vktSpvAsmInstructionTests.cpp revision 2643deb117f6236d27387497b2b7a2b898a2014f
1/*-------------------------------------------------------------------------
2 * Vulkan Conformance Tests
3 * ------------------------
4 *
5 * Copyright (c) 2015 Google Inc.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and/or associated documentation files (the
9 * "Materials"), to deal in the Materials without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sublicense, and/or sell copies of the Materials, and to
12 * permit persons to whom the Materials are furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice(s) and this permission notice shall be
16 * included in all copies or substantial portions of the Materials.
17 *
18 * The Materials are Confidential Information as defined by the
19 * Khronos Membership Agreement until designated non-confidential by
20 * Khronos, at which point this condition clause shall be removed.
21 *
22 * THE MATERIALS ARE PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
23 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
24 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
25 * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
26 * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
27 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
28 * MATERIALS OR THE USE OR OTHER DEALINGS IN THE MATERIALS.
29 *
30 *//*!
31 * \file
32 * \brief SPIR-V Assembly Tests for Instructions (special opcode/operand)
33 *//*--------------------------------------------------------------------*/
34
35#include "vktSpvAsmInstructionTests.hpp"
36
37#include "tcuCommandLine.hpp"
38#include "tcuFormatUtil.hpp"
39#include "tcuRGBA.hpp"
40#include "tcuStringTemplate.hpp"
41#include "tcuTestLog.hpp"
42#include "tcuVectorUtil.hpp"
43
44#include "vkDefs.hpp"
45#include "vkDeviceUtil.hpp"
46#include "vkMemUtil.hpp"
47#include "vkPlatform.hpp"
48#include "vkPrograms.hpp"
49#include "vkQueryUtil.hpp"
50#include "vkRef.hpp"
51#include "vkRefUtil.hpp"
52#include "vkStrUtil.hpp"
53#include "vkTypeUtil.hpp"
54
55#include "deRandom.hpp"
56#include "deStringUtil.hpp"
57#include "deUniquePtr.hpp"
58#include "tcuStringTemplate.hpp"
59
60#include <cmath>
61#include "vktSpvAsmComputeShaderCase.hpp"
62#include "vktSpvAsmComputeShaderTestUtil.hpp"
63#include "vktTestCaseUtil.hpp"
64
65#include <cmath>
66#include <limits>
67#include <map>
68#include <string>
69#include <sstream>
70
71namespace vkt
72{
73namespace SpirVAssembly
74{
75
76namespace
77{
78
79using namespace vk;
80using std::map;
81using std::string;
82using std::vector;
83using tcu::IVec3;
84using tcu::IVec4;
85using tcu::RGBA;
86using tcu::TestLog;
87using tcu::TestStatus;
88using tcu::Vec4;
89using de::UniquePtr;
90using tcu::StringTemplate;
91using tcu::Vec4;
92
93typedef Unique<VkShaderModule>			ModuleHandleUp;
94typedef de::SharedPtr<ModuleHandleUp>	ModuleHandleSp;
95
96template<typename T>	T			randomScalar	(de::Random& rnd, T minValue, T maxValue);
97template<> inline		float		randomScalar	(de::Random& rnd, float minValue, float maxValue)		{ return rnd.getFloat(minValue, maxValue);	}
98template<> inline		deInt32		randomScalar	(de::Random& rnd, deInt32 minValue, deInt32 maxValue)	{ return rnd.getInt(minValue, maxValue);	}
99
100template<typename T>
101static void fillRandomScalars (de::Random& rnd, T minValue, T maxValue, void* dst, int numValues, int offset = 0)
102{
103	T* const typedPtr = (T*)dst;
104	for (int ndx = 0; ndx < numValues; ndx++)
105		typedPtr[offset + ndx] = randomScalar<T>(rnd, minValue, maxValue);
106}
107
108struct CaseParameter
109{
110	const char*		name;
111	string			param;
112
113	CaseParameter	(const char* case_, const string& param_) : name(case_), param(param_) {}
114};
115
116// Assembly code used for testing OpNop, OpConstant{Null|Composite}, Op[No]Line, OpSource[Continued], OpSourceExtension, OpUndef is based on GLSL source code:
117//
118// #version 430
119//
120// layout(std140, set = 0, binding = 0) readonly buffer Input {
121//   float elements[];
122// } input_data;
123// layout(std140, set = 0, binding = 1) writeonly buffer Output {
124//   float elements[];
125// } output_data;
126//
127// layout (local_size_x = 1, local_size_y = 1, local_size_z = 1) in;
128//
129// void main() {
130//   uint x = gl_GlobalInvocationID.x;
131//   output_data.elements[x] = -input_data.elements[x];
132// }
133
134static const char* const s_ShaderPreamble =
135	"OpCapability Shader\n"
136	"OpMemoryModel Logical GLSL450\n"
137	"OpEntryPoint GLCompute %main \"main\" %id\n"
138	"OpExecutionMode %main LocalSize 1 1 1\n";
139
140static const char* const s_CommonTypes =
141	"%bool      = OpTypeBool\n"
142	"%void      = OpTypeVoid\n"
143	"%voidf     = OpTypeFunction %void\n"
144	"%u32       = OpTypeInt 32 0\n"
145	"%i32       = OpTypeInt 32 1\n"
146	"%f32       = OpTypeFloat 32\n"
147	"%uvec3     = OpTypeVector %u32 3\n"
148	"%fvec3     = OpTypeVector %f32 3\n"
149	"%uvec3ptr  = OpTypePointer Input %uvec3\n"
150	"%f32ptr    = OpTypePointer Uniform %f32\n"
151	"%f32arr    = OpTypeRuntimeArray %f32\n";
152
153// Declares two uniform variables (indata, outdata) of type "struct { float[] }". Depends on type "f32arr" (for "float[]").
154static const char* const s_InputOutputBuffer =
155	"%inbuf     = OpTypeStruct %f32arr\n"
156	"%inbufptr  = OpTypePointer Uniform %inbuf\n"
157	"%indata    = OpVariable %inbufptr Uniform\n"
158	"%outbuf    = OpTypeStruct %f32arr\n"
159	"%outbufptr = OpTypePointer Uniform %outbuf\n"
160	"%outdata   = OpVariable %outbufptr Uniform\n";
161
162// Declares buffer type and layout for uniform variables indata and outdata. Both of them are SSBO bounded to descriptor set 0.
163// indata is at binding point 0, while outdata is at 1.
164static const char* const s_InputOutputBufferTraits =
165	"OpDecorate %inbuf BufferBlock\n"
166	"OpDecorate %indata DescriptorSet 0\n"
167	"OpDecorate %indata Binding 0\n"
168	"OpDecorate %outbuf BufferBlock\n"
169	"OpDecorate %outdata DescriptorSet 0\n"
170	"OpDecorate %outdata Binding 1\n"
171	"OpDecorate %f32arr ArrayStride 4\n"
172	"OpMemberDecorate %inbuf 0 Offset 0\n"
173	"OpMemberDecorate %outbuf 0 Offset 0\n";
174
175tcu::TestCaseGroup* createOpNopGroup (tcu::TestContext& testCtx)
176{
177	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opnop", "Test the OpNop instruction"));
178	ComputeShaderSpec				spec;
179	de::Random						rnd				(deStringHash(group->getName()));
180	const int						numElements		= 100;
181	vector<float>					positiveFloats	(numElements, 0);
182	vector<float>					negativeFloats	(numElements, 0);
183
184	fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
185
186	for (size_t ndx = 0; ndx < numElements; ++ndx)
187		negativeFloats[ndx] = -positiveFloats[ndx];
188
189	spec.assembly =
190		string(s_ShaderPreamble) +
191
192		"OpSource GLSL 430\n"
193		"OpName %main           \"main\"\n"
194		"OpName %id             \"gl_GlobalInvocationID\"\n"
195
196		"OpDecorate %id BuiltIn GlobalInvocationId\n"
197
198		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes)
199
200		+ string(s_InputOutputBuffer) +
201
202		"%id        = OpVariable %uvec3ptr Input\n"
203		"%zero      = OpConstant %i32 0\n"
204
205		"%main      = OpFunction %void None %voidf\n"
206		"%label     = OpLabel\n"
207		"%idval     = OpLoad %uvec3 %id\n"
208		"%x         = OpCompositeExtract %u32 %idval 0\n"
209
210		"             OpNop\n" // Inside a function body
211
212		"%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
213		"%inval     = OpLoad %f32 %inloc\n"
214		"%neg       = OpFNegate %f32 %inval\n"
215		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
216		"             OpStore %outloc %neg\n"
217		"             OpReturn\n"
218		"             OpFunctionEnd\n";
219	spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
220	spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
221	spec.numWorkGroups = IVec3(numElements, 1, 1);
222
223	group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "OpNop appearing at different places", spec));
224
225	return group.release();
226}
227
228tcu::TestCaseGroup* createOpLineGroup (tcu::TestContext& testCtx)
229{
230	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opline", "Test the OpLine instruction"));
231	ComputeShaderSpec				spec;
232	de::Random						rnd				(deStringHash(group->getName()));
233	const int						numElements		= 100;
234	vector<float>					positiveFloats	(numElements, 0);
235	vector<float>					negativeFloats	(numElements, 0);
236
237	fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
238
239	for (size_t ndx = 0; ndx < numElements; ++ndx)
240		negativeFloats[ndx] = -positiveFloats[ndx];
241
242	spec.assembly =
243		string(s_ShaderPreamble) +
244
245		"%fname1 = OpString \"negateInputs.comp\"\n"
246		"%fname2 = OpString \"negateInputs\"\n"
247
248		"OpSource GLSL 430\n"
249		"OpName %main           \"main\"\n"
250		"OpName %id             \"gl_GlobalInvocationID\"\n"
251
252		"OpDecorate %id BuiltIn GlobalInvocationId\n"
253
254		+ string(s_InputOutputBufferTraits) +
255
256		"OpLine %fname1 0 0\n" // At the earliest possible position
257
258		+ string(s_CommonTypes) + string(s_InputOutputBuffer) +
259
260		"OpLine %fname1 0 1\n" // Multiple OpLines in sequence
261		"OpLine %fname2 1 0\n" // Different filenames
262		"OpLine %fname1 1000 100000\n"
263
264		"%id        = OpVariable %uvec3ptr Input\n"
265		"%zero      = OpConstant %i32 0\n"
266
267		"OpLine %fname1 1 1\n" // Before a function
268
269		"%main      = OpFunction %void None %voidf\n"
270		"%label     = OpLabel\n"
271
272		"OpLine %fname1 1 1\n" // In a function
273
274		"%idval     = OpLoad %uvec3 %id\n"
275		"%x         = OpCompositeExtract %u32 %idval 0\n"
276		"%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
277		"%inval     = OpLoad %f32 %inloc\n"
278		"%neg       = OpFNegate %f32 %inval\n"
279		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
280		"             OpStore %outloc %neg\n"
281		"             OpReturn\n"
282		"             OpFunctionEnd\n";
283	spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
284	spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
285	spec.numWorkGroups = IVec3(numElements, 1, 1);
286
287	group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "OpLine appearing at different places", spec));
288
289	return group.release();
290}
291
292tcu::TestCaseGroup* createOpNoLineGroup (tcu::TestContext& testCtx)
293{
294	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opnoline", "Test the OpNoLine instruction"));
295	ComputeShaderSpec				spec;
296	de::Random						rnd				(deStringHash(group->getName()));
297	const int						numElements		= 100;
298	vector<float>					positiveFloats	(numElements, 0);
299	vector<float>					negativeFloats	(numElements, 0);
300
301	fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
302
303	for (size_t ndx = 0; ndx < numElements; ++ndx)
304		negativeFloats[ndx] = -positiveFloats[ndx];
305
306	spec.assembly =
307		string(s_ShaderPreamble) +
308
309		"%fname = OpString \"negateInputs.comp\"\n"
310
311		"OpSource GLSL 430\n"
312		"OpName %main           \"main\"\n"
313		"OpName %id             \"gl_GlobalInvocationID\"\n"
314
315		"OpDecorate %id BuiltIn GlobalInvocationId\n"
316
317		+ string(s_InputOutputBufferTraits) +
318
319		"OpNoLine\n" // At the earliest possible position, without preceding OpLine
320
321		+ string(s_CommonTypes) + string(s_InputOutputBuffer) +
322
323		"OpLine %fname 0 1\n"
324		"OpNoLine\n" // Immediately following a preceding OpLine
325
326		"OpLine %fname 1000 1\n"
327
328		"%id        = OpVariable %uvec3ptr Input\n"
329		"%zero      = OpConstant %i32 0\n"
330
331		"OpNoLine\n" // Contents after the previous OpLine
332
333		"%main      = OpFunction %void None %voidf\n"
334		"%label     = OpLabel\n"
335		"%idval     = OpLoad %uvec3 %id\n"
336		"%x         = OpCompositeExtract %u32 %idval 0\n"
337
338		"OpNoLine\n" // Multiple OpNoLine
339		"OpNoLine\n"
340		"OpNoLine\n"
341
342		"%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
343		"%inval     = OpLoad %f32 %inloc\n"
344		"%neg       = OpFNegate %f32 %inval\n"
345		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
346		"             OpStore %outloc %neg\n"
347		"             OpReturn\n"
348		"             OpFunctionEnd\n";
349	spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
350	spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
351	spec.numWorkGroups = IVec3(numElements, 1, 1);
352
353	group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "OpNoLine appearing at different places", spec));
354
355	return group.release();
356}
357
358tcu::TestCaseGroup* createNoContractionGroup (tcu::TestContext& testCtx)
359{
360	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "nocontraction", "Test the NoContraction decoration"));
361	vector<CaseParameter>			cases;
362	const int						numElements		= 100;
363	vector<float>					inputFloats1	(numElements, 0);
364	vector<float>					inputFloats2	(numElements, 0);
365	vector<float>					outputFloats	(numElements, 0);
366	const StringTemplate			shaderTemplate	(
367		string(s_ShaderPreamble) +
368
369		"OpName %main           \"main\"\n"
370		"OpName %id             \"gl_GlobalInvocationID\"\n"
371
372		"OpDecorate %id BuiltIn GlobalInvocationId\n"
373
374		"${DECORATION}\n"
375
376		"OpDecorate %inbuf1 BufferBlock\n"
377		"OpDecorate %indata1 DescriptorSet 0\n"
378		"OpDecorate %indata1 Binding 0\n"
379		"OpDecorate %inbuf2 BufferBlock\n"
380		"OpDecorate %indata2 DescriptorSet 0\n"
381		"OpDecorate %indata2 Binding 1\n"
382		"OpDecorate %outbuf BufferBlock\n"
383		"OpDecorate %outdata DescriptorSet 0\n"
384		"OpDecorate %outdata Binding 2\n"
385		"OpDecorate %f32arr ArrayStride 4\n"
386		"OpMemberDecorate %inbuf1 0 Offset 0\n"
387		"OpMemberDecorate %inbuf2 0 Offset 0\n"
388		"OpMemberDecorate %outbuf 0 Offset 0\n"
389
390		+ string(s_CommonTypes) +
391
392		"%inbuf1     = OpTypeStruct %f32arr\n"
393		"%inbufptr1  = OpTypePointer Uniform %inbuf1\n"
394		"%indata1    = OpVariable %inbufptr1 Uniform\n"
395		"%inbuf2     = OpTypeStruct %f32arr\n"
396		"%inbufptr2  = OpTypePointer Uniform %inbuf2\n"
397		"%indata2    = OpVariable %inbufptr2 Uniform\n"
398		"%outbuf     = OpTypeStruct %f32arr\n"
399		"%outbufptr  = OpTypePointer Uniform %outbuf\n"
400		"%outdata    = OpVariable %outbufptr Uniform\n"
401
402		"%id         = OpVariable %uvec3ptr Input\n"
403		"%zero       = OpConstant %i32 0\n"
404		"%c_f_m1     = OpConstant %f32 -1.\n"
405
406		"%main       = OpFunction %void None %voidf\n"
407		"%label      = OpLabel\n"
408		"%idval      = OpLoad %uvec3 %id\n"
409		"%x          = OpCompositeExtract %u32 %idval 0\n"
410		"%inloc1     = OpAccessChain %f32ptr %indata1 %zero %x\n"
411		"%inval1     = OpLoad %f32 %inloc1\n"
412		"%inloc2     = OpAccessChain %f32ptr %indata2 %zero %x\n"
413		"%inval2     = OpLoad %f32 %inloc2\n"
414		"%mul        = OpFMul %f32 %inval1 %inval2\n"
415		"%add        = OpFAdd %f32 %mul %c_f_m1\n"
416		"%outloc     = OpAccessChain %f32ptr %outdata %zero %x\n"
417		"              OpStore %outloc %add\n"
418		"              OpReturn\n"
419		"              OpFunctionEnd\n");
420
421	cases.push_back(CaseParameter("multiplication",	"OpDecorate %mul NoContraction"));
422	cases.push_back(CaseParameter("addition",		"OpDecorate %add NoContraction"));
423	cases.push_back(CaseParameter("both",			"OpDecorate %mul NoContraction\nOpDecorate %add NoContraction"));
424
425	for (size_t ndx = 0; ndx < numElements; ++ndx)
426	{
427		inputFloats1[ndx]	= 1.f + std::ldexp(1.f, -23); // 1 + 2^-23.
428		inputFloats2[ndx]	= 1.f - std::ldexp(1.f, -23); // 1 - 2^-23.
429		// Result for (1 + 2^-23) * (1 - 2^-23) - 1. With NoContraction, the multiplication will be
430		// conducted separately and the result is rounded to 1. So the final result will be 0.f.
431		// If the operation is combined into a precise fused multiply-add, then the result would be
432		// 2^-46 (0xa8800000).
433		outputFloats[ndx]	= 0.f;
434	}
435
436	for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
437	{
438		map<string, string>		specializations;
439		ComputeShaderSpec		spec;
440
441		specializations["DECORATION"] = cases[caseNdx].param;
442		spec.assembly = shaderTemplate.specialize(specializations);
443		spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats1)));
444		spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats2)));
445		spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
446		spec.numWorkGroups = IVec3(numElements, 1, 1);
447
448		group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
449	}
450	return group.release();
451}
452
453tcu::TestCaseGroup* createOpFRemGroup (tcu::TestContext& testCtx)
454{
455	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opfrem", "Test the OpFRem instruction"));
456	ComputeShaderSpec				spec;
457	de::Random						rnd				(deStringHash(group->getName()));
458	const int						numElements		= 200;
459	vector<float>					inputFloats1	(numElements, 0);
460	vector<float>					inputFloats2	(numElements, 0);
461	vector<float>					outputFloats	(numElements, 0);
462
463	fillRandomScalars(rnd, -10000.f, 10000.f, &inputFloats1[0], numElements);
464	fillRandomScalars(rnd, -100.f, 100.f, &inputFloats2[0], numElements);
465
466	for (size_t ndx = 0; ndx < numElements; ++ndx)
467	{
468		// Guard against divisors near zero.
469		if (std::fabs(inputFloats2[ndx]) < 1e-3)
470			inputFloats2[ndx] = 8.f;
471
472		// The return value of std::fmod() has the same sign as its first operand, which is how OpFRem spec'd.
473		outputFloats[ndx] = std::fmod(inputFloats1[ndx], inputFloats2[ndx]);
474	}
475
476	spec.assembly =
477		string(s_ShaderPreamble) +
478
479		"OpName %main           \"main\"\n"
480		"OpName %id             \"gl_GlobalInvocationID\"\n"
481
482		"OpDecorate %id BuiltIn GlobalInvocationId\n"
483
484		"OpDecorate %inbuf1 BufferBlock\n"
485		"OpDecorate %indata1 DescriptorSet 0\n"
486		"OpDecorate %indata1 Binding 0\n"
487		"OpDecorate %inbuf2 BufferBlock\n"
488		"OpDecorate %indata2 DescriptorSet 0\n"
489		"OpDecorate %indata2 Binding 1\n"
490		"OpDecorate %outbuf BufferBlock\n"
491		"OpDecorate %outdata DescriptorSet 0\n"
492		"OpDecorate %outdata Binding 2\n"
493		"OpDecorate %f32arr ArrayStride 4\n"
494		"OpMemberDecorate %inbuf1 0 Offset 0\n"
495		"OpMemberDecorate %inbuf2 0 Offset 0\n"
496		"OpMemberDecorate %outbuf 0 Offset 0\n"
497
498		+ string(s_CommonTypes) +
499
500		"%inbuf1     = OpTypeStruct %f32arr\n"
501		"%inbufptr1  = OpTypePointer Uniform %inbuf1\n"
502		"%indata1    = OpVariable %inbufptr1 Uniform\n"
503		"%inbuf2     = OpTypeStruct %f32arr\n"
504		"%inbufptr2  = OpTypePointer Uniform %inbuf2\n"
505		"%indata2    = OpVariable %inbufptr2 Uniform\n"
506		"%outbuf     = OpTypeStruct %f32arr\n"
507		"%outbufptr  = OpTypePointer Uniform %outbuf\n"
508		"%outdata    = OpVariable %outbufptr Uniform\n"
509
510		"%id        = OpVariable %uvec3ptr Input\n"
511		"%zero      = OpConstant %i32 0\n"
512
513		"%main      = OpFunction %void None %voidf\n"
514		"%label     = OpLabel\n"
515		"%idval     = OpLoad %uvec3 %id\n"
516		"%x         = OpCompositeExtract %u32 %idval 0\n"
517		"%inloc1    = OpAccessChain %f32ptr %indata1 %zero %x\n"
518		"%inval1    = OpLoad %f32 %inloc1\n"
519		"%inloc2    = OpAccessChain %f32ptr %indata2 %zero %x\n"
520		"%inval2    = OpLoad %f32 %inloc2\n"
521		"%rem       = OpFRem %f32 %inval1 %inval2\n"
522		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
523		"             OpStore %outloc %rem\n"
524		"             OpReturn\n"
525		"             OpFunctionEnd\n";
526
527	spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats1)));
528	spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats2)));
529	spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
530	spec.numWorkGroups = IVec3(numElements, 1, 1);
531
532	group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "", spec));
533
534	return group.release();
535}
536
537// Copy contents in the input buffer to the output buffer.
538tcu::TestCaseGroup* createOpCopyMemoryGroup (tcu::TestContext& testCtx)
539{
540	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opcopymemory", "Test the OpCopyMemory instruction"));
541	de::Random						rnd				(deStringHash(group->getName()));
542	const int						numElements		= 100;
543
544	// The following case adds vec4(0., 0.5, 1.5, 2.5) to each of the elements in the input buffer and writes output to the output buffer.
545	ComputeShaderSpec				spec1;
546	vector<Vec4>					inputFloats1	(numElements);
547	vector<Vec4>					outputFloats1	(numElements);
548
549	fillRandomScalars(rnd, -200.f, 200.f, &inputFloats1[0], numElements * 4);
550
551	for (size_t ndx = 0; ndx < numElements; ++ndx)
552		outputFloats1[ndx] = inputFloats1[ndx] + Vec4(0.f, 0.5f, 1.5f, 2.5f);
553
554	spec1.assembly =
555		string(s_ShaderPreamble) +
556
557		"OpName %main           \"main\"\n"
558		"OpName %id             \"gl_GlobalInvocationID\"\n"
559
560		"OpDecorate %id BuiltIn GlobalInvocationId\n"
561		"OpDecorate %vec4arr ArrayStride 16\n"
562
563		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
564
565		"%vec4       = OpTypeVector %f32 4\n"
566		"%vec4ptr_u  = OpTypePointer Uniform %vec4\n"
567		"%vec4ptr_f  = OpTypePointer Function %vec4\n"
568		"%vec4arr    = OpTypeRuntimeArray %vec4\n"
569		"%inbuf      = OpTypeStruct %vec4arr\n"
570		"%inbufptr   = OpTypePointer Uniform %inbuf\n"
571		"%indata     = OpVariable %inbufptr Uniform\n"
572		"%outbuf     = OpTypeStruct %vec4arr\n"
573		"%outbufptr  = OpTypePointer Uniform %outbuf\n"
574		"%outdata    = OpVariable %outbufptr Uniform\n"
575
576		"%id         = OpVariable %uvec3ptr Input\n"
577		"%zero       = OpConstant %i32 0\n"
578		"%c_f_0      = OpConstant %f32 0.\n"
579		"%c_f_0_5    = OpConstant %f32 0.5\n"
580		"%c_f_1_5    = OpConstant %f32 1.5\n"
581		"%c_f_2_5    = OpConstant %f32 2.5\n"
582		"%c_vec4     = OpConstantComposite %vec4 %c_f_0 %c_f_0_5 %c_f_1_5 %c_f_2_5\n"
583
584		"%main       = OpFunction %void None %voidf\n"
585		"%label      = OpLabel\n"
586		"%v_vec4     = OpVariable %vec4ptr_f Function\n"
587		"%idval      = OpLoad %uvec3 %id\n"
588		"%x          = OpCompositeExtract %u32 %idval 0\n"
589		"%inloc      = OpAccessChain %vec4ptr_u %indata %zero %x\n"
590		"%outloc     = OpAccessChain %vec4ptr_u %outdata %zero %x\n"
591		"              OpCopyMemory %v_vec4 %inloc\n"
592		"%v_vec4_val = OpLoad %vec4 %v_vec4\n"
593		"%add        = OpFAdd %vec4 %v_vec4_val %c_vec4\n"
594		"              OpStore %outloc %add\n"
595		"              OpReturn\n"
596		"              OpFunctionEnd\n";
597
598	spec1.inputs.push_back(BufferSp(new Vec4Buffer(inputFloats1)));
599	spec1.outputs.push_back(BufferSp(new Vec4Buffer(outputFloats1)));
600	spec1.numWorkGroups = IVec3(numElements, 1, 1);
601
602	group->addChild(new SpvAsmComputeShaderCase(testCtx, "vector", "OpCopyMemory elements of vector type", spec1));
603
604	// The following case copies a float[100] variable from the input buffer to the output buffer.
605	ComputeShaderSpec				spec2;
606	vector<float>					inputFloats2	(numElements);
607	vector<float>					outputFloats2	(numElements);
608
609	fillRandomScalars(rnd, -200.f, 200.f, &inputFloats2[0], numElements);
610
611	for (size_t ndx = 0; ndx < numElements; ++ndx)
612		outputFloats2[ndx] = inputFloats2[ndx];
613
614	spec2.assembly =
615		string(s_ShaderPreamble) +
616
617		"OpName %main           \"main\"\n"
618		"OpName %id             \"gl_GlobalInvocationID\"\n"
619
620		"OpDecorate %id BuiltIn GlobalInvocationId\n"
621		"OpDecorate %f32arr100 ArrayStride 4\n"
622
623		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
624
625		"%hundred        = OpConstant %u32 100\n"
626		"%f32arr100      = OpTypeArray %f32 %hundred\n"
627		"%f32arr100ptr_f = OpTypePointer Function %f32arr100\n"
628		"%f32arr100ptr_u = OpTypePointer Uniform %f32arr100\n"
629		"%inbuf          = OpTypeStruct %f32arr100\n"
630		"%inbufptr       = OpTypePointer Uniform %inbuf\n"
631		"%indata         = OpVariable %inbufptr Uniform\n"
632		"%outbuf         = OpTypeStruct %f32arr100\n"
633		"%outbufptr      = OpTypePointer Uniform %outbuf\n"
634		"%outdata        = OpVariable %outbufptr Uniform\n"
635
636		"%id             = OpVariable %uvec3ptr Input\n"
637		"%zero           = OpConstant %i32 0\n"
638
639		"%main           = OpFunction %void None %voidf\n"
640		"%label          = OpLabel\n"
641		"%var            = OpVariable %f32arr100ptr_f Function\n"
642		"%inarr          = OpAccessChain %f32arr100ptr_u %indata %zero\n"
643		"%outarr         = OpAccessChain %f32arr100ptr_u %outdata %zero\n"
644		"                  OpCopyMemory %var %inarr\n"
645		"                  OpCopyMemory %outarr %var\n"
646		"                  OpReturn\n"
647		"                  OpFunctionEnd\n";
648
649	spec2.inputs.push_back(BufferSp(new Float32Buffer(inputFloats2)));
650	spec2.outputs.push_back(BufferSp(new Float32Buffer(outputFloats2)));
651	spec2.numWorkGroups = IVec3(1, 1, 1);
652
653	group->addChild(new SpvAsmComputeShaderCase(testCtx, "array", "OpCopyMemory elements of array type", spec2));
654
655	// The following case copies a struct{vec4, vec4, vec4, vec4} variable from the input buffer to the output buffer.
656	ComputeShaderSpec				spec3;
657	vector<float>					inputFloats3	(16);
658	vector<float>					outputFloats3	(16);
659
660	fillRandomScalars(rnd, -200.f, 200.f, &inputFloats3[0], 16);
661
662	for (size_t ndx = 0; ndx < 16; ++ndx)
663		outputFloats3[ndx] = inputFloats3[ndx];
664
665	spec3.assembly =
666		string(s_ShaderPreamble) +
667
668		"OpName %main           \"main\"\n"
669		"OpName %id             \"gl_GlobalInvocationID\"\n"
670
671		"OpDecorate %id BuiltIn GlobalInvocationId\n"
672		"OpMemberDecorate %inbuf 0 Offset 0\n"
673		"OpMemberDecorate %inbuf 1 Offset 16\n"
674		"OpMemberDecorate %inbuf 2 Offset 32\n"
675		"OpMemberDecorate %inbuf 3 Offset 48\n"
676		"OpMemberDecorate %outbuf 0 Offset 0\n"
677		"OpMemberDecorate %outbuf 1 Offset 16\n"
678		"OpMemberDecorate %outbuf 2 Offset 32\n"
679		"OpMemberDecorate %outbuf 3 Offset 48\n"
680
681		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
682
683		"%vec4      = OpTypeVector %f32 4\n"
684		"%inbuf     = OpTypeStruct %vec4 %vec4 %vec4 %vec4\n"
685		"%inbufptr  = OpTypePointer Uniform %inbuf\n"
686		"%indata    = OpVariable %inbufptr Uniform\n"
687		"%outbuf    = OpTypeStruct %vec4 %vec4 %vec4 %vec4\n"
688		"%outbufptr = OpTypePointer Uniform %outbuf\n"
689		"%outdata   = OpVariable %outbufptr Uniform\n"
690		"%vec4stptr = OpTypePointer Function %inbuf\n"
691
692		"%id        = OpVariable %uvec3ptr Input\n"
693		"%zero      = OpConstant %i32 0\n"
694
695		"%main      = OpFunction %void None %voidf\n"
696		"%label     = OpLabel\n"
697		"%var       = OpVariable %vec4stptr Function\n"
698		"             OpCopyMemory %var %indata\n"
699		"             OpCopyMemory %outdata %var\n"
700		"             OpReturn\n"
701		"             OpFunctionEnd\n";
702
703	spec3.inputs.push_back(BufferSp(new Float32Buffer(inputFloats3)));
704	spec3.outputs.push_back(BufferSp(new Float32Buffer(outputFloats3)));
705	spec3.numWorkGroups = IVec3(1, 1, 1);
706
707	group->addChild(new SpvAsmComputeShaderCase(testCtx, "struct", "OpCopyMemory elements of struct type", spec3));
708
709	// The following case negates multiple float variables from the input buffer and stores the results to the output buffer.
710	ComputeShaderSpec				spec4;
711	vector<float>					inputFloats4	(numElements);
712	vector<float>					outputFloats4	(numElements);
713
714	fillRandomScalars(rnd, -200.f, 200.f, &inputFloats4[0], numElements);
715
716	for (size_t ndx = 0; ndx < numElements; ++ndx)
717		outputFloats4[ndx] = -inputFloats4[ndx];
718
719	spec4.assembly =
720		string(s_ShaderPreamble) +
721
722		"OpName %main           \"main\"\n"
723		"OpName %id             \"gl_GlobalInvocationID\"\n"
724
725		"OpDecorate %id BuiltIn GlobalInvocationId\n"
726
727		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
728
729		"%f32ptr_f  = OpTypePointer Function %f32\n"
730		"%id        = OpVariable %uvec3ptr Input\n"
731		"%zero      = OpConstant %i32 0\n"
732
733		"%main      = OpFunction %void None %voidf\n"
734		"%label     = OpLabel\n"
735		"%var       = OpVariable %f32ptr_f Function\n"
736		"%idval     = OpLoad %uvec3 %id\n"
737		"%x         = OpCompositeExtract %u32 %idval 0\n"
738		"%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
739		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
740		"             OpCopyMemory %var %inloc\n"
741		"%val       = OpLoad %f32 %var\n"
742		"%neg       = OpFNegate %f32 %val\n"
743		"             OpStore %outloc %neg\n"
744		"             OpReturn\n"
745		"             OpFunctionEnd\n";
746
747	spec4.inputs.push_back(BufferSp(new Float32Buffer(inputFloats4)));
748	spec4.outputs.push_back(BufferSp(new Float32Buffer(outputFloats4)));
749	spec4.numWorkGroups = IVec3(numElements, 1, 1);
750
751	group->addChild(new SpvAsmComputeShaderCase(testCtx, "float", "OpCopyMemory elements of float type", spec4));
752
753	return group.release();
754}
755
756tcu::TestCaseGroup* createOpCopyObjectGroup (tcu::TestContext& testCtx)
757{
758	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opcopyobject", "Test the OpCopyObject instruction"));
759	ComputeShaderSpec				spec;
760	de::Random						rnd				(deStringHash(group->getName()));
761	const int						numElements		= 100;
762	vector<float>					inputFloats		(numElements, 0);
763	vector<float>					outputFloats	(numElements, 0);
764
765	fillRandomScalars(rnd, -200.f, 200.f, &inputFloats[0], numElements);
766
767	for (size_t ndx = 0; ndx < numElements; ++ndx)
768		outputFloats[ndx] = inputFloats[ndx] + 7.5f;
769
770	spec.assembly =
771		string(s_ShaderPreamble) +
772
773		"OpName %main           \"main\"\n"
774		"OpName %id             \"gl_GlobalInvocationID\"\n"
775
776		"OpDecorate %id BuiltIn GlobalInvocationId\n"
777
778		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
779
780		"%fvec3    = OpTypeVector %f32 3\n"
781		"%fmat     = OpTypeMatrix %fvec3 3\n"
782		"%three    = OpConstant %u32 3\n"
783		"%farr     = OpTypeArray %f32 %three\n"
784		"%fst      = OpTypeStruct %f32 %f32\n"
785
786		+ string(s_InputOutputBuffer) +
787
788		"%id            = OpVariable %uvec3ptr Input\n"
789		"%zero          = OpConstant %i32 0\n"
790		"%c_f           = OpConstant %f32 1.5\n"
791		"%c_fvec3       = OpConstantComposite %fvec3 %c_f %c_f %c_f\n"
792		"%c_fmat        = OpConstantComposite %fmat %c_fvec3 %c_fvec3 %c_fvec3\n"
793		"%c_farr        = OpConstantComposite %farr %c_f %c_f %c_f\n"
794		"%c_fst         = OpConstantComposite %fst %c_f %c_f\n"
795
796		"%main          = OpFunction %void None %voidf\n"
797		"%label         = OpLabel\n"
798		"%c_f_copy      = OpCopyObject %f32   %c_f\n"
799		"%c_fvec3_copy  = OpCopyObject %fvec3 %c_fvec3\n"
800		"%c_fmat_copy   = OpCopyObject %fmat  %c_fmat\n"
801		"%c_farr_copy   = OpCopyObject %farr  %c_farr\n"
802		"%c_fst_copy    = OpCopyObject %fst   %c_fst\n"
803		"%fvec3_elem    = OpCompositeExtract %f32 %c_fvec3_copy 0\n"
804		"%fmat_elem     = OpCompositeExtract %f32 %c_fmat_copy 1 2\n"
805		"%farr_elem     = OpCompositeExtract %f32 %c_fmat_copy 2\n"
806		"%fst_elem      = OpCompositeExtract %f32 %c_fmat_copy 1\n"
807		// Add up. 1.5 * 5 = 7.5.
808		"%add1          = OpFAdd %f32 %c_f_copy %fvec3_elem\n"
809		"%add2          = OpFAdd %f32 %add1     %fmat_elem\n"
810		"%add3          = OpFAdd %f32 %add2     %farr_elem\n"
811		"%add4          = OpFAdd %f32 %add3     %fst_elem\n"
812
813		"%idval         = OpLoad %uvec3 %id\n"
814		"%x             = OpCompositeExtract %u32 %idval 0\n"
815		"%inloc         = OpAccessChain %f32ptr %indata %zero %x\n"
816		"%outloc        = OpAccessChain %f32ptr %outdata %zero %x\n"
817		"%inval         = OpLoad %f32 %inloc\n"
818		"%add           = OpFAdd %f32 %add4 %inval\n"
819		"                 OpStore %outloc %add\n"
820		"                 OpReturn\n"
821		"                 OpFunctionEnd\n";
822	spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
823	spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
824	spec.numWorkGroups = IVec3(numElements, 1, 1);
825
826	group->addChild(new SpvAsmComputeShaderCase(testCtx, "spotcheck", "OpCopyObject on different types", spec));
827
828	return group.release();
829}
830// Assembly code used for testing OpUnreachable is based on GLSL source code:
831//
832// #version 430
833//
834// layout(std140, set = 0, binding = 0) readonly buffer Input {
835//   float elements[];
836// } input_data;
837// layout(std140, set = 0, binding = 1) writeonly buffer Output {
838//   float elements[];
839// } output_data;
840//
841// void not_called_func() {
842//   // place OpUnreachable here
843// }
844//
845// uint modulo4(uint val) {
846//   switch (val % uint(4)) {
847//     case 0:  return 3;
848//     case 1:  return 2;
849//     case 2:  return 1;
850//     case 3:  return 0;
851//     default: return 100; // place OpUnreachable here
852//   }
853// }
854//
855// uint const5() {
856//   return 5;
857//   // place OpUnreachable here
858// }
859//
860// void main() {
861//   uint x = gl_GlobalInvocationID.x;
862//   if (const5() > modulo4(1000)) {
863//     output_data.elements[x] = -input_data.elements[x];
864//   } else {
865//     // place OpUnreachable here
866//     output_data.elements[x] = input_data.elements[x];
867//   }
868// }
869
870tcu::TestCaseGroup* createOpUnreachableGroup (tcu::TestContext& testCtx)
871{
872	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opunreachable", "Test the OpUnreachable instruction"));
873	ComputeShaderSpec				spec;
874	de::Random						rnd				(deStringHash(group->getName()));
875	const int						numElements		= 100;
876	vector<float>					positiveFloats	(numElements, 0);
877	vector<float>					negativeFloats	(numElements, 0);
878
879	fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
880
881	for (size_t ndx = 0; ndx < numElements; ++ndx)
882		negativeFloats[ndx] = -positiveFloats[ndx];
883
884	spec.assembly =
885		string(s_ShaderPreamble) +
886
887		"OpSource GLSL 430\n"
888		"OpName %main            \"main\"\n"
889		"OpName %func_not_called_func \"not_called_func(\"\n"
890		"OpName %func_modulo4         \"modulo4(u1;\"\n"
891		"OpName %func_const5          \"const5(\"\n"
892		"OpName %id                   \"gl_GlobalInvocationID\"\n"
893
894		"OpDecorate %id BuiltIn GlobalInvocationId\n"
895
896		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
897
898		"%u32ptr    = OpTypePointer Function %u32\n"
899		"%uintfuint = OpTypeFunction %u32 %u32ptr\n"
900		"%unitf     = OpTypeFunction %u32\n"
901
902		"%id        = OpVariable %uvec3ptr Input\n"
903		"%zero      = OpConstant %u32 0\n"
904		"%one       = OpConstant %u32 1\n"
905		"%two       = OpConstant %u32 2\n"
906		"%three     = OpConstant %u32 3\n"
907		"%four      = OpConstant %u32 4\n"
908		"%five      = OpConstant %u32 5\n"
909		"%hundred   = OpConstant %u32 100\n"
910		"%thousand  = OpConstant %u32 1000\n"
911
912		+ string(s_InputOutputBuffer) +
913
914		// Main()
915		"%main   = OpFunction %void None %voidf\n"
916		"%main_entry  = OpLabel\n"
917		"%idval       = OpLoad %uvec3 %id\n"
918		"%x           = OpCompositeExtract %u32 %idval 0\n"
919		"%inloc       = OpAccessChain %f32ptr %indata %zero %x\n"
920		"%inval       = OpLoad %f32 %inloc\n"
921		"%outloc      = OpAccessChain %f32ptr %outdata %zero %x\n"
922		"%ret_const5  = OpFunctionCall %u32 %func_const5\n"
923		"%v_thousand  = OpVariable %u32ptr Function %thousand\n"
924		"%ret_modulo4 = OpFunctionCall %u32 %func_modulo4 %v_thousand\n"
925		"%cmp_gt      = OpUGreaterThan %bool %ret_const5 %ret_modulo4\n"
926		"               OpSelectionMerge %if_end None\n"
927		"               OpBranchConditional %cmp_gt %if_true %if_false\n"
928		"%if_true     = OpLabel\n"
929		"%negate      = OpFNegate %f32 %inval\n"
930		"               OpStore %outloc %negate\n"
931		"               OpBranch %if_end\n"
932		"%if_false    = OpLabel\n"
933		"               OpUnreachable\n" // Unreachable else branch for if statement
934		"%if_end      = OpLabel\n"
935		"               OpReturn\n"
936		"               OpFunctionEnd\n"
937
938		// not_called_function()
939		"%func_not_called_func  = OpFunction %void None %voidf\n"
940		"%not_called_func_entry = OpLabel\n"
941		"                         OpUnreachable\n" // Unreachable entry block in not called static function
942		"                         OpFunctionEnd\n"
943
944		// modulo4()
945		"%func_modulo4  = OpFunction %u32 None %uintfuint\n"
946		"%valptr        = OpFunctionParameter %u32ptr\n"
947		"%modulo4_entry = OpLabel\n"
948		"%val           = OpLoad %u32 %valptr\n"
949		"%modulo        = OpUMod %u32 %val %four\n"
950		"                 OpSelectionMerge %switch_merge None\n"
951		"                 OpSwitch %modulo %default 0 %case0 1 %case1 2 %case2 3 %case3\n"
952		"%case0         = OpLabel\n"
953		"                 OpReturnValue %three\n"
954		"%case1         = OpLabel\n"
955		"                 OpReturnValue %two\n"
956		"%case2         = OpLabel\n"
957		"                 OpReturnValue %one\n"
958		"%case3         = OpLabel\n"
959		"                 OpReturnValue %zero\n"
960		"%default       = OpLabel\n"
961		"                 OpUnreachable\n" // Unreachable default case for switch statement
962		"%switch_merge  = OpLabel\n"
963		"                 OpUnreachable\n" // Unreachable merge block for switch statement
964		"                 OpFunctionEnd\n"
965
966		// const5()
967		"%func_const5  = OpFunction %u32 None %unitf\n"
968		"%const5_entry = OpLabel\n"
969		"                OpReturnValue %five\n"
970		"%unreachable  = OpLabel\n"
971		"                OpUnreachable\n" // Unreachable block in function
972		"                OpFunctionEnd\n";
973	spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
974	spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
975	spec.numWorkGroups = IVec3(numElements, 1, 1);
976
977	group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "OpUnreachable appearing at different places", spec));
978
979	return group.release();
980}
981
982// Assembly code used for testing decoration group is based on GLSL source code:
983//
984// #version 430
985//
986// layout(std140, set = 0, binding = 0) readonly buffer Input0 {
987//   float elements[];
988// } input_data0;
989// layout(std140, set = 0, binding = 1) readonly buffer Input1 {
990//   float elements[];
991// } input_data1;
992// layout(std140, set = 0, binding = 2) readonly buffer Input2 {
993//   float elements[];
994// } input_data2;
995// layout(std140, set = 0, binding = 3) readonly buffer Input3 {
996//   float elements[];
997// } input_data3;
998// layout(std140, set = 0, binding = 4) readonly buffer Input4 {
999//   float elements[];
1000// } input_data4;
1001// layout(std140, set = 0, binding = 5) writeonly buffer Output {
1002//   float elements[];
1003// } output_data;
1004//
1005// void main() {
1006//   uint x = gl_GlobalInvocationID.x;
1007//   output_data.elements[x] = input_data0.elements[x] + input_data1.elements[x] + input_data2.elements[x] + input_data3.elements[x] + input_data4.elements[x];
1008// }
1009tcu::TestCaseGroup* createDecorationGroupGroup (tcu::TestContext& testCtx)
1010{
1011	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "decoration_group", "Test the OpDecorationGroup & OpGroupDecorate instruction"));
1012	ComputeShaderSpec				spec;
1013	de::Random						rnd				(deStringHash(group->getName()));
1014	const int						numElements		= 100;
1015	vector<float>					inputFloats0	(numElements, 0);
1016	vector<float>					inputFloats1	(numElements, 0);
1017	vector<float>					inputFloats2	(numElements, 0);
1018	vector<float>					inputFloats3	(numElements, 0);
1019	vector<float>					inputFloats4	(numElements, 0);
1020	vector<float>					outputFloats	(numElements, 0);
1021
1022	fillRandomScalars(rnd, -300.f, 300.f, &inputFloats0[0], numElements);
1023	fillRandomScalars(rnd, -300.f, 300.f, &inputFloats1[0], numElements);
1024	fillRandomScalars(rnd, -300.f, 300.f, &inputFloats2[0], numElements);
1025	fillRandomScalars(rnd, -300.f, 300.f, &inputFloats3[0], numElements);
1026	fillRandomScalars(rnd, -300.f, 300.f, &inputFloats4[0], numElements);
1027
1028	for (size_t ndx = 0; ndx < numElements; ++ndx)
1029		outputFloats[ndx] = inputFloats0[ndx] + inputFloats1[ndx] + inputFloats2[ndx] + inputFloats3[ndx] + inputFloats4[ndx];
1030
1031	spec.assembly =
1032		string(s_ShaderPreamble) +
1033
1034		"OpSource GLSL 430\n"
1035		"OpName %main \"main\"\n"
1036		"OpName %id \"gl_GlobalInvocationID\"\n"
1037
1038		// Not using group decoration on variable.
1039		"OpDecorate %id BuiltIn GlobalInvocationId\n"
1040		// Not using group decoration on type.
1041		"OpDecorate %f32arr ArrayStride 4\n"
1042
1043		"OpDecorate %groups BufferBlock\n"
1044		"OpDecorate %groupm Offset 0\n"
1045		"%groups = OpDecorationGroup\n"
1046		"%groupm = OpDecorationGroup\n"
1047
1048		// Group decoration on multiple structs.
1049		"OpGroupDecorate %groups %outbuf %inbuf0 %inbuf1 %inbuf2 %inbuf3 %inbuf4\n"
1050		// Group decoration on multiple struct members.
1051		"OpGroupMemberDecorate %groupm %outbuf 0 %inbuf0 0 %inbuf1 0 %inbuf2 0 %inbuf3 0 %inbuf4 0\n"
1052
1053		"OpDecorate %group1 DescriptorSet 0\n"
1054		"OpDecorate %group3 DescriptorSet 0\n"
1055		"OpDecorate %group3 NonWritable\n"
1056		"OpDecorate %group3 Restrict\n"
1057		"%group0 = OpDecorationGroup\n"
1058		"%group1 = OpDecorationGroup\n"
1059		"%group3 = OpDecorationGroup\n"
1060
1061		// Applying the same decoration group multiple times.
1062		"OpGroupDecorate %group1 %outdata\n"
1063		"OpGroupDecorate %group1 %outdata\n"
1064		"OpGroupDecorate %group1 %outdata\n"
1065		"OpDecorate %outdata DescriptorSet 0\n"
1066		"OpDecorate %outdata Binding 5\n"
1067		// Applying decoration group containing nothing.
1068		"OpGroupDecorate %group0 %indata0\n"
1069		"OpDecorate %indata0 DescriptorSet 0\n"
1070		"OpDecorate %indata0 Binding 0\n"
1071		// Applying decoration group containing one decoration.
1072		"OpGroupDecorate %group1 %indata1\n"
1073		"OpDecorate %indata1 Binding 1\n"
1074		// Applying decoration group containing multiple decorations.
1075		"OpGroupDecorate %group3 %indata2 %indata3\n"
1076		"OpDecorate %indata2 Binding 2\n"
1077		"OpDecorate %indata3 Binding 3\n"
1078		// Applying multiple decoration groups (with overlapping).
