vktSpvAsmInstructionTests.cpp revision 537a9b736914f0dcedc6a783a747fa03f5a34023
1/*-------------------------------------------------------------------------
2 * Vulkan Conformance Tests
3 * ------------------------
4 *
5 * Copyright (c) 2015 Google Inc.
6 *
7 * Licensed under the Apache License, Version 2.0 (the "License");
8 * you may not use this file except in compliance with the License.
9 * You may obtain a copy of the License at
10 *
11 *      http://www.apache.org/licenses/LICENSE-2.0
12 *
13 * Unless required by applicable law or agreed to in writing, software
14 * distributed under the License is distributed on an "AS IS" BASIS,
15 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16 * See the License for the specific language governing permissions and
17 * limitations under the License.
18 *
19 *//*!
20 * \file
21 * \brief SPIR-V Assembly Tests for Instructions (special opcode/operand)
22 *//*--------------------------------------------------------------------*/
23
24#include "vktSpvAsmInstructionTests.hpp"
25
26#include "tcuCommandLine.hpp"
27#include "tcuFormatUtil.hpp"
28#include "tcuFloat.hpp"
29#include "tcuRGBA.hpp"
30#include "tcuStringTemplate.hpp"
31#include "tcuTestLog.hpp"
32#include "tcuVectorUtil.hpp"
33
34#include "vkDefs.hpp"
35#include "vkDeviceUtil.hpp"
36#include "vkMemUtil.hpp"
37#include "vkPlatform.hpp"
38#include "vkPrograms.hpp"
39#include "vkQueryUtil.hpp"
40#include "vkRef.hpp"
41#include "vkRefUtil.hpp"
42#include "vkStrUtil.hpp"
43#include "vkTypeUtil.hpp"
44
45#include "deRandom.hpp"
46#include "deStringUtil.hpp"
47#include "deUniquePtr.hpp"
48#include "tcuStringTemplate.hpp"
49
50#include <cmath>
51#include "vktSpvAsmComputeShaderCase.hpp"
52#include "vktSpvAsmComputeShaderTestUtil.hpp"
53#include "vktTestCaseUtil.hpp"
54
55#include <cmath>
56#include <limits>
57#include <map>
58#include <string>
59#include <sstream>
60
61namespace vkt
62{
63namespace SpirVAssembly
64{
65
66namespace
67{
68
69using namespace vk;
70using std::map;
71using std::string;
72using std::vector;
73using tcu::IVec3;
74using tcu::IVec4;
75using tcu::RGBA;
76using tcu::TestLog;
77using tcu::TestStatus;
78using tcu::Vec4;
79using de::UniquePtr;
80using tcu::StringTemplate;
81using tcu::Vec4;
82
83typedef Unique<VkShaderModule>			ModuleHandleUp;
84typedef de::SharedPtr<ModuleHandleUp>	ModuleHandleSp;
85
86template<typename T>	T			randomScalar	(de::Random& rnd, T minValue, T maxValue);
87template<> inline		float		randomScalar	(de::Random& rnd, float minValue, float maxValue)		{ return rnd.getFloat(minValue, maxValue);	}
88template<> inline		deInt32		randomScalar	(de::Random& rnd, deInt32 minValue, deInt32 maxValue)	{ return rnd.getInt(minValue, maxValue);	}
89
90template<typename T>
91static void fillRandomScalars (de::Random& rnd, T minValue, T maxValue, void* dst, int numValues, int offset = 0)
92{
93	T* const typedPtr = (T*)dst;
94	for (int ndx = 0; ndx < numValues; ndx++)
95		typedPtr[offset + ndx] = randomScalar<T>(rnd, minValue, maxValue);
96}
97
98static void floorAll (vector<float>& values)
99{
100	for (size_t i = 0; i < values.size(); i++)
101		values[i] = deFloatFloor(values[i]);
102}
103
104static void floorAll (vector<Vec4>& values)
105{
106	for (size_t i = 0; i < values.size(); i++)
107		values[i] = floor(values[i]);
108}
109
110struct CaseParameter
111{
112	const char*		name;
113	string			param;
114
115	CaseParameter	(const char* case_, const string& param_) : name(case_), param(param_) {}
116};
117
118// Assembly code used for testing OpNop, OpConstant{Null|Composite}, Op[No]Line, OpSource[Continued], OpSourceExtension, OpUndef is based on GLSL source code:
119//
120// #version 430
121//
122// layout(std140, set = 0, binding = 0) readonly buffer Input {
123//   float elements[];
124// } input_data;
125// layout(std140, set = 0, binding = 1) writeonly buffer Output {
126//   float elements[];
127// } output_data;
128//
129// layout (local_size_x = 1, local_size_y = 1, local_size_z = 1) in;
130//
131// void main() {
132//   uint x = gl_GlobalInvocationID.x;
133//   output_data.elements[x] = -input_data.elements[x];
134// }
135
136static const char* const s_ShaderPreamble =
137	"OpCapability Shader\n"
138	"OpMemoryModel Logical GLSL450\n"
139	"OpEntryPoint GLCompute %main \"main\" %id\n"
140	"OpExecutionMode %main LocalSize 1 1 1\n";
141
142static const char* const s_CommonTypes =
143	"%bool      = OpTypeBool\n"
144	"%void      = OpTypeVoid\n"
145	"%voidf     = OpTypeFunction %void\n"
146	"%u32       = OpTypeInt 32 0\n"
147	"%i32       = OpTypeInt 32 1\n"
148	"%f32       = OpTypeFloat 32\n"
149	"%uvec3     = OpTypeVector %u32 3\n"
150	"%fvec3     = OpTypeVector %f32 3\n"
151	"%uvec3ptr  = OpTypePointer Input %uvec3\n"
152	"%f32ptr    = OpTypePointer Uniform %f32\n"
153	"%f32arr    = OpTypeRuntimeArray %f32\n"
154	"%boolarr   = OpTypeRuntimeArray %bool\n";
155
156// Declares two uniform variables (indata, outdata) of type "struct { float[] }". Depends on type "f32arr" (for "float[]").
157static const char* const s_InputOutputBuffer =
158	"%buf     = OpTypeStruct %f32arr\n"
159	"%bufptr  = OpTypePointer Uniform %buf\n"
160	"%indata    = OpVariable %bufptr Uniform\n"
161	"%outdata   = OpVariable %bufptr Uniform\n";
162
163// Declares buffer type and layout for uniform variables indata and outdata. Both of them are SSBO bounded to descriptor set 0.
164// indata is at binding point 0, while outdata is at 1.
165static const char* const s_InputOutputBufferTraits =
166	"OpDecorate %buf BufferBlock\n"
167	"OpDecorate %indata DescriptorSet 0\n"
168	"OpDecorate %indata Binding 0\n"
169	"OpDecorate %outdata DescriptorSet 0\n"
170	"OpDecorate %outdata Binding 1\n"
171	"OpDecorate %f32arr ArrayStride 4\n"
172	"OpMemberDecorate %buf 0 Offset 0\n";
173
174tcu::TestCaseGroup* createOpNopGroup (tcu::TestContext& testCtx)
175{
176	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opnop", "Test the OpNop instruction"));
177	ComputeShaderSpec				spec;
178	de::Random						rnd				(deStringHash(group->getName()));
179	const int						numElements		= 100;
180	vector<float>					positiveFloats	(numElements, 0);
181	vector<float>					negativeFloats	(numElements, 0);
182
183	fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
184
185	for (size_t ndx = 0; ndx < numElements; ++ndx)
186		negativeFloats[ndx] = -positiveFloats[ndx];
187
188	spec.assembly =
189		string(s_ShaderPreamble) +
190
191		"OpSource GLSL 430\n"
192		"OpName %main           \"main\"\n"
193		"OpName %id             \"gl_GlobalInvocationID\"\n"
194
195		"OpDecorate %id BuiltIn GlobalInvocationId\n"
196
197		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes)
198
199		+ string(s_InputOutputBuffer) +
200
201		"%id        = OpVariable %uvec3ptr Input\n"
202		"%zero      = OpConstant %i32 0\n"
203
204		"%main      = OpFunction %void None %voidf\n"
205		"%label     = OpLabel\n"
206		"%idval     = OpLoad %uvec3 %id\n"
207		"%x         = OpCompositeExtract %u32 %idval 0\n"
208
209		"             OpNop\n" // Inside a function body
210
211		"%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
212		"%inval     = OpLoad %f32 %inloc\n"
213		"%neg       = OpFNegate %f32 %inval\n"
214		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
215		"             OpStore %outloc %neg\n"
216		"             OpReturn\n"
217		"             OpFunctionEnd\n";
218	spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
219	spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
220	spec.numWorkGroups = IVec3(numElements, 1, 1);
221
222	group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "OpNop appearing at different places", spec));
223
224	return group.release();
225}
226
227bool compareFUnord (const std::vector<BufferSp>& inputs, const vector<AllocationSp>& outputAllocs, const std::vector<BufferSp>& expectedOutputs, TestLog& log)
228{
229	if (outputAllocs.size() != 1)
230		return false;
231
232	const BufferSp&	expectedOutput			= expectedOutputs[0];
233	const deInt32*	expectedOutputAsInt		= static_cast<const deInt32*>(expectedOutputs[0]->data());
234	const deInt32*	outputAsInt				= static_cast<const deInt32*>(outputAllocs[0]->getHostPtr());
235	const float*	input1AsFloat			= static_cast<const float*>(inputs[0]->data());
236	const float*	input2AsFloat			= static_cast<const float*>(inputs[1]->data());
237	bool returnValue						= true;
238
239	for (size_t idx = 0; idx < expectedOutput->getNumBytes() / sizeof(deInt32); ++idx)
240	{
241		if (outputAsInt[idx] != expectedOutputAsInt[idx])
242		{
243			log << TestLog::Message << "ERROR: Sub-case failed. inputs: " << input1AsFloat[idx] << "," << input2AsFloat[idx] << " output: " << outputAsInt[idx]<< " expected output: " << expectedOutputAsInt[idx] << TestLog::EndMessage;
244			returnValue = false;
245		}
246	}
247	return returnValue;
248}
249
250typedef VkBool32 (*compareFuncType) (float, float);
251
252struct OpFUnordCase
253{
254	const char*		name;
255	const char*		opCode;
256	compareFuncType	compareFunc;
257
258					OpFUnordCase 			(const char* _name, const char* _opCode, compareFuncType _compareFunc)
259						: name				(_name)
260						, opCode			(_opCode)
261						, compareFunc		(_compareFunc) {}
262};
263
264#define ADD_OPFUNORD_CASE(NAME, OPCODE, OPERATOR) \
265do { \
266    struct compare_##NAME { static VkBool32 compare(float x, float y) { return (x OPERATOR y) ? VK_TRUE : VK_FALSE; } }; \
267    cases.push_back(OpFUnordCase(#NAME, OPCODE, compare_##NAME::compare)); \
268} while (deGetFalse())
269
270tcu::TestCaseGroup* createOpFUnordGroup (tcu::TestContext& testCtx)
271{
272	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opfunord", "Test the OpFUnord* opcodes"));
273	de::Random						rnd				(deStringHash(group->getName()));
274	const int						numElements		= 100;
275	vector<OpFUnordCase>			cases;
276
277	const StringTemplate			shaderTemplate	(
278
279		string(s_ShaderPreamble) +
280
281		"OpSource GLSL 430\n"
282		"OpName %main           \"main\"\n"
283		"OpName %id             \"gl_GlobalInvocationID\"\n"
284
285		"OpDecorate %id BuiltIn GlobalInvocationId\n"
286
287		"OpDecorate %buf BufferBlock\n"
288		"OpDecorate %buf2 BufferBlock\n"
289		"OpDecorate %indata1 DescriptorSet 0\n"
290		"OpDecorate %indata1 Binding 0\n"
291		"OpDecorate %indata2 DescriptorSet 0\n"
292		"OpDecorate %indata2 Binding 1\n"
293		"OpDecorate %outdata DescriptorSet 0\n"
294		"OpDecorate %outdata Binding 2\n"
295		"OpDecorate %f32arr ArrayStride 4\n"
296		"OpDecorate %boolarr ArrayStride 4\n"
297		"OpMemberDecorate %buf 0 Offset 0\n"
298		"OpMemberDecorate %buf2 0 Offset 0\n"
299
300		+ string(s_CommonTypes) +
301
302		"%i32ptr     = OpTypePointer Uniform %i32\n"
303		"%buf        = OpTypeStruct %f32arr\n"
304		"%bufptr     = OpTypePointer Uniform %buf\n"
305		"%indata1    = OpVariable %bufptr Uniform\n"
306		"%indata2    = OpVariable %bufptr Uniform\n"
307
308		"%buf2       = OpTypeStruct %boolarr\n"
309		"%buf2ptr    = OpTypePointer Uniform %buf2\n"
310		"%outdata    = OpVariable %buf2ptr Uniform\n"
311
312		"%id        = OpVariable %uvec3ptr Input\n"
313		"%zero      = OpConstant %i32 0\n"
314		"%consti1   = OpConstant %i32 1\n"
315		"%constf1   = OpConstant %f32 1.0\n"
316
317		"%main      = OpFunction %void None %voidf\n"
318		"%label     = OpLabel\n"
319		"%idval     = OpLoad %uvec3 %id\n"
320		"%x         = OpCompositeExtract %u32 %idval 0\n"
321
322		"%inloc1    = OpAccessChain %f32ptr %indata1 %zero %x\n"
323		"%inval1    = OpLoad %f32 %inloc1\n"
324		"%inloc2    = OpAccessChain %f32ptr %indata2 %zero %x\n"
325		"%inval2    = OpLoad %f32 %inloc2\n"
326		"%outloc    = OpAccessChain %i32ptr %outdata %zero %x\n"
327
328		"%result    = ${OPCODE} %bool %inval1 %inval2\n"
329		"%int_res   = OpSelect %i32 %result %consti1 %zero\n"
330		"             OpStore %outloc %int_res\n"
331
332		"             OpReturn\n"
333		"             OpFunctionEnd\n");
334
335	ADD_OPFUNORD_CASE(equal, "OpFUnordEqual", ==);
336	ADD_OPFUNORD_CASE(less, "OpFUnordLessThan", <);
337	ADD_OPFUNORD_CASE(lessequal, "OpFUnordLessThanEqual", <=);
338	ADD_OPFUNORD_CASE(greater, "OpFUnordGreaterThan", >);
339	ADD_OPFUNORD_CASE(greaterequal, "OpFUnordGreaterThanEqual", >=);
340	ADD_OPFUNORD_CASE(notequal, "OpFUnordNotEqual", !=);
341
342	for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
343	{
344		map<string, string>			specializations;
345		ComputeShaderSpec			spec;
346		const float					NaN				= std::numeric_limits<float>::quiet_NaN();
347		vector<float>				inputFloats1	(numElements, 0);
348		vector<float>				inputFloats2	(numElements, 0);
349		vector<deInt32>				expectedInts	(numElements, 0);
350
351		specializations["OPCODE"]	= cases[caseNdx].opCode;
352		spec.assembly				= shaderTemplate.specialize(specializations);
353
354		fillRandomScalars(rnd, 1.f, 100.f, &inputFloats1[0], numElements);
355		for (size_t ndx = 0; ndx < numElements; ++ndx)
356		{
357			switch (ndx % 6)
358			{
359				case 0:		inputFloats2[ndx] = inputFloats1[ndx] + 1.0f; break;
360				case 1:		inputFloats2[ndx] = inputFloats1[ndx] - 1.0f; break;
361				case 2:		inputFloats2[ndx] = inputFloats1[ndx]; break;
362				case 3:		inputFloats2[ndx] = NaN; break;
363				case 4:		inputFloats2[ndx] = inputFloats1[ndx];	inputFloats1[ndx] = NaN; break;
364				case 5:		inputFloats2[ndx] = NaN;				inputFloats1[ndx] = NaN; break;
365			}
366			expectedInts[ndx] = tcu::Float32(inputFloats1[ndx]).isNaN() || tcu::Float32(inputFloats2[ndx]).isNaN() || cases[caseNdx].compareFunc(inputFloats1[ndx], inputFloats2[ndx]);
367		}
368
369		spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats1)));
370		spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats2)));
371		spec.outputs.push_back(BufferSp(new Int32Buffer(expectedInts)));
372		spec.numWorkGroups = IVec3(numElements, 1, 1);
373		spec.verifyIO = &compareFUnord;
374		group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
375	}
376
377	return group.release();
378}
379
380tcu::TestCaseGroup* createOpLineGroup (tcu::TestContext& testCtx)
381{
382	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opline", "Test the OpLine instruction"));
383	ComputeShaderSpec				spec;
384	de::Random						rnd				(deStringHash(group->getName()));
385	const int						numElements		= 100;
386	vector<float>					positiveFloats	(numElements, 0);
387	vector<float>					negativeFloats	(numElements, 0);
388
389	fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
390
391	for (size_t ndx = 0; ndx < numElements; ++ndx)
392		negativeFloats[ndx] = -positiveFloats[ndx];
393
394	spec.assembly =
395		string(s_ShaderPreamble) +
396
397		"%fname1 = OpString \"negateInputs.comp\"\n"
398		"%fname2 = OpString \"negateInputs\"\n"
399
400		"OpSource GLSL 430\n"
401		"OpName %main           \"main\"\n"
402		"OpName %id             \"gl_GlobalInvocationID\"\n"
403
404		"OpDecorate %id BuiltIn GlobalInvocationId\n"
405
406		+ string(s_InputOutputBufferTraits) +
407
408		"OpLine %fname1 0 0\n" // At the earliest possible position
409
410		+ string(s_CommonTypes) + string(s_InputOutputBuffer) +
411
412		"OpLine %fname1 0 1\n" // Multiple OpLines in sequence
413		"OpLine %fname2 1 0\n" // Different filenames
414		"OpLine %fname1 1000 100000\n"
415
416		"%id        = OpVariable %uvec3ptr Input\n"
417		"%zero      = OpConstant %i32 0\n"
418
419		"OpLine %fname1 1 1\n" // Before a function
420
421		"%main      = OpFunction %void None %voidf\n"
422		"%label     = OpLabel\n"
423
424		"OpLine %fname1 1 1\n" // In a function
425
426		"%idval     = OpLoad %uvec3 %id\n"
427		"%x         = OpCompositeExtract %u32 %idval 0\n"
428		"%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
429		"%inval     = OpLoad %f32 %inloc\n"
430		"%neg       = OpFNegate %f32 %inval\n"
431		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
432		"             OpStore %outloc %neg\n"
433		"             OpReturn\n"
434		"             OpFunctionEnd\n";
435	spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
436	spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
437	spec.numWorkGroups = IVec3(numElements, 1, 1);
438
439	group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "OpLine appearing at different places", spec));
440
441	return group.release();
442}
443
444tcu::TestCaseGroup* createOpNoLineGroup (tcu::TestContext& testCtx)
445{
446	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opnoline", "Test the OpNoLine instruction"));
447	ComputeShaderSpec				spec;
448	de::Random						rnd				(deStringHash(group->getName()));
449	const int						numElements		= 100;
450	vector<float>					positiveFloats	(numElements, 0);
451	vector<float>					negativeFloats	(numElements, 0);
452
453	fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
454
455	for (size_t ndx = 0; ndx < numElements; ++ndx)
456		negativeFloats[ndx] = -positiveFloats[ndx];
457
458	spec.assembly =
459		string(s_ShaderPreamble) +
460
461		"%fname = OpString \"negateInputs.comp\"\n"
462
463		"OpSource GLSL 430\n"
464		"OpName %main           \"main\"\n"
465		"OpName %id             \"gl_GlobalInvocationID\"\n"
466
467		"OpDecorate %id BuiltIn GlobalInvocationId\n"
468
469		+ string(s_InputOutputBufferTraits) +
470
471		"OpNoLine\n" // At the earliest possible position, without preceding OpLine
472
473		+ string(s_CommonTypes) + string(s_InputOutputBuffer) +
474
475		"OpLine %fname 0 1\n"
476		"OpNoLine\n" // Immediately following a preceding OpLine
477
478		"OpLine %fname 1000 1\n"
479
480		"%id        = OpVariable %uvec3ptr Input\n"
481		"%zero      = OpConstant %i32 0\n"
482
483		"OpNoLine\n" // Contents after the previous OpLine
484
485		"%main      = OpFunction %void None %voidf\n"
486		"%label     = OpLabel\n"
487		"%idval     = OpLoad %uvec3 %id\n"
488		"%x         = OpCompositeExtract %u32 %idval 0\n"
489
490		"OpNoLine\n" // Multiple OpNoLine
491		"OpNoLine\n"
492		"OpNoLine\n"
493
494		"%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
495		"%inval     = OpLoad %f32 %inloc\n"
496		"%neg       = OpFNegate %f32 %inval\n"
497		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
498		"             OpStore %outloc %neg\n"
499		"             OpReturn\n"
500		"             OpFunctionEnd\n";
501	spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
502	spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
503	spec.numWorkGroups = IVec3(numElements, 1, 1);
504
505	group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "OpNoLine appearing at different places", spec));
506
507	return group.release();
508}
509
510// Compare instruction for the contraction compute case.
511// Returns true if the output is what is expected from the test case.
512bool compareNoContractCase(const std::vector<BufferSp>&, const vector<AllocationSp>& outputAllocs, const std::vector<BufferSp>& expectedOutputs, TestLog&)
513{
514	if (outputAllocs.size() != 1)
515		return false;
516
517	// We really just need this for size because we are not comparing the exact values.
518	const BufferSp&	expectedOutput	= expectedOutputs[0];
519	const float*	outputAsFloat	= static_cast<const float*>(outputAllocs[0]->getHostPtr());;
520
521	for(size_t i = 0; i < expectedOutput->getNumBytes() / sizeof(float); ++i) {
522		if (outputAsFloat[i] != 0.f &&
523			outputAsFloat[i] != -ldexp(1, -24)) {
524			return false;
525		}
526	}
527
528	return true;
529}
530
531tcu::TestCaseGroup* createNoContractionGroup (tcu::TestContext& testCtx)
532{
533	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "nocontraction", "Test the NoContraction decoration"));
534	vector<CaseParameter>			cases;
535	const int						numElements		= 100;
536	vector<float>					inputFloats1	(numElements, 0);
537	vector<float>					inputFloats2	(numElements, 0);
538	vector<float>					outputFloats	(numElements, 0);
539	const StringTemplate			shaderTemplate	(
540		string(s_ShaderPreamble) +
541
542		"OpName %main           \"main\"\n"
543		"OpName %id             \"gl_GlobalInvocationID\"\n"
544
545		"OpDecorate %id BuiltIn GlobalInvocationId\n"
546
547		"${DECORATION}\n"
548
549		"OpDecorate %buf BufferBlock\n"
550		"OpDecorate %indata1 DescriptorSet 0\n"
551		"OpDecorate %indata1 Binding 0\n"
552		"OpDecorate %indata2 DescriptorSet 0\n"
553		"OpDecorate %indata2 Binding 1\n"
554		"OpDecorate %outdata DescriptorSet 0\n"
555		"OpDecorate %outdata Binding 2\n"
556		"OpDecorate %f32arr ArrayStride 4\n"
557		"OpMemberDecorate %buf 0 Offset 0\n"
558
559		+ string(s_CommonTypes) +
560
561		"%buf        = OpTypeStruct %f32arr\n"
562		"%bufptr     = OpTypePointer Uniform %buf\n"
563		"%indata1    = OpVariable %bufptr Uniform\n"
564		"%indata2    = OpVariable %bufptr Uniform\n"
565		"%outdata    = OpVariable %bufptr Uniform\n"
566
567		"%id         = OpVariable %uvec3ptr Input\n"
568		"%zero       = OpConstant %i32 0\n"
569		"%c_f_m1     = OpConstant %f32 -1.\n"
570
571		"%main       = OpFunction %void None %voidf\n"
572		"%label      = OpLabel\n"
573		"%idval      = OpLoad %uvec3 %id\n"
574		"%x          = OpCompositeExtract %u32 %idval 0\n"
575		"%inloc1     = OpAccessChain %f32ptr %indata1 %zero %x\n"
576		"%inval1     = OpLoad %f32 %inloc1\n"
577		"%inloc2     = OpAccessChain %f32ptr %indata2 %zero %x\n"
578		"%inval2     = OpLoad %f32 %inloc2\n"
579		"%mul        = OpFMul %f32 %inval1 %inval2\n"
580		"%add        = OpFAdd %f32 %mul %c_f_m1\n"
581		"%outloc     = OpAccessChain %f32ptr %outdata %zero %x\n"
582		"              OpStore %outloc %add\n"
583		"              OpReturn\n"
584		"              OpFunctionEnd\n");
585
586	cases.push_back(CaseParameter("multiplication",	"OpDecorate %mul NoContraction"));
587	cases.push_back(CaseParameter("addition",		"OpDecorate %add NoContraction"));
588	cases.push_back(CaseParameter("both",			"OpDecorate %mul NoContraction\nOpDecorate %add NoContraction"));
589
590	for (size_t ndx = 0; ndx < numElements; ++ndx)
591	{
592		inputFloats1[ndx]	= 1.f + std::ldexp(1.f, -23); // 1 + 2^-23.
593		inputFloats2[ndx]	= 1.f - std::ldexp(1.f, -23); // 1 - 2^-23.
594		// Result for (1 + 2^-23) * (1 - 2^-23) - 1. With NoContraction, the multiplication will be
595		// conducted separately and the result is rounded to 1, or 0x1.fffffcp-1
596		// So the final result will be 0.f or 0x1p-24.
597		// If the operation is combined into a precise fused multiply-add, then the result would be
598		// 2^-46 (0xa8800000).
599		outputFloats[ndx]	= 0.f;
600	}
601
602	for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
603	{
604		map<string, string>		specializations;
605		ComputeShaderSpec		spec;
606
607		specializations["DECORATION"] = cases[caseNdx].param;
608		spec.assembly = shaderTemplate.specialize(specializations);
609		spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats1)));
610		spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats2)));
611		spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
612		spec.numWorkGroups = IVec3(numElements, 1, 1);
613		// Check against the two possible answers based on rounding mode.
614		spec.verifyIO = &compareNoContractCase;
615
616		group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
617	}
618	return group.release();
619}
620
621bool compareFRem(const std::vector<BufferSp>&, const vector<AllocationSp>& outputAllocs, const std::vector<BufferSp>& expectedOutputs, TestLog&)
622{
623	if (outputAllocs.size() != 1)
624		return false;
625
626	const BufferSp& expectedOutput = expectedOutputs[0];
627	const float *expectedOutputAsFloat = static_cast<const float*>(expectedOutput->data());
628	const float* outputAsFloat = static_cast<const float*>(outputAllocs[0]->getHostPtr());;
629
630	for (size_t idx = 0; idx < expectedOutput->getNumBytes() / sizeof(float); ++idx)
631	{
632		const float f0 = expectedOutputAsFloat[idx];
633		const float f1 = outputAsFloat[idx];
634		// \todo relative error needs to be fairly high because FRem may be implemented as
635		// (roughly) frac(a/b)*b, so LSB errors can be magnified. But this should be fine for now.
636		if (deFloatAbs((f1 - f0) / f0) > 0.02)
637			return false;
638	}
639
640	return true;
641}
642
643tcu::TestCaseGroup* createOpFRemGroup (tcu::TestContext& testCtx)
644{
645	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opfrem", "Test the OpFRem instruction"));
646	ComputeShaderSpec				spec;
647	de::Random						rnd				(deStringHash(group->getName()));
648	const int						numElements		= 200;
649	vector<float>					inputFloats1	(numElements, 0);
650	vector<float>					inputFloats2	(numElements, 0);
651	vector<float>					outputFloats	(numElements, 0);
652
653	fillRandomScalars(rnd, -10000.f, 10000.f, &inputFloats1[0], numElements);
654	fillRandomScalars(rnd, -100.f, 100.f, &inputFloats2[0], numElements);
655
656	for (size_t ndx = 0; ndx < numElements; ++ndx)
657	{
658		// Guard against divisors near zero.
659		if (std::fabs(inputFloats2[ndx]) < 1e-3)
660			inputFloats2[ndx] = 8.f;
661
662		// The return value of std::fmod() has the same sign as its first operand, which is how OpFRem spec'd.
663		outputFloats[ndx] = std::fmod(inputFloats1[ndx], inputFloats2[ndx]);
664	}
665
666	spec.assembly =
667		string(s_ShaderPreamble) +
668
669		"OpName %main           \"main\"\n"
670		"OpName %id             \"gl_GlobalInvocationID\"\n"
671
672		"OpDecorate %id BuiltIn GlobalInvocationId\n"
673
674		"OpDecorate %buf BufferBlock\n"
675		"OpDecorate %indata1 DescriptorSet 0\n"
676		"OpDecorate %indata1 Binding 0\n"
677		"OpDecorate %indata2 DescriptorSet 0\n"
678		"OpDecorate %indata2 Binding 1\n"
679		"OpDecorate %outdata DescriptorSet 0\n"
680		"OpDecorate %outdata Binding 2\n"
681		"OpDecorate %f32arr ArrayStride 4\n"
682		"OpMemberDecorate %buf 0 Offset 0\n"
683
684		+ string(s_CommonTypes) +
685
686		"%buf        = OpTypeStruct %f32arr\n"
687		"%bufptr     = OpTypePointer Uniform %buf\n"
688		"%indata1    = OpVariable %bufptr Uniform\n"
689		"%indata2    = OpVariable %bufptr Uniform\n"
690		"%outdata    = OpVariable %bufptr Uniform\n"
691
692		"%id        = OpVariable %uvec3ptr Input\n"
693		"%zero      = OpConstant %i32 0\n"
694
695		"%main      = OpFunction %void None %voidf\n"
696		"%label     = OpLabel\n"
697		"%idval     = OpLoad %uvec3 %id\n"
698		"%x         = OpCompositeExtract %u32 %idval 0\n"
699		"%inloc1    = OpAccessChain %f32ptr %indata1 %zero %x\n"
700		"%inval1    = OpLoad %f32 %inloc1\n"
701		"%inloc2    = OpAccessChain %f32ptr %indata2 %zero %x\n"
702		"%inval2    = OpLoad %f32 %inloc2\n"
703		"%rem       = OpFRem %f32 %inval1 %inval2\n"
704		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
705		"             OpStore %outloc %rem\n"
706		"             OpReturn\n"
707		"             OpFunctionEnd\n";
708
709	spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats1)));
710	spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats2)));
711	spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
712	spec.numWorkGroups = IVec3(numElements, 1, 1);
713	spec.verifyIO = &compareFRem;
714
715	group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "", spec));
716
717	return group.release();
718}
719
720// Copy contents in the input buffer to the output buffer.
721tcu::TestCaseGroup* createOpCopyMemoryGroup (tcu::TestContext& testCtx)
722{
723	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opcopymemory", "Test the OpCopyMemory instruction"));
724	de::Random						rnd				(deStringHash(group->getName()));
725	const int						numElements		= 100;
726
727	// The following case adds vec4(0., 0.5, 1.5, 2.5) to each of the elements in the input buffer and writes output to the output buffer.
728	ComputeShaderSpec				spec1;
729	vector<Vec4>					inputFloats1	(numElements);
730	vector<Vec4>					outputFloats1	(numElements);
731
732	fillRandomScalars(rnd, -200.f, 200.f, &inputFloats1[0], numElements * 4);
733
734	// CPU might not use the same rounding mode as the GPU. Use whole numbers to avoid rounding differences.
735	floorAll(inputFloats1);
736
737	for (size_t ndx = 0; ndx < numElements; ++ndx)
738		outputFloats1[ndx] = inputFloats1[ndx] + Vec4(0.f, 0.5f, 1.5f, 2.5f);
739
740	spec1.assembly =
741		string(s_ShaderPreamble) +
742
743		"OpName %main           \"main\"\n"
744		"OpName %id             \"gl_GlobalInvocationID\"\n"
745
746		"OpDecorate %id BuiltIn GlobalInvocationId\n"
747		"OpDecorate %vec4arr ArrayStride 16\n"
748
749		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
750
751		"%vec4       = OpTypeVector %f32 4\n"
752		"%vec4ptr_u  = OpTypePointer Uniform %vec4\n"
753		"%vec4ptr_f  = OpTypePointer Function %vec4\n"
754		"%vec4arr    = OpTypeRuntimeArray %vec4\n"
755		"%buf        = OpTypeStruct %vec4arr\n"
756		"%bufptr     = OpTypePointer Uniform %buf\n"
757		"%indata     = OpVariable %bufptr Uniform\n"
758		"%outdata    = OpVariable %bufptr Uniform\n"
759
760		"%id         = OpVariable %uvec3ptr Input\n"
761		"%zero       = OpConstant %i32 0\n"
762		"%c_f_0      = OpConstant %f32 0.\n"
763		"%c_f_0_5    = OpConstant %f32 0.5\n"
764		"%c_f_1_5    = OpConstant %f32 1.5\n"
765		"%c_f_2_5    = OpConstant %f32 2.5\n"
766		"%c_vec4     = OpConstantComposite %vec4 %c_f_0 %c_f_0_5 %c_f_1_5 %c_f_2_5\n"
767
768		"%main       = OpFunction %void None %voidf\n"
769		"%label      = OpLabel\n"
770		"%v_vec4     = OpVariable %vec4ptr_f Function\n"
771		"%idval      = OpLoad %uvec3 %id\n"
772		"%x          = OpCompositeExtract %u32 %idval 0\n"
773		"%inloc      = OpAccessChain %vec4ptr_u %indata %zero %x\n"
774		"%outloc     = OpAccessChain %vec4ptr_u %outdata %zero %x\n"
775		"              OpCopyMemory %v_vec4 %inloc\n"
776		"%v_vec4_val = OpLoad %vec4 %v_vec4\n"
777		"%add        = OpFAdd %vec4 %v_vec4_val %c_vec4\n"
778		"              OpStore %outloc %add\n"
779		"              OpReturn\n"
780		"              OpFunctionEnd\n";
781
782	spec1.inputs.push_back(BufferSp(new Vec4Buffer(inputFloats1)));
783	spec1.outputs.push_back(BufferSp(new Vec4Buffer(outputFloats1)));
784	spec1.numWorkGroups = IVec3(numElements, 1, 1);
785
786	group->addChild(new SpvAsmComputeShaderCase(testCtx, "vector", "OpCopyMemory elements of vector type", spec1));
787
788	// The following case copies a float[100] variable from the input buffer to the output buffer.
789	ComputeShaderSpec				spec2;
790	vector<float>					inputFloats2	(numElements);
791	vector<float>					outputFloats2	(numElements);
792
793	fillRandomScalars(rnd, -200.f, 200.f, &inputFloats2[0], numElements);
794
795	for (size_t ndx = 0; ndx < numElements; ++ndx)
796		outputFloats2[ndx] = inputFloats2[ndx];
797
798	spec2.assembly =
799		string(s_ShaderPreamble) +
800
801		"OpName %main           \"main\"\n"
802		"OpName %id             \"gl_GlobalInvocationID\"\n"
803
804		"OpDecorate %id BuiltIn GlobalInvocationId\n"
805		"OpDecorate %f32arr100 ArrayStride 4\n"
806
807		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
808
809		"%hundred        = OpConstant %u32 100\n"
810		"%f32arr100      = OpTypeArray %f32 %hundred\n"
811		"%f32arr100ptr_f = OpTypePointer Function %f32arr100\n"
812		"%f32arr100ptr_u = OpTypePointer Uniform %f32arr100\n"
813		"%buf            = OpTypeStruct %f32arr100\n"
814		"%bufptr         = OpTypePointer Uniform %buf\n"
815		"%indata         = OpVariable %bufptr Uniform\n"
816		"%outdata        = OpVariable %bufptr Uniform\n"
817
818		"%id             = OpVariable %uvec3ptr Input\n"
819		"%zero           = OpConstant %i32 0\n"
820
821		"%main           = OpFunction %void None %voidf\n"
822		"%label          = OpLabel\n"
823		"%var            = OpVariable %f32arr100ptr_f Function\n"
824		"%inarr          = OpAccessChain %f32arr100ptr_u %indata %zero\n"
825		"%outarr         = OpAccessChain %f32arr100ptr_u %outdata %zero\n"
826		"                  OpCopyMemory %var %inarr\n"
827		"                  OpCopyMemory %outarr %var\n"
828		"                  OpReturn\n"
829		"                  OpFunctionEnd\n";
830
831	spec2.inputs.push_back(BufferSp(new Float32Buffer(inputFloats2)));
832	spec2.outputs.push_back(BufferSp(new Float32Buffer(outputFloats2)));
833	spec2.numWorkGroups = IVec3(1, 1, 1);
834
835	group->addChild(new SpvAsmComputeShaderCase(testCtx, "array", "OpCopyMemory elements of array type", spec2));
836
837	// The following case copies a struct{vec4, vec4, vec4, vec4} variable from the input buffer to the output buffer.
838	ComputeShaderSpec				spec3;
839	vector<float>					inputFloats3	(16);
840	vector<float>					outputFloats3	(16);
841
842	fillRandomScalars(rnd, -200.f, 200.f, &inputFloats3[0], 16);
843
844	for (size_t ndx = 0; ndx < 16; ++ndx)
845		outputFloats3[ndx] = inputFloats3[ndx];
846
847	spec3.assembly =
848		string(s_ShaderPreamble) +
849
850		"OpName %main           \"main\"\n"
851		"OpName %id             \"gl_GlobalInvocationID\"\n"
852
853		"OpDecorate %id BuiltIn GlobalInvocationId\n"
854		"OpMemberDecorate %buf 0 Offset 0\n"
855		"OpMemberDecorate %buf 1 Offset 16\n"
856		"OpMemberDecorate %buf 2 Offset 32\n"
857		"OpMemberDecorate %buf 3 Offset 48\n"
858
859		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
860
861		"%vec4      = OpTypeVector %f32 4\n"
862		"%buf       = OpTypeStruct %vec4 %vec4 %vec4 %vec4\n"
863		"%bufptr    = OpTypePointer Uniform %buf\n"
864		"%indata    = OpVariable %bufptr Uniform\n"
865		"%outdata   = OpVariable %bufptr Uniform\n"
866		"%vec4stptr = OpTypePointer Function %buf\n"
867
868		"%id        = OpVariable %uvec3ptr Input\n"
869		"%zero      = OpConstant %i32 0\n"
870
871		"%main      = OpFunction %void None %voidf\n"
872		"%label     = OpLabel\n"
873		"%var       = OpVariable %vec4stptr Function\n"
874		"             OpCopyMemory %var %indata\n"
875		"             OpCopyMemory %outdata %var\n"
876		"             OpReturn\n"
877		"             OpFunctionEnd\n";
878
879	spec3.inputs.push_back(BufferSp(new Float32Buffer(inputFloats3)));
880	spec3.outputs.push_back(BufferSp(new Float32Buffer(outputFloats3)));
881	spec3.numWorkGroups = IVec3(1, 1, 1);
882
883	group->addChild(new SpvAsmComputeShaderCase(testCtx, "struct", "OpCopyMemory elements of struct type", spec3));
884
885	// The following case negates multiple float variables from the input buffer and stores the results to the output buffer.
886	ComputeShaderSpec				spec4;
887	vector<float>					inputFloats4	(numElements);
888	vector<float>					outputFloats4	(numElements);
889
890	fillRandomScalars(rnd, -200.f, 200.f, &inputFloats4[0], numElements);
891
892	for (size_t ndx = 0; ndx < numElements; ++ndx)
893		outputFloats4[ndx] = -inputFloats4[ndx];
894
895	spec4.assembly =
896		string(s_ShaderPreamble) +
897
898		"OpName %main           \"main\"\n"
899		"OpName %id             \"gl_GlobalInvocationID\"\n"
900
901		"OpDecorate %id BuiltIn GlobalInvocationId\n"
902
903		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
904
905		"%f32ptr_f  = OpTypePointer Function %f32\n"
906		"%id        = OpVariable %uvec3ptr Input\n"
907		"%zero      = OpConstant %i32 0\n"
908
909		"%main      = OpFunction %void None %voidf\n"
910		"%label     = OpLabel\n"
911		"%var       = OpVariable %f32ptr_f Function\n"
912		"%idval     = OpLoad %uvec3 %id\n"
913		"%x         = OpCompositeExtract %u32 %idval 0\n"
914		"%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
915		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
916		"             OpCopyMemory %var %inloc\n"
917		"%val       = OpLoad %f32 %var\n"
918		"%neg       = OpFNegate %f32 %val\n"
919		"             OpStore %outloc %neg\n"
920		"             OpReturn\n"
921		"             OpFunctionEnd\n";
922
923	spec4.inputs.push_back(BufferSp(new Float32Buffer(inputFloats4)));
924	spec4.outputs.push_back(BufferSp(new Float32Buffer(outputFloats4)));
925	spec4.numWorkGroups = IVec3(numElements, 1, 1);
926
927	group->addChild(new SpvAsmComputeShaderCase(testCtx, "float", "OpCopyMemory elements of float type", spec4));
928
929	return group.release();
930}
931
932tcu::TestCaseGroup* createOpCopyObjectGroup (tcu::TestContext& testCtx)
933{
934	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opcopyobject", "Test the OpCopyObject instruction"));
935	ComputeShaderSpec				spec;
936	de::Random						rnd				(deStringHash(group->getName()));
937	const int						numElements		= 100;
938	vector<float>					inputFloats		(numElements, 0);
939	vector<float>					outputFloats	(numElements, 0);
940
941	fillRandomScalars(rnd, -200.f, 200.f, &inputFloats[0], numElements);
942
943	// CPU might not use the same rounding mode as the GPU. Use whole numbers to avoid rounding differences.
944	floorAll(inputFloats);
945
946	for (size_t ndx = 0; ndx < numElements; ++ndx)
947		outputFloats[ndx] = inputFloats[ndx] + 7.5f;
948
949	spec.assembly =
950		string(s_ShaderPreamble) +
951
952		"OpName %main           \"main\"\n"
953		"OpName %id             \"gl_GlobalInvocationID\"\n"
954
955		"OpDecorate %id BuiltIn GlobalInvocationId\n"
956
957		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
958
959		"%fmat     = OpTypeMatrix %fvec3 3\n"
960		"%three    = OpConstant %u32 3\n"
961		"%farr     = OpTypeArray %f32 %three\n"
962		"%fst      = OpTypeStruct %f32 %f32\n"
963
964		+ string(s_InputOutputBuffer) +
965
966		"%id            = OpVariable %uvec3ptr Input\n"
967		"%zero          = OpConstant %i32 0\n"
968		"%c_f           = OpConstant %f32 1.5\n"
969		"%c_fvec3       = OpConstantComposite %fvec3 %c_f %c_f %c_f\n"
970		"%c_fmat        = OpConstantComposite %fmat %c_fvec3 %c_fvec3 %c_fvec3\n"
971		"%c_farr        = OpConstantComposite %farr %c_f %c_f %c_f\n"
972		"%c_fst         = OpConstantComposite %fst %c_f %c_f\n"
973
974		"%main          = OpFunction %void None %voidf\n"
975		"%label         = OpLabel\n"
976		"%c_f_copy      = OpCopyObject %f32   %c_f\n"
977		"%c_fvec3_copy  = OpCopyObject %fvec3 %c_fvec3\n"
978		"%c_fmat_copy   = OpCopyObject %fmat  %c_fmat\n"
979		"%c_farr_copy   = OpCopyObject %farr  %c_farr\n"
980		"%c_fst_copy    = OpCopyObject %fst   %c_fst\n"
981		"%fvec3_elem    = OpCompositeExtract %f32 %c_fvec3_copy 0\n"
982		"%fmat_elem     = OpCompositeExtract %f32 %c_fmat_copy 1 2\n"
983		"%farr_elem     = OpCompositeExtract %f32 %c_farr_copy 2\n"
984		"%fst_elem      = OpCompositeExtract %f32 %c_fst_copy 1\n"
985		// Add up. 1.5 * 5 = 7.5.
986		"%add1          = OpFAdd %f32 %c_f_copy %fvec3_elem\n"
987		"%add2          = OpFAdd %f32 %add1     %fmat_elem\n"
988		"%add3          = OpFAdd %f32 %add2     %farr_elem\n"
989		"%add4          = OpFAdd %f32 %add3     %fst_elem\n"
990
991		"%idval         = OpLoad %uvec3 %id\n"
992		"%x             = OpCompositeExtract %u32 %idval 0\n"
993		"%inloc         = OpAccessChain %f32ptr %indata %zero %x\n"
994		"%outloc        = OpAccessChain %f32ptr %outdata %zero %x\n"
995		"%inval         = OpLoad %f32 %inloc\n"
996		"%add           = OpFAdd %f32 %add4 %inval\n"
997		"                 OpStore %outloc %add\n"
998		"                 OpReturn\n"
999		"                 OpFunctionEnd\n";
1000	spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
1001	spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
1002	spec.numWorkGroups = IVec3(numElements, 1, 1);
1003
1004	group->addChild(new SpvAsmComputeShaderCase(testCtx, "spotcheck", "OpCopyObject on different types", spec));
1005
1006	return group.release();
1007}
1008// Assembly code used for testing OpUnreachable is based on GLSL source code:
1009//
1010// #version 430
1011//
1012// layout(std140, set = 0, binding = 0) readonly buffer Input {
1013//   float elements[];
1014// } input_data;
1015// layout(std140, set = 0, binding = 1) writeonly buffer Output {
1016//   float elements[];
1017// } output_data;
1018//
1019// void not_called_func() {
1020//   // place OpUnreachable here
1021// }
1022//
1023// uint modulo4(uint val) {
1024//   switch (val % uint(4)) {
1025//     case 0:  return 3;
1026//     case 1:  return 2;
1027//     case 2:  return 1;
1028//     case 3:  return 0;
1029//     default: return 100; // place OpUnreachable here
1030//   }
1031// }
1032//
1033// uint const5() {
1034//   return 5;
1035//   // place OpUnreachable here
1036// }
1037//
1038// void main() {
1039//   uint x = gl_GlobalInvocationID.x;
1040//   if (const5() > modulo4(1000)) {
1041//     output_data.elements[x] = -input_data.elements[x];
1042//   } else {
1043//     // place OpUnreachable here
1044//     output_data.elements[x] = input_data.elements[x];
1045//   }
1046// }
1047
1048tcu::TestCaseGroup* createOpUnreachableGroup (tcu::TestContext& testCtx)
1049{
1050	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opunreachable", "Test the OpUnreachable instruction"));
1051	ComputeShaderSpec				spec;
1052	de::Random						rnd				(deStringHash(group->getName()));
1053	const int						numElements		= 100;
1054	vector<float>					positiveFloats	(numElements, 0);
1055	vector<float>					negativeFloats	(numElements, 0);
1056
1057	fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
1058
1059	for (size_t ndx = 0; ndx < numElements; ++ndx)
1060		negativeFloats[ndx] = -positiveFloats[ndx];
1061
1062	spec.assembly =
1063		string(s_ShaderPreamble) +
1064
1065		"OpSource GLSL 430\n"
1066		"OpName %main            \"main\"\n"
1067		"OpName %func_not_called_func \"not_called_func(\"\n"
1068		"OpName %func_modulo4         \"modulo4(u1;\"\n"
1069		"OpName %func_const5          \"const5(\"\n"
1070		"OpName %id                   \"gl_GlobalInvocationID\"\n"
1071
1072		"OpDecorate %id BuiltIn GlobalInvocationId\n"
1073
1074		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
1075
1076		"%u32ptr    = OpTypePointer Function %u32\n"
1077		"%uintfuint = OpTypeFunction %u32 %u32ptr\n"
1078		"%unitf     = OpTypeFunction %u32\n"
1079
1080		"%id        = OpVariable %uvec3ptr Input\n"
1081		"%zero      = OpConstant %u32 0\n"
1082		"%one       = OpConstant %u32 1\n"
1083		"%two       = OpConstant %u32 2\n"
1084		"%three     = OpConstant %u32 3\n"
1085		"%four      = OpConstant %u32 4\n"
1086		"%five      = OpConstant %u32 5\n"
1087		"%hundred   = OpConstant %u32 100\n"
1088		"%thousand  = OpConstant %u32 1000\n"
1089
1090		+ string(s_InputOutputBuffer) +
1091
1092		// Main()
1093		"%main   = OpFunction %void None %voidf\n"
1094		"%main_entry  = OpLabel\n"
1095		"%v_thousand  = OpVariable %u32ptr Function %thousand\n"
1096		"%idval       = OpLoad %uvec3 %id\n"
1097		"%x           = OpCompositeExtract %u32 %idval 0\n"
1098		"%inloc       = OpAccessChain %f32ptr %indata %zero %x\n"
1099		"%inval       = OpLoad %f32 %inloc\n"
1100		"%outloc      = OpAccessChain %f32ptr %outdata %zero %x\n"
1101		"%ret_const5  = OpFunctionCall %u32 %func_const5\n"
1102		"%ret_modulo4 = OpFunctionCall %u32 %func_modulo4 %v_thousand\n"
1103		"%cmp_gt      = OpUGreaterThan %bool %ret_const5 %ret_modulo4\n"
1104		"               OpSelectionMerge %if_end None\n"
1105		"               OpBranchConditional %cmp_gt %if_true %if_false\n"
1106		"%if_true     = OpLabel\n"
1107		"%negate      = OpFNegate %f32 %inval\n"
1108		"               OpStore %outloc %negate\n"
1109		"               OpBranch %if_end\n"
1110		"%if_false    = OpLabel\n"
1111		"               OpUnreachable\n" // Unreachable else branch for if statement
1112		"%if_end      = OpLabel\n"
1113		"               OpReturn\n"
1114		"               OpFunctionEnd\n"
1115
1116		// not_called_function()
1117		"%func_not_called_func  = OpFunction %void None %voidf\n"
1118		"%not_called_func_entry = OpLabel\n"
1119		"                         OpUnreachable\n" // Unreachable entry block in not called static function
1120		"                         OpFunctionEnd\n"
1121
1122		// modulo4()
1123		"%func_modulo4  = OpFunction %u32 None %uintfuint\n"
1124		"%valptr        = OpFunctionParameter %u32ptr\n"
1125		"%modulo4_entry = OpLabel\n"
1126		"%val           = OpLoad %u32 %valptr\n"
1127		"%modulo        = OpUMod %u32 %val %four\n"
1128		"                 OpSelectionMerge %switch_merge None\n"
1129		"                 OpSwitch %modulo %default 0 %case0 1 %case1 2 %case2 3 %case3\n"
1130		"%case0         = OpLabel\n"
1131		"                 OpReturnValue %three\n"
1132		"%case1         = OpLabel\n"
1133		"                 OpReturnValue %two\n"
1134		"%case2         = OpLabel\n"
1135		"                 OpReturnValue %one\n"
1136		"%case3         = OpLabel\n"
1137		"                 OpReturnValue %zero\n"
1138		"%default       = OpLabel\n"
1139		"                 OpUnreachable\n" // Unreachable default case for switch statement
1140		"%switch_merge  = OpLabel\n"
1141		"                 OpUnreachable\n" // Unreachable merge block for switch statement
1142		"                 OpFunctionEnd\n"
1143
1144		// const5()
1145		"%func_const5  = OpFunction %u32 None %unitf\n"
1146		"%const5_entry = OpLabel\n"
1147		"                OpReturnValue %five\n"
1148		"%unreachable  = OpLabel\n"
1149		"                OpUnreachable\n" // Unreachable block in function
1150		"                OpFunctionEnd\n";
1151	spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
1152	spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
1153	spec.numWorkGroups = IVec3(numElements, 1, 1);
1154
1155	group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "OpUnreachable appearing at different places", spec));
1156
1157	return group.release();
1158}
1159
1160// Assembly code used for testing decoration group is based on GLSL source code:
1161//
1162// #version 430
1163//
1164// layout(std140, set = 0, binding = 0) readonly buffer Input0 {
1165//   float elements[];
1166// } input_data0;
1167// layout(std140, set = 0, binding = 1) readonly buffer Input1 {
1168//   float elements[];
1169// } input_data1;
1170// layout(std140, set = 0, binding = 2) readonly buffer Input2 {
1171//   float elements[];
1172// } input_data2;
1173// layout(std140, set = 0, binding = 3) readonly buffer Input3 {
1174//   float elements[];
1175// } input_data3;
1176// layout(std140, set = 0, binding = 4) readonly buffer Input4 {
1177//   float elements[];
1178// } input_data4;
1179// layout(std140, set = 0, binding = 5) writeonly buffer Output {
1180//   float elements[];
1181// } output_data;
1182//
1183// void main() {
1184//   uint x = gl_GlobalInvocationID.x;
1185//   output_data.elements[x] = input_data0.elements[x] + input_data1.elements[x] + input_data2.elements[x] + input_data3.elements[x] + input_data4.elements[x];
1186// }
1187tcu::TestCaseGroup* createDecorationGroupGroup (tcu::TestContext& testCtx)
1188{
1189	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "decoration_group", "Test the OpDecorationGroup & OpGroupDecorate instruction"));
1190	ComputeShaderSpec				spec;
1191	de::Random						rnd				(deStringHash(group->getName()));
1192	const int						numElements		= 100;
1193	vector<float>					inputFloats0	(numElements, 0);
1194	vector<float>					inputFloats1	(numElements, 0);
1195	vector<float>					inputFloats2	(numElements, 0);
1196	vector<float>					inputFloats3	(numElements, 0);
1197	vector<float>					inputFloats4	(numElements, 0);
1198	vector<float>					outputFloats	(numElements, 0);
1199
1200	fillRandomScalars(rnd, -300.f, 300.f, &inputFloats0[0], numElements);
1201	fillRandomScalars(rnd, -300.f, 300.f, &inputFloats1[0], numElements);
1202	fillRandomScalars(rnd, -300.f, 300.f, &inputFloats2[0], numElements);
1203	fillRandomScalars(rnd, -300.f, 300.f, &inputFloats3[0], numElements);
1204	fillRandomScalars(rnd, -300.f, 300.f, &inputFloats4[0], numElements);
1205
1206	// CPU might not use the same rounding mode as the GPU. Use whole numbers to avoid rounding differences.
1207	floorAll(inputFloats0);
1208	floorAll(inputFloats1);
1209	floorAll(inputFloats2);
1210	floorAll(inputFloats3);
1211	floorAll(inputFloats4);
1212
1213	for (size_t ndx = 0; ndx < numElements; ++ndx)
1214		outputFloats[ndx] = inputFloats0[ndx] + inputFloats1[ndx] + inputFloats2[ndx] + inputFloats3[ndx] + inputFloats4[ndx];
1215
1216	spec.assembly =
1217		string(s_ShaderPreamble) +
1218
1219		"OpSource GLSL 430\n"
1220		"OpName %main \"main\"\n"
1221		"OpName %id \"gl_GlobalInvocationID\"\n"
1222
1223		// Not using group decoration on variable.
1224		"OpDecorate %id BuiltIn GlobalInvocationId\n"
1225		// Not using group decoration on type.
1226		"OpDecorate %f32arr ArrayStride 4\n"
1227
1228		"OpDecorate %groups BufferBlock\n"
1229		"OpDecorate %groupm Offset 0\n"
1230		"%groups = OpDecorationGroup\n"
1231		"%groupm = OpDecorationGroup\n"
1232
1233		// Group decoration on multiple structs.
1234		"OpGroupDecorate %groups %outbuf %inbuf0 %inbuf1 %inbuf2 %inbuf3 %inbuf4\n"
1235		// Group decoration on multiple struct members.
1236		"OpGroupMemberDecorate %groupm %outbuf 0 %inbuf0 0 %inbuf1 0 %inbuf2 0 %inbuf3 0 %inbuf4 0\n"
1237
1238		"OpDecorate %group1 DescriptorSet 0\n"
1239		"OpDecorate %group3 DescriptorSet 0\n"
1240		"OpDecorate %group3 NonWritable\n"
1241		"OpDecorate %group3 Restrict\n"
1242		"%group0 = OpDecorationGroup\n"
1243		"%group1 = OpDecorationGroup\n"
1244		"%group3 = OpDecorationGroup\n"
1245
1246		// Applying the same decoration group multiple times.
1247		"OpGroupDecorate %group1 %outdata\n"
1248		"OpGroupDecorate %group1 %outdata\n"
1249		"OpGroupDecorate %group1 %outdata\n"
1250		"OpDecorate %outdata DescriptorSet 0\n"
1251		"OpDecorate %outdata Binding 5\n"
1252		// Applying decoration group containing nothing.
1253		"OpGroupDecorate %group0 %indata0\n"
1254		"OpDecorate %indata0 DescriptorSet 0\n"
1255		"OpDecorate %indata0 Binding 0\n"
1256		// Applying decoration group containing one decoration.
1257		"OpGroupDecorate %group1 %indata1\n"
1258		"OpDecorate %indata1 Binding 1\n"
1259		// Applying decoration group containing multiple decorations.
1260		"OpGroupDecorate %group3 %indata2 %indata3\n"
1261		"OpDecorate %indata2 Binding 2\n"
1262		"OpDecorate %indata3 Binding 3\n"
1263		// Applying multiple decoration groups (with overlapping).
