2 %c_f32_1\n"
4434		"OpStore %tessc1_tess_inner %c_f32_1\n"
4435		"OpBranch %tessc1_merge_label\n"
4436		"%tessc1_merge_label = OpLabel\n"
4437		"OpReturn\n"
4438		"OpFunctionEnd\n"
4439
4440		"%tessc2_main = OpFunction %void None %fun\n"
4441		"%tessc2_label = OpLabel\n"
4442		"%tessc2_invocation_id = OpLoad %i32 %gl_InvocationID\n"
4443		"%tessc2_in_color_ptr = OpAccessChain %ip_v4f32 %in_color %tessc2_invocation_id\n"
4444		"%tessc2_in_position_ptr = OpAccessChain %ip_v4f32 %in_position %tessc2_invocation_id\n"
4445		"%tessc2_in_color_val = OpLoad %v4f32 %tessc2_in_color_ptr\n"
4446		"%tessc2_in_position_val = OpLoad %v4f32 %tessc2_in_position_ptr\n"
4447		"%tessc2_out_color_ptr = OpAccessChain %op_v4f32 %out_color %tessc2_invocation_id\n"
4448		"%tessc2_out_position_ptr = OpAccessChain %op_v4f32 %out_position %tessc2_invocation_id\n"
4449		"%tessc2_transformed_color = OpFSub %v4f32 %cval %tessc2_in_color_val\n"
4450		"OpStore %tessc2_out_color_ptr %tessc2_transformed_color\n"
4451		"OpStore %tessc2_out_position_ptr %tessc2_in_position_val\n"
4452		"%tessc2_is_first_invocation = OpIEqual %bool %tessc2_invocation_id %c_i32_0\n"
4453		"OpSelectionMerge %tessc2_merge_label None\n"
4454		"OpBranchConditional %tessc2_is_first_invocation %tessc2_first_invocation %tessc2_merge_label\n"
4455		"%tessc2_first_invocation = OpLabel\n"
4456		"%tessc2_tess_outer_0 = OpAccessChain %op_f32 %gl_TessLevelOuter %c_i32_0\n"
4457		"%tessc2_tess_outer_1 = OpAccessChain %op_f32 %gl_TessLevelOuter %c_i32_1\n"
4458		"%tessc2_tess_outer_2 = OpAccessChain %op_f32 %gl_TessLevelOuter %c_i32_2\n"
4459		"%tessc2_tess_inner = OpAccessChain %op_f32 %gl_TessLevelInner %c_i32_0\n"
4460		"OpStore %tessc2_tess_outer_0 %c_f32_1\n"
4461		"OpStore %tessc2_tess_outer_1 %c_f32_1\n"
4462		"OpStore %tessc2_tess_outer_2 %c_f32_1\n"
4463		"OpStore %tessc2_tess_inner %c_f32_1\n"
4464		"OpBranch %tessc2_merge_label\n"
4465		"%tessc2_merge_label = OpLabel\n"
4466		"OpReturn\n"
4467		"OpFunctionEnd\n";
4468
4469	dst.spirvAsmSources.add("tesse") <<
4470		"OpCapability Tessellation\n"
4471		"OpMemoryModel Logical GLSL450\n"
4472		"OpEntryPoint TessellationEvaluation %tesse1_main \"tesse1\" %stream %gl_tessCoord %in_position %out_color %in_color \n"
4473		"OpEntryPoint TessellationEvaluation %tesse2_main \"tesse2\" %stream %gl_tessCoord %in_position %out_color %in_color \n"
4474		"OpExecutionMode %tesse1_main Triangles\n"
4475		"OpExecutionMode %tesse2_main Triangles\n"
4476		"OpName %tesse1_main \"tesse1\"\n"
4477		"OpName %tesse2_main \"tesse2\"\n"
4478		"OpName %per_vertex_out \"gl_PerVertex\"\n"
4479		"OpMemberName %per_vertex_out 0 \"gl_Position\"\n"
4480		"OpMemberName %per_vertex_out 1 \"gl_PointSize\"\n"
4481		"OpMemberName %per_vertex_out 2 \"gl_ClipDistance\"\n"
4482		"OpMemberName %per_vertex_out 3 \"gl_CullDistance\"\n"
4483		"OpName %stream \"\"\n"
4484		"OpName %gl_tessCoord \"gl_TessCoord\"\n"
4485		"OpName %in_position \"in_position\"\n"
4486		"OpName %out_color \"out_color\"\n"
4487		"OpName %in_color \"in_color\"\n"
4488		"OpMemberDecorate %per_vertex_out 0 BuiltIn Position\n"
4489		"OpMemberDecorate %per_vertex_out 1 BuiltIn PointSize\n"
4490		"OpMemberDecorate %per_vertex_out 2 BuiltIn ClipDistance\n"
4491		"OpMemberDecorate %per_vertex_out 3 BuiltIn CullDistance\n"
4492		"OpDecorate %per_vertex_out Block\n"
4493		"OpDecorate %gl_tessCoord BuiltIn TessCoord\n"
4494		"OpDecorate %in_position Location 2\n"
4495		"OpDecorate %out_color Location 1\n"
4496		"OpDecorate %in_color Location 1\n"
4497		SPIRV_ASSEMBLY_TYPES
4498		SPIRV_ASSEMBLY_CONSTANTS
4499		SPIRV_ASSEMBLY_ARRAYS
4500		"%cval = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_0\n"
4501		"%per_vertex_out = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
4502		"%op_per_vertex_out = OpTypePointer Output %per_vertex_out\n"
4503		"%stream = OpVariable %op_per_vertex_out Output\n"
4504		"%gl_tessCoord = OpVariable %ip_v3f32 Input\n"
4505		"%in_position = OpVariable %ip_a32v4f32 Input\n"
4506		"%out_color = OpVariable %op_v4f32 Output\n"
4507		"%in_color = OpVariable %ip_a32v4f32 Input\n"
4508
4509		"%tesse1_main = OpFunction %void None %fun\n"
4510		"%tesse1_label = OpLabel\n"
4511		"%tesse1_tc_0_ptr = OpAccessChain %ip_f32 %gl_tessCoord %c_u32_0\n"
4512		"%tesse1_tc_1_ptr = OpAccessChain %ip_f32 %gl_tessCoord %c_u32_1\n"
4513		"%tesse1_tc_2_ptr = OpAccessChain %ip_f32 %gl_tessCoord %c_u32_2\n"
4514		"%tesse1_tc_0 = OpLoad %f32 %tesse1_tc_0_ptr\n"
4515		"%tesse1_tc_1 = OpLoad %f32 %tesse1_tc_1_ptr\n"
4516		"%tesse1_tc_2 = OpLoad %f32 %tesse1_tc_2_ptr\n"
4517		"%tesse1_in_pos_0_ptr = OpAccessChain %ip_v4f32 %in_position %c_i32_0\n"
4518		"%tesse1_in_pos_1_ptr = OpAccessChain %ip_v4f32 %in_position %c_i32_1\n"
4519		"%tesse1_in_pos_2_ptr = OpAccessChain %ip_v4f32 %in_position %c_i32_2\n"
4520		"%tesse1_in_pos_0 = OpLoad %v4f32 %tesse1_in_pos_0_ptr\n"
4521		"%tesse1_in_pos_1 = OpLoad %v4f32 %tesse1_in_pos_1_ptr\n"
4522		"%tesse1_in_pos_2 = OpLoad %v4f32 %tesse1_in_pos_2_ptr\n"
4523		"%tesse1_in_pos_0_weighted = OpVectorTimesScalar %v4f32 %tesse1_tc_0 %tesse1_in_pos_0\n"
4524		"%tesse1_in_pos_1_weighted = OpVectorTimesScalar %v4f32 %tesse1_tc_1 %tesse1_in_pos_1\n"
4525		"%tesse1_in_pos_2_weighted = OpVectorTimesScalar %v4f32 %tesse1_tc_2 %tesse1_in_pos_2\n"
4526		"%tesse1_out_pos_ptr = OpAccessChain %op_v4f32 %stream %c_i32_0\n"
4527		"%tesse1_in_pos_0_plus_pos_1 = OpFAdd %v4f32 %tesse1_in_pos_0_weighted %tesse1_in_pos_1_weighted\n"
4528		"%tesse1_computed_out = OpFAdd %v4f32 %tesse1_in_pos_0_plus_pos_1 %tesse1_in_pos_2_weighted\n"
4529		"OpStore %tesse1_out_pos_ptr %tesse1_computed_out\n"
4530		"%tesse1_in_clr_0_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_0\n"
4531		"%tesse1_in_clr_1_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_1\n"
4532		"%tesse1_in_clr_2_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_2\n"
4533		"%tesse1_in_clr_0 = OpLoad %v4f32 %tesse1_in_clr_0_ptr\n"
4534		"%tesse1_in_clr_1 = OpLoad %v4f32 %tesse1_in_clr_1_ptr\n"
4535		"%tesse1_in_clr_2 = OpLoad %v4f32 %tesse1_in_clr_2_ptr\n"
4536		"%tesse1_in_clr_0_weighted = OpVectorTimesScalar %v4f32 %tesse1_tc_0 %tesse1_in_clr_0\n"
4537		"%tesse1_in_clr_1_weighted = OpVectorTimesScalar %v4f32 %tesse1_tc_1 %tesse1_in_clr_1\n"
4538		"%tesse1_in_clr_2_weighted = OpVectorTimesScalar %v4f32 %tesse1_tc_2 %tesse1_in_clr_2\n"
4539		"%tesse1_in_clr_0_plus_col_1 = OpFAdd %v4f32 %tesse1_in_clr_0_weighted %tesse1_in_clr_1_weighted\n"
4540		"%tesse1_computed_clr = OpFAdd %v4f32 %tesse1_in_clr_0_plus_col_1 %tesse1_in_clr_2_weighted\n"
4541		"OpStore %out_color %tesse1_computed_clr\n"
4542		"OpReturn\n"
4543		"OpFunctionEnd\n"
4544
4545		"%tesse2_main = OpFunction %void None %fun\n"
4546		"%tesse2_label = OpLabel\n"
4547		"%tesse2_tc_0_ptr = OpAccessChain %ip_f32 %gl_tessCoord %c_u32_0\n"
4548		"%tesse2_tc_1_ptr = OpAccessChain %ip_f32 %gl_tessCoord %c_u32_1\n"
4549		"%tesse2_tc_2_ptr = OpAccessChain %ip_f32 %gl_tessCoord %c_u32_2\n"
4550		"%tesse2_tc_0 = OpLoad %f32 %tesse2_tc_0_ptr\n"
4551		"%tesse2_tc_1 = OpLoad %f32 %tesse2_tc_1_ptr\n"
4552		"%tesse2_tc_2 = OpLoad %f32 %tesse2_tc_2_ptr\n"
4553		"%tesse2_in_pos_0_ptr = OpAccessChain %ip_v4f32 %in_position %c_i32_0\n"
4554		"%tesse2_in_pos_1_ptr = OpAccessChain %ip_v4f32 %in_position %c_i32_1\n"
4555		"%tesse2_in_pos_2_ptr = OpAccessChain %ip_v4f32 %in_position %c_i32_2\n"
4556		"%tesse2_in_pos_0 = OpLoad %v4f32 %tesse2_in_pos_0_ptr\n"
4557		"%tesse2_in_pos_1 = OpLoad %v4f32 %tesse2_in_pos_1_ptr\n"
4558		"%tesse2_in_pos_2 = OpLoad %v4f32 %tesse2_in_pos_2_ptr\n"
4559		"%tesse2_in_pos_0_weighted = OpVectorTimesScalar %v4f32 %tesse2_tc_0 %tesse2_in_pos_0\n"
4560		"%tesse2_in_pos_1_weighted = OpVectorTimesScalar %v4f32 %tesse2_tc_1 %tesse2_in_pos_1\n"
4561		"%tesse2_in_pos_2_weighted = OpVectorTimesScalar %v4f32 %tesse2_tc_2 %tesse2_in_pos_2\n"
4562		"%tesse2_out_pos_ptr = OpAccessChain %op_v4f32 %stream %c_i32_0\n"
4563		"%tesse2_in_pos_0_plus_pos_1 = OpFAdd %v4f32 %tesse2_in_pos_0_weighted %tesse2_in_pos_1_weighted\n"
4564		"%tesse2_computed_out = OpFAdd %v4f32 %tesse2_in_pos_0_plus_pos_1 %tesse2_in_pos_2_weighted\n"
4565		"OpStore %tesse2_out_pos_ptr %tesse2_computed_out\n"
4566		"%tesse2_in_clr_0_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_0\n"
4567		"%tesse2_in_clr_1_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_1\n"
4568		"%tesse2_in_clr_2_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_2\n"
4569		"%tesse2_in_clr_0 = OpLoad %v4f32 %tesse2_in_clr_0_ptr\n"
4570		"%tesse2_in_clr_1 = OpLoad %v4f32 %tesse2_in_clr_1_ptr\n"
4571		"%tesse2_in_clr_2 = OpLoad %v4f32 %tesse2_in_clr_2_ptr\n"
4572		"%tesse2_in_clr_0_weighted = OpVectorTimesScalar %v4f32 %tesse2_tc_0 %tesse2_in_clr_0\n"
4573		"%tesse2_in_clr_1_weighted = OpVectorTimesScalar %v4f32 %tesse2_tc_1 %tesse2_in_clr_1\n"
4574		"%tesse2_in_clr_2_weighted = OpVectorTimesScalar %v4f32 %tesse2_tc_2 %tesse2_in_clr_2\n"
4575		"%tesse2_in_clr_0_plus_col_1 = OpFAdd %v4f32 %tesse2_in_clr_0_weighted %tesse2_in_clr_1_weighted\n"
4576		"%tesse2_computed_clr = OpFAdd %v4f32 %tesse2_in_clr_0_plus_col_1 %tesse2_in_clr_2_weighted\n"
4577		"%tesse2_clr_transformed = OpFSub %v4f32 %cval %tesse2_computed_clr\n"
4578		"OpStore %out_color %tesse2_clr_transformed\n"
4579		"OpReturn\n"
4580		"OpFunctionEnd\n";
4581}
4582
4583// Sets up and runs a Vulkan pipeline, then spot-checks the resulting image.
4584// Feeds the pipeline a set of colored triangles, which then must occur in the
4585// rendered image.  The surface is cleared before executing the pipeline, so
4586// whatever the shaders draw can be directly spot-checked.
4587TestStatus runAndVerifyDefaultPipeline (Context& context, InstanceContext instance)
4588{
4589	const VkDevice								vkDevice				= context.getDevice();
4590	const DeviceInterface&						vk						= context.getDeviceInterface();
4591	const VkQueue								queue					= context.getUniversalQueue();
4592	const deUint32								queueFamilyIndex		= context.getUniversalQueueFamilyIndex();
4593	const tcu::IVec2							renderSize				(256, 256);
4594	vector<ModuleHandleSp>						modules;
4595	map<VkShaderStageFlagBits, VkShaderModule>	moduleByStage;
4596	const int									testSpecificSeed		= 31354125;
4597	const int									seed					= context.getTestContext().getCommandLine().getBaseSeed() ^ testSpecificSeed;
4598	bool										supportsGeometry		= false;
4599	bool										supportsTessellation	= false;
4600	bool										hasTessellation         = false;
4601
4602	const VkPhysicalDeviceFeatures&				features				= context.getDeviceFeatures();
4603	supportsGeometry		= features.geometryShader;
4604	supportsTessellation	= features.tessellationShader;
4605	hasTessellation			= (instance.requiredStages & VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT) ||
4606								(instance.requiredStages & VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT);
4607
4608	if (hasTessellation && !supportsTessellation)
4609	{
4610		throw tcu::NotSupportedError(std::string("Tessellation not supported"));
4611	}
4612
4613	if ((instance.requiredStages & VK_SHADER_STAGE_GEOMETRY_BIT) &&
4614		!supportsGeometry)
4615	{
4616		throw tcu::NotSupportedError(std::string("Geometry not supported"));
4617	}
4618
4619	de::Random(seed).shuffle(instance.inputColors, instance.inputColors+4);
4620	de::Random(seed).shuffle(instance.outputColors, instance.outputColors+4);
4621	const Vec4								vertexData[]			=
4622	{
4623		// Upper left corner:
4624		Vec4(-1.0f, -1.0f, 0.0f, 1.0f), instance.inputColors[0].toVec(),
4625		Vec4(-0.5f, -1.0f, 0.0f, 1.0f), instance.inputColors[0].toVec(),
4626		Vec4(-1.0f, -0.5f, 0.0f, 1.0f), instance.inputColors[0].toVec(),
4627
4628		// Upper right corner:
4629		Vec4(+0.5f, -1.0f, 0.0f, 1.0f), instance.inputColors[1].toVec(),
4630		Vec4(+1.0f, -1.0f, 0.0f, 1.0f), instance.inputColors[1].toVec(),
4631		Vec4(+1.0f, -0.5f, 0.0f, 1.0f), instance.inputColors[1].toVec(),
4632
4633		// Lower left corner:
4634		Vec4(-1.0f, +0.5f, 0.0f, 1.0f), instance.inputColors[2].toVec(),
4635		Vec4(-0.5f, +1.0f, 0.0f, 1.0f), instance.inputColors[2].toVec(),
4636		Vec4(-1.0f, +1.0f, 0.0f, 1.0f), instance.inputColors[2].toVec(),
4637
4638		// Lower right corner:
4639		Vec4(+1.0f, +0.5f, 0.0f, 1.0f), instance.inputColors[3].toVec(),
4640		Vec4(+1.0f, +1.0f, 0.0f, 1.0f), instance.inputColors[3].toVec(),
4641		Vec4(+0.5f, +1.0f, 0.0f, 1.0f), instance.inputColors[3].toVec()
4642	};
4643	const size_t							singleVertexDataSize	= 2 * sizeof(Vec4);
4644	const size_t							vertexCount				= sizeof(vertexData) / singleVertexDataSize;
4645
4646	const VkBufferCreateInfo				vertexBufferParams		=
4647	{
4648		VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO,	//	VkStructureType		sType;
4649		DE_NULL,								//	const void*			pNext;
4650		0u,										//	VkBufferCreateFlags	flags;
4651		(VkDeviceSize)sizeof(vertexData),		//	VkDeviceSize		size;
4652		VK_BUFFER_USAGE_VERTEX_BUFFER_BIT,		//	VkBufferUsageFlags	usage;
4653		VK_SHARING_MODE_EXCLUSIVE,				//	VkSharingMode		sharingMode;
4654		1u,										//	deUint32			queueFamilyCount;
4655		&queueFamilyIndex,						//	const deUint32*		pQueueFamilyIndices;
4656	};
4657	const Unique<VkBuffer>					vertexBuffer			(createBuffer(vk, vkDevice, &vertexBufferParams));
4658	const UniquePtr<Allocation>				vertexBufferMemory		(context.getDefaultAllocator().allocate(getBufferMemoryRequirements(vk, vkDevice, *vertexBuffer), MemoryRequirement::HostVisible));
4659
4660	VK_CHECK(vk.bindBufferMemory(vkDevice, *vertexBuffer, vertexBufferMemory->getMemory(), vertexBufferMemory->getOffset()));
4661
4662	const VkDeviceSize						imageSizeBytes			= (VkDeviceSize)(sizeof(deUint32)*renderSize.x()*renderSize.y());
4663	const VkBufferCreateInfo				readImageBufferParams	=
4664	{
4665		VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO,		//	VkStructureType		sType;
4666		DE_NULL,									//	const void*			pNext;
4667		0u,											//	VkBufferCreateFlags	flags;
4668		imageSizeBytes,								//	VkDeviceSize		size;
4669		VK_BUFFER_USAGE_TRANSFER_DST_BIT,			//	VkBufferUsageFlags	usage;
4670		VK_SHARING_MODE_EXCLUSIVE,					//	VkSharingMode		sharingMode;
4671		1u,											//	deUint32			queueFamilyCount;
4672		&queueFamilyIndex,							//	const deUint32*		pQueueFamilyIndices;
4673	};
4674	const Unique<VkBuffer>					readImageBuffer			(createBuffer(vk, vkDevice, &readImageBufferParams));
4675	const UniquePtr<Allocation>				readImageBufferMemory	(context.getDefaultAllocator().allocate(getBufferMemoryRequirements(vk, vkDevice, *readImageBuffer), MemoryRequirement::HostVisible));
4676
4677	VK_CHECK(vk.bindBufferMemory(vkDevice, *readImageBuffer, readImageBufferMemory->getMemory(), readImageBufferMemory->getOffset()));
4678
4679	const VkImageCreateInfo					imageParams				=
4680	{
4681		VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,									//	VkStructureType		sType;
4682		DE_NULL,																//	const void*			pNext;
4683		0u,																		//	VkImageCreateFlags	flags;
4684		VK_IMAGE_TYPE_2D,														//	VkImageType			imageType;
4685		VK_FORMAT_R8G8B8A8_UNORM,												//	VkFormat			format;
4686		{ renderSize.x(), renderSize.y(), 1 },									//	VkExtent3D			extent;
4687		1u,																		//	deUint32			mipLevels;
4688		1u,																		//	deUint32			arraySize;
4689		VK_SAMPLE_COUNT_1_BIT,													//	deUint32			samples;
4690		VK_IMAGE_TILING_OPTIMAL,												//	VkImageTiling		tiling;
4691		VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT|VK_IMAGE_USAGE_TRANSFER_SRC_BIT,	//	VkImageUsageFlags	usage;
4692		VK_SHARING_MODE_EXCLUSIVE,												//	VkSharingMode		sharingMode;
4693		1u,																		//	deUint32			queueFamilyCount;
4694		&queueFamilyIndex,														//	const deUint32*		pQueueFamilyIndices;
4695		VK_IMAGE_LAYOUT_UNDEFINED,												//	VkImageLayout		initialLayout;
4696	};
4697
4698	const Unique<VkImage>					image					(createImage(vk, vkDevice, &imageParams));
4699	const UniquePtr<Allocation>				imageMemory				(context.getDefaultAllocator().allocate(getImageMemoryRequirements(vk, vkDevice, *image), MemoryRequirement::Any));
4700
4701	VK_CHECK(vk.bindImageMemory(vkDevice, *image, imageMemory->getMemory(), imageMemory->getOffset()));
4702
4703	const VkAttachmentDescription			colorAttDesc			=
4704	{
4705		0u,												//	VkAttachmentDescriptionFlags	flags;
4706		VK_FORMAT_R8G8B8A8_UNORM,						//	VkFormat						format;
4707		VK_SAMPLE_COUNT_1_BIT,							//	deUint32						samples;
4708		VK_ATTACHMENT_LOAD_OP_CLEAR,					//	VkAttachmentLoadOp				loadOp;
4709		VK_ATTACHMENT_STORE_OP_STORE,					//	VkAttachmentStoreOp				storeOp;
4710		VK_ATTACHMENT_LOAD_OP_DONT_CARE,				//	VkAttachmentLoadOp				stencilLoadOp;
4711		VK_ATTACHMENT_STORE_OP_DONT_CARE,				//	VkAttachmentStoreOp				stencilStoreOp;
4712		VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,		//	VkImageLayout					initialLayout;
4713		VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,		//	VkImageLayout					finalLayout;
4714	};
4715	const VkAttachmentReference				colorAttRef				=
4716	{
4717		0u,												//	deUint32		attachment;
4718		VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,		//	VkImageLayout	layout;
4719	};
4720	const VkSubpassDescription				subpassDesc				=
4721	{
4722		0u,												//	VkSubpassDescriptionFlags		flags;
4723		VK_PIPELINE_BIND_POINT_GRAPHICS,				//	VkPipelineBindPoint				pipelineBindPoint;
4724		0u,												//	deUint32						inputCount;
4725		DE_NULL,										//	const VkAttachmentReference*	pInputAttachments;
4726		1u,												//	deUint32						colorCount;
4727		&colorAttRef,									//	const VkAttachmentReference*	pColorAttachments;
4728		DE_NULL,										//	const VkAttachmentReference*	pResolveAttachments;
4729		DE_NULL,										//	const VkAttachmentReference*	pDepthStencilAttachment;
4730		0u,												//	deUint32						preserveCount;
4731		DE_NULL,										//	const VkAttachmentReference*	pPreserveAttachments;
4732
4733	};
4734	const VkRenderPassCreateInfo			renderPassParams		=
4735	{
4736		VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO,		//	VkStructureType					sType;
4737		DE_NULL,										//	const void*						pNext;
4738		(VkRenderPassCreateFlags)0,
4739		1u,												//	deUint32						attachmentCount;
4740		&colorAttDesc,									//	const VkAttachmentDescription*	pAttachments;
4741		1u,												//	deUint32						subpassCount;
4742		&subpassDesc,									//	const VkSubpassDescription*		pSubpasses;
4743		0u,												//	deUint32						dependencyCount;
4744		DE_NULL,										//	const VkSubpassDependency*		pDependencies;
4745	};
4746	const Unique<VkRenderPass>				renderPass				(createRenderPass(vk, vkDevice, &renderPassParams));
4747
4748	const VkImageViewCreateInfo				colorAttViewParams		=
4749	{
4750		VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,		//	VkStructureType				sType;
4751		DE_NULL,										//	const void*					pNext;
4752		0u,												//	VkImageViewCreateFlags		flags;
4753		*image,											//	VkImage						image;
4754		VK_IMAGE_VIEW_TYPE_2D,							//	VkImageViewType				viewType;
4755		VK_FORMAT_R8G8B8A8_UNORM,						//	VkFormat					format;
4756		{
4757			VK_COMPONENT_SWIZZLE_R,
4758			VK_COMPONENT_SWIZZLE_G,
4759			VK_COMPONENT_SWIZZLE_B,
4760			VK_COMPONENT_SWIZZLE_A
4761		},												//	VkChannelMapping			channels;
4762		{
4763			VK_IMAGE_ASPECT_COLOR_BIT,						//	VkImageAspectFlags	aspectMask;
4764			0u,												//	deUint32			baseMipLevel;
4765			1u,												//	deUint32			mipLevels;
4766			0u,												//	deUint32			baseArrayLayer;
4767			1u,												//	deUint32			arraySize;
4768		},												//	VkImageSubresourceRange		subresourceRange;
4769	};
4770	const Unique<VkImageView>				colorAttView			(createImageView(vk, vkDevice, &colorAttViewParams));
4771
4772
4773	// Pipeline layout
4774	const VkPipelineLayoutCreateInfo		pipelineLayoutParams	=
4775	{
4776		VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,			//	VkStructureType					sType;
4777		DE_NULL,												//	const void*						pNext;
4778		(VkPipelineLayoutCreateFlags)0,
4779		0u,														//	deUint32						descriptorSetCount;
4780		DE_NULL,												//	const VkDescriptorSetLayout*	pSetLayouts;
4781		0u,														//	deUint32						pushConstantRangeCount;
4782		DE_NULL,												//	const VkPushConstantRange*		pPushConstantRanges;
4783	};
4784	const Unique<VkPipelineLayout>			pipelineLayout			(createPipelineLayout(vk, vkDevice, &pipelineLayoutParams));
4785
4786	// Pipeline
4787	vector<VkPipelineShaderStageCreateInfo>		shaderStageParams;
4788	// We need these vectors to make sure that information about specialization constants for each stage can outlive createGraphicsPipeline().
