vktSpvAsmInstructionTests.cpp revision 5b69f6439c2042479193b695963bdc1e242cdffc
1/*-------------------------------------------------------------------------
2 * Vulkan Conformance Tests
3 * ------------------------
4 *
5 * Copyright (c) 2015 Google Inc.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and/or associated documentation files (the
9 * "Materials"), to deal in the Materials without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sublicense, and/or sell copies of the Materials, and to
12 * permit persons to whom the Materials are furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice(s) and this permission notice shall be
16 * included in all copies or substantial portions of the Materials.
17 *
18 * The Materials are Confidential Information as defined by the
19 * Khronos Membership Agreement until designated non-confidential by
20 * Khronos, at which point this condition clause shall be removed.
21 *
22 * THE MATERIALS ARE PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
23 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
24 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
25 * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
26 * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
27 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
28 * MATERIALS OR THE USE OR OTHER DEALINGS IN THE MATERIALS.
29 *
30 *//*!
31 * \file
32 * \brief SPIR-V Assembly Tests for Instructions (special opcode/operand)
33 *//*--------------------------------------------------------------------*/
34
35#include "vktSpvAsmInstructionTests.hpp"
36
37#include "tcuCommandLine.hpp"
38#include "tcuFormatUtil.hpp"
39#include "tcuRGBA.hpp"
40#include "tcuStringTemplate.hpp"
41#include "tcuTestLog.hpp"
42#include "tcuVectorUtil.hpp"
43
44#include "vkDefs.hpp"
45#include "vkDeviceUtil.hpp"
46#include "vkMemUtil.hpp"
47#include "vkPlatform.hpp"
48#include "vkPrograms.hpp"
49#include "vkQueryUtil.hpp"
50#include "vkRef.hpp"
51#include "vkRefUtil.hpp"
52#include "vkStrUtil.hpp"
53#include "vkTypeUtil.hpp"
54
55#include "deRandom.hpp"
56#include "deStringUtil.hpp"
57#include "deUniquePtr.hpp"
58#include "tcuStringTemplate.hpp"
59
60#include <cmath>
61#include "vktSpvAsmComputeShaderCase.hpp"
62#include "vktSpvAsmComputeShaderTestUtil.hpp"
63#include "vktTestCaseUtil.hpp"
64
65#include <cmath>
66#include <limits>
67#include <map>
68#include <string>
69#include <sstream>
70
71namespace vkt
72{
73namespace SpirVAssembly
74{
75
76namespace
77{
78
79using namespace vk;
80using std::map;
81using std::string;
82using std::vector;
83using tcu::IVec3;
84using tcu::IVec4;
85using tcu::RGBA;
86using tcu::TestLog;
87using tcu::TestStatus;
88using tcu::Vec4;
89using de::UniquePtr;
90using tcu::StringTemplate;
91using tcu::Vec4;
92
93typedef Unique<VkShaderModule>			ModuleHandleUp;
94typedef de::SharedPtr<ModuleHandleUp>	ModuleHandleSp;
95
96template<typename T>	T			randomScalar	(de::Random& rnd, T minValue, T maxValue);
97template<> inline		float		randomScalar	(de::Random& rnd, float minValue, float maxValue)		{ return rnd.getFloat(minValue, maxValue);	}
98template<> inline		deInt32		randomScalar	(de::Random& rnd, deInt32 minValue, deInt32 maxValue)	{ return rnd.getInt(minValue, maxValue);	}
99
100template<typename T>
101static void fillRandomScalars (de::Random& rnd, T minValue, T maxValue, void* dst, int numValues, int offset = 0)
102{
103	T* const typedPtr = (T*)dst;
104	for (int ndx = 0; ndx < numValues; ndx++)
105		typedPtr[offset + ndx] = randomScalar<T>(rnd, minValue, maxValue);
106}
107
108struct CaseParameter
109{
110	const char*		name;
111	string			param;
112
113	CaseParameter	(const char* case_, const string& param_) : name(case_), param(param_) {}
114};
115
116// Assembly code used for testing OpNop, OpConstant{Null|Composite}, Op[No]Line, OpSource[Continued], OpSourceExtension, OpUndef is based on GLSL source code:
117//
118// #version 430
119//
120// layout(std140, set = 0, binding = 0) readonly buffer Input {
121//   float elements[];
122// } input_data;
123// layout(std140, set = 0, binding = 1) writeonly buffer Output {
124//   float elements[];
125// } output_data;
126//
127// layout (local_size_x = 1, local_size_y = 1, local_size_z = 1) in;
128//
129// void main() {
130//   uint x = gl_GlobalInvocationID.x;
131//   output_data.elements[x] = -input_data.elements[x];
132// }
133
134static const char* const s_ShaderPreamble =
135	"OpCapability Shader\n"
136	"OpMemoryModel Logical GLSL450\n"
137	"OpEntryPoint GLCompute %main \"main\" %id\n"
138	"OpExecutionMode %main LocalSize 1 1 1\n";
139
140static const char* const s_CommonTypes =
141	"%bool      = OpTypeBool\n"
142	"%void      = OpTypeVoid\n"
143	"%voidf     = OpTypeFunction %void\n"
144	"%u32       = OpTypeInt 32 0\n"
145	"%i32       = OpTypeInt 32 1\n"
146	"%f32       = OpTypeFloat 32\n"
147	"%uvec3     = OpTypeVector %u32 3\n"
148	"%uvec3ptr  = OpTypePointer Input %uvec3\n"
149	"%f32ptr    = OpTypePointer Uniform %f32\n"
150	"%f32arr    = OpTypeRuntimeArray %f32\n";
151
152// Declares two uniform variables (indata, outdata) of type "struct { float[] }". Depends on type "f32arr" (for "float[]").
153static const char* const s_InputOutputBuffer =
154	"%inbuf     = OpTypeStruct %f32arr\n"
155	"%inbufptr  = OpTypePointer Uniform %inbuf\n"
156	"%indata    = OpVariable %inbufptr Uniform\n"
157	"%outbuf    = OpTypeStruct %f32arr\n"
158	"%outbufptr = OpTypePointer Uniform %outbuf\n"
159	"%outdata   = OpVariable %outbufptr Uniform\n";
160
161// Declares buffer type and layout for uniform variables indata and outdata. Both of them are SSBO bounded to descriptor set 0.
162// indata is at binding point 0, while outdata is at 1.
163static const char* const s_InputOutputBufferTraits =
164	"OpDecorate %inbuf BufferBlock\n"
165	"OpDecorate %indata DescriptorSet 0\n"
166	"OpDecorate %indata Binding 0\n"
167	"OpDecorate %outbuf BufferBlock\n"
168	"OpDecorate %outdata DescriptorSet 0\n"
169	"OpDecorate %outdata Binding 1\n"
170	"OpDecorate %f32arr ArrayStride 4\n"
171	"OpMemberDecorate %inbuf 0 Offset 0\n"
172	"OpMemberDecorate %outbuf 0 Offset 0\n";
173
174tcu::TestCaseGroup* createOpNopGroup (tcu::TestContext& testCtx)
175{
176	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opnop", "Test the OpNop instruction"));
177	ComputeShaderSpec				spec;
178	de::Random						rnd				(deStringHash(group->getName()));
179	const int						numElements		= 100;
180	vector<float>					positiveFloats	(numElements, 0);
181	vector<float>					negativeFloats	(numElements, 0);
182
183	fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
184
185	for (size_t ndx = 0; ndx < numElements; ++ndx)
186		negativeFloats[ndx] = -positiveFloats[ndx];
187
188	spec.assembly =
189		string(s_ShaderPreamble) +
190
191		"OpSource GLSL 430\n"
192		"OpName %main           \"main\"\n"
193		"OpName %id             \"gl_GlobalInvocationID\"\n"
194
195		"OpDecorate %id BuiltIn GlobalInvocationId\n"
196
197		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes)
198
199		+ string(s_InputOutputBuffer) +
200
201		"%id        = OpVariable %uvec3ptr Input\n"
202		"%zero      = OpConstant %i32 0\n"
203
204		"%main      = OpFunction %void None %voidf\n"
205		"%label     = OpLabel\n"
206		"%idval     = OpLoad %uvec3 %id\n"
207		"%x         = OpCompositeExtract %u32 %idval 0\n"
208
209		"             OpNop\n" // Inside a function body
210
211		"%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
212		"%inval     = OpLoad %f32 %inloc\n"
213		"%neg       = OpFNegate %f32 %inval\n"
214		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
215		"             OpStore %outloc %neg\n"
216		"             OpReturn\n"
217		"             OpFunctionEnd\n";
218	spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
219	spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
220	spec.numWorkGroups = IVec3(numElements, 1, 1);
221
222	group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "OpNop appearing at different places", spec));
223
224	return group.release();
225}
226
227tcu::TestCaseGroup* createOpLineGroup (tcu::TestContext& testCtx)
228{
229	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opline", "Test the OpLine instruction"));
230	ComputeShaderSpec				spec;
231	de::Random						rnd				(deStringHash(group->getName()));
232	const int						numElements		= 100;
233	vector<float>					positiveFloats	(numElements, 0);
234	vector<float>					negativeFloats	(numElements, 0);
235
236	fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
237
238	for (size_t ndx = 0; ndx < numElements; ++ndx)
239		negativeFloats[ndx] = -positiveFloats[ndx];
240
241	spec.assembly =
242		string(s_ShaderPreamble) +
243
244		"%fname1 = OpString \"negateInputs.comp\"\n"
245		"%fname2 = OpString \"negateInputs\"\n"
246
247		"OpSource GLSL 430\n"
248		"OpName %main           \"main\"\n"
249		"OpName %id             \"gl_GlobalInvocationID\"\n"
250
251		"OpDecorate %id BuiltIn GlobalInvocationId\n"
252
253		+ string(s_InputOutputBufferTraits) +
254
255		"OpLine %fname1 0 0\n" // At the earliest possible position
256
257		+ string(s_CommonTypes) + string(s_InputOutputBuffer) +
258
259		"OpLine %fname1 0 1\n" // Multiple OpLines in sequence
260		"OpLine %fname2 1 0\n" // Different filenames
261		"OpLine %fname1 1000 100000\n"
262
263		"%id        = OpVariable %uvec3ptr Input\n"
264		"%zero      = OpConstant %i32 0\n"
265
266		"OpLine %fname1 1 1\n" // Before a function
267
268		"%main      = OpFunction %void None %voidf\n"
269		"%label     = OpLabel\n"
270
271		"OpLine %fname1 1 1\n" // In a function
272
273		"%idval     = OpLoad %uvec3 %id\n"
274		"%x         = OpCompositeExtract %u32 %idval 0\n"
275		"%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
276		"%inval     = OpLoad %f32 %inloc\n"
277		"%neg       = OpFNegate %f32 %inval\n"
278		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
279		"             OpStore %outloc %neg\n"
280		"             OpReturn\n"
281		"             OpFunctionEnd\n";
282	spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
283	spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
284	spec.numWorkGroups = IVec3(numElements, 1, 1);
285
286	group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "OpLine appearing at different places", spec));
287
288	return group.release();
289}
290
291tcu::TestCaseGroup* createOpNoLineGroup (tcu::TestContext& testCtx)
292{
293	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opnoline", "Test the OpNoLine instruction"));
294	ComputeShaderSpec				spec;
295	de::Random						rnd				(deStringHash(group->getName()));
296	const int						numElements		= 100;
297	vector<float>					positiveFloats	(numElements, 0);
298	vector<float>					negativeFloats	(numElements, 0);
299
300	fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
301
302	for (size_t ndx = 0; ndx < numElements; ++ndx)
303		negativeFloats[ndx] = -positiveFloats[ndx];
304
305	spec.assembly =
306		string(s_ShaderPreamble) +
307
308		"%fname = OpString \"negateInputs.comp\"\n"
309
310		"OpSource GLSL 430\n"
311		"OpName %main           \"main\"\n"
312		"OpName %id             \"gl_GlobalInvocationID\"\n"
313
314		"OpDecorate %id BuiltIn GlobalInvocationId\n"
315
316		+ string(s_InputOutputBufferTraits) +
317
318		"OpNoLine\n" // At the earliest possible position, without preceding OpLine
319
320		+ string(s_CommonTypes) + string(s_InputOutputBuffer) +
321
322		"OpLine %fname 0 1\n"
323		"OpNoLine\n" // Immediately following a preceding OpLine
324
325		"OpLine %fname 1000 1\n"
326
327		"%id        = OpVariable %uvec3ptr Input\n"
328		"%zero      = OpConstant %i32 0\n"
329
330		"OpNoLine\n" // Contents after the previous OpLine
331
332		"%main      = OpFunction %void None %voidf\n"
333		"%label     = OpLabel\n"
334		"%idval     = OpLoad %uvec3 %id\n"
335		"%x         = OpCompositeExtract %u32 %idval 0\n"
336
337		"OpNoLine\n" // Multiple OpNoLine
338		"OpNoLine\n"
339		"OpNoLine\n"
340
341		"%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
342		"%inval     = OpLoad %f32 %inloc\n"
343		"%neg       = OpFNegate %f32 %inval\n"
344		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
345		"             OpStore %outloc %neg\n"
346		"             OpReturn\n"
347		"             OpFunctionEnd\n";
348	spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
349	spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
350	spec.numWorkGroups = IVec3(numElements, 1, 1);
351
352	group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "OpNoLine appearing at different places", spec));
353
354	return group.release();
355}
356
357tcu::TestCaseGroup* createNoContractionGroup (tcu::TestContext& testCtx)
358{
359	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "nocontraction", "Test the NoContraction decoration"));
360	vector<CaseParameter>			cases;
361	const int						numElements		= 100;
362	vector<float>					inputFloats1	(numElements, 0);
363	vector<float>					inputFloats2	(numElements, 0);
364	vector<float>					outputFloats	(numElements, 0);
365	const StringTemplate			shaderTemplate	(
366		string(s_ShaderPreamble) +
367
368		"OpName %main           \"main\"\n"
369		"OpName %id             \"gl_GlobalInvocationID\"\n"
370
371		"OpDecorate %id BuiltIn GlobalInvocationId\n"
372
373		"${DECORATION}\n"
374
375		"OpDecorate %inbuf1 BufferBlock\n"
376		"OpDecorate %indata1 DescriptorSet 0\n"
377		"OpDecorate %indata1 Binding 0\n"
378		"OpDecorate %inbuf2 BufferBlock\n"
379		"OpDecorate %indata2 DescriptorSet 0\n"
380		"OpDecorate %indata2 Binding 1\n"
381		"OpDecorate %outbuf BufferBlock\n"
382		"OpDecorate %outdata DescriptorSet 0\n"
383		"OpDecorate %outdata Binding 2\n"
384		"OpDecorate %f32arr ArrayStride 4\n"
385		"OpMemberDecorate %inbuf1 0 Offset 0\n"
386		"OpMemberDecorate %inbuf2 0 Offset 0\n"
387		"OpMemberDecorate %outbuf 0 Offset 0\n"
388
389		+ string(s_CommonTypes) +
390
391		"%inbuf1     = OpTypeStruct %f32arr\n"
392		"%inbufptr1  = OpTypePointer Uniform %inbuf1\n"
393		"%indata1    = OpVariable %inbufptr1 Uniform\n"
394		"%inbuf2     = OpTypeStruct %f32arr\n"
395		"%inbufptr2  = OpTypePointer Uniform %inbuf2\n"
396		"%indata2    = OpVariable %inbufptr2 Uniform\n"
397		"%outbuf     = OpTypeStruct %f32arr\n"
398		"%outbufptr  = OpTypePointer Uniform %outbuf\n"
399		"%outdata    = OpVariable %outbufptr Uniform\n"
400
401		"%id         = OpVariable %uvec3ptr Input\n"
402		"%zero       = OpConstant %i32 0\n"
403		"%c_f_m1     = OpConstant %f32 -1.\n"
404
405		"%main       = OpFunction %void None %voidf\n"
406		"%label      = OpLabel\n"
407		"%idval      = OpLoad %uvec3 %id\n"
408		"%x          = OpCompositeExtract %u32 %idval 0\n"
409		"%inloc1     = OpAccessChain %f32ptr %indata1 %zero %x\n"
410		"%inval1     = OpLoad %f32 %inloc1\n"
411		"%inloc2     = OpAccessChain %f32ptr %indata2 %zero %x\n"
412		"%inval2     = OpLoad %f32 %inloc2\n"
413		"%mul        = OpFMul %f32 %inval1 %inval2\n"
414		"%add        = OpFAdd %f32 %mul %c_f_m1\n"
415		"%outloc     = OpAccessChain %f32ptr %outdata %zero %x\n"
416		"              OpStore %outloc %add\n"
417		"              OpReturn\n"
418		"              OpFunctionEnd\n");
419
420	cases.push_back(CaseParameter("multiplication",	"OpDecorate %mul NoContraction"));
421	cases.push_back(CaseParameter("addition",		"OpDecorate %add NoContraction"));
422	cases.push_back(CaseParameter("both",			"OpDecorate %mul NoContraction\nOpDecorate %add NoContraction"));
423
424	for (size_t ndx = 0; ndx < numElements; ++ndx)
425	{
426		inputFloats1[ndx]	= 1.f + std::ldexp(1.f, -23); // 1 + 2^-23.
427		inputFloats2[ndx]	= 1.f - std::ldexp(1.f, -23); // 1 - 2^-23.
428		// Result for (1 + 2^-23) * (1 - 2^-23) - 1. With NoContraction, the multiplication will be
429		// conducted separately and the result is rounded to 1. So the final result will be 0.f.
430		// If the operation is combined into a precise fused multiply-add, then the result would be
431		// 2^-46 (0xa8800000).
432		outputFloats[ndx]	= 0.f;
433	}
434
435	for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
436	{
437		map<string, string>		specializations;
438		ComputeShaderSpec		spec;
439
440		specializations["DECORATION"] = cases[caseNdx].param;
441		spec.assembly = shaderTemplate.specialize(specializations);
442		spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats1)));
443		spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats2)));
444		spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
445		spec.numWorkGroups = IVec3(numElements, 1, 1);
446
447		group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
448	}
449	return group.release();
450}
451
452tcu::TestCaseGroup* createOpFRemGroup (tcu::TestContext& testCtx)
453{
454	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opfrem", "Test the OpFRem instruction"));
455	ComputeShaderSpec				spec;
456	de::Random						rnd				(deStringHash(group->getName()));
457	const int						numElements		= 200;
458	vector<float>					inputFloats1	(numElements, 0);
459	vector<float>					inputFloats2	(numElements, 0);
460	vector<float>					outputFloats	(numElements, 0);
461
462	fillRandomScalars(rnd, -10000.f, 10000.f, &inputFloats1[0], numElements);
463	fillRandomScalars(rnd, -100.f, 100.f, &inputFloats2[0], numElements);
464
465	for (size_t ndx = 0; ndx < numElements; ++ndx)
466	{
467		// Guard against divisors near zero.
468		if (std::fabs(inputFloats2[ndx]) < 1e-3)
469			inputFloats2[ndx] = 8.f;
470
471		// The return value of std::fmod() has the same sign as its first operand, which is how OpFRem spec'd.
472		outputFloats[ndx] = std::fmod(inputFloats1[ndx], inputFloats2[ndx]);
473	}
474
475	spec.assembly =
476		string(s_ShaderPreamble) +
477
478		"OpName %main           \"main\"\n"
479		"OpName %id             \"gl_GlobalInvocationID\"\n"
480
481		"OpDecorate %id BuiltIn GlobalInvocationId\n"
482
483		"OpDecorate %inbuf1 BufferBlock\n"
484		"OpDecorate %indata1 DescriptorSet 0\n"
485		"OpDecorate %indata1 Binding 0\n"
486		"OpDecorate %inbuf2 BufferBlock\n"
487		"OpDecorate %indata2 DescriptorSet 0\n"
488		"OpDecorate %indata2 Binding 1\n"
489		"OpDecorate %outbuf BufferBlock\n"
490		"OpDecorate %outdata DescriptorSet 0\n"
491		"OpDecorate %outdata Binding 2\n"
492		"OpDecorate %f32arr ArrayStride 4\n"
493		"OpMemberDecorate %inbuf1 0 Offset 0\n"
494		"OpMemberDecorate %inbuf2 0 Offset 0\n"
495		"OpMemberDecorate %outbuf 0 Offset 0\n"
496
497		+ string(s_CommonTypes) +
498
499		"%inbuf1     = OpTypeStruct %f32arr\n"
500		"%inbufptr1  = OpTypePointer Uniform %inbuf1\n"
501		"%indata1    = OpVariable %inbufptr1 Uniform\n"
502		"%inbuf2     = OpTypeStruct %f32arr\n"
503		"%inbufptr2  = OpTypePointer Uniform %inbuf2\n"
504		"%indata2    = OpVariable %inbufptr2 Uniform\n"
505		"%outbuf     = OpTypeStruct %f32arr\n"
506		"%outbufptr  = OpTypePointer Uniform %outbuf\n"
507		"%outdata    = OpVariable %outbufptr Uniform\n"
508
509		"%id        = OpVariable %uvec3ptr Input\n"
510
511		"%main      = OpFunction %void None %voidf\n"
512		"%label     = OpLabel\n"
513		"%idval     = OpLoad %uvec3 %id\n"
514		"%x         = OpCompositeExtract %u32 %idval 0\n"
515		"%inloc1    = OpAccessChain %f32ptr %indata1 %zero %x\n"
516		"%inval1    = OpLoad %f32 %inloc1\n"
517		"%inloc2    = OpAccessChain %f32ptr %indata2 %zero %x\n"
518		"%inval2    = OpLoad %f32 %inloc2\n"
519		"%rem       = OpFRem %f32 %inval1 %inval2\n"
520		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
521		"             OpStore %outloc %rem\n"
522		"             OpReturn\n"
523		"             OpFunctionEnd\n";
524
525	spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats1)));
526	spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats2)));
527	spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
528	spec.numWorkGroups = IVec3(numElements, 1, 1);
529
530	group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "", spec));
531
532	return group.release();
533}
534
535// Copy contents in the input buffer to the output buffer.
536tcu::TestCaseGroup* createOpCopyMemoryGroup (tcu::TestContext& testCtx)
537{
538	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opcopymemory", "Test the OpCopyMemory instruction"));
539	de::Random						rnd				(deStringHash(group->getName()));
540	const int						numElements		= 100;
541
542	// The following case adds vec4(0., 0.5, 1.5, 2.5) to each of the elements in the input buffer and writes output to the output buffer.
543	ComputeShaderSpec				spec1;
544	vector<Vec4>					inputFloats1	(numElements);
545	vector<Vec4>					outputFloats1	(numElements);
546
547	fillRandomScalars(rnd, -200.f, 200.f, &inputFloats1[0], numElements * 4);
548
549	for (size_t ndx = 0; ndx < numElements; ++ndx)
550		outputFloats1[ndx] = inputFloats1[ndx] + Vec4(0.f, 0.5f, 1.5f, 2.5f);
551
552	spec1.assembly =
553		string(s_ShaderPreamble) +
554
555		"OpName %main           \"main\"\n"
556		"OpName %id             \"gl_GlobalInvocationID\"\n"
557
558		"OpDecorate %id BuiltIn GlobalInvocationId\n"
559
560		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
561
562		"%vec4       = OpTypeVector %f32 4\n"
563		"%vec4ptr_u  = OpTypePointer Uniform %vec4\n"
564		"%vec4ptr_f  = OpTypePointer Function %vec4\n"
565		"%vec4arr    = OpTypeRuntimeArray %vec4\n"
566		"%inbuf      = OpTypeStruct %vec4arr\n"
567		"%inbufptr   = OpTypePointer Uniform %inbuf\n"
568		"%indata     = OpVariable %inbufptr Uniform\n"
569		"%outbuf     = OpTypeStruct %vec4arr\n"
570		"%outbufptr  = OpTypePointer Uniform %outbuf\n"
571		"%outdata    = OpVariable %outbufptr Uniform\n"
572
573		"%id         = OpVariable %uvec3ptr Input\n"
574		"%zero       = OpConstant %i32 0\n"
575		"%c_f_0      = OpConstant %f32 0.\n"
576		"%c_f_0_5    = OpConstant %f32 0.5\n"
577		"%c_f_1_5    = OpConstant %f32 1.5\n"
578		"%c_f_2_5    = OpConstant %f32 2.5\n"
579		"%c_vec4     = OpConstantComposite %vec4 %c_f_0 %c_f_0_5 %c_f_1_5 %c_f_2_5\n"
580
581		"%main       = OpFunction %void None %voidf\n"
582		"%label      = OpLabel\n"
583		"%v_vec4     = OpVariable %vec4ptr_f Function\n"
584		"%idval      = OpLoad %uvec3 %id\n"
585		"%x          = OpCompositeExtract %u32 %idval 0\n"
586		"%inloc      = OpAccessChain %vec4ptr_u %indata %zero %x\n"
587		"%outloc     = OpAccessChain %vec4ptr_u %outdata %zero %x\n"
588		"              OpCopyMemory %v_vec4 %inloc\n"
589		"%v_vec4_val = OpLoad %vec4 %v_vec4\n"
590		"%add        = OpFAdd %vec4 %v_vec4_val %c_vec4\n"
591		"              OpStore %outloc %add\n"
592		"              OpReturn\n"
593		"              OpFunctionEnd\n";
594
595	spec1.inputs.push_back(BufferSp(new Vec4Buffer(inputFloats1)));
596	spec1.outputs.push_back(BufferSp(new Vec4Buffer(outputFloats1)));
597	spec1.numWorkGroups = IVec3(numElements, 1, 1);
598
599	group->addChild(new SpvAsmComputeShaderCase(testCtx, "vector", "OpCopyMemory elements of vector type", spec1));
600
601	// The following case copies a float[100] variable from the input buffer to the output buffer.
602	ComputeShaderSpec				spec2;
603	vector<float>					inputFloats2	(numElements);
604	vector<float>					outputFloats2	(numElements);
605
606	fillRandomScalars(rnd, -200.f, 200.f, &inputFloats2[0], numElements);
607
608	for (size_t ndx = 0; ndx < numElements; ++ndx)
609		outputFloats2[ndx] = inputFloats2[ndx];
610
611	spec2.assembly =
612		string(s_ShaderPreamble) +
613
614		"OpName %main           \"main\"\n"
615		"OpName %id             \"gl_GlobalInvocationID\"\n"
616
617		"OpDecorate %id BuiltIn GlobalInvocationId\n"
618
619		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
620
621		"%hundred        = OpConstant %u32 100\n"
622		"%f32arr100      = OpTypeArray %f32 %hundred\n"
623		"%f32arr100ptr_f = OpTypePointer Function %f32arr100\n"
624		"%f32arr100ptr_u = OpTypePointer Uniform %f32arr100\n"
625		"%inbuf          = OpTypeStruct %f32arr100\n"
626		"%inbufptr       = OpTypePointer Uniform %inbuf\n"
627		"%indata         = OpVariable %inbufptr Uniform\n"
628		"%outbuf         = OpTypeStruct %f32arr100\n"
629		"%outbufptr      = OpTypePointer Uniform %outbuf\n"
630		"%outdata        = OpVariable %outbufptr Uniform\n"
631
632		"%id             = OpVariable %uvec3ptr Input\n"
633		"%zero           = OpConstant %i32 0\n"
634
635		"%main           = OpFunction %void None %voidf\n"
636		"%label          = OpLabel\n"
637		"%var            = OpVariable %f32arr100ptr_f Function\n"
638		"%inarr          = OpAccessChain %f32arr100ptr_u %indata %zero\n"
639		"%outarr         = OpAccessChain %f32arr100ptr_u %outdata %zero\n"
640		"                  OpCopyMemory %var %inarr\n"
641		"                  OpCopyMemory %outarr %var\n"
642		"                  OpReturn\n"
643		"                  OpFunctionEnd\n";
644
645	spec2.inputs.push_back(BufferSp(new Float32Buffer(inputFloats2)));
646	spec2.outputs.push_back(BufferSp(new Float32Buffer(outputFloats2)));
647	spec2.numWorkGroups = IVec3(1, 1, 1);
648
649	group->addChild(new SpvAsmComputeShaderCase(testCtx, "array", "OpCopyMemory elements of array type", spec2));
650
651	// The following case copies a struct{vec4, vec4, vec4, vec4} variable from the input buffer to the output buffer.
652	ComputeShaderSpec				spec3;
653	vector<float>					inputFloats3	(16);
654	vector<float>					outputFloats3	(16);
655
656	fillRandomScalars(rnd, -200.f, 200.f, &inputFloats3[0], 16);
657
658	for (size_t ndx = 0; ndx < 16; ++ndx)
659		outputFloats3[ndx] = -inputFloats3[ndx];
660
661	spec3.assembly =
662		string(s_ShaderPreamble) +
663
664		"OpName %main           \"main\"\n"
665		"OpName %id             \"gl_GlobalInvocationID\"\n"
666
667		"OpDecorate %id BuiltIn GlobalInvocationId\n"
668
669		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
670
671		"%vec4      = OpTypeVector %f32 4\n"
672		"%inbuf     = OpTypeStruct %vec4 %vec4 %vec4 %vec4\n"
673		"%inbufptr  = OpTypePointer Uniform %inbuf\n"
674		"%indata    = OpVariable %inbufptr Uniform\n"
675		"%outbuf    = OpTypeStruct %vec4 %vec4 %vec4 %vec4\n"
676		"%outbufptr = OpTypePointer Uniform %outbuf\n"
677		"%outdata   = OpVariable %outbufptr Uniform\n"
678		"%vec4stptr = OpTypePointer Function %inbuf\n"
679
680		"%id        = OpVariable %uvec3ptr Input\n"
681		"%zero      = OpConstant %i32 0\n"
682
683		"%main      = OpFunction %void None %voidf\n"
684		"%label     = OpLabel\n"
685		"%var       = OpVariable %vec4stptr Function\n"
686		"             OpCopyMemory %var %indata\n"
687		"             OpCopyMemory %outdata %var\n"
688		"             OpReturn\n"
689		"             OpFunctionEnd\n";
690
691	spec3.inputs.push_back(BufferSp(new Float32Buffer(inputFloats3)));
692	spec3.outputs.push_back(BufferSp(new Float32Buffer(outputFloats3)));
693	spec3.numWorkGroups = IVec3(1, 1, 1);
694
695	group->addChild(new SpvAsmComputeShaderCase(testCtx, "struct", "OpCopyMemory elements of struct type", spec3));
696
697	// The following case negates multiple float variables from the input buffer and stores the results to the output buffer.
698	ComputeShaderSpec				spec4;
699	vector<float>					inputFloats4	(numElements);
700	vector<float>					outputFloats4	(numElements);
701
702	fillRandomScalars(rnd, -200.f, 200.f, &inputFloats4[0], numElements);
703
704	for (size_t ndx = 0; ndx < numElements; ++ndx)
705		outputFloats4[ndx] = -inputFloats4[ndx];
706
707	spec4.assembly =
708		string(s_ShaderPreamble) +
709
710		"OpName %main           \"main\"\n"
711		"OpName %id             \"gl_GlobalInvocationID\"\n"
712
713		"OpDecorate %id BuiltIn GlobalInvocationId\n"
714
715		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
716
717		"%f32ptr_f  = OpTypePointer Function %f32\n"
718		"%id        = OpVariable %uvec3ptr Input\n"
719		"%zero      = OpConstant %i32 0\n"
720
721		"%main      = OpFunction %void None %voidf\n"
722		"%label     = OpLabel\n"
723		"%var       = OpVariable %f32ptr_f Function\n"
724		"%idval     = OpLoad %uvec3 %id\n"
725		"%x         = OpCompositeExtract %u32 %idval 0\n"
726		"%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
727		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
728		"             OpCopyMemory %var %inloc\n"
729		"%val       = OpLoad %f32 %var\n"
730		"%neg       = OpFNegate %f32 %val\n"
731		"             OpStore %outloc %neg\n"
732		"             OpReturn\n"
733		"             OpFunctionEnd\n";
734
735	spec4.inputs.push_back(BufferSp(new Float32Buffer(inputFloats4)));
736	spec4.outputs.push_back(BufferSp(new Float32Buffer(outputFloats4)));
737	spec4.numWorkGroups = IVec3(numElements, 1, 1);
738
739	group->addChild(new SpvAsmComputeShaderCase(testCtx, "float", "OpCopyMemory elements of float type", spec4));
740
741	return group.release();
742}
743
744tcu::TestCaseGroup* createOpCopyObjectGroup (tcu::TestContext& testCtx)
745{
746	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opcopyobject", "Test the OpCopyObject instruction"));
747	ComputeShaderSpec				spec;
748	de::Random						rnd				(deStringHash(group->getName()));
749	const int						numElements		= 100;
750	vector<float>					inputFloats		(numElements, 0);
751	vector<float>					outputFloats	(numElements, 0);
752
753	fillRandomScalars(rnd, -200.f, 200.f, &inputFloats[0], numElements);
754
755	for (size_t ndx = 0; ndx < numElements; ++ndx)
756		outputFloats[ndx] = inputFloats[ndx] + 7.5f;
757
758	spec.assembly =
759		string(s_ShaderPreamble) +
760
761		"OpName %main           \"main\"\n"
762		"OpName %id             \"gl_GlobalInvocationID\"\n"
763
764		"OpDecorate %id BuiltIn GlobalInvocationId\n"
765
766		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
767
768		"%fvec3    = OpTypeVector %f32 3\n"
769		"%fmat     = OpTypeMatrix %fvec3 3\n"
770		"%three    = OpConstant %u32 3\n"
771		"%farr     = OpTypeArray %f32 %three\n"
772		"%fst      = OpTypeStruct %f32 %f32\n"
773
774		+ string(s_InputOutputBuffer) +
775
776		"%id            = OpVariable %uvec3ptr Input\n"
777		"%zero          = OpConstant %i32 0\n"
778		"%c_f           = OpConstant %f32 1.5\n"
779		"%c_fvec3       = OpConstantComposite %fvec3 %c_f %c_f %c_f\n"
780		"%c_fmat        = OpConstantComposite %fmat %c_fvec3 %c_fvec3 %c_fvec3\n"
781		"%c_farr        = OpConstantComposite %farr %c_f %c_f %c_f\n"
782		"%c_fst         = OpConstantComposite %fst %c_f %c_f\n"
783
784		"%main          = OpFunction %void None %voidf\n"
785		"%label         = OpLabel\n"
786		"%c_f_copy      = OpCopyObject %f32   %c_f\n"
787		"%c_fvec3_copy  = OpCopyObject %fvec3 %c_fvec3\n"
788		"%c_fmat_copy   = OpCopyObject %fmat  %c_fmat\n"
789		"%c_farr_copy   = OpCopyObject %farr  %c_farr\n"
790		"%c_fst_copy    = OpCopyObject %fst   %c_fst\n"
791		"%fvec3_elem    = OpCompositeExtract %f32 %c_fvec3_copy 0\n"
792		"%fmat_elem     = OpCompositeExtract %f32 %c_fmat_copy 1 2\n"
793		"%farr_elem     = OpCompositeExtract %f32 %c_fmat_copy 2\n"
794		"%fst_elem      = OpCompositeExtract %f32 %c_fmat_copy 1\n"
795		// Add up. 1.5 * 5 = 7.5.
796		"%add1          = OpFAdd %f32 %c_f_copy %fvec3_elem\n"
797		"%add2          = OpFAdd %f32 %add1     %fmat_elem\n"
798		"%add3          = OpFAdd %f32 %add2     %farr_elem\n"
799		"%add4          = OpFAdd %f32 %add3     %fst_elem\n"
800
801		"%idval         = OpLoad %uvec3 %id\n"
802		"%x             = OpCompositeExtract %u32 %idval 0\n"
803		"%inloc         = OpAccessChain %f32ptr %indata %zero %x\n"
804		"%outloc        = OpAccessChain %f32ptr %outdata %zero %x\n"
805		"%inval         = OpLoad %f32 %inloc\n"
806		"%add           = OpFAdd %f32 %add4 %inval\n"
807		"                 OpStore %outloc %add\n"
808		"                 OpReturn\n"
809		"                 OpFunctionEnd\n";
810	spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
811	spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
812	spec.numWorkGroups = IVec3(numElements, 1, 1);
813
814	group->addChild(new SpvAsmComputeShaderCase(testCtx, "spotcheck", "OpCopyObject on different types", spec));
815
816	return group.release();
817}
818// Assembly code used for testing OpUnreachable is based on GLSL source code:
819//
820// #version 430
821//
822// layout(std140, set = 0, binding = 0) readonly buffer Input {
823//   float elements[];
824// } input_data;
825// layout(std140, set = 0, binding = 1) writeonly buffer Output {
826//   float elements[];
827// } output_data;
828//
829// void not_called_func() {
830//   // place OpUnreachable here
831// }
832//
833// uint modulo4(uint val) {
834//   switch (val % uint(4)) {
835//     case 0:  return 3;
836//     case 1:  return 2;
837//     case 2:  return 1;
838//     case 3:  return 0;
839//     default: return 100; // place OpUnreachable here
840//   }
841// }
842//
843// uint const5() {
844//   return 5;
845//   // place OpUnreachable here
846// }
847//
848// void main() {
849//   uint x = gl_GlobalInvocationID.x;
850//   if (const5() > modulo4(1000)) {
851//     output_data.elements[x] = -input_data.elements[x];
852//   } else {
853//     // place OpUnreachable here
854//     output_data.elements[x] = input_data.elements[x];
855//   }
856// }
857
858tcu::TestCaseGroup* createOpUnreachableGroup (tcu::TestContext& testCtx)
859{
860	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opunreachable", "Test the OpUnreachable instruction"));
861	ComputeShaderSpec				spec;
862	de::Random						rnd				(deStringHash(group->getName()));
863	const int						numElements		= 100;
864	vector<float>					positiveFloats	(numElements, 0);
865	vector<float>					negativeFloats	(numElements, 0);
866
867	fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
868
869	for (size_t ndx = 0; ndx < numElements; ++ndx)
870		negativeFloats[ndx] = -positiveFloats[ndx];
871
872	spec.assembly =
873		string(s_ShaderPreamble) +
874
875		"OpSource GLSL 430\n"
876		"OpName %func_main            \"main\"\n"
877		"OpName %func_not_called_func \"not_called_func(\"\n"
878		"OpName %func_modulo4         \"modulo4(u1;\"\n"
879		"OpName %func_const5          \"const5(\"\n"
880		"OpName %id                   \"gl_GlobalInvocationID\"\n"
881
882		"OpDecorate %id BuiltIn GlobalInvocationId\n"
883
884		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
885
886		"%u32ptr    = OpTypePointer Function %u32\n"
887		"%uintfuint = OpTypeFunction %u32 %u32ptr\n"
888		"%unitf     = OpTypeFunction %u32\n"
889
890		"%id        = OpVariable %uvec3ptr Input\n"
891		"%zero      = OpConstant %u32 0\n"
892		"%one       = OpConstant %u32 1\n"
893		"%two       = OpConstant %u32 2\n"
894		"%three     = OpConstant %u32 3\n"
895		"%four      = OpConstant %u32 4\n"
896		"%five      = OpConstant %u32 5\n"
897		"%hundred   = OpConstant %u32 100\n"
898		"%thousand  = OpConstant %u32 1000\n"
899
900		+ string(s_InputOutputBuffer) +
901
902		// Main()
903		"%func_main   = OpFunction %void None %voidf\n"
904		"%main_entry  = OpLabel\n"
905		"%idval       = OpLoad %uvec3 %id\n"
906		"%x           = OpCompositeExtract %u32 %idval 0\n"
907		"%inloc       = OpAccessChain %f32ptr %indata %zero %x\n"
908		"%inval       = OpLoad %f32 %inloc\n"
909		"%outloc      = OpAccessChain %f32ptr %outdata %zero %x\n"
910		"%ret_const5  = OpFunctionCall %u32 %func_const5\n"
911		"%ret_modulo4 = OpFunctionCall %u32 %func_modulo4 %thousand\n"
912		"%cmp_gt      = OpUGreaterThan %bool %ret_const5 %ret_modulo4\n"
913		"               OpSelectionMerge %if_end None\n"
914		"               OpBranchConditional %cmp_gt %if_true %if_false\n"
915		"%if_true     = OpLabel\n"
916		"%negate      = OpFNegate %f32 %inval\n"
917		"               OpStore %outloc %negate\n"
918		"               OpBranch %if_end\n"
919		"%if_false    = OpLabel\n"
920		"               OpUnreachable\n" // Unreachable else branch for if statement
921		"%if_end      = OpLabel\n"
922		"               OpReturn\n"
923		"               OpFunctionEnd\n"
924
925		// not_called_function()
926		"%func_not_called_func  = OpFunction %void None %voidf\n"
927		"%not_called_func_entry = OpLabel\n"
928		"                         OpUnreachable\n" // Unreachable entry block in not called static function
929		"                         OpFunctionEnd\n"
930
931		// modulo4()
932		"%func_modulo4  = OpFunction %u32 None %uintfuint\n"
933		"%valptr        = OpFunctionParameter %u32ptr\n"
934		"%modulo4_entry = OpLabel\n"
935		"%val           = OpLoad %u32 %valptr\n"
936		"%modulo        = OpUMod %u32 %val %four\n"
937		"                 OpSelectionMerge %switch_merge None\n"
938		"                 OpSwitch %modulo %default 0 %case0 1 %case1 2 %case2 3 %case3\n"
939		"%case0         = OpLabel\n"
940		"                 OpReturnValue %three\n"
941		"%case1         = OpLabel\n"
942		"                 OpReturnValue %two\n"
943		"%case2         = OpLabel\n"
944		"                 OpReturnValue %one\n"
945		"%case3         = OpLabel\n"
946		"                 OpReturnValue %zero\n"
947		"%default       = OpLabel\n"
948		"                 OpUnreachable\n" // Unreachable default case for switch statement
949		"%switch_merge  = OpLabel\n"
950		"                 OpUnreachable\n" // Unreachable merge block for switch statement
951		"                 OpFunctionEnd\n"
952
953		// const5()
954		"%func_const5  = OpFunction %u32 None %unitf\n"
955		"%const5_entry = OpLabel\n"
956		"                OpReturnValue %five\n"
957		"%unreachable  = OpLabel\n"
958		"                OpUnreachable\n" // Unreachable block in function
959		"                OpFunctionEnd\n";
960	spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
961	spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
962	spec.numWorkGroups = IVec3(numElements, 1, 1);
963
964	group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "OpUnreachable appearing at different places", spec));
965
966	return group.release();
967}
968
969// Assembly code used for testing decoration group is based on GLSL source code:
970//
971// #version 430
972//
973// layout(std140, set = 0, binding = 0) readonly buffer Input0 {
974//   float elements[];
975// } input_data0;
976// layout(std140, set = 0, binding = 1) readonly buffer Input1 {
977//   float elements[];
978// } input_data1;
979// layout(std140, set = 0, binding = 2) readonly buffer Input2 {
980//   float elements[];
981// } input_data2;
982// layout(std140, set = 0, binding = 3) readonly buffer Input3 {
983//   float elements[];
984// } input_data3;
985// layout(std140, set = 0, binding = 4) readonly buffer Input4 {
986//   float elements[];
987// } input_data4;
988// layout(std140, set = 0, binding = 5) writeonly buffer Output {
989//   float elements[];
990// } output_data;
991//
992// void main() {
993//   uint x = gl_GlobalInvocationID.x;
994//   output_data.elements[x] = input_data0.elements[x] + input_data1.elements[x] + input_data2.elements[x] + input_data3.elements[x] + input_data4.elements[x];
995// }
996tcu::TestCaseGroup* createDecorationGroupGroup (tcu::TestContext& testCtx)
997{
998	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "decoration_group", "Test the OpDecorationGroup & OpGroupDecorate instruction"));
999	ComputeShaderSpec				spec;
1000	de::Random						rnd				(deStringHash(group->getName()));
1001	const int						numElements		= 100;
1002	vector<float>					inputFloats0	(numElements, 0);
1003	vector<float>					inputFloats1	(numElements, 0);
1004	vector<float>					inputFloats2	(numElements, 0);
1005	vector<float>					inputFloats3	(numElements, 0);
1006	vector<float>					inputFloats4	(numElements, 0);
1007	vector<float>					outputFloats	(numElements, 0);
1008
1009	fillRandomScalars(rnd, -300.f, 300.f, &inputFloats0[0], numElements);
1010	fillRandomScalars(rnd, -300.f, 300.f, &inputFloats1[0], numElements);
1011	fillRandomScalars(rnd, -300.f, 300.f, &inputFloats2[0], numElements);
1012	fillRandomScalars(rnd, -300.f, 300.f, &inputFloats3[0], numElements);
1013	fillRandomScalars(rnd, -300.f, 300.f, &inputFloats4[0], numElements);
1014
1015	for (size_t ndx = 0; ndx < numElements; ++ndx)
1016		outputFloats[ndx] = inputFloats0[ndx] + inputFloats1[ndx] + inputFloats2[ndx] + inputFloats3[ndx] + inputFloats4[ndx];
1017
1018	spec.assembly =
1019		string(s_ShaderPreamble) +
1020
1021		"OpSource GLSL 430\n"
1022		"OpName %main \"main\"\n"
1023		"OpName %id \"gl_GlobalInvocationID\"\n"
1024
1025		// Not using group decoration on variable.
1026		"OpDecorate %id BuiltIn GlobalInvocationId\n"
1027		// Not using group decoration on type.