1264		"OpGroupDecorate %group0 %indata4\n"
1265		"OpGroupDecorate %group1 %indata4\n"
1266		"OpGroupDecorate %group3 %indata4\n"
1267		"OpDecorate %indata4 Binding 4\n"
1268
1269		+ string(s_CommonTypes) +
1270
1271		"%id   = OpVariable %uvec3ptr Input\n"
1272		"%zero = OpConstant %i32 0\n"
1273
1274		"%outbuf    = OpTypeStruct %f32arr\n"
1275		"%outbufptr = OpTypePointer Uniform %outbuf\n"
1276		"%outdata   = OpVariable %outbufptr Uniform\n"
1277		"%inbuf0    = OpTypeStruct %f32arr\n"
1278		"%inbuf0ptr = OpTypePointer Uniform %inbuf0\n"
1279		"%indata0   = OpVariable %inbuf0ptr Uniform\n"
1280		"%inbuf1    = OpTypeStruct %f32arr\n"
1281		"%inbuf1ptr = OpTypePointer Uniform %inbuf1\n"
1282		"%indata1   = OpVariable %inbuf1ptr Uniform\n"
1283		"%inbuf2    = OpTypeStruct %f32arr\n"
1284		"%inbuf2ptr = OpTypePointer Uniform %inbuf2\n"
1285		"%indata2   = OpVariable %inbuf2ptr Uniform\n"
1286		"%inbuf3    = OpTypeStruct %f32arr\n"
1287		"%inbuf3ptr = OpTypePointer Uniform %inbuf3\n"
1288		"%indata3   = OpVariable %inbuf3ptr Uniform\n"
1289		"%inbuf4    = OpTypeStruct %f32arr\n"
1290		"%inbufptr  = OpTypePointer Uniform %inbuf4\n"
1291		"%indata4   = OpVariable %inbufptr Uniform\n"
1292
1293		"%main   = OpFunction %void None %voidf\n"
1294		"%label  = OpLabel\n"
1295		"%idval  = OpLoad %uvec3 %id\n"
1296		"%x      = OpCompositeExtract %u32 %idval 0\n"
1297		"%inloc0 = OpAccessChain %f32ptr %indata0 %zero %x\n"
1298		"%inloc1 = OpAccessChain %f32ptr %indata1 %zero %x\n"
1299		"%inloc2 = OpAccessChain %f32ptr %indata2 %zero %x\n"
1300		"%inloc3 = OpAccessChain %f32ptr %indata3 %zero %x\n"
1301		"%inloc4 = OpAccessChain %f32ptr %indata4 %zero %x\n"
1302		"%outloc = OpAccessChain %f32ptr %outdata %zero %x\n"
1303		"%inval0 = OpLoad %f32 %inloc0\n"
1304		"%inval1 = OpLoad %f32 %inloc1\n"
1305		"%inval2 = OpLoad %f32 %inloc2\n"
1306		"%inval3 = OpLoad %f32 %inloc3\n"
1307		"%inval4 = OpLoad %f32 %inloc4\n"
1308		"%add0   = OpFAdd %f32 %inval0 %inval1\n"
1309		"%add1   = OpFAdd %f32 %add0 %inval2\n"
1310		"%add2   = OpFAdd %f32 %add1 %inval3\n"
1311		"%add    = OpFAdd %f32 %add2 %inval4\n"
1312		"          OpStore %outloc %add\n"
1313		"          OpReturn\n"
1314		"          OpFunctionEnd\n";
1315	spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats0)));
1316	spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats1)));
1317	spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats2)));
1318	spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats3)));
1319	spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats4)));
1320	spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
1321	spec.numWorkGroups = IVec3(numElements, 1, 1);
1322
1323	group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "decoration group cases", spec));
1324
1325	return group.release();
1326}
1327
1328struct SpecConstantTwoIntCase
1329{
1330	const char*		caseName;
1331	const char*		scDefinition0;
1332	const char*		scDefinition1;
1333	const char*		scResultType;
1334	const char*		scOperation;
1335	deInt32			scActualValue0;
1336	deInt32			scActualValue1;
1337	const char*		resultOperation;
1338	vector<deInt32>	expectedOutput;
1339
1340					SpecConstantTwoIntCase (const char* name,
1341											const char* definition0,
1342											const char* definition1,
1343											const char* resultType,
1344											const char* operation,
1345											deInt32 value0,
1346											deInt32 value1,
1347											const char* resultOp,
1348											const vector<deInt32>& output)
1349						: caseName			(name)
1350						, scDefinition0		(definition0)
1351						, scDefinition1		(definition1)
1352						, scResultType		(resultType)
1353						, scOperation		(operation)
1354						, scActualValue0	(value0)
1355						, scActualValue1	(value1)
1356						, resultOperation	(resultOp)
1357						, expectedOutput	(output) {}
1358};
1359
1360tcu::TestCaseGroup* createSpecConstantGroup (tcu::TestContext& testCtx)
1361{
1362	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opspecconstantop", "Test the OpSpecConstantOp instruction"));
1363	vector<SpecConstantTwoIntCase>	cases;
1364	de::Random						rnd				(deStringHash(group->getName()));
1365	const int						numElements		= 100;
1366	vector<deInt32>					inputInts		(numElements, 0);
1367	vector<deInt32>					outputInts1		(numElements, 0);
1368	vector<deInt32>					outputInts2		(numElements, 0);
1369	vector<deInt32>					outputInts3		(numElements, 0);
1370	vector<deInt32>					outputInts4		(numElements, 0);
1371	const StringTemplate			shaderTemplate	(
1372		string(s_ShaderPreamble) +
1373
1374		"OpName %main           \"main\"\n"
1375		"OpName %id             \"gl_GlobalInvocationID\"\n"
1376
1377		"OpDecorate %id BuiltIn GlobalInvocationId\n"
1378		"OpDecorate %sc_0  SpecId 0\n"
1379		"OpDecorate %sc_1  SpecId 1\n"
1380		"OpDecorate %i32arr ArrayStride 4\n"
1381
1382		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
1383
1384		"%i32ptr    = OpTypePointer Uniform %i32\n"
1385		"%i32arr    = OpTypeRuntimeArray %i32\n"
1386		"%buf     = OpTypeStruct %i32arr\n"
1387		"%bufptr  = OpTypePointer Uniform %buf\n"
1388		"%indata    = OpVariable %bufptr Uniform\n"
1389		"%outdata   = OpVariable %bufptr Uniform\n"
1390
1391		"%id        = OpVariable %uvec3ptr Input\n"
1392		"%zero      = OpConstant %i32 0\n"
1393
1394		"%sc_0      = OpSpecConstant${SC_DEF0}\n"
1395		"%sc_1      = OpSpecConstant${SC_DEF1}\n"
1396		"%sc_final  = OpSpecConstantOp ${SC_RESULT_TYPE} ${SC_OP}\n"
1397
1398		"%main      = OpFunction %void None %voidf\n"
1399		"%label     = OpLabel\n"
1400		"%idval     = OpLoad %uvec3 %id\n"
1401		"%x         = OpCompositeExtract %u32 %idval 0\n"
1402		"%inloc     = OpAccessChain %i32ptr %indata %zero %x\n"
1403		"%inval     = OpLoad %i32 %inloc\n"
1404		"%final     = ${GEN_RESULT}\n"
1405		"%outloc    = OpAccessChain %i32ptr %outdata %zero %x\n"
1406		"             OpStore %outloc %final\n"
1407		"             OpReturn\n"
1408		"             OpFunctionEnd\n");
1409
1410	fillRandomScalars(rnd, -65536, 65536, &inputInts[0], numElements);
1411
1412	for (size_t ndx = 0; ndx < numElements; ++ndx)
1413	{
1414		outputInts1[ndx] = inputInts[ndx] + 42;
1415		outputInts2[ndx] = inputInts[ndx];
1416		outputInts3[ndx] = inputInts[ndx] - 11200;
1417		outputInts4[ndx] = inputInts[ndx] + 1;
1418	}
1419
1420	const char addScToInput[]		= "OpIAdd %i32 %inval %sc_final";
1421	const char selectTrueUsingSc[]	= "OpSelect %i32 %sc_final %inval %zero";
1422	const char selectFalseUsingSc[]	= "OpSelect %i32 %sc_final %zero %inval";
1423
1424	cases.push_back(SpecConstantTwoIntCase("iadd",					" %i32 0",		" %i32 0",		"%i32",		"IAdd                 %sc_0 %sc_1",			62,		-20,	addScToInput,		outputInts1));
1425	cases.push_back(SpecConstantTwoIntCase("isub",					" %i32 0",		" %i32 0",		"%i32",		"ISub                 %sc_0 %sc_1",			100,	58,		addScToInput,		outputInts1));
1426	cases.push_back(SpecConstantTwoIntCase("imul",					" %i32 0",		" %i32 0",		"%i32",		"IMul                 %sc_0 %sc_1",			-2,		-21,	addScToInput,		outputInts1));
1427	cases.push_back(SpecConstantTwoIntCase("sdiv",					" %i32 0",		" %i32 0",		"%i32",		"SDiv                 %sc_0 %sc_1",			-126,	-3,		addScToInput,		outputInts1));
1428	cases.push_back(SpecConstantTwoIntCase("udiv",					" %i32 0",		" %i32 0",		"%i32",		"UDiv                 %sc_0 %sc_1",			126,	3,		addScToInput,		outputInts1));
1429	cases.push_back(SpecConstantTwoIntCase("srem",					" %i32 0",		" %i32 0",		"%i32",		"SRem                 %sc_0 %sc_1",			7,		3,		addScToInput,		outputInts4));
1430	cases.push_back(SpecConstantTwoIntCase("smod",					" %i32 0",		" %i32 0",		"%i32",		"SMod                 %sc_0 %sc_1",			7,		3,		addScToInput,		outputInts4));
1431	cases.push_back(SpecConstantTwoIntCase("umod",					" %i32 0",		" %i32 0",		"%i32",		"UMod                 %sc_0 %sc_1",			342,	50,		addScToInput,		outputInts1));
1432	cases.push_back(SpecConstantTwoIntCase("bitwiseand",			" %i32 0",		" %i32 0",		"%i32",		"BitwiseAnd           %sc_0 %sc_1",			42,		63,		addScToInput,		outputInts1));
1433	cases.push_back(SpecConstantTwoIntCase("bitwiseor",				" %i32 0",		" %i32 0",		"%i32",		"BitwiseOr            %sc_0 %sc_1",			34,		8,		addScToInput,		outputInts1));
1434	cases.push_back(SpecConstantTwoIntCase("bitwisexor",			" %i32 0",		" %i32 0",		"%i32",		"BitwiseXor           %sc_0 %sc_1",			18,		56,		addScToInput,		outputInts1));
1435	cases.push_back(SpecConstantTwoIntCase("shiftrightlogical",		" %i32 0",		" %i32 0",		"%i32",		"ShiftRightLogical    %sc_0 %sc_1",			168,	2,		addScToInput,		outputInts1));
1436	cases.push_back(SpecConstantTwoIntCase("shiftrightarithmetic",	" %i32 0",		" %i32 0",		"%i32",		"ShiftRightArithmetic %sc_0 %sc_1",			168,	2,		addScToInput,		outputInts1));
1437	cases.push_back(SpecConstantTwoIntCase("shiftleftlogical",		" %i32 0",		" %i32 0",		"%i32",		"ShiftLeftLogical     %sc_0 %sc_1",			21,		1,		addScToInput,		outputInts1));
1438	cases.push_back(SpecConstantTwoIntCase("slessthan",				" %i32 0",		" %i32 0",		"%bool",	"SLessThan            %sc_0 %sc_1",			-20,	-10,	selectTrueUsingSc,	outputInts2));
1439	cases.push_back(SpecConstantTwoIntCase("ulessthan",				" %i32 0",		" %i32 0",		"%bool",	"ULessThan            %sc_0 %sc_1",			10,		20,		selectTrueUsingSc,	outputInts2));
1440	cases.push_back(SpecConstantTwoIntCase("sgreaterthan",			" %i32 0",		" %i32 0",		"%bool",	"SGreaterThan         %sc_0 %sc_1",			-1000,	50,		selectFalseUsingSc,	outputInts2));
1441	cases.push_back(SpecConstantTwoIntCase("ugreaterthan",			" %i32 0",		" %i32 0",		"%bool",	"UGreaterThan         %sc_0 %sc_1",			10,		5,		selectTrueUsingSc,	outputInts2));
1442	cases.push_back(SpecConstantTwoIntCase("slessthanequal",		" %i32 0",		" %i32 0",		"%bool",	"SLessThanEqual       %sc_0 %sc_1",			-10,	-10,	selectTrueUsingSc,	outputInts2));
1443	cases.push_back(SpecConstantTwoIntCase("ulessthanequal",		" %i32 0",		" %i32 0",		"%bool",	"ULessThanEqual       %sc_0 %sc_1",			50,		100,	selectTrueUsingSc,	outputInts2));
1444	cases.push_back(SpecConstantTwoIntCase("sgreaterthanequal",		" %i32 0",		" %i32 0",		"%bool",	"SGreaterThanEqual    %sc_0 %sc_1",			-1000,	50,		selectFalseUsingSc,	outputInts2));
1445	cases.push_back(SpecConstantTwoIntCase("ugreaterthanequal",		" %i32 0",		" %i32 0",		"%bool",	"UGreaterThanEqual    %sc_0 %sc_1",			10,		10,		selectTrueUsingSc,	outputInts2));
1446	cases.push_back(SpecConstantTwoIntCase("iequal",				" %i32 0",		" %i32 0",		"%bool",	"IEqual               %sc_0 %sc_1",			42,		24,		selectFalseUsingSc,	outputInts2));
1447	cases.push_back(SpecConstantTwoIntCase("logicaland",			"True %bool",	"True %bool",	"%bool",	"LogicalAnd           %sc_0 %sc_1",			0,		1,		selectFalseUsingSc,	outputInts2));
1448	cases.push_back(SpecConstantTwoIntCase("logicalor",				"False %bool",	"False %bool",	"%bool",	"LogicalOr            %sc_0 %sc_1",			1,		0,		selectTrueUsingSc,	outputInts2));
1449	cases.push_back(SpecConstantTwoIntCase("logicalequal",			"True %bool",	"True %bool",	"%bool",	"LogicalEqual         %sc_0 %sc_1",			0,		1,		selectFalseUsingSc,	outputInts2));
1450	cases.push_back(SpecConstantTwoIntCase("logicalnotequal",		"False %bool",	"False %bool",	"%bool",	"LogicalNotEqual      %sc_0 %sc_1",			1,		0,		selectTrueUsingSc,	outputInts2));
1451	cases.push_back(SpecConstantTwoIntCase("snegate",				" %i32 0",		" %i32 0",		"%i32",		"SNegate              %sc_0",				-42,	0,		addScToInput,		outputInts1));
1452	cases.push_back(SpecConstantTwoIntCase("not",					" %i32 0",		" %i32 0",		"%i32",		"Not                  %sc_0",				-43,	0,		addScToInput,		outputInts1));
1453	cases.push_back(SpecConstantTwoIntCase("logicalnot",			"False %bool",	"False %bool",	"%bool",	"LogicalNot           %sc_0",				1,		0,		selectFalseUsingSc,	outputInts2));
1454	cases.push_back(SpecConstantTwoIntCase("select",				"False %bool",	" %i32 0",		"%i32",		"Select               %sc_0 %sc_1 %zero",	1,		42,		addScToInput,		outputInts1));
1455	// OpSConvert, OpFConvert: these two instructions involve ints/floats of different bitwidths.
1456
1457	for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
1458	{
1459		map<string, string>		specializations;
1460		ComputeShaderSpec		spec;
1461
1462		specializations["SC_DEF0"]			= cases[caseNdx].scDefinition0;
1463		specializations["SC_DEF1"]			= cases[caseNdx].scDefinition1;
1464		specializations["SC_RESULT_TYPE"]	= cases[caseNdx].scResultType;
1465		specializations["SC_OP"]			= cases[caseNdx].scOperation;
1466		specializations["GEN_RESULT"]		= cases[caseNdx].resultOperation;
1467
1468		spec.assembly = shaderTemplate.specialize(specializations);
1469		spec.inputs.push_back(BufferSp(new Int32Buffer(inputInts)));
1470		spec.outputs.push_back(BufferSp(new Int32Buffer(cases[caseNdx].expectedOutput)));
1471		spec.numWorkGroups = IVec3(numElements, 1, 1);
1472		spec.specConstants.push_back(cases[caseNdx].scActualValue0);
1473		spec.specConstants.push_back(cases[caseNdx].scActualValue1);
1474
1475		group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].caseName, cases[caseNdx].caseName, spec));
1476	}
1477
1478	ComputeShaderSpec				spec;
1479
1480	spec.assembly =
1481		string(s_ShaderPreamble) +
1482
1483		"OpName %main           \"main\"\n"
1484		"OpName %id             \"gl_GlobalInvocationID\"\n"
1485
1486		"OpDecorate %id BuiltIn GlobalInvocationId\n"
1487		"OpDecorate %sc_0  SpecId 0\n"
1488		"OpDecorate %sc_1  SpecId 1\n"
1489		"OpDecorate %sc_2  SpecId 2\n"
1490		"OpDecorate %i32arr ArrayStride 4\n"
1491
1492		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
1493
1494		"%ivec3     = OpTypeVector %i32 3\n"
1495		"%i32ptr    = OpTypePointer Uniform %i32\n"
1496		"%i32arr    = OpTypeRuntimeArray %i32\n"
1497		"%buf     = OpTypeStruct %i32arr\n"
1498		"%bufptr  = OpTypePointer Uniform %buf\n"
1499		"%indata    = OpVariable %bufptr Uniform\n"
1500		"%outdata   = OpVariable %bufptr Uniform\n"
1501
1502		"%id        = OpVariable %uvec3ptr Input\n"
1503		"%zero      = OpConstant %i32 0\n"
1504		"%ivec3_0   = OpConstantComposite %ivec3 %zero %zero %zero\n"
1505
1506		"%sc_0        = OpSpecConstant %i32 0\n"
1507		"%sc_1        = OpSpecConstant %i32 0\n"
1508		"%sc_2        = OpSpecConstant %i32 0\n"
1509		"%sc_vec3_0   = OpSpecConstantOp %ivec3 CompositeInsert  %sc_0        %ivec3_0   0\n"     // (sc_0, 0, 0)
1510		"%sc_vec3_1   = OpSpecConstantOp %ivec3 CompositeInsert  %sc_1        %ivec3_0   1\n"     // (0, sc_1, 0)
1511		"%sc_vec3_2   = OpSpecConstantOp %ivec3 CompositeInsert  %sc_2        %ivec3_0   2\n"     // (0, 0, sc_2)
1512		"%sc_vec3_01  = OpSpecConstantOp %ivec3 VectorShuffle    %sc_vec3_0   %sc_vec3_1 1 0 4\n" // (0,    sc_0, sc_1)
1513		"%sc_vec3_012 = OpSpecConstantOp %ivec3 VectorShuffle    %sc_vec3_01  %sc_vec3_2 5 1 2\n" // (sc_2, sc_0, sc_1)
1514		"%sc_ext_0    = OpSpecConstantOp %i32   CompositeExtract %sc_vec3_012            0\n"     // sc_2
1515		"%sc_ext_1    = OpSpecConstantOp %i32   CompositeExtract %sc_vec3_012            1\n"     // sc_0
1516		"%sc_ext_2    = OpSpecConstantOp %i32   CompositeExtract %sc_vec3_012            2\n"     // sc_1
1517		"%sc_sub      = OpSpecConstantOp %i32   ISub             %sc_ext_0    %sc_ext_1\n"        // (sc_2 - sc_0)
1518		"%sc_final    = OpSpecConstantOp %i32   IMul             %sc_sub      %sc_ext_2\n"        // (sc_2 - sc_0) * sc_1
1519
1520		"%main      = OpFunction %void None %voidf\n"
1521		"%label     = OpLabel\n"
1522		"%idval     = OpLoad %uvec3 %id\n"
1523		"%x         = OpCompositeExtract %u32 %idval 0\n"
1524		"%inloc     = OpAccessChain %i32ptr %indata %zero %x\n"
1525		"%inval     = OpLoad %i32 %inloc\n"
1526		"%final     = OpIAdd %i32 %inval %sc_final\n"
1527		"%outloc    = OpAccessChain %i32ptr %outdata %zero %x\n"
1528		"             OpStore %outloc %final\n"
1529		"             OpReturn\n"
1530		"             OpFunctionEnd\n";
1531	spec.inputs.push_back(BufferSp(new Int32Buffer(inputInts)));
1532	spec.outputs.push_back(BufferSp(new Int32Buffer(outputInts3)));
1533	spec.numWorkGroups = IVec3(numElements, 1, 1);
1534	spec.specConstants.push_back(123);
1535	spec.specConstants.push_back(56);
1536	spec.specConstants.push_back(-77);
1537
1538	group->addChild(new SpvAsmComputeShaderCase(testCtx, "vector_related", "VectorShuffle, CompositeExtract, & CompositeInsert", spec));
1539
1540	return group.release();
1541}
1542
1543tcu::TestCaseGroup* createOpPhiGroup (tcu::TestContext& testCtx)
1544{
1545	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opphi", "Test the OpPhi instruction"));
1546	ComputeShaderSpec				spec1;
1547	ComputeShaderSpec				spec2;
1548	ComputeShaderSpec				spec3;
1549	de::Random						rnd				(deStringHash(group->getName()));
1550	const int						numElements		= 100;
1551	vector<float>					inputFloats		(numElements, 0);
1552	vector<float>					outputFloats1	(numElements, 0);
1553	vector<float>					outputFloats2	(numElements, 0);
1554	vector<float>					outputFloats3	(numElements, 0);
1555
1556	fillRandomScalars(rnd, -300.f, 300.f, &inputFloats[0], numElements);
1557
1558	// CPU might not use the same rounding mode as the GPU. Use whole numbers to avoid rounding differences.
1559	floorAll(inputFloats);
1560
1561	for (size_t ndx = 0; ndx < numElements; ++ndx)
1562	{
1563		switch (ndx % 3)
1564		{
1565			case 0:		outputFloats1[ndx] = inputFloats[ndx] + 5.5f;	break;
1566			case 1:		outputFloats1[ndx] = inputFloats[ndx] + 20.5f;	break;
1567			case 2:		outputFloats1[ndx] = inputFloats[ndx] + 1.75f;	break;
1568			default:	break;
1569		}
1570		outputFloats2[ndx] = inputFloats[ndx] + 6.5f * 3;
1571		outputFloats3[ndx] = 8.5f - inputFloats[ndx];
1572	}
1573
1574	spec1.assembly =
1575		string(s_ShaderPreamble) +
1576
1577		"OpSource GLSL 430\n"
1578		"OpName %main \"main\"\n"
1579		"OpName %id \"gl_GlobalInvocationID\"\n"
1580
1581		"OpDecorate %id BuiltIn GlobalInvocationId\n"
1582
1583		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
1584
1585		"%id = OpVariable %uvec3ptr Input\n"
1586		"%zero       = OpConstant %i32 0\n"
1587		"%three      = OpConstant %u32 3\n"
1588		"%constf5p5  = OpConstant %f32 5.5\n"
1589		"%constf20p5 = OpConstant %f32 20.5\n"
1590		"%constf1p75 = OpConstant %f32 1.75\n"
1591		"%constf8p5  = OpConstant %f32 8.5\n"
1592		"%constf6p5  = OpConstant %f32 6.5\n"
1593
1594		"%main     = OpFunction %void None %voidf\n"
1595		"%entry    = OpLabel\n"
1596		"%idval    = OpLoad %uvec3 %id\n"
1597		"%x        = OpCompositeExtract %u32 %idval 0\n"
1598		"%selector = OpUMod %u32 %x %three\n"
1599		"            OpSelectionMerge %phi None\n"
1600		"            OpSwitch %selector %default 0 %case0 1 %case1 2 %case2\n"
1601
1602		// Case 1 before OpPhi.
1603		"%case1    = OpLabel\n"
1604		"            OpBranch %phi\n"
1605
1606		"%default  = OpLabel\n"
1607		"            OpUnreachable\n"
1608
1609		"%phi      = OpLabel\n"
1610		"%operand  = OpPhi %f32   %constf1p75 %case2   %constf20p5 %case1   %constf5p5 %case0\n" // not in the order of blocks
1611		"%inloc    = OpAccessChain %f32ptr %indata %zero %x\n"
1612		"%inval    = OpLoad %f32 %inloc\n"
1613		"%add      = OpFAdd %f32 %inval %operand\n"
1614		"%outloc   = OpAccessChain %f32ptr %outdata %zero %x\n"
1615		"            OpStore %outloc %add\n"
1616		"            OpReturn\n"
1617
1618		// Case 0 after OpPhi.
1619		"%case0    = OpLabel\n"
1620		"            OpBranch %phi\n"
1621
1622
1623		// Case 2 after OpPhi.
1624		"%case2    = OpLabel\n"
1625		"            OpBranch %phi\n"
1626
1627		"            OpFunctionEnd\n";
1628	spec1.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
1629	spec1.outputs.push_back(BufferSp(new Float32Buffer(outputFloats1)));
1630	spec1.numWorkGroups = IVec3(numElements, 1, 1);
1631
1632	group->addChild(new SpvAsmComputeShaderCase(testCtx, "block", "out-of-order and unreachable blocks for OpPhi", spec1));
1633
1634	spec2.assembly =
1635		string(s_ShaderPreamble) +
1636
1637		"OpName %main \"main\"\n"
1638		"OpName %id \"gl_GlobalInvocationID\"\n"
1639
1640		"OpDecorate %id BuiltIn GlobalInvocationId\n"
1641
1642		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
1643
1644		"%id         = OpVariable %uvec3ptr Input\n"
1645		"%zero       = OpConstant %i32 0\n"
1646		"%one        = OpConstant %i32 1\n"
1647		"%three      = OpConstant %i32 3\n"
1648		"%constf6p5  = OpConstant %f32 6.5\n"
1649
1650		"%main       = OpFunction %void None %voidf\n"
1651		"%entry      = OpLabel\n"
1652		"%idval      = OpLoad %uvec3 %id\n"
1653		"%x          = OpCompositeExtract %u32 %idval 0\n"
1654		"%inloc      = OpAccessChain %f32ptr %indata %zero %x\n"
1655		"%outloc     = OpAccessChain %f32ptr %outdata %zero %x\n"
1656		"%inval      = OpLoad %f32 %inloc\n"
1657		"              OpBranch %phi\n"
1658
1659		"%phi        = OpLabel\n"
1660		"%step       = OpPhi %i32 %zero  %entry %step_next  %phi\n"
1661		"%accum      = OpPhi %f32 %inval %entry %accum_next %phi\n"
1662		"%step_next  = OpIAdd %i32 %step %one\n"
1663		"%accum_next = OpFAdd %f32 %accum %constf6p5\n"
1664		"%still_loop = OpSLessThan %bool %step %three\n"
1665		"              OpLoopMerge %exit %phi None\n"
1666		"              OpBranchConditional %still_loop %phi %exit\n"
1667
1668		"%exit       = OpLabel\n"
1669		"              OpStore %outloc %accum\n"
1670		"              OpReturn\n"
1671		"              OpFunctionEnd\n";
1672	spec2.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
1673	spec2.outputs.push_back(BufferSp(new Float32Buffer(outputFloats2)));
1674	spec2.numWorkGroups = IVec3(numElements, 1, 1);
1675
1676	group->addChild(new SpvAsmComputeShaderCase(testCtx, "induction", "The usual way induction variables are handled in LLVM IR", spec2));
1677
1678	spec3.assembly =
1679		string(s_ShaderPreamble) +
1680
1681		"OpName %main \"main\"\n"
1682		"OpName %id \"gl_GlobalInvocationID\"\n"
1683
1684		"OpDecorate %id BuiltIn GlobalInvocationId\n"
1685
1686		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
1687
1688		"%f32ptr_f   = OpTypePointer Function %f32\n"
1689		"%id         = OpVariable %uvec3ptr Input\n"
1690		"%true       = OpConstantTrue %bool\n"
1691		"%false      = OpConstantFalse %bool\n"
1692		"%zero       = OpConstant %i32 0\n"
1693		"%constf8p5  = OpConstant %f32 8.5\n"
1694
1695		"%main       = OpFunction %void None %voidf\n"
1696		"%entry      = OpLabel\n"
1697		"%b          = OpVariable %f32ptr_f Function %constf8p5\n"
1698		"%idval      = OpLoad %uvec3 %id\n"
1699		"%x          = OpCompositeExtract %u32 %idval 0\n"
1700		"%inloc      = OpAccessChain %f32ptr %indata %zero %x\n"
1701		"%outloc     = OpAccessChain %f32ptr %outdata %zero %x\n"
1702		"%a_init     = OpLoad %f32 %inloc\n"
1703		"%b_init     = OpLoad %f32 %b\n"
1704		"              OpBranch %phi\n"
1705
1706		"%phi        = OpLabel\n"
1707		"%still_loop = OpPhi %bool %true   %entry %false  %phi\n"
1708		"%a_next     = OpPhi %f32  %a_init %entry %b_next %phi\n"
1709		"%b_next     = OpPhi %f32  %b_init %entry %a_next %phi\n"
1710		"              OpLoopMerge %exit %phi None\n"
1711		"              OpBranchConditional %still_loop %phi %exit\n"
1712
1713		"%exit       = OpLabel\n"
1714		"%sub        = OpFSub %f32 %a_next %b_next\n"
1715		"              OpStore %outloc %sub\n"
1716		"              OpReturn\n"
1717		"              OpFunctionEnd\n";
1718	spec3.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
1719	spec3.outputs.push_back(BufferSp(new Float32Buffer(outputFloats3)));
1720	spec3.numWorkGroups = IVec3(numElements, 1, 1);
1721
1722	group->addChild(new SpvAsmComputeShaderCase(testCtx, "swap", "Swap the values of two variables using OpPhi", spec3));
1723
1724	return group.release();
1725}
1726
1727// Assembly code used for testing block order is based on GLSL source code:
1728//
1729// #version 430
1730//
1731// layout(std140, set = 0, binding = 0) readonly buffer Input {
1732//   float elements[];
1733// } input_data;
1734// layout(std140, set = 0, binding = 1) writeonly buffer Output {
1735//   float elements[];
1736// } output_data;
1737//
1738// void main() {
1739//   uint x = gl_GlobalInvocationID.x;
1740//   output_data.elements[x] = input_data.elements[x];
1741//   if (x > uint(50)) {
1742//     switch (x % uint(3)) {
1743//       case 0: output_data.elements[x] += 1.5f; break;
1744//       case 1: output_data.elements[x] += 42.f; break;
1745//       case 2: output_data.elements[x] -= 27.f; break;
1746//       default: break;
1747//     }
1748//   } else {
1749//     output_data.elements[x] = -input_data.elements[x];
1750//   }
1751// }
1752tcu::TestCaseGroup* createBlockOrderGroup (tcu::TestContext& testCtx)
1753{
1754	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "block_order", "Test block orders"));
1755	ComputeShaderSpec				spec;
1756	de::Random						rnd				(deStringHash(group->getName()));
1757	const int						numElements		= 100;
1758	vector<float>					inputFloats		(numElements, 0);
1759	vector<float>					outputFloats	(numElements, 0);
1760
1761	fillRandomScalars(rnd, -100.f, 100.f, &inputFloats[0], numElements);
1762
1763	// CPU might not use the same rounding mode as the GPU. Use whole numbers to avoid rounding differences.
1764	floorAll(inputFloats);
1765
1766	for (size_t ndx = 0; ndx <= 50; ++ndx)
1767		outputFloats[ndx] = -inputFloats[ndx];
1768
1769	for (size_t ndx = 51; ndx < numElements; ++ndx)
1770	{
1771		switch (ndx % 3)
1772		{
1773			case 0:		outputFloats[ndx] = inputFloats[ndx] + 1.5f; break;
1774			case 1:		outputFloats[ndx] = inputFloats[ndx] + 42.f; break;
1775			case 2:		outputFloats[ndx] = inputFloats[ndx] - 27.f; break;
1776			default:	break;
1777		}
1778	}
1779
1780	spec.assembly =
1781		string(s_ShaderPreamble) +
1782
1783		"OpSource GLSL 430\n"
1784		"OpName %main \"main\"\n"
1785		"OpName %id \"gl_GlobalInvocationID\"\n"
1786
1787		"OpDecorate %id BuiltIn GlobalInvocationId\n"
1788
1789		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
1790
1791		"%u32ptr       = OpTypePointer Function %u32\n"
1792		"%u32ptr_input = OpTypePointer Input %u32\n"
1793
1794		+ string(s_InputOutputBuffer) +
1795
1796		"%id        = OpVariable %uvec3ptr Input\n"
1797		"%zero      = OpConstant %i32 0\n"
1798		"%const3    = OpConstant %u32 3\n"
1799		"%const50   = OpConstant %u32 50\n"
1800		"%constf1p5 = OpConstant %f32 1.5\n"
1801		"%constf27  = OpConstant %f32 27.0\n"
1802		"%constf42  = OpConstant %f32 42.0\n"
1803
1804		"%main = OpFunction %void None %voidf\n"
1805
1806		// entry block.
1807		"%entry    = OpLabel\n"
1808
1809		// Create a temporary variable to hold the value of gl_GlobalInvocationID.x.
1810		"%xvar     = OpVariable %u32ptr Function\n"
1811		"%xptr     = OpAccessChain %u32ptr_input %id %zero\n"
1812		"%x        = OpLoad %u32 %xptr\n"
1813		"            OpStore %xvar %x\n"
1814
1815		"%cmp      = OpUGreaterThan %bool %x %const50\n"
1816		"            OpSelectionMerge %if_merge None\n"
1817		"            OpBranchConditional %cmp %if_true %if_false\n"
1818
1819		// Merge block for switch-statement: placed at the beginning.
1820		"%switch_merge = OpLabel\n"
1821		"                OpBranch %if_merge\n"
1822
1823		// Case 1 for switch-statement.
1824		"%case1    = OpLabel\n"
1825		"%x_1      = OpLoad %u32 %xvar\n"
1826		"%inloc_1  = OpAccessChain %f32ptr %indata %zero %x_1\n"
1827		"%inval_1  = OpLoad %f32 %inloc_1\n"
1828		"%addf42   = OpFAdd %f32 %inval_1 %constf42\n"
1829		"%outloc_1 = OpAccessChain %f32ptr %outdata %zero %x_1\n"
1830		"            OpStore %outloc_1 %addf42\n"
1831		"            OpBranch %switch_merge\n"
1832
1833		// False branch for if-statement: placed in the middle of switch cases and before true branch.
1834		"%if_false = OpLabel\n"
1835		"%x_f      = OpLoad %u32 %xvar\n"
1836		"%inloc_f  = OpAccessChain %f32ptr %indata %zero %x_f\n"
1837		"%inval_f  = OpLoad %f32 %inloc_f\n"
1838		"%negate   = OpFNegate %f32 %inval_f\n"
1839		"%outloc_f = OpAccessChain %f32ptr %outdata %zero %x_f\n"
1840		"            OpStore %outloc_f %negate\n"
1841		"            OpBranch %if_merge\n"
1842
1843		// Merge block for if-statement: placed in the middle of true and false branch.
1844		"%if_merge = OpLabel\n"
1845		"            OpReturn\n"
1846
1847		// True branch for if-statement: placed in the middle of swtich cases and after the false branch.
1848		"%if_true  = OpLabel\n"
1849		"%xval_t   = OpLoad %u32 %xvar\n"
1850		"%mod      = OpUMod %u32 %xval_t %const3\n"
1851		"            OpSelectionMerge %switch_merge None\n"
1852		"            OpSwitch %mod %default 0 %case0 1 %case1 2 %case2\n"
1853
1854		// Case 2 for switch-statement.
1855		"%case2    = OpLabel\n"
1856		"%x_2      = OpLoad %u32 %xvar\n"
1857		"%inloc_2  = OpAccessChain %f32ptr %indata %zero %x_2\n"
1858		"%inval_2  = OpLoad %f32 %inloc_2\n"
1859		"%subf27   = OpFSub %f32 %inval_2 %constf27\n"
1860		"%outloc_2 = OpAccessChain %f32ptr %outdata %zero %x_2\n"
1861		"            OpStore %outloc_2 %subf27\n"
1862		"            OpBranch %switch_merge\n"
1863
1864		// Default case for switch-statement: placed in the middle of normal cases.
1865		"%default = OpLabel\n"
1866		"           OpBranch %switch_merge\n"
1867
1868		// Case 0 for switch-statement: out of order.
1869		"%case0    = OpLabel\n"
1870		"%x_0      = OpLoad %u32 %xvar\n"
1871		"%inloc_0  = OpAccessChain %f32ptr %indata %zero %x_0\n"
1872		"%inval_0  = OpLoad %f32 %inloc_0\n"
1873		"%addf1p5  = OpFAdd %f32 %inval_0 %constf1p5\n"
1874		"%outloc_0 = OpAccessChain %f32ptr %outdata %zero %x_0\n"
1875		"            OpStore %outloc_0 %addf1p5\n"
1876		"            OpBranch %switch_merge\n"
1877
1878		"            OpFunctionEnd\n";
1879	spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
1880	spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
1881	spec.numWorkGroups = IVec3(numElements, 1, 1);
1882
1883	group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "various out-of-order blocks", spec));
1884
1885	return group.release();
1886}
1887
1888tcu::TestCaseGroup* createMultipleShaderGroup (tcu::TestContext& testCtx)
1889{
1890	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "multiple_shaders", "Test multiple shaders in the same module"));
1891	ComputeShaderSpec				spec1;
1892	ComputeShaderSpec				spec2;
1893	de::Random						rnd				(deStringHash(group->getName()));
1894	const int						numElements		= 100;
1895	vector<float>					inputFloats		(numElements, 0);
1896	vector<float>					outputFloats1	(numElements, 0);
1897	vector<float>					outputFloats2	(numElements, 0);
1898	fillRandomScalars(rnd, -500.f, 500.f, &inputFloats[0], numElements);
1899
1900	for (size_t ndx = 0; ndx < numElements; ++ndx)
1901	{
1902		outputFloats1[ndx] = inputFloats[ndx] + inputFloats[ndx];
1903		outputFloats2[ndx] = -inputFloats[ndx];
1904	}
1905
1906	const string assembly(
1907		"OpCapability Shader\n"
1908		"OpCapability ClipDistance\n"
1909		"OpMemoryModel Logical GLSL450\n"
1910		"OpEntryPoint GLCompute %comp_main1 \"entrypoint1\" %id\n"
1911		"OpEntryPoint GLCompute %comp_main2 \"entrypoint2\" %id\n"
1912		// A module cannot have two OpEntryPoint instructions with the same Execution Model and the same Name string.
1913		"OpEntryPoint Vertex    %vert_main  \"entrypoint2\" %vert_builtins %vertexIndex %instanceIndex\n"
1914		"OpExecutionMode %comp_main1 LocalSize 1 1 1\n"
1915		"OpExecutionMode %comp_main2 LocalSize 1 1 1\n"
1916
1917		"OpName %comp_main1              \"entrypoint1\"\n"
1918		"OpName %comp_main2              \"entrypoint2\"\n"
1919		"OpName %vert_main               \"entrypoint2\"\n"
1920		"OpName %id                      \"gl_GlobalInvocationID\"\n"
1921		"OpName %vert_builtin_st         \"gl_PerVertex\"\n"
1922		"OpName %vertexIndex             \"gl_VertexIndex\"\n"
1923		"OpName %instanceIndex           \"gl_InstanceIndex\"\n"
1924		"OpMemberName %vert_builtin_st 0 \"gl_Position\"\n"
1925		"OpMemberName %vert_builtin_st 1 \"gl_PointSize\"\n"
1926		"OpMemberName %vert_builtin_st 2 \"gl_ClipDistance\"\n"
1927
1928		"OpDecorate %id                      BuiltIn GlobalInvocationId\n"
1929		"OpDecorate %vertexIndex             BuiltIn VertexIndex\n"
1930		"OpDecorate %instanceIndex           BuiltIn InstanceIndex\n"
1931		"OpDecorate %vert_builtin_st         Block\n"
1932		"OpMemberDecorate %vert_builtin_st 0 BuiltIn Position\n"
1933		"OpMemberDecorate %vert_builtin_st 1 BuiltIn PointSize\n"
1934		"OpMemberDecorate %vert_builtin_st 2 BuiltIn ClipDistance\n"
1935
1936		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
1937
1938		"%zero       = OpConstant %i32 0\n"
1939		"%one        = OpConstant %u32 1\n"
1940		"%c_f32_1    = OpConstant %f32 1\n"
1941
1942		"%i32ptr              = OpTypePointer Input %i32\n"
1943		"%vec4                = OpTypeVector %f32 4\n"
1944		"%vec4ptr             = OpTypePointer Output %vec4\n"
1945		"%f32arr1             = OpTypeArray %f32 %one\n"
1946		"%vert_builtin_st     = OpTypeStruct %vec4 %f32 %f32arr1\n"
1947		"%vert_builtin_st_ptr = OpTypePointer Output %vert_builtin_st\n"
1948		"%vert_builtins       = OpVariable %vert_builtin_st_ptr Output\n"
1949
1950		"%id         = OpVariable %uvec3ptr Input\n"
1951		"%vertexIndex = OpVariable %i32ptr Input\n"
1952		"%instanceIndex = OpVariable %i32ptr Input\n"
1953		"%c_vec4_1   = OpConstantComposite %vec4 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_1\n"
1954
1955		// gl_Position = vec4(1.);
1956		"%vert_main  = OpFunction %void None %voidf\n"
1957		"%vert_entry = OpLabel\n"
1958		"%position   = OpAccessChain %vec4ptr %vert_builtins %zero\n"
1959		"              OpStore %position %c_vec4_1\n"
1960		"              OpReturn\n"
1961		"              OpFunctionEnd\n"
1962
1963		// Double inputs.
1964		"%comp_main1  = OpFunction %void None %voidf\n"
1965		"%comp1_entry = OpLabel\n"
1966		"%idval1      = OpLoad %uvec3 %id\n"
1967		"%x1          = OpCompositeExtract %u32 %idval1 0\n"
1968		"%inloc1      = OpAccessChain %f32ptr %indata %zero %x1\n"
1969		"%inval1      = OpLoad %f32 %inloc1\n"
1970		"%add         = OpFAdd %f32 %inval1 %inval1\n"
1971		"%outloc1     = OpAccessChain %f32ptr %outdata %zero %x1\n"
1972		"               OpStore %outloc1 %add\n"
1973		"               OpReturn\n"
1974		"               OpFunctionEnd\n"
1975
1976		// Negate inputs.
1977		"%comp_main2  = OpFunction %void None %voidf\n"
1978		"%comp2_entry = OpLabel\n"
1979		"%idval2      = OpLoad %uvec3 %id\n"
1980		"%x2          = OpCompositeExtract %u32 %idval2 0\n"
1981		"%inloc2      = OpAccessChain %f32ptr %indata %zero %x2\n"
1982		"%inval2      = OpLoad %f32 %inloc2\n"
1983		"%neg         = OpFNegate %f32 %inval2\n"
1984		"%outloc2     = OpAccessChain %f32ptr %outdata %zero %x2\n"
1985		"               OpStore %outloc2 %neg\n"
1986		"               OpReturn\n"
1987		"               OpFunctionEnd\n");
1988
1989	spec1.assembly = assembly;
1990	spec1.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
1991	spec1.outputs.push_back(BufferSp(new Float32Buffer(outputFloats1)));
1992	spec1.numWorkGroups = IVec3(numElements, 1, 1);
1993	spec1.entryPoint = "entrypoint1";
1994
1995	spec2.assembly = assembly;
1996	spec2.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
1997	spec2.outputs.push_back(BufferSp(new Float32Buffer(outputFloats2)));
1998	spec2.numWorkGroups = IVec3(numElements, 1, 1);
1999	spec2.entryPoint = "entrypoint2";
2000
2001	group->addChild(new SpvAsmComputeShaderCase(testCtx, "shader1", "multiple shaders in the same module", spec1));
2002	group->addChild(new SpvAsmComputeShaderCase(testCtx, "shader2", "multiple shaders in the same module", spec2));
2003
2004	return group.release();
2005}
2006
2007inline std::string makeLongUTF8String (size_t num4ByteChars)
2008{
2009	// An example of a longest valid UTF-8 character.  Be explicit about the
2010	// character type because Microsoft compilers can otherwise interpret the
2011	// character string as being over wide (16-bit) characters. Ideally, we
2012	// would just use a C++11 UTF-8 string literal, but we want to support older
2013	// Microsoft compilers.
2014	const std::basic_string<char> earthAfrica("\xF0\x9F\x8C\x8D");
2015	std::string longString;
2016	longString.reserve(num4ByteChars * 4);
2017	for (size_t count = 0; count < num4ByteChars; count++)
2018	{
2019		longString += earthAfrica;
2020	}
2021	return longString;
2022}
2023
2024tcu::TestCaseGroup* createOpSourceGroup (tcu::TestContext& testCtx)
2025{
2026	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opsource", "Tests the OpSource & OpSourceContinued instruction"));
2027	vector<CaseParameter>			cases;
2028	de::Random						rnd				(deStringHash(group->getName()));
2029	const int						numElements		= 100;
2030	vector<float>					positiveFloats	(numElements, 0);
2031	vector<float>					negativeFloats	(numElements, 0);
2032	const StringTemplate			shaderTemplate	(
2033		"OpCapability Shader\n"
2034		"OpMemoryModel Logical GLSL450\n"
2035
2036		"OpEntryPoint GLCompute %main \"main\" %id\n"
2037		"OpExecutionMode %main LocalSize 1 1 1\n"
2038
2039		"${SOURCE}\n"
2040
2041		"OpName %main           \"main\"\n"
2042		"OpName %id             \"gl_GlobalInvocationID\"\n"
2043
2044		"OpDecorate %id BuiltIn GlobalInvocationId\n"
2045
2046		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
2047
2048		"%id        = OpVariable %uvec3ptr Input\n"
2049		"%zero      = OpConstant %i32 0\n"
2050
2051		"%main      = OpFunction %void None %voidf\n"
2052		"%label     = OpLabel\n"
2053		"%idval     = OpLoad %uvec3 %id\n"
2054		"%x         = OpCompositeExtract %u32 %idval 0\n"
2055		"%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
2056		"%inval     = OpLoad %f32 %inloc\n"
2057		"%neg       = OpFNegate %f32 %inval\n"
2058		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
2059		"             OpStore %outloc %neg\n"
2060		"             OpReturn\n"
2061		"             OpFunctionEnd\n");
2062
2063	cases.push_back(CaseParameter("unknown_source",							"OpSource Unknown 0"));
2064	cases.push_back(CaseParameter("wrong_source",							"OpSource OpenCL_C 210"));
2065	cases.push_back(CaseParameter("normal_filename",						"%fname = OpString \"filename\"\n"
2066																			"OpSource GLSL 430 %fname"));
2067	cases.push_back(CaseParameter("empty_filename",							"%fname = OpString \"\"\n"
2068																			"OpSource GLSL 430 %fname"));
2069	cases.push_back(CaseParameter("normal_source_code",						"%fname = OpString \"filename\"\n"
2070																			"OpSource GLSL 430 %fname \"#version 430\nvoid main() {}\""));
2071	cases.push_back(CaseParameter("empty_source_code",						"%fname = OpString \"filename\"\n"
2072																			"OpSource GLSL 430 %fname \"\""));
2073	cases.push_back(CaseParameter("long_source_code",						"%fname = OpString \"filename\"\n"
2074																			"OpSource GLSL 430 %fname \"" + makeLongUTF8String(65530) + "ccc\"")); // word count: 65535
2075	cases.push_back(CaseParameter("utf8_source_code",						"%fname = OpString \"filename\"\n"
2076																			"OpSource GLSL 430 %fname \"\xE2\x98\x82\xE2\x98\x85\"")); // umbrella & black star symbol
2077	cases.push_back(CaseParameter("normal_sourcecontinued",					"%fname = OpString \"filename\"\n"
2078																			"OpSource GLSL 430 %fname \"#version 430\nvo\"\n"
2079																			"OpSourceContinued \"id main() {}\""));
2080	cases.push_back(CaseParameter("empty_sourcecontinued",					"%fname = OpString \"filename\"\n"
2081																			"OpSource GLSL 430 %fname \"#version 430\nvoid main() {}\"\n"
2082																			"OpSourceContinued \"\""));
2083	cases.push_back(CaseParameter("long_sourcecontinued",					"%fname = OpString \"filename\"\n"
2084																			"OpSource GLSL 430 %fname \"#version 430\nvoid main() {}\"\n"
2085																			"OpSourceContinued \"" + makeLongUTF8String(65533) + "ccc\"")); // word count: 65535
2086	cases.push_back(CaseParameter("utf8_sourcecontinued",					"%fname = OpString \"filename\"\n"
2087																			"OpSource GLSL 430 %fname \"#version 430\nvoid main() {}\"\n"
2088																			"OpSourceContinued \"\xE2\x98\x8E\xE2\x9A\x91\"")); // white telephone & black flag symbol
2089	cases.push_back(CaseParameter("multi_sourcecontinued",					"%fname = OpString \"filename\"\n"
2090																			"OpSource GLSL 430 %fname \"#version 430\n\"\n"
2091																			"OpSourceContinued \"void\"\n"
2092																			"OpSourceContinued \"main()\"\n"
2093																			"OpSourceContinued \"{}\""));
2094	cases.push_back(CaseParameter("empty_source_before_sourcecontinued",	"%fname = OpString \"filename\"\n"
2095																			"OpSource GLSL 430 %fname \"\"\n"
2096																			"OpSourceContinued \"#version 430\nvoid main() {}\""));
2097
2098	fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
2099
2100	for (size_t ndx = 0; ndx < numElements; ++ndx)
2101		negativeFloats[ndx] = -positiveFloats[ndx];
2102
2103	for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
2104	{
2105		map<string, string>		specializations;
2106		ComputeShaderSpec		spec;
2107
2108		specializations["SOURCE"] = cases[caseNdx].param;
2109		spec.assembly = shaderTemplate.specialize(specializations);
2110		spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
2111		spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
2112		spec.numWorkGroups = IVec3(numElements, 1, 1);
2113
2114		group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
2115	}
2116
2117	return group.release();
2118}
2119
2120tcu::TestCaseGroup* createOpSourceExtensionGroup (tcu::TestContext& testCtx)
2121{
2122	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opsourceextension", "Tests the OpSource instruction"));
2123	vector<CaseParameter>			cases;
2124	de::Random						rnd				(deStringHash(group->getName()));
2125	const int						numElements		= 100;
2126	vector<float>					inputFloats		(numElements, 0);
2127	vector<float>					outputFloats	(numElements, 0);
2128	const StringTemplate			shaderTemplate	(
2129		string(s_ShaderPreamble) +
2130
2131		"OpSourceExtension \"${EXTENSION}\"\n"
2132
2133		"OpName %main           \"main\"\n"
2134		"OpName %id             \"gl_GlobalInvocationID\"\n"
2135
2136		"OpDecorate %id BuiltIn GlobalInvocationId\n"
2137
2138		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
2139
2140		"%id        = OpVariable %uvec3ptr Input\n"
2141		"%zero      = OpConstant %i32 0\n"
2142
2143		"%main      = OpFunction %void None %voidf\n"
2144		"%label     = OpLabel\n"
2145		"%idval     = OpLoad %uvec3 %id\n"
2146		"%x         = OpCompositeExtract %u32 %idval 0\n"
2147		"%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
2148		"%inval     = OpLoad %f32 %inloc\n"
2149		"%neg       = OpFNegate %f32 %inval\n"
2150		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
2151		"             OpStore %outloc %neg\n"
2152		"             OpReturn\n"
2153		"             OpFunctionEnd\n");
2154
2155	cases.push_back(CaseParameter("empty_extension",	""));
2156	cases.push_back(CaseParameter("real_extension",		"GL_ARB_texture_rectangle"));
2157	cases.push_back(CaseParameter("fake_extension",		"GL_ARB_im_the_ultimate_extension"));
2158	cases.push_back(CaseParameter("utf8_extension",		"GL_ARB_\xE2\x98\x82\xE2\x98\x85"));
2159	cases.push_back(CaseParameter("long_extension",		makeLongUTF8String(65533) + "ccc")); // word count: 65535
2160
2161	fillRandomScalars(rnd, -200.f, 200.f, &inputFloats[0], numElements);
2162
2163	for (size_t ndx = 0; ndx < numElements; ++ndx)
2164		outputFloats[ndx] = -inputFloats[ndx];
2165
2166	for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
2167	{
2168		map<string, string>		specializations;
2169		ComputeShaderSpec		spec;
2170
2171		specializations["EXTENSION"] = cases[caseNdx].param;
2172		spec.assembly = shaderTemplate.specialize(specializations);
2173		spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
2174		spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
2175		spec.numWorkGroups = IVec3(numElements, 1, 1);
2176
2177		group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
2178	}
2179
2180	return group.release();
2181}
2182
2183// Checks that a compute shader can generate a constant null value of various types, without exercising a computation on it.
2184tcu::TestCaseGroup* createOpConstantNullGroup (tcu::TestContext& testCtx)
2185{
2186	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opconstantnull", "Tests the OpConstantNull instruction"));
2187	vector<CaseParameter>			cases;
2188	de::Random						rnd				(deStringHash(group->getName()));
2189	const int						numElements		= 100;
2190	vector<float>					positiveFloats	(numElements, 0);
2191	vector<float>					negativeFloats	(numElements, 0);
2192	const StringTemplate			shaderTemplate	(
2193		string(s_ShaderPreamble) +
2194
2195		"OpSource GLSL 430\n"
2196		"OpName %main           \"main\"\n"
2197		"OpName %id             \"gl_GlobalInvocationID\"\n"
2198
2199		"OpDecorate %id BuiltIn GlobalInvocationId\n"
2200
2201		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
2202
2203		"${TYPE}\n"
2204		"%null      = OpConstantNull %type\n"
2205
2206		"%id        = OpVariable %uvec3ptr Input\n"
2207		"%zero      = OpConstant %i32 0\n"
2208
2209		"%main      = OpFunction %void None %voidf\n"
2210		"%label     = OpLabel\n"
2211		"%idval     = OpLoad %uvec3 %id\n"
2212		"%x         = OpCompositeExtract %u32 %idval 0\n"
2213		"%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
2214		"%inval     = OpLoad %f32 %inloc\n"
2215		"%neg       = OpFNegate %f32 %inval\n"
2216		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
2217		"             OpStore %outloc %neg\n"
2218		"             OpReturn\n"
2219		"             OpFunctionEnd\n");
2220
2221	cases.push_back(CaseParameter("bool",			"%type = OpTypeBool"));
2222	cases.push_back(CaseParameter("sint32",			"%type = OpTypeInt 32 1"));
2223	cases.push_back(CaseParameter("uint32",			"%type = OpTypeInt 32 0"));
2224	cases.push_back(CaseParameter("float32",		"%type = OpTypeFloat 32"));
2225	cases.push_back(CaseParameter("vec4float32",	"%type = OpTypeVector %f32 4"));
2226	cases.push_back(CaseParameter("vec3bool",		"%type = OpTypeVector %bool 3"));
2227	cases.push_back(CaseParameter("vec2uint32",		"%type = OpTypeVector %u32 2"));
2228	cases.push_back(CaseParameter("matrix",			"%type = OpTypeMatrix %fvec3 3"));
2229	cases.push_back(CaseParameter("array",			"%100 = OpConstant %u32 100\n"
2230													"%type = OpTypeArray %i32 %100"));
2231	cases.push_back(CaseParameter("struct",			"%type = OpTypeStruct %f32 %i32 %u32"));
2232	cases.push_back(CaseParameter("pointer",		"%type = OpTypePointer Function %i32"));
2233
2234	fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
2235
2236	for (size_t ndx = 0; ndx < numElements; ++ndx)
2237		negativeFloats[ndx] = -positiveFloats[ndx];
2238
2239	for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
2240	{
2241		map<string, string>		specializations;
2242		ComputeShaderSpec		spec;
2243
2244		specializations["TYPE"] = cases[caseNdx].param;
2245		spec.assembly = shaderTemplate.specialize(specializations);
2246		spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
2247		spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
2248		spec.numWorkGroups = IVec3(numElements, 1, 1);
2249
2250		group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
2251	}
2252
2253	return group.release();
2254}
2255
2256// Checks that a compute shader can generate a constant composite value of various types, without exercising a computation on it.