4789	vector<vector<VkSpecializationMapEntry> >	specConstantEntries;
4790	vector<VkSpecializationInfo>				specializationInfos;
4791	createPipelineShaderStages(vk, vkDevice, instance, context, modules, shaderStageParams);
4792
4793	// And we don't want the reallocation of these vectors to invalidate pointers pointing to their contents.
4794	specConstantEntries.reserve(shaderStageParams.size());
4795	specializationInfos.reserve(shaderStageParams.size());
4796
4797	// Patch the specialization info field in PipelineShaderStageCreateInfos.
4798	for (vector<VkPipelineShaderStageCreateInfo>::iterator stageInfo = shaderStageParams.begin(); stageInfo != shaderStageParams.end(); ++stageInfo)
4799	{
4800		const StageToSpecConstantMap::const_iterator stageIt = instance.specConstants.find(stageInfo->stage);
4801
4802		if (stageIt != instance.specConstants.end())
4803		{
4804			const size_t						numSpecConstants	= stageIt->second.size();
4805			vector<VkSpecializationMapEntry>	entries;
4806			VkSpecializationInfo				specInfo;
4807
4808			entries.resize(numSpecConstants);
4809
4810			// Only support 32-bit integers as spec constants now. And their constant IDs are numbered sequentially starting from 0.
4811			for (size_t ndx = 0; ndx < numSpecConstants; ++ndx)
4812			{
4813				entries[ndx].constantID	= (deUint32)ndx;
4814				entries[ndx].offset		= deUint32(ndx * sizeof(deInt32));
4815				entries[ndx].size		= sizeof(deInt32);
4816			}
4817
4818			specConstantEntries.push_back(entries);
4819
4820			specInfo.mapEntryCount	= (deUint32)numSpecConstants;
4821			specInfo.pMapEntries	= specConstantEntries.back().data();
4822			specInfo.dataSize		= numSpecConstants * sizeof(deInt32);
4823			specInfo.pData			= stageIt->second.data();
4824			specializationInfos.push_back(specInfo);
4825
4826			stageInfo->pSpecializationInfo = &specializationInfos.back();
4827		}
4828	}
4829	const VkPipelineDepthStencilStateCreateInfo	depthStencilParams		=
4830	{
4831		VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO,	//	VkStructureType		sType;
4832		DE_NULL,													//	const void*			pNext;
4833		(VkPipelineDepthStencilStateCreateFlags)0,
4834		DE_FALSE,													//	deUint32			depthTestEnable;
4835		DE_FALSE,													//	deUint32			depthWriteEnable;
4836		VK_COMPARE_OP_ALWAYS,										//	VkCompareOp			depthCompareOp;
4837		DE_FALSE,													//	deUint32			depthBoundsTestEnable;
4838		DE_FALSE,													//	deUint32			stencilTestEnable;
4839		{
4840			VK_STENCIL_OP_KEEP,											//	VkStencilOp	stencilFailOp;
4841			VK_STENCIL_OP_KEEP,											//	VkStencilOp	stencilPassOp;
4842			VK_STENCIL_OP_KEEP,											//	VkStencilOp	stencilDepthFailOp;
4843			VK_COMPARE_OP_ALWAYS,										//	VkCompareOp	stencilCompareOp;
4844			0u,															//	deUint32	stencilCompareMask;
4845			0u,															//	deUint32	stencilWriteMask;
4846			0u,															//	deUint32	stencilReference;
4847		},															//	VkStencilOpState	front;
4848		{
4849			VK_STENCIL_OP_KEEP,											//	VkStencilOp	stencilFailOp;
4850			VK_STENCIL_OP_KEEP,											//	VkStencilOp	stencilPassOp;
4851			VK_STENCIL_OP_KEEP,											//	VkStencilOp	stencilDepthFailOp;
4852			VK_COMPARE_OP_ALWAYS,										//	VkCompareOp	stencilCompareOp;
4853			0u,															//	deUint32	stencilCompareMask;
4854			0u,															//	deUint32	stencilWriteMask;
4855			0u,															//	deUint32	stencilReference;
4856		},															//	VkStencilOpState	back;
4857		-1.0f,														//	float				minDepthBounds;
4858		+1.0f,														//	float				maxDepthBounds;
4859	};
4860	const VkViewport						viewport0				=
4861	{
4862		0.0f,														//	float	originX;
4863		0.0f,														//	float	originY;
4864		(float)renderSize.x(),										//	float	width;
4865		(float)renderSize.y(),										//	float	height;
4866		0.0f,														//	float	minDepth;
4867		1.0f,														//	float	maxDepth;
4868	};
4869	const VkRect2D							scissor0				=
4870	{
4871		{
4872			0u,															//	deInt32	x;
4873			0u,															//	deInt32	y;
4874		},															//	VkOffset2D	offset;
4875		{
4876			renderSize.x(),												//	deInt32	width;
4877			renderSize.y(),												//	deInt32	height;
4878		},															//	VkExtent2D	extent;
4879	};
4880	const VkPipelineViewportStateCreateInfo		viewportParams			=
4881	{
4882		VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO,		//	VkStructureType		sType;
4883		DE_NULL,													//	const void*			pNext;
4884		(VkPipelineViewportStateCreateFlags)0,
4885		1u,															//	deUint32			viewportCount;
4886		&viewport0,
4887		1u,
4888		&scissor0
4889	};
4890	const VkSampleMask							sampleMask				= ~0u;
4891	const VkPipelineMultisampleStateCreateInfo	multisampleParams		=
4892	{
4893		VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO,	//	VkStructureType			sType;
4894		DE_NULL,													//	const void*				pNext;
4895		(VkPipelineMultisampleStateCreateFlags)0,
4896		VK_SAMPLE_COUNT_1_BIT,										//	VkSampleCountFlagBits	rasterSamples;
4897		DE_FALSE,													//	deUint32				sampleShadingEnable;
4898		0.0f,														//	float					minSampleShading;
4899		&sampleMask,												//	const VkSampleMask*		pSampleMask;
4900		DE_FALSE,													//	VkBool32				alphaToCoverageEnable;
4901		DE_FALSE,													//	VkBool32				alphaToOneEnable;
4902	};
4903	const VkPipelineRasterizationStateCreateInfo	rasterParams		=
4904	{
4905		VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO,	//	VkStructureType	sType;
4906		DE_NULL,													//	const void*		pNext;
4907		(VkPipelineRasterizationStateCreateFlags)0,
4908		DE_TRUE,													//	deUint32		depthClipEnable;
4909		DE_FALSE,													//	deUint32		rasterizerDiscardEnable;
4910		VK_POLYGON_MODE_FILL,										//	VkFillMode		fillMode;
4911		VK_CULL_MODE_NONE,											//	VkCullMode		cullMode;
4912		VK_FRONT_FACE_COUNTER_CLOCKWISE,							//	VkFrontFace		frontFace;
4913		VK_FALSE,													//	VkBool32		depthBiasEnable;
4914		0.0f,														//	float			depthBias;
4915		0.0f,														//	float			depthBiasClamp;
4916		0.0f,														//	float			slopeScaledDepthBias;
4917		1.0f,														//	float			lineWidth;
4918	};
4919	const VkPrimitiveTopology topology = hasTessellation? VK_PRIMITIVE_TOPOLOGY_PATCH_LIST: VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
4920	const VkPipelineInputAssemblyStateCreateInfo	inputAssemblyParams	=
4921	{
4922		VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO,	//	VkStructureType		sType;
4923		DE_NULL,														//	const void*			pNext;
4924		(VkPipelineInputAssemblyStateCreateFlags)0,
4925		topology,														//	VkPrimitiveTopology	topology;
4926		DE_FALSE,														//	deUint32			primitiveRestartEnable;
4927	};
4928	const VkVertexInputBindingDescription		vertexBinding0 =
4929	{
4930		0u,									// deUint32					binding;
4931		deUint32(singleVertexDataSize),		// deUint32					strideInBytes;
4932		VK_VERTEX_INPUT_RATE_VERTEX			// VkVertexInputStepRate	stepRate;
4933	};
4934	const VkVertexInputAttributeDescription		vertexAttrib0[2] =
4935	{
4936		{
4937			0u,									// deUint32	location;
4938			0u,									// deUint32	binding;
4939			VK_FORMAT_R32G32B32A32_SFLOAT,		// VkFormat	format;
4940			0u									// deUint32	offsetInBytes;
4941		},
4942		{
4943			1u,									// deUint32	location;
4944			0u,									// deUint32	binding;
4945			VK_FORMAT_R32G32B32A32_SFLOAT,		// VkFormat	format;
4946			sizeof(Vec4),						// deUint32	offsetInBytes;
4947		}
4948	};
4949
4950	const VkPipelineVertexInputStateCreateInfo	vertexInputStateParams	=
4951	{
4952		VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO,	//	VkStructureType								sType;
4953		DE_NULL,													//	const void*									pNext;
4954		(VkPipelineVertexInputStateCreateFlags)0,
4955		1u,															//	deUint32									bindingCount;
4956		&vertexBinding0,											//	const VkVertexInputBindingDescription*		pVertexBindingDescriptions;
4957		2u,															//	deUint32									attributeCount;
4958		vertexAttrib0,												//	const VkVertexInputAttributeDescription*	pVertexAttributeDescriptions;
4959	};
4960	const VkPipelineColorBlendAttachmentState	attBlendParams			=
4961	{
4962		DE_FALSE,													//	deUint32		blendEnable;
4963		VK_BLEND_FACTOR_ONE,										//	VkBlend			srcBlendColor;
4964		VK_BLEND_FACTOR_ZERO,										//	VkBlend			destBlendColor;
4965		VK_BLEND_OP_ADD,											//	VkBlendOp		blendOpColor;
4966		VK_BLEND_FACTOR_ONE,										//	VkBlend			srcBlendAlpha;
4967		VK_BLEND_FACTOR_ZERO,										//	VkBlend			destBlendAlpha;
4968		VK_BLEND_OP_ADD,											//	VkBlendOp		blendOpAlpha;
4969		(VK_COLOR_COMPONENT_R_BIT|
4970		 VK_COLOR_COMPONENT_G_BIT|
4971		 VK_COLOR_COMPONENT_B_BIT|
4972		 VK_COLOR_COMPONENT_A_BIT),									//	VkChannelFlags	channelWriteMask;
4973	};
4974	const VkPipelineColorBlendStateCreateInfo	blendParams				=
4975	{
4976		VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO,	//	VkStructureType								sType;
4977		DE_NULL,													//	const void*									pNext;
4978		(VkPipelineColorBlendStateCreateFlags)0,
4979		DE_FALSE,													//	VkBool32									logicOpEnable;
4980		VK_LOGIC_OP_COPY,											//	VkLogicOp									logicOp;
4981		1u,															//	deUint32									attachmentCount;
4982		&attBlendParams,											//	const VkPipelineColorBlendAttachmentState*	pAttachments;
4983		{ 0.0f, 0.0f, 0.0f, 0.0f },									//	float										blendConst[4];
4984	};
4985	const VkPipelineDynamicStateCreateInfo	dynamicStateInfo		=
4986	{
4987		VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO,	//	VkStructureType			sType;
4988		DE_NULL,												//	const void*				pNext;
4989		(VkPipelineDynamicStateCreateFlags)0,
4990		0u,														//	deUint32				dynamicStateCount;
4991		DE_NULL													//	const VkDynamicState*	pDynamicStates;
4992	};
4993
4994	const VkPipelineTessellationStateCreateInfo	tessellationState	=
4995	{
4996		VK_STRUCTURE_TYPE_PIPELINE_TESSELLATION_STATE_CREATE_INFO,
4997		DE_NULL,
4998		(VkPipelineTesselationStateCreateFlags)0,
4999		3u
5000	};
5001
5002	const VkPipelineTessellationStateCreateInfo* tessellationInfo	=	hasTessellation ? &tessellationState: DE_NULL;
5003	const VkGraphicsPipelineCreateInfo		pipelineParams			=
5004	{
5005		VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO,		//	VkStructureType									sType;
5006		DE_NULL,												//	const void*										pNext;
5007		0u,														//	VkPipelineCreateFlags							flags;
5008		(deUint32)shaderStageParams.size(),						//	deUint32										stageCount;
5009		&shaderStageParams[0],									//	const VkPipelineShaderStageCreateInfo*			pStages;
5010		&vertexInputStateParams,								//	const VkPipelineVertexInputStateCreateInfo*		pVertexInputState;
5011		&inputAssemblyParams,									//	const VkPipelineInputAssemblyStateCreateInfo*	pInputAssemblyState;
5012		tessellationInfo,										//	const VkPipelineTessellationStateCreateInfo*	pTessellationState;
5013		&viewportParams,										//	const VkPipelineViewportStateCreateInfo*		pViewportState;
5014		&rasterParams,											//	const VkPipelineRasterStateCreateInfo*			pRasterState;
5015		&multisampleParams,										//	const VkPipelineMultisampleStateCreateInfo*		pMultisampleState;
5016		&depthStencilParams,									//	const VkPipelineDepthStencilStateCreateInfo*	pDepthStencilState;
5017		&blendParams,											//	const VkPipelineColorBlendStateCreateInfo*		pColorBlendState;
5018		&dynamicStateInfo,										//	const VkPipelineDynamicStateCreateInfo*			pDynamicState;
5019		*pipelineLayout,										//	VkPipelineLayout								layout;
5020		*renderPass,											//	VkRenderPass									renderPass;
5021		0u,														//	deUint32										subpass;
5022		DE_NULL,												//	VkPipeline										basePipelineHandle;
5023		0u,														//	deInt32											basePipelineIndex;
5024	};
5025
5026	const Unique<VkPipeline>				pipeline				(createGraphicsPipeline(vk, vkDevice, DE_NULL, &pipelineParams));
5027
5028	// Framebuffer
5029	const VkFramebufferCreateInfo			framebufferParams		=
5030	{
5031		VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO,				//	VkStructureType		sType;
5032		DE_NULL,												//	const void*			pNext;
5033		(VkFramebufferCreateFlags)0,
5034		*renderPass,											//	VkRenderPass		renderPass;
5035		1u,														//	deUint32			attachmentCount;
5036		&*colorAttView,											//	const VkImageView*	pAttachments;
5037		(deUint32)renderSize.x(),								//	deUint32			width;
5038		(deUint32)renderSize.y(),								//	deUint32			height;
5039		1u,														//	deUint32			layers;
5040	};
5041	const Unique<VkFramebuffer>				framebuffer				(createFramebuffer(vk, vkDevice, &framebufferParams));
5042
5043	const VkCommandPoolCreateInfo			cmdPoolParams			=
5044	{
5045		VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO,					//	VkStructureType			sType;
5046		DE_NULL,													//	const void*				pNext;
5047		VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT,				//	VkCmdPoolCreateFlags	flags;
5048		queueFamilyIndex,											//	deUint32				queueFamilyIndex;
5049	};
5050	const Unique<VkCommandPool>				cmdPool					(createCommandPool(vk, vkDevice, &cmdPoolParams));
5051
5052	// Command buffer
5053	const VkCommandBufferAllocateInfo		cmdBufParams			=
5054	{
5055		VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO,			//	VkStructureType			sType;
5056		DE_NULL,												//	const void*				pNext;
5057		*cmdPool,												//	VkCmdPool				pool;
5058		VK_COMMAND_BUFFER_LEVEL_PRIMARY,						//	VkCmdBufferLevel		level;
5059		1u,														//	deUint32				count;
5060	};
5061	const Unique<VkCommandBuffer>			cmdBuf					(allocateCommandBuffer(vk, vkDevice, &cmdBufParams));
5062
5063	const VkCommandBufferBeginInfo			cmdBufBeginParams		=
5064	{
5065		VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO,			//	VkStructureType				sType;
5066		DE_NULL,												//	const void*					pNext;
5067		(VkCommandBufferUsageFlags)0,
5068		DE_NULL,												//	VkRenderPass				renderPass;
5069		0u,														//	deUint32					subpass;
5070		DE_NULL,												//	VkFramebuffer				framebuffer;
5071		VK_FALSE,												//	VkBool32					occlusionQueryEnable;
5072		(VkQueryControlFlags)0,
5073		(VkQueryPipelineStatisticFlags)0,
5074	};
5075
5076	// Record commands
5077	VK_CHECK(vk.beginCommandBuffer(*cmdBuf, &cmdBufBeginParams));
5078
5079	{
5080		const VkMemoryBarrier		vertFlushBarrier	=
5081		{
5082			VK_STRUCTURE_TYPE_MEMORY_BARRIER,			//	VkStructureType		sType;
5083			DE_NULL,									//	const void*			pNext;
5084			VK_ACCESS_HOST_WRITE_BIT,					//	VkMemoryOutputFlags	outputMask;
5085			VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT,		//	VkMemoryInputFlags	inputMask;
5086		};
5087		const VkImageMemoryBarrier	colorAttBarrier		=
5088		{
5089			VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,		//	VkStructureType			sType;
5090			DE_NULL,									//	const void*				pNext;
5091			0u,											//	VkMemoryOutputFlags		outputMask;
5092			VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,		//	VkMemoryInputFlags		inputMask;
5093			VK_IMAGE_LAYOUT_UNDEFINED,					//	VkImageLayout			oldLayout;
5094			VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,	//	VkImageLayout			newLayout;
5095			queueFamilyIndex,							//	deUint32				srcQueueFamilyIndex;
5096			queueFamilyIndex,							//	deUint32				destQueueFamilyIndex;
5097			*image,										//	VkImage					image;
5098			{
5099				VK_IMAGE_ASPECT_COLOR_BIT,					//	VkImageAspect	aspect;
5100				0u,											//	deUint32		baseMipLevel;
5101				1u,											//	deUint32		mipLevels;
5102				0u,											//	deUint32		baseArraySlice;
5103				1u,											//	deUint32		arraySize;
5104			}											//	VkImageSubresourceRange	subresourceRange;
5105		};
5106		const void*				barriers[]				= { &vertFlushBarrier, &colorAttBarrier };
5107		vk.cmdPipelineBarrier(*cmdBuf, VK_PIPELINE_STAGE_HOST_BIT, VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT, DE_FALSE, (deUint32)DE_LENGTH_OF_ARRAY(barriers), barriers);
5108	}
5109
5110	{
5111		const VkClearValue			clearValue		= makeClearValueColorF32(0.125f, 0.25f, 0.75f, 1.0f);
5112		const VkRenderPassBeginInfo	passBeginParams	=
5113		{
5114			VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO,			//	VkStructureType		sType;
5115			DE_NULL,											//	const void*			pNext;
5116			*renderPass,										//	VkRenderPass		renderPass;
5117			*framebuffer,										//	VkFramebuffer		framebuffer;
5118			{ { 0, 0 }, { renderSize.x(), renderSize.y() } },	//	VkRect2D			renderArea;
5119			1u,													//	deUint32			clearValueCount;
5120			&clearValue,										//	const VkClearValue*	pClearValues;
5121		};