1028		"OpDecorate %f32arr ArrayStride 4\n"
1029
1030		"OpDecorate %groups BufferBlock\n"
1031		"OpDecorate %groupm Offset 0\n"
1032		"%groups = OpDecorationGroup\n"
1033		"%groupm = OpDecorationGroup\n"
1034
1035		// Group decoration on multiple structs.
1036		"OpGroupDecorate %groups %outbuf %inbuf0 %inbuf1 %inbuf2 %inbuf3 %inbuf4\n"
1037		// Group decoration on multiple struct members.
1038		"OpGroupMemberDecorate %groupm %outbuf 0 %inbuf0 0 %inbuf1 0 %inbuf2 0 %inbuf3 0 %inbuf4 0\n"
1039
1040		"OpDecorate %group1 DescriptorSet 0\n"
1041		"OpDecorate %group3 DescriptorSet 0\n"
1042		"OpDecorate %group3 NonWritable\n"
1043		"OpDecorate %group3 Restrict\n"
1044		"%group0 = OpDecorationGroup\n"
1045		"%group1 = OpDecorationGroup\n"
1046		"%group3 = OpDecorationGroup\n"
1047
1048		// Applying the same decoration group multiple times.
1049		"OpGroupDecorate %group1 %outdata\n"
1050		"OpGroupDecorate %group1 %outdata\n"
1051		"OpGroupDecorate %group1 %outdata\n"
1052		"OpDecorate %outdata DescriptorSet 0\n"
1053		"OpDecorate %outdata Binding 5\n"
1054		// Applying decoration group containing nothing.
1055		"OpGroupDecorate %group0 %indata0\n"
1056		"OpDecorate %indata0 DescriptorSet 0\n"
1057		"OpDecorate %indata0 Binding 0\n"
1058		// Applying decoration group containing one decoration.
1059		"OpGroupDecorate %group1 %indata1\n"
1060		"OpDecorate %indata1 Binding 1\n"
1061		// Applying decoration group containing multiple decorations.
1062		"OpGroupDecorate %group3 %indata2 %indata3\n"
1063		"OpDecorate %indata2 Binding 2\n"
1064		"OpDecorate %indata3 Binding 3\n"
1065		// Applying multiple decoration groups (with overlapping).
1066		"OpGroupDecorate %group0 %indata4\n"
1067		"OpGroupDecorate %group1 %indata4\n"
1068		"OpGroupDecorate %group3 %indata4\n"
1069		"OpDecorate %indata4 Binding 4\n"
1070
1071		+ string(s_CommonTypes) +
1072
1073		"%id   = OpVariable %uvec3ptr Input\n"
1074		"%zero = OpConstant %i32 0\n"
1075
1076		"%outbuf    = OpTypeStruct %f32arr\n"
1077		"%outbufptr = OpTypePointer Uniform %outbuf\n"
1078		"%outdata   = OpVariable %outbufptr Uniform\n"
1079		"%inbuf0    = OpTypeStruct %f32arr\n"
1080		"%inbuf0ptr = OpTypePointer Uniform %inbuf0\n"
1081		"%indata0   = OpVariable %inbuf0ptr Uniform\n"
1082		"%inbuf1    = OpTypeStruct %f32arr\n"
1083		"%inbuf1ptr = OpTypePointer Uniform %inbuf1\n"
1084		"%indata1   = OpVariable %inbuf1ptr Uniform\n"
1085		"%inbuf2    = OpTypeStruct %f32arr\n"
1086		"%inbuf2ptr = OpTypePointer Uniform %inbuf2\n"
1087		"%indata2   = OpVariable %inbuf2ptr Uniform\n"
1088		"%inbuf3    = OpTypeStruct %f32arr\n"
1089		"%inbuf3ptr = OpTypePointer Uniform %inbuf3\n"
1090		"%indata3   = OpVariable %inbuf3ptr Uniform\n"
1091		"%inbuf4    = OpTypeStruct %f32arr\n"
1092		"%inbufptr  = OpTypePointer Uniform %inbuf4\n"
1093		"%indata4   = OpVariable %inbufptr Uniform\n"
1094
1095		"%main   = OpFunction %void None %voidf\n"
1096		"%label  = OpLabel\n"
1097		"%idval  = OpLoad %uvec3 %id\n"
1098		"%x      = OpCompositeExtract %u32 %idval 0\n"
1099		"%inloc0 = OpAccessChain %f32ptr %indata0 %zero %x\n"
1100		"%inloc1 = OpAccessChain %f32ptr %indata1 %zero %x\n"
1101		"%inloc2 = OpAccessChain %f32ptr %indata2 %zero %x\n"
1102		"%inloc3 = OpAccessChain %f32ptr %indata3 %zero %x\n"
1103		"%inloc4 = OpAccessChain %f32ptr %indata4 %zero %x\n"
1104		"%outloc = OpAccessChain %f32ptr %outdata %zero %x\n"
1105		"%inval0 = OpLoad %f32 %inloc0\n"
1106		"%inval1 = OpLoad %f32 %inloc1\n"
1107		"%inval2 = OpLoad %f32 %inloc2\n"
1108		"%inval3 = OpLoad %f32 %inloc3\n"
1109		"%inval4 = OpLoad %f32 %inloc4\n"
1110		"%add0   = OpFAdd %f32 %inval0 %inval1\n"
1111		"%add1   = OpFAdd %f32 %add0 %inval2\n"
1112		"%add2   = OpFAdd %f32 %add1 %inval3\n"
1113		"%add    = OpFAdd %f32 %add2 %inval4\n"
1114		"          OpStore %outloc %add\n"
1115		"          OpReturn\n"
1116		"          OpFunctionEnd\n";
1117	spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats0)));
1118	spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats1)));
1119	spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats2)));
1120	spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats3)));
1121	spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats4)));
1122	spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
1123	spec.numWorkGroups = IVec3(numElements, 1, 1);
1124
1125	group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "decoration group cases", spec));
1126
1127	return group.release();
1128}
1129
1130struct SpecConstantTwoIntCase
1131{
1132	const char*		caseName;
1133	const char*		scDefinition0;
1134	const char*		scDefinition1;
1135	const char*		scResultType;
1136	const char*		scOperation;
1137	deInt32			scActualValue0;
1138	deInt32			scActualValue1;
1139	const char*		resultOperation;
1140	vector<deInt32>	expectedOutput;
1141
1142					SpecConstantTwoIntCase (const char* name,
1143											const char* definition0,
1144											const char* definition1,
1145											const char* resultType,
1146											const char* operation,
1147											deInt32 value0,
1148											deInt32 value1,
1149											const char* resultOp,
1150											const vector<deInt32>& output)
1151						: caseName			(name)
1152						, scDefinition0		(definition0)
1153						, scDefinition1		(definition1)
1154						, scResultType		(resultType)
1155						, scOperation		(operation)
1156						, scActualValue0	(value0)
1157						, scActualValue1	(value1)
1158						, resultOperation	(resultOp)
1159						, expectedOutput	(output) {}
1160};
1161
1162tcu::TestCaseGroup* createSpecConstantGroup (tcu::TestContext& testCtx)
1163{
1164	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opspecconstantop", "Test the OpSpecConstantOp instruction"));
1165	vector<SpecConstantTwoIntCase>	cases;
1166	de::Random						rnd				(deStringHash(group->getName()));
1167	const int						numElements		= 100;
1168	vector<deInt32>					inputInts		(numElements, 0);
1169	vector<deInt32>					outputInts1		(numElements, 0);
1170	vector<deInt32>					outputInts2		(numElements, 0);
1171	vector<deInt32>					outputInts3		(numElements, 0);
1172	vector<deInt32>					outputInts4		(numElements, 0);
1173	vector<deInt32>					outputInts5		(numElements, 0);
1174	const StringTemplate			shaderTemplate	(
1175		string(s_ShaderPreamble) +
1176
1177		"OpName %main           \"main\"\n"
1178		"OpName %id             \"gl_GlobalInvocationID\"\n"
1179
1180		"OpDecorate %id BuiltIn GlobalInvocationId\n"
1181		"OpDecorate %sc_0  SpecId 0\n"
1182		"OpDecorate %sc_1  SpecId 1\n"
1183
1184		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
1185
1186		"%i32ptr    = OpTypePointer Uniform %i32\n"
1187		"%i32arr    = OpTypeRuntimeArray %i32\n"
1188		"%boolptr   = OpTypePointer Uniform %bool\n"
1189		"%boolarr   = OpTypeRuntimeArray %bool\n"
1190		"%inbuf     = OpTypeStruct %i32arr\n"
1191		"%inbufptr  = OpTypePointer Uniform %inbuf\n"
1192		"%indata    = OpVariable %inbufptr Uniform\n"
1193		"%outbuf    = OpTypeStruct %i32arr\n"
1194		"%outbufptr = OpTypePointer Uniform %outbuf\n"
1195		"%outdata   = OpVariable %outbufptr Uniform\n"
1196
1197		"%id        = OpVariable %uvec3ptr Input\n"
1198		"%zero      = OpConstant %i32 0\n"
1199
1200		"%sc_0      = OpSpecConstant${SC_DEF0}\n"
1201		"%sc_1      = OpSpecConstant${SC_DEF1}\n"
1202		"%sc_final  = OpSpecConstantOp ${SC_RESULT_TYPE} ${SC_OP}\n"
1203
1204		"%main      = OpFunction %void None %voidf\n"
1205		"%label     = OpLabel\n"
1206		"%idval     = OpLoad %uvec3 %id\n"
1207		"%x         = OpCompositeExtract %u32 %idval 0\n"
1208		"%inloc     = OpAccessChain %i32ptr %indata %zero %x\n"
1209		"%inval     = OpLoad %i32 %inloc\n"
1210		"%final     = ${GEN_RESULT}\n"
1211		"%outloc    = OpAccessChain %i32ptr %outdata %zero %x\n"
1212		"             OpStore %outloc %final\n"
1213		"             OpReturn\n"
1214		"             OpFunctionEnd\n");
1215
1216	fillRandomScalars(rnd, -65536, 65536, &inputInts[0], numElements);
1217
1218	for (size_t ndx = 0; ndx < numElements; ++ndx)
1219	{
1220		outputInts1[ndx] = inputInts[ndx] + 42;
1221		outputInts2[ndx] = inputInts[ndx];
1222		outputInts3[ndx] = inputInts[ndx] - 11200;
1223		outputInts4[ndx] = inputInts[ndx] + 1;
1224		outputInts5[ndx] = inputInts[ndx] - 2;
1225	}
1226
1227	const char addScToInput[]		= "OpIAdd %i32 %inval %sc_final";
1228	const char selectTrueUsingSc[]	= "OpSelect %i32 %sc_final %inval %zero";
1229	const char selectFalseUsingSc[]	= "OpSelect %i32 %sc_final %zero %inval";
1230
1231	cases.push_back(SpecConstantTwoIntCase("iadd",					" %i32 0",		" %i32 0",		"%i32",		"IAdd                 %sc_0 %sc_1",			62,		-20,	addScToInput,		outputInts1));
1232	cases.push_back(SpecConstantTwoIntCase("isub",					" %i32 0",		" %i32 0",		"%i32",		"ISub                 %sc_0 %sc_1",			100,	58,		addScToInput,		outputInts1));
1233	cases.push_back(SpecConstantTwoIntCase("imul",					" %i32 0",		" %i32 0",		"%i32",		"IMul                 %sc_0 %sc_1",			-2,		-21,	addScToInput,		outputInts1));
1234	cases.push_back(SpecConstantTwoIntCase("sdiv",					" %i32 0",		" %i32 0",		"%i32",		"SDiv                 %sc_0 %sc_1",			-126,	-3,		addScToInput,		outputInts1));
1235	cases.push_back(SpecConstantTwoIntCase("udiv",					" %i32 0",		" %i32 0",		"%i32",		"UDiv                 %sc_0 %sc_1",			126,	3,		addScToInput,		outputInts1));
1236	cases.push_back(SpecConstantTwoIntCase("srem",					" %i32 0",		" %i32 0",		"%i32",		"SRem                 %sc_0 %sc_1",			7,		-3,		addScToInput,		outputInts4));
1237	cases.push_back(SpecConstantTwoIntCase("smod",					" %i32 0",		" %i32 0",		"%i32",		"SMod                 %sc_0 %sc_1",			7,		-3,		addScToInput,		outputInts5));
1238	cases.push_back(SpecConstantTwoIntCase("umod",					" %i32 0",		" %i32 0",		"%i32",		"UMod                 %sc_0 %sc_1",			342,	50,		addScToInput,		outputInts1));
1239	cases.push_back(SpecConstantTwoIntCase("bitwiseand",			" %i32 0",		" %i32 0",		"%i32",		"BitwiseAnd           %sc_0 %sc_1",			42,		63,		addScToInput,		outputInts1));
1240	cases.push_back(SpecConstantTwoIntCase("bitwiseor",				" %i32 0",		" %i32 0",		"%i32",		"BitwiseOr            %sc_0 %sc_1",			34,		8,		addScToInput,		outputInts1));
1241	cases.push_back(SpecConstantTwoIntCase("bitwisexor",			" %i32 0",		" %i32 0",		"%i32",		"BitwiseAnd           %sc_0 %sc_1",			18,		56,		addScToInput,		outputInts1));
1242	cases.push_back(SpecConstantTwoIntCase("shiftrightlogical",		" %i32 0",		" %i32 0",		"%i32",		"ShiftRightLogical    %sc_0 %sc_1",			168,	2,		addScToInput,		outputInts1));
1243	cases.push_back(SpecConstantTwoIntCase("shiftrightarithmetic",	" %i32 0",		" %i32 0",		"%i32",		"ShiftRightArithmetic %sc_0 %sc_1",			168,	2,		addScToInput,		outputInts1));
1244	cases.push_back(SpecConstantTwoIntCase("shiftleftlogical",		" %i32 0",		" %i32 0",		"%i32",		"ShiftLeftLogical     %sc_0 %sc_1",			21,		1,		addScToInput,		outputInts1));
1245	cases.push_back(SpecConstantTwoIntCase("slessthan",				" %i32 0",		" %i32 0",		"%bool",	"SLessThan            %sc_0 %sc_1",			-20,	-10,	selectTrueUsingSc,	outputInts2));
1246	cases.push_back(SpecConstantTwoIntCase("ulessthan",				" %i32 0",		" %i32 0",		"%bool",	"ULessThan            %sc_0 %sc_1",			10,		20,		selectTrueUsingSc,	outputInts2));
1247	cases.push_back(SpecConstantTwoIntCase("sgreaterthan",			" %i32 0",		" %i32 0",		"%bool",	"SGreaterThan         %sc_0 %sc_1",			-1000,	50,		selectFalseUsingSc,	outputInts2));
1248	cases.push_back(SpecConstantTwoIntCase("ugreaterthan",			" %i32 0",		" %i32 0",		"%bool",	"UGreaterThan         %sc_0 %sc_1",			10,		5,		selectTrueUsingSc,	outputInts2));
1249	cases.push_back(SpecConstantTwoIntCase("slessthanequal",		" %i32 0",		" %i32 0",		"%bool",	"SLessThanEqual       %sc_0 %sc_1",			-10,	-10,	selectTrueUsingSc,	outputInts2));
1250	cases.push_back(SpecConstantTwoIntCase("ulessthanequal",		" %i32 0",		" %i32 0",		"%bool",	"ULessThanEqual       %sc_0 %sc_1",			50,		100,	selectTrueUsingSc,	outputInts2));
1251	cases.push_back(SpecConstantTwoIntCase("sgreaterthanequal",		" %i32 0",		" %i32 0",		"%bool",	"SGreaterThanEqual    %sc_0 %sc_1",			-1000,	50,		selectFalseUsingSc,	outputInts2));
1252	cases.push_back(SpecConstantTwoIntCase("ugreaterthanequal",		" %i32 0",		" %i32 0",		"%bool",	"UGreaterThanEqual    %sc_0 %sc_1",			10,		10,		selectTrueUsingSc,	outputInts2));
1253	cases.push_back(SpecConstantTwoIntCase("iequal",				" %i32 0",		" %i32 0",		"%bool",	"IEqual               %sc_0 %sc_1",			42,		24,		selectFalseUsingSc,	outputInts2));
1254	cases.push_back(SpecConstantTwoIntCase("logicaland",			"True %bool",	"True %bool",	"%bool",	"LogicalAnd           %sc_0 %sc_1",			0,		1,		selectFalseUsingSc,	outputInts2));
1255	cases.push_back(SpecConstantTwoIntCase("logicalor",				"False %bool",	"False %bool",	"%bool",	"LogicalOr            %sc_0 %sc_1",			1,		0,		selectTrueUsingSc,	outputInts2));
1256	cases.push_back(SpecConstantTwoIntCase("logicalequal",			"True %bool",	"True %bool",	"%bool",	"LogicalEqual         %sc_0 %sc_1",			0,		1,		selectFalseUsingSc,	outputInts2));
1257	cases.push_back(SpecConstantTwoIntCase("logicalnotequal",		"False %bool",	"False %bool",	"%bool",	"LogicalNotEqual      %sc_0 %sc_1",			1,		0,		selectTrueUsingSc,	outputInts2));
1258	cases.push_back(SpecConstantTwoIntCase("snegate",				" %i32 0",		" %i32 0",		"%i32",		"SNegate              %sc_0",				-42,	0,		addScToInput,		outputInts1));
1259	cases.push_back(SpecConstantTwoIntCase("not",					" %i32 0",		" %i32 0",		"%i32",		"Not                  %sc_0",				-43,	0,		addScToInput,		outputInts1));
1260	cases.push_back(SpecConstantTwoIntCase("logicalnot",			"False %bool",	"False %bool",	"%bool",	"LogicalNot           %sc_0",				1,		0,		selectFalseUsingSc,	outputInts2));
1261	cases.push_back(SpecConstantTwoIntCase("select",				"False %bool",	" %i32 0",		"%i32",		"Select               %sc_0 %sc_1 %zero",	1,		42,		addScToInput,		outputInts1));
1262	// OpSConvert, OpFConvert: these two instructions involve ints/floats of different bitwidths.
1263
1264	for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
1265	{
1266		map<string, string>		specializations;
1267		ComputeShaderSpec		spec;
1268
1269		specializations["SC_DEF0"]			= cases[caseNdx].scDefinition0;
1270		specializations["SC_DEF1"]			= cases[caseNdx].scDefinition1;
1271		specializations["SC_RESULT_TYPE"]	= cases[caseNdx].scResultType;
1272		specializations["SC_OP"]			= cases[caseNdx].scOperation;
1273		specializations["GEN_RESULT"]		= cases[caseNdx].resultOperation;
1274
1275		spec.assembly = shaderTemplate.specialize(specializations);
1276		spec.inputs.push_back(BufferSp(new Int32Buffer(inputInts)));
1277		spec.outputs.push_back(BufferSp(new Int32Buffer(cases[caseNdx].expectedOutput)));
1278		spec.numWorkGroups = IVec3(numElements, 1, 1);
1279		spec.specConstants.push_back(cases[caseNdx].scActualValue0);
1280		spec.specConstants.push_back(cases[caseNdx].scActualValue1);
1281
1282		group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].caseName, cases[caseNdx].caseName, spec));
1283	}
1284
1285	ComputeShaderSpec				spec;
1286
1287	spec.assembly =
1288		string(s_ShaderPreamble) +
1289
1290		"OpName %main           \"main\"\n"
1291		"OpName %id             \"gl_GlobalInvocationID\"\n"
1292
1293		"OpDecorate %id BuiltIn GlobalInvocationId\n"
1294		"OpDecorate %sc_0  SpecId 0\n"
1295		"OpDecorate %sc_1  SpecId 1\n"
1296		"OpDecorate %sc_2  SpecId 2\n"
1297
1298		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
1299
1300		"%ivec3     = OpTypeVector %i32 3\n"
1301		"%i32ptr    = OpTypePointer Uniform %i32\n"
1302		"%i32arr    = OpTypeRuntimeArray %i32\n"
1303		"%boolptr   = OpTypePointer Uniform %bool\n"
1304		"%boolarr   = OpTypeRuntimeArray %bool\n"
1305		"%inbuf     = OpTypeStruct %i32arr\n"
1306		"%inbufptr  = OpTypePointer Uniform %inbuf\n"
1307		"%indata    = OpVariable %inbufptr Uniform\n"
1308		"%outbuf    = OpTypeStruct %i32arr\n"
1309		"%outbufptr = OpTypePointer Uniform %outbuf\n"
1310		"%outdata   = OpVariable %outbufptr Uniform\n"
1311
1312		"%id        = OpVariable %uvec3ptr Input\n"
1313		"%zero      = OpConstant %i32 0\n"
1314		"%ivec3_0   = OpConstantComposite %ivec3 %zero %zero %zero\n"
1315
1316		"%sc_0        = OpSpecConstant %i32 0\n"
1317		"%sc_1        = OpSpecConstant %i32 0\n"
1318		"%sc_2        = OpSpecConstant %i32 0\n"
1319		"%sc_vec3_0   = OpSpecConstantOp %ivec3 CompositeInsert  %sc_0        %ivec3_0   0\n"     // (sc_0, 0, 0)
1320		"%sc_vec3_1   = OpSpecConstantOp %ivec3 CompositeInsert  %sc_1        %ivec3_0   1\n"     // (0, sc_1, 0)
1321		"%sc_vec3_2   = OpSpecConstantOp %ivec3 CompositeInsert  %sc_2        %ivec3_0   2\n"     // (0, 0, sc_2)
1322		"%sc_vec3_01  = OpSpecConstantOp %ivec3 VectorShuffle    %sc_vec3_0   %sc_vec3_1 1 0 4\n" // (0,    sc_0, sc_1)
1323		"%sc_vec3_012 = OpSpecConstantOp %ivec3 VectorShuffle    %sc_vec3_01  %sc_vec3_2 5 1 2\n" // (sc_2, sc_0, sc_1)
1324		"%sc_ext_0    = OpSpecConstantOp %i32   CompositeExtract %sc_vec3_012            0\n"     // sc_2
1325		"%sc_ext_1    = OpSpecConstantOp %i32   CompositeExtract %sc_vec3_012            1\n"     // sc_0
1326		"%sc_ext_2    = OpSpecConstantOp %i32   CompositeExtract %sc_vec3_012            2\n"     // sc_1
1327		"%sc_sub      = OpSpecConstantOp %i32   ISub             %sc_ext_0    %sc_ext_1\n"        // (sc_2 - sc_0)
1328		"%sc_final    = OpSpecConstantOp %i32   IMul             %sc_sub      %sc_ext_2\n"        // (sc_2 - sc_0) * sc_1
1329
1330		"%main      = OpFunction %void None %voidf\n"
1331		"%label     = OpLabel\n"
1332		"%idval     = OpLoad %uvec3 %id\n"
1333		"%x         = OpCompositeExtract %u32 %idval 0\n"
1334		"%inloc     = OpAccessChain %i32ptr %indata %zero %x\n"
1335		"%inval     = OpLoad %i32 %inloc\n"
1336		"%final     = OpIAdd %i32 %inval %sc_final\n"
1337		"%outloc    = OpAccessChain %i32ptr %outdata %zero %x\n"
1338		"             OpStore %outloc %final\n"
1339		"             OpReturn\n"
1340		"             OpFunctionEnd\n";
1341	spec.inputs.push_back(BufferSp(new Int32Buffer(inputInts)));
1342	spec.outputs.push_back(BufferSp(new Int32Buffer(outputInts3)));
1343	spec.numWorkGroups = IVec3(numElements, 1, 1);
1344	spec.specConstants.push_back(123);
1345	spec.specConstants.push_back(56);
1346	spec.specConstants.push_back(-77);
1347
1348	group->addChild(new SpvAsmComputeShaderCase(testCtx, "vector_related", "VectorShuffle, CompositeExtract, & CompositeInsert", spec));
1349
1350	return group.release();
1351}
1352
1353tcu::TestCaseGroup* createOpPhiGroup (tcu::TestContext& testCtx)
1354{
1355	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opphi", "Test the OpPhi instruction"));
1356	ComputeShaderSpec				spec1;
1357	ComputeShaderSpec				spec2;
1358	ComputeShaderSpec				spec3;
1359	de::Random						rnd				(deStringHash(group->getName()));
1360	const int						numElements		= 100;
1361	vector<float>					inputFloats		(numElements, 0);
1362	vector<float>					outputFloats1	(numElements, 0);
1363	vector<float>					outputFloats2	(numElements, 0);
1364	vector<float>					outputFloats3	(numElements, 0);
1365
1366	fillRandomScalars(rnd, -300.f, 300.f, &inputFloats[0], numElements);
1367
1368	for (size_t ndx = 0; ndx < numElements; ++ndx)
1369	{
1370		switch (ndx % 3)
1371		{
1372			case 0:		outputFloats1[ndx] = inputFloats[ndx] + 5.5f;	break;
1373			case 1:		outputFloats1[ndx] = inputFloats[ndx] + 20.5f;	break;
1374			case 2:		outputFloats1[ndx] = inputFloats[ndx] + 1.75f;	break;
1375			default:	break;
1376		}
1377		outputFloats2[ndx] = inputFloats[ndx] + 6.5f * 3;
1378		outputFloats3[ndx] = 8.5f - inputFloats[ndx];
1379	}
1380
1381	spec1.assembly =
1382		string(s_ShaderPreamble) +
1383
1384		"OpSource GLSL 430\n"
1385		"OpName %main \"main\"\n"
1386		"OpName %id \"gl_GlobalInvocationID\"\n"
1387
1388		"OpDecorate %id BuiltIn GlobalInvocationId\n"
1389
1390		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
1391
1392		"%id = OpVariable %uvec3ptr Input\n"
1393		"%zero       = OpConstant %i32 0\n"
1394		"%three      = OpConstant %u32 3\n"
1395		"%constf5p5  = OpConstant %f32 5.5\n"
1396		"%constf20p5 = OpConstant %f32 20.5\n"
1397		"%constf1p75 = OpConstant %f32 1.75\n"
1398		"%constf8p5  = OpConstant %f32 8.5\n"
1399		"%constf6p5  = OpConstant %f32 6.5\n"
1400
1401		"%main     = OpFunction %void None %voidf\n"
1402		"%entry    = OpLabel\n"
1403		"%idval    = OpLoad %uvec3 %id\n"
1404		"%x        = OpCompositeExtract %u32 %idval 0\n"
1405		"%selector = OpUMod %u32 %x %three\n"
1406		"            OpSelectionMerge %phi None\n"
1407		"            OpSwitch %selector %default 0 %case0 1 %case1 2 %case2\n"
1408
1409		// Case 1 before OpPhi.
1410		"%case1    = OpLabel\n"
1411		"            OpBranch %phi\n"
1412
1413		"%default  = OpLabel\n"
1414		"            OpUnreachable\n"
1415
1416		"%phi      = OpLabel\n"
1417		"%operand  = OpPhi %f32   %constf1p75 %case2   %constf20p5 %case1   %constf5p5 %case0\n" // not in the order of blocks
1418		"%inloc    = OpAccessChain %f32ptr %indata %zero %x\n"
1419		"%inval    = OpLoad %f32 %inloc\n"
1420		"%add      = OpFAdd %f32 %inval %operand\n"
1421		"%outloc   = OpAccessChain %f32ptr %outdata %zero %x\n"
1422		"            OpStore %outloc %add\n"
1423		"            OpReturn\n"
1424
1425		// Case 0 after OpPhi.
1426		"%case0    = OpLabel\n"
1427		"            OpBranch %phi\n"
1428
1429
1430		// Case 2 after OpPhi.
1431		"%case2    = OpLabel\n"
1432		"            OpBranch %phi\n"
1433
1434		"            OpFunctionEnd\n";
1435	spec1.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
1436	spec1.outputs.push_back(BufferSp(new Float32Buffer(outputFloats1)));
1437	spec1.numWorkGroups = IVec3(numElements, 1, 1);
1438
1439	group->addChild(new SpvAsmComputeShaderCase(testCtx, "block", "out-of-order and unreachable blocks for OpPhi", spec1));
1440
1441	spec2.assembly =
1442		string(s_ShaderPreamble) +
1443
1444		"OpName %main \"main\"\n"
1445		"OpName %id \"gl_GlobalInvocationID\"\n"
1446
1447		"OpDecorate %id BuiltIn GlobalInvocationId\n"
1448
1449		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
1450
1451		"%id         = OpVariable %uvec3ptr Input\n"
1452		"%zero       = OpConstant %i32 0\n"
1453		"%one        = OpConstant %i32 1\n"
1454		"%three      = OpConstant %i32 3\n"
1455		"%constf6p5  = OpConstant %f32 6.5\n"
1456
1457		"%main       = OpFunction %void None %voidf\n"
1458		"%entry      = OpLabel\n"
1459		"%idval      = OpLoad %uvec3 %id\n"
1460		"%x          = OpCompositeExtract %u32 %idval 0\n"
1461		"%inloc      = OpAccessChain %f32ptr %indata %zero %x\n"
1462		"%outloc     = OpAccessChain %f32ptr %outdata %zero %x\n"
1463		"%inval      = OpLoad %f32 %inloc\n"
1464		"              OpBranch %phi\n"
1465
1466		"%phi        = OpLabel\n"
1467		"%step       = OpPhi %i32 %zero  %entry %step_next  %phi\n"
1468		"%accum      = OpPhi %f32 %inval %entry %accum_next %phi\n"
1469		"%step_next  = OpIAdd %i32 %step %one\n"
1470		"%accum_next = OpFAdd %f32 %accum %constf6p5\n"
1471		"%still_loop = OpSLessThan %bool %step %three\n"
1472		"              OpLoopMerge %exit %phi None\n"
1473		"              OpBranchConditional %still_loop %phi %exit\n"
1474
1475		"%exit       = OpLabel\n"
1476		"              OpStore %outloc %accum\n"
1477		"              OpReturn\n"
1478		"              OpFunctionEnd\n";
1479	spec2.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
1480	spec2.outputs.push_back(BufferSp(new Float32Buffer(outputFloats2)));
1481	spec2.numWorkGroups = IVec3(numElements, 1, 1);
1482
1483	group->addChild(new SpvAsmComputeShaderCase(testCtx, "induction", "The usual way induction variables are handled in LLVM IR", spec2));
1484
1485	spec3.assembly =
1486		string(s_ShaderPreamble) +
1487
1488		"OpName %main \"main\"\n"
1489		"OpName %id \"gl_GlobalInvocationID\"\n"
1490
1491		"OpDecorate %id BuiltIn GlobalInvocationId\n"
1492
1493		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
1494
1495		"%f32ptr_f   = OpTypePointer Function %f32\n"
1496		"%id         = OpVariable %uvec3ptr Input\n"
1497		"%true       = OpConstantTrue %bool\n"
1498		"%false      = OpConstantFalse %bool\n"
1499		"%zero       = OpConstant %i32 0\n"
1500		"%constf8p5  = OpConstant %f32 8.5\n"
1501
1502		"%main       = OpFunction %void None %voidf\n"
1503		"%entry      = OpLabel\n"
1504		"%b          = OpVariable %f32ptr_f Function %constf8p5\n"
1505		"%idval      = OpLoad %uvec3 %id\n"
1506		"%x          = OpCompositeExtract %u32 %idval 0\n"
1507		"%inloc      = OpAccessChain %f32ptr %indata %zero %x\n"
1508		"%outloc     = OpAccessChain %f32ptr %outdata %zero %x\n"
1509		"%a_init     = OpLoad %f32 %inloc\n"
1510		"%b_init     = OpLoad %f32 %b\n"
1511		"              OpBranch %phi\n"
1512
1513		"%phi        = OpLabel\n"
1514		"%still_loop = OpPhi %bool %true   %entry %false  %phi\n"
1515		"%a_next     = OpPhi %f32  %a_init %entry %b_next %phi\n"
1516		"%b_next     = OpPhi %f32  %b_init %entry %a_next %phi\n"
1517		"              OpLoopMerge %exit %phi None\n"
1518		"              OpBranchConditional %still_loop %phi %exit\n"
1519
1520		"%exit       = OpLabel\n"
1521		"%sub        = OpFSub %f32 %a_next %b_next\n"
1522		"              OpStore %outloc %sub\n"
1523		"              OpReturn\n"
1524		"              OpFunctionEnd\n";
1525	spec3.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
1526	spec3.outputs.push_back(BufferSp(new Float32Buffer(outputFloats3)));
1527	spec3.numWorkGroups = IVec3(numElements, 1, 1);
1528
1529	group->addChild(new SpvAsmComputeShaderCase(testCtx, "swap", "Swap the values of two variables using OpPhi", spec3));
1530
1531	return group.release();
1532}
1533
1534// Assembly code used for testing block order is based on GLSL source code:
1535//
1536// #version 430
1537//
1538// layout(std140, set = 0, binding = 0) readonly buffer Input {
1539//   float elements[];
1540// } input_data;
1541// layout(std140, set = 0, binding = 1) writeonly buffer Output {
1542//   float elements[];
1543// } output_data;
1544//
1545// void main() {
1546//   uint x = gl_GlobalInvocationID.x;
1547//   output_data.elements[x] = input_data.elements[x];
1548//   if (x > uint(50)) {
1549//     switch (x % uint(3)) {
1550//       case 0: output_data.elements[x] += 1.5f; break;
1551//       case 1: output_data.elements[x] += 42.f; break;
1552//       case 2: output_data.elements[x] -= 27.f; break;
1553//       default: break;
1554//     }
1555//   } else {
1556//     output_data.elements[x] = -input_data.elements[x];
1557//   }
1558// }
1559tcu::TestCaseGroup* createBlockOrderGroup (tcu::TestContext& testCtx)
1560{
1561	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "block_order", "Test block orders"));
1562	ComputeShaderSpec				spec;
1563	de::Random						rnd				(deStringHash(group->getName()));
1564	const int						numElements		= 100;
1565	vector<float>					inputFloats		(numElements, 0);
1566	vector<float>					outputFloats	(numElements, 0);
1567
1568	fillRandomScalars(rnd, -100.f, 100.f, &inputFloats[0], numElements);
1569
1570	for (size_t ndx = 0; ndx <= 50; ++ndx)
1571		outputFloats[ndx] = -inputFloats[ndx];
1572
1573	for (size_t ndx = 51; ndx < numElements; ++ndx)
1574	{
1575		switch (ndx % 3)
1576		{
1577			case 0:		outputFloats[ndx] = inputFloats[ndx] + 1.5f; break;
1578			case 1:		outputFloats[ndx] = inputFloats[ndx] + 42.f; break;
1579			case 2:		outputFloats[ndx] = inputFloats[ndx] - 27.f; break;
1580			default:	break;
1581		}
1582	}
1583
1584	spec.assembly =
1585		string(s_ShaderPreamble) +
1586
1587		"OpSource GLSL 430\n"
1588		"OpName %main \"main\"\n"
1589		"OpName %id \"gl_GlobalInvocationID\"\n"
1590
1591		"OpDecorate %id BuiltIn GlobalInvocationId\n"
1592
1593		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
1594
1595		"%u32ptr       = OpTypePointer Function %u32\n"
1596		"%u32ptr_input = OpTypePointer Input %u32\n"
1597
1598		+ string(s_InputOutputBuffer) +
1599
1600		"%id        = OpVariable %uvec3ptr Input\n"
1601		"%zero      = OpConstant %i32 0\n"
1602		"%const3    = OpConstant %u32 3\n"
1603		"%const50   = OpConstant %u32 50\n"
1604		"%constf1p5 = OpConstant %f32 1.5\n"
1605		"%constf27  = OpConstant %f32 27.0\n"
1606		"%constf42  = OpConstant %f32 42.0\n"
1607
1608		"%main = OpFunction %void None %voidf\n"
1609
1610		// entry block.
1611		"%entry    = OpLabel\n"
1612
1613		// Create a temporary variable to hold the value of gl_GlobalInvocationID.x.
1614		"%xvar     = OpVariable %u32ptr Function\n"
1615		"%xptr     = OpAccessChain %u32ptr_input %id %zero\n"
1616		"%x        = OpLoad %u32 %xptr\n"
1617		"            OpStore %xvar %x\n"
1618
1619		"%cmp      = OpUGreaterThan %bool %x %const50\n"
1620		"            OpSelectionMerge %if_merge None\n"
1621		"            OpBranchConditional %cmp %if_true %if_false\n"
1622
1623		// Merge block for switch-statement: placed at the beginning.
1624		"%switch_merge = OpLabel\n"
1625		"                OpBranch %if_merge\n"
1626
1627		// Case 1 for switch-statement.
1628		"%case1    = OpLabel\n"
1629		"%x_1      = OpLoad %u32 %xvar\n"
1630		"%inloc_1  = OpAccessChain %f32ptr %indata %zero %x_1\n"
1631		"%inval_1  = OpLoad %f32 %inloc_1\n"
1632		"%addf42   = OpFAdd %f32 %inval_1 %constf42\n"
1633		"%outloc_1 = OpAccessChain %f32ptr %outdata %zero %x_1\n"
1634		"            OpStore %outloc_1 %addf42\n"
1635		"            OpBranch %switch_merge\n"
1636
1637		// False branch for if-statement: placed in the middle of switch cases and before true branch.
1638		"%if_false = OpLabel\n"
1639		"%x_f      = OpLoad %u32 %xvar\n"
1640		"%inloc_f  = OpAccessChain %f32ptr %indata %zero %x_f\n"
1641		"%inval_f  = OpLoad %f32 %inloc_f\n"
1642		"%negate   = OpFNegate %f32 %inval_f\n"
1643		"%outloc_f = OpAccessChain %f32ptr %outdata %zero %x_f\n"
1644		"            OpStore %outloc_f %negate\n"
1645		"            OpBranch %if_merge\n"
1646
1647		// Merge block for if-statement: placed in the middle of true and false branch.
1648		"%if_merge = OpLabel\n"
1649		"            OpReturn\n"
1650
1651		// True branch for if-statement: placed in the middle of swtich cases and after the false branch.
1652		"%if_true  = OpLabel\n"
1653		"%xval_t   = OpLoad %u32 %xvar\n"
1654		"%mod      = OpUMod %u32 %xval_t %const3\n"
1655		"            OpSelectionMerge %switch_merge None\n"
1656		"            OpSwitch %mod %default 0 %case0 1 %case1 2 %case2\n"
1657
1658		// Case 2 for switch-statement.
1659		"%case2    = OpLabel\n"
1660		"%x_2      = OpLoad %u32 %xvar\n"
1661		"%inloc_2  = OpAccessChain %f32ptr %indata %zero %x_2\n"
1662		"%inval_2  = OpLoad %f32 %inloc_2\n"
1663		"%subf27   = OpFSub %f32 %inval_2 %constf27\n"
1664		"%outloc_2 = OpAccessChain %f32ptr %outdata %zero %x_2\n"
1665		"            OpStore %outloc_2 %subf27\n"
1666		"            OpBranch %switch_merge\n"
1667
1668		// Default case for switch-statement: placed in the middle of normal cases.
1669		"%default = OpLabel\n"
1670		"           OpBranch %switch_merge\n"
1671
1672		// Case 0 for switch-statement: out of order.
1673		"%case0    = OpLabel\n"
1674		"%x_0      = OpLoad %u32 %xvar\n"
1675		"%inloc_0  = OpAccessChain %f32ptr %indata %zero %x_0\n"
1676		"%inval_0  = OpLoad %f32 %inloc_0\n"
1677		"%addf1p5  = OpFAdd %f32 %inval_0 %constf1p5\n"
1678		"%outloc_0 = OpAccessChain %f32ptr %outdata %zero %x_0\n"
1679		"            OpStore %outloc_0 %addf1p5\n"
1680		"            OpBranch %switch_merge\n"
1681
1682		"            OpFunctionEnd\n";
1683	spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
1684	spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
1685	spec.numWorkGroups = IVec3(numElements, 1, 1);
1686
1687	group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "various out-of-order blocks", spec));
1688
1689	return group.release();
1690}
1691
1692tcu::TestCaseGroup* createMultipleShaderGroup (tcu::TestContext& testCtx)
1693{
1694	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "multiple_shaders", "Test multiple shaders in the same module"));
1695	ComputeShaderSpec				spec1;
1696	ComputeShaderSpec				spec2;
1697	de::Random						rnd				(deStringHash(group->getName()));
1698	const int						numElements		= 100;
1699	vector<float>					inputFloats		(numElements, 0);
1700	vector<float>					outputFloats1	(numElements, 0);
1701	vector<float>					outputFloats2	(numElements, 0);
1702	fillRandomScalars(rnd, -500.f, 500.f, &inputFloats[0], numElements);
1703
1704	for (size_t ndx = 0; ndx < numElements; ++ndx)
1705	{
1706		outputFloats1[ndx] = inputFloats[ndx] + inputFloats[ndx];
1707		outputFloats2[ndx] = -inputFloats[ndx];
1708	}
1709
1710	const string assembly =
1711		"OpCapability Shader\n"
1712		"OpMemoryModel Logical GLSL450\n"
1713		"OpEntryPoint GLCompute %comp_main1 \"entrypoint1\" %id\n"
1714		"OpEntryPoint GLCompute %comp_main2 \"entrypoint2\" %id\n"
1715		// A module cannot have two OpEntryPoint instructions with the same Execution Model and the same Name string.
1716		"OpEntryPoint Vertex    %vert_main  \"entrypoint2\" %vert_builtins %vertexID %instanceID\n"
1717		"OpExecutionMode %main LocalSize 1 1 1\n";
1718
1719		"OpName %comp_main1              \"entrypoint1\"\n"
1720		"OpName %comp_main2              \"entrypoint2\"\n"
1721		"OpName %vert_main               \"entrypoint2\"\n"
1722		"OpName %id                      \"gl_GlobalInvocationID\"\n"
1723		"OpName %vert_builtin_st         \"gl_PerVertex\"\n"
1724		"OpName %vertexID                \"gl_VertexID\"\n"
1725		"OpName %instanceID              \"gl_InstanceID\"\n"
1726		"OpMemberName %vert_builtin_st 0 \"gl_Position\"\n"
1727		"OpMemberName %vert_builtin_st 1 \"gl_PointSize\"\n"
1728		"OpMemberName %vert_builtin_st 2 \"gl_ClipDistance\"\n"
1729
1730		"OpDecorate %id                      BuiltIn GlobalInvocationId\n"
1731		"OpDecorate %vertexID                BuiltIn VertexId\n"
1732		"OpDecorate %instanceID              BuiltIn InstanceId\n"
1733		"OpDecorate %vert_builtin_st         Block\n"
1734		"OpMemberDecorate %vert_builtin_st 0 BuiltIn Position\n"
1735		"OpMemberDecorate %vert_builtin_st 1 BuiltIn PointSize\n"
1736		"OpMemberDecorate %vert_builtin_st 2 BuiltIn ClipDistance\n"
1737
1738		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
1739
1740		"%i32ptr              = OpTypePointer Input %i32\n"
1741		"%vec4                = OpTypeVector %f32 4\n"
1742		"%vec4ptr             = OpTypePointer Output %vec4\n"
1743		"%f32arr1             = OpTypeArray %f32 %one\n"
1744		"%vert_builtin_st     = OpTypeStruct %vec4 %f32 %f32arr1\n"
1745		"%vert_builtin_st_ptr = OpTypePointer Output %vert_builtin_st\n"
1746		"%vert_builtins       = OpVariable %vert_builtin_st_ptr Output\n"
1747
1748		"%id         = OpVariable %uvec3ptr Input\n"
1749		"%vertexID   = OpVariable %i32ptr Input\n"
1750		"%instanceID = OpVariable %i32ptr Input\n"
1751		"%zero       = OpConstant %i32 0\n"
1752		"%one        = OpConstant %u32 1\n"
1753		"%c_f32_1    = OpConstant %f32 1\n"
1754		"%c_vec4_1   = OpConstantComposite %vec4 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_1\n"
1755
1756		// gl_Position = vec4(1.);
1757		"%vert_main  = OpFunction %void None %voidf\n"
1758		"%vert_entry = OpLabel\n"
1759		"%position   = OpAccessChain %vec4ptr %vert_builtins %zero\n"
1760		"              OpStore %position %c_vec4_1\n"
1761		"              OpReturn\n"
1762		"              OpFunctionEnd\n"
1763
1764		// Double inputs.
1765		"%comp_main1  = OpFunction %void None %voidf\n"
1766		"%comp1_entry = OpLabel\n"
1767		"%idval1      = OpLoad %uvec3 %id\n"
1768		"%x1          = OpCompositeExtract %u32 %idval1 0\n"
1769		"%inloc1      = OpAccessChain %f32ptr %indata %zero %x1\n"
1770		"%inval1      = OpLoad %f32 %inloc1\n"
1771		"%add         = OpFAdd %f32 %inval1 %inval1\n"
1772		"%outloc1     = OpAccessChain %f32ptr %outdata %zero %x1\n"
1773		"               OpStore %outloc1 %add\n"
1774		"               OpReturn\n"
1775		"               OpFunctionEnd\n"
1776
1777		// Negate inputs.