2257tcu::TestCaseGroup* createOpConstantCompositeGroup (tcu::TestContext& testCtx)
2258{
2259	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opconstantcomposite", "Tests the OpConstantComposite instruction"));
2260	vector<CaseParameter>			cases;
2261	de::Random						rnd				(deStringHash(group->getName()));
2262	const int						numElements		= 100;
2263	vector<float>					positiveFloats	(numElements, 0);
2264	vector<float>					negativeFloats	(numElements, 0);
2265	const StringTemplate			shaderTemplate	(
2266		string(s_ShaderPreamble) +
2267
2268		"OpSource GLSL 430\n"
2269		"OpName %main           \"main\"\n"
2270		"OpName %id             \"gl_GlobalInvocationID\"\n"
2271
2272		"OpDecorate %id BuiltIn GlobalInvocationId\n"
2273
2274		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
2275
2276		"%id        = OpVariable %uvec3ptr Input\n"
2277		"%zero      = OpConstant %i32 0\n"
2278
2279		"${CONSTANT}\n"
2280
2281		"%main      = OpFunction %void None %voidf\n"
2282		"%label     = OpLabel\n"
2283		"%idval     = OpLoad %uvec3 %id\n"
2284		"%x         = OpCompositeExtract %u32 %idval 0\n"
2285		"%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
2286		"%inval     = OpLoad %f32 %inloc\n"
2287		"%neg       = OpFNegate %f32 %inval\n"
2288		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
2289		"             OpStore %outloc %neg\n"
2290		"             OpReturn\n"
2291		"             OpFunctionEnd\n");
2292
2293	cases.push_back(CaseParameter("vector",			"%five = OpConstant %u32 5\n"
2294													"%const = OpConstantComposite %uvec3 %five %zero %five"));
2295	cases.push_back(CaseParameter("matrix",			"%m3fvec3 = OpTypeMatrix %fvec3 3\n"
2296													"%ten = OpConstant %f32 10.\n"
2297													"%fzero = OpConstant %f32 0.\n"
2298													"%vec = OpConstantComposite %fvec3 %ten %fzero %ten\n"
2299													"%mat = OpConstantComposite %m3fvec3 %vec %vec %vec"));
2300	cases.push_back(CaseParameter("struct",			"%m2vec3 = OpTypeMatrix %fvec3 2\n"
2301													"%struct = OpTypeStruct %i32 %f32 %fvec3 %m2vec3\n"
2302													"%fzero = OpConstant %f32 0.\n"
2303													"%one = OpConstant %f32 1.\n"
2304													"%point5 = OpConstant %f32 0.5\n"
2305													"%vec = OpConstantComposite %fvec3 %one %one %fzero\n"
2306													"%mat = OpConstantComposite %m2vec3 %vec %vec\n"
2307													"%const = OpConstantComposite %struct %zero %point5 %vec %mat"));
2308	cases.push_back(CaseParameter("nested_struct",	"%st1 = OpTypeStruct %u32 %f32\n"
2309													"%st2 = OpTypeStruct %i32 %i32\n"
2310													"%struct = OpTypeStruct %st1 %st2\n"
2311													"%point5 = OpConstant %f32 0.5\n"
2312													"%one = OpConstant %u32 1\n"
2313													"%ten = OpConstant %i32 10\n"
2314													"%st1val = OpConstantComposite %st1 %one %point5\n"
2315													"%st2val = OpConstantComposite %st2 %ten %ten\n"
2316													"%const = OpConstantComposite %struct %st1val %st2val"));
2317
2318	fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
2319
2320	for (size_t ndx = 0; ndx < numElements; ++ndx)
2321		negativeFloats[ndx] = -positiveFloats[ndx];
2322
2323	for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
2324	{
2325		map<string, string>		specializations;
2326		ComputeShaderSpec		spec;
2327
2328		specializations["CONSTANT"] = cases[caseNdx].param;
2329		spec.assembly = shaderTemplate.specialize(specializations);
2330		spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
2331		spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
2332		spec.numWorkGroups = IVec3(numElements, 1, 1);
2333
2334		group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
2335	}
2336
2337	return group.release();
2338}
2339
2340// Creates a floating point number with the given exponent, and significand
2341// bits set. It can only create normalized numbers. Only the least significant
2342// 24 bits of the significand will be examined. The final bit of the
2343// significand will also be ignored. This allows alignment to be written
2344// similarly to C99 hex-floats.
2345// For example if you wanted to write 0x1.7f34p-12 you would call
2346// constructNormalizedFloat(-12, 0x7f3400)
2347float constructNormalizedFloat (deInt32 exponent, deUint32 significand)
2348{
2349	float f = 1.0f;
2350
2351	for (deInt32 idx = 0; idx < 23; ++idx)
2352	{
2353		f += ((significand & 0x800000) == 0) ? 0.f : std::ldexp(1.0f, -(idx + 1));
2354		significand <<= 1;
2355	}
2356
2357	return std::ldexp(f, exponent);
2358}
2359
2360// Compare instruction for the OpQuantizeF16 compute exact case.
2361// Returns true if the output is what is expected from the test case.
2362bool compareOpQuantizeF16ComputeExactCase (const std::vector<BufferSp>&, const vector<AllocationSp>& outputAllocs, const std::vector<BufferSp>& expectedOutputs, TestLog&)
2363{
2364	if (outputAllocs.size() != 1)
2365		return false;
2366
2367	// We really just need this for size because we cannot compare Nans.
2368	const BufferSp&	expectedOutput	= expectedOutputs[0];
2369	const float*	outputAsFloat	= static_cast<const float*>(outputAllocs[0]->getHostPtr());;
2370
2371	if (expectedOutput->getNumBytes() != 4*sizeof(float)) {
2372		return false;
2373	}
2374
2375	if (*outputAsFloat != constructNormalizedFloat(8, 0x304000) &&
2376		*outputAsFloat != constructNormalizedFloat(8, 0x300000)) {
2377		return false;
2378	}
2379	outputAsFloat++;
2380
2381	if (*outputAsFloat != -constructNormalizedFloat(-7, 0x600000) &&
2382		*outputAsFloat != -constructNormalizedFloat(-7, 0x604000)) {
2383		return false;
2384	}
2385	outputAsFloat++;
2386
2387	if (*outputAsFloat != constructNormalizedFloat(2, 0x01C000) &&
2388		*outputAsFloat != constructNormalizedFloat(2, 0x020000)) {
2389		return false;
2390	}
2391	outputAsFloat++;
2392
2393	if (*outputAsFloat != constructNormalizedFloat(1, 0xFFC000) &&
2394		*outputAsFloat != constructNormalizedFloat(2, 0x000000)) {
2395		return false;
2396	}
2397
2398	return true;
2399}
2400
2401// Checks that every output from a test-case is a float NaN.
2402bool compareNan (const std::vector<BufferSp>&, const vector<AllocationSp>& outputAllocs, const std::vector<BufferSp>& expectedOutputs, TestLog&)
2403{
2404	if (outputAllocs.size() != 1)
2405		return false;
2406
2407	// We really just need this for size because we cannot compare Nans.
2408	const BufferSp& expectedOutput		= expectedOutputs[0];
2409	const float* output_as_float		= static_cast<const float*>(outputAllocs[0]->getHostPtr());;
2410
2411	for (size_t idx = 0; idx < expectedOutput->getNumBytes() / sizeof(float); ++idx)
2412	{
2413		if (!isnan(output_as_float[idx]))
2414		{
2415			return false;
2416		}
2417	}
2418
2419	return true;
2420}
2421
2422// Checks that a compute shader can generate a constant composite value of various types, without exercising a computation on it.
2423tcu::TestCaseGroup* createOpQuantizeToF16Group (tcu::TestContext& testCtx)
2424{
2425	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opquantize", "Tests the OpQuantizeToF16 instruction"));
2426
2427	const std::string shader (
2428		string(s_ShaderPreamble) +
2429
2430		"OpSource GLSL 430\n"
2431		"OpName %main           \"main\"\n"
2432		"OpName %id             \"gl_GlobalInvocationID\"\n"
2433
2434		"OpDecorate %id BuiltIn GlobalInvocationId\n"
2435
2436		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
2437
2438		"%id        = OpVariable %uvec3ptr Input\n"
2439		"%zero      = OpConstant %i32 0\n"
2440
2441		"%main      = OpFunction %void None %voidf\n"
2442		"%label     = OpLabel\n"
2443		"%idval     = OpLoad %uvec3 %id\n"
2444		"%x         = OpCompositeExtract %u32 %idval 0\n"
2445		"%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
2446		"%inval     = OpLoad %f32 %inloc\n"
2447		"%quant     = OpQuantizeToF16 %f32 %inval\n"
2448		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
2449		"             OpStore %outloc %quant\n"
2450		"             OpReturn\n"
2451		"             OpFunctionEnd\n");
2452
2453	{
2454		ComputeShaderSpec	spec;
2455		const deUint32		numElements		= 100;
2456		vector<float>		infinities;
2457		vector<float>		results;
2458
2459		infinities.reserve(numElements);
2460		results.reserve(numElements);
2461
2462		for (size_t idx = 0; idx < numElements; ++idx)
2463		{
2464			switch(idx % 4)
2465			{
2466				case 0:
2467					infinities.push_back(std::numeric_limits<float>::infinity());
2468					results.push_back(std::numeric_limits<float>::infinity());
2469					break;
2470				case 1:
2471					infinities.push_back(-std::numeric_limits<float>::infinity());
2472					results.push_back(-std::numeric_limits<float>::infinity());
2473					break;
2474				case 2:
2475					infinities.push_back(std::ldexp(1.0f, 16));
2476					results.push_back(std::numeric_limits<float>::infinity());
2477					break;
2478				case 3:
2479					infinities.push_back(std::ldexp(-1.0f, 32));
2480					results.push_back(-std::numeric_limits<float>::infinity());
2481					break;
2482			}
2483		}
2484
2485		spec.assembly = shader;
2486		spec.inputs.push_back(BufferSp(new Float32Buffer(infinities)));
2487		spec.outputs.push_back(BufferSp(new Float32Buffer(results)));
2488		spec.numWorkGroups = IVec3(numElements, 1, 1);
2489
2490		group->addChild(new SpvAsmComputeShaderCase(
2491			testCtx, "infinities", "Check that infinities propagated and created", spec));
2492	}
2493
2494	{
2495		ComputeShaderSpec	spec;
2496		vector<float>		nans;
2497		const deUint32		numElements		= 100;
2498
2499		nans.reserve(numElements);
2500
2501		for (size_t idx = 0; idx < numElements; ++idx)
2502		{
2503			if (idx % 2 == 0)
2504			{
2505				nans.push_back(std::numeric_limits<float>::quiet_NaN());
2506			}
2507			else
2508			{
2509				nans.push_back(-std::numeric_limits<float>::quiet_NaN());
2510			}
2511		}
2512
2513		spec.assembly = shader;
2514		spec.inputs.push_back(BufferSp(new Float32Buffer(nans)));
2515		spec.outputs.push_back(BufferSp(new Float32Buffer(nans)));
2516		spec.numWorkGroups = IVec3(numElements, 1, 1);
2517		spec.verifyIO = &compareNan;
2518
2519		group->addChild(new SpvAsmComputeShaderCase(
2520			testCtx, "propagated_nans", "Check that nans are propagated", spec));
2521	}
2522
2523	{
2524		ComputeShaderSpec	spec;
2525		vector<float>		small;
2526		vector<float>		zeros;
2527		const deUint32		numElements		= 100;
2528
2529		small.reserve(numElements);
2530		zeros.reserve(numElements);
2531
2532		for (size_t idx = 0; idx < numElements; ++idx)
2533		{
2534			switch(idx % 6)
2535			{
2536				case 0:
2537					small.push_back(0.f);
2538					zeros.push_back(0.f);
2539					break;
2540				case 1:
2541					small.push_back(-0.f);
2542					zeros.push_back(-0.f);
2543					break;
2544				case 2:
2545					small.push_back(std::ldexp(1.0f, -16));
2546					zeros.push_back(0.f);
2547					break;
2548				case 3:
2549					small.push_back(std::ldexp(-1.0f, -32));
2550					zeros.push_back(-0.f);
2551					break;
2552				case 4:
2553					small.push_back(std::ldexp(1.0f, -127));
2554					zeros.push_back(0.f);
2555					break;
2556				case 5:
2557					small.push_back(-std::ldexp(1.0f, -128));
2558					zeros.push_back(-0.f);
2559					break;
2560			}
2561		}
2562
2563		spec.assembly = shader;
2564		spec.inputs.push_back(BufferSp(new Float32Buffer(small)));
2565		spec.outputs.push_back(BufferSp(new Float32Buffer(zeros)));
2566		spec.numWorkGroups = IVec3(numElements, 1, 1);
2567
2568		group->addChild(new SpvAsmComputeShaderCase(
2569			testCtx, "flush_to_zero", "Check that values are zeroed correctly", spec));
2570	}
2571
2572	{
2573		ComputeShaderSpec	spec;
2574		vector<float>		exact;
2575		const deUint32		numElements		= 200;
2576
2577		exact.reserve(numElements);
2578
2579		for (size_t idx = 0; idx < numElements; ++idx)
2580			exact.push_back(static_cast<float>(static_cast<int>(idx) - 100));
2581
2582		spec.assembly = shader;
2583		spec.inputs.push_back(BufferSp(new Float32Buffer(exact)));
2584		spec.outputs.push_back(BufferSp(new Float32Buffer(exact)));
2585		spec.numWorkGroups = IVec3(numElements, 1, 1);
2586
2587		group->addChild(new SpvAsmComputeShaderCase(
2588			testCtx, "exact", "Check that values exactly preserved where appropriate", spec));
2589	}
2590
2591	{
2592		ComputeShaderSpec	spec;
2593		vector<float>		inputs;
2594		const deUint32		numElements		= 4;
2595
2596		inputs.push_back(constructNormalizedFloat(8,	0x300300));
2597		inputs.push_back(-constructNormalizedFloat(-7,	0x600800));
2598		inputs.push_back(constructNormalizedFloat(2,	0x01E000));
2599		inputs.push_back(constructNormalizedFloat(1,	0xFFE000));
2600
2601		spec.assembly = shader;
2602		spec.verifyIO = &compareOpQuantizeF16ComputeExactCase;
2603		spec.inputs.push_back(BufferSp(new Float32Buffer(inputs)));
2604		spec.outputs.push_back(BufferSp(new Float32Buffer(inputs)));
2605		spec.numWorkGroups = IVec3(numElements, 1, 1);
2606
2607		group->addChild(new SpvAsmComputeShaderCase(
2608			testCtx, "rounded", "Check that are rounded when needed", spec));
2609	}
2610
2611	return group.release();
2612}
2613
2614// Performs a bitwise copy of source to the destination type Dest.
2615template <typename Dest, typename Src>
2616Dest bitwiseCast(Src source)
2617{
2618  Dest dest;
2619  DE_STATIC_ASSERT(sizeof(source) == sizeof(dest));
2620  deMemcpy(&dest, &source, sizeof(dest));
2621  return dest;
2622}
2623
2624tcu::TestCaseGroup* createSpecConstantOpQuantizeToF16Group (tcu::TestContext& testCtx)
2625{
2626	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opspecconstantop_opquantize", "Tests the OpQuantizeToF16 opcode for the OpSpecConstantOp instruction"));
2627
2628	const std::string shader (
2629		string(s_ShaderPreamble) +
2630
2631		"OpName %main           \"main\"\n"
2632		"OpName %id             \"gl_GlobalInvocationID\"\n"
2633
2634		"OpDecorate %id BuiltIn GlobalInvocationId\n"
2635
2636		"OpDecorate %sc_0  SpecId 0\n"
2637		"OpDecorate %sc_1  SpecId 1\n"
2638		"OpDecorate %sc_2  SpecId 2\n"
2639		"OpDecorate %sc_3  SpecId 3\n"
2640		"OpDecorate %sc_4  SpecId 4\n"
2641		"OpDecorate %sc_5  SpecId 5\n"
2642
2643		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
2644
2645		"%id        = OpVariable %uvec3ptr Input\n"
2646		"%zero      = OpConstant %i32 0\n"
2647		"%c_u32_6   = OpConstant %u32 6\n"
2648
2649		"%sc_0      = OpSpecConstant %f32 0.\n"
2650		"%sc_1      = OpSpecConstant %f32 0.\n"
2651		"%sc_2      = OpSpecConstant %f32 0.\n"
2652		"%sc_3      = OpSpecConstant %f32 0.\n"
2653		"%sc_4      = OpSpecConstant %f32 0.\n"
2654		"%sc_5      = OpSpecConstant %f32 0.\n"
2655
2656		"%sc_0_quant = OpSpecConstantOp %f32 QuantizeToF16 %sc_0\n"
2657		"%sc_1_quant = OpSpecConstantOp %f32 QuantizeToF16 %sc_1\n"
2658		"%sc_2_quant = OpSpecConstantOp %f32 QuantizeToF16 %sc_2\n"
2659		"%sc_3_quant = OpSpecConstantOp %f32 QuantizeToF16 %sc_3\n"
2660		"%sc_4_quant = OpSpecConstantOp %f32 QuantizeToF16 %sc_4\n"
2661		"%sc_5_quant = OpSpecConstantOp %f32 QuantizeToF16 %sc_5\n"
2662
2663		"%main      = OpFunction %void None %voidf\n"
2664		"%label     = OpLabel\n"
2665		"%idval     = OpLoad %uvec3 %id\n"
2666		"%x         = OpCompositeExtract %u32 %idval 0\n"
2667		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
2668		"%selector  = OpUMod %u32 %x %c_u32_6\n"
2669		"            OpSelectionMerge %exit None\n"
2670		"            OpSwitch %selector %exit 0 %case0 1 %case1 2 %case2 3 %case3 4 %case4 5 %case5\n"
2671
2672		"%case0     = OpLabel\n"
2673		"             OpStore %outloc %sc_0_quant\n"
2674		"             OpBranch %exit\n"
2675
2676		"%case1     = OpLabel\n"
2677		"             OpStore %outloc %sc_1_quant\n"
2678		"             OpBranch %exit\n"
2679
2680		"%case2     = OpLabel\n"
2681		"             OpStore %outloc %sc_2_quant\n"
2682		"             OpBranch %exit\n"
2683
2684		"%case3     = OpLabel\n"
2685		"             OpStore %outloc %sc_3_quant\n"
2686		"             OpBranch %exit\n"
2687
2688		"%case4     = OpLabel\n"
2689		"             OpStore %outloc %sc_4_quant\n"
2690		"             OpBranch %exit\n"
2691
2692		"%case5     = OpLabel\n"
2693		"             OpStore %outloc %sc_5_quant\n"
2694		"             OpBranch %exit\n"
2695
2696		"%exit      = OpLabel\n"
2697		"             OpReturn\n"
2698
2699		"             OpFunctionEnd\n");
2700
2701	{
2702		ComputeShaderSpec	spec;
2703		const deUint8		numCases	= 4;
2704		vector<float>		inputs		(numCases, 0.f);
2705		vector<float>		outputs;
2706
2707		spec.assembly		= shader;
2708		spec.numWorkGroups	= IVec3(numCases, 1, 1);
2709
2710		spec.specConstants.push_back(bitwiseCast<deUint32>(std::numeric_limits<float>::infinity()));
2711		spec.specConstants.push_back(bitwiseCast<deUint32>(-std::numeric_limits<float>::infinity()));
2712		spec.specConstants.push_back(bitwiseCast<deUint32>(std::ldexp(1.0f, 16)));
2713		spec.specConstants.push_back(bitwiseCast<deUint32>(std::ldexp(-1.0f, 32)));
2714
2715		outputs.push_back(std::numeric_limits<float>::infinity());
2716		outputs.push_back(-std::numeric_limits<float>::infinity());
2717		outputs.push_back(std::numeric_limits<float>::infinity());
2718		outputs.push_back(-std::numeric_limits<float>::infinity());
2719
2720		spec.inputs.push_back(BufferSp(new Float32Buffer(inputs)));
2721		spec.outputs.push_back(BufferSp(new Float32Buffer(outputs)));
2722
2723		group->addChild(new SpvAsmComputeShaderCase(
2724			testCtx, "infinities", "Check that infinities propagated and created", spec));
2725	}
2726
2727	{
2728		ComputeShaderSpec	spec;
2729		const deUint8		numCases	= 2;
2730		vector<float>		inputs		(numCases, 0.f);
2731		vector<float>		outputs;
2732
2733		spec.assembly		= shader;
2734		spec.numWorkGroups	= IVec3(numCases, 1, 1);
2735		spec.verifyIO		= &compareNan;
2736
2737		outputs.push_back(std::numeric_limits<float>::quiet_NaN());
2738		outputs.push_back(-std::numeric_limits<float>::quiet_NaN());
2739
2740		for (deUint8 idx = 0; idx < numCases; ++idx)
2741			spec.specConstants.push_back(bitwiseCast<deUint32>(outputs[idx]));
2742
2743		spec.inputs.push_back(BufferSp(new Float32Buffer(inputs)));
2744		spec.outputs.push_back(BufferSp(new Float32Buffer(outputs)));
2745
2746		group->addChild(new SpvAsmComputeShaderCase(
2747			testCtx, "propagated_nans", "Check that nans are propagated", spec));
2748	}
2749
2750	{
2751		ComputeShaderSpec	spec;
2752		const deUint8		numCases	= 6;
2753		vector<float>		inputs		(numCases, 0.f);
2754		vector<float>		outputs;
2755
2756		spec.assembly		= shader;
2757		spec.numWorkGroups	= IVec3(numCases, 1, 1);
2758
2759		spec.specConstants.push_back(bitwiseCast<deUint32>(0.f));
2760		spec.specConstants.push_back(bitwiseCast<deUint32>(-0.f));
2761		spec.specConstants.push_back(bitwiseCast<deUint32>(std::ldexp(1.0f, -16)));
2762		spec.specConstants.push_back(bitwiseCast<deUint32>(std::ldexp(-1.0f, -32)));
2763		spec.specConstants.push_back(bitwiseCast<deUint32>(std::ldexp(1.0f, -127)));
2764		spec.specConstants.push_back(bitwiseCast<deUint32>(-std::ldexp(1.0f, -128)));
2765
2766		outputs.push_back(0.f);
2767		outputs.push_back(-0.f);
2768		outputs.push_back(0.f);
2769		outputs.push_back(-0.f);
2770		outputs.push_back(0.f);
2771		outputs.push_back(-0.f);
2772
2773		spec.inputs.push_back(BufferSp(new Float32Buffer(inputs)));
2774		spec.outputs.push_back(BufferSp(new Float32Buffer(outputs)));
2775
2776		group->addChild(new SpvAsmComputeShaderCase(
2777			testCtx, "flush_to_zero", "Check that values are zeroed correctly", spec));
2778	}
2779
2780	{
2781		ComputeShaderSpec	spec;
2782		const deUint8		numCases	= 6;
2783		vector<float>		inputs		(numCases, 0.f);
2784		vector<float>		outputs;
2785
2786		spec.assembly		= shader;
2787		spec.numWorkGroups	= IVec3(numCases, 1, 1);
2788
2789		for (deUint8 idx = 0; idx < 6; ++idx)
2790		{
2791			const float f = static_cast<float>(idx * 10 - 30) / 4.f;
2792			spec.specConstants.push_back(bitwiseCast<deUint32>(f));
2793			outputs.push_back(f);
2794		}
2795
2796		spec.inputs.push_back(BufferSp(new Float32Buffer(inputs)));
2797		spec.outputs.push_back(BufferSp(new Float32Buffer(outputs)));
2798
2799		group->addChild(new SpvAsmComputeShaderCase(
2800			testCtx, "exact", "Check that values exactly preserved where appropriate", spec));
2801	}
2802
2803	{
2804		ComputeShaderSpec	spec;
2805		const deUint8		numCases	= 4;
2806		vector<float>		inputs		(numCases, 0.f);
2807		vector<float>		outputs;
2808
2809		spec.assembly		= shader;
2810		spec.numWorkGroups	= IVec3(numCases, 1, 1);
2811		spec.verifyIO		= &compareOpQuantizeF16ComputeExactCase;
2812
2813		outputs.push_back(constructNormalizedFloat(8, 0x300300));
2814		outputs.push_back(-constructNormalizedFloat(-7, 0x600800));
2815		outputs.push_back(constructNormalizedFloat(2, 0x01E000));
2816		outputs.push_back(constructNormalizedFloat(1, 0xFFE000));
2817
2818		for (deUint8 idx = 0; idx < numCases; ++idx)
2819			spec.specConstants.push_back(bitwiseCast<deUint32>(outputs[idx]));
2820
2821		spec.inputs.push_back(BufferSp(new Float32Buffer(inputs)));
2822		spec.outputs.push_back(BufferSp(new Float32Buffer(outputs)));
2823
2824		group->addChild(new SpvAsmComputeShaderCase(
2825			testCtx, "rounded", "Check that are rounded when needed", spec));
2826	}
2827
2828	return group.release();
2829}
2830
2831// Checks that constant null/composite values can be used in computation.
2832tcu::TestCaseGroup* createOpConstantUsageGroup (tcu::TestContext& testCtx)
2833{
2834	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opconstantnullcomposite", "Spotcheck the OpConstantNull & OpConstantComposite instruction"));
2835	ComputeShaderSpec				spec;
2836	de::Random						rnd				(deStringHash(group->getName()));
2837	const int						numElements		= 100;
2838	vector<float>					positiveFloats	(numElements, 0);
2839	vector<float>					negativeFloats	(numElements, 0);
2840
2841	fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
2842
2843	for (size_t ndx = 0; ndx < numElements; ++ndx)
2844		negativeFloats[ndx] = -positiveFloats[ndx];
2845
2846	spec.assembly =
2847		"OpCapability Shader\n"
2848		"%std450 = OpExtInstImport \"GLSL.std.450\"\n"
2849		"OpMemoryModel Logical GLSL450\n"
2850		"OpEntryPoint GLCompute %main \"main\" %id\n"
2851		"OpExecutionMode %main LocalSize 1 1 1\n"
2852
2853		"OpSource GLSL 430\n"
2854		"OpName %main           \"main\"\n"
2855		"OpName %id             \"gl_GlobalInvocationID\"\n"
2856
2857		"OpDecorate %id BuiltIn GlobalInvocationId\n"
2858
2859		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
2860
2861		"%fmat      = OpTypeMatrix %fvec3 3\n"
2862		"%ten       = OpConstant %u32 10\n"
2863		"%f32arr10  = OpTypeArray %f32 %ten\n"
2864		"%fst       = OpTypeStruct %f32 %f32\n"
2865
2866		+ string(s_InputOutputBuffer) +
2867
2868		"%id        = OpVariable %uvec3ptr Input\n"
2869		"%zero      = OpConstant %i32 0\n"
2870
2871		// Create a bunch of null values
2872		"%unull     = OpConstantNull %u32\n"
2873		"%fnull     = OpConstantNull %f32\n"
2874		"%vnull     = OpConstantNull %fvec3\n"
2875		"%mnull     = OpConstantNull %fmat\n"
2876		"%anull     = OpConstantNull %f32arr10\n"
2877		"%snull     = OpConstantComposite %fst %fnull %fnull\n"
2878
2879		"%main      = OpFunction %void None %voidf\n"
2880		"%label     = OpLabel\n"
2881		"%idval     = OpLoad %uvec3 %id\n"
2882		"%x         = OpCompositeExtract %u32 %idval 0\n"
2883		"%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
2884		"%inval     = OpLoad %f32 %inloc\n"
2885		"%neg       = OpFNegate %f32 %inval\n"
2886
2887		// Get the abs() of (a certain element of) those null values
2888		"%unull_cov = OpConvertUToF %f32 %unull\n"
2889		"%unull_abs = OpExtInst %f32 %std450 FAbs %unull_cov\n"
2890		"%fnull_abs = OpExtInst %f32 %std450 FAbs %fnull\n"
2891		"%vnull_0   = OpCompositeExtract %f32 %vnull 0\n"
2892		"%vnull_abs = OpExtInst %f32 %std450 FAbs %vnull_0\n"
2893		"%mnull_12  = OpCompositeExtract %f32 %mnull 1 2\n"
2894		"%mnull_abs = OpExtInst %f32 %std450 FAbs %mnull_12\n"
2895		"%anull_3   = OpCompositeExtract %f32 %anull 3\n"
2896		"%anull_abs = OpExtInst %f32 %std450 FAbs %anull_3\n"
2897		"%snull_1   = OpCompositeExtract %f32 %snull 1\n"
2898		"%snull_abs = OpExtInst %f32 %std450 FAbs %snull_1\n"
2899
2900		// Add them all
2901		"%add1      = OpFAdd %f32 %neg  %unull_abs\n"
2902		"%add2      = OpFAdd %f32 %add1 %fnull_abs\n"
2903		"%add3      = OpFAdd %f32 %add2 %vnull_abs\n"
2904		"%add4      = OpFAdd %f32 %add3 %mnull_abs\n"
2905		"%add5      = OpFAdd %f32 %add4 %anull_abs\n"
2906		"%final     = OpFAdd %f32 %add5 %snull_abs\n"
2907
2908		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
2909		"             OpStore %outloc %final\n" // write to output
2910		"             OpReturn\n"
2911		"             OpFunctionEnd\n";
2912	spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
2913	spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
2914	spec.numWorkGroups = IVec3(numElements, 1, 1);
2915
2916	group->addChild(new SpvAsmComputeShaderCase(testCtx, "spotcheck", "Check that values constructed via OpConstantNull & OpConstantComposite can be used", spec));
2917
2918	return group.release();
2919}
2920
2921// Assembly code used for testing loop control is based on GLSL source code:
2922// #version 430
2923//
2924// layout(std140, set = 0, binding = 0) readonly buffer Input {
2925//   float elements[];
2926// } input_data;
2927// layout(std140, set = 0, binding = 1) writeonly buffer Output {
2928//   float elements[];
2929// } output_data;
2930//
2931// void main() {
2932//   uint x = gl_GlobalInvocationID.x;
2933//   output_data.elements[x] = input_data.elements[x];
2934//   for (uint i = 0; i < 4; ++i)
2935//     output_data.elements[x] += 1.f;
2936// }
2937tcu::TestCaseGroup* createLoopControlGroup (tcu::TestContext& testCtx)
2938{
2939	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "loop_control", "Tests loop control cases"));
2940	vector<CaseParameter>			cases;
2941	de::Random						rnd				(deStringHash(group->getName()));
2942	const int						numElements		= 100;
2943	vector<float>					inputFloats		(numElements, 0);
2944	vector<float>					outputFloats	(numElements, 0);
2945	const StringTemplate			shaderTemplate	(
2946		string(s_ShaderPreamble) +
2947
2948		"OpSource GLSL 430\n"
2949		"OpName %main \"main\"\n"
2950		"OpName %id \"gl_GlobalInvocationID\"\n"
2951
2952		"OpDecorate %id BuiltIn GlobalInvocationId\n"
2953
2954		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
2955
2956		"%u32ptr      = OpTypePointer Function %u32\n"
2957
2958		"%id          = OpVariable %uvec3ptr Input\n"
2959		"%zero        = OpConstant %i32 0\n"
2960		"%uzero       = OpConstant %u32 0\n"
2961		"%one         = OpConstant %i32 1\n"
2962		"%constf1     = OpConstant %f32 1.0\n"
2963		"%four        = OpConstant %u32 4\n"
2964
2965		"%main        = OpFunction %void None %voidf\n"
2966		"%entry       = OpLabel\n"
2967		"%i           = OpVariable %u32ptr Function\n"
2968		"               OpStore %i %uzero\n"
2969
2970		"%idval       = OpLoad %uvec3 %id\n"
2971		"%x           = OpCompositeExtract %u32 %idval 0\n"
2972		"%inloc       = OpAccessChain %f32ptr %indata %zero %x\n"
2973		"%inval       = OpLoad %f32 %inloc\n"
2974		"%outloc      = OpAccessChain %f32ptr %outdata %zero %x\n"
2975		"               OpStore %outloc %inval\n"
2976		"               OpBranch %loop_entry\n"
2977
2978		"%loop_entry  = OpLabel\n"
2979		"%i_val       = OpLoad %u32 %i\n"
2980		"%cmp_lt      = OpULessThan %bool %i_val %four\n"
2981		"               OpLoopMerge %loop_merge %loop_entry ${CONTROL}\n"
2982		"               OpBranchConditional %cmp_lt %loop_body %loop_merge\n"
2983		"%loop_body   = OpLabel\n"
2984		"%outval      = OpLoad %f32 %outloc\n"
2985		"%addf1       = OpFAdd %f32 %outval %constf1\n"
2986		"               OpStore %outloc %addf1\n"
2987		"%new_i       = OpIAdd %u32 %i_val %one\n"
2988		"               OpStore %i %new_i\n"
2989		"               OpBranch %loop_entry\n"
2990		"%loop_merge  = OpLabel\n"
2991		"               OpReturn\n"
2992		"               OpFunctionEnd\n");
2993
2994	cases.push_back(CaseParameter("none",				"None"));
2995	cases.push_back(CaseParameter("unroll",				"Unroll"));
2996	cases.push_back(CaseParameter("dont_unroll",		"DontUnroll"));
2997	cases.push_back(CaseParameter("unroll_dont_unroll",	"Unroll|DontUnroll"));
2998
2999	fillRandomScalars(rnd, -100.f, 100.f, &inputFloats[0], numElements);
3000
3001	for (size_t ndx = 0; ndx < numElements; ++ndx)
3002		outputFloats[ndx] = inputFloats[ndx] + 4.f;
3003
3004	for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
3005	{
3006		map<string, string>		specializations;
3007		ComputeShaderSpec		spec;
3008
3009		specializations["CONTROL"] = cases[caseNdx].param;
3010		spec.assembly = shaderTemplate.specialize(specializations);
3011		spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
3012		spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
3013		spec.numWorkGroups = IVec3(numElements, 1, 1);
3014
3015		group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
3016	}
3017
3018	return group.release();
3019}
3020
3021// Assembly code used for testing selection control is based on GLSL source code:
3022// #version 430
3023//
3024// layout(std140, set = 0, binding = 0) readonly buffer Input {
3025//   float elements[];
3026// } input_data;
3027// layout(std140, set = 0, binding = 1) writeonly buffer Output {
3028//   float elements[];
3029// } output_data;
3030//
3031// void main() {
3032//   uint x = gl_GlobalInvocationID.x;
3033//   float val = input_data.elements[x];
3034//   if (val > 10.f)
3035//     output_data.elements[x] = val + 1.f;
3036//   else
3037//     output_data.elements[x] = val - 1.f;
3038// }
3039tcu::TestCaseGroup* createSelectionControlGroup (tcu::TestContext& testCtx)
3040{
3041	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "selection_control", "Tests selection control cases"));
3042	vector<CaseParameter>			cases;
3043	de::Random						rnd				(deStringHash(group->getName()));
3044	const int						numElements		= 100;
3045	vector<float>					inputFloats		(numElements, 0);
3046	vector<float>					outputFloats	(numElements, 0);
3047	const StringTemplate			shaderTemplate	(
3048		string(s_ShaderPreamble) +
3049
3050		"OpSource GLSL 430\n"
3051		"OpName %main \"main\"\n"
3052		"OpName %id \"gl_GlobalInvocationID\"\n"
3053
3054		"OpDecorate %id BuiltIn GlobalInvocationId\n"
3055
3056		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
3057
3058		"%id       = OpVariable %uvec3ptr Input\n"
3059		"%zero     = OpConstant %i32 0\n"
3060		"%constf1  = OpConstant %f32 1.0\n"
3061		"%constf10 = OpConstant %f32 10.0\n"
3062
3063		"%main     = OpFunction %void None %voidf\n"
3064		"%entry    = OpLabel\n"
3065		"%idval    = OpLoad %uvec3 %id\n"
3066		"%x        = OpCompositeExtract %u32 %idval 0\n"
3067		"%inloc    = OpAccessChain %f32ptr %indata %zero %x\n"
3068		"%inval    = OpLoad %f32 %inloc\n"
3069		"%outloc   = OpAccessChain %f32ptr %outdata %zero %x\n"
3070		"%cmp_gt   = OpFOrdGreaterThan %bool %inval %constf10\n"
3071
3072		"            OpSelectionMerge %if_end ${CONTROL}\n"
3073		"            OpBranchConditional %cmp_gt %if_true %if_false\n"
3074		"%if_true  = OpLabel\n"
3075		"%addf1    = OpFAdd %f32 %inval %constf1\n"
3076		"            OpStore %outloc %addf1\n"
3077		"            OpBranch %if_end\n"
3078		"%if_false = OpLabel\n"
3079		"%subf1    = OpFSub %f32 %inval %constf1\n"
3080		"            OpStore %outloc %subf1\n"
3081		"            OpBranch %if_end\n"
3082		"%if_end   = OpLabel\n"
3083		"            OpReturn\n"
3084		"            OpFunctionEnd\n");
3085
3086	cases.push_back(CaseParameter("none",					"None"));
3087	cases.push_back(CaseParameter("flatten",				"Flatten"));
3088	cases.push_back(CaseParameter("dont_flatten",			"DontFlatten"));
3089	cases.push_back(CaseParameter("flatten_dont_flatten",	"DontFlatten|Flatten"));
3090
3091	fillRandomScalars(rnd, -100.f, 100.f, &inputFloats[0], numElements);
3092
3093	// CPU might not use the same rounding mode as the GPU. Use whole numbers to avoid rounding differences.
3094	floorAll(inputFloats);
3095
3096	for (size_t ndx = 0; ndx < numElements; ++ndx)
3097		outputFloats[ndx] = inputFloats[ndx] + (inputFloats[ndx] > 10.f ? 1.f : -1.f);
3098
3099	for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
3100	{
3101		map<string, string>		specializations;
3102		ComputeShaderSpec		spec;
3103
3104		specializations["CONTROL"] = cases[caseNdx].param;
3105		spec.assembly = shaderTemplate.specialize(specializations);
3106		spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
3107		spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
3108		spec.numWorkGroups = IVec3(numElements, 1, 1);
3109
3110		group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
3111	}
3112
3113	return group.release();
3114}
3115
3116// Assembly code used for testing function control is based on GLSL source code:
3117//
3118// #version 430
3119//
3120// layout(std140, set = 0, binding = 0) readonly buffer Input {
3121//   float elements[];
3122// } input_data;
3123// layout(std140, set = 0, binding = 1) writeonly buffer Output {
3124//   float elements[];
3125// } output_data;
3126//
3127// float const10() { return 10.f; }
3128//
3129// void main() {
3130//   uint x = gl_GlobalInvocationID.x;
3131//   output_data.elements[x] = input_data.elements[x] + const10();
3132// }
3133tcu::TestCaseGroup* createFunctionControlGroup (tcu::TestContext& testCtx)
3134{
3135	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "function_control", "Tests function control cases"));
3136	vector<CaseParameter>			cases;
3137	de::Random						rnd				(deStringHash(group->getName()));
3138	const int						numElements		= 100;
3139	vector<float>					inputFloats		(numElements, 0);
3140	vector<float>					outputFloats	(numElements, 0);
3141	const StringTemplate			shaderTemplate	(
3142		string(s_ShaderPreamble) +
3143
3144		"OpSource GLSL 430\n"
3145		"OpName %main \"main\"\n"
3146		"OpName %func_const10 \"const10(\"\n"
3147		"OpName %id \"gl_GlobalInvocationID\"\n"
3148
3149		"OpDecorate %id BuiltIn GlobalInvocationId\n"
3150
3151		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
3152
3153		"%f32f = OpTypeFunction %f32\n"
3154		"%id = OpVariable %uvec3ptr Input\n"
3155		"%zero = OpConstant %i32 0\n"
3156		"%constf10 = OpConstant %f32 10.0\n"
3157
3158		"%main         = OpFunction %void None %voidf\n"
3159		"%entry        = OpLabel\n"
3160		"%idval        = OpLoad %uvec3 %id\n"
3161		"%x            = OpCompositeExtract %u32 %idval 0\n"
3162		"%inloc        = OpAccessChain %f32ptr %indata %zero %x\n"
3163		"%inval        = OpLoad %f32 %inloc\n"
3164		"%ret_10       = OpFunctionCall %f32 %func_const10\n"
3165		"%fadd         = OpFAdd %f32 %inval %ret_10\n"
3166		"%outloc       = OpAccessChain %f32ptr %outdata %zero %x\n"
3167		"                OpStore %outloc %fadd\n"
3168		"                OpReturn\n"
3169		"                OpFunctionEnd\n"
3170
3171		"%func_const10 = OpFunction %f32 ${CONTROL} %f32f\n"
3172		"%label        = OpLabel\n"
3173		"                OpReturnValue %constf10\n"
3174		"                OpFunctionEnd\n");
3175
3176	cases.push_back(CaseParameter("none",						"None"));
3177	cases.push_back(CaseParameter("inline",						"Inline"));
3178	cases.push_back(CaseParameter("dont_inline",				"DontInline"));
3179	cases.push_back(CaseParameter("pure",						"Pure"));
3180	cases.push_back(CaseParameter("const",						"Const"));
3181	cases.push_back(CaseParameter("inline_pure",				"Inline|Pure"));
3182	cases.push_back(CaseParameter("const_dont_inline",			"Const|DontInline"));
3183	cases.push_back(CaseParameter("inline_dont_inline",			"Inline|DontInline"));
3184	cases.push_back(CaseParameter("pure_inline_dont_inline",	"Pure|Inline|DontInline"));
3185
3186	fillRandomScalars(rnd, -100.f, 100.f, &inputFloats[0], numElements);
3187
3188	// CPU might not use the same rounding mode as the GPU. Use whole numbers to avoid rounding differences.
3189	floorAll(inputFloats);
3190
3191	for (size_t ndx = 0; ndx < numElements; ++ndx)
3192		outputFloats[ndx] = inputFloats[ndx] + 10.f;
3193
3194	for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
3195	{
3196		map<string, string>		specializations;
3197		ComputeShaderSpec		spec;
3198
3199		specializations["CONTROL"] = cases[caseNdx].param;
3200		spec.assembly = shaderTemplate.specialize(specializations);
3201		spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
3202		spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
3203		spec.numWorkGroups = IVec3(numElements, 1, 1);
3204
3205		group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
3206	}
3207
3208	return group.release();
3209}
3210
3211tcu::TestCaseGroup* createMemoryAccessGroup (tcu::TestContext& testCtx)
3212{
3213	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "memory_access", "Tests memory access cases"));
3214	vector<CaseParameter>			cases;
3215	de::Random						rnd				(deStringHash(group->getName()));
3216	const int						numElements		= 100;
3217	vector<float>					inputFloats		(numElements, 0);
3218	vector<float>					outputFloats	(numElements, 0);
3219	const StringTemplate			shaderTemplate	(
3220		string(s_ShaderPreamble) +
3221
3222		"OpSource GLSL 430\n"
3223		"OpName %main           \"main\"\n"
3224		"OpName %id             \"gl_GlobalInvocationID\"\n"
3225
3226		"OpDecorate %id BuiltIn GlobalInvocationId\n"
3227
3228		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
3229
3230		"%f32ptr_f  = OpTypePointer Function %f32\n"
3231
3232		"%id        = OpVariable %uvec3ptr Input\n"
3233		"%zero      = OpConstant %i32 0\n"
3234		"%four      = OpConstant %i32 4\n"
3235
3236		"%main      = OpFunction %void None %voidf\n"
3237		"%label     = OpLabel\n"
3238		"%copy      = OpVariable %f32ptr_f Function\n"
3239		"%idval     = OpLoad %uvec3 %id ${ACCESS}\n"
3240		"%x         = OpCompositeExtract %u32 %idval 0\n"
3241		"%inloc     = OpAccessChain %f32ptr %indata  %zero %x\n"
3242		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
3243		"             OpCopyMemory %copy %inloc ${ACCESS}\n"
3244		"%val1      = OpLoad %f32 %copy\n"
3245		"%val2      = OpLoad %f32 %inloc\n"
3246		"%add       = OpFAdd %f32 %val1 %val2\n"
3247		"             OpStore %outloc %add ${ACCESS}\n"
3248		"             OpReturn\n"
3249		"             OpFunctionEnd\n");
3250
3251	cases.push_back(CaseParameter("null",					""));
3252	cases.push_back(CaseParameter("none",					"None"));
3253	cases.push_back(CaseParameter("volatile",				"Volatile"));
3254	cases.push_back(CaseParameter("aligned",				"Aligned 4"));
3255	cases.push_back(CaseParameter("nontemporal",			"Nontemporal"));
3256	cases.push_back(CaseParameter("aligned_nontemporal",	"Aligned|Nontemporal 4"));
3257	cases.push_back(CaseParameter("aligned_volatile",		"Volatile|Aligned 4"));
3258
3259	fillRandomScalars(rnd, -100.f, 100.f, &inputFloats[0], numElements);
3260
3261	for (size_t ndx = 0; ndx < numElements; ++ndx)
3262		outputFloats[ndx] = inputFloats[ndx] + inputFloats[ndx];
3263
3264	for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
3265	{
3266		map<string, string>		specializations;
3267		ComputeShaderSpec		spec;
3268
3269		specializations["ACCESS"] = cases[caseNdx].param;
3270		spec.assembly = shaderTemplate.specialize(specializations);
3271		spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
3272		spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
3273		spec.numWorkGroups = IVec3(numElements, 1, 1);
3274
3275		group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
3276	}
3277
3278	return group.release();
3279}
3280
3281// Checks that we can get undefined values for various types, without exercising a computation with it.
3282tcu::TestCaseGroup* createOpUndefGroup (tcu::TestContext& testCtx)
3283{
3284	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opundef", "Tests the OpUndef instruction"));
3285	vector<CaseParameter>			cases;
3286	de::Random						rnd				(deStringHash(group->getName()));
3287	const int						numElements		= 100;
3288	vector<float>					positiveFloats	(numElements, 0);
3289	vector<float>					negativeFloats	(numElements, 0);
3290	const StringTemplate			shaderTemplate	(
3291		string(s_ShaderPreamble) +
3292
3293		"OpSource GLSL 430\n"
3294		"OpName %main           \"main\"\n"
3295		"OpName %id             \"gl_GlobalInvocationID\"\n"
3296
3297		"OpDecorate %id BuiltIn GlobalInvocationId\n"
3298
3299		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
3300
3301		"${TYPE}\n"
3302
3303		"%id        = OpVariable %uvec3ptr Input\n"
3304		"%zero      = OpConstant %i32 0\n"
3305
3306		"%main      = OpFunction %void None %voidf\n"
3307		"%label     = OpLabel\n"
3308
3309		"%undef     = OpUndef %type\n"
3310
3311		"%idval     = OpLoad %uvec3 %id\n"
3312		"%x         = OpCompositeExtract %u32 %idval 0\n"
3313
3314		"%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
3315		"%inval     = OpLoad %f32 %inloc\n"
3316		"%neg       = OpFNegate %f32 %inval\n"
3317		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
3318		"             OpStore %outloc %neg\n"
3319		"             OpReturn\n"
3320		"             OpFunctionEnd\n");
3321
3322	cases.push_back(CaseParameter("bool",			"%type = OpTypeBool"));
3323	cases.push_back(CaseParameter("sint32",			"%type = OpTypeInt 32 1"));
3324	cases.push_back(CaseParameter("uint32",			"%type = OpTypeInt 32 0"));
3325	cases.push_back(CaseParameter("float32",		"%type = OpTypeFloat 32"));
3326	cases.push_back(CaseParameter("vec4float32",	"%type = OpTypeVector %f32 4"));
3327	cases.push_back(CaseParameter("vec2uint32",		"%type = OpTypeVector %u32 2"));
3328	cases.push_back(CaseParameter("matrix",			"%type = OpTypeMatrix %fvec3 3"));
3329	cases.push_back(CaseParameter("image",			"%type = OpTypeImage %f32 2D 0 0 0 1 Unknown"));
3330	cases.push_back(CaseParameter("sampler",		"%type = OpTypeSampler"));
3331	cases.push_back(CaseParameter("sampledimage",	"%img = OpTypeImage %f32 2D 0 0 0 1 Unknown\n"
3332													"%type = OpTypeSampledImage %img"));
3333	cases.push_back(CaseParameter("array",			"%100 = OpConstant %u32 100\n"
3334													"%type = OpTypeArray %i32 %100"));
3335	cases.push_back(CaseParameter("runtimearray",	"%type = OpTypeRuntimeArray %f32"));
3336	cases.push_back(CaseParameter("struct",			"%type = OpTypeStruct %f32 %i32 %u32"));
3337	cases.push_back(CaseParameter("pointer",		"%type = OpTypePointer Function %i32"));
3338
3339	fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
3340
3341	for (size_t ndx = 0; ndx < numElements; ++ndx)
3342		negativeFloats[ndx] = -positiveFloats[ndx];
3343
3344	for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
3345	{
3346		map<string, string>		specializations;
3347		ComputeShaderSpec		spec;
3348
3349		specializations["TYPE"] = cases[caseNdx].param;
3350		spec.assembly = shaderTemplate.specialize(specializations);
3351		spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
3352		spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
3353		spec.numWorkGroups = IVec3(numElements, 1, 1);
3354
3355		group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
3356	}
3357
3358		return group.release();
3359}
3360typedef std::pair<std::string, VkShaderStageFlagBits>	EntryToStage;
3361typedef map<string, vector<EntryToStage> >				ModuleMap;
3362typedef map<VkShaderStageFlagBits, vector<deInt32> >	StageToSpecConstantMap;
3363
3364// Context for a specific test instantiation. For example, an instantiation
3365// may test colors yellow/magenta/cyan/mauve in a tesselation shader
3366// with an entry point named 'main_to_the_main'
3367struct InstanceContext
3368{
3369	// Map of modules to what entry_points we care to use from those modules.
3370	ModuleMap				moduleMap;
3371	RGBA					inputColors[4];
3372	RGBA					outputColors[4];
3373	// Concrete SPIR-V code to test via boilerplate specialization.
3374	map<string, string>		testCodeFragments;
3375	StageToSpecConstantMap	specConstants;
3376	bool					hasTessellation;
3377	VkShaderStageFlagBits	requiredStages;
3378
3379	InstanceContext (const RGBA (&inputs)[4], const RGBA (&outputs)[4], const map<string, string>& testCodeFragments_, const StageToSpecConstantMap& specConstants_)
3380		: testCodeFragments		(testCodeFragments_)
3381		, specConstants			(specConstants_)
3382		, hasTessellation		(false)
3383		, requiredStages		(static_cast<VkShaderStageFlagBits>(0))
3384	{
3385		inputColors[0]		= inputs[0];
3386		inputColors[1]		= inputs[1];
3387		inputColors[2]		= inputs[2];
3388		inputColors[3]		= inputs[3];
3389
3390		outputColors[0]		= outputs[0];
3391		outputColors[1]		= outputs[1];
3392		outputColors[2]		= outputs[2];
3393		outputColors[3]		= outputs[3];
3394	}
3395
3396	InstanceContext (const InstanceContext& other)
3397		: moduleMap			(other.moduleMap)
3398		, testCodeFragments	(other.testCodeFragments)
3399		, specConstants		(other.specConstants)
3400		, hasTessellation	(other.hasTessellation)
3401		, requiredStages    (other.requiredStages)
3402	{
3403		inputColors[0]		= other.inputColors[0];
3404		inputColors[1]		= other.inputColors[1];
3405		inputColors[2]		= other.inputColors[2];
3406		inputColors[3]		= other.inputColors[3];
3407
3408		outputColors[0]		= other.outputColors[0];
3409		outputColors[1]		= other.outputColors[1];
3410		outputColors[2]		= other.outputColors[2];
3411		outputColors[3]		= other.outputColors[3];
3412	}
3413};
3414
3415// A description of a shader to be used for a single stage of the graphics pipeline.
3416struct ShaderElement
3417{
3418	// The module that contains this shader entrypoint.
3419	string					moduleName;
3420
3421	// The name of the entrypoint.
3422	string					entryName;
3423
3424	// Which shader stage this entry point represents.
3425	VkShaderStageFlagBits	stage;
3426
3427	ShaderElement (const string& moduleName_, const string& entryPoint_, VkShaderStageFlagBits shaderStage_)
3428		: moduleName(moduleName_)
3429		, entryName(entryPoint_)
3430		, stage(shaderStage_)
3431	{
3432	}
3433};
3434
3435void getDefaultColors (RGBA (&colors)[4])
3436{
3437	colors[0] = RGBA::white();
3438	colors[1] = RGBA::red();
3439	colors[2] = RGBA::green();
3440	colors[3] = RGBA::blue();
3441}
3442
3443void getHalfColorsFullAlpha (RGBA (&colors)[4])
3444{
3445	colors[0] = RGBA(127, 127, 127, 255);
3446	colors[1] = RGBA(127, 0,   0,	255);
3447	colors[2] = RGBA(0,	  127, 0,	255);
3448	colors[3] = RGBA(0,	  0,   127, 255);
3449}
3450
3451void getInvertedDefaultColors (RGBA (&colors)[4])
3452{
3453	colors[0] = RGBA(0,		0,		0,		255);
3454	colors[1] = RGBA(0,		255,	255,	255);
3455	colors[2] = RGBA(255,	0,		255,	255);
3456	colors[3] = RGBA(255,	255,	0,		255);
3457}
3458
3459// Turns a statically sized array of ShaderElements into an instance-context
3460// by setting up the mapping of modules to their contained shaders and stages.
3461// The inputs and expected outputs are given by inputColors and outputColors
3462template<size_t N>
3463InstanceContext createInstanceContext (const ShaderElement (&elements)[N], const RGBA (&inputColors)[4], const RGBA (&outputColors)[4], const map<string, string>& testCodeFragments, const StageToSpecConstantMap& specConstants)
3464{
3465	InstanceContext ctx (inputColors, outputColors, testCodeFragments, specConstants);
3466	for (size_t i = 0; i < N; ++i)
3467	{
3468		ctx.moduleMap[elements[i].moduleName].push_back(std::make_pair(elements[i].entryName, elements[i].stage));
3469		ctx.requiredStages = static_cast<VkShaderStageFlagBits>(ctx.requiredStages | elements[i].stage);
3470	}
3471	return ctx;
3472}
3473
3474template<size_t N>
3475inline InstanceContext createInstanceContext (const ShaderElement (&elements)[N], RGBA (&inputColors)[4], const RGBA (&outputColors)[4], const map<string, string>& testCodeFragments)
3476{
3477	return createInstanceContext(elements, inputColors, outputColors, testCodeFragments, StageToSpecConstantMap());
3478}
3479
3480// The same as createInstanceContext above, but with default colors.
3481template<size_t N>
3482InstanceContext createInstanceContext (const ShaderElement (&elements)[N], const map<string, string>& testCodeFragments)
3483{
3484	RGBA defaultColors[4];
3485	getDefaultColors(defaultColors);
3486	return createInstanceContext(elements, defaultColors, defaultColors, testCodeFragments);
3487}
3488
3489// For the current InstanceContext, constructs the required modules and shader stage create infos.
3490void createPipelineShaderStages (const DeviceInterface& vk, const VkDevice vkDevice, InstanceContext& instance, Context& context, vector<ModuleHandleSp>& modules, vector<VkPipelineShaderStageCreateInfo>& createInfos)
3491{
3492	for (ModuleMap::const_iterator moduleNdx = instance.moduleMap.begin(); moduleNdx != instance.moduleMap.end(); ++moduleNdx)
3493	{
3494		const ModuleHandleSp mod(new Unique<VkShaderModule>(createShaderModule(vk, vkDevice, context.getBinaryCollection().get(moduleNdx->first), 0)));
3495		modules.push_back(ModuleHandleSp(mod));
3496		for (vector<EntryToStage>::const_iterator shaderNdx = moduleNdx->second.begin(); shaderNdx != moduleNdx->second.end(); ++shaderNdx)
3497		{
3498			const EntryToStage&						stage			= *shaderNdx;
3499			const VkPipelineShaderStageCreateInfo	shaderParam		=
3500			{
3501				VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,	//	VkStructureType			sType;
3502				DE_NULL,												//	const void*				pNext;
3503				(VkPipelineShaderStageCreateFlags)0,
3504				stage.second,											//	VkShaderStageFlagBits	stage;
3505				**modules.back(),										//	VkShaderModule			module;
3506				stage.first.c_str(),									//	const char*				pName;
3507				(const VkSpecializationInfo*)DE_NULL,
3508			};
3509			createInfos.push_back(shaderParam);
3510		}
3511	}
3512}
3513
3514#define SPIRV_ASSEMBLY_TYPES																	\
3515	"%void = OpTypeVoid\n"																		\
3516	"%bool = OpTypeBool\n"																		\
3517																								\
3518	"%i32 = OpTypeInt 32 1\n"																	\
3519	"%u32 = OpTypeInt 32 0\n"																	\
3520																								\
3521	"%f32 = OpTypeFloat 32\n"																	\
3522	"%v3f32 = OpTypeVector %f32 3\n"															\
3523	"%v4f32 = OpTypeVector %f32 4\n"															\
3524	"%v4bool = OpTypeVector %bool 4\n"															\
3525																								\
3526	"%v4f32_function = OpTypeFunction %v4f32 %v4f32\n"											\
3527	"%fun = OpTypeFunction %void\n"																\
3528																								\
3529	"%ip_f32 = OpTypePointer Input %f32\n"														\
3530	"%ip_i32 = OpTypePointer Input %i32\n"														\
3531	"%ip_v3f32 = OpTypePointer Input %v3f32\n"													\
3532	"%ip_v4f32 = OpTypePointer Input %v4f32\n"													\
3533																								\
3534	"%op_f32 = OpTypePointer Output %f32\n"														\
3535	"%op_v4f32 = OpTypePointer Output %v4f32\n"													\
3536																								\
3537	"%fp_f32   = OpTypePointer Function %f32\n"													\
3538	"%fp_i32   = OpTypePointer Function %i32\n"													\
3539	"%fp_v4f32 = OpTypePointer Function %v4f32\n"
3540
3541#define SPIRV_ASSEMBLY_CONSTANTS																\
3542	"%c_f32_1 = OpConstant %f32 1.0\n"															\
3543	"%c_f32_0 = OpConstant %f32 0.0\n"															\
3544	"%c_f32_0_5 = OpConstant %f32 0.5\n"														\
3545	"%c_f32_n1  = OpConstant %f32 -1.\n"														\
3546	"%c_f32_7 = OpConstant %f32 7.0\n"															\
3547	"%c_f32_8 = OpConstant %f32 8.0\n"															\
3548	"%c_i32_0 = OpConstant %i32 0\n"															\
3549	"%c_i32_1 = OpConstant %i32 1\n"															\
3550	"%c_i32_2 = OpConstant %i32 2\n"															\
3551	"%c_i32_3 = OpConstant %i32 3\n"															\
3552	"%c_i32_4 = OpConstant %i32 4\n"															\
3553	"%c_u32_0 = OpConstant %u32 0\n"															\
3554	"%c_u32_1 = OpConstant %u32 1\n"															\
3555	"%c_u32_2 = OpConstant %u32 2\n"															\
3556	"%c_u32_3 = OpConstant %u32 3\n"															\
3557	"%c_u32_32 = OpConstant %u32 32\n"															\
3558	"%c_u32_4 = OpConstant %u32 4\n"															\
3559	"%c_u32_31_bits = OpConstant %u32 0x7FFFFFFF\n"												\
3560	"%c_v4f32_1_1_1_1 = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_1\n"		\
3561	"%c_v4f32_1_0_0_1 = OpConstantComposite %v4f32 %c_f32_1 %c_f32_0 %c_f32_0 %c_f32_1\n"		\
3562	"%c_v4f32_0_5_0_5_0_5_0_5 = OpConstantComposite %v4f32 %c_f32_0_5 %c_f32_0_5 %c_f32_0_5 %c_f32_0_5\n"
3563
3564#define SPIRV_ASSEMBLY_ARRAYS																	\
3565	"%a1f32 = OpTypeArray %f32 %c_u32_1\n"														\
3566	"%a2f32 = OpTypeArray %f32 %c_u32_2\n"														\
3567	"%a3v4f32 = OpTypeArray %v4f32 %c_u32_3\n"													\
3568	"%a4f32 = OpTypeArray %f32 %c_u32_4\n"														\
3569	"%a32v4f32 = OpTypeArray %v4f32 %c_u32_32\n"												\
3570	"%ip_a3v4f32 = OpTypePointer Input %a3v4f32\n"												\
3571	"%ip_a32v4f32 = OpTypePointer Input %a32v4f32\n"											\
3572	"%op_a2f32 = OpTypePointer Output %a2f32\n"													\
3573	"%op_a3v4f32 = OpTypePointer Output %a3v4f32\n"												\
3574	"%op_a4f32 = OpTypePointer Output %a4f32\n"
3575
3576// Creates vertex-shader assembly by specializing a boilerplate StringTemplate
3577// on fragments, which must (at least) map "testfun" to an OpFunction definition
3578// for %test_code that takes and returns a %v4f32.  Boilerplate IDs are prefixed
3579// with "BP_" to avoid collisions with fragments.