5122		vk.cmdBeginRenderPass(*cmdBuf, &passBeginParams, VK_SUBPASS_CONTENTS_INLINE);
5123	}
5124
5125	vk.cmdBindPipeline(*cmdBuf, VK_PIPELINE_BIND_POINT_GRAPHICS, *pipeline);
5126	{
5127		const VkDeviceSize bindingOffset = 0;
5128		vk.cmdBindVertexBuffers(*cmdBuf, 0u, 1u, &vertexBuffer.get(), &bindingOffset);
5129	}
5130	vk.cmdDraw(*cmdBuf, deUint32(vertexCount), 1u /*run pipeline once*/, 0u /*first vertex*/, 0u /*first instanceIndex*/);
5131	vk.cmdEndRenderPass(*cmdBuf);
5132
5133	{
5134		const VkImageMemoryBarrier	renderFinishBarrier	=
5135		{
5136			VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,		//	VkStructureType			sType;
5137			DE_NULL,									//	const void*				pNext;
5138			VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,		//	VkMemoryOutputFlags		outputMask;
5139			VK_ACCESS_TRANSFER_READ_BIT,				//	VkMemoryInputFlags		inputMask;
5140			VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,	//	VkImageLayout			oldLayout;
5141			VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,		//	VkImageLayout			newLayout;
5142			queueFamilyIndex,							//	deUint32				srcQueueFamilyIndex;
5143			queueFamilyIndex,							//	deUint32				destQueueFamilyIndex;
5144			*image,										//	VkImage					image;
5145			{
5146				VK_IMAGE_ASPECT_COLOR_BIT,					//	VkImageAspectFlags	aspectMask;
5147				0u,											//	deUint32			baseMipLevel;
5148				1u,											//	deUint32			mipLevels;
5149				0u,											//	deUint32			baseArraySlice;
5150				1u,											//	deUint32			arraySize;
5151			}											//	VkImageSubresourceRange	subresourceRange;
5152		};
5153		const void*				barriers[]				= { &renderFinishBarrier };
5154		vk.cmdPipelineBarrier(*cmdBuf, VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, DE_FALSE, (deUint32)DE_LENGTH_OF_ARRAY(barriers), barriers);
5155	}
5156
5157	{
5158		const VkBufferImageCopy	copyParams	=
5159		{
5160			(VkDeviceSize)0u,						//	VkDeviceSize			bufferOffset;
5161			(deUint32)renderSize.x(),				//	deUint32				bufferRowLength;
5162			(deUint32)renderSize.y(),				//	deUint32				bufferImageHeight;
5163			{
5164				VK_IMAGE_ASPECT_COLOR_BIT,				//	VkImageAspect		aspect;
5165				0u,										//	deUint32			mipLevel;
5166				0u,										//	deUint32			arrayLayer;
5167				1u,										//	deUint32			arraySize;
5168			},										//	VkImageSubresourceCopy	imageSubresource;
5169			{ 0u, 0u, 0u },							//	VkOffset3D				imageOffset;
5170			{ renderSize.x(), renderSize.y(), 1u }	//	VkExtent3D				imageExtent;
5171		};
5172		vk.cmdCopyImageToBuffer(*cmdBuf, *image, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, *readImageBuffer, 1u, &copyParams);
5173	}
5174
5175	{
5176		const VkBufferMemoryBarrier	copyFinishBarrier	=
5177		{
5178			VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER,	//	VkStructureType		sType;
5179			DE_NULL,									//	const void*			pNext;
5180			VK_ACCESS_TRANSFER_WRITE_BIT,				//	VkMemoryOutputFlags	outputMask;
5181			VK_ACCESS_HOST_READ_BIT,					//	VkMemoryInputFlags	inputMask;
5182			queueFamilyIndex,							//	deUint32			srcQueueFamilyIndex;
5183			queueFamilyIndex,							//	deUint32			destQueueFamilyIndex;
5184			*readImageBuffer,							//	VkBuffer			buffer;
5185			0u,											//	VkDeviceSize		offset;
5186			imageSizeBytes								//	VkDeviceSize		size;
5187		};
5188		const void*				barriers[]				= { &copyFinishBarrier };
5189		vk.cmdPipelineBarrier(*cmdBuf, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_HOST_BIT, DE_FALSE, (deUint32)DE_LENGTH_OF_ARRAY(barriers), barriers);
5190	}
5191
5192	VK_CHECK(vk.endCommandBuffer(*cmdBuf));
5193
5194	// Upload vertex data
5195	{
5196		const VkMappedMemoryRange	range			=
5197		{
5198			VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE,	//	VkStructureType	sType;
5199			DE_NULL,								//	const void*		pNext;
5200			vertexBufferMemory->getMemory(),		//	VkDeviceMemory	mem;
5201			0,										//	VkDeviceSize	offset;
5202			(VkDeviceSize)sizeof(vertexData),		//	VkDeviceSize	size;
5203		};
5204		void*						vertexBufPtr	= vertexBufferMemory->getHostPtr();
5205
5206		deMemcpy(vertexBufPtr, &vertexData[0], sizeof(vertexData));
5207		VK_CHECK(vk.flushMappedMemoryRanges(vkDevice, 1u, &range));
5208	}
5209
5210	// Submit & wait for completion
5211	{
5212		const VkFenceCreateInfo	fenceParams	=
5213		{
5214			VK_STRUCTURE_TYPE_FENCE_CREATE_INFO,	//	VkStructureType		sType;
5215			DE_NULL,								//	const void*			pNext;
5216			0u,										//	VkFenceCreateFlags	flags;
5217		};
5218		const Unique<VkFence>	fence		(createFence(vk, vkDevice, &fenceParams));
5219		const VkSubmitInfo		submitInfo	=
5220		{
5221			VK_STRUCTURE_TYPE_SUBMIT_INFO,
5222			DE_NULL,
5223			0u,
5224			(const VkSemaphore*)DE_NULL,
5225			1u,
5226			&cmdBuf.get(),
5227			0u,
5228			(const VkSemaphore*)DE_NULL,
5229		};
5230
5231		VK_CHECK(vk.queueSubmit(queue, 1u, &submitInfo, *fence));
5232		VK_CHECK(vk.waitForFences(vkDevice, 1u, &fence.get(), DE_TRUE, ~0ull));
5233	}
5234
5235	const void* imagePtr	= readImageBufferMemory->getHostPtr();
5236	const tcu::ConstPixelBufferAccess pixelBuffer(tcu::TextureFormat(tcu::TextureFormat::RGBA, tcu::TextureFormat::UNORM_INT8),
5237												  renderSize.x(), renderSize.y(), 1, imagePtr);
5238	// Log image
5239	{
5240		const VkMappedMemoryRange	range		=
5241		{
5242			VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE,	//	VkStructureType	sType;
5243			DE_NULL,								//	const void*		pNext;
5244			readImageBufferMemory->getMemory(),		//	VkDeviceMemory	mem;
5245			0,										//	VkDeviceSize	offset;
5246			imageSizeBytes,							//	VkDeviceSize	size;
5247		};
5248
5249		VK_CHECK(vk.invalidateMappedMemoryRanges(vkDevice, 1u, &range));
5250		context.getTestContext().getLog() << TestLog::Image("Result", "Result", pixelBuffer);
5251	}
5252
5253	const RGBA threshold(1, 1, 1, 1);
5254	const RGBA upperLeft(pixelBuffer.getPixel(1, 1));
5255	if (!tcu::compareThreshold(upperLeft, instance.outputColors[0], threshold))
5256		return TestStatus::fail("Upper left corner mismatch");
5257
5258	const RGBA upperRight(pixelBuffer.getPixel(pixelBuffer.getWidth() - 1, 1));
5259	if (!tcu::compareThreshold(upperRight, instance.outputColors[1], threshold))
5260		return TestStatus::fail("Upper right corner mismatch");
5261
5262	const RGBA lowerLeft(pixelBuffer.getPixel(1, pixelBuffer.getHeight() - 1));
5263	if (!tcu::compareThreshold(lowerLeft, instance.outputColors[2], threshold))
5264		return TestStatus::fail("Lower left corner mismatch");
5265
5266	const RGBA lowerRight(pixelBuffer.getPixel(pixelBuffer.getWidth() - 1, pixelBuffer.getHeight() - 1));
5267	if (!tcu::compareThreshold(lowerRight, instance.outputColors[3], threshold))
5268		return TestStatus::fail("Lower right corner mismatch");
5269
5270	return TestStatus::pass("Rendered output matches input");
5271}
5272
5273void createTestsForAllStages (const std::string& name, const RGBA (&inputColors)[4], const RGBA (&outputColors)[4], const map<string, string>& testCodeFragments, const vector<deInt32>& specConstants, tcu::TestCaseGroup* tests)
5274{
5275	const ShaderElement		vertFragPipelineStages[]		=
5276	{
5277		ShaderElement("vert", "main", VK_SHADER_STAGE_VERTEX_BIT),
5278		ShaderElement("frag", "main", VK_SHADER_STAGE_FRAGMENT_BIT),
5279	};
5280
5281	const ShaderElement		tessPipelineStages[]			=
5282	{
5283		ShaderElement("vert", "main", VK_SHADER_STAGE_VERTEX_BIT),
5284		ShaderElement("tessc", "main", VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT),
5285		ShaderElement("tesse", "main", VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT),
5286		ShaderElement("frag", "main", VK_SHADER_STAGE_FRAGMENT_BIT),
5287	};
5288
5289	const ShaderElement		geomPipelineStages[]				=
5290	{
5291		ShaderElement("vert", "main", VK_SHADER_STAGE_VERTEX_BIT),
5292		ShaderElement("geom", "main", VK_SHADER_STAGE_GEOMETRY_BIT),
5293		ShaderElement("frag", "main", VK_SHADER_STAGE_FRAGMENT_BIT),
5294	};
5295
5296	StageToSpecConstantMap	specConstantMap;
5297
5298	specConstantMap[VK_SHADER_STAGE_VERTEX_BIT] = specConstants;
5299	addFunctionCaseWithPrograms<InstanceContext>(tests, name + "_vert", "", addShaderCodeCustomVertex, runAndVerifyDefaultPipeline,
5300												 createInstanceContext(vertFragPipelineStages, inputColors, outputColors, testCodeFragments, specConstantMap));
5301
5302	specConstantMap.clear();
5303	specConstantMap[VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT] = specConstants;
5304	addFunctionCaseWithPrograms<InstanceContext>(tests, name + "_tessc", "", addShaderCodeCustomTessControl, runAndVerifyDefaultPipeline,
5305												 createInstanceContext(tessPipelineStages, inputColors, outputColors, testCodeFragments, specConstantMap));
5306
5307	specConstantMap.clear();
5308	specConstantMap[VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT] = specConstants;
5309	addFunctionCaseWithPrograms<InstanceContext>(tests, name + "_tesse", "", addShaderCodeCustomTessEval, runAndVerifyDefaultPipeline,
5310												 createInstanceContext(tessPipelineStages, inputColors, outputColors, testCodeFragments, specConstantMap));
5311
5312	specConstantMap.clear();
5313	specConstantMap[VK_SHADER_STAGE_GEOMETRY_BIT] = specConstants;
5314	addFunctionCaseWithPrograms<InstanceContext>(tests, name + "_geom", "", addShaderCodeCustomGeometry, runAndVerifyDefaultPipeline,
5315												 createInstanceContext(geomPipelineStages, inputColors, outputColors, testCodeFragments, specConstantMap));
5316
5317	specConstantMap.clear();
5318	specConstantMap[VK_SHADER_STAGE_FRAGMENT_BIT] = specConstants;
5319	addFunctionCaseWithPrograms<InstanceContext>(tests, name + "_frag", "", addShaderCodeCustomFragment, runAndVerifyDefaultPipeline,
5320												 createInstanceContext(vertFragPipelineStages, inputColors, outputColors, testCodeFragments, specConstantMap));
5321}
5322
5323inline void createTestsForAllStages (const std::string& name, const RGBA (&inputColors)[4], const RGBA (&outputColors)[4], const map<string, string>& testCodeFragments, tcu::TestCaseGroup* tests)
5324{
5325	vector<deInt32> noSpecConstants;
5326	createTestsForAllStages(name, inputColors, outputColors, testCodeFragments, noSpecConstants, tests);
5327}
5328
5329} // anonymous
5330
5331tcu::TestCaseGroup* createOpSourceTests (tcu::TestContext& testCtx)
5332{
5333	struct NameCodePair { string name, code; };
5334	RGBA							defaultColors[4];
5335	de::MovePtr<tcu::TestCaseGroup> opSourceTests			(new tcu::TestCaseGroup(testCtx, "opsource", "OpSource instruction"));
5336	const std::string				opsourceGLSLWithFile	= "%opsrcfile = OpString \"foo.vert\"\nOpSource GLSL 450 %opsrcfile ";
5337	map<string, string>				fragments				= passthruFragments();
5338	const NameCodePair				tests[]					=
5339	{
5340		{"unknown", "OpSource Unknown 321"},
5341		{"essl", "OpSource ESSL 310"},
5342		{"glsl", "OpSource GLSL 450"},
5343		{"opencl_cpp", "OpSource OpenCL_CPP 120"},
5344		{"opencl_c", "OpSource OpenCL_C 120"},
5345		{"multiple", "OpSource GLSL 450\nOpSource GLSL 450"},
5346		{"file", opsourceGLSLWithFile},
5347		{"source", opsourceGLSLWithFile + "\"void main(){}\""},
5348		// Longest possible source string: SPIR-V limits instructions to 65535
5349		// words, of which the first 4 are opsourceGLSLWithFile; the rest will
5350		// contain 65530 UTF8 characters (one word each) plus one last word
5351		// containing 3 ASCII characters and \0.
5352		{"longsource", opsourceGLSLWithFile + '"' + makeLongUTF8String(65530) + "ccc" + '"'}
5353	};
5354
5355	getDefaultColors(defaultColors);
5356	for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(NameCodePair); ++testNdx)
5357	{
5358		fragments["debug"] = tests[testNdx].code;
5359		createTestsForAllStages(tests[testNdx].name, defaultColors, defaultColors, fragments, opSourceTests.get());
5360	}
5361
5362	return opSourceTests.release();
5363}
5364
5365tcu::TestCaseGroup* createOpSourceContinuedTests (tcu::TestContext& testCtx)
5366{
5367	struct NameCodePair { string name, code; };
5368	RGBA								defaultColors[4];
5369	de::MovePtr<tcu::TestCaseGroup>		opSourceTests		(new tcu::TestCaseGroup(testCtx, "opsourcecontinued", "OpSourceContinued instruction"));
5370	map<string, string>					fragments			= passthruFragments();
5371	const std::string					opsource			= "%opsrcfile = OpString \"foo.vert\"\nOpSource GLSL 450 %opsrcfile \"void main(){}\"\n";
5372	const NameCodePair					tests[]				=
5373	{
5374		{"empty", opsource + "OpSourceContinued \"\""},
5375		{"short", opsource + "OpSourceContinued \"abcde\""},
5376		{"multiple", opsource + "OpSourceContinued \"abcde\"\nOpSourceContinued \"fghij\""},
5377		// Longest possible source string: SPIR-V limits instructions to 65535
5378		// words, of which the first one is OpSourceContinued/length; the rest
5379		// will contain 65533 UTF8 characters (one word each) plus one last word
5380		// containing 3 ASCII characters and \0.
5381		{"long", opsource + "OpSourceContinued \"" + makeLongUTF8String(65533) + "ccc\""}
5382	};
5383
5384	getDefaultColors(defaultColors);
5385	for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(NameCodePair); ++testNdx)
5386	{
5387		fragments["debug"] = tests[testNdx].code;
5388		createTestsForAllStages(tests[testNdx].name, defaultColors, defaultColors, fragments, opSourceTests.get());
5389	}
5390
5391	return opSourceTests.release();
5392}
5393
5394tcu::TestCaseGroup* createOpNoLineTests(tcu::TestContext& testCtx)
5395{
5396	RGBA								 defaultColors[4];
5397	de::MovePtr<tcu::TestCaseGroup>		 opLineTests		 (new tcu::TestCaseGroup(testCtx, "opnoline", "OpNoLine instruction"));
5398	map<string, string>					 fragments;
5399	getDefaultColors(defaultColors);
5400	fragments["debug"]			=
5401		"%name = OpString \"name\"\n";
5402
5403	fragments["pre_main"]	=
5404		"OpNoLine\n"
5405		"OpNoLine\n"
5406		"OpLine %name 1 1\n"
5407		"OpNoLine\n"
5408		"OpLine %name 1 1\n"
5409		"OpLine %name 1 1\n"
5410		"%second_function = OpFunction %v4f32 None %v4f32_function\n"
5411		"OpNoLine\n"
5412		"OpLine %name 1 1\n"
5413		"OpNoLine\n"
5414		"OpLine %name 1 1\n"
5415		"OpLine %name 1 1\n"
5416		"%second_param1 = OpFunctionParameter %v4f32\n"
5417		"OpNoLine\n"
5418		"OpNoLine\n"
5419		"%label_secondfunction = OpLabel\n"
5420		"OpNoLine\n"
5421		"OpReturnValue %second_param1\n"
5422		"OpFunctionEnd\n"
5423		"OpNoLine\n"
5424		"OpNoLine\n";
5425
5426	fragments["testfun"]		=
5427		// A %test_code function that returns its argument unchanged.
5428		"OpNoLine\n"
5429		"OpNoLine\n"
5430		"OpLine %name 1 1\n"
5431		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
5432		"OpNoLine\n"
5433		"%param1 = OpFunctionParameter %v4f32\n"
5434		"OpNoLine\n"
5435		"OpNoLine\n"
5436		"%label_testfun = OpLabel\n"
5437		"OpNoLine\n"
5438		"%val1 = OpFunctionCall %v4f32 %second_function %param1\n"
5439		"OpReturnValue %val1\n"
5440		"OpFunctionEnd\n"
5441		"OpLine %name 1 1\n"
5442		"OpNoLine\n";
5443
5444	createTestsForAllStages("opnoline", defaultColors, defaultColors, fragments, opLineTests.get());
5445
5446	return opLineTests.release();
5447}
5448
5449
5450tcu::TestCaseGroup* createOpLineTests(tcu::TestContext& testCtx)
5451{
5452	RGBA													defaultColors[4];
5453	de::MovePtr<tcu::TestCaseGroup>							opLineTests			(new tcu::TestCaseGroup(testCtx, "opline", "OpLine instruction"));
5454	map<string, string>										fragments;
5455	std::vector<std::pair<std::string, std::string> >		problemStrings;
5456
5457	problemStrings.push_back(std::make_pair<std::string, std::string>("empty_name", ""));
5458	problemStrings.push_back(std::make_pair<std::string, std::string>("short_name", "short_name"));
5459	problemStrings.push_back(std::make_pair<std::string, std::string>("long_name", makeLongUTF8String(65530) + "ccc"));
5460	getDefaultColors(defaultColors);
5461
5462	fragments["debug"]			=
5463		"%other_name = OpString \"other_name\"\n";
5464
5465	fragments["pre_main"]	=
5466		"OpLine %file_name 32 0\n"
5467		"OpLine %file_name 32 32\n"
5468		"OpLine %file_name 32 40\n"
5469		"OpLine %other_name 32 40\n"
5470		"OpLine %other_name 0 100\n"
5471		"OpLine %other_name 0 4294967295\n"
5472		"OpLine %other_name 4294967295 0\n"
5473		"OpLine %other_name 32 40\n"
5474		"OpLine %file_name 0 0\n"
5475		"%second_function = OpFunction %v4f32 None %v4f32_function\n"
5476		"OpLine %file_name 1 0\n"
5477		"%second_param1 = OpFunctionParameter %v4f32\n"
5478		"OpLine %file_name 1 3\n"
5479		"OpLine %file_name 1 2\n"
5480		"%label_secondfunction = OpLabel\n"
5481		"OpLine %file_name 0 2\n"
5482		"OpReturnValue %second_param1\n"
5483		"OpFunctionEnd\n"
5484		"OpLine %file_name 0 2\n"
5485		"OpLine %file_name 0 2\n";
5486
5487	fragments["testfun"]		=
5488		// A %test_code function that returns its argument unchanged.