1079		"OpGroupDecorate %group0 %indata4\n"
1080		"OpGroupDecorate %group1 %indata4\n"
1081		"OpGroupDecorate %group3 %indata4\n"
1082		"OpDecorate %indata4 Binding 4\n"
1083
1084		+ string(s_CommonTypes) +
1085
1086		"%id   = OpVariable %uvec3ptr Input\n"
1087		"%zero = OpConstant %i32 0\n"
1088
1089		"%outbuf    = OpTypeStruct %f32arr\n"
1090		"%outbufptr = OpTypePointer Uniform %outbuf\n"
1091		"%outdata   = OpVariable %outbufptr Uniform\n"
1092		"%inbuf0    = OpTypeStruct %f32arr\n"
1093		"%inbuf0ptr = OpTypePointer Uniform %inbuf0\n"
1094		"%indata0   = OpVariable %inbuf0ptr Uniform\n"
1095		"%inbuf1    = OpTypeStruct %f32arr\n"
1096		"%inbuf1ptr = OpTypePointer Uniform %inbuf1\n"
1097		"%indata1   = OpVariable %inbuf1ptr Uniform\n"
1098		"%inbuf2    = OpTypeStruct %f32arr\n"
1099		"%inbuf2ptr = OpTypePointer Uniform %inbuf2\n"
1100		"%indata2   = OpVariable %inbuf2ptr Uniform\n"
1101		"%inbuf3    = OpTypeStruct %f32arr\n"
1102		"%inbuf3ptr = OpTypePointer Uniform %inbuf3\n"
1103		"%indata3   = OpVariable %inbuf3ptr Uniform\n"
1104		"%inbuf4    = OpTypeStruct %f32arr\n"
1105		"%inbufptr  = OpTypePointer Uniform %inbuf4\n"
1106		"%indata4   = OpVariable %inbufptr Uniform\n"
1107
1108		"%main   = OpFunction %void None %voidf\n"
1109		"%label  = OpLabel\n"
1110		"%idval  = OpLoad %uvec3 %id\n"
1111		"%x      = OpCompositeExtract %u32 %idval 0\n"
1112		"%inloc0 = OpAccessChain %f32ptr %indata0 %zero %x\n"
1113		"%inloc1 = OpAccessChain %f32ptr %indata1 %zero %x\n"
1114		"%inloc2 = OpAccessChain %f32ptr %indata2 %zero %x\n"
1115		"%inloc3 = OpAccessChain %f32ptr %indata3 %zero %x\n"
1116		"%inloc4 = OpAccessChain %f32ptr %indata4 %zero %x\n"
1117		"%outloc = OpAccessChain %f32ptr %outdata %zero %x\n"
1118		"%inval0 = OpLoad %f32 %inloc0\n"
1119		"%inval1 = OpLoad %f32 %inloc1\n"
1120		"%inval2 = OpLoad %f32 %inloc2\n"
1121		"%inval3 = OpLoad %f32 %inloc3\n"
1122		"%inval4 = OpLoad %f32 %inloc4\n"
1123		"%add0   = OpFAdd %f32 %inval0 %inval1\n"
1124		"%add1   = OpFAdd %f32 %add0 %inval2\n"
1125		"%add2   = OpFAdd %f32 %add1 %inval3\n"
1126		"%add    = OpFAdd %f32 %add2 %inval4\n"
1127		"          OpStore %outloc %add\n"
1128		"          OpReturn\n"
1129		"          OpFunctionEnd\n";
1130	spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats0)));
1131	spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats1)));
1132	spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats2)));
1133	spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats3)));
1134	spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats4)));
1135	spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
1136	spec.numWorkGroups = IVec3(numElements, 1, 1);
1137
1138	group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "decoration group cases", spec));
1139
1140	return group.release();
1141}
1142
1143struct SpecConstantTwoIntCase
1144{
1145	const char*		caseName;
1146	const char*		scDefinition0;
1147	const char*		scDefinition1;
1148	const char*		scResultType;
1149	const char*		scOperation;
1150	deInt32			scActualValue0;
1151	deInt32			scActualValue1;
1152	const char*		resultOperation;
1153	vector<deInt32>	expectedOutput;
1154
1155					SpecConstantTwoIntCase (const char* name,
1156											const char* definition0,
1157											const char* definition1,
1158											const char* resultType,
1159											const char* operation,
1160											deInt32 value0,
1161											deInt32 value1,
1162											const char* resultOp,
1163											const vector<deInt32>& output)
1164						: caseName			(name)
1165						, scDefinition0		(definition0)
1166						, scDefinition1		(definition1)
1167						, scResultType		(resultType)
1168						, scOperation		(operation)
1169						, scActualValue0	(value0)
1170						, scActualValue1	(value1)
1171						, resultOperation	(resultOp)
1172						, expectedOutput	(output) {}
1173};
1174
1175tcu::TestCaseGroup* createSpecConstantGroup (tcu::TestContext& testCtx)
1176{
1177	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opspecconstantop", "Test the OpSpecConstantOp instruction"));
1178	vector<SpecConstantTwoIntCase>	cases;
1179	de::Random						rnd				(deStringHash(group->getName()));
1180	const int						numElements		= 100;
1181	vector<deInt32>					inputInts		(numElements, 0);
1182	vector<deInt32>					outputInts1		(numElements, 0);
1183	vector<deInt32>					outputInts2		(numElements, 0);
1184	vector<deInt32>					outputInts3		(numElements, 0);
1185	vector<deInt32>					outputInts4		(numElements, 0);
1186	const StringTemplate			shaderTemplate	(
1187		string(s_ShaderPreamble) +
1188
1189		"OpName %main           \"main\"\n"
1190		"OpName %id             \"gl_GlobalInvocationID\"\n"
1191
1192		"OpDecorate %id BuiltIn GlobalInvocationId\n"
1193		"OpDecorate %sc_0  SpecId 0\n"
1194		"OpDecorate %sc_1  SpecId 1\n"
1195		"OpDecorate %i32arr ArrayStride 4\n"
1196
1197		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
1198
1199		"%i32ptr    = OpTypePointer Uniform %i32\n"
1200		"%i32arr    = OpTypeRuntimeArray %i32\n"
1201		"%boolptr   = OpTypePointer Uniform %bool\n"
1202		"%boolarr   = OpTypeRuntimeArray %bool\n"
1203		"%inbuf     = OpTypeStruct %i32arr\n"
1204		"%inbufptr  = OpTypePointer Uniform %inbuf\n"
1205		"%indata    = OpVariable %inbufptr Uniform\n"
1206		"%outbuf    = OpTypeStruct %i32arr\n"
1207		"%outbufptr = OpTypePointer Uniform %outbuf\n"
1208		"%outdata   = OpVariable %outbufptr Uniform\n"
1209
1210		"%id        = OpVariable %uvec3ptr Input\n"
1211		"%zero      = OpConstant %i32 0\n"
1212
1213		"%sc_0      = OpSpecConstant${SC_DEF0}\n"
1214		"%sc_1      = OpSpecConstant${SC_DEF1}\n"
1215		"%sc_final  = OpSpecConstantOp ${SC_RESULT_TYPE} ${SC_OP}\n"
1216
1217		"%main      = OpFunction %void None %voidf\n"
1218		"%label     = OpLabel\n"
1219		"%idval     = OpLoad %uvec3 %id\n"
1220		"%x         = OpCompositeExtract %u32 %idval 0\n"
1221		"%inloc     = OpAccessChain %i32ptr %indata %zero %x\n"
1222		"%inval     = OpLoad %i32 %inloc\n"
1223		"%final     = ${GEN_RESULT}\n"
1224		"%outloc    = OpAccessChain %i32ptr %outdata %zero %x\n"
1225		"             OpStore %outloc %final\n"
1226		"             OpReturn\n"
1227		"             OpFunctionEnd\n");
1228
1229	fillRandomScalars(rnd, -65536, 65536, &inputInts[0], numElements);
1230
1231	for (size_t ndx = 0; ndx < numElements; ++ndx)
1232	{
1233		outputInts1[ndx] = inputInts[ndx] + 42;
1234		outputInts2[ndx] = inputInts[ndx];
1235		outputInts3[ndx] = inputInts[ndx] - 11200;
1236		outputInts4[ndx] = inputInts[ndx] + 1;
1237	}
1238
1239	const char addScToInput[]		= "OpIAdd %i32 %inval %sc_final";
1240	const char selectTrueUsingSc[]	= "OpSelect %i32 %sc_final %inval %zero";
1241	const char selectFalseUsingSc[]	= "OpSelect %i32 %sc_final %zero %inval";
1242
1243	cases.push_back(SpecConstantTwoIntCase("iadd",					" %i32 0",		" %i32 0",		"%i32",		"IAdd                 %sc_0 %sc_1",			62,		-20,	addScToInput,		outputInts1));
1244	cases.push_back(SpecConstantTwoIntCase("isub",					" %i32 0",		" %i32 0",		"%i32",		"ISub                 %sc_0 %sc_1",			100,	58,		addScToInput,		outputInts1));
1245	cases.push_back(SpecConstantTwoIntCase("imul",					" %i32 0",		" %i32 0",		"%i32",		"IMul                 %sc_0 %sc_1",			-2,		-21,	addScToInput,		outputInts1));
1246	cases.push_back(SpecConstantTwoIntCase("sdiv",					" %i32 0",		" %i32 0",		"%i32",		"SDiv                 %sc_0 %sc_1",			-126,	-3,		addScToInput,		outputInts1));
1247	cases.push_back(SpecConstantTwoIntCase("udiv",					" %i32 0",		" %i32 0",		"%i32",		"UDiv                 %sc_0 %sc_1",			126,	3,		addScToInput,		outputInts1));
1248	cases.push_back(SpecConstantTwoIntCase("srem",					" %i32 0",		" %i32 0",		"%i32",		"SRem                 %sc_0 %sc_1",			7,		3,		addScToInput,		outputInts4));
1249	cases.push_back(SpecConstantTwoIntCase("smod",					" %i32 0",		" %i32 0",		"%i32",		"SMod                 %sc_0 %sc_1",			7,		3,		addScToInput,		outputInts4));
1250	cases.push_back(SpecConstantTwoIntCase("umod",					" %i32 0",		" %i32 0",		"%i32",		"UMod                 %sc_0 %sc_1",			342,	50,		addScToInput,		outputInts1));
1251	cases.push_back(SpecConstantTwoIntCase("bitwiseand",			" %i32 0",		" %i32 0",		"%i32",		"BitwiseAnd           %sc_0 %sc_1",			42,		63,		addScToInput,		outputInts1));
1252	cases.push_back(SpecConstantTwoIntCase("bitwiseor",				" %i32 0",		" %i32 0",		"%i32",		"BitwiseOr            %sc_0 %sc_1",			34,		8,		addScToInput,		outputInts1));
1253	cases.push_back(SpecConstantTwoIntCase("bitwisexor",			" %i32 0",		" %i32 0",		"%i32",		"BitwiseXor           %sc_0 %sc_1",			18,		56,		addScToInput,		outputInts1));
1254	cases.push_back(SpecConstantTwoIntCase("shiftrightlogical",		" %i32 0",		" %i32 0",		"%i32",		"ShiftRightLogical    %sc_0 %sc_1",			168,	2,		addScToInput,		outputInts1));
1255	cases.push_back(SpecConstantTwoIntCase("shiftrightarithmetic",	" %i32 0",		" %i32 0",		"%i32",		"ShiftRightArithmetic %sc_0 %sc_1",			168,	2,		addScToInput,		outputInts1));
1256	cases.push_back(SpecConstantTwoIntCase("shiftleftlogical",		" %i32 0",		" %i32 0",		"%i32",		"ShiftLeftLogical     %sc_0 %sc_1",			21,		1,		addScToInput,		outputInts1));
1257	cases.push_back(SpecConstantTwoIntCase("slessthan",				" %i32 0",		" %i32 0",		"%bool",	"SLessThan            %sc_0 %sc_1",			-20,	-10,	selectTrueUsingSc,	outputInts2));
1258	cases.push_back(SpecConstantTwoIntCase("ulessthan",				" %i32 0",		" %i32 0",		"%bool",	"ULessThan            %sc_0 %sc_1",			10,		20,		selectTrueUsingSc,	outputInts2));
1259	cases.push_back(SpecConstantTwoIntCase("sgreaterthan",			" %i32 0",		" %i32 0",		"%bool",	"SGreaterThan         %sc_0 %sc_1",			-1000,	50,		selectFalseUsingSc,	outputInts2));
1260	cases.push_back(SpecConstantTwoIntCase("ugreaterthan",			" %i32 0",		" %i32 0",		"%bool",	"UGreaterThan         %sc_0 %sc_1",			10,		5,		selectTrueUsingSc,	outputInts2));
1261	cases.push_back(SpecConstantTwoIntCase("slessthanequal",		" %i32 0",		" %i32 0",		"%bool",	"SLessThanEqual       %sc_0 %sc_1",			-10,	-10,	selectTrueUsingSc,	outputInts2));
1262	cases.push_back(SpecConstantTwoIntCase("ulessthanequal",		" %i32 0",		" %i32 0",		"%bool",	"ULessThanEqual       %sc_0 %sc_1",			50,		100,	selectTrueUsingSc,	outputInts2));
1263	cases.push_back(SpecConstantTwoIntCase("sgreaterthanequal",		" %i32 0",		" %i32 0",		"%bool",	"SGreaterThanEqual    %sc_0 %sc_1",			-1000,	50,		selectFalseUsingSc,	outputInts2));
1264	cases.push_back(SpecConstantTwoIntCase("ugreaterthanequal",		" %i32 0",		" %i32 0",		"%bool",	"UGreaterThanEqual    %sc_0 %sc_1",			10,		10,		selectTrueUsingSc,	outputInts2));
1265	cases.push_back(SpecConstantTwoIntCase("iequal",				" %i32 0",		" %i32 0",		"%bool",	"IEqual               %sc_0 %sc_1",			42,		24,		selectFalseUsingSc,	outputInts2));
1266	cases.push_back(SpecConstantTwoIntCase("logicaland",			"True %bool",	"True %bool",	"%bool",	"LogicalAnd           %sc_0 %sc_1",			0,		1,		selectFalseUsingSc,	outputInts2));
1267	cases.push_back(SpecConstantTwoIntCase("logicalor",				"False %bool",	"False %bool",	"%bool",	"LogicalOr            %sc_0 %sc_1",			1,		0,		selectTrueUsingSc,	outputInts2));
1268	cases.push_back(SpecConstantTwoIntCase("logicalequal",			"True %bool",	"True %bool",	"%bool",	"LogicalEqual         %sc_0 %sc_1",			0,		1,		selectFalseUsingSc,	outputInts2));
1269	cases.push_back(SpecConstantTwoIntCase("logicalnotequal",		"False %bool",	"False %bool",	"%bool",	"LogicalNotEqual      %sc_0 %sc_1",			1,		0,		selectTrueUsingSc,	outputInts2));
1270	cases.push_back(SpecConstantTwoIntCase("snegate",				" %i32 0",		" %i32 0",		"%i32",		"SNegate              %sc_0",				-42,	0,		addScToInput,		outputInts1));
1271	cases.push_back(SpecConstantTwoIntCase("not",					" %i32 0",		" %i32 0",		"%i32",		"Not                  %sc_0",				-43,	0,		addScToInput,		outputInts1));
1272	cases.push_back(SpecConstantTwoIntCase("logicalnot",			"False %bool",	"False %bool",	"%bool",	"LogicalNot           %sc_0",				1,		0,		selectFalseUsingSc,	outputInts2));
1273	cases.push_back(SpecConstantTwoIntCase("select",				"False %bool",	" %i32 0",		"%i32",		"Select               %sc_0 %sc_1 %zero",	1,		42,		addScToInput,		outputInts1));
1274	// OpSConvert, OpFConvert: these two instructions involve ints/floats of different bitwidths.
1275
1276	for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
1277	{
1278		map<string, string>		specializations;
1279		ComputeShaderSpec		spec;
1280
1281		specializations["SC_DEF0"]			= cases[caseNdx].scDefinition0;
1282		specializations["SC_DEF1"]			= cases[caseNdx].scDefinition1;
1283		specializations["SC_RESULT_TYPE"]	= cases[caseNdx].scResultType;
1284		specializations["SC_OP"]			= cases[caseNdx].scOperation;
1285		specializations["GEN_RESULT"]		= cases[caseNdx].resultOperation;
1286
1287		spec.assembly = shaderTemplate.specialize(specializations);
1288		spec.inputs.push_back(BufferSp(new Int32Buffer(inputInts)));
1289		spec.outputs.push_back(BufferSp(new Int32Buffer(cases[caseNdx].expectedOutput)));
1290		spec.numWorkGroups = IVec3(numElements, 1, 1);
1291		spec.specConstants.push_back(cases[caseNdx].scActualValue0);
1292		spec.specConstants.push_back(cases[caseNdx].scActualValue1);
1293
1294		group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].caseName, cases[caseNdx].caseName, spec));
1295	}
1296
1297	ComputeShaderSpec				spec;
1298
1299	spec.assembly =
1300		string(s_ShaderPreamble) +
1301
1302		"OpName %main           \"main\"\n"
1303		"OpName %id             \"gl_GlobalInvocationID\"\n"
1304
1305		"OpDecorate %id BuiltIn GlobalInvocationId\n"
1306		"OpDecorate %sc_0  SpecId 0\n"
1307		"OpDecorate %sc_1  SpecId 1\n"
1308		"OpDecorate %sc_2  SpecId 2\n"
1309		"OpDecorate %i32arr ArrayStride 4\n"
1310
1311		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
1312
1313		"%ivec3     = OpTypeVector %i32 3\n"
1314		"%i32ptr    = OpTypePointer Uniform %i32\n"
1315		"%i32arr    = OpTypeRuntimeArray %i32\n"
1316		"%boolptr   = OpTypePointer Uniform %bool\n"
1317		"%boolarr   = OpTypeRuntimeArray %bool\n"
1318		"%inbuf     = OpTypeStruct %i32arr\n"
1319		"%inbufptr  = OpTypePointer Uniform %inbuf\n"
1320		"%indata    = OpVariable %inbufptr Uniform\n"
1321		"%outbuf    = OpTypeStruct %i32arr\n"
1322		"%outbufptr = OpTypePointer Uniform %outbuf\n"
1323		"%outdata   = OpVariable %outbufptr Uniform\n"
1324
1325		"%id        = OpVariable %uvec3ptr Input\n"
1326		"%zero      = OpConstant %i32 0\n"
1327		"%ivec3_0   = OpConstantComposite %ivec3 %zero %zero %zero\n"
1328
1329		"%sc_0        = OpSpecConstant %i32 0\n"
1330		"%sc_1        = OpSpecConstant %i32 0\n"
1331		"%sc_2        = OpSpecConstant %i32 0\n"
1332		"%sc_vec3_0   = OpSpecConstantOp %ivec3 CompositeInsert  %sc_0        %ivec3_0   0\n"     // (sc_0, 0, 0)
1333		"%sc_vec3_1   = OpSpecConstantOp %ivec3 CompositeInsert  %sc_1        %ivec3_0   1\n"     // (0, sc_1, 0)
1334		"%sc_vec3_2   = OpSpecConstantOp %ivec3 CompositeInsert  %sc_2        %ivec3_0   2\n"     // (0, 0, sc_2)
1335		"%sc_vec3_01  = OpSpecConstantOp %ivec3 VectorShuffle    %sc_vec3_0   %sc_vec3_1 1 0 4\n" // (0,    sc_0, sc_1)
1336		"%sc_vec3_012 = OpSpecConstantOp %ivec3 VectorShuffle    %sc_vec3_01  %sc_vec3_2 5 1 2\n" // (sc_2, sc_0, sc_1)
1337		"%sc_ext_0    = OpSpecConstantOp %i32   CompositeExtract %sc_vec3_012            0\n"     // sc_2
1338		"%sc_ext_1    = OpSpecConstantOp %i32   CompositeExtract %sc_vec3_012            1\n"     // sc_0
1339		"%sc_ext_2    = OpSpecConstantOp %i32   CompositeExtract %sc_vec3_012            2\n"     // sc_1
1340		"%sc_sub      = OpSpecConstantOp %i32   ISub             %sc_ext_0    %sc_ext_1\n"        // (sc_2 - sc_0)
1341		"%sc_final    = OpSpecConstantOp %i32   IMul             %sc_sub      %sc_ext_2\n"        // (sc_2 - sc_0) * sc_1
1342
1343		"%main      = OpFunction %void None %voidf\n"
1344		"%label     = OpLabel\n"
1345		"%idval     = OpLoad %uvec3 %id\n"
1346		"%x         = OpCompositeExtract %u32 %idval 0\n"
1347		"%inloc     = OpAccessChain %i32ptr %indata %zero %x\n"
1348		"%inval     = OpLoad %i32 %inloc\n"
1349		"%final     = OpIAdd %i32 %inval %sc_final\n"
1350		"%outloc    = OpAccessChain %i32ptr %outdata %zero %x\n"
1351		"             OpStore %outloc %final\n"
1352		"             OpReturn\n"
1353		"             OpFunctionEnd\n";
1354	spec.inputs.push_back(BufferSp(new Int32Buffer(inputInts)));
1355	spec.outputs.push_back(BufferSp(new Int32Buffer(outputInts3)));
1356	spec.numWorkGroups = IVec3(numElements, 1, 1);
1357	spec.specConstants.push_back(123);
1358	spec.specConstants.push_back(56);
1359	spec.specConstants.push_back(-77);
1360
1361	group->addChild(new SpvAsmComputeShaderCase(testCtx, "vector_related", "VectorShuffle, CompositeExtract, & CompositeInsert", spec));
1362
1363	return group.release();
1364}
1365
1366tcu::TestCaseGroup* createOpPhiGroup (tcu::TestContext& testCtx)
1367{
1368	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opphi", "Test the OpPhi instruction"));
1369	ComputeShaderSpec				spec1;
1370	ComputeShaderSpec				spec2;
1371	ComputeShaderSpec				spec3;
1372	de::Random						rnd				(deStringHash(group->getName()));
1373	const int						numElements		= 100;
1374	vector<float>					inputFloats		(numElements, 0);
1375	vector<float>					outputFloats1	(numElements, 0);
1376	vector<float>					outputFloats2	(numElements, 0);
1377	vector<float>					outputFloats3	(numElements, 0);
1378
1379	fillRandomScalars(rnd, -300.f, 300.f, &inputFloats[0], numElements);
1380
1381	for (size_t ndx = 0; ndx < numElements; ++ndx)
1382	{
1383		switch (ndx % 3)
1384		{
1385			case 0:		outputFloats1[ndx] = inputFloats[ndx] + 5.5f;	break;
1386			case 1:		outputFloats1[ndx] = inputFloats[ndx] + 20.5f;	break;
1387			case 2:		outputFloats1[ndx] = inputFloats[ndx] + 1.75f;	break;
1388			default:	break;
1389		}
1390		outputFloats2[ndx] = inputFloats[ndx] + 6.5f * 3;
1391		outputFloats3[ndx] = 8.5f - inputFloats[ndx];
1392	}
1393
1394	spec1.assembly =
1395		string(s_ShaderPreamble) +
1396
1397		"OpSource GLSL 430\n"
1398		"OpName %main \"main\"\n"
1399		"OpName %id \"gl_GlobalInvocationID\"\n"
1400
1401		"OpDecorate %id BuiltIn GlobalInvocationId\n"
1402
1403		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
1404
1405		"%id = OpVariable %uvec3ptr Input\n"
1406		"%zero       = OpConstant %i32 0\n"
1407		"%three      = OpConstant %u32 3\n"
1408		"%constf5p5  = OpConstant %f32 5.5\n"
1409		"%constf20p5 = OpConstant %f32 20.5\n"
1410		"%constf1p75 = OpConstant %f32 1.75\n"
1411		"%constf8p5  = OpConstant %f32 8.5\n"
1412		"%constf6p5  = OpConstant %f32 6.5\n"
1413
1414		"%main     = OpFunction %void None %voidf\n"
1415		"%entry    = OpLabel\n"
1416		"%idval    = OpLoad %uvec3 %id\n"
1417		"%x        = OpCompositeExtract %u32 %idval 0\n"
1418		"%selector = OpUMod %u32 %x %three\n"
1419		"            OpSelectionMerge %phi None\n"
1420		"            OpSwitch %selector %default 0 %case0 1 %case1 2 %case2\n"
1421
1422		// Case 1 before OpPhi.
1423		"%case1    = OpLabel\n"
1424		"            OpBranch %phi\n"
1425
1426		"%default  = OpLabel\n"
1427		"            OpUnreachable\n"
1428
1429		"%phi      = OpLabel\n"
1430		"%operand  = OpPhi %f32   %constf1p75 %case2   %constf20p5 %case1   %constf5p5 %case0\n" // not in the order of blocks
1431		"%inloc    = OpAccessChain %f32ptr %indata %zero %x\n"
1432		"%inval    = OpLoad %f32 %inloc\n"
1433		"%add      = OpFAdd %f32 %inval %operand\n"
1434		"%outloc   = OpAccessChain %f32ptr %outdata %zero %x\n"
1435		"            OpStore %outloc %add\n"
1436		"            OpReturn\n"
1437
1438		// Case 0 after OpPhi.
1439		"%case0    = OpLabel\n"
1440		"            OpBranch %phi\n"
1441
1442
1443		// Case 2 after OpPhi.
1444		"%case2    = OpLabel\n"
1445		"            OpBranch %phi\n"
1446
1447		"            OpFunctionEnd\n";
1448	spec1.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
1449	spec1.outputs.push_back(BufferSp(new Float32Buffer(outputFloats1)));
1450	spec1.numWorkGroups = IVec3(numElements, 1, 1);
1451
1452	group->addChild(new SpvAsmComputeShaderCase(testCtx, "block", "out-of-order and unreachable blocks for OpPhi", spec1));
1453
1454	spec2.assembly =
1455		string(s_ShaderPreamble) +
1456
1457		"OpName %main \"main\"\n"
1458		"OpName %id \"gl_GlobalInvocationID\"\n"
1459
1460		"OpDecorate %id BuiltIn GlobalInvocationId\n"
1461
1462		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
1463
1464		"%id         = OpVariable %uvec3ptr Input\n"
1465		"%zero       = OpConstant %i32 0\n"
1466		"%one        = OpConstant %i32 1\n"
1467		"%three      = OpConstant %i32 3\n"
1468		"%constf6p5  = OpConstant %f32 6.5\n"
1469
1470		"%main       = OpFunction %void None %voidf\n"
1471		"%entry      = OpLabel\n"
1472		"%idval      = OpLoad %uvec3 %id\n"
1473		"%x          = OpCompositeExtract %u32 %idval 0\n"
1474		"%inloc      = OpAccessChain %f32ptr %indata %zero %x\n"
1475		"%outloc     = OpAccessChain %f32ptr %outdata %zero %x\n"
1476		"%inval      = OpLoad %f32 %inloc\n"
1477		"              OpBranch %phi\n"
1478
1479		"%phi        = OpLabel\n"
1480		"%step       = OpPhi %i32 %zero  %entry %step_next  %phi\n"
1481		"%accum      = OpPhi %f32 %inval %entry %accum_next %phi\n"
1482		"%step_next  = OpIAdd %i32 %step %one\n"
1483		"%accum_next = OpFAdd %f32 %accum %constf6p5\n"
1484		"%still_loop = OpSLessThan %bool %step %three\n"
1485		"              OpLoopMerge %exit %phi None\n"
1486		"              OpBranchConditional %still_loop %phi %exit\n"
1487
1488		"%exit       = OpLabel\n"
1489		"              OpStore %outloc %accum\n"
1490		"              OpReturn\n"
1491		"              OpFunctionEnd\n";
1492	spec2.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
1493	spec2.outputs.push_back(BufferSp(new Float32Buffer(outputFloats2)));
1494	spec2.numWorkGroups = IVec3(numElements, 1, 1);
1495
1496	group->addChild(new SpvAsmComputeShaderCase(testCtx, "induction", "The usual way induction variables are handled in LLVM IR", spec2));
1497
1498	spec3.assembly =
1499		string(s_ShaderPreamble) +
1500
1501		"OpName %main \"main\"\n"
1502		"OpName %id \"gl_GlobalInvocationID\"\n"
1503
1504		"OpDecorate %id BuiltIn GlobalInvocationId\n"
1505
1506		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
1507
1508		"%f32ptr_f   = OpTypePointer Function %f32\n"
1509		"%id         = OpVariable %uvec3ptr Input\n"
1510		"%true       = OpConstantTrue %bool\n"
1511		"%false      = OpConstantFalse %bool\n"
1512		"%zero       = OpConstant %i32 0\n"
1513		"%constf8p5  = OpConstant %f32 8.5\n"
1514
1515		"%main       = OpFunction %void None %voidf\n"
1516		"%entry      = OpLabel\n"
1517		"%b          = OpVariable %f32ptr_f Function %constf8p5\n"
1518		"%idval      = OpLoad %uvec3 %id\n"
1519		"%x          = OpCompositeExtract %u32 %idval 0\n"
1520		"%inloc      = OpAccessChain %f32ptr %indata %zero %x\n"
1521		"%outloc     = OpAccessChain %f32ptr %outdata %zero %x\n"
1522		"%a_init     = OpLoad %f32 %inloc\n"
1523		"%b_init     = OpLoad %f32 %b\n"
1524		"              OpBranch %phi\n"
1525
1526		"%phi        = OpLabel\n"
1527		"%still_loop = OpPhi %bool %true   %entry %false  %phi\n"
1528		"%a_next     = OpPhi %f32  %a_init %entry %b_next %phi\n"
1529		"%b_next     = OpPhi %f32  %b_init %entry %a_next %phi\n"
1530		"              OpLoopMerge %exit %phi None\n"
1531		"              OpBranchConditional %still_loop %phi %exit\n"
1532
1533		"%exit       = OpLabel\n"
1534		"%sub        = OpFSub %f32 %a_next %b_next\n"
1535		"              OpStore %outloc %sub\n"
1536		"              OpReturn\n"
1537		"              OpFunctionEnd\n";
1538	spec3.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
1539	spec3.outputs.push_back(BufferSp(new Float32Buffer(outputFloats3)));
1540	spec3.numWorkGroups = IVec3(numElements, 1, 1);
1541
1542	group->addChild(new SpvAsmComputeShaderCase(testCtx, "swap", "Swap the values of two variables using OpPhi", spec3));
1543
1544	return group.release();
1545}
1546
1547// Assembly code used for testing block order is based on GLSL source code:
1548//
1549// #version 430
1550//
1551// layout(std140, set = 0, binding = 0) readonly buffer Input {
1552//   float elements[];
1553// } input_data;
1554// layout(std140, set = 0, binding = 1) writeonly buffer Output {
1555//   float elements[];
1556// } output_data;
1557//
1558// void main() {
1559//   uint x = gl_GlobalInvocationID.x;
1560//   output_data.elements[x] = input_data.elements[x];
1561//   if (x > uint(50)) {
1562//     switch (x % uint(3)) {
1563//       case 0: output_data.elements[x] += 1.5f; break;
1564//       case 1: output_data.elements[x] += 42.f; break;
1565//       case 2: output_data.elements[x] -= 27.f; break;
1566//       default: break;
1567//     }
1568//   } else {
1569//     output_data.elements[x] = -input_data.elements[x];
1570//   }
1571// }
1572tcu::TestCaseGroup* createBlockOrderGroup (tcu::TestContext& testCtx)
1573{
1574	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "block_order", "Test block orders"));
1575	ComputeShaderSpec				spec;
1576	de::Random						rnd				(deStringHash(group->getName()));
1577	const int						numElements		= 100;
1578	vector<float>					inputFloats		(numElements, 0);
1579	vector<float>					outputFloats	(numElements, 0);
1580
1581	fillRandomScalars(rnd, -100.f, 100.f, &inputFloats[0], numElements);
1582
1583	for (size_t ndx = 0; ndx <= 50; ++ndx)
1584		outputFloats[ndx] = -inputFloats[ndx];
1585
1586	for (size_t ndx = 51; ndx < numElements; ++ndx)
1587	{
1588		switch (ndx % 3)
1589		{
1590			case 0:		outputFloats[ndx] = inputFloats[ndx] + 1.5f; break;
1591			case 1:		outputFloats[ndx] = inputFloats[ndx] + 42.f; break;
1592			case 2:		outputFloats[ndx] = inputFloats[ndx] - 27.f; break;
1593			default:	break;
1594		}
1595	}
1596
1597	spec.assembly =
1598		string(s_ShaderPreamble) +
1599
1600		"OpSource GLSL 430\n"
1601		"OpName %main \"main\"\n"
1602		"OpName %id \"gl_GlobalInvocationID\"\n"
1603
1604		"OpDecorate %id BuiltIn GlobalInvocationId\n"
1605
1606		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
1607
1608		"%u32ptr       = OpTypePointer Function %u32\n"
1609		"%u32ptr_input = OpTypePointer Input %u32\n"
1610
1611		+ string(s_InputOutputBuffer) +
1612
1613		"%id        = OpVariable %uvec3ptr Input\n"
1614		"%zero      = OpConstant %i32 0\n"
1615		"%const3    = OpConstant %u32 3\n"
1616		"%const50   = OpConstant %u32 50\n"
1617		"%constf1p5 = OpConstant %f32 1.5\n"
1618		"%constf27  = OpConstant %f32 27.0\n"
1619		"%constf42  = OpConstant %f32 42.0\n"
1620
1621		"%main = OpFunction %void None %voidf\n"
1622
1623		// entry block.
1624		"%entry    = OpLabel\n"
1625
1626		// Create a temporary variable to hold the value of gl_GlobalInvocationID.x.
1627		"%xvar     = OpVariable %u32ptr Function\n"
1628		"%xptr     = OpAccessChain %u32ptr_input %id %zero\n"
1629		"%x        = OpLoad %u32 %xptr\n"
1630		"            OpStore %xvar %x\n"
1631
1632		"%cmp      = OpUGreaterThan %bool %x %const50\n"
1633		"            OpSelectionMerge %if_merge None\n"
1634		"            OpBranchConditional %cmp %if_true %if_false\n"
1635
1636		// Merge block for switch-statement: placed at the beginning.
1637		"%switch_merge = OpLabel\n"
1638		"                OpBranch %if_merge\n"
1639
1640		// Case 1 for switch-statement.
1641		"%case1    = OpLabel\n"
1642		"%x_1      = OpLoad %u32 %xvar\n"
1643		"%inloc_1  = OpAccessChain %f32ptr %indata %zero %x_1\n"
1644		"%inval_1  = OpLoad %f32 %inloc_1\n"
1645		"%addf42   = OpFAdd %f32 %inval_1 %constf42\n"
1646		"%outloc_1 = OpAccessChain %f32ptr %outdata %zero %x_1\n"
1647		"            OpStore %outloc_1 %addf42\n"
1648		"            OpBranch %switch_merge\n"
1649
1650		// False branch for if-statement: placed in the middle of switch cases and before true branch.
1651		"%if_false = OpLabel\n"
1652		"%x_f      = OpLoad %u32 %xvar\n"
1653		"%inloc_f  = OpAccessChain %f32ptr %indata %zero %x_f\n"
1654		"%inval_f  = OpLoad %f32 %inloc_f\n"
1655		"%negate   = OpFNegate %f32 %inval_f\n"
1656		"%outloc_f = OpAccessChain %f32ptr %outdata %zero %x_f\n"
1657		"            OpStore %outloc_f %negate\n"
1658		"            OpBranch %if_merge\n"
1659
1660		// Merge block for if-statement: placed in the middle of true and false branch.
1661		"%if_merge = OpLabel\n"
1662		"            OpReturn\n"
1663
1664		// True branch for if-statement: placed in the middle of swtich cases and after the false branch.
1665		"%if_true  = OpLabel\n"
1666		"%xval_t   = OpLoad %u32 %xvar\n"
1667		"%mod      = OpUMod %u32 %xval_t %const3\n"
1668		"            OpSelectionMerge %switch_merge None\n"
1669		"            OpSwitch %mod %default 0 %case0 1 %case1 2 %case2\n"
1670
1671		// Case 2 for switch-statement.
1672		"%case2    = OpLabel\n"
1673		"%x_2      = OpLoad %u32 %xvar\n"
1674		"%inloc_2  = OpAccessChain %f32ptr %indata %zero %x_2\n"
1675		"%inval_2  = OpLoad %f32 %inloc_2\n"
1676		"%subf27   = OpFSub %f32 %inval_2 %constf27\n"
1677		"%outloc_2 = OpAccessChain %f32ptr %outdata %zero %x_2\n"
1678		"            OpStore %outloc_2 %subf27\n"
1679		"            OpBranch %switch_merge\n"
1680
1681		// Default case for switch-statement: placed in the middle of normal cases.
1682		"%default = OpLabel\n"
1683		"           OpBranch %switch_merge\n"
1684
1685		// Case 0 for switch-statement: out of order.
1686		"%case0    = OpLabel\n"
1687		"%x_0      = OpLoad %u32 %xvar\n"
1688		"%inloc_0  = OpAccessChain %f32ptr %indata %zero %x_0\n"
1689		"%inval_0  = OpLoad %f32 %inloc_0\n"
1690		"%addf1p5  = OpFAdd %f32 %inval_0 %constf1p5\n"
1691		"%outloc_0 = OpAccessChain %f32ptr %outdata %zero %x_0\n"
1692		"            OpStore %outloc_0 %addf1p5\n"
1693		"            OpBranch %switch_merge\n"
1694
1695		"            OpFunctionEnd\n";
1696	spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
1697	spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
1698	spec.numWorkGroups = IVec3(numElements, 1, 1);
1699
1700	group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "various out-of-order blocks", spec));
1701
1702	return group.release();
1703}
1704
1705tcu::TestCaseGroup* createMultipleShaderGroup (tcu::TestContext& testCtx)
1706{
1707	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "multiple_shaders", "Test multiple shaders in the same module"));
1708	ComputeShaderSpec				spec1;
1709	ComputeShaderSpec				spec2;
1710	de::Random						rnd				(deStringHash(group->getName()));
1711	const int						numElements		= 100;
1712	vector<float>					inputFloats		(numElements, 0);
1713	vector<float>					outputFloats1	(numElements, 0);
1714	vector<float>					outputFloats2	(numElements, 0);
1715	fillRandomScalars(rnd, -500.f, 500.f, &inputFloats[0], numElements);
1716
1717	for (size_t ndx = 0; ndx < numElements; ++ndx)
1718	{
1719		outputFloats1[ndx] = inputFloats[ndx] + inputFloats[ndx];
1720		outputFloats2[ndx] = -inputFloats[ndx];
1721	}
1722
1723	const string assembly(
1724		"OpCapability Shader\n"
1725		"OpMemoryModel Logical GLSL450\n"
1726		"OpEntryPoint GLCompute %comp_main1 \"entrypoint1\" %id\n"
1727		"OpEntryPoint GLCompute %comp_main2 \"entrypoint2\" %id\n"
1728		// A module cannot have two OpEntryPoint instructions with the same Execution Model and the same Name string.
1729		"OpEntryPoint Vertex    %vert_main  \"entrypoint2\" %vert_builtins %vertexID %instanceID\n"
1730		"OpExecutionMode %comp_main1 LocalSize 1 1 1\n"
1731		"OpExecutionMode %comp_main2 LocalSize 1 1 1\n"
1732
1733		"OpName %comp_main1              \"entrypoint1\"\n"
1734		"OpName %comp_main2              \"entrypoint2\"\n"
1735		"OpName %vert_main               \"entrypoint2\"\n"
1736		"OpName %id                      \"gl_GlobalInvocationID\"\n"
1737		"OpName %vert_builtin_st         \"gl_PerVertex\"\n"
1738		"OpName %vertexID                \"gl_VertexIndex\"\n"
1739		"OpName %instanceID              \"gl_InstanceIndex\"\n"
1740		"OpMemberName %vert_builtin_st 0 \"gl_Position\"\n"
1741		"OpMemberName %vert_builtin_st 1 \"gl_PointSize\"\n"
1742		"OpMemberName %vert_builtin_st 2 \"gl_ClipDistance\"\n"
1743
1744		"OpDecorate %id                      BuiltIn GlobalInvocationId\n"
1745		"OpDecorate %vertexID                BuiltIn VertexIndex\n"
1746		"OpDecorate %instanceID              BuiltIn InstanceIndex\n"
1747		"OpDecorate %vert_builtin_st         Block\n"
1748		"OpMemberDecorate %vert_builtin_st 0 BuiltIn Position\n"
1749		"OpMemberDecorate %vert_builtin_st 1 BuiltIn PointSize\n"
1750		"OpMemberDecorate %vert_builtin_st 2 BuiltIn ClipDistance\n"
1751
1752		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
1753
1754		"%zero       = OpConstant %i32 0\n"
1755		"%one        = OpConstant %u32 1\n"
1756		"%c_f32_1    = OpConstant %f32 1\n"
1757
1758		"%i32ptr              = OpTypePointer Input %i32\n"
1759		"%vec4                = OpTypeVector %f32 4\n"
1760		"%vec4ptr             = OpTypePointer Output %vec4\n"
1761		"%f32arr1             = OpTypeArray %f32 %one\n"
1762		"%vert_builtin_st     = OpTypeStruct %vec4 %f32 %f32arr1\n"
1763		"%vert_builtin_st_ptr = OpTypePointer Output %vert_builtin_st\n"
1764		"%vert_builtins       = OpVariable %vert_builtin_st_ptr Output\n"
1765
1766		"%id         = OpVariable %uvec3ptr Input\n"
1767		"%vertexID   = OpVariable %i32ptr Input\n"
1768		"%instanceID = OpVariable %i32ptr Input\n"
1769		"%c_vec4_1   = OpConstantComposite %vec4 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_1\n"
1770
1771		// gl_Position = vec4(1.);
1772		"%vert_main  = OpFunction %void None %voidf\n"
1773		"%vert_entry = OpLabel\n"
1774		"%position   = OpAccessChain %vec4ptr %vert_builtins %zero\n"
1775		"              OpStore %position %c_vec4_1\n"
1776		"              OpReturn\n"
1777		"              OpFunctionEnd\n"
1778
1779		// Double inputs.
1780		"%comp_main1  = OpFunction %void None %voidf\n"
1781		"%comp1_entry = OpLabel\n"
1782		"%idval1      = OpLoad %uvec3 %id\n"
1783		"%x1          = OpCompositeExtract %u32 %idval1 0\n"
1784		"%inloc1      = OpAccessChain %f32ptr %indata %zero %x1\n"
1785		"%inval1      = OpLoad %f32 %inloc1\n"
1786		"%add         = OpFAdd %f32 %inval1 %inval1\n"
1787		"%outloc1     = OpAccessChain %f32ptr %outdata %zero %x1\n"
1788		"               OpStore %outloc1 %add\n"
1789		"               OpReturn\n"
1790		"               OpFunctionEnd\n"
1791
1792		// Negate inputs.
1793		"%comp_main2  = OpFunction %void None %voidf\n"
1794		"%comp2_entry = OpLabel\n"
1795		"%idval2      = OpLoad %uvec3 %id\n"
1796		"%x2          = OpCompositeExtract %u32 %idval2 0\n"
1797		"%inloc2      = OpAccessChain %f32ptr %indata %zero %x2\n"
1798		"%inval2      = OpLoad %f32 %inloc2\n"
1799		"%neg         = OpFNegate %f32 %inval2\n"
1800		"%outloc2     = OpAccessChain %f32ptr %outdata %zero %x2\n"
1801		"               OpStore %outloc2 %neg\n"
1802		"               OpReturn\n"
1803		"               OpFunctionEnd\n");
1804
1805	spec1.assembly = assembly;
1806	spec1.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
1807	spec1.outputs.push_back(BufferSp(new Float32Buffer(outputFloats1)));
1808	spec1.numWorkGroups = IVec3(numElements, 1, 1);
1809	spec1.entryPoint = "entrypoint1";
1810
1811	spec2.assembly = assembly;
1812	spec2.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
1813	spec2.outputs.push_back(BufferSp(new Float32Buffer(outputFloats2)));
1814	spec2.numWorkGroups = IVec3(numElements, 1, 1);
1815	spec2.entryPoint = "entrypoint2";
1816
1817	group->addChild(new SpvAsmComputeShaderCase(testCtx, "shader1", "multiple shaders in the same module", spec1));
1818	group->addChild(new SpvAsmComputeShaderCase(testCtx, "shader2", "multiple shaders in the same module", spec2));
1819
1820	return group.release();
1821}
1822
1823inline std::string makeLongUTF8String (size_t num4ByteChars)
1824{
1825	// An example of a longest valid UTF-8 character.  Be explicit about the
1826	// character type because Microsoft compilers can otherwise interpret the
1827	// character string as being over wide (16-bit) characters. Ideally, we
1828	// would just use a C++11 UTF-8 string literal, but we want to support older
1829	// Microsoft compilers.
1830	const std::basic_string<char> earthAfrica("\xF0\x9F\x8C\x8D");
1831	std::string longString;
1832	longString.reserve(num4ByteChars * 4);
1833	for (size_t count = 0; count < num4ByteChars; count++)
1834	{
1835		longString += earthAfrica;
1836	}
1837	return longString;
1838}
1839
1840tcu::TestCaseGroup* createOpSourceGroup (tcu::TestContext& testCtx)
1841{
1842	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opsource", "Tests the OpSource & OpSourceContinued instruction"));
1843	vector<CaseParameter>			cases;
1844	de::Random						rnd				(deStringHash(group->getName()));
1845	const int						numElements		= 100;
1846	vector<float>					positiveFloats	(numElements, 0);
1847	vector<float>					negativeFloats	(numElements, 0);
1848	const StringTemplate			shaderTemplate	(
1849		"OpCapability Shader\n"
1850		"OpMemoryModel Logical GLSL450\n"
1851
1852		"OpEntryPoint GLCompute %main \"main\" %id\n"
1853		"OpExecutionMode %main LocalSize 1 1 1\n"
1854
1855		"${SOURCE}\n"
1856
1857		"OpName %main           \"main\"\n"
1858		"OpName %id             \"gl_GlobalInvocationID\"\n"
1859
1860		"OpDecorate %id BuiltIn GlobalInvocationId\n"
1861
1862		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
1863
1864		"%id        = OpVariable %uvec3ptr Input\n"
1865		"%zero      = OpConstant %i32 0\n"
1866
1867		"%main      = OpFunction %void None %voidf\n"
1868		"%label     = OpLabel\n"
1869		"%idval     = OpLoad %uvec3 %id\n"
1870		"%x         = OpCompositeExtract %u32 %idval 0\n"
1871		"%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
1872		"%inval     = OpLoad %f32 %inloc\n"
1873		"%neg       = OpFNegate %f32 %inval\n"
1874		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
1875		"             OpStore %outloc %neg\n"
1876		"             OpReturn\n"
1877		"             OpFunctionEnd\n");
1878
1879	cases.push_back(CaseParameter("unknown_source",							"OpSource Unknown 0"));
1880	cases.push_back(CaseParameter("wrong_source",							"OpSource OpenCL_C 210"));
1881	cases.push_back(CaseParameter("normal_filename",						"%fname = OpString \"filename\"\n"
1882																			"OpSource GLSL 430 %fname"));
1883	cases.push_back(CaseParameter("empty_filename",							"%fname = OpString \"\"\n"
1884																			"OpSource GLSL 430 %fname"));
1885	cases.push_back(CaseParameter("normal_source_code",						"%fname = OpString \"filename\"\n"
1886																			"OpSource GLSL 430 %fname \"#version 430\nvoid main() {}\""));
1887	cases.push_back(CaseParameter("empty_source_code",						"%fname = OpString \"filename\"\n"
1888																			"OpSource GLSL 430 %fname \"\""));
1889	cases.push_back(CaseParameter("long_source_code",						"%fname = OpString \"filename\"\n"
1890																			"OpSource GLSL 430 %fname \"" + makeLongUTF8String(65530) + "ccc\"")); // word count: 65535
1891	cases.push_back(CaseParameter("utf8_source_code",						"%fname = OpString \"filename\"\n"
1892																			"OpSource GLSL 430 %fname \"\xE2\x98\x82\xE2\x98\x85\"")); // umbrella & black star symbol
1893	cases.push_back(CaseParameter("normal_sourcecontinued",					"%fname = OpString \"filename\"\n"
1894																			"OpSource GLSL 430 %fname \"#version 430\nvo\"\n"
1895																			"OpSourceContinued \"id main() {}\""));
1896	cases.push_back(CaseParameter("empty_sourcecontinued",					"%fname = OpString \"filename\"\n"
1897																			"OpSource GLSL 430 %fname \"#version 430\nvoid main() {}\"\n"
1898																			"OpSourceContinued \"\""));
1899	cases.push_back(CaseParameter("long_sourcecontinued",					"%fname = OpString \"filename\"\n"
1900																			"OpSource GLSL 430 %fname \"#version 430\nvoid main() {}\"\n"
1901																			"OpSourceContinued \"" + makeLongUTF8String(65533) + "ccc\"")); // word count: 65535
1902	cases.push_back(CaseParameter("utf8_sourcecontinued",					"%fname = OpString \"filename\"\n"
1903																			"OpSource GLSL 430 %fname \"#version 430\nvoid main() {}\"\n"
1904																			"OpSourceContinued \"\xE2\x98\x8E\xE2\x9A\x91\"")); // white telephone & black flag symbol
1905	cases.push_back(CaseParameter("multi_sourcecontinued",					"%fname = OpString \"filename\"\n"
1906																			"OpSource GLSL 430 %fname \"#version 430\n\"\n"
1907																			"OpSourceContinued \"void\"\n"
1908																			"OpSourceContinued \"main()\"\n"
1909																			"OpSourceContinued \"{}\""));
1910	cases.push_back(CaseParameter("empty_source_before_sourcecontinued",	"%fname = OpString \"filename\"\n"
1911																			"OpSource GLSL 430 %fname \"\"\n"
1912																			"OpSourceContinued \"#version 430\nvoid main() {}\""));
1913
1914	fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
1915
1916	for (size_t ndx = 0; ndx < numElements; ++ndx)
1917		negativeFloats[ndx] = -positiveFloats[ndx];
1918
1919	for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
1920	{
1921		map<string, string>		specializations;
1922		ComputeShaderSpec		spec;
1923
1924		specializations["SOURCE"] = cases[caseNdx].param;
1925		spec.assembly = shaderTemplate.specialize(specializations);
1926		spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
1927		spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
1928		spec.numWorkGroups = IVec3(numElements, 1, 1);
1929
1930		group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
1931	}
1932
1933	return group.release();
1934}
1935
1936tcu::TestCaseGroup* createOpSourceExtensionGroup (tcu::TestContext& testCtx)
1937{
1938	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opsourceextension", "Tests the OpSource instruction"));
1939	vector<CaseParameter>			cases;
1940	de::Random						rnd				(deStringHash(group->getName()));
1941	const int						numElements		= 100;
1942	vector<float>					inputFloats		(numElements, 0);
1943	vector<float>					outputFloats	(numElements, 0);
1944	const StringTemplate			shaderTemplate	(
1945		string(s_ShaderPreamble) +
1946
1947		"OpSourceExtension \"${EXTENSION}\"\n"
1948
1949		"OpName %main           \"main\"\n"
1950		"OpName %id             \"gl_GlobalInvocationID\"\n"
1951
1952		"OpDecorate %id BuiltIn GlobalInvocationId\n"
1953
1954		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
1955
1956		"%id        = OpVariable %uvec3ptr Input\n"
1957		"%zero      = OpConstant %i32 0\n"
1958
1959		"%main      = OpFunction %void None %voidf\n"
1960		"%label     = OpLabel\n"
1961		"%idval     = OpLoad %uvec3 %id\n"
1962		"%x         = OpCompositeExtract %u32 %idval 0\n"
1963		"%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
1964		"%inval     = OpLoad %f32 %inloc\n"
1965		"%neg       = OpFNegate %f32 %inval\n"
1966		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
1967		"             OpStore %outloc %neg\n"
1968		"             OpReturn\n"
1969		"             OpFunctionEnd\n");
1970
1971	cases.push_back(CaseParameter("empty_extension",	""));
1972	cases.push_back(CaseParameter("real_extension",		"GL_ARB_texture_rectangle"));
1973	cases.push_back(CaseParameter("fake_extension",		"GL_ARB_im_the_ultimate_extension"));
1974	cases.push_back(CaseParameter("utf8_extension",		"GL_ARB_\xE2\x98\x82\xE2\x98\x85"));
1975	cases.push_back(CaseParameter("long_extension",		makeLongUTF8String(65533) + "ccc")); // word count: 65535
1976
1977	fillRandomScalars(rnd, -200.f, 200.f, &inputFloats[0], numElements);
1978
1979	for (size_t ndx = 0; ndx < numElements; ++ndx)
1980		outputFloats[ndx] = -inputFloats[ndx];
1981
1982	for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
1983	{
1984		map<string, string>		specializations;
1985		ComputeShaderSpec		spec;
1986
1987		specializations["EXTENSION"] = cases[caseNdx].param;
1988		spec.assembly = shaderTemplate.specialize(specializations);
1989		spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
1990		spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
1991		spec.numWorkGroups = IVec3(numElements, 1, 1);
1992
1993		group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
1994	}
1995
1996	return group.release();
1997}
1998
1999// Checks that a compute shader can generate a constant null value of various types, without exercising a computation on it.
2000tcu::TestCaseGroup* createOpConstantNullGroup (tcu::TestContext& testCtx)
2001{
2002	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opconstantnull", "Tests the OpConstantNull instruction"));
2003	vector<CaseParameter>			cases;
2004	de::Random						rnd				(deStringHash(group->getName()));
2005	const int						numElements		= 100;
2006	vector<float>					positiveFloats	(numElements, 0);
2007	vector<float>					negativeFloats	(numElements, 0);
2008	const StringTemplate			shaderTemplate	(
2009		string(s_ShaderPreamble) +
2010
2011		"OpSource GLSL 430\n"
2012		"OpName %main           \"main\"\n"
2013		"OpName %id             \"gl_GlobalInvocationID\"\n"
2014
2015		"OpDecorate %id BuiltIn GlobalInvocationId\n"
2016
2017		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
2018
2019		"${TYPE}\n"
2020		"%null      = OpConstantNull %type\n"
2021
2022		"%id        = OpVariable %uvec3ptr Input\n"
2023		"%zero      = OpConstant %i32 0\n"
2024
2025		"%main      = OpFunction %void None %voidf\n"
2026		"%label     = OpLabel\n"
2027		"%idval     = OpLoad %uvec3 %id\n"
2028		"%x         = OpCompositeExtract %u32 %idval 0\n"
2029		"%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
2030		"%inval     = OpLoad %f32 %inloc\n"
2031		"%neg       = OpFNegate %f32 %inval\n"
2032		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
2033		"             OpStore %outloc %neg\n"
2034		"             OpReturn\n"
2035		"             OpFunctionEnd\n");
2036
2037	cases.push_back(CaseParameter("bool",			"%type = OpTypeBool"));
2038	cases.push_back(CaseParameter("sint32",			"%type = OpTypeInt 32 1"));
2039	cases.push_back(CaseParameter("uint32",			"%type = OpTypeInt 32 0"));
2040	cases.push_back(CaseParameter("float32",		"%type = OpTypeFloat 32"));
2041	cases.push_back(CaseParameter("vec4float32",	"%type = OpTypeVector %f32 4"));
2042	cases.push_back(CaseParameter("vec3bool",		"%type = OpTypeVector %bool 3"));
2043	cases.push_back(CaseParameter("vec2uint32",		"%type = OpTypeVector %u32 2"));
2044	cases.push_back(CaseParameter("matrix",			"%type = OpTypeMatrix %fvec3 3"));
2045	cases.push_back(CaseParameter("array",			"%100 = OpConstant %u32 100\n"
2046													"%type = OpTypeArray %i32 %100"));
2047	cases.push_back(CaseParameter("struct",			"%type = OpTypeStruct %f32 %i32 %u32"));
2048	cases.push_back(CaseParameter("pointer",		"%type = OpTypePointer Function %i32"));
2049
2050	fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
2051
2052	for (size_t ndx = 0; ndx < numElements; ++ndx)
2053		negativeFloats[ndx] = -positiveFloats[ndx];
2054
2055	for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
2056	{
2057		map<string, string>		specializations;
2058		ComputeShaderSpec		spec;
2059
2060		specializations["TYPE"] = cases[caseNdx].param;
2061		spec.assembly = shaderTemplate.specialize(specializations);
2062		spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
2063		spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
2064		spec.numWorkGroups = IVec3(numElements, 1, 1);
2065
2066		group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
2067	}
2068
2069	return group.release();
2070}
2071
2072// Checks that a compute shader can generate a constant composite value of various types, without exercising a computation on it.