3580//
3581// It corresponds roughly to this GLSL:
3582//;
3583// layout(location = 0) in vec4 position;
3584// layout(location = 1) in vec4 color;
3585// layout(location = 1) out highp vec4 vtxColor;
3586// void main (void) { gl_Position = position; vtxColor = test_func(color); }
3587string makeVertexShaderAssembly(const map<string, string>& fragments)
3588{
3589// \todo [2015-11-23 awoloszyn] Remove OpName once these have stabalized
3590	static const char vertexShaderBoilerplate[] =
3591		"OpCapability Shader\n"
3592		"OpCapability ClipDistance\n"
3593		"OpCapability CullDistance\n"
3594		"OpMemoryModel Logical GLSL450\n"
3595		"OpEntryPoint Vertex %main \"main\" %BP_stream %BP_position %BP_vtx_color %BP_color %BP_gl_VertexIndex %BP_gl_InstanceIndex\n"
3596		"${debug:opt}\n"
3597		"OpName %main \"main\"\n"
3598		"OpName %BP_gl_PerVertex \"gl_PerVertex\"\n"
3599		"OpMemberName %BP_gl_PerVertex 0 \"gl_Position\"\n"
3600		"OpMemberName %BP_gl_PerVertex 1 \"gl_PointSize\"\n"
3601		"OpMemberName %BP_gl_PerVertex 2 \"gl_ClipDistance\"\n"
3602		"OpMemberName %BP_gl_PerVertex 3 \"gl_CullDistance\"\n"
3603		"OpName %test_code \"testfun(vf4;\"\n"
3604		"OpName %BP_stream \"\"\n"
3605		"OpName %BP_position \"position\"\n"
3606		"OpName %BP_vtx_color \"vtxColor\"\n"
3607		"OpName %BP_color \"color\"\n"
3608		"OpName %BP_gl_VertexIndex \"gl_VertexIndex\"\n"
3609		"OpName %BP_gl_InstanceIndex \"gl_InstanceIndex\"\n"
3610		"OpMemberDecorate %BP_gl_PerVertex 0 BuiltIn Position\n"
3611		"OpMemberDecorate %BP_gl_PerVertex 1 BuiltIn PointSize\n"
3612		"OpMemberDecorate %BP_gl_PerVertex 2 BuiltIn ClipDistance\n"
3613		"OpMemberDecorate %BP_gl_PerVertex 3 BuiltIn CullDistance\n"
3614		"OpDecorate %BP_gl_PerVertex Block\n"
3615		"OpDecorate %BP_position Location 0\n"
3616		"OpDecorate %BP_vtx_color Location 1\n"
3617		"OpDecorate %BP_color Location 1\n"
3618		"OpDecorate %BP_gl_VertexIndex BuiltIn VertexIndex\n"
3619		"OpDecorate %BP_gl_InstanceIndex BuiltIn InstanceIndex\n"
3620		"${decoration:opt}\n"
3621		SPIRV_ASSEMBLY_TYPES
3622		SPIRV_ASSEMBLY_CONSTANTS
3623		SPIRV_ASSEMBLY_ARRAYS
3624		"%BP_gl_PerVertex = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
3625		"%BP_op_gl_PerVertex = OpTypePointer Output %BP_gl_PerVertex\n"
3626		"%BP_stream = OpVariable %BP_op_gl_PerVertex Output\n"
3627		"%BP_position = OpVariable %ip_v4f32 Input\n"
3628		"%BP_vtx_color = OpVariable %op_v4f32 Output\n"
3629		"%BP_color = OpVariable %ip_v4f32 Input\n"
3630		"%BP_gl_VertexIndex = OpVariable %ip_i32 Input\n"
3631		"%BP_gl_InstanceIndex = OpVariable %ip_i32 Input\n"
3632		"${pre_main:opt}\n"
3633		"%main = OpFunction %void None %fun\n"
3634		"%BP_label = OpLabel\n"
3635		"%BP_pos = OpLoad %v4f32 %BP_position\n"
3636		"%BP_gl_pos = OpAccessChain %op_v4f32 %BP_stream %c_i32_0\n"
3637		"OpStore %BP_gl_pos %BP_pos\n"
3638		"%BP_col = OpLoad %v4f32 %BP_color\n"
3639		"%BP_col_transformed = OpFunctionCall %v4f32 %test_code %BP_col\n"
3640		"OpStore %BP_vtx_color %BP_col_transformed\n"
3641		"OpReturn\n"
3642		"OpFunctionEnd\n"
3643		"${testfun}\n";
3644	return tcu::StringTemplate(vertexShaderBoilerplate).specialize(fragments);
3645}
3646
3647// Creates tess-control-shader assembly by specializing a boilerplate
3648// StringTemplate on fragments, which must (at least) map "testfun" to an
3649// OpFunction definition for %test_code that takes and returns a %v4f32.
3650// Boilerplate IDs are prefixed with "BP_" to avoid collisions with fragments.
3651//
3652// It roughly corresponds to the following GLSL.
3653//
3654// #version 450
3655// layout(vertices = 3) out;
3656// layout(location = 1) in vec4 in_color[];
3657// layout(location = 1) out vec4 out_color[];
3658//
3659// void main() {
3660//   out_color[gl_InvocationID] = testfun(in_color[gl_InvocationID]);
3661//   gl_out[gl_InvocationID].gl_Position = gl_in[gl_InvocationID].gl_Position;
3662//   if (gl_InvocationID == 0) {
3663//     gl_TessLevelOuter[0] = 1.0;
3664//     gl_TessLevelOuter[1] = 1.0;
3665//     gl_TessLevelOuter[2] = 1.0;
3666//     gl_TessLevelInner[0] = 1.0;
3667//   }
3668// }
3669string makeTessControlShaderAssembly (const map<string, string>& fragments)
3670{
3671	static const char tessControlShaderBoilerplate[] =
3672		"OpCapability Tessellation\n"
3673		"OpCapability ClipDistance\n"
3674		"OpCapability CullDistance\n"
3675		"OpMemoryModel Logical GLSL450\n"
3676		"OpEntryPoint TessellationControl %BP_main \"main\" %BP_out_color %BP_gl_InvocationID %BP_in_color %BP_gl_out %BP_gl_in %BP_gl_TessLevelOuter %BP_gl_TessLevelInner\n"
3677		"OpExecutionMode %BP_main OutputVertices 3\n"
3678		"${debug:opt}\n"
3679		"OpName %BP_main \"main\"\n"
3680		"OpName %test_code \"testfun(vf4;\"\n"
3681		"OpName %BP_out_color \"out_color\"\n"
3682		"OpName %BP_gl_InvocationID \"gl_InvocationID\"\n"
3683		"OpName %BP_in_color \"in_color\"\n"
3684		"OpName %BP_gl_PerVertex \"gl_PerVertex\"\n"
3685		"OpMemberName %BP_gl_PerVertex 0 \"gl_Position\"\n"
3686		"OpMemberName %BP_gl_PerVertex 1 \"gl_PointSize\"\n"
3687		"OpMemberName %BP_gl_PerVertex 2 \"gl_ClipDistance\"\n"
3688		"OpMemberName %BP_gl_PerVertex 3 \"gl_CullDistance\"\n"
3689		"OpName %BP_gl_out \"gl_out\"\n"
3690		"OpName %BP_gl_PVOut \"gl_PerVertex\"\n"
3691		"OpMemberName %BP_gl_PVOut 0 \"gl_Position\"\n"
3692		"OpMemberName %BP_gl_PVOut 1 \"gl_PointSize\"\n"
3693		"OpMemberName %BP_gl_PVOut 2 \"gl_ClipDistance\"\n"
3694		"OpMemberName %BP_gl_PVOut 3 \"gl_CullDistance\"\n"
3695		"OpName %BP_gl_in \"gl_in\"\n"
3696		"OpName %BP_gl_TessLevelOuter \"gl_TessLevelOuter\"\n"
3697		"OpName %BP_gl_TessLevelInner \"gl_TessLevelInner\"\n"
3698		"OpDecorate %BP_out_color Location 1\n"
3699		"OpDecorate %BP_gl_InvocationID BuiltIn InvocationId\n"
3700		"OpDecorate %BP_in_color Location 1\n"
3701		"OpMemberDecorate %BP_gl_PerVertex 0 BuiltIn Position\n"
3702		"OpMemberDecorate %BP_gl_PerVertex 1 BuiltIn PointSize\n"
3703		"OpMemberDecorate %BP_gl_PerVertex 2 BuiltIn ClipDistance\n"
3704		"OpMemberDecorate %BP_gl_PerVertex 3 BuiltIn CullDistance\n"
3705		"OpDecorate %BP_gl_PerVertex Block\n"
3706		"OpMemberDecorate %BP_gl_PVOut 0 BuiltIn Position\n"
3707		"OpMemberDecorate %BP_gl_PVOut 1 BuiltIn PointSize\n"
3708		"OpMemberDecorate %BP_gl_PVOut 2 BuiltIn ClipDistance\n"
3709		"OpMemberDecorate %BP_gl_PVOut 3 BuiltIn CullDistance\n"
3710		"OpDecorate %BP_gl_PVOut Block\n"
3711		"OpDecorate %BP_gl_TessLevelOuter Patch\n"
3712		"OpDecorate %BP_gl_TessLevelOuter BuiltIn TessLevelOuter\n"
3713		"OpDecorate %BP_gl_TessLevelInner Patch\n"
3714		"OpDecorate %BP_gl_TessLevelInner BuiltIn TessLevelInner\n"
3715		"${decoration:opt}\n"
3716		SPIRV_ASSEMBLY_TYPES
3717		SPIRV_ASSEMBLY_CONSTANTS
3718		SPIRV_ASSEMBLY_ARRAYS
3719		"%BP_out_color = OpVariable %op_a3v4f32 Output\n"
3720		"%BP_gl_InvocationID = OpVariable %ip_i32 Input\n"
3721		"%BP_in_color = OpVariable %ip_a32v4f32 Input\n"
3722		"%BP_gl_PerVertex = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
3723		"%BP_a3_gl_PerVertex = OpTypeArray %BP_gl_PerVertex %c_u32_3\n"
3724		"%BP_op_a3_gl_PerVertex = OpTypePointer Output %BP_a3_gl_PerVertex\n"
3725		"%BP_gl_out = OpVariable %BP_op_a3_gl_PerVertex Output\n"
3726		"%BP_gl_PVOut = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
3727		"%BP_a32_gl_PVOut = OpTypeArray %BP_gl_PVOut %c_u32_32\n"
3728		"%BP_ip_a32_gl_PVOut = OpTypePointer Input %BP_a32_gl_PVOut\n"
3729		"%BP_gl_in = OpVariable %BP_ip_a32_gl_PVOut Input\n"
3730		"%BP_gl_TessLevelOuter = OpVariable %op_a4f32 Output\n"
3731		"%BP_gl_TessLevelInner = OpVariable %op_a2f32 Output\n"
3732		"${pre_main:opt}\n"
3733
3734		"%BP_main = OpFunction %void None %fun\n"
3735		"%BP_label = OpLabel\n"
3736
3737		"%BP_gl_Invoc = OpLoad %i32 %BP_gl_InvocationID\n"
3738
3739		"%BP_in_col_loc = OpAccessChain %ip_v4f32 %BP_in_color %BP_gl_Invoc\n"
3740		"%BP_out_col_loc = OpAccessChain %op_v4f32 %BP_out_color %BP_gl_Invoc\n"
3741		"%BP_in_col_val = OpLoad %v4f32 %BP_in_col_loc\n"
3742		"%BP_clr_transformed = OpFunctionCall %v4f32 %test_code %BP_in_col_val\n"
3743		"OpStore %BP_out_col_loc %BP_clr_transformed\n"
3744
3745		"%BP_in_pos_loc = OpAccessChain %ip_v4f32 %BP_gl_in %BP_gl_Invoc %c_i32_0\n"
3746		"%BP_out_pos_loc = OpAccessChain %op_v4f32 %BP_gl_out %BP_gl_Invoc %c_i32_0\n"
3747		"%BP_in_pos_val = OpLoad %v4f32 %BP_in_pos_loc\n"
3748		"OpStore %BP_out_pos_loc %BP_in_pos_val\n"
3749
3750		"%BP_cmp = OpIEqual %bool %BP_gl_Invoc %c_i32_0\n"
3751		"OpSelectionMerge %BP_merge_label None\n"
3752		"OpBranchConditional %BP_cmp %BP_if_label %BP_merge_label\n"
3753		"%BP_if_label = OpLabel\n"
3754		"%BP_gl_TessLevelOuterPos_0 = OpAccessChain %op_f32 %BP_gl_TessLevelOuter %c_i32_0\n"
3755		"%BP_gl_TessLevelOuterPos_1 = OpAccessChain %op_f32 %BP_gl_TessLevelOuter %c_i32_1\n"
3756		"%BP_gl_TessLevelOuterPos_2 = OpAccessChain %op_f32 %BP_gl_TessLevelOuter %c_i32_2\n"
3757		"%BP_gl_TessLevelInnerPos_0 = OpAccessChain %op_f32 %BP_gl_TessLevelInner %c_i32_0\n"
3758		"OpStore %BP_gl_TessLevelOuterPos_0 %c_f32_1\n"
3759		"OpStore %BP_gl_TessLevelOuterPos_1 %c_f32_1\n"
3760		"OpStore %BP_gl_TessLevelOuterPos_2 %c_f32_1\n"
3761		"OpStore %BP_gl_TessLevelInnerPos_0 %c_f32_1\n"
3762		"OpBranch %BP_merge_label\n"
3763		"%BP_merge_label = OpLabel\n"
3764		"OpReturn\n"
3765		"OpFunctionEnd\n"
3766		"${testfun}\n";
3767	return tcu::StringTemplate(tessControlShaderBoilerplate).specialize(fragments);
3768}
3769
3770// Creates tess-evaluation-shader assembly by specializing a boilerplate
3771// StringTemplate on fragments, which must (at least) map "testfun" to an
3772// OpFunction definition for %test_code that takes and returns a %v4f32.
3773// Boilerplate IDs are prefixed with "BP_" to avoid collisions with fragments.
3774//
3775// It roughly corresponds to the following glsl.
3776//
3777// #version 450
3778//
3779// layout(triangles, equal_spacing, ccw) in;
3780// layout(location = 1) in vec4 in_color[];
3781// layout(location = 1) out vec4 out_color;
3782//
3783// #define interpolate(val)
3784//   vec4(gl_TessCoord.x) * val[0] + vec4(gl_TessCoord.y) * val[1] +
3785//          vec4(gl_TessCoord.z) * val[2]
3786//
3787// void main() {
3788//   gl_Position = vec4(gl_TessCoord.x) * gl_in[0].gl_Position +
3789//                  vec4(gl_TessCoord.y) * gl_in[1].gl_Position +
3790//                  vec4(gl_TessCoord.z) * gl_in[2].gl_Position;
3791//   out_color = testfun(interpolate(in_color));
3792// }
3793string makeTessEvalShaderAssembly(const map<string, string>& fragments)
3794{
3795	static const char tessEvalBoilerplate[] =
3796		"OpCapability Tessellation\n"
3797		"OpCapability ClipDistance\n"
3798		"OpCapability CullDistance\n"
3799		"OpMemoryModel Logical GLSL450\n"
3800		"OpEntryPoint TessellationEvaluation %BP_main \"main\" %BP_stream %BP_gl_TessCoord %BP_gl_in %BP_out_color %BP_in_color\n"
3801		"OpExecutionMode %BP_main Triangles\n"
3802		"OpExecutionMode %BP_main SpacingEqual\n"
3803		"OpExecutionMode %BP_main VertexOrderCcw\n"
3804		"${debug:opt}\n"
3805		"OpName %BP_main \"main\"\n"
3806		"OpName %test_code \"testfun(vf4;\"\n"
3807		"OpName %BP_gl_PerVertexOut \"gl_PerVertex\"\n"
3808		"OpMemberName %BP_gl_PerVertexOut 0 \"gl_Position\"\n"
3809		"OpMemberName %BP_gl_PerVertexOut 1 \"gl_PointSize\"\n"
3810		"OpMemberName %BP_gl_PerVertexOut 2 \"gl_ClipDistance\"\n"
3811		"OpMemberName %BP_gl_PerVertexOut 3 \"gl_CullDistance\"\n"
3812		"OpName %BP_stream \"\"\n"
3813		"OpName %BP_gl_TessCoord \"gl_TessCoord\"\n"
3814		"OpName %BP_gl_PerVertexIn \"gl_PerVertex\"\n"
3815		"OpMemberName %BP_gl_PerVertexIn 0 \"gl_Position\"\n"
3816		"OpMemberName %BP_gl_PerVertexIn 1 \"gl_PointSize\"\n"
3817		"OpMemberName %BP_gl_PerVertexIn 2 \"gl_ClipDistance\"\n"
3818		"OpMemberName %BP_gl_PerVertexIn 3 \"gl_CullDistance\"\n"
3819		"OpName %BP_gl_in \"gl_in\"\n"
3820		"OpName %BP_out_color \"out_color\"\n"
3821		"OpName %BP_in_color \"in_color\"\n"
3822		"OpMemberDecorate %BP_gl_PerVertexOut 0 BuiltIn Position\n"
3823		"OpMemberDecorate %BP_gl_PerVertexOut 1 BuiltIn PointSize\n"
3824		"OpMemberDecorate %BP_gl_PerVertexOut 2 BuiltIn ClipDistance\n"
3825		"OpMemberDecorate %BP_gl_PerVertexOut 3 BuiltIn CullDistance\n"
3826		"OpDecorate %BP_gl_PerVertexOut Block\n"
3827		"OpDecorate %BP_gl_TessCoord BuiltIn TessCoord\n"
3828		"OpMemberDecorate %BP_gl_PerVertexIn 0 BuiltIn Position\n"
3829		"OpMemberDecorate %BP_gl_PerVertexIn 1 BuiltIn PointSize\n"
3830		"OpMemberDecorate %BP_gl_PerVertexIn 2 BuiltIn ClipDistance\n"
3831		"OpMemberDecorate %BP_gl_PerVertexIn 3 BuiltIn CullDistance\n"
3832		"OpDecorate %BP_gl_PerVertexIn Block\n"
3833		"OpDecorate %BP_out_color Location 1\n"
3834		"OpDecorate %BP_in_color Location 1\n"
3835		"${decoration:opt}\n"
3836		SPIRV_ASSEMBLY_TYPES
3837		SPIRV_ASSEMBLY_CONSTANTS
3838		SPIRV_ASSEMBLY_ARRAYS
3839		"%BP_gl_PerVertexOut = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
3840		"%BP_op_gl_PerVertexOut = OpTypePointer Output %BP_gl_PerVertexOut\n"
3841		"%BP_stream = OpVariable %BP_op_gl_PerVertexOut Output\n"
3842		"%BP_gl_TessCoord = OpVariable %ip_v3f32 Input\n"
3843		"%BP_gl_PerVertexIn = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
3844		"%BP_a32_gl_PerVertexIn = OpTypeArray %BP_gl_PerVertexIn %c_u32_32\n"
3845		"%BP_ip_a32_gl_PerVertexIn = OpTypePointer Input %BP_a32_gl_PerVertexIn\n"
3846		"%BP_gl_in = OpVariable %BP_ip_a32_gl_PerVertexIn Input\n"
3847		"%BP_out_color = OpVariable %op_v4f32 Output\n"
3848		"%BP_in_color = OpVariable %ip_a32v4f32 Input\n"
3849		"${pre_main:opt}\n"
3850		"%BP_main = OpFunction %void None %fun\n"
3851		"%BP_label = OpLabel\n"
3852		"%BP_gl_TC_0 = OpAccessChain %ip_f32 %BP_gl_TessCoord %c_u32_0\n"
3853		"%BP_gl_TC_1 = OpAccessChain %ip_f32 %BP_gl_TessCoord %c_u32_1\n"
3854		"%BP_gl_TC_2 = OpAccessChain %ip_f32 %BP_gl_TessCoord %c_u32_2\n"
3855		"%BP_gl_in_gl_Pos_0 = OpAccessChain %ip_v4f32 %BP_gl_in %c_i32_0 %c_i32_0\n"
3856		"%BP_gl_in_gl_Pos_1 = OpAccessChain %ip_v4f32 %BP_gl_in %c_i32_1 %c_i32_0\n"
3857		"%BP_gl_in_gl_Pos_2 = OpAccessChain %ip_v4f32 %BP_gl_in %c_i32_2 %c_i32_0\n"
3858
3859		"%BP_gl_OPos = OpAccessChain %op_v4f32 %BP_stream %c_i32_0\n"
3860		"%BP_in_color_0 = OpAccessChain %ip_v4f32 %BP_in_color %c_i32_0\n"
3861		"%BP_in_color_1 = OpAccessChain %ip_v4f32 %BP_in_color %c_i32_1\n"
3862		"%BP_in_color_2 = OpAccessChain %ip_v4f32 %BP_in_color %c_i32_2\n"
3863
3864		"%BP_TC_W_0 = OpLoad %f32 %BP_gl_TC_0\n"
3865		"%BP_TC_W_1 = OpLoad %f32 %BP_gl_TC_1\n"
3866		"%BP_TC_W_2 = OpLoad %f32 %BP_gl_TC_2\n"
3867		"%BP_v4f32_TC_0 = OpCompositeConstruct %v4f32 %BP_TC_W_0 %BP_TC_W_0 %BP_TC_W_0 %BP_TC_W_0\n"
3868		"%BP_v4f32_TC_1 = OpCompositeConstruct %v4f32 %BP_TC_W_1 %BP_TC_W_1 %BP_TC_W_1 %BP_TC_W_1\n"
3869		"%BP_v4f32_TC_2 = OpCompositeConstruct %v4f32 %BP_TC_W_2 %BP_TC_W_2 %BP_TC_W_2 %BP_TC_W_2\n"
3870
3871		"%BP_gl_IP_0 = OpLoad %v4f32 %BP_gl_in_gl_Pos_0\n"
3872		"%BP_gl_IP_1 = OpLoad %v4f32 %BP_gl_in_gl_Pos_1\n"
3873		"%BP_gl_IP_2 = OpLoad %v4f32 %BP_gl_in_gl_Pos_2\n"
3874
3875		"%BP_IP_W_0 = OpFMul %v4f32 %BP_v4f32_TC_0 %BP_gl_IP_0\n"
3876		"%BP_IP_W_1 = OpFMul %v4f32 %BP_v4f32_TC_1 %BP_gl_IP_1\n"
3877		"%BP_IP_W_2 = OpFMul %v4f32 %BP_v4f32_TC_2 %BP_gl_IP_2\n"
3878
3879		"%BP_pos_sum_0 = OpFAdd %v4f32 %BP_IP_W_0 %BP_IP_W_1\n"
3880		"%BP_pos_sum_1 = OpFAdd %v4f32 %BP_pos_sum_0 %BP_IP_W_2\n"
3881
3882		"OpStore %BP_gl_OPos %BP_pos_sum_1\n"
3883
3884		"%BP_IC_0 = OpLoad %v4f32 %BP_in_color_0\n"
3885		"%BP_IC_1 = OpLoad %v4f32 %BP_in_color_1\n"
3886		"%BP_IC_2 = OpLoad %v4f32 %BP_in_color_2\n"
3887
3888		"%BP_IC_W_0 = OpFMul %v4f32 %BP_v4f32_TC_0 %BP_IC_0\n"
3889		"%BP_IC_W_1 = OpFMul %v4f32 %BP_v4f32_TC_1 %BP_IC_1\n"
3890		"%BP_IC_W_2 = OpFMul %v4f32 %BP_v4f32_TC_2 %BP_IC_2\n"
3891
3892		"%BP_col_sum_0 = OpFAdd %v4f32 %BP_IC_W_0 %BP_IC_W_1\n"
3893		"%BP_col_sum_1 = OpFAdd %v4f32 %BP_col_sum_0 %BP_IC_W_2\n"
3894
3895		"%BP_clr_transformed = OpFunctionCall %v4f32 %test_code %BP_col_sum_1\n"
3896
3897		"OpStore %BP_out_color %BP_clr_transformed\n"
3898		"OpReturn\n"
3899		"OpFunctionEnd\n"
3900		"${testfun}\n";
3901	return tcu::StringTemplate(tessEvalBoilerplate).specialize(fragments);
3902}
3903
3904// Creates geometry-shader assembly by specializing a boilerplate StringTemplate
3905// on fragments, which must (at least) map "testfun" to an OpFunction definition
3906// for %test_code that takes and returns a %v4f32.  Boilerplate IDs are prefixed
3907// with "BP_" to avoid collisions with fragments.
3908//
3909// Derived from this GLSL:
3910//
3911// #version 450
3912// layout(triangles) in;
3913// layout(triangle_strip, max_vertices = 3) out;
3914//
3915// layout(location = 1) in vec4 in_color[];
3916// layout(location = 1) out vec4 out_color;
3917//
3918// void main() {
3919//   gl_Position = gl_in[0].gl_Position;
3920//   out_color = test_fun(in_color[0]);
3921//   EmitVertex();
3922//   gl_Position = gl_in[1].gl_Position;
3923//   out_color = test_fun(in_color[1]);
3924//   EmitVertex();
3925//   gl_Position = gl_in[2].gl_Position;
3926//   out_color = test_fun(in_color[2]);
3927//   EmitVertex();
3928//   EndPrimitive();
3929// }
3930string makeGeometryShaderAssembly(const map<string, string>& fragments)
3931{
3932	static const char geometryShaderBoilerplate[] =
3933		"OpCapability Geometry\n"
3934		"OpCapability ClipDistance\n"
3935		"OpCapability CullDistance\n"
3936		"OpMemoryModel Logical GLSL450\n"
3937		"OpEntryPoint Geometry %BP_main \"main\" %BP_out_gl_position %BP_gl_in %BP_out_color %BP_in_color\n"
3938		"OpExecutionMode %BP_main Triangles\n"
3939		"OpExecutionMode %BP_main OutputTriangleStrip\n"
3940		"OpExecutionMode %BP_main OutputVertices 3\n"
3941		"${debug:opt}\n"
3942		"OpName %BP_main \"main\"\n"
3943		"OpName %BP_per_vertex_in \"gl_PerVertex\"\n"
3944		"OpMemberName %BP_per_vertex_in 0 \"gl_Position\"\n"
3945		"OpMemberName %BP_per_vertex_in 1 \"gl_PointSize\"\n"
3946		"OpMemberName %BP_per_vertex_in 2 \"gl_ClipDistance\"\n"
3947		"OpMemberName %BP_per_vertex_in 3 \"gl_CullDistance\"\n"
3948		"OpName %BP_gl_in \"gl_in\"\n"
3949		"OpName %BP_out_color \"out_color\"\n"
3950		"OpName %BP_in_color \"in_color\"\n"
3951		"OpName %test_code \"testfun(vf4;\"\n"
3952		"OpDecorate %BP_out_gl_position BuiltIn Position\n"
3953		"OpMemberDecorate %BP_per_vertex_in 0 BuiltIn Position\n"
3954		"OpMemberDecorate %BP_per_vertex_in 1 BuiltIn PointSize\n"
3955		"OpMemberDecorate %BP_per_vertex_in 2 BuiltIn ClipDistance\n"
3956		"OpMemberDecorate %BP_per_vertex_in 3 BuiltIn CullDistance\n"
3957		"OpDecorate %BP_per_vertex_in Block\n"
3958		"OpDecorate %BP_out_color Location 1\n"
3959		"OpDecorate %BP_in_color Location 1\n"
3960		"${decoration:opt}\n"
3961		SPIRV_ASSEMBLY_TYPES
3962		SPIRV_ASSEMBLY_CONSTANTS
3963		SPIRV_ASSEMBLY_ARRAYS
3964		"%BP_per_vertex_in = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
3965		"%BP_a3_per_vertex_in = OpTypeArray %BP_per_vertex_in %c_u32_3\n"
3966		"%BP_ip_a3_per_vertex_in = OpTypePointer Input %BP_a3_per_vertex_in\n"
3967
3968		"%BP_gl_in = OpVariable %BP_ip_a3_per_vertex_in Input\n"
3969		"%BP_out_color = OpVariable %op_v4f32 Output\n"
3970		"%BP_in_color = OpVariable %ip_a3v4f32 Input\n"
3971		"%BP_out_gl_position = OpVariable %op_v4f32 Output\n"
3972		"${pre_main:opt}\n"
3973
3974		"%BP_main = OpFunction %void None %fun\n"
3975		"%BP_label = OpLabel\n"
3976		"%BP_gl_in_0_gl_position = OpAccessChain %ip_v4f32 %BP_gl_in %c_i32_0 %c_i32_0\n"
3977		"%BP_gl_in_1_gl_position = OpAccessChain %ip_v4f32 %BP_gl_in %c_i32_1 %c_i32_0\n"
3978		"%BP_gl_in_2_gl_position = OpAccessChain %ip_v4f32 %BP_gl_in %c_i32_2 %c_i32_0\n"
3979
3980		"%BP_in_position_0 = OpLoad %v4f32 %BP_gl_in_0_gl_position\n"
3981		"%BP_in_position_1 = OpLoad %v4f32 %BP_gl_in_1_gl_position\n"
3982		"%BP_in_position_2 = OpLoad %v4f32 %BP_gl_in_2_gl_position \n"
3983
3984		"%BP_in_color_0_ptr = OpAccessChain %ip_v4f32 %BP_in_color %c_i32_0\n"
3985		"%BP_in_color_1_ptr = OpAccessChain %ip_v4f32 %BP_in_color %c_i32_1\n"
3986		"%BP_in_color_2_ptr = OpAccessChain %ip_v4f32 %BP_in_color %c_i32_2\n"
3987
3988		"%BP_in_color_0 = OpLoad %v4f32 %BP_in_color_0_ptr\n"
3989		"%BP_in_color_1 = OpLoad %v4f32 %BP_in_color_1_ptr\n"
3990		"%BP_in_color_2 = OpLoad %v4f32 %BP_in_color_2_ptr\n"
3991
3992		"%BP_transformed_in_color_0 = OpFunctionCall %v4f32 %test_code %BP_in_color_0\n"
3993		"%BP_transformed_in_color_1 = OpFunctionCall %v4f32 %test_code %BP_in_color_1\n"
3994		"%BP_transformed_in_color_2 = OpFunctionCall %v4f32 %test_code %BP_in_color_2\n"
3995
3996
3997		"OpStore %BP_out_gl_position %BP_in_position_0\n"
3998		"OpStore %BP_out_color %BP_transformed_in_color_0\n"
3999		"OpEmitVertex\n"
4000
4001		"OpStore %BP_out_gl_position %BP_in_position_1\n"
4002		"OpStore %BP_out_color %BP_transformed_in_color_1\n"
4003		"OpEmitVertex\n"
4004
4005		"OpStore %BP_out_gl_position %BP_in_position_2\n"
4006		"OpStore %BP_out_color %BP_transformed_in_color_2\n"
4007		"OpEmitVertex\n"
4008
4009		"OpEndPrimitive\n"
4010		"OpReturn\n"
4011		"OpFunctionEnd\n"
4012		"${testfun}\n";
4013	return tcu::StringTemplate(geometryShaderBoilerplate).specialize(fragments);
4014}
4015
4016// Creates fragment-shader assembly by specializing a boilerplate StringTemplate
4017// on fragments, which must (at least) map "testfun" to an OpFunction definition
4018// for %test_code that takes and returns a %v4f32.  Boilerplate IDs are prefixed
4019// with "BP_" to avoid collisions with fragments.
4020//
4021// Derived from this GLSL:
4022//
4023// layout(location = 1) in highp vec4 vtxColor;
4024// layout(location = 0) out highp vec4 fragColor;
4025// highp vec4 testfun(highp vec4 x) { return x; }
4026// void main(void) { fragColor = testfun(vtxColor); }
4027//
4028// with modifications including passing vtxColor by value and ripping out
4029// testfun() definition.
4030string makeFragmentShaderAssembly(const map<string, string>& fragments)
4031{
4032	static const char fragmentShaderBoilerplate[] =
4033		"OpCapability Shader\n"
4034		"OpMemoryModel Logical GLSL450\n"
4035		"OpEntryPoint Fragment %BP_main \"main\" %BP_vtxColor %BP_fragColor\n"
4036		"OpExecutionMode %BP_main OriginUpperLeft\n"
4037		"${debug:opt}\n"
4038		"OpName %BP_main \"main\"\n"
4039		"OpName %BP_fragColor \"fragColor\"\n"
4040		"OpName %BP_vtxColor \"vtxColor\"\n"
4041		"OpName %test_code \"testfun(vf4;\"\n"
4042		"OpDecorate %BP_fragColor Location 0\n"
4043		"OpDecorate %BP_vtxColor Location 1\n"
4044		"${decoration:opt}\n"
4045		SPIRV_ASSEMBLY_TYPES
4046		SPIRV_ASSEMBLY_CONSTANTS
4047		SPIRV_ASSEMBLY_ARRAYS
4048		"%BP_fragColor = OpVariable %op_v4f32 Output\n"
4049		"%BP_vtxColor = OpVariable %ip_v4f32 Input\n"
4050		"${pre_main:opt}\n"
4051		"%BP_main = OpFunction %void None %fun\n"
4052		"%BP_label_main = OpLabel\n"
4053		"%BP_tmp1 = OpLoad %v4f32 %BP_vtxColor\n"
4054		"%BP_tmp2 = OpFunctionCall %v4f32 %test_code %BP_tmp1\n"
4055		"OpStore %BP_fragColor %BP_tmp2\n"
4056		"OpReturn\n"
4057		"OpFunctionEnd\n"
4058		"${testfun}\n";
4059	return tcu::StringTemplate(fragmentShaderBoilerplate).specialize(fragments);
4060}
4061
4062// Creates fragments that specialize into a simple pass-through shader (of any kind).
4063map<string, string> passthruFragments(void)
4064{
4065	map<string, string> fragments;
4066	fragments["testfun"] =
4067		// A %test_code function that returns its argument unchanged.
4068		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
4069		"%param1 = OpFunctionParameter %v4f32\n"
4070		"%label_testfun = OpLabel\n"
4071		"OpReturnValue %param1\n"
4072		"OpFunctionEnd\n";
4073	return fragments;
4074}
4075
4076// Adds shader assembly text to dst.spirvAsmSources for all shader kinds.
4077// Vertex shader gets custom code from context, the rest are pass-through.
4078void addShaderCodeCustomVertex(vk::SourceCollections& dst, InstanceContext context)
4079{
4080	map<string, string> passthru = passthruFragments();
4081	dst.spirvAsmSources.add("vert") << makeVertexShaderAssembly(context.testCodeFragments);
4082	dst.spirvAsmSources.add("frag") << makeFragmentShaderAssembly(passthru);
4083}
4084
4085// Adds shader assembly text to dst.spirvAsmSources for all shader kinds.
4086// Tessellation control shader gets custom code from context, the rest are
4087// pass-through.
4088void addShaderCodeCustomTessControl(vk::SourceCollections& dst, InstanceContext context)
4089{
4090	map<string, string> passthru = passthruFragments();
4091	dst.spirvAsmSources.add("vert") << makeVertexShaderAssembly(passthru);
4092	dst.spirvAsmSources.add("tessc") << makeTessControlShaderAssembly(context.testCodeFragments);
4093	dst.spirvAsmSources.add("tesse") << makeTessEvalShaderAssembly(passthru);
4094	dst.spirvAsmSources.add("frag") << makeFragmentShaderAssembly(passthru);
4095}
4096
4097// Adds shader assembly text to dst.spirvAsmSources for all shader kinds.
4098// Tessellation evaluation shader gets custom code from context, the rest are
4099// pass-through.
4100void addShaderCodeCustomTessEval(vk::SourceCollections& dst, InstanceContext context)
4101{
4102	map<string, string> passthru = passthruFragments();
4103	dst.spirvAsmSources.add("vert") << makeVertexShaderAssembly(passthru);
4104	dst.spirvAsmSources.add("tessc") << makeTessControlShaderAssembly(passthru);
4105	dst.spirvAsmSources.add("tesse") << makeTessEvalShaderAssembly(context.testCodeFragments);
4106	dst.spirvAsmSources.add("frag") << makeFragmentShaderAssembly(passthru);
4107}
4108
4109// Adds shader assembly text to dst.spirvAsmSources for all shader kinds.
4110// Geometry shader gets custom code from context, the rest are pass-through.
4111void addShaderCodeCustomGeometry(vk::SourceCollections& dst, InstanceContext context)
4112{
4113	map<string, string> passthru = passthruFragments();
4114	dst.spirvAsmSources.add("vert") << makeVertexShaderAssembly(passthru);
4115	dst.spirvAsmSources.add("geom") << makeGeometryShaderAssembly(context.testCodeFragments);
4116	dst.spirvAsmSources.add("frag") << makeFragmentShaderAssembly(passthru);
4117}
4118
4119// Adds shader assembly text to dst.spirvAsmSources for all shader kinds.
4120// Fragment shader gets custom code from context, the rest are pass-through.
4121void addShaderCodeCustomFragment(vk::SourceCollections& dst, InstanceContext context)
4122{
4123	map<string, string> passthru = passthruFragments();
4124	dst.spirvAsmSources.add("vert") << makeVertexShaderAssembly(passthru);
4125	dst.spirvAsmSources.add("frag") << makeFragmentShaderAssembly(context.testCodeFragments);
4126}
4127
4128void createCombinedModule(vk::SourceCollections& dst, InstanceContext)
4129{
4130	// \todo [2015-12-07 awoloszyn] Make tessellation / geometry conditional
4131	// \todo [2015-12-07 awoloszyn] Remove OpName and OpMemberName at some point
4132	dst.spirvAsmSources.add("module") <<
4133		"OpCapability Shader\n"
4134		"OpCapability ClipDistance\n"
4135		"OpCapability CullDistance\n"
4136		"OpCapability Geometry\n"
4137		"OpCapability Tessellation\n"
4138		"OpMemoryModel Logical GLSL450\n"
4139
4140		"OpEntryPoint Vertex %vert_main \"main\" %vert_Position %vert_vtxColor %vert_color %vert_vtxPosition %vert_vertex_id %vert_instance_id\n"
4141		"OpEntryPoint Geometry %geom_main \"main\" %geom_out_gl_position %geom_gl_in %geom_out_color %geom_in_color\n"
4142		"OpEntryPoint TessellationControl %tessc_main \"main\" %tessc_out_color %tessc_gl_InvocationID %tessc_in_color %tessc_out_position %tessc_in_position %tessc_gl_TessLevelOuter %tessc_gl_TessLevelInner\n"
4143		"OpEntryPoint TessellationEvaluation %tesse_main \"main\" %tesse_stream %tesse_gl_tessCoord %tesse_in_position %tesse_out_color %tesse_in_color \n"
4144		"OpEntryPoint Fragment %frag_main \"main\" %frag_vtxColor %frag_fragColor\n"
4145
4146		"OpExecutionMode %geom_main Triangles\n"
4147		"OpExecutionMode %geom_main OutputTriangleStrip\n"
4148		"OpExecutionMode %geom_main OutputVertices 3\n"
4149
4150		"OpExecutionMode %tessc_main OutputVertices 3\n"
4151
4152		"OpExecutionMode %tesse_main Triangles\n"
4153
4154		"OpExecutionMode %frag_main OriginUpperLeft\n"
4155
4156		"OpName %vert_main \"main\"\n"
4157		"OpName %vert_vtxPosition \"vtxPosition\"\n"
4158		"OpName %vert_Position \"position\"\n"
4159		"OpName %vert_vtxColor \"vtxColor\"\n"
4160		"OpName %vert_color \"color\"\n"
4161		"OpName %vert_vertex_id \"gl_VertexIndex\"\n"
4162		"OpName %vert_instance_id \"gl_InstanceIndex\"\n"
4163		"OpName %geom_main \"main\"\n"
4164		"OpName %geom_per_vertex_in \"gl_PerVertex\"\n"
4165		"OpMemberName %geom_per_vertex_in 0 \"gl_Position\"\n"
4166		"OpMemberName %geom_per_vertex_in 1 \"gl_PointSize\"\n"
4167		"OpMemberName %geom_per_vertex_in 2 \"gl_ClipDistance\"\n"
4168		"OpMemberName %geom_per_vertex_in 3 \"gl_CullDistance\"\n"
4169		"OpName %geom_gl_in \"gl_in\"\n"
4170		"OpName %geom_out_color \"out_color\"\n"
4171		"OpName %geom_in_color \"in_color\"\n"
4172		"OpName %tessc_main \"main\"\n"
4173		"OpName %tessc_out_color \"out_color\"\n"
4174		"OpName %tessc_gl_InvocationID \"gl_InvocationID\"\n"
4175		"OpName %tessc_in_color \"in_color\"\n"
4176		"OpName %tessc_out_position \"out_position\"\n"
4177		"OpName %tessc_in_position \"in_position\"\n"
4178		"OpName %tessc_gl_TessLevelOuter \"gl_TessLevelOuter\"\n"
4179		"OpName %tessc_gl_TessLevelInner \"gl_TessLevelInner\"\n"
4180		"OpName %tesse_main \"main\"\n"
4181		"OpName %tesse_per_vertex_out \"gl_PerVertex\"\n"
4182		"OpMemberName %tesse_per_vertex_out 0 \"gl_Position\"\n"
4183		"OpMemberName %tesse_per_vertex_out 1 \"gl_PointSize\"\n"
4184		"OpMemberName %tesse_per_vertex_out 2 \"gl_ClipDistance\"\n"
4185		"OpMemberName %tesse_per_vertex_out 3 \"gl_CullDistance\"\n"
4186		"OpName %tesse_stream \"\"\n"
4187		"OpName %tesse_gl_tessCoord \"gl_TessCoord\"\n"
4188		"OpName %tesse_in_position \"in_position\"\n"
4189		"OpName %tesse_out_color \"out_color\"\n"
4190		"OpName %tesse_in_color \"in_color\"\n"
4191		"OpName %frag_main \"main\"\n"
4192		"OpName %frag_fragColor \"fragColor\"\n"
4193		"OpName %frag_vtxColor \"vtxColor\"\n"
4194
4195		"; Vertex decorations\n"
4196		"OpDecorate %vert_vtxPosition Location 2\n"
4197		"OpDecorate %vert_Position Location 0\n"
4198		"OpDecorate %vert_vtxColor Location 1\n"
4199		"OpDecorate %vert_color Location 1\n"
4200		"OpDecorate %vert_vertex_id BuiltIn VertexIndex\n"
4201		"OpDecorate %vert_instance_id BuiltIn InstanceIndex\n"
4202
4203		"; Geometry decorations\n"
4204		"OpDecorate %geom_out_gl_position BuiltIn Position\n"
4205		"OpMemberDecorate %geom_per_vertex_in 0 BuiltIn Position\n"
4206		"OpMemberDecorate %geom_per_vertex_in 1 BuiltIn PointSize\n"
4207		"OpMemberDecorate %geom_per_vertex_in 2 BuiltIn ClipDistance\n"
4208		"OpMemberDecorate %geom_per_vertex_in 3 BuiltIn CullDistance\n"
4209		"OpDecorate %geom_per_vertex_in Block\n"
4210		"OpDecorate %geom_out_color Location 1\n"
4211		"OpDecorate %geom_in_color Location 1\n"
4212
4213		"; Tessellation Control decorations\n"
4214		"OpDecorate %tessc_out_color Location 1\n"
4215		"OpDecorate %tessc_gl_InvocationID BuiltIn InvocationId\n"
4216		"OpDecorate %tessc_in_color Location 1\n"
4217		"OpDecorate %tessc_out_position Location 2\n"
4218		"OpDecorate %tessc_in_position Location 2\n"
4219		"OpDecorate %tessc_gl_TessLevelOuter Patch\n"
4220		"OpDecorate %tessc_gl_TessLevelOuter BuiltIn TessLevelOuter\n"
4221		"OpDecorate %tessc_gl_TessLevelInner Patch\n"
4222		"OpDecorate %tessc_gl_TessLevelInner BuiltIn TessLevelInner\n"
4223
4224		"; Tessellation Evaluation decorations\n"
4225		"OpMemberDecorate %tesse_per_vertex_out 0 BuiltIn Position\n"
4226		"OpMemberDecorate %tesse_per_vertex_out 1 BuiltIn PointSize\n"
4227		"OpMemberDecorate %tesse_per_vertex_out 2 BuiltIn ClipDistance\n"
4228		"OpMemberDecorate %tesse_per_vertex_out 3 BuiltIn CullDistance\n"
4229		"OpDecorate %tesse_per_vertex_out Block\n"
4230		"OpDecorate %tesse_gl_tessCoord BuiltIn TessCoord\n"
4231		"OpDecorate %tesse_in_position Location 2\n"
4232		"OpDecorate %tesse_out_color Location 1\n"
4233		"OpDecorate %tesse_in_color Location 1\n"
4234
4235		"; Fragment decorations\n"
4236		"OpDecorate %frag_fragColor Location 0\n"
4237		"OpDecorate %frag_vtxColor Location 1\n"
4238
4239		SPIRV_ASSEMBLY_TYPES
4240		SPIRV_ASSEMBLY_CONSTANTS
4241		SPIRV_ASSEMBLY_ARRAYS
4242
4243		"; Vertex Variables\n"
4244		"%vert_vtxPosition = OpVariable %op_v4f32 Output\n"
4245		"%vert_Position = OpVariable %ip_v4f32 Input\n"
4246		"%vert_vtxColor = OpVariable %op_v4f32 Output\n"
4247		"%vert_color = OpVariable %ip_v4f32 Input\n"
4248		"%vert_vertex_id = OpVariable %ip_i32 Input\n"
4249		"%vert_instance_id = OpVariable %ip_i32 Input\n"
4250
4251		"; Geometry Variables\n"
4252		"%geom_per_vertex_in = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
4253		"%geom_a3_per_vertex_in = OpTypeArray %geom_per_vertex_in %c_u32_3\n"
4254		"%geom_ip_a3_per_vertex_in = OpTypePointer Input %geom_a3_per_vertex_in\n"
4255		"%geom_gl_in = OpVariable %geom_ip_a3_per_vertex_in Input\n"
4256		"%geom_out_color = OpVariable %op_v4f32 Output\n"
4257		"%geom_in_color = OpVariable %ip_a3v4f32 Input\n"
4258		"%geom_out_gl_position = OpVariable %op_v4f32 Output\n"
4259
4260		"; Tessellation Control Variables\n"
4261		"%tessc_out_color = OpVariable %op_a3v4f32 Output\n"
4262		"%tessc_gl_InvocationID = OpVariable %ip_i32 Input\n"
4263		"%tessc_in_color = OpVariable %ip_a32v4f32 Input\n"
4264		"%tessc_out_position = OpVariable %op_a3v4f32 Output\n"
4265		"%tessc_in_position = OpVariable %ip_a32v4f32 Input\n"
4266		"%tessc_gl_TessLevelOuter = OpVariable %op_a4f32 Output\n"
4267		"%tessc_gl_TessLevelInner = OpVariable %op_a2f32 Output\n"
4268
4269		"; Tessellation Evaluation Decorations\n"
4270		"%tesse_per_vertex_out = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
4271		"%tesse_op_per_vertex_out = OpTypePointer Output %tesse_per_vertex_out\n"
4272		"%tesse_stream = OpVariable %tesse_op_per_vertex_out Output\n"
4273		"%tesse_gl_tessCoord = OpVariable %ip_v3f32 Input\n"
4274		"%tesse_in_position = OpVariable %ip_a32v4f32 Input\n"
4275		"%tesse_out_color = OpVariable %op_v4f32 Output\n"
4276		"%tesse_in_color = OpVariable %ip_a32v4f32 Input\n"
4277
4278		"; Fragment Variables\n"
4279		"%frag_fragColor = OpVariable %op_v4f32 Output\n"
4280		"%frag_vtxColor = OpVariable %ip_v4f32 Input\n"
4281
4282		"; Vertex Entry\n"
4283		"%vert_main = OpFunction %void None %fun\n"
4284		"%vert_label = OpLabel\n"
4285		"%vert_tmp_position = OpLoad %v4f32 %vert_Position\n"
4286		"OpStore %vert_vtxPosition %vert_tmp_position\n"
4287		"%vert_tmp_color = OpLoad %v4f32 %vert_color\n"
4288		"OpStore %vert_vtxColor %vert_tmp_color\n"
4289		"OpReturn\n"
4290		"OpFunctionEnd\n"
4291
4292		"; Geometry Entry\n"
4293		"%geom_main = OpFunction %void None %fun\n"
4294		"%geom_label = OpLabel\n"
4295		"%geom_gl_in_0_gl_position = OpAccessChain %ip_v4f32 %geom_gl_in %c_i32_0 %c_i32_0\n"
4296		"%geom_gl_in_1_gl_position = OpAccessChain %ip_v4f32 %geom_gl_in %c_i32_1 %c_i32_0\n"
4297		"%geom_gl_in_2_gl_position = OpAccessChain %ip_v4f32 %geom_gl_in %c_i32_2 %c_i32_0\n"
4298		"%geom_in_position_0 = OpLoad %v4f32 %geom_gl_in_0_gl_position\n"
4299		"%geom_in_position_1 = OpLoad %v4f32 %geom_gl_in_1_gl_position\n"
4300		"%geom_in_position_2 = OpLoad %v4f32 %geom_gl_in_2_gl_position \n"
4301		"%geom_in_color_0_ptr = OpAccessChain %ip_v4f32 %geom_in_color %c_i32_0\n"
4302		"%geom_in_color_1_ptr = OpAccessChain %ip_v4f32 %geom_in_color %c_i32_1\n"
4303		"%geom_in_color_2_ptr = OpAccessChain %ip_v4f32 %geom_in_color %c_i32_2\n"
4304		"%geom_in_color_0 = OpLoad %v4f32 %geom_in_color_0_ptr\n"
4305		"%geom_in_color_1 = OpLoad %v4f32 %geom_in_color_1_ptr\n"
4306		"%geom_in_color_2 = OpLoad %v4f32 %geom_in_color_2_ptr\n"
4307		"OpStore %geom_out_gl_position %geom_in_position_0\n"
4308		"OpStore %geom_out_color %geom_in_color_0\n"
4309		"OpEmitVertex\n"
4310		"OpStore %geom_out_gl_position %geom_in_position_1\n"
4311		"OpStore %geom_out_color %geom_in_color_1\n"
4312		"OpEmitVertex\n"
4313		"OpStore %geom_out_gl_position %geom_in_position_2\n"
4314		"OpStore %geom_out_color %geom_in_color_2\n"
4315		"OpEmitVertex\n"
4316		"OpEndPrimitive\n"
4317		"OpReturn\n"
4318		"OpFunctionEnd\n"
4319
4320		"; Tessellation Control Entry\n"
4321		"%tessc_main = OpFunction %void None %fun\n"
4322		"%tessc_label = OpLabel\n"
4323		"%tessc_invocation_id = OpLoad %i32 %tessc_gl_InvocationID\n"
4324		"%tessc_in_color_ptr = OpAccessChain %ip_v4f32 %tessc_in_color %tessc_invocation_id\n"
4325		"%tessc_in_position_ptr = OpAccessChain %ip_v4f32 %tessc_in_position %tessc_invocation_id\n"
4326		"%tessc_in_color_val = OpLoad %v4f32 %tessc_in_color_ptr\n"
4327		"%tessc_in_position_val = OpLoad %v4f32 %tessc_in_position_ptr\n"
4328		"%tessc_out_color_ptr = OpAccessChain %op_v4f32 %tessc_out_color %tessc_invocation_id\n"
4329		"%tessc_out_position_ptr = OpAccessChain %op_v4f32 %tessc_out_position %tessc_invocation_id\n"
4330		"OpStore %tessc_out_color_ptr %tessc_in_color_val\n"
4331		"OpStore %tessc_out_position_ptr %tessc_in_position_val\n"
4332		"%tessc_is_first_invocation = OpIEqual %bool %tessc_invocation_id %c_i32_0\n"
4333		"OpSelectionMerge %tessc_merge_label None\n"
4334		"OpBranchConditional %tessc_is_first_invocation %tessc_first_invocation %tessc_merge_label\n"
4335		"%tessc_first_invocation = OpLabel\n"
4336		"%tessc_tess_outer_0 = OpAccessChain %op_f32 %tessc_gl_TessLevelOuter %c_i32_0\n"
4337		"%tessc_tess_outer_1 = OpAccessChain %op_f32 %tessc_gl_TessLevelOuter %c_i32_1\n"
4338		"%tessc_tess_outer_2 = OpAccessChain %op_f32 %tessc_gl_TessLevelOuter %c_i32_2\n"
4339		"%tessc_tess_inner = OpAccessChain %op_f32 %tessc_gl_TessLevelInner %c_i32_0\n"
4340		"OpStore %tessc_tess_outer_0 %c_f32_1\n"
4341		"OpStore %tessc_tess_outer_1 %c_f32_1\n"
4342		"OpStore %tessc_tess_outer_2 %c_f32_1\n"
4343		"OpStore %tessc_tess_inner %c_f32_1\n"
4344		"OpBranch %tessc_merge_label\n"
4345		"%tessc_merge_label = OpLabel\n"
4346		"OpReturn\n"
4347		"OpFunctionEnd\n"
4348
4349		"; Tessellation Evaluation Entry\n"
4350		"%tesse_main = OpFunction %void None %fun\n"
4351		"%tesse_label = OpLabel\n"
4352		"%tesse_tc_0_ptr = OpAccessChain %ip_f32 %tesse_gl_tessCoord %c_u32_0\n"
4353		"%tesse_tc_1_ptr = OpAccessChain %ip_f32 %tesse_gl_tessCoord %c_u32_1\n"
4354		"%tesse_tc_2_ptr = OpAccessChain %ip_f32 %tesse_gl_tessCoord %c_u32_2\n"
4355		"%tesse_tc_0 = OpLoad %f32 %tesse_tc_0_ptr\n"
4356		"%tesse_tc_1 = OpLoad %f32 %tesse_tc_1_ptr\n"
4357		"%tesse_tc_2 = OpLoad %f32 %tesse_tc_2_ptr\n"
4358		"%tesse_in_pos_0_ptr = OpAccessChain %ip_v4f32 %tesse_in_position %c_i32_0\n"
4359		"%tesse_in_pos_1_ptr = OpAccessChain %ip_v4f32 %tesse_in_position %c_i32_1\n"
4360		"%tesse_in_pos_2_ptr = OpAccessChain %ip_v4f32 %tesse_in_position %c_i32_2\n"
4361		"%tesse_in_pos_0 = OpLoad %v4f32 %tesse_in_pos_0_ptr\n"
4362		"%tesse_in_pos_1 = OpLoad %v4f32 %tesse_in_pos_1_ptr\n"
4363		"%tesse_in_pos_2 = OpLoad %v4f32 %tesse_in_pos_2_ptr\n"
4364		"%tesse_in_pos_0_weighted = OpVectorTimesScalar %v4f32 %tesse_tc_0 %tesse_in_pos_0\n"
4365		"%tesse_in_pos_1_weighted = OpVectorTimesScalar %v4f32 %tesse_tc_1 %tesse_in_pos_1\n"
4366		"%tesse_in_pos_2_weighted = OpVectorTimesScalar %v4f32 %tesse_tc_2 %tesse_in_pos_2\n"
4367		"%tesse_out_pos_ptr = OpAccessChain %op_v4f32 %tesse_stream %c_i32_0\n"
4368		"%tesse_in_pos_0_plus_pos_1 = OpFAdd %v4f32 %tesse_in_pos_0_weighted %tesse_in_pos_1_weighted\n"
4369		"%tesse_computed_out = OpFAdd %v4f32 %tesse_in_pos_0_plus_pos_1 %tesse_in_pos_2_weighted\n"
4370		"OpStore %tesse_out_pos_ptr %tesse_computed_out\n"
4371		"%tesse_in_clr_0_ptr = OpAccessChain %ip_v4f32 %tesse_in_color %c_i32_0\n"
4372		"%tesse_in_clr_1_ptr = OpAccessChain %ip_v4f32 %tesse_in_color %c_i32_1\n"
4373		"%tesse_in_clr_2_ptr = OpAccessChain %ip_v4f32 %tesse_in_color %c_i32_2\n"
4374		"%tesse_in_clr_0 = OpLoad %v4f32 %tesse_in_clr_0_ptr\n"
4375		"%tesse_in_clr_1 = OpLoad %v4f32 %tesse_in_clr_1_ptr\n"
4376		"%tesse_in_clr_2 = OpLoad %v4f32 %tesse_in_clr_2_ptr\n"
4377		"%tesse_in_clr_0_weighted = OpVectorTimesScalar %v4f32 %tesse_tc_0 %tesse_in_clr_0\n"
4378		"%tesse_in_clr_1_weighted = OpVectorTimesScalar %v4f32 %tesse_tc_1 %tesse_in_clr_1\n"
4379		"%tesse_in_clr_2_weighted = OpVectorTimesScalar %v4f32 %tesse_tc_2 %tesse_in_clr_2\n"
4380		"%tesse_in_clr_0_plus_col_1 = OpFAdd %v4f32 %tesse_in_clr_0_weighted %tesse_in_clr_1_weighted\n"
4381		"%tesse_computed_clr = OpFAdd %v4f32 %tesse_in_clr_0_plus_col_1 %tesse_in_clr_2_weighted\n"
4382		"OpStore %tesse_out_color %tesse_computed_clr\n"
4383		"OpReturn\n"
4384		"OpFunctionEnd\n"
4385
4386		"; Fragment Entry\n"
4387		"%frag_main = OpFunction %void None %fun\n"
4388		"%frag_label_main = OpLabel\n"
4389		"%frag_tmp1 = OpLoad %v4f32 %frag_vtxColor\n"
4390		"OpStore %frag_fragColor %frag_tmp1\n"
4391		"OpReturn\n"
4392		"OpFunctionEnd\n";
4393}
4394
4395// This has two shaders of each stage. The first
4396// is a passthrough, the second inverts the color.