5489		"OpLine %file_name 1 0\n"
5490		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
5491		"OpLine %file_name 16 330\n"
5492		"%param1 = OpFunctionParameter %v4f32\n"
5493		"OpLine %file_name 14 442\n"
5494		"%label_testfun = OpLabel\n"
5495		"OpLine %file_name 11 1024\n"
5496		"%val1 = OpFunctionCall %v4f32 %second_function %param1\n"
5497		"OpLine %file_name 2 97\n"
5498		"OpReturnValue %val1\n"
5499		"OpFunctionEnd\n"
5500		"OpLine %file_name 5 32\n";
5501
5502	for (size_t i = 0; i < problemStrings.size(); ++i)
5503	{
5504		map<string, string> testFragments = fragments;
5505		testFragments["debug"] += "%file_name = OpString \"" + problemStrings[i].second + "\"\n";
5506		createTestsForAllStages(string("opline") + "_" + problemStrings[i].first, defaultColors, defaultColors, testFragments, opLineTests.get());
5507	}
5508
5509	return opLineTests.release();
5510}
5511
5512tcu::TestCaseGroup* createOpConstantNullTests(tcu::TestContext& testCtx)
5513{
5514	de::MovePtr<tcu::TestCaseGroup> opConstantNullTests		(new tcu::TestCaseGroup(testCtx, "opconstantnull", "OpConstantNull instruction"));
5515	RGBA							colors[4];
5516
5517
5518	const char						functionStart[] =
5519		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
5520		"%param1 = OpFunctionParameter %v4f32\n"
5521		"%lbl    = OpLabel\n";
5522
5523	const char						functionEnd[]	=
5524		"OpReturnValue %transformed_param\n"
5525		"OpFunctionEnd\n";
5526
5527	struct NameConstantsCode
5528	{
5529		string name;
5530		string constants;
5531		string code;
5532	};
5533
5534	NameConstantsCode tests[] =
5535	{
5536		{
5537			"vec4",
5538			"%cnull = OpConstantNull %v4f32\n",
5539			"%transformed_param = OpFAdd %v4f32 %param1 %cnull\n"
5540		},
5541		{
5542			"float",
5543			"%cnull = OpConstantNull %f32\n",
5544			"%vp = OpVariable %fp_v4f32 Function\n"
5545			"%v  = OpLoad %v4f32 %vp\n"
5546			"%v0 = OpVectorInsertDynamic %v4f32 %v %cnull %c_i32_0\n"
5547			"%v1 = OpVectorInsertDynamic %v4f32 %v0 %cnull %c_i32_1\n"
5548			"%v2 = OpVectorInsertDynamic %v4f32 %v1 %cnull %c_i32_2\n"
5549			"%v3 = OpVectorInsertDynamic %v4f32 %v2 %cnull %c_i32_3\n"
5550			"%transformed_param = OpFAdd %v4f32 %param1 %v3\n"
5551		},
5552		{
5553			"bool",
5554			"%cnull             = OpConstantNull %bool\n",
5555			"%v                 = OpVariable %fp_v4f32 Function\n"
5556			"                     OpStore %v %param1\n"
5557			"                     OpSelectionMerge %false_label None\n"
5558			"                     OpBranchConditional %cnull %true_label %false_label\n"
5559			"%true_label        = OpLabel\n"
5560			"                     OpStore %v %c_v4f32_0_5_0_5_0_5_0_5\n"
5561			"                     OpBranch %false_label\n"
5562			"%false_label       = OpLabel\n"
5563			"%transformed_param = OpLoad %v4f32 %v\n"
5564		},
5565		{
5566			"i32",
5567			"%cnull             = OpConstantNull %i32\n",
5568			"%v                 = OpVariable %fp_v4f32 Function %c_v4f32_0_5_0_5_0_5_0_5\n"
5569			"%b                 = OpIEqual %bool %cnull %c_i32_0\n"
5570			"                     OpSelectionMerge %false_label None\n"
5571			"                     OpBranchConditional %b %true_label %false_label\n"
5572			"%true_label        = OpLabel\n"
5573			"                     OpStore %v %param1\n"
5574			"                     OpBranch %false_label\n"
5575			"%false_label       = OpLabel\n"
5576			"%transformed_param = OpLoad %v4f32 %v\n"
5577		},
5578		{
5579			"struct",
5580			"%stype             = OpTypeStruct %f32 %v4f32\n"
5581			"%fp_stype          = OpTypePointer Function %stype\n"
5582			"%cnull             = OpConstantNull %stype\n",
5583			"%v                 = OpVariable %fp_stype Function %cnull\n"
5584			"%f                 = OpAccessChain %fp_v4f32 %v %c_i32_1\n"
5585			"%f_val             = OpLoad %v4f32 %f\n"
5586			"%transformed_param = OpFAdd %v4f32 %param1 %f_val\n"
5587		},
5588		{
5589			"array",
5590			"%a4_v4f32          = OpTypeArray %v4f32 %c_u32_4\n"
5591			"%fp_a4_v4f32       = OpTypePointer Function %a4_v4f32\n"
5592			"%cnull             = OpConstantNull %a4_v4f32\n",
5593			"%v                 = OpVariable %fp_a4_v4f32 Function %cnull\n"
5594			"%f                 = OpAccessChain %fp_v4f32 %v %c_u32_0\n"
5595			"%f1                = OpAccessChain %fp_v4f32 %v %c_u32_1\n"
5596			"%f2                = OpAccessChain %fp_v4f32 %v %c_u32_2\n"
5597			"%f3                = OpAccessChain %fp_v4f32 %v %c_u32_3\n"
5598			"%f_val             = OpLoad %v4f32 %f\n"
5599			"%f1_val            = OpLoad %v4f32 %f1\n"
5600			"%f2_val            = OpLoad %v4f32 %f2\n"
5601			"%f3_val            = OpLoad %v4f32 %f3\n"
5602			"%t0                = OpFAdd %v4f32 %param1 %f_val\n"
5603			"%t1                = OpFAdd %v4f32 %t0 %f1_val\n"
5604			"%t2                = OpFAdd %v4f32 %t1 %f2_val\n"
5605			"%transformed_param = OpFAdd %v4f32 %t2 %f3_val\n"
5606		},
5607		{
5608			"matrix",
5609			"%mat4x4_f32        = OpTypeMatrix %v4f32 4\n"
5610			"%cnull             = OpConstantNull %mat4x4_f32\n",
5611			// Our null matrix * any vector should result in a zero vector.
5612			"%v                 = OpVectorTimesMatrix %v4f32 %param1 %cnull\n"
5613			"%transformed_param = OpFAdd %v4f32 %param1 %v\n"
5614		}
5615	};
5616
5617	getHalfColorsFullAlpha(colors);
5618
5619	for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(NameConstantsCode); ++testNdx)
5620	{
5621		map<string, string> fragments;
5622		fragments["pre_main"] = tests[testNdx].constants;
5623		fragments["testfun"] = string(functionStart) + tests[testNdx].code + functionEnd;
5624		createTestsForAllStages(tests[testNdx].name, colors, colors, fragments, opConstantNullTests.get());
5625	}
5626	return opConstantNullTests.release();
5627}
5628tcu::TestCaseGroup* createOpConstantCompositeTests(tcu::TestContext& testCtx)
5629{
5630	de::MovePtr<tcu::TestCaseGroup> opConstantCompositeTests		(new tcu::TestCaseGroup(testCtx, "opconstantcomposite", "OpConstantComposite instruction"));
5631	RGBA							inputColors[4];
5632	RGBA							outputColors[4];
5633
5634
5635	const char						functionStart[]	 =
5636		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
5637		"%param1 = OpFunctionParameter %v4f32\n"
5638		"%lbl    = OpLabel\n";
5639
5640	const char						functionEnd[]		=
5641		"OpReturnValue %transformed_param\n"
5642		"OpFunctionEnd\n";
5643
5644	struct NameConstantsCode
5645	{
5646		string name;
5647		string constants;
5648		string code;
5649	};
5650
5651	NameConstantsCode tests[] =
5652	{
5653		{
5654			"vec4",
5655
5656			"%cval              = OpConstantComposite %v4f32 %c_f32_0_5 %c_f32_0_5 %c_f32_0_5 %c_f32_0\n",
5657			"%transformed_param = OpFAdd %v4f32 %param1 %cval\n"
5658		},
5659		{
5660			"struct",
5661
5662			"%stype             = OpTypeStruct %v4f32 %f32\n"
5663			"%fp_stype          = OpTypePointer Function %stype\n"
5664			"%f32_n_1           = OpConstant %f32 -1.0\n"
5665			"%f32_1_5           = OpConstant %f32 !0x3fc00000\n" // +1.5
5666			"%cvec              = OpConstantComposite %v4f32 %f32_1_5 %f32_1_5 %f32_1_5 %c_f32_1\n"
5667			"%cval              = OpConstantComposite %stype %cvec %f32_n_1\n",
5668
5669			"%v                 = OpVariable %fp_stype Function %cval\n"
5670			"%vec_ptr           = OpAccessChain %fp_v4f32 %v %c_u32_0\n"
5671			"%f32_ptr           = OpAccessChain %fp_v4f32 %v %c_u32_1\n"
5672			"%vec_val           = OpLoad %v4f32 %vec_ptr\n"
5673			"%f32_val           = OpLoad %v4f32 %f32_ptr\n"
5674			"%tmp1              = OpVectorTimesScalar %v4f32 %c_v4f32_1_1_1_1 %f32_val\n" // vec4(-1)
5675			"%tmp2              = OpFAdd %v4f32 %tmp1 %param1\n" // param1 + vec4(-1)
5676			"%transformed_param = OpFAdd %v4f32 %tmp2 %vec_val\n" // param1 + vec4(-1) + vec4(1.5, 1.5, 1.5, 1.0)
5677		},
5678		{
5679			// [1|0|0|0.5] [x] = x + 0.5
5680			// [0|1|0|0.5] [y] = y + 0.5
5681			// [0|0|1|0.5] [z] = z + 0.5
5682			// [0|0|0|1  ] [1] = 1
5683			"matrix",
5684
5685			"%mat4x4_f32          = OpTypeMatrix %v4f32 4\n"
5686		    "%v4f32_1_0_0_0       = OpConstantComposite %v4f32 %c_f32_1 %c_f32_0 %c_f32_0 %c_f32_0\n"
5687		    "%v4f32_0_1_0_0       = OpConstantComposite %v4f32 %c_f32_0 %c_f32_1 %c_f32_0 %c_f32_0\n"
5688		    "%v4f32_0_0_1_0       = OpConstantComposite %v4f32 %c_f32_0 %c_f32_0 %c_f32_1 %c_f32_0\n"
5689		    "%v4f32_0_5_0_5_0_5_1 = OpConstantComposite %v4f32 %c_f32_0_5 %c_f32_0_5 %c_f32_0_5 %c_f32_1\n"
5690			"%cval                = OpConstantComposite %mat4x4_f32 %v4f32_1_0_0_0 %v4f32_0_1_0_0 %v4f32_0_0_1_0 %v4f32_0_5_0_5_0_5_1\n",
5691
5692			"%transformed_param   = OpMatrixTimesVector %v4f32 %cval %param1\n"
5693		},
5694		{
5695			"array",
5696
5697			"%c_v4f32_1_1_1_0     = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_0\n"
5698			"%fp_a4f32            = OpTypePointer Function %a4f32\n"
5699			"%f32_n_1             = OpConstant %f32 -1.0\n"
5700			"%f32_1_5             = OpConstant %f32 !0x3fc00000\n" // +1.5
5701			"%carr                = OpConstantComposite %a4f32 %c_f32_0 %f32_n_1 %f32_1_5 %c_f32_0\n",
5702
5703			"%v                   = OpVariable %fp_a4f32 Function %carr\n"
5704			"%f                   = OpAccessChain %fp_f32 %v %c_u32_0\n"
5705			"%f1                  = OpAccessChain %fp_f32 %v %c_u32_1\n"
5706			"%f2                  = OpAccessChain %fp_f32 %v %c_u32_2\n"
5707			"%f3                  = OpAccessChain %fp_f32 %v %c_u32_3\n"
5708			"%f_val               = OpLoad %f32 %f\n"
5709			"%f1_val              = OpLoad %f32 %f1\n"
5710			"%f2_val              = OpLoad %f32 %f2\n"
5711			"%f3_val              = OpLoad %f32 %f3\n"
5712			"%ftot1               = OpFAdd %f32 %f_val %f1_val\n"
5713			"%ftot2               = OpFAdd %f32 %ftot1 %f2_val\n"
5714			"%ftot3               = OpFAdd %f32 %ftot2 %f3_val\n"  // 0 - 1 + 1.5 + 0
5715			"%add_vec             = OpVectorTimesScalar %v4f32 %c_v4f32_1_1_1_0 %ftot3\n"
5716			"%transformed_param   = OpFAdd %v4f32 %param1 %add_vec\n"
5717		},
5718		{
5719			//
5720			// [
5721			//   {
5722			//      0.0,
5723			//      [ 1.0, 1.0, 1.0, 1.0]
5724			//   },
5725			//   {
5726			//      1.0,
5727			//      [ 0.0, 0.5, 0.0, 0.0]
5728			//   }, //     ^^^
5729			//   {
5730			//      0.0,
5731			//      [ 1.0, 1.0, 1.0, 1.0]
5732			//   }
5733			// ]
5734			"array_of_struct_of_array",
5735
5736			"%c_v4f32_1_1_1_0     = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_0\n"
5737			"%fp_a4f32            = OpTypePointer Function %a4f32\n"
5738			"%stype               = OpTypeStruct %f32 %a4f32\n"
5739			"%a3stype             = OpTypeArray %stype %c_u32_3\n"
5740			"%fp_a3stype          = OpTypePointer Function %a3stype\n"
5741			"%ca4f32_0            = OpConstantComposite %a4f32 %c_f32_0 %c_f32_0_5 %c_f32_0 %c_f32_0\n"
5742			"%ca4f32_1            = OpConstantComposite %a4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_1\n"
5743			"%cstype1             = OpConstantComposite %stype %c_f32_0 %ca4f32_1\n"
5744			"%cstype2             = OpConstantComposite %stype %c_f32_1 %ca4f32_0\n"
5745			"%carr                = OpConstantComposite %a3stype %cstype1 %cstype2 %cstype1",
5746
5747			"%v                   = OpVariable %fp_a3stype Function %carr\n"
5748			"%f                   = OpAccessChain %fp_f32 %v %c_u32_1 %c_u32_1 %c_u32_1\n"
5749			"%add_vec             = OpVectorTimesScalar %v4f32 %c_v4f32_1_1_1_0 %f\n"
5750			"%transformed_param   = OpFAdd %v4f32 %param1 %add_vec\n"
5751		}
5752	};
5753
5754	getHalfColorsFullAlpha(inputColors);
5755	outputColors[0] = RGBA(255, 255, 255, 255);
5756	outputColors[1] = RGBA(255, 127, 127, 255);
5757	outputColors[2] = RGBA(127, 255, 127, 255);
5758	outputColors[3] = RGBA(127, 127, 255, 255);
5759
5760	for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(NameConstantsCode); ++testNdx)
5761	{
5762		map<string, string> fragments;
5763		fragments["pre_main"] = tests[testNdx].constants;
5764		fragments["testfun"] = string(functionStart) + tests[testNdx].code + functionEnd;
5765		createTestsForAllStages(tests[testNdx].name, inputColors, outputColors, fragments, opConstantCompositeTests.get());
5766	}
5767	return opConstantCompositeTests.release();
5768}
5769
5770tcu::TestCaseGroup* createSelectionBlockOrderTests(tcu::TestContext& testCtx)
5771{
5772	de::MovePtr<tcu::TestCaseGroup> group				(new tcu::TestCaseGroup(testCtx, "selection_block_order", "Out-of-order blocks for selection"));
5773	RGBA							inputColors[4];
5774	RGBA							outputColors[4];
5775	map<string, string>				fragments;
5776
5777	// vec4 test_code(vec4 param) {
5778	//   vec4 result = param;
5779	//   for (int i = 0; i < 4; ++i) {
5780	//     if (i == 0) result[i] = 0.;
5781	//     else        result[i] = 1. - result[i];
5782	//   }
5783	//   return result;
5784	// }
5785	const char						function[]			=
5786		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
5787		"%param1    = OpFunctionParameter %v4f32\n"
5788		"%lbl       = OpLabel\n"
5789		"%iptr      = OpVariable %fp_i32 Function\n"
5790		"             OpStore %iptr %c_i32_0\n"
5791		"%result    = OpVariable %fp_v4f32 Function\n"
5792		"             OpStore %result %param1\n"
5793		"             OpBranch %loop\n"
5794
5795		// Loop entry block.
5796		"%loop      = OpLabel\n"
5797		"%ival      = OpLoad %i32 %iptr\n"
5798		"%lt_4      = OpSLessThan %bool %ival %c_i32_4\n"
5799		"             OpLoopMerge %exit %loop None\n"
5800		"             OpBranchConditional %lt_4 %if_entry %exit\n"
5801
5802		// Merge block for loop.
5803		"%exit      = OpLabel\n"
5804		"%ret       = OpLoad %v4f32 %result\n"
5805		"             OpReturnValue %ret\n"
5806
5807		// If-statement entry block.
5808		"%if_entry  = OpLabel\n"
5809		"%loc       = OpAccessChain %fp_f32 %result %ival\n"
5810		"%eq_0      = OpIEqual %bool %ival %c_i32_0\n"
5811		"             OpSelectionMerge %if_exit None\n"
5812		"             OpBranchConditional %eq_0 %if_true %if_false\n"
5813
5814		// False branch for if-statement.
5815		"%if_false  = OpLabel\n"
5816		"%val       = OpLoad %f32 %loc\n"
5817		"%sub       = OpFSub %f32 %c_f32_1 %val\n"
5818		"             OpStore %loc %sub\n"
5819		"             OpBranch %if_exit\n"
5820
5821		// Merge block for if-statement.
5822		"%if_exit   = OpLabel\n"
5823		"%ival_next = OpIAdd %i32 %ival %c_i32_1\n"
5824		"             OpStore %iptr %ival_next\n"
5825		"             OpBranch %loop\n"
5826
5827		// True branch for if-statement.
5828		"%if_true   = OpLabel\n"
5829		"             OpStore %loc %c_f32_0\n"
5830		"             OpBranch %if_exit\n"
5831
5832		"             OpFunctionEnd\n";
5833
5834	fragments["testfun"]	= function;
5835
5836	inputColors[0]			= RGBA(127, 127, 127, 0);
5837	inputColors[1]			= RGBA(127, 0,   0,   0);
5838	inputColors[2]			= RGBA(0,   127, 0,   0);
5839	inputColors[3]			= RGBA(0,   0,   127, 0);
5840
5841	outputColors[0]			= RGBA(0, 128, 128, 255);
5842	outputColors[1]			= RGBA(0, 255, 255, 255);
5843	outputColors[2]			= RGBA(0, 128, 255, 255);
5844	outputColors[3]			= RGBA(0, 255, 128, 255);
5845
5846	createTestsForAllStages("out_of_order", inputColors, outputColors, fragments, group.get());
5847
5848	return group.release();
5849}
5850
5851tcu::TestCaseGroup* createSwitchBlockOrderTests(tcu::TestContext& testCtx)
5852{
5853	de::MovePtr<tcu::TestCaseGroup> group				(new tcu::TestCaseGroup(testCtx, "switch_block_order", "Out-of-order blocks for switch"));
5854	RGBA							inputColors[4];
5855	RGBA							outputColors[4];
5856	map<string, string>				fragments;
5857
5858	const char						typesAndConstants[]	=
5859		"%c_f32_p2  = OpConstant %f32 0.2\n"
5860		"%c_f32_p4  = OpConstant %f32 0.4\n"
5861		"%c_f32_p6  = OpConstant %f32 0.6\n"
5862		"%c_f32_p8  = OpConstant %f32 0.8\n";
5863
5864	// vec4 test_code(vec4 param) {
5865	//   vec4 result = param;
5866	//   for (int i = 0; i < 4; ++i) {
5867	//     switch (i) {
5868	//       case 0: result[i] += .2; break;
5869	//       case 1: result[i] += .6; break;
5870	//       case 2: result[i] += .4; break;
5871	//       case 3: result[i] += .8; break;
5872	//       default: break; // unreachable
5873	//     }
5874	//   }
5875	//   return result;
5876	// }
5877	const char						function[]			=
5878		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
5879		"%param1    = OpFunctionParameter %v4f32\n"
5880		"%lbl       = OpLabel\n"
5881		"%iptr      = OpVariable %fp_i32 Function\n"
5882		"             OpStore %iptr %c_i32_0\n"
5883		"%result    = OpVariable %fp_v4f32 Function\n"
5884		"             OpStore %result %param1\n"
5885		"             OpBranch %loop\n"
5886
5887		// Loop entry block.
5888		"%loop      = OpLabel\n"
5889		"%ival      = OpLoad %i32 %iptr\n"
5890		"%lt_4      = OpSLessThan %bool %ival %c_i32_4\n"
5891		"             OpLoopMerge %exit %loop None\n"
5892		"             OpBranchConditional %lt_4 %switch_entry %exit\n"
5893
5894		// Merge block for loop.
5895		"%exit      = OpLabel\n"
5896		"%ret       = OpLoad %v4f32 %result\n"
5897		"             OpReturnValue %ret\n"
5898
5899		// Switch-statement entry block.
5900		"%switch_entry   = OpLabel\n"
5901		"%loc            = OpAccessChain %fp_f32 %result %ival\n"
5902		"%val            = OpLoad %f32 %loc\n"
5903		"                  OpSelectionMerge %switch_exit None\n"
5904		"                  OpSwitch %ival %switch_default 0 %case0 1 %case1 2 %case2 3 %case3\n"
5905
5906		"%case2          = OpLabel\n"
5907		"%addp4          = OpFAdd %f32 %val %c_f32_p4\n"
5908		"                  OpStore %loc %addp4\n"
5909		"                  OpBranch %switch_exit\n"
5910
5911		"%switch_default = OpLabel\n"
5912		"                  OpUnreachable\n"
5913
5914		"%case3          = OpLabel\n"
5915		"%addp8          = OpFAdd %f32 %val %c_f32_p8\n"
5916		"                  OpStore %loc %addp8\n"
5917		"                  OpBranch %switch_exit\n"
5918
5919		"%case0          = OpLabel\n"
5920		"%addp2          = OpFAdd %f32 %val %c_f32_p2\n"
5921		"                  OpStore %loc %addp2\n"
5922		"                  OpBranch %switch_exit\n"
5923
5924		// Merge block for switch-statement.