2073tcu::TestCaseGroup* createOpConstantCompositeGroup (tcu::TestContext& testCtx)
2074{
2075	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opconstantcomposite", "Tests the OpConstantComposite instruction"));
2076	vector<CaseParameter>			cases;
2077	de::Random						rnd				(deStringHash(group->getName()));
2078	const int						numElements		= 100;
2079	vector<float>					positiveFloats	(numElements, 0);
2080	vector<float>					negativeFloats	(numElements, 0);
2081	const StringTemplate			shaderTemplate	(
2082		string(s_ShaderPreamble) +
2083
2084		"OpSource GLSL 430\n"
2085		"OpName %main           \"main\"\n"
2086		"OpName %id             \"gl_GlobalInvocationID\"\n"
2087
2088		"OpDecorate %id BuiltIn GlobalInvocationId\n"
2089
2090		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
2091
2092		"%id        = OpVariable %uvec3ptr Input\n"
2093		"%zero      = OpConstant %i32 0\n"
2094
2095		"${CONSTANT}\n"
2096
2097		"%main      = OpFunction %void None %voidf\n"
2098		"%label     = OpLabel\n"
2099		"%idval     = OpLoad %uvec3 %id\n"
2100		"%x         = OpCompositeExtract %u32 %idval 0\n"
2101		"%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
2102		"%inval     = OpLoad %f32 %inloc\n"
2103		"%neg       = OpFNegate %f32 %inval\n"
2104		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
2105		"             OpStore %outloc %neg\n"
2106		"             OpReturn\n"
2107		"             OpFunctionEnd\n");
2108
2109	cases.push_back(CaseParameter("vector",			"%five = OpConstant %u32 5\n"
2110													"%const = OpConstantComposite %uvec3 %five %zero %five"));
2111	cases.push_back(CaseParameter("matrix",			"%m3uvec3 = OpTypeMatrix %fvec3 3\n"
2112													"%ten = OpConstant %u32 10\n"
2113													"%vec = OpConstantComposite %uvec3 %ten %zero %ten\n"
2114													"%mat = OpConstantComposite %m3uvec3 %vec %vec %vec"));
2115	cases.push_back(CaseParameter("struct",			"%m2vec3 = OpTypeMatrix %fvec3 2\n"
2116													"%struct = OpTypeStruct %u32 %f32 %uvec3 %m2vec3\n"
2117													"%one = OpConstant %u32 1\n"
2118													"%point5 = OpConstant %f32 0.5\n"
2119													"%vec = OpConstantComposite %uvec3 %one %one %zero\n"
2120													"%mat = OpConstantComposite %m2vec3 %vec %vec\n"
2121													"%const = OpConstantComposite %struct %one %point5 %vec %mat"));
2122	cases.push_back(CaseParameter("nested_struct",	"%st1 = OpTypeStruct %u32 %f32\n"
2123													"%st2 = OpTypeStruct %i32 %i32\n"
2124													"%struct = OpTypeStruct %st1 %st2\n"
2125													"%point5 = OpConstant %f32 0.5\n"
2126													"%one = OpConstant %u32 1\n"
2127													"%ten = OpConstant %i32 10\n"
2128													"%st1val = OpConstantComposite %st1 %one %point5\n"
2129													"%st2val = OpConstantComposite %st2 %ten %ten\n"
2130													"%const = OpConstantComposite %struct %st1val %st2val"));
2131
2132	fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
2133
2134	for (size_t ndx = 0; ndx < numElements; ++ndx)
2135		negativeFloats[ndx] = -positiveFloats[ndx];
2136
2137	for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
2138	{
2139		map<string, string>		specializations;
2140		ComputeShaderSpec		spec;
2141
2142		specializations["CONSTANT"] = cases[caseNdx].param;
2143		spec.assembly = shaderTemplate.specialize(specializations);
2144		spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
2145		spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
2146		spec.numWorkGroups = IVec3(numElements, 1, 1);
2147
2148		group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
2149	}
2150
2151	return group.release();
2152}
2153
2154// Creates a floating point number with the given exponent, and significand
2155// bits set. It can only create normalized numbers. Only the least significant
2156// 24 bits of the significand will be examined. The final bit of the
2157// significand will also be ignored. This allows alignment to be written
2158// similarly to C99 hex-floats.
2159// For example if you wanted to write 0x1.7f34p-12 you would call
2160// constructNormalizedFloat(-12, 0x7f3400)
2161float constructNormalizedFloat (deInt32 exponent, deUint32 significand)
2162{
2163	float f = 1.0f;
2164
2165	for (deInt32 idx = 0; idx < 23; ++idx)
2166	{
2167		f += ((significand & 0x800000) == 0) ? 0.f : std::ldexp(1.0f, -idx);
2168		significand <<= 1;
2169	}
2170
2171	return std::ldexp(f, exponent);
2172}
2173
2174// Compare instruction for the OpQuantizeF16 compute exact case.
2175// Returns true if the output is what is expected from the test case.
2176bool compareOpQuantizeF16ComputeExactCase (const std::vector<BufferSp>&, const vector<AllocationSp>& outputAllocs, const std::vector<BufferSp>& expectedOutputs)
2177{
2178	if (outputAllocs.size() != 1)
2179		return false;
2180
2181	// We really just need this for size because we cannot compare Nans.
2182	const BufferSp&	expectedOutput	= expectedOutputs[0];
2183	const float*	outputAsFloat	= static_cast<const float*>(outputAllocs[0]->getHostPtr());;
2184
2185	if (expectedOutput->getNumBytes() != 4*sizeof(float)) {
2186		return false;
2187	}
2188
2189	if (*outputAsFloat != constructNormalizedFloat(8, 0x304000) &&
2190		*outputAsFloat != constructNormalizedFloat(8, 0x300000)) {
2191		return false;
2192	}
2193
2194	if (*outputAsFloat != -constructNormalizedFloat(-7, 0x600000) &&
2195		*outputAsFloat != -constructNormalizedFloat(-7, 0x604000)) {
2196		return false;
2197	}
2198
2199	if (*outputAsFloat != constructNormalizedFloat(2, 0x01C000) &&
2200		*outputAsFloat != constructNormalizedFloat(2, 0x020000)) {
2201		return false;
2202	}
2203
2204	if (*outputAsFloat != constructNormalizedFloat(1, 0xFFC000) &&
2205		*outputAsFloat != constructNormalizedFloat(2, 0x000000)) {
2206		return false;
2207	}
2208
2209	return true;
2210}
2211
2212// Checks that every output from a test-case is a float NaN.
2213bool compareNan (const std::vector<BufferSp>&, const vector<AllocationSp>& outputAllocs, const std::vector<BufferSp>& expectedOutputs)
2214{
2215	if (outputAllocs.size() != 1)
2216		return false;
2217
2218	// We really just need this for size because we cannot compare Nans.
2219	const BufferSp& expectedOutput		= expectedOutputs[0];
2220	const float* output_as_float		= static_cast<const float*>(outputAllocs[0]->getHostPtr());;
2221
2222	for (size_t idx = 0; idx < expectedOutput->getNumBytes() / sizeof(float); ++idx)
2223	{
2224		if (!isnan(output_as_float[idx]))
2225		{
2226			return false;
2227		}
2228	}
2229
2230	return true;
2231}
2232
2233// Checks that a compute shader can generate a constant composite value of various types, without exercising a computation on it.
2234tcu::TestCaseGroup* createOpQuantizeToF16Group (tcu::TestContext& testCtx)
2235{
2236	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opquantize", "Tests the OpQuantizeToF16 instruction"));
2237
2238	const std::string shader (
2239		string(s_ShaderPreamble) +
2240
2241		"OpSource GLSL 430\n"
2242		"OpName %main           \"main\"\n"
2243		"OpName %id             \"gl_GlobalInvocationID\"\n"
2244
2245		"OpDecorate %id BuiltIn GlobalInvocationId\n"
2246
2247		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
2248
2249		"%id        = OpVariable %uvec3ptr Input\n"
2250		"%zero      = OpConstant %i32 0\n"
2251
2252		"%main      = OpFunction %void None %voidf\n"
2253		"%label     = OpLabel\n"
2254		"%idval     = OpLoad %uvec3 %id\n"
2255		"%x         = OpCompositeExtract %u32 %idval 0\n"
2256		"%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
2257		"%inval     = OpLoad %f32 %inloc\n"
2258		"%quant     = OpQuantizeToF16 %f32 %inval\n"
2259		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
2260		"             OpStore %outloc %quant\n"
2261		"             OpReturn\n"
2262		"             OpFunctionEnd\n");
2263
2264	{
2265		ComputeShaderSpec	spec;
2266		const deUint32		numElements		= 100;
2267		vector<float>		infinities;
2268		vector<float>		results;
2269
2270		infinities.reserve(numElements);
2271		results.reserve(numElements);
2272
2273		for (size_t idx = 0; idx < numElements; ++idx)
2274		{
2275			switch(idx % 4)
2276			{
2277				case 0:
2278					infinities.push_back(std::numeric_limits<float>::infinity());
2279					results.push_back(std::numeric_limits<float>::infinity());
2280					break;
2281				case 1:
2282					infinities.push_back(-std::numeric_limits<float>::infinity());
2283					results.push_back(-std::numeric_limits<float>::infinity());
2284					break;
2285				case 2:
2286					infinities.push_back(std::ldexp(1.0f, 16));
2287					results.push_back(std::numeric_limits<float>::infinity());
2288					break;
2289				case 3:
2290					infinities.push_back(std::ldexp(-1.0f, 32));
2291					results.push_back(-std::numeric_limits<float>::infinity());
2292					break;
2293			}
2294		}
2295
2296		spec.assembly = shader;
2297		spec.inputs.push_back(BufferSp(new Float32Buffer(infinities)));
2298		spec.outputs.push_back(BufferSp(new Float32Buffer(results)));
2299		spec.numWorkGroups = IVec3(numElements, 1, 1);
2300
2301		group->addChild(new SpvAsmComputeShaderCase(
2302			testCtx, "infinities", "Check that infinities propagated and created", spec));
2303	}
2304
2305	{
2306		ComputeShaderSpec	spec;
2307		vector<float>		nans;
2308		const deUint32		numElements		= 100;
2309
2310		nans.reserve(numElements);
2311
2312		for (size_t idx = 0; idx < numElements; ++idx)
2313		{
2314			if (idx % 2 == 0)
2315			{
2316				nans.push_back(std::numeric_limits<float>::quiet_NaN());
2317			}
2318			else
2319			{
2320				nans.push_back(-std::numeric_limits<float>::quiet_NaN());
2321			}
2322		}
2323
2324		spec.assembly = shader;
2325		spec.inputs.push_back(BufferSp(new Float32Buffer(nans)));
2326		spec.outputs.push_back(BufferSp(new Float32Buffer(nans)));
2327		spec.numWorkGroups = IVec3(numElements, 1, 1);
2328		spec.verifyIO = &compareNan;
2329
2330		group->addChild(new SpvAsmComputeShaderCase(
2331			testCtx, "propagated_nans", "Check that nans are propagated", spec));
2332	}
2333
2334	{
2335		ComputeShaderSpec	spec;
2336		vector<float>		small;
2337		vector<float>		zeros;
2338		const deUint32		numElements		= 100;
2339
2340		small.reserve(numElements);
2341		zeros.reserve(numElements);
2342
2343		for (size_t idx = 0; idx < numElements; ++idx)
2344		{
2345			switch(idx % 6)
2346			{
2347				case 0:
2348					small.push_back(0.f);
2349					zeros.push_back(0.f);
2350					break;
2351				case 1:
2352					small.push_back(-0.f);
2353					zeros.push_back(-0.f);
2354					break;
2355				case 2:
2356					small.push_back(std::ldexp(1.0f, -16));
2357					zeros.push_back(0.f);
2358					break;
2359				case 3:
2360					small.push_back(std::ldexp(-1.0f, -32));
2361					zeros.push_back(-0.f);
2362					break;
2363				case 4:
2364					small.push_back(std::ldexp(1.0f, -127));
2365					zeros.push_back(0.f);
2366					break;
2367				case 5:
2368					small.push_back(-std::ldexp(1.0f, -128));
2369					zeros.push_back(-0.f);
2370					break;
2371			}
2372		}
2373
2374		spec.assembly = shader;
2375		spec.inputs.push_back(BufferSp(new Float32Buffer(small)));
2376		spec.outputs.push_back(BufferSp(new Float32Buffer(zeros)));
2377		spec.numWorkGroups = IVec3(numElements, 1, 1);
2378
2379		group->addChild(new SpvAsmComputeShaderCase(
2380			testCtx, "flush_to_zero", "Check that values are zeroed correctly", spec));
2381	}
2382
2383	{
2384		ComputeShaderSpec	spec;
2385		vector<float>		exact;
2386		const deUint32		numElements		= 200;
2387
2388		exact.reserve(numElements);
2389
2390		for (size_t idx = 0; idx < numElements; ++idx)
2391			exact.push_back(static_cast<float>(idx - 100));
2392
2393		spec.assembly = shader;
2394		spec.inputs.push_back(BufferSp(new Float32Buffer(exact)));
2395		spec.outputs.push_back(BufferSp(new Float32Buffer(exact)));
2396		spec.numWorkGroups = IVec3(numElements, 1, 1);
2397
2398		group->addChild(new SpvAsmComputeShaderCase(
2399			testCtx, "exact", "Check that values exactly preserved where appropriate", spec));
2400	}
2401
2402	{
2403		ComputeShaderSpec	spec;
2404		vector<float>		inputs;
2405		const deUint32		numElements		= 4;
2406
2407		inputs.push_back(constructNormalizedFloat(8,	0x300300));
2408		inputs.push_back(-constructNormalizedFloat(-7,	0x600800));
2409		inputs.push_back(constructNormalizedFloat(2,	0x01E000));
2410		inputs.push_back(constructNormalizedFloat(1,	0xFFE000));
2411
2412		spec.assembly = shader;
2413		spec.verifyIO = &compareOpQuantizeF16ComputeExactCase;
2414		spec.inputs.push_back(BufferSp(new Float32Buffer(inputs)));
2415		spec.outputs.push_back(BufferSp(new Float32Buffer(inputs)));
2416		spec.numWorkGroups = IVec3(numElements, 1, 1);
2417
2418		group->addChild(new SpvAsmComputeShaderCase(
2419			testCtx, "rounded", "Check that are rounded when needed", spec));
2420	}
2421
2422	return group.release();
2423}
2424
2425// Performs a bitwise copy of source to the destination type Dest.
2426template <typename Dest, typename Src>
2427Dest bitwiseCast(Src source)
2428{
2429  Dest dest;
2430  DE_STATIC_ASSERT(sizeof(source) == sizeof(dest));
2431  deMemcpy(&dest, &source, sizeof(dest));
2432  return dest;
2433}
2434
2435tcu::TestCaseGroup* createSpecConstantOpQuantizeToF16Group (tcu::TestContext& testCtx)
2436{
2437	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opspecconstantop_opquantize", "Tests the OpQuantizeToF16 opcode for the OpSpecConstantOp instruction"));
2438
2439	const std::string shader (
2440		string(s_ShaderPreamble) +
2441
2442		"OpName %main           \"main\"\n"
2443		"OpName %id             \"gl_GlobalInvocationID\"\n"
2444
2445		"OpDecorate %id BuiltIn GlobalInvocationId\n"
2446
2447		"OpDecorate %sc_0  SpecId 0\n"
2448		"OpDecorate %sc_1  SpecId 1\n"
2449		"OpDecorate %sc_2  SpecId 2\n"
2450		"OpDecorate %sc_3  SpecId 3\n"
2451		"OpDecorate %sc_4  SpecId 4\n"
2452		"OpDecorate %sc_5  SpecId 5\n"
2453
2454		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
2455
2456		"%id        = OpVariable %uvec3ptr Input\n"
2457		"%zero      = OpConstant %i32 0\n"
2458		"%c_u32_6   = OpConstant %u32 6\n"
2459
2460		"%sc_0      = OpSpecConstant %f32 0.\n"
2461		"%sc_1      = OpSpecConstant %f32 0.\n"
2462		"%sc_2      = OpSpecConstant %f32 0.\n"
2463		"%sc_3      = OpSpecConstant %f32 0.\n"
2464		"%sc_4      = OpSpecConstant %f32 0.\n"
2465		"%sc_5      = OpSpecConstant %f32 0.\n"
2466
2467		"%sc_0_quant = OpSpecConstantOp %f32 QuantizeToF16 %sc_0\n"
2468		"%sc_1_quant = OpSpecConstantOp %f32 QuantizeToF16 %sc_1\n"
2469		"%sc_2_quant = OpSpecConstantOp %f32 QuantizeToF16 %sc_2\n"
2470		"%sc_3_quant = OpSpecConstantOp %f32 QuantizeToF16 %sc_3\n"
2471		"%sc_4_quant = OpSpecConstantOp %f32 QuantizeToF16 %sc_4\n"
2472		"%sc_5_quant = OpSpecConstantOp %f32 QuantizeToF16 %sc_5\n"
2473
2474		"%main      = OpFunction %void None %voidf\n"
2475		"%label     = OpLabel\n"
2476		"%idval     = OpLoad %uvec3 %id\n"
2477		"%x         = OpCompositeExtract %u32 %idval 0\n"
2478		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
2479		"%selector  = OpUMod %u32 %x %c_u32_6\n"
2480		"            OpSelectionMerge %exit None\n"
2481		"            OpSwitch %selector %exit 0 %case0 1 %case1 2 %case2 3 %case3 4 %case4 5 %case5\n"
2482
2483		"%case0     = OpLabel\n"
2484		"             OpStore %outloc %sc_0_quant\n"
2485		"             OpBranch %exit\n"
2486
2487		"%case1     = OpLabel\n"
2488		"             OpStore %outloc %sc_1_quant\n"
2489		"             OpBranch %exit\n"
2490
2491		"%case2     = OpLabel\n"
2492		"             OpStore %outloc %sc_2_quant\n"
2493		"             OpBranch %exit\n"
2494
2495		"%case3     = OpLabel\n"
2496		"             OpStore %outloc %sc_3_quant\n"
2497		"             OpBranch %exit\n"
2498
2499		"%case4     = OpLabel\n"
2500		"             OpStore %outloc %sc_4_quant\n"
2501		"             OpBranch %exit\n"
2502
2503		"%case5     = OpLabel\n"
2504		"             OpStore %outloc %sc_5_quant\n"
2505		"             OpBranch %exit\n"
2506
2507		"%exit      = OpLabel\n"
2508		"             OpReturn\n"
2509
2510		"             OpFunctionEnd\n");
2511
2512	{
2513		ComputeShaderSpec	spec;
2514		const deUint8		numCases	= 4;
2515		vector<float>		inputs		(numCases, 0.f);
2516		vector<float>		outputs;
2517
2518		spec.numWorkGroups = IVec3(numCases, 1, 1);
2519
2520		spec.specConstants.push_back(bitwiseCast<deUint32>(std::numeric_limits<float>::infinity()));
2521		spec.specConstants.push_back(bitwiseCast<deUint32>(-std::numeric_limits<float>::infinity()));
2522		spec.specConstants.push_back(bitwiseCast<deUint32>(std::ldexp(1.0f, 16)));
2523		spec.specConstants.push_back(bitwiseCast<deUint32>(std::ldexp(-1.0f, 32)));
2524
2525		outputs.push_back(std::numeric_limits<float>::infinity());
2526		outputs.push_back(-std::numeric_limits<float>::infinity());
2527		outputs.push_back(std::numeric_limits<float>::infinity());
2528		outputs.push_back(-std::numeric_limits<float>::infinity());
2529
2530		spec.inputs.push_back(BufferSp(new Float32Buffer(inputs)));
2531		spec.outputs.push_back(BufferSp(new Float32Buffer(outputs)));
2532
2533		group->addChild(new SpvAsmComputeShaderCase(
2534			testCtx, "infinities", "Check that infinities propagated and created", spec));
2535	}
2536
2537	{
2538		ComputeShaderSpec	spec;
2539		const deUint8		numCases	= 2;
2540		vector<float>		inputs		(numCases, 0.f);
2541		vector<float>		outputs;
2542
2543		spec.numWorkGroups	= IVec3(numCases, 1, 1);
2544		spec.verifyIO		= &compareNan;
2545
2546		outputs.push_back(std::numeric_limits<float>::quiet_NaN());
2547		outputs.push_back(-std::numeric_limits<float>::quiet_NaN());
2548
2549		for (deUint8 idx = 0; idx < numCases; ++idx)
2550			spec.specConstants.push_back(bitwiseCast<deUint32>(outputs[idx]));
2551
2552		spec.inputs.push_back(BufferSp(new Float32Buffer(inputs)));
2553		spec.outputs.push_back(BufferSp(new Float32Buffer(outputs)));
2554
2555		group->addChild(new SpvAsmComputeShaderCase(
2556			testCtx, "propagated_nans", "Check that nans are propagated", spec));
2557	}
2558
2559	{
2560		ComputeShaderSpec	spec;
2561		const deUint8		numCases	= 6;
2562		vector<float>		inputs		(numCases, 0.f);
2563		vector<float>		outputs;
2564
2565		spec.numWorkGroups	= IVec3(numCases, 1, 1);
2566
2567		spec.specConstants.push_back(bitwiseCast<deUint32>(0.f));
2568		spec.specConstants.push_back(bitwiseCast<deUint32>(-0.f));
2569		spec.specConstants.push_back(bitwiseCast<deUint32>(std::ldexp(1.0f, -16)));
2570		spec.specConstants.push_back(bitwiseCast<deUint32>(std::ldexp(-1.0f, -32)));
2571		spec.specConstants.push_back(bitwiseCast<deUint32>(std::ldexp(1.0f, -127)));
2572		spec.specConstants.push_back(bitwiseCast<deUint32>(-std::ldexp(1.0f, -128)));
2573
2574		outputs.push_back(0.f);
2575		outputs.push_back(-0.f);
2576		outputs.push_back(0.f);
2577		outputs.push_back(-0.f);
2578		outputs.push_back(0.f);
2579		outputs.push_back(-0.f);
2580
2581		spec.inputs.push_back(BufferSp(new Float32Buffer(inputs)));
2582		spec.outputs.push_back(BufferSp(new Float32Buffer(outputs)));
2583
2584		group->addChild(new SpvAsmComputeShaderCase(
2585			testCtx, "flush_to_zero", "Check that values are zeroed correctly", spec));
2586	}
2587
2588	{
2589		ComputeShaderSpec	spec;
2590		const deUint8		numCases	= 6;
2591		vector<float>		inputs		(numCases, 0.f);
2592		vector<float>		outputs;
2593
2594		spec.numWorkGroups	= IVec3(numCases, 1, 1);
2595
2596		for (deUint8 idx = 0; idx < 6; ++idx)
2597		{
2598			const float f = static_cast<float>(idx * 10 - 30) / 4.f;
2599			spec.specConstants.push_back(bitwiseCast<deUint32>(f));
2600			outputs.push_back(f);
2601		}
2602
2603		spec.inputs.push_back(BufferSp(new Float32Buffer(inputs)));
2604		spec.outputs.push_back(BufferSp(new Float32Buffer(outputs)));
2605
2606		group->addChild(new SpvAsmComputeShaderCase(
2607			testCtx, "exact", "Check that values exactly preserved where appropriate", spec));
2608	}
2609
2610	{
2611		ComputeShaderSpec	spec;
2612		const deUint8		numCases	= 4;
2613		vector<float>		inputs		(numCases, 0.f);
2614		vector<float>		outputs;
2615
2616		spec.numWorkGroups	= IVec3(numCases, 1, 1);
2617		spec.verifyIO		= &compareOpQuantizeF16ComputeExactCase;
2618
2619		outputs.push_back(constructNormalizedFloat(8, 0x300300));
2620		outputs.push_back(-constructNormalizedFloat(-7, 0x600800));
2621		outputs.push_back(constructNormalizedFloat(2, 0x01E000));
2622		outputs.push_back(constructNormalizedFloat(1, 0xFFE000));
2623
2624		for (deUint8 idx = 0; idx < numCases; ++idx)
2625			spec.specConstants.push_back(bitwiseCast<deUint32>(outputs[idx]));
2626
2627		spec.inputs.push_back(BufferSp(new Float32Buffer(inputs)));
2628		spec.outputs.push_back(BufferSp(new Float32Buffer(outputs)));
2629
2630		group->addChild(new SpvAsmComputeShaderCase(
2631			testCtx, "rounded", "Check that are rounded when needed", spec));
2632	}
2633
2634	return group.release();
2635}
2636
2637// Checks that constant null/composite values can be used in computation.
2638tcu::TestCaseGroup* createOpConstantUsageGroup (tcu::TestContext& testCtx)
2639{
2640	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opconstantnullcomposite", "Spotcheck the OpConstantNull & OpConstantComposite instruction"));
2641	ComputeShaderSpec				spec;
2642	de::Random						rnd				(deStringHash(group->getName()));
2643	const int						numElements		= 100;
2644	vector<float>					positiveFloats	(numElements, 0);
2645	vector<float>					negativeFloats	(numElements, 0);
2646
2647	fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
2648
2649	for (size_t ndx = 0; ndx < numElements; ++ndx)
2650		negativeFloats[ndx] = -positiveFloats[ndx];
2651
2652	spec.assembly =
2653		"OpCapability Shader\n"
2654		"%std450 = OpExtInstImport \"GLSL.std.450\"\n"
2655		"OpMemoryModel Logical GLSL450\n"
2656		"OpEntryPoint GLCompute %main \"main\" %id\n"
2657		"OpExecutionMode %main LocalSize 1 1 1\n"
2658
2659		"OpSource GLSL 430\n"
2660		"OpName %main           \"main\"\n"
2661		"OpName %id             \"gl_GlobalInvocationID\"\n"
2662
2663		"OpDecorate %id BuiltIn GlobalInvocationId\n"
2664
2665		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
2666
2667		"%fvec3     = OpTypeVector %f32 3\n"
2668		"%fmat      = OpTypeMatrix %fvec3 3\n"
2669		"%ten       = OpConstant %u32 10\n"
2670		"%f32arr10  = OpTypeArray %f32 %ten\n"
2671		"%fst       = OpTypeStruct %f32 %f32\n"
2672
2673		+ string(s_InputOutputBuffer) +
2674
2675		"%id        = OpVariable %uvec3ptr Input\n"
2676		"%zero      = OpConstant %i32 0\n"
2677
2678		// Create a bunch of null values
2679		"%unull     = OpConstantNull %u32\n"
2680		"%fnull     = OpConstantNull %f32\n"
2681		"%vnull     = OpConstantNull %fvec3\n"
2682		"%mnull     = OpConstantNull %fmat\n"
2683		"%anull     = OpConstantNull %f32arr10\n"
2684		"%snull     = OpConstantComposite %fst %fnull %fnull\n"
2685
2686		"%main      = OpFunction %void None %voidf\n"
2687		"%label     = OpLabel\n"
2688		"%idval     = OpLoad %uvec3 %id\n"
2689		"%x         = OpCompositeExtract %u32 %idval 0\n"
2690		"%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
2691		"%inval     = OpLoad %f32 %inloc\n"
2692		"%neg       = OpFNegate %f32 %inval\n"
2693
2694		// Get the abs() of (a certain element of) those null values
2695		"%unull_cov = OpConvertUToF %f32 %unull\n"
2696		"%unull_abs = OpExtInst %f32 %std450 FAbs %unull_cov\n"
2697		"%fnull_abs = OpExtInst %f32 %std450 FAbs %fnull\n"
2698		"%vnull_0   = OpCompositeExtract %f32 %vnull 0\n"
2699		"%vnull_abs = OpExtInst %f32 %std450 FAbs %vnull_0\n"
2700		"%mnull_12  = OpCompositeExtract %f32 %mnull 1 2\n"
2701		"%mnull_abs = OpExtInst %f32 %std450 FAbs %mnull_12\n"
2702		"%anull_3   = OpCompositeExtract %f32 %anull 3\n"
2703		"%anull_abs = OpExtInst %f32 %std450 FAbs %anull_3\n"
2704		"%snull_1   = OpCompositeExtract %f32 %snull 1\n"
2705		"%snull_abs = OpExtInst %f32 %std450 FAbs %snull_1\n"
2706
2707		// Add them all
2708		"%add1      = OpFAdd %f32 %neg  %unull_abs\n"
2709		"%add2      = OpFAdd %f32 %add1 %fnull_abs\n"
2710		"%add3      = OpFAdd %f32 %add2 %vnull_abs\n"
2711		"%add4      = OpFAdd %f32 %add3 %mnull_abs\n"
2712		"%add5      = OpFAdd %f32 %add4 %anull_abs\n"
2713		"%final     = OpFAdd %f32 %add5 %snull_abs\n"
2714
2715		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
2716		"             OpStore %outloc %final\n" // write to output
2717		"             OpReturn\n"
2718		"             OpFunctionEnd\n";
2719	spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
2720	spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
2721	spec.numWorkGroups = IVec3(numElements, 1, 1);
2722
2723	group->addChild(new SpvAsmComputeShaderCase(testCtx, "spotcheck", "Check that values constructed via OpConstantNull & OpConstantComposite can be used", spec));
2724
2725	return group.release();
2726}
2727
2728// Assembly code used for testing loop control is based on GLSL source code:
2729// #version 430
2730//
2731// layout(std140, set = 0, binding = 0) readonly buffer Input {
2732//   float elements[];
2733// } input_data;
2734// layout(std140, set = 0, binding = 1) writeonly buffer Output {
2735//   float elements[];
2736// } output_data;
2737//
2738// void main() {
2739//   uint x = gl_GlobalInvocationID.x;
2740//   output_data.elements[x] = input_data.elements[x];
2741//   for (uint i = 0; i < 4; ++i)
2742//     output_data.elements[x] += 1.f;
2743// }
2744tcu::TestCaseGroup* createLoopControlGroup (tcu::TestContext& testCtx)
2745{
2746	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "loop_control", "Tests loop control cases"));
2747	vector<CaseParameter>			cases;
2748	de::Random						rnd				(deStringHash(group->getName()));
2749	const int						numElements		= 100;
2750	vector<float>					inputFloats		(numElements, 0);
2751	vector<float>					outputFloats	(numElements, 0);
2752	const StringTemplate			shaderTemplate	(
2753		string(s_ShaderPreamble) +
2754
2755		"OpSource GLSL 430\n"
2756		"OpName %main \"main\"\n"
2757		"OpName %id \"gl_GlobalInvocationID\"\n"
2758
2759		"OpDecorate %id BuiltIn GlobalInvocationId\n"
2760
2761		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
2762
2763		"%u32ptr      = OpTypePointer Function %u32\n"
2764
2765		"%id          = OpVariable %uvec3ptr Input\n"
2766		"%zero        = OpConstant %i32 0\n"
2767		"%uzero       = OpConstant %u32 0\n"
2768		"%one         = OpConstant %i32 1\n"
2769		"%constf1     = OpConstant %f32 1.0\n"
2770		"%four        = OpConstant %u32 4\n"
2771
2772		"%main        = OpFunction %void None %voidf\n"
2773		"%entry       = OpLabel\n"
2774		"%i           = OpVariable %u32ptr Function\n"
2775		"               OpStore %i %uzero\n"
2776
2777		"%idval       = OpLoad %uvec3 %id\n"
2778		"%x           = OpCompositeExtract %u32 %idval 0\n"
2779		"%inloc       = OpAccessChain %f32ptr %indata %zero %x\n"
2780		"%inval       = OpLoad %f32 %inloc\n"
2781		"%outloc      = OpAccessChain %f32ptr %outdata %zero %x\n"
2782		"               OpStore %outloc %inval\n"
2783		"               OpBranch %loop_entry\n"
2784
2785		"%loop_entry  = OpLabel\n"
2786		"%i_val       = OpLoad %u32 %i\n"
2787		"%cmp_lt      = OpULessThan %bool %i_val %four\n"
2788		"               OpLoopMerge %loop_merge %loop_entry ${CONTROL}\n"
2789		"               OpBranchConditional %cmp_lt %loop_body %loop_merge\n"
2790		"%loop_body   = OpLabel\n"
2791		"%outval      = OpLoad %f32 %outloc\n"
2792		"%addf1       = OpFAdd %f32 %outval %constf1\n"
2793		"               OpStore %outloc %addf1\n"
2794		"%new_i       = OpIAdd %u32 %i_val %one\n"
2795		"               OpStore %i %new_i\n"
2796		"               OpBranch %loop_entry\n"
2797		"%loop_merge  = OpLabel\n"
2798		"               OpReturn\n"
2799		"               OpFunctionEnd\n");
2800
2801	cases.push_back(CaseParameter("none",				"None"));
2802	cases.push_back(CaseParameter("unroll",				"Unroll"));
2803	cases.push_back(CaseParameter("dont_unroll",		"DontUnroll"));
2804	cases.push_back(CaseParameter("unroll_dont_unroll",	"Unroll|DontUnroll"));
2805
2806	fillRandomScalars(rnd, -100.f, 100.f, &inputFloats[0], numElements);
2807
2808	for (size_t ndx = 0; ndx < numElements; ++ndx)
2809		outputFloats[ndx] = inputFloats[ndx] + 4.f;
2810
2811	for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
2812	{
2813		map<string, string>		specializations;
2814		ComputeShaderSpec		spec;
2815
2816		specializations["CONTROL"] = cases[caseNdx].param;
2817		spec.assembly = shaderTemplate.specialize(specializations);
2818		spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
2819		spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
2820		spec.numWorkGroups = IVec3(numElements, 1, 1);
2821
2822		group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
2823	}
2824
2825	return group.release();
2826}
2827
2828// Assembly code used for testing selection control is based on GLSL source code:
2829// #version 430
2830//
2831// layout(std140, set = 0, binding = 0) readonly buffer Input {
2832//   float elements[];
2833// } input_data;
2834// layout(std140, set = 0, binding = 1) writeonly buffer Output {
2835//   float elements[];
2836// } output_data;
2837//
2838// void main() {
2839//   uint x = gl_GlobalInvocationID.x;
2840//   float val = input_data.elements[x];
2841//   if (val > 10.f)
2842//     output_data.elements[x] = val + 1.f;
2843//   else
2844//     output_data.elements[x] = val - 1.f;
2845// }
2846tcu::TestCaseGroup* createSelectionControlGroup (tcu::TestContext& testCtx)
2847{
2848	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "selection_control", "Tests selection control cases"));
2849	vector<CaseParameter>			cases;
2850	de::Random						rnd				(deStringHash(group->getName()));
2851	const int						numElements		= 100;
2852	vector<float>					inputFloats		(numElements, 0);
2853	vector<float>					outputFloats	(numElements, 0);
2854	const StringTemplate			shaderTemplate	(
2855		string(s_ShaderPreamble) +
2856
2857		"OpSource GLSL 430\n"
2858		"OpName %main \"main\"\n"
2859		"OpName %id \"gl_GlobalInvocationID\"\n"
2860
2861		"OpDecorate %id BuiltIn GlobalInvocationId\n"
2862
2863		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
2864
2865		"%id       = OpVariable %uvec3ptr Input\n"
2866		"%zero     = OpConstant %i32 0\n"
2867		"%constf1  = OpConstant %f32 1.0\n"
2868		"%constf10 = OpConstant %f32 10.0\n"
2869
2870		"%main     = OpFunction %void None %voidf\n"
2871		"%entry    = OpLabel\n"
2872		"%idval    = OpLoad %uvec3 %id\n"
2873		"%x        = OpCompositeExtract %u32 %idval 0\n"
2874		"%inloc    = OpAccessChain %f32ptr %indata %zero %x\n"
2875		"%inval    = OpLoad %f32 %inloc\n"
2876		"%outloc   = OpAccessChain %f32ptr %outdata %zero %x\n"
2877		"%cmp_gt   = OpFOrdGreaterThan %bool %inval %constf10\n"
2878
2879		"            OpSelectionMerge %if_end ${CONTROL}\n"
2880		"            OpBranchConditional %cmp_gt %if_true %if_false\n"
2881		"%if_true  = OpLabel\n"
2882		"%addf1    = OpFAdd %f32 %inval %constf1\n"
2883		"            OpStore %outloc %addf1\n"
2884		"            OpBranch %if_end\n"
2885		"%if_false = OpLabel\n"
2886		"%subf1    = OpFSub %f32 %inval %constf1\n"
2887		"            OpStore %outloc %subf1\n"
2888		"            OpBranch %if_end\n"
2889		"%if_end   = OpLabel\n"
2890		"            OpReturn\n"
2891		"            OpFunctionEnd\n");
2892
2893	cases.push_back(CaseParameter("none",					"None"));
2894	cases.push_back(CaseParameter("flatten",				"Flatten"));
2895	cases.push_back(CaseParameter("dont_flatten",			"DontFlatten"));
2896	cases.push_back(CaseParameter("flatten_dont_flatten",	"DontFlatten|Flatten"));
2897
2898	fillRandomScalars(rnd, -100.f, 100.f, &inputFloats[0], numElements);
2899
2900	for (size_t ndx = 0; ndx < numElements; ++ndx)
2901		outputFloats[ndx] = inputFloats[ndx] + (inputFloats[ndx] > 10.f ? 1.f : -1.f);
2902
2903	for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
2904	{
2905		map<string, string>		specializations;
2906		ComputeShaderSpec		spec;
2907
2908		specializations["CONTROL"] = cases[caseNdx].param;
2909		spec.assembly = shaderTemplate.specialize(specializations);
2910		spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
2911		spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
2912		spec.numWorkGroups = IVec3(numElements, 1, 1);
2913
2914		group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
2915	}
2916
2917	return group.release();
2918}
2919
2920// Assembly code used for testing function control is based on GLSL source code:
2921//
2922// #version 430
2923//
2924// layout(std140, set = 0, binding = 0) readonly buffer Input {
2925//   float elements[];
2926// } input_data;
2927// layout(std140, set = 0, binding = 1) writeonly buffer Output {
2928//   float elements[];
2929// } output_data;
2930//
2931// float const10() { return 10.f; }
2932//
2933// void main() {
2934//   uint x = gl_GlobalInvocationID.x;
2935//   output_data.elements[x] = input_data.elements[x] + const10();
2936// }
2937tcu::TestCaseGroup* createFunctionControlGroup (tcu::TestContext& testCtx)
2938{
2939	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "function_control", "Tests function control cases"));
2940	vector<CaseParameter>			cases;
2941	de::Random						rnd				(deStringHash(group->getName()));
2942	const int						numElements		= 100;
2943	vector<float>					inputFloats		(numElements, 0);
2944	vector<float>					outputFloats	(numElements, 0);
2945	const StringTemplate			shaderTemplate	(
2946		string(s_ShaderPreamble) +
2947
2948		"OpSource GLSL 430\n"
2949		"OpName %main \"main\"\n"
2950		"OpName %func_const10 \"const10(\"\n"
2951		"OpName %id \"gl_GlobalInvocationID\"\n"
2952
2953		"OpDecorate %id BuiltIn GlobalInvocationId\n"
2954
2955		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
2956
2957		"%f32f = OpTypeFunction %f32\n"
2958		"%id = OpVariable %uvec3ptr Input\n"
2959		"%zero = OpConstant %i32 0\n"
2960		"%constf10 = OpConstant %f32 10.0\n"
2961
2962		"%main         = OpFunction %void None %voidf\n"
2963		"%entry        = OpLabel\n"
2964		"%idval        = OpLoad %uvec3 %id\n"
2965		"%x            = OpCompositeExtract %u32 %idval 0\n"
2966		"%inloc        = OpAccessChain %f32ptr %indata %zero %x\n"
2967		"%inval        = OpLoad %f32 %inloc\n"
2968		"%ret_10       = OpFunctionCall %f32 %func_const10\n"
2969		"%fadd         = OpFAdd %f32 %inval %ret_10\n"
2970		"%outloc       = OpAccessChain %f32ptr %outdata %zero %x\n"
2971		"                OpStore %outloc %fadd\n"
2972		"                OpReturn\n"
2973		"                OpFunctionEnd\n"
2974
2975		"%func_const10 = OpFunction %f32 ${CONTROL} %f32f\n"
2976		"%label        = OpLabel\n"
2977		"                OpReturnValue %constf10\n"
2978		"                OpFunctionEnd\n");
2979
2980	cases.push_back(CaseParameter("none",						"None"));
2981	cases.push_back(CaseParameter("inline",						"Inline"));
2982	cases.push_back(CaseParameter("dont_inline",				"DontInline"));
2983	cases.push_back(CaseParameter("pure",						"Pure"));
2984	cases.push_back(CaseParameter("const",						"Const"));
2985	cases.push_back(CaseParameter("inline_pure",				"Inline|Pure"));
2986	cases.push_back(CaseParameter("const_dont_inline",			"Const|DontInline"));
2987	cases.push_back(CaseParameter("inline_dont_inline",			"Inline|DontInline"));
2988	cases.push_back(CaseParameter("pure_inline_dont_inline",	"Pure|Inline|DontInline"));
2989
2990	fillRandomScalars(rnd, -100.f, 100.f, &inputFloats[0], numElements);
2991
2992	for (size_t ndx = 0; ndx < numElements; ++ndx)
2993		outputFloats[ndx] = inputFloats[ndx] + 10.f;
2994
2995	for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
2996	{
2997		map<string, string>		specializations;
2998		ComputeShaderSpec		spec;
2999
3000		specializations["CONTROL"] = cases[caseNdx].param;
3001		spec.assembly = shaderTemplate.specialize(specializations);
3002		spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
3003		spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
3004		spec.numWorkGroups = IVec3(numElements, 1, 1);
3005
3006		group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
3007	}
3008
3009	return group.release();
3010}
3011
3012tcu::TestCaseGroup* createMemoryAccessGroup (tcu::TestContext& testCtx)
3013{
3014	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "memory_access", "Tests memory access cases"));
3015	vector<CaseParameter>			cases;
3016	de::Random						rnd				(deStringHash(group->getName()));
3017	const int						numElements		= 100;
3018	vector<float>					inputFloats		(numElements, 0);
3019	vector<float>					outputFloats	(numElements, 0);
3020	const StringTemplate			shaderTemplate	(
3021		string(s_ShaderPreamble) +
3022
3023		"OpSource GLSL 430\n"
3024		"OpName %main           \"main\"\n"
3025		"OpName %id             \"gl_GlobalInvocationID\"\n"
3026
3027		"OpDecorate %id BuiltIn GlobalInvocationId\n"
3028
3029		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
3030
3031		"%f32ptr_f  = OpTypePointer Function %f32\n"
3032
3033		"%id        = OpVariable %uvec3ptr Input\n"
3034		"%zero      = OpConstant %i32 0\n"
3035		"%four      = OpConstant %i32 4\n"
3036
3037		"%main      = OpFunction %void None %voidf\n"
3038		"%label     = OpLabel\n"
3039		"%copy      = OpVariable %f32ptr_f Function\n"
3040		"%idval     = OpLoad %uvec3 %id ${ACCESS}\n"
3041		"%x         = OpCompositeExtract %u32 %idval 0\n"
3042		"%inloc     = OpAccessChain %f32ptr %indata  %zero %x\n"
3043		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
3044		"             OpCopyMemory %copy %inloc ${ACCESS}\n"
3045		"%val1      = OpLoad %f32 %copy\n"
3046		"%val2      = OpLoad %f32 %inloc\n"
3047		"%add       = OpFAdd %f32 %val1 %val2\n"
3048		"             OpStore %outloc %add ${ACCESS}\n"
3049		"             OpReturn\n"
3050		"             OpFunctionEnd\n");
3051
3052	cases.push_back(CaseParameter("null",					""));
3053	cases.push_back(CaseParameter("none",					"None"));
3054	cases.push_back(CaseParameter("volatile",				"Volatile"));
3055	cases.push_back(CaseParameter("aligned",				"Aligned 4"));
3056	cases.push_back(CaseParameter("nontemporal",			"Nontemporal"));
3057	cases.push_back(CaseParameter("aligned_nontemporal",	"Aligned|Nontemporal 4"));
3058	cases.push_back(CaseParameter("aligned_volatile",		"Volatile|Aligned 4"));
3059
3060	fillRandomScalars(rnd, -100.f, 100.f, &inputFloats[0], numElements);
3061
3062	for (size_t ndx = 0; ndx < numElements; ++ndx)
3063		outputFloats[ndx] = inputFloats[ndx] + inputFloats[ndx];
3064
3065	for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
3066	{
3067		map<string, string>		specializations;
3068		ComputeShaderSpec		spec;
3069
3070		specializations["ACCESS"] = cases[caseNdx].param;
3071		spec.assembly = shaderTemplate.specialize(specializations);
3072		spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
3073		spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
3074		spec.numWorkGroups = IVec3(numElements, 1, 1);
3075
3076		group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
3077	}
3078
3079	return group.release();
3080}
3081
3082// Checks that we can get undefined values for various types, without exercising a computation with it.
3083tcu::TestCaseGroup* createOpUndefGroup (tcu::TestContext& testCtx)
3084{
3085	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opundef", "Tests the OpUndef instruction"));
3086	vector<CaseParameter>			cases;
3087	de::Random						rnd				(deStringHash(group->getName()));
3088	const int						numElements		= 100;
3089	vector<float>					positiveFloats	(numElements, 0);
3090	vector<float>					negativeFloats	(numElements, 0);
3091	const StringTemplate			shaderTemplate	(
3092		string(s_ShaderPreamble) +
3093
3094		"OpSource GLSL 430\n"
3095		"OpName %main           \"main\"\n"
3096		"OpName %id             \"gl_GlobalInvocationID\"\n"
3097
3098		"OpDecorate %id BuiltIn GlobalInvocationId\n"
3099
3100		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
3101
3102		"${TYPE}\n"
3103
3104		"%id        = OpVariable %uvec3ptr Input\n"
3105		"%zero      = OpConstant %i32 0\n"
3106
3107		"%main      = OpFunction %void None %voidf\n"
3108		"%label     = OpLabel\n"
3109
3110		"%undef     = OpUndef %type\n"
3111
3112		"%idval     = OpLoad %uvec3 %id\n"
3113		"%x         = OpCompositeExtract %u32 %idval 0\n"
3114
3115		"%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
3116		"%inval     = OpLoad %f32 %inloc\n"
3117		"%neg       = OpFNegate %f32 %inval\n"
3118		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
3119		"             OpStore %outloc %neg\n"
3120		"             OpReturn\n"
3121		"             OpFunctionEnd\n");
3122
3123	cases.push_back(CaseParameter("bool",			"%type = OpTypeBool"));
3124	cases.push_back(CaseParameter("sint32",			"%type = OpTypeInt 32 1"));
3125	cases.push_back(CaseParameter("uint32",			"%type = OpTypeInt 32 0"));
3126	cases.push_back(CaseParameter("float32",		"%type = OpTypeFloat 32"));
3127	cases.push_back(CaseParameter("vec4float32",	"%type = OpTypeVector %f32 4"));
3128	cases.push_back(CaseParameter("vec2uint32",		"%type = OpTypeVector %u32 2"));
3129	cases.push_back(CaseParameter("matrix",			"%type = OpTypeMatrix %fvec3 3"));
3130	cases.push_back(CaseParameter("image",			"%type = OpTypeImage %f32 2D 0 0 0 0 Unknown"));
3131	cases.push_back(CaseParameter("sampler",		"%type = OpTypeSampler"));
3132	cases.push_back(CaseParameter("sampledimage",	"%img = OpTypeImage %f32 2D 0 0 0 0 Unknown\n"
3133													"%type = OpTypeSampledImage %img"));
3134	cases.push_back(CaseParameter("array",			"%100 = OpConstant %u32 100\n"
3135													"%type = OpTypeArray %i32 %100"));
3136	cases.push_back(CaseParameter("runtimearray",	"%type = OpTypeRuntimeArray %f32"));
3137	cases.push_back(CaseParameter("struct",			"%type = OpTypeStruct %f32 %i32 %u32"));
3138	cases.push_back(CaseParameter("pointer",		"%type = OpTypePointer Function %i32"));
3139
3140	fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
3141
3142	for (size_t ndx = 0; ndx < numElements; ++ndx)
3143		negativeFloats[ndx] = -positiveFloats[ndx];
3144
3145	for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
3146	{
3147		map<string, string>		specializations;
3148		ComputeShaderSpec		spec;
3149
3150		specializations["TYPE"] = cases[caseNdx].param;
3151		spec.assembly = shaderTemplate.specialize(specializations);
3152		spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
3153		spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
3154		spec.numWorkGroups = IVec3(numElements, 1, 1);
3155
3156		group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
3157	}
3158
3159		return group.release();
3160}
3161typedef std::pair<std::string, VkShaderStageFlagBits>	EntryToStage;
3162typedef map<string, vector<EntryToStage> >				ModuleMap;
3163typedef map<VkShaderStageFlagBits, vector<deInt32> >	StageToSpecConstantMap;
3164
3165// Context for a specific test instantiation. For example, an instantiation
3166// may test colors yellow/magenta/cyan/mauve in a tesselation shader
3167// with an entry point named 'main_to_the_main'
3168struct InstanceContext
3169{
3170	// Map of modules to what entry_points we care to use from those modules.
3171	ModuleMap				moduleMap;
3172	RGBA					inputColors[4];
3173	RGBA					outputColors[4];
3174	// Concrete SPIR-V code to test via boilerplate specialization.
3175	map<string, string>		testCodeFragments;
3176	StageToSpecConstantMap	specConstants;
3177	bool					hasTessellation;
3178	VkShaderStageFlagBits	requiredStages;
3179
3180	InstanceContext (const RGBA (&inputs)[4], const RGBA (&outputs)[4], const map<string, string>& testCodeFragments_, const StageToSpecConstantMap& specConstants_)
3181		: testCodeFragments		(testCodeFragments_)
3182		, specConstants			(specConstants_)
3183		, hasTessellation		(false)
3184		, requiredStages		(static_cast<VkShaderStageFlagBits>(0))
3185	{
3186		inputColors[0]		= inputs[0];
3187		inputColors[1]		= inputs[1];
3188		inputColors[2]		= inputs[2];
3189		inputColors[3]		= inputs[3];
3190
3191		outputColors[0]		= outputs[0];
3192		outputColors[1]		= outputs[1];
3193		outputColors[2]		= outputs[2];
3194		outputColors[3]		= outputs[3];
3195	}
3196
3197	InstanceContext (const InstanceContext& other)
3198		: moduleMap			(other.moduleMap)
3199		, testCodeFragments	(other.testCodeFragments)
3200		, specConstants		(other.specConstants)
3201		, hasTessellation	(other.hasTessellation)
3202		, requiredStages    (other.requiredStages)
3203	{
3204		inputColors[0]		= other.inputColors[0];
3205		inputColors[1]		= other.inputColors[1];
3206		inputColors[2]		= other.inputColors[2];
3207		inputColors[3]		= other.inputColors[3];
3208
3209		outputColors[0]		= other.outputColors[0];
3210		outputColors[1]		= other.outputColors[1];
3211		outputColors[2]		= other.outputColors[2];
3212		outputColors[3]		= other.outputColors[3];
3213	}
3214};
3215
3216// A description of a shader to be used for a single stage of the graphics pipeline.
3217struct ShaderElement
3218{
3219	// The module that contains this shader entrypoint.
3220	string					moduleName;
3221
3222	// The name of the entrypoint.
3223	string					entryName;
3224
3225	// Which shader stage this entry point represents.
3226	VkShaderStageFlagBits	stage;
3227
3228	ShaderElement (const string& moduleName_, const string& entryPoint_, VkShaderStageFlagBits shaderStage_)
3229		: moduleName(moduleName_)
3230		, entryName(entryPoint_)
3231		, stage(shaderStage_)
3232	{
3233	}
3234};
3235
3236void getDefaultColors (RGBA (&colors)[4])
3237{
3238	colors[0] = RGBA::white();
3239	colors[1] = RGBA::red();
3240	colors[2] = RGBA::green();
3241	colors[3] = RGBA::blue();
3242}
3243
3244void getHalfColorsFullAlpha (RGBA (&colors)[4])
3245{
3246	colors[0] = RGBA(127, 127, 127, 255);
3247	colors[1] = RGBA(127, 0,   0,	255);
3248	colors[2] = RGBA(0,	  127, 0,	255);
3249	colors[3] = RGBA(0,	  0,   127, 255);
3250}
3251
3252void getInvertedDefaultColors (RGBA (&colors)[4])
3253{
3254	colors[0] = RGBA(0,		0,		0,		255);
3255	colors[1] = RGBA(0,		255,	255,	255);
3256	colors[2] = RGBA(255,	0,		255,	255);
3257	colors[3] = RGBA(255,	255,	0,		255);
3258}
3259
3260// Turns a statically sized array of ShaderElements into an instance-context
3261// by setting up the mapping of modules to their contained shaders and stages.