1778		"%comp_main2  = OpFunction %void None %voidf\n"
1779		"%comp2_entry = OpLabel\n"
1780		"%idval2      = OpLoad %uvec3 %id\n"
1781		"%x2          = OpCompositeExtract %u32 %idval2 0\n"
1782		"%inloc2      = OpAccessChain %f32ptr %indata %zero %x2\n"
1783		"%inval2      = OpLoad %f32 %inloc2\n"
1784		"%neg         = OpFNegate %f32 %inval2\n"
1785		"%outloc2     = OpAccessChain %f32ptr %outdata %zero %x2\n"
1786		"               OpStore %outloc2 %neg\n"
1787		"               OpReturn\n"
1788		"               OpFunctionEnd\n";
1789
1790	spec1.assembly = assembly;
1791	spec1.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
1792	spec1.outputs.push_back(BufferSp(new Float32Buffer(outputFloats1)));
1793	spec1.numWorkGroups = IVec3(numElements, 1, 1);
1794	spec1.entryPoint = "entrypoint1";
1795
1796	spec2.assembly = assembly;
1797	spec2.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
1798	spec2.outputs.push_back(BufferSp(new Float32Buffer(outputFloats2)));
1799	spec2.numWorkGroups = IVec3(numElements, 1, 1);
1800	spec2.entryPoint = "entrypoint2";
1801
1802	group->addChild(new SpvAsmComputeShaderCase(testCtx, "shader1", "multiple shaders in the same module", spec1));
1803	group->addChild(new SpvAsmComputeShaderCase(testCtx, "shader2", "multiple shaders in the same module", spec2));
1804
1805	return group.release();
1806}
1807
1808inline std::string makeLongUTF8String (size_t num4ByteChars)
1809{
1810	// An example of a longest valid UTF-8 character.  Be explicit about the
1811	// character type because Microsoft compilers can otherwise interpret the
1812	// character string as being over wide (16-bit) characters. Ideally, we
1813	// would just use a C++11 UTF-8 string literal, but we want to support older
1814	// Microsoft compilers.
1815	const std::basic_string<char> earthAfrica("\xF0\x9F\x8C\x8D");
1816	std::string longString;
1817	longString.reserve(num4ByteChars * 4);
1818	for (size_t count = 0; count < num4ByteChars; count++)
1819	{
1820		longString += earthAfrica;
1821	}
1822	return longString;
1823}
1824
1825tcu::TestCaseGroup* createOpSourceGroup (tcu::TestContext& testCtx)
1826{
1827	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opsource", "Tests the OpSource & OpSourceContinued instruction"));
1828	vector<CaseParameter>			cases;
1829	de::Random						rnd				(deStringHash(group->getName()));
1830	const int						numElements		= 100;
1831	vector<float>					positiveFloats	(numElements, 0);
1832	vector<float>					negativeFloats	(numElements, 0);
1833	const StringTemplate			shaderTemplate	(
1834		"OpCapability Shader\n"
1835		"OpMemoryModel Logical GLSL450\n"
1836
1837		"OpEntryPoint GLCompute %main \"main\" %id\n"
1838		"OpExecutionMode %main LocalSize 1 1 1\n"
1839
1840		"${SOURCE}\n"
1841
1842		"OpName %main           \"main\"\n"
1843		"OpName %id             \"gl_GlobalInvocationID\"\n"
1844
1845		"OpDecorate %id BuiltIn GlobalInvocationId\n"
1846
1847		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
1848
1849		"%id        = OpVariable %uvec3ptr Input\n"
1850		"%zero      = OpConstant %i32 0\n"
1851
1852		"%main      = OpFunction %void None %voidf\n"
1853		"%label     = OpLabel\n"
1854		"%idval     = OpLoad %uvec3 %id\n"
1855		"%x         = OpCompositeExtract %u32 %idval 0\n"
1856		"%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
1857		"%inval     = OpLoad %f32 %inloc\n"
1858		"%neg       = OpFNegate %f32 %inval\n"
1859		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
1860		"             OpStore %outloc %neg\n"
1861		"             OpReturn\n"
1862		"             OpFunctionEnd\n");
1863
1864	cases.push_back(CaseParameter("unknown_source",							"OpSource Unknown 0"));
1865	cases.push_back(CaseParameter("wrong_source",							"OpSource OpenCL_C 210"));
1866	cases.push_back(CaseParameter("normal_filename",						"%fname = OpString \"filename\"\n"
1867																			"OpSource GLSL 430 %fname"));
1868	cases.push_back(CaseParameter("empty_filename",							"%fname = OpString \"\"\n"
1869																			"OpSource GLSL 430 %fname"));
1870	cases.push_back(CaseParameter("normal_source_code",						"%fname = OpString \"filename\"\n"
1871																			"OpSource GLSL 430 %fname \"#version 430\nvoid main() {}\""));
1872	cases.push_back(CaseParameter("empty_source_code",						"%fname = OpString \"filename\"\n"
1873																			"OpSource GLSL 430 %fname \"\""));
1874	cases.push_back(CaseParameter("long_source_code",						"%fname = OpString \"filename\"\n"
1875																			"OpSource GLSL 430 %fname \"" + makeLongUTF8String(65530) + "ccc\"")); // word count: 65535
1876	cases.push_back(CaseParameter("utf8_source_code",						"%fname = OpString \"filename\"\n"
1877																			"OpSource GLSL 430 %fname \"\xE2\x98\x82\xE2\x98\x85\"")); // umbrella & black star symbol
1878	cases.push_back(CaseParameter("normal_sourcecontinued",					"%fname = OpString \"filename\"\n"
1879																			"OpSource GLSL 430 %fname \"#version 430\nvo\"\n"
1880																			"OpSourceContinued \"id main() {}\""));
1881	cases.push_back(CaseParameter("empty_sourcecontinued",					"%fname = OpString \"filename\"\n"
1882																			"OpSource GLSL 430 %fname \"#version 430\nvoid main() {}\"\n"
1883																			"OpSourceContinued \"\""));
1884	cases.push_back(CaseParameter("long_sourcecontinued",					"%fname = OpString \"filename\"\n"
1885																			"OpSource GLSL 430 %fname \"#version 430\nvoid main() {}\"\n"
1886																			"OpSourceContinued \"" + makeLongUTF8String(65533) + "ccc\"")); // word count: 65535
1887	cases.push_back(CaseParameter("utf8_sourcecontinued",					"%fname = OpString \"filename\"\n"
1888																			"OpSource GLSL 430 %fname \"#version 430\nvoid main() {}\"\n"
1889																			"OpSourceContinued \"\xE2\x98\x8E\xE2\x9A\x91\"")); // white telephone & black flag symbol
1890	cases.push_back(CaseParameter("multi_sourcecontinued",					"%fname = OpString \"filename\"\n"
1891																			"OpSource GLSL 430 %fname \"#version 430\n\"\n"
1892																			"OpSourceContinued \"void\"\n"
1893																			"OpSourceContinued \"main()\"\n"
1894																			"OpSourceContinued \"{}\""));
1895	cases.push_back(CaseParameter("empty_source_before_sourcecontinued",	"%fname = OpString \"filename\"\n"
1896																			"OpSource GLSL 430 %fname \"\"\n"
1897																			"OpSourceContinued \"#version 430\nvoid main() {}\""));
1898
1899	fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
1900
1901	for (size_t ndx = 0; ndx < numElements; ++ndx)
1902		negativeFloats[ndx] = -positiveFloats[ndx];
1903
1904	for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
1905	{
1906		map<string, string>		specializations;
1907		ComputeShaderSpec		spec;
1908
1909		specializations["SOURCE"] = cases[caseNdx].param;
1910		spec.assembly = shaderTemplate.specialize(specializations);
1911		spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
1912		spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
1913		spec.numWorkGroups = IVec3(numElements, 1, 1);
1914
1915		group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
1916	}
1917
1918	return group.release();
1919}
1920
1921tcu::TestCaseGroup* createOpSourceExtensionGroup (tcu::TestContext& testCtx)
1922{
1923	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opsourceextension", "Tests the OpSource instruction"));
1924	vector<CaseParameter>			cases;
1925	de::Random						rnd				(deStringHash(group->getName()));
1926	const int						numElements		= 100;
1927	vector<float>					inputFloats		(numElements, 0);
1928	vector<float>					outputFloats	(numElements, 0);
1929	const StringTemplate			shaderTemplate	(
1930		string(s_ShaderPreamble) +
1931
1932		"OpSourceExtension \"${EXTENSION}\"\n"
1933
1934		"OpName %main           \"main\"\n"
1935		"OpName %id             \"gl_GlobalInvocationID\"\n"
1936
1937		"OpDecorate %id BuiltIn GlobalInvocationId\n"
1938
1939		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
1940
1941		"%id        = OpVariable %uvec3ptr Input\n"
1942		"%zero      = OpConstant %i32 0\n"
1943
1944		"%main      = OpFunction %void None %voidf\n"
1945		"%label     = OpLabel\n"
1946		"%idval     = OpLoad %uvec3 %id\n"
1947		"%x         = OpCompositeExtract %u32 %idval 0\n"
1948		"%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
1949		"%inval     = OpLoad %f32 %inloc\n"
1950		"%neg       = OpFNegate %f32 %inval\n"
1951		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
1952		"             OpStore %outloc %neg\n"
1953		"             OpReturn\n"
1954		"             OpFunctionEnd\n");
1955
1956	cases.push_back(CaseParameter("empty_extension",	""));
1957	cases.push_back(CaseParameter("real_extension",		"GL_ARB_texture_rectangle"));
1958	cases.push_back(CaseParameter("fake_extension",		"GL_ARB_im_the_ultimate_extension"));
1959	cases.push_back(CaseParameter("utf8_extension",		"GL_ARB_\xE2\x98\x82\xE2\x98\x85"));
1960	cases.push_back(CaseParameter("long_extension",		makeLongUTF8String(65533) + "ccc")); // word count: 65535
1961
1962	fillRandomScalars(rnd, -200.f, 200.f, &inputFloats[0], numElements);
1963
1964	for (size_t ndx = 0; ndx < numElements; ++ndx)
1965		outputFloats[ndx] = -inputFloats[ndx];
1966
1967	for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
1968	{
1969		map<string, string>		specializations;
1970		ComputeShaderSpec		spec;
1971
1972		specializations["EXTENSION"] = cases[caseNdx].param;
1973		spec.assembly = shaderTemplate.specialize(specializations);
1974		spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
1975		spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
1976		spec.numWorkGroups = IVec3(numElements, 1, 1);
1977
1978		group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
1979	}
1980
1981	return group.release();
1982}
1983
1984// Checks that a compute shader can generate a constant null value of various types, without exercising a computation on it.
1985tcu::TestCaseGroup* createOpConstantNullGroup (tcu::TestContext& testCtx)
1986{
1987	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opconstantnull", "Tests the OpConstantNull instruction"));
1988	vector<CaseParameter>			cases;
1989	de::Random						rnd				(deStringHash(group->getName()));
1990	const int						numElements		= 100;
1991	vector<float>					positiveFloats	(numElements, 0);
1992	vector<float>					negativeFloats	(numElements, 0);
1993	const StringTemplate			shaderTemplate	(
1994		string(s_ShaderPreamble) +
1995
1996		"OpSource GLSL 430\n"
1997		"OpName %main           \"main\"\n"
1998		"OpName %id             \"gl_GlobalInvocationID\"\n"
1999
2000		"OpDecorate %id BuiltIn GlobalInvocationId\n"
2001
2002		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
2003
2004		"${TYPE}\n"
2005		"%null      = OpConstantNull %type\n"
2006
2007		"%id        = OpVariable %uvec3ptr Input\n"
2008		"%zero      = OpConstant %i32 0\n"
2009
2010		"%main      = OpFunction %void None %voidf\n"
2011		"%label     = OpLabel\n"
2012		"%idval     = OpLoad %uvec3 %id\n"
2013		"%x         = OpCompositeExtract %u32 %idval 0\n"
2014		"%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
2015		"%inval     = OpLoad %f32 %inloc\n"
2016		"%neg       = OpFNegate %f32 %inval\n"
2017		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
2018		"             OpStore %outloc %neg\n"
2019		"             OpReturn\n"
2020		"             OpFunctionEnd\n");
2021
2022	cases.push_back(CaseParameter("bool",			"%type = OpTypeBool"));
2023	cases.push_back(CaseParameter("sint32",			"%type = OpTypeInt 32 1"));
2024	cases.push_back(CaseParameter("uint32",			"%type = OpTypeInt 32 0"));
2025	cases.push_back(CaseParameter("float32",		"%type = OpTypeFloat 32"));
2026	cases.push_back(CaseParameter("vec4float32",	"%type = OpTypeVector %f32 4"));
2027	cases.push_back(CaseParameter("vec3bool",		"%type = OpTypeVector %bool 3"));
2028	cases.push_back(CaseParameter("vec2uint32",		"%type = OpTypeVector %u32 2"));
2029	cases.push_back(CaseParameter("matrix",			"%type = OpTypeMatrix %uvec3 3"));
2030	cases.push_back(CaseParameter("array",			"%100 = OpConstant %u32 100\n"
2031													"%type = OpTypeArray %i32 %100"));
2032	cases.push_back(CaseParameter("runtimearray",	"%type = OpTypeRuntimeArray %f32"));
2033	cases.push_back(CaseParameter("struct",			"%type = OpTypeStruct %f32 %i32 %u32"));
2034	cases.push_back(CaseParameter("pointer",		"%type = OpTypePointer Function %i32"));
2035
2036	fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
2037
2038	for (size_t ndx = 0; ndx < numElements; ++ndx)
2039		negativeFloats[ndx] = -positiveFloats[ndx];
2040
2041	for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
2042	{
2043		map<string, string>		specializations;
2044		ComputeShaderSpec		spec;
2045
2046		specializations["TYPE"] = cases[caseNdx].param;
2047		spec.assembly = shaderTemplate.specialize(specializations);
2048		spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
2049		spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
2050		spec.numWorkGroups = IVec3(numElements, 1, 1);
2051
2052		group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
2053	}
2054
2055	return group.release();
2056}
2057
2058// Checks that a compute shader can generate a constant composite value of various types, without exercising a computation on it.
2059tcu::TestCaseGroup* createOpConstantCompositeGroup (tcu::TestContext& testCtx)
2060{
2061	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opconstantcomposite", "Tests the OpConstantComposite instruction"));
2062	vector<CaseParameter>			cases;
2063	de::Random						rnd				(deStringHash(group->getName()));
2064	const int						numElements		= 100;
2065	vector<float>					positiveFloats	(numElements, 0);
2066	vector<float>					negativeFloats	(numElements, 0);
2067	const StringTemplate			shaderTemplate	(
2068		string(s_ShaderPreamble) +
2069
2070		"OpSource GLSL 430\n"
2071		"OpName %main           \"main\"\n"
2072		"OpName %id             \"gl_GlobalInvocationID\"\n"
2073
2074		"OpDecorate %id BuiltIn GlobalInvocationId\n"
2075
2076		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
2077
2078		"%id        = OpVariable %uvec3ptr Input\n"
2079		"%zero      = OpConstant %i32 0\n"
2080
2081		"${CONSTANT}\n"
2082
2083		"%main      = OpFunction %void None %voidf\n"
2084		"%label     = OpLabel\n"
2085		"%idval     = OpLoad %uvec3 %id\n"
2086		"%x         = OpCompositeExtract %u32 %idval 0\n"
2087		"%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
2088		"%inval     = OpLoad %f32 %inloc\n"
2089		"%neg       = OpFNegate %f32 %inval\n"
2090		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
2091		"             OpStore %outloc %neg\n"
2092		"             OpReturn\n"
2093		"             OpFunctionEnd\n");
2094
2095	cases.push_back(CaseParameter("vector",			"%five = OpConstant %u32 5\n"
2096													"%const = OpConstantComposite %uvec3 %five %zero %five"));
2097	cases.push_back(CaseParameter("matrix",			"%m3uvec3 = OpTypeMatrix %uvec3 3\n"
2098													"%ten = OpConstant %u32 10\n"
2099													"%vec = OpConstantComposite %uvec3 %ten %zero %ten\n"
2100													"%mat = OpConstantComposite %m3uvec3 %vec %vec %vec"));
2101	cases.push_back(CaseParameter("struct",			"%m2vec3 = OpTypeMatrix %uvec3 2\n"
2102													"%struct = OpTypeStruct %u32 %f32 %uvec3 %m2vec3\n"
2103													"%one = OpConstant %u32 1\n"
2104													"%point5 = OpConstant %f32 0.5\n"
2105													"%vec = OpConstantComposite %uvec3 %one %one %zero\n"
2106													"%mat = OpConstantComposite %m2vec3 %vec %vec\n"
2107													"%const = OpConstantComposite %struct %one %point5 %vec %mat"));
2108	cases.push_back(CaseParameter("nested_struct",	"%st1 = OpTypeStruct %u32 %f32\n"
2109													"%st2 = OpTypeStruct %i32 %i32\n"
2110													"%struct = OpTypeStruct %st1 %st2\n"
2111													"%point5 = OpConstant %f32 0.5\n"
2112													"%one = OpConstant %u32 1\n"
2113													"%ten = OpConstant %i32 10\n"
2114													"%st1val = OpConstantComposite %st1 %one %point5\n"
2115													"%st2val = OpConstantComposite %st2 %ten %ten\n"
2116													"%const = OpConstantComposite %struct %st1val %st2val"));
2117
2118	fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
2119
2120	for (size_t ndx = 0; ndx < numElements; ++ndx)
2121		negativeFloats[ndx] = -positiveFloats[ndx];
2122
2123	for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
2124	{
2125		map<string, string>		specializations;
2126		ComputeShaderSpec		spec;
2127
2128		specializations["CONSTANT"] = cases[caseNdx].param;
2129		spec.assembly = shaderTemplate.specialize(specializations);
2130		spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
2131		spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
2132		spec.numWorkGroups = IVec3(numElements, 1, 1);
2133
2134		group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
2135	}
2136
2137	return group.release();
2138}
2139
2140// Creates a floating point number with the given exponent, and significand
2141// bits set. It can only create normalized numbers. Only the least significant
2142// 24 bits of the significand will be examined. The final bit of the
2143// significand will also be ignored. This allows alignment to be written
2144// similarly to C99 hex-floats.
2145// For example if you wanted to write 0x1.7f34p-12 you would call
2146// constructNormalizedFloat(-12, 0x7f3400)
2147float constructNormalizedFloat (deInt32 exponent, deUint32 significand)
2148{
2149	float f = 1.0f;
2150
2151	for (deInt32 idx = 0; idx < 23; ++idx)
2152	{
2153		f += ((significand & 0x800000) == 0) ? 0.f : std::ldexp(1.0f, -idx);
2154		significand <<= 1;
2155	}
2156
2157	return std::ldexp(f, exponent);
2158}
2159
2160// Compare instruction for the OpQuantizeF16 compute exact case.
2161// Returns true if the output is what is expected from the test case.
2162bool compareOpQuantizeF16ComputeExactCase (const std::vector<BufferSp>&, const vector<AllocationSp>& outputAllocs, const std::vector<BufferSp>& expectedOutputs)
2163{
2164	if (outputAllocs.size() != 1)
2165		return false;
2166
2167	// We really just need this for size because we cannot compare Nans.
2168	const BufferSp&	expectedOutput	= expectedOutputs[0];
2169	const float*	outputAsFloat	= static_cast<const float*>(outputAllocs[0]->getHostPtr());;
2170
2171	if (expectedOutput->getNumBytes() != 4*sizeof(float)) {
2172		return false;
2173	}
2174
2175	if (*outputAsFloat != constructNormalizedFloat(8, 0x304000) &&
2176		*outputAsFloat != constructNormalizedFloat(8, 0x300000)) {
2177		return false;
2178	}
2179
2180	if (*outputAsFloat != -constructNormalizedFloat(-7, 0x600000) &&
2181		*outputAsFloat != -constructNormalizedFloat(-7, 0x604000)) {
2182		return false;
2183	}
2184
2185	if (*outputAsFloat != constructNormalizedFloat(2, 0x01C000) &&
2186		*outputAsFloat != constructNormalizedFloat(2, 0x020000)) {
2187		return false;
2188	}
2189
2190	if (*outputAsFloat != constructNormalizedFloat(1, 0xFFC000) &&
2191		*outputAsFloat != constructNormalizedFloat(2, 0x000000)) {
2192		return false;
2193	}
2194
2195	return true;
2196}
2197
2198// Checks that every output from a test-case is a float NaN.
2199bool compareNan (const std::vector<BufferSp>&, const vector<AllocationSp>& outputAllocs, const std::vector<BufferSp>& expectedOutputs)
2200{
2201	if (outputAllocs.size() != 1)
2202		return false;
2203
2204	// We really just need this for size because we cannot compare Nans.
2205	const BufferSp& expectedOutput		= expectedOutputs[0];
2206	const float* output_as_float		= static_cast<const float*>(outputAllocs[0]->getHostPtr());;
2207
2208	for (size_t idx = 0; idx < expectedOutput->getNumBytes() / sizeof(float); ++idx)
2209	{
2210		if (!isnan(output_as_float[idx]))
2211		{
2212			return false;
2213		}
2214	}
2215
2216	return true;
2217}
2218
2219// Checks that a compute shader can generate a constant composite value of various types, without exercising a computation on it.
2220tcu::TestCaseGroup* createOpQuantizeToF16Group (tcu::TestContext& testCtx)
2221{
2222	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opquantize", "Tests the OpQuantizeToF16 instruction"));
2223
2224	const std::string shader (
2225		string(s_ShaderPreamble) +
2226
2227		"OpSource GLSL 430\n"
2228		"OpName %main           \"main\"\n"
2229		"OpName %id             \"gl_GlobalInvocationID\"\n"
2230
2231		"OpDecorate %id BuiltIn GlobalInvocationId\n"
2232
2233		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
2234
2235		"%id        = OpVariable %uvec3ptr Input\n"
2236		"%zero      = OpConstant %i32 0\n"
2237
2238		"%main      = OpFunction %void None %voidf\n"
2239		"%label     = OpLabel\n"
2240		"%idval     = OpLoad %uvec3 %id\n"
2241		"%x         = OpCompositeExtract %u32 %idval 0\n"
2242		"%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
2243		"%inval     = OpLoad %f32 %inloc\n"
2244		"%quant     = OpQuantizeToF16 %f32 %inval\n"
2245		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
2246		"             OpStore %outloc %quant\n"
2247		"             OpReturn\n"
2248		"             OpFunctionEnd\n");
2249
2250	{
2251		ComputeShaderSpec	spec;
2252		const deUint32		numElements		= 100;
2253		vector<float>		infinities;
2254		vector<float>		results;
2255
2256		infinities.reserve(numElements);
2257		results.reserve(numElements);
2258
2259		for (size_t idx = 0; idx < numElements; ++idx)
2260		{
2261			switch(idx % 4)
2262			{
2263				case 0:
2264					infinities.push_back(std::numeric_limits<float>::infinity());
2265					results.push_back(std::numeric_limits<float>::infinity());
2266					break;
2267				case 1:
2268					infinities.push_back(-std::numeric_limits<float>::infinity());
2269					results.push_back(-std::numeric_limits<float>::infinity());
2270					break;
2271				case 2:
2272					infinities.push_back(std::ldexp(1.0f, 16));
2273					results.push_back(std::numeric_limits<float>::infinity());
2274					break;
2275				case 3:
2276					infinities.push_back(std::ldexp(-1.0f, 32));
2277					results.push_back(-std::numeric_limits<float>::infinity());
2278					break;
2279			}
2280		}
2281
2282		spec.inputs.push_back(BufferSp(new Float32Buffer(infinities)));
2283		spec.outputs.push_back(BufferSp(new Float32Buffer(results)));
2284		spec.numWorkGroups = IVec3(numElements, 1, 1);
2285
2286		group->addChild(new SpvAsmComputeShaderCase(
2287			testCtx, "infinities", "Check that infinities propagated and created", spec));
2288	}
2289
2290	{
2291		ComputeShaderSpec	spec;
2292		vector<float>		nans;
2293		const deUint32		numElements		= 100;
2294
2295		nans.reserve(numElements);
2296
2297		for (size_t idx = 0; idx < numElements; ++idx)
2298		{
2299			if (idx % 2 == 0)
2300			{
2301				nans.push_back(std::numeric_limits<float>::quiet_NaN());
2302			}
2303			else
2304			{
2305				nans.push_back(-std::numeric_limits<float>::quiet_NaN());
2306			}
2307		}
2308
2309		spec.inputs.push_back(BufferSp(new Float32Buffer(nans)));
2310		spec.outputs.push_back(BufferSp(new Float32Buffer(nans)));
2311		spec.numWorkGroups = IVec3(numElements, 1, 1);
2312		spec.verifyIO = &compareNan;
2313
2314		group->addChild(new SpvAsmComputeShaderCase(
2315			testCtx, "propagated_nans", "Check that nans are propagated", spec));
2316	}
2317
2318	{
2319		ComputeShaderSpec	spec;
2320		vector<float>		small;
2321		vector<float>		zeros;
2322		const deUint32		numElements		= 100;
2323
2324		small.reserve(numElements);
2325		zeros.reserve(numElements);
2326
2327		for (size_t idx = 0; idx < numElements; ++idx)
2328		{
2329			switch(idx % 6)
2330			{
2331				case 0:
2332					small.push_back(0.f);
2333					zeros.push_back(0.f);
2334					break;
2335				case 1:
2336					small.push_back(-0.f);
2337					zeros.push_back(-0.f);
2338					break;
2339				case 2:
2340					small.push_back(std::ldexp(1.0f, -16));
2341					zeros.push_back(0.f);
2342					break;
2343				case 3:
2344					small.push_back(std::ldexp(-1.0f, -32));
2345					zeros.push_back(-0.f);
2346					break;
2347				case 4:
2348					small.push_back(std::ldexp(1.0f, -127));
2349					zeros.push_back(0.f);
2350					break;
2351				case 5:
2352					small.push_back(-std::ldexp(1.0f, -128));
2353					zeros.push_back(-0.f);
2354					break;
2355			}
2356		}
2357
2358		spec.inputs.push_back(BufferSp(new Float32Buffer(small)));
2359		spec.outputs.push_back(BufferSp(new Float32Buffer(zeros)));
2360		spec.numWorkGroups = IVec3(numElements, 1, 1);
2361
2362		group->addChild(new SpvAsmComputeShaderCase(
2363			testCtx, "flush_to_zero", "Check that values are zeroed correctly", spec));
2364	}
2365
2366	{
2367		ComputeShaderSpec	spec;
2368		vector<float>		exact;
2369		const deUint32		numElements		= 200;
2370
2371		exact.reserve(numElements);
2372
2373		for (size_t idx = 0; idx < numElements; ++idx)
2374			exact.push_back(static_cast<float>(idx - 100));
2375
2376		spec.inputs.push_back(BufferSp(new Float32Buffer(exact)));
2377		spec.outputs.push_back(BufferSp(new Float32Buffer(exact)));
2378		spec.numWorkGroups = IVec3(numElements, 1, 1);
2379
2380		group->addChild(new SpvAsmComputeShaderCase(
2381			testCtx, "exact", "Check that values exactly preserved where appropriate", spec));
2382	}
2383
2384	{
2385		ComputeShaderSpec	spec;
2386		vector<float>		inputs;
2387		const deUint32		numElements		= 4;
2388
2389		inputs.push_back(constructNormalizedFloat(8,	0x300300));
2390		inputs.push_back(-constructNormalizedFloat(-7,	0x600800));
2391		inputs.push_back(constructNormalizedFloat(2,	0x01E000));
2392		inputs.push_back(constructNormalizedFloat(1,	0xFFE000));
2393
2394		spec.verifyIO = &compareOpQuantizeF16ComputeExactCase;
2395		spec.inputs.push_back(BufferSp(new Float32Buffer(inputs)));
2396		spec.outputs.push_back(BufferSp(new Float32Buffer(inputs)));
2397		spec.numWorkGroups = IVec3(numElements, 1, 1);
2398
2399		group->addChild(new SpvAsmComputeShaderCase(
2400			testCtx, "rounded", "Check that are rounded when needed", spec));
2401	}
2402
2403	return group.release();
2404}
2405
2406// Performs a bitwise copy of source to the destination type Dest.
2407template <typename Dest, typename Src>
2408Dest bitwiseCast(Src source)
2409{
2410  Dest dest;
2411  DE_STATIC_ASSERT(sizeof(source) == sizeof(dest));
2412  deMemcpy(&dest, &source, sizeof(dest));
2413  return dest;
2414}
2415
2416tcu::TestCaseGroup* createSpecConstantOpQuantizeToF16Group (tcu::TestContext& testCtx)
2417{
2418	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opspecconstantop_opquantize", "Tests the OpQuantizeToF16 opcode for the OpSpecConstantOp instruction"));
2419
2420	const std::string shader (
2421		string(s_ShaderPreamble) +
2422
2423		"OpName %main           \"main\"\n"
2424		"OpName %id             \"gl_GlobalInvocationID\"\n"
2425
2426		"OpDecorate %id BuiltIn GlobalInvocationId\n"
2427
2428		"OpDecorate %sc_0  SpecId 0\n"
2429		"OpDecorate %sc_1  SpecId 1\n"
2430		"OpDecorate %sc_2  SpecId 2\n"
2431		"OpDecorate %sc_3  SpecId 3\n"
2432		"OpDecorate %sc_4  SpecId 4\n"
2433		"OpDecorate %sc_5  SpecId 5\n"
2434
2435		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
2436
2437		"%id        = OpVariable %uvec3ptr Input\n"
2438		"%zero      = OpConstant %i32 0\n"
2439		"%c_u32_6   = OpConstant %u32 6\n"
2440
2441		"%sc_0      = OpSpecConstant %f32 0.\n"
2442		"%sc_1      = OpSpecConstant %f32 0.\n"
2443		"%sc_2      = OpSpecConstant %f32 0.\n"
2444		"%sc_3      = OpSpecConstant %f32 0.\n"
2445		"%sc_4      = OpSpecConstant %f32 0.\n"
2446		"%sc_5      = OpSpecConstant %f32 0.\n"
2447
2448		"%sc_0_quant = OpSpecConstantOp %f32 QuantizeToF16 %sc_0\n"
2449		"%sc_1_quant = OpSpecConstantOp %f32 QuantizeToF16 %sc_1\n"
2450		"%sc_2_quant = OpSpecConstantOp %f32 QuantizeToF16 %sc_2\n"
2451		"%sc_3_quant = OpSpecConstantOp %f32 QuantizeToF16 %sc_3\n"
2452		"%sc_4_quant = OpSpecConstantOp %f32 QuantizeToF16 %sc_4\n"
2453		"%sc_5_quant = OpSpecConstantOp %f32 QuantizeToF16 %sc_5\n"
2454
2455		"%main      = OpFunction %void None %voidf\n"
2456		"%label     = OpLabel\n"
2457		"%idval     = OpLoad %uvec3 %id\n"
2458		"%x         = OpCompositeExtract %u32 %idval 0\n"
2459		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
2460		"%selector  = OpUMod %u32 %x %c_u32_6\n"
2461		"            OpSelectionMerge %exit None\n"
2462		"            OpSwitch %selector %exit 0 %case0 1 %case1 2 %case2 3 %case3 4 %case4 5 %case5\n"
2463
2464		"%case0     = OpLabel\n"
2465		"             OpStore %outloc %sc_0_quant\n"
2466		"             OpBranch %exit\n"
2467
2468		"%case1     = OpLabel\n"
2469		"             OpStore %outloc %sc_1_quant\n"
2470		"             OpBranch %exit\n"
2471
2472		"%case2     = OpLabel\n"
2473		"             OpStore %outloc %sc_2_quant\n"
2474		"             OpBranch %exit\n"
2475
2476		"%case3     = OpLabel\n"
2477		"             OpStore %outloc %sc_3_quant\n"
2478		"             OpBranch %exit\n"
2479
2480		"%case4     = OpLabel\n"
2481		"             OpStore %outloc %sc_4_quant\n"
2482		"             OpBranch %exit\n"
2483
2484		"%case5     = OpLabel\n"
2485		"             OpStore %outloc %sc_5_quant\n"
2486		"             OpBranch %exit\n"
2487
2488		"%exit      = OpLabel\n"
2489		"             OpReturn\n"
2490
2491		"             OpFunctionEnd\n");
2492
2493	{
2494		ComputeShaderSpec	spec;
2495		const deUint8		numCases	= 4;
2496		vector<float>		inputs		(numCases, 0.f);
2497		vector<float>		outputs;
2498
2499		spec.numWorkGroups = IVec3(numCases, 1, 1);
2500
2501		spec.specConstants.push_back(bitwiseCast<deUint32>(std::numeric_limits<float>::infinity()));
2502		spec.specConstants.push_back(bitwiseCast<deUint32>(-std::numeric_limits<float>::infinity()));
2503		spec.specConstants.push_back(bitwiseCast<deUint32>(std::ldexp(1.0f, 16)));
2504		spec.specConstants.push_back(bitwiseCast<deUint32>(std::ldexp(-1.0f, 32)));
2505
2506		outputs.push_back(std::numeric_limits<float>::infinity());
2507		outputs.push_back(-std::numeric_limits<float>::infinity());
2508		outputs.push_back(std::numeric_limits<float>::infinity());
2509		outputs.push_back(-std::numeric_limits<float>::infinity());
2510
2511		spec.inputs.push_back(BufferSp(new Float32Buffer(inputs)));
2512		spec.outputs.push_back(BufferSp(new Float32Buffer(outputs)));
2513
2514		group->addChild(new SpvAsmComputeShaderCase(
2515			testCtx, "infinities", "Check that infinities propagated and created", spec));
2516	}
2517
2518	{
2519		ComputeShaderSpec	spec;
2520		const deUint8		numCases	= 2;
2521		vector<float>		inputs		(numCases, 0.f);
2522		vector<float>		outputs;
2523
2524		spec.numWorkGroups	= IVec3(numCases, 1, 1);
2525		spec.verifyIO		= &compareNan;
2526
2527		outputs.push_back(std::numeric_limits<float>::quiet_NaN());
2528		outputs.push_back(-std::numeric_limits<float>::quiet_NaN());
2529
2530		for (deUint8 idx = 0; idx < numCases; ++idx)
2531			spec.specConstants.push_back(bitwiseCast<deUint32>(outputs[idx]));
2532
2533		spec.inputs.push_back(BufferSp(new Float32Buffer(inputs)));
2534		spec.outputs.push_back(BufferSp(new Float32Buffer(outputs)));
2535
2536		group->addChild(new SpvAsmComputeShaderCase(
2537			testCtx, "propagated_nans", "Check that nans are propagated", spec));
2538	}
2539
2540	{
2541		ComputeShaderSpec	spec;
2542		const deUint8		numCases	= 6;
2543		vector<float>		inputs		(numCases, 0.f);
2544		vector<float>		outputs;
2545
2546		spec.numWorkGroups	= IVec3(numCases, 1, 1);
2547
2548		spec.specConstants.push_back(bitwiseCast<deUint32>(0.f));
2549		spec.specConstants.push_back(bitwiseCast<deUint32>(-0.f));
2550		spec.specConstants.push_back(bitwiseCast<deUint32>(std::ldexp(1.0f, -16)));
2551		spec.specConstants.push_back(bitwiseCast<deUint32>(std::ldexp(-1.0f, -32)));
2552		spec.specConstants.push_back(bitwiseCast<deUint32>(std::ldexp(1.0f, -127)));
2553		spec.specConstants.push_back(bitwiseCast<deUint32>(-std::ldexp(1.0f, -128)));
2554
2555		outputs.push_back(0.f);
2556		outputs.push_back(-0.f);
2557		outputs.push_back(0.f);
2558		outputs.push_back(-0.f);
2559		outputs.push_back(0.f);
2560		outputs.push_back(-0.f);
2561
2562		spec.inputs.push_back(BufferSp(new Float32Buffer(inputs)));
2563		spec.outputs.push_back(BufferSp(new Float32Buffer(outputs)));
2564
2565		group->addChild(new SpvAsmComputeShaderCase(
2566			testCtx, "flush_to_zero", "Check that values are zeroed correctly", spec));
2567	}
2568
2569	{
2570		ComputeShaderSpec	spec;
2571		const deUint8		numCases	= 6;
2572		vector<float>		inputs		(numCases, 0.f);
2573		vector<float>		outputs;
2574
2575		spec.numWorkGroups	= IVec3(numCases, 1, 1);
2576
2577		for (deUint8 idx = 0; idx < 6; ++idx)
2578		{
2579			const float f = static_cast<float>(idx * 10 - 30) / 4.f;
2580			spec.specConstants.push_back(bitwiseCast<deUint32>(f));
2581			outputs.push_back(f);
2582		}
2583
2584		spec.inputs.push_back(BufferSp(new Float32Buffer(inputs)));
2585		spec.outputs.push_back(BufferSp(new Float32Buffer(outputs)));
2586
2587		group->addChild(new SpvAsmComputeShaderCase(
2588			testCtx, "exact", "Check that values exactly preserved where appropriate", spec));
2589	}
2590
2591	{
2592		ComputeShaderSpec	spec;
2593		const deUint8		numCases	= 4;
2594		vector<float>		inputs		(numCases, 0.f);
2595		vector<float>		outputs;
2596
2597		spec.numWorkGroups	= IVec3(numCases, 1, 1);
2598		spec.verifyIO		= &compareOpQuantizeF16ComputeExactCase;
2599
2600		outputs.push_back(constructNormalizedFloat(8, 0x300300));
2601		outputs.push_back(-constructNormalizedFloat(-7, 0x600800));
2602		outputs.push_back(constructNormalizedFloat(2, 0x01E000));
2603		outputs.push_back(constructNormalizedFloat(1, 0xFFE000));
2604
2605		for (deUint8 idx = 0; idx < numCases; ++idx)
2606			spec.specConstants.push_back(bitwiseCast<deUint32>(outputs[idx]));
2607
2608		spec.inputs.push_back(BufferSp(new Float32Buffer(inputs)));
2609		spec.outputs.push_back(BufferSp(new Float32Buffer(outputs)));
2610
2611		group->addChild(new SpvAsmComputeShaderCase(
2612			testCtx, "rounded", "Check that are rounded when needed", spec));
2613	}
2614
2615	return group.release();
2616}
2617
2618// Checks that constant null/composite values can be used in computation.