5925		"%switch_exit    = OpLabel\n"
5926		"%ival_next      = OpIAdd %i32 %ival %c_i32_1\n"
5927		"                  OpStore %iptr %ival_next\n"
5928		"                  OpBranch %loop\n"
5929
5930		"%case1          = OpLabel\n"
5931		"%addp6          = OpFAdd %f32 %val %c_f32_p6\n"
5932		"                  OpStore %loc %addp6\n"
5933		"                  OpBranch %switch_exit\n"
5934
5935		"                  OpFunctionEnd\n";
5936
5937	fragments["pre_main"]	= typesAndConstants;
5938	fragments["testfun"]	= function;
5939
5940	inputColors[0]			= RGBA(127, 27,  127, 51);
5941	inputColors[1]			= RGBA(127, 0,   0,   51);
5942	inputColors[2]			= RGBA(0,   27,  0,   51);
5943	inputColors[3]			= RGBA(0,   0,   127, 51);
5944
5945	outputColors[0]			= RGBA(178, 180, 229, 255);
5946	outputColors[1]			= RGBA(178, 153, 102, 255);
5947	outputColors[2]			= RGBA(51,  180, 102, 255);
5948	outputColors[3]			= RGBA(51,  153, 229, 255);
5949
5950	createTestsForAllStages("out_of_order", inputColors, outputColors, fragments, group.get());
5951
5952	return group.release();
5953}
5954
5955tcu::TestCaseGroup* createDecorationGroupTests(tcu::TestContext& testCtx)
5956{
5957	de::MovePtr<tcu::TestCaseGroup> group				(new tcu::TestCaseGroup(testCtx, "decoration_group", "Decoration group tests"));
5958	RGBA							inputColors[4];
5959	RGBA							outputColors[4];
5960	map<string, string>				fragments;
5961
5962	const char						decorations[]		=
5963		"OpDecorate %array_group         ArrayStride 4\n"
5964		"OpDecorate %struct_member_group Offset 0\n"
5965		"%array_group         = OpDecorationGroup\n"
5966		"%struct_member_group = OpDecorationGroup\n"
5967
5968		"OpDecorate %group1 RelaxedPrecision\n"
5969		"OpDecorate %group3 RelaxedPrecision\n"
5970		"OpDecorate %group3 Invariant\n"
5971		"OpDecorate %group3 Restrict\n"
5972		"%group0 = OpDecorationGroup\n"
5973		"%group1 = OpDecorationGroup\n"
5974		"%group3 = OpDecorationGroup\n";
5975
5976	const char						typesAndConstants[]	=
5977		"%a3f32     = OpTypeArray %f32 %c_u32_3\n"
5978		"%struct1   = OpTypeStruct %a3f32\n"
5979		"%struct2   = OpTypeStruct %a3f32\n"
5980		"%fp_struct1 = OpTypePointer Function %struct1\n"
5981		"%fp_struct2 = OpTypePointer Function %struct2\n"
5982		"%c_f32_2    = OpConstant %f32 2.\n"
5983		"%c_f32_n2   = OpConstant %f32 -2.\n"
5984
5985		"%c_a3f32_1 = OpConstantComposite %a3f32 %c_f32_1 %c_f32_2 %c_f32_1\n"
5986		"%c_a3f32_2 = OpConstantComposite %a3f32 %c_f32_n1 %c_f32_n2 %c_f32_n1\n"
5987		"%c_struct1 = OpConstantComposite %struct1 %c_a3f32_1\n"
5988		"%c_struct2 = OpConstantComposite %struct2 %c_a3f32_2\n";
5989
5990	const char						function[]			=
5991		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
5992		"%param     = OpFunctionParameter %v4f32\n"
5993		"%entry     = OpLabel\n"
5994		"%result    = OpVariable %fp_v4f32 Function\n"
5995		"             OpStore %result %param\n"
5996		"%v_struct1 = OpVariable %fp_struct1 Function\n"
5997		"             OpStore %v_struct1 %c_struct1\n"
5998		"%v_struct2 = OpVariable %fp_struct2 Function\n"
5999		"             OpStore %v_struct2 %c_struct2\n"
6000		"%ptr1      = OpAccessChain %fp_f32 %v_struct1 %c_i32_0 %c_i32_1\n"
6001		"%val1      = OpLoad %f32 %ptr1\n"
6002		"%ptr2      = OpAccessChain %fp_f32 %v_struct2 %c_i32_0 %c_i32_2\n"
6003		"%val2      = OpLoad %f32 %ptr2\n"
6004		"%addvalues = OpFAdd %f32 %val1 %val2\n"
6005		"%ptr       = OpAccessChain %fp_f32 %result %c_i32_1\n"
6006		"%val       = OpLoad %f32 %ptr\n"
6007		"%addresult = OpFAdd %f32 %addvalues %val\n"
6008		"             OpStore %ptr %addresult\n"
6009		"%ret       = OpLoad %v4f32 %result\n"
6010		"             OpReturnValue %ret\n"
6011		"             OpFunctionEnd\n";
6012
6013	struct CaseNameDecoration
6014	{
6015		string name;
6016		string decoration;
6017	};
6018
6019	CaseNameDecoration tests[] =
6020	{
6021		{
6022			"same_decoration_group_on_multiple_types",
6023			"OpGroupMemberDecorate %struct_member_group %struct1 0 %struct2 0\n"
6024		},
6025		{
6026			"empty_decoration_group",
6027			"OpGroupDecorate %group0      %a3f32\n"
6028			"OpGroupDecorate %group0      %result\n"
6029		},
6030		{
6031			"one_element_decoration_group",
6032			"OpGroupDecorate %array_group %a3f32\n"
6033		},
6034		{
6035			"multiple_elements_decoration_group",
6036			"OpGroupDecorate %group3      %v_struct1\n"
6037		},
6038		{
6039			"multiple_decoration_groups_on_same_variable",
6040			"OpGroupDecorate %group0      %v_struct2\n"
6041			"OpGroupDecorate %group1      %v_struct2\n"
6042			"OpGroupDecorate %group3      %v_struct2\n"
6043		},
6044		{
6045			"same_decoration_group_multiple_times",
6046			"OpGroupDecorate %group1      %addvalues\n"
6047			"OpGroupDecorate %group1      %addvalues\n"
6048			"OpGroupDecorate %group1      %addvalues\n"
6049		},
6050
6051	};
6052
6053	getHalfColorsFullAlpha(inputColors);
6054	getHalfColorsFullAlpha(outputColors);
6055
6056	for (size_t idx = 0; idx < (sizeof(tests) / sizeof(tests[0])); ++idx)
6057	{
6058		fragments["decoration"]	= decorations + tests[idx].decoration;
6059		fragments["pre_main"]	= typesAndConstants;
6060		fragments["testfun"]	= function;
6061
6062		createTestsForAllStages(tests[idx].name, inputColors, outputColors, fragments, group.get());
6063	}
6064
6065	return group.release();
6066}
6067
6068struct SpecConstantTwoIntGraphicsCase
6069{
6070	const char*		caseName;
6071	const char*		scDefinition0;
6072	const char*		scDefinition1;
6073	const char*		scResultType;
6074	const char*		scOperation;
6075	deInt32			scActualValue0;
6076	deInt32			scActualValue1;
6077	const char*		resultOperation;
6078	RGBA			expectedColors[4];
6079
6080					SpecConstantTwoIntGraphicsCase (const char* name,
6081											const char* definition0,
6082											const char* definition1,
6083											const char* resultType,
6084											const char* operation,
6085											deInt32		value0,
6086											deInt32		value1,
6087											const char* resultOp,
6088											const RGBA	(&output)[4])
6089						: caseName			(name)
6090						, scDefinition0		(definition0)
6091						, scDefinition1		(definition1)
6092						, scResultType		(resultType)
6093						, scOperation		(operation)
6094						, scActualValue0	(value0)
6095						, scActualValue1	(value1)
6096						, resultOperation	(resultOp)
6097	{
6098		expectedColors[0] = output[0];
6099		expectedColors[1] = output[1];
6100		expectedColors[2] = output[2];
6101		expectedColors[3] = output[3];
6102	}
6103};
6104
6105tcu::TestCaseGroup* createSpecConstantTests (tcu::TestContext& testCtx)
6106{
6107	de::MovePtr<tcu::TestCaseGroup> group				(new tcu::TestCaseGroup(testCtx, "opspecconstantop", "Test the OpSpecConstantOp instruction"));
6108	vector<SpecConstantTwoIntGraphicsCase>	cases;
6109	RGBA							inputColors[4];
6110	RGBA							outputColors0[4];
6111	RGBA							outputColors1[4];
6112	RGBA							outputColors2[4];
6113
6114	const char	decorations1[]			=
6115		"OpDecorate %sc_0  SpecId 0\n"
6116		"OpDecorate %sc_1  SpecId 1\n";
6117
6118	const char	typesAndConstants1[]	=
6119		"%sc_0      = OpSpecConstant${SC_DEF0}\n"
6120		"%sc_1      = OpSpecConstant${SC_DEF1}\n"
6121		"%sc_op     = OpSpecConstantOp ${SC_RESULT_TYPE} ${SC_OP}\n";
6122
6123	const char	function1[]				=
6124		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
6125		"%param     = OpFunctionParameter %v4f32\n"
6126		"%label     = OpLabel\n"
6127		"%result    = OpVariable %fp_v4f32 Function\n"
6128		"             OpStore %result %param\n"
6129		"%gen       = ${GEN_RESULT}\n"
6130		"%index     = OpIAdd %i32 %gen %c_i32_1\n"
6131		"%loc       = OpAccessChain %fp_f32 %result %index\n"
6132		"%val       = OpLoad %f32 %loc\n"
6133		"%add       = OpFAdd %f32 %val %c_f32_0_5\n"
6134		"             OpStore %loc %add\n"
6135		"%ret       = OpLoad %v4f32 %result\n"
6136		"             OpReturnValue %ret\n"
6137		"             OpFunctionEnd\n";
6138
6139	inputColors[0] = RGBA(127, 127, 127, 255);
6140	inputColors[1] = RGBA(127, 0,   0,   255);
6141	inputColors[2] = RGBA(0,   127, 0,   255);
6142	inputColors[3] = RGBA(0,   0,   127, 255);
6143
6144	// Derived from inputColors[x] by adding 128 to inputColors[x][0].
6145	outputColors0[0] = RGBA(255, 127, 127, 255);
6146	outputColors0[1] = RGBA(255, 0,   0,   255);
6147	outputColors0[2] = RGBA(128, 127, 0,   255);
6148	outputColors0[3] = RGBA(128, 0,   127, 255);
6149
6150	// Derived from inputColors[x] by adding 128 to inputColors[x][1].
6151	outputColors1[0] = RGBA(127, 255, 127, 255);
6152	outputColors1[1] = RGBA(127, 128, 0,   255);
6153	outputColors1[2] = RGBA(0,   255, 0,   255);
6154	outputColors1[3] = RGBA(0,   128, 127, 255);
6155
6156	// Derived from inputColors[x] by adding 128 to inputColors[x][2].
6157	outputColors2[0] = RGBA(127, 127, 255, 255);
6158	outputColors2[1] = RGBA(127, 0,   128, 255);
6159	outputColors2[2] = RGBA(0,   127, 128, 255);
6160	outputColors2[3] = RGBA(0,   0,   255, 255);
6161
6162	const char addZeroToSc[]		= "OpIAdd %i32 %c_i32_0 %sc_op";
6163	const char selectTrueUsingSc[]	= "OpSelect %i32 %sc_op %c_i32_1 %c_i32_0";
6164	const char selectFalseUsingSc[]	= "OpSelect %i32 %sc_op %c_i32_0 %c_i32_1";
6165
6166	cases.push_back(SpecConstantTwoIntGraphicsCase("iadd",					" %i32 0",		" %i32 0",		"%i32",		"IAdd                 %sc_0 %sc_1",				19,		-20,	addZeroToSc,		outputColors0));
6167	cases.push_back(SpecConstantTwoIntGraphicsCase("isub",					" %i32 0",		" %i32 0",		"%i32",		"ISub                 %sc_0 %sc_1",				19,		20,		addZeroToSc,		outputColors0));
6168	cases.push_back(SpecConstantTwoIntGraphicsCase("imul",					" %i32 0",		" %i32 0",		"%i32",		"IMul                 %sc_0 %sc_1",				-1,		-1,		addZeroToSc,		outputColors2));
6169	cases.push_back(SpecConstantTwoIntGraphicsCase("sdiv",					" %i32 0",		" %i32 0",		"%i32",		"SDiv                 %sc_0 %sc_1",				-126,	126,	addZeroToSc,		outputColors0));
6170	cases.push_back(SpecConstantTwoIntGraphicsCase("udiv",					" %i32 0",		" %i32 0",		"%i32",		"UDiv                 %sc_0 %sc_1",				126,	126,	addZeroToSc,		outputColors2));
6171	cases.push_back(SpecConstantTwoIntGraphicsCase("srem",					" %i32 0",		" %i32 0",		"%i32",		"SRem                 %sc_0 %sc_1",				3,		2,		addZeroToSc,		outputColors2));
6172	cases.push_back(SpecConstantTwoIntGraphicsCase("smod",					" %i32 0",		" %i32 0",		"%i32",		"SMod                 %sc_0 %sc_1",				3,		2,		addZeroToSc,		outputColors2));
6173	cases.push_back(SpecConstantTwoIntGraphicsCase("umod",					" %i32 0",		" %i32 0",		"%i32",		"UMod                 %sc_0 %sc_1",				1001,	500,	addZeroToSc,		outputColors2));
6174	cases.push_back(SpecConstantTwoIntGraphicsCase("bitwiseand",			" %i32 0",		" %i32 0",		"%i32",		"BitwiseAnd           %sc_0 %sc_1",				0x33,	0x0d,	addZeroToSc,		outputColors2));
6175	cases.push_back(SpecConstantTwoIntGraphicsCase("bitwiseor",				" %i32 0",		" %i32 0",		"%i32",		"BitwiseOr            %sc_0 %sc_1",				0,		1,		addZeroToSc,		outputColors2));
6176	cases.push_back(SpecConstantTwoIntGraphicsCase("bitwisexor",			" %i32 0",		" %i32 0",		"%i32",		"BitwiseAnd           %sc_0 %sc_1",				0x2e,	0x2f,	addZeroToSc,		outputColors2));
6177	cases.push_back(SpecConstantTwoIntGraphicsCase("shiftrightlogical",		" %i32 0",		" %i32 0",		"%i32",		"ShiftRightLogical    %sc_0 %sc_1",				2,		1,		addZeroToSc,		outputColors2));
6178	cases.push_back(SpecConstantTwoIntGraphicsCase("shiftrightarithmetic",	" %i32 0",		" %i32 0",		"%i32",		"ShiftRightArithmetic %sc_0 %sc_1",				-4,		2,		addZeroToSc,		outputColors0));
6179	cases.push_back(SpecConstantTwoIntGraphicsCase("shiftleftlogical",		" %i32 0",		" %i32 0",		"%i32",		"ShiftLeftLogical     %sc_0 %sc_1",				1,		0,		addZeroToSc,		outputColors2));
6180	cases.push_back(SpecConstantTwoIntGraphicsCase("slessthan",				" %i32 0",		" %i32 0",		"%bool",	"SLessThan            %sc_0 %sc_1",				-20,	-10,	selectTrueUsingSc,	outputColors2));
6181	cases.push_back(SpecConstantTwoIntGraphicsCase("ulessthan",				" %i32 0",		" %i32 0",		"%bool",	"ULessThan            %sc_0 %sc_1",				10,		20,		selectTrueUsingSc,	outputColors2));
6182	cases.push_back(SpecConstantTwoIntGraphicsCase("sgreaterthan",			" %i32 0",		" %i32 0",		"%bool",	"SGreaterThan         %sc_0 %sc_1",				-1000,	50,		selectFalseUsingSc,	outputColors2));
6183	cases.push_back(SpecConstantTwoIntGraphicsCase("ugreaterthan",			" %i32 0",		" %i32 0",		"%bool",	"UGreaterThan         %sc_0 %sc_1",				10,		5,		selectTrueUsingSc,	outputColors2));
6184	cases.push_back(SpecConstantTwoIntGraphicsCase("slessthanequal",		" %i32 0",		" %i32 0",		"%bool",	"SLessThanEqual       %sc_0 %sc_1",				-10,	-10,	selectTrueUsingSc,	outputColors2));
6185	cases.push_back(SpecConstantTwoIntGraphicsCase("ulessthanequal",		" %i32 0",		" %i32 0",		"%bool",	"ULessThanEqual       %sc_0 %sc_1",				50,		100,	selectTrueUsingSc,	outputColors2));
6186	cases.push_back(SpecConstantTwoIntGraphicsCase("sgreaterthanequal",		" %i32 0",		" %i32 0",		"%bool",	"SGreaterThanEqual    %sc_0 %sc_1",				-1000,	50,		selectFalseUsingSc,	outputColors2));
6187	cases.push_back(SpecConstantTwoIntGraphicsCase("ugreaterthanequal",		" %i32 0",		" %i32 0",		"%bool",	"UGreaterThanEqual    %sc_0 %sc_1",				10,		10,		selectTrueUsingSc,	outputColors2));
6188	cases.push_back(SpecConstantTwoIntGraphicsCase("iequal",				" %i32 0",		" %i32 0",		"%bool",	"IEqual               %sc_0 %sc_1",				42,		24,		selectFalseUsingSc,	outputColors2));
6189	cases.push_back(SpecConstantTwoIntGraphicsCase("logicaland",			"True %bool",	"True %bool",	"%bool",	"LogicalAnd           %sc_0 %sc_1",				0,		1,		selectFalseUsingSc,	outputColors2));
6190	cases.push_back(SpecConstantTwoIntGraphicsCase("logicalor",				"False %bool",	"False %bool",	"%bool",	"LogicalOr            %sc_0 %sc_1",				1,		0,		selectTrueUsingSc,	outputColors2));
6191	cases.push_back(SpecConstantTwoIntGraphicsCase("logicalequal",			"True %bool",	"True %bool",	"%bool",	"LogicalEqual         %sc_0 %sc_1",				0,		1,		selectFalseUsingSc,	outputColors2));
6192	cases.push_back(SpecConstantTwoIntGraphicsCase("logicalnotequal",		"False %bool",	"False %bool",	"%bool",	"LogicalNotEqual      %sc_0 %sc_1",				1,		0,		selectTrueUsingSc,	outputColors2));
6193	cases.push_back(SpecConstantTwoIntGraphicsCase("snegate",				" %i32 0",		" %i32 0",		"%i32",		"SNegate              %sc_0",					-1,		0,		addZeroToSc,		outputColors2));
6194	cases.push_back(SpecConstantTwoIntGraphicsCase("not",					" %i32 0",		" %i32 0",		"%i32",		"Not                  %sc_0",					-2,		0,		addZeroToSc,		outputColors2));
6195	cases.push_back(SpecConstantTwoIntGraphicsCase("logicalnot",			"False %bool",	"False %bool",	"%bool",	"LogicalNot           %sc_0",					1,		0,		selectFalseUsingSc,	outputColors2));
6196	cases.push_back(SpecConstantTwoIntGraphicsCase("select",				"False %bool",	" %i32 0",		"%i32",		"Select               %sc_0 %sc_1 %c_i32_0",	1,		1,		addZeroToSc,		outputColors2));
6197	// OpSConvert, OpFConvert: these two instructions involve ints/floats of different bitwidths.
6198	// \todo[2015-12-1 antiagainst] OpQuantizeToF16
6199
6200	for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
6201	{
6202		map<string, string>	specializations;
6203		map<string, string>	fragments;
6204		vector<deInt32>		specConstants;
6205
6206		specializations["SC_DEF0"]			= cases[caseNdx].scDefinition0;
6207		specializations["SC_DEF1"]			= cases[caseNdx].scDefinition1;
6208		specializations["SC_RESULT_TYPE"]	= cases[caseNdx].scResultType;
6209		specializations["SC_OP"]			= cases[caseNdx].scOperation;
6210		specializations["GEN_RESULT"]		= cases[caseNdx].resultOperation;
6211
6212		fragments["decoration"]				= tcu::StringTemplate(decorations1).specialize(specializations);
6213		fragments["pre_main"]				= tcu::StringTemplate(typesAndConstants1).specialize(specializations);
6214		fragments["testfun"]				= tcu::StringTemplate(function1).specialize(specializations);
6215
6216		specConstants.push_back(cases[caseNdx].scActualValue0);
6217		specConstants.push_back(cases[caseNdx].scActualValue1);
6218
6219		createTestsForAllStages(cases[caseNdx].caseName, inputColors, cases[caseNdx].expectedColors, fragments, specConstants, group.get());
6220	}
6221
6222	const char	decorations2[]			=
6223		"OpDecorate %sc_0  SpecId 0\n"
6224		"OpDecorate %sc_1  SpecId 1\n"
6225		"OpDecorate %sc_2  SpecId 2\n";
6226
6227	const char	typesAndConstants2[]	=
6228		"%v3i32     = OpTypeVector %i32 3\n"
6229
6230		"%sc_0      = OpSpecConstant %i32 0\n"
6231		"%sc_1      = OpSpecConstant %i32 0\n"
6232		"%sc_2      = OpSpecConstant %i32 0\n"
6233
6234		"%vec3_0      = OpConstantComposite %v3i32 %c_i32_0 %c_i32_0 %c_i32_0\n"
6235		"%sc_vec3_0   = OpSpecConstantOp %v3i32 CompositeInsert  %sc_0        %vec3_0    0\n"     // (sc_0, 0, 0)
6236		"%sc_vec3_1   = OpSpecConstantOp %v3i32 CompositeInsert  %sc_1        %vec3_0    1\n"     // (0, sc_1, 0)
6237		"%sc_vec3_2   = OpSpecConstantOp %v3i32 CompositeInsert  %sc_2        %vec3_0    2\n"     // (0, 0, sc_2)
6238		"%sc_vec3_01  = OpSpecConstantOp %v3i32 VectorShuffle    %sc_vec3_0   %sc_vec3_1 1 0 4\n" // (0,    sc_0, sc_1)
6239		"%sc_vec3_012 = OpSpecConstantOp %v3i32 VectorShuffle    %sc_vec3_01  %sc_vec3_2 5 1 2\n" // (sc_2, sc_0, sc_1)
6240		"%sc_ext_0    = OpSpecConstantOp %i32   CompositeExtract %sc_vec3_012            0\n"     // sc_2
6241		"%sc_ext_1    = OpSpecConstantOp %i32   CompositeExtract %sc_vec3_012            1\n"     // sc_0
6242		"%sc_ext_2    = OpSpecConstantOp %i32   CompositeExtract %sc_vec3_012            2\n"     // sc_1
6243		"%sc_sub      = OpSpecConstantOp %i32   ISub             %sc_ext_0    %sc_ext_1\n"        // (sc_2 - sc_0)
6244		"%sc_final    = OpSpecConstantOp %i32   IMul             %sc_sub      %sc_ext_2\n";       // (sc_2 - sc_0) * sc_1
6245
6246	const char	function2[]				=
6247		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
6248		"%param     = OpFunctionParameter %v4f32\n"
6249		"%label     = OpLabel\n"
6250		"%result    = OpVariable %fp_v4f32 Function\n"
6251		"             OpStore %result %param\n"
6252		"%loc       = OpAccessChain %fp_f32 %result %sc_final\n"
6253		"%val       = OpLoad %f32 %loc\n"
6254		"%add       = OpFAdd %f32 %val %c_f32_0_5\n"
6255		"             OpStore %loc %add\n"
6256		"%ret       = OpLoad %v4f32 %result\n"
6257		"             OpReturnValue %ret\n"
6258		"             OpFunctionEnd\n";
6259
6260	map<string, string>	fragments;
6261	vector<deInt32>		specConstants;
6262
6263	fragments["decoration"]	= decorations2;
6264	fragments["pre_main"]	= typesAndConstants2;
6265	fragments["testfun"]	= function2;
6266
6267	specConstants.push_back(56789);
6268	specConstants.push_back(-2);
6269	specConstants.push_back(56788);
6270
6271	createTestsForAllStages("vector_related", inputColors, outputColors2, fragments, specConstants, group.get());
6272
6273	return group.release();
6274}
6275
6276tcu::TestCaseGroup* createOpPhiTests(tcu::TestContext& testCtx)
6277{
6278	de::MovePtr<tcu::TestCaseGroup> group				(new tcu::TestCaseGroup(testCtx, "opphi", "Test the OpPhi instruction"));
6279	RGBA							inputColors[4];
6280	RGBA							outputColors1[4];
6281	RGBA							outputColors2[4];
6282	RGBA							outputColors3[4];
6283	map<string, string>				fragments1;
6284	map<string, string>				fragments2;
6285	map<string, string>				fragments3;
6286
6287	const char	typesAndConstants1[]	=
6288		"%c_f32_p2  = OpConstant %f32 0.2\n"
6289		"%c_f32_p4  = OpConstant %f32 0.4\n"
6290		"%c_f32_p6  = OpConstant %f32 0.6\n"
6291		"%c_f32_p8  = OpConstant %f32 0.8\n";
6292
6293	// vec4 test_code(vec4 param) {
6294	//   vec4 result = param;
6295	//   for (int i = 0; i < 4; ++i) {
6296	//     float operand;
6297	//     switch (i) {
6298	//       case 0: operand = .2; break;
6299	//       case 1: operand = .6; break;
6300	//       case 2: operand = .4; break;
6301	//       case 3: operand = .0; break;
6302	//       default: break; // unreachable
6303	//     }
6304	//     result[i] += operand;
6305	//   }
6306	//   return result;
6307	// }
6308	const char	function1[]				=
6309		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
6310		"%param1    = OpFunctionParameter %v4f32\n"
6311		"%lbl       = OpLabel\n"
6312		"%iptr      = OpVariable %fp_i32 Function\n"
6313		"             OpStore %iptr %c_i32_0\n"
6314		"%result    = OpVariable %fp_v4f32 Function\n"
6315		"             OpStore %result %param1\n"
6316		"             OpBranch %loop\n"
6317
6318		"%loop      = OpLabel\n"
6319		"%ival      = OpLoad %i32 %iptr\n"
6320		"%lt_4      = OpSLessThan %bool %ival %c_i32_4\n"
6321		"             OpLoopMerge %exit %loop None\n"
6322		"             OpBranchConditional %lt_4 %entry %exit\n"
6323
6324		"%entry     = OpLabel\n"
6325		"%loc       = OpAccessChain %fp_f32 %result %ival\n"
6326		"%val       = OpLoad %f32 %loc\n"
6327		"             OpSelectionMerge %phi None\n"
6328		"             OpSwitch %ival %default 0 %case0 1 %case1 2 %case2 3 %case3\n"
6329
6330		"%case0     = OpLabel\n"
6331		"             OpBranch %phi\n"
6332		"%case1     = OpLabel\n"
6333		"             OpBranch %phi\n"
6334		"%case2     = OpLabel\n"
6335		"             OpBranch %phi\n"
6336		"%case3     = OpLabel\n"
6337		"             OpBranch %phi\n"
6338
6339		"%default   = OpLabel\n"
6340		"             OpUnreachable\n"
6341
6342		"%phi       = OpLabel\n"
6343		"%operand   = OpPhi %f32 %c_f32_p4 %case2 %c_f32_p6 %case1 %c_f32_p2 %case0 %c_f32_0 %case3\n" // not in the order of blocks
6344		"%add       = OpFAdd %f32 %val %operand\n"
6345		"             OpStore %loc %add\n"
6346		"%ival_next = OpIAdd %i32 %ival %c_i32_1\n"
6347		"             OpStore %iptr %ival_next\n"
6348		"             OpBranch %loop\n"
6349
6350		"%exit      = OpLabel\n"
6351		"%ret       = OpLoad %v4f32 %result\n"
6352		"             OpReturnValue %ret\n"
6353
6354		"             OpFunctionEnd\n";
6355
6356	fragments1["pre_main"]	= typesAndConstants1;
6357	fragments1["testfun"]	= function1;
6358
6359	getHalfColorsFullAlpha(inputColors);
6360
6361	outputColors1[0]		= RGBA(178, 180, 229, 255);
6362	outputColors1[1]		= RGBA(178, 153, 102, 255);
6363	outputColors1[2]		= RGBA(51,  180, 102, 255);
6364	outputColors1[3]		= RGBA(51,  153, 229, 255);
6365
6366	createTestsForAllStages("out_of_order", inputColors, outputColors1, fragments1, group.get());
6367
6368	const char	typesAndConstants2[]	=
6369		"%c_f32_p2  = OpConstant %f32 0.2\n";
6370
6371	// Add .4 to the second element of the given parameter.