4397void createMultipleEntries(vk::SourceCollections& dst, InstanceContext)
4398{
4399	dst.spirvAsmSources.add("vert") <<
4400	// This module contains 2 vertex shaders. One that is a passthrough
4401	// and a second that inverts the color of the output (1.0 - color).
4402		"OpCapability Shader\n"
4403		"OpMemoryModel Logical GLSL450\n"
4404		"OpEntryPoint Vertex %main \"vert1\" %Position %vtxColor %color %vtxPosition %vertex_id %instance_id\n"
4405		"OpEntryPoint Vertex %main2 \"vert2\" %Position %vtxColor %color %vtxPosition %vertex_id %instance_id\n"
4406
4407		"OpName %main \"vert1\"\n"
4408		"OpName %main2 \"vert2\"\n"
4409		"OpName %vtxPosition \"vtxPosition\"\n"
4410		"OpName %Position \"position\"\n"
4411		"OpName %vtxColor \"vtxColor\"\n"
4412		"OpName %color \"color\"\n"
4413		"OpName %vertex_id \"gl_VertexIndex\"\n"
4414		"OpName %instance_id \"gl_InstanceIndex\"\n"
4415
4416		"OpDecorate %vtxPosition Location 2\n"
4417		"OpDecorate %Position Location 0\n"
4418		"OpDecorate %vtxColor Location 1\n"
4419		"OpDecorate %color Location 1\n"
4420		"OpDecorate %vertex_id BuiltIn VertexIndex\n"
4421		"OpDecorate %instance_id BuiltIn InstanceIndex\n"
4422		SPIRV_ASSEMBLY_TYPES
4423		SPIRV_ASSEMBLY_CONSTANTS
4424		SPIRV_ASSEMBLY_ARRAYS
4425		"%cval = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_0\n"
4426		"%vtxPosition = OpVariable %op_v4f32 Output\n"
4427		"%Position = OpVariable %ip_v4f32 Input\n"
4428		"%vtxColor = OpVariable %op_v4f32 Output\n"
4429		"%color = OpVariable %ip_v4f32 Input\n"
4430		"%vertex_id = OpVariable %ip_i32 Input\n"
4431		"%instance_id = OpVariable %ip_i32 Input\n"
4432
4433		"%main = OpFunction %void None %fun\n"
4434		"%label = OpLabel\n"
4435		"%tmp_position = OpLoad %v4f32 %Position\n"
4436		"OpStore %vtxPosition %tmp_position\n"
4437		"%tmp_color = OpLoad %v4f32 %color\n"
4438		"OpStore %vtxColor %tmp_color\n"
4439		"OpReturn\n"
4440		"OpFunctionEnd\n"
4441
4442		"%main2 = OpFunction %void None %fun\n"
4443		"%label2 = OpLabel\n"
4444		"%tmp_position2 = OpLoad %v4f32 %Position\n"
4445		"OpStore %vtxPosition %tmp_position2\n"
4446		"%tmp_color2 = OpLoad %v4f32 %color\n"
4447		"%tmp_color3 = OpFSub %v4f32 %cval %tmp_color2\n"
4448		"%tmp_color4 = OpVectorInsertDynamic %v4f32 %tmp_color3 %c_f32_1 %c_i32_3\n"
4449		"OpStore %vtxColor %tmp_color4\n"
4450		"OpReturn\n"
4451		"OpFunctionEnd\n";
4452
4453	dst.spirvAsmSources.add("frag") <<
4454		// This is a single module that contains 2 fragment shaders.
4455		// One that passes color through and the other that inverts the output
4456		// color (1.0 - color).
4457		"OpCapability Shader\n"
4458		"OpMemoryModel Logical GLSL450\n"
4459		"OpEntryPoint Fragment %main \"frag1\" %vtxColor %fragColor\n"
4460		"OpEntryPoint Fragment %main2 \"frag2\" %vtxColor %fragColor\n"
4461		"OpExecutionMode %main OriginUpperLeft\n"
4462		"OpExecutionMode %main2 OriginUpperLeft\n"
4463
4464		"OpName %main \"frag1\"\n"
4465		"OpName %main2 \"frag2\"\n"
4466		"OpName %fragColor \"fragColor\"\n"
4467		"OpName %vtxColor \"vtxColor\"\n"
4468		"OpDecorate %fragColor Location 0\n"
4469		"OpDecorate %vtxColor Location 1\n"
4470		SPIRV_ASSEMBLY_TYPES
4471		SPIRV_ASSEMBLY_CONSTANTS
4472		SPIRV_ASSEMBLY_ARRAYS
4473		"%cval = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_0\n"
4474		"%fragColor = OpVariable %op_v4f32 Output\n"
4475		"%vtxColor = OpVariable %ip_v4f32 Input\n"
4476
4477		"%main = OpFunction %void None %fun\n"
4478		"%label_main = OpLabel\n"
4479		"%tmp1 = OpLoad %v4f32 %vtxColor\n"
4480		"OpStore %fragColor %tmp1\n"
4481		"OpReturn\n"
4482		"OpFunctionEnd\n"
4483
4484		"%main2 = OpFunction %void None %fun\n"
4485		"%label_main2 = OpLabel\n"
4486		"%tmp2 = OpLoad %v4f32 %vtxColor\n"
4487		"%tmp3 = OpFSub %v4f32 %cval %tmp2\n"
4488		"%tmp4 = OpVectorInsertDynamic %v4f32 %tmp3 %c_f32_1 %c_i32_3\n"
4489		"OpStore %fragColor %tmp4\n"
4490		"OpReturn\n"
4491		"OpFunctionEnd\n";
4492
4493	dst.spirvAsmSources.add("geom") <<
4494		"OpCapability Geometry\n"
4495		"OpCapability ClipDistance\n"
4496		"OpCapability CullDistance\n"
4497		"OpMemoryModel Logical GLSL450\n"
4498		"OpEntryPoint Geometry %geom1_main \"geom1\" %out_gl_position %gl_in %out_color %in_color\n"
4499		"OpEntryPoint Geometry %geom2_main \"geom2\" %out_gl_position %gl_in %out_color %in_color\n"
4500		"OpExecutionMode %geom1_main Triangles\n"
4501		"OpExecutionMode %geom2_main Triangles\n"
4502		"OpExecutionMode %geom1_main OutputTriangleStrip\n"
4503		"OpExecutionMode %geom2_main OutputTriangleStrip\n"
4504		"OpExecutionMode %geom1_main OutputVertices 3\n"
4505		"OpExecutionMode %geom2_main OutputVertices 3\n"
4506		"OpName %geom1_main \"geom1\"\n"
4507		"OpName %geom2_main \"geom2\"\n"
4508		"OpName %per_vertex_in \"gl_PerVertex\"\n"
4509		"OpMemberName %per_vertex_in 0 \"gl_Position\"\n"
4510		"OpMemberName %per_vertex_in 1 \"gl_PointSize\"\n"
4511		"OpMemberName %per_vertex_in 2 \"gl_ClipDistance\"\n"
4512		"OpMemberName %per_vertex_in 3 \"gl_CullDistance\"\n"
4513		"OpName %gl_in \"gl_in\"\n"
4514		"OpName %out_color \"out_color\"\n"
4515		"OpName %in_color \"in_color\"\n"
4516		"OpDecorate %out_gl_position BuiltIn Position\n"
4517		"OpMemberDecorate %per_vertex_in 0 BuiltIn Position\n"
4518		"OpMemberDecorate %per_vertex_in 1 BuiltIn PointSize\n"
4519		"OpMemberDecorate %per_vertex_in 2 BuiltIn ClipDistance\n"
4520		"OpMemberDecorate %per_vertex_in 3 BuiltIn CullDistance\n"
4521		"OpDecorate %per_vertex_in Block\n"
4522		"OpDecorate %out_color Location 1\n"
4523		"OpDecorate %in_color Location 1\n"
4524		SPIRV_ASSEMBLY_TYPES
4525		SPIRV_ASSEMBLY_CONSTANTS
4526		SPIRV_ASSEMBLY_ARRAYS
4527		"%cval = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_0\n"
4528		"%per_vertex_in = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
4529		"%a3_per_vertex_in = OpTypeArray %per_vertex_in %c_u32_3\n"
4530		"%ip_a3_per_vertex_in = OpTypePointer Input %a3_per_vertex_in\n"
4531		"%gl_in = OpVariable %ip_a3_per_vertex_in Input\n"
4532		"%out_color = OpVariable %op_v4f32 Output\n"
4533		"%in_color = OpVariable %ip_a3v4f32 Input\n"
4534		"%out_gl_position = OpVariable %op_v4f32 Output\n"
4535
4536		"%geom1_main = OpFunction %void None %fun\n"
4537		"%geom1_label = OpLabel\n"
4538		"%geom1_gl_in_0_gl_position = OpAccessChain %ip_v4f32 %gl_in %c_i32_0 %c_i32_0\n"
4539		"%geom1_gl_in_1_gl_position = OpAccessChain %ip_v4f32 %gl_in %c_i32_1 %c_i32_0\n"
4540		"%geom1_gl_in_2_gl_position = OpAccessChain %ip_v4f32 %gl_in %c_i32_2 %c_i32_0\n"
4541		"%geom1_in_position_0 = OpLoad %v4f32 %geom1_gl_in_0_gl_position\n"
4542		"%geom1_in_position_1 = OpLoad %v4f32 %geom1_gl_in_1_gl_position\n"
4543		"%geom1_in_position_2 = OpLoad %v4f32 %geom1_gl_in_2_gl_position \n"
4544		"%geom1_in_color_0_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_0\n"
4545		"%geom1_in_color_1_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_1\n"
4546		"%geom1_in_color_2_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_2\n"
4547		"%geom1_in_color_0 = OpLoad %v4f32 %geom1_in_color_0_ptr\n"
4548		"%geom1_in_color_1 = OpLoad %v4f32 %geom1_in_color_1_ptr\n"
4549		"%geom1_in_color_2 = OpLoad %v4f32 %geom1_in_color_2_ptr\n"
4550		"OpStore %out_gl_position %geom1_in_position_0\n"
4551		"OpStore %out_color %geom1_in_color_0\n"
4552		"OpEmitVertex\n"
4553		"OpStore %out_gl_position %geom1_in_position_1\n"
4554		"OpStore %out_color %geom1_in_color_1\n"
4555		"OpEmitVertex\n"
4556		"OpStore %out_gl_position %geom1_in_position_2\n"
4557		"OpStore %out_color %geom1_in_color_2\n"
4558		"OpEmitVertex\n"
4559		"OpEndPrimitive\n"
4560		"OpReturn\n"
4561		"OpFunctionEnd\n"
4562
4563		"%geom2_main = OpFunction %void None %fun\n"
4564		"%geom2_label = OpLabel\n"
4565		"%geom2_gl_in_0_gl_position = OpAccessChain %ip_v4f32 %gl_in %c_i32_0 %c_i32_0\n"
4566		"%geom2_gl_in_1_gl_position = OpAccessChain %ip_v4f32 %gl_in %c_i32_1 %c_i32_0\n"
4567		"%geom2_gl_in_2_gl_position = OpAccessChain %ip_v4f32 %gl_in %c_i32_2 %c_i32_0\n"
4568		"%geom2_in_position_0 = OpLoad %v4f32 %geom2_gl_in_0_gl_position\n"
4569		"%geom2_in_position_1 = OpLoad %v4f32 %geom2_gl_in_1_gl_position\n"
4570		"%geom2_in_position_2 = OpLoad %v4f32 %geom2_gl_in_2_gl_position \n"
4571		"%geom2_in_color_0_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_0\n"
4572		"%geom2_in_color_1_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_1\n"
4573		"%geom2_in_color_2_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_2\n"
4574		"%geom2_in_color_0 = OpLoad %v4f32 %geom2_in_color_0_ptr\n"
4575		"%geom2_in_color_1 = OpLoad %v4f32 %geom2_in_color_1_ptr\n"
4576		"%geom2_in_color_2 = OpLoad %v4f32 %geom2_in_color_2_ptr\n"
4577		"%geom2_transformed_in_color_0 = OpFSub %v4f32 %cval %geom2_in_color_0\n"
4578		"%geom2_transformed_in_color_1 = OpFSub %v4f32 %cval %geom2_in_color_1\n"
4579		"%geom2_transformed_in_color_2 = OpFSub %v4f32 %cval %geom2_in_color_2\n"
4580		"%geom2_transformed_in_color_0_a = OpVectorInsertDynamic %v4f32 %geom2_transformed_in_color_0 %c_f32_1 %c_i32_3\n"
4581		"%geom2_transformed_in_color_1_a = OpVectorInsertDynamic %v4f32 %geom2_transformed_in_color_1 %c_f32_1 %c_i32_3\n"
4582		"%geom2_transformed_in_color_2_a = OpVectorInsertDynamic %v4f32 %geom2_transformed_in_color_2 %c_f32_1 %c_i32_3\n"
4583		"OpStore %out_gl_position %geom2_in_position_0\n"
4584		"OpStore %out_color %geom2_transformed_in_color_0_a\n"
4585		"OpEmitVertex\n"
4586		"OpStore %out_gl_position %geom2_in_position_1\n"
4587		"OpStore %out_color %geom2_transformed_in_color_1_a\n"
4588		"OpEmitVertex\n"
4589		"OpStore %out_gl_position %geom2_in_position_2\n"
4590		"OpStore %out_color %geom2_transformed_in_color_2_a\n"
4591		"OpEmitVertex\n"
4592		"OpEndPrimitive\n"
4593		"OpReturn\n"
4594		"OpFunctionEnd\n";
4595
4596	dst.spirvAsmSources.add("tessc") <<
4597		"OpCapability Tessellation\n"
4598		"OpMemoryModel Logical GLSL450\n"
4599		"OpEntryPoint TessellationControl %tessc1_main \"tessc1\" %out_color %gl_InvocationID %in_color %out_position %in_position %gl_TessLevelOuter %gl_TessLevelInner\n"
4600		"OpEntryPoint TessellationControl %tessc2_main \"tessc2\" %out_color %gl_InvocationID %in_color %out_position %in_position %gl_TessLevelOuter %gl_TessLevelInner\n"
4601		"OpExecutionMode %tessc1_main OutputVertices 3\n"
4602		"OpExecutionMode %tessc2_main OutputVertices 3\n"
4603		"OpName %tessc1_main \"tessc1\"\n"
4604		"OpName %tessc2_main \"tessc2\"\n"
4605		"OpName %out_color \"out_color\"\n"
4606		"OpName %gl_InvocationID \"gl_InvocationID\"\n"
4607		"OpName %in_color \"in_color\"\n"
4608		"OpName %out_position \"out_position\"\n"
4609		"OpName %in_position \"in_position\"\n"
4610		"OpName %gl_TessLevelOuter \"gl_TessLevelOuter\"\n"
4611		"OpName %gl_TessLevelInner \"gl_TessLevelInner\"\n"
4612		"OpDecorate %out_color Location 1\n"
4613		"OpDecorate %gl_InvocationID BuiltIn InvocationId\n"
4614		"OpDecorate %in_color Location 1\n"
4615		"OpDecorate %out_position Location 2\n"
4616		"OpDecorate %in_position Location 2\n"
4617		"OpDecorate %gl_TessLevelOuter Patch\n"
4618		"OpDecorate %gl_TessLevelOuter BuiltIn TessLevelOuter\n"
4619		"OpDecorate %gl_TessLevelInner Patch\n"
4620		"OpDecorate %gl_TessLevelInner BuiltIn TessLevelInner\n"
4621		SPIRV_ASSEMBLY_TYPES
4622		SPIRV_ASSEMBLY_CONSTANTS
4623		SPIRV_ASSEMBLY_ARRAYS
4624		"%cval = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_0\n"
4625		"%out_color = OpVariable %op_a3v4f32 Output\n"
4626		"%gl_InvocationID = OpVariable %ip_i32 Input\n"
4627		"%in_color = OpVariable %ip_a32v4f32 Input\n"
4628		"%out_position = OpVariable %op_a3v4f32 Output\n"
4629		"%in_position = OpVariable %ip_a32v4f32 Input\n"
4630		"%gl_TessLevelOuter = OpVariable %op_a4f32 Output\n"
4631		"%gl_TessLevelInner = OpVariable %op_a2f32 Output\n"
4632
4633		"%tessc1_main = OpFunction %void None %fun\n"
4634		"%tessc1_label = OpLabel\n"
4635		"%tessc1_invocation_id = OpLoad %i32 %gl_InvocationID\n"
4636		"%tessc1_in_color_ptr = OpAccessChain %ip_v4f32 %in_color %tessc1_invocation_id\n"
4637		"%tessc1_in_position_ptr = OpAccessChain %ip_v4f32 %in_position %tessc1_invocation_id\n"
4638		"%tessc1_in_color_val = OpLoad %v4f32 %tessc1_in_color_ptr\n"
4639		"%tessc1_in_position_val = OpLoad %v4f32 %tessc1_in_position_ptr\n"
4640		"%tessc1_out_color_ptr = OpAccessChain %op_v4f32 %out_color %tessc1_invocation_id\n"
4641		"%tessc1_out_position_ptr = OpAccessChain %op_v4f32 %out_position %tessc1_invocation_id\n"
4642		"OpStore %tessc1_out_color_ptr %tessc1_in_color_val\n"
4643		"OpStore %tessc1_out_position_ptr %tessc1_in_position_val\n"
4644		"%tessc1_is_first_invocation = OpIEqual %bool %tessc1_invocation_id %c_i32_0\n"
4645		"OpSelectionMerge %tessc1_merge_label None\n"
4646		"OpBranchConditional %tessc1_is_first_invocation %tessc1_first_invocation %tessc1_merge_label\n"
4647		"%tessc1_first_invocation = OpLabel\n"
4648		"%tessc1_tess_outer_0 = OpAccessChain %op_f32 %gl_TessLevelOuter %c_i32_0\n"
4649		"%tessc1_tess_outer_1 = OpAccessChain %op_f32 %gl_TessLevelOuter %c_i32_1\n"
4650		"%tessc1_tess_outer_2 = OpAccessChain %op_f32 %gl_TessLevelOuter %c_i32_2\n"
4651		"%tessc1_tess_inner = OpAccessChain %op_f32 %gl_TessLevelInner %c_i32_0\n"
4652		"OpStore %tessc1_tess_outer_0 %c_f32_1\n"
4653		"OpStore %tessc1_tess_outer_1 %c_f32_1\n"
4654		"OpStore %tessc1_tess_outer_2 %c_f32_1\n"
4655		"OpStore %tessc1_tess_inner %c_f32_1\n"
4656		"OpBranch %tessc1_merge_label\n"
4657		"%tessc1_merge_label = OpLabel\n"
4658		"OpReturn\n"
4659		"OpFunctionEnd\n"
4660
4661		"%tessc2_main = OpFunction %void None %fun\n"
4662		"%tessc2_label = OpLabel\n"
4663		"%tessc2_invocation_id = OpLoad %i32 %gl_InvocationID\n"
4664		"%tessc2_in_color_ptr = OpAccessChain %ip_v4f32 %in_color %tessc2_invocation_id\n"
4665		"%tessc2_in_position_ptr = OpAccessChain %ip_v4f32 %in_position %tessc2_invocation_id\n"
4666		"%tessc2_in_color_val = OpLoad %v4f32 %tessc2_in_color_ptr\n"
4667		"%tessc2_in_position_val = OpLoad %v4f32 %tessc2_in_position_ptr\n"
4668		"%tessc2_out_color_ptr = OpAccessChain %op_v4f32 %out_color %tessc2_invocation_id\n"
4669		"%tessc2_out_position_ptr = OpAccessChain %op_v4f32 %out_position %tessc2_invocation_id\n"
4670		"%tessc2_transformed_color = OpFSub %v4f32 %cval %tessc2_in_color_val\n"
4671		"%tessc2_transformed_color_a = OpVectorInsertDynamic %v4f32 %tessc2_transformed_color %c_f32_1 %c_i32_3\n"
4672		"OpStore %tessc2_out_color_ptr %tessc2_transformed_color_a\n"
4673		"OpStore %tessc2_out_position_ptr %tessc2_in_position_val\n"
4674		"%tessc2_is_first_invocation = OpIEqual %bool %tessc2_invocation_id %c_i32_0\n"
4675		"OpSelectionMerge %tessc2_merge_label None\n"
4676		"OpBranchConditional %tessc2_is_first_invocation %tessc2_first_invocation %tessc2_merge_label\n"
4677		"%tessc2_first_invocation = OpLabel\n"
4678		"%tessc2_tess_outer_0 = OpAccessChain %op_f32 %gl_TessLevelOuter %c_i32_0\n"
4679		"%tessc2_tess_outer_1 = OpAccessChain %op_f32 %gl_TessLevelOuter %c_i32_1\n"
4680		"%tessc2_tess_outer_2 = OpAccessChain %op_f32 %gl_TessLevelOuter %c_i32_2\n"
4681		"%tessc2_tess_inner = OpAccessChain %op_f32 %gl_TessLevelInner %c_i32_0\n"
4682		"OpStore %tessc2_tess_outer_0 %c_f32_1\n"
4683		"OpStore %tessc2_tess_outer_1 %c_f32_1\n"
4684		"OpStore %tessc2_tess_outer_2 %c_f32_1\n"
4685		"OpStore %tessc2_tess_inner %c_f32_1\n"
4686		"OpBranch %tessc2_merge_label\n"
4687		"%tessc2_merge_label = OpLabel\n"
4688		"OpReturn\n"
4689		"OpFunctionEnd\n";
4690
4691	dst.spirvAsmSources.add("tesse") <<
4692		"OpCapability Tessellation\n"
4693		"OpCapability ClipDistance\n"
4694		"OpCapability CullDistance\n"
4695		"OpMemoryModel Logical GLSL450\n"
4696		"OpEntryPoint TessellationEvaluation %tesse1_main \"tesse1\" %stream %gl_tessCoord %in_position %out_color %in_color \n"
4697		"OpEntryPoint TessellationEvaluation %tesse2_main \"tesse2\" %stream %gl_tessCoord %in_position %out_color %in_color \n"
4698		"OpExecutionMode %tesse1_main Triangles\n"
4699		"OpExecutionMode %tesse2_main Triangles\n"
4700		"OpName %tesse1_main \"tesse1\"\n"
4701		"OpName %tesse2_main \"tesse2\"\n"
4702		"OpName %per_vertex_out \"gl_PerVertex\"\n"
4703		"OpMemberName %per_vertex_out 0 \"gl_Position\"\n"
4704		"OpMemberName %per_vertex_out 1 \"gl_PointSize\"\n"
4705		"OpMemberName %per_vertex_out 2 \"gl_ClipDistance\"\n"
4706		"OpMemberName %per_vertex_out 3 \"gl_CullDistance\"\n"
4707		"OpName %stream \"\"\n"
4708		"OpName %gl_tessCoord \"gl_TessCoord\"\n"
4709		"OpName %in_position \"in_position\"\n"
4710		"OpName %out_color \"out_color\"\n"
4711		"OpName %in_color \"in_color\"\n"
4712		"OpMemberDecorate %per_vertex_out 0 BuiltIn Position\n"
4713		"OpMemberDecorate %per_vertex_out 1 BuiltIn PointSize\n"
4714		"OpMemberDecorate %per_vertex_out 2 BuiltIn ClipDistance\n"
4715		"OpMemberDecorate %per_vertex_out 3 BuiltIn CullDistance\n"
4716		"OpDecorate %per_vertex_out Block\n"
4717		"OpDecorate %gl_tessCoord BuiltIn TessCoord\n"
4718		"OpDecorate %in_position Location 2\n"
4719		"OpDecorate %out_color Location 1\n"
4720		"OpDecorate %in_color Location 1\n"
4721		SPIRV_ASSEMBLY_TYPES
4722		SPIRV_ASSEMBLY_CONSTANTS
4723		SPIRV_ASSEMBLY_ARRAYS
4724		"%cval = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_0\n"
4725		"%per_vertex_out = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
4726		"%op_per_vertex_out = OpTypePointer Output %per_vertex_out\n"
4727		"%stream = OpVariable %op_per_vertex_out Output\n"
4728		"%gl_tessCoord = OpVariable %ip_v3f32 Input\n"
4729		"%in_position = OpVariable %ip_a32v4f32 Input\n"
4730		"%out_color = OpVariable %op_v4f32 Output\n"
4731		"%in_color = OpVariable %ip_a32v4f32 Input\n"
4732
4733		"%tesse1_main = OpFunction %void None %fun\n"
4734		"%tesse1_label = OpLabel\n"
4735		"%tesse1_tc_0_ptr = OpAccessChain %ip_f32 %gl_tessCoord %c_u32_0\n"
4736		"%tesse1_tc_1_ptr = OpAccessChain %ip_f32 %gl_tessCoord %c_u32_1\n"
4737		"%tesse1_tc_2_ptr = OpAccessChain %ip_f32 %gl_tessCoord %c_u32_2\n"
4738		"%tesse1_tc_0 = OpLoad %f32 %tesse1_tc_0_ptr\n"
4739		"%tesse1_tc_1 = OpLoad %f32 %tesse1_tc_1_ptr\n"
4740		"%tesse1_tc_2 = OpLoad %f32 %tesse1_tc_2_ptr\n"
4741		"%tesse1_in_pos_0_ptr = OpAccessChain %ip_v4f32 %in_position %c_i32_0\n"
4742		"%tesse1_in_pos_1_ptr = OpAccessChain %ip_v4f32 %in_position %c_i32_1\n"
4743		"%tesse1_in_pos_2_ptr = OpAccessChain %ip_v4f32 %in_position %c_i32_2\n"
4744		"%tesse1_in_pos_0 = OpLoad %v4f32 %tesse1_in_pos_0_ptr\n"
4745		"%tesse1_in_pos_1 = OpLoad %v4f32 %tesse1_in_pos_1_ptr\n"
4746		"%tesse1_in_pos_2 = OpLoad %v4f32 %tesse1_in_pos_2_ptr\n"
4747		"%tesse1_in_pos_0_weighted = OpVectorTimesScalar %v4f32 %tesse1_tc_0 %tesse1_in_pos_0\n"
4748		"%tesse1_in_pos_1_weighted = OpVectorTimesScalar %v4f32 %tesse1_tc_1 %tesse1_in_pos_1\n"
4749		"%tesse1_in_pos_2_weighted = OpVectorTimesScalar %v4f32 %tesse1_tc_2 %tesse1_in_pos_2\n"
4750		"%tesse1_out_pos_ptr = OpAccessChain %op_v4f32 %stream %c_i32_0\n"
4751		"%tesse1_in_pos_0_plus_pos_1 = OpFAdd %v4f32 %tesse1_in_pos_0_weighted %tesse1_in_pos_1_weighted\n"
4752		"%tesse1_computed_out = OpFAdd %v4f32 %tesse1_in_pos_0_plus_pos_1 %tesse1_in_pos_2_weighted\n"
4753		"OpStore %tesse1_out_pos_ptr %tesse1_computed_out\n"
4754		"%tesse1_in_clr_0_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_0\n"
4755		"%tesse1_in_clr_1_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_1\n"
4756		"%tesse1_in_clr_2_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_2\n"
4757		"%tesse1_in_clr_0 = OpLoad %v4f32 %tesse1_in_clr_0_ptr\n"
4758		"%tesse1_in_clr_1 = OpLoad %v4f32 %tesse1_in_clr_1_ptr\n"
4759		"%tesse1_in_clr_2 = OpLoad %v4f32 %tesse1_in_clr_2_ptr\n"
4760		"%tesse1_in_clr_0_weighted = OpVectorTimesScalar %v4f32 %tesse1_tc_0 %tesse1_in_clr_0\n"
4761		"%tesse1_in_clr_1_weighted = OpVectorTimesScalar %v4f32 %tesse1_tc_1 %tesse1_in_clr_1\n"
4762		"%tesse1_in_clr_2_weighted = OpVectorTimesScalar %v4f32 %tesse1_tc_2 %tesse1_in_clr_2\n"
4763		"%tesse1_in_clr_0_plus_col_1 = OpFAdd %v4f32 %tesse1_in_clr_0_weighted %tesse1_in_clr_1_weighted\n"
4764		"%tesse1_computed_clr = OpFAdd %v4f32 %tesse1_in_clr_0_plus_col_1 %tesse1_in_clr_2_weighted\n"
4765		"OpStore %out_color %tesse1_computed_clr\n"
4766		"OpReturn\n"
4767		"OpFunctionEnd\n"
4768
4769		"%tesse2_main = OpFunction %void None %fun\n"
4770		"%tesse2_label = OpLabel\n"
4771		"%tesse2_tc_0_ptr = OpAccessChain %ip_f32 %gl_tessCoord %c_u32_0\n"
4772		"%tesse2_tc_1_ptr = OpAccessChain %ip_f32 %gl_tessCoord %c_u32_1\n"
4773		"%tesse2_tc_2_ptr = OpAccessChain %ip_f32 %gl_tessCoord %c_u32_2\n"
4774		"%tesse2_tc_0 = OpLoad %f32 %tesse2_tc_0_ptr\n"
4775		"%tesse2_tc_1 = OpLoad %f32 %tesse2_tc_1_ptr\n"
4776		"%tesse2_tc_2 = OpLoad %f32 %tesse2_tc_2_ptr\n"
4777		"%tesse2_in_pos_0_ptr = OpAccessChain %ip_v4f32 %in_position %c_i32_0\n"
4778		"%tesse2_in_pos_1_ptr = OpAccessChain %ip_v4f32 %in_position %c_i32_1\n"
4779		"%tesse2_in_pos_2_ptr = OpAccessChain %ip_v4f32 %in_position %c_i32_2\n"
4780		"%tesse2_in_pos_0 = OpLoad %v4f32 %tesse2_in_pos_0_ptr\n"
4781		"%tesse2_in_pos_1 = OpLoad %v4f32 %tesse2_in_pos_1_ptr\n"
4782		"%tesse2_in_pos_2 = OpLoad %v4f32 %tesse2_in_pos_2_ptr\n"
4783		"%tesse2_in_pos_0_weighted = OpVectorTimesScalar %v4f32 %tesse2_tc_0 %tesse2_in_pos_0\n"
4784		"%tesse2_in_pos_1_weighted = OpVectorTimesScalar %v4f32 %tesse2_tc_1 %tesse2_in_pos_1\n"
4785		"%tesse2_in_pos_2_weighted = OpVectorTimesScalar %v4f32 %tesse2_tc_2 %tesse2_in_pos_2\n"
4786		"%tesse2_out_pos_ptr = OpAccessChain %op_v4f32 %stream %c_i32_0\n"
4787		"%tesse2_in_pos_0_plus_pos_1 = OpFAdd %v4f32 %tesse2_in_pos_0_weighted %tesse2_in_pos_1_weighted\n"
4788		"%tesse2_computed_out = OpFAdd %v4f32 %tesse2_in_pos_0_plus_pos_1 %tesse2_in_pos_2_weighted\n"
4789		"OpStore %tesse2_out_pos_ptr %tesse2_computed_out\n"
4790		"%tesse2_in_clr_0_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_0\n"
4791		"%tesse2_in_clr_1_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_1\n"
4792		"%tesse2_in_clr_2_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_2\n"
4793		"%tesse2_in_clr_0 = OpLoad %v4f32 %tesse2_in_clr_0_ptr\n"
4794		"%tesse2_in_clr_1 = OpLoad %v4f32 %tesse2_in_clr_1_ptr\n"
4795		"%tesse2_in_clr_2 = OpLoad %v4f32 %tesse2_in_clr_2_ptr\n"
4796		"%tesse2_in_clr_0_weighted = OpVectorTimesScalar %v4f32 %tesse2_tc_0 %tesse2_in_clr_0\n"
4797		"%tesse2_in_clr_1_weighted = OpVectorTimesScalar %v4f32 %tesse2_tc_1 %tesse2_in_clr_1\n"
4798		"%tesse2_in_clr_2_weighted = OpVectorTimesScalar %v4f32 %tesse2_tc_2 %tesse2_in_clr_2\n"
4799		"%tesse2_in_clr_0_plus_col_1 = OpFAdd %v4f32 %tesse2_in_clr_0_weighted %tesse2_in_clr_1_weighted\n"
4800		"%tesse2_computed_clr = OpFAdd %v4f32 %tesse2_in_clr_0_plus_col_1 %tesse2_in_clr_2_weighted\n"
4801		"%tesse2_clr_transformed = OpFSub %v4f32 %cval %tesse2_computed_clr\n"
4802		"%tesse2_clr_transformed_a = OpVectorInsertDynamic %v4f32 %tesse2_clr_transformed %c_f32_1 %c_i32_3\n"
4803		"OpStore %out_color %tesse2_clr_transformed_a\n"
4804		"OpReturn\n"
4805		"OpFunctionEnd\n";
4806}
4807
4808// Sets up and runs a Vulkan pipeline, then spot-checks the resulting image.
4809// Feeds the pipeline a set of colored triangles, which then must occur in the
4810// rendered image.  The surface is cleared before executing the pipeline, so
4811// whatever the shaders draw can be directly spot-checked.
4812TestStatus runAndVerifyDefaultPipeline (Context& context, InstanceContext instance)
4813{
4814	const VkDevice								vkDevice				= context.getDevice();
4815	const DeviceInterface&						vk						= context.getDeviceInterface();
4816	const VkQueue								queue					= context.getUniversalQueue();
4817	const deUint32								queueFamilyIndex		= context.getUniversalQueueFamilyIndex();
4818	const tcu::UVec2							renderSize				(256, 256);
4819	vector<ModuleHandleSp>						modules;
4820	map<VkShaderStageFlagBits, VkShaderModule>	moduleByStage;
4821	const int									testSpecificSeed		= 31354125;
4822	const int									seed					= context.getTestContext().getCommandLine().getBaseSeed() ^ testSpecificSeed;
4823	bool										supportsGeometry		= false;
4824	bool										supportsTessellation	= false;
4825	bool										hasTessellation         = false;
4826
4827	const VkPhysicalDeviceFeatures&				features				= context.getDeviceFeatures();
4828	supportsGeometry		= features.geometryShader == VK_TRUE;
4829	supportsTessellation	= features.tessellationShader == VK_TRUE;
4830	hasTessellation			= (instance.requiredStages & VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT) ||
4831								(instance.requiredStages & VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT);
4832
4833	if (hasTessellation && !supportsTessellation)
4834	{
4835		throw tcu::NotSupportedError(std::string("Tessellation not supported"));
4836	}
4837
4838	if ((instance.requiredStages & VK_SHADER_STAGE_GEOMETRY_BIT) &&
4839		!supportsGeometry)
4840	{
4841		throw tcu::NotSupportedError(std::string("Geometry not supported"));
4842	}
4843
4844	de::Random(seed).shuffle(instance.inputColors, instance.inputColors+4);
4845	de::Random(seed).shuffle(instance.outputColors, instance.outputColors+4);
4846	const Vec4								vertexData[]			=
4847	{
4848		// Upper left corner:
4849		Vec4(-1.0f, -1.0f, 0.0f, 1.0f), instance.inputColors[0].toVec(),
4850		Vec4(-0.5f, -1.0f, 0.0f, 1.0f), instance.inputColors[0].toVec(),
4851		Vec4(-1.0f, -0.5f, 0.0f, 1.0f), instance.inputColors[0].toVec(),
4852
4853		// Upper right corner:
4854		Vec4(+0.5f, -1.0f, 0.0f, 1.0f), instance.inputColors[1].toVec(),
4855		Vec4(+1.0f, -1.0f, 0.0f, 1.0f), instance.inputColors[1].toVec(),
4856		Vec4(+1.0f, -0.5f, 0.0f, 1.0f), instance.inputColors[1].toVec(),
4857
4858		// Lower left corner:
4859		Vec4(-1.0f, +0.5f, 0.0f, 1.0f), instance.inputColors[2].toVec(),
4860		Vec4(-0.5f, +1.0f, 0.0f, 1.0f), instance.inputColors[2].toVec(),
4861		Vec4(-1.0f, +1.0f, 0.0f, 1.0f), instance.inputColors[2].toVec(),
4862
4863		// Lower right corner:
4864		Vec4(+1.0f, +0.5f, 0.0f, 1.0f), instance.inputColors[3].toVec(),
4865		Vec4(+1.0f, +1.0f, 0.0f, 1.0f), instance.inputColors[3].toVec(),
4866		Vec4(+0.5f, +1.0f, 0.0f, 1.0f), instance.inputColors[3].toVec()
4867	};
4868	const size_t							singleVertexDataSize	= 2 * sizeof(Vec4);
4869	const size_t							vertexCount				= sizeof(vertexData) / singleVertexDataSize;
4870
4871	const VkBufferCreateInfo				vertexBufferParams		=
4872	{
4873		VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO,	//	VkStructureType		sType;
4874		DE_NULL,								//	const void*			pNext;
4875		0u,										//	VkBufferCreateFlags	flags;
4876		(VkDeviceSize)sizeof(vertexData),		//	VkDeviceSize		size;
4877		VK_BUFFER_USAGE_VERTEX_BUFFER_BIT,		//	VkBufferUsageFlags	usage;
4878		VK_SHARING_MODE_EXCLUSIVE,				//	VkSharingMode		sharingMode;
4879		1u,										//	deUint32			queueFamilyCount;
4880		&queueFamilyIndex,						//	const deUint32*		pQueueFamilyIndices;
4881	};
4882	const Unique<VkBuffer>					vertexBuffer			(createBuffer(vk, vkDevice, &vertexBufferParams));
4883	const UniquePtr<Allocation>				vertexBufferMemory		(context.getDefaultAllocator().allocate(getBufferMemoryRequirements(vk, vkDevice, *vertexBuffer), MemoryRequirement::HostVisible));
4884
4885	VK_CHECK(vk.bindBufferMemory(vkDevice, *vertexBuffer, vertexBufferMemory->getMemory(), vertexBufferMemory->getOffset()));
4886
4887	const VkDeviceSize						imageSizeBytes			= (VkDeviceSize)(sizeof(deUint32)*renderSize.x()*renderSize.y());
4888	const VkBufferCreateInfo				readImageBufferParams	=
4889	{
4890		VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO,		//	VkStructureType		sType;
4891		DE_NULL,									//	const void*			pNext;
4892		0u,											//	VkBufferCreateFlags	flags;
4893		imageSizeBytes,								//	VkDeviceSize		size;
4894		VK_BUFFER_USAGE_TRANSFER_DST_BIT,			//	VkBufferUsageFlags	usage;
4895		VK_SHARING_MODE_EXCLUSIVE,					//	VkSharingMode		sharingMode;
4896		1u,											//	deUint32			queueFamilyCount;
4897		&queueFamilyIndex,							//	const deUint32*		pQueueFamilyIndices;
4898	};
4899	const Unique<VkBuffer>					readImageBuffer			(createBuffer(vk, vkDevice, &readImageBufferParams));
4900	const UniquePtr<Allocation>				readImageBufferMemory	(context.getDefaultAllocator().allocate(getBufferMemoryRequirements(vk, vkDevice, *readImageBuffer), MemoryRequirement::HostVisible));
4901
4902	VK_CHECK(vk.bindBufferMemory(vkDevice, *readImageBuffer, readImageBufferMemory->getMemory(), readImageBufferMemory->getOffset()));
4903
4904	const VkImageCreateInfo					imageParams				=
4905	{
4906		VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,									//	VkStructureType		sType;
4907		DE_NULL,																//	const void*			pNext;
4908		0u,																		//	VkImageCreateFlags	flags;
4909		VK_IMAGE_TYPE_2D,														//	VkImageType			imageType;
4910		VK_FORMAT_R8G8B8A8_UNORM,												//	VkFormat			format;
4911		{ renderSize.x(), renderSize.y(), 1 },									//	VkExtent3D			extent;
4912		1u,																		//	deUint32			mipLevels;
4913		1u,																		//	deUint32			arraySize;
4914		VK_SAMPLE_COUNT_1_BIT,													//	deUint32			samples;
4915		VK_IMAGE_TILING_OPTIMAL,												//	VkImageTiling		tiling;
4916		VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT|VK_IMAGE_USAGE_TRANSFER_SRC_BIT,	//	VkImageUsageFlags	usage;
4917		VK_SHARING_MODE_EXCLUSIVE,												//	VkSharingMode		sharingMode;
4918		1u,																		//	deUint32			queueFamilyCount;
4919		&queueFamilyIndex,														//	const deUint32*		pQueueFamilyIndices;
4920		VK_IMAGE_LAYOUT_UNDEFINED,												//	VkImageLayout		initialLayout;
4921	};
4922
4923	const Unique<VkImage>					image					(createImage(vk, vkDevice, &imageParams));
4924	const UniquePtr<Allocation>				imageMemory				(context.getDefaultAllocator().allocate(getImageMemoryRequirements(vk, vkDevice, *image), MemoryRequirement::Any));
4925
4926	VK_CHECK(vk.bindImageMemory(vkDevice, *image, imageMemory->getMemory(), imageMemory->getOffset()));
4927
4928	const VkAttachmentDescription			colorAttDesc			=
4929	{
4930		0u,												//	VkAttachmentDescriptionFlags	flags;
4931		VK_FORMAT_R8G8B8A8_UNORM,						//	VkFormat						format;
4932		VK_SAMPLE_COUNT_1_BIT,							//	deUint32						samples;
4933		VK_ATTACHMENT_LOAD_OP_CLEAR,					//	VkAttachmentLoadOp				loadOp;
4934		VK_ATTACHMENT_STORE_OP_STORE,					//	VkAttachmentStoreOp				storeOp;
4935		VK_ATTACHMENT_LOAD_OP_DONT_CARE,				//	VkAttachmentLoadOp				stencilLoadOp;
4936		VK_ATTACHMENT_STORE_OP_DONT_CARE,				//	VkAttachmentStoreOp				stencilStoreOp;
4937		VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,		//	VkImageLayout					initialLayout;
4938		VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,		//	VkImageLayout					finalLayout;
4939	};
4940	const VkAttachmentReference				colorAttRef				=
4941	{
4942		0u,												//	deUint32		attachment;
4943		VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,		//	VkImageLayout	layout;
4944	};
4945	const VkSubpassDescription				subpassDesc				=
4946	{
4947		0u,												//	VkSubpassDescriptionFlags		flags;
4948		VK_PIPELINE_BIND_POINT_GRAPHICS,				//	VkPipelineBindPoint				pipelineBindPoint;
4949		0u,												//	deUint32						inputCount;
4950		DE_NULL,										//	const VkAttachmentReference*	pInputAttachments;
4951		1u,												//	deUint32						colorCount;
4952		&colorAttRef,									//	const VkAttachmentReference*	pColorAttachments;
4953		DE_NULL,										//	const VkAttachmentReference*	pResolveAttachments;
4954		DE_NULL,										//	const VkAttachmentReference*	pDepthStencilAttachment;
4955		0u,												//	deUint32						preserveCount;
4956		DE_NULL,										//	const VkAttachmentReference*	pPreserveAttachments;
4957
4958	};
4959	const VkRenderPassCreateInfo			renderPassParams		=
4960	{
4961		VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO,		//	VkStructureType					sType;
4962		DE_NULL,										//	const void*						pNext;
4963		(VkRenderPassCreateFlags)0,
4964		1u,												//	deUint32						attachmentCount;
4965		&colorAttDesc,									//	const VkAttachmentDescription*	pAttachments;
4966		1u,												//	deUint32						subpassCount;
4967		&subpassDesc,									//	const VkSubpassDescription*		pSubpasses;
4968		0u,												//	deUint32						dependencyCount;
4969		DE_NULL,										//	const VkSubpassDependency*		pDependencies;
4970	};
4971	const Unique<VkRenderPass>				renderPass				(createRenderPass(vk, vkDevice, &renderPassParams));
4972
4973	const VkImageViewCreateInfo				colorAttViewParams		=
4974	{
4975		VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,		//	VkStructureType				sType;
4976		DE_NULL,										//	const void*					pNext;
4977		0u,												//	VkImageViewCreateFlags		flags;
4978		*image,											//	VkImage						image;
4979		VK_IMAGE_VIEW_TYPE_2D,							//	VkImageViewType				viewType;
4980		VK_FORMAT_R8G8B8A8_UNORM,						//	VkFormat					format;
4981		{
4982			VK_COMPONENT_SWIZZLE_R,
4983			VK_COMPONENT_SWIZZLE_G,
4984			VK_COMPONENT_SWIZZLE_B,
4985			VK_COMPONENT_SWIZZLE_A
4986		},												//	VkChannelMapping			channels;
4987		{
4988			VK_IMAGE_ASPECT_COLOR_BIT,						//	VkImageAspectFlags	aspectMask;
4989			0u,												//	deUint32			baseMipLevel;
4990			1u,												//	deUint32			mipLevels;
4991			0u,												//	deUint32			baseArrayLayer;
4992			1u,												//	deUint32			arraySize;
4993		},												//	VkImageSubresourceRange		subresourceRange;
4994	};
4995	const Unique<VkImageView>				colorAttView			(createImageView(vk, vkDevice, &colorAttViewParams));
4996
4997
4998	// Pipeline layout
4999	const VkPipelineLayoutCreateInfo		pipelineLayoutParams	=
5000	{
5001		VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,			//	VkStructureType					sType;
5002		DE_NULL,												//	const void*						pNext;
5003		(VkPipelineLayoutCreateFlags)0,
5004		0u,														//	deUint32						descriptorSetCount;
5005		DE_NULL,												//	const VkDescriptorSetLayout*	pSetLayouts;
5006		0u,														//	deUint32						pushConstantRangeCount;
5007		DE_NULL,												//	const VkPushConstantRange*		pPushConstantRanges;
5008	};
5009	const Unique<VkPipelineLayout>			pipelineLayout			(createPipelineLayout(vk, vkDevice, &pipelineLayoutParams));
5010
5011	// Pipeline
5012	vector<VkPipelineShaderStageCreateInfo>		shaderStageParams;
5013	// We need these vectors to make sure that information about specialization constants for each stage can outlive createGraphicsPipeline().
5014	vector<vector<VkSpecializationMapEntry> >	specConstantEntries;
5015	vector<VkSpecializationInfo>				specializationInfos;
5016	createPipelineShaderStages(vk, vkDevice, instance, context, modules, shaderStageParams);
5017
5018	// And we don't want the reallocation of these vectors to invalidate pointers pointing to their contents.
5019	specConstantEntries.reserve(shaderStageParams.size());
5020	specializationInfos.reserve(shaderStageParams.size());
5021
5022	// Patch the specialization info field in PipelineShaderStageCreateInfos.
5023	for (vector<VkPipelineShaderStageCreateInfo>::iterator stageInfo = shaderStageParams.begin(); stageInfo != shaderStageParams.end(); ++stageInfo)
5024	{
5025		const StageToSpecConstantMap::const_iterator stageIt = instance.specConstants.find(stageInfo->stage);
5026
5027		if (stageIt != instance.specConstants.end())
5028		{
5029			const size_t						numSpecConstants	= stageIt->second.size();
5030			vector<VkSpecializationMapEntry>	entries;
5031			VkSpecializationInfo				specInfo;
5032
5033			entries.resize(numSpecConstants);
5034
5035			// Only support 32-bit integers as spec constants now. And their constant IDs are numbered sequentially starting from 0.