2619tcu::TestCaseGroup* createOpConstantUsageGroup (tcu::TestContext& testCtx)
2620{
2621	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opconstantnullcomposite", "Spotcheck the OpConstantNull & OpConstantComposite instruction"));
2622	ComputeShaderSpec				spec;
2623	de::Random						rnd				(deStringHash(group->getName()));
2624	const int						numElements		= 100;
2625	vector<float>					positiveFloats	(numElements, 0);
2626	vector<float>					negativeFloats	(numElements, 0);
2627
2628	fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
2629
2630	for (size_t ndx = 0; ndx < numElements; ++ndx)
2631		negativeFloats[ndx] = -positiveFloats[ndx];
2632
2633	spec.assembly =
2634		"OpCapability Shader\n"
2635		"%std450 = OpExtInstImport \"GLSL.std.450\"\n"
2636		"OpMemoryModel Logical GLSL450\n"
2637		"OpEntryPoint GLCompute %main \"main\" %id\n"
2638		"OpExecutionMode %main LocalSize 1 1 1\n"
2639
2640		"OpSource GLSL 430\n"
2641		"OpName %main           \"main\"\n"
2642		"OpName %id             \"gl_GlobalInvocationID\"\n"
2643
2644		"OpDecorate %id BuiltIn GlobalInvocationId\n"
2645
2646		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
2647
2648		"%fvec3     = OpTypeVector %f32 3\n"
2649		"%fmat      = OpTypeMatrix %fvec3 3\n"
2650		"%ten       = OpConstant %u32 10\n"
2651		"%f32arr10  = OpTypeArray %f32 %ten\n"
2652		"%fst       = OpTypeStruct %f32 %f32\n"
2653
2654		+ string(s_InputOutputBuffer) +
2655
2656		"%id        = OpVariable %uvec3ptr Input\n"
2657		"%zero      = OpConstant %i32 0\n"
2658
2659		// Create a bunch of null values
2660		"%unull     = OpConstantNull %u32\n"
2661		"%fnull     = OpConstantNull %f32\n"
2662		"%vnull     = OpConstantNull %fvec3\n"
2663		"%mnull     = OpConstantNull %fmat\n"
2664		"%anull     = OpConstantNull %f32arr10\n"
2665		"%snull     = OpConstantComposite %fst %fnull %fnull\n"
2666
2667		"%main      = OpFunction %void None %voidf\n"
2668		"%label     = OpLabel\n"
2669		"%idval     = OpLoad %uvec3 %id\n"
2670		"%x         = OpCompositeExtract %u32 %idval 0\n"
2671		"%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
2672		"%inval     = OpLoad %f32 %inloc\n"
2673		"%neg       = OpFNegate %f32 %inval\n"
2674
2675		// Get the abs() of (a certain element of) those null values
2676		"%unull_cov = OpConvertUToF %f32 %unull\n"
2677		"%unull_abs = OpExtInst %f32 %std450 FAbs %unull_cov\n"
2678		"%fnull_abs = OpExtInst %f32 %std450 FAbs %fnull\n"
2679		"%vnull_0   = OpCompositeExtract %f32 %vnull 0\n"
2680		"%vnull_abs = OpExtInst %f32 %std450 FAbs %vnull_0\n"
2681		"%mnull_12  = OpCompositeExtract %f32 %mnull 1 2\n"
2682		"%mnull_abs = OpExtInst %f32 %std450 FAbs %mnull_12\n"
2683		"%anull_3   = OpCompositeExtract %f32 %anull 3\n"
2684		"%anull_abs = OpExtInst %f32 %std450 FAbs %anull_3\n"
2685		"%snull_1   = OpCompositeExtract %f32 %snull 1\n"
2686		"%snull_abs = OpExtInst %f32 %std450 FAbs %snull_1\n"
2687
2688		// Add them all
2689		"%add1      = OpFAdd %f32 %neg  %unull_abs\n"
2690		"%add2      = OpFAdd %f32 %add1 %fnull_abs\n"
2691		"%add3      = OpFAdd %f32 %add2 %vnull_abs\n"
2692		"%add4      = OpFAdd %f32 %add3 %mnull_abs\n"
2693		"%add5      = OpFAdd %f32 %add4 %anull_abs\n"
2694		"%final     = OpFAdd %f32 %add5 %snull_abs\n"
2695
2696		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
2697		"             OpStore %outloc %final\n" // write to output
2698		"             OpReturn\n"
2699		"             OpFunctionEnd\n";
2700	spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
2701	spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
2702	spec.numWorkGroups = IVec3(numElements, 1, 1);
2703
2704	group->addChild(new SpvAsmComputeShaderCase(testCtx, "spotcheck", "Check that values constructed via OpConstantNull & OpConstantComposite can be used", spec));
2705
2706	return group.release();
2707}
2708
2709// Assembly code used for testing loop control is based on GLSL source code:
2710// #version 430
2711//
2712// layout(std140, set = 0, binding = 0) readonly buffer Input {
2713//   float elements[];
2714// } input_data;
2715// layout(std140, set = 0, binding = 1) writeonly buffer Output {
2716//   float elements[];
2717// } output_data;
2718//
2719// void main() {
2720//   uint x = gl_GlobalInvocationID.x;
2721//   output_data.elements[x] = input_data.elements[x];
2722//   for (uint i = 0; i < 4; ++i)
2723//     output_data.elements[x] += 1.f;
2724// }
2725tcu::TestCaseGroup* createLoopControlGroup (tcu::TestContext& testCtx)
2726{
2727	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "loop_control", "Tests loop control cases"));
2728	vector<CaseParameter>			cases;
2729	de::Random						rnd				(deStringHash(group->getName()));
2730	const int						numElements		= 100;
2731	vector<float>					inputFloats		(numElements, 0);
2732	vector<float>					outputFloats	(numElements, 0);
2733	const StringTemplate			shaderTemplate	(
2734		string(s_ShaderPreamble) +
2735
2736		"OpSource GLSL 430\n"
2737		"OpName %main \"main\"\n"
2738		"OpName %id \"gl_GlobalInvocationID\"\n"
2739
2740		"OpDecorate %id BuiltIn GlobalInvocationId\n"
2741
2742		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
2743
2744		"%u32ptr      = OpTypePointer Function %u32\n"
2745
2746		"%id          = OpVariable %uvec3ptr Input\n"
2747		"%zero        = OpConstant %i32 0\n"
2748		"%one         = OpConstant %i32 1\n"
2749		"%constf1     = OpConstant %f32 1.0\n"
2750		"%four        = OpConstant %u32 4\n"
2751
2752		"%main        = OpFunction %void None %voidf\n"
2753		"%entry       = OpLabel\n"
2754		"%i           = OpVariable %u32ptr Function\n"
2755		"               OpStore %i %zero\n"
2756
2757		"%idval       = OpLoad %uvec3 %id\n"
2758		"%x           = OpCompositeExtract %u32 %idval 0\n"
2759		"%inloc       = OpAccessChain %f32ptr %indata %zero %x\n"
2760		"%inval       = OpLoad %f32 %inloc\n"
2761		"%outloc      = OpAccessChain %f32ptr %outdata %zero %x\n"
2762		"               OpStore %outloc %inval\n"
2763		"               OpBranch %loop_entry\n"
2764
2765		"%loop_entry  = OpLabel\n"
2766		"%i_val       = OpLoad %u32 %i\n"
2767		"%cmp_lt      = OpULessThan %bool %i_val %four\n"
2768		"               OpLoopMerge %loop_merge %loop_entry ${CONTROL}\n"
2769		"               OpBranchConditional %cmp_lt %loop_body %loop_merge\n"
2770		"%loop_body   = OpLabel\n"
2771		"%outval      = OpLoad %f32 %outloc\n"
2772		"%addf1       = OpFAdd %f32 %outval %constf1\n"
2773		"               OpStore %outloc %addf1\n"
2774		"%new_i       = OpIAdd %u32 %i_val %one\n"
2775		"               OpStore %i %new_i\n"
2776		"               OpBranch %loop_entry\n"
2777		"%loop_merge  = OpLabel\n"
2778		"               OpReturn\n"
2779		"               OpFunctionEnd\n");
2780
2781	cases.push_back(CaseParameter("none",				"None"));
2782	cases.push_back(CaseParameter("unroll",				"Unroll"));
2783	cases.push_back(CaseParameter("dont_unroll",		"DontUnroll"));
2784	cases.push_back(CaseParameter("unroll_dont_unroll",	"Unroll|DontUnroll"));
2785
2786	fillRandomScalars(rnd, -100.f, 100.f, &inputFloats[0], numElements);
2787
2788	for (size_t ndx = 0; ndx < numElements; ++ndx)
2789		outputFloats[ndx] = inputFloats[ndx] + 4.f;
2790
2791	for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
2792	{
2793		map<string, string>		specializations;
2794		ComputeShaderSpec		spec;
2795
2796		specializations["CONTROL"] = cases[caseNdx].param;
2797		spec.assembly = shaderTemplate.specialize(specializations);
2798		spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
2799		spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
2800		spec.numWorkGroups = IVec3(numElements, 1, 1);
2801
2802		group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
2803	}
2804
2805	return group.release();
2806}
2807
2808// Assembly code used for testing selection control is based on GLSL source code:
2809// #version 430
2810//
2811// layout(std140, set = 0, binding = 0) readonly buffer Input {
2812//   float elements[];
2813// } input_data;
2814// layout(std140, set = 0, binding = 1) writeonly buffer Output {
2815//   float elements[];
2816// } output_data;
2817//
2818// void main() {
2819//   uint x = gl_GlobalInvocationID.x;
2820//   float val = input_data.elements[x];
2821//   if (val > 10.f)
2822//     output_data.elements[x] = val + 1.f;
2823//   else
2824//     output_data.elements[x] = val - 1.f;
2825// }
2826tcu::TestCaseGroup* createSelectionControlGroup (tcu::TestContext& testCtx)
2827{
2828	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "selection_control", "Tests selection control cases"));
2829	vector<CaseParameter>			cases;
2830	de::Random						rnd				(deStringHash(group->getName()));
2831	const int						numElements		= 100;
2832	vector<float>					inputFloats		(numElements, 0);
2833	vector<float>					outputFloats	(numElements, 0);
2834	const StringTemplate			shaderTemplate	(
2835		string(s_ShaderPreamble) +
2836
2837		"OpSource GLSL 430\n"
2838		"OpName %main \"main\"\n"
2839		"OpName %id \"gl_GlobalInvocationID\"\n"
2840
2841		"OpDecorate %id BuiltIn GlobalInvocationId\n"
2842
2843		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
2844
2845		"%id       = OpVariable %uvec3ptr Input\n"
2846		"%zero     = OpConstant %i32 0\n"
2847		"%constf1  = OpConstant %f32 1.0\n"
2848		"%constf10 = OpConstant %f32 10.0\n"
2849
2850		"%main     = OpFunction %void None %voidf\n"
2851		"%entry    = OpLabel\n"
2852		"%idval    = OpLoad %uvec3 %id\n"
2853		"%x        = OpCompositeExtract %u32 %idval 0\n"
2854		"%inloc    = OpAccessChain %f32ptr %indata %zero %x\n"
2855		"%inval    = OpLoad %f32 %inloc\n"
2856		"%outloc   = OpAccessChain %f32ptr %outdata %zero %x\n"
2857		"%cmp_gt   = OpFOrdGreaterThan %bool %inval %constf10\n"
2858
2859		"            OpSelectionMerge %if_end ${CONTROL}\n"
2860		"            OpBranchConditional %cmp_gt %if_true %if_false\n"
2861		"%if_true  = OpLabel\n"
2862		"%addf1    = OpFAdd %f32 %inval %constf1\n"
2863		"            OpStore %outloc %addf1\n"
2864		"            OpBranch %if_end\n"
2865		"%if_false = OpLabel\n"
2866		"%subf1    = OpFSub %f32 %inval %constf1\n"
2867		"            OpStore %outloc %subf1\n"
2868		"            OpBranch %if_end\n"
2869		"%if_end   = OpLabel\n"
2870		"            OpReturn\n"
2871		"            OpFunctionEnd\n");
2872
2873	cases.push_back(CaseParameter("none",					"None"));
2874	cases.push_back(CaseParameter("flatten",				"Flatten"));
2875	cases.push_back(CaseParameter("dont_flatten",			"DontFlatten"));
2876	cases.push_back(CaseParameter("flatten_dont_flatten",	"DontFlatten|Flatten"));
2877
2878	fillRandomScalars(rnd, -100.f, 100.f, &inputFloats[0], numElements);
2879
2880	for (size_t ndx = 0; ndx < numElements; ++ndx)
2881		outputFloats[ndx] = inputFloats[ndx] + (inputFloats[ndx] > 10.f ? 1.f : -1.f);
2882
2883	for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
2884	{
2885		map<string, string>		specializations;
2886		ComputeShaderSpec		spec;
2887
2888		specializations["CONTROL"] = cases[caseNdx].param;
2889		spec.assembly = shaderTemplate.specialize(specializations);
2890		spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
2891		spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
2892		spec.numWorkGroups = IVec3(numElements, 1, 1);
2893
2894		group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
2895	}
2896
2897	return group.release();
2898}
2899
2900// Assembly code used for testing function control is based on GLSL source code:
2901//
2902// #version 430
2903//
2904// layout(std140, set = 0, binding = 0) readonly buffer Input {
2905//   float elements[];
2906// } input_data;
2907// layout(std140, set = 0, binding = 1) writeonly buffer Output {
2908//   float elements[];
2909// } output_data;
2910//
2911// float const10() { return 10.f; }
2912//
2913// void main() {
2914//   uint x = gl_GlobalInvocationID.x;
2915//   output_data.elements[x] = input_data.elements[x] + const10();
2916// }
2917tcu::TestCaseGroup* createFunctionControlGroup (tcu::TestContext& testCtx)
2918{
2919	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "function_control", "Tests function control cases"));
2920	vector<CaseParameter>			cases;
2921	de::Random						rnd				(deStringHash(group->getName()));
2922	const int						numElements		= 100;
2923	vector<float>					inputFloats		(numElements, 0);
2924	vector<float>					outputFloats	(numElements, 0);
2925	const StringTemplate			shaderTemplate	(
2926		string(s_ShaderPreamble) +
2927
2928		"OpSource GLSL 430\n"
2929		"OpName %main \"main\"\n"
2930		"OpName %func_const10 \"const10(\"\n"
2931		"OpName %id \"gl_GlobalInvocationID\"\n"
2932
2933		"OpDecorate %id BuiltIn GlobalInvocationId\n"
2934
2935		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
2936
2937		"%f32f = OpTypeFunction %f32\n"
2938		"%id = OpVariable %uvec3ptr Input\n"
2939		"%zero = OpConstant %i32 0\n"
2940		"%constf10 = OpConstant %f32 10.0\n"
2941
2942		"%main         = OpFunction %void None %voidf\n"
2943		"%entry        = OpLabel\n"
2944		"%idval        = OpLoad %uvec3 %id\n"
2945		"%x            = OpCompositeExtract %u32 %idval 0\n"
2946		"%inloc        = OpAccessChain %f32ptr %indata %zero %x\n"
2947		"%inval        = OpLoad %f32 %inloc\n"
2948		"%ret_10       = OpFunctionCall %f32 %func_const10\n"
2949		"%fadd         = OpFAdd %f32 %inval %ret_10\n"
2950		"%outloc       = OpAccessChain %f32ptr %outdata %zero %x\n"
2951		"                OpStore %outloc %fadd\n"
2952		"                OpReturn\n"
2953		"                OpFunctionEnd\n"
2954
2955		"%func_const10 = OpFunction %f32 ${CONTROL} %f32f\n"
2956		"%label        = OpLabel\n"
2957		"                OpReturnValue %constf10\n"
2958		"                OpFunctionEnd\n");
2959
2960	cases.push_back(CaseParameter("none",						"None"));
2961	cases.push_back(CaseParameter("inline",						"Inline"));
2962	cases.push_back(CaseParameter("dont_inline",				"DontInline"));
2963	cases.push_back(CaseParameter("pure",						"Pure"));
2964	cases.push_back(CaseParameter("const",						"Const"));
2965	cases.push_back(CaseParameter("inline_pure",				"Inline|Pure"));
2966	cases.push_back(CaseParameter("const_dont_inline",			"Const|DontInline"));
2967	cases.push_back(CaseParameter("inline_dont_inline",			"Inline|DontInline"));
2968	cases.push_back(CaseParameter("pure_inline_dont_inline",	"Pure|Inline|DontInline"));
2969
2970	fillRandomScalars(rnd, -100.f, 100.f, &inputFloats[0], numElements);
2971
2972	for (size_t ndx = 0; ndx < numElements; ++ndx)
2973		outputFloats[ndx] = inputFloats[ndx] + 10.f;
2974
2975	for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
2976	{
2977		map<string, string>		specializations;
2978		ComputeShaderSpec		spec;
2979
2980		specializations["CONTROL"] = cases[caseNdx].param;
2981		spec.assembly = shaderTemplate.specialize(specializations);
2982		spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
2983		spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
2984		spec.numWorkGroups = IVec3(numElements, 1, 1);
2985
2986		group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
2987	}
2988
2989	return group.release();
2990}
2991
2992tcu::TestCaseGroup* createMemoryAccessGroup (tcu::TestContext& testCtx)
2993{
2994	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "memory_access", "Tests memory access cases"));
2995	vector<CaseParameter>			cases;
2996	de::Random						rnd				(deStringHash(group->getName()));
2997	const int						numElements		= 100;
2998	vector<float>					inputFloats		(numElements, 0);
2999	vector<float>					outputFloats	(numElements, 0);
3000	const StringTemplate			shaderTemplate	(
3001		string(s_ShaderPreamble) +
3002
3003		"OpSource GLSL 430\n"
3004		"OpName %main           \"main\"\n"
3005		"OpName %id             \"gl_GlobalInvocationID\"\n"
3006
3007		"OpDecorate %id BuiltIn GlobalInvocationId\n"
3008
3009		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
3010
3011		"%f32ptr_f  = OpTypePointer Function %f32\n"
3012
3013		"%id        = OpVariable %uvec3ptr Input\n"
3014		"%zero      = OpConstant %i32 0\n"
3015		"%four      = OpConstant %i32 4\n"
3016
3017		"%main      = OpFunction %void None %voidf\n"
3018		"%label     = OpLabel\n"
3019		"%copy      = OpVariable %f32ptr_f Function\n"
3020		"%idval     = OpLoad %uvec3 %id ${ACCESS}\n"
3021		"%x         = OpCompositeExtract %u32 %idval 0\n"
3022		"%inloc     = OpAccessChain %f32ptr %indata  %zero %x\n"
3023		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
3024		"             OpCopyMemory %copy %inloc ${ACCESS}\n"
3025		"%val1      = OpLoad %f32 %copy\n"
3026		"%val2      = OpLoad %f32 %inloc\n"
3027		"%add       = OpFAdd %f32 %val1 %val2\n"
3028		"             OpStore %outloc %add ${ACCESS}\n"
3029		"             OpReturn\n"
3030		"             OpFunctionEnd\n");
3031
3032	cases.push_back(CaseParameter("null",					""));
3033	cases.push_back(CaseParameter("none",					"None"));
3034	cases.push_back(CaseParameter("volatile",				"Volatile"));
3035	cases.push_back(CaseParameter("aligned",				"Aligned 4"));
3036	cases.push_back(CaseParameter("nontemporal",			"Nontemporal"));
3037	cases.push_back(CaseParameter("aligned_nontemporal",	"Aligned|Nontemporal 4"));
3038	cases.push_back(CaseParameter("aligned_volatile",		"Volatile|Aligned 4"));
3039
3040	fillRandomScalars(rnd, -100.f, 100.f, &inputFloats[0], numElements);
3041
3042	for (size_t ndx = 0; ndx < numElements; ++ndx)
3043		outputFloats[ndx] = inputFloats[ndx] + inputFloats[ndx];
3044
3045	for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
3046	{
3047		map<string, string>		specializations;
3048		ComputeShaderSpec		spec;
3049
3050		specializations["ACCESS"] = cases[caseNdx].param;
3051		spec.assembly = shaderTemplate.specialize(specializations);
3052		spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
3053		spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
3054		spec.numWorkGroups = IVec3(numElements, 1, 1);
3055
3056		group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
3057	}
3058
3059	return group.release();
3060}
3061
3062// Checks that we can get undefined values for various types, without exercising a computation with it.
3063tcu::TestCaseGroup* createOpUndefGroup (tcu::TestContext& testCtx)
3064{
3065	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opundef", "Tests the OpUndef instruction"));
3066	vector<CaseParameter>			cases;
3067	de::Random						rnd				(deStringHash(group->getName()));
3068	const int						numElements		= 100;
3069	vector<float>					positiveFloats	(numElements, 0);
3070	vector<float>					negativeFloats	(numElements, 0);
3071	const StringTemplate			shaderTemplate	(
3072		string(s_ShaderPreamble) +
3073
3074		"OpSource GLSL 430\n"
3075		"OpName %main           \"main\"\n"
3076		"OpName %id             \"gl_GlobalInvocationID\"\n"
3077
3078		"OpDecorate %id BuiltIn GlobalInvocationId\n"
3079
3080		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
3081
3082		"${TYPE}\n"
3083
3084		"%id        = OpVariable %uvec3ptr Input\n"
3085		"%zero      = OpConstant %i32 0\n"
3086
3087		"%main      = OpFunction %void None %voidf\n"
3088		"%label     = OpLabel\n"
3089
3090		"%undef     = OpUndef %type\n"
3091
3092		"%idval     = OpLoad %uvec3 %id\n"
3093		"%x         = OpCompositeExtract %u32 %idval 0\n"
3094
3095		"%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
3096		"%inval     = OpLoad %f32 %inloc\n"
3097		"%neg       = OpFNegate %f32 %inval\n"
3098		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
3099		"             OpStore %outloc %neg\n"
3100		"             OpReturn\n"
3101		"             OpFunctionEnd\n");
3102
3103	cases.push_back(CaseParameter("bool",			"%type = OpTypeBool"));
3104	cases.push_back(CaseParameter("sint32",			"%type = OpTypeInt 32 1"));
3105	cases.push_back(CaseParameter("uint32",			"%type = OpTypeInt 32 0"));
3106	cases.push_back(CaseParameter("float32",		"%type = OpTypeFloat 32"));
3107	cases.push_back(CaseParameter("vec4float32",	"%type = OpTypeVector %f32 4"));
3108	cases.push_back(CaseParameter("vec2uint32",		"%type = OpTypeVector %u32 2"));
3109	cases.push_back(CaseParameter("matrix",			"%type = OpTypeMatrix %uvec3 3"));
3110	cases.push_back(CaseParameter("image",			"%type = OpTypeImage %f32 2D 0 0 0 0 Unknown"));
3111	cases.push_back(CaseParameter("sampler",		"%type = OpTypeSampler"));
3112	cases.push_back(CaseParameter("sampledimage",	"%img = OpTypeImage %f32 2D 0 0 0 0 Unknown\n"
3113													"%type = OpTypeSampledImage %img"));
3114	cases.push_back(CaseParameter("array",			"%100 = OpConstant %u32 100\n"
3115													"%type = OpTypeArray %i32 %100"));
3116	cases.push_back(CaseParameter("runtimearray",	"%type = OpTypeRuntimeArray %f32"));
3117	cases.push_back(CaseParameter("struct",			"%type = OpTypeStruct %f32 %i32 %u32"));
3118	cases.push_back(CaseParameter("pointer",		"%type = OpTypePointer Function %i32"));
3119	cases.push_back(CaseParameter("function",		"%type = OpTypeFunction %void %i32 %f32"));
3120
3121	fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
3122
3123	for (size_t ndx = 0; ndx < numElements; ++ndx)
3124		negativeFloats[ndx] = -positiveFloats[ndx];
3125
3126	for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
3127	{
3128		map<string, string>		specializations;
3129		ComputeShaderSpec		spec;
3130
3131		specializations["TYPE"] = cases[caseNdx].param;
3132		spec.assembly = shaderTemplate.specialize(specializations);
3133		spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
3134		spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
3135		spec.numWorkGroups = IVec3(numElements, 1, 1);
3136
3137		group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
3138	}
3139
3140		return group.release();
3141}
3142typedef std::pair<std::string, VkShaderStageFlagBits>	EntryToStage;
3143typedef map<string, vector<EntryToStage> >				ModuleMap;
3144typedef map<VkShaderStageFlagBits, vector<deInt32> >	StageToSpecConstantMap;
3145
3146// Context for a specific test instantiation. For example, an instantiation
3147// may test colors yellow/magenta/cyan/mauve in a tesselation shader
3148// with an entry point named 'main_to_the_main'
3149struct InstanceContext
3150{
3151	// Map of modules to what entry_points we care to use from those modules.
3152	ModuleMap				moduleMap;
3153	RGBA					inputColors[4];
3154	RGBA					outputColors[4];
3155	// Concrete SPIR-V code to test via boilerplate specialization.
3156	map<string, string>		testCodeFragments;
3157	StageToSpecConstantMap	specConstants;
3158
3159	bool					hasTessellation;
3160	InstanceContext (const RGBA (&inputs)[4], const RGBA (&outputs)[4], const map<string, string>& testCodeFragments_, const StageToSpecConstantMap& specConstants_)
3161		: testCodeFragments	(testCodeFragments_)
3162		, specConstants		(specConstants_)
3163		, hasTessellation	(false)
3164	{
3165		inputColors[0]		= inputs[0];
3166		inputColors[1]		= inputs[1];
3167		inputColors[2]		= inputs[2];
3168		inputColors[3]		= inputs[3];
3169
3170		outputColors[0]		= outputs[0];
3171		outputColors[1]		= outputs[1];
3172		outputColors[2]		= outputs[2];
3173		outputColors[3]		= outputs[3];
3174	}
3175
3176	InstanceContext (const InstanceContext& other)
3177		: moduleMap			(other.moduleMap)
3178		, testCodeFragments	(other.testCodeFragments)
3179		, specConstants		(other.specConstants)
3180		, hasTessellation	(other.hasTessellation)
3181	{
3182		inputColors[0]		= other.inputColors[0];
3183		inputColors[1]		= other.inputColors[1];
3184		inputColors[2]		= other.inputColors[2];
3185		inputColors[3]		= other.inputColors[3];
3186
3187		outputColors[0]		= other.outputColors[0];
3188		outputColors[1]		= other.outputColors[1];
3189		outputColors[2]		= other.outputColors[2];
3190		outputColors[3]		= other.outputColors[3];
3191	}
3192};
3193
3194// A description of a shader to be used for a single stage of the graphics pipeline.
3195struct ShaderElement
3196{
3197	// The module that contains this shader entrypoint.
3198	string					moduleName;
3199
3200	// The name of the entrypoint.
3201	string					entryName;
3202
3203	// Which shader stage this entry point represents.
3204	VkShaderStageFlagBits	stage;
3205
3206	ShaderElement (const string& moduleName_, const string& entryPoint_, VkShaderStageFlagBits shaderStage_)
3207		: moduleName(moduleName_)
3208		, entryName(entryPoint_)
3209		, stage(shaderStage_)
3210	{
3211	}
3212};
3213
3214void getDefaultColors (RGBA (&colors)[4])
3215{
3216	colors[0] = RGBA::white();
3217	colors[1] = RGBA::red();
3218	colors[2] = RGBA::green();
3219	colors[3] = RGBA::blue();
3220}
3221
3222void getHalfColorsFullAlpha (RGBA (&colors)[4])
3223{
3224	colors[0] = RGBA(127, 127, 127, 255);
3225	colors[1] = RGBA(127, 0,   0,	255);
3226	colors[2] = RGBA(0,	  127, 0,	255);
3227	colors[3] = RGBA(0,	  0,   127, 255);
3228}
3229
3230void getInvertedDefaultColors (RGBA (&colors)[4])
3231{
3232	colors[0] = RGBA(0,		0,		0,		255);
3233	colors[1] = RGBA(0,		255,	255,	255);
3234	colors[2] = RGBA(255,	0,		255,	255);
3235	colors[3] = RGBA(255,	255,	0,		255);
3236}
3237
3238// Turns a statically sized array of ShaderElements into an instance-context
3239// by setting up the mapping of modules to their contained shaders and stages.
3240// The inputs and expected outputs are given by inputColors and outputColors
3241template<size_t N>
3242InstanceContext createInstanceContext (const ShaderElement (&elements)[N], const RGBA (&inputColors)[4], const RGBA (&outputColors)[4], const map<string, string>& testCodeFragments, const StageToSpecConstantMap& specConstants)
3243{
3244	InstanceContext ctx (inputColors, outputColors, testCodeFragments, specConstants);
3245	for (size_t i = 0; i < N; ++i)
3246	{
3247		ctx.moduleMap[elements[i].moduleName].push_back(std::make_pair(elements[i].entryName, elements[i].stage));
3248		if (elements[i].stage == VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT ||
3249			elements[i].stage == VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT)
3250		{
3251			ctx.hasTessellation = true;
3252		}
3253	}
3254	return ctx;
3255}
3256
3257template<size_t N>
3258inline InstanceContext createInstanceContext (const ShaderElement (&elements)[N], const RGBA (&inputColors)[4], const RGBA (&outputColors)[4], const map<string, string>& testCodeFragments)
3259{
3260	return createInstanceContext(elements, inputColors, outputColors, testCodeFragments, StageToSpecConstantMap());
3261}
3262
3263// The same as createInstanceContext above, but with default colors.
3264template<size_t N>
3265InstanceContext createInstanceContext (const ShaderElement (&elements)[N], const map<string, string>& testCodeFragments)
3266{
3267	RGBA defaultColors[4];
3268	getDefaultColors(defaultColors);
3269	return createInstanceContext(elements, defaultColors, defaultColors, testCodeFragments);
3270}
3271
3272// For the current InstanceContext, constructs the required modules and shader stage create infos.
3273void createPipelineShaderStages (const DeviceInterface& vk, const VkDevice vkDevice, InstanceContext& instance, Context& context, vector<ModuleHandleSp>& modules, vector<VkPipelineShaderStageCreateInfo>& createInfos)
3274{
3275	for (ModuleMap::const_iterator moduleNdx = instance.moduleMap.begin(); moduleNdx != instance.moduleMap.end(); ++moduleNdx)
3276	{
3277		const ModuleHandleSp mod(new Unique<VkShaderModule>(createShaderModule(vk, vkDevice, context.getBinaryCollection().get(moduleNdx->first), 0)));
3278		modules.push_back(ModuleHandleSp(mod));
3279		for (vector<EntryToStage>::const_iterator shaderNdx = moduleNdx->second.begin(); shaderNdx != moduleNdx->second.end(); ++shaderNdx)
3280		{
3281			const EntryToStage&						stage			= *shaderNdx;
3282			const VkPipelineShaderStageCreateInfo	shaderParam		=
3283			{
3284				VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,	//	VkStructureType			sType;
3285				DE_NULL,												//	const void*				pNext;
3286				(VkPipelineShaderStageCreateFlags)0,
3287				stage.second,											//	VkShaderStageFlagBits	stage;
3288				**modules.back(),										//	VkShaderModule			module;
3289				stage.first.c_str(),									//	const char*				pName;
3290				(const VkSpecializationInfo*)DE_NULL,
3291			};
3292			createInfos.push_back(shaderParam);
3293		}
3294	}
3295}
3296
3297#define SPIRV_ASSEMBLY_TYPES																	\
3298	"%void = OpTypeVoid\n"																		\
3299	"%bool = OpTypeBool\n"																		\
3300																								\
3301	"%i32 = OpTypeInt 32 1\n"																	\
3302	"%u32 = OpTypeInt 32 0\n"																	\
3303																								\
3304	"%f32 = OpTypeFloat 32\n"																	\
3305	"%v3f32 = OpTypeVector %f32 3\n"															\
3306	"%v4f32 = OpTypeVector %f32 4\n"															\
3307																								\
3308	"%v4f32_function = OpTypeFunction %v4f32 %v4f32\n"											\
3309	"%fun = OpTypeFunction %void\n"																\
3310																								\
3311	"%ip_f32 = OpTypePointer Input %f32\n"														\
3312	"%ip_i32 = OpTypePointer Input %i32\n"														\
3313	"%ip_v3f32 = OpTypePointer Input %v3f32\n"													\
3314	"%ip_v4f32 = OpTypePointer Input %v4f32\n"													\
3315																								\
3316	"%op_f32 = OpTypePointer Output %f32\n"														\
3317	"%op_v4f32 = OpTypePointer Output %v4f32\n"													\
3318																								\
3319	"%fp_f32   = OpTypePointer Function %f32\n"													\
3320	"%fp_i32   = OpTypePointer Function %i32\n"													\
3321	"%fp_v4f32 = OpTypePointer Function %v4f32\n"
3322
3323#define SPIRV_ASSEMBLY_CONSTANTS																\
3324	"%c_f32_1 = OpConstant %f32 1.0\n"															\
3325	"%c_f32_0 = OpConstant %f32 0.0\n"															\
3326	"%c_f32_0_5 = OpConstant %f32 0.5\n"														\
3327	"%c_f32_n1  = OpConstant %f32 -1.\n"														\
3328	"%c_f32_7 = OpConstant %f32 7.0\n"															\
3329	"%c_f32_8 = OpConstant %f32 8.0\n"															\
3330	"%c_i32_0 = OpConstant %i32 0\n"															\
3331	"%c_i32_1 = OpConstant %i32 1\n"															\
3332	"%c_i32_2 = OpConstant %i32 2\n"															\
3333	"%c_i32_3 = OpConstant %i32 3\n"															\
3334	"%c_i32_4 = OpConstant %i32 4\n"															\
3335	"%c_u32_0 = OpConstant %u32 0\n"															\
3336	"%c_u32_1 = OpConstant %u32 1\n"															\
3337	"%c_u32_2 = OpConstant %u32 2\n"															\
3338	"%c_u32_3 = OpConstant %u32 3\n"															\
3339	"%c_u32_32 = OpConstant %u32 32\n"															\
3340	"%c_u32_4 = OpConstant %u32 4\n"															\
3341	"%c_u32_31_bits = OpConstant %u32 0x7FFFFFFF\n"												\
3342	"%c_v4f32_1_1_1_1 = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_1\n"		\
3343	"%c_v4f32_1_0_0_1 = OpConstantComposite %v4f32 %c_f32_1 %c_f32_0 %c_f32_0 %c_f32_1\n"		\
3344	"%c_v4f32_0_5_0_5_0_5_0_5 = OpConstantComposite %v4f32 %c_f32_0_5 %c_f32_0_5 %c_f32_0_5 %c_f32_0_5\n"
3345
3346#define SPIRV_ASSEMBLY_ARRAYS																	\
3347	"%a1f32 = OpTypeArray %f32 %c_u32_1\n"														\
3348	"%a2f32 = OpTypeArray %f32 %c_u32_2\n"														\
3349	"%a3v4f32 = OpTypeArray %v4f32 %c_u32_3\n"													\
3350	"%a4f32 = OpTypeArray %f32 %c_u32_4\n"														\
3351	"%a32v4f32 = OpTypeArray %v4f32 %c_u32_32\n"												\
3352	"%ip_a3v4f32 = OpTypePointer Input %a3v4f32\n"												\
3353	"%ip_a32v4f32 = OpTypePointer Input %a32v4f32\n"											\
3354	"%op_a2f32 = OpTypePointer Output %a2f32\n"													\
3355	"%op_a3v4f32 = OpTypePointer Output %a3v4f32\n"												\
3356	"%op_a4f32 = OpTypePointer Output %a4f32\n"
3357
3358// Creates vertex-shader assembly by specializing a boilerplate StringTemplate
3359// on fragments, which must (at least) map "testfun" to an OpFunction definition
3360// for %test_code that takes and returns a %v4f32.  Boilerplate IDs are prefixed
3361// with "BP_" to avoid collisions with fragments.
3362//
3363// It corresponds roughly to this GLSL:
3364//;
3365// layout(location = 0) in vec4 position;
3366// layout(location = 1) in vec4 color;
3367// layout(location = 1) out highp vec4 vtxColor;
3368// void main (void) { gl_Position = position; vtxColor = test_func(color); }
3369string makeVertexShaderAssembly(const map<string, string>& fragments)
3370{
3371// \todo [2015-11-23 awoloszyn] Remove OpName once these have stabalized
3372	static const char vertexShaderBoilerplate[] =
3373		"OpCapability Shader\n"
3374		"OpMemoryModel Logical GLSL450\n"
3375		"OpEntryPoint Vertex %main \"main\" %BP_Position %BP_vtxColor %BP_color "
3376		"%BP_vtxPosition %BP_vertex_id %BP_instance_id\n"
3377		"${debug:opt}\n"
3378		"OpName %main \"main\"\n"
3379		"OpName %BP_vtxPosition \"vtxPosition\"\n"
3380		"OpName %BP_Position \"position\"\n"
3381		"OpName %BP_vtxColor \"vtxColor\"\n"
3382		"OpName %BP_color \"color\"\n"
3383		"OpName %BP_vertex_id \"gl_VertexID\"\n"
3384		"OpName %BP_instance_id \"gl_InstanceID\"\n"
3385		"OpName %test_code \"testfun(vf4;\"\n"
3386		"OpDecorate %BP_vtxPosition Location 2\n"
3387		"OpDecorate %BP_Position Location 0\n"
3388		"OpDecorate %BP_vtxColor Location 1\n"
3389		"OpDecorate %BP_color Location 1\n"
3390		"OpDecorate %BP_vertex_id BuiltIn VertexId\n"
3391		"OpDecorate %BP_instance_id BuiltIn InstanceId\n"
3392		"${decoration:opt}\n"
3393		SPIRV_ASSEMBLY_TYPES
3394		SPIRV_ASSEMBLY_CONSTANTS
3395		SPIRV_ASSEMBLY_ARRAYS
3396		"%BP_vtxPosition = OpVariable %op_v4f32 Output\n"
3397		"%BP_Position = OpVariable %ip_v4f32 Input\n"
3398		"%BP_vtxColor = OpVariable %op_v4f32 Output\n"
3399		"%BP_color = OpVariable %ip_v4f32 Input\n"
3400		"%BP_vertex_id = OpVariable %ip_i32 Input\n"
3401		"%BP_instance_id = OpVariable %ip_i32 Input\n"
3402		"${pre_main:opt}\n"
3403		"%main = OpFunction %void None %fun\n"
3404		"%BP_label = OpLabel\n"
3405		"%BP_tmp_position = OpLoad %v4f32 %BP_Position\n"
3406		"OpStore %BP_vtxPosition %BP_tmp_position\n"
3407		"%BP_tmp_color = OpLoad %v4f32 %BP_color\n"
3408		"%BP_clr_transformed = OpFunctionCall %v4f32 %test_code %BP_tmp_color\n"
3409		"OpStore %BP_vtxColor %BP_clr_transformed\n"
3410		"OpReturn\n"
3411		"OpFunctionEnd\n"
3412		"${testfun}\n";
3413	return tcu::StringTemplate(vertexShaderBoilerplate).specialize(fragments);
3414}
3415
3416// Creates tess-control-shader assembly by specializing a boilerplate
3417// StringTemplate on fragments, which must (at least) map "testfun" to an
3418// OpFunction definition for %test_code that takes and returns a %v4f32.
3419// Boilerplate IDs are prefixed with "BP_" to avoid collisions with fragments.
3420//
3421// It roughly corresponds to the following GLSL.
3422//
3423// #version 450
3424// layout(vertices = 3) out;
3425// layout(location = 1) in vec4 in_color[];
3426// layout(location = 2) in vec4 in_position[];
3427// layout(location = 1) out vec4 out_color[];
3428// layout(location = 2) out vec4 out_position[];
3429//
3430// void main() {
3431//   out_color[gl_InvocationID] = testfun(in_color[gl_InvocationID]);
3432//   out_position[gl_InvocationID] = in_position[gl_InvocationID];
3433//   if (gl_InvocationID == 0) {
3434//     gl_TessLevelOuter[0] = 1.0;
3435//     gl_TessLevelOuter[1] = 1.0;
3436//     gl_TessLevelOuter[2] = 1.0;
3437//     gl_TessLevelInner[0] = 1.0;
3438//   }
3439// }
3440string makeTessControlShaderAssembly (const map<string, string>& fragments)
3441{
3442	static const char tessControlShaderBoilerplate[] =
3443		"OpCapability Tessellation\n"
3444		"OpMemoryModel Logical GLSL450\n"
3445		"OpEntryPoint TessellationControl %BP_main \"main\" %BP_out_color %BP_gl_InvocationID %BP_in_color %BP_out_position %BP_in_position %BP_gl_TessLevelOuter %BP_gl_TessLevelInner\n"
3446		"OpExecutionMode %BP_main OutputVertices 3\n"
3447		"${debug:opt}\n"
3448		"OpName %BP_main \"main\"\n"
3449		"OpName %BP_out_color \"out_color\"\n"
3450		"OpName %BP_gl_InvocationID \"gl_InvocationID\"\n"
3451		"OpName %BP_in_color \"in_color\"\n"
3452		"OpName %BP_out_position \"out_position\"\n"
3453		"OpName %BP_in_position \"in_position\"\n"
3454		"OpName %BP_gl_TessLevelOuter \"gl_TessLevelOuter\"\n"
3455		"OpName %BP_gl_TessLevelInner \"gl_TessLevelInner\"\n"
3456		"OpName %test_code \"testfun(vf4;\"\n"
3457		"OpDecorate %BP_out_color Location 1\n"
3458		"OpDecorate %BP_gl_InvocationID BuiltIn InvocationId\n"
3459		"OpDecorate %BP_in_color Location 1\n"
3460		"OpDecorate %BP_out_position Location 2\n"
3461		"OpDecorate %BP_in_position Location 2\n"
3462		"OpDecorate %BP_gl_TessLevelOuter Patch\n"
3463		"OpDecorate %BP_gl_TessLevelOuter BuiltIn TessLevelOuter\n"
3464		"OpDecorate %BP_gl_TessLevelInner Patch\n"
3465		"OpDecorate %BP_gl_TessLevelInner BuiltIn TessLevelInner\n"
3466		"${decoration:opt}\n"
3467		SPIRV_ASSEMBLY_TYPES
3468		SPIRV_ASSEMBLY_CONSTANTS
3469		SPIRV_ASSEMBLY_ARRAYS
3470		"%BP_out_color = OpVariable %op_a3v4f32 Output\n"
3471		"%BP_gl_InvocationID = OpVariable %ip_i32 Input\n"
3472		"%BP_in_color = OpVariable %ip_a32v4f32 Input\n"
3473		"%BP_out_position = OpVariable %op_a3v4f32 Output\n"
3474		"%BP_in_position = OpVariable %ip_a32v4f32 Input\n"
3475		"%BP_gl_TessLevelOuter = OpVariable %op_a4f32 Output\n"
3476		"%BP_gl_TessLevelInner = OpVariable %op_a2f32 Output\n"
3477		"${pre_main:opt}\n"
3478
3479		"%BP_main = OpFunction %void None %fun\n"
3480		"%BP_label = OpLabel\n"
3481
3482		"%BP_invocation_id = OpLoad %i32 %BP_gl_InvocationID\n"
3483
3484		"%BP_in_color_ptr = OpAccessChain %ip_v4f32 %BP_in_color %BP_invocation_id\n"
3485		"%BP_in_position_ptr = OpAccessChain %ip_v4f32 %BP_in_position %BP_invocation_id\n"
3486
3487		"%BP_in_color_val = OpLoad %v4f32 %BP_in_color_ptr\n"
3488		"%BP_in_position_val = OpLoad %v4f32 %BP_in_position_ptr\n"
3489
3490		"%BP_clr_transformed = OpFunctionCall %v4f32 %test_code %BP_in_color_val\n"
3491
3492		"%BP_out_color_ptr = OpAccessChain %op_v4f32 %BP_out_color %BP_invocation_id\n"
3493		"%BP_out_position_ptr = OpAccessChain %op_v4f32 %BP_out_position %BP_invocation_id\n"
3494
3495		"OpStore %BP_out_color_ptr %BP_clr_transformed\n"
3496		"OpStore %BP_out_position_ptr %BP_in_position_val\n"
3497
3498		"%BP_is_first_invocation = OpIEqual %bool %BP_invocation_id %c_i32_0\n"
3499		"OpSelectionMerge %BP_merge_label None\n"
3500		"OpBranchConditional %BP_is_first_invocation %BP_first_invocation %BP_merge_label\n"
3501
3502		"%BP_first_invocation = OpLabel\n"
3503		"%BP_tess_outer_0 = OpAccessChain %op_f32 %BP_gl_TessLevelOuter %c_i32_0\n"
3504		"%BP_tess_outer_1 = OpAccessChain %op_f32 %BP_gl_TessLevelOuter %c_i32_1\n"
3505		"%BP_tess_outer_2 = OpAccessChain %op_f32 %BP_gl_TessLevelOuter %c_i32_2\n"
3506		"%BP_tess_inner = OpAccessChain %op_f32 %BP_gl_TessLevelInner %c_i32_0\n"
3507
3508		"OpStore %BP_tess_outer_0 %c_f32_1\n"
3509		"OpStore %BP_tess_outer_1 %c_f32_1\n"
3510		"OpStore %BP_tess_outer_2 %c_f32_1\n"
3511		"OpStore %BP_tess_inner %c_f32_1\n"
3512
3513		"OpBranch %BP_merge_label\n"
3514		"%BP_merge_label = OpLabel\n"
3515		"OpReturn\n"
3516		"OpFunctionEnd\n"
3517		"${testfun}\n";
3518	return tcu::StringTemplate(tessControlShaderBoilerplate).specialize(fragments);
3519}
3520
3521// Creates tess-evaluation-shader assembly by specializing a boilerplate
3522// StringTemplate on fragments, which must (at least) map "testfun" to an
3523// OpFunction definition for %test_code that takes and returns a %v4f32.
3524// Boilerplate IDs are prefixed with "BP_" to avoid collisions with fragments.
3525//
3526// It roughly corresponds to the following glsl.
3527//
3528// #version 450
3529//
3530// layout(triangles, equal_spacing, ccw) in;
3531// layout(location = 1) in vec4 in_color[];
3532// layout(location = 2) in vec4 in_position[];
3533// layout(location = 1) out vec4 out_color;
3534//
3535// #define interpolate(val)
3536//   vec4(gl_TessCoord.x) * val[0] + vec4(gl_TessCoord.y) * val[1] +
3537//          vec4(gl_TessCoord.z) * val[2]
3538//
3539// void main() {
3540//   gl_Position = vec4(gl_TessCoord.x) * in_position[0] +
3541//                  vec4(gl_TessCoord.y) * in_position[1] +
3542//                  vec4(gl_TessCoord.z) * in_position[2];
3543//   out_color = testfun(interpolate(in_color));
3544// }
3545string makeTessEvalShaderAssembly(const map<string, string>& fragments)
3546{
3547	static const char tessEvalBoilerplate[] =
3548		"OpCapability Tessellation\n"
3549		"OpMemoryModel Logical GLSL450\n"
3550		"OpEntryPoint TessellationEvaluation %BP_main \"main\" %BP_stream %BP_gl_tessCoord %BP_in_position %BP_out_color %BP_in_color \n"
3551		"OpExecutionMode %BP_main Triangles\n"
3552		"${debug:opt}\n"
3553		"OpName %BP_main \"main\"\n"
3554		"OpName %BP_per_vertex_out \"gl_PerVertex\"\n"
3555		"OpMemberName %BP_per_vertex_out 0 \"gl_Position\"\n"
3556		"OpMemberName %BP_per_vertex_out 1 \"gl_PointSize\"\n"
3557		"OpMemberName %BP_per_vertex_out 2 \"gl_ClipDistance\"\n"
3558		"OpMemberName %BP_per_vertex_out 3 \"gl_CullDistance\"\n"
3559		"OpName %BP_stream \"\"\n"
3560		"OpName %BP_gl_tessCoord \"gl_TessCoord\"\n"
3561		"OpName %BP_in_position \"in_position\"\n"
3562		"OpName %BP_out_color \"out_color\"\n"
3563		"OpName %BP_in_color \"in_color\"\n"
3564		"OpName %test_code \"testfun(vf4;\"\n"
3565		"OpMemberDecorate %BP_per_vertex_out 0 BuiltIn Position\n"
3566		"OpMemberDecorate %BP_per_vertex_out 1 BuiltIn PointSize\n"
3567		"OpMemberDecorate %BP_per_vertex_out 2 BuiltIn ClipDistance\n"
3568		"OpMemberDecorate %BP_per_vertex_out 3 BuiltIn CullDistance\n"
3569		"OpDecorate %BP_per_vertex_out Block\n"
3570		"OpDecorate %BP_gl_tessCoord BuiltIn TessCoord\n"
3571		"OpDecorate %BP_in_position Location 2\n"
3572		"OpDecorate %BP_out_color Location 1\n"
3573		"OpDecorate %BP_in_color Location 1\n"
3574		"${decoration:opt}\n"
3575		SPIRV_ASSEMBLY_TYPES
3576		SPIRV_ASSEMBLY_CONSTANTS
3577		SPIRV_ASSEMBLY_ARRAYS
3578		"%BP_per_vertex_out = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
3579		"%BP_op_per_vertex_out = OpTypePointer Output %BP_per_vertex_out\n"
3580		"%BP_stream = OpVariable %BP_op_per_vertex_out Output\n"
3581		"%BP_gl_tessCoord = OpVariable %ip_v3f32 Input\n"
3582		"%BP_in_position = OpVariable %ip_a32v4f32 Input\n"
3583		"%BP_out_color = OpVariable %op_v4f32 Output\n"
3584		"%BP_in_color = OpVariable %ip_a32v4f32 Input\n"
3585		"${pre_main:opt}\n"
3586
3587		"%BP_main = OpFunction %void None %fun\n"
3588		"%BP_label = OpLabel\n"
3589		"%BP_tc_0_ptr = OpAccessChain %ip_f32 %BP_gl_tessCoord %c_u32_0\n"
3590		"%BP_tc_1_ptr = OpAccessChain %ip_f32 %BP_gl_tessCoord %c_u32_1\n"
3591		"%BP_tc_2_ptr = OpAccessChain %ip_f32 %BP_gl_tessCoord %c_u32_2\n"
3592
3593		"%BP_tc_0 = OpLoad %f32 %BP_tc_0_ptr\n"
3594		"%BP_tc_1 = OpLoad %f32 %BP_tc_1_ptr\n"
3595		"%BP_tc_2 = OpLoad %f32 %BP_tc_2_ptr\n"
3596
3597		"%BP_in_pos_0_ptr = OpAccessChain %ip_v4f32 %BP_in_position %c_i32_0\n"
3598		"%BP_in_pos_1_ptr = OpAccessChain %ip_v4f32 %BP_in_position %c_i32_1\n"
3599		"%BP_in_pos_2_ptr = OpAccessChain %ip_v4f32 %BP_in_position %c_i32_2\n"
3600
3601		"%BP_in_pos_0 = OpLoad %v4f32 %BP_in_pos_0_ptr\n"
3602		"%BP_in_pos_1 = OpLoad %v4f32 %BP_in_pos_1_ptr\n"
3603		"%BP_in_pos_2 = OpLoad %v4f32 %BP_in_pos_2_ptr\n"
3604
3605		"%BP_in_pos_0_weighted = OpVectorTimesScalar %v4f32 %BP_tc_0 %BP_in_pos_0\n"
3606		"%BP_in_pos_1_weighted = OpVectorTimesScalar %v4f32 %BP_tc_1 %BP_in_pos_1\n"
3607		"%BP_in_pos_2_weighted = OpVectorTimesScalar %v4f32 %BP_tc_2 %BP_in_pos_2\n"
3608
3609		"%BP_out_pos_ptr = OpAccessChain %op_v4f32 %BP_stream %c_i32_0\n"
3610
3611		"%BP_in_pos_0_plus_pos_1 = OpFAdd %v4f32 %BP_in_pos_0_weighted %BP_in_pos_1_weighted\n"
3612		"%BP_computed_out = OpFAdd %v4f32 %BP_in_pos_0_plus_pos_1 %BP_in_pos_2_weighted\n"
3613		"OpStore %BP_out_pos_ptr %BP_computed_out\n"
3614
3615		"%BP_in_clr_0_ptr = OpAccessChain %ip_v4f32 %BP_in_color %c_i32_0\n"
3616		"%BP_in_clr_1_ptr = OpAccessChain %ip_v4f32 %BP_in_color %c_i32_1\n"
3617		"%BP_in_clr_2_ptr = OpAccessChain %ip_v4f32 %BP_in_color %c_i32_2\n"
3618
3619		"%BP_in_clr_0 = OpLoad %v4f32 %BP_in_clr_0_ptr\n"
3620		"%BP_in_clr_1 = OpLoad %v4f32 %BP_in_clr_1_ptr\n"
3621		"%BP_in_clr_2 = OpLoad %v4f32 %BP_in_clr_2_ptr\n"
3622
3623		"%BP_in_clr_0_weighted = OpVectorTimesScalar %v4f32 %BP_tc_0 %BP_in_clr_0\n"
3624		"%BP_in_clr_1_weighted = OpVectorTimesScalar %v4f32 %BP_tc_1 %BP_in_clr_1\n"
3625		"%BP_in_clr_2_weighted = OpVectorTimesScalar %v4f32 %BP_tc_2 %BP_in_clr_2\n"
3626
3627		"%BP_in_clr_0_plus_col_1 = OpFAdd %v4f32 %BP_in_clr_0_weighted %BP_in_clr_1_weighted\n"
3628		"%BP_computed_clr = OpFAdd %v4f32 %BP_in_clr_0_plus_col_1 %BP_in_clr_2_weighted\n"
3629		"%BP_clr_transformed = OpFunctionCall %v4f32 %test_code %BP_computed_clr\n"
3630
3631		"OpStore %BP_out_color %BP_clr_transformed\n"
3632		"OpReturn\n"
3633		"OpFunctionEnd\n"
3634		"${testfun}\n";
3635	return tcu::StringTemplate(tessEvalBoilerplate).specialize(fragments);
3636}
3637
3638// Creates geometry-shader assembly by specializing a boilerplate StringTemplate
3639// on fragments, which must (at least) map "testfun" to an OpFunction definition
3640// for %test_code that takes and returns a %v4f32.  Boilerplate IDs are prefixed
3641// with "BP_" to avoid collisions with fragments.