6372	const char	function2[]				=
6373		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
6374		"%param     = OpFunctionParameter %v4f32\n"
6375		"%entry     = OpLabel\n"
6376		"%result    = OpVariable %fp_v4f32 Function\n"
6377		"             OpStore %result %param\n"
6378		"%loc       = OpAccessChain %fp_f32 %result %c_i32_1\n"
6379		"%val       = OpLoad %f32 %loc\n"
6380		"             OpBranch %phi\n"
6381
6382		"%phi        = OpLabel\n"
6383		"%step       = OpPhi %i32 %c_i32_0  %entry %step_next  %phi\n"
6384		"%accum      = OpPhi %f32 %val      %entry %accum_next %phi\n"
6385		"%step_next  = OpIAdd %i32 %step  %c_i32_1\n"
6386		"%accum_next = OpFAdd %f32 %accum %c_f32_p2\n"
6387		"%still_loop = OpSLessThan %bool %step %c_i32_2\n"
6388		"              OpLoopMerge %exit %phi None\n"
6389		"              OpBranchConditional %still_loop %phi %exit\n"
6390
6391		"%exit       = OpLabel\n"
6392		"              OpStore %loc %accum\n"
6393		"%ret        = OpLoad %v4f32 %result\n"
6394		"              OpReturnValue %ret\n"
6395
6396		"              OpFunctionEnd\n";
6397
6398	fragments2["pre_main"]	= typesAndConstants2;
6399	fragments2["testfun"]	= function2;
6400
6401	outputColors2[0]			= RGBA(127, 229, 127, 255);
6402	outputColors2[1]			= RGBA(127, 102, 0,   255);
6403	outputColors2[2]			= RGBA(0,   229, 0,   255);
6404	outputColors2[3]			= RGBA(0,   102, 127, 255);
6405
6406	createTestsForAllStages("induction", inputColors, outputColors2, fragments2, group.get());
6407
6408	const char	typesAndConstants3[]	=
6409		"%true      = OpConstantTrue %bool\n"
6410		"%false     = OpConstantFalse %bool\n"
6411		"%c_f32_p2  = OpConstant %f32 0.2\n";
6412
6413	// Swap the second and the third element of the given parameter.
6414	const char	function3[]				=
6415		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
6416		"%param     = OpFunctionParameter %v4f32\n"
6417		"%entry     = OpLabel\n"
6418		"%result    = OpVariable %fp_v4f32 Function\n"
6419		"             OpStore %result %param\n"
6420		"%a_loc     = OpAccessChain %fp_f32 %result %c_i32_1\n"
6421		"%a_init    = OpLoad %f32 %a_loc\n"
6422		"%b_loc     = OpAccessChain %fp_f32 %result %c_i32_2\n"
6423		"%b_init    = OpLoad %f32 %b_loc\n"
6424		"             OpBranch %phi\n"
6425
6426		"%phi        = OpLabel\n"
6427		"%still_loop = OpPhi %bool %true   %entry %false  %phi\n"
6428		"%a_next     = OpPhi %f32  %a_init %entry %b_next %phi\n"
6429		"%b_next     = OpPhi %f32  %b_init %entry %a_next %phi\n"
6430		"              OpLoopMerge %exit %phi None\n"
6431		"              OpBranchConditional %still_loop %phi %exit\n"
6432
6433		"%exit       = OpLabel\n"
6434		"              OpStore %a_loc %a_next\n"
6435		"              OpStore %b_loc %b_next\n"
6436		"%ret        = OpLoad %v4f32 %result\n"
6437		"              OpReturnValue %ret\n"
6438
6439		"              OpFunctionEnd\n";
6440
6441	fragments3["pre_main"]	= typesAndConstants3;
6442	fragments3["testfun"]	= function3;
6443
6444	outputColors3[0]			= RGBA(127, 127, 127, 255);
6445	outputColors3[1]			= RGBA(127, 0,   0,   255);
6446	outputColors3[2]			= RGBA(0,   0,   127, 255);
6447	outputColors3[3]			= RGBA(0,   127, 0,   255);
6448
6449	createTestsForAllStages("swap", inputColors, outputColors3, fragments3, group.get());
6450
6451	return group.release();
6452}
6453
6454tcu::TestCaseGroup* createNoContractionTests(tcu::TestContext& testCtx)
6455{
6456	de::MovePtr<tcu::TestCaseGroup> group			(new tcu::TestCaseGroup(testCtx, "nocontraction", "Test the NoContraction decoration"));
6457	RGBA							inputColors[4];
6458	RGBA							outputColors[4];
6459
6460	// With NoContraction, (1 + 2^-23) * (1 - 2^-23) - 1 should be conducted as a multiplication and an addition separately.
6461	// For the multiplication, the result is 1 - 2^-46, which is out of the precision range for 32-bit float. (32-bit float
6462	// only have 23-bit fraction.) So it will be rounded to 1. Then the final result is 0. On the contrary, the result will
6463	// be 2^-46, which is a normalized number perfectly representable as 32-bit float.
6464	const char						constantsAndTypes[]	 =
6465		"%c_vec4_0       = OpConstantComposite %v4f32 %c_f32_0 %c_f32_0 %c_f32_0 %c_f32_1\n"
6466		"%c_vec4_1       = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_1\n"
6467		"%c_f32_1pl2_23  = OpConstant %f32 0x1.000002p+0\n" // 1 + 2^-23
6468		"%c_f32_1mi2_23  = OpConstant %f32 0x1.fffffcp-1\n" // 1 - 2^-23
6469		;
6470
6471	const char						function[]	 =
6472		"%test_code      = OpFunction %v4f32 None %v4f32_function\n"
6473		"%param          = OpFunctionParameter %v4f32\n"
6474		"%label          = OpLabel\n"
6475		"%var1           = OpVariable %fp_f32 Function %c_f32_1pl2_23\n"
6476		"%var2           = OpVariable %fp_f32 Function\n"
6477		"%red            = OpCompositeExtract %f32 %param 0\n"
6478		"%plus_red       = OpFAdd %f32 %c_f32_1mi2_23 %red\n"
6479		"                  OpStore %var2 %plus_red\n"
6480		"%val1           = OpLoad %f32 %var1\n"
6481		"%val2           = OpLoad %f32 %var2\n"
6482		"%mul            = OpFMul %f32 %val1 %val2\n"
6483		"%add            = OpFAdd %f32 %mul %c_f32_n1\n"
6484		"%is0            = OpFOrdEqual %bool %add %c_f32_0\n"
6485		"%ret            = OpSelect %v4f32 %is0 %c_vec4_0 %c_vec4_1\n"
6486		"                  OpReturnValue %ret\n"
6487		"                  OpFunctionEnd\n";
6488
6489	struct CaseNameDecoration
6490	{
6491		string name;
6492		string decoration;
6493	};
6494
6495
6496	CaseNameDecoration tests[] = {
6497		{"multiplication",	"OpDecorate %mul NoContraction"},
6498		{"addition",		"OpDecorate %add NoContraction"},
6499		{"both",			"OpDecorate %mul NoContraction\nOpDecorate %add NoContraction"},
6500	};
6501
6502	getHalfColorsFullAlpha(inputColors);
6503
6504	for (deUint8 idx = 0; idx < 4; ++idx)
6505	{
6506		inputColors[idx].setRed(0);
6507		outputColors[idx] = RGBA(0, 0, 0, 255);
6508	}
6509
6510	for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(CaseNameDecoration); ++testNdx)
6511	{
6512		map<string, string> fragments;
6513
6514		fragments["decoration"] = tests[testNdx].decoration;
6515		fragments["pre_main"] = constantsAndTypes;
6516		fragments["testfun"] = function;
6517
6518		createTestsForAllStages(tests[testNdx].name, inputColors, outputColors, fragments, group.get());
6519	}
6520
6521	return group.release();
6522}
6523
6524tcu::TestCaseGroup* createMemoryAccessTests(tcu::TestContext& testCtx)
6525{
6526	de::MovePtr<tcu::TestCaseGroup> memoryAccessTests (new tcu::TestCaseGroup(testCtx, "opmemoryaccess", "Memory Semantics"));
6527	RGBA							colors[4];
6528
6529	const char						constantsAndTypes[]	 =
6530		"%c_a2f32_1         = OpConstantComposite %a2f32 %c_f32_1 %c_f32_1\n"
6531		"%fp_a2f32          = OpTypePointer Function %a2f32\n"
6532		"%stype             = OpTypeStruct  %v4f32 %a2f32 %f32\n"
6533		"%fp_stype          = OpTypePointer Function %stype\n";
6534
6535	const char						function[]	 =
6536		"%test_code         = OpFunction %v4f32 None %v4f32_function\n"
6537		"%param1            = OpFunctionParameter %v4f32\n"
6538		"%lbl               = OpLabel\n"
6539		"%v1                = OpVariable %fp_v4f32 Function\n"
6540		"                     OpStore %v1 %c_v4f32_1_1_1_1\n"
6541		"%v2                = OpVariable %fp_a2f32 Function\n"
6542		"                     OpStore %v2 %c_a2f32_1\n"
6543		"%v3                = OpVariable %fp_f32 Function\n"
6544		"                     OpStore %v3 %c_f32_1\n"
6545
6546		"%v                 = OpVariable %fp_stype Function\n"
6547		"%vv                = OpVariable %fp_stype Function\n"
6548		"%vvv               = OpVariable %fp_f32 Function\n"
6549
6550		"%p_v4f32          = OpAccessChain %fp_v4f32 %v %c_u32_0\n"
6551		"%p_a2f32          = OpAccessChain %fp_a2f32 %v %c_u32_1\n"
6552		"%p_f32            = OpAccessChain %fp_f32 %v %c_u32_2\n"
6553		"%v1_v             = OpLoad %v4f32 %v1 ${access_type}\n"
6554		"%v2_v             = OpLoad %a2f32 %v2 ${access_type}\n"
6555		"%v3_v             = OpLoad %f32 %v3 ${access_type}\n"
6556
6557		"                    OpStore %p_v4f32 %v1_v ${access_type}\n"
6558		"                    OpStore %p_a2f32 %v2_v ${access_type}\n"
6559		"                    OpStore %p_f32 %v3_v ${access_type}\n"
6560
6561		"                    OpCopyMemory %vv %v ${access_type}\n"
6562		"                    OpCopyMemory %vvv %p_f32 ${access_type}\n"
6563
6564		"%p_f32_2          = OpAccessChain %fp_f32 %vv %c_u32_2\n"
6565		"%v_f32_2          = OpLoad %f32 %p_f32_2\n"
6566		"%v_f32_3          = OpLoad %f32 %vvv\n"
6567
6568		"%ret1             = OpVectorTimesScalar %v4f32 %param1 %v_f32_2\n"
6569		"%ret2             = OpVectorTimesScalar %v4f32 %ret1 %v_f32_3\n"
6570		"                    OpReturnValue %ret2\n"
6571		"                    OpFunctionEnd\n";
6572
6573	struct NameMemoryAccess
6574	{
6575		string name;
6576		string accessType;
6577	};
6578
6579
6580	NameMemoryAccess tests[] =
6581	{
6582		{ "none", "" },
6583		{ "volatile", "Volatile" },
6584		{ "aligned",  "Aligned 1" },
6585		{ "volatile_aligned",  "Volatile|Aligned 1" },
6586		{ "nontemporal_aligned",  "Nontemporal|Aligned 1" },
6587		{ "volatile_nontemporal",  "Volatile|Nontemporal" },
6588		{ "volatile_nontermporal_aligned",  "Volatile|Nontemporal|Aligned 1" },
6589	};
6590
6591	getHalfColorsFullAlpha(colors);
6592
6593	for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(NameMemoryAccess); ++testNdx)
6594	{
6595		map<string, string> fragments;
6596		map<string, string> memoryAccess;
6597		memoryAccess["access_type"] = tests[testNdx].accessType;
6598
6599		fragments["pre_main"] = constantsAndTypes;
6600		fragments["testfun"] = tcu::StringTemplate(function).specialize(memoryAccess);
6601		createTestsForAllStages(tests[testNdx].name, colors, colors, fragments, memoryAccessTests.get());
6602	}
6603	return memoryAccessTests.release();
6604}
6605tcu::TestCaseGroup* createOpUndefTests(tcu::TestContext& testCtx)
6606{
6607	de::MovePtr<tcu::TestCaseGroup>		opUndefTests		 (new tcu::TestCaseGroup(testCtx, "opundef", "Test OpUndef"));
6608	RGBA								defaultColors[4];
6609	map<string, string>					fragments;
6610	getDefaultColors(defaultColors);
6611
6612	// First, simple cases that don't do anything with the OpUndef result.
6613	fragments["testfun"] =
6614		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
6615		"%param1 = OpFunctionParameter %v4f32\n"
6616		"%label_testfun = OpLabel\n"
6617		"%undef = OpUndef %type\n"
6618		"OpReturnValue %param1\n"
6619		"OpFunctionEnd\n"
6620		;
6621	struct NameCodePair { string name, code; };
6622	const NameCodePair tests[] =
6623	{
6624		{"bool", "%type = OpTypeBool"},
6625		{"vec2uint32", "%type = OpTypeVector %u32 2"},
6626		{"image", "%type = OpTypeImage %f32 2D 0 0 0 0 Unknown"},
6627		{"sampler", "%type = OpTypeSampler"},
6628		{"sampledimage", "%img = OpTypeImage %f32 2D 0 0 0 0 Unknown\n" "%type = OpTypeSampledImage %img"},
6629		{"pointer", "%type = OpTypePointer Function %i32"},
6630		{"runtimearray", "%type = OpTypeRuntimeArray %f32"},
6631		{"array", "%c_u32_100 = OpConstant %u32 100\n" "%type = OpTypeArray %i32 %c_u32_100"},
6632		{"struct", "%type = OpTypeStruct %f32 %i32 %u32"}};
6633	for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(NameCodePair); ++testNdx)
6634	{
6635		fragments["pre_main"] = tests[testNdx].code;
6636		createTestsForAllStages(tests[testNdx].name, defaultColors, defaultColors, fragments, opUndefTests.get());
6637	}
6638	fragments.clear();
6639
6640	fragments["testfun"] =
6641		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
6642		"%param1 = OpFunctionParameter %v4f32\n"
6643		"%label_testfun = OpLabel\n"
6644		"%undef = OpUndef %f32\n"
6645		"%zero = OpFMul %f32 %undef %c_f32_0\n"
6646		"%a = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
6647		"%b = OpFAdd %f32 %a %zero\n"
6648		"%ret = OpVectorInsertDynamic %v4f32 %param1 %b %c_i32_0\n"
6649		"OpReturnValue %ret\n"
6650		"OpFunctionEnd\n"
6651		;
6652	createTestsForAllStages("float32", defaultColors, defaultColors, fragments, opUndefTests.get());
6653
6654	fragments["testfun"] =
6655		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
6656		"%param1 = OpFunctionParameter %v4f32\n"
6657		"%label_testfun = OpLabel\n"
6658		"%undef = OpUndef %i32\n"
6659		"%zero = OpIMul %i32 %undef %c_i32_0\n"
6660		"%a = OpVectorExtractDynamic %f32 %param1 %zero\n"
6661		"%ret = OpVectorInsertDynamic %v4f32 %param1 %a %c_i32_0\n"
6662		"OpReturnValue %ret\n"
6663		"OpFunctionEnd\n"
6664		;
6665	createTestsForAllStages("sint32", defaultColors, defaultColors, fragments, opUndefTests.get());
6666
6667	fragments["testfun"] =
6668		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
6669		"%param1 = OpFunctionParameter %v4f32\n"
6670		"%label_testfun = OpLabel\n"
6671		"%undef = OpUndef %u32\n"
6672		"%zero = OpIMul %u32 %undef %c_i32_0\n"
6673		"%a = OpVectorExtractDynamic %f32 %param1 %zero\n"
6674		"%ret = OpVectorInsertDynamic %v4f32 %param1 %a %c_i32_0\n"
6675		"OpReturnValue %ret\n"
6676		"OpFunctionEnd\n"
6677		;
6678	createTestsForAllStages("uint32", defaultColors, defaultColors, fragments, opUndefTests.get());
6679
6680	fragments["testfun"] =
6681		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
6682		"%param1 = OpFunctionParameter %v4f32\n"
6683		"%label_testfun = OpLabel\n"
6684		"%undef = OpUndef %v4f32\n"
6685		"%vzero = OpVectorTimesScalar %v4f32 %undef %c_f32_0\n"
6686		"%zero_0 = OpVectorExtractDynamic %f32 %vzero %c_i32_0\n"
6687		"%zero_1 = OpVectorExtractDynamic %f32 %vzero %c_i32_1\n"
6688		"%zero_2 = OpVectorExtractDynamic %f32 %vzero %c_i32_2\n"
6689		"%zero_3 = OpVectorExtractDynamic %f32 %vzero %c_i32_3\n"
6690		"%param1_0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
6691		"%param1_1 = OpVectorExtractDynamic %f32 %param1 %c_i32_1\n"
6692		"%param1_2 = OpVectorExtractDynamic %f32 %param1 %c_i32_2\n"
6693		"%param1_3 = OpVectorExtractDynamic %f32 %param1 %c_i32_3\n"
6694		"%sum_0 = OpFAdd %f32 %param1_0 %zero_0\n"
6695		"%sum_1 = OpFAdd %f32 %param1_1 %zero_1\n"
6696		"%sum_2 = OpFAdd %f32 %param1_2 %zero_2\n"
6697		"%sum_3 = OpFAdd %f32 %param1_3 %zero_3\n"
6698		"%ret3 = OpVectorInsertDynamic %v4f32 %param1 %sum_3 %c_i32_3\n"
6699		"%ret2 = OpVectorInsertDynamic %v4f32 %ret3 %sum_2 %c_i32_2\n"
6700		"%ret1 = OpVectorInsertDynamic %v4f32 %ret2 %sum_1 %c_i32_1\n"
6701		"%ret = OpVectorInsertDynamic %v4f32 %ret1 %sum_0 %c_i32_0\n"
6702		"OpReturnValue %ret\n"
6703		"OpFunctionEnd\n"
6704		;
6705	createTestsForAllStages("vec4float32", defaultColors, defaultColors, fragments, opUndefTests.get());
6706
6707	fragments["pre_main"] =
6708		"%v2f32 = OpTypeVector %f32 2\n"
6709		"%m2x2f32 = OpTypeMatrix %v2f32 2\n";
6710	fragments["testfun"] =
6711		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
6712		"%param1 = OpFunctionParameter %v4f32\n"
6713		"%label_testfun = OpLabel\n"
6714		"%undef = OpUndef %m2x2f32\n"
6715		"%mzero = OpMatrixTimesScalar %m2x2f32 %undef %c_f32_0\n"
6716		"%zero_0 = OpCompositeExtract %f32 %mzero 0 0\n"
6717		"%zero_1 = OpCompositeExtract %f32 %mzero 0 1\n"
6718		"%zero_2 = OpCompositeExtract %f32 %mzero 1 0\n"
6719		"%zero_3 = OpCompositeExtract %f32 %mzero 1 1\n"
6720		"%param1_0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
6721		"%param1_1 = OpVectorExtractDynamic %f32 %param1 %c_i32_1\n"
6722		"%param1_2 = OpVectorExtractDynamic %f32 %param1 %c_i32_2\n"
6723		"%param1_3 = OpVectorExtractDynamic %f32 %param1 %c_i32_3\n"
6724		"%sum_0 = OpFAdd %f32 %param1_0 %zero_0\n"
6725		"%sum_1 = OpFAdd %f32 %param1_1 %zero_1\n"
6726		"%sum_2 = OpFAdd %f32 %param1_2 %zero_2\n"
6727		"%sum_3 = OpFAdd %f32 %param1_3 %zero_3\n"
6728		"%ret3 = OpVectorInsertDynamic %v4f32 %param1 %sum_3 %c_i32_3\n"
6729		"%ret2 = OpVectorInsertDynamic %v4f32 %ret3 %sum_2 %c_i32_2\n"
6730		"%ret1 = OpVectorInsertDynamic %v4f32 %ret2 %sum_1 %c_i32_1\n"
6731		"%ret = OpVectorInsertDynamic %v4f32 %ret1 %sum_0 %c_i32_0\n"
6732		"OpReturnValue %ret\n"
6733		"OpFunctionEnd\n"
6734		;
6735	createTestsForAllStages("matrix", defaultColors, defaultColors, fragments, opUndefTests.get());
6736
6737	return opUndefTests.release();
6738}
6739
6740void createOpQuantizeSingleOptionTests(tcu::TestCaseGroup* testCtx)
6741{
6742	const RGBA		inputColors[4]		=
6743	{
6744		RGBA(0,		0,		0,		255),
6745		RGBA(0,		0,		255,	255),
6746		RGBA(0,		255,	0,		255),
6747		RGBA(0,		255,	255,	255)
6748	};
6749
6750	const RGBA		expectedColors[4]	=
6751	{
6752		RGBA(255,	 0,		 0,		 255),
6753		RGBA(255,	 0,		 0,		 255),
6754		RGBA(255,	 0,		 0,		 255),
6755		RGBA(255,	 0,		 0,		 255)
6756	};
6757
6758	const struct SingleFP16Possibility
6759	{
6760		const char* name;
6761		const char* constant;  // Value to assign to %test_constant.