3262// The inputs and expected outputs are given by inputColors and outputColors
3263template<size_t N>
3264InstanceContext createInstanceContext (const ShaderElement (&elements)[N], const RGBA (&inputColors)[4], const RGBA (&outputColors)[4], const map<string, string>& testCodeFragments, const StageToSpecConstantMap& specConstants)
3265{
3266	InstanceContext ctx (inputColors, outputColors, testCodeFragments, specConstants);
3267	for (size_t i = 0; i < N; ++i)
3268	{
3269		ctx.moduleMap[elements[i].moduleName].push_back(std::make_pair(elements[i].entryName, elements[i].stage));
3270		ctx.requiredStages = static_cast<VkShaderStageFlagBits>(ctx.requiredStages | elements[i].stage);
3271	}
3272	return ctx;
3273}
3274
3275template<size_t N>
3276inline InstanceContext createInstanceContext (const ShaderElement (&elements)[N], RGBA (&inputColors)[4], const RGBA (&outputColors)[4], const map<string, string>& testCodeFragments)
3277{
3278	return createInstanceContext(elements, inputColors, outputColors, testCodeFragments, StageToSpecConstantMap());
3279}
3280
3281// The same as createInstanceContext above, but with default colors.
3282template<size_t N>
3283InstanceContext createInstanceContext (const ShaderElement (&elements)[N], const map<string, string>& testCodeFragments)
3284{
3285	RGBA defaultColors[4];
3286	getDefaultColors(defaultColors);
3287	return createInstanceContext(elements, defaultColors, defaultColors, testCodeFragments);
3288}
3289
3290// For the current InstanceContext, constructs the required modules and shader stage create infos.
3291void createPipelineShaderStages (const DeviceInterface& vk, const VkDevice vkDevice, InstanceContext& instance, Context& context, vector<ModuleHandleSp>& modules, vector<VkPipelineShaderStageCreateInfo>& createInfos)
3292{
3293	for (ModuleMap::const_iterator moduleNdx = instance.moduleMap.begin(); moduleNdx != instance.moduleMap.end(); ++moduleNdx)
3294	{
3295		const ModuleHandleSp mod(new Unique<VkShaderModule>(createShaderModule(vk, vkDevice, context.getBinaryCollection().get(moduleNdx->first), 0)));
3296		modules.push_back(ModuleHandleSp(mod));
3297		for (vector<EntryToStage>::const_iterator shaderNdx = moduleNdx->second.begin(); shaderNdx != moduleNdx->second.end(); ++shaderNdx)
3298		{
3299			const EntryToStage&						stage			= *shaderNdx;
3300			const VkPipelineShaderStageCreateInfo	shaderParam		=
3301			{
3302				VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,	//	VkStructureType			sType;
3303				DE_NULL,												//	const void*				pNext;
3304				(VkPipelineShaderStageCreateFlags)0,
3305				stage.second,											//	VkShaderStageFlagBits	stage;
3306				**modules.back(),										//	VkShaderModule			module;
3307				stage.first.c_str(),									//	const char*				pName;
3308				(const VkSpecializationInfo*)DE_NULL,
3309			};
3310			createInfos.push_back(shaderParam);
3311		}
3312	}
3313}
3314
3315#define SPIRV_ASSEMBLY_TYPES																	\
3316	"%void = OpTypeVoid\n"																		\
3317	"%bool = OpTypeBool\n"																		\
3318																								\
3319	"%i32 = OpTypeInt 32 1\n"																	\
3320	"%u32 = OpTypeInt 32 0\n"																	\
3321																								\
3322	"%f32 = OpTypeFloat 32\n"																	\
3323	"%v3f32 = OpTypeVector %f32 3\n"															\
3324	"%v4f32 = OpTypeVector %f32 4\n"															\
3325																								\
3326	"%v4f32_function = OpTypeFunction %v4f32 %v4f32\n"											\
3327	"%fun = OpTypeFunction %void\n"																\
3328																								\
3329	"%ip_f32 = OpTypePointer Input %f32\n"														\
3330	"%ip_i32 = OpTypePointer Input %i32\n"														\
3331	"%ip_v3f32 = OpTypePointer Input %v3f32\n"													\
3332	"%ip_v4f32 = OpTypePointer Input %v4f32\n"													\
3333																								\
3334	"%op_f32 = OpTypePointer Output %f32\n"														\
3335	"%op_v4f32 = OpTypePointer Output %v4f32\n"													\
3336																								\
3337	"%fp_f32   = OpTypePointer Function %f32\n"													\
3338	"%fp_i32   = OpTypePointer Function %i32\n"													\
3339	"%fp_v4f32 = OpTypePointer Function %v4f32\n"
3340
3341#define SPIRV_ASSEMBLY_CONSTANTS																\
3342	"%c_f32_1 = OpConstant %f32 1.0\n"															\
3343	"%c_f32_0 = OpConstant %f32 0.0\n"															\
3344	"%c_f32_0_5 = OpConstant %f32 0.5\n"														\
3345	"%c_f32_n1  = OpConstant %f32 -1.\n"														\
3346	"%c_f32_7 = OpConstant %f32 7.0\n"															\
3347	"%c_f32_8 = OpConstant %f32 8.0\n"															\
3348	"%c_i32_0 = OpConstant %i32 0\n"															\
3349	"%c_i32_1 = OpConstant %i32 1\n"															\
3350	"%c_i32_2 = OpConstant %i32 2\n"															\
3351	"%c_i32_3 = OpConstant %i32 3\n"															\
3352	"%c_i32_4 = OpConstant %i32 4\n"															\
3353	"%c_u32_0 = OpConstant %u32 0\n"															\
3354	"%c_u32_1 = OpConstant %u32 1\n"															\
3355	"%c_u32_2 = OpConstant %u32 2\n"															\
3356	"%c_u32_3 = OpConstant %u32 3\n"															\
3357	"%c_u32_32 = OpConstant %u32 32\n"															\
3358	"%c_u32_4 = OpConstant %u32 4\n"															\
3359	"%c_u32_31_bits = OpConstant %u32 0x7FFFFFFF\n"												\
3360	"%c_v4f32_1_1_1_1 = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_1\n"		\
3361	"%c_v4f32_1_0_0_1 = OpConstantComposite %v4f32 %c_f32_1 %c_f32_0 %c_f32_0 %c_f32_1\n"		\
3362	"%c_v4f32_0_5_0_5_0_5_0_5 = OpConstantComposite %v4f32 %c_f32_0_5 %c_f32_0_5 %c_f32_0_5 %c_f32_0_5\n"
3363
3364#define SPIRV_ASSEMBLY_ARRAYS																	\
3365	"%a1f32 = OpTypeArray %f32 %c_u32_1\n"														\
3366	"%a2f32 = OpTypeArray %f32 %c_u32_2\n"														\
3367	"%a3v4f32 = OpTypeArray %v4f32 %c_u32_3\n"													\
3368	"%a4f32 = OpTypeArray %f32 %c_u32_4\n"														\
3369	"%a32v4f32 = OpTypeArray %v4f32 %c_u32_32\n"												\
3370	"%ip_a3v4f32 = OpTypePointer Input %a3v4f32\n"												\
3371	"%ip_a32v4f32 = OpTypePointer Input %a32v4f32\n"											\
3372	"%op_a2f32 = OpTypePointer Output %a2f32\n"													\
3373	"%op_a3v4f32 = OpTypePointer Output %a3v4f32\n"												\
3374	"%op_a4f32 = OpTypePointer Output %a4f32\n"
3375
3376// Creates vertex-shader assembly by specializing a boilerplate StringTemplate
3377// on fragments, which must (at least) map "testfun" to an OpFunction definition
3378// for %test_code that takes and returns a %v4f32.  Boilerplate IDs are prefixed
3379// with "BP_" to avoid collisions with fragments.
3380//
3381// It corresponds roughly to this GLSL:
3382//;
3383// layout(location = 0) in vec4 position;
3384// layout(location = 1) in vec4 color;
3385// layout(location = 1) out highp vec4 vtxColor;
3386// void main (void) { gl_Position = position; vtxColor = test_func(color); }
3387string makeVertexShaderAssembly(const map<string, string>& fragments)
3388{
3389// \todo [2015-11-23 awoloszyn] Remove OpName once these have stabalized
3390	static const char vertexShaderBoilerplate[] =
3391		"OpCapability Shader\n"
3392		"OpMemoryModel Logical GLSL450\n"
3393		"OpEntryPoint Vertex %main \"main\" %BP_stream %BP_position %BP_vtx_color %BP_color %BP_gl_VertexIndex %BP_gl_InstanceIndex\n"
3394		"${debug:opt}\n"
3395		"OpName %main \"main\"\n"
3396		"OpName %BP_gl_PerVertex \"gl_PerVertex\"\n"
3397		"OpMemberName %BP_gl_PerVertex 0 \"gl_Position\"\n"
3398		"OpMemberName %BP_gl_PerVertex 1 \"gl_PointSize\"\n"
3399		"OpMemberName %BP_gl_PerVertex 2 \"gl_ClipDistance\"\n"
3400		"OpMemberName %BP_gl_PerVertex 3 \"gl_CullDistance\"\n"
3401		"OpName %test_code \"testfun(vf4;\"\n"
3402		"OpName %BP_stream \"\"\n"
3403		"OpName %BP_position \"position\"\n"
3404		"OpName %BP_vtx_color \"vtxColor\"\n"
3405		"OpName %BP_color \"color\"\n"
3406		"OpName %BP_gl_VertexIndex \"gl_VertexIndex\"\n"
3407		"OpName %BP_gl_InstanceIndex \"gl_InstanceIndex\"\n"
3408		"OpMemberDecorate %BP_gl_PerVertex 0 BuiltIn Position\n"
3409		"OpMemberDecorate %BP_gl_PerVertex 1 BuiltIn PointSize\n"
3410		"OpMemberDecorate %BP_gl_PerVertex 2 BuiltIn ClipDistance\n"
3411		"OpMemberDecorate %BP_gl_PerVertex 3 BuiltIn CullDistance\n"
3412		"OpDecorate %BP_gl_PerVertex Block\n"
3413		"OpDecorate %BP_position Location 0\n"
3414		"OpDecorate %BP_vtx_color Location 1\n"
3415		"OpDecorate %BP_color Location 1\n"
3416		"OpDecorate %BP_gl_VertexIndex BuiltIn VertexIndex\n"
3417		"OpDecorate %BP_gl_InstanceIndex BuiltIn InstanceIndex\n"
3418		"${decoration:opt}\n"
3419		SPIRV_ASSEMBLY_TYPES
3420		SPIRV_ASSEMBLY_CONSTANTS
3421		SPIRV_ASSEMBLY_ARRAYS
3422		"%BP_gl_PerVertex = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
3423		"%BP_op_gl_PerVertex = OpTypePointer Output %BP_gl_PerVertex\n"
3424		"%BP_stream = OpVariable %BP_op_gl_PerVertex Output\n"
3425		"%BP_position = OpVariable %ip_v4f32 Input\n"
3426		"%BP_vtx_color = OpVariable %op_v4f32 Output\n"
3427		"%BP_color = OpVariable %ip_v4f32 Input\n"
3428		"%BP_gl_VertexIndex = OpVariable %ip_i32 Input\n"
3429		"%BP_gl_InstanceIndex = OpVariable %ip_i32 Input\n"
3430		"${pre_main:opt}\n"
3431		"%main = OpFunction %void None %fun\n"
3432		"%BP_label = OpLabel\n"
3433		"%BP_pos = OpLoad %v4f32 %BP_position\n"
3434		"%BP_gl_pos = OpAccessChain %op_v4f32 %BP_stream %c_i32_0\n"
3435		"OpStore %BP_gl_pos %BP_pos\n"
3436		"%BP_col = OpLoad %v4f32 %BP_color\n"
3437		"%BP_col_transformed = OpFunctionCall %v4f32 %test_code %BP_col\n"
3438		"OpStore %BP_vtx_color %BP_col_transformed\n"
3439		"OpReturn\n"
3440		"OpFunctionEnd\n"
3441		"${testfun}\n";
3442	return tcu::StringTemplate(vertexShaderBoilerplate).specialize(fragments);
3443}
3444
3445// Creates tess-control-shader assembly by specializing a boilerplate
3446// StringTemplate on fragments, which must (at least) map "testfun" to an
3447// OpFunction definition for %test_code that takes and returns a %v4f32.
3448// Boilerplate IDs are prefixed with "BP_" to avoid collisions with fragments.
3449//
3450// It roughly corresponds to the following GLSL.
3451//
3452// #version 450
3453// layout(vertices = 3) out;
3454// layout(location = 1) in vec4 in_color[];
3455// layout(location = 1) out vec4 out_color[];
3456//
3457// void main() {
3458//   out_color[gl_InvocationID] = testfun(in_color[gl_InvocationID]);
3459//   gl_out[gl_InvocationID].gl_Position = gl_in[gl_InvocationID].gl_Position;
3460//   if (gl_InvocationID == 0) {
3461//     gl_TessLevelOuter[0] = 1.0;
3462//     gl_TessLevelOuter[1] = 1.0;
3463//     gl_TessLevelOuter[2] = 1.0;
3464//     gl_TessLevelInner[0] = 1.0;
3465//   }
3466// }
3467string makeTessControlShaderAssembly (const map<string, string>& fragments)
3468{
3469	static const char tessControlShaderBoilerplate[] =
3470		"OpCapability Tessellation\n"
3471		"OpMemoryModel Logical GLSL450\n"
3472		"OpEntryPoint TessellationControl %BP_main \"main\" %BP_out_color %BP_gl_InvocationID %BP_in_color %BP_gl_out %BP_gl_in %BP_gl_TessLevelOuter %BP_gl_TessLevelInner\n"
3473		"OpExecutionMode %BP_main OutputVertices 3\n"
3474		"${debug:opt}\n"
3475		"OpName %BP_main \"main\"\n"
3476		"OpName %test_code \"testfun(vf4;\"\n"
3477		"OpName %BP_out_color \"out_color\"\n"
3478		"OpName %BP_gl_InvocationID \"gl_InvocationID\"\n"
3479		"OpName %BP_in_color \"in_color\"\n"
3480		"OpName %BP_gl_PerVertex \"gl_PerVertex\"\n"
3481		"OpMemberName %BP_gl_PerVertex 0 \"gl_Position\"\n"
3482		"OpMemberName %BP_gl_PerVertex 1 \"gl_PointSize\"\n"
3483		"OpMemberName %BP_gl_PerVertex 2 \"gl_ClipDistance\"\n"
3484		"OpMemberName %BP_gl_PerVertex 3 \"gl_CullDistance\"\n"
3485		"OpName %BP_gl_out \"gl_out\"\n"
3486		"OpName %BP_gl_PVOut \"gl_PerVertex\"\n"
3487		"OpMemberName %BP_gl_PVOut 0 \"gl_Position\"\n"
3488		"OpMemberName %BP_gl_PVOut 1 \"gl_PointSize\"\n"
3489		"OpMemberName %BP_gl_PVOut 2 \"gl_ClipDistance\"\n"
3490		"OpMemberName %BP_gl_PVOut 3 \"gl_CullDistance\"\n"
3491		"OpName %BP_gl_in \"gl_in\"\n"
3492		"OpName %BP_gl_TessLevelOuter \"gl_TessLevelOuter\"\n"
3493		"OpName %BP_gl_TessLevelInner \"gl_TessLevelInner\"\n"
3494		"OpDecorate %BP_out_color Location 1\n"
3495		"OpDecorate %BP_gl_InvocationID BuiltIn InvocationId\n"
3496		"OpDecorate %BP_in_color Location 1\n"
3497		"OpMemberDecorate %BP_gl_PerVertex 0 BuiltIn Position\n"
3498		"OpMemberDecorate %BP_gl_PerVertex 1 BuiltIn PointSize\n"
3499		"OpMemberDecorate %BP_gl_PerVertex 2 BuiltIn ClipDistance\n"
3500		"OpMemberDecorate %BP_gl_PerVertex 3 BuiltIn CullDistance\n"
3501		"OpDecorate %BP_gl_PerVertex Block\n"
3502		"OpMemberDecorate %BP_gl_PVOut 0 BuiltIn Position\n"
3503		"OpMemberDecorate %BP_gl_PVOut 1 BuiltIn PointSize\n"
3504		"OpMemberDecorate %BP_gl_PVOut 2 BuiltIn ClipDistance\n"
3505		"OpMemberDecorate %BP_gl_PVOut 3 BuiltIn CullDistance\n"
3506		"OpDecorate %BP_gl_PVOut Block\n"
3507		"OpDecorate %BP_gl_TessLevelOuter Patch\n"
3508		"OpDecorate %BP_gl_TessLevelOuter BuiltIn TessLevelOuter\n"
3509		"OpDecorate %BP_gl_TessLevelInner Patch\n"
3510		"OpDecorate %BP_gl_TessLevelInner BuiltIn TessLevelInner\n"
3511		"${decoration:opt}\n"
3512		SPIRV_ASSEMBLY_TYPES
3513		SPIRV_ASSEMBLY_CONSTANTS
3514		SPIRV_ASSEMBLY_ARRAYS
3515		"%BP_out_color = OpVariable %op_a3v4f32 Output\n"
3516		"%BP_gl_InvocationID = OpVariable %ip_i32 Input\n"
3517		"%BP_in_color = OpVariable %ip_a32v4f32 Input\n"
3518		"%BP_gl_PerVertex = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
3519		"%BP_a3_gl_PerVertex = OpTypeArray %BP_gl_PerVertex %c_u32_3\n"
3520		"%BP_op_a3_gl_PerVertex = OpTypePointer Output %BP_a3_gl_PerVertex\n"
3521		"%BP_gl_out = OpVariable %BP_op_a3_gl_PerVertex Output\n"
3522		"%BP_gl_PVOut = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
3523		"%BP_a32_gl_PVOut = OpTypeArray %BP_gl_PVOut %c_u32_32\n"
3524		"%BP_ip_a32_gl_PVOut = OpTypePointer Input %BP_a32_gl_PVOut\n"
3525		"%BP_gl_in = OpVariable %BP_ip_a32_gl_PVOut Input\n"
3526		"%BP_gl_TessLevelOuter = OpVariable %op_a4f32 Output\n"
3527		"%BP_gl_TessLevelInner = OpVariable %op_a2f32 Output\n"
3528		"${pre_main:opt}\n"
3529
3530		"%BP_main = OpFunction %void None %fun\n"
3531		"%BP_label = OpLabel\n"
3532
3533		"%BP_gl_Invoc = OpLoad %i32 %BP_gl_InvocationID\n"
3534
3535		"%BP_in_col_loc = OpAccessChain %ip_v4f32 %BP_in_color %BP_gl_Invoc\n"
3536		"%BP_out_col_loc = OpAccessChain %op_v4f32 %BP_out_color %BP_gl_Invoc\n"
3537		"%BP_in_col_val = OpLoad %v4f32 %BP_in_col_loc\n"
3538		"%BP_clr_transformed = OpFunctionCall %v4f32 %test_code %BP_in_col_val\n"
3539		"OpStore %BP_out_col_loc %BP_clr_transformed\n"
3540
3541		"%BP_in_pos_loc = OpAccessChain %ip_v4f32 %BP_gl_in %BP_gl_Invoc %c_i32_0\n"
3542		"%BP_out_pos_loc = OpAccessChain %op_v4f32 %BP_gl_out %BP_gl_Invoc %c_i32_0\n"
3543		"%BP_in_pos_val = OpLoad %v4f32 %BP_in_pos_loc\n"
3544		"OpStore %BP_out_pos_loc %BP_in_pos_val\n"
3545
3546		"%BP_cmp = OpIEqual %bool %BP_gl_Invoc %c_i32_0\n"
3547		"OpSelectionMerge %BP_merge_label None\n"
3548		"OpBranchConditional %BP_cmp %BP_if_label %BP_merge_label\n"
3549		"%BP_if_label = OpLabel\n"
3550		"%BP_gl_TessLevelOuterPos_0 = OpAccessChain %op_f32 %BP_gl_TessLevelOuter %c_i32_0\n"
3551		"%BP_gl_TessLevelOuterPos_1 = OpAccessChain %op_f32 %BP_gl_TessLevelOuter %c_i32_1\n"
3552		"%BP_gl_TessLevelOuterPos_2 = OpAccessChain %op_f32 %BP_gl_TessLevelOuter %c_i32_2\n"
3553		"%BP_gl_TessLevelInnerPos_0 = OpAccessChain %op_f32 %BP_gl_TessLevelInner %c_i32_0\n"
3554		"OpStore %BP_gl_TessLevelOuterPos_0 %c_f32_1\n"
3555		"OpStore %BP_gl_TessLevelOuterPos_1 %c_f32_1\n"
3556		"OpStore %BP_gl_TessLevelOuterPos_2 %c_f32_1\n"
3557		"OpStore %BP_gl_TessLevelInnerPos_0 %c_f32_1\n"
3558		"OpBranch %BP_merge_label\n"
3559		"%BP_merge_label = OpLabel\n"
3560		"OpReturn\n"
3561		"OpFunctionEnd\n"
3562		"${testfun}\n";
3563	return tcu::StringTemplate(tessControlShaderBoilerplate).specialize(fragments);
3564}
3565
3566// Creates tess-evaluation-shader assembly by specializing a boilerplate
3567// StringTemplate on fragments, which must (at least) map "testfun" to an
3568// OpFunction definition for %test_code that takes and returns a %v4f32.
3569// Boilerplate IDs are prefixed with "BP_" to avoid collisions with fragments.
3570//
3571// It roughly corresponds to the following glsl.
3572//
3573// #version 450
3574//
3575// layout(triangles, equal_spacing, ccw) in;
3576// layout(location = 1) in vec4 in_color[];
3577// layout(location = 1) out vec4 out_color;
3578//
3579// #define interpolate(val)
3580//   vec4(gl_TessCoord.x) * val[0] + vec4(gl_TessCoord.y) * val[1] +
3581//          vec4(gl_TessCoord.z) * val[2]
3582//
3583// void main() {
3584//   gl_Position = vec4(gl_TessCoord.x) * gl_in[0].gl_Position +
3585//                  vec4(gl_TessCoord.y) * gl_in[1].gl_Position +
3586//                  vec4(gl_TessCoord.z) * gl_in[2].gl_Position;
3587//   out_color = testfun(interpolate(in_color));
3588// }
3589string makeTessEvalShaderAssembly(const map<string, string>& fragments)
3590{
3591	static const char tessEvalBoilerplate[] =
3592		"OpCapability Tessellation\n"
3593		"OpMemoryModel Logical GLSL450\n"
3594		"OpEntryPoint TessellationEvaluation %BP_main \"main\" %BP_stream %BP_gl_TessCoord %BP_gl_in %BP_out_color %BP_in_color\n"
3595		"OpExecutionMode %BP_main Triangles\n"
3596		"OpExecutionMode %BP_main SpacingEqual\n"
3597		"OpExecutionMode %BP_main VertexOrderCcw\n"
3598		"${debug:opt}\n"
3599		"OpName %BP_main \"main\"\n"
3600		"OpName %test_code \"testfun(vf4;\"\n"
3601		"OpName %BP_gl_PerVertexOut \"gl_PerVertex\"\n"
3602		"OpMemberName %BP_gl_PerVertexOut 0 \"gl_Position\"\n"
3603		"OpMemberName %BP_gl_PerVertexOut 1 \"gl_PointSize\"\n"
3604		"OpMemberName %BP_gl_PerVertexOut 2 \"gl_ClipDistance\"\n"
3605		"OpMemberName %BP_gl_PerVertexOut 3 \"gl_CullDistance\"\n"
3606		"OpName %BP_stream \"\"\n"
3607		"OpName %BP_gl_TessCoord \"gl_TessCoord\"\n"
3608		"OpName %BP_gl_PerVertexIn \"gl_PerVertex\"\n"
3609		"OpMemberName %BP_gl_PerVertexIn 0 \"gl_Position\"\n"
3610		"OpMemberName %BP_gl_PerVertexIn 1 \"gl_PointSize\"\n"
3611		"OpMemberName %BP_gl_PerVertexIn 2 \"gl_ClipDistance\"\n"
3612		"OpMemberName %BP_gl_PerVertexIn 3 \"gl_CullDistance\"\n"
3613		"OpName %BP_gl_in \"gl_in\"\n"
3614		"OpName %BP_out_color \"out_color\"\n"
3615		"OpName %BP_in_color \"in_color\"\n"
3616		"OpMemberDecorate %BP_gl_PerVertexOut 0 BuiltIn Position\n"
3617		"OpMemberDecorate %BP_gl_PerVertexOut 1 BuiltIn PointSize\n"
3618		"OpMemberDecorate %BP_gl_PerVertexOut 2 BuiltIn ClipDistance\n"
3619		"OpMemberDecorate %BP_gl_PerVertexOut 3 BuiltIn CullDistance\n"
3620		"OpDecorate %BP_gl_PerVertexOut Block\n"
3621		"OpDecorate %BP_gl_TessCoord BuiltIn TessCoord\n"
3622		"OpMemberDecorate %BP_gl_PerVertexIn 0 BuiltIn Position\n"
3623		"OpMemberDecorate %BP_gl_PerVertexIn 1 BuiltIn PointSize\n"
3624		"OpMemberDecorate %BP_gl_PerVertexIn 2 BuiltIn ClipDistance\n"
3625		"OpMemberDecorate %BP_gl_PerVertexIn 3 BuiltIn CullDistance\n"
3626		"OpDecorate %BP_gl_PerVertexIn Block\n"
3627		"OpDecorate %BP_out_color Location 1\n"
3628		"OpDecorate %BP_in_color Location 1\n"
3629		"${decoration:opt}\n"
3630		SPIRV_ASSEMBLY_TYPES
3631		SPIRV_ASSEMBLY_CONSTANTS
3632		SPIRV_ASSEMBLY_ARRAYS
3633		"%BP_gl_PerVertexOut = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
3634		"%BP_op_gl_PerVertexOut = OpTypePointer Output %BP_gl_PerVertexOut\n"
3635		"%BP_stream = OpVariable %BP_op_gl_PerVertexOut Output\n"
3636		"%BP_gl_TessCoord = OpVariable %ip_v3f32 Input\n"
3637		"%BP_gl_PerVertexIn = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
3638		"%BP_a32_gl_PerVertexIn = OpTypeArray %BP_gl_PerVertexIn %c_u32_32\n"
3639		"%BP_ip_a32_gl_PerVertexIn = OpTypePointer Input %BP_a32_gl_PerVertexIn\n"
3640		"%BP_gl_in = OpVariable %BP_ip_a32_gl_PerVertexIn Input\n"
3641		"%BP_out_color = OpVariable %op_v4f32 Output\n"
3642		"%BP_in_color = OpVariable %ip_a32v4f32 Input\n"
3643		"${pre_main:opt}\n"
3644		"%BP_main = OpFunction %void None %fun\n"
3645		"%BP_label = OpLabel\n"
3646		"%BP_gl_TC_0 = OpAccessChain %ip_f32 %BP_gl_TessCoord %c_u32_0\n"
3647		"%BP_gl_TC_1 = OpAccessChain %ip_f32 %BP_gl_TessCoord %c_u32_1\n"
3648		"%BP_gl_TC_2 = OpAccessChain %ip_f32 %BP_gl_TessCoord %c_u32_2\n"
3649		"%BP_gl_in_gl_Pos_0 = OpAccessChain %ip_v4f32 %BP_gl_in %c_i32_0 %c_i32_0\n"
3650		"%BP_gl_in_gl_Pos_1 = OpAccessChain %ip_v4f32 %BP_gl_in %c_i32_1 %c_i32_0\n"
3651		"%BP_gl_in_gl_Pos_2 = OpAccessChain %ip_v4f32 %BP_gl_in %c_i32_2 %c_i32_0\n"
3652
3653		"%BP_gl_OPos = OpAccessChain %op_v4f32 %BP_stream %c_i32_0\n"
3654		"%BP_in_color_0 = OpAccessChain %ip_v4f32 %BP_in_color %c_i32_0\n"
3655		"%BP_in_color_1 = OpAccessChain %ip_v4f32 %BP_in_color %c_i32_1\n"
3656		"%BP_in_color_2 = OpAccessChain %ip_v4f32 %BP_in_color %c_i32_2\n"
3657
3658		"%BP_TC_W_0 = OpLoad %f32 %BP_gl_TC_0\n"
3659		"%BP_TC_W_1 = OpLoad %f32 %BP_gl_TC_1\n"
3660		"%BP_TC_W_2 = OpLoad %f32 %BP_gl_TC_2\n"
3661		"%BP_v4f32_TC_0 = OpCompositeConstruct %v4f32 %BP_TC_W_0 %BP_TC_W_0 %BP_TC_W_0 %BP_TC_W_0\n"
3662		"%BP_v4f32_TC_1 = OpCompositeConstruct %v4f32 %BP_TC_W_1 %BP_TC_W_1 %BP_TC_W_1 %BP_TC_W_1\n"
3663		"%BP_v4f32_TC_2 = OpCompositeConstruct %v4f32 %BP_TC_W_2 %BP_TC_W_2 %BP_TC_W_2 %BP_TC_W_2\n"
3664
3665		"%BP_gl_IP_0 = OpLoad %v4f32 %BP_gl_in_gl_Pos_0\n"
3666		"%BP_gl_IP_1 = OpLoad %v4f32 %BP_gl_in_gl_Pos_1\n"
3667		"%BP_gl_IP_2 = OpLoad %v4f32 %BP_gl_in_gl_Pos_2\n"
3668
3669		"%BP_IP_W_0 = OpFMul %v4f32 %BP_v4f32_TC_0 %BP_gl_IP_0\n"
3670		"%BP_IP_W_1 = OpFMul %v4f32 %BP_v4f32_TC_1 %BP_gl_IP_1\n"
3671		"%BP_IP_W_2 = OpFMul %v4f32 %BP_v4f32_TC_2 %BP_gl_IP_2\n"
3672
3673		"%BP_pos_sum_0 = OpFAdd %v4f32 %BP_IP_W_0 %BP_IP_W_1\n"
3674		"%BP_pos_sum_1 = OpFAdd %v4f32 %BP_pos_sum_0 %BP_IP_W_2\n"
3675
3676		"OpStore %BP_gl_OPos %BP_pos_sum_1\n"
3677
3678		"%BP_IC_0 = OpLoad %v4f32 %BP_in_color_0\n"
3679		"%BP_IC_1 = OpLoad %v4f32 %BP_in_color_1\n"
3680		"%BP_IC_2 = OpLoad %v4f32 %BP_in_color_2\n"
3681
3682		"%BP_IC_W_0 = OpFMul %v4f32 %BP_v4f32_TC_0 %BP_IC_0\n"
3683		"%BP_IC_W_1 = OpFMul %v4f32 %BP_v4f32_TC_1 %BP_IC_1\n"
3684		"%BP_IC_W_2 = OpFMul %v4f32 %BP_v4f32_TC_2 %BP_IC_2\n"
3685
3686		"%BP_col_sum_0 = OpFAdd %v4f32 %BP_IC_W_0 %BP_IC_W_1\n"
3687		"%BP_col_sum_1 = OpFAdd %v4f32 %BP_col_sum_0 %BP_IC_W_2\n"
3688
3689		"%BP_clr_transformed = OpFunctionCall %v4f32 %test_code %BP_col_sum_1\n"
3690
3691		"OpStore %BP_out_color %BP_clr_transformed\n"
3692		"OpReturn\n"
3693		"OpFunctionEnd\n"
3694		"${testfun}\n";
3695	return tcu::StringTemplate(tessEvalBoilerplate).specialize(fragments);
3696}
3697
3698// Creates geometry-shader assembly by specializing a boilerplate StringTemplate
3699// on fragments, which must (at least) map "testfun" to an OpFunction definition
3700// for %test_code that takes and returns a %v4f32.  Boilerplate IDs are prefixed
3701// with "BP_" to avoid collisions with fragments.
3702//
3703// Derived from this GLSL:
3704//
3705// #version 450
3706// layout(triangles) in;
3707// layout(triangle_strip, max_vertices = 3) out;
3708//
3709// layout(location = 1) in vec4 in_color[];
3710// layout(location = 1) out vec4 out_color;
3711//
3712// void main() {
3713//   gl_Position = gl_in[0].gl_Position;
3714//   out_color = test_fun(in_color[0]);
3715//   EmitVertex();
3716//   gl_Position = gl_in[1].gl_Position;
3717//   out_color = test_fun(in_color[1]);
3718//   EmitVertex();
3719//   gl_Position = gl_in[2].gl_Position;
3720//   out_color = test_fun(in_color[2]);
3721//   EmitVertex();
3722//   EndPrimitive();
3723// }
3724string makeGeometryShaderAssembly(const map<string, string>& fragments)
3725{
3726	static const char geometryShaderBoilerplate[] =
3727		"OpCapability Geometry\n"
3728		"OpMemoryModel Logical GLSL450\n"
3729		"OpEntryPoint Geometry %BP_main \"main\" %BP_out_gl_position %BP_gl_in %BP_out_color %BP_in_color\n"
3730		"OpExecutionMode %BP_main Triangles\n"
3731		"OpExecutionMode %BP_main Invocations 0\n"
3732		"OpExecutionMode %BP_main OutputTriangleStrip\n"
3733		"OpExecutionMode %BP_main OutputVertices 3\n"
3734		"${debug:opt}\n"
3735		"OpName %BP_main \"main\"\n"
3736		"OpName %BP_per_vertex_in \"gl_PerVertex\"\n"
3737		"OpMemberName %BP_per_vertex_in 0 \"gl_Position\"\n"
3738		"OpMemberName %BP_per_vertex_in 1 \"gl_PointSize\"\n"
3739		"OpMemberName %BP_per_vertex_in 2 \"gl_ClipDistance\"\n"
3740		"OpMemberName %BP_per_vertex_in 3 \"gl_CullDistance\"\n"
3741		"OpName %BP_gl_in \"gl_in\"\n"
3742		"OpName %BP_out_color \"out_color\"\n"
3743		"OpName %BP_in_color \"in_color\"\n"
3744		"OpName %test_code \"testfun(vf4;\"\n"
3745		"OpDecorate %BP_out_gl_position BuiltIn Position\n"
3746		"OpMemberDecorate %BP_per_vertex_in 0 BuiltIn Position\n"
3747		"OpMemberDecorate %BP_per_vertex_in 1 BuiltIn PointSize\n"
3748		"OpMemberDecorate %BP_per_vertex_in 2 BuiltIn ClipDistance\n"
3749		"OpMemberDecorate %BP_per_vertex_in 3 BuiltIn CullDistance\n"
3750		"OpDecorate %BP_per_vertex_in Block\n"
3751		"OpDecorate %BP_out_color Location 1\n"
3752		"OpDecorate %BP_out_color Stream 0\n"
3753		"OpDecorate %BP_in_color Location 1\n"
3754		"${decoration:opt}\n"
3755		SPIRV_ASSEMBLY_TYPES
3756		SPIRV_ASSEMBLY_CONSTANTS
3757		SPIRV_ASSEMBLY_ARRAYS
3758		"%BP_per_vertex_in = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
3759		"%BP_a3_per_vertex_in = OpTypeArray %BP_per_vertex_in %c_u32_3\n"
3760		"%BP_ip_a3_per_vertex_in = OpTypePointer Input %BP_a3_per_vertex_in\n"
3761
3762		"%BP_gl_in = OpVariable %BP_ip_a3_per_vertex_in Input\n"
3763		"%BP_out_color = OpVariable %op_v4f32 Output\n"
3764		"%BP_in_color = OpVariable %ip_a3v4f32 Input\n"
3765		"%BP_out_gl_position = OpVariable %op_v4f32 Output\n"
3766		"${pre_main:opt}\n"
3767
3768		"%BP_main = OpFunction %void None %fun\n"
3769		"%BP_label = OpLabel\n"
3770		"%BP_gl_in_0_gl_position = OpAccessChain %ip_v4f32 %BP_gl_in %c_i32_0 %c_i32_0\n"
3771		"%BP_gl_in_1_gl_position = OpAccessChain %ip_v4f32 %BP_gl_in %c_i32_1 %c_i32_0\n"
3772		"%BP_gl_in_2_gl_position = OpAccessChain %ip_v4f32 %BP_gl_in %c_i32_2 %c_i32_0\n"
3773
3774		"%BP_in_position_0 = OpLoad %v4f32 %BP_gl_in_0_gl_position\n"
3775		"%BP_in_position_1 = OpLoad %v4f32 %BP_gl_in_1_gl_position\n"
3776		"%BP_in_position_2 = OpLoad %v4f32 %BP_gl_in_2_gl_position \n"
3777
3778		"%BP_in_color_0_ptr = OpAccessChain %ip_v4f32 %BP_in_color %c_i32_0\n"
3779		"%BP_in_color_1_ptr = OpAccessChain %ip_v4f32 %BP_in_color %c_i32_1\n"
3780		"%BP_in_color_2_ptr = OpAccessChain %ip_v4f32 %BP_in_color %c_i32_2\n"
3781
3782		"%BP_in_color_0 = OpLoad %v4f32 %BP_in_color_0_ptr\n"
3783		"%BP_in_color_1 = OpLoad %v4f32 %BP_in_color_1_ptr\n"
3784		"%BP_in_color_2 = OpLoad %v4f32 %BP_in_color_2_ptr\n"
3785
3786		"%BP_transformed_in_color_0 = OpFunctionCall %v4f32 %test_code %BP_in_color_0\n"
3787		"%BP_transformed_in_color_1 = OpFunctionCall %v4f32 %test_code %BP_in_color_1\n"
3788		"%BP_transformed_in_color_2 = OpFunctionCall %v4f32 %test_code %BP_in_color_2\n"
3789
3790
3791		"OpStore %BP_out_gl_position %BP_in_position_0\n"
3792		"OpStore %BP_out_color %BP_transformed_in_color_0\n"
3793		"OpEmitVertex\n"
3794
3795		"OpStore %BP_out_gl_position %BP_in_position_1\n"
3796		"OpStore %BP_out_color %BP_transformed_in_color_1\n"
3797		"OpEmitVertex\n"
3798
3799		"OpStore %BP_out_gl_position %BP_in_position_2\n"
3800		"OpStore %BP_out_color %BP_transformed_in_color_2\n"
3801		"OpEmitVertex\n"
3802
3803		"OpEndPrimitive\n"
3804		"OpReturn\n"
3805		"OpFunctionEnd\n"
3806		"${testfun}\n";
3807	return tcu::StringTemplate(geometryShaderBoilerplate).specialize(fragments);
3808}
3809
3810// Creates fragment-shader assembly by specializing a boilerplate StringTemplate
3811// on fragments, which must (at least) map "testfun" to an OpFunction definition
3812// for %test_code that takes and returns a %v4f32.  Boilerplate IDs are prefixed
3813// with "BP_" to avoid collisions with fragments.
3814//
3815// Derived from this GLSL:
3816//
3817// layout(location = 1) in highp vec4 vtxColor;
3818// layout(location = 0) out highp vec4 fragColor;
3819// highp vec4 testfun(highp vec4 x) { return x; }
3820// void main(void) { fragColor = testfun(vtxColor); }
3821//
3822// with modifications including passing vtxColor by value and ripping out
3823// testfun() definition.
3824string makeFragmentShaderAssembly(const map<string, string>& fragments)
3825{
3826	static const char fragmentShaderBoilerplate[] =
3827		"OpCapability Shader\n"
3828		"OpMemoryModel Logical GLSL450\n"
3829		"OpEntryPoint Fragment %BP_main \"main\" %BP_vtxColor %BP_fragColor\n"
3830		"OpExecutionMode %BP_main OriginUpperLeft\n"
3831		"${debug:opt}\n"
3832		"OpName %BP_main \"main\"\n"
3833		"OpName %BP_fragColor \"fragColor\"\n"
3834		"OpName %BP_vtxColor \"vtxColor\"\n"
3835		"OpName %test_code \"testfun(vf4;\"\n"
3836		"OpDecorate %BP_fragColor Location 0\n"
3837		"OpDecorate %BP_vtxColor Location 1\n"
3838		"${decoration:opt}\n"
3839		SPIRV_ASSEMBLY_TYPES
3840		SPIRV_ASSEMBLY_CONSTANTS
3841		SPIRV_ASSEMBLY_ARRAYS
3842		"%BP_fragColor = OpVariable %op_v4f32 Output\n"
3843		"%BP_vtxColor = OpVariable %ip_v4f32 Input\n"
3844		"${pre_main:opt}\n"
3845		"%BP_main = OpFunction %void None %fun\n"
3846		"%BP_label_main = OpLabel\n"
3847		"%BP_tmp1 = OpLoad %v4f32 %BP_vtxColor\n"
3848		"%BP_tmp2 = OpFunctionCall %v4f32 %test_code %BP_tmp1\n"
3849		"OpStore %BP_fragColor %BP_tmp2\n"
3850		"OpReturn\n"
3851		"OpFunctionEnd\n"
3852		"${testfun}\n";
3853	return tcu::StringTemplate(fragmentShaderBoilerplate).specialize(fragments);
3854}
3855
3856// Creates fragments that specialize into a simple pass-through shader (of any kind).
3857map<string, string> passthruFragments(void)
3858{
3859	map<string, string> fragments;
3860	fragments["testfun"] =
3861		// A %test_code function that returns its argument unchanged.
3862		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
3863		"%param1 = OpFunctionParameter %v4f32\n"
3864		"%label_testfun = OpLabel\n"
3865		"OpReturnValue %param1\n"
3866		"OpFunctionEnd\n";
3867	return fragments;
3868}
3869
3870// Adds shader assembly text to dst.spirvAsmSources for all shader kinds.
3871// Vertex shader gets custom code from context, the rest are pass-through.
3872void addShaderCodeCustomVertex(vk::SourceCollections& dst, InstanceContext context)
3873{
3874	map<string, string> passthru = passthruFragments();
3875	dst.spirvAsmSources.add("vert") << makeVertexShaderAssembly(context.testCodeFragments);
3876	dst.spirvAsmSources.add("frag") << makeFragmentShaderAssembly(passthru);
3877}
3878
3879// Adds shader assembly text to dst.spirvAsmSources for all shader kinds.
3880// Tessellation control shader gets custom code from context, the rest are
3881// pass-through.
3882void addShaderCodeCustomTessControl(vk::SourceCollections& dst, InstanceContext context)
3883{
3884	map<string, string> passthru = passthruFragments();
3885	dst.spirvAsmSources.add("vert") << makeVertexShaderAssembly(passthru);
3886	dst.spirvAsmSources.add("tessc") << makeTessControlShaderAssembly(context.testCodeFragments);
3887	dst.spirvAsmSources.add("tesse") << makeTessEvalShaderAssembly(passthru);
3888	dst.spirvAsmSources.add("frag") << makeFragmentShaderAssembly(passthru);
3889}
3890
3891// Adds shader assembly text to dst.spirvAsmSources for all shader kinds.
3892// Tessellation evaluation shader gets custom code from context, the rest are
3893// pass-through.
3894void addShaderCodeCustomTessEval(vk::SourceCollections& dst, InstanceContext context)
3895{
3896	map<string, string> passthru = passthruFragments();
3897	dst.spirvAsmSources.add("vert") << makeVertexShaderAssembly(passthru);
3898	dst.spirvAsmSources.add("tessc") << makeTessControlShaderAssembly(passthru);
3899	dst.spirvAsmSources.add("tesse") << makeTessEvalShaderAssembly(context.testCodeFragments);
3900	dst.spirvAsmSources.add("frag") << makeFragmentShaderAssembly(passthru);
3901}
3902
3903// Adds shader assembly text to dst.spirvAsmSources for all shader kinds.
3904// Geometry shader gets custom code from context, the rest are pass-through.
3905void addShaderCodeCustomGeometry(vk::SourceCollections& dst, InstanceContext context)
3906{
3907	map<string, string> passthru = passthruFragments();
3908	dst.spirvAsmSources.add("vert") << makeVertexShaderAssembly(passthru);
3909	dst.spirvAsmSources.add("geom") << makeGeometryShaderAssembly(context.testCodeFragments);
3910	dst.spirvAsmSources.add("frag") << makeFragmentShaderAssembly(passthru);
3911}
3912
3913// Adds shader assembly text to dst.spirvAsmSources for all shader kinds.
3914// Fragment shader gets custom code from context, the rest are pass-through.