3642//
3643// Derived from this GLSL:
3644//
3645// #version 450
3646// layout(triangles) in;
3647// layout(triangle_strip, max_vertices = 3) out;
3648//
3649// layout(location = 1) in vec4 in_color[];
3650// layout(location = 1) out vec4 out_color;
3651//
3652// void main() {
3653//   gl_Position = gl_in[0].gl_Position;
3654//   out_color = test_fun(in_color[0]);
3655//   EmitVertex();
3656//   gl_Position = gl_in[1].gl_Position;
3657//   out_color = test_fun(in_color[1]);
3658//   EmitVertex();
3659//   gl_Position = gl_in[2].gl_Position;
3660//   out_color = test_fun(in_color[2]);
3661//   EmitVertex();
3662//   EndPrimitive();
3663// }
3664string makeGeometryShaderAssembly(const map<string, string>& fragments)
3665{
3666	static const char geometryShaderBoilerplate[] =
3667		"OpCapability Geometry\n"
3668		"OpMemoryModel Logical GLSL450\n"
3669		"OpEntryPoint Geometry %BP_main \"main\" %BP_out_gl_position %BP_gl_in %BP_out_color %BP_in_color\n"
3670		"OpExecutionMode %BP_main Triangles\n"
3671		"OpExecutionMode %BP_main Invocations 0\n"
3672		"OpExecutionMode %BP_main OutputTriangleStrip\n"
3673		"OpExecutionMode %BP_main OutputVertices 3\n"
3674		"${debug:opt}\n"
3675		"OpName %BP_main \"main\"\n"
3676		"OpName %BP_per_vertex_in \"gl_PerVertex\"\n"
3677		"OpMemberName %BP_per_vertex_in 0 \"gl_Position\"\n"
3678		"OpMemberName %BP_per_vertex_in 1 \"gl_PointSize\"\n"
3679		"OpMemberName %BP_per_vertex_in 2 \"gl_ClipDistance\"\n"
3680		"OpMemberName %BP_per_vertex_in 3 \"gl_CullDistance\"\n"
3681		"OpName %BP_gl_in \"gl_in\"\n"
3682		"OpName %BP_out_color \"out_color\"\n"
3683		"OpName %BP_in_color \"in_color\"\n"
3684		"OpName %test_code \"testfun(vf4;\"\n"
3685		"OpDecorate %BP_out_gl_position BuiltIn Position\n"
3686		"OpMemberDecorate %BP_per_vertex_in 0 BuiltIn Position\n"
3687		"OpMemberDecorate %BP_per_vertex_in 1 BuiltIn PointSize\n"
3688		"OpMemberDecorate %BP_per_vertex_in 2 BuiltIn ClipDistance\n"
3689		"OpMemberDecorate %BP_per_vertex_in 3 BuiltIn CullDistance\n"
3690		"OpDecorate %BP_per_vertex_in Block\n"
3691		"OpDecorate %BP_out_color Location 1\n"
3692		"OpDecorate %BP_out_color Stream 0\n"
3693		"OpDecorate %BP_in_color Location 1\n"
3694		"${decoration:opt}\n"
3695		SPIRV_ASSEMBLY_TYPES
3696		SPIRV_ASSEMBLY_CONSTANTS
3697		SPIRV_ASSEMBLY_ARRAYS
3698		"%BP_per_vertex_in = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
3699		"%BP_a3_per_vertex_in = OpTypeArray %BP_per_vertex_in %c_u32_3\n"
3700		"%BP_ip_a3_per_vertex_in = OpTypePointer Input %BP_a3_per_vertex_in\n"
3701
3702		"%BP_gl_in = OpVariable %BP_ip_a3_per_vertex_in Input\n"
3703		"%BP_out_color = OpVariable %op_v4f32 Output\n"
3704		"%BP_in_color = OpVariable %ip_a3v4f32 Input\n"
3705		"%BP_out_gl_position = OpVariable %op_v4f32 Output\n"
3706		"${pre_main:opt}\n"
3707
3708		"%BP_main = OpFunction %void None %fun\n"
3709		"%BP_label = OpLabel\n"
3710		"%BP_gl_in_0_gl_position = OpAccessChain %ip_v4f32 %BP_gl_in %c_i32_0 %c_i32_0\n"
3711		"%BP_gl_in_1_gl_position = OpAccessChain %ip_v4f32 %BP_gl_in %c_i32_1 %c_i32_0\n"
3712		"%BP_gl_in_2_gl_position = OpAccessChain %ip_v4f32 %BP_gl_in %c_i32_2 %c_i32_0\n"
3713
3714		"%BP_in_position_0 = OpLoad %v4f32 %BP_gl_in_0_gl_position\n"
3715		"%BP_in_position_1 = OpLoad %v4f32 %BP_gl_in_1_gl_position\n"
3716		"%BP_in_position_2 = OpLoad %v4f32 %BP_gl_in_2_gl_position \n"
3717
3718		"%BP_in_color_0_ptr = OpAccessChain %ip_v4f32 %BP_in_color %c_i32_0\n"
3719		"%BP_in_color_1_ptr = OpAccessChain %ip_v4f32 %BP_in_color %c_i32_1\n"
3720		"%BP_in_color_2_ptr = OpAccessChain %ip_v4f32 %BP_in_color %c_i32_2\n"
3721
3722		"%BP_in_color_0 = OpLoad %v4f32 %BP_in_color_0_ptr\n"
3723		"%BP_in_color_1 = OpLoad %v4f32 %BP_in_color_1_ptr\n"
3724		"%BP_in_color_2 = OpLoad %v4f32 %BP_in_color_2_ptr\n"
3725
3726		"%BP_transformed_in_color_0 = OpFunctionCall %v4f32 %test_code %BP_in_color_0\n"
3727		"%BP_transformed_in_color_1 = OpFunctionCall %v4f32 %test_code %BP_in_color_1\n"
3728		"%BP_transformed_in_color_2 = OpFunctionCall %v4f32 %test_code %BP_in_color_2\n"
3729
3730
3731		"OpStore %BP_out_gl_position %BP_in_position_0\n"
3732		"OpStore %BP_out_color %BP_transformed_in_color_0\n"
3733		"OpEmitVertex\n"
3734
3735		"OpStore %BP_out_gl_position %BP_in_position_1\n"
3736		"OpStore %BP_out_color %BP_transformed_in_color_1\n"
3737		"OpEmitVertex\n"
3738
3739		"OpStore %BP_out_gl_position %BP_in_position_2\n"
3740		"OpStore %BP_out_color %BP_transformed_in_color_2\n"
3741		"OpEmitVertex\n"
3742
3743		"OpEndPrimitive\n"
3744		"OpReturn\n"
3745		"OpFunctionEnd\n"
3746		"${testfun}\n";
3747	return tcu::StringTemplate(geometryShaderBoilerplate).specialize(fragments);
3748}
3749
3750// Creates fragment-shader assembly by specializing a boilerplate StringTemplate
3751// on fragments, which must (at least) map "testfun" to an OpFunction definition
3752// for %test_code that takes and returns a %v4f32.  Boilerplate IDs are prefixed
3753// with "BP_" to avoid collisions with fragments.
3754//
3755// Derived from this GLSL:
3756//
3757// layout(location = 1) in highp vec4 vtxColor;
3758// layout(location = 0) out highp vec4 fragColor;
3759// highp vec4 testfun(highp vec4 x) { return x; }
3760// void main(void) { fragColor = testfun(vtxColor); }
3761//
3762// with modifications including passing vtxColor by value and ripping out
3763// testfun() definition.
3764string makeFragmentShaderAssembly(const map<string, string>& fragments)
3765{
3766	static const char fragmentShaderBoilerplate[] =
3767		"OpCapability Shader\n"
3768		"OpMemoryModel Logical GLSL450\n"
3769		"OpEntryPoint Fragment %BP_main \"main\" %BP_vtxColor %BP_fragColor\n"
3770		"OpExecutionMode %BP_main OriginUpperLeft\n"
3771		"${debug:opt}\n"
3772		"OpName %BP_main \"main\"\n"
3773		"OpName %BP_fragColor \"fragColor\"\n"
3774		"OpName %BP_vtxColor \"vtxColor\"\n"
3775		"OpName %test_code \"testfun(vf4;\"\n"
3776		"OpDecorate %BP_fragColor Location 0\n"
3777		"OpDecorate %BP_vtxColor Location 1\n"
3778		"${decoration:opt}\n"
3779		SPIRV_ASSEMBLY_TYPES
3780		SPIRV_ASSEMBLY_CONSTANTS
3781		SPIRV_ASSEMBLY_ARRAYS
3782		"%BP_fragColor = OpVariable %op_v4f32 Output\n"
3783		"%BP_vtxColor = OpVariable %ip_v4f32 Input\n"
3784		"${pre_main:opt}\n"
3785		"%BP_main = OpFunction %void None %fun\n"
3786		"%BP_label_main = OpLabel\n"
3787		"%BP_tmp1 = OpLoad %v4f32 %BP_vtxColor\n"
3788		"%BP_tmp2 = OpFunctionCall %v4f32 %test_code %BP_tmp1\n"
3789		"OpStore %BP_fragColor %BP_tmp2\n"
3790		"OpReturn\n"
3791		"OpFunctionEnd\n"
3792		"${testfun}\n";
3793	return tcu::StringTemplate(fragmentShaderBoilerplate).specialize(fragments);
3794}
3795
3796// Creates fragments that specialize into a simple pass-through shader (of any kind).
3797map<string, string> passthruFragments(void)
3798{
3799	map<string, string> fragments;
3800	fragments["testfun"] =
3801		// A %test_code function that returns its argument unchanged.
3802		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
3803		"%param1 = OpFunctionParameter %v4f32\n"
3804		"%label_testfun = OpLabel\n"
3805		"OpReturnValue %param1\n"
3806		"OpFunctionEnd\n";
3807	return fragments;
3808}
3809
3810// Adds shader assembly text to dst.spirvAsmSources for all shader kinds.
3811// Vertex shader gets custom code from context, the rest are pass-through.
3812void addShaderCodeCustomVertex(vk::SourceCollections& dst, InstanceContext context)
3813{
3814	map<string, string> passthru = passthruFragments();
3815	dst.spirvAsmSources.add("vert") << makeVertexShaderAssembly(context.testCodeFragments);
3816	dst.spirvAsmSources.add("tessc") << makeTessControlShaderAssembly(passthru);
3817	dst.spirvAsmSources.add("tesse") << makeTessEvalShaderAssembly(passthru);
3818	dst.spirvAsmSources.add("geom") << makeGeometryShaderAssembly(passthru);
3819	dst.spirvAsmSources.add("frag") << makeFragmentShaderAssembly(passthru);
3820}
3821
3822// Adds shader assembly text to dst.spirvAsmSources for all shader kinds.
3823// Tessellation control shader gets custom code from context, the rest are
3824// pass-through.
3825void addShaderCodeCustomTessControl(vk::SourceCollections& dst, InstanceContext context)
3826{
3827	map<string, string> passthru = passthruFragments();
3828	dst.spirvAsmSources.add("vert") << makeVertexShaderAssembly(passthru);
3829	dst.spirvAsmSources.add("tessc") << makeTessControlShaderAssembly(context.testCodeFragments);
3830	dst.spirvAsmSources.add("tesse") << makeTessEvalShaderAssembly(passthru);
3831	dst.spirvAsmSources.add("geom") << makeGeometryShaderAssembly(passthru);
3832	dst.spirvAsmSources.add("frag") << makeFragmentShaderAssembly(passthru);
3833}
3834
3835// Adds shader assembly text to dst.spirvAsmSources for all shader kinds.
3836// Tessellation evaluation shader gets custom code from context, the rest are
3837// pass-through.
3838void addShaderCodeCustomTessEval(vk::SourceCollections& dst, InstanceContext context)
3839{
3840	map<string, string> passthru = passthruFragments();
3841	dst.spirvAsmSources.add("vert") << makeVertexShaderAssembly(passthru);
3842	dst.spirvAsmSources.add("tessc") << makeTessControlShaderAssembly(passthru);
3843	dst.spirvAsmSources.add("tesse") << makeTessEvalShaderAssembly(context.testCodeFragments);
3844	dst.spirvAsmSources.add("geom") << makeGeometryShaderAssembly(passthru);
3845	dst.spirvAsmSources.add("frag") << makeFragmentShaderAssembly(passthru);
3846}
3847
3848// Adds shader assembly text to dst.spirvAsmSources for all shader kinds.
3849// Geometry shader gets custom code from context, the rest are pass-through.
3850void addShaderCodeCustomGeometry(vk::SourceCollections& dst, InstanceContext context)
3851{
3852	map<string, string> passthru = passthruFragments();
3853	dst.spirvAsmSources.add("vert") << makeVertexShaderAssembly(passthru);
3854	dst.spirvAsmSources.add("tessc") << makeTessControlShaderAssembly(passthru);
3855	dst.spirvAsmSources.add("tesse") << makeTessEvalShaderAssembly(passthru);
3856	dst.spirvAsmSources.add("geom") << makeGeometryShaderAssembly(context.testCodeFragments);
3857	dst.spirvAsmSources.add("frag") << makeFragmentShaderAssembly(passthru);
3858}
3859
3860// Adds shader assembly text to dst.spirvAsmSources for all shader kinds.
3861// Fragment shader gets custom code from context, the rest are pass-through.
3862void addShaderCodeCustomFragment(vk::SourceCollections& dst, InstanceContext context)
3863{
3864	map<string, string> passthru = passthruFragments();
3865	dst.spirvAsmSources.add("vert") << makeVertexShaderAssembly(passthru);
3866	dst.spirvAsmSources.add("tessc") << makeTessControlShaderAssembly(passthru);
3867	dst.spirvAsmSources.add("tesse") << makeTessEvalShaderAssembly(passthru);
3868	dst.spirvAsmSources.add("geom") << makeGeometryShaderAssembly(passthru);
3869	dst.spirvAsmSources.add("frag") << makeFragmentShaderAssembly(context.testCodeFragments);
3870}
3871
3872void createCombinedModule(vk::SourceCollections& dst, InstanceContext)
3873{
3874	// \todo [2015-12-07 awoloszyn] Make tessellation / geometry conditional
3875	// \todo [2015-12-07 awoloszyn] Remove OpName and OpMemeberName at some point
3876	dst.spirvAsmSources.add("module") <<
3877		"OpCapability Shader\n"
3878		"OpCapability Geometry\n"
3879		"OpCapability Tessellation\n"
3880		"OpMemoryModel Logical GLSL450\n"
3881
3882		"OpEntryPoint Vertex %vert_main \"main\" %vert_Position %vert_vtxColor %vert_color %vert_vtxPosition %vert_vertex_id %vert_instance_id\n"
3883		"OpEntryPoint Geometry %geom_main \"main\" %out_gl_position %gl_in %out_color %in_color\n"
3884		"OpEntryPoint TessellationControl %tessc_main \"main\" %tessc_out_color %tessc_gl_InvocationID %tessc_in_color %tessc_out_position %tessc_in_position %tessc_gl_TessLevelOuter %tessc_gl_TessLevelInner\n"
3885		"OpEntryPoint TessellationEvaluation %tesse_main \"main\" %tesse_stream %tesse_gl_tessCoord %tesse_in_position %tesse_out_color %tesse_in_color \n"
3886		"OpEntryPoint Fragment %frag_main \"main\" %frag_vtxColor %frag_fragColor\n"
3887
3888		"OpExecutionMode %geom_main Triangles\n"
3889		"OpExecutionMode %geom_main Invocations 0\n"
3890		"OpExecutionMode %geom_main OutputTriangleStrip\n"
3891		"OpExecutionMode %geom_main OutputVertices 3\n"
3892
3893		"OpExecutionMode %tessc_main OutputVertices 3\n"
3894
3895		"OpExecutionMode %tesse_main Triangles\n"
3896
3897		"OpExecutionMode %frag_main OriginUpperLeft\n"
3898
3899		"; Vertex decorations\n"
3900		"OpName %vert_main \"main\"\n"
3901		"OpName %vert_vtxPosition \"vtxPosition\"\n"
3902		"OpName %vert_Position \"position\"\n"
3903		"OpName %vert_vtxColor \"vtxColor\"\n"
3904		"OpName %vert_color \"color\"\n"
3905		"OpName %vert_vertex_id \"gl_VertexID\"\n"
3906		"OpName %vert_instance_id \"gl_InstanceID\"\n"
3907		"OpDecorate %vert_vtxPosition Location 2\n"
3908		"OpDecorate %vert_Position Location 0\n"
3909		"OpDecorate %vert_vtxColor Location 1\n"
3910		"OpDecorate %vert_color Location 1\n"
3911		"OpDecorate %vert_vertex_id BuiltIn VertexId\n"
3912		"OpDecorate %vert_instance_id BuiltIn InstanceId\n"
3913
3914		"; Geometry decorations\n"
3915		"OpName %geom_main \"main\"\n"
3916		"OpName %per_vertex_in \"gl_PerVertex\"\n"
3917		"OpMemberName %per_vertex_in 0 \"gl_Position\"\n"
3918		"OpMemberName %per_vertex_in 1 \"gl_PointSize\"\n"
3919		"OpMemberName %per_vertex_in 2 \"gl_ClipDistance\"\n"
3920		"OpMemberName %per_vertex_in 3 \"gl_CullDistance\"\n"
3921		"OpName %gl_in \"gl_in\"\n"
3922		"OpName %out_color \"out_color\"\n"
3923		"OpName %in_color \"in_color\"\n"
3924		"OpDecorate %out_gl_position BuiltIn Position\n"
3925		"OpMemberDecorate %per_vertex_in 0 BuiltIn Position\n"
3926		"OpMemberDecorate %per_vertex_in 1 BuiltIn PointSize\n"
3927		"OpMemberDecorate %per_vertex_in 2 BuiltIn ClipDistance\n"
3928		"OpMemberDecorate %per_vertex_in 3 BuiltIn CullDistance\n"
3929		"OpDecorate %per_vertex_in Block\n"
3930		"OpDecorate %out_color Location 1\n"
3931		"OpDecorate %out_color Stream 0\n"
3932		"OpDecorate %in_color Location 1\n"
3933
3934		"; Tessellation Control decorations\n"
3935		"OpName %tessc_main \"main\"\n"
3936		"OpName %tessc_out_color \"out_color\"\n"
3937		"OpName %tessc_gl_InvocationID \"gl_InvocationID\"\n"
3938		"OpName %tessc_in_color \"in_color\"\n"
3939		"OpName %tessc_out_position \"out_position\"\n"
3940		"OpName %tessc_in_position \"in_position\"\n"
3941		"OpName %tessc_gl_TessLevelOuter \"gl_TessLevelOuter\"\n"
3942		"OpName %tessc_gl_TessLevelInner \"gl_TessLevelInner\"\n"
3943		"OpDecorate %tessc_out_color Location 1\n"
3944		"OpDecorate %tessc_gl_InvocationID BuiltIn InvocationId\n"
3945		"OpDecorate %tessc_in_color Location 1\n"
3946		"OpDecorate %tessc_out_position Location 2\n"
3947		"OpDecorate %tessc_in_position Location 2\n"
3948		"OpDecorate %tessc_gl_TessLevelOuter Patch\n"
3949		"OpDecorate %tessc_gl_TessLevelOuter BuiltIn TessLevelOuter\n"
3950		"OpDecorate %tessc_gl_TessLevelInner Patch\n"
3951		"OpDecorate %tessc_gl_TessLevelInner BuiltIn TessLevelInner\n"
3952
3953		"; Tessellation Evaluation decorations\n"
3954		"OpName %tesse_main \"main\"\n"
3955		"OpName %tesse_per_vertex_out \"gl_PerVertex\"\n"
3956		"OpMemberName %tesse_per_vertex_out 0 \"gl_Position\"\n"
3957		"OpMemberName %tesse_per_vertex_out 1 \"gl_PointSize\"\n"
3958		"OpMemberName %tesse_per_vertex_out 2 \"gl_ClipDistance\"\n"
3959		"OpMemberName %tesse_per_vertex_out 3 \"gl_CullDistance\"\n"
3960		"OpName %tesse_stream \"\"\n"
3961		"OpName %tesse_gl_tessCoord \"gl_TessCoord\"\n"
3962		"OpName %tesse_in_position \"in_position\"\n"
3963		"OpName %tesse_out_color \"out_color\"\n"
3964		"OpName %tesse_in_color \"in_color\"\n"
3965		"OpMemberDecorate %tesse_per_vertex_out 0 BuiltIn Position\n"
3966		"OpMemberDecorate %tesse_per_vertex_out 1 BuiltIn PointSize\n"
3967		"OpMemberDecorate %tesse_per_vertex_out 2 BuiltIn ClipDistance\n"
3968		"OpMemberDecorate %tesse_per_vertex_out 3 BuiltIn CullDistance\n"
3969		"OpDecorate %tesse_per_vertex_out Block\n"
3970		"OpDecorate %tesse_gl_tessCoord BuiltIn TessCoord\n"
3971		"OpDecorate %tesse_in_position Location 2\n"
3972		"OpDecorate %tesse_out_color Location 1\n"
3973		"OpDecorate %tesse_in_color Location 1\n"
3974
3975		"; Fragment decorations\n"
3976		"OpName %frag_main \"main\"\n"
3977		"OpName %frag_fragColor \"fragColor\"\n"
3978		"OpName %frag_vtxColor \"vtxColor\"\n"
3979		"OpDecorate %frag_fragColor Location 0\n"
3980		"OpDecorate %frag_vtxColor Location 1\n"
3981
3982		SPIRV_ASSEMBLY_TYPES
3983		SPIRV_ASSEMBLY_CONSTANTS
3984		SPIRV_ASSEMBLY_ARRAYS
3985
3986		"; Vertex Variables\n"
3987		"%vert_vtxPosition = OpVariable %op_v4f32 Output\n"
3988		"%vert_Position = OpVariable %ip_v4f32 Input\n"
3989		"%vert_vtxColor = OpVariable %op_v4f32 Output\n"
3990		"%vert_color = OpVariable %ip_v4f32 Input\n"
3991		"%vert_vertex_id = OpVariable %ip_i32 Input\n"
3992		"%vert_instance_id = OpVariable %ip_i32 Input\n"
3993
3994		"; Geometry Variables\n"
3995		"%geom_per_vertex_in = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
3996		"%geom_a3_per_vertex_in = OpTypeArray %geom_per_vertex_in %c_u32_3\n"
3997		"%geom_ip_a3_per_vertex_in = OpTypePointer Input %a3_per_vertex_in\n"
3998		"%geom_gl_in = OpVariable %geom_ip_a3_per_vertex_in Input\n"
3999		"%geom_out_color = OpVariable %op_v4f32 Output\n"
4000		"%geom_in_color = OpVariable %ip_a3v4f32 Input\n"
4001		"%geom_out_gl_position = OpVariable %op_v4f32 Output\n"
4002
4003		"; Tessellation Control Variables\n"
4004		"%tessc_out_color = OpVariable %op_a3v4f32 Output\n"
4005		"%tessc_gl_InvocationID = OpVariable %ip_i32 Input\n"
4006		"%tessc_in_color = OpVariable %ip_a32v4f32 Input\n"
4007		"%tessc_out_position = OpVariable %op_a3v4f32 Output\n"
4008		"%tessc_in_position = OpVariable %ip_a32v4f32 Input\n"
4009		"%tessc_gl_TessLevelOuter = OpVariable %op_a4f32 Output\n"
4010		"%tessc_gl_TessLevelInner = OpVariable %op_a2f32 Output\n"
4011
4012		"; Tessellation Evaluation Decorations\n"
4013		"%tesse_per_vertex_out = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
4014		"%tesse_op_per_vertex_out = OpTypePointer Output %tesse_per_vertex_out\n"
4015		"%tesse_stream = OpVariable %tesse_op_per_vertex_out Output\n"
4016		"%tesse_gl_tessCoord = OpVariable %ip_v3f32 Input\n"
4017		"%tesse_in_position = OpVariable %ip_a32v4f32 Input\n"
4018		"%tesse_out_color = OpVariable %op_v4f32 Output\n"
4019		"%tesse_in_color = OpVariable %ip_a32v4f32 Input\n"
4020
4021		"; Fragment Variables\n"
4022		"%frag_fragColor = OpVariable %op_v4f32 Output\n"
4023		"%frag_vtxColor = OpVariable %ip_v4f32 Input\n"
4024
4025		"; Vertex Entry\n"
4026		"%vert_main = OpFunction %void None %fun\n"
4027		"%vert_label = OpLabel\n"
4028		"%vert_tmp_position = OpLoad %v4f32 %vert_Position\n"
4029		"OpStore %vert_vtxPosition %vert_tmp_position\n"
4030		"%vert_tmp_color = OpLoad %v4f32 %vert_color\n"
4031		"OpStore %vert_vtxColor %vert_tmp_color\n"
4032		"OpReturn\n"
4033		"OpFunctionEnd\n"
4034
4035		"; Geometry Entry\n"
4036		"%geom_main = OpFunction %void None %fun\n"
4037		"%geom_label = OpLabel\n"
4038		"%geom_gl_in_0_gl_position = OpAccessChain %ip_v4f32 %geom_gl_in %c_i32_0 %c_i32_0\n"
4039		"%geom_gl_in_1_gl_position = OpAccessChain %ip_v4f32 %geom_gl_in %c_i32_1 %c_i32_0\n"
4040		"%geom_gl_in_2_gl_position = OpAccessChain %ip_v4f32 %geom_gl_in %c_i32_2 %c_i32_0\n"
4041		"%geom_in_position_0 = OpLoad %v4f32 %geom_gl_in_0_gl_position\n"
4042		"%geom_in_position_1 = OpLoad %v4f32 %geom_gl_in_1_gl_position\n"
4043		"%geom_in_position_2 = OpLoad %v4f32 %geom_gl_in_2_gl_position \n"
4044		"%geom_in_color_0_ptr = OpAccessChain %ip_v4f32 %geom_in_color %c_i32_0\n"
4045		"%geom_in_color_1_ptr = OpAccessChain %ip_v4f32 %geom_in_color %c_i32_1\n"
4046		"%geom_in_color_2_ptr = OpAccessChain %ip_v4f32 %geom_in_color %c_i32_2\n"
4047		"%geom_in_color_0 = OpLoad %v4f32 %geom_in_color_0_ptr\n"
4048		"%geom_in_color_1 = OpLoad %v4f32 %geom_in_color_1_ptr\n"
4049		"%geom_in_color_2 = OpLoad %v4f32 %geom_in_color_2_ptr\n"
4050		"OpStore %geom_out_gl_position %geom_in_position_0\n"
4051		"OpStore %geom_out_color %geom_in_color_0\n"
4052		"OpEmitVertex\n"
4053		"OpStore %geom_out_gl_position %geom_in_position_1\n"
4054		"OpStore %geom_out_color %geom_in_color_1\n"
4055		"OpEmitVertex\n"
4056		"OpStore %geom_out_gl_position %geom_in_position_2\n"
4057		"OpStore %geom_out_color %geom_in_color_2\n"
4058		"OpEmitVertex\n"
4059		"OpEndPrimitive\n"
4060		"OpReturn\n"
4061		"OpFunctionEnd\n"
4062
4063		"; Tessellation Control Entry\n"
4064		"%tessc_main = OpFunction %void None %fun\n"
4065		"%tessc_label = OpLabel\n"
4066		"%tessc_invocation_id = OpLoad %i32 %tessc_gl_InvocationID\n"
4067		"%tessc_in_color_ptr = OpAccessChain %ip_v4f32 %tessc_in_color %tessc_invocation_id\n"
4068		"%tessc_in_position_ptr = OpAccessChain %ip_v4f32 %tessc_in_position %tessc_invocation_id\n"
4069		"%tessc_in_color_val = OpLoad %v4f32 %tessc_in_color_ptr\n"
4070		"%tessc_in_position_val = OpLoad %v4f32 %tessc_in_position_ptr\n"
4071		"%tessc_out_color_ptr = OpAccessChain %op_v4f32 %tessc_out_color %tessc_invocation_id\n"
4072		"%tessc_out_position_ptr = OpAccessChain %op_v4f32 %tessc_out_position %tessc_invocation_id\n"
4073		"OpStore %tessc_out_color_ptr %tessc_in_color_val\n"
4074		"OpStore %tessc_out_position_ptr %tessc_in_position_val\n"
4075		"%tessc_is_first_invocation = OpIEqual %bool %tessc_invocation_id %c_i32_0\n"
4076		"OpSelectionMerge %tessc_merge_label None\n"
4077		"OpBranchConditional %tessc_is_first_invocation %tessc_first_invocation %tessc_merge_label\n"
4078		"%tessc_first_invocation = OpLabel\n"
4079		"%tessc_tess_outer_0 = OpAccessChain %op_f32 %tessc_gl_TessLevelOuter %c_i32_0\n"
4080		"%tessc_tess_outer_1 = OpAccessChain %op_f32 %tessc_gl_TessLevelOuter %c_i32_1\n"
4081		"%tessc_tess_outer_2 = OpAccessChain %op_f32 %tessc_gl_TessLevelOuter %c_i32_2\n"
4082		"%tessc_tess_inner = OpAccessChain %op_f32 %tessc_gl_TessLevelInner %c_i32_0\n"
4083		"OpStore %tessc_tess_outer_0 %c_f32_1\n"
4084		"OpStore %tessc_tess_outer_1 %c_f32_1\n"
4085		"OpStore %tessc_tess_outer_2 %c_f32_1\n"
4086		"OpStore %tessc_tess_inner %c_f32_1\n"
4087		"OpBranch %tessc_merge_label\n"
4088		"%tessc_merge_label = OpLabel\n"
4089		"OpReturn\n"
4090		"OpFunctionEnd\n"
4091
4092		"; Tessellation Evaluation Entry\n"
4093		"%tesse_main = OpFunction %void None %fun\n"
4094		"%tesse_label = OpLabel\n"
4095		"%tesse_tc_0_ptr = OpAccessChain %ip_f32 %tesse_gl_tessCoord %c_u32_0\n"
4096		"%tesse_tc_1_ptr = OpAccessChain %ip_f32 %tesse_gl_tessCoord %c_u32_1\n"
4097		"%tesse_tc_2_ptr = OpAccessChain %ip_f32 %tesse_gl_tessCoord %c_u32_2\n"
4098		"%tesse_tc_0 = OpLoad %f32 %tesse_tc_0_ptr\n"
4099		"%tesse_tc_1 = OpLoad %f32 %tesse_tc_1_ptr\n"
4100		"%tesse_tc_2 = OpLoad %f32 %tesse_tc_2_ptr\n"
4101		"%tesse_in_pos_0_ptr = OpAccessChain %ip_v4f32 %tesse_in_position %c_i32_0\n"
4102		"%tesse_in_pos_1_ptr = OpAccessChain %ip_v4f32 %tesse_in_position %c_i32_1\n"
4103		"%tesse_in_pos_2_ptr = OpAccessChain %ip_v4f32 %tesse_in_position %c_i32_2\n"
4104		"%tesse_in_pos_0 = OpLoad %v4f32 %tesse_in_pos_0_ptr\n"
4105		"%tesse_in_pos_1 = OpLoad %v4f32 %tesse_in_pos_1_ptr\n"
4106		"%tesse_in_pos_2 = OpLoad %v4f32 %tesse_in_pos_2_ptr\n"
4107		"%tesse_in_pos_0_weighted = OpVectorTimesScalar %v4f32 %BP_tc_0 %tesse_in_pos_0\n"
4108		"%tesse_in_pos_1_weighted = OpVectorTimesScalar %v4f32 %BP_tc_1 %tesse_in_pos_1\n"
4109		"%tesse_in_pos_2_weighted = OpVectorTimesScalar %v4f32 %BP_tc_2 %tesse_in_pos_2\n"
4110		"%tesse_out_pos_ptr = OpAccessChain %op_v4f32 %tesse_stream %c_i32_0\n"
4111		"%tesse_in_pos_0_plus_pos_1 = OpFAdd %v4f32 %tesse_in_pos_0_weighted %tesse_in_pos_1_weighted\n"
4112		"%tesse_computed_out = OpFAdd %v4f32 %tesse_in_pos_0_plus_pos_1 %tesse_in_pos_2_weighted\n"
4113		"OpStore %tesse_out_pos_ptr %tesse_computed_out\n"
4114		"%tesse_in_clr_0_ptr = OpAccessChain %ip_v4f32 %tesse_in_color %c_i32_0\n"
4115		"%tesse_in_clr_1_ptr = OpAccessChain %ip_v4f32 %tesse_in_color %c_i32_1\n"
4116		"%tesse_in_clr_2_ptr = OpAccessChain %ip_v4f32 %tesse_in_color %c_i32_2\n"
4117		"%tesse_in_clr_0 = OpLoad %v4f32 %tesse_in_clr_0_ptr\n"
4118		"%tesse_in_clr_1 = OpLoad %v4f32 %tesse_in_clr_1_ptr\n"
4119		"%tesse_in_clr_2 = OpLoad %v4f32 %tesse_in_clr_2_ptr\n"
4120		"%tesse_in_clr_0_weighted = OpVectorTimesScalar %v4f32 %tesse_tc_0 %tesse_in_clr_0\n"
4121		"%tesse_in_clr_1_weighted = OpVectorTimesScalar %v4f32 %tesse_tc_1 %tesse_in_clr_1\n"
4122		"%tesse_in_clr_2_weighted = OpVectorTimesScalar %v4f32 %tesse_tc_2 %tesse_in_clr_2\n"
4123		"%tesse_in_clr_0_plus_col_1 = OpFAdd %v4f32 %tesse_in_clr_0_weighted %tesse_in_clr_1_weighted\n"
4124		"%tesse_computed_clr = OpFAdd %v4f32 %tesse_in_clr_0_plus_col_1 %tesse_in_clr_2_weighted\n"
4125		"OpStore %tesse_out_color %tesse_computed_clr\n"
4126		"OpReturn\n"
4127		"OpFunctionEnd\n"
4128
4129		"; Fragment Entry\n"
4130		"%frag_main = OpFunction %void None %fun\n"
4131		"%frag_label_main = OpLabel\n"
4132		"%frag_tmp1 = OpLoad %v4f32 %frag_vtxColor\n"
4133		"OpStore %frag_fragColor %frag_tmp1\n"
4134		"OpReturn\n"
4135		"OpFunctionEnd\n";
4136}
4137
4138// This has two shaders of each stage. The first
4139// is a passthrough, the second inverts the color.
4140void createMultipleEntries(vk::SourceCollections& dst, InstanceContext)
4141{
4142	dst.spirvAsmSources.add("vert") <<
4143	// This module contains 2 vertex shaders. One that is a passthrough
4144	// and a second that inverts the color of the output (1.0 - color).
4145		"OpCapability Shader\n"
4146		"OpMemoryModel Logical GLSL450\n"
4147		"OpEntryPoint Vertex %main \"vert1\" %Position %vtxColor %color %vtxPosition %vertex_id %instance_id\n"
4148		"OpEntryPoint Vertex %main2 \"vert2\" %Position %vtxColor %color %vtxPosition %vertex_id %instance_id\n"
4149
4150		"OpName %main \"frag1\"\n"
4151		"OpName %main2 \"frag2\"\n"
4152		"OpName %vtxPosition \"vtxPosition\"\n"
4153		"OpName %Position \"position\"\n"
4154		"OpName %vtxColor \"vtxColor\"\n"
4155		"OpName %color \"color\"\n"
4156		"OpName %vertex_id \"gl_VertexID\"\n"
4157		"OpName %instance_id \"gl_InstanceID\"\n"
4158		"OpName %test_code \"testfun(vf4;\"\n"
4159
4160		"OpDecorate %vtxPosition Location 2\n"
4161		"OpDecorate %Position Location 0\n"
4162		"OpDecorate %vtxColor Location 1\n"
4163		"OpDecorate %color Location 1\n"
4164		"OpDecorate %vertex_id BuiltIn VertexId\n"
4165		"OpDecorate %instance_id BuiltIn InstanceId\n"
4166		SPIRV_ASSEMBLY_TYPES
4167		SPIRV_ASSEMBLY_CONSTANTS
4168		SPIRV_ASSEMBLY_ARRAYS
4169		"%cval = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_0\n"
4170		"%vtxPosition = OpVariable %op_v4f32 Output\n"
4171		"%Position = OpVariable %ip_v4f32 Input\n"
4172		"%vtxColor = OpVariable %op_v4f32 Output\n"
4173		"%color = OpVariable %ip_v4f32 Input\n"
4174		"%vertex_id = OpVariable %ip_i32 Input\n"
4175		"%instance_id = OpVariable %ip_i32 Input\n"
4176
4177		"%main = OpFunction %void None %fun\n"
4178		"%label = OpLabel\n"
4179		"%tmp_position = OpLoad %v4f32 %Position\n"
4180		"OpStore %vtxPosition %tmp_position\n"
4181		"%tmp_color = OpLoad %v4f32 %color\n"
4182		"OpStore %vtxColor %tmp_color\n"
4183		"OpReturn\n"
4184		"OpFunctionEnd\n"
4185
4186		"%main2 = OpFunction %void None %fun\n"
4187		"%label2 = OpLabel\n"
4188		"%tmp_position2 = OpLoad %v4f32 %Position\n"
4189		"OpStore %vtxPosition %tmp_position2\n"
4190		"%tmp_color2 = OpLoad %v4f32 %color\n"
4191		"%tmp_color3 = OpFSub %v4f32 %cval %tmp_color2\n"
4192		"OpStore %vtxColor %tmp_color3\n"
4193		"OpReturn\n"
4194		"OpFunctionEnd\n";
4195
4196	dst.spirvAsmSources.add("frag") <<
4197		// This is a single module that contains 2 fragment shaders.
4198		// One that passes color through and the other that inverts the output
4199		// color (1.0 - color).