5036			for (size_t ndx = 0; ndx < numSpecConstants; ++ndx)
5037			{
5038				entries[ndx].constantID	= (deUint32)ndx;
5039				entries[ndx].offset		= deUint32(ndx * sizeof(deInt32));
5040				entries[ndx].size		= sizeof(deInt32);
5041			}
5042
5043			specConstantEntries.push_back(entries);
5044
5045			specInfo.mapEntryCount	= (deUint32)numSpecConstants;
5046			specInfo.pMapEntries	= specConstantEntries.back().data();
5047			specInfo.dataSize		= numSpecConstants * sizeof(deInt32);
5048			specInfo.pData			= stageIt->second.data();
5049			specializationInfos.push_back(specInfo);
5050
5051			stageInfo->pSpecializationInfo = &specializationInfos.back();
5052		}
5053	}
5054	const VkPipelineDepthStencilStateCreateInfo	depthStencilParams		=
5055	{
5056		VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO,	//	VkStructureType		sType;
5057		DE_NULL,													//	const void*			pNext;
5058		(VkPipelineDepthStencilStateCreateFlags)0,
5059		DE_FALSE,													//	deUint32			depthTestEnable;
5060		DE_FALSE,													//	deUint32			depthWriteEnable;
5061		VK_COMPARE_OP_ALWAYS,										//	VkCompareOp			depthCompareOp;
5062		DE_FALSE,													//	deUint32			depthBoundsTestEnable;
5063		DE_FALSE,													//	deUint32			stencilTestEnable;
5064		{
5065			VK_STENCIL_OP_KEEP,											//	VkStencilOp	stencilFailOp;
5066			VK_STENCIL_OP_KEEP,											//	VkStencilOp	stencilPassOp;
5067			VK_STENCIL_OP_KEEP,											//	VkStencilOp	stencilDepthFailOp;
5068			VK_COMPARE_OP_ALWAYS,										//	VkCompareOp	stencilCompareOp;
5069			0u,															//	deUint32	stencilCompareMask;
5070			0u,															//	deUint32	stencilWriteMask;
5071			0u,															//	deUint32	stencilReference;
5072		},															//	VkStencilOpState	front;
5073		{
5074			VK_STENCIL_OP_KEEP,											//	VkStencilOp	stencilFailOp;
5075			VK_STENCIL_OP_KEEP,											//	VkStencilOp	stencilPassOp;
5076			VK_STENCIL_OP_KEEP,											//	VkStencilOp	stencilDepthFailOp;
5077			VK_COMPARE_OP_ALWAYS,										//	VkCompareOp	stencilCompareOp;
5078			0u,															//	deUint32	stencilCompareMask;
5079			0u,															//	deUint32	stencilWriteMask;
5080			0u,															//	deUint32	stencilReference;
5081		},															//	VkStencilOpState	back;
5082		-1.0f,														//	float				minDepthBounds;
5083		+1.0f,														//	float				maxDepthBounds;
5084	};
5085	const VkViewport						viewport0				=
5086	{
5087		0.0f,														//	float	originX;
5088		0.0f,														//	float	originY;
5089		(float)renderSize.x(),										//	float	width;
5090		(float)renderSize.y(),										//	float	height;
5091		0.0f,														//	float	minDepth;
5092		1.0f,														//	float	maxDepth;
5093	};
5094	const VkRect2D							scissor0				=
5095	{
5096		{
5097			0u,															//	deInt32	x;
5098			0u,															//	deInt32	y;
5099		},															//	VkOffset2D	offset;
5100		{
5101			renderSize.x(),												//	deInt32	width;
5102			renderSize.y(),												//	deInt32	height;
5103		},															//	VkExtent2D	extent;
5104	};
5105	const VkPipelineViewportStateCreateInfo		viewportParams			=
5106	{
5107		VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO,		//	VkStructureType		sType;
5108		DE_NULL,													//	const void*			pNext;
5109		(VkPipelineViewportStateCreateFlags)0,
5110		1u,															//	deUint32			viewportCount;
5111		&viewport0,
5112		1u,
5113		&scissor0
5114	};
5115	const VkSampleMask							sampleMask				= ~0u;
5116	const VkPipelineMultisampleStateCreateInfo	multisampleParams		=
5117	{
5118		VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO,	//	VkStructureType			sType;
5119		DE_NULL,													//	const void*				pNext;
5120		(VkPipelineMultisampleStateCreateFlags)0,
5121		VK_SAMPLE_COUNT_1_BIT,										//	VkSampleCountFlagBits	rasterSamples;
5122		DE_FALSE,													//	deUint32				sampleShadingEnable;
5123		0.0f,														//	float					minSampleShading;
5124		&sampleMask,												//	const VkSampleMask*		pSampleMask;
5125		DE_FALSE,													//	VkBool32				alphaToCoverageEnable;
5126		DE_FALSE,													//	VkBool32				alphaToOneEnable;
5127	};
5128	const VkPipelineRasterizationStateCreateInfo	rasterParams		=
5129	{
5130		VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO,	//	VkStructureType	sType;
5131		DE_NULL,													//	const void*		pNext;
5132		(VkPipelineRasterizationStateCreateFlags)0,
5133		DE_TRUE,													//	deUint32		depthClipEnable;
5134		DE_FALSE,													//	deUint32		rasterizerDiscardEnable;
5135		VK_POLYGON_MODE_FILL,										//	VkFillMode		fillMode;
5136		VK_CULL_MODE_NONE,											//	VkCullMode		cullMode;
5137		VK_FRONT_FACE_COUNTER_CLOCKWISE,							//	VkFrontFace		frontFace;
5138		VK_FALSE,													//	VkBool32		depthBiasEnable;
5139		0.0f,														//	float			depthBias;
5140		0.0f,														//	float			depthBiasClamp;
5141		0.0f,														//	float			slopeScaledDepthBias;
5142		1.0f,														//	float			lineWidth;
5143	};
5144	const VkPrimitiveTopology topology = hasTessellation? VK_PRIMITIVE_TOPOLOGY_PATCH_LIST: VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
5145	const VkPipelineInputAssemblyStateCreateInfo	inputAssemblyParams	=
5146	{
5147		VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO,	//	VkStructureType		sType;
5148		DE_NULL,														//	const void*			pNext;
5149		(VkPipelineInputAssemblyStateCreateFlags)0,
5150		topology,														//	VkPrimitiveTopology	topology;
5151		DE_FALSE,														//	deUint32			primitiveRestartEnable;
5152	};
5153	const VkVertexInputBindingDescription		vertexBinding0 =
5154	{
5155		0u,									// deUint32					binding;
5156		deUint32(singleVertexDataSize),		// deUint32					strideInBytes;
5157		VK_VERTEX_INPUT_RATE_VERTEX			// VkVertexInputStepRate	stepRate;
5158	};
5159	const VkVertexInputAttributeDescription		vertexAttrib0[2] =
5160	{
5161		{
5162			0u,									// deUint32	location;
5163			0u,									// deUint32	binding;
5164			VK_FORMAT_R32G32B32A32_SFLOAT,		// VkFormat	format;
5165			0u									// deUint32	offsetInBytes;
5166		},
5167		{
5168			1u,									// deUint32	location;
5169			0u,									// deUint32	binding;
5170			VK_FORMAT_R32G32B32A32_SFLOAT,		// VkFormat	format;
5171			sizeof(Vec4),						// deUint32	offsetInBytes;
5172		}
5173	};
5174
5175	const VkPipelineVertexInputStateCreateInfo	vertexInputStateParams	=
5176	{
5177		VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO,	//	VkStructureType								sType;
5178		DE_NULL,													//	const void*									pNext;
5179		(VkPipelineVertexInputStateCreateFlags)0,
5180		1u,															//	deUint32									bindingCount;
5181		&vertexBinding0,											//	const VkVertexInputBindingDescription*		pVertexBindingDescriptions;
5182		2u,															//	deUint32									attributeCount;
5183		vertexAttrib0,												//	const VkVertexInputAttributeDescription*	pVertexAttributeDescriptions;
5184	};
5185	const VkPipelineColorBlendAttachmentState	attBlendParams			=
5186	{
5187		DE_FALSE,													//	deUint32		blendEnable;
5188		VK_BLEND_FACTOR_ONE,										//	VkBlend			srcBlendColor;
5189		VK_BLEND_FACTOR_ZERO,										//	VkBlend			destBlendColor;
5190		VK_BLEND_OP_ADD,											//	VkBlendOp		blendOpColor;
5191		VK_BLEND_FACTOR_ONE,										//	VkBlend			srcBlendAlpha;
5192		VK_BLEND_FACTOR_ZERO,										//	VkBlend			destBlendAlpha;
5193		VK_BLEND_OP_ADD,											//	VkBlendOp		blendOpAlpha;
5194		(VK_COLOR_COMPONENT_R_BIT|
5195		 VK_COLOR_COMPONENT_G_BIT|
5196		 VK_COLOR_COMPONENT_B_BIT|
5197		 VK_COLOR_COMPONENT_A_BIT),									//	VkChannelFlags	channelWriteMask;
5198	};
5199	const VkPipelineColorBlendStateCreateInfo	blendParams				=
5200	{
5201		VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO,	//	VkStructureType								sType;
5202		DE_NULL,													//	const void*									pNext;
5203		(VkPipelineColorBlendStateCreateFlags)0,
5204		DE_FALSE,													//	VkBool32									logicOpEnable;
5205		VK_LOGIC_OP_COPY,											//	VkLogicOp									logicOp;
5206		1u,															//	deUint32									attachmentCount;
5207		&attBlendParams,											//	const VkPipelineColorBlendAttachmentState*	pAttachments;
5208		{ 0.0f, 0.0f, 0.0f, 0.0f },									//	float										blendConst[4];
5209	};
5210	const VkPipelineTessellationStateCreateInfo	tessellationState	=
5211	{
5212		VK_STRUCTURE_TYPE_PIPELINE_TESSELLATION_STATE_CREATE_INFO,
5213		DE_NULL,
5214		(VkPipelineTessellationStateCreateFlags)0,
5215		3u
5216	};
5217
5218	const VkPipelineTessellationStateCreateInfo* tessellationInfo	=	hasTessellation ? &tessellationState: DE_NULL;
5219	const VkGraphicsPipelineCreateInfo		pipelineParams			=
5220	{
5221		VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO,		//	VkStructureType									sType;
5222		DE_NULL,												//	const void*										pNext;
5223		0u,														//	VkPipelineCreateFlags							flags;
5224		(deUint32)shaderStageParams.size(),						//	deUint32										stageCount;
5225		&shaderStageParams[0],									//	const VkPipelineShaderStageCreateInfo*			pStages;
5226		&vertexInputStateParams,								//	const VkPipelineVertexInputStateCreateInfo*		pVertexInputState;
5227		&inputAssemblyParams,									//	const VkPipelineInputAssemblyStateCreateInfo*	pInputAssemblyState;
5228		tessellationInfo,										//	const VkPipelineTessellationStateCreateInfo*	pTessellationState;
5229		&viewportParams,										//	const VkPipelineViewportStateCreateInfo*		pViewportState;
5230		&rasterParams,											//	const VkPipelineRasterStateCreateInfo*			pRasterState;
5231		&multisampleParams,										//	const VkPipelineMultisampleStateCreateInfo*		pMultisampleState;
5232		&depthStencilParams,									//	const VkPipelineDepthStencilStateCreateInfo*	pDepthStencilState;
5233		&blendParams,											//	const VkPipelineColorBlendStateCreateInfo*		pColorBlendState;
5234		(const VkPipelineDynamicStateCreateInfo*)DE_NULL,		//	const VkPipelineDynamicStateCreateInfo*			pDynamicState;
5235		*pipelineLayout,										//	VkPipelineLayout								layout;
5236		*renderPass,											//	VkRenderPass									renderPass;
5237		0u,														//	deUint32										subpass;
5238		DE_NULL,												//	VkPipeline										basePipelineHandle;
5239		0u,														//	deInt32											basePipelineIndex;
5240	};
5241
5242	const Unique<VkPipeline>				pipeline				(createGraphicsPipeline(vk, vkDevice, DE_NULL, &pipelineParams));
5243
5244	// Framebuffer
5245	const VkFramebufferCreateInfo			framebufferParams		=
5246	{
5247		VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO,				//	VkStructureType		sType;
5248		DE_NULL,												//	const void*			pNext;
5249		(VkFramebufferCreateFlags)0,
5250		*renderPass,											//	VkRenderPass		renderPass;
5251		1u,														//	deUint32			attachmentCount;
5252		&*colorAttView,											//	const VkImageView*	pAttachments;
5253		(deUint32)renderSize.x(),								//	deUint32			width;
5254		(deUint32)renderSize.y(),								//	deUint32			height;
5255		1u,														//	deUint32			layers;
5256	};
5257	const Unique<VkFramebuffer>				framebuffer				(createFramebuffer(vk, vkDevice, &framebufferParams));
5258
5259	const VkCommandPoolCreateInfo			cmdPoolParams			=
5260	{
5261		VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO,					//	VkStructureType			sType;
5262		DE_NULL,													//	const void*				pNext;
5263		VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT,				//	VkCmdPoolCreateFlags	flags;
5264		queueFamilyIndex,											//	deUint32				queueFamilyIndex;
5265	};
5266	const Unique<VkCommandPool>				cmdPool					(createCommandPool(vk, vkDevice, &cmdPoolParams));
5267
5268	// Command buffer
5269	const VkCommandBufferAllocateInfo		cmdBufParams			=
5270	{
5271		VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO,			//	VkStructureType			sType;
5272		DE_NULL,												//	const void*				pNext;
5273		*cmdPool,												//	VkCmdPool				pool;
5274		VK_COMMAND_BUFFER_LEVEL_PRIMARY,						//	VkCmdBufferLevel		level;
5275		1u,														//	deUint32				count;
5276	};
5277	const Unique<VkCommandBuffer>			cmdBuf					(allocateCommandBuffer(vk, vkDevice, &cmdBufParams));
5278
5279	const VkCommandBufferBeginInfo			cmdBufBeginParams		=
5280	{
5281		VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO,			//	VkStructureType				sType;
5282		DE_NULL,												//	const void*					pNext;
5283		(VkCommandBufferUsageFlags)0,
5284		(const VkCommandBufferInheritanceInfo*)DE_NULL,
5285	};
5286
5287	// Record commands
5288	VK_CHECK(vk.beginCommandBuffer(*cmdBuf, &cmdBufBeginParams));
5289
5290	{
5291		const VkMemoryBarrier		vertFlushBarrier	=
5292		{
5293			VK_STRUCTURE_TYPE_MEMORY_BARRIER,			//	VkStructureType		sType;
5294			DE_NULL,									//	const void*			pNext;
5295			VK_ACCESS_HOST_WRITE_BIT,					//	VkMemoryOutputFlags	outputMask;
5296			VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT,		//	VkMemoryInputFlags	inputMask;
5297		};
5298		const VkImageMemoryBarrier	colorAttBarrier		=
5299		{
5300			VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,		//	VkStructureType			sType;
5301			DE_NULL,									//	const void*				pNext;
5302			0u,											//	VkMemoryOutputFlags		outputMask;
5303			VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,		//	VkMemoryInputFlags		inputMask;
5304			VK_IMAGE_LAYOUT_UNDEFINED,					//	VkImageLayout			oldLayout;
5305			VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,	//	VkImageLayout			newLayout;
5306			queueFamilyIndex,							//	deUint32				srcQueueFamilyIndex;
5307			queueFamilyIndex,							//	deUint32				destQueueFamilyIndex;
5308			*image,										//	VkImage					image;
5309			{
5310				VK_IMAGE_ASPECT_COLOR_BIT,					//	VkImageAspect	aspect;
5311				0u,											//	deUint32		baseMipLevel;
5312				1u,											//	deUint32		mipLevels;
5313				0u,											//	deUint32		baseArraySlice;
5314				1u,											//	deUint32		arraySize;
5315			}											//	VkImageSubresourceRange	subresourceRange;
5316		};
5317		vk.cmdPipelineBarrier(*cmdBuf, VK_PIPELINE_STAGE_HOST_BIT, VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT, (VkDependencyFlags)0, 1, &vertFlushBarrier, 0, (const VkBufferMemoryBarrier*)DE_NULL, 1, &colorAttBarrier);
5318	}
5319
5320	{
5321		const VkClearValue			clearValue		= makeClearValueColorF32(0.125f, 0.25f, 0.75f, 1.0f);
5322		const VkRenderPassBeginInfo	passBeginParams	=
5323		{
5324			VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO,			//	VkStructureType		sType;
5325			DE_NULL,											//	const void*			pNext;
5326			*renderPass,										//	VkRenderPass		renderPass;
5327			*framebuffer,										//	VkFramebuffer		framebuffer;
5328			{ { 0, 0 }, { renderSize.x(), renderSize.y() } },	//	VkRect2D			renderArea;
5329			1u,													//	deUint32			clearValueCount;
5330			&clearValue,										//	const VkClearValue*	pClearValues;
5331		};
5332		vk.cmdBeginRenderPass(*cmdBuf, &passBeginParams, VK_SUBPASS_CONTENTS_INLINE);
5333	}
5334
5335	vk.cmdBindPipeline(*cmdBuf, VK_PIPELINE_BIND_POINT_GRAPHICS, *pipeline);
5336	{
5337		const VkDeviceSize bindingOffset = 0;
5338		vk.cmdBindVertexBuffers(*cmdBuf, 0u, 1u, &vertexBuffer.get(), &bindingOffset);
5339	}
5340	vk.cmdDraw(*cmdBuf, deUint32(vertexCount), 1u /*run pipeline once*/, 0u /*first vertex*/, 0u /*first instanceIndex*/);
5341	vk.cmdEndRenderPass(*cmdBuf);
5342
5343	{
5344		const VkImageMemoryBarrier	renderFinishBarrier	=
5345		{
5346			VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,		//	VkStructureType			sType;
5347			DE_NULL,									//	const void*				pNext;
5348			VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,		//	VkMemoryOutputFlags		outputMask;
5349			VK_ACCESS_TRANSFER_READ_BIT,				//	VkMemoryInputFlags		inputMask;
5350			VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,	//	VkImageLayout			oldLayout;
5351			VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,		//	VkImageLayout			newLayout;
5352			queueFamilyIndex,							//	deUint32				srcQueueFamilyIndex;
5353			queueFamilyIndex,							//	deUint32				destQueueFamilyIndex;
5354			*image,										//	VkImage					image;
5355			{
5356				VK_IMAGE_ASPECT_COLOR_BIT,					//	VkImageAspectFlags	aspectMask;
5357				0u,											//	deUint32			baseMipLevel;
5358				1u,											//	deUint32			mipLevels;
5359				0u,											//	deUint32			baseArraySlice;
5360				1u,											//	deUint32			arraySize;
5361			}											//	VkImageSubresourceRange	subresourceRange;
5362		};
5363		vk.cmdPipelineBarrier(*cmdBuf, VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, (VkDependencyFlags)0, 0, (const VkMemoryBarrier*)DE_NULL, 0, (const VkBufferMemoryBarrier*)DE_NULL, 1, &renderFinishBarrier);
5364	}
5365
5366	{
5367		const VkBufferImageCopy	copyParams	=
5368		{
5369			(VkDeviceSize)0u,						//	VkDeviceSize			bufferOffset;
5370			(deUint32)renderSize.x(),				//	deUint32				bufferRowLength;
5371			(deUint32)renderSize.y(),				//	deUint32				bufferImageHeight;
5372			{
5373				VK_IMAGE_ASPECT_COLOR_BIT,				//	VkImageAspect		aspect;
5374				0u,										//	deUint32			mipLevel;
5375				0u,										//	deUint32			arrayLayer;
5376				1u,										//	deUint32			arraySize;
5377			},										//	VkImageSubresourceCopy	imageSubresource;
5378			{ 0u, 0u, 0u },							//	VkOffset3D				imageOffset;
5379			{ renderSize.x(), renderSize.y(), 1u }	//	VkExtent3D				imageExtent;
5380		};
5381		vk.cmdCopyImageToBuffer(*cmdBuf, *image, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, *readImageBuffer, 1u, &copyParams);
5382	}
5383
5384	{
5385		const VkBufferMemoryBarrier	copyFinishBarrier	=
5386		{
5387			VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER,	//	VkStructureType		sType;
5388			DE_NULL,									//	const void*			pNext;
5389			VK_ACCESS_TRANSFER_WRITE_BIT,				//	VkMemoryOutputFlags	outputMask;
5390			VK_ACCESS_HOST_READ_BIT,					//	VkMemoryInputFlags	inputMask;
5391			queueFamilyIndex,							//	deUint32			srcQueueFamilyIndex;
5392			queueFamilyIndex,							//	deUint32			destQueueFamilyIndex;
5393			*readImageBuffer,							//	VkBuffer			buffer;
5394			0u,											//	VkDeviceSize		offset;
5395			imageSizeBytes								//	VkDeviceSize		size;
5396		};
5397		vk.cmdPipelineBarrier(*cmdBuf, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_HOST_BIT, (VkDependencyFlags)0, 0, (const VkMemoryBarrier*)DE_NULL, 1, &copyFinishBarrier, 0, (const VkImageMemoryBarrier*)DE_NULL);
5398	}
5399
5400	VK_CHECK(vk.endCommandBuffer(*cmdBuf));
5401
5402	// Upload vertex data
5403	{
5404		const VkMappedMemoryRange	range			=
5405		{
5406			VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE,	//	VkStructureType	sType;
5407			DE_NULL,								//	const void*		pNext;
5408			vertexBufferMemory->getMemory(),		//	VkDeviceMemory	mem;
5409			0,										//	VkDeviceSize	offset;
5410			(VkDeviceSize)sizeof(vertexData),		//	VkDeviceSize	size;
5411		};
5412		void*						vertexBufPtr	= vertexBufferMemory->getHostPtr();
5413
5414		deMemcpy(vertexBufPtr, &vertexData[0], sizeof(vertexData));
5415		VK_CHECK(vk.flushMappedMemoryRanges(vkDevice, 1u, &range));
5416	}
5417
5418	// Submit & wait for completion
5419	{
5420		const VkFenceCreateInfo	fenceParams	=
5421		{
5422			VK_STRUCTURE_TYPE_FENCE_CREATE_INFO,	//	VkStructureType		sType;
5423			DE_NULL,								//	const void*			pNext;
5424			0u,										//	VkFenceCreateFlags	flags;
5425		};
5426		const Unique<VkFence>	fence		(createFence(vk, vkDevice, &fenceParams));
5427		const VkSubmitInfo		submitInfo	=
5428		{
5429			VK_STRUCTURE_TYPE_SUBMIT_INFO,
5430			DE_NULL,
5431			0u,
5432			(const VkSemaphore*)DE_NULL,
5433			(const VkPipelineStageFlags*)DE_NULL,
5434			1u,
5435			&cmdBuf.get(),
5436			0u,
5437			(const VkSemaphore*)DE_NULL,
5438		};
5439
5440		VK_CHECK(vk.queueSubmit(queue, 1u, &submitInfo, *fence));
5441		VK_CHECK(vk.waitForFences(vkDevice, 1u, &fence.get(), DE_TRUE, ~0ull));
5442	}
5443
5444	const void* imagePtr	= readImageBufferMemory->getHostPtr();
5445	const tcu::ConstPixelBufferAccess pixelBuffer(tcu::TextureFormat(tcu::TextureFormat::RGBA, tcu::TextureFormat::UNORM_INT8),
5446												  renderSize.x(), renderSize.y(), 1, imagePtr);
5447	// Log image
5448	{
5449		const VkMappedMemoryRange	range		=
5450		{
5451			VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE,	//	VkStructureType	sType;
5452			DE_NULL,								//	const void*		pNext;
5453			readImageBufferMemory->getMemory(),		//	VkDeviceMemory	mem;
5454			0,										//	VkDeviceSize	offset;
5455			imageSizeBytes,							//	VkDeviceSize	size;
5456		};
5457
5458		VK_CHECK(vk.invalidateMappedMemoryRanges(vkDevice, 1u, &range));
5459		context.getTestContext().getLog() << TestLog::Image("Result", "Result", pixelBuffer);
5460	}
5461
5462	const RGBA threshold(1, 1, 1, 1);
5463	const RGBA upperLeft(pixelBuffer.getPixel(1, 1));
5464	if (!tcu::compareThreshold(upperLeft, instance.outputColors[0], threshold))
5465		return TestStatus::fail("Upper left corner mismatch");
5466
5467	const RGBA upperRight(pixelBuffer.getPixel(pixelBuffer.getWidth() - 1, 1));
5468	if (!tcu::compareThreshold(upperRight, instance.outputColors[1], threshold))
5469		return TestStatus::fail("Upper right corner mismatch");
5470
5471	const RGBA lowerLeft(pixelBuffer.getPixel(1, pixelBuffer.getHeight() - 1));
5472	if (!tcu::compareThreshold(lowerLeft, instance.outputColors[2], threshold))
5473		return TestStatus::fail("Lower left corner mismatch");
5474
5475	const RGBA lowerRight(pixelBuffer.getPixel(pixelBuffer.getWidth() - 1, pixelBuffer.getHeight() - 1));
5476	if (!tcu::compareThreshold(lowerRight, instance.outputColors[3], threshold))
5477		return TestStatus::fail("Lower right corner mismatch");
5478
5479	return TestStatus::pass("Rendered output matches input");
5480}
5481
5482void createTestsForAllStages (const std::string& name, const RGBA (&inputColors)[4], const RGBA (&outputColors)[4], const map<string, string>& testCodeFragments, const vector<deInt32>& specConstants, tcu::TestCaseGroup* tests)
5483{
5484	const ShaderElement		vertFragPipelineStages[]		=
5485	{
5486		ShaderElement("vert", "main", VK_SHADER_STAGE_VERTEX_BIT),
5487		ShaderElement("frag", "main", VK_SHADER_STAGE_FRAGMENT_BIT),
5488	};
5489
5490	const ShaderElement		tessPipelineStages[]			=
5491	{
5492		ShaderElement("vert", "main", VK_SHADER_STAGE_VERTEX_BIT),
5493		ShaderElement("tessc", "main", VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT),
5494		ShaderElement("tesse", "main", VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT),
5495		ShaderElement("frag", "main", VK_SHADER_STAGE_FRAGMENT_BIT),
5496	};
5497
5498	const ShaderElement		geomPipelineStages[]				=
5499	{
5500		ShaderElement("vert", "main", VK_SHADER_STAGE_VERTEX_BIT),
5501		ShaderElement("geom", "main", VK_SHADER_STAGE_GEOMETRY_BIT),
5502		ShaderElement("frag", "main", VK_SHADER_STAGE_FRAGMENT_BIT),
5503	};
5504
5505	StageToSpecConstantMap	specConstantMap;
5506
5507	specConstantMap[VK_SHADER_STAGE_VERTEX_BIT] = specConstants;
5508	addFunctionCaseWithPrograms<InstanceContext>(tests, name + "_vert", "", addShaderCodeCustomVertex, runAndVerifyDefaultPipeline,
5509												 createInstanceContext(vertFragPipelineStages, inputColors, outputColors, testCodeFragments, specConstantMap));
5510
5511	specConstantMap.clear();
5512	specConstantMap[VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT] = specConstants;
5513	addFunctionCaseWithPrograms<InstanceContext>(tests, name + "_tessc", "", addShaderCodeCustomTessControl, runAndVerifyDefaultPipeline,
5514												 createInstanceContext(tessPipelineStages, inputColors, outputColors, testCodeFragments, specConstantMap));
5515
5516	specConstantMap.clear();
5517	specConstantMap[VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT] = specConstants;
5518	addFunctionCaseWithPrograms<InstanceContext>(tests, name + "_tesse", "", addShaderCodeCustomTessEval, runAndVerifyDefaultPipeline,
5519												 createInstanceContext(tessPipelineStages, inputColors, outputColors, testCodeFragments, specConstantMap));
5520
5521	specConstantMap.clear();
5522	specConstantMap[VK_SHADER_STAGE_GEOMETRY_BIT] = specConstants;
5523	addFunctionCaseWithPrograms<InstanceContext>(tests, name + "_geom", "", addShaderCodeCustomGeometry, runAndVerifyDefaultPipeline,
5524												 createInstanceContext(geomPipelineStages, inputColors, outputColors, testCodeFragments, specConstantMap));
5525
5526	specConstantMap.clear();
5527	specConstantMap[VK_SHADER_STAGE_FRAGMENT_BIT] = specConstants;
5528	addFunctionCaseWithPrograms<InstanceContext>(tests, name + "_frag", "", addShaderCodeCustomFragment, runAndVerifyDefaultPipeline,
5529												 createInstanceContext(vertFragPipelineStages, inputColors, outputColors, testCodeFragments, specConstantMap));
5530}
5531
5532inline void createTestsForAllStages (const std::string& name, const RGBA (&inputColors)[4], const RGBA (&outputColors)[4], const map<string, string>& testCodeFragments, tcu::TestCaseGroup* tests)
5533{
5534	vector<deInt32> noSpecConstants;
5535	createTestsForAllStages(name, inputColors, outputColors, testCodeFragments, noSpecConstants, tests);
5536}
5537
5538} // anonymous
5539
5540tcu::TestCaseGroup* createOpSourceTests (tcu::TestContext& testCtx)
5541{
5542	struct NameCodePair { string name, code; };
5543	RGBA							defaultColors[4];
5544	de::MovePtr<tcu::TestCaseGroup> opSourceTests			(new tcu::TestCaseGroup(testCtx, "opsource", "OpSource instruction"));
5545	const std::string				opsourceGLSLWithFile	= "%opsrcfile = OpString \"foo.vert\"\nOpSource GLSL 450 %opsrcfile ";
5546	map<string, string>				fragments				= passthruFragments();
5547	const NameCodePair				tests[]					=
5548	{
5549		{"unknown", "OpSource Unknown 321"},
5550		{"essl", "OpSource ESSL 310"},
5551		{"glsl", "OpSource GLSL 450"},
5552		{"opencl_cpp", "OpSource OpenCL_CPP 120"},
5553		{"opencl_c", "OpSource OpenCL_C 120"},
5554		{"multiple", "OpSource GLSL 450\nOpSource GLSL 450"},
5555		{"file", opsourceGLSLWithFile},
5556		{"source", opsourceGLSLWithFile + "\"void main(){}\""},
5557		// Longest possible source string: SPIR-V limits instructions to 65535
5558		// words, of which the first 4 are opsourceGLSLWithFile; the rest will
5559		// contain 65530 UTF8 characters (one word each) plus one last word
5560		// containing 3 ASCII characters and \0.
5561		{"longsource", opsourceGLSLWithFile + '"' + makeLongUTF8String(65530) + "ccc" + '"'}
5562	};
5563
5564	getDefaultColors(defaultColors);
5565	for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(NameCodePair); ++testNdx)
5566	{
5567		fragments["debug"] = tests[testNdx].code;
5568		createTestsForAllStages(tests[testNdx].name, defaultColors, defaultColors, fragments, opSourceTests.get());
5569	}
5570
5571	return opSourceTests.release();
5572}
5573
5574tcu::TestCaseGroup* createOpSourceContinuedTests (tcu::TestContext& testCtx)
5575{
5576	struct NameCodePair { string name, code; };
5577	RGBA								defaultColors[4];
5578	de::MovePtr<tcu::TestCaseGroup>		opSourceTests		(new tcu::TestCaseGroup(testCtx, "opsourcecontinued", "OpSourceContinued instruction"));
5579	map<string, string>					fragments			= passthruFragments();
5580	const std::string					opsource			= "%opsrcfile = OpString \"foo.vert\"\nOpSource GLSL 450 %opsrcfile \"void main(){}\"\n";
5581	const NameCodePair					tests[]				=
5582	{
5583		{"empty", opsource + "OpSourceContinued \"\""},
5584		{"short", opsource + "OpSourceContinued \"abcde\""},
5585		{"multiple", opsource + "OpSourceContinued \"abcde\"\nOpSourceContinued \"fghij\""},
5586		// Longest possible source string: SPIR-V limits instructions to 65535
5587		// words, of which the first one is OpSourceContinued/length; the rest
5588		// will contain 65533 UTF8 characters (one word each) plus one last word
5589		// containing 3 ASCII characters and \0.
5590		{"long", opsource + "OpSourceContinued \"" + makeLongUTF8String(65533) + "ccc\""}
5591	};
5592
5593	getDefaultColors(defaultColors);
5594	for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(NameCodePair); ++testNdx)
5595	{
5596		fragments["debug"] = tests[testNdx].code;
5597		createTestsForAllStages(tests[testNdx].name, defaultColors, defaultColors, fragments, opSourceTests.get());
5598	}
5599
5600	return opSourceTests.release();
5601}
5602
5603tcu::TestCaseGroup* createOpNoLineTests(tcu::TestContext& testCtx)
5604{
5605	RGBA								 defaultColors[4];
5606	de::MovePtr<tcu::TestCaseGroup>		 opLineTests		 (new tcu::TestCaseGroup(testCtx, "opnoline", "OpNoLine instruction"));
5607	map<string, string>					 fragments;
5608	getDefaultColors(defaultColors);
5609	fragments["debug"]			=
5610		"%name = OpString \"name\"\n";
5611
5612	fragments["pre_main"]	=
5613		"OpNoLine\n"
5614		"OpNoLine\n"
5615		"OpLine %name 1 1\n"
5616		"OpNoLine\n"
5617		"OpLine %name 1 1\n"
5618		"OpLine %name 1 1\n"
5619		"%second_function = OpFunction %v4f32 None %v4f32_function\n"
5620		"OpNoLine\n"
5621		"OpLine %name 1 1\n"
5622		"OpNoLine\n"
5623		"OpLine %name 1 1\n"
5624		"OpLine %name 1 1\n"
5625		"%second_param1 = OpFunctionParameter %v4f32\n"
5626		"OpNoLine\n"
5627		"OpNoLine\n"
5628		"%label_secondfunction = OpLabel\n"
5629		"OpNoLine\n"
5630		"OpReturnValue %second_param1\n"
5631		"OpFunctionEnd\n"
5632		"OpNoLine\n"
5633		"OpNoLine\n";
5634
5635	fragments["testfun"]		=
5636		// A %test_code function that returns its argument unchanged.
5637		"OpNoLine\n"
5638		"OpNoLine\n"
5639		"OpLine %name 1 1\n"
5640		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
5641		"OpNoLine\n"
5642		"%param1 = OpFunctionParameter %v4f32\n"
5643		"OpNoLine\n"
5644		"OpNoLine\n"
5645		"%label_testfun = OpLabel\n"
5646		"OpNoLine\n"
5647		"%val1 = OpFunctionCall %v4f32 %second_function %param1\n"
5648		"OpReturnValue %val1\n"
5649		"OpFunctionEnd\n"
5650		"OpLine %name 1 1\n"
5651		"OpNoLine\n";
5652
5653	createTestsForAllStages("opnoline", defaultColors, defaultColors, fragments, opLineTests.get());
5654
5655	return opLineTests.release();
5656}
5657
5658
5659tcu::TestCaseGroup* createOpLineTests(tcu::TestContext& testCtx)
5660{
5661	RGBA													defaultColors[4];
5662	de::MovePtr<tcu::TestCaseGroup>							opLineTests			(new tcu::TestCaseGroup(testCtx, "opline", "OpLine instruction"));
5663	map<string, string>										fragments;
5664	std::vector<std::pair<std::string, std::string> >		problemStrings;
5665
5666	problemStrings.push_back(std::make_pair<std::string, std::string>("empty_name", ""));
5667	problemStrings.push_back(std::make_pair<std::string, std::string>("short_name", "short_name"));
5668	problemStrings.push_back(std::make_pair<std::string, std::string>("long_name", makeLongUTF8String(65530) + "ccc"));
5669	getDefaultColors(defaultColors);
5670
5671	fragments["debug"]			=
5672		"%other_name = OpString \"other_name\"\n";
5673
5674	fragments["pre_main"]	=
5675		"OpLine %file_name 32 0\n"
5676		"OpLine %file_name 32 32\n"
5677		"OpLine %file_name 32 40\n"
5678		"OpLine %other_name 32 40\n"
5679		"OpLine %other_name 0 100\n"
5680		"OpLine %other_name 0 4294967295\n"
5681		"OpLine %other_name 4294967295 0\n"
5682		"OpLine %other_name 32 40\n"
5683		"OpLine %file_name 0 0\n"
5684		"%second_function = OpFunction %v4f32 None %v4f32_function\n"
5685		"OpLine %file_name 1 0\n"
5686		"%second_param1 = OpFunctionParameter %v4f32\n"
5687		"OpLine %file_name 1 3\n"
5688		"OpLine %file_name 1 2\n"
5689		"%label_secondfunction = OpLabel\n"
5690		"OpLine %file_name 0 2\n"
5691		"OpReturnValue %second_param1\n"
5692		"OpFunctionEnd\n"
5693		"OpLine %file_name 0 2\n"
5694		"OpLine %file_name 0 2\n";
5695
5696	fragments["testfun"]		=
5697		// A %test_code function that returns its argument unchanged.
5698		"OpLine %file_name 1 0\n"
5699		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
5700		"OpLine %file_name 16 330\n"
5701		"%param1 = OpFunctionParameter %v4f32\n"
5702		"OpLine %file_name 14 442\n"
5703		"%label_testfun = OpLabel\n"
5704		"OpLine %file_name 11 1024\n"
5705		"%val1 = OpFunctionCall %v4f32 %second_function %param1\n"
5706		"OpLine %file_name 2 97\n"
5707		"OpReturnValue %val1\n"
5708		"OpFunctionEnd\n"
5709		"OpLine %file_name 5 32\n";
5710
5711	for (size_t i = 0; i < problemStrings.size(); ++i)
5712	{
5713		map<string, string> testFragments = fragments;
5714		testFragments["debug"] += "%file_name = OpString \"" + problemStrings[i].second + "\"\n";
5715		createTestsForAllStages(string("opline") + "_" + problemStrings[i].first, defaultColors, defaultColors, testFragments, opLineTests.get());
5716	}
5717
5718	return opLineTests.release();
5719}
5720
5721tcu::TestCaseGroup* createOpConstantNullTests(tcu::TestContext& testCtx)
5722{
5723	de::MovePtr<tcu::TestCaseGroup> opConstantNullTests		(new tcu::TestCaseGroup(testCtx, "opconstantnull", "OpConstantNull instruction"));
5724	RGBA							colors[4];
5725
5726
5727	const char						functionStart[] =
5728		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
5729		"%param1 = OpFunctionParameter %v4f32\n"
5730		"%lbl    = OpLabel\n";
5731
5732	const char						functionEnd[]	=
5733		"OpReturnValue %transformed_param\n"
5734		"OpFunctionEnd\n";
5735
5736	struct NameConstantsCode
5737	{
5738		string name;
5739		string constants;
5740		string code;
5741	};
5742
5743	NameConstantsCode tests[] =
5744	{
5745		{
5746			"vec4",
5747			"%cnull = OpConstantNull %v4f32\n",
5748			"%transformed_param = OpFAdd %v4f32 %param1 %cnull\n"
5749		},
5750		{
5751			"float",
5752			"%cnull = OpConstantNull %f32\n",
5753			"%vp = OpVariable %fp_v4f32 Function\n"
5754			"%v  = OpLoad %v4f32 %vp\n"
5755			"%v0 = OpVectorInsertDynamic %v4f32 %v %cnull %c_i32_0\n"
5756			"%v1 = OpVectorInsertDynamic %v4f32 %v0 %cnull %c_i32_1\n"
5757			"%v2 = OpVectorInsertDynamic %v4f32 %v1 %cnull %c_i32_2\n"
5758			"%v3 = OpVectorInsertDynamic %v4f32 %v2 %cnull %c_i32_3\n"
5759			"%transformed_param = OpFAdd %v4f32 %param1 %v3\n"
5760		},
5761		{
5762			"bool",
5763			"%cnull             = OpConstantNull %bool\n",
5764			"%v                 = OpVariable %fp_v4f32 Function\n"
5765			"                     OpStore %v %param1\n"
5766			"                     OpSelectionMerge %false_label None\n"
5767			"                     OpBranchConditional %cnull %true_label %false_label\n"
5768			"%true_label        = OpLabel\n"
5769			"                     OpStore %v %c_v4f32_0_5_0_5_0_5_0_5\n"
5770			"                     OpBranch %false_label\n"
5771			"%false_label       = OpLabel\n"
5772			"%transformed_param = OpLoad %v4f32 %v\n"
5773		},
5774		{
5775			"i32",
5776			"%cnull             = OpConstantNull %i32\n",
5777			"%v                 = OpVariable %fp_v4f32 Function %c_v4f32_0_5_0_5_0_5_0_5\n"
5778			"%b                 = OpIEqual %bool %cnull %c_i32_0\n"
5779			"                     OpSelectionMerge %false_label None\n"
5780			"                     OpBranchConditional %b %true_label %false_label\n"
5781			"%true_label        = OpLabel\n"
5782			"                     OpStore %v %param1\n"
5783			"                     OpBranch %false_label\n"
5784			"%false_label       = OpLabel\n"
5785			"%transformed_param = OpLoad %v4f32 %v\n"
5786		},
5787		{
5788			"struct",
5789			"%stype             = OpTypeStruct %f32 %v4f32\n"
5790			"%fp_stype          = OpTypePointer Function %stype\n"
5791			"%cnull             = OpConstantNull %stype\n",
5792			"%v                 = OpVariable %fp_stype Function %cnull\n"
5793			"%f                 = OpAccessChain %fp_v4f32 %v %c_i32_1\n"
5794			"%f_val             = OpLoad %v4f32 %f\n"
5795			"%transformed_param = OpFAdd %v4f32 %param1 %f_val\n"
5796		},
5797		{
5798			"array",
5799			"%a4_v4f32          = OpTypeArray %v4f32 %c_u32_4\n"
5800			"%fp_a4_v4f32       = OpTypePointer Function %a4_v4f32\n"
5801			"%cnull             = OpConstantNull %a4_v4f32\n",
5802			"%v                 = OpVariable %fp_a4_v4f32 Function %cnull\n"
5803			"%f                 = OpAccessChain %fp_v4f32 %v %c_u32_0\n"
5804			"%f1                = OpAccessChain %fp_v4f32 %v %c_u32_1\n"
5805			"%f2                = OpAccessChain %fp_v4f32 %v %c_u32_2\n"
5806			"%f3                = OpAccessChain %fp_v4f32 %v %c_u32_3\n"
5807			"%f_val             = OpLoad %v4f32 %f\n"
5808			"%f1_val            = OpLoad %v4f32 %f1\n"
5809			"%f2_val            = OpLoad %v4f32 %f2\n"
5810			"%f3_val            = OpLoad %v4f32 %f3\n"
5811			"%t0                = OpFAdd %v4f32 %param1 %f_val\n"
5812			"%t1                = OpFAdd %v4f32 %t0 %f1_val\n"
5813			"%t2                = OpFAdd %v4f32 %t1 %f2_val\n"
5814			"%transformed_param = OpFAdd %v4f32 %t2 %f3_val\n"
5815		},
5816		{
5817			"matrix",
5818			"%mat4x4_f32        = OpTypeMatrix %v4f32 4\n"
5819			"%cnull             = OpConstantNull %mat4x4_f32\n",
5820			// Our null matrix * any vector should result in a zero vector.
5821			"%v                 = OpVectorTimesMatrix %v4f32 %param1 %cnull\n"
5822			"%transformed_param = OpFAdd %v4f32 %param1 %v\n"
5823		}
5824	};
5825
5826	getHalfColorsFullAlpha(colors);
5827
5828	for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(NameConstantsCode); ++testNdx)
5829	{
5830		map<string, string> fragments;
5831		fragments["pre_main"] = tests[testNdx].constants;
5832		fragments["testfun"] = string(functionStart) + tests[testNdx].code + functionEnd;
5833		createTestsForAllStages(tests[testNdx].name, colors, colors, fragments, opConstantNullTests.get());
5834	}
5835	return opConstantNullTests.release();
5836}
5837tcu::TestCaseGroup* createOpConstantCompositeTests(tcu::TestContext& testCtx)
5838{
5839	de::MovePtr<tcu::TestCaseGroup> opConstantCompositeTests		(new tcu::TestCaseGroup(testCtx, "opconstantcomposite", "OpConstantComposite instruction"));
5840	RGBA							inputColors[4];
5841	RGBA							outputColors[4];
5842
5843
5844	const char						functionStart[]	 =
5845		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
5846		"%param1 = OpFunctionParameter %v4f32\n"
5847		"%lbl    = OpLabel\n";
5848
5849	const char						functionEnd[]		=
5850		"OpReturnValue %transformed_param\n"
5851		"OpFunctionEnd\n";
5852
5853	struct NameConstantsCode
5854	{
5855		string name;
5856		string constants;
5857		string code;
5858	};
5859
5860	NameConstantsCode tests[] =
5861	{
5862		{
5863			"vec4",
5864
5865			"%cval              = OpConstantComposite %v4f32 %c_f32_0_5 %c_f32_0_5 %c_f32_0_5 %c_f32_0\n",
5866			"%transformed_param = OpFAdd %v4f32 %param1 %cval\n"
5867		},
5868		{
5869			"struct",
5870
5871			"%stype             = OpTypeStruct %v4f32 %f32\n"
5872			"%fp_stype          = OpTypePointer Function %stype\n"
5873			"%f32_n_1           = OpConstant %f32 -1.0\n"
5874			"%f32_1_5           = OpConstant %f32 !0x3fc00000\n" // +1.5
5875			"%cvec              = OpConstantComposite %v4f32 %f32_1_5 %f32_1_5 %f32_1_5 %c_f32_1\n"
5876			"%cval              = OpConstantComposite %stype %cvec %f32_n_1\n",
5877
5878			"%v                 = OpVariable %fp_stype Function %cval\n"
5879			"%vec_ptr           = OpAccessChain %fp_v4f32 %v %c_u32_0\n"
5880			"%f32_ptr           = OpAccessChain %fp_f32 %v %c_u32_1\n"
5881			"%vec_val           = OpLoad %v4f32 %vec_ptr\n"
5882			"%f32_val           = OpLoad %f32 %f32_ptr\n"
5883			"%tmp1              = OpVectorTimesScalar %v4f32 %c_v4f32_1_1_1_1 %f32_val\n" // vec4(-1)
5884			"%tmp2              = OpFAdd %v4f32 %tmp1 %param1\n" // param1 + vec4(-1)
5885			"%transformed_param = OpFAdd %v4f32 %tmp2 %vec_val\n" // param1 + vec4(-1) + vec4(1.5, 1.5, 1.5, 1.0)
5886		},
5887		{
5888			// [1|0|0|0.5] [x] = x + 0.5
5889			// [0|1|0|0.5] [y] = y + 0.5
5890			// [0|0|1|0.5] [z] = z + 0.5
5891			// [0|0|0|1  ] [1] = 1
5892			"matrix",
5893
5894			"%mat4x4_f32          = OpTypeMatrix %v4f32 4\n"
5895		    "%v4f32_1_0_0_0       = OpConstantComposite %v4f32 %c_f32_1 %c_f32_0 %c_f32_0 %c_f32_0\n"
5896		    "%v4f32_0_1_0_0       = OpConstantComposite %v4f32 %c_f32_0 %c_f32_1 %c_f32_0 %c_f32_0\n"
5897		    "%v4f32_0_0_1_0       = OpConstantComposite %v4f32 %c_f32_0 %c_f32_0 %c_f32_1 %c_f32_0\n"
5898		    "%v4f32_0_5_0_5_0_5_1 = OpConstantComposite %v4f32 %c_f32_0_5 %c_f32_0_5 %c_f32_0_5 %c_f32_1\n"
5899			"%cval                = OpConstantComposite %mat4x4_f32 %v4f32_1_0_0_0 %v4f32_0_1_0_0 %v4f32_0_0_1_0 %v4f32_0_5_0_5_0_5_1\n",
5900
5901			"%transformed_param   = OpMatrixTimesVector %v4f32 %cval %param1\n"
5902		},
5903		{
5904			"array",
5905
5906			"%c_v4f32_1_1_1_0     = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_0\n"
5907			"%fp_a4f32            = OpTypePointer Function %a4f32\n"
5908			"%f32_n_1             = OpConstant %f32 -1.0\n"
5909			"%f32_1_5             = OpConstant %f32 !0x3fc00000\n" // +1.5
5910			"%carr                = OpConstantComposite %a4f32 %c_f32_0 %f32_n_1 %f32_1_5 %c_f32_0\n",
5911
5912			"%v                   = OpVariable %fp_a4f32 Function %carr\n"
5913			"%f                   = OpAccessChain %fp_f32 %v %c_u32_0\n"
5914			"%f1                  = OpAccessChain %fp_f32 %v %c_u32_1\n"
5915			"%f2                  = OpAccessChain %fp_f32 %v %c_u32_2\n"
5916			"%f3                  = OpAccessChain %fp_f32 %v %c_u32_3\n"
5917			"%f_val               = OpLoad %f32 %f\n"
5918			"%f1_val              = OpLoad %f32 %f1\n"
5919			"%f2_val              = OpLoad %f32 %f2\n"
5920			"%f3_val              = OpLoad %f32 %f3\n"
5921			"%ftot1               = OpFAdd %f32 %f_val %f1_val\n"
5922			"%ftot2               = OpFAdd %f32 %ftot1 %f2_val\n"
5923			"%ftot3               = OpFAdd %f32 %ftot2 %f3_val\n"  // 0 - 1 + 1.5 + 0
5924			"%add_vec             = OpVectorTimesScalar %v4f32 %c_v4f32_1_1_1_0 %ftot3\n"
5925			"%transformed_param   = OpFAdd %v4f32 %param1 %add_vec\n"
5926		},
5927		{
5928			//
5929			// [
5930			//   {
5931			//      0.0,
5932			//      [ 1.0, 1.0, 1.0, 1.0]
5933			//   },
5934			//   {
5935			//      1.0,
5936			//      [ 0.0, 0.5, 0.0, 0.0]
5937			//   }, //     ^^^
5938			//   {
5939			//      0.0,
5940			//      [ 1.0, 1.0, 1.0, 1.0]
5941			//   }
5942			// ]
5943			"array_of_struct_of_array",
5944
5945			"%c_v4f32_1_1_1_0     = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_0\n"
5946			"%fp_a4f32            = OpTypePointer Function %a4f32\n"
5947			"%stype               = OpTypeStruct %f32 %a4f32\n"
5948			"%a3stype             = OpTypeArray %stype %c_u32_3\n"
5949			"%fp_a3stype          = OpTypePointer Function %a3stype\n"
5950			"%ca4f32_0            = OpConstantComposite %a4f32 %c_f32_0 %c_f32_0_5 %c_f32_0 %c_f32_0\n"
5951			"%ca4f32_1            = OpConstantComposite %a4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_1\n"
5952			"%cstype1             = OpConstantComposite %stype %c_f32_0 %ca4f32_1\n"
5953			"%cstype2             = OpConstantComposite %stype %c_f32_1 %ca4f32_0\n"
5954			"%carr                = OpConstantComposite %a3stype %cstype1 %cstype2 %cstype1",
5955
5956			"%v                   = OpVariable %fp_a3stype Function %carr\n"
5957			"%f                   = OpAccessChain %fp_f32 %v %c_u32_1 %c_u32_1 %c_u32_1\n"
5958			"%f_l                 = OpLoad %f32 %f\n"
5959			"%add_vec             = OpVectorTimesScalar %v4f32 %c_v4f32_1_1_1_0 %f_l\n"
5960			"%transformed_param   = OpFAdd %v4f32 %param1 %add_vec\n"
5961		}
5962	};
5963
5964	getHalfColorsFullAlpha(inputColors);
5965	outputColors[0] = RGBA(255, 255, 255, 255);
5966	outputColors[1] = RGBA(255, 127, 127, 255);
5967	outputColors[2] = RGBA(127, 255, 127, 255);
5968	outputColors[3] = RGBA(127, 127, 255, 255);
5969
5970	for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(NameConstantsCode); ++testNdx)
5971	{
5972		map<string, string> fragments;
5973		fragments["pre_main"] = tests[testNdx].constants;
5974		fragments["testfun"] = string(functionStart) + tests[testNdx].code + functionEnd;
5975		createTestsForAllStages(tests[testNdx].name, inputColors, outputColors, fragments, opConstantCompositeTests.get());
5976	}
5977	return opConstantCompositeTests.release();
5978}
5979
5980tcu::TestCaseGroup* createSelectionBlockOrderTests(tcu::TestContext& testCtx)
5981{
5982	de::MovePtr<tcu::TestCaseGroup> group				(new tcu::TestCaseGroup(testCtx, "selection_block_order", "Out-of-order blocks for selection"));
5983	RGBA							inputColors[4];
5984	RGBA							outputColors[4];
5985	map<string, string>				fragments;
5986
5987	// vec4 test_code(vec4 param) {
5988	//   vec4 result = param;
5989	//   for (int i = 0; i < 4; ++i) {
5990	//     if (i == 0) result[i] = 0.;
5991	//     else        result[i] = 1. - result[i];
5992	//   }
5993	//   return result;
5994	// }
5995	const char						function[]			=
5996		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
5997		"%param1    = OpFunctionParameter %v4f32\n"
5998		"%lbl       = OpLabel\n"
5999		"%iptr      = OpVariable %fp_i32 Function\n"
6000		"%result    = OpVariable %fp_v4f32 Function\n"
6001		"             OpStore %iptr %c_i32_0\n"
6002		"             OpStore %result %param1\n"
6003		"             OpBranch %loop\n"
6004
6005		// Loop entry block.
6006		"%loop      = OpLabel\n"
6007		"%ival      = OpLoad %i32 %iptr\n"
6008		"%lt_4      = OpSLessThan %bool %ival %c_i32_4\n"
6009		"             OpLoopMerge %exit %loop None\n"
6010		"             OpBranchConditional %lt_4 %if_entry %exit\n"
6011
6012		// Merge block for loop.
6013		"%exit      = OpLabel\n"
6014		"%ret       = OpLoad %v4f32 %result\n"
6015		"             OpReturnValue %ret\n"
6016
6017		// If-statement entry block.
6018		"%if_entry  = OpLabel\n"
6019		"%loc       = OpAccessChain %fp_f32 %result %ival\n"
6020		"%eq_0      = OpIEqual %bool %ival %c_i32_0\n"
6021		"             OpSelectionMerge %if_exit None\n"
6022		"             OpBranchConditional %eq_0 %if_true %if_false\n"
6023
6024		// False branch for if-statement.
6025		"%if_false  = OpLabel\n"
6026		"%val       = OpLoad %f32 %loc\n"
6027		"%sub       = OpFSub %f32 %c_f32_1 %val\n"
6028		"             OpStore %loc %sub\n"
6029		"             OpBranch %if_exit\n"
6030
6031		// Merge block for if-statement.
6032		"%if_exit   = OpLabel\n"
6033		"%ival_next = OpIAdd %i32 %ival %c_i32_1\n"
6034		"             OpStore %iptr %ival_next\n"
6035		"             OpBranch %loop\n"
6036
6037		// True branch for if-statement.
6038		"%if_true   = OpLabel\n"
6039		"             OpStore %loc %c_f32_0\n"
6040		"             OpBranch %if_exit\n"
6041
6042		"             OpFunctionEnd\n";
6043
6044	fragments["testfun"]	= function;
6045
6046	inputColors[0]			= RGBA(127, 127, 127, 0);
6047	inputColors[1]			= RGBA(127, 0,   0,   0);
6048	inputColors[2]			= RGBA(0,   127, 0,   0);
6049	inputColors[3]			= RGBA(0,   0,   127, 0);
6050
6051	outputColors[0]			= RGBA(0, 128, 128, 255);
6052	outputColors[1]			= RGBA(0, 255, 255, 255);
6053	outputColors[2]			= RGBA(0, 128, 255, 255);
6054	outputColors[3]			= RGBA(0, 255, 128, 255);
6055
6056	createTestsForAllStages("out_of_order", inputColors, outputColors, fragments, group.get());
6057
6058	return group.release();
6059}
6060
6061tcu::TestCaseGroup* createSwitchBlockOrderTests(tcu::TestContext& testCtx)
6062{
6063	de::MovePtr<tcu::TestCaseGroup> group				(new tcu::TestCaseGroup(testCtx, "switch_block_order", "Out-of-order blocks for switch"));
6064	RGBA							inputColors[4];
6065	RGBA							outputColors[4];
6066	map<string, string>				fragments;
6067
6068	const char						typesAndConstants[]	=
6069		"%c_f32_p2  = OpConstant %f32 0.2\n"
6070		"%c_f32_p4  = OpConstant %f32 0.4\n"
6071		"%c_f32_p6  = OpConstant %f32 0.6\n"
6072		"%c_f32_p8  = OpConstant %f32 0.8\n";
6073
6074	// vec4 test_code(vec4 param) {
6075	//   vec4 result = param;
6076	//   for (int i = 0; i < 4; ++i) {
6077	//     switch (i) {
6078	//       case 0: result[i] += .2; break;
6079	//       case 1: result[i] += .6; break;
6080	//       case 2: result[i] += .4; break;
6081	//       case 3: result[i] += .8; break;
6082	//       default: break; // unreachable
6083	//     }
6084	//   }
6085	//   return result;
6086	// }
6087	const char						function[]			=
6088		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
6089		"%param1    = OpFunctionParameter %v4f32\n"
6090		"%lbl       = OpLabel\n"
6091		"%iptr      = OpVariable %fp_i32 Function\n"
6092		"%result    = OpVariable %fp_v4f32 Function\n"
6093		"             OpStore %iptr %c_i32_0\n"
6094		"             OpStore %result %param1\n"
6095		"             OpBranch %loop\n"
6096
6097		// Loop entry block.
6098		"%loop      = OpLabel\n"
6099		"%ival      = OpLoad %i32 %iptr\n"
6100		"%lt_4      = OpSLessThan %bool %ival %c_i32_4\n"
6101		"             OpLoopMerge %exit %loop None\n"
6102		"             OpBranchConditional %lt_4 %switch_entry %exit\n"
6103
6104		// Merge block for loop.
6105		"%exit      = OpLabel\n"
6106		"%ret       = OpLoad %v4f32 %result\n"
6107		"             OpReturnValue %ret\n"
6108
6109		// Switch-statement entry block.
6110		"%switch_entry   = OpLabel\n"
6111		"%loc            = OpAccessChain %fp_f32 %result %ival\n"
6112		"%val            = OpLoad %f32 %loc\n"
6113		"                  OpSelectionMerge %switch_exit None\n"
6114		"                  OpSwitch %ival %switch_default 0 %case0 1 %case1 2 %case2 3 %case3\n"
6115
6116		"%case2          = OpLabel\n"
6117		"%addp4          = OpFAdd %f32 %val %c_f32_p4\n"
6118		"                  OpStore %loc %addp4\n"
6119		"                  OpBranch %switch_exit\n"
6120
6121		"%switch_default = OpLabel\n"
6122		"                  OpUnreachable\n"
6123
6124		"%case3          = OpLabel\n"
6125		"%addp8          = OpFAdd %f32 %val %c_f32_p8\n"
6126		"                  OpStore %loc %addp8\n"
6127		"                  OpBranch %switch_exit\n"
6128
6129		"%case0          = OpLabel\n"
6130		"%addp2          = OpFAdd %f32 %val %c_f32_p2\n"
6131		"                  OpStore %loc %addp2\n"
6132		"                  OpBranch %switch_exit\n"
6133
6134		// Merge block for switch-statement.
6135		"%switch_exit    = OpLabel\n"
6136		"%ival_next      = OpIAdd %i32 %ival %c_i32_1\n"
6137		"                  OpStore %iptr %ival_next\n"
6138		"                  OpBranch %loop\n"
6139
6140		"%case1          = OpLabel\n"
6141		"%addp6          = OpFAdd %f32 %val %c_f32_p6\n"
6142		"                  OpStore %loc %addp6\n"
6143		"                  OpBranch %switch_exit\n"
6144
6145		"                  OpFunctionEnd\n";
6146
6147	fragments["pre_main"]	= typesAndConstants;
6148	fragments["testfun"]	= function;
6149
6150	inputColors[0]			= RGBA(127, 27,  127, 51);
6151	inputColors[1]			= RGBA(127, 0,   0,   51);
6152	inputColors[2]			= RGBA(0,   27,  0,   51);
6153	inputColors[3]			= RGBA(0,   0,   127, 51);
6154
6155	outputColors[0]			= RGBA(178, 180, 229, 255);
6156	outputColors[1]			= RGBA(178, 153, 102, 255);
6157	outputColors[2]			= RGBA(51,  180, 102, 255);
6158	outputColors[3]			= RGBA(51,  153, 229, 255);
6159
6160	createTestsForAllStages("out_of_order", inputColors, outputColors, fragments, group.get());
6161
6162	return group.release();
6163}
6164
6165tcu::TestCaseGroup* createDecorationGroupTests(tcu::TestContext& testCtx)
6166{
6167	de::MovePtr<tcu::TestCaseGroup> group				(new tcu::TestCaseGroup(testCtx, "decoration_group", "Decoration group tests"));
6168	RGBA							inputColors[4];
6169	RGBA							outputColors[4];
6170	map<string, string>				fragments;
6171
6172	const char						decorations[]		=
6173		"OpDecorate %array_group         ArrayStride 4\n"
6174		"OpDecorate %struct_member_group Offset 0\n"
6175		"%array_group         = OpDecorationGroup\n"
6176		"%struct_member_group = OpDecorationGroup\n"
6177
6178		"OpDecorate %group1 RelaxedPrecision\n"
6179		"OpDecorate %group3 RelaxedPrecision\n"
6180		"OpDecorate %group3 Invariant\n"
6181		"OpDecorate %group3 Restrict\n"
6182		"%group0 = OpDecorationGroup\n"
6183		"%group1 = OpDecorationGroup\n"
6184		"%group3 = OpDecorationGroup\n";
6185
6186	const char						typesAndConstants[]	=
6187		"%a3f32     = OpTypeArray %f32 %c_u32_3\n"
6188		"%struct1   = OpTypeStruct %a3f32\n"
6189		"%struct2   = OpTypeStruct %a3f32\n"
6190		"%fp_struct1 = OpTypePointer Function %struct1\n"
6191		"%fp_struct2 = OpTypePointer Function %struct2\n"
6192		"%c_f32_2    = OpConstant %f32 2.\n"
6193		"%c_f32_n2   = OpConstant %f32 -2.\n"
6194
6195		"%c_a3f32_1 = OpConstantComposite %a3f32 %c_f32_1 %c_f32_2 %c_f32_1\n"
6196		"%c_a3f32_2 = OpConstantComposite %a3f32 %c_f32_n1 %c_f32_n2 %c_f32_n1\n"
6197		"%c_struct1 = OpConstantComposite %struct1 %c_a3f32_1\n"
6198		"%c_struct2 = OpConstantComposite %struct2 %c_a3f32_2\n";
6199
6200	const char						function[]			=
6201		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
6202		"%param     = OpFunctionParameter %v4f32\n"
6203		"%entry     = OpLabel\n"
6204		"%result    = OpVariable %fp_v4f32 Function\n"
6205		"%v_struct1 = OpVariable %fp_struct1 Function\n"
6206		"%v_struct2 = OpVariable %fp_struct2 Function\n"
6207		"             OpStore %result %param\n"
6208		"             OpStore %v_struct1 %c_struct1\n"
6209		"             OpStore %v_struct2 %c_struct2\n"
6210		"%ptr1      = OpAccessChain %fp_f32 %v_struct1 %c_i32_0 %c_i32_2\n"
6211		"%val1      = OpLoad %f32 %ptr1\n"
6212		"%ptr2      = OpAccessChain %fp_f32 %v_struct2 %c_i32_0 %c_i32_2\n"
6213		"%val2      = OpLoad %f32 %ptr2\n"
6214		"%addvalues = OpFAdd %f32 %val1 %val2\n"
6215		"%ptr       = OpAccessChain %fp_f32 %result %c_i32_1\n"
6216		"%val       = OpLoad %f32 %ptr\n"
6217		"%addresult = OpFAdd %f32 %addvalues %val\n"
6218		"             OpStore %ptr %addresult\n"
6219		"%ret       = OpLoad %v4f32 %result\n"
6220		"             OpReturnValue %ret\n"
6221		"             OpFunctionEnd\n";
6222
6223	struct CaseNameDecoration
6224	{
6225		string name;
6226		string decoration;
6227	};
6228
6229	CaseNameDecoration tests[] =
6230	{
6231		{
6232			"same_decoration_group_on_multiple_types",
6233			"OpGroupMemberDecorate %struct_member_group %struct1 0 %struct2 0\n"
6234		},
6235		{
6236			"empty_decoration_group",
6237			"OpGroupDecorate %group0      %a3f32\n"
6238			"OpGroupDecorate %group0      %result\n"
6239		},
6240		{
6241			"one_element_decoration_group",
6242			"OpGroupDecorate %array_group %a3f32\n"
6243		},
6244		{
6245			"multiple_elements_decoration_group",
6246			"OpGroupDecorate %group3      %v_struct1\n"
6247		},
6248		{
6249			"multiple_decoration_groups_on_same_variable",
6250			"OpGroupDecorate %group0      %v_struct2\n"
6251			"OpGroupDecorate %group1      %v_struct2\n"
6252			"OpGroupDecorate %group3      %v_struct2\n"
6253		},
6254		{
6255			"same_decoration_group_multiple_times",
6256			"OpGroupDecorate %group1      %addvalues\n"
6257			"OpGroupDecorate %group1      %addvalues\n"
6258			"OpGroupDecorate %group1      %addvalues\n"
6259		},
6260
6261	};
6262
6263	getHalfColorsFullAlpha(inputColors);
6264	getHalfColorsFullAlpha(outputColors);
6265
6266	for (size_t idx = 0; idx < (sizeof(tests) / sizeof(tests[0])); ++idx)
6267	{
6268		fragments["decoration"]	= decorations + tests[idx].decoration;
6269		fragments["pre_main"]	= typesAndConstants;
6270		fragments["testfun"]	= function;
6271
6272		createTestsForAllStages(tests[idx].name, inputColors, outputColors, fragments, group.get());
6273	}
6274
6275	return group.release();
6276}
6277
6278struct SpecConstantTwoIntGraphicsCase
6279{
6280	const char*		caseName;
6281	const char*		scDefinition0;
6282	const char*		scDefinition1;
6283	const char*		scResultType;
6284	const char*		scOperation;
6285	deInt32			scActualValue0;
6286	deInt32			scActualValue1;
6287	const char*		resultOperation;
6288	RGBA			expectedColors[4];
6289
6290					SpecConstantTwoIntGraphicsCase (const char* name,
6291											const char* definition0,
6292											const char* definition1,
6293											const char* resultType,
6294											const char* operation,
6295											deInt32		value0,
6296											deInt32		value1,
6297											const char* resultOp,
6298											const RGBA	(&output)[4])
6299						: caseName			(name)
6300						, scDefinition0		(definition0)
6301						, scDefinition1		(definition1)
6302						, scResultType		(resultType)
6303						, scOperation		(operation)
6304						, scActualValue0	(value0)
6305						, scActualValue1	(value1)
6306						, resultOperation	(resultOp)
6307	{
6308		expectedColors[0] = output[0];
6309		expectedColors[1] = output[1];
6310		expectedColors[2] = output[2];
6311		expectedColors[3] = output[3];
6312	}
6313};
6314
6315tcu::TestCaseGroup* createSpecConstantTests (tcu::TestContext& testCtx)
6316{
6317	de::MovePtr<tcu::TestCaseGroup> group				(new tcu::TestCaseGroup(testCtx, "opspecconstantop", "Test the OpSpecConstantOp instruction"));
6318	vector<SpecConstantTwoIntGraphicsCase>	cases;
6319	RGBA							inputColors[4];
6320	RGBA							outputColors0[4];
6321	RGBA							outputColors1[4];
6322	RGBA							outputColors2[4];
6323
6324	const char	decorations1[]			=
6325		"OpDecorate %sc_0  SpecId 0\n"
6326		"OpDecorate %sc_1  SpecId 1\n";
6327
6328	const char	typesAndConstants1[]	=
6329		"%sc_0      = OpSpecConstant${SC_DEF0}\n"
6330		"%sc_1      = OpSpecConstant${SC_DEF1}\n"
6331		"%sc_op     = OpSpecConstantOp ${SC_RESULT_TYPE} ${SC_OP}\n";
6332
6333	const char	function1[]				=
6334		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
6335		"%param     = OpFunctionParameter %v4f32\n"
6336		"%label     = OpLabel\n"
6337		"%result    = OpVariable %fp_v4f32 Function\n"
6338		"             OpStore %result %param\n"
6339		"%gen       = ${GEN_RESULT}\n"
6340		"%index     = OpIAdd %i32 %gen %c_i32_1\n"
6341		"%loc       = OpAccessChain %fp_f32 %result %index\n"
6342		"%val       = OpLoad %f32 %loc\n"
6343		"%add       = OpFAdd %f32 %val %c_f32_0_5\n"
6344		"             OpStore %loc %add\n"
6345		"%ret       = OpLoad %v4f32 %result\n"
6346		"             OpReturnValue %ret\n"
6347		"             OpFunctionEnd\n";
6348
6349	inputColors[0] = RGBA(127, 127, 127, 255);
6350	inputColors[1] = RGBA(127, 0,   0,   255);
6351	inputColors[2] = RGBA(0,   127, 0,   255);
6352	inputColors[3] = RGBA(0,   0,   127, 255);
6353
6354	// Derived from inputColors[x] by adding 128 to inputColors[x][0].