3915void addShaderCodeCustomFragment(vk::SourceCollections& dst, InstanceContext context)
3916{
3917	map<string, string> passthru = passthruFragments();
3918	dst.spirvAsmSources.add("vert") << makeVertexShaderAssembly(passthru);
3919	dst.spirvAsmSources.add("frag") << makeFragmentShaderAssembly(context.testCodeFragments);
3920}
3921
3922void createCombinedModule(vk::SourceCollections& dst, InstanceContext)
3923{
3924	// \todo [2015-12-07 awoloszyn] Make tessellation / geometry conditional
3925	// \todo [2015-12-07 awoloszyn] Remove OpName and OpMemberName at some point
3926	dst.spirvAsmSources.add("module") <<
3927		"OpCapability Shader\n"
3928		"OpCapability Geometry\n"
3929		"OpCapability Tessellation\n"
3930		"OpMemoryModel Logical GLSL450\n"
3931
3932		"OpEntryPoint Vertex %vert_main \"main\" %vert_Position %vert_vtxColor %vert_color %vert_vtxPosition %vert_vertex_id %vert_instance_id\n"
3933		"OpEntryPoint Geometry %geom_main \"main\" %geom_out_gl_position %geom_gl_in %geom_out_color %geom_in_color\n"
3934		"OpEntryPoint TessellationControl %tessc_main \"main\" %tessc_out_color %tessc_gl_InvocationID %tessc_in_color %tessc_out_position %tessc_in_position %tessc_gl_TessLevelOuter %tessc_gl_TessLevelInner\n"
3935		"OpEntryPoint TessellationEvaluation %tesse_main \"main\" %tesse_stream %tesse_gl_tessCoord %tesse_in_position %tesse_out_color %tesse_in_color \n"
3936		"OpEntryPoint Fragment %frag_main \"main\" %frag_vtxColor %frag_fragColor\n"
3937
3938		"OpExecutionMode %geom_main Triangles\n"
3939		"OpExecutionMode %geom_main Invocations 0\n"
3940		"OpExecutionMode %geom_main OutputTriangleStrip\n"
3941		"OpExecutionMode %geom_main OutputVertices 3\n"
3942
3943		"OpExecutionMode %tessc_main OutputVertices 3\n"
3944
3945		"OpExecutionMode %tesse_main Triangles\n"
3946
3947		"OpExecutionMode %frag_main OriginUpperLeft\n"
3948
3949		"; Vertex decorations\n"
3950		"OpName %vert_main \"main\"\n"
3951		"OpName %vert_vtxPosition \"vtxPosition\"\n"
3952		"OpName %vert_Position \"position\"\n"
3953		"OpName %vert_vtxColor \"vtxColor\"\n"
3954		"OpName %vert_color \"color\"\n"
3955		"OpName %vert_vertex_id \"gl_VertexIndex\"\n"
3956		"OpName %vert_instance_id \"gl_InstanceIndex\"\n"
3957		"OpDecorate %vert_vtxPosition Location 2\n"
3958		"OpDecorate %vert_Position Location 0\n"
3959		"OpDecorate %vert_vtxColor Location 1\n"
3960		"OpDecorate %vert_color Location 1\n"
3961		"OpDecorate %vert_vertex_id BuiltIn VertexIndex\n"
3962		"OpDecorate %vert_instance_id BuiltIn InstanceIndex\n"
3963
3964		"; Geometry decorations\n"
3965		"OpName %geom_main \"main\"\n"
3966		"OpName %geom_per_vertex_in \"gl_PerVertex\"\n"
3967		"OpMemberName %geom_per_vertex_in 0 \"gl_Position\"\n"
3968		"OpMemberName %geom_per_vertex_in 1 \"gl_PointSize\"\n"
3969		"OpMemberName %geom_per_vertex_in 2 \"gl_ClipDistance\"\n"
3970		"OpMemberName %geom_per_vertex_in 3 \"gl_CullDistance\"\n"
3971		"OpName %geom_gl_in \"gl_in\"\n"
3972		"OpName %geom_out_color \"out_color\"\n"
3973		"OpName %geom_in_color \"in_color\"\n"
3974		"OpDecorate %geom_out_gl_position BuiltIn Position\n"
3975		"OpMemberDecorate %geom_per_vertex_in 0 BuiltIn Position\n"
3976		"OpMemberDecorate %geom_per_vertex_in 1 BuiltIn PointSize\n"
3977		"OpMemberDecorate %geom_per_vertex_in 2 BuiltIn ClipDistance\n"
3978		"OpMemberDecorate %geom_per_vertex_in 3 BuiltIn CullDistance\n"
3979		"OpDecorate %geom_per_vertex_in Block\n"
3980		"OpDecorate %geom_out_color Location 1\n"
3981		"OpDecorate %geom_out_color Stream 0\n"
3982		"OpDecorate %geom_in_color Location 1\n"
3983
3984		"; Tessellation Control decorations\n"
3985		"OpName %tessc_main \"main\"\n"
3986		"OpName %tessc_out_color \"out_color\"\n"
3987		"OpName %tessc_gl_InvocationID \"gl_InvocationID\"\n"
3988		"OpName %tessc_in_color \"in_color\"\n"
3989		"OpName %tessc_out_position \"out_position\"\n"
3990		"OpName %tessc_in_position \"in_position\"\n"
3991		"OpName %tessc_gl_TessLevelOuter \"gl_TessLevelOuter\"\n"
3992		"OpName %tessc_gl_TessLevelInner \"gl_TessLevelInner\"\n"
3993		"OpDecorate %tessc_out_color Location 1\n"
3994		"OpDecorate %tessc_gl_InvocationID BuiltIn InvocationId\n"
3995		"OpDecorate %tessc_in_color Location 1\n"
3996		"OpDecorate %tessc_out_position Location 2\n"
3997		"OpDecorate %tessc_in_position Location 2\n"
3998		"OpDecorate %tessc_gl_TessLevelOuter Patch\n"
3999		"OpDecorate %tessc_gl_TessLevelOuter BuiltIn TessLevelOuter\n"
4000		"OpDecorate %tessc_gl_TessLevelInner Patch\n"
4001		"OpDecorate %tessc_gl_TessLevelInner BuiltIn TessLevelInner\n"
4002
4003		"; Tessellation Evaluation decorations\n"
4004		"OpName %tesse_main \"main\"\n"
4005		"OpName %tesse_per_vertex_out \"gl_PerVertex\"\n"
4006		"OpMemberName %tesse_per_vertex_out 0 \"gl_Position\"\n"
4007		"OpMemberName %tesse_per_vertex_out 1 \"gl_PointSize\"\n"
4008		"OpMemberName %tesse_per_vertex_out 2 \"gl_ClipDistance\"\n"
4009		"OpMemberName %tesse_per_vertex_out 3 \"gl_CullDistance\"\n"
4010		"OpName %tesse_stream \"\"\n"
4011		"OpName %tesse_gl_tessCoord \"gl_TessCoord\"\n"
4012		"OpName %tesse_in_position \"in_position\"\n"
4013		"OpName %tesse_out_color \"out_color\"\n"
4014		"OpName %tesse_in_color \"in_color\"\n"
4015		"OpMemberDecorate %tesse_per_vertex_out 0 BuiltIn Position\n"
4016		"OpMemberDecorate %tesse_per_vertex_out 1 BuiltIn PointSize\n"
4017		"OpMemberDecorate %tesse_per_vertex_out 2 BuiltIn ClipDistance\n"
4018		"OpMemberDecorate %tesse_per_vertex_out 3 BuiltIn CullDistance\n"
4019		"OpDecorate %tesse_per_vertex_out Block\n"
4020		"OpDecorate %tesse_gl_tessCoord BuiltIn TessCoord\n"
4021		"OpDecorate %tesse_in_position Location 2\n"
4022		"OpDecorate %tesse_out_color Location 1\n"
4023		"OpDecorate %tesse_in_color Location 1\n"
4024
4025		"; Fragment decorations\n"
4026		"OpName %frag_main \"main\"\n"
4027		"OpName %frag_fragColor \"fragColor\"\n"
4028		"OpName %frag_vtxColor \"vtxColor\"\n"
4029		"OpDecorate %frag_fragColor Location 0\n"
4030		"OpDecorate %frag_vtxColor Location 1\n"
4031
4032		SPIRV_ASSEMBLY_TYPES
4033		SPIRV_ASSEMBLY_CONSTANTS
4034		SPIRV_ASSEMBLY_ARRAYS
4035
4036		"; Vertex Variables\n"
4037		"%vert_vtxPosition = OpVariable %op_v4f32 Output\n"
4038		"%vert_Position = OpVariable %ip_v4f32 Input\n"
4039		"%vert_vtxColor = OpVariable %op_v4f32 Output\n"
4040		"%vert_color = OpVariable %ip_v4f32 Input\n"
4041		"%vert_vertex_id = OpVariable %ip_i32 Input\n"
4042		"%vert_instance_id = OpVariable %ip_i32 Input\n"
4043
4044		"; Geometry Variables\n"
4045		"%geom_per_vertex_in = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
4046		"%geom_a3_per_vertex_in = OpTypeArray %geom_per_vertex_in %c_u32_3\n"
4047		"%geom_ip_a3_per_vertex_in = OpTypePointer Input %geom_a3_per_vertex_in\n"
4048		"%geom_gl_in = OpVariable %geom_ip_a3_per_vertex_in Input\n"
4049		"%geom_out_color = OpVariable %op_v4f32 Output\n"
4050		"%geom_in_color = OpVariable %ip_a3v4f32 Input\n"
4051		"%geom_out_gl_position = OpVariable %op_v4f32 Output\n"
4052
4053		"; Tessellation Control Variables\n"
4054		"%tessc_out_color = OpVariable %op_a3v4f32 Output\n"
4055		"%tessc_gl_InvocationID = OpVariable %ip_i32 Input\n"
4056		"%tessc_in_color = OpVariable %ip_a32v4f32 Input\n"
4057		"%tessc_out_position = OpVariable %op_a3v4f32 Output\n"
4058		"%tessc_in_position = OpVariable %ip_a32v4f32 Input\n"
4059		"%tessc_gl_TessLevelOuter = OpVariable %op_a4f32 Output\n"
4060		"%tessc_gl_TessLevelInner = OpVariable %op_a2f32 Output\n"
4061
4062		"; Tessellation Evaluation Decorations\n"
4063		"%tesse_per_vertex_out = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
4064		"%tesse_op_per_vertex_out = OpTypePointer Output %tesse_per_vertex_out\n"
4065		"%tesse_stream = OpVariable %tesse_op_per_vertex_out Output\n"
4066		"%tesse_gl_tessCoord = OpVariable %ip_v3f32 Input\n"
4067		"%tesse_in_position = OpVariable %ip_a32v4f32 Input\n"
4068		"%tesse_out_color = OpVariable %op_v4f32 Output\n"
4069		"%tesse_in_color = OpVariable %ip_a32v4f32 Input\n"
4070
4071		"; Fragment Variables\n"
4072		"%frag_fragColor = OpVariable %op_v4f32 Output\n"
4073		"%frag_vtxColor = OpVariable %ip_v4f32 Input\n"
4074
4075		"; Vertex Entry\n"
4076		"%vert_main = OpFunction %void None %fun\n"
4077		"%vert_label = OpLabel\n"
4078		"%vert_tmp_position = OpLoad %v4f32 %vert_Position\n"
4079		"OpStore %vert_vtxPosition %vert_tmp_position\n"
4080		"%vert_tmp_color = OpLoad %v4f32 %vert_color\n"
4081		"OpStore %vert_vtxColor %vert_tmp_color\n"
4082		"OpReturn\n"
4083		"OpFunctionEnd\n"
4084
4085		"; Geometry Entry\n"
4086		"%geom_main = OpFunction %void None %fun\n"
4087		"%geom_label = OpLabel\n"
4088		"%geom_gl_in_0_gl_position = OpAccessChain %ip_v4f32 %geom_gl_in %c_i32_0 %c_i32_0\n"
4089		"%geom_gl_in_1_gl_position = OpAccessChain %ip_v4f32 %geom_gl_in %c_i32_1 %c_i32_0\n"
4090		"%geom_gl_in_2_gl_position = OpAccessChain %ip_v4f32 %geom_gl_in %c_i32_2 %c_i32_0\n"
4091		"%geom_in_position_0 = OpLoad %v4f32 %geom_gl_in_0_gl_position\n"
4092		"%geom_in_position_1 = OpLoad %v4f32 %geom_gl_in_1_gl_position\n"
4093		"%geom_in_position_2 = OpLoad %v4f32 %geom_gl_in_2_gl_position \n"
4094		"%geom_in_color_0_ptr = OpAccessChain %ip_v4f32 %geom_in_color %c_i32_0\n"
4095		"%geom_in_color_1_ptr = OpAccessChain %ip_v4f32 %geom_in_color %c_i32_1\n"
4096		"%geom_in_color_2_ptr = OpAccessChain %ip_v4f32 %geom_in_color %c_i32_2\n"
4097		"%geom_in_color_0 = OpLoad %v4f32 %geom_in_color_0_ptr\n"
4098		"%geom_in_color_1 = OpLoad %v4f32 %geom_in_color_1_ptr\n"
4099		"%geom_in_color_2 = OpLoad %v4f32 %geom_in_color_2_ptr\n"
4100		"OpStore %geom_out_gl_position %geom_in_position_0\n"
4101		"OpStore %geom_out_color %geom_in_color_0\n"
4102		"OpEmitVertex\n"
4103		"OpStore %geom_out_gl_position %geom_in_position_1\n"
4104		"OpStore %geom_out_color %geom_in_color_1\n"
4105		"OpEmitVertex\n"
4106		"OpStore %geom_out_gl_position %geom_in_position_2\n"
4107		"OpStore %geom_out_color %geom_in_color_2\n"
4108		"OpEmitVertex\n"
4109		"OpEndPrimitive\n"
4110		"OpReturn\n"
4111		"OpFunctionEnd\n"
4112
4113		"; Tessellation Control Entry\n"
4114		"%tessc_main = OpFunction %void None %fun\n"
4115		"%tessc_label = OpLabel\n"
4116		"%tessc_invocation_id = OpLoad %i32 %tessc_gl_InvocationID\n"
4117		"%tessc_in_color_ptr = OpAccessChain %ip_v4f32 %tessc_in_color %tessc_invocation_id\n"
4118		"%tessc_in_position_ptr = OpAccessChain %ip_v4f32 %tessc_in_position %tessc_invocation_id\n"
4119		"%tessc_in_color_val = OpLoad %v4f32 %tessc_in_color_ptr\n"
4120		"%tessc_in_position_val = OpLoad %v4f32 %tessc_in_position_ptr\n"
4121		"%tessc_out_color_ptr = OpAccessChain %op_v4f32 %tessc_out_color %tessc_invocation_id\n"
4122		"%tessc_out_position_ptr = OpAccessChain %op_v4f32 %tessc_out_position %tessc_invocation_id\n"
4123		"OpStore %tessc_out_color_ptr %tessc_in_color_val\n"
4124		"OpStore %tessc_out_position_ptr %tessc_in_position_val\n"
4125		"%tessc_is_first_invocation = OpIEqual %bool %tessc_invocation_id %c_i32_0\n"
4126		"OpSelectionMerge %tessc_merge_label None\n"
4127		"OpBranchConditional %tessc_is_first_invocation %tessc_first_invocation %tessc_merge_label\n"
4128		"%tessc_first_invocation = OpLabel\n"
4129		"%tessc_tess_outer_0 = OpAccessChain %op_f32 %tessc_gl_TessLevelOuter %c_i32_0\n"
4130		"%tessc_tess_outer_1 = OpAccessChain %op_f32 %tessc_gl_TessLevelOuter %c_i32_1\n"
4131		"%tessc_tess_outer_2 = OpAccessChain %op_f32 %tessc_gl_TessLevelOuter %c_i32_2\n"
4132		"%tessc_tess_inner = OpAccessChain %op_f32 %tessc_gl_TessLevelInner %c_i32_0\n"
4133		"OpStore %tessc_tess_outer_0 %c_f32_1\n"
4134		"OpStore %tessc_tess_outer_1 %c_f32_1\n"
4135		"OpStore %tessc_tess_outer_2 %c_f32_1\n"
4136		"OpStore %tessc_tess_inner %c_f32_1\n"
4137		"OpBranch %tessc_merge_label\n"
4138		"%tessc_merge_label = OpLabel\n"
4139		"OpReturn\n"
4140		"OpFunctionEnd\n"
4141
4142		"; Tessellation Evaluation Entry\n"
4143		"%tesse_main = OpFunction %void None %fun\n"
4144		"%tesse_label = OpLabel\n"
4145		"%tesse_tc_0_ptr = OpAccessChain %ip_f32 %tesse_gl_tessCoord %c_u32_0\n"
4146		"%tesse_tc_1_ptr = OpAccessChain %ip_f32 %tesse_gl_tessCoord %c_u32_1\n"
4147		"%tesse_tc_2_ptr = OpAccessChain %ip_f32 %tesse_gl_tessCoord %c_u32_2\n"
4148		"%tesse_tc_0 = OpLoad %f32 %tesse_tc_0_ptr\n"
4149		"%tesse_tc_1 = OpLoad %f32 %tesse_tc_1_ptr\n"
4150		"%tesse_tc_2 = OpLoad %f32 %tesse_tc_2_ptr\n"
4151		"%tesse_in_pos_0_ptr = OpAccessChain %ip_v4f32 %tesse_in_position %c_i32_0\n"
4152		"%tesse_in_pos_1_ptr = OpAccessChain %ip_v4f32 %tesse_in_position %c_i32_1\n"
4153		"%tesse_in_pos_2_ptr = OpAccessChain %ip_v4f32 %tesse_in_position %c_i32_2\n"
4154		"%tesse_in_pos_0 = OpLoad %v4f32 %tesse_in_pos_0_ptr\n"
4155		"%tesse_in_pos_1 = OpLoad %v4f32 %tesse_in_pos_1_ptr\n"
4156		"%tesse_in_pos_2 = OpLoad %v4f32 %tesse_in_pos_2_ptr\n"
4157		"%tesse_in_pos_0_weighted = OpVectorTimesScalar %v4f32 %tesse_tc_0 %tesse_in_pos_0\n"
4158		"%tesse_in_pos_1_weighted = OpVectorTimesScalar %v4f32 %tesse_tc_1 %tesse_in_pos_1\n"
4159		"%tesse_in_pos_2_weighted = OpVectorTimesScalar %v4f32 %tesse_tc_2 %tesse_in_pos_2\n"
4160		"%tesse_out_pos_ptr = OpAccessChain %op_v4f32 %tesse_stream %c_i32_0\n"
4161		"%tesse_in_pos_0_plus_pos_1 = OpFAdd %v4f32 %tesse_in_pos_0_weighted %tesse_in_pos_1_weighted\n"
4162		"%tesse_computed_out = OpFAdd %v4f32 %tesse_in_pos_0_plus_pos_1 %tesse_in_pos_2_weighted\n"
4163		"OpStore %tesse_out_pos_ptr %tesse_computed_out\n"
4164		"%tesse_in_clr_0_ptr = OpAccessChain %ip_v4f32 %tesse_in_color %c_i32_0\n"
4165		"%tesse_in_clr_1_ptr = OpAccessChain %ip_v4f32 %tesse_in_color %c_i32_1\n"
4166		"%tesse_in_clr_2_ptr = OpAccessChain %ip_v4f32 %tesse_in_color %c_i32_2\n"
4167		"%tesse_in_clr_0 = OpLoad %v4f32 %tesse_in_clr_0_ptr\n"
4168		"%tesse_in_clr_1 = OpLoad %v4f32 %tesse_in_clr_1_ptr\n"
4169		"%tesse_in_clr_2 = OpLoad %v4f32 %tesse_in_clr_2_ptr\n"
4170		"%tesse_in_clr_0_weighted = OpVectorTimesScalar %v4f32 %tesse_tc_0 %tesse_in_clr_0\n"
4171		"%tesse_in_clr_1_weighted = OpVectorTimesScalar %v4f32 %tesse_tc_1 %tesse_in_clr_1\n"
4172		"%tesse_in_clr_2_weighted = OpVectorTimesScalar %v4f32 %tesse_tc_2 %tesse_in_clr_2\n"
4173		"%tesse_in_clr_0_plus_col_1 = OpFAdd %v4f32 %tesse_in_clr_0_weighted %tesse_in_clr_1_weighted\n"
4174		"%tesse_computed_clr = OpFAdd %v4f32 %tesse_in_clr_0_plus_col_1 %tesse_in_clr_2_weighted\n"
4175		"OpStore %tesse_out_color %tesse_computed_clr\n"
4176		"OpReturn\n"
4177		"OpFunctionEnd\n"
4178
4179		"; Fragment Entry\n"
4180		"%frag_main = OpFunction %void None %fun\n"
4181		"%frag_label_main = OpLabel\n"
4182		"%frag_tmp1 = OpLoad %v4f32 %frag_vtxColor\n"
4183		"OpStore %frag_fragColor %frag_tmp1\n"
4184		"OpReturn\n"
4185		"OpFunctionEnd\n";
4186}
4187
4188// This has two shaders of each stage. The first
4189// is a passthrough, the second inverts the color.
4190void createMultipleEntries(vk::SourceCollections& dst, InstanceContext)
4191{
4192	dst.spirvAsmSources.add("vert") <<
4193	// This module contains 2 vertex shaders. One that is a passthrough
4194	// and a second that inverts the color of the output (1.0 - color).
4195		"OpCapability Shader\n"
4196		"OpMemoryModel Logical GLSL450\n"
4197		"OpEntryPoint Vertex %main \"vert1\" %Position %vtxColor %color %vtxPosition %vertex_id %instance_id\n"
4198		"OpEntryPoint Vertex %main2 \"vert2\" %Position %vtxColor %color %vtxPosition %vertex_id %instance_id\n"
4199
4200		"OpName %main \"frag1\"\n"
4201		"OpName %main2 \"frag2\"\n"
4202		"OpName %vtxPosition \"vtxPosition\"\n"
4203		"OpName %Position \"position\"\n"
4204		"OpName %vtxColor \"vtxColor\"\n"
4205		"OpName %color \"color\"\n"
4206		"OpName %vertex_id \"gl_VertexIndex\"\n"
4207		"OpName %instance_id \"gl_InstanceIndex\"\n"
4208
4209		"OpDecorate %vtxPosition Location 2\n"
4210		"OpDecorate %Position Location 0\n"
4211		"OpDecorate %vtxColor Location 1\n"
4212		"OpDecorate %color Location 1\n"
4213		"OpDecorate %vertex_id BuiltIn VertexIndex\n"
4214		"OpDecorate %instance_id BuiltIn InstanceIndex\n"
4215		SPIRV_ASSEMBLY_TYPES
4216		SPIRV_ASSEMBLY_CONSTANTS
4217		SPIRV_ASSEMBLY_ARRAYS
4218		"%cval = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_0\n"
4219		"%vtxPosition = OpVariable %op_v4f32 Output\n"
4220		"%Position = OpVariable %ip_v4f32 Input\n"
4221		"%vtxColor = OpVariable %op_v4f32 Output\n"
4222		"%color = OpVariable %ip_v4f32 Input\n"
4223		"%vertex_id = OpVariable %ip_i32 Input\n"
4224		"%instance_id = OpVariable %ip_i32 Input\n"
4225
4226		"%main = OpFunction %void None %fun\n"
4227		"%label = OpLabel\n"
4228		"%tmp_position = OpLoad %v4f32 %Position\n"
4229		"OpStore %vtxPosition %tmp_position\n"
4230		"%tmp_color = OpLoad %v4f32 %color\n"
4231		"OpStore %vtxColor %tmp_color\n"
4232		"OpReturn\n"
4233		"OpFunctionEnd\n"
4234
4235		"%main2 = OpFunction %void None %fun\n"
4236		"%label2 = OpLabel\n"
4237		"%tmp_position2 = OpLoad %v4f32 %Position\n"
4238		"OpStore %vtxPosition %tmp_position2\n"
4239		"%tmp_color2 = OpLoad %v4f32 %color\n"
4240		"%tmp_color3 = OpFSub %v4f32 %cval %tmp_color2\n"
4241		"OpStore %vtxColor %tmp_color3\n"
4242		"OpReturn\n"
4243		"OpFunctionEnd\n";
4244
4245	dst.spirvAsmSources.add("frag") <<
4246		// This is a single module that contains 2 fragment shaders.
4247		// One that passes color through and the other that inverts the output
4248		// color (1.0 - color).
4249		"OpCapability Shader\n"
4250		"OpMemoryModel Logical GLSL450\n"
4251		"OpEntryPoint Fragment %main \"frag1\" %vtxColor %fragColor\n"
4252		"OpEntryPoint Fragment %main2 \"frag2\" %vtxColor %fragColor\n"
4253		"OpExecutionMode %main OriginUpperLeft\n"
4254		"OpExecutionMode %main2 OriginUpperLeft\n"
4255
4256		"OpName %main \"frag1\"\n"
4257		"OpName %main2 \"frag2\"\n"
4258		"OpName %fragColor \"fragColor\"\n"
4259		"OpName %vtxColor \"vtxColor\"\n"
4260		"OpDecorate %fragColor Location 0\n"
4261		"OpDecorate %vtxColor Location 1\n"
4262		SPIRV_ASSEMBLY_TYPES
4263		SPIRV_ASSEMBLY_CONSTANTS
4264		SPIRV_ASSEMBLY_ARRAYS
4265		"%cval = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_0\n"
4266		"%fragColor = OpVariable %op_v4f32 Output\n"
4267		"%vtxColor = OpVariable %ip_v4f32 Input\n"
4268
4269		"%main = OpFunction %void None %fun\n"
4270		"%label_main = OpLabel\n"
4271		"%tmp1 = OpLoad %v4f32 %vtxColor\n"
4272		"OpStore %fragColor %tmp1\n"
4273		"OpReturn\n"
4274		"OpFunctionEnd\n"
4275
4276		"%main2 = OpFunction %void None %fun\n"
4277		"%label_main2 = OpLabel\n"
4278		"%tmp2 = OpLoad %v4f32 %vtxColor\n"
4279		"%tmp3 = OpFSub %v4f32 %cval %tmp2\n"
4280		"OpStore %fragColor %tmp3\n"
4281		"OpReturn\n"
4282		"OpFunctionEnd\n";
4283
4284	dst.spirvAsmSources.add("geom") <<
4285		"OpCapability Geometry\n"
4286		"OpMemoryModel Logical GLSL450\n"
4287		"OpEntryPoint Geometry %geom1_main \"geom1\" %out_gl_position %gl_in %out_color %in_color\n"
4288		"OpEntryPoint Geometry %geom2_main \"geom2\" %out_gl_position %gl_in %out_color %in_color\n"
4289		"OpExecutionMode %geom1_main Triangles\n"
4290		"OpExecutionMode %geom2_main Triangles\n"
4291		"OpExecutionMode %geom1_main Invocations 0\n"
4292		"OpExecutionMode %geom2_main Invocations 0\n"
4293		"OpExecutionMode %geom1_main OutputTriangleStrip\n"
4294		"OpExecutionMode %geom2_main OutputTriangleStrip\n"
4295		"OpExecutionMode %geom1_main OutputVertices 3\n"
4296		"OpExecutionMode %geom2_main OutputVertices 3\n"
4297		"OpName %geom1_main \"geom1\"\n"
4298		"OpName %geom2_main \"geom2\"\n"
4299		"OpName %per_vertex_in \"gl_PerVertex\"\n"
4300		"OpMemberName %per_vertex_in 0 \"gl_Position\"\n"
4301		"OpMemberName %per_vertex_in 1 \"gl_PointSize\"\n"
4302		"OpMemberName %per_vertex_in 2 \"gl_ClipDistance\"\n"
4303		"OpMemberName %per_vertex_in 3 \"gl_CullDistance\"\n"
4304		"OpName %gl_in \"gl_in\"\n"
4305		"OpName %out_color \"out_color\"\n"
4306		"OpName %in_color \"in_color\"\n"
4307		"OpDecorate %out_gl_position BuiltIn Position\n"
4308		"OpMemberDecorate %per_vertex_in 0 BuiltIn Position\n"
4309		"OpMemberDecorate %per_vertex_in 1 BuiltIn PointSize\n"
4310		"OpMemberDecorate %per_vertex_in 2 BuiltIn ClipDistance\n"
4311		"OpMemberDecorate %per_vertex_in 3 BuiltIn CullDistance\n"
4312		"OpDecorate %per_vertex_in Block\n"
4313		"OpDecorate %out_color Location 1\n"
4314		"OpDecorate %out_color Stream 0\n"
4315		"OpDecorate %in_color Location 1\n"
4316		SPIRV_ASSEMBLY_TYPES
4317		SPIRV_ASSEMBLY_CONSTANTS
4318		SPIRV_ASSEMBLY_ARRAYS
4319		"%cval = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_0\n"
4320		"%per_vertex_in = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
4321		"%a3_per_vertex_in = OpTypeArray %per_vertex_in %c_u32_3\n"
4322		"%ip_a3_per_vertex_in = OpTypePointer Input %a3_per_vertex_in\n"
4323		"%gl_in = OpVariable %ip_a3_per_vertex_in Input\n"
4324		"%out_color = OpVariable %op_v4f32 Output\n"
4325		"%in_color = OpVariable %ip_a3v4f32 Input\n"
4326		"%out_gl_position = OpVariable %op_v4f32 Output\n"
4327
4328		"%geom1_main = OpFunction %void None %fun\n"
4329		"%geom1_label = OpLabel\n"
4330		"%geom1_gl_in_0_gl_position = OpAccessChain %ip_v4f32 %gl_in %c_i32_0 %c_i32_0\n"
4331		"%geom1_gl_in_1_gl_position = OpAccessChain %ip_v4f32 %gl_in %c_i32_1 %c_i32_0\n"
4332		"%geom1_gl_in_2_gl_position = OpAccessChain %ip_v4f32 %gl_in %c_i32_2 %c_i32_0\n"
4333		"%geom1_in_position_0 = OpLoad %v4f32 %geom1_gl_in_0_gl_position\n"
4334		"%geom1_in_position_1 = OpLoad %v4f32 %geom1_gl_in_1_gl_position\n"
4335		"%geom1_in_position_2 = OpLoad %v4f32 %geom1_gl_in_2_gl_position \n"
4336		"%geom1_in_color_0_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_0\n"
4337		"%geom1_in_color_1_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_1\n"
4338		"%geom1_in_color_2_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_2\n"
4339		"%geom1_in_color_0 = OpLoad %v4f32 %geom1_in_color_0_ptr\n"
4340		"%geom1_in_color_1 = OpLoad %v4f32 %geom1_in_color_1_ptr\n"
4341		"%geom1_in_color_2 = OpLoad %v4f32 %geom1_in_color_2_ptr\n"
4342		"OpStore %out_gl_position %geom1_in_position_0\n"
4343		"OpStore %out_color %geom1_in_color_0\n"
4344		"OpEmitVertex\n"
4345		"OpStore %out_gl_position %geom1_in_position_1\n"
4346		"OpStore %out_color %geom1_in_color_1\n"
4347		"OpEmitVertex\n"
4348		"OpStore %out_gl_position %geom1_in_position_2\n"
4349		"OpStore %out_color %geom1_in_color_2\n"
4350		"OpEmitVertex\n"
4351		"OpEndPrimitive\n"
4352		"OpReturn\n"
4353		"OpFunctionEnd\n"
4354
4355		"%geom2_main = OpFunction %void None %fun\n"
4356		"%geom2_label = OpLabel\n"
4357		"%geom2_gl_in_0_gl_position = OpAccessChain %ip_v4f32 %gl_in %c_i32_0 %c_i32_0\n"
4358		"%geom2_gl_in_1_gl_position = OpAccessChain %ip_v4f32 %gl_in %c_i32_1 %c_i32_0\n"
4359		"%geom2_gl_in_2_gl_position = OpAccessChain %ip_v4f32 %gl_in %c_i32_2 %c_i32_0\n"
4360		"%geom2_in_position_0 = OpLoad %v4f32 %geom2_gl_in_0_gl_position\n"
4361		"%geom2_in_position_1 = OpLoad %v4f32 %geom2_gl_in_1_gl_position\n"
4362		"%geom2_in_position_2 = OpLoad %v4f32 %geom2_gl_in_2_gl_position \n"
4363		"%geom2_in_color_0_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_0\n"
4364		"%geom2_in_color_1_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_1\n"
4365		"%geom2_in_color_2_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_2\n"
4366		"%geom2_in_color_0 = OpLoad %v4f32 %geom2_in_color_0_ptr\n"
4367		"%geom2_in_color_1 = OpLoad %v4f32 %geom2_in_color_1_ptr\n"
4368		"%geom2_in_color_2 = OpLoad %v4f32 %geom2_in_color_2_ptr\n"
4369		"%geom2_transformed_in_color_0 = OpFSub %v4f32 %cval %geom2_in_color_0\n"
4370		"%geom2_transformed_in_color_1 = OpFSub %v4f32 %cval %geom2_in_color_1\n"
4371		"%geom2_transformed_in_color_2 = OpFSub %v4f32 %cval %geom2_in_color_2\n"
4372		"OpStore %out_gl_position %geom2_in_position_0\n"
4373		"OpStore %out_color %geom2_transformed_in_color_0\n"
4374		"OpEmitVertex\n"
4375		"OpStore %out_gl_position %geom2_in_position_1\n"
4376		"OpStore %out_color %geom2_transformed_in_color_1\n"
4377		"OpEmitVertex\n"
4378		"OpStore %out_gl_position %geom2_in_position_2\n"
4379		"OpStore %out_color %geom2_transformed_in_color_2\n"
4380		"OpEmitVertex\n"
4381		"OpEndPrimitive\n"
4382		"OpReturn\n"
4383		"OpFunctionEnd\n";
4384
4385	dst.spirvAsmSources.add("tessc") <<
4386		"OpCapability Tessellation\n"
4387		"OpMemoryModel Logical GLSL450\n"
4388		"OpEntryPoint TessellationControl %tessc1_main \"tessc1\" %out_color %gl_InvocationID %in_color %out_position %in_position %gl_TessLevelOuter %gl_TessLevelInner\n"
4389		"OpEntryPoint TessellationControl %tessc2_main \"tessc2\" %out_color %gl_InvocationID %in_color %out_position %in_position %gl_TessLevelOuter %gl_TessLevelInner\n"
4390		"OpExecutionMode %tessc1_main OutputVertices 3\n"
4391		"OpExecutionMode %tessc2_main OutputVertices 3\n"
4392		"OpName %tessc1_main \"tessc1\"\n"
4393		"OpName %tessc2_main \"tessc2\"\n"
4394		"OpName %out_color \"out_color\"\n"
4395		"OpName %gl_InvocationID \"gl_InvocationID\"\n"
4396		"OpName %in_color \"in_color\"\n"
4397		"OpName %out_position \"out_position\"\n"
4398		"OpName %in_position \"in_position\"\n"
4399		"OpName %gl_TessLevelOuter \"gl_TessLevelOuter\"\n"
4400		"OpName %gl_TessLevelInner \"gl_TessLevelInner\"\n"
4401		"OpDecorate %out_color Location 1\n"
4402		"OpDecorate %gl_InvocationID BuiltIn InvocationId\n"
4403		"OpDecorate %in_color Location 1\n"
4404		"OpDecorate %out_position Location 2\n"
4405		"OpDecorate %in_position Location 2\n"
4406		"OpDecorate %gl_TessLevelOuter Patch\n"
4407		"OpDecorate %gl_TessLevelOuter BuiltIn TessLevelOuter\n"
4408		"OpDecorate %gl_TessLevelInner Patch\n"
4409		"OpDecorate %gl_TessLevelInner BuiltIn TessLevelInner\n"
4410		SPIRV_ASSEMBLY_TYPES
4411		SPIRV_ASSEMBLY_CONSTANTS
4412		SPIRV_ASSEMBLY_ARRAYS
4413		"%cval = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_0\n"
4414		"%out_color = OpVariable %op_a3v4f32 Output\n"
4415		"%gl_InvocationID = OpVariable %ip_i32 Input\n"
4416		"%in_color = OpVariable %ip_a32v4f32 Input\n"
4417		"%out_position = OpVariable %op_a3v4f32 Output\n"
4418		"%in_position = OpVariable %ip_a32v4f32 Input\n"
4419		"%gl_TessLevelOuter = OpVariable %op_a4f32 Output\n"
4420		"%gl_TessLevelInner = OpVariable %op_a2f32 Output\n"
4421
4422		"%tessc1_main = OpFunction %void None %fun\n"
4423		"%tessc1_label = OpLabel\n"
4424		"%tessc1_invocation_id = OpLoad %i32 %gl_InvocationID\n"
4425		"%tessc1_in_color_ptr = OpAccessChain %ip_v4f32 %in_color %tessc1_invocation_id\n"
4426		"%tessc1_in_position_ptr = OpAccessChain %ip_v4f32 %in_position %tessc1_invocation_id\n"
4427		"%tessc1_in_color_val = OpLoad %v4f32 %tessc1_in_color_ptr\n"
4428		"%tessc1_in_position_val = OpLoad %v4f32 %tessc1_in_position_ptr\n"
4429		"%tessc1_out_color_ptr = OpAccessChain %op_v4f32 %out_color %tessc1_invocation_id\n"
4430		"%tessc1_out_position_ptr = OpAccessChain %op_v4f32 %out_position %tessc1_invocation_id\n"
4431		"OpStore %tessc1_out_color_ptr %tessc1_in_color_val\n"
4432		"OpStore %tessc1_out_position_ptr %tessc1_in_position_val\n"
4433		"%tessc1_is_first_invocation = OpIEqual %bool %tessc1_invocation_id %c_i32_0\n"
4434		"OpSelectionMerge %tessc1_merge_label None\n"
4435		"OpBranchConditional %tessc1_is_first_invocation %tessc1_first_invocation %tessc1_merge_label\n"
4436		"%tessc1_first_invocation = OpLabel\n"
4437		"%tessc1_tess_outer_0 = OpAccessChain %op_f32 %gl_TessLevelOuter %c_i32_0\n"
4438		"%tessc1_tess_outer_1 = OpAccessChain %op_f32 %gl_TessLevelOuter %c_i32_1\n"
4439		"%tessc1_tess_outer_2 = OpAccessChain %op_f32 %gl_TessLevelOuter %c_i32_2\n"
4440		"%tessc1_tess_inner = OpAccessChain %op_f32 %gl_TessLevelInner %c_i32_0\n"
4441		"OpStore %tessc1_tess_outer_0 %c_f32_1\n"
4442		"OpStore %tessc1_tess_outer_1 %c_f32_1\n"
4443		"OpStore %tessc1_tess_outer_2 %c_f32_1\n"
4444		"OpStore %tessc1_tess_inner %c_f32_1\n"
4445		"OpBranch %tessc1_merge_label\n"
4446		"%tessc1_merge_label = OpLabel\n"
4447		"OpReturn\n"
4448		"OpFunctionEnd\n"
4449
4450		"%tessc2_main = OpFunction %void None %fun\n"
4451		"%tessc2_label = OpLabel\n"
4452		"%tessc2_invocation_id = OpLoad %i32 %gl_InvocationID\n"
4453		"%tessc2_in_color_ptr = OpAccessChain %ip_v4f32 %in_color %tessc2_invocation_id\n"
4454		"%tessc2_in_position_ptr = OpAccessChain %ip_v4f32 %in_position %tessc2_invocation_id\n"
4455		"%tessc2_in_color_val = OpLoad %v4f32 %tessc2_in_color_ptr\n"
4456		"%tessc2_in_position_val = OpLoad %v4f32 %tessc2_in_position_ptr\n"
4457		"%tessc2_out_color_ptr = OpAccessChain %op_v4f32 %out_color %tessc2_invocation_id\n"
4458		"%tessc2_out_position_ptr = OpAccessChain %op_v4f32 %out_position %tessc2_invocation_id\n"
4459		"%tessc2_transformed_color = OpFSub %v4f32 %cval %tessc2_in_color_val\n"
4460		"OpStore %tessc2_out_color_ptr %tessc2_transformed_color\n"
4461		"OpStore %tessc2_out_position_ptr %tessc2_in_position_val\n"
4462		"%tessc2_is_first_invocation = OpIEqual %bool %tessc2_invocation_id %c_i32_0\n"
4463		"OpSelectionMerge %tessc2_merge_label None\n"
4464		"OpBranchConditional %tessc2_is_first_invocation %tessc2_first_invocation %tessc2_merge_label\n"
4465		"%tessc2_first_invocation = OpLabel\n"
4466		"%tessc2_tess_outer_0 = OpAccessChain %op_f32 %gl_TessLevelOuter %c_i32_0\n"
4467		"%tessc2_tess_outer_1 = OpAccessChain %op_f32 %gl_TessLevelOuter %c_i32_1\n"
4468		"%tessc2_tess_outer_2 = OpAccessChain %op_f32 %gl_TessLevelOuter %c_i32_2\n"
4469		"%tessc2_tess_inner = OpAccessChain %op_f32 %gl_TessLevelInner %c_i32_0\n"
4470		"OpStore %tessc2_tess_outer_0 %c_f32_1\n"
4471		"OpStore %tessc2_tess_outer_1 %c_f32_1\n"
4472		"OpStore %tessc2_tess_outer_2 %c_f32_1\n"
4473		"OpStore %tessc2_tess_inner %c_f32_1\n"
4474		"OpBranch %tessc2_merge_label\n"
4475		"%tessc2_merge_label = OpLabel\n"
4476		"OpReturn\n"
4477		"OpFunctionEnd\n";
4478
4479	dst.spirvAsmSources.add("tesse") <<
4480		"OpCapability Tessellation\n"
4481		"OpMemoryModel Logical GLSL450\n"
4482		"OpEntryPoint TessellationEvaluation %tesse1_main \"tesse1\" %stream %gl_tessCoord %in_position %out_color %in_color \n"
4483		"OpEntryPoint TessellationEvaluation %tesse2_main \"tesse2\" %stream %gl_tessCoord %in_position %out_color %in_color \n"
4484		"OpExecutionMode %tesse1_main Triangles\n"
4485		"OpExecutionMode %tesse2_main Triangles\n"
4486		"OpName %tesse1_main \"tesse1\"\n"
4487		"OpName %tesse2_main \"tesse2\"\n"
4488		"OpName %per_vertex_out \"gl_PerVertex\"\n"
4489		"OpMemberName %per_vertex_out 0 \"gl_Position\"\n"
4490		"OpMemberName %per_vertex_out 1 \"gl_PointSize\"\n"
4491		"OpMemberName %per_vertex_out 2 \"gl_ClipDistance\"\n"
4492		"OpMemberName %per_vertex_out 3 \"gl_CullDistance\"\n"
4493		"OpName %stream \"\"\n"
4494		"OpName %gl_tessCoord \"gl_TessCoord\"\n"
4495		"OpName %in_position \"in_position\"\n"
4496		"OpName %out_color \"out_color\"\n"
4497		"OpName %in_color \"in_color\"\n"
4498		"OpMemberDecorate %per_vertex_out 0 BuiltIn Position\n"
4499		"OpMemberDecorate %per_vertex_out 1 BuiltIn PointSize\n"
4500		"OpMemberDecorate %per_vertex_out 2 BuiltIn ClipDistance\n"
4501		"OpMemberDecorate %per_vertex_out 3 BuiltIn CullDistance\n"
4502		"OpDecorate %per_vertex_out Block\n"
4503		"OpDecorate %gl_tessCoord BuiltIn TessCoord\n"
4504		"OpDecorate %in_position Location 2\n"
4505		"OpDecorate %out_color Location 1\n"
4506		"OpDecorate %in_color Location 1\n"
4507		SPIRV_ASSEMBLY_TYPES
4508		SPIRV_ASSEMBLY_CONSTANTS
4509		SPIRV_ASSEMBLY_ARRAYS
4510		"%cval = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_0\n"
4511		"%per_vertex_out = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
4512		"%op_per_vertex_out = OpTypePointer Output %per_vertex_out\n"
4513		"%stream = OpVariable %op_per_vertex_out Output\n"
4514		"%gl_tessCoord = OpVariable %ip_v3f32 Input\n"
4515		"%in_position = OpVariable %ip_a32v4f32 Input\n"
4516		"%out_color = OpVariable %op_v4f32 Output\n"
4517		"%in_color = OpVariable %ip_a32v4f32 Input\n"
4518
4519		"%tesse1_main = OpFunction %void None %fun\n"
4520		"%tesse1_label = OpLabel\n"
4521		"%tesse1_tc_0_ptr = OpAccessChain %ip_f32 %gl_tessCoord %c_u32_0\n"
4522		"%tesse1_tc_1_ptr = OpAccessChain %ip_f32 %gl_tessCoord %c_u32_1\n"
4523		"%tesse1_tc_2_ptr = OpAccessChain %ip_f32 %gl_tessCoord %c_u32_2\n"
4524		"%tesse1_tc_0 = OpLoad %f32 %tesse1_tc_0_ptr\n"
4525		"%tesse1_tc_1 = OpLoad %f32 %tesse1_tc_1_ptr\n"
4526		"%tesse1_tc_2 = OpLoad %f32 %tesse1_tc_2_ptr\n"
4527		"%tesse1_in_pos_0_ptr = OpAccessChain %ip_v4f32 %in_position %c_i32_0\n"
4528		"%tesse1_in_pos_1_ptr = OpAccessChain %ip_v4f32 %in_position %c_i32_1\n"
4529		"%tesse1_in_pos_2_ptr = OpAccessChain %ip_v4f32 %in_position %c_i32_2\n"
4530		"%tesse1_in_pos_0 = OpLoad %v4f32 %tesse1_in_pos_0_ptr\n"
4531		"%tesse1_in_pos_1 = OpLoad %v4f32 %tesse1_in_pos_1_ptr\n"
4532		"%tesse1_in_pos_2 = OpLoad %v4f32 %tesse1_in_pos_2_ptr\n"
4533		"%tesse1_in_pos_0_weighted = OpVectorTimesScalar %v4f32 %tesse1_tc_0 %tesse1_in_pos_0\n"
4534		"%tesse1_in_pos_1_weighted = OpVectorTimesScalar %v4f32 %tesse1_tc_1 %tesse1_in_pos_1\n"
4535		"%tesse1_in_pos_2_weighted = OpVectorTimesScalar %v4f32 %tesse1_tc_2 %tesse1_in_pos_2\n"
4536		"%tesse1_out_pos_ptr = OpAccessChain %op_v4f32 %stream %c_i32_0\n"
4537		"%tesse1_in_pos_0_plus_pos_1 = OpFAdd %v4f32 %tesse1_in_pos_0_weighted %tesse1_in_pos_1_weighted\n"
4538		"%tesse1_computed_out = OpFAdd %v4f32 %tesse1_in_pos_0_plus_pos_1 %tesse1_in_pos_2_weighted\n"
4539		"OpStore %tesse1_out_pos_ptr %tesse1_computed_out\n"
4540		"%tesse1_in_clr_0_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_0\n"
4541		"%tesse1_in_clr_1_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_1\n"
4542		"%tesse1_in_clr_2_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_2\n"
4543		"%tesse1_in_clr_0 = OpLoad %v4f32 %tesse1_in_clr_0_ptr\n"
4544		"%tesse1_in_clr_1 = OpLoad %v4f32 %tesse1_in_clr_1_ptr\n"
4545		"%tesse1_in_clr_2 = OpLoad %v4f32 %tesse1_in_clr_2_ptr\n"
4546		"%tesse1_in_clr_0_weighted = OpVectorTimesScalar %v4f32 %tesse1_tc_0 %tesse1_in_clr_0\n"
4547		"%tesse1_in_clr_1_weighted = OpVectorTimesScalar %v4f32 %tesse1_tc_1 %tesse1_in_clr_1\n"
4548		"%tesse1_in_clr_2_weighted = OpVectorTimesScalar %v4f32 %tesse1_tc_2 %tesse1_in_clr_2\n"
4549		"%tesse1_in_clr_0_plus_col_1 = OpFAdd %v4f32 %tesse1_in_clr_0_weighted %tesse1_in_clr_1_weighted\n"
4550		"%tesse1_computed_clr = OpFAdd %v4f32 %tesse1_in_clr_0_plus_col_1 %tesse1_in_clr_2_weighted\n"
4551		"OpStore %out_color %tesse1_computed_clr\n"
4552		"OpReturn\n"
4553		"OpFunctionEnd\n"
4554
4555		"%tesse2_main = OpFunction %void None %fun\n"
4556		"%tesse2_label = OpLabel\n"
4557		"%tesse2_tc_0_ptr = OpAccessChain %ip_f32 %gl_tessCoord %c_u32_0\n"
4558		"%tesse2_tc_1_ptr = OpAccessChain %ip_f32 %gl_tessCoord %c_u32_1\n"
4559		"%tesse2_tc_2_ptr = OpAccessChain %ip_f32 %gl_tessCoord %c_u32_2\n"
4560		"%tesse2_tc_0 = OpLoad %f32 %tesse2_tc_0_ptr\n"
4561		"%tesse2_tc_1 = OpLoad %f32 %tesse2_tc_1_ptr\n"
4562		"%tesse2_tc_2 = OpLoad %f32 %tesse2_tc_2_ptr\n"
4563		"%tesse2_in_pos_0_ptr = OpAccessChain %ip_v4f32 %in_position %c_i32_0\n"
4564		"%tesse2_in_pos_1_ptr = OpAccessChain %ip_v4f32 %in_position %c_i32_1\n"
4565		"%tesse2_in_pos_2_ptr = OpAccessChain %ip_v4f32 %in_position %c_i32_2\n"
4566		"%tesse2_in_pos_0 = OpLoad %v4f32 %tesse2_in_pos_0_ptr\n"
4567		"%tesse2_in_pos_1 = OpLoad %v4f32 %tesse2_in_pos_1_ptr\n"
4568		"%tesse2_in_pos_2 = OpLoad %v4f32 %tesse2_in_pos_2_ptr\n"
4569		"%tesse2_in_pos_0_weighted = OpVectorTimesScalar %v4f32 %tesse2_tc_0 %tesse2_in_pos_0\n"
4570		"%tesse2_in_pos_1_weighted = OpVectorTimesScalar %v4f32 %tesse2_tc_1 %tesse2_in_pos_1\n"
4571		"%tesse2_in_pos_2_weighted = OpVectorTimesScalar %v4f32 %tesse2_tc_2 %tesse2_in_pos_2\n"
4572		"%tesse2_out_pos_ptr = OpAccessChain %op_v4f32 %stream %c_i32_0\n"
4573		"%tesse2_in_pos_0_plus_pos_1 = OpFAdd %v4f32 %tesse2_in_pos_0_weighted %tesse2_in_pos_1_weighted\n"
4574		"%tesse2_computed_out = OpFAdd %v4f32 %tesse2_in_pos_0_plus_pos_1 %tesse2_in_pos_2_weighted\n"
4575		"OpStore %tesse2_out_pos_ptr %tesse2_computed_out\n"
4576		"%tesse2_in_clr_0_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_0\n"
4577		"%tesse2_in_clr_1_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_1\n"
4578		"%tesse2_in_clr_2_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_2\n"
4579		"%tesse2_in_clr_0 = OpLoad %v4f32 %tesse2_in_clr_0_ptr\n"
4580		"%tesse2_in_clr_1 = OpLoad %v4f32 %tesse2_in_clr_1_ptr\n"
4581		"%tesse2_in_clr_2 = OpLoad %v4f32 %tesse2_in_clr_2_ptr\n"
4582		"%tesse2_in_clr_0_weighted = OpVectorTimesScalar %v4f32 %tesse2_tc_0 %tesse2_in_clr_0\n"
4583		"%tesse2_in_clr_1_weighted = OpVectorTimesScalar %v4f32 %tesse2_tc_1 %tesse2_in_clr_1\n"
4584		"%tesse2_in_clr_2_weighted = OpVectorTimesScalar %v4f32 %tesse2_tc_2 %tesse2_in_clr_2\n"
4585		"%tesse2_in_clr_0_plus_col_1 = OpFAdd %v4f32 %tesse2_in_clr_0_weighted %tesse2_in_clr_1_weighted\n"
4586		"%tesse2_computed_clr = OpFAdd %v4f32 %tesse2_in_clr_0_plus_col_1 %tesse2_in_clr_2_weighted\n"
4587		"%tesse2_clr_transformed = OpFSub %v4f32 %cval %tesse2_computed_clr\n"
4588		"OpStore %out_color %tesse2_clr_transformed\n"
4589		"OpReturn\n"
4590		"OpFunctionEnd\n";
4591}
4592
4593// Sets up and runs a Vulkan pipeline, then spot-checks the resulting image.
4594// Feeds the pipeline a set of colored triangles, which then must occur in the
4595// rendered image.  The surface is cleared before executing the pipeline, so
4596// whatever the shaders draw can be directly spot-checked.
4597TestStatus runAndVerifyDefaultPipeline (Context& context, InstanceContext instance)
4598{
4599	const VkDevice								vkDevice				= context.getDevice();
4600	const DeviceInterface&						vk						= context.getDeviceInterface();
4601	const VkQueue								queue					= context.getUniversalQueue();
4602	const deUint32								queueFamilyIndex		= context.getUniversalQueueFamilyIndex();
4603	const tcu::UVec2							renderSize				(256, 256);
4604	vector<ModuleHandleSp>						modules;
4605	map<VkShaderStageFlagBits, VkShaderModule>	moduleByStage;
4606	const int									testSpecificSeed		= 31354125;
4607	const int									seed					= context.getTestContext().getCommandLine().getBaseSeed() ^ testSpecificSeed;
4608	bool										supportsGeometry		= false;
4609	bool										supportsTessellation	= false;
4610	bool										hasTessellation         = false;
4611
4612	const VkPhysicalDeviceFeatures&				features				= context.getDeviceFeatures();
4613	supportsGeometry		= features.geometryShader == VK_TRUE;
4614	supportsTessellation	= features.tessellationShader == VK_TRUE;
4615	hasTessellation			= (instance.requiredStages & VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT) ||
4616								(instance.requiredStages & VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT);
4617
4618	if (hasTessellation && !supportsTessellation)
4619	{
4620		throw tcu::NotSupportedError(std::string("Tessellation not supported"));
4621	}
4622
4623	if ((instance.requiredStages & VK_SHADER_STAGE_GEOMETRY_BIT) &&
4624		!supportsGeometry)
4625	{
4626		throw tcu::NotSupportedError(std::string("Geometry not supported"));
4627	}
4628
4629	de::Random(seed).shuffle(instance.inputColors, instance.inputColors+4);
4630	de::Random(seed).shuffle(instance.outputColors, instance.outputColors+4);
4631	const Vec4								vertexData[]			=
4632	{
4633		// Upper left corner:
4634		Vec4(-1.0f, -1.0f, 0.0f, 1.0f), instance.inputColors[0].toVec(),
4635		Vec4(-0.5f, -1.0f, 0.0f, 1.0f), instance.inputColors[0].toVec(),
4636		Vec4(-1.0f, -0.5f, 0.0f, 1.0f), instance.inputColors[0].toVec(),
4637
4638		// Upper right corner:
4639		Vec4(+0.5f, -1.0f, 0.0f, 1.0f), instance.inputColors[1].toVec(),
4640		Vec4(+1.0f, -1.0f, 0.0f, 1.0f), instance.inputColors[1].toVec(),
4641		Vec4(+1.0f, -0.5f, 0.0f, 1.0f), instance.inputColors[1].toVec(),
4642
4643		// Lower left corner:
4644		Vec4(-1.0f, +0.5f, 0.0f, 1.0f), instance.inputColors[2].toVec(),
4645		Vec4(-0.5f, +1.0f, 0.0f, 1.0f), instance.inputColors[2].toVec(),
4646		Vec4(-1.0f, +1.0f, 0.0f, 1.0f), instance.inputColors[2].toVec(),
4647
4648		// Lower right corner:
4649		Vec4(+1.0f, +0.5f, 0.0f, 1.0f), instance.inputColors[3].toVec(),
4650		Vec4(+1.0f, +1.0f, 0.0f, 1.0f), instance.inputColors[3].toVec(),
4651		Vec4(+0.5f, +1.0f, 0.0f, 1.0f), instance.inputColors[3].toVec()
4652	};
4653	const size_t							singleVertexDataSize	= 2 * sizeof(Vec4);
4654	const size_t							vertexCount				= sizeof(vertexData) / singleVertexDataSize;
4655
4656	const VkBufferCreateInfo				vertexBufferParams		=
4657	{
4658		VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO,	//	VkStructureType		sType;
4659		DE_NULL,								//	const void*			pNext;
4660		0u,										//	VkBufferCreateFlags	flags;
4661		(VkDeviceSize)sizeof(vertexData),		//	VkDeviceSize		size;
4662		VK_BUFFER_USAGE_VERTEX_BUFFER_BIT,		//	VkBufferUsageFlags	usage;
4663		VK_SHARING_MODE_EXCLUSIVE,				//	VkSharingMode		sharingMode;
4664		1u,										//	deUint32			queueFamilyCount;
4665		&queueFamilyIndex,						//	const deUint32*		pQueueFamilyIndices;
4666	};
4667	const Unique<VkBuffer>					vertexBuffer			(createBuffer(vk, vkDevice, &vertexBufferParams));
4668	const UniquePtr<Allocation>				vertexBufferMemory		(context.getDefaultAllocator().allocate(getBufferMemoryRequirements(vk, vkDevice, *vertexBuffer), MemoryRequirement::HostVisible));
4669
4670	VK_CHECK(vk.bindBufferMemory(vkDevice, *vertexBuffer, vertexBufferMemory->getMemory(), vertexBufferMemory->getOffset()));
4671
4672	const VkDeviceSize						imageSizeBytes			= (VkDeviceSize)(sizeof(deUint32)*renderSize.x()*renderSize.y());
4673	const VkBufferCreateInfo				readImageBufferParams	=
4674	{
4675		VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO,		//	VkStructureType		sType;
4676		DE_NULL,									//	const void*			pNext;
4677		0u,											//	VkBufferCreateFlags	flags;
4678		imageSizeBytes,								//	VkDeviceSize		size;
4679		VK_BUFFER_USAGE_TRANSFER_DST_BIT,			//	VkBufferUsageFlags	usage;
4680		VK_SHARING_MODE_EXCLUSIVE,					//	VkSharingMode		sharingMode;
4681		1u,											//	deUint32			queueFamilyCount;
4682		&queueFamilyIndex,							//	const deUint32*		pQueueFamilyIndices;
4683	};
4684	const Unique<VkBuffer>					readImageBuffer			(createBuffer(vk, vkDevice, &readImageBufferParams));
4685	const UniquePtr<Allocation>				readImageBufferMemory	(context.getDefaultAllocator().allocate(getBufferMemoryRequirements(vk, vkDevice, *readImageBuffer), MemoryRequirement::HostVisible));
4686
4687	VK_CHECK(vk.bindBufferMemory(vkDevice, *readImageBuffer, readImageBufferMemory->getMemory(), readImageBufferMemory->getOffset()));
4688
4689	const VkImageCreateInfo					imageParams				=
4690	{
4691		VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,									//	VkStructureType		sType;
4692		DE_NULL,																//	const void*			pNext;
4693		0u,																		//	VkImageCreateFlags	flags;
4694		VK_IMAGE_TYPE_2D,														//	VkImageType			imageType;
4695		VK_FORMAT_R8G8B8A8_UNORM,												//	VkFormat			format;
4696		{ renderSize.x(), renderSize.y(), 1 },									//	VkExtent3D			extent;
4697		1u,																		//	deUint32			mipLevels;
4698		1u,																		//	deUint32			arraySize;
4699		VK_SAMPLE_COUNT_1_BIT,													//	deUint32			samples;
4700		VK_IMAGE_TILING_OPTIMAL,												//	VkImageTiling		tiling;
4701		VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT|VK_IMAGE_USAGE_TRANSFER_SRC_BIT,	//	VkImageUsageFlags	usage;
4702		VK_SHARING_MODE_EXCLUSIVE,												//	VkSharingMode		sharingMode;
4703		1u,																		//	deUint32			queueFamilyCount;
4704		&queueFamilyIndex,														//	const deUint32*		pQueueFamilyIndices;
4705		VK_IMAGE_LAYOUT_UNDEFINED,												//	VkImageLayout		initialLayout;
4706	};
4707
4708	const Unique<VkImage>					image					(createImage(vk, vkDevice, &imageParams));
4709	const UniquePtr<Allocation>				imageMemory				(context.getDefaultAllocator().allocate(getImageMemoryRequirements(vk, vkDevice, *image), MemoryRequirement::Any));
4710
4711	VK_CHECK(vk.bindImageMemory(vkDevice, *image, imageMemory->getMemory(), imageMemory->getOffset()));
4712
4713	const VkAttachmentDescription			colorAttDesc			=
4714	{
4715		0u,												//	VkAttachmentDescriptionFlags	flags;
4716		VK_FORMAT_R8G8B8A8_UNORM,						//	VkFormat						format;
4717		VK_SAMPLE_COUNT_1_BIT,							//	deUint32						samples;
4718		VK_ATTACHMENT_LOAD_OP_CLEAR,					//	VkAttachmentLoadOp				loadOp;
4719		VK_ATTACHMENT_STORE_OP_STORE,					//	VkAttachmentStoreOp				storeOp;
4720		VK_ATTACHMENT_LOAD_OP_DONT_CARE,				//	VkAttachmentLoadOp				stencilLoadOp;
4721		VK_ATTACHMENT_STORE_OP_DONT_CARE,				//	VkAttachmentStoreOp				stencilStoreOp;
4722		VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,		//	VkImageLayout					initialLayout;
4723		VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,		//	VkImageLayout					finalLayout;
4724	};
4725	const VkAttachmentReference				colorAttRef				=
4726	{
4727		0u,												//	deUint32		attachment;
4728		VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,		//	VkImageLayout	layout;
4729	};
4730	const VkSubpassDescription				subpassDesc				=
4731	{
4732		0u,												//	VkSubpassDescriptionFlags		flags;
4733		VK_PIPELINE_BIND_POINT_GRAPHICS,				//	VkPipelineBindPoint				pipelineBindPoint;
4734		0u,												//	deUint32						inputCount;
4735		DE_NULL,										//	const VkAttachmentReference*	pInputAttachments;
4736		1u,												//	deUint32						colorCount;
4737		&colorAttRef,									//	const VkAttachmentReference*	pColorAttachments;
4738		DE_NULL,										//	const VkAttachmentReference*	pResolveAttachments;
4739		DE_NULL,										//	const VkAttachmentReference*	pDepthStencilAttachment;
4740		0u,												//	deUint32						preserveCount;
4741		DE_NULL,										//	const VkAttachmentReference*	pPreserveAttachments;
4742
4743	};
4744	const VkRenderPassCreateInfo			renderPassParams		=
4745	{
4746		VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO,		//	VkStructureType					sType;
4747		DE_NULL,										//	const void*						pNext;
4748		(VkRenderPassCreateFlags)0,
4749		1u,												//	deUint32						attachmentCount;
4750		&colorAttDesc,									//	const VkAttachmentDescription*	pAttachments;
4751		1u,												//	deUint32						subpassCount;
4752		&subpassDesc,									//	const VkSubpassDescription*		pSubpasses;
4753		0u,												//	deUint32						dependencyCount;
4754		DE_NULL,										//	const VkSubpassDependency*		pDependencies;
4755	};
4756	const Unique<VkRenderPass>				renderPass				(createRenderPass(vk, vkDevice, &renderPassParams));
4757
4758	const VkImageViewCreateInfo				colorAttViewParams		=
4759	{
4760		VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,		//	VkStructureType				sType;
4761		DE_NULL,										//	const void*					pNext;
4762		0u,												//	VkImageViewCreateFlags		flags;
4763		*image,											//	VkImage						image;
4764		VK_IMAGE_VIEW_TYPE_2D,							//	VkImageViewType				viewType;
4765		VK_FORMAT_R8G8B8A8_UNORM,						//	VkFormat					format;
4766		{
4767			VK_COMPONENT_SWIZZLE_R,
4768			VK_COMPONENT_SWIZZLE_G,
4769			VK_COMPONENT_SWIZZLE_B,
4770			VK_COMPONENT_SWIZZLE_A
4771		},												//	VkChannelMapping			channels;
4772		{
4773			VK_IMAGE_ASPECT_COLOR_BIT,						//	VkImageAspectFlags	aspectMask;
4774			0u,												//	deUint32			baseMipLevel;
4775			1u,												//	deUint32			mipLevels;
4776			0u,												//	deUint32			baseArrayLayer;
4777			1u,												//	deUint32			arraySize;
4778		},												//	VkImageSubresourceRange		subresourceRange;
4779	};
4780	const Unique<VkImageView>				colorAttView			(createImageView(vk, vkDevice, &colorAttViewParams));
4781
4782
4783	// Pipeline layout
4784	const VkPipelineLayoutCreateInfo		pipelineLayoutParams	=
4785	{
4786		VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,			//	VkStructureType					sType;
4787		DE_NULL,												//	const void*						pNext;
4788		(VkPipelineLayoutCreateFlags)0,
4789		0u,														//	deUint32						descriptorSetCount;
4790		DE_NULL,												//	const VkDescriptorSetLayout*	pSetLayouts;
4791		0u,														//	deUint32						pushConstantRangeCount;
4792		DE_NULL,												//	const VkPushConstantRange*		pPushConstantRanges;
4793	};
4794	const Unique<VkPipelineLayout>			pipelineLayout			(createPipelineLayout(vk, vkDevice, &pipelineLayoutParams));
4795
4796	// Pipeline
4797	vector<VkPipelineShaderStageCreateInfo>		shaderStageParams;
4798	// We need these vectors to make sure that information about specialization constants for each stage can outlive createGraphicsPipeline().