4200		"OpCapability Shader\n"
4201		"OpMemoryModel Logical GLSL450\n"
4202		"OpEntryPoint Fragment %main \"frag1\" %vtxColor %fragColor\n"
4203		"OpEntryPoint Fragment %main2 \"frag2\" %vtxColor %fragColor\n"
4204		"OpExecutionMode %main OriginUpperLeft\n"
4205		"OpExecutionMode %main2 OriginUpperLeft\n"
4206
4207		"OpName %main \"frag1\"\n"
4208		"OpName %main2 \"frag2\"\n"
4209		"OpName %fragColor \"fragColor\"\n"
4210		"OpName %vtxColor \"vtxColor\"\n"
4211		"OpDecorate %fragColor Location 0\n"
4212		"OpDecorate %vtxColor Location 1\n"
4213		SPIRV_ASSEMBLY_TYPES
4214		SPIRV_ASSEMBLY_CONSTANTS
4215		SPIRV_ASSEMBLY_ARRAYS
4216		"%cval = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_0\n"
4217		"%fragColor = OpVariable %op_v4f32 Output\n"
4218		"%vtxColor = OpVariable %ip_v4f32 Input\n"
4219
4220		"%main = OpFunction %void None %fun\n"
4221		"%label_main = OpLabel\n"
4222		"%tmp1 = OpLoad %v4f32 %vtxColor\n"
4223		"OpStore %fragColor %tmp1\n"
4224		"OpReturn\n"
4225		"OpFunctionEnd\n"
4226
4227		"%main2 = OpFunction %void None %fun\n"
4228		"%label_main2 = OpLabel\n"
4229		"%tmp2 = OpLoad %v4f32 %vtxColor\n"
4230		"%tmp3 = OpFSub %v4f32 %cval %tmp2\n"
4231		"OpStore %fragColor %tmp3\n"
4232		"OpReturn\n"
4233		"OpFunctionEnd\n";
4234
4235	dst.spirvAsmSources.add("geom") <<
4236		"OpCapability Geometry\n"
4237		"OpMemoryModel Logical GLSL450\n"
4238		"OpEntryPoint Geometry %geom1_main \"geom1\" %out_gl_position %gl_in %out_color %in_color\n"
4239		"OpEntryPoint Geometry %geom2_main \"geom2\" %out_gl_position %gl_in %out_color %in_color\n"
4240		"OpExecutionMode %geom1_main Triangles\n"
4241		"OpExecutionMode %geom2_main Triangles\n"
4242		"OpExecutionMode %geom1_main Invocations 0\n"
4243		"OpExecutionMode %geom2_main Invocations 0\n"
4244		"OpExecutionMode %geom1_main OutputTriangleStrip\n"
4245		"OpExecutionMode %geom2_main OutputTriangleStrip\n"
4246		"OpExecutionMode %geom1_main OutputVertices 3\n"
4247		"OpExecutionMode %geom2_main OutputVertices 3\n"
4248		"OpName %geom1_main \"geom1\"\n"
4249		"OpName %geom2_main \"geom2\"\n"
4250		"OpName %per_vertex_in \"gl_PerVertex\"\n"
4251		"OpMemberName %per_vertex_in 0 \"gl_Position\"\n"
4252		"OpMemberName %per_vertex_in 1 \"gl_PointSize\"\n"
4253		"OpMemberName %per_vertex_in 2 \"gl_ClipDistance\"\n"
4254		"OpMemberName %per_vertex_in 3 \"gl_CullDistance\"\n"
4255		"OpName %gl_in \"gl_in\"\n"
4256		"OpName %out_color \"out_color\"\n"
4257		"OpName %in_color \"in_color\"\n"
4258		"OpDecorate %out_gl_position BuiltIn Position\n"
4259		"OpMemberDecorate %per_vertex_in 0 BuiltIn Position\n"
4260		"OpMemberDecorate %per_vertex_in 1 BuiltIn PointSize\n"
4261		"OpMemberDecorate %per_vertex_in 2 BuiltIn ClipDistance\n"
4262		"OpMemberDecorate %per_vertex_in 3 BuiltIn CullDistance\n"
4263		"OpDecorate %per_vertex_in Block\n"
4264		"OpDecorate %out_color Location 1\n"
4265		"OpDecorate %out_color Stream 0\n"
4266		"OpDecorate %in_color Location 1\n"
4267		SPIRV_ASSEMBLY_TYPES
4268		SPIRV_ASSEMBLY_CONSTANTS
4269		SPIRV_ASSEMBLY_ARRAYS
4270		"%cval = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_0\n"
4271		"%per_vertex_in = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
4272		"%a3_per_vertex_in = OpTypeArray %per_vertex_in %c_u32_3\n"
4273		"%ip_a3_per_vertex_in = OpTypePointer Input %a3_per_vertex_in\n"
4274		"%gl_in = OpVariable %ip_a3_per_vertex_in Input\n"
4275		"%out_color = OpVariable %op_v4f32 Output\n"
4276		"%in_color = OpVariable %ip_a3v4f32 Input\n"
4277		"%out_gl_position = OpVariable %op_v4f32 Output\n"
4278
4279		"%geom1_main = OpFunction %void None %fun\n"
4280		"%geom1_label = OpLabel\n"
4281		"%geom1_gl_in_0_gl_position = OpAccessChain %ip_v4f32 %gl_in %c_i32_0 %c_i32_0\n"
4282		"%geom1_gl_in_1_gl_position = OpAccessChain %ip_v4f32 %gl_in %c_i32_1 %c_i32_0\n"
4283		"%geom1_gl_in_2_gl_position = OpAccessChain %ip_v4f32 %gl_in %c_i32_2 %c_i32_0\n"
4284		"%geom1_in_position_0 = OpLoad %v4f32 %geom1_gl_in_0_gl_position\n"
4285		"%geom1_in_position_1 = OpLoad %v4f32 %geom1_gl_in_1_gl_position\n"
4286		"%geom1_in_position_2 = OpLoad %v4f32 %geom1_gl_in_2_gl_position \n"
4287		"%geom1_in_color_0_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_0\n"
4288		"%geom1_in_color_1_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_1\n"
4289		"%geom1_in_color_2_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_2\n"
4290		"%geom1_in_color_0 = OpLoad %v4f32 %geom1_in_color_0_ptr\n"
4291		"%geom1_in_color_1 = OpLoad %v4f32 %geom1_in_color_1_ptr\n"
4292		"%geom1_in_color_2 = OpLoad %v4f32 %geom1_in_color_2_ptr\n"
4293		"OpStore %out_gl_position %geom1_in_position_0\n"
4294		"OpStore %out_color %geom1_in_color_0\n"
4295		"OpEmitVertex\n"
4296		"OpStore %out_gl_position %geom1_in_position_1\n"
4297		"OpStore %out_color %geom1_in_color_1\n"
4298		"OpEmitVertex\n"
4299		"OpStore %out_gl_position %geom1_in_position_2\n"
4300		"OpStore %out_color %geom1_in_color_2\n"
4301		"OpEmitVertex\n"
4302		"OpEndPrimitive\n"
4303		"OpReturn\n"
4304		"OpFunctionEnd\n"
4305
4306		"%geom2_main = OpFunction %void None %fun\n"
4307		"%geom2_label = OpLabel\n"
4308		"%geom2_gl_in_0_gl_position = OpAccessChain %ip_v4f32 %gl_in %c_i32_0 %c_i32_0\n"
4309		"%geom2_gl_in_1_gl_position = OpAccessChain %ip_v4f32 %gl_in %c_i32_1 %c_i32_0\n"
4310		"%geom2_gl_in_2_gl_position = OpAccessChain %ip_v4f32 %gl_in %c_i32_2 %c_i32_0\n"
4311		"%geom2_in_position_0 = OpLoad %v4f32 %geom2_gl_in_0_gl_position\n"
4312		"%geom2_in_position_1 = OpLoad %v4f32 %geom2_gl_in_1_gl_position\n"
4313		"%geom2_in_position_2 = OpLoad %v4f32 %geom2_gl_in_2_gl_position \n"
4314		"%geom2_in_color_0_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_0\n"
4315		"%geom2_in_color_1_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_1\n"
4316		"%geom2_in_color_2_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_2\n"
4317		"%geom2_in_color_0 = OpLoad %v4f32 %geom2_in_color_0_ptr\n"
4318		"%geom2_in_color_1 = OpLoad %v4f32 %geom2_in_color_1_ptr\n"
4319		"%geom2_in_color_2 = OpLoad %v4f32 %geom2_in_color_2_ptr\n"
4320		"%geom2_transformed_in_color_0 = OpFSub %v4f32 %cval %geom2_in_color_0\n"
4321		"%geom2_transformed_in_color_1 = OpFSub %v4f32 %cval %geom2_in_color_1\n"
4322		"%geom2_transformed_in_color_2 = OpFSub %v4f32 %cval %geom2_in_color_2\n"
4323		"OpStore %out_gl_position %geom2_in_position_0\n"
4324		"OpStore %out_color %geom2_transformed_in_color_0\n"
4325		"OpEmitVertex\n"
4326		"OpStore %out_gl_position %geom2_in_position_1\n"
4327		"OpStore %out_color %geom2_transformed_in_color_1\n"
4328		"OpEmitVertex\n"
4329		"OpStore %out_gl_position %geom2_in_position_2\n"
4330		"OpStore %out_color %geom2_transformed_in_color_2\n"
4331		"OpEmitVertex\n"
4332		"OpEndPrimitive\n"
4333		"OpReturn\n"
4334		"OpFunctionEnd\n";
4335
4336	dst.spirvAsmSources.add("tessc") <<
4337		"OpCapability Tessellation\n"
4338		"OpMemoryModel Logical GLSL450\n"
4339		"OpEntryPoint TessellationControl %tessc1_main \"tessc1\" %out_color %gl_InvocationID %in_color %out_position %in_position %gl_TessLevelOuter %gl_TessLevelInner\n"
4340		"OpEntryPoint TessellationControl %tessc2_main \"tessc2\" %out_color %gl_InvocationID %in_color %out_position %in_position %gl_TessLevelOuter %gl_TessLevelInner\n"
4341		"OpExecutionMode %tessc1_main OutputVertices 3\n"
4342		"OpExecutionMode %tessc2_main OutputVertices 3\n"
4343		"OpName %tessc1_main \"tessc1\"\n"
4344		"OpName %tessc2_main \"tessc2\"\n"
4345		"OpName %out_color \"out_color\"\n"
4346		"OpName %gl_InvocationID \"gl_InvocationID\"\n"
4347		"OpName %in_color \"in_color\"\n"
4348		"OpName %out_position \"out_position\"\n"
4349		"OpName %in_position \"in_position\"\n"
4350		"OpName %gl_TessLevelOuter \"gl_TessLevelOuter\"\n"
4351		"OpName %gl_TessLevelInner \"gl_TessLevelInner\"\n"
4352		"OpDecorate %out_color Location 1\n"
4353		"OpDecorate %gl_InvocationID BuiltIn InvocationId\n"
4354		"OpDecorate %in_color Location 1\n"
4355		"OpDecorate %out_position Location 2\n"
4356		"OpDecorate %in_position Location 2\n"
4357		"OpDecorate %gl_TessLevelOuter Patch\n"
4358		"OpDecorate %gl_TessLevelOuter BuiltIn TessLevelOuter\n"
4359		"OpDecorate %gl_TessLevelInner Patch\n"
4360		"OpDecorate %gl_TessLevelInner BuiltIn TessLevelInner\n"
4361		SPIRV_ASSEMBLY_TYPES
4362		SPIRV_ASSEMBLY_CONSTANTS
4363		SPIRV_ASSEMBLY_ARRAYS
4364		"%cval = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_0\n"
4365		"%out_color = OpVariable %op_a3v4f32 Output\n"
4366		"%gl_InvocationID = OpVariable %ip_i32 Input\n"
4367		"%in_color = OpVariable %ip_a32v4f32 Input\n"
4368		"%out_position = OpVariable %op_a3v4f32 Output\n"
4369		"%in_position = OpVariable %ip_a32v4f32 Input\n"
4370		"%gl_TessLevelOuter = OpVariable %op_a4f32 Output\n"
4371		"%gl_TessLevelInner = OpVariable %op_a2f32 Output\n"
4372
4373		"%tessc1_main = OpFunction %void None %fun\n"
4374		"%tessc1_label = OpLabel\n"
4375		"%tessc1_invocation_id = OpLoad %i32 %gl_InvocationID\n"
4376		"%tessc1_in_color_ptr = OpAccessChain %ip_v4f32 %in_color %tessc1_invocation_id\n"
4377		"%tessc1_in_position_ptr = OpAccessChain %ip_v4f32 %in_position %tessc1_invocation_id\n"
4378		"%tessc1_in_color_val = OpLoad %v4f32 %tessc1_in_color_ptr\n"
4379		"%tessc1_in_position_val = OpLoad %v4f32 %tessc1_in_position_ptr\n"
4380		"%tessc1_out_color_ptr = OpAccessChain %op_v4f32 %out_color %tessc1_invocation_id\n"
4381		"%tessc1_out_position_ptr = OpAccessChain %op_v4f32 %out_position %tessc1_invocation_id\n"
4382		"OpStore %tessc1_out_color_ptr %tessc1_in_color_val\n"
4383		"OpStore %tessc1_out_position_ptr %tessc1_in_position_val\n"
4384		"%tessc1_is_first_invocation = OpIEqual %bool %tessc1_invocation_id %c_i32_0\n"
4385		"OpSelectionMerge %tessc1_merge_label None\n"
4386		"OpBranchConditional %tessc1_is_first_invocation %tessc1_first_invocation %tessc1_merge_label\n"
4387		"%tessc1_first_invocation = OpLabel\n"
4388		"%tessc1_tess_outer_0 = OpAccessChain %op_f32 %gl_TessLevelOuter %c_i32_0\n"
4389		"%tessc1_tess_outer_1 = OpAccessChain %op_f32 %gl_TessLevelOuter %c_i32_1\n"
4390		"%tessc1_tess_outer_2 = OpAccessChain %op_f32 %gl_TessLevelOuter %c_i32_2\n"
4391		"%tessc1_tess_inner = OpAccessChain %op_f32 %tessc1_gl_TessLevelInner %c_i32_0\n"
4392		"OpStore %tessc1_tess_outer_0 %c_f32_1\n"
4393		"OpStore %tessc1_tess_outer_1 %c_f32_1\n"
4394		"OpStore %tessc1_tess_outer_2 %c_f32_1\n"
4395		"OpStore %tessc1_tess_inner %c_f32_1\n"
4396		"OpBranch %tessc1_merge_label\n"
4397		"%tessc1_merge_label = OpLabel\n"
4398		"OpReturn\n"
4399		"OpFunctionEnd\n"
4400
4401		"%tessc2_main = OpFunction %void None %fun\n"
4402		"%tessc2_label = OpLabel\n"
4403		"%tessc2_invocation_id = OpLoad %i32 %gl_InvocationID\n"
4404		"%tessc2_in_color_ptr = OpAccessChain %ip_v4f32 %in_color %tessc2_invocation_id\n"
4405		"%tessc2_in_position_ptr = OpAccessChain %ip_v4f32 %in_position %tessc2_invocation_id\n"
4406		"%tessc2_in_color_val = OpLoad %v4f32 %tessc2_in_color_ptr\n"
4407		"%tessc2_in_position_val = OpLoad %v4f32 %tessc2_in_position_ptr\n"
4408		"%tessc2_out_color_ptr = OpAccessChain %op_v4f32 %out_color %tessc2_invocation_id\n"
4409		"%tessc2_out_position_ptr = OpAccessChain %op_v4f32 %out_position %tessc2_invocation_id\n"
4410		"%tessc2_transformed_color = OpFSub %v4f32 %cval %tessc2_in_color_val\n"
4411		"OpStore %tessc2_out_color_ptr %tessc2_transformed_color\n"
4412		"OpStore %tessc2_out_position_ptr %tessc2_in_position_val\n"
4413		"%tessc2_is_first_invocation = OpIEqual %bool %tessc2_invocation_id %c_i32_0\n"
4414		"OpSelectionMerge %tessc2_merge_label None\n"
4415		"OpBranchConditional %tessc2_is_first_invocation %tessc2_first_invocation %tessc2_merge_label\n"
4416		"%tessc2_first_invocation = OpLabel\n"
4417		"%tessc2_tess_outer_0 = OpAccessChain %op_f32 %gl_TessLevelOuter %c_i32_0\n"
4418		"%tessc2_tess_outer_1 = OpAccessChain %op_f32 %gl_TessLevelOuter %c_i32_1\n"
4419		"%tessc2_tess_outer_2 = OpAccessChain %op_f32 %gl_TessLevelOuter %c_i32_2\n"
4420		"%tessc2_tess_inner = OpAccessChain %op_f32 %tessc2_gl_TessLevelInner %c_i32_0\n"
4421		"OpStore %tessc2_tess_outer_0 %c_f32_1\n"
4422		"OpStore %tessc2_tess_outer_1 %c_f32_1\n"
4423		"OpStore %tessc2_tess_outer_2 %c_f32_1\n"
4424		"OpStore %tessc2_tess_inner %c_f32_1\n"
4425		"OpBranch %tessc2_merge_label\n"
4426		"%tessc2_merge_label = OpLabel\n"
4427		"OpReturn\n"
4428		"OpFunctionEnd\n";
4429
4430	dst.spirvAsmSources.add("tesse") <<
4431		"OpCapability Tessellation\n"
4432		"OpMemoryModel Logical GLSL450\n"
4433		"OpEntryPoint TessellationEvaluation %tesse1_main \"tesse1\" %stream %gl_tessCoord %in_position %out_color %in_color \n"
4434		"OpEntryPoint TessellationEvaluation %tesse2_main \"tesse2\" %stream %gl_tessCoord %in_position %out_color %in_color \n"
4435		"OpExecutionMode %tesse1_main Triangles\n"
4436		"OpExecutionMode %tesse2_main Triangles\n"
4437		"OpName %tesse1_main \"tesse1\"\n"
4438		"OpName %tesse2_main \"tesse2\"\n"
4439		"OpName %per_vertex_out \"gl_PerVertex\"\n"
4440		"OpMemberName %per_vertex_out 0 \"gl_Position\"\n"
4441		"OpMemberName %per_vertex_out 1 \"gl_PointSize\"\n"
4442		"OpMemberName %per_vertex_out 2 \"gl_ClipDistance\"\n"
4443		"OpMemberName %per_vertex_out 3 \"gl_CullDistance\"\n"
4444		"OpName %stream \"\"\n"
4445		"OpName %gl_tessCoord \"gl_TessCoord\"\n"
4446		"OpName %in_position \"in_position\"\n"
4447		"OpName %out_color \"out_color\"\n"
4448		"OpName %in_color \"in_color\"\n"
4449		"OpMemberDecorate %per_vertex_out 0 BuiltIn Position\n"
4450		"OpMemberDecorate %per_vertex_out 1 BuiltIn PointSize\n"
4451		"OpMemberDecorate %per_vertex_out 2 BuiltIn ClipDistance\n"
4452		"OpMemberDecorate %per_vertex_out 3 BuiltIn CullDistance\n"
4453		"OpDecorate %per_vertex_out Block\n"
4454		"OpDecorate %gl_tessCoord BuiltIn TessCoord\n"
4455		"OpDecorate %in_position Location 2\n"
4456		"OpDecorate %out_color Location 1\n"
4457		"OpDecorate %in_color Location 1\n"
4458		SPIRV_ASSEMBLY_TYPES
4459		SPIRV_ASSEMBLY_CONSTANTS
4460		SPIRV_ASSEMBLY_ARRAYS
4461		"%cval = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_0\n"
4462		"%per_vertex_out = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
4463		"%op_per_vertex_out = OpTypePointer Output %per_vertex_out\n"
4464		"%stream = OpVariable %op_per_vertex_out Output\n"
4465		"%gl_tessCoord = OpVariable %ip_v3f32 Input\n"
4466		"%in_position = OpVariable %ip_a32v4f32 Input\n"
4467		"%out_color = OpVariable %op_v4f32 Output\n"
4468		"%in_color = OpVariable %ip_a32v4f32 Input\n"
4469
4470		"%tesse1_main = OpFunction %void None %fun\n"
4471		"%tesse1_label = OpLabel\n"
4472		"%tesse1_tc_0_ptr = OpAccessChain %ip_f32 %gl_tessCoord %c_u32_0\n"
4473		"%tesse1_tc_1_ptr = OpAccessChain %ip_f32 %gl_tessCoord %c_u32_1\n"
4474		"%tesse1_tc_2_ptr = OpAccessChain %ip_f32 %gl_tessCoord %c_u32_2\n"
4475		"%tesse1_tc_0 = OpLoad %f32 %tesse1_tc_0_ptr\n"
4476		"%tesse1_tc_1 = OpLoad %f32 %tesse1_tc_1_ptr\n"
4477		"%tesse1_tc_2 = OpLoad %f32 %tesse1_tc_2_ptr\n"
4478		"%tesse1_in_pos_0_ptr = OpAccessChain %ip_v4f32 %in_position %c_i32_0\n"
4479		"%tesse1_in_pos_1_ptr = OpAccessChain %ip_v4f32 %in_position %c_i32_1\n"
4480		"%tesse1_in_pos_2_ptr = OpAccessChain %ip_v4f32 %in_position %c_i32_2\n"
4481		"%tesse1_in_pos_0 = OpLoad %v4f32 %tesse1_in_pos_0_ptr\n"
4482		"%tesse1_in_pos_1 = OpLoad %v4f32 %tesse1_in_pos_1_ptr\n"
4483		"%tesse1_in_pos_2 = OpLoad %v4f32 %tesse1_in_pos_2_ptr\n"
4484		"%tesse1_in_pos_0_weighted = OpVectorTimesScalar %v4f32 %tesse1_tc_0 %tesse1_in_pos_0\n"
4485		"%tesse1_in_pos_1_weighted = OpVectorTimesScalar %v4f32 %tesse1_tc_1 %tesse1_in_pos_1\n"
4486		"%tesse1_in_pos_2_weighted = OpVectorTimesScalar %v4f32 %tesse1_tc_2 %tesse1_in_pos_2\n"
4487		"%tesse1_out_pos_ptr = OpAccessChain %op_v4f32 %stream %c_i32_0\n"
4488		"%tesse1_in_pos_0_plus_pos_1 = OpFAdd %v4f32 %tesse1_in_pos_0_weighted %tesse1_in_pos_1_weighted\n"
4489		"%tesse1_computed_out = OpFAdd %v4f32 %tesse1_in_pos_0_plus_pos_1 %tesse1_in_pos_2_weighted\n"
4490		"OpStore %tesse1_out_pos_ptr %tesse1_computed_out\n"
4491		"%tesse1_in_clr_0_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_0\n"
4492		"%tesse1_in_clr_1_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_1\n"
4493		"%tesse1_in_clr_2_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_2\n"
4494		"%tesse1_in_clr_0 = OpLoad %v4f32 %tesse1_in_clr_0_ptr\n"
4495		"%tesse1_in_clr_1 = OpLoad %v4f32 %tesse1_in_clr_1_ptr\n"
4496		"%tesse1_in_clr_2 = OpLoad %v4f32 %tesse1_in_clr_2_ptr\n"
4497		"%tesse1_in_clr_0_weighted = OpVectorTimesScalar %v4f32 %tesse1_tc_0 %in_clr_0\n"
4498		"%tesse1_in_clr_1_weighted = OpVectorTimesScalar %v4f32 %tesse1_tc_1 %in_clr_1\n"
4499		"%tesse1_in_clr_2_weighted = OpVectorTimesScalar %v4f32 %tesse1_tc_2 %in_clr_2\n"
4500		"%tesse1_in_clr_0_plus_col_1 = OpFAdd %v4f32 %tesse1_in_clr_0_weighted %tesse1_in_clr_1_weighted\n"
4501		"%tesse1_computed_clr = OpFAdd %v4f32 %tesse1_in_clr_0_plus_col_1 %tesse1_in_clr_2_weighted\n"
4502		"OpStore %out_color %tesse1_computed_clr\n"
4503		"OpReturn\n"
4504		"OpFunctionEnd\n"
4505
4506		"%tesse2_main = OpFunction %void None %fun\n"
4507		"%tesse2_label = OpLabel\n"
4508		"%tesse2_tc_0_ptr = OpAccessChain %ip_f32 %gl_tessCoord %c_u32_0\n"
4509		"%tesse2_tc_1_ptr = OpAccessChain %ip_f32 %gl_tessCoord %c_u32_1\n"
4510		"%tesse2_tc_2_ptr = OpAccessChain %ip_f32 %gl_tessCoord %c_u32_2\n"
4511		"%tesse2_tc_0 = OpLoad %f32 %tesse2_tc_0_ptr\n"
4512		"%tesse2_tc_1 = OpLoad %f32 %tesse2_tc_1_ptr\n"
4513		"%tesse2_tc_2 = OpLoad %f32 %tesse2_tc_2_ptr\n"
4514		"%tesse2_in_pos_0_ptr = OpAccessChain %ip_v4f32 %in_position %c_i32_0\n"
4515		"%tesse2_in_pos_1_ptr = OpAccessChain %ip_v4f32 %in_position %c_i32_1\n"
4516		"%tesse2_in_pos_2_ptr = OpAccessChain %ip_v4f32 %in_position %c_i32_2\n"
4517		"%tesse2_in_pos_0 = OpLoad %v4f32 %tesse2_in_pos_0_ptr\n"
4518		"%tesse2_in_pos_1 = OpLoad %v4f32 %tesse2_in_pos_1_ptr\n"
4519		"%tesse2_in_pos_2 = OpLoad %v4f32 %tesse2_in_pos_2_ptr\n"
4520		"%tesse2_in_pos_0_weighted = OpVectorTimesScalar %v4f32 %tesse2_tc_0 %tesse2_in_pos_0\n"
4521		"%tesse2_in_pos_1_weighted = OpVectorTimesScalar %v4f32 %tesse2_tc_1 %tesse2_in_pos_1\n"
4522		"%tesse2_in_pos_2_weighted = OpVectorTimesScalar %v4f32 %tesse2_tc_2 %tesse2_in_pos_2\n"
4523		"%tesse2_out_pos_ptr = OpAccessChain %op_v4f32 %stream %c_i32_0\n"
4524		"%tesse2_in_pos_0_plus_pos_1 = OpFAdd %v4f32 %tesse2_in_pos_0_weighted %tesse2_in_pos_1_weighted\n"
4525		"%tesse2_computed_out = OpFAdd %v4f32 %tesse2_in_pos_0_plus_pos_1 %tesse2_in_pos_2_weighted\n"
4526		"OpStore %tesse2_out_pos_ptr %tesse2_computed_out\n"
4527		"%tesse2_in_clr_0_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_0\n"
4528		"%tesse2_in_clr_1_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_1\n"
4529		"%tesse2_in_clr_2_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_2\n"
4530		"%tesse2_in_clr_0 = OpLoad %v4f32 %tesse2_in_clr_0_ptr\n"
4531		"%tesse2_in_clr_1 = OpLoad %v4f32 %tesse2_in_clr_1_ptr\n"
4532		"%tesse2_in_clr_2 = OpLoad %v4f32 %tesse2_in_clr_2_ptr\n"
4533		"%tesse2_in_clr_0_weighted = OpVectorTimesScalar %v4f32 %tesse2_tc_0 %in_clr_0\n"
4534		"%tesse2_in_clr_1_weighted = OpVectorTimesScalar %v4f32 %tesse2_tc_1 %in_clr_1\n"
4535		"%tesse2_in_clr_2_weighted = OpVectorTimesScalar %v4f32 %tesse2_tc_2 %in_clr_2\n"
4536		"%tesse2_in_clr_0_plus_col_1 = OpFAdd %v4f32 %tesse2_in_clr_0_weighted %tesse2_in_clr_1_weighted\n"
4537		"%tesse2_computed_clr = OpFAdd %v4f32 %tesse2_in_clr_0_plus_col_1 %tesse2_in_clr_2_weighted\n"
4538		"%tesse2_clr_transformed = OpFSub %v4f32 %cval %tesse2_computed_clr\n"
4539		"OpStore %out_color %tesse2_clr_transformed\n"
4540		"OpReturn\n"
4541		"OpFunctionEnd\n";
4542}
4543
4544// Sets up and runs a Vulkan pipeline, then spot-checks the resulting image.
4545// Feeds the pipeline a set of colored triangles, which then must occur in the
4546// rendered image.  The surface is cleared before executing the pipeline, so
4547// whatever the shaders draw can be directly spot-checked.
4548TestStatus runAndVerifyDefaultPipeline (Context& context, InstanceContext instance)
4549{
4550	const VkDevice								vkDevice				= context.getDevice();
4551	const DeviceInterface&						vk						= context.getDeviceInterface();
4552	const VkQueue								queue					= context.getUniversalQueue();
4553	const deUint32								queueFamilyIndex		= context.getUniversalQueueFamilyIndex();
4554	const tcu::IVec2							renderSize				(256, 256);
4555	vector<ModuleHandleSp>						modules;
4556	map<VkShaderStageFlagBits, VkShaderModule>	moduleByStage;
4557	const int									testSpecificSeed		= 31354125;
4558	const int									seed					= context.getTestContext().getCommandLine().getBaseSeed() ^ testSpecificSeed;
4559	de::Random(seed).shuffle(instance.inputColors, instance.inputColors+4);
4560	de::Random(seed).shuffle(instance.outputColors, instance.outputColors+4);
4561	const Vec4								vertexData[]			=
4562	{
4563		// Upper left corner:
4564		Vec4(-1.0f, -1.0f, 0.0f, 1.0f), instance.inputColors[0].toVec(),
4565		Vec4(-0.5f, -1.0f, 0.0f, 1.0f), instance.inputColors[0].toVec(),
4566		Vec4(-1.0f, -0.5f, 0.0f, 1.0f), instance.inputColors[0].toVec(),
4567
4568		// Upper right corner:
4569		Vec4(+0.5f, -1.0f, 0.0f, 1.0f), instance.inputColors[1].toVec(),
4570		Vec4(+1.0f, -1.0f, 0.0f, 1.0f), instance.inputColors[1].toVec(),
4571		Vec4(+1.0f, -0.5f, 0.0f, 1.0f), instance.inputColors[1].toVec(),
4572
4573		// Lower left corner:
4574		Vec4(-1.0f, +0.5f, 0.0f, 1.0f), instance.inputColors[2].toVec(),
4575		Vec4(-0.5f, +1.0f, 0.0f, 1.0f), instance.inputColors[2].toVec(),
4576		Vec4(-1.0f, +1.0f, 0.0f, 1.0f), instance.inputColors[2].toVec(),
4577
4578		// Lower right corner:
4579		Vec4(+1.0f, +0.5f, 0.0f, 1.0f), instance.inputColors[3].toVec(),
4580		Vec4(+1.0f, +1.0f, 0.0f, 1.0f), instance.inputColors[3].toVec(),
4581		Vec4(+0.5f, +1.0f, 0.0f, 1.0f), instance.inputColors[3].toVec()
4582	};
4583	const size_t							singleVertexDataSize	= 2 * sizeof(Vec4);
4584	const size_t							vertexCount				= sizeof(vertexData) / singleVertexDataSize;
4585
4586	const VkBufferCreateInfo				vertexBufferParams		=
4587	{
4588		VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO,	//	VkStructureType		sType;
4589		DE_NULL,								//	const void*			pNext;
4590		0u,										//	VkBufferCreateFlags	flags;
4591		(VkDeviceSize)sizeof(vertexData),		//	VkDeviceSize		size;
4592		VK_BUFFER_USAGE_VERTEX_BUFFER_BIT,		//	VkBufferUsageFlags	usage;
4593		VK_SHARING_MODE_EXCLUSIVE,				//	VkSharingMode		sharingMode;
4594		1u,										//	deUint32			queueFamilyCount;
4595		&queueFamilyIndex,						//	const deUint32*		pQueueFamilyIndices;
4596	};
4597	const Unique<VkBuffer>					vertexBuffer			(createBuffer(vk, vkDevice, &vertexBufferParams));
4598	const UniquePtr<Allocation>				vertexBufferMemory		(context.getDefaultAllocator().allocate(getBufferMemoryRequirements(vk, vkDevice, *vertexBuffer), MemoryRequirement::HostVisible));
4599
4600	VK_CHECK(vk.bindBufferMemory(vkDevice, *vertexBuffer, vertexBufferMemory->getMemory(), vertexBufferMemory->getOffset()));
4601
4602	const VkDeviceSize						imageSizeBytes			= (VkDeviceSize)(sizeof(deUint32)*renderSize.x()*renderSize.y());
4603	const VkBufferCreateInfo				readImageBufferParams	=
4604	{
4605		VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO,		//	VkStructureType		sType;
4606		DE_NULL,									//	const void*			pNext;
4607		0u,											//	VkBufferCreateFlags	flags;
4608		imageSizeBytes,								//	VkDeviceSize		size;
4609		VK_BUFFER_USAGE_TRANSFER_DST_BIT,			//	VkBufferUsageFlags	usage;
4610		VK_SHARING_MODE_EXCLUSIVE,					//	VkSharingMode		sharingMode;
4611		1u,											//	deUint32			queueFamilyCount;
4612		&queueFamilyIndex,							//	const deUint32*		pQueueFamilyIndices;
4613	};
4614	const Unique<VkBuffer>					readImageBuffer			(createBuffer(vk, vkDevice, &readImageBufferParams));
4615	const UniquePtr<Allocation>				readImageBufferMemory	(context.getDefaultAllocator().allocate(getBufferMemoryRequirements(vk, vkDevice, *readImageBuffer), MemoryRequirement::HostVisible));
4616
4617	VK_CHECK(vk.bindBufferMemory(vkDevice, *readImageBuffer, readImageBufferMemory->getMemory(), readImageBufferMemory->getOffset()));
4618
4619	const VkImageCreateInfo					imageParams				=
4620	{
4621		VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,									//	VkStructureType		sType;
4622		DE_NULL,																//	const void*			pNext;
4623		0u,																		//	VkImageCreateFlags	flags;
4624		VK_IMAGE_TYPE_2D,														//	VkImageType			imageType;
4625		VK_FORMAT_R8G8B8A8_UNORM,												//	VkFormat			format;
4626		{ renderSize.x(), renderSize.y(), 1 },									//	VkExtent3D			extent;
4627		1u,																		//	deUint32			mipLevels;
4628		1u,																		//	deUint32			arraySize;
4629		VK_SAMPLE_COUNT_1_BIT,													//	deUint32			samples;
4630		VK_IMAGE_TILING_OPTIMAL,												//	VkImageTiling		tiling;
4631		VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT|VK_IMAGE_USAGE_TRANSFER_SRC_BIT,	//	VkImageUsageFlags	usage;
4632		VK_SHARING_MODE_EXCLUSIVE,												//	VkSharingMode		sharingMode;
4633		1u,																		//	deUint32			queueFamilyCount;
4634		&queueFamilyIndex,														//	const deUint32*		pQueueFamilyIndices;
4635		VK_IMAGE_LAYOUT_UNDEFINED,												//	VkImageLayout		initialLayout;
4636	};
4637
4638	const Unique<VkImage>					image					(createImage(vk, vkDevice, &imageParams));
4639	const UniquePtr<Allocation>				imageMemory				(context.getDefaultAllocator().allocate(getImageMemoryRequirements(vk, vkDevice, *image), MemoryRequirement::Any));
4640
4641	VK_CHECK(vk.bindImageMemory(vkDevice, *image, imageMemory->getMemory(), imageMemory->getOffset()));
4642
4643	const VkAttachmentDescription			colorAttDesc			=
4644	{
4645		0u,												//	VkAttachmentDescriptionFlags	flags;
4646		VK_FORMAT_R8G8B8A8_UNORM,						//	VkFormat						format;
4647		VK_SAMPLE_COUNT_1_BIT,							//	deUint32						samples;
4648		VK_ATTACHMENT_LOAD_OP_CLEAR,					//	VkAttachmentLoadOp				loadOp;
4649		VK_ATTACHMENT_STORE_OP_STORE,					//	VkAttachmentStoreOp				storeOp;
4650		VK_ATTACHMENT_LOAD_OP_DONT_CARE,				//	VkAttachmentLoadOp				stencilLoadOp;
4651		VK_ATTACHMENT_STORE_OP_DONT_CARE,				//	VkAttachmentStoreOp				stencilStoreOp;
4652		VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,		//	VkImageLayout					initialLayout;
4653		VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,		//	VkImageLayout					finalLayout;
4654	};
4655	const VkAttachmentReference				colorAttRef				=
4656	{
4657		0u,												//	deUint32		attachment;
4658		VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,		//	VkImageLayout	layout;
4659	};
4660	const VkSubpassDescription				subpassDesc				=
4661	{
4662		0u,												//	VkSubpassDescriptionFlags		flags;
4663		VK_PIPELINE_BIND_POINT_GRAPHICS,				//	VkPipelineBindPoint				pipelineBindPoint;
4664		0u,												//	deUint32						inputCount;
4665		DE_NULL,										//	const VkAttachmentReference*	pInputAttachments;
4666		1u,												//	deUint32						colorCount;
4667		&colorAttRef,									//	const VkAttachmentReference*	pColorAttachments;
4668		DE_NULL,										//	const VkAttachmentReference*	pResolveAttachments;
4669		DE_NULL,										//	const VkAttachmentReference*	pDepthStencilAttachment;
4670		0u,												//	deUint32						preserveCount;
4671		DE_NULL,										//	const VkAttachmentReference*	pPreserveAttachments;
4672
4673	};
4674	const VkRenderPassCreateInfo			renderPassParams		=
4675	{
4676		VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO,		//	VkStructureType					sType;
4677		DE_NULL,										//	const void*						pNext;
4678		(VkRenderPassCreateFlags)0,
4679		1u,												//	deUint32						attachmentCount;
4680		&colorAttDesc,									//	const VkAttachmentDescription*	pAttachments;
4681		1u,												//	deUint32						subpassCount;
4682		&subpassDesc,									//	const VkSubpassDescription*		pSubpasses;
4683		0u,												//	deUint32						dependencyCount;
4684		DE_NULL,										//	const VkSubpassDependency*		pDependencies;
4685	};
4686	const Unique<VkRenderPass>				renderPass				(createRenderPass(vk, vkDevice, &renderPassParams));
4687
4688	const VkImageViewCreateInfo				colorAttViewParams		=
4689	{
4690		VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,		//	VkStructureType				sType;
4691		DE_NULL,										//	const void*					pNext;
4692		0u,												//	VkImageViewCreateFlags		flags;
4693		*image,											//	VkImage						image;
4694		VK_IMAGE_VIEW_TYPE_2D,							//	VkImageViewType				viewType;
4695		VK_FORMAT_R8G8B8A8_UNORM,						//	VkFormat					format;
4696		{
4697			VK_COMPONENT_SWIZZLE_R,
4698			VK_COMPONENT_SWIZZLE_G,
4699			VK_COMPONENT_SWIZZLE_B,
4700			VK_COMPONENT_SWIZZLE_A
4701		},												//	VkChannelMapping			channels;
4702		{
4703			VK_IMAGE_ASPECT_COLOR_BIT,						//	VkImageAspectFlags	aspectMask;
4704			0u,												//	deUint32			baseMipLevel;
4705			1u,												//	deUint32			mipLevels;
4706			0u,												//	deUint32			baseArrayLayer;
4707			1u,												//	deUint32			arraySize;
4708		},												//	VkImageSubresourceRange		subresourceRange;
4709	};
4710	const Unique<VkImageView>				colorAttView			(createImageView(vk, vkDevice, &colorAttViewParams));
4711
4712
4713	// Pipeline layout
4714	const VkPipelineLayoutCreateInfo		pipelineLayoutParams	=
4715	{
4716		VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,			//	VkStructureType					sType;
4717		DE_NULL,												//	const void*						pNext;
4718		(VkPipelineLayoutCreateFlags)0,
4719		0u,														//	deUint32						descriptorSetCount;
4720		DE_NULL,												//	const VkDescriptorSetLayout*	pSetLayouts;
4721		0u,														//	deUint32						pushConstantRangeCount;
4722		DE_NULL,												//	const VkPushConstantRange*		pPushConstantRanges;
4723	};
4724	const Unique<VkPipelineLayout>			pipelineLayout			(createPipelineLayout(vk, vkDevice, &pipelineLayoutParams));
4725
4726	// Pipeline
4727	vector<VkPipelineShaderStageCreateInfo>		shaderStageParams;
4728	// We need these vectors to make sure that information about specialization constants for each stage can outlive createGraphicsPipeline().
4729	vector<vector<VkSpecializationMapEntry> >	specConstantEntries;
4730	vector<VkSpecializationInfo>				specializationInfos;
4731	createPipelineShaderStages(vk, vkDevice, instance, context, modules, shaderStageParams);
4732
4733	// And we don't want the reallocation of these vectors to invalidate pointers pointing to their contents.
4734	specConstantEntries.reserve(shaderStageParams.size());
4735	specializationInfos.reserve(shaderStageParams.size());
4736
4737	// Patch the specialization info field in PipelineShaderStageCreateInfos.
4738	for (vector<VkPipelineShaderStageCreateInfo>::iterator stageInfo = shaderStageParams.begin(); stageInfo != shaderStageParams.end(); ++stageInfo)
4739	{
4740		const StageToSpecConstantMap::const_iterator stageIt = instance.specConstants.find(stageInfo->stage);
4741
4742		if (stageIt != instance.specConstants.end())
4743		{
4744			const size_t						numSpecConstants	= stageIt->second.size();
4745			vector<VkSpecializationMapEntry>	entries;
4746			VkSpecializationInfo				specInfo;
4747
4748			entries.resize(numSpecConstants);
4749
4750			// Only support 32-bit integers as spec constants now. And their constant IDs are numbered sequentially starting from 0.