6762		float		valueAsFloat;
6763		const char* condition; // Must assign to %cond an expression that evaluates to true after %c = OpQuantizeToF16(%test_constant + 0).
6764	}				tests[]				=
6765	{
6766		{
6767			"negative",
6768			"-0x1.3p1\n",
6769			-constructNormalizedFloat(1, 0x300000),
6770			"%cond = OpFOrdEqual %bool %c %test_constant\n"
6771		}, // -19
6772		{
6773			"positive",
6774			"0x1.0p7\n",
6775			constructNormalizedFloat(7, 0x000000),
6776			"%cond = OpFOrdEqual %bool %c %test_constant\n"
6777		},  // +128
6778		// SPIR-V requires that OpQuantizeToF16 flushes
6779		// any numbers that would end up denormalized in F16 to zero.
6780		{
6781			"denorm",
6782			"0x0.0006p-126\n",
6783			std::ldexp(1.5f, -140),
6784			"%cond = OpFOrdEqual %bool %c %c_f32_0\n"
6785		},  // denorm
6786		{
6787			"negative_denorm",
6788			"-0x0.0006p-126\n",
6789			-std::ldexp(1.5f, -140),
6790			"%cond = OpFOrdEqual %bool %c %c_f32_0\n"
6791		}, // -denorm
6792		{
6793			"too_small",
6794			"0x1.0p-16\n",
6795			std::ldexp(1.0f, -16),
6796			"%cond = OpFOrdEqual %bool %c %c_f32_0\n"
6797		},     // too small positive
6798		{
6799			"negative_too_small",
6800			"-0x1.0p-32\n",
6801			-std::ldexp(1.0f, -32),
6802			"%cond = OpFOrdEqual %bool %c %c_f32_0\n"
6803		},      // too small negative
6804		{
6805			"negative_inf",
6806			"-0x1.0p128\n",
6807			-std::ldexp(1.0f, 128),
6808
6809			"%gz = OpFOrdLessThan %bool %c %c_f32_0\n"
6810			"%inf = OpIsInf %bool %c\n"
6811			"%cond = OpLogicalAnd %bool %gz %inf\n"
6812		},     // -inf to -inf
6813		{
6814			"inf",
6815			"0x1.0p128\n",
6816			std::ldexp(1.0f, 128),
6817
6818			"%gz = OpFOrdGreaterThan %bool %c %c_f32_0\n"
6819			"%inf = OpIsInf %bool %c\n"
6820			"%cond = OpLogicalAnd %bool %gz %inf\n"
6821		},     // +inf to +inf
6822		{
6823			"round_to_negative_inf",
6824			"-0x1.0p32\n",
6825			-std::ldexp(1.0f, 32),
6826
6827			"%gz = OpFOrdLessThan %bool %c %c_f32_0\n"
6828			"%inf = OpIsInf %bool %c\n"
6829			"%cond = OpLogicalAnd %bool %gz %inf\n"
6830		},     // round to -inf
6831		{
6832			"round_to_inf",
6833			"0x1.0p16\n",
6834			std::ldexp(1.0f, 16),
6835
6836			"%gz = OpFOrdGreaterThan %bool %c %c_f32_0\n"
6837			"%inf = OpIsInf %bool %c\n"
6838			"%cond = OpLogicalAnd %bool %gz %inf\n"
6839		},     // round to +inf
6840		{
6841			"nan",
6842			"0x1.1p128\n",
6843			std::numeric_limits<float>::quiet_NaN(),
6844
6845			// Can't use %c, because NaN+0 isn't necessarily a NaN (Vulkan spec A.4).
6846			"%direct_quant = OpQuantizeToF16 %f32 %test_constant\n"
6847			"%nan = OpIsNan %bool %direct_quant\n"
6848			"%as_int = OpBitcast %i32 %direct_quant\n"
6849			"%positive = OpSGreaterThan %bool %as_int %c_i32_0\n"
6850			"%cond = OpLogicalAnd %bool %nan %positive\n"
6851		}, // nan
6852		{
6853			"negative_nan",
6854			"-0x1.0001p128\n",
6855			std::numeric_limits<float>::quiet_NaN(),
6856
6857			// Can't use %c, because NaN+0 isn't necessarily a NaN (Vulkan spec A.4).
6858			"%direct_quant = OpQuantizeToF16 %f32 %test_constant\n"
6859			"%nan = OpIsNan %bool %direct_quant\n"
6860			"%as_int = OpBitcast %i32 %direct_quant\n"
6861			"%negative = OpSLessThan %bool %as_int %c_i32_0\n"
6862			"%cond = OpLogicalAnd %bool %nan %negative\n"
6863		} // -nan
6864	};
6865	const char*		constants			=
6866		"%test_constant = OpConstant %f32 ";  // The value will be test.constant.
6867
6868	StringTemplate	function			(
6869		"%test_code     = OpFunction %v4f32 None %v4f32_function\n"
6870		"%param1        = OpFunctionParameter %v4f32\n"
6871		"%label_testfun = OpLabel\n"
6872		"%a             = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
6873		"%b             = OpFAdd %f32 %test_constant %a\n"
6874		"%c             = OpQuantizeToF16 %f32 %b\n"
6875		"${condition}\n"
6876		"%retval        = OpSelect %v4f32 %cond %c_v4f32_1_0_0_1 %param1"
6877		"                 OpReturnValue %retval\n"
6878		"OpFunctionEnd\n"
6879	);
6880
6881	const char*		specDecorations		= "OpDecorate %test_constant SpecId 0\n";
6882	const char*		specConstants		=
6883			"%test_constant = OpSpecConstant %f32 0.\n"
6884			"%c             = OpSpecConstantOp %f32 QuantizeToF16 %test_constant\n";
6885
6886	StringTemplate	specConstantFunction(
6887		"%test_code     = OpFunction %v4f32 None %v4f32_function\n"
6888		"%param1        = OpFunctionParameter %v4f32\n"
6889		"%label_testfun = OpLabel\n"
6890		"${condition}\n"
6891		"%retval        = OpSelect %v4f32 %cond %c_v4f32_1_0_0_1 %param1"
6892		"                 OpReturnValue %retval\n"
6893		"OpFunctionEnd\n"
6894	);
6895
6896	for (size_t idx = 0; idx < (sizeof(tests)/sizeof(tests[0])); ++idx)
6897	{
6898		map<string, string>								codeSpecialization;
6899		map<string, string>								fragments;
6900		codeSpecialization["condition"]					= tests[idx].condition;
6901		fragments["testfun"]							= function.specialize(codeSpecialization);
6902		fragments["pre_main"]							= string(constants) + tests[idx].constant + "\n";
6903		createTestsForAllStages(tests[idx].name, inputColors, expectedColors, fragments, testCtx);
6904	}
6905
6906	for (size_t idx = 0; idx < (sizeof(tests)/sizeof(tests[0])); ++idx)
6907	{
6908		map<string, string>								codeSpecialization;
6909		map<string, string>								fragments;
6910		vector<deInt32>									passConstants;
6911		deInt32											specConstant;
6912
6913		codeSpecialization["condition"]					= tests[idx].condition;
6914		fragments["testfun"]							= specConstantFunction.specialize(codeSpecialization);
6915		fragments["decoration"]							= specDecorations;
6916		fragments["pre_main"]							= specConstants;
6917
6918		memcpy(&specConstant, &tests[idx].valueAsFloat, sizeof(float));
6919		passConstants.push_back(specConstant);
6920
6921		createTestsForAllStages(string("spec_const_") + tests[idx].name, inputColors, expectedColors, fragments, passConstants, testCtx);
6922	}
6923}
6924
6925void createOpQuantizeTwoPossibilityTests(tcu::TestCaseGroup* testCtx)
6926{
6927	RGBA inputColors[4] =  {
6928		RGBA(0,		0,		0,		255),
6929		RGBA(0,		0,		255,	255),
6930		RGBA(0,		255,	0,		255),
6931		RGBA(0,		255,	255,	255)
6932	};
6933
6934	RGBA expectedColors[4] =
6935	{
6936		RGBA(255,	 0,		 0,		 255),
6937		RGBA(255,	 0,		 0,		 255),
6938		RGBA(255,	 0,		 0,		 255),
6939		RGBA(255,	 0,		 0,		 255)
6940	};
6941
6942	struct DualFP16Possibility
6943	{
6944		const char* name;
6945		const char* input;
6946		float		inputAsFloat;
6947		const char* possibleOutput1;
6948		const char* possibleOutput2;
6949	} tests[] = {
6950		{
6951			"positive_round_up_or_round_down",
6952			"0x1.3003p8",
6953			constructNormalizedFloat(8, 0x300300),
6954			"0x1.304p8",
6955			"0x1.3p8"
6956		},
6957		{
6958			"negative_round_up_or_round_down",
6959			"-0x1.6008p-7",
6960			-constructNormalizedFloat(8, 0x600800),
6961			"-0x1.6p-7",
6962			"-0x1.604p-7"
6963		},
6964		{
6965			"carry_bit",
6966			"0x1.01ep2",
6967			constructNormalizedFloat(8, 0x01e000),
6968			"0x1.01cp2",
6969			"0x1.02p2"
6970		},
6971		{
6972			"carry_to_exponent",
6973			"0x1.feep1",
6974			constructNormalizedFloat(8, 0xfee000),
6975			"0x1.ffcp1",
6976			"0x1.0p2"
6977		},
6978	};
6979	StringTemplate constants (
6980		"%input_const = OpConstant %f32 ${input}\n"
6981		"%possible_solution1 = OpConstant %f32 ${output1}\n"
6982		"%possible_solution2 = OpConstant %f32 ${output2}\n"
6983		);
6984
6985	StringTemplate specConstants (
6986		"%input_const = OpSpecConstant %f32 0.\n"
6987		"%possible_solution1 = OpConstant %f32 ${output1}\n"
6988		"%possible_solution2 = OpConstant %f32 ${output2}\n"
6989	);
6990
6991	const char* specDecorations = "OpDecorate %input_const  SpecId 0\n";
6992
6993	const char* function  =
6994		"%test_code     = OpFunction %v4f32 None %v4f32_function\n"
6995		"%param1        = OpFunctionParameter %v4f32\n"
6996		"%label_testfun = OpLabel\n"
6997		"%a             = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
6998		// For the purposes of this test we assume that 0.f will always get
6999		// faithfully passed through the pipeline stages.
7000		"%b             = OpFAdd %f32 %input_const %a\n"
7001		"%c             = OpQuantizeToF16 %f32 %b\n"
7002		"%eq_1          = OpFOrdEqual %bool %c %possible_solution1\n"
7003		"%eq_2          = OpFOrdEqual %bool %c %possible_solution2\n"
7004		"%cond          = OpLogicalOr %bool %eq_1 %eq_2\n"
7005		"%retval        = OpSelect %v4f32 %cond %c_v4f32_1_0_0_1 %param1"
7006		"                 OpReturnValue %retval\n"
7007		"OpFunctionEnd\n";
7008
7009	for(size_t idx = 0; idx < (sizeof(tests)/sizeof(tests[0])); ++idx) {
7010		map<string, string>									fragments;
7011		map<string, string>									constantSpecialization;
7012
7013		constantSpecialization["input"]						= tests[idx].input;
7014		constantSpecialization["output1"]					= tests[idx].possibleOutput1;
7015		constantSpecialization["output2"]					= tests[idx].possibleOutput2;
7016		fragments["testfun"]								= function;
7017		fragments["pre_main"]								= constants.specialize(constantSpecialization);
7018		createTestsForAllStages(tests[idx].name, inputColors, expectedColors, fragments, testCtx);
7019	}
7020
7021	for(size_t idx = 0; idx < (sizeof(tests)/sizeof(tests[0])); ++idx) {
7022		map<string, string>									fragments;
7023		map<string, string>									constantSpecialization;
7024		vector<deInt32>										passConstants;
7025		deInt32												specConstant;
7026
7027		constantSpecialization["output1"]					= tests[idx].possibleOutput1;
7028		constantSpecialization["output2"]					= tests[idx].possibleOutput2;
7029		fragments["testfun"]								= function;
7030		fragments["decoration"]								= specDecorations;
7031		fragments["pre_main"]								= specConstants.specialize(constantSpecialization);
7032
7033		memcpy(&specConstant, &tests[idx].inputAsFloat, sizeof(float));
7034		passConstants.push_back(specConstant);
7035
7036		createTestsForAllStages(string("spec_const_") + tests[idx].name, inputColors, expectedColors, fragments, passConstants, testCtx);
7037	}
7038}
7039
7040tcu::TestCaseGroup* createOpQuantizeTests(tcu::TestContext& testCtx)
7041{
7042	de::MovePtr<tcu::TestCaseGroup> opQuantizeTests (new tcu::TestCaseGroup(testCtx, "opquantize", "Test OpQuantizeToF16"));
7043	createOpQuantizeSingleOptionTests(opQuantizeTests.get());
7044	createOpQuantizeTwoPossibilityTests(opQuantizeTests.get());
7045	return opQuantizeTests.release();
7046}
7047
7048struct ShaderPermutation
7049{
7050	deUint8 vertexPermutation;
7051	deUint8 geometryPermutation;
7052	deUint8 tesscPermutation;
7053	deUint8 tessePermutation;
7054	deUint8 fragmentPermutation;
7055};
7056
7057ShaderPermutation getShaderPermutation(deUint8 inputValue)
7058{
7059	ShaderPermutation	permutation =
7060	{
7061		static_cast<deUint8>(inputValue & 0x10? 1u: 0u),
7062		static_cast<deUint8>(inputValue & 0x08? 1u: 0u),
7063		static_cast<deUint8>(inputValue & 0x04? 1u: 0u),
7064		static_cast<deUint8>(inputValue & 0x02? 1u: 0u),
7065		static_cast<deUint8>(inputValue & 0x01? 1u: 0u)
7066	};
7067	return permutation;
7068}
7069
7070tcu::TestCaseGroup* createModuleTests(tcu::TestContext& testCtx)
7071{
7072	RGBA								defaultColors[4];
7073	RGBA								invertedColors[4];
7074	de::MovePtr<tcu::TestCaseGroup>		moduleTests			(new tcu::TestCaseGroup(testCtx, "module", "Multiple entry points into shaders"));
7075
7076	const ShaderElement					combinedPipeline[]	=
7077	{
7078		ShaderElement("module", "main", VK_SHADER_STAGE_VERTEX_BIT),
7079		ShaderElement("module", "main", VK_SHADER_STAGE_GEOMETRY_BIT),
7080		ShaderElement("module", "main", VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT),
7081		ShaderElement("module", "main", VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT),
7082		ShaderElement("module", "main", VK_SHADER_STAGE_FRAGMENT_BIT)
7083	};
7084
7085	getDefaultColors(defaultColors);
7086	getInvertedDefaultColors(invertedColors);
7087	addFunctionCaseWithPrograms<InstanceContext>(moduleTests.get(), "same_module", "", createCombinedModule, runAndVerifyDefaultPipeline, createInstanceContext(combinedPipeline, map<string, string>()));
7088
7089	const char* numbers[] =
7090	{
7091		"1", "2"
7092	};
7093
7094	for (deInt8 idx = 0; idx < 32; ++idx)
7095	{
7096		ShaderPermutation			permutation		= getShaderPermutation(idx);
7097		string						name			= string("vert") + numbers[permutation.vertexPermutation] + "_geom" + numbers[permutation.geometryPermutation] + "_tessc" + numbers[permutation.tesscPermutation] + "_tesse" + numbers[permutation.tessePermutation] + "_frag" + numbers[permutation.fragmentPermutation];
7098		const ShaderElement			pipeline[]		=
7099		{
7100			ShaderElement("vert",	string("vert") +	numbers[permutation.vertexPermutation],		VK_SHADER_STAGE_VERTEX_BIT),
7101			ShaderElement("geom",	string("geom") +	numbers[permutation.geometryPermutation],	VK_SHADER_STAGE_GEOMETRY_BIT),
7102			ShaderElement("tessc",	string("tessc") +	numbers[permutation.tesscPermutation],		VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT),
7103			ShaderElement("tesse",	string("tesse") +	numbers[permutation.tessePermutation],		VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT),
7104			ShaderElement("frag",	string("frag") +	numbers[permutation.fragmentPermutation],	VK_SHADER_STAGE_FRAGMENT_BIT)
7105		};
7106
7107		// If there are an even number of swaps, then it should be no-op.
7108		// If there are an odd number, the color should be flipped.
7109		if ((permutation.vertexPermutation + permutation.geometryPermutation + permutation.tesscPermutation + permutation.tessePermutation + permutation.fragmentPermutation) % 2 == 0)
7110		{
7111			addFunctionCaseWithPrograms<InstanceContext>(moduleTests.get(), name, "", createMultipleEntries, runAndVerifyDefaultPipeline, createInstanceContext(pipeline, defaultColors, defaultColors, map<string, string>()));
7112		}
7113		else
7114		{
7115			addFunctionCaseWithPrograms<InstanceContext>(moduleTests.get(), name, "", createMultipleEntries, runAndVerifyDefaultPipeline, createInstanceContext(pipeline, defaultColors, invertedColors, map<string, string>()));
7116		}
7117	}
7118	return moduleTests.release();
7119}
7120
7121tcu::TestCaseGroup* createLoopTests(tcu::TestContext& testCtx)
7122{
7123	de::MovePtr<tcu::TestCaseGroup> testGroup(new tcu::TestCaseGroup(testCtx, "loop", "Looping control flow"));
7124	RGBA defaultColors[4];
7125	getDefaultColors(defaultColors);
7126	map<string, string> fragments;
7127	fragments["pre_main"] =
7128		"%c_f32_5 = OpConstant %f32 5.\n";
7129
7130	// A loop with a single block. The Continue Target is the loop block
7131	// itself. In SPIR-V terms, the "loop construct" contains no blocks at all
7132	// -- the "continue construct" forms the entire loop.
7133	fragments["testfun"] =
7134		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
7135		"%param1 = OpFunctionParameter %v4f32\n"
7136
7137		"%entry = OpLabel\n"
7138		"%val0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
7139		"OpBranch %loop\n"
7140
7141		";adds and subtracts 1.0 to %val in alternate iterations\n"
7142		"%loop = OpLabel\n"
7143		"%count = OpPhi %i32 %c_i32_4 %entry %count__ %loop\n"
7144		"%delta = OpPhi %f32 %c_f32_1 %entry %minus_delta %loop\n"
7145		"%val1 = OpPhi %f32 %val0 %entry %val %loop\n"
7146		"%val = OpFAdd %f32 %val1 %delta\n"
7147		"%minus_delta = OpFSub %f32 %c_f32_0 %delta\n"
7148		"%count__ = OpISub %i32 %count %c_i32_1\n"
7149		"%again = OpSGreaterThan %bool %count__ %c_i32_0\n"
7150		"OpLoopMerge %exit %loop None\n"
7151		"OpBranchConditional %again %loop %exit\n"
7152
7153		"%exit = OpLabel\n"
7154		"%result = OpVectorInsertDynamic %v4f32 %param1 %val %c_i32_0\n"
7155		"OpReturnValue %result\n"
7156
7157		"OpFunctionEnd\n"
7158		;
7159	createTestsForAllStages("single_block", defaultColors, defaultColors, fragments, testGroup.get());
7160
7161	// Body comprised of multiple basic blocks.
7162	const StringTemplate multiBlock(
7163		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
7164		"%param1 = OpFunctionParameter %v4f32\n"
7165
7166		"%entry = OpLabel\n"
7167		"%val0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
7168		"OpBranch %loop\n"
7169
7170		";adds and subtracts 1.0 to %val in alternate iterations\n"
7171		"%loop = OpLabel\n"
7172		"%count = OpPhi %i32 %c_i32_4 %entry %count__ %gather\n"
7173		"%delta = OpPhi %f32 %c_f32_1 %entry %delta_next %gather\n"
7174		"%val1 = OpPhi %f32 %val0 %entry %val %gather\n"
7175		// There are several possibilities for the Continue Target below.  Each
7176		// will be specialized into a separate test case.
7177		"OpLoopMerge %exit ${continue_target} None\n"
7178		"OpBranch %if\n"
7179
7180		"%if = OpLabel\n"
7181		";delta_next = (delta > 0) ? -1 : 1;\n"
7182		"%gt0 = OpFOrdGreaterThan %bool %delta %c_f32_0\n"
7183		"OpSelectionMerge %gather DontFlatten\n"
7184		"OpBranchConditional %gt0 %even %odd ;tells us if %count is even or odd\n"
7185
7186		"%odd = OpLabel\n"
7187		"OpBranch %gather\n"
7188
7189		"%even = OpLabel\n"
7190		"OpBranch %gather\n"
7191
7192		"%gather = OpLabel\n"
7193		"%delta_next = OpPhi %f32 %c_f32_n1 %even %c_f32_1 %odd\n"
7194		"%val = OpFAdd %f32 %val1 %delta\n"
7195		"%count__ = OpISub %i32 %count %c_i32_1\n"
7196		"%again = OpSGreaterThan %bool %count__ %c_i32_0\n"
7197		"OpBranchConditional %again %loop %exit\n"
7198
7199		"%exit = OpLabel\n"
7200		"%result = OpVectorInsertDynamic %v4f32 %param1 %val %c_i32_0\n"
7201		"OpReturnValue %result\n"
7202
7203		"OpFunctionEnd\n");
7204
7205	map<string, string> continue_target;
7206
7207	// The Continue Target is the loop block itself.