6355	outputColors0[0] = RGBA(255, 127, 127, 255);
6356	outputColors0[1] = RGBA(255, 0,   0,   255);
6357	outputColors0[2] = RGBA(128, 127, 0,   255);
6358	outputColors0[3] = RGBA(128, 0,   127, 255);
6359
6360	// Derived from inputColors[x] by adding 128 to inputColors[x][1].
6361	outputColors1[0] = RGBA(127, 255, 127, 255);
6362	outputColors1[1] = RGBA(127, 128, 0,   255);
6363	outputColors1[2] = RGBA(0,   255, 0,   255);
6364	outputColors1[3] = RGBA(0,   128, 127, 255);
6365
6366	// Derived from inputColors[x] by adding 128 to inputColors[x][2].
6367	outputColors2[0] = RGBA(127, 127, 255, 255);
6368	outputColors2[1] = RGBA(127, 0,   128, 255);
6369	outputColors2[2] = RGBA(0,   127, 128, 255);
6370	outputColors2[3] = RGBA(0,   0,   255, 255);
6371
6372	const char addZeroToSc[]		= "OpIAdd %i32 %c_i32_0 %sc_op";
6373	const char selectTrueUsingSc[]	= "OpSelect %i32 %sc_op %c_i32_1 %c_i32_0";
6374	const char selectFalseUsingSc[]	= "OpSelect %i32 %sc_op %c_i32_0 %c_i32_1";
6375
6376	cases.push_back(SpecConstantTwoIntGraphicsCase("iadd",					" %i32 0",		" %i32 0",		"%i32",		"IAdd                 %sc_0 %sc_1",				19,		-20,	addZeroToSc,		outputColors0));
6377	cases.push_back(SpecConstantTwoIntGraphicsCase("isub",					" %i32 0",		" %i32 0",		"%i32",		"ISub                 %sc_0 %sc_1",				19,		20,		addZeroToSc,		outputColors0));
6378	cases.push_back(SpecConstantTwoIntGraphicsCase("imul",					" %i32 0",		" %i32 0",		"%i32",		"IMul                 %sc_0 %sc_1",				-1,		-1,		addZeroToSc,		outputColors2));
6379	cases.push_back(SpecConstantTwoIntGraphicsCase("sdiv",					" %i32 0",		" %i32 0",		"%i32",		"SDiv                 %sc_0 %sc_1",				-126,	126,	addZeroToSc,		outputColors0));
6380	cases.push_back(SpecConstantTwoIntGraphicsCase("udiv",					" %i32 0",		" %i32 0",		"%i32",		"UDiv                 %sc_0 %sc_1",				126,	126,	addZeroToSc,		outputColors2));
6381	cases.push_back(SpecConstantTwoIntGraphicsCase("srem",					" %i32 0",		" %i32 0",		"%i32",		"SRem                 %sc_0 %sc_1",				3,		2,		addZeroToSc,		outputColors2));
6382	cases.push_back(SpecConstantTwoIntGraphicsCase("smod",					" %i32 0",		" %i32 0",		"%i32",		"SMod                 %sc_0 %sc_1",				3,		2,		addZeroToSc,		outputColors2));
6383	cases.push_back(SpecConstantTwoIntGraphicsCase("umod",					" %i32 0",		" %i32 0",		"%i32",		"UMod                 %sc_0 %sc_1",				1001,	500,	addZeroToSc,		outputColors2));
6384	cases.push_back(SpecConstantTwoIntGraphicsCase("bitwiseand",			" %i32 0",		" %i32 0",		"%i32",		"BitwiseAnd           %sc_0 %sc_1",				0x33,	0x0d,	addZeroToSc,		outputColors2));
6385	cases.push_back(SpecConstantTwoIntGraphicsCase("bitwiseor",				" %i32 0",		" %i32 0",		"%i32",		"BitwiseOr            %sc_0 %sc_1",				0,		1,		addZeroToSc,		outputColors2));
6386	cases.push_back(SpecConstantTwoIntGraphicsCase("bitwisexor",			" %i32 0",		" %i32 0",		"%i32",		"BitwiseXor           %sc_0 %sc_1",				0x2e,	0x2f,	addZeroToSc,		outputColors2));
6387	cases.push_back(SpecConstantTwoIntGraphicsCase("shiftrightlogical",		" %i32 0",		" %i32 0",		"%i32",		"ShiftRightLogical    %sc_0 %sc_1",				2,		1,		addZeroToSc,		outputColors2));
6388	cases.push_back(SpecConstantTwoIntGraphicsCase("shiftrightarithmetic",	" %i32 0",		" %i32 0",		"%i32",		"ShiftRightArithmetic %sc_0 %sc_1",				-4,		2,		addZeroToSc,		outputColors0));
6389	cases.push_back(SpecConstantTwoIntGraphicsCase("shiftleftlogical",		" %i32 0",		" %i32 0",		"%i32",		"ShiftLeftLogical     %sc_0 %sc_1",				1,		0,		addZeroToSc,		outputColors2));
6390	cases.push_back(SpecConstantTwoIntGraphicsCase("slessthan",				" %i32 0",		" %i32 0",		"%bool",	"SLessThan            %sc_0 %sc_1",				-20,	-10,	selectTrueUsingSc,	outputColors2));
6391	cases.push_back(SpecConstantTwoIntGraphicsCase("ulessthan",				" %i32 0",		" %i32 0",		"%bool",	"ULessThan            %sc_0 %sc_1",				10,		20,		selectTrueUsingSc,	outputColors2));
6392	cases.push_back(SpecConstantTwoIntGraphicsCase("sgreaterthan",			" %i32 0",		" %i32 0",		"%bool",	"SGreaterThan         %sc_0 %sc_1",				-1000,	50,		selectFalseUsingSc,	outputColors2));
6393	cases.push_back(SpecConstantTwoIntGraphicsCase("ugreaterthan",			" %i32 0",		" %i32 0",		"%bool",	"UGreaterThan         %sc_0 %sc_1",				10,		5,		selectTrueUsingSc,	outputColors2));
6394	cases.push_back(SpecConstantTwoIntGraphicsCase("slessthanequal",		" %i32 0",		" %i32 0",		"%bool",	"SLessThanEqual       %sc_0 %sc_1",				-10,	-10,	selectTrueUsingSc,	outputColors2));
6395	cases.push_back(SpecConstantTwoIntGraphicsCase("ulessthanequal",		" %i32 0",		" %i32 0",		"%bool",	"ULessThanEqual       %sc_0 %sc_1",				50,		100,	selectTrueUsingSc,	outputColors2));
6396	cases.push_back(SpecConstantTwoIntGraphicsCase("sgreaterthanequal",		" %i32 0",		" %i32 0",		"%bool",	"SGreaterThanEqual    %sc_0 %sc_1",				-1000,	50,		selectFalseUsingSc,	outputColors2));
6397	cases.push_back(SpecConstantTwoIntGraphicsCase("ugreaterthanequal",		" %i32 0",		" %i32 0",		"%bool",	"UGreaterThanEqual    %sc_0 %sc_1",				10,		10,		selectTrueUsingSc,	outputColors2));
6398	cases.push_back(SpecConstantTwoIntGraphicsCase("iequal",				" %i32 0",		" %i32 0",		"%bool",	"IEqual               %sc_0 %sc_1",				42,		24,		selectFalseUsingSc,	outputColors2));
6399	cases.push_back(SpecConstantTwoIntGraphicsCase("logicaland",			"True %bool",	"True %bool",	"%bool",	"LogicalAnd           %sc_0 %sc_1",				0,		1,		selectFalseUsingSc,	outputColors2));
6400	cases.push_back(SpecConstantTwoIntGraphicsCase("logicalor",				"False %bool",	"False %bool",	"%bool",	"LogicalOr            %sc_0 %sc_1",				1,		0,		selectTrueUsingSc,	outputColors2));
6401	cases.push_back(SpecConstantTwoIntGraphicsCase("logicalequal",			"True %bool",	"True %bool",	"%bool",	"LogicalEqual         %sc_0 %sc_1",				0,		1,		selectFalseUsingSc,	outputColors2));
6402	cases.push_back(SpecConstantTwoIntGraphicsCase("logicalnotequal",		"False %bool",	"False %bool",	"%bool",	"LogicalNotEqual      %sc_0 %sc_1",				1,		0,		selectTrueUsingSc,	outputColors2));
6403	cases.push_back(SpecConstantTwoIntGraphicsCase("snegate",				" %i32 0",		" %i32 0",		"%i32",		"SNegate              %sc_0",					-1,		0,		addZeroToSc,		outputColors2));
6404	cases.push_back(SpecConstantTwoIntGraphicsCase("not",					" %i32 0",		" %i32 0",		"%i32",		"Not                  %sc_0",					-2,		0,		addZeroToSc,		outputColors2));
6405	cases.push_back(SpecConstantTwoIntGraphicsCase("logicalnot",			"False %bool",	"False %bool",	"%bool",	"LogicalNot           %sc_0",					1,		0,		selectFalseUsingSc,	outputColors2));
6406	cases.push_back(SpecConstantTwoIntGraphicsCase("select",				"False %bool",	" %i32 0",		"%i32",		"Select               %sc_0 %sc_1 %c_i32_0",	1,		1,		addZeroToSc,		outputColors2));
6407	// OpSConvert, OpFConvert: these two instructions involve ints/floats of different bitwidths.
6408	// \todo[2015-12-1 antiagainst] OpQuantizeToF16
6409
6410	for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
6411	{
6412		map<string, string>	specializations;
6413		map<string, string>	fragments;
6414		vector<deInt32>		specConstants;
6415
6416		specializations["SC_DEF0"]			= cases[caseNdx].scDefinition0;
6417		specializations["SC_DEF1"]			= cases[caseNdx].scDefinition1;
6418		specializations["SC_RESULT_TYPE"]	= cases[caseNdx].scResultType;
6419		specializations["SC_OP"]			= cases[caseNdx].scOperation;
6420		specializations["GEN_RESULT"]		= cases[caseNdx].resultOperation;
6421
6422		fragments["decoration"]				= tcu::StringTemplate(decorations1).specialize(specializations);
6423		fragments["pre_main"]				= tcu::StringTemplate(typesAndConstants1).specialize(specializations);
6424		fragments["testfun"]				= tcu::StringTemplate(function1).specialize(specializations);
6425
6426		specConstants.push_back(cases[caseNdx].scActualValue0);
6427		specConstants.push_back(cases[caseNdx].scActualValue1);
6428
6429		createTestsForAllStages(cases[caseNdx].caseName, inputColors, cases[caseNdx].expectedColors, fragments, specConstants, group.get());
6430	}
6431
6432	const char	decorations2[]			=
6433		"OpDecorate %sc_0  SpecId 0\n"
6434		"OpDecorate %sc_1  SpecId 1\n"
6435		"OpDecorate %sc_2  SpecId 2\n";
6436
6437	const char	typesAndConstants2[]	=
6438		"%v3i32     = OpTypeVector %i32 3\n"
6439
6440		"%sc_0      = OpSpecConstant %i32 0\n"
6441		"%sc_1      = OpSpecConstant %i32 0\n"
6442		"%sc_2      = OpSpecConstant %i32 0\n"
6443
6444		"%vec3_0      = OpConstantComposite %v3i32 %c_i32_0 %c_i32_0 %c_i32_0\n"
6445		"%sc_vec3_0   = OpSpecConstantOp %v3i32 CompositeInsert  %sc_0        %vec3_0    0\n"     // (sc_0, 0, 0)
6446		"%sc_vec3_1   = OpSpecConstantOp %v3i32 CompositeInsert  %sc_1        %vec3_0    1\n"     // (0, sc_1, 0)
6447		"%sc_vec3_2   = OpSpecConstantOp %v3i32 CompositeInsert  %sc_2        %vec3_0    2\n"     // (0, 0, sc_2)
6448		"%sc_vec3_01  = OpSpecConstantOp %v3i32 VectorShuffle    %sc_vec3_0   %sc_vec3_1 1 0 4\n" // (0,    sc_0, sc_1)
6449		"%sc_vec3_012 = OpSpecConstantOp %v3i32 VectorShuffle    %sc_vec3_01  %sc_vec3_2 5 1 2\n" // (sc_2, sc_0, sc_1)
6450		"%sc_ext_0    = OpSpecConstantOp %i32   CompositeExtract %sc_vec3_012            0\n"     // sc_2
6451		"%sc_ext_1    = OpSpecConstantOp %i32   CompositeExtract %sc_vec3_012            1\n"     // sc_0
6452		"%sc_ext_2    = OpSpecConstantOp %i32   CompositeExtract %sc_vec3_012            2\n"     // sc_1
6453		"%sc_sub      = OpSpecConstantOp %i32   ISub             %sc_ext_0    %sc_ext_1\n"        // (sc_2 - sc_0)
6454		"%sc_final    = OpSpecConstantOp %i32   IMul             %sc_sub      %sc_ext_2\n";       // (sc_2 - sc_0) * sc_1
6455
6456	const char	function2[]				=
6457		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
6458		"%param     = OpFunctionParameter %v4f32\n"
6459		"%label     = OpLabel\n"
6460		"%result    = OpVariable %fp_v4f32 Function\n"
6461		"             OpStore %result %param\n"
6462		"%loc       = OpAccessChain %fp_f32 %result %sc_final\n"
6463		"%val       = OpLoad %f32 %loc\n"
6464		"%add       = OpFAdd %f32 %val %c_f32_0_5\n"
6465		"             OpStore %loc %add\n"
6466		"%ret       = OpLoad %v4f32 %result\n"
6467		"             OpReturnValue %ret\n"
6468		"             OpFunctionEnd\n";
6469
6470	map<string, string>	fragments;
6471	vector<deInt32>		specConstants;
6472
6473	fragments["decoration"]	= decorations2;
6474	fragments["pre_main"]	= typesAndConstants2;
6475	fragments["testfun"]	= function2;
6476
6477	specConstants.push_back(56789);
6478	specConstants.push_back(-2);
6479	specConstants.push_back(56788);
6480
6481	createTestsForAllStages("vector_related", inputColors, outputColors2, fragments, specConstants, group.get());
6482
6483	return group.release();
6484}
6485
6486tcu::TestCaseGroup* createOpPhiTests(tcu::TestContext& testCtx)
6487{
6488	de::MovePtr<tcu::TestCaseGroup> group				(new tcu::TestCaseGroup(testCtx, "opphi", "Test the OpPhi instruction"));
6489	RGBA							inputColors[4];
6490	RGBA							outputColors1[4];
6491	RGBA							outputColors2[4];
6492	RGBA							outputColors3[4];
6493	map<string, string>				fragments1;
6494	map<string, string>				fragments2;
6495	map<string, string>				fragments3;
6496
6497	const char	typesAndConstants1[]	=
6498		"%c_f32_p2  = OpConstant %f32 0.2\n"
6499		"%c_f32_p4  = OpConstant %f32 0.4\n"
6500		"%c_f32_p5  = OpConstant %f32 0.5\n"
6501		"%c_f32_p8  = OpConstant %f32 0.8\n";
6502
6503	// vec4 test_code(vec4 param) {
6504	//   vec4 result = param;
6505	//   for (int i = 0; i < 4; ++i) {
6506	//     float operand;
6507	//     switch (i) {
6508	//       case 0: operand = .2; break;
6509	//       case 1: operand = .5; break;
6510	//       case 2: operand = .4; break;
6511	//       case 3: operand = .0; break;
6512	//       default: break; // unreachable
6513	//     }
6514	//     result[i] += operand;
6515	//   }
6516	//   return result;
6517	// }
6518	const char	function1[]				=
6519		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
6520		"%param1    = OpFunctionParameter %v4f32\n"
6521		"%lbl       = OpLabel\n"
6522		"%iptr      = OpVariable %fp_i32 Function\n"
6523		"%result    = OpVariable %fp_v4f32 Function\n"
6524		"             OpStore %iptr %c_i32_0\n"
6525		"             OpStore %result %param1\n"
6526		"             OpBranch %loop\n"
6527
6528		"%loop      = OpLabel\n"
6529		"%ival      = OpLoad %i32 %iptr\n"
6530		"%lt_4      = OpSLessThan %bool %ival %c_i32_4\n"
6531		"             OpLoopMerge %exit %loop None\n"
6532		"             OpBranchConditional %lt_4 %entry %exit\n"
6533
6534		"%entry     = OpLabel\n"
6535		"%loc       = OpAccessChain %fp_f32 %result %ival\n"
6536		"%val       = OpLoad %f32 %loc\n"
6537		"             OpSelectionMerge %phi None\n"
6538		"             OpSwitch %ival %default 0 %case0 1 %case1 2 %case2 3 %case3\n"
6539
6540		"%case0     = OpLabel\n"
6541		"             OpBranch %phi\n"
6542		"%case1     = OpLabel\n"
6543		"             OpBranch %phi\n"
6544		"%case2     = OpLabel\n"
6545		"             OpBranch %phi\n"
6546		"%case3     = OpLabel\n"
6547		"             OpBranch %phi\n"
6548
6549		"%default   = OpLabel\n"
6550		"             OpUnreachable\n"
6551
6552		"%phi       = OpLabel\n"
6553		"%operand   = OpPhi %f32 %c_f32_p4 %case2 %c_f32_p5 %case1 %c_f32_p2 %case0 %c_f32_0 %case3\n" // not in the order of blocks
6554		"%add       = OpFAdd %f32 %val %operand\n"
6555		"             OpStore %loc %add\n"
6556		"%ival_next = OpIAdd %i32 %ival %c_i32_1\n"
6557		"             OpStore %iptr %ival_next\n"
6558		"             OpBranch %loop\n"
6559
6560		"%exit      = OpLabel\n"
6561		"%ret       = OpLoad %v4f32 %result\n"
6562		"             OpReturnValue %ret\n"
6563
6564		"             OpFunctionEnd\n";
6565
6566	fragments1["pre_main"]	= typesAndConstants1;
6567	fragments1["testfun"]	= function1;
6568
6569	getHalfColorsFullAlpha(inputColors);
6570
6571	outputColors1[0]		= RGBA(178, 255, 229, 255);
6572	outputColors1[1]		= RGBA(178, 127, 102, 255);
6573	outputColors1[2]		= RGBA(51,  255, 102, 255);
6574	outputColors1[3]		= RGBA(51,  127, 229, 255);
6575
6576	createTestsForAllStages("out_of_order", inputColors, outputColors1, fragments1, group.get());
6577
6578	const char	typesAndConstants2[]	=
6579		"%c_f32_p2  = OpConstant %f32 0.2\n";
6580
6581	// Add .4 to the second element of the given parameter.
6582	const char	function2[]				=
6583		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
6584		"%param     = OpFunctionParameter %v4f32\n"
6585		"%entry     = OpLabel\n"
6586		"%result    = OpVariable %fp_v4f32 Function\n"
6587		"             OpStore %result %param\n"
6588		"%loc       = OpAccessChain %fp_f32 %result %c_i32_1\n"
6589		"%val       = OpLoad %f32 %loc\n"
6590		"             OpBranch %phi\n"
6591
6592		"%phi        = OpLabel\n"
6593		"%step       = OpPhi %i32 %c_i32_0  %entry %step_next  %phi\n"
6594		"%accum      = OpPhi %f32 %val      %entry %accum_next %phi\n"
6595		"%step_next  = OpIAdd %i32 %step  %c_i32_1\n"
6596		"%accum_next = OpFAdd %f32 %accum %c_f32_p2\n"
6597		"%still_loop = OpSLessThan %bool %step %c_i32_2\n"
6598		"              OpLoopMerge %exit %phi None\n"
6599		"              OpBranchConditional %still_loop %phi %exit\n"
6600
6601		"%exit       = OpLabel\n"
6602		"              OpStore %loc %accum\n"
6603		"%ret        = OpLoad %v4f32 %result\n"
6604		"              OpReturnValue %ret\n"
6605
6606		"              OpFunctionEnd\n";
6607
6608	fragments2["pre_main"]	= typesAndConstants2;
6609	fragments2["testfun"]	= function2;
6610
6611	outputColors2[0]			= RGBA(127, 229, 127, 255);
6612	outputColors2[1]			= RGBA(127, 102, 0,   255);
6613	outputColors2[2]			= RGBA(0,   229, 0,   255);
6614	outputColors2[3]			= RGBA(0,   102, 127, 255);
6615
6616	createTestsForAllStages("induction", inputColors, outputColors2, fragments2, group.get());
6617
6618	const char	typesAndConstants3[]	=
6619		"%true      = OpConstantTrue %bool\n"
6620		"%false     = OpConstantFalse %bool\n"
6621		"%c_f32_p2  = OpConstant %f32 0.2\n";
6622
6623	// Swap the second and the third element of the given parameter.
6624	const char	function3[]				=
6625		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
6626		"%param     = OpFunctionParameter %v4f32\n"
6627		"%entry     = OpLabel\n"
6628		"%result    = OpVariable %fp_v4f32 Function\n"
6629		"             OpStore %result %param\n"
6630		"%a_loc     = OpAccessChain %fp_f32 %result %c_i32_1\n"
6631		"%a_init    = OpLoad %f32 %a_loc\n"
6632		"%b_loc     = OpAccessChain %fp_f32 %result %c_i32_2\n"
6633		"%b_init    = OpLoad %f32 %b_loc\n"
6634		"             OpBranch %phi\n"
6635
6636		"%phi        = OpLabel\n"
6637		"%still_loop = OpPhi %bool %true   %entry %false  %phi\n"
6638		"%a_next     = OpPhi %f32  %a_init %entry %b_next %phi\n"
6639		"%b_next     = OpPhi %f32  %b_init %entry %a_next %phi\n"
6640		"              OpLoopMerge %exit %phi None\n"
6641		"              OpBranchConditional %still_loop %phi %exit\n"
6642
6643		"%exit       = OpLabel\n"
6644		"              OpStore %a_loc %a_next\n"
6645		"              OpStore %b_loc %b_next\n"
6646		"%ret        = OpLoad %v4f32 %result\n"
6647		"              OpReturnValue %ret\n"
6648
6649		"              OpFunctionEnd\n";
6650
6651	fragments3["pre_main"]	= typesAndConstants3;
6652	fragments3["testfun"]	= function3;
6653
6654	outputColors3[0]			= RGBA(127, 127, 127, 255);
6655	outputColors3[1]			= RGBA(127, 0,   0,   255);
6656	outputColors3[2]			= RGBA(0,   0,   127, 255);
6657	outputColors3[3]			= RGBA(0,   127, 0,   255);
6658
6659	createTestsForAllStages("swap", inputColors, outputColors3, fragments3, group.get());
6660
6661	return group.release();
6662}
6663
6664tcu::TestCaseGroup* createNoContractionTests(tcu::TestContext& testCtx)
6665{
6666	de::MovePtr<tcu::TestCaseGroup> group			(new tcu::TestCaseGroup(testCtx, "nocontraction", "Test the NoContraction decoration"));
6667	RGBA							inputColors[4];
6668	RGBA							outputColors[4];
6669
6670	// With NoContraction, (1 + 2^-23) * (1 - 2^-23) - 1 should be conducted as a multiplication and an addition separately.
6671	// For the multiplication, the result is 1 - 2^-46, which is out of the precision range for 32-bit float. (32-bit float
6672	// only have 23-bit fraction.) So it will be rounded to 1. Or 0x1.fffffc. Then the final result is 0 or -0x1p-24.
6673	// On the contrary, the result will be 2^-46, which is a normalized number perfectly representable as 32-bit float.
6674	const char						constantsAndTypes[]	 =
6675		"%c_vec4_0       = OpConstantComposite %v4f32 %c_f32_0 %c_f32_0 %c_f32_0 %c_f32_1\n"
6676		"%c_vec4_1       = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_1\n"
6677		"%c_f32_1pl2_23  = OpConstant %f32 0x1.000002p+0\n" // 1 + 2^-23
6678		"%c_f32_1mi2_23  = OpConstant %f32 0x1.fffffcp-1\n" // 1 - 2^-23
6679		"%c_f32_n1pn24   = OpConstant %f32 -0x1p-24\n"
6680		;
6681
6682	const char						function[]	 =
6683		"%test_code      = OpFunction %v4f32 None %v4f32_function\n"
6684		"%param          = OpFunctionParameter %v4f32\n"
6685		"%label          = OpLabel\n"
6686		"%var1           = OpVariable %fp_f32 Function %c_f32_1pl2_23\n"
6687		"%var2           = OpVariable %fp_f32 Function\n"
6688		"%red            = OpCompositeExtract %f32 %param 0\n"
6689		"%plus_red       = OpFAdd %f32 %c_f32_1mi2_23 %red\n"
6690		"                  OpStore %var2 %plus_red\n"
6691		"%val1           = OpLoad %f32 %var1\n"
6692		"%val2           = OpLoad %f32 %var2\n"
6693		"%mul            = OpFMul %f32 %val1 %val2\n"
6694		"%add            = OpFAdd %f32 %mul %c_f32_n1\n"
6695		"%is0            = OpFOrdEqual %bool %add %c_f32_0\n"
6696		"%isn1n24         = OpFOrdEqual %bool %add %c_f32_n1pn24\n"
6697		"%success        = OpLogicalOr %bool %is0 %isn1n24\n"
6698		"%v4success      = OpCompositeConstruct %v4bool %success %success %success %success\n"
6699		"%ret            = OpSelect %v4f32 %v4success %c_vec4_0 %c_vec4_1\n"
6700		"                  OpReturnValue %ret\n"
6701		"                  OpFunctionEnd\n";
6702
6703	struct CaseNameDecoration
6704	{
6705		string name;
6706		string decoration;
6707	};
6708
6709
6710	CaseNameDecoration tests[] = {
6711		{"multiplication",	"OpDecorate %mul NoContraction"},
6712		{"addition",		"OpDecorate %add NoContraction"},
6713		{"both",			"OpDecorate %mul NoContraction\nOpDecorate %add NoContraction"},
6714	};
6715
6716	getHalfColorsFullAlpha(inputColors);
6717
6718	for (deUint8 idx = 0; idx < 4; ++idx)
6719	{
6720		inputColors[idx].setRed(0);
6721		outputColors[idx] = RGBA(0, 0, 0, 255);
6722	}
6723
6724	for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(CaseNameDecoration); ++testNdx)
6725	{
6726		map<string, string> fragments;
6727
6728		fragments["decoration"] = tests[testNdx].decoration;
6729		fragments["pre_main"] = constantsAndTypes;
6730		fragments["testfun"] = function;
6731
6732		createTestsForAllStages(tests[testNdx].name, inputColors, outputColors, fragments, group.get());
6733	}
6734
6735	return group.release();
6736}
6737
6738tcu::TestCaseGroup* createMemoryAccessTests(tcu::TestContext& testCtx)
6739{
6740	de::MovePtr<tcu::TestCaseGroup> memoryAccessTests (new tcu::TestCaseGroup(testCtx, "opmemoryaccess", "Memory Semantics"));
6741	RGBA							colors[4];
6742
6743	const char						constantsAndTypes[]	 =
6744		"%c_a2f32_1         = OpConstantComposite %a2f32 %c_f32_1 %c_f32_1\n"
6745		"%fp_a2f32          = OpTypePointer Function %a2f32\n"
6746		"%stype             = OpTypeStruct  %v4f32 %a2f32 %f32\n"
6747		"%fp_stype          = OpTypePointer Function %stype\n";
6748
6749	const char						function[]	 =
6750		"%test_code         = OpFunction %v4f32 None %v4f32_function\n"
6751		"%param1            = OpFunctionParameter %v4f32\n"
6752		"%lbl               = OpLabel\n"
6753		"%v1                = OpVariable %fp_v4f32 Function\n"
6754		"%v2                = OpVariable %fp_a2f32 Function\n"
6755		"%v3                = OpVariable %fp_f32 Function\n"
6756		"%v                 = OpVariable %fp_stype Function\n"
6757		"%vv                = OpVariable %fp_stype Function\n"
6758		"%vvv               = OpVariable %fp_f32 Function\n"
6759
6760		"                     OpStore %v1 %c_v4f32_1_1_1_1\n"
6761		"                     OpStore %v2 %c_a2f32_1\n"
6762		"                     OpStore %v3 %c_f32_1\n"
6763
6764		"%p_v4f32          = OpAccessChain %fp_v4f32 %v %c_u32_0\n"
6765		"%p_a2f32          = OpAccessChain %fp_a2f32 %v %c_u32_1\n"
6766		"%p_f32            = OpAccessChain %fp_f32 %v %c_u32_2\n"
6767		"%v1_v             = OpLoad %v4f32 %v1 ${access_type}\n"
6768		"%v2_v             = OpLoad %a2f32 %v2 ${access_type}\n"
6769		"%v3_v             = OpLoad %f32 %v3 ${access_type}\n"
6770
6771		"                    OpStore %p_v4f32 %v1_v ${access_type}\n"
6772		"                    OpStore %p_a2f32 %v2_v ${access_type}\n"
6773		"                    OpStore %p_f32 %v3_v ${access_type}\n"
6774
6775		"                    OpCopyMemory %vv %v ${access_type}\n"
6776		"                    OpCopyMemory %vvv %p_f32 ${access_type}\n"
6777
6778		"%p_f32_2          = OpAccessChain %fp_f32 %vv %c_u32_2\n"
6779		"%v_f32_2          = OpLoad %f32 %p_f32_2\n"
6780		"%v_f32_3          = OpLoad %f32 %vvv\n"
6781
6782		"%ret1             = OpVectorTimesScalar %v4f32 %param1 %v_f32_2\n"
6783		"%ret2             = OpVectorTimesScalar %v4f32 %ret1 %v_f32_3\n"
6784		"                    OpReturnValue %ret2\n"
6785		"                    OpFunctionEnd\n";
6786
6787	struct NameMemoryAccess
6788	{
6789		string name;
6790		string accessType;
6791	};
6792
6793
6794	NameMemoryAccess tests[] =
6795	{
6796		{ "none", "" },
6797		{ "volatile", "Volatile" },
6798		{ "aligned",  "Aligned 1" },
6799		{ "volatile_aligned",  "Volatile|Aligned 1" },
6800		{ "nontemporal_aligned",  "Nontemporal|Aligned 1" },
6801		{ "volatile_nontemporal",  "Volatile|Nontemporal" },
6802		{ "volatile_nontermporal_aligned",  "Volatile|Nontemporal|Aligned 1" },
6803	};
6804
6805	getHalfColorsFullAlpha(colors);
6806
6807	for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(NameMemoryAccess); ++testNdx)
6808	{
6809		map<string, string> fragments;
6810		map<string, string> memoryAccess;
6811		memoryAccess["access_type"] = tests[testNdx].accessType;
6812
6813		fragments["pre_main"] = constantsAndTypes;
6814		fragments["testfun"] = tcu::StringTemplate(function).specialize(memoryAccess);
6815		createTestsForAllStages(tests[testNdx].name, colors, colors, fragments, memoryAccessTests.get());
6816	}
6817	return memoryAccessTests.release();
6818}
6819tcu::TestCaseGroup* createOpUndefTests(tcu::TestContext& testCtx)
6820{
6821	de::MovePtr<tcu::TestCaseGroup>		opUndefTests		 (new tcu::TestCaseGroup(testCtx, "opundef", "Test OpUndef"));
6822	RGBA								defaultColors[4];
6823	map<string, string>					fragments;
6824	getDefaultColors(defaultColors);
6825
6826	// First, simple cases that don't do anything with the OpUndef result.
6827	fragments["testfun"] =
6828		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
6829		"%param1 = OpFunctionParameter %v4f32\n"
6830		"%label_testfun = OpLabel\n"
6831		"%undef = OpUndef %type\n"
6832		"OpReturnValue %param1\n"
6833		"OpFunctionEnd\n"
6834		;
6835	struct NameCodePair { string name, code; };
6836	const NameCodePair tests[] =
6837	{
6838		{"bool", "%type = OpTypeBool"},
6839		{"vec2uint32", "%type = OpTypeVector %u32 2"},
6840		{"image", "%type = OpTypeImage %f32 2D 0 0 0 1 Unknown"},
6841		{"sampler", "%type = OpTypeSampler"},
6842		{"sampledimage", "%img = OpTypeImage %f32 2D 0 0 0 1 Unknown\n" "%type = OpTypeSampledImage %img"},
6843		{"pointer", "%type = OpTypePointer Function %i32"},
6844		{"runtimearray", "%type = OpTypeRuntimeArray %f32"},
6845		{"array", "%c_u32_100 = OpConstant %u32 100\n" "%type = OpTypeArray %i32 %c_u32_100"},
6846		{"struct", "%type = OpTypeStruct %f32 %i32 %u32"}};
6847	for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(NameCodePair); ++testNdx)
6848	{
6849		fragments["pre_main"] = tests[testNdx].code;
6850		createTestsForAllStages(tests[testNdx].name, defaultColors, defaultColors, fragments, opUndefTests.get());
6851	}
6852	fragments.clear();
6853
6854	fragments["testfun"] =
6855		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
6856		"%param1 = OpFunctionParameter %v4f32\n"
6857		"%label_testfun = OpLabel\n"
6858		"%undef = OpUndef %f32\n"
6859		"%zero = OpFMul %f32 %undef %c_f32_0\n"
6860		"%is_nan = OpIsNan %bool %zero\n" //OpUndef may result in NaN which may turn %zero into Nan.
6861		"%actually_zero = OpSelect %f32 %is_nan %c_f32_0 %zero\n"
6862		"%a = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
6863		"%b = OpFAdd %f32 %a %actually_zero\n"
6864		"%ret = OpVectorInsertDynamic %v4f32 %param1 %b %c_i32_0\n"
6865		"OpReturnValue %ret\n"
6866		"OpFunctionEnd\n"
6867		;
6868	createTestsForAllStages("float32", defaultColors, defaultColors, fragments, opUndefTests.get());
6869
6870	fragments["testfun"] =
6871		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
6872		"%param1 = OpFunctionParameter %v4f32\n"
6873		"%label_testfun = OpLabel\n"
6874		"%undef = OpUndef %i32\n"
6875		"%zero = OpIMul %i32 %undef %c_i32_0\n"
6876		"%a = OpVectorExtractDynamic %f32 %param1 %zero\n"
6877		"%ret = OpVectorInsertDynamic %v4f32 %param1 %a %c_i32_0\n"
6878		"OpReturnValue %ret\n"
6879		"OpFunctionEnd\n"
6880		;
6881	createTestsForAllStages("sint32", defaultColors, defaultColors, fragments, opUndefTests.get());
6882
6883	fragments["testfun"] =
6884		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
6885		"%param1 = OpFunctionParameter %v4f32\n"
6886		"%label_testfun = OpLabel\n"
6887		"%undef = OpUndef %u32\n"
6888		"%zero = OpIMul %u32 %undef %c_i32_0\n"
6889		"%a = OpVectorExtractDynamic %f32 %param1 %zero\n"
6890		"%ret = OpVectorInsertDynamic %v4f32 %param1 %a %c_i32_0\n"
6891		"OpReturnValue %ret\n"
6892		"OpFunctionEnd\n"
6893		;
6894	createTestsForAllStages("uint32", defaultColors, defaultColors, fragments, opUndefTests.get());
6895
6896	fragments["testfun"] =
6897		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
6898		"%param1 = OpFunctionParameter %v4f32\n"
6899		"%label_testfun = OpLabel\n"
6900		"%undef = OpUndef %v4f32\n"
6901		"%vzero = OpVectorTimesScalar %v4f32 %undef %c_f32_0\n"
6902		"%zero_0 = OpVectorExtractDynamic %f32 %vzero %c_i32_0\n"
6903		"%zero_1 = OpVectorExtractDynamic %f32 %vzero %c_i32_1\n"
6904		"%zero_2 = OpVectorExtractDynamic %f32 %vzero %c_i32_2\n"
6905		"%zero_3 = OpVectorExtractDynamic %f32 %vzero %c_i32_3\n"
6906		"%is_nan_0 = OpIsNan %bool %zero_0\n"
6907		"%is_nan_1 = OpIsNan %bool %zero_1\n"
6908		"%is_nan_2 = OpIsNan %bool %zero_2\n"
6909		"%is_nan_3 = OpIsNan %bool %zero_3\n"
6910		"%actually_zero_0 = OpSelect %f32 %is_nan_0 %c_f32_0 %zero_0\n"
6911		"%actually_zero_1 = OpSelect %f32 %is_nan_0 %c_f32_0 %zero_1\n"
6912		"%actually_zero_2 = OpSelect %f32 %is_nan_0 %c_f32_0 %zero_2\n"
6913		"%actually_zero_3 = OpSelect %f32 %is_nan_0 %c_f32_0 %zero_3\n"
6914		"%param1_0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
6915		"%param1_1 = OpVectorExtractDynamic %f32 %param1 %c_i32_1\n"
6916		"%param1_2 = OpVectorExtractDynamic %f32 %param1 %c_i32_2\n"
6917		"%param1_3 = OpVectorExtractDynamic %f32 %param1 %c_i32_3\n"
6918		"%sum_0 = OpFAdd %f32 %param1_0 %actually_zero_0\n"
6919		"%sum_1 = OpFAdd %f32 %param1_1 %actually_zero_1\n"
6920		"%sum_2 = OpFAdd %f32 %param1_2 %actually_zero_2\n"
6921		"%sum_3 = OpFAdd %f32 %param1_3 %actually_zero_3\n"
6922		"%ret3 = OpVectorInsertDynamic %v4f32 %param1 %sum_3 %c_i32_3\n"
6923		"%ret2 = OpVectorInsertDynamic %v4f32 %ret3 %sum_2 %c_i32_2\n"
6924		"%ret1 = OpVectorInsertDynamic %v4f32 %ret2 %sum_1 %c_i32_1\n"
6925		"%ret = OpVectorInsertDynamic %v4f32 %ret1 %sum_0 %c_i32_0\n"
6926		"OpReturnValue %ret\n"
6927		"OpFunctionEnd\n"
6928		;
6929	createTestsForAllStages("vec4float32", defaultColors, defaultColors, fragments, opUndefTests.get());
6930
6931	fragments["pre_main"] =
6932		"%v2f32 = OpTypeVector %f32 2\n"
6933		"%m2x2f32 = OpTypeMatrix %v2f32 2\n";
6934	fragments["testfun"] =
6935		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
6936		"%param1 = OpFunctionParameter %v4f32\n"
6937		"%label_testfun = OpLabel\n"
6938		"%undef = OpUndef %m2x2f32\n"
6939		"%mzero = OpMatrixTimesScalar %m2x2f32 %undef %c_f32_0\n"
6940		"%zero_0 = OpCompositeExtract %f32 %mzero 0 0\n"
6941		"%zero_1 = OpCompositeExtract %f32 %mzero 0 1\n"
6942		"%zero_2 = OpCompositeExtract %f32 %mzero 1 0\n"
6943		"%zero_3 = OpCompositeExtract %f32 %mzero 1 1\n"
6944		"%is_nan_0 = OpIsNan %bool %zero_0\n"
6945		"%is_nan_1 = OpIsNan %bool %zero_1\n"
6946		"%is_nan_2 = OpIsNan %bool %zero_2\n"
6947		"%is_nan_3 = OpIsNan %bool %zero_3\n"
6948		"%actually_zero_0 = OpSelect %f32 %is_nan_0 %c_f32_0 %zero_0\n"
6949		"%actually_zero_1 = OpSelect %f32 %is_nan_0 %c_f32_0 %zero_1\n"
6950		"%actually_zero_2 = OpSelect %f32 %is_nan_0 %c_f32_0 %zero_2\n"
6951		"%actually_zero_3 = OpSelect %f32 %is_nan_0 %c_f32_0 %zero_3\n"
6952		"%param1_0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
6953		"%param1_1 = OpVectorExtractDynamic %f32 %param1 %c_i32_1\n"
6954		"%param1_2 = OpVectorExtractDynamic %f32 %param1 %c_i32_2\n"
6955		"%param1_3 = OpVectorExtractDynamic %f32 %param1 %c_i32_3\n"
6956		"%sum_0 = OpFAdd %f32 %param1_0 %actually_zero_0\n"
6957		"%sum_1 = OpFAdd %f32 %param1_1 %actually_zero_1\n"
6958		"%sum_2 = OpFAdd %f32 %param1_2 %actually_zero_2\n"
6959		"%sum_3 = OpFAdd %f32 %param1_3 %actually_zero_3\n"
6960		"%ret3 = OpVectorInsertDynamic %v4f32 %param1 %sum_3 %c_i32_3\n"
6961		"%ret2 = OpVectorInsertDynamic %v4f32 %ret3 %sum_2 %c_i32_2\n"
6962		"%ret1 = OpVectorInsertDynamic %v4f32 %ret2 %sum_1 %c_i32_1\n"
6963		"%ret = OpVectorInsertDynamic %v4f32 %ret1 %sum_0 %c_i32_0\n"
6964		"OpReturnValue %ret\n"
6965		"OpFunctionEnd\n"
6966		;
6967	createTestsForAllStages("matrix", defaultColors, defaultColors, fragments, opUndefTests.get());
6968
6969	return opUndefTests.release();
6970}
6971
6972void createOpQuantizeSingleOptionTests(tcu::TestCaseGroup* testCtx)
6973{
6974	const RGBA		inputColors[4]		=
6975	{
6976		RGBA(0,		0,		0,		255),
6977		RGBA(0,		0,		255,	255),
6978		RGBA(0,		255,	0,		255),
6979		RGBA(0,		255,	255,	255)
6980	};
6981
6982	const RGBA		expectedColors[4]	=
6983	{
6984		RGBA(255,	 0,		 0,		 255),
6985		RGBA(255,	 0,		 0,		 255),
6986		RGBA(255,	 0,		 0,		 255),
6987		RGBA(255,	 0,		 0,		 255)
6988	};
6989
6990	const struct SingleFP16Possibility
6991	{
6992		const char* name;
6993		const char* constant;  // Value to assign to %test_constant.
6994		float		valueAsFloat;
6995		const char* condition; // Must assign to %cond an expression that evaluates to true after %c = OpQuantizeToF16(%test_constant + 0).
6996	}				tests[]				=
6997	{
6998		{
6999			"negative",
7000			"-0x1.3p1\n",
7001			-constructNormalizedFloat(1, 0x300000),
7002			"%cond = OpFOrdEqual %bool %c %test_constant\n"
7003		}, // -19
7004		{
7005			"positive",
7006			"0x1.0p7\n",
7007			constructNormalizedFloat(7, 0x000000),
7008			"%cond = OpFOrdEqual %bool %c %test_constant\n"
7009		},  // +128
7010		// SPIR-V requires that OpQuantizeToF16 flushes
7011		// any numbers that would end up denormalized in F16 to zero.
7012		{
7013			"denorm",
7014			"0x0.0006p-126\n",
7015			std::ldexp(1.5f, -140),
7016			"%cond = OpFOrdEqual %bool %c %c_f32_0\n"
7017		},  // denorm
7018		{
7019			"negative_denorm",
7020			"-0x0.0006p-126\n",
7021			-std::ldexp(1.5f, -140),
7022			"%cond = OpFOrdEqual %bool %c %c_f32_0\n"
7023		}, // -denorm
7024		{
7025			"too_small",
7026			"0x1.0p-16\n",
7027			std::ldexp(1.0f, -16),
7028			"%cond = OpFOrdEqual %bool %c %c_f32_0\n"
7029		},     // too small positive
7030		{
7031			"negative_too_small",
7032			"-0x1.0p-32\n",
7033			-std::ldexp(1.0f, -32),
7034			"%cond = OpFOrdEqual %bool %c %c_f32_0\n"
7035		},      // too small negative
7036		{
7037			"negative_inf",
7038			"-0x1.0p128\n",
7039			-std::ldexp(1.0f, 128),
7040
7041			"%gz = OpFOrdLessThan %bool %c %c_f32_0\n"
7042			"%inf = OpIsInf %bool %c\n"
7043			"%cond = OpLogicalAnd %bool %gz %inf\n"
7044		},     // -inf to -inf
7045		{
7046			"inf",
7047			"0x1.0p128\n",
7048			std::ldexp(1.0f, 128),
7049
7050			"%gz = OpFOrdGreaterThan %bool %c %c_f32_0\n"
7051			"%inf = OpIsInf %bool %c\n"
7052			"%cond = OpLogicalAnd %bool %gz %inf\n"
7053		},     // +inf to +inf
7054		{
7055			"round_to_negative_inf",
7056			"-0x1.0p32\n",
7057			-std::ldexp(1.0f, 32),
7058
7059			"%gz = OpFOrdLessThan %bool %c %c_f32_0\n"
7060			"%inf = OpIsInf %bool %c\n"
7061			"%cond = OpLogicalAnd %bool %gz %inf\n"
7062		},     // round to -inf
7063		{
7064			"round_to_inf",
7065			"0x1.0p16\n",
7066			std::ldexp(1.0f, 16),
7067
7068			"%gz = OpFOrdGreaterThan %bool %c %c_f32_0\n"
7069			"%inf = OpIsInf %bool %c\n"
7070			"%cond = OpLogicalAnd %bool %gz %inf\n"
7071		},     // round to +inf
7072		{
7073			"nan",
7074			"0x1.1p128\n",
7075			std::numeric_limits<float>::quiet_NaN(),
7076
7077			// Test for any NaN value, as NaNs are not preserved
7078			"%direct_quant = OpQuantizeToF16 %f32 %test_constant\n"
7079			"%cond = OpIsNan %bool %direct_quant\n"
7080		}, // nan
7081		{
7082			"negative_nan",
7083			"-0x1.0001p128\n",
7084			std::numeric_limits<float>::quiet_NaN(),
7085
7086			// Test for any NaN value, as NaNs are not preserved
7087			"%direct_quant = OpQuantizeToF16 %f32 %test_constant\n"
7088			"%cond = OpIsNan %bool %direct_quant\n"
7089		} // -nan
7090	};
7091	const char*		constants			=
7092		"%test_constant = OpConstant %f32 ";  // The value will be test.constant.
7093
7094	StringTemplate	function			(
7095		"%test_code     = OpFunction %v4f32 None %v4f32_function\n"
7096		"%param1        = OpFunctionParameter %v4f32\n"
7097		"%label_testfun = OpLabel\n"
7098		"%a             = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
7099		"%b             = OpFAdd %f32 %test_constant %a\n"
7100		"%c             = OpQuantizeToF16 %f32 %b\n"
7101		"${condition}\n"
7102		"%v4cond        = OpCompositeConstruct %v4bool %cond %cond %cond %cond\n"
7103		"%retval        = OpSelect %v4f32 %v4cond %c_v4f32_1_0_0_1 %param1\n"
7104		"                 OpReturnValue %retval\n"
7105		"OpFunctionEnd\n"
7106	);
7107
7108	const char*		specDecorations		= "OpDecorate %test_constant SpecId 0\n";
7109	const char*		specConstants		=
7110			"%test_constant = OpSpecConstant %f32 0.\n"
7111			"%c             = OpSpecConstantOp %f32 QuantizeToF16 %test_constant\n";
7112
7113	StringTemplate	specConstantFunction(
7114		"%test_code     = OpFunction %v4f32 None %v4f32_function\n"
7115		"%param1        = OpFunctionParameter %v4f32\n"
7116		"%label_testfun = OpLabel\n"
7117		"${condition}\n"
7118		"%v4cond        = OpCompositeConstruct %v4bool %cond %cond %cond %cond\n"
7119		"%retval        = OpSelect %v4f32 %v4cond %c_v4f32_1_0_0_1 %param1\n"
7120		"                 OpReturnValue %retval\n"
7121		"OpFunctionEnd\n"
7122	);
7123
7124	for (size_t idx = 0; idx < (sizeof(tests)/sizeof(tests[0])); ++idx)
7125	{
7126		map<string, string>								codeSpecialization;
7127		map<string, string>								fragments;
7128		codeSpecialization["condition"]					= tests[idx].condition;
7129		fragments["testfun"]							= function.specialize(codeSpecialization);
7130		fragments["pre_main"]							= string(constants) + tests[idx].constant + "\n";
7131		createTestsForAllStages(tests[idx].name, inputColors, expectedColors, fragments, testCtx);
7132	}
7133
7134	for (size_t idx = 0; idx < (sizeof(tests)/sizeof(tests[0])); ++idx)
7135	{
7136		map<string, string>								codeSpecialization;
7137		map<string, string>								fragments;
7138		vector<deInt32>									passConstants;
7139		deInt32											specConstant;
7140
7141		codeSpecialization["condition"]					= tests[idx].condition;
7142		fragments["testfun"]							= specConstantFunction.specialize(codeSpecialization);
7143		fragments["decoration"]							= specDecorations;
7144		fragments["pre_main"]							= specConstants;
7145
7146		memcpy(&specConstant, &tests[idx].valueAsFloat, sizeof(float));
7147		passConstants.push_back(specConstant);
7148
7149		createTestsForAllStages(string("spec_const_") + tests[idx].name, inputColors, expectedColors, fragments, passConstants, testCtx);
7150	}
7151}
7152
7153void createOpQuantizeTwoPossibilityTests(tcu::TestCaseGroup* testCtx)
7154{
7155	RGBA inputColors[4] =  {
7156		RGBA(0,		0,		0,		255),
7157		RGBA(0,		0,		255,	255),
7158		RGBA(0,		255,	0,		255),
7159		RGBA(0,		255,	255,	255)
7160	};
7161
7162	RGBA expectedColors[4] =
7163	{
7164		RGBA(255,	 0,		 0,		 255),
7165		RGBA(255,	 0,		 0,		 255),
7166		RGBA(255,	 0,		 0,		 255),
7167		RGBA(255,	 0,		 0,		 255)
7168	};
7169
7170	struct DualFP16Possibility
7171	{
7172		const char* name;
7173		const char* input;
7174		float		inputAsFloat;
7175		const char* possibleOutput1;
7176		const char* possibleOutput2;
7177	} tests[] = {
7178		{
7179			"positive_round_up_or_round_down",
7180			"0x1.3003p8",
7181			constructNormalizedFloat(8, 0x300300),
7182			"0x1.304p8",
7183			"0x1.3p8"
7184		},
7185		{
7186			"negative_round_up_or_round_down",
7187			"-0x1.6008p-7",
7188			-constructNormalizedFloat(-7, 0x600800),
7189			"-0x1.6p-7",
7190			"-0x1.604p-7"
7191		},
7192		{
7193			"carry_bit",
7194			"0x1.01ep2",
7195			constructNormalizedFloat(2, 0x01e000),
7196			"0x1.01cp2",
7197			"0x1.02p2"
7198		},
7199		{
7200			"carry_to_exponent",
7201			"0x1.ffep1",
7202			constructNormalizedFloat(1, 0xffe000),
7203			"0x1.ffcp1",
7204			"0x1.0p2"
7205		},
7206	};
7207	StringTemplate constants (
7208		"%input_const = OpConstant %f32 ${input}\n"
7209		"%possible_solution1 = OpConstant %f32 ${output1}\n"
7210		"%possible_solution2 = OpConstant %f32 ${output2}\n"
7211		);
7212
7213	StringTemplate specConstants (
7214		"%input_const = OpSpecConstant %f32 0.\n"
7215		"%possible_solution1 = OpConstant %f32 ${output1}\n"
7216		"%possible_solution2 = OpConstant %f32 ${output2}\n"
7217	);
7218
7219	const char* specDecorations = "OpDecorate %input_const  SpecId 0\n";
7220
7221	const char* function  =
7222		"%test_code     = OpFunction %v4f32 None %v4f32_function\n"
7223		"%param1        = OpFunctionParameter %v4f32\n"
7224		"%label_testfun = OpLabel\n"
7225		"%a             = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
7226		// For the purposes of this test we assume that 0.f will always get
7227		// faithfully passed through the pipeline stages.
7228		"%b             = OpFAdd %f32 %input_const %a\n"
7229		"%c             = OpQuantizeToF16 %f32 %b\n"
7230		"%eq_1          = OpFOrdEqual %bool %c %possible_solution1\n"
7231		"%eq_2          = OpFOrdEqual %bool %c %possible_solution2\n"
7232		"%cond          = OpLogicalOr %bool %eq_1 %eq_2\n"
7233		"%v4cond        = OpCompositeConstruct %v4bool %cond %cond %cond %cond\n"
7234		"%retval        = OpSelect %v4f32 %v4cond %c_v4f32_1_0_0_1 %param1"
7235		"                 OpReturnValue %retval\n"
7236		"OpFunctionEnd\n";
7237
7238	for(size_t idx = 0; idx < (sizeof(tests)/sizeof(tests[0])); ++idx) {
7239		map<string, string>									fragments;
7240		map<string, string>									constantSpecialization;
7241
7242		constantSpecialization["input"]						= tests[idx].input;
7243		constantSpecialization["output1"]					= tests[idx].possibleOutput1;
7244		constantSpecialization["output2"]					= tests[idx].possibleOutput2;
7245		fragments["testfun"]								= function;
7246		fragments["pre_main"]								= constants.specialize(constantSpecialization);
7247		createTestsForAllStages(tests[idx].name, inputColors, expectedColors, fragments, testCtx);
7248	}
7249
7250	for(size_t idx = 0; idx < (sizeof(tests)/sizeof(tests[0])); ++idx) {
7251		map<string, string>									fragments;
7252		map<string, string>									constantSpecialization;
7253		vector<deInt32>										passConstants;
7254		deInt32												specConstant;
7255
7256		constantSpecialization["output1"]					= tests[idx].possibleOutput1;
7257		constantSpecialization["output2"]					= tests[idx].possibleOutput2;
7258		fragments["testfun"]								= function;
7259		fragments["decoration"]								= specDecorations;
7260		fragments["pre_main"]								= specConstants.specialize(constantSpecialization);
7261
7262		memcpy(&specConstant, &tests[idx].inputAsFloat, sizeof(float));
7263		passConstants.push_back(specConstant);
7264
7265		createTestsForAllStages(string("spec_const_") + tests[idx].name, inputColors, expectedColors, fragments, passConstants, testCtx);
7266	}
7267}
7268
7269tcu::TestCaseGroup* createOpQuantizeTests(tcu::TestContext& testCtx)
7270{
7271	de::MovePtr<tcu::TestCaseGroup> opQuantizeTests (new tcu::TestCaseGroup(testCtx, "opquantize", "Test OpQuantizeToF16"));
7272	createOpQuantizeSingleOptionTests(opQuantizeTests.get());
7273	createOpQuantizeTwoPossibilityTests(opQuantizeTests.get());
7274	return opQuantizeTests.release();
7275}
7276
7277struct ShaderPermutation
7278{
7279	deUint8 vertexPermutation;
7280	deUint8 geometryPermutation;
7281	deUint8 tesscPermutation;
7282	deUint8 tessePermutation;
7283	deUint8 fragmentPermutation;
7284};
7285
7286ShaderPermutation getShaderPermutation(deUint8 inputValue)
7287{
7288	ShaderPermutation	permutation =
7289	{
7290		static_cast<deUint8>(inputValue & 0x10? 1u: 0u),
7291		static_cast<deUint8>(inputValue & 0x08? 1u: 0u),
7292		static_cast<deUint8>(inputValue & 0x04? 1u: 0u),
7293		static_cast<deUint8>(inputValue & 0x02? 1u: 0u),
7294		static_cast<deUint8>(inputValue & 0x01? 1u: 0u)
7295	};
7296	return permutation;
7297}
7298
7299tcu::TestCaseGroup* createModuleTests(tcu::TestContext& testCtx)
7300{
7301	RGBA								defaultColors[4];
7302	RGBA								invertedColors[4];
7303	de::MovePtr<tcu::TestCaseGroup>		moduleTests			(new tcu::TestCaseGroup(testCtx, "module", "Multiple entry points into shaders"));
7304
7305	const ShaderElement					combinedPipeline[]	=
7306	{
7307		ShaderElement("module", "main", VK_SHADER_STAGE_VERTEX_BIT),
7308		ShaderElement("module", "main", VK_SHADER_STAGE_GEOMETRY_BIT),
7309		ShaderElement("module", "main", VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT),
7310		ShaderElement("module", "main", VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT),
7311		ShaderElement("module", "main", VK_SHADER_STAGE_FRAGMENT_BIT)
7312	};
7313
7314	getDefaultColors(defaultColors);
7315	getInvertedDefaultColors(invertedColors);
7316	addFunctionCaseWithPrograms<InstanceContext>(moduleTests.get(), "same_module", "", createCombinedModule, runAndVerifyDefaultPipeline, createInstanceContext(combinedPipeline, map<string, string>()));
7317
7318	const char* numbers[] =
7319	{
7320		"1", "2"
7321	};
7322
7323	for (deInt8 idx = 0; idx < 32; ++idx)
7324	{
7325		ShaderPermutation			permutation		= getShaderPermutation(idx);
7326		string						name			= string("vert") + numbers[permutation.vertexPermutation] + "_geom" + numbers[permutation.geometryPermutation] + "_tessc" + numbers[permutation.tesscPermutation] + "_tesse" + numbers[permutation.tessePermutation] + "_frag" + numbers[permutation.fragmentPermutation];
7327		const ShaderElement			pipeline[]		=
7328		{
7329			ShaderElement("vert",	string("vert") +	numbers[permutation.vertexPermutation],		VK_SHADER_STAGE_VERTEX_BIT),
7330			ShaderElement("geom",	string("geom") +	numbers[permutation.geometryPermutation],	VK_SHADER_STAGE_GEOMETRY_BIT),
7331			ShaderElement("tessc",	string("tessc") +	numbers[permutation.tesscPermutation],		VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT),
7332			ShaderElement("tesse",	string("tesse") +	numbers[permutation.tessePermutation],		VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT),
7333			ShaderElement("frag",	string("frag") +	numbers[permutation.fragmentPermutation],	VK_SHADER_STAGE_FRAGMENT_BIT)
7334		};
7335
7336		// If there are an even number of swaps, then it should be no-op.