4751			for (size_t ndx = 0; ndx < numSpecConstants; ++ndx)
4752			{
4753				entries[ndx].constantID	= (deUint32)ndx;
4754				entries[ndx].offset		= deUint32(ndx * sizeof(deInt32));
4755				entries[ndx].size		= sizeof(deInt32);
4756			}
4757
4758			specConstantEntries.push_back(entries);
4759
4760			specInfo.mapEntryCount	= (deUint32)numSpecConstants;
4761			specInfo.pMapEntries	= specConstantEntries.back().data();
4762			specInfo.dataSize		= numSpecConstants * sizeof(deInt32);
4763			specInfo.pData			= stageIt->second.data();
4764			specializationInfos.push_back(specInfo);
4765
4766			stageInfo->pSpecializationInfo = &specializationInfos.back();
4767		}
4768	}
4769	const VkPipelineDepthStencilStateCreateInfo	depthStencilParams		=
4770	{
4771		VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO,	//	VkStructureType		sType;
4772		DE_NULL,													//	const void*			pNext;
4773		(VkPipelineDepthStencilStateCreateFlags)0,
4774		DE_FALSE,													//	deUint32			depthTestEnable;
4775		DE_FALSE,													//	deUint32			depthWriteEnable;
4776		VK_COMPARE_OP_ALWAYS,										//	VkCompareOp			depthCompareOp;
4777		DE_FALSE,													//	deUint32			depthBoundsTestEnable;
4778		DE_FALSE,													//	deUint32			stencilTestEnable;
4779		{
4780			VK_STENCIL_OP_KEEP,											//	VkStencilOp	stencilFailOp;
4781			VK_STENCIL_OP_KEEP,											//	VkStencilOp	stencilPassOp;
4782			VK_STENCIL_OP_KEEP,											//	VkStencilOp	stencilDepthFailOp;
4783			VK_COMPARE_OP_ALWAYS,										//	VkCompareOp	stencilCompareOp;
4784			0u,															//	deUint32	stencilCompareMask;
4785			0u,															//	deUint32	stencilWriteMask;
4786			0u,															//	deUint32	stencilReference;
4787		},															//	VkStencilOpState	front;
4788		{
4789			VK_STENCIL_OP_KEEP,											//	VkStencilOp	stencilFailOp;
4790			VK_STENCIL_OP_KEEP,											//	VkStencilOp	stencilPassOp;
4791			VK_STENCIL_OP_KEEP,											//	VkStencilOp	stencilDepthFailOp;
4792			VK_COMPARE_OP_ALWAYS,										//	VkCompareOp	stencilCompareOp;
4793			0u,															//	deUint32	stencilCompareMask;
4794			0u,															//	deUint32	stencilWriteMask;
4795			0u,															//	deUint32	stencilReference;
4796		},															//	VkStencilOpState	back;
4797		-1.0f,														//	float				minDepthBounds;
4798		+1.0f,														//	float				maxDepthBounds;
4799	};
4800	const VkViewport						viewport0				=
4801	{
4802		0.0f,														//	float	originX;
4803		0.0f,														//	float	originY;
4804		(float)renderSize.x(),										//	float	width;
4805		(float)renderSize.y(),										//	float	height;
4806		0.0f,														//	float	minDepth;
4807		1.0f,														//	float	maxDepth;
4808	};
4809	const VkRect2D							scissor0				=
4810	{
4811		{
4812			0u,															//	deInt32	x;
4813			0u,															//	deInt32	y;
4814		},															//	VkOffset2D	offset;
4815		{
4816			renderSize.x(),												//	deInt32	width;
4817			renderSize.y(),												//	deInt32	height;
4818		},															//	VkExtent2D	extent;
4819	};
4820	const VkPipelineViewportStateCreateInfo		viewportParams			=
4821	{
4822		VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO,		//	VkStructureType		sType;
4823		DE_NULL,													//	const void*			pNext;
4824		(VkPipelineViewportStateCreateFlags)0,
4825		1u,															//	deUint32			viewportCount;
4826		&viewport0,
4827		1u,
4828		&scissor0
4829	};
4830	const VkSampleMask							sampleMask				= ~0u;
4831	const VkPipelineMultisampleStateCreateInfo	multisampleParams		=
4832	{
4833		VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO,	//	VkStructureType			sType;
4834		DE_NULL,													//	const void*				pNext;
4835		(VkPipelineMultisampleStateCreateFlags)0,
4836		VK_SAMPLE_COUNT_1_BIT,										//	VkSampleCountFlagBits	rasterSamples;
4837		DE_FALSE,													//	deUint32				sampleShadingEnable;
4838		0.0f,														//	float					minSampleShading;
4839		&sampleMask,												//	const VkSampleMask*		pSampleMask;
4840		DE_FALSE,													//	VkBool32				alphaToCoverageEnable;
4841		DE_FALSE,													//	VkBool32				alphaToOneEnable;
4842	};
4843	const VkPipelineRasterizationStateCreateInfo	rasterParams		=
4844	{
4845		VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO,	//	VkStructureType	sType;
4846		DE_NULL,													//	const void*		pNext;
4847		(VkPipelineRasterizationStateCreateFlags)0,
4848		DE_TRUE,													//	deUint32		depthClipEnable;
4849		DE_FALSE,													//	deUint32		rasterizerDiscardEnable;
4850		VK_POLYGON_MODE_FILL,										//	VkFillMode		fillMode;
4851		VK_CULL_MODE_NONE,											//	VkCullMode		cullMode;
4852		VK_FRONT_FACE_COUNTER_CLOCKWISE,							//	VkFrontFace		frontFace;
4853		VK_FALSE,													//	VkBool32		depthBiasEnable;
4854		0.0f,														//	float			depthBias;
4855		0.0f,														//	float			depthBiasClamp;
4856		0.0f,														//	float			slopeScaledDepthBias;
4857		1.0f,														//	float			lineWidth;
4858	};
4859	const VkPrimitiveTopology topology = instance.hasTessellation? VK_PRIMITIVE_TOPOLOGY_PATCH_LIST: VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
4860	const VkPipelineInputAssemblyStateCreateInfo	inputAssemblyParams	=
4861	{
4862		VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO,	//	VkStructureType		sType;
4863		DE_NULL,														//	const void*			pNext;
4864		(VkPipelineInputAssemblyStateCreateFlags)0,
4865		topology,														//	VkPrimitiveTopology	topology;
4866		DE_FALSE,														//	deUint32			primitiveRestartEnable;
4867	};
4868	const VkVertexInputBindingDescription		vertexBinding0 =
4869	{
4870		0u,									// deUint32					binding;
4871		deUint32(singleVertexDataSize),		// deUint32					strideInBytes;
4872		VK_VERTEX_INPUT_RATE_VERTEX			// VkVertexInputStepRate	stepRate;
4873	};
4874	const VkVertexInputAttributeDescription		vertexAttrib0[2] =
4875	{
4876		{
4877			0u,									// deUint32	location;
4878			0u,									// deUint32	binding;
4879			VK_FORMAT_R32G32B32A32_SFLOAT,		// VkFormat	format;
4880			0u									// deUint32	offsetInBytes;
4881		},
4882		{
4883			1u,									// deUint32	location;
4884			0u,									// deUint32	binding;
4885			VK_FORMAT_R32G32B32A32_SFLOAT,		// VkFormat	format;
4886			sizeof(Vec4),						// deUint32	offsetInBytes;
4887		}
4888	};
4889
4890	const VkPipelineVertexInputStateCreateInfo	vertexInputStateParams	=
4891	{
4892		VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO,	//	VkStructureType								sType;
4893		DE_NULL,													//	const void*									pNext;
4894		(VkPipelineVertexInputStateCreateFlags)0,
4895		1u,															//	deUint32									bindingCount;
4896		&vertexBinding0,											//	const VkVertexInputBindingDescription*		pVertexBindingDescriptions;
4897		2u,															//	deUint32									attributeCount;
4898		vertexAttrib0,												//	const VkVertexInputAttributeDescription*	pVertexAttributeDescriptions;
4899	};
4900	const VkPipelineColorBlendAttachmentState	attBlendParams			=
4901	{
4902		DE_FALSE,													//	deUint32		blendEnable;
4903		VK_BLEND_FACTOR_ONE,										//	VkBlend			srcBlendColor;
4904		VK_BLEND_FACTOR_ZERO,										//	VkBlend			destBlendColor;
4905		VK_BLEND_OP_ADD,											//	VkBlendOp		blendOpColor;
4906		VK_BLEND_FACTOR_ONE,										//	VkBlend			srcBlendAlpha;
4907		VK_BLEND_FACTOR_ZERO,										//	VkBlend			destBlendAlpha;
4908		VK_BLEND_OP_ADD,											//	VkBlendOp		blendOpAlpha;
4909		(VK_COLOR_COMPONENT_R_BIT|
4910		 VK_COLOR_COMPONENT_G_BIT|
4911		 VK_COLOR_COMPONENT_B_BIT|
4912		 VK_COLOR_COMPONENT_A_BIT),									//	VkChannelFlags	channelWriteMask;
4913	};
4914	const VkPipelineColorBlendStateCreateInfo	blendParams				=
4915	{
4916		VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO,	//	VkStructureType								sType;
4917		DE_NULL,													//	const void*									pNext;
4918		(VkPipelineColorBlendStateCreateFlags)0,
4919		DE_FALSE,													//	VkBool32									logicOpEnable;
4920		VK_LOGIC_OP_COPY,											//	VkLogicOp									logicOp;
4921		1u,															//	deUint32									attachmentCount;
4922		&attBlendParams,											//	const VkPipelineColorBlendAttachmentState*	pAttachments;
4923		{ 0.0f, 0.0f, 0.0f, 0.0f },									//	float										blendConst[4];
4924	};
4925	const VkPipelineDynamicStateCreateInfo	dynamicStateInfo		=
4926	{
4927		VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO,	//	VkStructureType			sType;
4928		DE_NULL,												//	const void*				pNext;
4929		(VkPipelineDynamicStateCreateFlags)0,
4930		0u,														//	deUint32				dynamicStateCount;
4931		DE_NULL													//	const VkDynamicState*	pDynamicStates;
4932	};
4933
4934	const VkPipelineTessellationStateCreateInfo	tessellationState	=
4935	{
4936		VK_STRUCTURE_TYPE_PIPELINE_TESSELLATION_STATE_CREATE_INFO,
4937		DE_NULL,
4938		(VkPipelineTesselationStateCreateFlags)0,
4939		3u
4940	};
4941
4942	const VkPipelineTessellationStateCreateInfo* tessellationInfo	=	instance.hasTessellation? &tessellationState: DE_NULL;
4943	const VkGraphicsPipelineCreateInfo		pipelineParams			=
4944	{
4945		VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO,		//	VkStructureType									sType;
4946		DE_NULL,												//	const void*										pNext;
4947		0u,														//	VkPipelineCreateFlags							flags;
4948		(deUint32)shaderStageParams.size(),						//	deUint32										stageCount;
4949		&shaderStageParams[0],									//	const VkPipelineShaderStageCreateInfo*			pStages;
4950		&vertexInputStateParams,								//	const VkPipelineVertexInputStateCreateInfo*		pVertexInputState;
4951		&inputAssemblyParams,									//	const VkPipelineInputAssemblyStateCreateInfo*	pInputAssemblyState;
4952		tessellationInfo,										//	const VkPipelineTessellationStateCreateInfo*	pTessellationState;
4953		&viewportParams,										//	const VkPipelineViewportStateCreateInfo*		pViewportState;
4954		&rasterParams,											//	const VkPipelineRasterStateCreateInfo*			pRasterState;
4955		&multisampleParams,										//	const VkPipelineMultisampleStateCreateInfo*		pMultisampleState;
4956		&depthStencilParams,									//	const VkPipelineDepthStencilStateCreateInfo*	pDepthStencilState;
4957		&blendParams,											//	const VkPipelineColorBlendStateCreateInfo*		pColorBlendState;
4958		&dynamicStateInfo,										//	const VkPipelineDynamicStateCreateInfo*			pDynamicState;
4959		*pipelineLayout,										//	VkPipelineLayout								layout;
4960		*renderPass,											//	VkRenderPass									renderPass;
4961		0u,														//	deUint32										subpass;
4962		DE_NULL,												//	VkPipeline										basePipelineHandle;
4963		0u,														//	deInt32											basePipelineIndex;
4964	};
4965
4966	const Unique<VkPipeline>				pipeline				(createGraphicsPipeline(vk, vkDevice, DE_NULL, &pipelineParams));
4967
4968	// Framebuffer
4969	const VkFramebufferCreateInfo			framebufferParams		=
4970	{
4971		VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO,				//	VkStructureType		sType;
4972		DE_NULL,												//	const void*			pNext;
4973		(VkFramebufferCreateFlags)0,
4974		*renderPass,											//	VkRenderPass		renderPass;
4975		1u,														//	deUint32			attachmentCount;
4976		&*colorAttView,											//	const VkImageView*	pAttachments;
4977		(deUint32)renderSize.x(),								//	deUint32			width;
4978		(deUint32)renderSize.y(),								//	deUint32			height;
4979		1u,														//	deUint32			layers;
4980	};
4981	const Unique<VkFramebuffer>				framebuffer				(createFramebuffer(vk, vkDevice, &framebufferParams));
4982
4983	const VkCommandPoolCreateInfo			cmdPoolParams			=
4984	{
4985		VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO,					//	VkStructureType			sType;
4986		DE_NULL,													//	const void*				pNext;
4987		VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT,				//	VkCmdPoolCreateFlags	flags;
4988		queueFamilyIndex,											//	deUint32				queueFamilyIndex;
4989	};
4990	const Unique<VkCommandPool>				cmdPool					(createCommandPool(vk, vkDevice, &cmdPoolParams));
4991
4992	// Command buffer
4993	const VkCommandBufferAllocateInfo		cmdBufParams			=
4994	{
4995		VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO,			//	VkStructureType			sType;
4996		DE_NULL,												//	const void*				pNext;
4997		*cmdPool,												//	VkCmdPool				pool;
4998		VK_COMMAND_BUFFER_LEVEL_PRIMARY,						//	VkCmdBufferLevel		level;
4999		1u,														//	deUint32				count;
5000	};
5001	const Unique<VkCommandBuffer>			cmdBuf					(allocateCommandBuffer(vk, vkDevice, &cmdBufParams));
5002
5003	const VkCommandBufferBeginInfo			cmdBufBeginParams		=
5004	{
5005		VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO,			//	VkStructureType				sType;
5006		DE_NULL,												//	const void*					pNext;
5007		(VkCommandBufferUsageFlags)0,
5008		DE_NULL,												//	VkRenderPass				renderPass;
5009		0u,														//	deUint32					subpass;
5010		DE_NULL,												//	VkFramebuffer				framebuffer;
5011		VK_FALSE,												//	VkBool32					occlusionQueryEnable;
5012		(VkQueryControlFlags)0,
5013		(VkQueryPipelineStatisticFlags)0,
5014	};
5015
5016	// Record commands
5017	VK_CHECK(vk.beginCommandBuffer(*cmdBuf, &cmdBufBeginParams));
5018
5019	{
5020		const VkMemoryBarrier		vertFlushBarrier	=
5021		{
5022			VK_STRUCTURE_TYPE_MEMORY_BARRIER,			//	VkStructureType		sType;
5023			DE_NULL,									//	const void*			pNext;
5024			VK_ACCESS_HOST_WRITE_BIT,					//	VkMemoryOutputFlags	outputMask;
5025			VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT,		//	VkMemoryInputFlags	inputMask;
5026		};
5027		const VkImageMemoryBarrier	colorAttBarrier		=
5028		{
5029			VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,		//	VkStructureType			sType;
5030			DE_NULL,									//	const void*				pNext;
5031			0u,											//	VkMemoryOutputFlags		outputMask;
5032			VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,		//	VkMemoryInputFlags		inputMask;
5033			VK_IMAGE_LAYOUT_UNDEFINED,					//	VkImageLayout			oldLayout;
5034			VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,	//	VkImageLayout			newLayout;
5035			queueFamilyIndex,							//	deUint32				srcQueueFamilyIndex;
5036			queueFamilyIndex,							//	deUint32				destQueueFamilyIndex;
5037			*image,										//	VkImage					image;
5038			{
5039				VK_IMAGE_ASPECT_COLOR_BIT,					//	VkImageAspect	aspect;
5040				0u,											//	deUint32		baseMipLevel;
5041				1u,											//	deUint32		mipLevels;
5042				0u,											//	deUint32		baseArraySlice;
5043				1u,											//	deUint32		arraySize;
5044			}											//	VkImageSubresourceRange	subresourceRange;
5045		};
5046		const void*				barriers[]				= { &vertFlushBarrier, &colorAttBarrier };
5047		vk.cmdPipelineBarrier(*cmdBuf, VK_PIPELINE_STAGE_HOST_BIT, VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT, DE_FALSE, (deUint32)DE_LENGTH_OF_ARRAY(barriers), barriers);
5048	}
5049
5050	{
5051		const VkClearValue			clearValue		= makeClearValueColorF32(0.125f, 0.25f, 0.75f, 1.0f);
5052		const VkRenderPassBeginInfo	passBeginParams	=
5053		{
5054			VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO,			//	VkStructureType		sType;
5055			DE_NULL,											//	const void*			pNext;
5056			*renderPass,										//	VkRenderPass		renderPass;
5057			*framebuffer,										//	VkFramebuffer		framebuffer;
5058			{ { 0, 0 }, { renderSize.x(), renderSize.y() } },	//	VkRect2D			renderArea;
5059			1u,													//	deUint32			clearValueCount;
5060			&clearValue,										//	const VkClearValue*	pClearValues;
5061		};
5062		vk.cmdBeginRenderPass(*cmdBuf, &passBeginParams, VK_SUBPASS_CONTENTS_INLINE);
5063	}
5064
5065	vk.cmdBindPipeline(*cmdBuf, VK_PIPELINE_BIND_POINT_GRAPHICS, *pipeline);
5066	{
5067		const VkDeviceSize bindingOffset = 0;
5068		vk.cmdBindVertexBuffers(*cmdBuf, 0u, 1u, &vertexBuffer.get(), &bindingOffset);
5069	}
5070	vk.cmdDraw(*cmdBuf, deUint32(vertexCount), 1u /*run pipeline once*/, 0u /*first vertex*/, 0u /*first instanceIndex*/);
5071	vk.cmdEndRenderPass(*cmdBuf);
5072
5073	{
5074		const VkImageMemoryBarrier	renderFinishBarrier	=
5075		{
5076			VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,		//	VkStructureType			sType;
5077			DE_NULL,									//	const void*				pNext;
5078			VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,		//	VkMemoryOutputFlags		outputMask;
5079			VK_ACCESS_TRANSFER_READ_BIT,				//	VkMemoryInputFlags		inputMask;
5080			VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,	//	VkImageLayout			oldLayout;
5081			VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,		//	VkImageLayout			newLayout;
5082			queueFamilyIndex,							//	deUint32				srcQueueFamilyIndex;
5083			queueFamilyIndex,							//	deUint32				destQueueFamilyIndex;
5084			*image,										//	VkImage					image;
5085			{
5086				VK_IMAGE_ASPECT_COLOR_BIT,					//	VkImageAspectFlags	aspectMask;
5087				0u,											//	deUint32			baseMipLevel;
5088				1u,											//	deUint32			mipLevels;
5089				0u,											//	deUint32			baseArraySlice;
5090				1u,											//	deUint32			arraySize;
5091			}											//	VkImageSubresourceRange	subresourceRange;
5092		};
5093		const void*				barriers[]				= { &renderFinishBarrier };
5094		vk.cmdPipelineBarrier(*cmdBuf, VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, DE_FALSE, (deUint32)DE_LENGTH_OF_ARRAY(barriers), barriers);
5095	}
5096
5097	{
5098		const VkBufferImageCopy	copyParams	=
5099		{
5100			(VkDeviceSize)0u,						//	VkDeviceSize			bufferOffset;
5101			(deUint32)renderSize.x(),				//	deUint32				bufferRowLength;
5102			(deUint32)renderSize.y(),				//	deUint32				bufferImageHeight;
5103			{
5104				VK_IMAGE_ASPECT_COLOR_BIT,				//	VkImageAspect		aspect;
5105				0u,										//	deUint32			mipLevel;
5106				0u,										//	deUint32			arrayLayer;
5107				1u,										//	deUint32			arraySize;
5108			},										//	VkImageSubresourceCopy	imageSubresource;
5109			{ 0u, 0u, 0u },							//	VkOffset3D				imageOffset;
5110			{ renderSize.x(), renderSize.y(), 1u }	//	VkExtent3D				imageExtent;
5111		};
5112		vk.cmdCopyImageToBuffer(*cmdBuf, *image, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, *readImageBuffer, 1u, &copyParams);
5113	}
5114
5115	{
5116		const VkBufferMemoryBarrier	copyFinishBarrier	=
5117		{
5118			VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER,	//	VkStructureType		sType;
5119			DE_NULL,									//	const void*			pNext;
5120			VK_ACCESS_TRANSFER_WRITE_BIT,				//	VkMemoryOutputFlags	outputMask;
5121			VK_ACCESS_HOST_READ_BIT,					//	VkMemoryInputFlags	inputMask;
5122			queueFamilyIndex,							//	deUint32			srcQueueFamilyIndex;
5123			queueFamilyIndex,							//	deUint32			destQueueFamilyIndex;
5124			*readImageBuffer,							//	VkBuffer			buffer;
5125			0u,											//	VkDeviceSize		offset;
5126			imageSizeBytes								//	VkDeviceSize		size;
5127		};
5128		const void*				barriers[]				= { &copyFinishBarrier };
5129		vk.cmdPipelineBarrier(*cmdBuf, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_HOST_BIT, DE_FALSE, (deUint32)DE_LENGTH_OF_ARRAY(barriers), barriers);
5130	}
5131
5132	VK_CHECK(vk.endCommandBuffer(*cmdBuf));
5133
5134	// Upload vertex data
5135	{
5136		const VkMappedMemoryRange	range			=
5137		{
5138			VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE,	//	VkStructureType	sType;
5139			DE_NULL,								//	const void*		pNext;
5140			vertexBufferMemory->getMemory(),		//	VkDeviceMemory	mem;
5141			0,										//	VkDeviceSize	offset;
5142			(VkDeviceSize)sizeof(vertexData),		//	VkDeviceSize	size;
5143		};
5144		void*						vertexBufPtr	= vertexBufferMemory->getHostPtr();
5145
5146		deMemcpy(vertexBufPtr, &vertexData[0], sizeof(vertexData));
5147		VK_CHECK(vk.flushMappedMemoryRanges(vkDevice, 1u, &range));
5148	}
5149
5150	// Submit & wait for completion
5151	{
5152		const VkFenceCreateInfo	fenceParams	=
5153		{
5154			VK_STRUCTURE_TYPE_FENCE_CREATE_INFO,	//	VkStructureType		sType;
5155			DE_NULL,								//	const void*			pNext;
5156			0u,										//	VkFenceCreateFlags	flags;
5157		};
5158		const Unique<VkFence>	fence		(createFence(vk, vkDevice, &fenceParams));
5159		const VkSubmitInfo		submitInfo	=
5160		{
5161			VK_STRUCTURE_TYPE_SUBMIT_INFO,
5162			DE_NULL,
5163			0u,
5164			(const VkSemaphore*)DE_NULL,
5165			1u,
5166			&cmdBuf.get(),
5167			0u,
5168			(const VkSemaphore*)DE_NULL,
5169		};
5170
5171		VK_CHECK(vk.queueSubmit(queue, 1u, &submitInfo, *fence));
5172		VK_CHECK(vk.waitForFences(vkDevice, 1u, &fence.get(), DE_TRUE, ~0ull));
5173	}
5174
5175	const void* imagePtr	= readImageBufferMemory->getHostPtr();
5176	const tcu::ConstPixelBufferAccess pixelBuffer(tcu::TextureFormat(tcu::TextureFormat::RGBA, tcu::TextureFormat::UNORM_INT8),
5177												  renderSize.x(), renderSize.y(), 1, imagePtr);
5178	// Log image
5179	{
5180		const VkMappedMemoryRange	range		=
5181		{
5182			VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE,	//	VkStructureType	sType;
5183			DE_NULL,								//	const void*		pNext;
5184			readImageBufferMemory->getMemory(),		//	VkDeviceMemory	mem;
5185			0,										//	VkDeviceSize	offset;
5186			imageSizeBytes,							//	VkDeviceSize	size;
5187		};
5188
5189		VK_CHECK(vk.invalidateMappedMemoryRanges(vkDevice, 1u, &range));
5190		context.getTestContext().getLog() << TestLog::Image("Result", "Result", pixelBuffer);
5191	}
5192
5193	const RGBA threshold(1, 1, 1, 1);
5194	const RGBA upperLeft(pixelBuffer.getPixel(1, 1));
5195	if (!tcu::compareThreshold(upperLeft, instance.outputColors[0], threshold))
5196		return TestStatus::fail("Upper left corner mismatch");
5197
5198	const RGBA upperRight(pixelBuffer.getPixel(pixelBuffer.getWidth() - 1, 1));
5199	if (!tcu::compareThreshold(upperRight, instance.outputColors[1], threshold))
5200		return TestStatus::fail("Upper right corner mismatch");
5201
5202	const RGBA lowerLeft(pixelBuffer.getPixel(1, pixelBuffer.getHeight() - 1));
5203	if (!tcu::compareThreshold(lowerLeft, instance.outputColors[2], threshold))
5204		return TestStatus::fail("Lower left corner mismatch");
5205
5206	const RGBA lowerRight(pixelBuffer.getPixel(pixelBuffer.getWidth() - 1, pixelBuffer.getHeight() - 1));
5207	if (!tcu::compareThreshold(lowerRight, instance.outputColors[3], threshold))
5208		return TestStatus::fail("Lower right corner mismatch");
5209
5210	return TestStatus::pass("Rendered output matches input");
5211}
5212
5213void createTestsForAllStages (const std::string& name, const RGBA (&inputColors)[4], const RGBA (&outputColors)[4], const map<string, string>& testCodeFragments, const vector<deInt32>& specConstants, tcu::TestCaseGroup* tests)
5214{
5215	const ShaderElement		pipelineStages[]				=
5216	{
5217		ShaderElement("vert", "main", VK_SHADER_STAGE_VERTEX_BIT),
5218		ShaderElement("tessc", "main", VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT),
5219		ShaderElement("tesse", "main", VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT),
5220		ShaderElement("geom", "main", VK_SHADER_STAGE_GEOMETRY_BIT),
5221		ShaderElement("frag", "main", VK_SHADER_STAGE_FRAGMENT_BIT),
5222	};
5223
5224	StageToSpecConstantMap	specConstantMap;
5225
5226	specConstantMap[VK_SHADER_STAGE_VERTEX_BIT] = specConstants;
5227	addFunctionCaseWithPrograms<InstanceContext>(tests, name + "-vert", "", addShaderCodeCustomVertex, runAndVerifyDefaultPipeline,
5228												 createInstanceContext(pipelineStages, inputColors, outputColors, testCodeFragments, specConstantMap));
5229
5230	specConstantMap.clear();
5231	specConstantMap[VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT] = specConstants;
5232	addFunctionCaseWithPrograms<InstanceContext>(tests, name + "-tessc", "", addShaderCodeCustomTessControl, runAndVerifyDefaultPipeline,
5233												 createInstanceContext(pipelineStages, inputColors, outputColors, testCodeFragments, specConstantMap));
5234
5235	specConstantMap.clear();
5236	specConstantMap[VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT] = specConstants;
5237	addFunctionCaseWithPrograms<InstanceContext>(tests, name + "-tesse", "", addShaderCodeCustomTessEval, runAndVerifyDefaultPipeline,
5238												 createInstanceContext(pipelineStages, inputColors, outputColors, testCodeFragments, specConstantMap));
5239
5240	specConstantMap.clear();
5241	specConstantMap[VK_SHADER_STAGE_GEOMETRY_BIT] = specConstants;
5242	addFunctionCaseWithPrograms<InstanceContext>(tests, name + "-geom", "", addShaderCodeCustomGeometry, runAndVerifyDefaultPipeline,
5243												 createInstanceContext(pipelineStages, inputColors, outputColors, testCodeFragments, specConstantMap));
5244
5245	specConstantMap.clear();
5246	specConstantMap[VK_SHADER_STAGE_FRAGMENT_BIT] = specConstants;
5247	addFunctionCaseWithPrograms<InstanceContext>(tests, name + "-frag", "", addShaderCodeCustomFragment, runAndVerifyDefaultPipeline,
5248												 createInstanceContext(pipelineStages, inputColors, outputColors, testCodeFragments, specConstantMap));
5249}
5250
5251inline void createTestsForAllStages (const std::string& name, const RGBA (&inputColors)[4], const RGBA (&outputColors)[4], const map<string, string>& testCodeFragments, tcu::TestCaseGroup* tests)
5252{
5253	vector<deInt32> noSpecConstants;
5254	createTestsForAllStages(name, inputColors, outputColors, testCodeFragments, noSpecConstants, tests);
5255}
5256
5257} // anonymous
5258
5259tcu::TestCaseGroup* createOpSourceTests (tcu::TestContext& testCtx)
5260{
5261	struct NameCodePair { string name, code; };
5262	RGBA							defaultColors[4];
5263	de::MovePtr<tcu::TestCaseGroup> opSourceTests			(new tcu::TestCaseGroup(testCtx, "opsource", "OpSource instruction"));
5264	const std::string				opsourceGLSLWithFile	= "%opsrcfile = OpString \"foo.vert\"\nOpSource GLSL 450 %opsrcfile ";
5265	map<string, string>				fragments				= passthruFragments();
5266	const NameCodePair				tests[]					=
5267	{
5268		{"unknown", "OpSource Unknown 321"},
5269		{"essl", "OpSource ESSL 310"},
5270		{"glsl", "OpSource GLSL 450"},
5271		{"opencl_cpp", "OpSource OpenCL_CPP 120"},
5272		{"opencl_c", "OpSource OpenCL_C 120"},
5273		{"multiple", "OpSource GLSL 450\nOpSource GLSL 450"},
5274		{"file", opsourceGLSLWithFile},
5275		{"source", opsourceGLSLWithFile + "\"void main(){}\""},
5276		// Longest possible source string: SPIR-V limits instructions to 65535
5277		// words, of which the first 4 are opsourceGLSLWithFile; the rest will
5278		// contain 65530 UTF8 characters (one word each) plus one last word
5279		// containing 3 ASCII characters and \0.
5280		{"longsource", opsourceGLSLWithFile + '"' + makeLongUTF8String(65530) + "ccc" + '"'}
5281	};
5282
5283	getDefaultColors(defaultColors);
5284	for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(NameCodePair); ++testNdx)
5285	{
5286		fragments["debug"] = tests[testNdx].code;
5287		createTestsForAllStages(tests[testNdx].name, defaultColors, defaultColors, fragments, opSourceTests.get());
5288	}
5289
5290	return opSourceTests.release();
5291}
5292
5293tcu::TestCaseGroup* createOpSourceContinuedTests (tcu::TestContext& testCtx)
5294{
5295	struct NameCodePair { string name, code; };
5296	RGBA								defaultColors[4];
5297	de::MovePtr<tcu::TestCaseGroup>		opSourceTests		(new tcu::TestCaseGroup(testCtx, "opsourcecontinued", "OpSourceContinued instruction"));
5298	map<string, string>					fragments			= passthruFragments();
5299	const std::string					opsource			= "%opsrcfile = OpString \"foo.vert\"\nOpSource GLSL 450 %opsrcfile \"void main(){}\"\n";
5300	const NameCodePair					tests[]				=
5301	{
5302		{"empty", opsource + "OpSourceContinued \"\""},
5303		{"short", opsource + "OpSourceContinued \"abcde\""},
5304		{"multiple", opsource + "OpSourceContinued \"abcde\"\nOpSourceContinued \"fghij\""},
5305		// Longest possible source string: SPIR-V limits instructions to 65535
5306		// words, of which the first one is OpSourceContinued/length; the rest
5307		// will contain 65533 UTF8 characters (one word each) plus one last word
5308		// containing 3 ASCII characters and \0.
5309		{"long", opsource + "OpSourceContinued \"" + makeLongUTF8String(65533) + "ccc\""}
5310	};
5311
5312	getDefaultColors(defaultColors);
5313	for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(NameCodePair); ++testNdx)
5314	{
5315		fragments["debug"] = tests[testNdx].code;
5316		createTestsForAllStages(tests[testNdx].name, defaultColors, defaultColors, fragments, opSourceTests.get());
5317	}
5318
5319	return opSourceTests.release();
5320}
5321
5322tcu::TestCaseGroup* createOpNoLineTests(tcu::TestContext& testCtx)
5323{
5324	RGBA								 defaultColors[4];
5325	de::MovePtr<tcu::TestCaseGroup>		 opLineTests		 (new tcu::TestCaseGroup(testCtx, "opNoLine", "OpNoLine instruction"));
5326	map<string, string>					 fragments;
5327	getDefaultColors(defaultColors);
5328	fragments["debug"]			=
5329		"%name = OpString \"name\"\n";
5330
5331	fragments["pre_main"]	=
5332		"OpNoLine\n"
5333		"OpNoLine\n"
5334		"OpLine %name 1 1\n"
5335		"OpNoLine\n"
5336		"OpLine %name 1 1\n"
5337		"OpLine %name 1 1\n"
5338		"%second_function = OpFunction %v4f32 None %v4f32_function\n"
5339		"OpNoLine\n"
5340		"OpLine %name 1 1\n"
5341		"OpNoLine\n"
5342		"OpLine %name 1 1\n"
5343		"OpLine %name 1 1\n"
5344		"%second_param1 = OpFunctionParameter %v4f32\n"
5345		"OpNoLine\n"
5346		"OpNoLine\n"
5347		"%label_secondfunction = OpLabel\n"
5348		"OpNoLine\n"
5349		"OpReturnValue %second_param1\n"
5350		"OpFunctionEnd\n"
5351		"OpNoLine\n"
5352		"OpNoLine\n";
5353
5354	fragments["testfun"]		=
5355		// A %test_code function that returns its argument unchanged.
5356		"OpNoLine\n"
5357		"OpNoLine\n"
5358		"OpLine %name 1 1\n"
5359		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
5360		"OpNoLine\n"
5361		"%param1 = OpFunctionParameter %v4f32\n"
5362		"OpNoLine\n"
5363		"OpNoLine\n"
5364		"%label_testfun = OpLabel\n"
5365		"OpNoLine\n"
5366		"%val1 = OpFunctionCall %v4f32 %second_function %param1\n"
5367		"OpReturnValue %val1\n"
5368		"OpFunctionEnd\n"
5369		"OpLine %name 1 1\n"
5370		"OpNoLine\n";
5371
5372	createTestsForAllStages("opNoLine", defaultColors, defaultColors, fragments, opLineTests.get());
5373
5374	return opLineTests.release();
5375}
5376
5377
5378tcu::TestCaseGroup* createOpLineTests(tcu::TestContext& testCtx)
5379{
5380	RGBA													defaultColors[4];
5381	de::MovePtr<tcu::TestCaseGroup>							opLineTests			(new tcu::TestCaseGroup(testCtx, "opLine", "OpLine instruction"));
5382	map<string, string>										fragments;
5383	std::vector<std::pair<std::string, std::string> >		problemStrings;
5384
5385	problemStrings.push_back(std::make_pair<std::string, std::string>("empty_name", ""));
5386	problemStrings.push_back(std::make_pair<std::string, std::string>("short_name", "short_name"));
5387	problemStrings.push_back(std::make_pair<std::string, std::string>("long_name", makeLongUTF8String(65530) + "ccc"));
5388	getDefaultColors(defaultColors);
5389
5390	fragments["debug"]			=
5391		"%other_name = OpString \"other_name\"\n";
5392
5393	fragments["pre_main"]	=
5394		"OpLine %file_name 32 0\n"
5395		"OpLine %file_name 32 32\n"
5396		"OpLine %file_name 32 40\n"
5397		"OpLine %other_name 32 40\n"
5398		"OpLine %other_name 0 100\n"
5399		"OpLine %other_name 0 4294967295\n"
5400		"OpLine %other_name 4294967295 0\n"
5401		"OpLine %other_name 32 40\n"
5402		"OpLine %file_name 0 0\n"
5403		"%second_function = OpFunction %v4f32 None %v4f32_function\n"
5404		"OpLine %file_name 1 0\n"
5405		"%second_param1 = OpFunctionParameter %v4f32\n"
5406		"OpLine %file_name 1 3\n"
5407		"OpLine %file_name 1 2\n"
5408		"%label_secondfunction = OpLabel\n"
5409		"OpLine %file_name 0 2\n"
5410		"OpReturnValue %second_param1\n"
5411		"OpFunctionEnd\n"
5412		"OpLine %file_name 0 2\n"
5413		"OpLine %file_name 0 2\n";
5414
5415	fragments["testfun"]		=
5416		// A %test_code function that returns its argument unchanged.
5417		"OpLine %file_name 1 0\n"
5418		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
5419		"OpLine %file_name 16 330\n"
5420		"%param1 = OpFunctionParameter %v4f32\n"
5421		"OpLine %file_name 14 442\n"
5422		"%label_testfun = OpLabel\n"
5423		"OpLine %file_name 11 1024\n"
5424		"%val1 = OpFunctionCall %v4f32 %second_function %param1\n"
5425		"OpLine %file_name 2 97\n"
5426		"OpReturnValue %val1\n"
5427		"OpFunctionEnd\n"
5428		"OpLine %file_name 5 32\n";
5429
5430	for (size_t i = 0; i < problemStrings.size(); ++i)
5431	{
5432		map<string, string> testFragments = fragments;
5433		testFragments["debug"] += "%file_name = OpString \"" + problemStrings[i].second + "\"\n";
5434		createTestsForAllStages(string("opLine") + "-" + problemStrings[i].first, defaultColors, defaultColors, testFragments, opLineTests.get());
5435	}
5436
5437	return opLineTests.release();
5438}
5439
5440tcu::TestCaseGroup* createOpConstantNullTests(tcu::TestContext& testCtx)
5441{
5442	de::MovePtr<tcu::TestCaseGroup> opConstantNullTests		(new tcu::TestCaseGroup(testCtx, "opConstantNull", "OpConstantNull instruction"));
5443	RGBA							colors[4];
5444
5445
5446	const char						functionStart[] =
5447		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
5448		"%param1 = OpFunctionParameter %v4f32\n"
5449		"%lbl    = OpLabel\n";
5450
5451	const char						functionEnd[]	=
5452		"OpReturnValue %transformed_param\n"
5453		"OpFunctionEnd\n";
5454
5455	struct NameConstantsCode
5456	{
5457		string name;
5458		string constants;
5459		string code;
5460	};
5461
5462	NameConstantsCode tests[] =
5463	{
5464		{
5465			"vec4",
5466			"%cnull = OpConstantNull %v4f32\n",
5467			"%transformed_param = OpFAdd %v4f32 %param1 %cnull\n"
5468		},
5469		{
5470			"float",
5471			"%cnull = OpConstantNull %f32\n",
5472			"%vp = OpVariable %fp_v4f32 Function\n"
5473			"%v  = OpLoad %v4f32 %vp\n"
5474			"%v0 = OpVectorInsertDynamic %v4f32 %v %cnull %c_i32_0\n"
5475			"%v1 = OpVectorInsertDynamic %v4f32 %v0 %cnull %c_i32_1\n"
5476			"%v2 = OpVectorInsertDynamic %v4f32 %v1 %cnull %c_i32_2\n"
5477			"%v3 = OpVectorInsertDynamic %v4f32 %v2 %cnull %c_i32_3\n"
5478			"%transformed_param = OpFAdd %v4f32 %param1 %v3\n"
5479		},
5480		{
5481			"bool",
5482			"%cnull             = OpConstantNull %bool\n",
5483			"%v                 = OpVariable %fp_v4f32 Function\n"
5484			"                     OpStore %v %param1\n"
5485			"                     OpSelectionMerge %false_label None\n"
5486			"                     OpBranchConditional %cnull %true_label %false_label\n"
5487			"%true_label        = OpLabel\n"
5488			"                     OpStore %v %c_v4f32_0_5_0_5_0_5_0_5\n"
5489			"                     OpBranch %false_label\n"
5490			"%false_label       = OpLabel\n"
5491			"%transformed_param = OpLoad %v4f32 %v\n"
5492		},
5493		{
5494			"i32",
5495			"%cnull             = OpConstantNull %i32\n",
5496			"%v                 = OpVariable %fp_v4f32 Function %c_v4f32_0_5_0_5_0_5_0_5\n"
5497			"%b                 = OpIEqual %bool %cnull %c_i32_0\n"
5498			"                     OpSelectionMerge %false_label None\n"
5499			"                     OpBranchConditional %b %true_label %false_label\n"
5500			"%true_label        = OpLabel\n"
5501			"                     OpStore %v %param1\n"
5502			"                     OpBranch %false_label\n"
5503			"%false_label       = OpLabel\n"
5504			"%transformed_param = OpLoad %v4f32 %v\n"
5505		},
5506		{
5507			"struct",
5508			"%stype             = OpTypeStruct %f32 %v4f32\n"
5509			"%fp_stype          = OpTypePointer Function %stype\n"
5510			"%cnull             = OpConstantNull %stype\n",
5511			"%v                 = OpVariable %fp_stype Function %cnull\n"
5512			"%f                 = OpAccessChain %fp_v4f32 %v %c_i32_1\n"
5513			"%f_val             = OpLoad %v4f32 %f\n"
5514			"%transformed_param = OpFAdd %v4f32 %param1 %f_val\n"
5515		},
5516		{
5517			"array",
5518			"%a4_v4f32          = OpTypeArray %v4f32 %c_u32_4\n"
5519			"%fp_a4_v4f32       = OpTypePointer Function %a4_v4f32\n"
5520			"%cnull             = OpConstantNull %a4_v4f32\n",
5521			"%v                 = OpVariable %fp_a4_v4f32 Function %cnull\n"
5522			"%f                 = OpAccessChain %fp_v4f32 %v %c_u32_0\n"
5523			"%f1                = OpAccessChain %fp_v4f32 %v %c_u32_1\n"
5524			"%f2                = OpAccessChain %fp_v4f32 %v %c_u32_2\n"
5525			"%f3                = OpAccessChain %fp_v4f32 %v %c_u32_3\n"
5526			"%f_val             = OpLoad %v4f32 %f\n"
5527			"%f1_val            = OpLoad %v4f32 %f1\n"
5528			"%f2_val            = OpLoad %v4f32 %f2\n"
5529			"%f3_val            = OpLoad %v4f32 %f3\n"
5530			"%t0                = OpFAdd %v4f32 %param1 %f_val\n"
5531			"%t1                = OpFAdd %v4f32 %t0 %f1_val\n"
5532			"%t2                = OpFAdd %v4f32 %t1 %f2_val\n"
5533			"%transformed_param = OpFAdd %v4f32 %t2 %f3_val\n"
5534		},
5535		{
5536			"matrix",
5537			"%mat4x4_f32        = OpTypeMatrix %v4f32 4\n"
5538			"%cnull             = OpConstantNull %mat4x4_f32\n",
5539			// Our null matrix * any vector should result in a zero vector.
5540			"%v                 = OpVectorTimesMatrix %v4f32 %param1 %cnull\n"
5541			"%transformed_param = OpFAdd %v4f32 %param1 %v\n"
5542		}
5543	};
5544
5545	getHalfColorsFullAlpha(colors);
5546
5547	for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(NameConstantsCode); ++testNdx)
5548	{
5549		map<string, string> fragments;
5550		fragments["pre_main"] = tests[testNdx].constants;
5551		fragments["testfun"] = string(functionStart) + tests[testNdx].code + functionEnd;
5552		createTestsForAllStages(tests[testNdx].name, colors, colors, fragments, opConstantNullTests.get());
5553	}
5554	return opConstantNullTests.release();
5555}
5556tcu::TestCaseGroup* createOpConstantCompositeTests(tcu::TestContext& testCtx)
5557{
5558	de::MovePtr<tcu::TestCaseGroup> opConstantCompositeTests		(new tcu::TestCaseGroup(testCtx, "opConstantComposite", "OpConstantComposite instruction"));
5559	RGBA							inputColors[4];
5560	RGBA							outputColors[4];
5561
5562
5563	const char						functionStart[]	 =
5564		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
5565		"%param1 = OpFunctionParameter %v4f32\n"
5566		"%lbl    = OpLabel\n";
5567
5568	const char						functionEnd[]		=
5569		"OpReturnValue %transformed_param\n"
5570		"OpFunctionEnd\n";
5571
5572	struct NameConstantsCode
5573	{
5574		string name;
5575		string constants;
5576		string code;
5577	};
5578
5579	NameConstantsCode tests[] =
5580	{
5581		{
5582			"vec4",
5583
5584			"%cval              = OpConstantComposite %v4f32 %c_f32_0_5 %c_f32_0_5 %c_f32_0_5 %c_f32_0\n",
5585			"%transformed_param = OpFAdd %v4f32 %param1 %cval\n"
5586		},
5587		{
5588			"struct",
5589
5590			"%stype             = OpTypeStruct %v4f32 %f32\n"
5591			"%fp_stype          = OpTypePointer Function %stype\n"
5592			"%f32_n_1           = OpConstant %f32 -1.0\n"
5593			"%f32_1_5           = OpConstant %f32 !0x3fc00000\n" // +1.5
5594			"%cvec              = OpConstantComposite %v4f32 %f32_1_5 %f32_1_5 %f32_1_5 %c_f32_1\n"
5595			"%cval              = OpConstantComposite %stype %cvec %f32_n_1\n",
5596
5597			"%v                 = OpVariable %fp_stype Function %cval\n"
5598			"%vec_ptr           = OpAccessChain %fp_v4f32 %v %c_u32_0\n"
5599			"%f32_ptr           = OpAccessChain %fp_v4f32 %v %c_u32_1\n"
5600			"%vec_val           = OpLoad %v4f32 %vec_ptr\n"
5601			"%f32_val           = OpLoad %v4f32 %f32_ptr\n"
5602			"%tmp1              = OpVectorTimesScalar %v4f32 %c_v4f32_1_1_1_1 %f32_val\n" // vec4(-1)
5603			"%tmp2              = OpFAdd %v4f32 %tmp1 %param1\n" // param1 + vec4(-1)
5604			"%transformed_param = OpFAdd %v4f32 %tmp2 %vec_val\n" // param1 + vec4(-1) + vec4(1.5, 1.5, 1.5, 1.0)
5605		},
5606		{
5607			// [1|0|0|0.5] [x] = x + 0.5
5608			// [0|1|0|0.5] [y] = y + 0.5
5609			// [0|0|1|0.5] [z] = z + 0.5
5610			// [0|0|0|1  ] [1] = 1
5611			"matrix",
5612
5613			"%mat4x4_f32          = OpTypeMatrix %v4f32 4\n"
5614		    "%v4f32_1_0_0_0       = OpConstantComposite %v4f32 %c_f32_1 %c_f32_0 %c_f32_0 %c_f32_0\n"
5615		    "%v4f32_0_1_0_0       = OpConstantComposite %v4f32 %c_f32_0 %c_f32_1 %c_f32_0 %c_f32_0\n"
5616		    "%v4f32_0_0_1_0       = OpConstantComposite %v4f32 %c_f32_0 %c_f32_0 %c_f32_1 %c_f32_0\n"
5617		    "%v4f32_0_5_0_5_0_5_1 = OpConstantComposite %v4f32 %c_f32_0_5 %c_f32_0_5 %c_f32_0_5 %c_f32_1\n"
5618			"%cval                = OpConstantComposite %mat4x4_f32 %v4f32_1_0_0_0 %v4f32_0_1_0_0 %v4f32_0_0_1_0 %v4f32_0_5_0_5_0_5_1\n",
5619
5620			"%transformed_param   = OpMatrixTimesVector %v4f32 %cval %param1\n"
5621		},
5622		{
5623			"array",
5624
5625			"%c_v4f32_1_1_1_0     = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_0\n"
5626			"%fp_a4f32            = OpTypePointer Function %a4f32\n"
5627			"%f32_n_1             = OpConstant %f32 -1.0\n"
5628			"%f32_1_5             = OpConstant %f32 !0x3fc00000\n" // +1.5
5629			"%carr                = OpConstantComposite %a4f32 %c_f32_0 %f32_n_1 %f32_1_5 %c_f32_0\n",
5630
5631			"%v                   = OpVariable %fp_a4f32 Function %carr\n"
5632			"%f                   = OpAccessChain %fp_f32 %v %c_u32_0\n"
5633			"%f1                  = OpAccessChain %fp_f32 %v %c_u32_1\n"
5634			"%f2                  = OpAccessChain %fp_f32 %v %c_u32_2\n"
5635			"%f3                  = OpAccessChain %fp_f32 %v %c_u32_3\n"
5636			"%f_val               = OpLoad %f32 %f\n"
5637			"%f1_val              = OpLoad %f32 %f1\n"
5638			"%f2_val              = OpLoad %f32 %f2\n"
5639			"%f3_val              = OpLoad %f32 %f3\n"
5640			"%ftot1               = OpFAdd %f32 %f_val %f1_val\n"
5641			"%ftot2               = OpFAdd %f32 %ftot1 %f2_val\n"
5642			"%ftot3               = OpFAdd %f32 %ftot2 %f3_val\n"  // 0 - 1 + 1.5 + 0
5643			"%add_vec             = OpVectorTimesScalar %v4f32 %c_v4f32_1_1_1_0 %ftot3\n"
5644			"%transformed_param   = OpFAdd %v4f32 %param1 %add_vec\n"
5645		},
5646		{
5647			//
5648			// [
5649			//   {
5650			//      0.0,
5651			//      [ 1.0, 1.0, 1.0, 1.0]
5652			//   },
5653			//   {
5654			//      1.0,
5655			//      [ 0.0, 0.5, 0.0, 0.0]
5656			//   }, //     ^^^
5657			//   {
5658			//      0.0,
5659			//      [ 1.0, 1.0, 1.0, 1.0]
5660			//   }
5661			// ]
5662			"array_of_struct_of_array",
5663
5664			"%c_v4f32_1_1_1_0     = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_0\n"
5665			"%fp_a4f32            = OpTypePointer Function %a4f32\n"
5666			"%stype               = OpTypeStruct %f32 %a4f32\n"
5667			"%a3stype             = OpTypeArray %stype %c_u32_3\n"
5668			"%fp_a3stype          = OpTypePointer Function %a3stype\n"
5669			"%ca4f32_0            = OpConstantComposite %a4f32 %c_f32_0 %c_f32_0_5 %c_f32_0 %c_f32_0\n"
5670			"%ca4f32_1            = OpConstantComposite %a4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_1\n"
5671			"%cstype1             = OpConstantComposite %stype %c_f32_0 %ca4f32_1\n"
5672			"%cstype2             = OpConstantComposite %stype %c_f32_1 %ca4f32_0\n"
5673			"%carr                = OpConstantComposite %a3stype %cstype1 %cstype2 %cstype1",
5674
5675			"%v                   = OpVariable %fp_a3stype Function %carr\n"
5676			"%f                   = OpAccessChain %fp_f32 %v %c_u32_1 %c_u32_1 %c_u32_1\n"
5677			"%add_vec             = OpVectorTimesScalar %v4f32 %c_v4f32_1_1_1_0 %f\n"
5678			"%transformed_param   = OpFAdd %v4f32 %param1 %add_vec\n"
5679		}
5680	};
5681
5682	getHalfColorsFullAlpha(inputColors);
5683	outputColors[0] = RGBA(255, 255, 255, 255);
5684	outputColors[1] = RGBA(255, 127, 127, 255);
5685	outputColors[2] = RGBA(127, 255, 127, 255);
5686	outputColors[3] = RGBA(127, 127, 255, 255);
5687
5688	for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(NameConstantsCode); ++testNdx)
5689	{
5690		map<string, string> fragments;
5691		fragments["pre_main"] = tests[testNdx].constants;
5692		fragments["testfun"] = string(functionStart) + tests[testNdx].code + functionEnd;
5693		createTestsForAllStages(tests[testNdx].name, inputColors, outputColors, fragments, opConstantCompositeTests.get());
5694	}
5695	return opConstantCompositeTests.release();
5696}
5697
5698tcu::TestCaseGroup* createSelectionBlockOrderTests(tcu::TestContext& testCtx)
5699{
5700	de::MovePtr<tcu::TestCaseGroup> group				(new tcu::TestCaseGroup(testCtx, "selection_block_order", "Out-of-order blocks for selection"));
5701	RGBA							inputColors[4];
5702	RGBA							outputColors[4];
5703	map<string, string>				fragments;
5704
5705	// vec4 test_code(vec4 param) {
5706	//   vec4 result = param;
5707	//   for (int i = 0; i < 4; ++i) {
5708	//     if (i == 0) result[i] = 0.;
5709	//     else        result[i] = 1. - result[i];
5710	//   }
5711	//   return result;
5712	// }
5713	const char						function[]			=
5714		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
5715		"%param1    = OpFunctionParameter %v4f32\n"
5716		"%lbl       = OpLabel\n"
5717		"%iptr      = OpVariable %fp_i32 Function\n"
5718		"             OpStore %iptr %c_i32_0\n"
5719		"%result    = OpVariable %fp_v4f32 Function\n"
5720		"             OpStore %result %param1\n"
5721		"             OpBranch %loop\n"
5722
5723		// Loop entry block.
5724		"%loop      = OpLabel\n"
5725		"%ival      = OpLoad %i32 %iptr\n"
5726		"%lt_4      = OpSLessThan %bool %ival %c_i32_4\n"
5727		"             OpLoopMerge %exit %loop None\n"
5728		"             OpBranchConditional %lt_4 %if_entry %exit\n"
5729
5730		// Merge block for loop.
5731		"%exit      = OpLabel\n"
5732		"%ret       = OpLoad %v4f32 %result\n"
5733		"             OpReturnValue %ret\n"
5734
5735		// If-statement entry block.
5736		"%if_entry  = OpLabel\n"
5737		"%loc       = OpAccessChain %fp_f32 %result %ival\n"
5738		"%eq_0      = OpIEqual %bool %ival %c_i32_0\n"
5739		"             OpSelectionMerge %if_exit None\n"
5740		"             OpBranchConditional %eq_0 %if_true %if_false\n"
5741
5742		// False branch for if-statement.
5743		"%if_false  = OpLabel\n"
5744		"%val       = OpLoad %f32 %loc\n"
5745		"%sub       = OpFSub %f32 %c_f32_1 %val\n"
5746		"             OpStore %loc %sub\n"
5747		"             OpBranch %if_exit\n"
5748
5749		// Merge block for if-statement.
5750		"%if_exit   = OpLabel\n"
5751		"%ival_next = OpIAdd %i32 %ival %c_i32_1\n"
5752		"             OpStore %iptr %ival_next\n"
5753		"             OpBranch %loop\n"
5754
5755		// True branch for if-statement.