4799	vector<vector<VkSpecializationMapEntry> >	specConstantEntries;
4800	vector<VkSpecializationInfo>				specializationInfos;
4801	createPipelineShaderStages(vk, vkDevice, instance, context, modules, shaderStageParams);
4802
4803	// And we don't want the reallocation of these vectors to invalidate pointers pointing to their contents.
4804	specConstantEntries.reserve(shaderStageParams.size());
4805	specializationInfos.reserve(shaderStageParams.size());
4806
4807	// Patch the specialization info field in PipelineShaderStageCreateInfos.
4808	for (vector<VkPipelineShaderStageCreateInfo>::iterator stageInfo = shaderStageParams.begin(); stageInfo != shaderStageParams.end(); ++stageInfo)
4809	{
4810		const StageToSpecConstantMap::const_iterator stageIt = instance.specConstants.find(stageInfo->stage);
4811
4812		if (stageIt != instance.specConstants.end())
4813		{
4814			const size_t						numSpecConstants	= stageIt->second.size();
4815			vector<VkSpecializationMapEntry>	entries;
4816			VkSpecializationInfo				specInfo;
4817
4818			entries.resize(numSpecConstants);
4819
4820			// Only support 32-bit integers as spec constants now. And their constant IDs are numbered sequentially starting from 0.
4821			for (size_t ndx = 0; ndx < numSpecConstants; ++ndx)
4822			{
4823				entries[ndx].constantID	= (deUint32)ndx;
4824				entries[ndx].offset		= deUint32(ndx * sizeof(deInt32));
4825				entries[ndx].size		= sizeof(deInt32);
4826			}
4827
4828			specConstantEntries.push_back(entries);
4829
4830			specInfo.mapEntryCount	= (deUint32)numSpecConstants;
4831			specInfo.pMapEntries	= specConstantEntries.back().data();
4832			specInfo.dataSize		= numSpecConstants * sizeof(deInt32);
4833			specInfo.pData			= stageIt->second.data();
4834			specializationInfos.push_back(specInfo);
4835
4836			stageInfo->pSpecializationInfo = &specializationInfos.back();
4837		}
4838	}
4839	const VkPipelineDepthStencilStateCreateInfo	depthStencilParams		=
4840	{
4841		VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO,	//	VkStructureType		sType;
4842		DE_NULL,													//	const void*			pNext;
4843		(VkPipelineDepthStencilStateCreateFlags)0,
4844		DE_FALSE,													//	deUint32			depthTestEnable;
4845		DE_FALSE,													//	deUint32			depthWriteEnable;
4846		VK_COMPARE_OP_ALWAYS,										//	VkCompareOp			depthCompareOp;
4847		DE_FALSE,													//	deUint32			depthBoundsTestEnable;
4848		DE_FALSE,													//	deUint32			stencilTestEnable;
4849		{
4850			VK_STENCIL_OP_KEEP,											//	VkStencilOp	stencilFailOp;
4851			VK_STENCIL_OP_KEEP,											//	VkStencilOp	stencilPassOp;
4852			VK_STENCIL_OP_KEEP,											//	VkStencilOp	stencilDepthFailOp;
4853			VK_COMPARE_OP_ALWAYS,										//	VkCompareOp	stencilCompareOp;
4854			0u,															//	deUint32	stencilCompareMask;
4855			0u,															//	deUint32	stencilWriteMask;
4856			0u,															//	deUint32	stencilReference;
4857		},															//	VkStencilOpState	front;
4858		{
4859			VK_STENCIL_OP_KEEP,											//	VkStencilOp	stencilFailOp;
4860			VK_STENCIL_OP_KEEP,											//	VkStencilOp	stencilPassOp;
4861			VK_STENCIL_OP_KEEP,											//	VkStencilOp	stencilDepthFailOp;
4862			VK_COMPARE_OP_ALWAYS,										//	VkCompareOp	stencilCompareOp;
4863			0u,															//	deUint32	stencilCompareMask;
4864			0u,															//	deUint32	stencilWriteMask;
4865			0u,															//	deUint32	stencilReference;
4866		},															//	VkStencilOpState	back;
4867		-1.0f,														//	float				minDepthBounds;
4868		+1.0f,														//	float				maxDepthBounds;
4869	};
4870	const VkViewport						viewport0				=
4871	{
4872		0.0f,														//	float	originX;
4873		0.0f,														//	float	originY;
4874		(float)renderSize.x(),										//	float	width;
4875		(float)renderSize.y(),										//	float	height;
4876		0.0f,														//	float	minDepth;
4877		1.0f,														//	float	maxDepth;
4878	};
4879	const VkRect2D							scissor0				=
4880	{
4881		{
4882			0u,															//	deInt32	x;
4883			0u,															//	deInt32	y;
4884		},															//	VkOffset2D	offset;
4885		{
4886			renderSize.x(),												//	deInt32	width;
4887			renderSize.y(),												//	deInt32	height;
4888		},															//	VkExtent2D	extent;
4889	};
4890	const VkPipelineViewportStateCreateInfo		viewportParams			=
4891	{
4892		VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO,		//	VkStructureType		sType;
4893		DE_NULL,													//	const void*			pNext;
4894		(VkPipelineViewportStateCreateFlags)0,
4895		1u,															//	deUint32			viewportCount;
4896		&viewport0,
4897		1u,
4898		&scissor0
4899	};
4900	const VkSampleMask							sampleMask				= ~0u;
4901	const VkPipelineMultisampleStateCreateInfo	multisampleParams		=
4902	{
4903		VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO,	//	VkStructureType			sType;
4904		DE_NULL,													//	const void*				pNext;
4905		(VkPipelineMultisampleStateCreateFlags)0,
4906		VK_SAMPLE_COUNT_1_BIT,										//	VkSampleCountFlagBits	rasterSamples;
4907		DE_FALSE,													//	deUint32				sampleShadingEnable;
4908		0.0f,														//	float					minSampleShading;
4909		&sampleMask,												//	const VkSampleMask*		pSampleMask;
4910		DE_FALSE,													//	VkBool32				alphaToCoverageEnable;
4911		DE_FALSE,													//	VkBool32				alphaToOneEnable;
4912	};
4913	const VkPipelineRasterizationStateCreateInfo	rasterParams		=
4914	{
4915		VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO,	//	VkStructureType	sType;
4916		DE_NULL,													//	const void*		pNext;
4917		(VkPipelineRasterizationStateCreateFlags)0,
4918		DE_TRUE,													//	deUint32		depthClipEnable;
4919		DE_FALSE,													//	deUint32		rasterizerDiscardEnable;
4920		VK_POLYGON_MODE_FILL,										//	VkFillMode		fillMode;
4921		VK_CULL_MODE_NONE,											//	VkCullMode		cullMode;
4922		VK_FRONT_FACE_COUNTER_CLOCKWISE,							//	VkFrontFace		frontFace;
4923		VK_FALSE,													//	VkBool32		depthBiasEnable;
4924		0.0f,														//	float			depthBias;
4925		0.0f,														//	float			depthBiasClamp;
4926		0.0f,														//	float			slopeScaledDepthBias;
4927		1.0f,														//	float			lineWidth;
4928	};
4929	const VkPrimitiveTopology topology = hasTessellation? VK_PRIMITIVE_TOPOLOGY_PATCH_LIST: VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
4930	const VkPipelineInputAssemblyStateCreateInfo	inputAssemblyParams	=
4931	{
4932		VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO,	//	VkStructureType		sType;
4933		DE_NULL,														//	const void*			pNext;
4934		(VkPipelineInputAssemblyStateCreateFlags)0,
4935		topology,														//	VkPrimitiveTopology	topology;
4936		DE_FALSE,														//	deUint32			primitiveRestartEnable;
4937	};
4938	const VkVertexInputBindingDescription		vertexBinding0 =
4939	{
4940		0u,									// deUint32					binding;
4941		deUint32(singleVertexDataSize),		// deUint32					strideInBytes;
4942		VK_VERTEX_INPUT_RATE_VERTEX			// VkVertexInputStepRate	stepRate;
4943	};
4944	const VkVertexInputAttributeDescription		vertexAttrib0[2] =
4945	{
4946		{
4947			0u,									// deUint32	location;
4948			0u,									// deUint32	binding;
4949			VK_FORMAT_R32G32B32A32_SFLOAT,		// VkFormat	format;
4950			0u									// deUint32	offsetInBytes;
4951		},
4952		{
4953			1u,									// deUint32	location;
4954			0u,									// deUint32	binding;
4955			VK_FORMAT_R32G32B32A32_SFLOAT,		// VkFormat	format;
4956			sizeof(Vec4),						// deUint32	offsetInBytes;
4957		}
4958	};
4959
4960	const VkPipelineVertexInputStateCreateInfo	vertexInputStateParams	=
4961	{
4962		VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO,	//	VkStructureType								sType;
4963		DE_NULL,													//	const void*									pNext;
4964		(VkPipelineVertexInputStateCreateFlags)0,
4965		1u,															//	deUint32									bindingCount;
4966		&vertexBinding0,											//	const VkVertexInputBindingDescription*		pVertexBindingDescriptions;
4967		2u,															//	deUint32									attributeCount;
4968		vertexAttrib0,												//	const VkVertexInputAttributeDescription*	pVertexAttributeDescriptions;
4969	};
4970	const VkPipelineColorBlendAttachmentState	attBlendParams			=
4971	{
4972		DE_FALSE,													//	deUint32		blendEnable;
4973		VK_BLEND_FACTOR_ONE,										//	VkBlend			srcBlendColor;
4974		VK_BLEND_FACTOR_ZERO,										//	VkBlend			destBlendColor;
4975		VK_BLEND_OP_ADD,											//	VkBlendOp		blendOpColor;
4976		VK_BLEND_FACTOR_ONE,										//	VkBlend			srcBlendAlpha;
4977		VK_BLEND_FACTOR_ZERO,										//	VkBlend			destBlendAlpha;
4978		VK_BLEND_OP_ADD,											//	VkBlendOp		blendOpAlpha;
4979		(VK_COLOR_COMPONENT_R_BIT|
4980		 VK_COLOR_COMPONENT_G_BIT|
4981		 VK_COLOR_COMPONENT_B_BIT|
4982		 VK_COLOR_COMPONENT_A_BIT),									//	VkChannelFlags	channelWriteMask;
4983	};
4984	const VkPipelineColorBlendStateCreateInfo	blendParams				=
4985	{
4986		VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO,	//	VkStructureType								sType;
4987		DE_NULL,													//	const void*									pNext;
4988		(VkPipelineColorBlendStateCreateFlags)0,
4989		DE_FALSE,													//	VkBool32									logicOpEnable;
4990		VK_LOGIC_OP_COPY,											//	VkLogicOp									logicOp;
4991		1u,															//	deUint32									attachmentCount;
4992		&attBlendParams,											//	const VkPipelineColorBlendAttachmentState*	pAttachments;
4993		{ 0.0f, 0.0f, 0.0f, 0.0f },									//	float										blendConst[4];
4994	};
4995	const VkPipelineDynamicStateCreateInfo	dynamicStateInfo		=
4996	{
4997		VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO,	//	VkStructureType			sType;
4998		DE_NULL,												//	const void*				pNext;
4999		(VkPipelineDynamicStateCreateFlags)0,
5000		0u,														//	deUint32				dynamicStateCount;
5001		DE_NULL													//	const VkDynamicState*	pDynamicStates;
5002	};
5003
5004	const VkPipelineTessellationStateCreateInfo	tessellationState	=
5005	{
5006		VK_STRUCTURE_TYPE_PIPELINE_TESSELLATION_STATE_CREATE_INFO,
5007		DE_NULL,
5008		(VkPipelineTessellationStateCreateFlags)0,
5009		3u
5010	};
5011
5012	const VkPipelineTessellationStateCreateInfo* tessellationInfo	=	hasTessellation ? &tessellationState: DE_NULL;
5013	const VkGraphicsPipelineCreateInfo		pipelineParams			=
5014	{
5015		VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO,		//	VkStructureType									sType;
5016		DE_NULL,												//	const void*										pNext;
5017		0u,														//	VkPipelineCreateFlags							flags;
5018		(deUint32)shaderStageParams.size(),						//	deUint32										stageCount;
5019		&shaderStageParams[0],									//	const VkPipelineShaderStageCreateInfo*			pStages;
5020		&vertexInputStateParams,								//	const VkPipelineVertexInputStateCreateInfo*		pVertexInputState;
5021		&inputAssemblyParams,									//	const VkPipelineInputAssemblyStateCreateInfo*	pInputAssemblyState;
5022		tessellationInfo,										//	const VkPipelineTessellationStateCreateInfo*	pTessellationState;
5023		&viewportParams,										//	const VkPipelineViewportStateCreateInfo*		pViewportState;
5024		&rasterParams,											//	const VkPipelineRasterStateCreateInfo*			pRasterState;
5025		&multisampleParams,										//	const VkPipelineMultisampleStateCreateInfo*		pMultisampleState;
5026		&depthStencilParams,									//	const VkPipelineDepthStencilStateCreateInfo*	pDepthStencilState;
5027		&blendParams,											//	const VkPipelineColorBlendStateCreateInfo*		pColorBlendState;
5028		&dynamicStateInfo,										//	const VkPipelineDynamicStateCreateInfo*			pDynamicState;
5029		*pipelineLayout,										//	VkPipelineLayout								layout;
5030		*renderPass,											//	VkRenderPass									renderPass;
5031		0u,														//	deUint32										subpass;
5032		DE_NULL,												//	VkPipeline										basePipelineHandle;
5033		0u,														//	deInt32											basePipelineIndex;
5034	};
5035
5036	const Unique<VkPipeline>				pipeline				(createGraphicsPipeline(vk, vkDevice, DE_NULL, &pipelineParams));
5037
5038	// Framebuffer
5039	const VkFramebufferCreateInfo			framebufferParams		=
5040	{
5041		VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO,				//	VkStructureType		sType;
5042		DE_NULL,												//	const void*			pNext;
5043		(VkFramebufferCreateFlags)0,
5044		*renderPass,											//	VkRenderPass		renderPass;
5045		1u,														//	deUint32			attachmentCount;
5046		&*colorAttView,											//	const VkImageView*	pAttachments;
5047		(deUint32)renderSize.x(),								//	deUint32			width;
5048		(deUint32)renderSize.y(),								//	deUint32			height;
5049		1u,														//	deUint32			layers;
5050	};
5051	const Unique<VkFramebuffer>				framebuffer				(createFramebuffer(vk, vkDevice, &framebufferParams));
5052
5053	const VkCommandPoolCreateInfo			cmdPoolParams			=
5054	{
5055		VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO,					//	VkStructureType			sType;
5056		DE_NULL,													//	const void*				pNext;
5057		VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT,				//	VkCmdPoolCreateFlags	flags;
5058		queueFamilyIndex,											//	deUint32				queueFamilyIndex;
5059	};
5060	const Unique<VkCommandPool>				cmdPool					(createCommandPool(vk, vkDevice, &cmdPoolParams));
5061
5062	// Command buffer
5063	const VkCommandBufferAllocateInfo		cmdBufParams			=
5064	{
5065		VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO,			//	VkStructureType			sType;
5066		DE_NULL,												//	const void*				pNext;
5067		*cmdPool,												//	VkCmdPool				pool;
5068		VK_COMMAND_BUFFER_LEVEL_PRIMARY,						//	VkCmdBufferLevel		level;
5069		1u,														//	deUint32				count;
5070	};
5071	const Unique<VkCommandBuffer>			cmdBuf					(allocateCommandBuffer(vk, vkDevice, &cmdBufParams));
5072
5073	const VkCommandBufferBeginInfo			cmdBufBeginParams		=
5074	{
5075		VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO,			//	VkStructureType				sType;
5076		DE_NULL,												//	const void*					pNext;
5077		(VkCommandBufferUsageFlags)0,
5078		(const VkCommandBufferInheritanceInfo*)DE_NULL,
5079	};
5080
5081	// Record commands
5082	VK_CHECK(vk.beginCommandBuffer(*cmdBuf, &cmdBufBeginParams));
5083
5084	{
5085		const VkMemoryBarrier		vertFlushBarrier	=
5086		{
5087			VK_STRUCTURE_TYPE_MEMORY_BARRIER,			//	VkStructureType		sType;
5088			DE_NULL,									//	const void*			pNext;
5089			VK_ACCESS_HOST_WRITE_BIT,					//	VkMemoryOutputFlags	outputMask;
5090			VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT,		//	VkMemoryInputFlags	inputMask;
5091		};
5092		const VkImageMemoryBarrier	colorAttBarrier		=
5093		{
5094			VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,		//	VkStructureType			sType;
5095			DE_NULL,									//	const void*				pNext;
5096			0u,											//	VkMemoryOutputFlags		outputMask;
5097			VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,		//	VkMemoryInputFlags		inputMask;
5098			VK_IMAGE_LAYOUT_UNDEFINED,					//	VkImageLayout			oldLayout;
5099			VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,	//	VkImageLayout			newLayout;
5100			queueFamilyIndex,							//	deUint32				srcQueueFamilyIndex;
5101			queueFamilyIndex,							//	deUint32				destQueueFamilyIndex;
5102			*image,										//	VkImage					image;
5103			{
5104				VK_IMAGE_ASPECT_COLOR_BIT,					//	VkImageAspect	aspect;
5105				0u,											//	deUint32		baseMipLevel;
5106				1u,											//	deUint32		mipLevels;
5107				0u,											//	deUint32		baseArraySlice;
5108				1u,											//	deUint32		arraySize;
5109			}											//	VkImageSubresourceRange	subresourceRange;
5110		};
5111		vk.cmdPipelineBarrier(*cmdBuf, VK_PIPELINE_STAGE_HOST_BIT, VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT, (VkDependencyFlags)0, 1, &vertFlushBarrier, 0, (const VkBufferMemoryBarrier*)DE_NULL, 1, &colorAttBarrier);
5112	}
5113
5114	{
5115		const VkClearValue			clearValue		= makeClearValueColorF32(0.125f, 0.25f, 0.75f, 1.0f);
5116		const VkRenderPassBeginInfo	passBeginParams	=
5117		{
5118			VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO,			//	VkStructureType		sType;
5119			DE_NULL,											//	const void*			pNext;
5120			*renderPass,										//	VkRenderPass		renderPass;
5121			*framebuffer,										//	VkFramebuffer		framebuffer;
5122			{ { 0, 0 }, { renderSize.x(), renderSize.y() } },	//	VkRect2D			renderArea;
5123			1u,													//	deUint32			clearValueCount;
5124			&clearValue,										//	const VkClearValue*	pClearValues;
5125		};
5126		vk.cmdBeginRenderPass(*cmdBuf, &passBeginParams, VK_SUBPASS_CONTENTS_INLINE);
5127	}
5128
5129	vk.cmdBindPipeline(*cmdBuf, VK_PIPELINE_BIND_POINT_GRAPHICS, *pipeline);
5130	{
5131		const VkDeviceSize bindingOffset = 0;
5132		vk.cmdBindVertexBuffers(*cmdBuf, 0u, 1u, &vertexBuffer.get(), &bindingOffset);
5133	}
5134	vk.cmdDraw(*cmdBuf, deUint32(vertexCount), 1u /*run pipeline once*/, 0u /*first vertex*/, 0u /*first instanceIndex*/);
5135	vk.cmdEndRenderPass(*cmdBuf);
5136
5137	{
5138		const VkImageMemoryBarrier	renderFinishBarrier	=
5139		{
5140			VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,		//	VkStructureType			sType;
5141			DE_NULL,									//	const void*				pNext;
5142			VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,		//	VkMemoryOutputFlags		outputMask;
5143			VK_ACCESS_TRANSFER_READ_BIT,				//	VkMemoryInputFlags		inputMask;
5144			VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,	//	VkImageLayout			oldLayout;
5145			VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,		//	VkImageLayout			newLayout;
5146			queueFamilyIndex,							//	deUint32				srcQueueFamilyIndex;
5147			queueFamilyIndex,							//	deUint32				destQueueFamilyIndex;
5148			*image,										//	VkImage					image;
5149			{
5150				VK_IMAGE_ASPECT_COLOR_BIT,					//	VkImageAspectFlags	aspectMask;
5151				0u,											//	deUint32			baseMipLevel;
5152				1u,											//	deUint32			mipLevels;
5153				0u,											//	deUint32			baseArraySlice;
5154				1u,											//	deUint32			arraySize;
5155			}											//	VkImageSubresourceRange	subresourceRange;
5156		};
5157		vk.cmdPipelineBarrier(*cmdBuf, VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, (VkDependencyFlags)0, 0, (const VkMemoryBarrier*)DE_NULL, 0, (const VkBufferMemoryBarrier*)DE_NULL, 1, &renderFinishBarrier);
5158	}
5159
5160	{
5161		const VkBufferImageCopy	copyParams	=
5162		{
5163			(VkDeviceSize)0u,						//	VkDeviceSize			bufferOffset;
5164			(deUint32)renderSize.x(),				//	deUint32				bufferRowLength;
5165			(deUint32)renderSize.y(),				//	deUint32				bufferImageHeight;
5166			{
5167				VK_IMAGE_ASPECT_COLOR_BIT,				//	VkImageAspect		aspect;
5168				0u,										//	deUint32			mipLevel;
5169				0u,										//	deUint32			arrayLayer;
5170				1u,										//	deUint32			arraySize;
5171			},										//	VkImageSubresourceCopy	imageSubresource;
5172			{ 0u, 0u, 0u },							//	VkOffset3D				imageOffset;
5173			{ renderSize.x(), renderSize.y(), 1u }	//	VkExtent3D				imageExtent;
5174		};
5175		vk.cmdCopyImageToBuffer(*cmdBuf, *image, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, *readImageBuffer, 1u, &copyParams);
5176	}
5177
5178	{
5179		const VkBufferMemoryBarrier	copyFinishBarrier	=
5180		{
5181			VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER,	//	VkStructureType		sType;
5182			DE_NULL,									//	const void*			pNext;
5183			VK_ACCESS_TRANSFER_WRITE_BIT,				//	VkMemoryOutputFlags	outputMask;
5184			VK_ACCESS_HOST_READ_BIT,					//	VkMemoryInputFlags	inputMask;
5185			queueFamilyIndex,							//	deUint32			srcQueueFamilyIndex;
5186			queueFamilyIndex,							//	deUint32			destQueueFamilyIndex;
5187			*readImageBuffer,							//	VkBuffer			buffer;
5188			0u,											//	VkDeviceSize		offset;
5189			imageSizeBytes								//	VkDeviceSize		size;
5190		};
5191		vk.cmdPipelineBarrier(*cmdBuf, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_HOST_BIT, (VkDependencyFlags)0, 0, (const VkMemoryBarrier*)DE_NULL, 1, &copyFinishBarrier, 0, (const VkImageMemoryBarrier*)DE_NULL);
5192	}
5193
5194	VK_CHECK(vk.endCommandBuffer(*cmdBuf));
5195
5196	// Upload vertex data
5197	{
5198		const VkMappedMemoryRange	range			=
5199		{
5200			VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE,	//	VkStructureType	sType;
5201			DE_NULL,								//	const void*		pNext;
5202			vertexBufferMemory->getMemory(),		//	VkDeviceMemory	mem;
5203			0,										//	VkDeviceSize	offset;
5204			(VkDeviceSize)sizeof(vertexData),		//	VkDeviceSize	size;
5205		};
5206		void*						vertexBufPtr	= vertexBufferMemory->getHostPtr();
5207
5208		deMemcpy(vertexBufPtr, &vertexData[0], sizeof(vertexData));
5209		VK_CHECK(vk.flushMappedMemoryRanges(vkDevice, 1u, &range));
5210	}
5211
5212	// Submit & wait for completion
5213	{
5214		const VkFenceCreateInfo	fenceParams	=
5215		{
5216			VK_STRUCTURE_TYPE_FENCE_CREATE_INFO,	//	VkStructureType		sType;
5217			DE_NULL,								//	const void*			pNext;
5218			0u,										//	VkFenceCreateFlags	flags;
5219		};
5220		const Unique<VkFence>	fence		(createFence(vk, vkDevice, &fenceParams));
5221		const VkSubmitInfo		submitInfo	=
5222		{
5223			VK_STRUCTURE_TYPE_SUBMIT_INFO,
5224			DE_NULL,
5225			0u,
5226			(const VkSemaphore*)DE_NULL,
5227			(const VkPipelineStageFlags*)DE_NULL,
5228			1u,
5229			&cmdBuf.get(),
5230			0u,
5231			(const VkSemaphore*)DE_NULL,
5232		};
5233
5234		VK_CHECK(vk.queueSubmit(queue, 1u, &submitInfo, *fence));
5235		VK_CHECK(vk.waitForFences(vkDevice, 1u, &fence.get(), DE_TRUE, ~0ull));
5236	}
5237
5238	const void* imagePtr	= readImageBufferMemory->getHostPtr();
5239	const tcu::ConstPixelBufferAccess pixelBuffer(tcu::TextureFormat(tcu::TextureFormat::RGBA, tcu::TextureFormat::UNORM_INT8),
5240												  renderSize.x(), renderSize.y(), 1, imagePtr);
5241	// Log image
5242	{
5243		const VkMappedMemoryRange	range		=
5244		{
5245			VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE,	//	VkStructureType	sType;
5246			DE_NULL,								//	const void*		pNext;
5247			readImageBufferMemory->getMemory(),		//	VkDeviceMemory	mem;
5248			0,										//	VkDeviceSize	offset;
5249			imageSizeBytes,							//	VkDeviceSize	size;
5250		};
5251
5252		VK_CHECK(vk.invalidateMappedMemoryRanges(vkDevice, 1u, &range));
5253		context.getTestContext().getLog() << TestLog::Image("Result", "Result", pixelBuffer);
5254	}
5255
5256	const RGBA threshold(1, 1, 1, 1);
5257	const RGBA upperLeft(pixelBuffer.getPixel(1, 1));
5258	if (!tcu::compareThreshold(upperLeft, instance.outputColors[0], threshold))
5259		return TestStatus::fail("Upper left corner mismatch");
5260
5261	const RGBA upperRight(pixelBuffer.getPixel(pixelBuffer.getWidth() - 1, 1));
5262	if (!tcu::compareThreshold(upperRight, instance.outputColors[1], threshold))
5263		return TestStatus::fail("Upper right corner mismatch");
5264
5265	const RGBA lowerLeft(pixelBuffer.getPixel(1, pixelBuffer.getHeight() - 1));
5266	if (!tcu::compareThreshold(lowerLeft, instance.outputColors[2], threshold))
5267		return TestStatus::fail("Lower left corner mismatch");
5268
5269	const RGBA lowerRight(pixelBuffer.getPixel(pixelBuffer.getWidth() - 1, pixelBuffer.getHeight() - 1));
5270	if (!tcu::compareThreshold(lowerRight, instance.outputColors[3], threshold))
5271		return TestStatus::fail("Lower right corner mismatch");
5272
5273	return TestStatus::pass("Rendered output matches input");
5274}
5275
5276void createTestsForAllStages (const std::string& name, const RGBA (&inputColors)[4], const RGBA (&outputColors)[4], const map<string, string>& testCodeFragments, const vector<deInt32>& specConstants, tcu::TestCaseGroup* tests)
5277{
5278	const ShaderElement		vertFragPipelineStages[]		=
5279	{
5280		ShaderElement("vert", "main", VK_SHADER_STAGE_VERTEX_BIT),
5281		ShaderElement("frag", "main", VK_SHADER_STAGE_FRAGMENT_BIT),
5282	};
5283
5284	const ShaderElement		tessPipelineStages[]			=
5285	{
5286		ShaderElement("vert", "main", VK_SHADER_STAGE_VERTEX_BIT),
5287		ShaderElement("tessc", "main", VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT),
5288		ShaderElement("tesse", "main", VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT),
5289		ShaderElement("frag", "main", VK_SHADER_STAGE_FRAGMENT_BIT),
5290	};
5291
5292	const ShaderElement		geomPipelineStages[]				=
5293	{
5294		ShaderElement("vert", "main", VK_SHADER_STAGE_VERTEX_BIT),
5295		ShaderElement("geom", "main", VK_SHADER_STAGE_GEOMETRY_BIT),
5296		ShaderElement("frag", "main", VK_SHADER_STAGE_FRAGMENT_BIT),
5297	};
5298
5299	StageToSpecConstantMap	specConstantMap;
5300
5301	specConstantMap[VK_SHADER_STAGE_VERTEX_BIT] = specConstants;
5302	addFunctionCaseWithPrograms<InstanceContext>(tests, name + "_vert", "", addShaderCodeCustomVertex, runAndVerifyDefaultPipeline,
5303												 createInstanceContext(vertFragPipelineStages, inputColors, outputColors, testCodeFragments, specConstantMap));
5304
5305	specConstantMap.clear();
5306	specConstantMap[VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT] = specConstants;
5307	addFunctionCaseWithPrograms<InstanceContext>(tests, name + "_tessc", "", addShaderCodeCustomTessControl, runAndVerifyDefaultPipeline,
5308												 createInstanceContext(tessPipelineStages, inputColors, outputColors, testCodeFragments, specConstantMap));
5309
5310	specConstantMap.clear();
5311	specConstantMap[VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT] = specConstants;
5312	addFunctionCaseWithPrograms<InstanceContext>(tests, name + "_tesse", "", addShaderCodeCustomTessEval, runAndVerifyDefaultPipeline,
5313												 createInstanceContext(tessPipelineStages, inputColors, outputColors, testCodeFragments, specConstantMap));
5314
5315	specConstantMap.clear();
5316	specConstantMap[VK_SHADER_STAGE_GEOMETRY_BIT] = specConstants;
5317	addFunctionCaseWithPrograms<InstanceContext>(tests, name + "_geom", "", addShaderCodeCustomGeometry, runAndVerifyDefaultPipeline,
5318												 createInstanceContext(geomPipelineStages, inputColors, outputColors, testCodeFragments, specConstantMap));
5319
5320	specConstantMap.clear();
5321	specConstantMap[VK_SHADER_STAGE_FRAGMENT_BIT] = specConstants;
5322	addFunctionCaseWithPrograms<InstanceContext>(tests, name + "_frag", "", addShaderCodeCustomFragment, runAndVerifyDefaultPipeline,
5323												 createInstanceContext(vertFragPipelineStages, inputColors, outputColors, testCodeFragments, specConstantMap));
5324}
5325
5326inline void createTestsForAllStages (const std::string& name, const RGBA (&inputColors)[4], const RGBA (&outputColors)[4], const map<string, string>& testCodeFragments, tcu::TestCaseGroup* tests)
5327{
5328	vector<deInt32> noSpecConstants;
5329	createTestsForAllStages(name, inputColors, outputColors, testCodeFragments, noSpecConstants, tests);
5330}
5331
5332} // anonymous
5333
5334tcu::TestCaseGroup* createOpSourceTests (tcu::TestContext& testCtx)
5335{
5336	struct NameCodePair { string name, code; };
5337	RGBA							defaultColors[4];
5338	de::MovePtr<tcu::TestCaseGroup> opSourceTests			(new tcu::TestCaseGroup(testCtx, "opsource", "OpSource instruction"));
5339	const std::string				opsourceGLSLWithFile	= "%opsrcfile = OpString \"foo.vert\"\nOpSource GLSL 450 %opsrcfile ";
5340	map<string, string>				fragments				= passthruFragments();
5341	const NameCodePair				tests[]					=
5342	{
5343		{"unknown", "OpSource Unknown 321"},
5344		{"essl", "OpSource ESSL 310"},
5345		{"glsl", "OpSource GLSL 450"},
5346		{"opencl_cpp", "OpSource OpenCL_CPP 120"},
5347		{"opencl_c", "OpSource OpenCL_C 120"},
5348		{"multiple", "OpSource GLSL 450\nOpSource GLSL 450"},
5349		{"file", opsourceGLSLWithFile},
5350		{"source", opsourceGLSLWithFile + "\"void main(){}\""},
5351		// Longest possible source string: SPIR-V limits instructions to 65535
5352		// words, of which the first 4 are opsourceGLSLWithFile; the rest will
5353		// contain 65530 UTF8 characters (one word each) plus one last word
5354		// containing 3 ASCII characters and \0.
5355		{"longsource", opsourceGLSLWithFile + '"' + makeLongUTF8String(65530) + "ccc" + '"'}
5356	};
5357
5358	getDefaultColors(defaultColors);
5359	for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(NameCodePair); ++testNdx)
5360	{
5361		fragments["debug"] = tests[testNdx].code;
5362		createTestsForAllStages(tests[testNdx].name, defaultColors, defaultColors, fragments, opSourceTests.get());
5363	}
5364
5365	return opSourceTests.release();
5366}
5367
5368tcu::TestCaseGroup* createOpSourceContinuedTests (tcu::TestContext& testCtx)
5369{
5370	struct NameCodePair { string name, code; };
5371	RGBA								defaultColors[4];
5372	de::MovePtr<tcu::TestCaseGroup>		opSourceTests		(new tcu::TestCaseGroup(testCtx, "opsourcecontinued", "OpSourceContinued instruction"));
5373	map<string, string>					fragments			= passthruFragments();
5374	const std::string					opsource			= "%opsrcfile = OpString \"foo.vert\"\nOpSource GLSL 450 %opsrcfile \"void main(){}\"\n";
5375	const NameCodePair					tests[]				=
5376	{
5377		{"empty", opsource + "OpSourceContinued \"\""},
5378		{"short", opsource + "OpSourceContinued \"abcde\""},
5379		{"multiple", opsource + "OpSourceContinued \"abcde\"\nOpSourceContinued \"fghij\""},
5380		// Longest possible source string: SPIR-V limits instructions to 65535
5381		// words, of which the first one is OpSourceContinued/length; the rest
5382		// will contain 65533 UTF8 characters (one word each) plus one last word
5383		// containing 3 ASCII characters and \0.
5384		{"long", opsource + "OpSourceContinued \"" + makeLongUTF8String(65533) + "ccc\""}
5385	};
5386
5387	getDefaultColors(defaultColors);
5388	for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(NameCodePair); ++testNdx)
5389	{
5390		fragments["debug"] = tests[testNdx].code;
5391		createTestsForAllStages(tests[testNdx].name, defaultColors, defaultColors, fragments, opSourceTests.get());
5392	}
5393
5394	return opSourceTests.release();
5395}
5396
5397tcu::TestCaseGroup* createOpNoLineTests(tcu::TestContext& testCtx)
5398{
5399	RGBA								 defaultColors[4];
5400	de::MovePtr<tcu::TestCaseGroup>		 opLineTests		 (new tcu::TestCaseGroup(testCtx, "opnoline", "OpNoLine instruction"));
5401	map<string, string>					 fragments;
5402	getDefaultColors(defaultColors);
5403	fragments["debug"]			=
5404		"%name = OpString \"name\"\n";
5405
5406	fragments["pre_main"]	=
5407		"OpNoLine\n"
5408		"OpNoLine\n"
5409		"OpLine %name 1 1\n"
5410		"OpNoLine\n"
5411		"OpLine %name 1 1\n"
5412		"OpLine %name 1 1\n"
5413		"%second_function = OpFunction %v4f32 None %v4f32_function\n"
5414		"OpNoLine\n"
5415		"OpLine %name 1 1\n"
5416		"OpNoLine\n"
5417		"OpLine %name 1 1\n"
5418		"OpLine %name 1 1\n"
5419		"%second_param1 = OpFunctionParameter %v4f32\n"
5420		"OpNoLine\n"
5421		"OpNoLine\n"
5422		"%label_secondfunction = OpLabel\n"
5423		"OpNoLine\n"
5424		"OpReturnValue %second_param1\n"
5425		"OpFunctionEnd\n"
5426		"OpNoLine\n"
5427		"OpNoLine\n";
5428
5429	fragments["testfun"]		=
5430		// A %test_code function that returns its argument unchanged.
5431		"OpNoLine\n"
5432		"OpNoLine\n"
5433		"OpLine %name 1 1\n"
5434		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
5435		"OpNoLine\n"
5436		"%param1 = OpFunctionParameter %v4f32\n"
5437		"OpNoLine\n"
5438		"OpNoLine\n"
5439		"%label_testfun = OpLabel\n"
5440		"OpNoLine\n"
5441		"%val1 = OpFunctionCall %v4f32 %second_function %param1\n"
5442		"OpReturnValue %val1\n"
5443		"OpFunctionEnd\n"
5444		"OpLine %name 1 1\n"
5445		"OpNoLine\n";
5446
5447	createTestsForAllStages("opnoline", defaultColors, defaultColors, fragments, opLineTests.get());
5448
5449	return opLineTests.release();
5450}
5451
5452
5453tcu::TestCaseGroup* createOpLineTests(tcu::TestContext& testCtx)
5454{
5455	RGBA													defaultColors[4];
5456	de::MovePtr<tcu::TestCaseGroup>							opLineTests			(new tcu::TestCaseGroup(testCtx, "opline", "OpLine instruction"));
5457	map<string, string>										fragments;
5458	std::vector<std::pair<std::string, std::string> >		problemStrings;
5459
5460	problemStrings.push_back(std::make_pair<std::string, std::string>("empty_name", ""));
5461	problemStrings.push_back(std::make_pair<std::string, std::string>("short_name", "short_name"));
5462	problemStrings.push_back(std::make_pair<std::string, std::string>("long_name", makeLongUTF8String(65530) + "ccc"));
5463	getDefaultColors(defaultColors);
5464
5465	fragments["debug"]			=
5466		"%other_name = OpString \"other_name\"\n";
5467
5468	fragments["pre_main"]	=
5469		"OpLine %file_name 32 0\n"
5470		"OpLine %file_name 32 32\n"
5471		"OpLine %file_name 32 40\n"
5472		"OpLine %other_name 32 40\n"
5473		"OpLine %other_name 0 100\n"
5474		"OpLine %other_name 0 4294967295\n"
5475		"OpLine %other_name 4294967295 0\n"
5476		"OpLine %other_name 32 40\n"
5477		"OpLine %file_name 0 0\n"
5478		"%second_function = OpFunction %v4f32 None %v4f32_function\n"
5479		"OpLine %file_name 1 0\n"
5480		"%second_param1 = OpFunctionParameter %v4f32\n"
5481		"OpLine %file_name 1 3\n"
5482		"OpLine %file_name 1 2\n"
5483		"%label_secondfunction = OpLabel\n"
5484		"OpLine %file_name 0 2\n"
5485		"OpReturnValue %second_param1\n"
5486		"OpFunctionEnd\n"
5487		"OpLine %file_name 0 2\n"
5488		"OpLine %file_name 0 2\n";
5489
5490	fragments["testfun"]		=
5491		// A %test_code function that returns its argument unchanged.
5492		"OpLine %file_name 1 0\n"
5493		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
5494		"OpLine %file_name 16 330\n"
5495		"%param1 = OpFunctionParameter %v4f32\n"
5496		"OpLine %file_name 14 442\n"
5497		"%label_testfun = OpLabel\n"
5498		"OpLine %file_name 11 1024\n"
5499		"%val1 = OpFunctionCall %v4f32 %second_function %param1\n"
5500		"OpLine %file_name 2 97\n"
5501		"OpReturnValue %val1\n"
5502		"OpFunctionEnd\n"
5503		"OpLine %file_name 5 32\n";
5504
5505	for (size_t i = 0; i < problemStrings.size(); ++i)
5506	{
5507		map<string, string> testFragments = fragments;
5508		testFragments["debug"] += "%file_name = OpString \"" + problemStrings[i].second + "\"\n";
5509		createTestsForAllStages(string("opline") + "_" + problemStrings[i].first, defaultColors, defaultColors, testFragments, opLineTests.get());
5510	}
5511
5512	return opLineTests.release();
5513}
5514
5515tcu::TestCaseGroup* createOpConstantNullTests(tcu::TestContext& testCtx)
5516{
5517	de::MovePtr<tcu::TestCaseGroup> opConstantNullTests		(new tcu::TestCaseGroup(testCtx, "opconstantnull", "OpConstantNull instruction"));
5518	RGBA							colors[4];
5519
5520
5521	const char						functionStart[] =
5522		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
5523		"%param1 = OpFunctionParameter %v4f32\n"
5524		"%lbl    = OpLabel\n";
5525
5526	const char						functionEnd[]	=
5527		"OpReturnValue %transformed_param\n"
5528		"OpFunctionEnd\n";
5529
5530	struct NameConstantsCode
5531	{
5532		string name;
5533		string constants;
5534		string code;
5535	};
5536
5537	NameConstantsCode tests[] =
5538	{
5539		{
5540			"vec4",
5541			"%cnull = OpConstantNull %v4f32\n",
5542			"%transformed_param = OpFAdd %v4f32 %param1 %cnull\n"
5543		},
5544		{
5545			"float",
5546			"%cnull = OpConstantNull %f32\n",
5547			"%vp = OpVariable %fp_v4f32 Function\n"
5548			"%v  = OpLoad %v4f32 %vp\n"
5549			"%v0 = OpVectorInsertDynamic %v4f32 %v %cnull %c_i32_0\n"
5550			"%v1 = OpVectorInsertDynamic %v4f32 %v0 %cnull %c_i32_1\n"
5551			"%v2 = OpVectorInsertDynamic %v4f32 %v1 %cnull %c_i32_2\n"
5552			"%v3 = OpVectorInsertDynamic %v4f32 %v2 %cnull %c_i32_3\n"
5553			"%transformed_param = OpFAdd %v4f32 %param1 %v3\n"
5554		},
5555		{
5556			"bool",
5557			"%cnull             = OpConstantNull %bool\n",
5558			"%v                 = OpVariable %fp_v4f32 Function\n"
5559			"                     OpStore %v %param1\n"
5560			"                     OpSelectionMerge %false_label None\n"
5561			"                     OpBranchConditional %cnull %true_label %false_label\n"
5562			"%true_label        = OpLabel\n"
5563			"                     OpStore %v %c_v4f32_0_5_0_5_0_5_0_5\n"
5564			"                     OpBranch %false_label\n"
5565			"%false_label       = OpLabel\n"
5566			"%transformed_param = OpLoad %v4f32 %v\n"
5567		},
5568		{
5569			"i32",
5570			"%cnull             = OpConstantNull %i32\n",
5571			"%v                 = OpVariable %fp_v4f32 Function %c_v4f32_0_5_0_5_0_5_0_5\n"
5572			"%b                 = OpIEqual %bool %cnull %c_i32_0\n"
5573			"                     OpSelectionMerge %false_label None\n"
5574			"                     OpBranchConditional %b %true_label %false_label\n"
5575			"%true_label        = OpLabel\n"
5576			"                     OpStore %v %param1\n"
5577			"                     OpBranch %false_label\n"
5578			"%false_label       = OpLabel\n"
5579			"%transformed_param = OpLoad %v4f32 %v\n"
5580		},
5581		{
5582			"struct",
5583			"%stype             = OpTypeStruct %f32 %v4f32\n"
5584			"%fp_stype          = OpTypePointer Function %stype\n"
5585			"%cnull             = OpConstantNull %stype\n",
5586			"%v                 = OpVariable %fp_stype Function %cnull\n"
5587			"%f                 = OpAccessChain %fp_v4f32 %v %c_i32_1\n"
5588			"%f_val             = OpLoad %v4f32 %f\n"
5589			"%transformed_param = OpFAdd %v4f32 %param1 %f_val\n"
5590		},
5591		{
5592			"array",
5593			"%a4_v4f32          = OpTypeArray %v4f32 %c_u32_4\n"
5594			"%fp_a4_v4f32       = OpTypePointer Function %a4_v4f32\n"
5595			"%cnull             = OpConstantNull %a4_v4f32\n",
5596			"%v                 = OpVariable %fp_a4_v4f32 Function %cnull\n"
5597			"%f                 = OpAccessChain %fp_v4f32 %v %c_u32_0\n"
5598			"%f1                = OpAccessChain %fp_v4f32 %v %c_u32_1\n"
5599			"%f2                = OpAccessChain %fp_v4f32 %v %c_u32_2\n"
5600			"%f3                = OpAccessChain %fp_v4f32 %v %c_u32_3\n"
5601			"%f_val             = OpLoad %v4f32 %f\n"
5602			"%f1_val            = OpLoad %v4f32 %f1\n"
5603			"%f2_val            = OpLoad %v4f32 %f2\n"
5604			"%f3_val            = OpLoad %v4f32 %f3\n"
5605			"%t0                = OpFAdd %v4f32 %param1 %f_val\n"
5606			"%t1                = OpFAdd %v4f32 %t0 %f1_val\n"
5607			"%t2                = OpFAdd %v4f32 %t1 %f2_val\n"
5608			"%transformed_param = OpFAdd %v4f32 %t2 %f3_val\n"
5609		},
5610		{
5611			"matrix",
5612			"%mat4x4_f32        = OpTypeMatrix %v4f32 4\n"
5613			"%cnull             = OpConstantNull %mat4x4_f32\n",
5614			// Our null matrix * any vector should result in a zero vector.