7337		// If there are an odd number, the color should be flipped.
7338		if ((permutation.vertexPermutation + permutation.geometryPermutation + permutation.tesscPermutation + permutation.tessePermutation + permutation.fragmentPermutation) % 2 == 0)
7339		{
7340			addFunctionCaseWithPrograms<InstanceContext>(moduleTests.get(), name, "", createMultipleEntries, runAndVerifyDefaultPipeline, createInstanceContext(pipeline, defaultColors, defaultColors, map<string, string>()));
7341		}
7342		else
7343		{
7344			addFunctionCaseWithPrograms<InstanceContext>(moduleTests.get(), name, "", createMultipleEntries, runAndVerifyDefaultPipeline, createInstanceContext(pipeline, defaultColors, invertedColors, map<string, string>()));
7345		}
7346	}
7347	return moduleTests.release();
7348}
7349
7350tcu::TestCaseGroup* createLoopTests(tcu::TestContext& testCtx)
7351{
7352	de::MovePtr<tcu::TestCaseGroup> testGroup(new tcu::TestCaseGroup(testCtx, "loop", "Looping control flow"));
7353	RGBA defaultColors[4];
7354	getDefaultColors(defaultColors);
7355	map<string, string> fragments;
7356	fragments["pre_main"] =
7357		"%c_f32_5 = OpConstant %f32 5.\n";
7358
7359	// A loop with a single block. The Continue Target is the loop block
7360	// itself. In SPIR-V terms, the "loop construct" contains no blocks at all
7361	// -- the "continue construct" forms the entire loop.
7362	fragments["testfun"] =
7363		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
7364		"%param1 = OpFunctionParameter %v4f32\n"
7365
7366		"%entry = OpLabel\n"
7367		"%val0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
7368		"OpBranch %loop\n"
7369
7370		";adds and subtracts 1.0 to %val in alternate iterations\n"
7371		"%loop = OpLabel\n"
7372		"%count = OpPhi %i32 %c_i32_4 %entry %count__ %loop\n"
7373		"%delta = OpPhi %f32 %c_f32_1 %entry %minus_delta %loop\n"
7374		"%val1 = OpPhi %f32 %val0 %entry %val %loop\n"
7375		"%val = OpFAdd %f32 %val1 %delta\n"
7376		"%minus_delta = OpFSub %f32 %c_f32_0 %delta\n"
7377		"%count__ = OpISub %i32 %count %c_i32_1\n"
7378		"%again = OpSGreaterThan %bool %count__ %c_i32_0\n"
7379		"OpLoopMerge %exit %loop None\n"
7380		"OpBranchConditional %again %loop %exit\n"
7381
7382		"%exit = OpLabel\n"
7383		"%result = OpVectorInsertDynamic %v4f32 %param1 %val %c_i32_0\n"
7384		"OpReturnValue %result\n"
7385
7386		"OpFunctionEnd\n"
7387		;
7388	createTestsForAllStages("single_block", defaultColors, defaultColors, fragments, testGroup.get());
7389
7390	// Body comprised of multiple basic blocks.
7391	const StringTemplate multiBlock(
7392		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
7393		"%param1 = OpFunctionParameter %v4f32\n"
7394
7395		"%entry = OpLabel\n"
7396		"%val0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
7397		"OpBranch %loop\n"
7398
7399		";adds and subtracts 1.0 to %val in alternate iterations\n"
7400		"%loop = OpLabel\n"
7401		"%count = OpPhi %i32 %c_i32_4 %entry %count__ %gather\n"
7402		"%delta = OpPhi %f32 %c_f32_1 %entry %delta_next %gather\n"
7403		"%val1 = OpPhi %f32 %val0 %entry %val %gather\n"
7404		// There are several possibilities for the Continue Target below.  Each
7405		// will be specialized into a separate test case.
7406		"OpLoopMerge %exit ${continue_target} None\n"
7407		"OpBranch %if\n"
7408
7409		"%if = OpLabel\n"
7410		";delta_next = (delta > 0) ? -1 : 1;\n"
7411		"%gt0 = OpFOrdGreaterThan %bool %delta %c_f32_0\n"
7412		"OpSelectionMerge %gather DontFlatten\n"
7413		"OpBranchConditional %gt0 %even %odd ;tells us if %count is even or odd\n"
7414
7415		"%odd = OpLabel\n"
7416		"OpBranch %gather\n"
7417
7418		"%even = OpLabel\n"
7419		"OpBranch %gather\n"
7420
7421		"%gather = OpLabel\n"
7422		"%delta_next = OpPhi %f32 %c_f32_n1 %even %c_f32_1 %odd\n"
7423		"%val = OpFAdd %f32 %val1 %delta\n"
7424		"%count__ = OpISub %i32 %count %c_i32_1\n"
7425		"%again = OpSGreaterThan %bool %count__ %c_i32_0\n"
7426		"OpBranchConditional %again %loop %exit\n"
7427
7428		"%exit = OpLabel\n"
7429		"%result = OpVectorInsertDynamic %v4f32 %param1 %val %c_i32_0\n"
7430		"OpReturnValue %result\n"
7431
7432		"OpFunctionEnd\n");
7433
7434	map<string, string> continue_target;
7435
7436	// The Continue Target is the loop block itself.
7437	continue_target["continue_target"] = "%loop";
7438	fragments["testfun"] = multiBlock.specialize(continue_target);
7439	createTestsForAllStages("multi_block_continue_construct", defaultColors, defaultColors, fragments, testGroup.get());
7440
7441	// The Continue Target is at the end of the loop.
7442	continue_target["continue_target"] = "%gather";
7443	fragments["testfun"] = multiBlock.specialize(continue_target);
7444	createTestsForAllStages("multi_block_loop_construct", defaultColors, defaultColors, fragments, testGroup.get());
7445
7446	// A loop with continue statement.
7447	fragments["testfun"] =
7448		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
7449		"%param1 = OpFunctionParameter %v4f32\n"
7450
7451		"%entry = OpLabel\n"
7452		"%val0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
7453		"OpBranch %loop\n"
7454
7455		";adds 4, 3, and 1 to %val0 (skips 2)\n"
7456		"%loop = OpLabel\n"
7457		"%count = OpPhi %i32 %c_i32_4 %entry %count__ %continue\n"
7458		"%val1 = OpPhi %f32 %val0 %entry %val %continue\n"
7459		"OpLoopMerge %exit %continue None\n"
7460		"OpBranch %if\n"
7461
7462		"%if = OpLabel\n"
7463		";skip if %count==2\n"
7464		"%eq2 = OpIEqual %bool %count %c_i32_2\n"
7465		"OpSelectionMerge %continue DontFlatten\n"
7466		"OpBranchConditional %eq2 %continue %body\n"
7467
7468		"%body = OpLabel\n"
7469		"%fcount = OpConvertSToF %f32 %count\n"
7470		"%val2 = OpFAdd %f32 %val1 %fcount\n"
7471		"OpBranch %continue\n"
7472
7473		"%continue = OpLabel\n"
7474		"%val = OpPhi %f32 %val2 %body %val1 %if\n"
7475		"%count__ = OpISub %i32 %count %c_i32_1\n"
7476		"%again = OpSGreaterThan %bool %count__ %c_i32_0\n"
7477		"OpBranchConditional %again %loop %exit\n"
7478
7479		"%exit = OpLabel\n"
7480		"%same = OpFSub %f32 %val %c_f32_8\n"
7481		"%result = OpVectorInsertDynamic %v4f32 %param1 %same %c_i32_0\n"
7482		"OpReturnValue %result\n"
7483		"OpFunctionEnd\n";
7484	createTestsForAllStages("continue", defaultColors, defaultColors, fragments, testGroup.get());
7485
7486	// A loop with break.
7487	fragments["testfun"] =
7488		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
7489		"%param1 = OpFunctionParameter %v4f32\n"
7490
7491		"%entry = OpLabel\n"
7492		";param1 components are between 0 and 1, so dot product is 4 or less\n"
7493		"%dot = OpDot %f32 %param1 %param1\n"
7494		"%div = OpFDiv %f32 %dot %c_f32_5\n"
7495		"%zero = OpConvertFToU %u32 %div\n"
7496		"%two = OpIAdd %i32 %zero %c_i32_2\n"
7497		"%val0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
7498		"OpBranch %loop\n"
7499
7500		";adds 4 and 3 to %val0 (exits early)\n"
7501		"%loop = OpLabel\n"
7502		"%count = OpPhi %i32 %c_i32_4 %entry %count__ %continue\n"
7503		"%val1 = OpPhi %f32 %val0 %entry %val2 %continue\n"
7504		"OpLoopMerge %exit %continue None\n"
7505		"OpBranch %if\n"
7506
7507		"%if = OpLabel\n"
7508		";end loop if %count==%two\n"
7509		"%above2 = OpSGreaterThan %bool %count %two\n"
7510		"OpSelectionMerge %continue DontFlatten\n"
7511		"OpBranchConditional %above2 %body %exit\n"
7512
7513		"%body = OpLabel\n"
7514		"%fcount = OpConvertSToF %f32 %count\n"
7515		"%val2 = OpFAdd %f32 %val1 %fcount\n"
7516		"OpBranch %continue\n"
7517
7518		"%continue = OpLabel\n"
7519		"%count__ = OpISub %i32 %count %c_i32_1\n"
7520		"%again = OpSGreaterThan %bool %count__ %c_i32_0\n"
7521		"OpBranchConditional %again %loop %exit\n"
7522
7523		"%exit = OpLabel\n"
7524		"%val_post = OpPhi %f32 %val2 %continue %val1 %if\n"
7525		"%same = OpFSub %f32 %val_post %c_f32_7\n"
7526		"%result = OpVectorInsertDynamic %v4f32 %param1 %same %c_i32_0\n"
7527		"OpReturnValue %result\n"
7528		"OpFunctionEnd\n";
7529	createTestsForAllStages("break", defaultColors, defaultColors, fragments, testGroup.get());
7530
7531	// A loop with return.
7532	fragments["testfun"] =
7533		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
7534		"%param1 = OpFunctionParameter %v4f32\n"
7535
7536		"%entry = OpLabel\n"
7537		";param1 components are between 0 and 1, so dot product is 4 or less\n"
7538		"%dot = OpDot %f32 %param1 %param1\n"
7539		"%div = OpFDiv %f32 %dot %c_f32_5\n"
7540		"%zero = OpConvertFToU %u32 %div\n"
7541		"%two = OpIAdd %i32 %zero %c_i32_2\n"
7542		"%val0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
7543		"OpBranch %loop\n"
7544
7545		";returns early without modifying %param1\n"
7546		"%loop = OpLabel\n"
7547		"%count = OpPhi %i32 %c_i32_4 %entry %count__ %continue\n"
7548		"%val1 = OpPhi %f32 %val0 %entry %val2 %continue\n"
7549		"OpLoopMerge %exit %continue None\n"
7550		"OpBranch %if\n"
7551
7552		"%if = OpLabel\n"
7553		";return if %count==%two\n"
7554		"%above2 = OpSGreaterThan %bool %count %two\n"
7555		"OpSelectionMerge %continue DontFlatten\n"
7556		"OpBranchConditional %above2 %body %early_exit\n"
7557
7558		"%early_exit = OpLabel\n"
7559		"OpReturnValue %param1\n"
7560
7561		"%body = OpLabel\n"
7562		"%fcount = OpConvertSToF %f32 %count\n"
7563		"%val2 = OpFAdd %f32 %val1 %fcount\n"
7564		"OpBranch %continue\n"
7565
7566		"%continue = OpLabel\n"
7567		"%count__ = OpISub %i32 %count %c_i32_1\n"
7568		"%again = OpSGreaterThan %bool %count__ %c_i32_0\n"
7569		"OpBranchConditional %again %loop %exit\n"
7570
7571		"%exit = OpLabel\n"
7572		";should never get here, so return an incorrect result\n"
7573		"%result = OpVectorInsertDynamic %v4f32 %param1 %val2 %c_i32_0\n"
7574		"OpReturnValue %result\n"
7575		"OpFunctionEnd\n";
7576	createTestsForAllStages("return", defaultColors, defaultColors, fragments, testGroup.get());
7577
7578	return testGroup.release();
7579}
7580
7581// Adds a new test to group using custom fragments for the tessellation-control
7582// stage and passthrough fragments for all other stages.  Uses default colors
7583// for input and expected output.
7584void addTessCtrlTest(tcu::TestCaseGroup* group, const char* name, const map<string, string>& fragments)
7585{
7586	RGBA defaultColors[4];
7587	getDefaultColors(defaultColors);
7588	const ShaderElement pipelineStages[] =
7589	{
7590		ShaderElement("vert", "main", VK_SHADER_STAGE_VERTEX_BIT),
7591		ShaderElement("tessc", "main", VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT),
7592		ShaderElement("tesse", "main", VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT),
7593		ShaderElement("frag", "main", VK_SHADER_STAGE_FRAGMENT_BIT),
7594	};
7595
7596	addFunctionCaseWithPrograms<InstanceContext>(group, name, "", addShaderCodeCustomTessControl,
7597												 runAndVerifyDefaultPipeline, createInstanceContext(
7598													 pipelineStages, defaultColors, defaultColors, fragments, StageToSpecConstantMap()));
7599}
7600
7601// A collection of tests putting OpControlBarrier in places GLSL forbids but SPIR-V allows.
7602tcu::TestCaseGroup* createBarrierTests(tcu::TestContext& testCtx)
7603{
7604	de::MovePtr<tcu::TestCaseGroup> testGroup(new tcu::TestCaseGroup(testCtx, "barrier", "OpControlBarrier"));
7605	map<string, string> fragments;
7606
7607	// A barrier inside a function body.
7608	fragments["pre_main"] =
7609		"%Workgroup = OpConstant %i32 2\n"
7610		"%SequentiallyConsistent = OpConstant %i32 0x10\n";
7611	fragments["testfun"] =
7612		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
7613		"%param1 = OpFunctionParameter %v4f32\n"
7614		"%label_testfun = OpLabel\n"
7615		"OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
7616		"OpReturnValue %param1\n"
7617		"OpFunctionEnd\n";
7618	addTessCtrlTest(testGroup.get(), "in_function", fragments);
7619
7620	// Common setup code for the following tests.
7621	fragments["pre_main"] =
7622		"%Workgroup = OpConstant %i32 2\n"
7623		"%SequentiallyConsistent = OpConstant %i32 0x10\n"
7624		"%c_f32_5 = OpConstant %f32 5.\n";
7625	const string setupPercentZero =	 // Begins %test_code function with code that sets %zero to 0u but cannot be optimized away.
7626		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
7627		"%param1 = OpFunctionParameter %v4f32\n"
7628		"%entry = OpLabel\n"
7629		";param1 components are between 0 and 1, so dot product is 4 or less\n"
7630		"%dot = OpDot %f32 %param1 %param1\n"
7631		"%div = OpFDiv %f32 %dot %c_f32_5\n"
7632		"%zero = OpConvertFToU %u32 %div\n";
7633
7634	// Barriers inside OpSwitch branches.
7635	fragments["testfun"] =
7636		setupPercentZero +
7637		"OpSelectionMerge %switch_exit None\n"
7638		"OpSwitch %zero %switch_default 0 %case0 1 %case1 ;should always go to %case0\n"
7639
7640		"%case1 = OpLabel\n"
7641		";This barrier should never be executed, but its presence makes test failure more likely when there's a bug.\n"
7642		"OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
7643		"%wrong_branch_alert1 = OpVectorInsertDynamic %v4f32 %param1 %c_f32_0_5 %c_i32_0\n"
7644		"OpBranch %switch_exit\n"
7645
7646		"%switch_default = OpLabel\n"
7647		"%wrong_branch_alert2 = OpVectorInsertDynamic %v4f32 %param1 %c_f32_0_5 %c_i32_0\n"
7648		";This barrier should never be executed, but its presence makes test failure more likely when there's a bug.\n"
7649		"OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
7650		"OpBranch %switch_exit\n"
7651
7652		"%case0 = OpLabel\n"
7653		"OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
7654		"OpBranch %switch_exit\n"
7655
7656		"%switch_exit = OpLabel\n"
7657		"%ret = OpPhi %v4f32 %param1 %case0 %wrong_branch_alert1 %case1 %wrong_branch_alert2 %switch_default\n"
7658		"OpReturnValue %ret\n"
7659		"OpFunctionEnd\n";
7660	addTessCtrlTest(testGroup.get(), "in_switch", fragments);
7661
7662	// Barriers inside if-then-else.
7663	fragments["testfun"] =
7664		setupPercentZero +
7665		"%eq0 = OpIEqual %bool %zero %c_u32_0\n"
7666		"OpSelectionMerge %exit DontFlatten\n"
7667		"OpBranchConditional %eq0 %then %else\n"
7668
7669		"%else = OpLabel\n"
7670		";This barrier should never be executed, but its presence makes test failure more likely when there's a bug.\n"
7671		"OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
7672		"%wrong_branch_alert = OpVectorInsertDynamic %v4f32 %param1 %c_f32_0_5 %c_i32_0\n"
7673		"OpBranch %exit\n"
7674
7675		"%then = OpLabel\n"
7676		"OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
7677		"OpBranch %exit\n"
7678
7679		"%exit = OpLabel\n"
7680		"%ret = OpPhi %v4f32 %param1 %then %wrong_branch_alert %else\n"
7681		"OpReturnValue %ret\n"
7682		"OpFunctionEnd\n";
7683	addTessCtrlTest(testGroup.get(), "in_if", fragments);
7684
7685	// A barrier after control-flow reconvergence, tempting the compiler to attempt something like this:
7686	// http://lists.llvm.org/pipermail/llvm-dev/2009-October/026317.html.
7687	fragments["testfun"] =
7688		setupPercentZero +
7689		"%thread_id = OpLoad %i32 %BP_gl_InvocationID\n"
7690		"%thread0 = OpIEqual %bool %thread_id %c_i32_0\n"
7691		"OpSelectionMerge %exit DontFlatten\n"
7692		"OpBranchConditional %thread0 %then %else\n"
7693
7694		"%else = OpLabel\n"
7695		"%val0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
7696		"OpBranch %exit\n"
7697
7698		"%then = OpLabel\n"
7699		"%val1 = OpVectorExtractDynamic %f32 %param1 %zero\n"
7700		"OpBranch %exit\n"
7701
7702		"%exit = OpLabel\n"
7703		"%val = OpPhi %f32 %val0 %else %val1 %then\n"
7704		"OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
7705		"%ret = OpVectorInsertDynamic %v4f32 %param1 %val %zero\n"
7706		"OpReturnValue %ret\n"
7707		"OpFunctionEnd\n";
7708	addTessCtrlTest(testGroup.get(), "after_divergent_if", fragments);
7709
7710	// A barrier inside a loop.
7711	fragments["pre_main"] =
7712		"%Workgroup = OpConstant %i32 2\n"
7713		"%SequentiallyConsistent = OpConstant %i32 0x10\n"
7714		"%c_f32_10 = OpConstant %f32 10.\n";
7715	fragments["testfun"] =
7716		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
7717		"%param1 = OpFunctionParameter %v4f32\n"
7718		"%entry = OpLabel\n"
7719		"%val0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
7720		"OpBranch %loop\n"
7721
7722		";adds 4, 3, 2, and 1 to %val0\n"
7723		"%loop = OpLabel\n"
7724		"%count = OpPhi %i32 %c_i32_4 %entry %count__ %loop\n"
7725		"%val1 = OpPhi %f32 %val0 %entry %val %loop\n"
7726		"OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
7727		"%fcount = OpConvertSToF %f32 %count\n"
7728		"%val = OpFAdd %f32 %val1 %fcount\n"
7729		"%count__ = OpISub %i32 %count %c_i32_1\n"
7730		"%again = OpSGreaterThan %bool %count__ %c_i32_0\n"
7731		"OpLoopMerge %exit %loop None\n"
7732		"OpBranchConditional %again %loop %exit\n"
7733
7734		"%exit = OpLabel\n"
7735		"%same = OpFSub %f32 %val %c_f32_10\n"
7736		"%ret = OpVectorInsertDynamic %v4f32 %param1 %same %c_i32_0\n"
7737		"OpReturnValue %ret\n"
7738		"OpFunctionEnd\n";
7739	addTessCtrlTest(testGroup.get(), "in_loop", fragments);
7740
7741	return testGroup.release();
7742}
7743
7744// Test for the OpFRem instruction.
7745tcu::TestCaseGroup* createFRemTests(tcu::TestContext& testCtx)
7746{
7747	de::MovePtr<tcu::TestCaseGroup>		testGroup(new tcu::TestCaseGroup(testCtx, "frem", "OpFRem"));
7748	map<string, string>					fragments;
7749	RGBA								inputColors[4];
7750	RGBA								outputColors[4];
7751
7752	fragments["pre_main"]				 =
7753		"%c_f32_3 = OpConstant %f32 3.0\n"
7754		"%c_f32_n3 = OpConstant %f32 -3.0\n"
7755		"%c_f32_4 = OpConstant %f32 4.0\n"
7756		"%c_f32_p75 = OpConstant %f32 0.75\n"
7757		"%c_v4f32_p75_p75_p75_p75 = OpConstantComposite %v4f32 %c_f32_p75 %c_f32_p75 %c_f32_p75 %c_f32_p75 \n"
7758		"%c_v4f32_4_4_4_4 = OpConstantComposite %v4f32 %c_f32_4 %c_f32_4 %c_f32_4 %c_f32_4\n"
7759		"%c_v4f32_3_n3_3_n3 = OpConstantComposite %v4f32 %c_f32_3 %c_f32_n3 %c_f32_3 %c_f32_n3\n";
7760
7761	// The test does the following.
7762	// vec4 result = (param1 * 8.0) - 4.0;
7763	// return (frem(result.x,3) + 0.75, frem(result.y, -3) + 0.75, 0, 1)
7764	fragments["testfun"]				 =
7765		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
7766		"%param1 = OpFunctionParameter %v4f32\n"
7767		"%label_testfun = OpLabel\n"
7768		"%v_times_8 = OpVectorTimesScalar %v4f32 %param1 %c_f32_8\n"
7769		"%minus_4 = OpFSub %v4f32 %v_times_8 %c_v4f32_4_4_4_4\n"
7770		"%frem = OpFRem %v4f32 %minus_4 %c_v4f32_3_n3_3_n3\n"
7771		"%added = OpFAdd %v4f32 %frem %c_v4f32_p75_p75_p75_p75\n"
7772		"%xyz_1 = OpVectorInsertDynamic %v4f32 %added %c_f32_1 %c_i32_3\n"
7773		"%xy_0_1 = OpVectorInsertDynamic %v4f32 %xyz_1 %c_f32_0 %c_i32_2\n"
7774		"OpReturnValue %xy_0_1\n"
7775		"OpFunctionEnd\n";
7776
7777
7778	inputColors[0]		= RGBA(16,	16,		0, 255);
7779	inputColors[1]		= RGBA(232, 232,	0, 255);
7780	inputColors[2]		= RGBA(232, 16,		0, 255);
7781	inputColors[3]		= RGBA(16,	232,	0, 255);
7782
7783	outputColors[0]		= RGBA(64,	64,		0, 255);
7784	outputColors[1]		= RGBA(255, 255,	0, 255);
7785	outputColors[2]		= RGBA(255, 64,		0, 255);
7786	outputColors[3]		= RGBA(64,	255,	0, 255);
7787
7788	createTestsForAllStages("frem", inputColors, outputColors, fragments, testGroup.get());
7789	return testGroup.release();
7790}
7791
7792enum IntegerType
7793{
7794	INTEGER_TYPE_SIGNED_16,
7795	INTEGER_TYPE_SIGNED_32,
7796	INTEGER_TYPE_SIGNED_64,
7797
7798	INTEGER_TYPE_UNSIGNED_16,
7799	INTEGER_TYPE_UNSIGNED_32,
7800	INTEGER_TYPE_UNSIGNED_64,
7801};
7802
7803const string getBitWidthStr (IntegerType type)
7804{
7805	switch (type)
7806	{
7807		case INTEGER_TYPE_SIGNED_16:
7808		case INTEGER_TYPE_UNSIGNED_16:	return "16";
7809
7810		case INTEGER_TYPE_SIGNED_32:
7811		case INTEGER_TYPE_UNSIGNED_32:	return "32";
7812
7813		case INTEGER_TYPE_SIGNED_64:
7814		case INTEGER_TYPE_UNSIGNED_64:	return "64";
7815
7816		default:						DE_ASSERT(false);
7817										return "";
7818	}
7819}
7820
7821bool isSigned (IntegerType type)
7822{
7823	return (type <= INTEGER_TYPE_SIGNED_64);
7824}
7825
7826const string getTypeName (IntegerType type)
7827{
7828	string prefix = isSigned(type) ? "" : "u";
7829	return prefix + "int" + getBitWidthStr(type);
7830}
7831
7832const string getTestName (IntegerType from, IntegerType to)
7833{
7834	return getTypeName(from) + "_to_" + getTypeName(to);
7835}
7836
7837const string getAsmTypeDeclaration (IntegerType type)
7838{
7839	string sign = isSigned(type) ? " 1" : " 0";
7840	return "OpTypeInt " + getBitWidthStr(type) + sign;
7841}
7842
7843const string getConvertCaseShaderStr (const string& instruction, map<string, string> types)
7844{
7845	const StringTemplate shader (
7846		"OpCapability Shader\n"
7847		"${int_capabilities}"
7848		"OpMemoryModel Logical GLSL450\n"
7849		"OpEntryPoint GLCompute %main \"main\" %id\n"
7850		"OpExecutionMode %main LocalSize 1 1 1\n"
7851		"OpSource GLSL 430\n"
7852		"OpName %main           \"main\"\n"
7853		"OpName %id             \"gl_GlobalInvocationID\"\n"
7854		// Decorators
7855		"OpDecorate %id BuiltIn GlobalInvocationId\n"
7856		"OpDecorate %indata DescriptorSet 0\n"
7857		"OpDecorate %indata Binding 0\n"
7858		"OpDecorate %outdata DescriptorSet 0\n"
7859		"OpDecorate %outdata Binding 1\n"
7860		"OpDecorate %in_buf BufferBlock\n"
7861		"OpDecorate %out_buf BufferBlock\n"
7862		"OpMemberDecorate %in_buf 0 Offset 0\n"
7863		"OpMemberDecorate %out_buf 0 Offset 0\n"
7864		// Base types
7865		"%void       = OpTypeVoid\n"
7866		"%voidf      = OpTypeFunction %void\n"
7867		"%u32        = OpTypeInt 32 0\n"
7868		"%i32        = OpTypeInt 32 1\n"
7869		"%uvec3      = OpTypeVector %u32 3\n"
7870		"%uvec3ptr   = OpTypePointer Input %uvec3\n"
7871		// Custom types
7872		"%in_type    = ${inputType}\n"
7873		"%out_type   = ${outputType}\n"
7874		// Derived types
7875		"%in_ptr     = OpTypePointer Uniform %in_type\n"
7876		"%out_ptr    = OpTypePointer Uniform %out_type\n"
7877		"%in_arr     = OpTypeRuntimeArray %in_type\n"
7878		"%out_arr    = OpTypeRuntimeArray %out_type\n"
7879		"%in_buf     = OpTypeStruct %in_arr\n"
7880		"%out_buf    = OpTypeStruct %out_arr\n"
7881		"%in_bufptr  = OpTypePointer Uniform %in_buf\n"
7882		"%out_bufptr = OpTypePointer Uniform %out_buf\n"
7883		"%indata     = OpVariable %in_bufptr Uniform\n"
7884		"%outdata    = OpVariable %out_bufptr Uniform\n"
7885		"%inputptr   = OpTypePointer Input %in_type\n"
7886		"%id         = OpVariable %uvec3ptr Input\n"
7887		// Constants
7888		"%zero       = OpConstant %i32 0\n"
7889		// Main function
7890		"%main       = OpFunction %void None %voidf\n"
7891		"%label      = OpLabel\n"
7892		"%idval      = OpLoad %uvec3 %id\n"
7893		"%x          = OpCompositeExtract %u32 %idval 0\n"
7894		"%inloc      = OpAccessChain %in_ptr %indata %zero %x\n"
7895		"%outloc     = OpAccessChain %out_ptr %outdata %zero %x\n"
7896		"%inval      = OpLoad %in_type %inloc\n"
7897		"%conv       = ${instruction} %out_type %inval\n"
7898		"              OpStore %outloc %conv\n"
7899		"              OpReturn\n"
7900		"              OpFunctionEnd\n"
7901	);
7902
7903	types["instruction"] = instruction;
7904
7905	return shader.specialize(types);
7906}
7907
7908template<typename T>
7909BufferSp getSpecializedBuffer (deInt64 number)
7910{
7911	return BufferSp(new Buffer<T>(vector<T>(1, (T)number)));
7912}
7913
7914BufferSp getBuffer (IntegerType type, deInt64 number)
7915{
7916	switch (type)
7917	{
7918		case INTEGER_TYPE_SIGNED_16:	return getSpecializedBuffer<deInt16>(number);
7919		case INTEGER_TYPE_SIGNED_32:	return getSpecializedBuffer<deInt32>(number);
7920		case INTEGER_TYPE_SIGNED_64:	return getSpecializedBuffer<deInt64>(number);
7921
7922		case INTEGER_TYPE_UNSIGNED_16:	return getSpecializedBuffer<deUint16>(number);
7923		case INTEGER_TYPE_UNSIGNED_32:	return getSpecializedBuffer<deUint32>(number);
7924		case INTEGER_TYPE_UNSIGNED_64:	return getSpecializedBuffer<deUint64>(number);
7925
7926		default:						DE_ASSERT(false);
7927										return BufferSp(new Buffer<deInt32>(vector<deInt32>(1, 0)));
7928	}
7929}
7930
7931bool usesInt16 (IntegerType from, IntegerType to)
7932{
7933	return (from == INTEGER_TYPE_SIGNED_16 || from == INTEGER_TYPE_UNSIGNED_16
7934			|| to == INTEGER_TYPE_SIGNED_16 || to == INTEGER_TYPE_UNSIGNED_16);
7935}
7936
7937bool usesInt64 (IntegerType from, IntegerType to)
7938{
7939	return (from == INTEGER_TYPE_SIGNED_64 || from == INTEGER_TYPE_UNSIGNED_64
7940			|| to == INTEGER_TYPE_SIGNED_64 || to == INTEGER_TYPE_UNSIGNED_64);
7941}
7942
7943ConvertTestFeatures getUsedFeatures (IntegerType from, IntegerType to)
7944{
7945	if (usesInt16(from, to))
7946	{
7947		if (usesInt64(from, to))
7948		{
7949			return CONVERT_TEST_USES_INT16_INT64;
7950		}
7951		else
7952		{
7953			return CONVERT_TEST_USES_INT16;
7954		}
7955	}
7956	else
7957	{
7958		return CONVERT_TEST_USES_INT64;
7959	}
7960}
7961
7962struct ConvertCase
7963{
7964	ConvertCase (IntegerType from, IntegerType to, deInt64 number)
7965	: m_fromType		(from)
7966	, m_toType			(to)
7967	, m_features		(getUsedFeatures(from, to))
7968	, m_name			(getTestName(from, to))
7969	, m_inputBuffer		(getBuffer(from, number))
7970	, m_outputBuffer	(getBuffer(to, number))
7971	{
7972		m_asmTypes["inputType"]		= getAsmTypeDeclaration(from);
7973		m_asmTypes["outputType"]	= getAsmTypeDeclaration(to);
7974
7975		if (m_features == CONVERT_TEST_USES_INT16)
7976		{
7977			m_asmTypes["int_capabilities"] = "OpCapability Int16\n";
7978		}
7979		else if (m_features == CONVERT_TEST_USES_INT64)
7980		{
7981			m_asmTypes["int_capabilities"] = "OpCapability Int64\n";
7982		}
7983		else if (m_features == CONVERT_TEST_USES_INT16_INT64)
7984		{
7985			m_asmTypes["int_capabilities"] = "OpCapability Int16\n \
7986											  OpCapability Int64\n";
7987		}
7988		else
7989		{
7990			DE_ASSERT(false);
7991		}
7992	}
7993
7994	IntegerType				m_fromType;
7995	IntegerType				m_toType;
7996	ConvertTestFeatures		m_features;
7997	string					m_name;
7998	map<string, string>		m_asmTypes;
7999	BufferSp				m_inputBuffer;
8000	BufferSp				m_outputBuffer;
8001};
8002
8003void createSConvertCases (vector<ConvertCase>& testCases)
8004{
8005	// Convert int to int
8006	testCases.push_back(ConvertCase(INTEGER_TYPE_SIGNED_16,	INTEGER_TYPE_SIGNED_32,		14669));
8007	testCases.push_back(ConvertCase(INTEGER_TYPE_SIGNED_16,	INTEGER_TYPE_SIGNED_64,		3341));
8008
8009	testCases.push_back(ConvertCase(INTEGER_TYPE_SIGNED_32,	INTEGER_TYPE_SIGNED_64,		973610259));
8010
8011	// Convert int to unsigned int
8012	testCases.push_back(ConvertCase(INTEGER_TYPE_SIGNED_16,	INTEGER_TYPE_UNSIGNED_32,	9288));
8013	testCases.push_back(ConvertCase(INTEGER_TYPE_SIGNED_16,	INTEGER_TYPE_UNSIGNED_64,	15460));
8014
8015	testCases.push_back(ConvertCase(INTEGER_TYPE_SIGNED_32,	INTEGER_TYPE_UNSIGNED_64,	346213461));
8016}
8017
8018//  Test for the OpSConvert instruction.
8019tcu::TestCaseGroup* createSConvertTests (tcu::TestContext& testCtx)
8020{
8021	const string instruction				("OpSConvert");
8022	de::MovePtr<tcu::TestCaseGroup>	group	(new tcu::TestCaseGroup(testCtx, "sconvert", "OpSConvert"));
8023	vector<ConvertCase>				testCases;
8024	createSConvertCases(testCases);
8025
8026	for (vector<ConvertCase>::const_iterator test = testCases.begin(); test != testCases.end(); ++test)
8027	{
8028		ComputeShaderSpec	spec;
8029
8030		spec.assembly = getConvertCaseShaderStr(instruction, test->m_asmTypes);
8031		spec.inputs.push_back(test->m_inputBuffer);
8032		spec.outputs.push_back(test->m_inputBuffer);
8033		spec.numWorkGroups = IVec3(1, 1, 1);
8034
8035		group->addChild(new ConvertTestCase(testCtx, test->m_name.c_str(), "Convert integers with OpSConvert.", spec, test->m_features));
8036	}
8037
8038	return group.release();
8039}
8040
8041void createUConvertCases (vector<ConvertCase>& testCases)
8042{
8043	// Convert unsigned int to unsigned int
8044	testCases.push_back(ConvertCase(INTEGER_TYPE_UNSIGNED_16,	INTEGER_TYPE_UNSIGNED_32,	60653));
8045	testCases.push_back(ConvertCase(INTEGER_TYPE_UNSIGNED_16,	INTEGER_TYPE_UNSIGNED_64,	17991));
8046
8047	testCases.push_back(ConvertCase(INTEGER_TYPE_UNSIGNED_32,	INTEGER_TYPE_UNSIGNED_64,	904256275));
8048
8049	// Convert unsigned int to int
8050	testCases.push_back(ConvertCase(INTEGER_TYPE_UNSIGNED_16,	INTEGER_TYPE_SIGNED_32,		38002));
8051	testCases.push_back(ConvertCase(INTEGER_TYPE_UNSIGNED_16,	INTEGER_TYPE_SIGNED_64,		64921));
8052
8053	testCases.push_back(ConvertCase(INTEGER_TYPE_UNSIGNED_32,	INTEGER_TYPE_SIGNED_64,		4294956295ll));
8054}
8055
8056//  Test for the OpUConvert instruction.
8057tcu::TestCaseGroup* createUConvertTests (tcu::TestContext& testCtx)
8058{
8059	const string instruction				("OpUConvert");
8060	de::MovePtr<tcu::TestCaseGroup>	group	(new tcu::TestCaseGroup(testCtx, "uconvert", "OpUConvert"));
8061	vector<ConvertCase>				testCases;
8062	createUConvertCases(testCases);
8063
8064	for (vector<ConvertCase>::const_iterator test = testCases.begin(); test != testCases.end(); ++test)
8065	{
8066		ComputeShaderSpec	spec;
8067
8068		spec.assembly = getConvertCaseShaderStr(instruction, test->m_asmTypes);
8069		spec.inputs.push_back(test->m_inputBuffer);
8070		spec.outputs.push_back(test->m_inputBuffer);
8071		spec.numWorkGroups = IVec3(1, 1, 1);
8072
8073		group->addChild(new ConvertTestCase(testCtx, test->m_name.c_str(), "Convert integers with OpUConvert.", spec, test->m_features));
8074	}
8075	return group.release();
8076}
8077
8078enum NumberType
8079{
8080	TYPE_INT,
8081	TYPE_UINT,
8082	TYPE_FLOAT,
8083	TYPE_END,
8084};
8085
8086const string getNumberTypeName (const NumberType type)
8087{
8088	if (type == TYPE_INT)
8089	{
8090		return "int";
8091	}
8092	else if (type == TYPE_UINT)
8093	{
8094		return "uint";
8095	}
8096	else if (type == TYPE_FLOAT)
8097	{
8098		return "float";
8099	}
8100	else
8101	{
8102		DE_ASSERT(false);
8103		return "";
8104	}
8105}
8106
8107deInt32 getInt(de::Random& rnd)
8108{
8109	return rnd.getInt(std::numeric_limits<int>::min(), std::numeric_limits<int>::max());
8110}
8111
8112template <typename T>
8113const string numberToString (T number)
8114{
8115	std::stringstream ss;
8116	ss << number;
8117	return ss.str();
8118}
8119
8120const string repeatString (const string& str, int times)
8121{
8122	string filler;
8123	for (int i = 0; i < times; ++i)
8124	{
8125		filler += str;
8126	}
8127	return filler;
8128}
8129
8130const string getRandomConstantString (const NumberType type, de::Random& rnd)
8131{
8132	if (type == TYPE_INT)
8133	{
8134		return numberToString<deInt32>(getInt(rnd));
8135	}
8136	else if (type == TYPE_UINT)
8137	{
8138		return numberToString<deUint32>(rnd.getUint32());
8139	}
8140	else if (type == TYPE_FLOAT)
8141	{
8142		return numberToString<float>(rnd.getFloat());
8143	}
8144	else
8145	{
8146		DE_ASSERT(false);
8147		return "";
8148	}
8149}
8150
8151void createVectorCompositeCases (vector<map<string, string> >& testCases, de::Random& rnd, const NumberType type)
8152{
8153	map<string, string> params;
8154
8155	// Vec2 to Vec4
8156	for (int width = 2; width <= 4; ++width)
8157	{
8158		string randomConst = numberToString(getInt(rnd));
8159		string widthStr = numberToString(width);
8160		int index = rnd.getInt(0, width-1);
8161
8162		params["name"]					= "vec_" + widthStr;
8163		params["compositeType"]			= "%composite = OpTypeVector %custom " + widthStr +"\n";
8164		params["filler"]				= string("%filler    = OpConstant %custom ") + getRandomConstantString(type, rnd) + "\n";
8165		params["compositeConstruct"]	= "%instance  = OpCompositeConstruct %composite" + repeatString(" %filler", width) + "\n";
8166		params["indexes"]				= numberToString(index);
8167		testCases.push_back(params);
8168	}
8169}
8170
8171void createArrayCompositeCases (vector<map<string, string> >& testCases, de::Random& rnd, const NumberType type)
8172{
8173	const int limit = 10;
8174	map<string, string> params;
8175
8176	for (int width = 2; width <= limit; ++width)
8177	{
8178		string randomConst = numberToString(getInt(rnd));
8179		string widthStr = numberToString(width);
8180		int index = rnd.getInt(0, width-1);
8181
8182		params["name"]					= "array_" + widthStr;
8183		params["compositeType"]			= string("%arraywidth = OpConstant %u32 " + widthStr + "\n")
8184											+	 "%composite = OpTypeArray %custom %arraywidth\n";
8185
8186		params["filler"]				= string("%filler    = OpConstant %custom ") + getRandomConstantString(type, rnd) + "\n";
8187		params["compositeConstruct"]	= "%instance  = OpCompositeConstruct %composite" + repeatString(" %filler", width) + "\n";
8188		params["indexes"]				= numberToString(index);
8189		testCases.push_back(params);
8190	}
8191}
8192
8193void createStructCompositeCases (vector<map<string, string> >& testCases, de::Random& rnd, const NumberType type)
8194{
8195	const int limit = 10;
8196	map<string, string> params;
8197
8198	for (int width = 2; width <= limit; ++width)
8199	{
8200		string randomConst = numberToString(getInt(rnd));
8201		int index = rnd.getInt(0, width-1);
8202
8203		params["name"]					= "struct_" + numberToString(width);
8204		params["compositeType"]			= "%composite = OpTypeStruct" + repeatString(" %custom", width) + "\n";
8205		params["filler"]				= string("%filler    = OpConstant %custom ") + getRandomConstantString(type, rnd) + "\n";
8206		params["compositeConstruct"]	= "%instance  = OpCompositeConstruct %composite" + repeatString(" %filler", width) + "\n";
8207		params["indexes"]				= numberToString(index);
8208		testCases.push_back(params);
8209	}
8210}
8211
8212void createMatrixCompositeCases (vector<map<string, string> >& testCases, de::Random& rnd, const NumberType type)
8213{
8214	map<string, string> params;
8215
8216	// Vec2 to Vec4
8217	for (int width = 2; width <= 4; ++width)
8218	{
8219		string widthStr = numberToString(width);
8220
8221		for (int column = 2 ; column <= 4; ++column)
8222		{
8223			int index_0 = rnd.getInt(0, column-1);
8224			int index_1 = rnd.getInt(0, width-1);
8225			string columnStr = numberToString(column);
8226
8227			params["name"]					= "matrix_" + widthStr + "x" + columnStr;
8228			params["compositeType"]			= string("%vectype   = OpTypeVector %custom " + widthStr + "\n")
8229												+	 "%composite = OpTypeMatrix %vectype " + columnStr + "\n";
8230
8231			params["filler"]				= string("%filler    = OpConstant %custom ") + getRandomConstantString(type, rnd) + "\n"
8232												+	 "%fillerVec = OpConstantComposite %vectype" + repeatString(" %filler", width) + "\n";
8233
8234			params["compositeConstruct"]	= "%instance  = OpCompositeConstruct %composite" + repeatString(" %fillerVec", column) + "\n";
8235			params["indexes"]				= numberToString(index_0) + " " + numberToString(index_1);
8236			testCases.push_back(params);
8237		}
8238	}
8239}
8240
8241void createCompositeCases (vector<map<string, string> >& testCases, de::Random& rnd, const NumberType type)
8242{
8243	createVectorCompositeCases(testCases, rnd, type);
8244	createArrayCompositeCases(testCases, rnd, type);
8245	createStructCompositeCases(testCases, rnd, type);
8246	// Matrix only supports float types
8247	if (type == TYPE_FLOAT)
8248	{
8249		createMatrixCompositeCases(testCases, rnd, type);
8250	}
8251}
8252
8253const string getAssemblyTypeDeclaration (const NumberType type)
8254{
8255	switch (type)
8256	{
8257		case TYPE_INT:		return "OpTypeInt 32 1";
8258		case TYPE_UINT:		return "OpTypeInt 32 0";
8259		case TYPE_FLOAT:	return "OpTypeFloat 32";
8260		default:			DE_ASSERT(false); return "";
8261	}
8262}
8263
8264const string specializeCompositeInsertShaderTemplate (const NumberType type, const map<string, string>& params)
8265{
8266	map<string, string>	parameters(params);
8267
8268	parameters["typeDeclaration"] = getAssemblyTypeDeclaration(type);
8269
8270	return StringTemplate (
8271		"OpCapability Shader\n"
8272		"OpCapability Matrix\n"
8273		"OpMemoryModel Logical GLSL450\n"
8274		"OpEntryPoint GLCompute %main \"main\" %id\n"
8275		"OpExecutionMode %main LocalSize 1 1 1\n"
8276
8277		"OpSource GLSL 430\n"
8278		"OpName %main           \"main\"\n"
8279		"OpName %id             \"gl_GlobalInvocationID\"\n"
8280
8281		// Decorators
8282		"OpDecorate %id BuiltIn GlobalInvocationId\n"
8283		"OpDecorate %buf BufferBlock\n"
8284		"OpDecorate %indata DescriptorSet 0\n"
8285		"OpDecorate %indata Binding 0\n"
8286		"OpDecorate %outdata DescriptorSet 0\n"
8287		"OpDecorate %outdata Binding 1\n"
8288		"OpDecorate %customarr ArrayStride 4\n"
8289		"OpMemberDecorate %buf 0 Offset 0\n"
8290
8291		// General types
8292		"%void      = OpTypeVoid\n"
8293		"%voidf     = OpTypeFunction %void\n"
8294		"%u32       = OpTypeInt 32 0\n"
8295		"%i32       = OpTypeInt 32 1\n"
8296		"%uvec3     = OpTypeVector %u32 3\n"
8297		"%uvec3ptr  = OpTypePointer Input %uvec3\n"
8298
8299		// Custom type
8300		"%custom    = ${typeDeclaration}\n"
8301		"${compositeType}"
8302
8303		// Constants
8304		"${filler}"
8305
8306		// Inherited from custom
8307		"%customptr = OpTypePointer Uniform %custom\n"
8308		"%customarr = OpTypeRuntimeArray %custom\n"
8309		"%buf       = OpTypeStruct %customarr\n"
8310		"%bufptr    = OpTypePointer Uniform %buf\n"
8311
8312		"%indata    = OpVariable %bufptr Uniform\n"
8313		"%outdata   = OpVariable %bufptr Uniform\n"
8314
8315		"%id        = OpVariable %uvec3ptr Input\n"
8316		"%zero      = OpConstant %i32 0\n"
8317
8318		"%main      = OpFunction %void None %voidf\n"
8319		"%label     = OpLabel\n"
8320		"%idval     = OpLoad %uvec3 %id\n"
8321		"%x         = OpCompositeExtract %u32 %idval 0\n"
8322
8323		"%inloc     = OpAccessChain %customptr %indata %zero %x\n"
8324		"%outloc    = OpAccessChain %customptr %outdata %zero %x\n"
8325		// Read the input value
8326		"%inval     = OpLoad %custom %inloc\n"
8327		// Create the composite and fill it
8328		"${compositeConstruct}"
8329		// Insert the input value to a place
8330		"%instance2 = OpCompositeInsert %composite %inval %instance ${indexes}\n"
8331		// Read back the value from the position
8332		"%out_val   = OpCompositeExtract %custom %instance2 ${indexes}\n"
8333		// Store it in the output position
8334		"             OpStore %outloc %out_val\n"
8335		"             OpReturn\n"
8336		"             OpFunctionEnd\n"
8337	).specialize(parameters);
8338}
8339
8340template<typename T>
8341BufferSp createCompositeBuffer(T number)
8342{
8343	return BufferSp(new Buffer<T>(vector<T>(1, number)));
8344}
8345
8346tcu::TestCaseGroup* createOpCompositeInsertGroup (tcu::TestContext& testCtx)
8347{
8348	de::MovePtr<tcu::TestCaseGroup>	group	(new tcu::TestCaseGroup(testCtx, "opcompositeinsert", "Test the OpCompositeInsert instruction"));
8349	de::Random						rnd		(deStringHash(group->getName()));
8350
8351	for (int type = TYPE_INT; type != TYPE_END; ++type)
8352	{
8353		NumberType						numberType		= NumberType(type);
8354		const string					typeName		= getNumberTypeName(numberType);
8355		const string					description		= "Test the OpCompositeInsert instruction with " + typeName + "s";
8356		de::MovePtr<tcu::TestCaseGroup>	subGroup		(new tcu::TestCaseGroup(testCtx, typeName.c_str(), description.c_str()));
8357		vector<map<string, string> >	testCases;
8358
8359		createCompositeCases(testCases, rnd, numberType);
8360
8361		for (vector<map<string, string> >::const_iterator test = testCases.begin(); test != testCases.end(); ++test)
8362		{
8363			ComputeShaderSpec	spec;
8364
8365			spec.assembly = specializeCompositeInsertShaderTemplate(numberType, *test);
8366
8367			switch (numberType)
8368			{
8369				case TYPE_INT:
8370				{
8371					deInt32 number = getInt(rnd);
8372					spec.inputs.push_back(createCompositeBuffer<deInt32>(number));
8373					spec.outputs.push_back(createCompositeBuffer<deInt32>(number));
8374					break;
8375				}
8376				case TYPE_UINT:
8377				{
8378					deUint32 number = rnd.getUint32();
8379					spec.inputs.push_back(createCompositeBuffer<deUint32>(number));
8380					spec.outputs.push_back(createCompositeBuffer<deUint32>(number));
8381					break;
8382				}
8383				case TYPE_FLOAT:
8384				{
8385					float number = rnd.getFloat();
8386					spec.inputs.push_back(createCompositeBuffer<float>(number));
8387					spec.outputs.push_back(createCompositeBuffer<float>(number));
8388					break;
8389				}
8390				default:
8391					DE_ASSERT(false);
8392			}
8393
8394			spec.numWorkGroups = IVec3(1, 1, 1);
8395			subGroup->addChild(new SpvAsmComputeShaderCase(testCtx, test->at("name").c_str(), "OpCompositeInsert test", spec));
8396		}
8397		group->addChild(subGroup.release());
8398	}
8399	return group.release();
8400}
8401
8402tcu::TestCaseGroup* createInstructionTests (tcu::TestContext& testCtx)
8403{
8404	de::MovePtr<tcu::TestCaseGroup> instructionTests	(new tcu::TestCaseGroup(testCtx, "instruction", "Instructions with special opcodes/operands"));
8405	de::MovePtr<tcu::TestCaseGroup> computeTests		(new tcu::TestCaseGroup(testCtx, "compute", "Compute Instructions with special opcodes/operands"));
8406	de::MovePtr<tcu::TestCaseGroup> graphicsTests		(new tcu::TestCaseGroup(testCtx, "graphics", "Graphics Instructions with special opcodes/operands"));
8407
8408	computeTests->addChild(createOpNopGroup(testCtx));
8409	computeTests->addChild(createOpFUnordGroup(testCtx));
8410	computeTests->addChild(createOpLineGroup(testCtx));
8411	computeTests->addChild(createOpNoLineGroup(testCtx));
8412	computeTests->addChild(createOpConstantNullGroup(testCtx));
8413	computeTests->addChild(createOpConstantCompositeGroup(testCtx));
8414	computeTests->addChild(createOpConstantUsageGroup(testCtx));
8415	computeTests->addChild(createSpecConstantGroup(testCtx));
8416	computeTests->addChild(createOpSourceGroup(testCtx));
8417	computeTests->addChild(createOpSourceExtensionGroup(testCtx));
8418	computeTests->addChild(createDecorationGroupGroup(testCtx));
8419	computeTests->addChild(createOpPhiGroup(testCtx));
8420	computeTests->addChild(createLoopControlGroup(testCtx));
8421	computeTests->addChild(createFunctionControlGroup(testCtx));
8422	computeTests->addChild(createSelectionControlGroup(testCtx));
8423	computeTests->addChild(createBlockOrderGroup(testCtx));
8424	computeTests->addChild(createMultipleShaderGroup(testCtx));
8425	computeTests->addChild(createMemoryAccessGroup(testCtx));
8426	computeTests->addChild(createOpCopyMemoryGroup(testCtx));
8427	computeTests->addChild(createOpCopyObjectGroup(testCtx));
8428	computeTests->addChild(createNoContractionGroup(testCtx));
8429	computeTests->addChild(createOpUndefGroup(testCtx));
8430	computeTests->addChild(createOpUnreachableGroup(testCtx));
8431	computeTests ->addChild(createOpQuantizeToF16Group(testCtx));
8432	computeTests ->addChild(createOpFRemGroup(testCtx));
8433	computeTests->addChild(createSConvertTests(testCtx));
8434	computeTests->addChild(createUConvertTests(testCtx));
8435	computeTests->addChild(createOpCompositeInsertGroup(testCtx));
8436
8437	RGBA defaultColors[4];
8438	getDefaultColors(defaultColors);
8439
8440	de::MovePtr<tcu::TestCaseGroup> opnopTests (new tcu::TestCaseGroup(testCtx, "opnop", "Test OpNop"));
8441	map<string, string> opNopFragments;
8442	opNopFragments["testfun"] =
8443		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
8444		"%param1 = OpFunctionParameter %v4f32\n"
8445		"%label_testfun = OpLabel\n"
8446		"OpNop\n"
8447		"OpNop\n"
8448		"OpNop\n"
8449		"OpNop\n"
8450		"OpNop\n"
8451		"OpNop\n"
8452		"OpNop\n"
8453		"OpNop\n"
8454		"%a = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
8455		"%b = OpFAdd %f32 %a %a\n"
8456		"OpNop\n"
8457		"%c = OpFSub %f32 %b %a\n"
8458		"%ret = OpVectorInsertDynamic %v4f32 %param1 %c %c_i32_0\n"
8459		"OpNop\n"
8460		"OpNop\n"
8461		"OpReturnValue %ret\n"
8462		"OpFunctionEnd\n"
8463		;
8464	createTestsForAllStages("opnop", defaultColors, defaultColors, opNopFragments, opnopTests.get());
8465
8466
8467	graphicsTests->addChild(opnopTests.release());
8468	graphicsTests->addChild(createOpSourceTests(testCtx));
8469	graphicsTests->addChild(createOpSourceContinuedTests(testCtx));
8470	graphicsTests->addChild(createOpLineTests(testCtx));
8471	graphicsTests->addChild(createOpNoLineTests(testCtx));
8472	graphicsTests->addChild(createOpConstantNullTests(testCtx));
8473	graphicsTests->addChild(createOpConstantCompositeTests(testCtx));
8474	graphicsTests->addChild(createMemoryAccessTests(testCtx));
8475	graphicsTests->addChild(createOpUndefTests(testCtx));
8476	graphicsTests->addChild(createSelectionBlockOrderTests(testCtx));
8477	graphicsTests->addChild(createModuleTests(testCtx));
8478	graphicsTests->addChild(createSwitchBlockOrderTests(testCtx));
8479	graphicsTests->addChild(createOpPhiTests(testCtx));
8480	graphicsTests->addChild(createNoContractionTests(testCtx));
8481	graphicsTests->addChild(createOpQuantizeTests(testCtx));
8482	graphicsTests->addChild(createLoopTests(testCtx));
8483	graphicsTests->addChild(createSpecConstantTests(testCtx));
8484	graphicsTests->addChild(createSpecConstantOpQuantizeToF16Group(testCtx));
8485	graphicsTests->addChild(createBarrierTests(testCtx));
8486	graphicsTests->addChild(createDecorationGroupTests(testCtx));
8487	graphicsTests->addChild(createFRemTests(testCtx));
8488
8489	instructionTests->addChild(computeTests.release());
8490	instructionTests->addChild(graphicsTests.release());
8491
8492	return instructionTests.release();
8493}
8494
8495} // SpirVAssembly
8496} // vkt
8497