7208	continue_target["continue_target"] = "%loop";
7209	fragments["testfun"] = multiBlock.specialize(continue_target);
7210	createTestsForAllStages("multi_block_continue_construct", defaultColors, defaultColors, fragments, testGroup.get());
7211
7212	// The Continue Target is at the end of the loop.
7213	continue_target["continue_target"] = "%gather";
7214	fragments["testfun"] = multiBlock.specialize(continue_target);
7215	createTestsForAllStages("multi_block_loop_construct", defaultColors, defaultColors, fragments, testGroup.get());
7216
7217	// A loop with continue statement.
7218	fragments["testfun"] =
7219		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
7220		"%param1 = OpFunctionParameter %v4f32\n"
7221
7222		"%entry = OpLabel\n"
7223		"%val0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
7224		"OpBranch %loop\n"
7225
7226		";adds 4, 3, and 1 to %val0 (skips 2)\n"
7227		"%loop = OpLabel\n"
7228		"%count = OpPhi %i32 %c_i32_4 %entry %count__ %continue\n"
7229		"%val1 = OpPhi %f32 %val0 %entry %val %continue\n"
7230		"OpLoopMerge %exit %continue None\n"
7231		"OpBranch %if\n"
7232
7233		"%if = OpLabel\n"
7234		";skip if %count==2\n"
7235		"%eq2 = OpIEqual %bool %count %c_i32_2\n"
7236		"OpSelectionMerge %continue DontFlatten\n"
7237		"OpBranchConditional %eq2 %continue %body\n"
7238
7239		"%body = OpLabel\n"
7240		"%fcount = OpConvertSToF %f32 %count\n"
7241		"%val2 = OpFAdd %f32 %val1 %fcount\n"
7242		"OpBranch %continue\n"
7243
7244		"%continue = OpLabel\n"
7245		"%val = OpPhi %f32 %val2 %body %val1 %if\n"
7246		"%count__ = OpISub %i32 %count %c_i32_1\n"
7247		"%again = OpSGreaterThan %bool %count__ %c_i32_0\n"
7248		"OpBranchConditional %again %loop %exit\n"
7249
7250		"%exit = OpLabel\n"
7251		"%same = OpFSub %f32 %val %c_f32_8\n"
7252		"%result = OpVectorInsertDynamic %v4f32 %param1 %same %c_i32_0\n"
7253		"OpReturnValue %result\n"
7254		"OpFunctionEnd\n";
7255	createTestsForAllStages("continue", defaultColors, defaultColors, fragments, testGroup.get());
7256
7257	// A loop with early exit.  May be specialized with either break or return.
7258	StringTemplate earlyExitLoop(
7259		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
7260		"%param1 = OpFunctionParameter %v4f32\n"
7261
7262		"%entry = OpLabel\n"
7263		";param1 components are between 0 and 1, so dot product is 4 or less\n"
7264		"%dot = OpDot %f32 %param1 %param1\n"
7265		"%div = OpFDiv %f32 %dot %c_f32_5\n"
7266		"%zero = OpConvertFToU %u32 %div\n"
7267		"%two = OpIAdd %i32 %zero %c_i32_2\n"
7268		"%val0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
7269		"OpBranch %loop\n"
7270
7271		";adds 4 and 3 to %val0 (exits early)\n"
7272		"%loop = OpLabel\n"
7273		"%count = OpPhi %i32 %c_i32_4 %entry %count__ %continue\n"
7274		"%val1 = OpPhi %f32 %val0 %entry %val %continue\n"
7275		"OpLoopMerge %exit %continue None\n"
7276		"OpBranch %if\n"
7277
7278		"%if = OpLabel\n"
7279		";end loop if %count==%two\n"
7280		"%above2 = OpSGreaterThan %bool %count %two\n"
7281		"OpSelectionMerge %continue DontFlatten\n"
7282		// This can either branch to %exit or to another block with OpReturnValue %param1.
7283		"OpBranchConditional %above2 %body ${branch_destination}\n"
7284
7285		"%body = OpLabel\n"
7286		"%fcount = OpConvertSToF %f32 %count\n"
7287		"%val2 = OpFAdd %f32 %val1 %fcount\n"
7288		"OpBranch %continue\n"
7289
7290		"%continue = OpLabel\n"
7291		"%val = OpPhi %f32 %val2 %body %val1 %if\n"
7292		"%count__ = OpISub %i32 %count %c_i32_1\n"
7293		"%again = OpSGreaterThan %bool %count__ %c_i32_0\n"
7294		"OpBranchConditional %again %loop %exit\n"
7295
7296		"%exit = OpLabel\n"
7297		"%same = OpFSub %f32 %val %c_f32_7\n"
7298		"%result = OpVectorInsertDynamic %v4f32 %param1 %same %c_i32_0\n"
7299		"OpReturnValue %result\n"
7300		"OpFunctionEnd\n");
7301
7302	map<string, string> branch_destination;
7303
7304	// A loop with break.
7305	branch_destination["branch_destination"] = "%exit";
7306	fragments["testfun"] = earlyExitLoop.specialize(branch_destination);
7307	createTestsForAllStages("break", defaultColors, defaultColors, fragments, testGroup.get());
7308
7309	// A loop with return.
7310	branch_destination["branch_destination"] = "%early_exit\n"
7311		"%early_exit = OpLabel\n"
7312		"OpReturnValue %param1\n";
7313	fragments["testfun"] = earlyExitLoop.specialize(branch_destination);
7314	createTestsForAllStages("return", defaultColors, defaultColors, fragments, testGroup.get());
7315
7316	return testGroup.release();
7317}
7318
7319// Adds a new test to group using custom fragments for the tessellation-control
7320// stage and passthrough fragments for all other stages.  Uses default colors
7321// for input and expected output.
7322void addTessCtrlTest(tcu::TestCaseGroup* group, const char* name, const map<string, string>& fragments)
7323{
7324	RGBA defaultColors[4];
7325	getDefaultColors(defaultColors);
7326	const ShaderElement pipelineStages[] =
7327	{
7328		ShaderElement("vert", "main", VK_SHADER_STAGE_VERTEX_BIT),
7329		ShaderElement("tessc", "main", VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT),
7330		ShaderElement("tesse", "main", VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT),
7331		ShaderElement("geom", "main", VK_SHADER_STAGE_GEOMETRY_BIT),
7332		ShaderElement("frag", "main", VK_SHADER_STAGE_FRAGMENT_BIT),
7333	};
7334
7335	addFunctionCaseWithPrograms<InstanceContext>(group, name, "", addShaderCodeCustomTessControl,
7336												 runAndVerifyDefaultPipeline, createInstanceContext(
7337													 pipelineStages, defaultColors, defaultColors, fragments, StageToSpecConstantMap()));
7338}
7339
7340// A collection of tests putting OpControlBarrier in places GLSL forbids but SPIR-V allows.
7341tcu::TestCaseGroup* createBarrierTests(tcu::TestContext& testCtx)
7342{
7343	de::MovePtr<tcu::TestCaseGroup> testGroup(new tcu::TestCaseGroup(testCtx, "barrier", "OpControlBarrier"));
7344	map<string, string> fragments;
7345
7346	// A barrier inside a function body.
7347	fragments["pre_main"] =
7348		"%Workgroup = OpConstant %i32 2\n"
7349		"%SequentiallyConsistent = OpConstant %i32 0x10\n";
7350	fragments["testfun"] =
7351		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
7352		"%param1 = OpFunctionParameter %v4f32\n"
7353		"%label_testfun = OpLabel\n"
7354		"OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
7355		"OpReturnValue %param1\n"
7356		"OpFunctionEnd\n";
7357	addTessCtrlTest(testGroup.get(), "in_function", fragments);
7358
7359	// Common setup code for the following tests.
7360	fragments["pre_main"] =
7361		"%Workgroup = OpConstant %i32 2\n"
7362		"%SequentiallyConsistent = OpConstant %i32 0x10\n"
7363		"%c_f32_5 = OpConstant %f32 5.\n";
7364	const string setupPercentZero =	 // Begins %test_code function with code that sets %zero to 0u but cannot be optimized away.
7365		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
7366		"%param1 = OpFunctionParameter %v4f32\n"
7367		"%entry = OpLabel\n"
7368		";param1 components are between 0 and 1, so dot product is 4 or less\n"
7369		"%dot = OpDot %f32 %param1 %param1\n"
7370		"%div = OpFDiv %f32 %dot %c_f32_5\n"
7371		"%zero = OpConvertFToU %u32 %div\n";
7372
7373	// Barriers inside OpSwitch branches.
7374	fragments["testfun"] =
7375		setupPercentZero +
7376		"OpSelectionMerge %switch_exit None\n"
7377		"OpSwitch %zero %switch_default 0 %case0 1 %case1 ;should always go to %case0\n"
7378
7379		"%case1 = OpLabel\n"
7380		";This barrier should never be executed, but its presence makes test failure more likely when there's a bug.\n"
7381		"OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
7382		"%wrong_branch_alert1 = OpVectorInsertDynamic %v4f32 %param1 %c_f32_0_5 %c_i32_0\n"
7383		"OpBranch %switch_exit\n"
7384
7385		"%switch_default = OpLabel\n"
7386		"%wrong_branch_alert2 = OpVectorInsertDynamic %v4f32 %param1 %c_f32_0_5 %c_i32_0\n"
7387		";This barrier should never be executed, but its presence makes test failure more likely when there's a bug.\n"
7388		"OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
7389		"OpBranch %switch_exit\n"
7390
7391		"%case0 = OpLabel\n"
7392		"OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
7393		"OpBranch %switch_exit\n"
7394
7395		"%switch_exit = OpLabel\n"
7396		"%ret = OpPhi %v4f32 %param1 %case0 %wrong_branch_alert1 %case1 %wrong_branch_alert2 %switch_default\n"
7397		"OpReturnValue %ret\n"
7398		"OpFunctionEnd\n";
7399	addTessCtrlTest(testGroup.get(), "in_switch", fragments);
7400
7401	// Barriers inside if-then-else.
7402	fragments["testfun"] =
7403		setupPercentZero +
7404		"%eq0 = OpIEqual %bool %zero %c_u32_0\n"
7405		"OpSelectionMerge %exit DontFlatten\n"
7406		"OpBranchConditional %eq0 %then %else\n"
7407
7408		"%else = OpLabel\n"
7409		";This barrier should never be executed, but its presence makes test failure more likely when there's a bug.\n"
7410		"OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
7411		"%wrong_branch_alert = OpVectorInsertDynamic %v4f32 %param1 %c_f32_0_5 %c_i32_0\n"
7412		"OpBranch %exit\n"
7413
7414		"%then = OpLabel\n"
7415		"OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
7416		"OpBranch %exit\n"
7417
7418		"%exit = OpLabel\n"
7419		"%ret = OpPhi %v4f32 %param1 %then %wrong_branch_alert %else\n"
7420		"OpReturnValue %ret\n"
7421		"OpFunctionEnd\n";
7422	addTessCtrlTest(testGroup.get(), "in_if", fragments);
7423
7424	// A barrier after control-flow reconvergence, tempting the compiler to attempt something like this:
7425	// http://lists.llvm.org/pipermail/llvm-dev/2009-October/026317.html.
7426	fragments["testfun"] =
7427		setupPercentZero +
7428		"%thread_id = OpLoad %i32 %BP_gl_InvocationID\n"
7429		"%thread0 = OpIEqual %bool %thread_id %c_i32_0\n"
7430		"OpSelectionMerge %exit DontFlatten\n"
7431		"OpBranchConditional %thread0 %then %else\n"
7432
7433		"%else = OpLabel\n"
7434		"%val0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
7435		"OpBranch %exit\n"
7436
7437		"%then = OpLabel\n"
7438		"%val1 = OpVectorExtractDynamic %f32 %param1 %zero\n"
7439		"OpBranch %exit\n"
7440
7441		"%exit = OpLabel\n"
7442		"%val = OpPhi %f32 %val0 %else %val1 %then\n"
7443		"OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
7444		"%ret = OpVectorInsertDynamic %v4f32 %param1 %val %zero\n"
7445		"OpReturnValue %ret\n"
7446		"OpFunctionEnd\n";
7447	addTessCtrlTest(testGroup.get(), "after_divergent_if", fragments);
7448
7449	// A barrier inside a loop.
7450	fragments["pre_main"] =
7451		"%Workgroup = OpConstant %i32 2\n"
7452		"%SequentiallyConsistent = OpConstant %i32 0x10\n"
7453		"%c_f32_10 = OpConstant %f32 10.\n";
7454	fragments["testfun"] =
7455		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
7456		"%param1 = OpFunctionParameter %v4f32\n"
7457		"%entry = OpLabel\n"
7458		"%val0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
7459		"OpBranch %loop\n"
7460
7461		";adds 4, 3, 2, and 1 to %val0\n"
7462		"%loop = OpLabel\n"
7463		"%count = OpPhi %i32 %c_i32_4 %entry %count__ %loop\n"
7464		"%val1 = OpPhi %f32 %val0 %entry %val %loop\n"
7465		"OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
7466		"%fcount = OpConvertSToF %f32 %count\n"
7467		"%val = OpFAdd %f32 %val1 %fcount\n"
7468		"%count__ = OpISub %i32 %count %c_i32_1\n"
7469		"%again = OpSGreaterThan %bool %count__ %c_i32_0\n"
7470		"OpLoopMerge %exit %loop None\n"
7471		"OpBranchConditional %again %loop %exit\n"
7472
7473		"%exit = OpLabel\n"
7474		"%same = OpFSub %f32 %val %c_f32_10\n"
7475		"%ret = OpVectorInsertDynamic %v4f32 %param1 %same %c_i32_0\n"
7476		"OpReturnValue %ret\n"
7477		"OpFunctionEnd\n";
7478	addTessCtrlTest(testGroup.get(), "in_loop", fragments);
7479
7480	return testGroup.release();
7481}
7482
7483// Test for the OpFRem instruction.
7484tcu::TestCaseGroup* createFRemTests(tcu::TestContext& testCtx)
7485{
7486	de::MovePtr<tcu::TestCaseGroup>		testGroup(new tcu::TestCaseGroup(testCtx, "frem", "OpFRem"));
7487	map<string, string>					fragments;
7488	RGBA								inputColors[4];
7489	RGBA								outputColors[4];
7490
7491	fragments["pre_main"]				 =
7492		"%c_f32_3 = OpConstant %f32 3.0\n"
7493		"%c_f32_n3 = OpConstant %f32 -3.0\n"
7494		"%c_f32_4 = OpConstant %f32 4.0\n"
7495		"%c_f32_p75 = OpConstant %f32 0.75\n"
7496		"%c_v4f32_p75_p75_p75_p75 = OpConstantComposite %v4f32 %c_f32_p75 %c_f32_p75 %c_f32_p75 %c_f32_p75 \n"
7497		"%c_v4f32_4_4_4_4 = OpConstantComposite %v4f32 %c_f32_4 %c_f32_4 %c_f32_4 %c_f32_4\n"
7498		"%c_v4f32_3_n3_3_n3 = OpConstantComposite %v4f32 %c_f32_3 %c_f32_n3 %c_f32_3 %c_f32_n3\n";
7499
7500	// The test does the following.
7501	// vec4 result = (param1 * 8.0) - 4.0;
7502	// return (frem(result.x,3) + 0.75, frem(result.y, -3) + 0.75, 0, 1)
7503	fragments["testfun"]				 =
7504		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
7505		"%param1 = OpFunctionParameter %v4f32\n"
7506		"%label_testfun = OpLabel\n"
7507		"%v_times_8 = OpVectorTimesScalar %v4f32 %param1 %c_f32_8\n"
7508		"%minus_4 = OpFSub %v4f32 %v_times_8 %c_v4f32_4_4_4_4\n"
7509		"%frem = OpFRem %v4f32 %minus_4 %c_v4f32_3_n3_3_n3\n"
7510		"%added = OpFAdd %v4f32 %frem %c_v4f32_p75_p75_p75_p75\n"
7511		"%xyz_1 = OpVectorInsertDynamic %v4f32 %added %c_f32_1 %c_i32_3\n"
7512		"%xy_0_1 = OpVectorInsertDynamic %v4f32 %xyz_1 %c_f32_0 %c_i32_2\n"
7513		"OpReturnValue %xy_0_1\n"
7514		"OpFunctionEnd\n";
7515
7516
7517	inputColors[0]		= RGBA(16,	16,		0, 255);
7518	inputColors[1]		= RGBA(232, 232,	0, 255);
7519	inputColors[2]		= RGBA(232, 16,		0, 255);
7520	inputColors[3]		= RGBA(16,	232,	0, 255);
7521
7522	outputColors[0]		= RGBA(64,	64,		0, 255);
7523	outputColors[1]		= RGBA(255, 255,	0, 255);
7524	outputColors[2]		= RGBA(255, 64,		0, 255);
7525	outputColors[3]		= RGBA(64,	255,	0, 255);
7526
7527	createTestsForAllStages("frem", inputColors, outputColors, fragments, testGroup.get());
7528	return testGroup.release();
7529}
7530
7531tcu::TestCaseGroup* createInstructionTests (tcu::TestContext& testCtx)
7532{
7533	de::MovePtr<tcu::TestCaseGroup> instructionTests	(new tcu::TestCaseGroup(testCtx, "instruction", "Instructions with special opcodes/operands"));
7534	de::MovePtr<tcu::TestCaseGroup> computeTests		(new tcu::TestCaseGroup(testCtx, "compute", "Compute Instructions with special opcodes/operands"));
7535	de::MovePtr<tcu::TestCaseGroup> graphicsTests		(new tcu::TestCaseGroup(testCtx, "graphics", "Graphics Instructions with special opcodes/operands"));
7536
7537	computeTests->addChild(createOpNopGroup(testCtx));
7538	computeTests->addChild(createOpLineGroup(testCtx));
7539	computeTests->addChild(createOpNoLineGroup(testCtx));
7540	computeTests->addChild(createOpConstantNullGroup(testCtx));
7541	computeTests->addChild(createOpConstantCompositeGroup(testCtx));
7542	computeTests->addChild(createOpConstantUsageGroup(testCtx));
7543	computeTests->addChild(createSpecConstantGroup(testCtx));
7544	computeTests->addChild(createOpSourceGroup(testCtx));
7545	computeTests->addChild(createOpSourceExtensionGroup(testCtx));
7546	computeTests->addChild(createDecorationGroupGroup(testCtx));
7547	computeTests->addChild(createOpPhiGroup(testCtx));
7548	computeTests->addChild(createLoopControlGroup(testCtx));
7549	computeTests->addChild(createFunctionControlGroup(testCtx));
7550	computeTests->addChild(createSelectionControlGroup(testCtx));
7551	computeTests->addChild(createBlockOrderGroup(testCtx));
7552	computeTests->addChild(createMultipleShaderGroup(testCtx));
7553	computeTests->addChild(createMemoryAccessGroup(testCtx));
7554	computeTests->addChild(createOpCopyMemoryGroup(testCtx));
7555	computeTests->addChild(createOpCopyObjectGroup(testCtx));
7556	computeTests->addChild(createNoContractionGroup(testCtx));
7557	computeTests->addChild(createOpUndefGroup(testCtx));
7558	computeTests->addChild(createOpUnreachableGroup(testCtx));
7559	computeTests ->addChild(createOpQuantizeToF16Group(testCtx));
7560	computeTests ->addChild(createOpFRemGroup(testCtx));
7561
7562	RGBA defaultColors[4];
7563	getDefaultColors(defaultColors);
7564
7565	de::MovePtr<tcu::TestCaseGroup> opnopTests (new tcu::TestCaseGroup(testCtx, "opnop", "Test OpNop"));
7566	map<string, string> opNopFragments;
7567	opNopFragments["testfun"] =
7568		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
7569		"%param1 = OpFunctionParameter %v4f32\n"
7570		"%label_testfun = OpLabel\n"
7571		"OpNop\n"
7572		"OpNop\n"
7573		"OpNop\n"
7574		"OpNop\n"
7575		"OpNop\n"
7576		"OpNop\n"
7577		"OpNop\n"
7578		"OpNop\n"
7579		"%a = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
7580		"%b = OpFAdd %f32 %a %a\n"
7581		"OpNop\n"
7582		"%c = OpFSub %f32 %b %a\n"
7583		"%ret = OpVectorInsertDynamic %v4f32 %param1 %c %c_i32_0\n"
7584		"OpNop\n"
7585		"OpNop\n"
7586		"OpReturnValue %ret\n"
7587		"OpFunctionEnd\n"
7588		;
7589	createTestsForAllStages("opnop", defaultColors, defaultColors, opNopFragments, opnopTests.get());
7590
7591
7592	graphicsTests->addChild(opnopTests.release());
7593	graphicsTests->addChild(createOpSourceTests(testCtx));
7594	graphicsTests->addChild(createOpSourceContinuedTests(testCtx));
7595	graphicsTests->addChild(createOpLineTests(testCtx));
7596	graphicsTests->addChild(createOpNoLineTests(testCtx));
7597	graphicsTests->addChild(createOpConstantNullTests(testCtx));
7598	graphicsTests->addChild(createOpConstantCompositeTests(testCtx));
7599	graphicsTests->addChild(createMemoryAccessTests(testCtx));
7600	graphicsTests->addChild(createOpUndefTests(testCtx));
7601	graphicsTests->addChild(createSelectionBlockOrderTests(testCtx));
7602	graphicsTests->addChild(createModuleTests(testCtx));
7603	graphicsTests->addChild(createSwitchBlockOrderTests(testCtx));
7604	graphicsTests->addChild(createOpPhiTests(testCtx));
7605	graphicsTests->addChild(createNoContractionTests(testCtx));
7606	graphicsTests->addChild(createOpQuantizeTests(testCtx));
7607	graphicsTests->addChild(createLoopTests(testCtx));
7608	graphicsTests->addChild(createSpecConstantTests(testCtx));
7609	graphicsTests->addChild(createSpecConstantOpQuantizeToF16Group(testCtx));
7610	graphicsTests->addChild(createBarrierTests(testCtx));
7611	graphicsTests->addChild(createDecorationGroupTests(testCtx));
7612	graphicsTests->addChild(createFRemTests(testCtx));
7613
7614	instructionTests->addChild(computeTests.release());
7615	instructionTests->addChild(graphicsTests.release());
7616
7617	return instructionTests.release();
7618}
7619
7620} // SpirVAssembly
7621} // vkt
7622