5615			"%v                 = OpVectorTimesMatrix %v4f32 %param1 %cnull\n"
5616			"%transformed_param = OpFAdd %v4f32 %param1 %v\n"
5617		}
5618	};
5619
5620	getHalfColorsFullAlpha(colors);
5621
5622	for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(NameConstantsCode); ++testNdx)
5623	{
5624		map<string, string> fragments;
5625		fragments["pre_main"] = tests[testNdx].constants;
5626		fragments["testfun"] = string(functionStart) + tests[testNdx].code + functionEnd;
5627		createTestsForAllStages(tests[testNdx].name, colors, colors, fragments, opConstantNullTests.get());
5628	}
5629	return opConstantNullTests.release();
5630}
5631tcu::TestCaseGroup* createOpConstantCompositeTests(tcu::TestContext& testCtx)
5632{
5633	de::MovePtr<tcu::TestCaseGroup> opConstantCompositeTests		(new tcu::TestCaseGroup(testCtx, "opconstantcomposite", "OpConstantComposite instruction"));
5634	RGBA							inputColors[4];
5635	RGBA							outputColors[4];
5636
5637
5638	const char						functionStart[]	 =
5639		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
5640		"%param1 = OpFunctionParameter %v4f32\n"
5641		"%lbl    = OpLabel\n";
5642
5643	const char						functionEnd[]		=
5644		"OpReturnValue %transformed_param\n"
5645		"OpFunctionEnd\n";
5646
5647	struct NameConstantsCode
5648	{
5649		string name;
5650		string constants;
5651		string code;
5652	};
5653
5654	NameConstantsCode tests[] =
5655	{
5656		{
5657			"vec4",
5658
5659			"%cval              = OpConstantComposite %v4f32 %c_f32_0_5 %c_f32_0_5 %c_f32_0_5 %c_f32_0\n",
5660			"%transformed_param = OpFAdd %v4f32 %param1 %cval\n"
5661		},
5662		{
5663			"struct",
5664
5665			"%stype             = OpTypeStruct %v4f32 %f32\n"
5666			"%fp_stype          = OpTypePointer Function %stype\n"
5667			"%f32_n_1           = OpConstant %f32 -1.0\n"
5668			"%f32_1_5           = OpConstant %f32 !0x3fc00000\n" // +1.5
5669			"%cvec              = OpConstantComposite %v4f32 %f32_1_5 %f32_1_5 %f32_1_5 %c_f32_1\n"
5670			"%cval              = OpConstantComposite %stype %cvec %f32_n_1\n",
5671
5672			"%v                 = OpVariable %fp_stype Function %cval\n"
5673			"%vec_ptr           = OpAccessChain %fp_v4f32 %v %c_u32_0\n"
5674			"%f32_ptr           = OpAccessChain %fp_f32 %v %c_u32_1\n"
5675			"%vec_val           = OpLoad %v4f32 %vec_ptr\n"
5676			"%f32_val           = OpLoad %f32 %f32_ptr\n"
5677			"%tmp1              = OpVectorTimesScalar %v4f32 %c_v4f32_1_1_1_1 %f32_val\n" // vec4(-1)
5678			"%tmp2              = OpFAdd %v4f32 %tmp1 %param1\n" // param1 + vec4(-1)
5679			"%transformed_param = OpFAdd %v4f32 %tmp2 %vec_val\n" // param1 + vec4(-1) + vec4(1.5, 1.5, 1.5, 1.0)
5680		},
5681		{
5682			// [1|0|0|0.5] [x] = x + 0.5
5683			// [0|1|0|0.5] [y] = y + 0.5
5684			// [0|0|1|0.5] [z] = z + 0.5
5685			// [0|0|0|1  ] [1] = 1
5686			"matrix",
5687
5688			"%mat4x4_f32          = OpTypeMatrix %v4f32 4\n"
5689		    "%v4f32_1_0_0_0       = OpConstantComposite %v4f32 %c_f32_1 %c_f32_0 %c_f32_0 %c_f32_0\n"
5690		    "%v4f32_0_1_0_0       = OpConstantComposite %v4f32 %c_f32_0 %c_f32_1 %c_f32_0 %c_f32_0\n"
5691		    "%v4f32_0_0_1_0       = OpConstantComposite %v4f32 %c_f32_0 %c_f32_0 %c_f32_1 %c_f32_0\n"
5692		    "%v4f32_0_5_0_5_0_5_1 = OpConstantComposite %v4f32 %c_f32_0_5 %c_f32_0_5 %c_f32_0_5 %c_f32_1\n"
5693			"%cval                = OpConstantComposite %mat4x4_f32 %v4f32_1_0_0_0 %v4f32_0_1_0_0 %v4f32_0_0_1_0 %v4f32_0_5_0_5_0_5_1\n",
5694
5695			"%transformed_param   = OpMatrixTimesVector %v4f32 %cval %param1\n"
5696		},
5697		{
5698			"array",
5699
5700			"%c_v4f32_1_1_1_0     = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_0\n"
5701			"%fp_a4f32            = OpTypePointer Function %a4f32\n"
5702			"%f32_n_1             = OpConstant %f32 -1.0\n"
5703			"%f32_1_5             = OpConstant %f32 !0x3fc00000\n" // +1.5
5704			"%carr                = OpConstantComposite %a4f32 %c_f32_0 %f32_n_1 %f32_1_5 %c_f32_0\n",
5705
5706			"%v                   = OpVariable %fp_a4f32 Function %carr\n"
5707			"%f                   = OpAccessChain %fp_f32 %v %c_u32_0\n"
5708			"%f1                  = OpAccessChain %fp_f32 %v %c_u32_1\n"
5709			"%f2                  = OpAccessChain %fp_f32 %v %c_u32_2\n"
5710			"%f3                  = OpAccessChain %fp_f32 %v %c_u32_3\n"
5711			"%f_val               = OpLoad %f32 %f\n"
5712			"%f1_val              = OpLoad %f32 %f1\n"
5713			"%f2_val              = OpLoad %f32 %f2\n"
5714			"%f3_val              = OpLoad %f32 %f3\n"
5715			"%ftot1               = OpFAdd %f32 %f_val %f1_val\n"
5716			"%ftot2               = OpFAdd %f32 %ftot1 %f2_val\n"
5717			"%ftot3               = OpFAdd %f32 %ftot2 %f3_val\n"  // 0 - 1 + 1.5 + 0
5718			"%add_vec             = OpVectorTimesScalar %v4f32 %c_v4f32_1_1_1_0 %ftot3\n"
5719			"%transformed_param   = OpFAdd %v4f32 %param1 %add_vec\n"
5720		},
5721		{
5722			//
5723			// [
5724			//   {
5725			//      0.0,
5726			//      [ 1.0, 1.0, 1.0, 1.0]
5727			//   },
5728			//   {
5729			//      1.0,
5730			//      [ 0.0, 0.5, 0.0, 0.0]
5731			//   }, //     ^^^
5732			//   {
5733			//      0.0,
5734			//      [ 1.0, 1.0, 1.0, 1.0]
5735			//   }
5736			// ]
5737			"array_of_struct_of_array",
5738
5739			"%c_v4f32_1_1_1_0     = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_0\n"
5740			"%fp_a4f32            = OpTypePointer Function %a4f32\n"
5741			"%stype               = OpTypeStruct %f32 %a4f32\n"
5742			"%a3stype             = OpTypeArray %stype %c_u32_3\n"
5743			"%fp_a3stype          = OpTypePointer Function %a3stype\n"
5744			"%ca4f32_0            = OpConstantComposite %a4f32 %c_f32_0 %c_f32_0_5 %c_f32_0 %c_f32_0\n"
5745			"%ca4f32_1            = OpConstantComposite %a4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_1\n"
5746			"%cstype1             = OpConstantComposite %stype %c_f32_0 %ca4f32_1\n"
5747			"%cstype2             = OpConstantComposite %stype %c_f32_1 %ca4f32_0\n"
5748			"%carr                = OpConstantComposite %a3stype %cstype1 %cstype2 %cstype1",
5749
5750			"%v                   = OpVariable %fp_a3stype Function %carr\n"
5751			"%f                   = OpAccessChain %fp_f32 %v %c_u32_1 %c_u32_1 %c_u32_1\n"
5752			"%add_vec             = OpVectorTimesScalar %v4f32 %c_v4f32_1_1_1_0 %f\n"
5753			"%transformed_param   = OpFAdd %v4f32 %param1 %add_vec\n"
5754		}
5755	};
5756
5757	getHalfColorsFullAlpha(inputColors);
5758	outputColors[0] = RGBA(255, 255, 255, 255);
5759	outputColors[1] = RGBA(255, 127, 127, 255);
5760	outputColors[2] = RGBA(127, 255, 127, 255);
5761	outputColors[3] = RGBA(127, 127, 255, 255);
5762
5763	for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(NameConstantsCode); ++testNdx)
5764	{
5765		map<string, string> fragments;
5766		fragments["pre_main"] = tests[testNdx].constants;
5767		fragments["testfun"] = string(functionStart) + tests[testNdx].code + functionEnd;
5768		createTestsForAllStages(tests[testNdx].name, inputColors, outputColors, fragments, opConstantCompositeTests.get());
5769	}
5770	return opConstantCompositeTests.release();
5771}
5772
5773tcu::TestCaseGroup* createSelectionBlockOrderTests(tcu::TestContext& testCtx)
5774{
5775	de::MovePtr<tcu::TestCaseGroup> group				(new tcu::TestCaseGroup(testCtx, "selection_block_order", "Out-of-order blocks for selection"));
5776	RGBA							inputColors[4];
5777	RGBA							outputColors[4];
5778	map<string, string>				fragments;
5779
5780	// vec4 test_code(vec4 param) {
5781	//   vec4 result = param;
5782	//   for (int i = 0; i < 4; ++i) {
5783	//     if (i == 0) result[i] = 0.;
5784	//     else        result[i] = 1. - result[i];
5785	//   }
5786	//   return result;
5787	// }
5788	const char						function[]			=
5789		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
5790		"%param1    = OpFunctionParameter %v4f32\n"
5791		"%lbl       = OpLabel\n"
5792		"%iptr      = OpVariable %fp_i32 Function\n"
5793		"             OpStore %iptr %c_i32_0\n"
5794		"%result    = OpVariable %fp_v4f32 Function\n"
5795		"             OpStore %result %param1\n"
5796		"             OpBranch %loop\n"
5797
5798		// Loop entry block.
5799		"%loop      = OpLabel\n"
5800		"%ival      = OpLoad %i32 %iptr\n"
5801		"%lt_4      = OpSLessThan %bool %ival %c_i32_4\n"
5802		"             OpLoopMerge %exit %loop None\n"
5803		"             OpBranchConditional %lt_4 %if_entry %exit\n"
5804
5805		// Merge block for loop.
5806		"%exit      = OpLabel\n"
5807		"%ret       = OpLoad %v4f32 %result\n"
5808		"             OpReturnValue %ret\n"
5809
5810		// If-statement entry block.
5811		"%if_entry  = OpLabel\n"
5812		"%loc       = OpAccessChain %fp_f32 %result %ival\n"
5813		"%eq_0      = OpIEqual %bool %ival %c_i32_0\n"
5814		"             OpSelectionMerge %if_exit None\n"
5815		"             OpBranchConditional %eq_0 %if_true %if_false\n"
5816
5817		// False branch for if-statement.
5818		"%if_false  = OpLabel\n"
5819		"%val       = OpLoad %f32 %loc\n"
5820		"%sub       = OpFSub %f32 %c_f32_1 %val\n"
5821		"             OpStore %loc %sub\n"
5822		"             OpBranch %if_exit\n"
5823
5824		// Merge block for if-statement.
5825		"%if_exit   = OpLabel\n"
5826		"%ival_next = OpIAdd %i32 %ival %c_i32_1\n"
5827		"             OpStore %iptr %ival_next\n"
5828		"             OpBranch %loop\n"
5829
5830		// True branch for if-statement.
5831		"%if_true   = OpLabel\n"
5832		"             OpStore %loc %c_f32_0\n"
5833		"             OpBranch %if_exit\n"
5834
5835		"             OpFunctionEnd\n";
5836
5837	fragments["testfun"]	= function;
5838
5839	inputColors[0]			= RGBA(127, 127, 127, 0);
5840	inputColors[1]			= RGBA(127, 0,   0,   0);
5841	inputColors[2]			= RGBA(0,   127, 0,   0);
5842	inputColors[3]			= RGBA(0,   0,   127, 0);
5843
5844	outputColors[0]			= RGBA(0, 128, 128, 255);
5845	outputColors[1]			= RGBA(0, 255, 255, 255);
5846	outputColors[2]			= RGBA(0, 128, 255, 255);
5847	outputColors[3]			= RGBA(0, 255, 128, 255);
5848
5849	createTestsForAllStages("out_of_order", inputColors, outputColors, fragments, group.get());
5850
5851	return group.release();
5852}
5853
5854tcu::TestCaseGroup* createSwitchBlockOrderTests(tcu::TestContext& testCtx)
5855{
5856	de::MovePtr<tcu::TestCaseGroup> group				(new tcu::TestCaseGroup(testCtx, "switch_block_order", "Out-of-order blocks for switch"));
5857	RGBA							inputColors[4];
5858	RGBA							outputColors[4];
5859	map<string, string>				fragments;
5860
5861	const char						typesAndConstants[]	=
5862		"%c_f32_p2  = OpConstant %f32 0.2\n"
5863		"%c_f32_p4  = OpConstant %f32 0.4\n"
5864		"%c_f32_p6  = OpConstant %f32 0.6\n"
5865		"%c_f32_p8  = OpConstant %f32 0.8\n";
5866
5867	// vec4 test_code(vec4 param) {
5868	//   vec4 result = param;
5869	//   for (int i = 0; i < 4; ++i) {
5870	//     switch (i) {
5871	//       case 0: result[i] += .2; break;
5872	//       case 1: result[i] += .6; break;
5873	//       case 2: result[i] += .4; break;
5874	//       case 3: result[i] += .8; break;
5875	//       default: break; // unreachable
5876	//     }
5877	//   }
5878	//   return result;
5879	// }
5880	const char						function[]			=
5881		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
5882		"%param1    = OpFunctionParameter %v4f32\n"
5883		"%lbl       = OpLabel\n"
5884		"%iptr      = OpVariable %fp_i32 Function\n"
5885		"             OpStore %iptr %c_i32_0\n"
5886		"%result    = OpVariable %fp_v4f32 Function\n"
5887		"             OpStore %result %param1\n"
5888		"             OpBranch %loop\n"
5889
5890		// Loop entry block.
5891		"%loop      = OpLabel\n"
5892		"%ival      = OpLoad %i32 %iptr\n"
5893		"%lt_4      = OpSLessThan %bool %ival %c_i32_4\n"
5894		"             OpLoopMerge %exit %loop None\n"
5895		"             OpBranchConditional %lt_4 %switch_entry %exit\n"
5896
5897		// Merge block for loop.
5898		"%exit      = OpLabel\n"
5899		"%ret       = OpLoad %v4f32 %result\n"
5900		"             OpReturnValue %ret\n"
5901
5902		// Switch-statement entry block.
5903		"%switch_entry   = OpLabel\n"
5904		"%loc            = OpAccessChain %fp_f32 %result %ival\n"
5905		"%val            = OpLoad %f32 %loc\n"
5906		"                  OpSelectionMerge %switch_exit None\n"
5907		"                  OpSwitch %ival %switch_default 0 %case0 1 %case1 2 %case2 3 %case3\n"
5908
5909		"%case2          = OpLabel\n"
5910		"%addp4          = OpFAdd %f32 %val %c_f32_p4\n"
5911		"                  OpStore %loc %addp4\n"
5912		"                  OpBranch %switch_exit\n"
5913
5914		"%switch_default = OpLabel\n"
5915		"                  OpUnreachable\n"
5916
5917		"%case3          = OpLabel\n"
5918		"%addp8          = OpFAdd %f32 %val %c_f32_p8\n"
5919		"                  OpStore %loc %addp8\n"
5920		"                  OpBranch %switch_exit\n"
5921
5922		"%case0          = OpLabel\n"
5923		"%addp2          = OpFAdd %f32 %val %c_f32_p2\n"
5924		"                  OpStore %loc %addp2\n"
5925		"                  OpBranch %switch_exit\n"
5926
5927		// Merge block for switch-statement.
5928		"%switch_exit    = OpLabel\n"
5929		"%ival_next      = OpIAdd %i32 %ival %c_i32_1\n"
5930		"                  OpStore %iptr %ival_next\n"
5931		"                  OpBranch %loop\n"
5932
5933		"%case1          = OpLabel\n"
5934		"%addp6          = OpFAdd %f32 %val %c_f32_p6\n"
5935		"                  OpStore %loc %addp6\n"
5936		"                  OpBranch %switch_exit\n"
5937
5938		"                  OpFunctionEnd\n";
5939
5940	fragments["pre_main"]	= typesAndConstants;
5941	fragments["testfun"]	= function;
5942
5943	inputColors[0]			= RGBA(127, 27,  127, 51);
5944	inputColors[1]			= RGBA(127, 0,   0,   51);
5945	inputColors[2]			= RGBA(0,   27,  0,   51);
5946	inputColors[3]			= RGBA(0,   0,   127, 51);
5947
5948	outputColors[0]			= RGBA(178, 180, 229, 255);
5949	outputColors[1]			= RGBA(178, 153, 102, 255);
5950	outputColors[2]			= RGBA(51,  180, 102, 255);
5951	outputColors[3]			= RGBA(51,  153, 229, 255);
5952
5953	createTestsForAllStages("out_of_order", inputColors, outputColors, fragments, group.get());
5954
5955	return group.release();
5956}
5957
5958tcu::TestCaseGroup* createDecorationGroupTests(tcu::TestContext& testCtx)
5959{
5960	de::MovePtr<tcu::TestCaseGroup> group				(new tcu::TestCaseGroup(testCtx, "decoration_group", "Decoration group tests"));
5961	RGBA							inputColors[4];
5962	RGBA							outputColors[4];
5963	map<string, string>				fragments;
5964
5965	const char						decorations[]		=
5966		"OpDecorate %array_group         ArrayStride 4\n"
5967		"OpDecorate %struct_member_group Offset 0\n"
5968		"%array_group         = OpDecorationGroup\n"
5969		"%struct_member_group = OpDecorationGroup\n"
5970
5971		"OpDecorate %group1 RelaxedPrecision\n"
5972		"OpDecorate %group3 RelaxedPrecision\n"
5973		"OpDecorate %group3 Invariant\n"
5974		"OpDecorate %group3 Restrict\n"
5975		"%group0 = OpDecorationGroup\n"
5976		"%group1 = OpDecorationGroup\n"
5977		"%group3 = OpDecorationGroup\n";
5978
5979	const char						typesAndConstants[]	=
5980		"%a3f32     = OpTypeArray %f32 %c_u32_3\n"
5981		"%struct1   = OpTypeStruct %a3f32\n"
5982		"%struct2   = OpTypeStruct %a3f32\n"
5983		"%fp_struct1 = OpTypePointer Function %struct1\n"
5984		"%fp_struct2 = OpTypePointer Function %struct2\n"
5985		"%c_f32_2    = OpConstant %f32 2.\n"
5986		"%c_f32_n2   = OpConstant %f32 -2.\n"
5987
5988		"%c_a3f32_1 = OpConstantComposite %a3f32 %c_f32_1 %c_f32_2 %c_f32_1\n"
5989		"%c_a3f32_2 = OpConstantComposite %a3f32 %c_f32_n1 %c_f32_n2 %c_f32_n1\n"
5990		"%c_struct1 = OpConstantComposite %struct1 %c_a3f32_1\n"
5991		"%c_struct2 = OpConstantComposite %struct2 %c_a3f32_2\n";
5992
5993	const char						function[]			=
5994		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
5995		"%param     = OpFunctionParameter %v4f32\n"
5996		"%entry     = OpLabel\n"
5997		"%result    = OpVariable %fp_v4f32 Function\n"
5998		"             OpStore %result %param\n"
5999		"%v_struct1 = OpVariable %fp_struct1 Function\n"
6000		"             OpStore %v_struct1 %c_struct1\n"
6001		"%v_struct2 = OpVariable %fp_struct2 Function\n"
6002		"             OpStore %v_struct2 %c_struct2\n"
6003		"%ptr1      = OpAccessChain %fp_f32 %v_struct1 %c_i32_0 %c_i32_1\n"
6004		"%val1      = OpLoad %f32 %ptr1\n"
6005		"%ptr2      = OpAccessChain %fp_f32 %v_struct2 %c_i32_0 %c_i32_2\n"
6006		"%val2      = OpLoad %f32 %ptr2\n"
6007		"%addvalues = OpFAdd %f32 %val1 %val2\n"
6008		"%ptr       = OpAccessChain %fp_f32 %result %c_i32_1\n"
6009		"%val       = OpLoad %f32 %ptr\n"
6010		"%addresult = OpFAdd %f32 %addvalues %val\n"
6011		"             OpStore %ptr %addresult\n"
6012		"%ret       = OpLoad %v4f32 %result\n"
6013		"             OpReturnValue %ret\n"
6014		"             OpFunctionEnd\n";
6015
6016	struct CaseNameDecoration
6017	{
6018		string name;
6019		string decoration;
6020	};
6021
6022	CaseNameDecoration tests[] =
6023	{
6024		{
6025			"same_decoration_group_on_multiple_types",
6026			"OpGroupMemberDecorate %struct_member_group %struct1 0 %struct2 0\n"
6027		},
6028		{
6029			"empty_decoration_group",
6030			"OpGroupDecorate %group0      %a3f32\n"
6031			"OpGroupDecorate %group0      %result\n"
6032		},
6033		{
6034			"one_element_decoration_group",
6035			"OpGroupDecorate %array_group %a3f32\n"
6036		},
6037		{
6038			"multiple_elements_decoration_group",
6039			"OpGroupDecorate %group3      %v_struct1\n"
6040		},
6041		{
6042			"multiple_decoration_groups_on_same_variable",
6043			"OpGroupDecorate %group0      %v_struct2\n"
6044			"OpGroupDecorate %group1      %v_struct2\n"
6045			"OpGroupDecorate %group3      %v_struct2\n"
6046		},
6047		{
6048			"same_decoration_group_multiple_times",
6049			"OpGroupDecorate %group1      %addvalues\n"
6050			"OpGroupDecorate %group1      %addvalues\n"
6051			"OpGroupDecorate %group1      %addvalues\n"
6052		},
6053
6054	};
6055
6056	getHalfColorsFullAlpha(inputColors);
6057	getHalfColorsFullAlpha(outputColors);
6058
6059	for (size_t idx = 0; idx < (sizeof(tests) / sizeof(tests[0])); ++idx)
6060	{
6061		fragments["decoration"]	= decorations + tests[idx].decoration;
6062		fragments["pre_main"]	= typesAndConstants;
6063		fragments["testfun"]	= function;
6064
6065		createTestsForAllStages(tests[idx].name, inputColors, outputColors, fragments, group.get());
6066	}
6067
6068	return group.release();
6069}
6070
6071struct SpecConstantTwoIntGraphicsCase
6072{
6073	const char*		caseName;
6074	const char*		scDefinition0;
6075	const char*		scDefinition1;
6076	const char*		scResultType;
6077	const char*		scOperation;
6078	deInt32			scActualValue0;
6079	deInt32			scActualValue1;
6080	const char*		resultOperation;
6081	RGBA			expectedColors[4];
6082
6083					SpecConstantTwoIntGraphicsCase (const char* name,
6084											const char* definition0,
6085											const char* definition1,
6086											const char* resultType,
6087											const char* operation,
6088											deInt32		value0,
6089											deInt32		value1,
6090											const char* resultOp,
6091											const RGBA	(&output)[4])
6092						: caseName			(name)
6093						, scDefinition0		(definition0)
6094						, scDefinition1		(definition1)
6095						, scResultType		(resultType)
6096						, scOperation		(operation)
6097						, scActualValue0	(value0)
6098						, scActualValue1	(value1)
6099						, resultOperation	(resultOp)
6100	{
6101		expectedColors[0] = output[0];
6102		expectedColors[1] = output[1];
6103		expectedColors[2] = output[2];
6104		expectedColors[3] = output[3];
6105	}
6106};
6107
6108tcu::TestCaseGroup* createSpecConstantTests (tcu::TestContext& testCtx)
6109{
6110	de::MovePtr<tcu::TestCaseGroup> group				(new tcu::TestCaseGroup(testCtx, "opspecconstantop", "Test the OpSpecConstantOp instruction"));
6111	vector<SpecConstantTwoIntGraphicsCase>	cases;
6112	RGBA							inputColors[4];
6113	RGBA							outputColors0[4];
6114	RGBA							outputColors1[4];
6115	RGBA							outputColors2[4];
6116
6117	const char	decorations1[]			=
6118		"OpDecorate %sc_0  SpecId 0\n"
6119		"OpDecorate %sc_1  SpecId 1\n";
6120
6121	const char	typesAndConstants1[]	=
6122		"%sc_0      = OpSpecConstant${SC_DEF0}\n"
6123		"%sc_1      = OpSpecConstant${SC_DEF1}\n"
6124		"%sc_op     = OpSpecConstantOp ${SC_RESULT_TYPE} ${SC_OP}\n";
6125
6126	const char	function1[]				=
6127		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
6128		"%param     = OpFunctionParameter %v4f32\n"
6129		"%label     = OpLabel\n"
6130		"%result    = OpVariable %fp_v4f32 Function\n"
6131		"             OpStore %result %param\n"
6132		"%gen       = ${GEN_RESULT}\n"
6133		"%index     = OpIAdd %i32 %gen %c_i32_1\n"
6134		"%loc       = OpAccessChain %fp_f32 %result %index\n"
6135		"%val       = OpLoad %f32 %loc\n"
6136		"%add       = OpFAdd %f32 %val %c_f32_0_5\n"
6137		"             OpStore %loc %add\n"
6138		"%ret       = OpLoad %v4f32 %result\n"
6139		"             OpReturnValue %ret\n"
6140		"             OpFunctionEnd\n";
6141
6142	inputColors[0] = RGBA(127, 127, 127, 255);
6143	inputColors[1] = RGBA(127, 0,   0,   255);
6144	inputColors[2] = RGBA(0,   127, 0,   255);
6145	inputColors[3] = RGBA(0,   0,   127, 255);
6146
6147	// Derived from inputColors[x] by adding 128 to inputColors[x][0].
6148	outputColors0[0] = RGBA(255, 127, 127, 255);
6149	outputColors0[1] = RGBA(255, 0,   0,   255);
6150	outputColors0[2] = RGBA(128, 127, 0,   255);
6151	outputColors0[3] = RGBA(128, 0,   127, 255);
6152
6153	// Derived from inputColors[x] by adding 128 to inputColors[x][1].
6154	outputColors1[0] = RGBA(127, 255, 127, 255);
6155	outputColors1[1] = RGBA(127, 128, 0,   255);
6156	outputColors1[2] = RGBA(0,   255, 0,   255);
6157	outputColors1[3] = RGBA(0,   128, 127, 255);
6158
6159	// Derived from inputColors[x] by adding 128 to inputColors[x][2].
6160	outputColors2[0] = RGBA(127, 127, 255, 255);
6161	outputColors2[1] = RGBA(127, 0,   128, 255);
6162	outputColors2[2] = RGBA(0,   127, 128, 255);
6163	outputColors2[3] = RGBA(0,   0,   255, 255);
6164
6165	const char addZeroToSc[]		= "OpIAdd %i32 %c_i32_0 %sc_op";
6166	const char selectTrueUsingSc[]	= "OpSelect %i32 %sc_op %c_i32_1 %c_i32_0";
6167	const char selectFalseUsingSc[]	= "OpSelect %i32 %sc_op %c_i32_0 %c_i32_1";
6168
6169	cases.push_back(SpecConstantTwoIntGraphicsCase("iadd",					" %i32 0",		" %i32 0",		"%i32",		"IAdd                 %sc_0 %sc_1",				19,		-20,	addZeroToSc,		outputColors0));
6170	cases.push_back(SpecConstantTwoIntGraphicsCase("isub",					" %i32 0",		" %i32 0",		"%i32",		"ISub                 %sc_0 %sc_1",				19,		20,		addZeroToSc,		outputColors0));
6171	cases.push_back(SpecConstantTwoIntGraphicsCase("imul",					" %i32 0",		" %i32 0",		"%i32",		"IMul                 %sc_0 %sc_1",				-1,		-1,		addZeroToSc,		outputColors2));
6172	cases.push_back(SpecConstantTwoIntGraphicsCase("sdiv",					" %i32 0",		" %i32 0",		"%i32",		"SDiv                 %sc_0 %sc_1",				-126,	126,	addZeroToSc,		outputColors0));
6173	cases.push_back(SpecConstantTwoIntGraphicsCase("udiv",					" %i32 0",		" %i32 0",		"%i32",		"UDiv                 %sc_0 %sc_1",				126,	126,	addZeroToSc,		outputColors2));
6174	cases.push_back(SpecConstantTwoIntGraphicsCase("srem",					" %i32 0",		" %i32 0",		"%i32",		"SRem                 %sc_0 %sc_1",				3,		2,		addZeroToSc,		outputColors2));
6175	cases.push_back(SpecConstantTwoIntGraphicsCase("smod",					" %i32 0",		" %i32 0",		"%i32",		"SMod                 %sc_0 %sc_1",				3,		2,		addZeroToSc,		outputColors2));
6176	cases.push_back(SpecConstantTwoIntGraphicsCase("umod",					" %i32 0",		" %i32 0",		"%i32",		"UMod                 %sc_0 %sc_1",				1001,	500,	addZeroToSc,		outputColors2));
6177	cases.push_back(SpecConstantTwoIntGraphicsCase("bitwiseand",			" %i32 0",		" %i32 0",		"%i32",		"BitwiseAnd           %sc_0 %sc_1",				0x33,	0x0d,	addZeroToSc,		outputColors2));
6178	cases.push_back(SpecConstantTwoIntGraphicsCase("bitwiseor",				" %i32 0",		" %i32 0",		"%i32",		"BitwiseOr            %sc_0 %sc_1",				0,		1,		addZeroToSc,		outputColors2));
6179	cases.push_back(SpecConstantTwoIntGraphicsCase("bitwisexor",			" %i32 0",		" %i32 0",		"%i32",		"BitwiseXor           %sc_0 %sc_1",				0x2e,	0x2f,	addZeroToSc,		outputColors2));
6180	cases.push_back(SpecConstantTwoIntGraphicsCase("shiftrightlogical",		" %i32 0",		" %i32 0",		"%i32",		"ShiftRightLogical    %sc_0 %sc_1",				2,		1,		addZeroToSc,		outputColors2));
6181	cases.push_back(SpecConstantTwoIntGraphicsCase("shiftrightarithmetic",	" %i32 0",		" %i32 0",		"%i32",		"ShiftRightArithmetic %sc_0 %sc_1",				-4,		2,		addZeroToSc,		outputColors0));
6182	cases.push_back(SpecConstantTwoIntGraphicsCase("shiftleftlogical",		" %i32 0",		" %i32 0",		"%i32",		"ShiftLeftLogical     %sc_0 %sc_1",				1,		0,		addZeroToSc,		outputColors2));
6183	cases.push_back(SpecConstantTwoIntGraphicsCase("slessthan",				" %i32 0",		" %i32 0",		"%bool",	"SLessThan            %sc_0 %sc_1",				-20,	-10,	selectTrueUsingSc,	outputColors2));
6184	cases.push_back(SpecConstantTwoIntGraphicsCase("ulessthan",				" %i32 0",		" %i32 0",		"%bool",	"ULessThan            %sc_0 %sc_1",				10,		20,		selectTrueUsingSc,	outputColors2));
6185	cases.push_back(SpecConstantTwoIntGraphicsCase("sgreaterthan",			" %i32 0",		" %i32 0",		"%bool",	"SGreaterThan         %sc_0 %sc_1",				-1000,	50,		selectFalseUsingSc,	outputColors2));
6186	cases.push_back(SpecConstantTwoIntGraphicsCase("ugreaterthan",			" %i32 0",		" %i32 0",		"%bool",	"UGreaterThan         %sc_0 %sc_1",				10,		5,		selectTrueUsingSc,	outputColors2));
6187	cases.push_back(SpecConstantTwoIntGraphicsCase("slessthanequal",		" %i32 0",		" %i32 0",		"%bool",	"SLessThanEqual       %sc_0 %sc_1",				-10,	-10,	selectTrueUsingSc,	outputColors2));
6188	cases.push_back(SpecConstantTwoIntGraphicsCase("ulessthanequal",		" %i32 0",		" %i32 0",		"%bool",	"ULessThanEqual       %sc_0 %sc_1",				50,		100,	selectTrueUsingSc,	outputColors2));
6189	cases.push_back(SpecConstantTwoIntGraphicsCase("sgreaterthanequal",		" %i32 0",		" %i32 0",		"%bool",	"SGreaterThanEqual    %sc_0 %sc_1",				-1000,	50,		selectFalseUsingSc,	outputColors2));
6190	cases.push_back(SpecConstantTwoIntGraphicsCase("ugreaterthanequal",		" %i32 0",		" %i32 0",		"%bool",	"UGreaterThanEqual    %sc_0 %sc_1",				10,		10,		selectTrueUsingSc,	outputColors2));
6191	cases.push_back(SpecConstantTwoIntGraphicsCase("iequal",				" %i32 0",		" %i32 0",		"%bool",	"IEqual               %sc_0 %sc_1",				42,		24,		selectFalseUsingSc,	outputColors2));
6192	cases.push_back(SpecConstantTwoIntGraphicsCase("logicaland",			"True %bool",	"True %bool",	"%bool",	"LogicalAnd           %sc_0 %sc_1",				0,		1,		selectFalseUsingSc,	outputColors2));
6193	cases.push_back(SpecConstantTwoIntGraphicsCase("logicalor",				"False %bool",	"False %bool",	"%bool",	"LogicalOr            %sc_0 %sc_1",				1,		0,		selectTrueUsingSc,	outputColors2));
6194	cases.push_back(SpecConstantTwoIntGraphicsCase("logicalequal",			"True %bool",	"True %bool",	"%bool",	"LogicalEqual         %sc_0 %sc_1",				0,		1,		selectFalseUsingSc,	outputColors2));
6195	cases.push_back(SpecConstantTwoIntGraphicsCase("logicalnotequal",		"False %bool",	"False %bool",	"%bool",	"LogicalNotEqual      %sc_0 %sc_1",				1,		0,		selectTrueUsingSc,	outputColors2));
6196	cases.push_back(SpecConstantTwoIntGraphicsCase("snegate",				" %i32 0",		" %i32 0",		"%i32",		"SNegate              %sc_0",					-1,		0,		addZeroToSc,		outputColors2));
6197	cases.push_back(SpecConstantTwoIntGraphicsCase("not",					" %i32 0",		" %i32 0",		"%i32",		"Not                  %sc_0",					-2,		0,		addZeroToSc,		outputColors2));
6198	cases.push_back(SpecConstantTwoIntGraphicsCase("logicalnot",			"False %bool",	"False %bool",	"%bool",	"LogicalNot           %sc_0",					1,		0,		selectFalseUsingSc,	outputColors2));
6199	cases.push_back(SpecConstantTwoIntGraphicsCase("select",				"False %bool",	" %i32 0",		"%i32",		"Select               %sc_0 %sc_1 %c_i32_0",	1,		1,		addZeroToSc,		outputColors2));
6200	// OpSConvert, OpFConvert: these two instructions involve ints/floats of different bitwidths.
6201	// \todo[2015-12-1 antiagainst] OpQuantizeToF16
6202
6203	for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
6204	{
6205		map<string, string>	specializations;
6206		map<string, string>	fragments;
6207		vector<deInt32>		specConstants;
6208
6209		specializations["SC_DEF0"]			= cases[caseNdx].scDefinition0;
6210		specializations["SC_DEF1"]			= cases[caseNdx].scDefinition1;
6211		specializations["SC_RESULT_TYPE"]	= cases[caseNdx].scResultType;
6212		specializations["SC_OP"]			= cases[caseNdx].scOperation;
6213		specializations["GEN_RESULT"]		= cases[caseNdx].resultOperation;
6214
6215		fragments["decoration"]				= tcu::StringTemplate(decorations1).specialize(specializations);
6216		fragments["pre_main"]				= tcu::StringTemplate(typesAndConstants1).specialize(specializations);
6217		fragments["testfun"]				= tcu::StringTemplate(function1).specialize(specializations);
6218
6219		specConstants.push_back(cases[caseNdx].scActualValue0);
6220		specConstants.push_back(cases[caseNdx].scActualValue1);
6221
6222		createTestsForAllStages(cases[caseNdx].caseName, inputColors, cases[caseNdx].expectedColors, fragments, specConstants, group.get());
6223	}
6224
6225	const char	decorations2[]			=
6226		"OpDecorate %sc_0  SpecId 0\n"
6227		"OpDecorate %sc_1  SpecId 1\n"
6228		"OpDecorate %sc_2  SpecId 2\n";
6229
6230	const char	typesAndConstants2[]	=
6231		"%v3i32     = OpTypeVector %i32 3\n"
6232
6233		"%sc_0      = OpSpecConstant %i32 0\n"
6234		"%sc_1      = OpSpecConstant %i32 0\n"
6235		"%sc_2      = OpSpecConstant %i32 0\n"
6236
6237		"%vec3_0      = OpConstantComposite %v3i32 %c_i32_0 %c_i32_0 %c_i32_0\n"
6238		"%sc_vec3_0   = OpSpecConstantOp %v3i32 CompositeInsert  %sc_0        %vec3_0    0\n"     // (sc_0, 0, 0)
6239		"%sc_vec3_1   = OpSpecConstantOp %v3i32 CompositeInsert  %sc_1        %vec3_0    1\n"     // (0, sc_1, 0)
6240		"%sc_vec3_2   = OpSpecConstantOp %v3i32 CompositeInsert  %sc_2        %vec3_0    2\n"     // (0, 0, sc_2)
6241		"%sc_vec3_01  = OpSpecConstantOp %v3i32 VectorShuffle    %sc_vec3_0   %sc_vec3_1 1 0 4\n" // (0,    sc_0, sc_1)
6242		"%sc_vec3_012 = OpSpecConstantOp %v3i32 VectorShuffle    %sc_vec3_01  %sc_vec3_2 5 1 2\n" // (sc_2, sc_0, sc_1)
6243		"%sc_ext_0    = OpSpecConstantOp %i32   CompositeExtract %sc_vec3_012            0\n"     // sc_2
6244		"%sc_ext_1    = OpSpecConstantOp %i32   CompositeExtract %sc_vec3_012            1\n"     // sc_0
6245		"%sc_ext_2    = OpSpecConstantOp %i32   CompositeExtract %sc_vec3_012            2\n"     // sc_1
6246		"%sc_sub      = OpSpecConstantOp %i32   ISub             %sc_ext_0    %sc_ext_1\n"        // (sc_2 - sc_0)
6247		"%sc_final    = OpSpecConstantOp %i32   IMul             %sc_sub      %sc_ext_2\n";       // (sc_2 - sc_0) * sc_1
6248
6249	const char	function2[]				=
6250		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
6251		"%param     = OpFunctionParameter %v4f32\n"
6252		"%label     = OpLabel\n"
6253		"%result    = OpVariable %fp_v4f32 Function\n"
6254		"             OpStore %result %param\n"
6255		"%loc       = OpAccessChain %fp_f32 %result %sc_final\n"
6256		"%val       = OpLoad %f32 %loc\n"
6257		"%add       = OpFAdd %f32 %val %c_f32_0_5\n"
6258		"             OpStore %loc %add\n"
6259		"%ret       = OpLoad %v4f32 %result\n"
6260		"             OpReturnValue %ret\n"
6261		"             OpFunctionEnd\n";
6262
6263	map<string, string>	fragments;
6264	vector<deInt32>		specConstants;
6265
6266	fragments["decoration"]	= decorations2;
6267	fragments["pre_main"]	= typesAndConstants2;
6268	fragments["testfun"]	= function2;
6269
6270	specConstants.push_back(56789);
6271	specConstants.push_back(-2);
6272	specConstants.push_back(56788);
6273
6274	createTestsForAllStages("vector_related", inputColors, outputColors2, fragments, specConstants, group.get());
6275
6276	return group.release();
6277}
6278
6279tcu::TestCaseGroup* createOpPhiTests(tcu::TestContext& testCtx)
6280{
6281	de::MovePtr<tcu::TestCaseGroup> group				(new tcu::TestCaseGroup(testCtx, "opphi", "Test the OpPhi instruction"));
6282	RGBA							inputColors[4];
6283	RGBA							outputColors1[4];
6284	RGBA							outputColors2[4];
6285	RGBA							outputColors3[4];
6286	map<string, string>				fragments1;
6287	map<string, string>				fragments2;
6288	map<string, string>				fragments3;
6289
6290	const char	typesAndConstants1[]	=
6291		"%c_f32_p2  = OpConstant %f32 0.2\n"
6292		"%c_f32_p4  = OpConstant %f32 0.4\n"
6293		"%c_f32_p6  = OpConstant %f32 0.6\n"
6294		"%c_f32_p8  = OpConstant %f32 0.8\n";
6295
6296	// vec4 test_code(vec4 param) {
6297	//   vec4 result = param;
6298	//   for (int i = 0; i < 4; ++i) {
6299	//     float operand;
6300	//     switch (i) {
6301	//       case 0: operand = .2; break;
6302	//       case 1: operand = .6; break;
6303	//       case 2: operand = .4; break;
6304	//       case 3: operand = .0; break;
6305	//       default: break; // unreachable
6306	//     }
6307	//     result[i] += operand;
6308	//   }
6309	//   return result;
6310	// }
6311	const char	function1[]				=
6312		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
6313		"%param1    = OpFunctionParameter %v4f32\n"
6314		"%lbl       = OpLabel\n"
6315		"%iptr      = OpVariable %fp_i32 Function\n"
6316		"             OpStore %iptr %c_i32_0\n"
6317		"%result    = OpVariable %fp_v4f32 Function\n"
6318		"             OpStore %result %param1\n"
6319		"             OpBranch %loop\n"
6320
6321		"%loop      = OpLabel\n"
6322		"%ival      = OpLoad %i32 %iptr\n"
6323		"%lt_4      = OpSLessThan %bool %ival %c_i32_4\n"
6324		"             OpLoopMerge %exit %loop None\n"
6325		"             OpBranchConditional %lt_4 %entry %exit\n"
6326
6327		"%entry     = OpLabel\n"
6328		"%loc       = OpAccessChain %fp_f32 %result %ival\n"
6329		"%val       = OpLoad %f32 %loc\n"
6330		"             OpSelectionMerge %phi None\n"
6331		"             OpSwitch %ival %default 0 %case0 1 %case1 2 %case2 3 %case3\n"
6332
6333		"%case0     = OpLabel\n"
6334		"             OpBranch %phi\n"
6335		"%case1     = OpLabel\n"
6336		"             OpBranch %phi\n"
6337		"%case2     = OpLabel\n"
6338		"             OpBranch %phi\n"
6339		"%case3     = OpLabel\n"
6340		"             OpBranch %phi\n"
6341
6342		"%default   = OpLabel\n"
6343		"             OpUnreachable\n"
6344
6345		"%phi       = OpLabel\n"
6346		"%operand   = OpPhi %f32 %c_f32_p4 %case2 %c_f32_p6 %case1 %c_f32_p2 %case0 %c_f32_0 %case3\n" // not in the order of blocks
6347		"%add       = OpFAdd %f32 %val %operand\n"
6348		"             OpStore %loc %add\n"
6349		"%ival_next = OpIAdd %i32 %ival %c_i32_1\n"
6350		"             OpStore %iptr %ival_next\n"
6351		"             OpBranch %loop\n"
6352
6353		"%exit      = OpLabel\n"
6354		"%ret       = OpLoad %v4f32 %result\n"
6355		"             OpReturnValue %ret\n"
6356
6357		"             OpFunctionEnd\n";
6358
6359	fragments1["pre_main"]	= typesAndConstants1;
6360	fragments1["testfun"]	= function1;
6361
6362	getHalfColorsFullAlpha(inputColors);
6363
6364	outputColors1[0]		= RGBA(178, 180, 229, 255);
6365	outputColors1[1]		= RGBA(178, 153, 102, 255);
6366	outputColors1[2]		= RGBA(51,  180, 102, 255);
6367	outputColors1[3]		= RGBA(51,  153, 229, 255);
6368
6369	createTestsForAllStages("out_of_order", inputColors, outputColors1, fragments1, group.get());
6370
6371	const char	typesAndConstants2[]	=
6372		"%c_f32_p2  = OpConstant %f32 0.2\n";
6373
6374	// Add .4 to the second element of the given parameter.
6375	const char	function2[]				=
6376		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
6377		"%param     = OpFunctionParameter %v4f32\n"
6378		"%entry     = OpLabel\n"
6379		"%result    = OpVariable %fp_v4f32 Function\n"
6380		"             OpStore %result %param\n"
6381		"%loc       = OpAccessChain %fp_f32 %result %c_i32_1\n"
6382		"%val       = OpLoad %f32 %loc\n"
6383		"             OpBranch %phi\n"
6384
6385		"%phi        = OpLabel\n"
6386		"%step       = OpPhi %i32 %c_i32_0  %entry %step_next  %phi\n"
6387		"%accum      = OpPhi %f32 %val      %entry %accum_next %phi\n"
6388		"%step_next  = OpIAdd %i32 %step  %c_i32_1\n"
6389		"%accum_next = OpFAdd %f32 %accum %c_f32_p2\n"
6390		"%still_loop = OpSLessThan %bool %step %c_i32_2\n"
6391		"              OpLoopMerge %exit %phi None\n"
6392		"              OpBranchConditional %still_loop %phi %exit\n"
6393
6394		"%exit       = OpLabel\n"
6395		"              OpStore %loc %accum\n"
6396		"%ret        = OpLoad %v4f32 %result\n"
6397		"              OpReturnValue %ret\n"
6398
6399		"              OpFunctionEnd\n";
6400
6401	fragments2["pre_main"]	= typesAndConstants2;
6402	fragments2["testfun"]	= function2;
6403
6404	outputColors2[0]			= RGBA(127, 229, 127, 255);
6405	outputColors2[1]			= RGBA(127, 102, 0,   255);
6406	outputColors2[2]			= RGBA(0,   229, 0,   255);
6407	outputColors2[3]			= RGBA(0,   102, 127, 255);
6408
6409	createTestsForAllStages("induction", inputColors, outputColors2, fragments2, group.get());
6410
6411	const char	typesAndConstants3[]	=
6412		"%true      = OpConstantTrue %bool\n"
6413		"%false     = OpConstantFalse %bool\n"
6414		"%c_f32_p2  = OpConstant %f32 0.2\n";
6415
6416	// Swap the second and the third element of the given parameter.
6417	const char	function3[]				=
6418		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
6419		"%param     = OpFunctionParameter %v4f32\n"
6420		"%entry     = OpLabel\n"
6421		"%result    = OpVariable %fp_v4f32 Function\n"
6422		"             OpStore %result %param\n"
6423		"%a_loc     = OpAccessChain %fp_f32 %result %c_i32_1\n"
6424		"%a_init    = OpLoad %f32 %a_loc\n"
6425		"%b_loc     = OpAccessChain %fp_f32 %result %c_i32_2\n"
6426		"%b_init    = OpLoad %f32 %b_loc\n"
6427		"             OpBranch %phi\n"
6428
6429		"%phi        = OpLabel\n"
6430		"%still_loop = OpPhi %bool %true   %entry %false  %phi\n"
6431		"%a_next     = OpPhi %f32  %a_init %entry %b_next %phi\n"
6432		"%b_next     = OpPhi %f32  %b_init %entry %a_next %phi\n"
6433		"              OpLoopMerge %exit %phi None\n"
6434		"              OpBranchConditional %still_loop %phi %exit\n"
6435
6436		"%exit       = OpLabel\n"
6437		"              OpStore %a_loc %a_next\n"
6438		"              OpStore %b_loc %b_next\n"
6439		"%ret        = OpLoad %v4f32 %result\n"
6440		"              OpReturnValue %ret\n"
6441
6442		"              OpFunctionEnd\n";
6443
6444	fragments3["pre_main"]	= typesAndConstants3;
6445	fragments3["testfun"]	= function3;
6446
6447	outputColors3[0]			= RGBA(127, 127, 127, 255);
6448	outputColors3[1]			= RGBA(127, 0,   0,   255);
6449	outputColors3[2]			= RGBA(0,   0,   127, 255);
6450	outputColors3[3]			= RGBA(0,   127, 0,   255);
6451
6452	createTestsForAllStages("swap", inputColors, outputColors3, fragments3, group.get());
6453
6454	return group.release();
6455}
6456
6457tcu::TestCaseGroup* createNoContractionTests(tcu::TestContext& testCtx)
6458{
6459	de::MovePtr<tcu::TestCaseGroup> group			(new tcu::TestCaseGroup(testCtx, "nocontraction", "Test the NoContraction decoration"));
6460	RGBA							inputColors[4];
6461	RGBA							outputColors[4];
6462
6463	// With NoContraction, (1 + 2^-23) * (1 - 2^-23) - 1 should be conducted as a multiplication and an addition separately.
6464	// For the multiplication, the result is 1 - 2^-46, which is out of the precision range for 32-bit float. (32-bit float
6465	// only have 23-bit fraction.) So it will be rounded to 1. Then the final result is 0. On the contrary, the result will
6466	// be 2^-46, which is a normalized number perfectly representable as 32-bit float.
6467	const char						constantsAndTypes[]	 =
6468		"%c_vec4_0       = OpConstantComposite %v4f32 %c_f32_0 %c_f32_0 %c_f32_0 %c_f32_1\n"
6469		"%c_vec4_1       = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_1\n"
6470		"%c_f32_1pl2_23  = OpConstant %f32 0x1.000002p+0\n" // 1 + 2^-23
6471		"%c_f32_1mi2_23  = OpConstant %f32 0x1.fffffcp-1\n" // 1 - 2^-23
6472		;
6473
6474	const char						function[]	 =
6475		"%test_code      = OpFunction %v4f32 None %v4f32_function\n"
6476		"%param          = OpFunctionParameter %v4f32\n"
6477		"%label          = OpLabel\n"
6478		"%var1           = OpVariable %fp_f32 Function %c_f32_1pl2_23\n"
6479		"%var2           = OpVariable %fp_f32 Function\n"
6480		"%red            = OpCompositeExtract %f32 %param 0\n"
6481		"%plus_red       = OpFAdd %f32 %c_f32_1mi2_23 %red\n"
6482		"                  OpStore %var2 %plus_red\n"
6483		"%val1           = OpLoad %f32 %var1\n"
6484		"%val2           = OpLoad %f32 %var2\n"
6485		"%mul            = OpFMul %f32 %val1 %val2\n"
6486		"%add            = OpFAdd %f32 %mul %c_f32_n1\n"
6487		"%is0            = OpFOrdEqual %bool %add %c_f32_0\n"
6488		"%ret            = OpSelect %v4f32 %is0 %c_vec4_0 %c_vec4_1\n"
6489		"                  OpReturnValue %ret\n"
6490		"                  OpFunctionEnd\n";
6491
6492	struct CaseNameDecoration
6493	{
6494		string name;
6495		string decoration;
6496	};
6497
6498
6499	CaseNameDecoration tests[] = {
6500		{"multiplication",	"OpDecorate %mul NoContraction"},
6501		{"addition",		"OpDecorate %add NoContraction"},
6502		{"both",			"OpDecorate %mul NoContraction\nOpDecorate %add NoContraction"},
6503	};
6504
6505	getHalfColorsFullAlpha(inputColors);
6506
6507	for (deUint8 idx = 0; idx < 4; ++idx)
6508	{
6509		inputColors[idx].setRed(0);
6510		outputColors[idx] = RGBA(0, 0, 0, 255);
6511	}
6512
6513	for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(CaseNameDecoration); ++testNdx)
6514	{
6515		map<string, string> fragments;
6516
6517		fragments["decoration"] = tests[testNdx].decoration;
6518		fragments["pre_main"] = constantsAndTypes;
6519		fragments["testfun"] = function;
6520
6521		createTestsForAllStages(tests[testNdx].name, inputColors, outputColors, fragments, group.get());
6522	}
6523
6524	return group.release();
6525}
6526
6527tcu::TestCaseGroup* createMemoryAccessTests(tcu::TestContext& testCtx)
6528{
6529	de::MovePtr<tcu::TestCaseGroup> memoryAccessTests (new tcu::TestCaseGroup(testCtx, "opmemoryaccess", "Memory Semantics"));
6530	RGBA							colors[4];
6531
6532	const char						constantsAndTypes[]	 =
6533		"%c_a2f32_1         = OpConstantComposite %a2f32 %c_f32_1 %c_f32_1\n"
6534		"%fp_a2f32          = OpTypePointer Function %a2f32\n"
6535		"%stype             = OpTypeStruct  %v4f32 %a2f32 %f32\n"
6536		"%fp_stype          = OpTypePointer Function %stype\n";
6537
6538	const char						function[]	 =
6539		"%test_code         = OpFunction %v4f32 None %v4f32_function\n"
6540		"%param1            = OpFunctionParameter %v4f32\n"
6541		"%lbl               = OpLabel\n"
6542		"%v1                = OpVariable %fp_v4f32 Function\n"
6543		"                     OpStore %v1 %c_v4f32_1_1_1_1\n"
6544		"%v2                = OpVariable %fp_a2f32 Function\n"
6545		"                     OpStore %v2 %c_a2f32_1\n"
6546		"%v3                = OpVariable %fp_f32 Function\n"
6547		"                     OpStore %v3 %c_f32_1\n"
6548
6549		"%v                 = OpVariable %fp_stype Function\n"
6550		"%vv                = OpVariable %fp_stype Function\n"
6551		"%vvv               = OpVariable %fp_f32 Function\n"
6552
6553		"%p_v4f32          = OpAccessChain %fp_v4f32 %v %c_u32_0\n"
6554		"%p_a2f32          = OpAccessChain %fp_a2f32 %v %c_u32_1\n"
6555		"%p_f32            = OpAccessChain %fp_f32 %v %c_u32_2\n"
6556		"%v1_v             = OpLoad %v4f32 %v1 ${access_type}\n"
6557		"%v2_v             = OpLoad %a2f32 %v2 ${access_type}\n"
6558		"%v3_v             = OpLoad %f32 %v3 ${access_type}\n"
6559
6560		"                    OpStore %p_v4f32 %v1_v ${access_type}\n"
6561		"                    OpStore %p_a2f32 %v2_v ${access_type}\n"
6562		"                    OpStore %p_f32 %v3_v ${access_type}\n"
6563
6564		"                    OpCopyMemory %vv %v ${access_type}\n"
6565		"                    OpCopyMemory %vvv %p_f32 ${access_type}\n"
6566
6567		"%p_f32_2          = OpAccessChain %fp_f32 %vv %c_u32_2\n"
6568		"%v_f32_2          = OpLoad %f32 %p_f32_2\n"
6569		"%v_f32_3          = OpLoad %f32 %vvv\n"
6570
6571		"%ret1             = OpVectorTimesScalar %v4f32 %param1 %v_f32_2\n"
6572		"%ret2             = OpVectorTimesScalar %v4f32 %ret1 %v_f32_3\n"
6573		"                    OpReturnValue %ret2\n"
6574		"                    OpFunctionEnd\n";
6575
6576	struct NameMemoryAccess
6577	{
6578		string name;
6579		string accessType;
6580	};
6581
6582
6583	NameMemoryAccess tests[] =
6584	{
6585		{ "none", "" },
6586		{ "volatile", "Volatile" },
6587		{ "aligned",  "Aligned 1" },
6588		{ "volatile_aligned",  "Volatile|Aligned 1" },
6589		{ "nontemporal_aligned",  "Nontemporal|Aligned 1" },
6590		{ "volatile_nontemporal",  "Volatile|Nontemporal" },
6591		{ "volatile_nontermporal_aligned",  "Volatile|Nontemporal|Aligned 1" },
6592	};
6593
6594	getHalfColorsFullAlpha(colors);
6595
6596	for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(NameMemoryAccess); ++testNdx)
6597	{
6598		map<string, string> fragments;
6599		map<string, string> memoryAccess;
6600		memoryAccess["access_type"] = tests[testNdx].accessType;
6601
6602		fragments["pre_main"] = constantsAndTypes;
6603		fragments["testfun"] = tcu::StringTemplate(function).specialize(memoryAccess);
6604		createTestsForAllStages(tests[testNdx].name, colors, colors, fragments, memoryAccessTests.get());
6605	}
6606	return memoryAccessTests.release();
6607}
6608tcu::TestCaseGroup* createOpUndefTests(tcu::TestContext& testCtx)
6609{
6610	de::MovePtr<tcu::TestCaseGroup>		opUndefTests		 (new tcu::TestCaseGroup(testCtx, "opundef", "Test OpUndef"));
6611	RGBA								defaultColors[4];
6612	map<string, string>					fragments;
6613	getDefaultColors(defaultColors);
6614
6615	// First, simple cases that don't do anything with the OpUndef result.
6616	fragments["testfun"] =
6617		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
6618		"%param1 = OpFunctionParameter %v4f32\n"
6619		"%label_testfun = OpLabel\n"
6620		"%undef = OpUndef %type\n"
6621		"OpReturnValue %param1\n"
6622		"OpFunctionEnd\n"
6623		;
6624	struct NameCodePair { string name, code; };
6625	const NameCodePair tests[] =
6626	{
6627		{"bool", "%type = OpTypeBool"},
6628		{"vec2uint32", "%type = OpTypeVector %u32 2"},
6629		{"image", "%type = OpTypeImage %f32 2D 0 0 0 0 Unknown"},
6630		{"sampler", "%type = OpTypeSampler"},
6631		{"sampledimage", "%img = OpTypeImage %f32 2D 0 0 0 0 Unknown\n" "%type = OpTypeSampledImage %img"},
6632		{"pointer", "%type = OpTypePointer Function %i32"},
6633		{"runtimearray", "%type = OpTypeRuntimeArray %f32"},
6634		{"array", "%c_u32_100 = OpConstant %u32 100\n" "%type = OpTypeArray %i32 %c_u32_100"},
6635		{"struct", "%type = OpTypeStruct %f32 %i32 %u32"}};
6636	for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(NameCodePair); ++testNdx)
6637	{
6638		fragments["pre_main"] = tests[testNdx].code;
6639		createTestsForAllStages(tests[testNdx].name, defaultColors, defaultColors, fragments, opUndefTests.get());
6640	}
6641	fragments.clear();
6642
6643	fragments["testfun"] =
6644		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
6645		"%param1 = OpFunctionParameter %v4f32\n"
6646		"%label_testfun = OpLabel\n"
6647		"%undef = OpUndef %f32\n"
6648		"%zero = OpFMul %f32 %undef %c_f32_0\n"
6649		"%a = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
6650		"%b = OpFAdd %f32 %a %zero\n"
6651		"%ret = OpVectorInsertDynamic %v4f32 %param1 %b %c_i32_0\n"
6652		"OpReturnValue %ret\n"
6653		"OpFunctionEnd\n"
6654		;
6655	createTestsForAllStages("float32", defaultColors, defaultColors, fragments, opUndefTests.get());
6656
6657	fragments["testfun"] =
6658		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
6659		"%param1 = OpFunctionParameter %v4f32\n"
6660		"%label_testfun = OpLabel\n"
6661		"%undef = OpUndef %i32\n"
6662		"%zero = OpIMul %i32 %undef %c_i32_0\n"
6663		"%a = OpVectorExtractDynamic %f32 %param1 %zero\n"
6664		"%ret = OpVectorInsertDynamic %v4f32 %param1 %a %c_i32_0\n"
6665		"OpReturnValue %ret\n"
6666		"OpFunctionEnd\n"
6667		;
6668	createTestsForAllStages("sint32", defaultColors, defaultColors, fragments, opUndefTests.get());
6669
6670	fragments["testfun"] =
6671		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
6672		"%param1 = OpFunctionParameter %v4f32\n"
6673		"%label_testfun = OpLabel\n"
6674		"%undef = OpUndef %u32\n"
6675		"%zero = OpIMul %u32 %undef %c_i32_0\n"
6676		"%a = OpVectorExtractDynamic %f32 %param1 %zero\n"
6677		"%ret = OpVectorInsertDynamic %v4f32 %param1 %a %c_i32_0\n"
6678		"OpReturnValue %ret\n"
6679		"OpFunctionEnd\n"
6680		;
6681	createTestsForAllStages("uint32", defaultColors, defaultColors, fragments, opUndefTests.get());
6682
6683	fragments["testfun"] =
6684		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
6685		"%param1 = OpFunctionParameter %v4f32\n"
6686		"%label_testfun = OpLabel\n"
6687		"%undef = OpUndef %v4f32\n"
6688		"%vzero = OpVectorTimesScalar %v4f32 %undef %c_f32_0\n"
6689		"%zero_0 = OpVectorExtractDynamic %f32 %vzero %c_i32_0\n"
6690		"%zero_1 = OpVectorExtractDynamic %f32 %vzero %c_i32_1\n"
6691		"%zero_2 = OpVectorExtractDynamic %f32 %vzero %c_i32_2\n"
6692		"%zero_3 = OpVectorExtractDynamic %f32 %vzero %c_i32_3\n"
6693		"%param1_0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
6694		"%param1_1 = OpVectorExtractDynamic %f32 %param1 %c_i32_1\n"
6695		"%param1_2 = OpVectorExtractDynamic %f32 %param1 %c_i32_2\n"
6696		"%param1_3 = OpVectorExtractDynamic %f32 %param1 %c_i32_3\n"
6697		"%sum_0 = OpFAdd %f32 %param1_0 %zero_0\n"
6698		"%sum_1 = OpFAdd %f32 %param1_1 %zero_1\n"
6699		"%sum_2 = OpFAdd %f32 %param1_2 %zero_2\n"
6700		"%sum_3 = OpFAdd %f32 %param1_3 %zero_3\n"
6701		"%ret3 = OpVectorInsertDynamic %v4f32 %param1 %sum_3 %c_i32_3\n"
6702		"%ret2 = OpVectorInsertDynamic %v4f32 %ret3 %sum_2 %c_i32_2\n"
6703		"%ret1 = OpVectorInsertDynamic %v4f32 %ret2 %sum_1 %c_i32_1\n"
6704		"%ret = OpVectorInsertDynamic %v4f32 %ret1 %sum_0 %c_i32_0\n"
6705		"OpReturnValue %ret\n"
6706		"OpFunctionEnd\n"
6707		;
6708	createTestsForAllStages("vec4float32", defaultColors, defaultColors, fragments, opUndefTests.get());
6709
6710	fragments["pre_main"] =
6711		"%v2f32 = OpTypeVector %f32 2\n"
6712		"%m2x2f32 = OpTypeMatrix %v2f32 2\n";
6713	fragments["testfun"] =
6714		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
6715		"%param1 = OpFunctionParameter %v4f32\n"
6716		"%label_testfun = OpLabel\n"
6717		"%undef = OpUndef %m2x2f32\n"
6718		"%mzero = OpMatrixTimesScalar %m2x2f32 %undef %c_f32_0\n"
6719		"%zero_0 = OpCompositeExtract %f32 %mzero 0 0\n"
6720		"%zero_1 = OpCompositeExtract %f32 %mzero 0 1\n"
6721		"%zero_2 = OpCompositeExtract %f32 %mzero 1 0\n"
6722		"%zero_3 = OpCompositeExtract %f32 %mzero 1 1\n"
6723		"%param1_0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
6724		"%param1_1 = OpVectorExtractDynamic %f32 %param1 %c_i32_1\n"
6725		"%param1_2 = OpVectorExtractDynamic %f32 %param1 %c_i32_2\n"
6726		"%param1_3 = OpVectorExtractDynamic %f32 %param1 %c_i32_3\n"
6727		"%sum_0 = OpFAdd %f32 %param1_0 %zero_0\n"
6728		"%sum_1 = OpFAdd %f32 %param1_1 %zero_1\n"
6729		"%sum_2 = OpFAdd %f32 %param1_2 %zero_2\n"
6730		"%sum_3 = OpFAdd %f32 %param1_3 %zero_3\n"
6731		"%ret3 = OpVectorInsertDynamic %v4f32 %param1 %sum_3 %c_i32_3\n"
6732		"%ret2 = OpVectorInsertDynamic %v4f32 %ret3 %sum_2 %c_i32_2\n"
6733		"%ret1 = OpVectorInsertDynamic %v4f32 %ret2 %sum_1 %c_i32_1\n"
6734		"%ret = OpVectorInsertDynamic %v4f32 %ret1 %sum_0 %c_i32_0\n"
6735		"OpReturnValue %ret\n"
6736		"OpFunctionEnd\n"
6737		;
6738	createTestsForAllStages("matrix", defaultColors, defaultColors, fragments, opUndefTests.get());
6739
6740	return opUndefTests.release();
6741}
6742
6743void createOpQuantizeSingleOptionTests(tcu::TestCaseGroup* testCtx)
6744{
6745	const RGBA		inputColors[4]		=
6746	{
6747		RGBA(0,		0,		0,		255),
6748		RGBA(0,		0,		255,	255),
6749		RGBA(0,		255,	0,		255),
6750		RGBA(0,		255,	255,	255)
6751	};
6752
6753	const RGBA		expectedColors[4]	=
6754	{
6755		RGBA(255,	 0,		 0,		 255),
6756		RGBA(255,	 0,		 0,		 255),
6757		RGBA(255,	 0,		 0,		 255),
6758		RGBA(255,	 0,		 0,		 255)
6759	};
6760
6761	const struct SingleFP16Possibility
6762	{
6763		const char* name;
6764		const char* constant;  // Value to assign to %test_constant.
6765		float		valueAsFloat;
6766		const char* condition; // Must assign to %cond an expression that evaluates to true after %c = OpQuantizeToF16(%test_constant + 0).
6767	}				tests[]				=
6768	{
6769		{
6770			"negative",
6771			"-0x1.3p1\n",
6772			-constructNormalizedFloat(1, 0x300000),
6773			"%cond = OpFOrdEqual %bool %c %test_constant\n"
6774		}, // -19
6775		{
6776			"positive",
6777			"0x1.0p7\n",
6778			constructNormalizedFloat(7, 0x000000),
6779			"%cond = OpFOrdEqual %bool %c %test_constant\n"
6780		},  // +128
6781		// SPIR-V requires that OpQuantizeToF16 flushes
6782		// any numbers that would end up denormalized in F16 to zero.
6783		{
6784			"denorm",
6785			"0x0.0006p-126\n",
6786			std::ldexp(1.5f, -140),
6787			"%cond = OpFOrdEqual %bool %c %c_f32_0\n"
6788		},  // denorm
6789		{
6790			"negative_denorm",
6791			"-0x0.0006p-126\n",
6792			-std::ldexp(1.5f, -140),
6793			"%cond = OpFOrdEqual %bool %c %c_f32_0\n"
6794		}, // -denorm
6795		{
6796			"too_small",
6797			"0x1.0p-16\n",
6798			std::ldexp(1.0f, -16),
6799			"%cond = OpFOrdEqual %bool %c %c_f32_0\n"
6800		},     // too small positive
6801		{
6802			"negative_too_small",
6803			"-0x1.0p-32\n",
6804			-std::ldexp(1.0f, -32),
6805			"%cond = OpFOrdEqual %bool %c %c_f32_0\n"
6806		},      // too small negative
6807		{
6808			"negative_inf",
6809			"-0x1.0p128\n",
6810			-std::ldexp(1.0f, 128),
6811
6812			"%gz = OpFOrdLessThan %bool %c %c_f32_0\n"
6813			"%inf = OpIsInf %bool %c\n"
6814			"%cond = OpLogicalAnd %bool %gz %inf\n"
6815		},     // -inf to -inf
6816		{
6817			"inf",
6818			"0x1.0p128\n",
6819			std::ldexp(1.0f, 128),
6820
6821			"%gz = OpFOrdGreaterThan %bool %c %c_f32_0\n"
6822			"%inf = OpIsInf %bool %c\n"
6823			"%cond = OpLogicalAnd %bool %gz %inf\n"
6824		},     // +inf to +inf
6825		{
6826			"round_to_negative_inf",
6827			"-0x1.0p32\n",
6828			-std::ldexp(1.0f, 32),
6829
6830			"%gz = OpFOrdLessThan %bool %c %c_f32_0\n"
6831			"%inf = OpIsInf %bool %c\n"
6832			"%cond = OpLogicalAnd %bool %gz %inf\n"
6833		},     // round to -inf
6834		{
6835			"round_to_inf",
6836			"0x1.0p16\n",
6837			std::ldexp(1.0f, 16),
6838
6839			"%gz = OpFOrdGreaterThan %bool %c %c_f32_0\n"
6840			"%inf = OpIsInf %bool %c\n"
6841			"%cond = OpLogicalAnd %bool %gz %inf\n"
6842		},     // round to +inf
6843		{
6844			"nan",
6845			"0x1.1p128\n",
6846			std::numeric_limits<float>::quiet_NaN(),
6847
6848			// Can't use %c, because NaN+0 isn't necessarily a NaN (Vulkan spec A.4).
6849			"%direct_quant = OpQuantizeToF16 %f32 %test_constant\n"
6850			"%nan = OpIsNan %bool %direct_quant\n"
6851			"%as_int = OpBitcast %i32 %direct_quant\n"
6852			"%positive = OpSGreaterThan %bool %as_int %c_i32_0\n"
6853			"%cond = OpLogicalAnd %bool %nan %positive\n"
6854		}, // nan
6855		{
6856			"negative_nan",
6857			"-0x1.0001p128\n",
6858			std::numeric_limits<float>::quiet_NaN(),
6859
6860			// Can't use %c, because NaN+0 isn't necessarily a NaN (Vulkan spec A.4).
6861			"%direct_quant = OpQuantizeToF16 %f32 %test_constant\n"
6862			"%nan = OpIsNan %bool %direct_quant\n"
6863			"%as_int = OpBitcast %i32 %direct_quant\n"
6864			"%negative = OpSLessThan %bool %as_int %c_i32_0\n"
6865			"%cond = OpLogicalAnd %bool %nan %negative\n"
6866		} // -nan
6867	};
6868	const char*		constants			=
6869		"%test_constant = OpConstant %f32 ";  // The value will be test.constant.
6870
6871	StringTemplate	function			(
6872		"%test_code     = OpFunction %v4f32 None %v4f32_function\n"
6873		"%param1        = OpFunctionParameter %v4f32\n"
6874		"%label_testfun = OpLabel\n"
6875		"%a             = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
6876		"%b             = OpFAdd %f32 %test_constant %a\n"
6877		"%c             = OpQuantizeToF16 %f32 %b\n"
6878		"${condition}\n"
6879		"%retval        = OpSelect %v4f32 %cond %c_v4f32_1_0_0_1 %param1"
6880		"                 OpReturnValue %retval\n"
6881		"OpFunctionEnd\n"
6882	);
6883
6884	const char*		specDecorations		= "OpDecorate %test_constant SpecId 0\n";
6885	const char*		specConstants		=
6886			"%test_constant = OpSpecConstant %f32 0.\n"
6887			"%c             = OpSpecConstantOp %f32 QuantizeToF16 %test_constant\n";
6888
6889	StringTemplate	specConstantFunction(
6890		"%test_code     = OpFunction %v4f32 None %v4f32_function\n"
6891		"%param1        = OpFunctionParameter %v4f32\n"
6892		"%label_testfun = OpLabel\n"
6893		"${condition}\n"
6894		"%retval        = OpSelect %v4f32 %cond %c_v4f32_1_0_0_1 %param1"
6895		"                 OpReturnValue %retval\n"
6896		"OpFunctionEnd\n"
6897	);
6898
6899	for (size_t idx = 0; idx < (sizeof(tests)/sizeof(tests[0])); ++idx)
6900	{
6901		map<string, string>								codeSpecialization;
6902		map<string, string>								fragments;
6903		codeSpecialization["condition"]					= tests[idx].condition;
6904		fragments["testfun"]							= function.specialize(codeSpecialization);
6905		fragments["pre_main"]							= string(constants) + tests[idx].constant + "\n";
6906		createTestsForAllStages(tests[idx].name, inputColors, expectedColors, fragments, testCtx);
6907	}
6908
6909	for (size_t idx = 0; idx < (sizeof(tests)/sizeof(tests[0])); ++idx)
6910	{
6911		map<string, string>								codeSpecialization;
6912		map<string, string>								fragments;
6913		vector<deInt32>									passConstants;
6914		deInt32											specConstant;
6915
6916		codeSpecialization["condition"]					= tests[idx].condition;
6917		fragments["testfun"]							= specConstantFunction.specialize(codeSpecialization);
6918		fragments["decoration"]							= specDecorations;
6919		fragments["pre_main"]							= specConstants;
6920
6921		memcpy(&specConstant, &tests[idx].valueAsFloat, sizeof(float));
6922		passConstants.push_back(specConstant);
6923
6924		createTestsForAllStages(string("spec_const_") + tests[idx].name, inputColors, expectedColors, fragments, passConstants, testCtx);
6925	}
6926}
6927
6928void createOpQuantizeTwoPossibilityTests(tcu::TestCaseGroup* testCtx)
6929{
6930	RGBA inputColors[4] =  {
6931		RGBA(0,		0,		0,		255),
6932		RGBA(0,		0,		255,	255),
6933		RGBA(0,		255,	0,		255),
6934		RGBA(0,		255,	255,	255)
6935	};
6936
6937	RGBA expectedColors[4] =
6938	{
6939		RGBA(255,	 0,		 0,		 255),
6940		RGBA(255,	 0,		 0,		 255),
6941		RGBA(255,	 0,		 0,		 255),
6942		RGBA(255,	 0,		 0,		 255)
6943	};
6944
6945	struct DualFP16Possibility
6946	{
6947		const char* name;
6948		const char* input;
6949		float		inputAsFloat;
6950		const char* possibleOutput1;
6951		const char* possibleOutput2;
6952	} tests[] = {
6953		{
6954			"positive_round_up_or_round_down",
6955			"0x1.3003p8",
6956			constructNormalizedFloat(8, 0x300300),
6957			"0x1.304p8",
6958			"0x1.3p8"
6959		},
6960		{
6961			"negative_round_up_or_round_down",
6962			"-0x1.6008p-7",
6963			-constructNormalizedFloat(8, 0x600800),
6964			"-0x1.6p-7",
6965			"-0x1.604p-7"
6966		},
6967		{
6968			"carry_bit",
6969			"0x1.01ep2",
6970			constructNormalizedFloat(8, 0x01e000),
6971			"0x1.01cp2",
6972			"0x1.02p2"
6973		},
6974		{
6975			"carry_to_exponent",
6976			"0x1.feep1",
6977			constructNormalizedFloat(8, 0xfee000),
6978			"0x1.ffcp1",
6979			"0x1.0p2"
6980		},
6981	};
6982	StringTemplate constants (
6983		"%input_const = OpConstant %f32 ${input}\n"
6984		"%possible_solution1 = OpConstant %f32 ${output1}\n"
6985		"%possible_solution2 = OpConstant %f32 ${output2}\n"
6986		);
6987
6988	StringTemplate specConstants (
6989		"%input_const = OpSpecConstant %f32 0.\n"
6990		"%possible_solution1 = OpConstant %f32 ${output1}\n"
6991		"%possible_solution2 = OpConstant %f32 ${output2}\n"
6992	);
6993
6994	const char* specDecorations = "OpDecorate %input_const  SpecId 0\n";
6995
6996	const char* function  =
6997		"%test_code     = OpFunction %v4f32 None %v4f32_function\n"
6998		"%param1        = OpFunctionParameter %v4f32\n"
6999		"%label_testfun = OpLabel\n"
7000		"%a             = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
7001		// For the purposes of this test we assume that 0.f will always get
7002		// faithfully passed through the pipeline stages.
7003		"%b             = OpFAdd %f32 %input_const %a\n"
7004		"%c             = OpQuantizeToF16 %f32 %b\n"
7005		"%eq_1          = OpFOrdEqual %bool %c %possible_solution1\n"
7006		"%eq_2          = OpFOrdEqual %bool %c %possible_solution2\n"
7007		"%cond          = OpLogicalOr %bool %eq_1 %eq_2\n"
7008		"%retval        = OpSelect %v4f32 %cond %c_v4f32_1_0_0_1 %param1"
7009		"                 OpReturnValue %retval\n"
7010		"OpFunctionEnd\n";
7011
7012	for(size_t idx = 0; idx < (sizeof(tests)/sizeof(tests[0])); ++idx) {
7013		map<string, string>									fragments;
7014		map<string, string>									constantSpecialization;
7015
7016		constantSpecialization["input"]						= tests[idx].input;
7017		constantSpecialization["output1"]					= tests[idx].possibleOutput1;
7018		constantSpecialization["output2"]					= tests[idx].possibleOutput2;
7019		fragments["testfun"]								= function;
7020		fragments["pre_main"]								= constants.specialize(constantSpecialization);
7021		createTestsForAllStages(tests[idx].name, inputColors, expectedColors, fragments, testCtx);
7022	}
7023
7024	for(size_t idx = 0; idx < (sizeof(tests)/sizeof(tests[0])); ++idx) {
7025		map<string, string>									fragments;
7026		map<string, string>									constantSpecialization;
7027		vector<deInt32>										passConstants;
7028		deInt32												specConstant;
7029
7030		constantSpecialization["output1"]					= tests[idx].possibleOutput1;
7031		constantSpecialization["output2"]					= tests[idx].possibleOutput2;
7032		fragments["testfun"]								= function;
7033		fragments["decoration"]								= specDecorations;
7034		fragments["pre_main"]								= specConstants.specialize(constantSpecialization);
7035
7036		memcpy(&specConstant, &tests[idx].inputAsFloat, sizeof(float));
7037		passConstants.push_back(specConstant);
7038
7039		createTestsForAllStages(string("spec_const_") + tests[idx].name, inputColors, expectedColors, fragments, passConstants, testCtx);
7040	}
7041}
7042
7043tcu::TestCaseGroup* createOpQuantizeTests(tcu::TestContext& testCtx)
7044{
7045	de::MovePtr<tcu::TestCaseGroup> opQuantizeTests (new tcu::TestCaseGroup(testCtx, "opquantize", "Test OpQuantizeToF16"));
7046	createOpQuantizeSingleOptionTests(opQuantizeTests.get());
7047	createOpQuantizeTwoPossibilityTests(opQuantizeTests.get());
7048	return opQuantizeTests.release();
7049}
7050
7051struct ShaderPermutation
7052{
7053	deUint8 vertexPermutation;
7054	deUint8 geometryPermutation;
7055	deUint8 tesscPermutation;
7056	deUint8 tessePermutation;
7057	deUint8 fragmentPermutation;
7058};
7059
7060ShaderPermutation getShaderPermutation(deUint8 inputValue)
7061{
7062	ShaderPermutation	permutation =
7063	{
7064		static_cast<deUint8>(inputValue & 0x10? 1u: 0u),
7065		static_cast<deUint8>(inputValue & 0x08? 1u: 0u),
7066		static_cast<deUint8>(inputValue & 0x04? 1u: 0u),
7067		static_cast<deUint8>(inputValue & 0x02? 1u: 0u),
7068		static_cast<deUint8>(inputValue & 0x01? 1u: 0u)
7069	};
7070	return permutation;
7071}
7072
7073tcu::TestCaseGroup* createModuleTests(tcu::TestContext& testCtx)
7074{
7075	RGBA								defaultColors[4];
7076	RGBA								invertedColors[4];
7077	de::MovePtr<tcu::TestCaseGroup>		moduleTests			(new tcu::TestCaseGroup(testCtx, "module", "Multiple entry points into shaders"));
7078
7079	const ShaderElement					combinedPipeline[]	=
7080	{
7081		ShaderElement("module", "main", VK_SHADER_STAGE_VERTEX_BIT),
7082		ShaderElement("module", "main", VK_SHADER_STAGE_GEOMETRY_BIT),
7083		ShaderElement("module", "main", VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT),
7084		ShaderElement("module", "main", VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT),
7085		ShaderElement("module", "main", VK_SHADER_STAGE_FRAGMENT_BIT)
7086	};
7087
7088	getDefaultColors(defaultColors);
7089	getInvertedDefaultColors(invertedColors);
7090	addFunctionCaseWithPrograms<InstanceContext>(moduleTests.get(), "same_module", "", createCombinedModule, runAndVerifyDefaultPipeline, createInstanceContext(combinedPipeline, map<string, string>()));
7091
7092	const char* numbers[] =
7093	{
7094		"1", "2"
7095	};
7096
7097	for (deInt8 idx = 0; idx < 32; ++idx)
7098	{
7099		ShaderPermutation			permutation		= getShaderPermutation(idx);
7100		string						name			= string("vert") + numbers[permutation.vertexPermutation] + "_geom" + numbers[permutation.geometryPermutation] + "_tessc" + numbers[permutation.tesscPermutation] + "_tesse" + numbers[permutation.tessePermutation] + "_frag" + numbers[permutation.fragmentPermutation];
7101		const ShaderElement			pipeline[]		=
7102		{
7103			ShaderElement("vert",	string("vert") +	numbers[permutation.vertexPermutation],		VK_SHADER_STAGE_VERTEX_BIT),
7104			ShaderElement("geom",	string("geom") +	numbers[permutation.geometryPermutation],	VK_SHADER_STAGE_GEOMETRY_BIT),
7105			ShaderElement("tessc",	string("tessc") +	numbers[permutation.tesscPermutation],		VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT),
7106			ShaderElement("tesse",	string("tesse") +	numbers[permutation.tessePermutation],		VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT),
7107			ShaderElement("frag",	string("frag") +	numbers[permutation.fragmentPermutation],	VK_SHADER_STAGE_FRAGMENT_BIT)
7108		};
7109
7110		// If there are an even number of swaps, then it should be no-op.
7111		// If there are an odd number, the color should be flipped.
7112		if ((permutation.vertexPermutation + permutation.geometryPermutation + permutation.tesscPermutation + permutation.tessePermutation + permutation.fragmentPermutation) % 2 == 0)
7113		{
7114			addFunctionCaseWithPrograms<InstanceContext>(moduleTests.get(), name, "", createMultipleEntries, runAndVerifyDefaultPipeline, createInstanceContext(pipeline, defaultColors, defaultColors, map<string, string>()));
7115		}
7116		else
7117		{
7118			addFunctionCaseWithPrograms<InstanceContext>(moduleTests.get(), name, "", createMultipleEntries, runAndVerifyDefaultPipeline, createInstanceContext(pipeline, defaultColors, invertedColors, map<string, string>()));
7119		}
7120	}
7121	return moduleTests.release();
7122}
7123
7124tcu::TestCaseGroup* createLoopTests(tcu::TestContext& testCtx)
7125{
7126	de::MovePtr<tcu::TestCaseGroup> testGroup(new tcu::TestCaseGroup(testCtx, "loop", "Looping control flow"));
7127	RGBA defaultColors[4];
7128	getDefaultColors(defaultColors);
7129	map<string, string> fragments;
7130	fragments["pre_main"] =
7131		"%c_f32_5 = OpConstant %f32 5.\n";
7132
7133	// A loop with a single block. The Continue Target is the loop block
7134	// itself. In SPIR-V terms, the "loop construct" contains no blocks at all
7135	// -- the "continue construct" forms the entire loop.
7136	fragments["testfun"] =
7137		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
7138		"%param1 = OpFunctionParameter %v4f32\n"
7139
7140		"%entry = OpLabel\n"
7141		"%val0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
7142		"OpBranch %loop\n"
7143
7144		";adds and subtracts 1.0 to %val in alternate iterations\n"
7145		"%loop = OpLabel\n"
7146		"%count = OpPhi %i32 %c_i32_4 %entry %count__ %loop\n"
7147		"%delta = OpPhi %f32 %c_f32_1 %entry %minus_delta %loop\n"
7148		"%val1 = OpPhi %f32 %val0 %entry %val %loop\n"
7149		"%val = OpFAdd %f32 %val1 %delta\n"
7150		"%minus_delta = OpFSub %f32 %c_f32_0 %delta\n"
7151		"%count__ = OpISub %i32 %count %c_i32_1\n"
7152		"%again = OpSGreaterThan %bool %count__ %c_i32_0\n"
7153		"OpLoopMerge %exit %loop None\n"
7154		"OpBranchConditional %again %loop %exit\n"
7155
7156		"%exit = OpLabel\n"
7157		"%result = OpVectorInsertDynamic %v4f32 %param1 %val %c_i32_0\n"
7158		"OpReturnValue %result\n"
7159
7160		"OpFunctionEnd\n"
7161		;
7162	createTestsForAllStages("single_block", defaultColors, defaultColors, fragments, testGroup.get());
7163
7164	// Body comprised of multiple basic blocks.
7165	const StringTemplate multiBlock(
7166		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
7167		"%param1 = OpFunctionParameter %v4f32\n"
7168
7169		"%entry = OpLabel\n"
7170		"%val0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
7171		"OpBranch %loop\n"
7172
7173		";adds and subtracts 1.0 to %val in alternate iterations\n"
7174		"%loop = OpLabel\n"
7175		"%count = OpPhi %i32 %c_i32_4 %entry %count__ %gather\n"
7176		"%delta = OpPhi %f32 %c_f32_1 %entry %delta_next %gather\n"
7177		"%val1 = OpPhi %f32 %val0 %entry %val %gather\n"
7178		// There are several possibilities for the Continue Target below.  Each
7179		// will be specialized into a separate test case.
7180		"OpLoopMerge %exit ${continue_target} None\n"
7181		"OpBranch %if\n"
7182
7183		"%if = OpLabel\n"
7184		";delta_next = (delta > 0) ? -1 : 1;\n"
7185		"%gt0 = OpFOrdGreaterThan %bool %delta %c_f32_0\n"
7186		"OpSelectionMerge %gather DontFlatten\n"
7187		"OpBranchConditional %gt0 %even %odd ;tells us if %count is even or odd\n"
7188
7189		"%odd = OpLabel\n"
7190		"OpBranch %gather\n"
7191
7192		"%even = OpLabel\n"
7193		"OpBranch %gather\n"
7194
7195		"%gather = OpLabel\n"
7196		"%delta_next = OpPhi %f32 %c_f32_n1 %even %c_f32_1 %odd\n"
7197		"%val = OpFAdd %f32 %val1 %delta\n"
7198		"%count__ = OpISub %i32 %count %c_i32_1\n"
7199		"%again = OpSGreaterThan %bool %count__ %c_i32_0\n"
7200		"OpBranchConditional %again %loop %exit\n"
7201
7202		"%exit = OpLabel\n"
7203		"%result = OpVectorInsertDynamic %v4f32 %param1 %val %c_i32_0\n"
7204		"OpReturnValue %result\n"
7205
7206		"OpFunctionEnd\n");
7207
7208	map<string, string> continue_target;
7209
7210	// The Continue Target is the loop block itself.
7211	continue_target["continue_target"] = "%loop";
7212	fragments["testfun"] = multiBlock.specialize(continue_target);
7213	createTestsForAllStages("multi_block_continue_construct", defaultColors, defaultColors, fragments, testGroup.get());
7214
7215	// The Continue Target is at the end of the loop.
7216	continue_target["continue_target"] = "%gather";
7217	fragments["testfun"] = multiBlock.specialize(continue_target);
7218	createTestsForAllStages("multi_block_loop_construct", defaultColors, defaultColors, fragments, testGroup.get());
7219
7220	// A loop with continue statement.
7221	fragments["testfun"] =
7222		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
7223		"%param1 = OpFunctionParameter %v4f32\n"
7224
7225		"%entry = OpLabel\n"
7226		"%val0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
7227		"OpBranch %loop\n"
7228
7229		";adds 4, 3, and 1 to %val0 (skips 2)\n"
7230		"%loop = OpLabel\n"
7231		"%count = OpPhi %i32 %c_i32_4 %entry %count__ %continue\n"
7232		"%val1 = OpPhi %f32 %val0 %entry %val %continue\n"
7233		"OpLoopMerge %exit %continue None\n"
7234		"OpBranch %if\n"
7235
7236		"%if = OpLabel\n"
7237		";skip if %count==2\n"
7238		"%eq2 = OpIEqual %bool %count %c_i32_2\n"
7239		"OpSelectionMerge %continue DontFlatten\n"
7240		"OpBranchConditional %eq2 %continue %body\n"
7241
7242		"%body = OpLabel\n"
7243		"%fcount = OpConvertSToF %f32 %count\n"
7244		"%val2 = OpFAdd %f32 %val1 %fcount\n"
7245		"OpBranch %continue\n"
7246
7247		"%continue = OpLabel\n"
7248		"%val = OpPhi %f32 %val2 %body %val1 %if\n"
7249		"%count__ = OpISub %i32 %count %c_i32_1\n"
7250		"%again = OpSGreaterThan %bool %count__ %c_i32_0\n"
7251		"OpBranchConditional %again %loop %exit\n"
7252
7253		"%exit = OpLabel\n"
7254		"%same = OpFSub %f32 %val %c_f32_8\n"
7255		"%result = OpVectorInsertDynamic %v4f32 %param1 %same %c_i32_0\n"
7256		"OpReturnValue %result\n"
7257		"OpFunctionEnd\n";
7258	createTestsForAllStages("continue", defaultColors, defaultColors, fragments, testGroup.get());
7259
7260	// A loop with early exit.  May be specialized with either break or return.
7261	StringTemplate earlyExitLoop(
7262		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
7263		"%param1 = OpFunctionParameter %v4f32\n"
7264
7265		"%entry = OpLabel\n"
7266		";param1 components are between 0 and 1, so dot product is 4 or less\n"
7267		"%dot = OpDot %f32 %param1 %param1\n"
7268		"%div = OpFDiv %f32 %dot %c_f32_5\n"
7269		"%zero = OpConvertFToU %u32 %div\n"
7270		"%two = OpIAdd %i32 %zero %c_i32_2\n"
7271		"%val0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
7272		"OpBranch %loop\n"
7273
7274		";adds 4 and 3 to %val0 (exits early)\n"
7275		"%loop = OpLabel\n"
7276		"%count = OpPhi %i32 %c_i32_4 %entry %count__ %continue\n"
7277		"%val1 = OpPhi %f32 %val0 %entry %val %continue\n"
7278		"OpLoopMerge %exit %continue None\n"
7279		"OpBranch %if\n"
7280
7281		"%if = OpLabel\n"
7282		";end loop if %count==%two\n"
7283		"%above2 = OpSGreaterThan %bool %count %two\n"
7284		"OpSelectionMerge %continue DontFlatten\n"
7285		// This can either branch to %exit or to another block with OpReturnValue %param1.
7286		"OpBranchConditional %above2 %body ${branch_destination}\n"
7287
7288		"%body = OpLabel\n"
7289		"%fcount = OpConvertSToF %f32 %count\n"
7290		"%val2 = OpFAdd %f32 %val1 %fcount\n"
7291		"OpBranch %continue\n"
7292
7293		"%continue = OpLabel\n"
7294		"%val = OpPhi %f32 %val2 %body %val1 %if\n"
7295		"%count__ = OpISub %i32 %count %c_i32_1\n"
7296		"%again = OpSGreaterThan %bool %count__ %c_i32_0\n"
7297		"OpBranchConditional %again %loop %exit\n"
7298
7299		"%exit = OpLabel\n"
7300		"%same = OpFSub %f32 %val %c_f32_7\n"
7301		"%result = OpVectorInsertDynamic %v4f32 %param1 %same %c_i32_0\n"
7302		"OpReturnValue %result\n"
7303		"OpFunctionEnd\n");
7304
7305	map<string, string> branch_destination;
7306
7307	// A loop with break.
7308	branch_destination["branch_destination"] = "%exit";
7309	fragments["testfun"] = earlyExitLoop.specialize(branch_destination);
7310	createTestsForAllStages("break", defaultColors, defaultColors, fragments, testGroup.get());
7311
7312	// A loop with return.
7313	branch_destination["branch_destination"] = "%early_exit\n"
7314		"%early_exit = OpLabel\n"
7315		"OpReturnValue %param1\n";
7316	fragments["testfun"] = earlyExitLoop.specialize(branch_destination);
7317	createTestsForAllStages("return", defaultColors, defaultColors, fragments, testGroup.get());
7318
7319	return testGroup.release();
7320}
7321
7322// Adds a new test to group using custom fragments for the tessellation-control
7323// stage and passthrough fragments for all other stages.  Uses default colors
7324// for input and expected output.
7325void addTessCtrlTest(tcu::TestCaseGroup* group, const char* name, const map<string, string>& fragments)
7326{
7327	RGBA defaultColors[4];
7328	getDefaultColors(defaultColors);
7329	const ShaderElement pipelineStages[] =
7330	{
7331		ShaderElement("vert", "main", VK_SHADER_STAGE_VERTEX_BIT),
7332		ShaderElement("tessc", "main", VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT),
7333		ShaderElement("tesse", "main", VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT),
7334		ShaderElement("frag", "main", VK_SHADER_STAGE_FRAGMENT_BIT),
7335	};
7336
7337	addFunctionCaseWithPrograms<InstanceContext>(group, name, "", addShaderCodeCustomTessControl,
7338												 runAndVerifyDefaultPipeline, createInstanceContext(
7339													 pipelineStages, defaultColors, defaultColors, fragments, StageToSpecConstantMap()));
7340}
7341
7342// A collection of tests putting OpControlBarrier in places GLSL forbids but SPIR-V allows.
7343tcu::TestCaseGroup* createBarrierTests(tcu::TestContext& testCtx)
7344{
7345	de::MovePtr<tcu::TestCaseGroup> testGroup(new tcu::TestCaseGroup(testCtx, "barrier", "OpControlBarrier"));
7346	map<string, string> fragments;
7347
7348	// A barrier inside a function body.
7349	fragments["pre_main"] =
7350		"%Workgroup = OpConstant %i32 2\n"
7351		"%SequentiallyConsistent = OpConstant %i32 0x10\n";
7352	fragments["testfun"] =
7353		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
7354		"%param1 = OpFunctionParameter %v4f32\n"
7355		"%label_testfun = OpLabel\n"
7356		"OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
7357		"OpReturnValue %param1\n"
7358		"OpFunctionEnd\n";
7359	addTessCtrlTest(testGroup.get(), "in_function", fragments);
7360
7361	// Common setup code for the following tests.
7362	fragments["pre_main"] =
7363		"%Workgroup = OpConstant %i32 2\n"
7364		"%SequentiallyConsistent = OpConstant %i32 0x10\n"
7365		"%c_f32_5 = OpConstant %f32 5.\n";
7366	const string setupPercentZero =	 // Begins %test_code function with code that sets %zero to 0u but cannot be optimized away.
7367		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
7368		"%param1 = OpFunctionParameter %v4f32\n"
7369		"%entry = OpLabel\n"
7370		";param1 components are between 0 and 1, so dot product is 4 or less\n"
7371		"%dot = OpDot %f32 %param1 %param1\n"
7372		"%div = OpFDiv %f32 %dot %c_f32_5\n"
7373		"%zero = OpConvertFToU %u32 %div\n";
7374
7375	// Barriers inside OpSwitch branches.
7376	fragments["testfun"] =
7377		setupPercentZero +
7378		"OpSelectionMerge %switch_exit None\n"
7379		"OpSwitch %zero %switch_default 0 %case0 1 %case1 ;should always go to %case0\n"
7380
7381		"%case1 = OpLabel\n"
7382		";This barrier should never be executed, but its presence makes test failure more likely when there's a bug.\n"
7383		"OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
7384		"%wrong_branch_alert1 = OpVectorInsertDynamic %v4f32 %param1 %c_f32_0_5 %c_i32_0\n"
7385		"OpBranch %switch_exit\n"
7386
7387		"%switch_default = OpLabel\n"
7388		"%wrong_branch_alert2 = OpVectorInsertDynamic %v4f32 %param1 %c_f32_0_5 %c_i32_0\n"
7389		";This barrier should never be executed, but its presence makes test failure more likely when there's a bug.\n"
7390		"OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
7391		"OpBranch %switch_exit\n"
7392
7393		"%case0 = OpLabel\n"
7394		"OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
7395		"OpBranch %switch_exit\n"
7396
7397		"%switch_exit = OpLabel\n"
7398		"%ret = OpPhi %v4f32 %param1 %case0 %wrong_branch_alert1 %case1 %wrong_branch_alert2 %switch_default\n"
7399		"OpReturnValue %ret\n"
7400		"OpFunctionEnd\n";
7401	addTessCtrlTest(testGroup.get(), "in_switch", fragments);
7402
7403	// Barriers inside if-then-else.
7404	fragments["testfun"] =
7405		setupPercentZero +
7406		"%eq0 = OpIEqual %bool %zero %c_u32_0\n"
7407		"OpSelectionMerge %exit DontFlatten\n"
7408		"OpBranchConditional %eq0 %then %else\n"
7409
7410		"%else = OpLabel\n"
7411		";This barrier should never be executed, but its presence makes test failure more likely when there's a bug.\n"
7412		"OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
7413		"%wrong_branch_alert = OpVectorInsertDynamic %v4f32 %param1 %c_f32_0_5 %c_i32_0\n"
7414		"OpBranch %exit\n"
7415
7416		"%then = OpLabel\n"
7417		"OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
7418		"OpBranch %exit\n"
7419
7420		"%exit = OpLabel\n"
7421		"%ret = OpPhi %v4f32 %param1 %then %wrong_branch_alert %else\n"
7422		"OpReturnValue %ret\n"
7423		"OpFunctionEnd\n";
7424	addTessCtrlTest(testGroup.get(), "in_if", fragments);
7425
7426	// A barrier after control-flow reconvergence, tempting the compiler to attempt something like this:
7427	// http://lists.llvm.org/pipermail/llvm-dev/2009-October/026317.html.
7428	fragments["testfun"] =
7429		setupPercentZero +
7430		"%thread_id = OpLoad %i32 %BP_gl_InvocationID\n"
7431		"%thread0 = OpIEqual %bool %thread_id %c_i32_0\n"
7432		"OpSelectionMerge %exit DontFlatten\n"
7433		"OpBranchConditional %thread0 %then %else\n"
7434
7435		"%else = OpLabel\n"
7436		"%val0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
7437		"OpBranch %exit\n"
7438
7439		"%then = OpLabel\n"
7440		"%val1 = OpVectorExtractDynamic %f32 %param1 %zero\n"
7441		"OpBranch %exit\n"
7442
7443		"%exit = OpLabel\n"
7444		"%val = OpPhi %f32 %val0 %else %val1 %then\n"
7445		"OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
7446		"%ret = OpVectorInsertDynamic %v4f32 %param1 %val %zero\n"
7447		"OpReturnValue %ret\n"
7448		"OpFunctionEnd\n";
7449	addTessCtrlTest(testGroup.get(), "after_divergent_if", fragments);
7450
7451	// A barrier inside a loop.
7452	fragments["pre_main"] =
7453		"%Workgroup = OpConstant %i32 2\n"
7454		"%SequentiallyConsistent = OpConstant %i32 0x10\n"
7455		"%c_f32_10 = OpConstant %f32 10.\n";
7456	fragments["testfun"] =
7457		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
7458		"%param1 = OpFunctionParameter %v4f32\n"
7459		"%entry = OpLabel\n"
7460		"%val0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
7461		"OpBranch %loop\n"
7462
7463		";adds 4, 3, 2, and 1 to %val0\n"
7464		"%loop = OpLabel\n"
7465		"%count = OpPhi %i32 %c_i32_4 %entry %count__ %loop\n"
7466		"%val1 = OpPhi %f32 %val0 %entry %val %loop\n"
7467		"OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
7468		"%fcount = OpConvertSToF %f32 %count\n"
7469		"%val = OpFAdd %f32 %val1 %fcount\n"
7470		"%count__ = OpISub %i32 %count %c_i32_1\n"
7471		"%again = OpSGreaterThan %bool %count__ %c_i32_0\n"
7472		"OpLoopMerge %exit %loop None\n"
7473		"OpBranchConditional %again %loop %exit\n"
7474
7475		"%exit = OpLabel\n"
7476		"%same = OpFSub %f32 %val %c_f32_10\n"
7477		"%ret = OpVectorInsertDynamic %v4f32 %param1 %same %c_i32_0\n"
7478		"OpReturnValue %ret\n"
7479		"OpFunctionEnd\n";
7480	addTessCtrlTest(testGroup.get(), "in_loop", fragments);
7481
7482	return testGroup.release();
7483}
7484
7485// Test for the OpFRem instruction.
7486tcu::TestCaseGroup* createFRemTests(tcu::TestContext& testCtx)
7487{
7488	de::MovePtr<tcu::TestCaseGroup>		testGroup(new tcu::TestCaseGroup(testCtx, "frem", "OpFRem"));
7489	map<string, string>					fragments;
7490	RGBA								inputColors[4];
7491	RGBA								outputColors[4];
7492
7493	fragments["pre_main"]				 =
7494		"%c_f32_3 = OpConstant %f32 3.0\n"
7495		"%c_f32_n3 = OpConstant %f32 -3.0\n"
7496		"%c_f32_4 = OpConstant %f32 4.0\n"
7497		"%c_f32_p75 = OpConstant %f32 0.75\n"
7498		"%c_v4f32_p75_p75_p75_p75 = OpConstantComposite %v4f32 %c_f32_p75 %c_f32_p75 %c_f32_p75 %c_f32_p75 \n"
7499		"%c_v4f32_4_4_4_4 = OpConstantComposite %v4f32 %c_f32_4 %c_f32_4 %c_f32_4 %c_f32_4\n"
7500		"%c_v4f32_3_n3_3_n3 = OpConstantComposite %v4f32 %c_f32_3 %c_f32_n3 %c_f32_3 %c_f32_n3\n";
7501
7502	// The test does the following.
7503	// vec4 result = (param1 * 8.0) - 4.0;
7504	// return (frem(result.x,3) + 0.75, frem(result.y, -3) + 0.75, 0, 1)
7505	fragments["testfun"]				 =
7506		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
7507		"%param1 = OpFunctionParameter %v4f32\n"
7508		"%label_testfun = OpLabel\n"
7509		"%v_times_8 = OpVectorTimesScalar %v4f32 %param1 %c_f32_8\n"
7510		"%minus_4 = OpFSub %v4f32 %v_times_8 %c_v4f32_4_4_4_4\n"
7511		"%frem = OpFRem %v4f32 %minus_4 %c_v4f32_3_n3_3_n3\n"
7512		"%added = OpFAdd %v4f32 %frem %c_v4f32_p75_p75_p75_p75\n"
7513		"%xyz_1 = OpVectorInsertDynamic %v4f32 %added %c_f32_1 %c_i32_3\n"
7514		"%xy_0_1 = OpVectorInsertDynamic %v4f32 %xyz_1 %c_f32_0 %c_i32_2\n"
7515		"OpReturnValue %xy_0_1\n"
7516		"OpFunctionEnd\n";
7517
7518
7519	inputColors[0]		= RGBA(16,	16,		0, 255);
7520	inputColors[1]		= RGBA(232, 232,	0, 255);
7521	inputColors[2]		= RGBA(232, 16,		0, 255);
7522	inputColors[3]		= RGBA(16,	232,	0, 255);
7523
7524	outputColors[0]		= RGBA(64,	64,		0, 255);
7525	outputColors[1]		= RGBA(255, 255,	0, 255);
7526	outputColors[2]		= RGBA(255, 64,		0, 255);
7527	outputColors[3]		= RGBA(64,	255,	0, 255);
7528
7529	createTestsForAllStages("frem", inputColors, outputColors, fragments, testGroup.get());
7530	return testGroup.release();
7531}
7532
7533tcu::TestCaseGroup* createInstructionTests (tcu::TestContext& testCtx)
7534{
7535	de::MovePtr<tcu::TestCaseGroup> instructionTests	(new tcu::TestCaseGroup(testCtx, "instruction", "Instructions with special opcodes/operands"));
7536	de::MovePtr<tcu::TestCaseGroup> computeTests		(new tcu::TestCaseGroup(testCtx, "compute", "Compute Instructions with special opcodes/operands"));
7537	de::MovePtr<tcu::TestCaseGroup> graphicsTests		(new tcu::TestCaseGroup(testCtx, "graphics", "Graphics Instructions with special opcodes/operands"));
7538
7539	computeTests->addChild(createOpNopGroup(testCtx));
7540	computeTests->addChild(createOpLineGroup(testCtx));
7541	computeTests->addChild(createOpNoLineGroup(testCtx));
7542	computeTests->addChild(createOpConstantNullGroup(testCtx));
7543	computeTests->addChild(createOpConstantCompositeGroup(testCtx));
7544	computeTests->addChild(createOpConstantUsageGroup(testCtx));
7545	computeTests->addChild(createSpecConstantGroup(testCtx));
7546	computeTests->addChild(createOpSourceGroup(testCtx));
7547	computeTests->addChild(createOpSourceExtensionGroup(testCtx));
7548	computeTests->addChild(createDecorationGroupGroup(testCtx));
7549	computeTests->addChild(createOpPhiGroup(testCtx));
7550	computeTests->addChild(createLoopControlGroup(testCtx));
7551	computeTests->addChild(createFunctionControlGroup(testCtx));
7552	computeTests->addChild(createSelectionControlGroup(testCtx));
7553	computeTests->addChild(createBlockOrderGroup(testCtx));
7554	computeTests->addChild(createMultipleShaderGroup(testCtx));
7555	computeTests->addChild(createMemoryAccessGroup(testCtx));
7556	computeTests->addChild(createOpCopyMemoryGroup(testCtx));
7557	computeTests->addChild(createOpCopyObjectGroup(testCtx));
7558	computeTests->addChild(createNoContractionGroup(testCtx));
7559	computeTests->addChild(createOpUndefGroup(testCtx));
7560	computeTests->addChild(createOpUnreachableGroup(testCtx));
7561	computeTests ->addChild(createOpQuantizeToF16Group(testCtx));
7562	computeTests ->addChild(createOpFRemGroup(testCtx));
7563
7564	RGBA defaultColors[4];
7565	getDefaultColors(defaultColors);
7566
7567	de::MovePtr<tcu::TestCaseGroup> opnopTests (new tcu::TestCaseGroup(testCtx, "opnop", "Test OpNop"));
7568	map<string, string> opNopFragments;
7569	opNopFragments["testfun"] =
7570		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
7571		"%param1 = OpFunctionParameter %v4f32\n"
7572		"%label_testfun = OpLabel\n"
7573		"OpNop\n"
7574		"OpNop\n"
7575		"OpNop\n"
7576		"OpNop\n"
7577		"OpNop\n"
7578		"OpNop\n"
7579		"OpNop\n"
7580		"OpNop\n"
7581		"%a = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
7582		"%b = OpFAdd %f32 %a %a\n"
7583		"OpNop\n"
7584		"%c = OpFSub %f32 %b %a\n"
7585		"%ret = OpVectorInsertDynamic %v4f32 %param1 %c %c_i32_0\n"
7586		"OpNop\n"
7587		"OpNop\n"
7588		"OpReturnValue %ret\n"
7589		"OpFunctionEnd\n"
7590		;
7591	createTestsForAllStages("opnop", defaultColors, defaultColors, opNopFragments, opnopTests.get());
7592
7593
7594	graphicsTests->addChild(opnopTests.release());
7595	graphicsTests->addChild(createOpSourceTests(testCtx));
7596	graphicsTests->addChild(createOpSourceContinuedTests(testCtx));
7597	graphicsTests->addChild(createOpLineTests(testCtx));
7598	graphicsTests->addChild(createOpNoLineTests(testCtx));
7599	graphicsTests->addChild(createOpConstantNullTests(testCtx));
7600	graphicsTests->addChild(createOpConstantCompositeTests(testCtx));
7601	graphicsTests->addChild(createMemoryAccessTests(testCtx));
7602	graphicsTests->addChild(createOpUndefTests(testCtx));
7603	graphicsTests->addChild(createSelectionBlockOrderTests(testCtx));
7604	graphicsTests->addChild(createModuleTests(testCtx));
7605	graphicsTests->addChild(createSwitchBlockOrderTests(testCtx));
7606	graphicsTests->addChild(createOpPhiTests(testCtx));
7607	graphicsTests->addChild(createNoContractionTests(testCtx));
7608	graphicsTests->addChild(createOpQuantizeTests(testCtx));
7609	graphicsTests->addChild(createLoopTests(testCtx));
7610	graphicsTests->addChild(createSpecConstantTests(testCtx));
7611	graphicsTests->addChild(createSpecConstantOpQuantizeToF16Group(testCtx));
7612	graphicsTests->addChild(createBarrierTests(testCtx));
7613	graphicsTests->addChild(createDecorationGroupTests(testCtx));
7614	graphicsTests->addChild(createFRemTests(testCtx));
7615
7616	instructionTests->addChild(computeTests.release());
7617	instructionTests->addChild(graphicsTests.release());
7618
7619	return instructionTests.release();
7620}
7621
7622} // SpirVAssembly
7623} // vkt
7624