5756		"%if_true   = OpLabel\n"
5757		"             OpStore %loc %c_f32_0\n"
5758		"             OpBranch %if_exit\n"
5759
5760		"             OpFunctionEnd\n";
5761
5762	fragments["testfun"]	= function;
5763
5764	inputColors[0]			= RGBA(127, 127, 127, 0);
5765	inputColors[1]			= RGBA(127, 0,   0,   0);
5766	inputColors[2]			= RGBA(0,   127, 0,   0);
5767	inputColors[3]			= RGBA(0,   0,   127, 0);
5768
5769	outputColors[0]			= RGBA(0, 128, 128, 255);
5770	outputColors[1]			= RGBA(0, 255, 255, 255);
5771	outputColors[2]			= RGBA(0, 128, 255, 255);
5772	outputColors[3]			= RGBA(0, 255, 128, 255);
5773
5774	createTestsForAllStages("out_of_order", inputColors, outputColors, fragments, group.get());
5775
5776	return group.release();
5777}
5778
5779tcu::TestCaseGroup* createSwitchBlockOrderTests(tcu::TestContext& testCtx)
5780{
5781	de::MovePtr<tcu::TestCaseGroup> group				(new tcu::TestCaseGroup(testCtx, "switch_block_order", "Out-of-order blocks for switch"));
5782	RGBA							inputColors[4];
5783	RGBA							outputColors[4];
5784	map<string, string>				fragments;
5785
5786	const char						typesAndConstants[]	=
5787		"%c_f32_p2  = OpConstant %f32 0.2\n"
5788		"%c_f32_p4  = OpConstant %f32 0.4\n"
5789		"%c_f32_p6  = OpConstant %f32 0.6\n"
5790		"%c_f32_p8  = OpConstant %f32 0.8\n";
5791
5792	// vec4 test_code(vec4 param) {
5793	//   vec4 result = param;
5794	//   for (int i = 0; i < 4; ++i) {
5795	//     switch (i) {
5796	//       case 0: result[i] += .2; break;
5797	//       case 1: result[i] += .6; break;
5798	//       case 2: result[i] += .4; break;
5799	//       case 3: result[i] += .8; break;
5800	//       default: break; // unreachable
5801	//     }
5802	//   }
5803	//   return result;
5804	// }
5805	const char						function[]			=
5806		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
5807		"%param1    = OpFunctionParameter %v4f32\n"
5808		"%lbl       = OpLabel\n"
5809		"%iptr      = OpVariable %fp_i32 Function\n"
5810		"             OpStore %iptr %c_i32_0\n"
5811		"%result    = OpVariable %fp_v4f32 Function\n"
5812		"             OpStore %result %param1\n"
5813		"             OpBranch %loop\n"
5814
5815		// Loop entry block.
5816		"%loop      = OpLabel\n"
5817		"%ival      = OpLoad %i32 %iptr\n"
5818		"%lt_4      = OpSLessThan %bool %ival %c_i32_4\n"
5819		"             OpLoopMerge %exit %loop None\n"
5820		"             OpBranchConditional %lt_4 %switch_entry %exit\n"
5821
5822		// Merge block for loop.
5823		"%exit      = OpLabel\n"
5824		"%ret       = OpLoad %v4f32 %result\n"
5825		"             OpReturnValue %ret\n"
5826
5827		// Switch-statement entry block.
5828		"%switch_entry   = OpLabel\n"
5829		"%loc            = OpAccessChain %fp_f32 %result %ival\n"
5830		"%val            = OpLoad %f32 %loc\n"
5831		"                  OpSelectionMerge %switch_exit None\n"
5832		"                  OpSwitch %ival %switch_default 0 %case0 1 %case1 2 %case2 3 %case3\n"
5833
5834		"%case2          = OpLabel\n"
5835		"%addp4          = OpFAdd %f32 %val %c_f32_p4\n"
5836		"                  OpStore %loc %addp4\n"
5837		"                  OpBranch %switch_exit\n"
5838
5839		"%switch_default = OpLabel\n"
5840		"                  OpUnreachable\n"
5841
5842		"%case3          = OpLabel\n"
5843		"%addp8          = OpFAdd %f32 %val %c_f32_p8\n"
5844		"                  OpStore %loc %addp8\n"
5845		"                  OpBranch %switch_exit\n"
5846
5847		"%case0          = OpLabel\n"
5848		"%addp2          = OpFAdd %f32 %val %c_f32_p2\n"
5849		"                  OpStore %loc %addp2\n"
5850		"                  OpBranch %switch_exit\n"
5851
5852		// Merge block for switch-statement.
5853		"%switch_exit    = OpLabel\n"
5854		"%ival_next      = OpIAdd %i32 %ival %c_i32_1\n"
5855		"                  OpStore %iptr %ival_next\n"
5856		"                  OpBranch %loop\n"
5857
5858		"%case1          = OpLabel\n"
5859		"%addp6          = OpFAdd %f32 %val %c_f32_p6\n"
5860		"                  OpStore %loc %addp6\n"
5861		"                  OpBranch %switch_exit\n"
5862
5863		"                  OpFunctionEnd\n";
5864
5865	fragments["pre_main"]	= typesAndConstants;
5866	fragments["testfun"]	= function;
5867
5868	inputColors[0]			= RGBA(127, 27,  127, 51);
5869	inputColors[1]			= RGBA(127, 0,   0,   51);
5870	inputColors[2]			= RGBA(0,   27,  0,   51);
5871	inputColors[3]			= RGBA(0,   0,   127, 51);
5872
5873	outputColors[0]			= RGBA(178, 180, 229, 255);
5874	outputColors[1]			= RGBA(178, 153, 102, 255);
5875	outputColors[2]			= RGBA(51,  180, 102, 255);
5876	outputColors[3]			= RGBA(51,  153, 229, 255);
5877
5878	createTestsForAllStages("out_of_order", inputColors, outputColors, fragments, group.get());
5879
5880	return group.release();
5881}
5882
5883tcu::TestCaseGroup* createDecorationGroupTests(tcu::TestContext& testCtx)
5884{
5885	de::MovePtr<tcu::TestCaseGroup> group				(new tcu::TestCaseGroup(testCtx, "decoration_group", "Decoration group tests"));
5886	RGBA							inputColors[4];
5887	RGBA							outputColors[4];
5888	map<string, string>				fragments;
5889
5890	const char						decorations[]		=
5891		"OpDecorate %array_group         ArrayStride 4\n"
5892		"OpDecorate %struct_member_group Offset 0\n"
5893		"%array_group         = OpDecorationGroup\n"
5894		"%struct_member_group = OpDecorationGroup\n"
5895
5896		"OpDecorate %group1 RelaxedPrecision\n"
5897		"OpDecorate %group3 RelaxedPrecision\n"
5898		"OpDecorate %group3 Invariant\n"
5899		"OpDecorate %group3 Restrict\n"
5900		"%group0 = OpDecorationGroup\n"
5901		"%group1 = OpDecorationGroup\n"
5902		"%group3 = OpDecorationGroup\n";
5903
5904	const char						typesAndConstants[]	=
5905		"%a3f32     = OpTypeArray %f32 %c_u32_3\n"
5906		"%struct1   = OpTypeStruct %a3f32\n"
5907		"%struct2   = OpTypeStruct %a3f32\n"
5908		"%fp_struct1 = OpTypePointer Function %struct1\n"
5909		"%fp_struct2 = OpTypePointer Function %struct2\n"
5910		"%c_f32_2    = OpConstant %f32 2.\n"
5911		"%c_f32_n2   = OpConstant %f32 -2.\n"
5912
5913		"%c_a3f32_1 = OpConstantComposite %a3f32 %c_f32_1 %c_f32_2 %c_f32_1\n"
5914		"%c_a3f32_2 = OpConstantComposite %a3f32 %c_f32_n1 %c_f32_n2 %c_f32_n1\n"
5915		"%c_struct1 = OpConstantComposite %struct1 %c_a3f32_1\n"
5916		"%c_struct2 = OpConstantComposite %struct2 %c_a3f32_2\n";
5917
5918	const char						function[]			=
5919		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
5920		"%param     = OpFunctionParameter %v4f32\n"
5921		"%entry     = OpLabel\n"
5922		"%result    = OpVariable %fp_v4f32 Function\n"
5923		"             OpStore %result %param\n"
5924		"%v_struct1 = OpVariable %fp_struct1 Function\n"
5925		"             OpStore %v_struct1 %c_struct1\n"
5926		"%v_struct2 = OpVariable %fp_struct2 Function\n"
5927		"             OpStore %v_struct2 %c_struct2\n"
5928		"%ptr1      = OpAccessChain %fp_f32 %v_struct1 %c_i32_0 %c_i32_1\n"
5929		"%val1      = OpLoad %f32 %ptr1\n"
5930		"%ptr2      = OpAccessChain %fp_f32 %v_struct2 %c_i32_0 %c_i32_2\n"
5931		"%val2      = OpLoad %f32 %ptr2\n"
5932		"%addvalues = OpFAdd %f32 %val1 %val2\n"
5933		"%ptr       = OpAccessChain %fp_f32 %result %c_i32_1\n"
5934		"%val       = OpLoad %f32 %ptr\n"
5935		"%addresult = OpFAdd %f32 %addvalues %val\n"
5936		"             OpStore %ptr %addresult\n"
5937		"%ret       = OpLoad %v4f32 %result\n"
5938		"             OpReturnValue %ret\n"
5939		"             OpFunctionEnd\n";
5940
5941	struct CaseNameDecoration
5942	{
5943		string name;
5944		string decoration;
5945	};
5946
5947	CaseNameDecoration tests[] =
5948	{
5949		{
5950			"same_decoration_group_on_multiple_types",
5951			"OpGroupMemberDecorate %struct_member_group %struct1 0 %struct2 0\n"
5952		},
5953		{
5954			"empty_decoration_group",
5955			"OpGroupDecorate %group0      %a3f32\n"
5956			"OpGroupDecorate %group0      %result\n"
5957		},
5958		{
5959			"one_element_decoration_group",
5960			"OpGroupDecorate %array_group %a3f32\n"
5961		},
5962		{
5963			"multiple_elements_decoration_group",
5964			"OpGroupDecorate %group3      %v_struct1\n"
5965		},
5966		{
5967			"multiple_decoration_groups_on_same_variable",
5968			"OpGroupDecorate %group0      %v_struct2\n"
5969			"OpGroupDecorate %group1      %v_struct2\n"
5970			"OpGroupDecorate %group3      %v_struct2\n"
5971		},
5972		{
5973			"same_decoration_group_multiple_times",
5974			"OpGroupDecorate %group1      %addvalues\n"
5975			"OpGroupDecorate %group1      %addvalues\n"
5976			"OpGroupDecorate %group1      %addvalues\n"
5977		},
5978
5979	};
5980
5981	getHalfColorsFullAlpha(inputColors);
5982	getHalfColorsFullAlpha(outputColors);
5983
5984	for (size_t idx = 0; idx < (sizeof(tests) / sizeof(tests[0])); ++idx)
5985	{
5986		fragments["decoration"]	= decorations + tests[idx].decoration;
5987		fragments["pre_main"]	= typesAndConstants;
5988		fragments["testfun"]	= function;
5989
5990		createTestsForAllStages(tests[idx].name, inputColors, outputColors, fragments, group.get());
5991	}
5992
5993	return group.release();
5994}
5995
5996struct SpecConstantTwoIntGraphicsCase
5997{
5998	const char*		caseName;
5999	const char*		scDefinition0;
6000	const char*		scDefinition1;
6001	const char*		scResultType;
6002	const char*		scOperation;
6003	deInt32			scActualValue0;
6004	deInt32			scActualValue1;
6005	const char*		resultOperation;
6006	RGBA			expectedColors[4];
6007
6008					SpecConstantTwoIntGraphicsCase (const char* name,
6009											const char* definition0,
6010											const char* definition1,
6011											const char* resultType,
6012											const char* operation,
6013											deInt32		value0,
6014											deInt32		value1,
6015											const char* resultOp,
6016											const RGBA	(&output)[4])
6017						: caseName			(name)
6018						, scDefinition0		(definition0)
6019						, scDefinition1		(definition1)
6020						, scResultType		(resultType)
6021						, scOperation		(operation)
6022						, scActualValue0	(value0)
6023						, scActualValue1	(value1)
6024						, resultOperation	(resultOp)
6025	{
6026		expectedColors[0] = output[0];
6027		expectedColors[1] = output[1];
6028		expectedColors[2] = output[2];
6029		expectedColors[3] = output[3];
6030	}
6031};
6032
6033tcu::TestCaseGroup* createSpecConstantTests (tcu::TestContext& testCtx)
6034{
6035	de::MovePtr<tcu::TestCaseGroup> group				(new tcu::TestCaseGroup(testCtx, "opspecconstantop", "Test the OpSpecConstantOp instruction"));
6036	vector<SpecConstantTwoIntGraphicsCase>	cases;
6037	RGBA							inputColors[4];
6038	RGBA							outputColors0[4];
6039	RGBA							outputColors1[4];
6040	RGBA							outputColors2[4];
6041
6042	const char	decorations1[]			=
6043		"OpDecorate %sc_0  SpecId 0\n"
6044		"OpDecorate %sc_1  SpecId 1\n";
6045
6046	const char	typesAndConstants1[]	=
6047		"%sc_0      = OpSpecConstant${SC_DEF0}\n"
6048		"%sc_1      = OpSpecConstant${SC_DEF1}\n"
6049		"%sc_op     = OpSpecConstantOp ${SC_RESULT_TYPE} ${SC_OP}\n";
6050
6051	const char	function1[]				=
6052		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
6053		"%param     = OpFunctionParameter %v4f32\n"
6054		"%label     = OpLabel\n"
6055		"%result    = OpVariable %fp_v4f32 Function\n"
6056		"             OpStore %result %param\n"
6057		"%gen       = ${GEN_RESULT}\n"
6058		"%index     = OpIAdd %i32 %gen %c_i32_1\n"
6059		"%loc       = OpAccessChain %fp_f32 %result %index\n"
6060		"%val       = OpLoad %f32 %loc\n"
6061		"%add       = OpFAdd %f32 %val %c_f32_0_5\n"
6062		"             OpStore %loc %add\n"
6063		"%ret       = OpLoad %v4f32 %result\n"
6064		"             OpReturnValue %ret\n"
6065		"             OpFunctionEnd\n";
6066
6067	inputColors[0] = RGBA(127, 127, 127, 255);
6068	inputColors[1] = RGBA(127, 0,   0,   255);
6069	inputColors[2] = RGBA(0,   127, 0,   255);
6070	inputColors[3] = RGBA(0,   0,   127, 255);
6071
6072	// Derived from inputColors[x] by adding 128 to inputColors[x][0].
6073	outputColors0[0] = RGBA(255, 127, 127, 255);
6074	outputColors0[1] = RGBA(255, 0,   0,   255);
6075	outputColors0[2] = RGBA(128, 127, 0,   255);
6076	outputColors0[3] = RGBA(128, 0,   127, 255);
6077
6078	// Derived from inputColors[x] by adding 128 to inputColors[x][1].
6079	outputColors1[0] = RGBA(127, 255, 127, 255);
6080	outputColors1[1] = RGBA(127, 128, 0,   255);
6081	outputColors1[2] = RGBA(0,   255, 0,   255);
6082	outputColors1[3] = RGBA(0,   128, 127, 255);
6083
6084	// Derived from inputColors[x] by adding 128 to inputColors[x][2].
6085	outputColors2[0] = RGBA(127, 127, 255, 255);
6086	outputColors2[1] = RGBA(127, 0,   128, 255);
6087	outputColors2[2] = RGBA(0,   127, 128, 255);
6088	outputColors2[3] = RGBA(0,   0,   255, 255);
6089
6090	const char addZeroToSc[]		= "OpIAdd %i32 %c_i32_0 %sc_op";
6091	const char selectTrueUsingSc[]	= "OpSelect %i32 %sc_op %c_i32_1 %c_i32_0";
6092	const char selectFalseUsingSc[]	= "OpSelect %i32 %sc_op %c_i32_0 %c_i32_1";
6093
6094	cases.push_back(SpecConstantTwoIntGraphicsCase("iadd",					" %i32 0",		" %i32 0",		"%i32",		"IAdd                 %sc_0 %sc_1",				19,		-20,	addZeroToSc,		outputColors0));
6095	cases.push_back(SpecConstantTwoIntGraphicsCase("isub",					" %i32 0",		" %i32 0",		"%i32",		"ISub                 %sc_0 %sc_1",				19,		20,		addZeroToSc,		outputColors0));
6096	cases.push_back(SpecConstantTwoIntGraphicsCase("imul",					" %i32 0",		" %i32 0",		"%i32",		"IMul                 %sc_0 %sc_1",				-1,		-1,		addZeroToSc,		outputColors2));
6097	cases.push_back(SpecConstantTwoIntGraphicsCase("sdiv",					" %i32 0",		" %i32 0",		"%i32",		"SDiv                 %sc_0 %sc_1",				-126,	126,	addZeroToSc,		outputColors0));
6098	cases.push_back(SpecConstantTwoIntGraphicsCase("udiv",					" %i32 0",		" %i32 0",		"%i32",		"UDiv                 %sc_0 %sc_1",				126,	126,	addZeroToSc,		outputColors2));
6099	cases.push_back(SpecConstantTwoIntGraphicsCase("srem",					" %i32 0",		" %i32 0",		"%i32",		"SRem                 %sc_0 %sc_1",				-3,		2,		addZeroToSc,		outputColors0));
6100	cases.push_back(SpecConstantTwoIntGraphicsCase("smod",					" %i32 0",		" %i32 0",		"%i32",		"SMod                 %sc_0 %sc_1",				-3,		2,		addZeroToSc,		outputColors2));
6101	cases.push_back(SpecConstantTwoIntGraphicsCase("umod",					" %i32 0",		" %i32 0",		"%i32",		"UMod                 %sc_0 %sc_1",				1001,	500,	addZeroToSc,		outputColors2));
6102	cases.push_back(SpecConstantTwoIntGraphicsCase("bitwiseand",			" %i32 0",		" %i32 0",		"%i32",		"BitwiseAnd           %sc_0 %sc_1",				0x33,	0x0d,	addZeroToSc,		outputColors2));
6103	cases.push_back(SpecConstantTwoIntGraphicsCase("bitwiseor",				" %i32 0",		" %i32 0",		"%i32",		"BitwiseOr            %sc_0 %sc_1",				0,		1,		addZeroToSc,		outputColors2));
6104	cases.push_back(SpecConstantTwoIntGraphicsCase("bitwisexor",			" %i32 0",		" %i32 0",		"%i32",		"BitwiseAnd           %sc_0 %sc_1",				0x2e,	0x2f,	addZeroToSc,		outputColors2));
6105	cases.push_back(SpecConstantTwoIntGraphicsCase("shiftrightlogical",		" %i32 0",		" %i32 0",		"%i32",		"ShiftRightLogical    %sc_0 %sc_1",				2,		1,		addZeroToSc,		outputColors2));
6106	cases.push_back(SpecConstantTwoIntGraphicsCase("shiftrightarithmetic",	" %i32 0",		" %i32 0",		"%i32",		"ShiftRightArithmetic %sc_0 %sc_1",				-4,		2,		addZeroToSc,		outputColors0));
6107	cases.push_back(SpecConstantTwoIntGraphicsCase("shiftleftlogical",		" %i32 0",		" %i32 0",		"%i32",		"ShiftLeftLogical     %sc_0 %sc_1",				1,		0,		addZeroToSc,		outputColors2));
6108	cases.push_back(SpecConstantTwoIntGraphicsCase("slessthan",				" %i32 0",		" %i32 0",		"%bool",	"SLessThan            %sc_0 %sc_1",				-20,	-10,	selectTrueUsingSc,	outputColors2));
6109	cases.push_back(SpecConstantTwoIntGraphicsCase("ulessthan",				" %i32 0",		" %i32 0",		"%bool",	"ULessThan            %sc_0 %sc_1",				10,		20,		selectTrueUsingSc,	outputColors2));
6110	cases.push_back(SpecConstantTwoIntGraphicsCase("sgreaterthan",			" %i32 0",		" %i32 0",		"%bool",	"SGreaterThan         %sc_0 %sc_1",				-1000,	50,		selectFalseUsingSc,	outputColors2));
6111	cases.push_back(SpecConstantTwoIntGraphicsCase("ugreaterthan",			" %i32 0",		" %i32 0",		"%bool",	"UGreaterThan         %sc_0 %sc_1",				10,		5,		selectTrueUsingSc,	outputColors2));
6112	cases.push_back(SpecConstantTwoIntGraphicsCase("slessthanequal",		" %i32 0",		" %i32 0",		"%bool",	"SLessThanEqual       %sc_0 %sc_1",				-10,	-10,	selectTrueUsingSc,	outputColors2));
6113	cases.push_back(SpecConstantTwoIntGraphicsCase("ulessthanequal",		" %i32 0",		" %i32 0",		"%bool",	"ULessThanEqual       %sc_0 %sc_1",				50,		100,	selectTrueUsingSc,	outputColors2));
6114	cases.push_back(SpecConstantTwoIntGraphicsCase("sgreaterthanequal",		" %i32 0",		" %i32 0",		"%bool",	"SGreaterThanEqual    %sc_0 %sc_1",				-1000,	50,		selectFalseUsingSc,	outputColors2));
6115	cases.push_back(SpecConstantTwoIntGraphicsCase("ugreaterthanequal",		" %i32 0",		" %i32 0",		"%bool",	"UGreaterThanEqual    %sc_0 %sc_1",				10,		10,		selectTrueUsingSc,	outputColors2));
6116	cases.push_back(SpecConstantTwoIntGraphicsCase("iequal",				" %i32 0",		" %i32 0",		"%bool",	"IEqual               %sc_0 %sc_1",				42,		24,		selectFalseUsingSc,	outputColors2));
6117	cases.push_back(SpecConstantTwoIntGraphicsCase("logicaland",			"True %bool",	"True %bool",	"%bool",	"LogicalAnd           %sc_0 %sc_1",				0,		1,		selectFalseUsingSc,	outputColors2));
6118	cases.push_back(SpecConstantTwoIntGraphicsCase("logicalor",				"False %bool",	"False %bool",	"%bool",	"LogicalOr            %sc_0 %sc_1",				1,		0,		selectTrueUsingSc,	outputColors2));
6119	cases.push_back(SpecConstantTwoIntGraphicsCase("logicalequal",			"True %bool",	"True %bool",	"%bool",	"LogicalEqual         %sc_0 %sc_1",				0,		1,		selectFalseUsingSc,	outputColors2));
6120	cases.push_back(SpecConstantTwoIntGraphicsCase("logicalnotequal",		"False %bool",	"False %bool",	"%bool",	"LogicalNotEqual      %sc_0 %sc_1",				1,		0,		selectTrueUsingSc,	outputColors2));
6121	cases.push_back(SpecConstantTwoIntGraphicsCase("snegate",				" %i32 0",		" %i32 0",		"%i32",		"SNegate              %sc_0",					-1,		0,		addZeroToSc,		outputColors2));
6122	cases.push_back(SpecConstantTwoIntGraphicsCase("not",					" %i32 0",		" %i32 0",		"%i32",		"Not                  %sc_0",					-2,		0,		addZeroToSc,		outputColors2));
6123	cases.push_back(SpecConstantTwoIntGraphicsCase("logicalnot",			"False %bool",	"False %bool",	"%bool",	"LogicalNot           %sc_0",					1,		0,		selectFalseUsingSc,	outputColors2));
6124	cases.push_back(SpecConstantTwoIntGraphicsCase("select",				"False %bool",	" %i32 0",		"%i32",		"Select               %sc_0 %sc_1 %c_i32_0",	1,		1,		addZeroToSc,		outputColors2));
6125	// OpSConvert, OpFConvert: these two instructions involve ints/floats of different bitwidths.
6126	// \todo[2015-12-1 antiagainst] OpQuantizeToF16
6127
6128	for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
6129	{
6130		map<string, string>	specializations;
6131		map<string, string>	fragments;
6132		vector<deInt32>		specConstants;
6133
6134		specializations["SC_DEF0"]			= cases[caseNdx].scDefinition0;
6135		specializations["SC_DEF1"]			= cases[caseNdx].scDefinition1;
6136		specializations["SC_RESULT_TYPE"]	= cases[caseNdx].scResultType;
6137		specializations["SC_OP"]			= cases[caseNdx].scOperation;
6138		specializations["GEN_RESULT"]		= cases[caseNdx].resultOperation;
6139
6140		fragments["decoration"]				= tcu::StringTemplate(decorations1).specialize(specializations);
6141		fragments["pre_main"]				= tcu::StringTemplate(typesAndConstants1).specialize(specializations);
6142		fragments["testfun"]				= tcu::StringTemplate(function1).specialize(specializations);
6143
6144		specConstants.push_back(cases[caseNdx].scActualValue0);
6145		specConstants.push_back(cases[caseNdx].scActualValue1);
6146
6147		createTestsForAllStages(cases[caseNdx].caseName, inputColors, cases[caseNdx].expectedColors, fragments, specConstants, group.get());
6148	}
6149
6150	const char	decorations2[]			=
6151		"OpDecorate %sc_0  SpecId 0\n"
6152		"OpDecorate %sc_1  SpecId 1\n"
6153		"OpDecorate %sc_2  SpecId 2\n";
6154
6155	const char	typesAndConstants2[]	=
6156		"%v3i32     = OpTypeVector %i32 3\n"
6157
6158		"%sc_0      = OpSpecConstant %i32 0\n"
6159		"%sc_1      = OpSpecConstant %i32 0\n"
6160		"%sc_2      = OpSpecConstant %i32 0\n"
6161
6162		"%vec3_0      = OpConstantComposite %v3i32 %c_i32_0 %c_i32_0 %c_i32_0\n"
6163		"%sc_vec3_0   = OpSpecConstantOp %v3i32 CompositeInsert  %sc_0        %vec3_0    0\n"     // (sc_0, 0, 0)
6164		"%sc_vec3_1   = OpSpecConstantOp %v3i32 CompositeInsert  %sc_1        %vec3_0    1\n"     // (0, sc_1, 0)
6165		"%sc_vec3_2   = OpSpecConstantOp %v3i32 CompositeInsert  %sc_2        %vec3_0    2\n"     // (0, 0, sc_2)
6166		"%sc_vec3_01  = OpSpecConstantOp %v3i32 VectorShuffle    %sc_vec3_0   %sc_vec3_1 1 0 4\n" // (0,    sc_0, sc_1)
6167		"%sc_vec3_012 = OpSpecConstantOp %v3i32 VectorShuffle    %sc_vec3_01  %sc_vec3_2 5 1 2\n" // (sc_2, sc_0, sc_1)
6168		"%sc_ext_0    = OpSpecConstantOp %i32   CompositeExtract %sc_vec3_012            0\n"     // sc_2
6169		"%sc_ext_1    = OpSpecConstantOp %i32   CompositeExtract %sc_vec3_012            1\n"     // sc_0
6170		"%sc_ext_2    = OpSpecConstantOp %i32   CompositeExtract %sc_vec3_012            2\n"     // sc_1
6171		"%sc_sub      = OpSpecConstantOp %i32   ISub             %sc_ext_0    %sc_ext_1\n"        // (sc_2 - sc_0)
6172		"%sc_final    = OpSpecConstantOp %i32   IMul             %sc_sub      %sc_ext_2\n";       // (sc_2 - sc_0) * sc_1
6173
6174	const char	function2[]				=
6175		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
6176		"%param     = OpFunctionParameter %v4f32\n"
6177		"%label     = OpLabel\n"
6178		"%result    = OpVariable %fp_v4f32 Function\n"
6179		"             OpStore %result %param\n"
6180		"%loc       = OpAccessChain %fp_f32 %result %sc_final\n"
6181		"%val       = OpLoad %f32 %loc\n"
6182		"%add       = OpFAdd %f32 %val %c_f32_0_5\n"
6183		"             OpStore %loc %add\n"
6184		"%ret       = OpLoad %v4f32 %result\n"
6185		"             OpReturnValue %ret\n"
6186		"             OpFunctionEnd\n";
6187
6188	map<string, string>	fragments;
6189	vector<deInt32>		specConstants;
6190
6191	fragments["decoration"]	= decorations2;
6192	fragments["pre_main"]	= typesAndConstants2;
6193	fragments["testfun"]	= function2;
6194
6195	specConstants.push_back(56789);
6196	specConstants.push_back(-2);
6197	specConstants.push_back(56788);
6198
6199	createTestsForAllStages("vector_related", inputColors, outputColors2, fragments, specConstants, group.get());
6200
6201	return group.release();
6202}
6203
6204tcu::TestCaseGroup* createOpPhiTests(tcu::TestContext& testCtx)
6205{
6206	de::MovePtr<tcu::TestCaseGroup> group				(new tcu::TestCaseGroup(testCtx, "opphi", "Test the OpPhi instruction"));
6207	RGBA							inputColors[4];
6208	RGBA							outputColors1[4];
6209	RGBA							outputColors2[4];
6210	RGBA							outputColors3[4];
6211	map<string, string>				fragments1;
6212	map<string, string>				fragments2;
6213	map<string, string>				fragments3;
6214
6215	const char	typesAndConstants1[]	=
6216		"%c_f32_p2  = OpConstant %f32 0.2\n"
6217		"%c_f32_p4  = OpConstant %f32 0.4\n"
6218		"%c_f32_p6  = OpConstant %f32 0.6\n"
6219		"%c_f32_p8  = OpConstant %f32 0.8\n";
6220
6221	// vec4 test_code(vec4 param) {
6222	//   vec4 result = param;
6223	//   for (int i = 0; i < 4; ++i) {
6224	//     float operand;
6225	//     switch (i) {
6226	//       case 0: operand = .2; break;
6227	//       case 1: operand = .6; break;
6228	//       case 2: operand = .4; break;
6229	//       case 3: operand = .0; break;
6230	//       default: break; // unreachable
6231	//     }
6232	//     result[i] += operand;
6233	//   }
6234	//   return result;
6235	// }
6236	const char	function1[]				=
6237		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
6238		"%param1    = OpFunctionParameter %v4f32\n"
6239		"%lbl       = OpLabel\n"
6240		"%iptr      = OpVariable %fp_i32 Function\n"
6241		"             OpStore %iptr %c_i32_0\n"
6242		"%result    = OpVariable %fp_v4f32 Function\n"
6243		"             OpStore %result %param1\n"
6244		"             OpBranch %loop\n"
6245
6246		"%loop      = OpLabel\n"
6247		"%ival      = OpLoad %i32 %iptr\n"
6248		"%lt_4      = OpSLessThan %bool %ival %c_i32_4\n"
6249		"             OpLoopMerge %exit %loop None\n"
6250		"             OpBranchConditional %lt_4 %entry %exit\n"
6251
6252		"%entry     = OpLabel\n"
6253		"%loc       = OpAccessChain %fp_f32 %result %ival\n"
6254		"%val       = OpLoad %f32 %loc\n"
6255		"             OpSelectionMerge %phi None\n"
6256		"             OpSwitch %ival %default 0 %case0 1 %case1 2 %case2 3 %case3\n"
6257
6258		"%case0     = OpLabel\n"
6259		"             OpBranch %phi\n"
6260		"%case1     = OpLabel\n"
6261		"             OpBranch %phi\n"
6262		"%case2     = OpLabel\n"
6263		"             OpBranch %phi\n"
6264		"%case3     = OpLabel\n"
6265		"             OpBranch %phi\n"
6266
6267		"%default   = OpLabel\n"
6268		"             OpUnreachable\n"
6269
6270		"%phi       = OpLabel\n"
6271		"%operand   = OpPhi %f32 %c_f32_p4 %case2 %c_f32_p6 %case1 %c_f32_p2 %case0 %c_f32_0 %case3\n" // not in the order of blocks
6272		"%add       = OpFAdd %f32 %val %operand\n"
6273		"             OpStore %loc %add\n"
6274		"%ival_next = OpIAdd %i32 %ival %c_i32_1\n"
6275		"             OpStore %iptr %ival_next\n"
6276		"             OpBranch %loop\n"
6277
6278		"%exit      = OpLabel\n"
6279		"%ret       = OpLoad %v4f32 %result\n"
6280		"             OpReturnValue %ret\n"
6281
6282		"             OpFunctionEnd\n";
6283
6284	fragments1["pre_main"]	= typesAndConstants1;
6285	fragments1["testfun"]	= function1;
6286
6287	getHalfColorsFullAlpha(inputColors);
6288
6289	outputColors1[0]		= RGBA(178, 180, 229, 255);
6290	outputColors1[1]		= RGBA(178, 153, 102, 255);
6291	outputColors1[2]		= RGBA(51,  180, 102, 255);
6292	outputColors1[3]		= RGBA(51,  153, 229, 255);
6293
6294	createTestsForAllStages("out_of_order", inputColors, outputColors1, fragments1, group.get());
6295
6296	const char	typesAndConstants2[]	=
6297		"%c_f32_p2  = OpConstant %f32 0.2\n";
6298
6299	// Add .4 to the second element of the given parameter.
6300	const char	function2[]				=
6301		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
6302		"%param     = OpFunctionParameter %v4f32\n"
6303		"%entry     = OpLabel\n"
6304		"%result    = OpVariable %fp_v4f32 Function\n"
6305		"             OpStore %result %param\n"
6306		"%loc       = OpAccessChain %fp_f32 %result %c_i32_1\n"
6307		"%val       = OpLoad %f32 %loc\n"
6308		"             OpBranch %phi\n"
6309
6310		"%phi        = OpLabel\n"
6311		"%step       = OpPhi %i32 %c_i32_0  %entry %step_next  %phi\n"
6312		"%accum      = OpPhi %f32 %val      %entry %accum_next %phi\n"
6313		"%step_next  = OpIAdd %i32 %step  %c_i32_1\n"
6314		"%accum_next = OpFAdd %f32 %accum %c_f32_p2\n"
6315		"%still_loop = OpSLessThan %bool %step %c_i32_2\n"
6316		"              OpLoopMerge %exit %phi None\n"
6317		"              OpBranchConditional %still_loop %phi %exit\n"
6318
6319		"%exit       = OpLabel\n"
6320		"              OpStore %loc %accum\n"
6321		"%ret        = OpLoad %v4f32 %result\n"
6322		"              OpReturnValue %ret\n"
6323
6324		"              OpFunctionEnd\n";
6325
6326	fragments2["pre_main"]	= typesAndConstants2;
6327	fragments2["testfun"]	= function2;
6328
6329	outputColors2[0]			= RGBA(127, 229, 127, 255);
6330	outputColors2[1]			= RGBA(127, 102, 0,   255);
6331	outputColors2[2]			= RGBA(0,   229, 0,   255);
6332	outputColors2[3]			= RGBA(0,   102, 127, 255);
6333
6334	createTestsForAllStages("induction", inputColors, outputColors2, fragments2, group.get());
6335
6336	const char	typesAndConstants3[]	=
6337		"%true      = OpConstantTrue %bool\n"
6338		"%false     = OpConstantFalse %bool\n"
6339		"%c_f32_p2  = OpConstant %f32 0.2\n";
6340
6341	// Swap the second and the third element of the given parameter.
6342	const char	function3[]				=
6343		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
6344		"%param     = OpFunctionParameter %v4f32\n"
6345		"%entry     = OpLabel\n"
6346		"%result    = OpVariable %fp_v4f32 Function\n"
6347		"             OpStore %result %param\n"
6348		"%a_loc     = OpAccessChain %fp_f32 %result %c_i32_1\n"
6349		"%a_init    = OpLoad %f32 %a_loc\n"
6350		"%b_loc     = OpAccessChain %fp_f32 %result %c_i32_2\n"
6351		"%b_init    = OpLoad %f32 %b_loc\n"
6352		"             OpBranch %phi\n"
6353
6354		"%phi        = OpLabel\n"
6355		"%still_loop = OpPhi %bool %true   %entry %false  %phi\n"
6356		"%a_next     = OpPhi %f32  %a_init %entry %b_next %phi\n"
6357		"%b_next     = OpPhi %f32  %b_init %entry %a_next %phi\n"
6358		"              OpLoopMerge %exit %phi None\n"
6359		"              OpBranchConditional %still_loop %phi %exit\n"
6360
6361		"%exit       = OpLabel\n"
6362		"              OpStore %a_loc %a_next\n"
6363		"              OpStore %b_loc %b_next\n"
6364		"%ret        = OpLoad %v4f32 %result\n"
6365		"              OpReturnValue %ret\n"
6366
6367		"              OpFunctionEnd\n";
6368
6369	fragments3["pre_main"]	= typesAndConstants3;
6370	fragments3["testfun"]	= function3;
6371
6372	outputColors3[0]			= RGBA(127, 127, 127, 255);
6373	outputColors3[1]			= RGBA(127, 0,   0,   255);
6374	outputColors3[2]			= RGBA(0,   0,   127, 255);
6375	outputColors3[3]			= RGBA(0,   127, 0,   255);
6376
6377	createTestsForAllStages("swap", inputColors, outputColors3, fragments3, group.get());
6378
6379	return group.release();
6380}
6381
6382tcu::TestCaseGroup* createNoContractionTests(tcu::TestContext& testCtx)
6383{
6384	de::MovePtr<tcu::TestCaseGroup> group			(new tcu::TestCaseGroup(testCtx, "nocontraction", "Test the NoContraction decoration"));
6385	RGBA							inputColors[4];
6386	RGBA							outputColors[4];
6387
6388	// With NoContraction, (1 + 2^-23) * (1 - 2^-23) - 1 should be conducted as a multiplication and an addition separately.
6389	// For the multiplication, the result is 1 - 2^-46, which is out of the precision range for 32-bit float. (32-bit float
6390	// only have 23-bit fraction.) So it will be rounded to 1. Then the final result is 0. On the contrary, the result will
6391	// be 2^-46, which is a normalized number perfectly representable as 32-bit float.
6392	const char						constantsAndTypes[]	 =
6393		"%c_vec4_0       = OpConstantComposite %v4f32 %c_f32_0 %c_f32_0 %c_f32_0 %c_f32_1\n"
6394		"%c_vec4_1       = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_1\n"
6395		"%c_f32_1pl2_23  = OpConstant %f32 0x1.000002p+0\n" // 1 + 2^-23
6396		"%c_f32_1mi2_23  = OpConstant %f32 0x1.fffffcp-1\n" // 1 - 2^-23
6397		;
6398
6399	const char						function[]	 =
6400		"%test_code      = OpFunction %v4f32 None %v4f32_function\n"
6401		"%param          = OpFunctionParameter %v4f32\n"
6402		"%label          = OpLabel\n"
6403		"%var1           = OpVariable %fp_f32 Function %c_f32_1pl2_23\n"
6404		"%var2           = OpVariable %fp_f32 Function\n"
6405		"%red            = OpCompositeExtract %f32 %param 0\n"
6406		"%plus_red       = OpFAdd %f32 %c_f32_1mi2_23 %red\n"
6407		"                  OpStore %var2 %plus_red\n"
6408		"%val1           = OpLoad %f32 %var1\n"
6409		"%val2           = OpLoad %f32 %var2\n"
6410		"%mul            = OpFMul %f32 %val1 %val2\n"
6411		"%add            = OpFAdd %f32 %mul %c_f32_n1\n"
6412		"%is0            = OpFOrdEqual %bool %add %c_f32_0\n"
6413		"%ret            = OpSelect %v4f32 %is0 %c_vec4_0 %c_vec4_1\n"
6414		"                  OpReturnValue %ret\n"
6415		"                  OpFunctionEnd\n";
6416
6417	struct CaseNameDecoration
6418	{
6419		string name;
6420		string decoration;
6421	};
6422
6423
6424	CaseNameDecoration tests[] = {
6425		{"multiplication",	"OpDecorate %mul NoContraction"},
6426		{"addition",		"OpDecorate %add NoContraction"},
6427		{"both",			"OpDecorate %mul NoContraction\nOpDecorate %add NoContraction"},
6428	};
6429
6430	getHalfColorsFullAlpha(inputColors);
6431
6432	for (deUint8 idx = 0; idx < 4; ++idx)
6433	{
6434		inputColors[idx].setRed(0);
6435		outputColors[idx] = RGBA(0, 0, 0, 255);
6436	}
6437
6438	for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(CaseNameDecoration); ++testNdx)
6439	{
6440		map<string, string> fragments;
6441
6442		fragments["decoration"] = tests[testNdx].decoration;
6443		fragments["pre_main"] = constantsAndTypes;
6444		fragments["testfun"] = function;
6445
6446		createTestsForAllStages(tests[testNdx].name, inputColors, outputColors, fragments, group.get());
6447	}
6448
6449	return group.release();
6450}
6451
6452tcu::TestCaseGroup* createMemoryAccessTests(tcu::TestContext& testCtx)
6453{
6454	de::MovePtr<tcu::TestCaseGroup> memoryAccessTests (new tcu::TestCaseGroup(testCtx, "opMemoryAccess", "Memory Semantics"));
6455	RGBA							colors[4];
6456
6457	const char						constantsAndTypes[]	 =
6458		"%c_a2f32_1         = OpConstantComposite %a2f32 %c_f32_1 %c_f32_1\n"
6459		"%fp_a2f32          = OpTypePointer Function %a2f32\n"
6460		"%stype             = OpTypeStruct  %v4f32 %a2f32 %f32\n"
6461		"%fp_stype          = OpTypePointer Function %stype\n";
6462
6463	const char						function[]	 =
6464		"%test_code         = OpFunction %v4f32 None %v4f32_function\n"
6465		"%param1            = OpFunctionParameter %v4f32\n"
6466		"%lbl               = OpLabel\n"
6467		"%v1                = OpVariable %fp_v4f32 Function\n"
6468		"                     OpStore %v1 %c_v4f32_1_1_1_1\n"
6469		"%v2                = OpVariable %fp_a2f32 Function\n"
6470		"                     OpStore %v2 %c_a2f32_1\n"
6471		"%v3                = OpVariable %fp_f32 Function\n"
6472		"                     OpStore %v3 %c_f32_1\n"
6473
6474		"%v                 = OpVariable %fp_stype Function\n"
6475		"%vv                = OpVariable %fp_stype Function\n"
6476		"%vvv               = OpVariable %fp_f32 Function\n"
6477
6478		"%p_v4f32          = OpAccessChain %fp_v4f32 %v %c_u32_0\n"
6479		"%p_a2f32          = OpAccessChain %fp_a2f32 %v %c_u32_1\n"
6480		"%p_f32            = OpAccessChain %fp_f32 %v %c_u32_2\n"
6481		"%v1_v             = OpLoad %v4f32 %v1 ${access_type}\n"
6482		"%v2_v             = OpLoad %a2f32 %v2 ${access_type}\n"
6483		"%v3_v             = OpLoad %f32 %v3 ${access_type}\n"
6484
6485		"                    OpStore %p_v4f32 %v1_v ${access_type}\n"
6486		"                    OpStore %p_a2f32 %v2_v ${access_type}\n"
6487		"                    OpStore %p_f32 %v3_v ${access_type}\n"
6488
6489		"                    OpCopyMemory %vv %v ${access_type}\n"
6490		"                    OpCopyMemory %vvv %p_f32 ${access_type}\n"
6491
6492		"%p_f32_2          = OpAccessChain %fp_f32 %vv %c_u32_2\n"
6493		"%v_f32_2          = OpLoad %f32 %p_f32_2\n"
6494		"%v_f32_3          = OpLoad %f32 %vvv\n"
6495
6496		"%ret1             = OpVectorTimesScalar %v4f32 %param1 %v_f32_2\n"
6497		"%ret2             = OpVectorTimesScalar %v4f32 %ret1 %v_f32_3\n"
6498		"                    OpReturnValue %ret2\n"
6499		"                    OpFunctionEnd\n";
6500
6501	struct NameMemoryAccess
6502	{
6503		string name;
6504		string accessType;
6505	};
6506
6507
6508	NameMemoryAccess tests[] =
6509	{
6510		{ "none", "" },
6511		{ "volatile", "Volatile" },
6512		{ "aligned",  "Aligned 1" },
6513		{ "volatile-aligned",  "Volatile|Aligned 1" },
6514		{ "nontemporal-aligned",  "Nontemporal|Aligned 1" },
6515		{ "volatile-nontemporal",  "Volatile|Nontemporal" },
6516		{ "volatile-nontermporal-aligned",  "Volatile|NonTermporal|Aligned" },
6517	};
6518
6519	getHalfColorsFullAlpha(colors);
6520
6521	for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(NameMemoryAccess); ++testNdx)
6522	{
6523		map<string, string> fragments;
6524		map<string, string> memoryAccess;
6525		memoryAccess["access_type"] = tests[testNdx].accessType;
6526
6527		fragments["pre_main"] = constantsAndTypes;
6528		fragments["testfun"] = tcu::StringTemplate(function).specialize(memoryAccess);
6529		createTestsForAllStages(tests[testNdx].name, colors, colors, fragments, memoryAccessTests.get());
6530	}
6531	return memoryAccessTests.release();
6532}
6533tcu::TestCaseGroup* createOpUndefTests(tcu::TestContext& testCtx)
6534{
6535	de::MovePtr<tcu::TestCaseGroup>		opUndefTests		 (new tcu::TestCaseGroup(testCtx, "opundef", "Test OpUndef"));
6536	RGBA								defaultColors[4];
6537	map<string, string>					fragments;
6538	getDefaultColors(defaultColors);
6539
6540	// First, simple cases that don't do anything with the OpUndef result.
6541	fragments["testfun"] =
6542		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
6543		"%param1 = OpFunctionParameter %v4f32\n"
6544		"%label_testfun = OpLabel\n"
6545		"%undef = OpUndef %type\n"
6546		"OpReturnValue %param1\n"
6547		"OpFunctionEnd\n"
6548		;
6549	struct NameCodePair { string name, code; };
6550	const NameCodePair tests[] =
6551	{
6552		{"bool", "%type = OpTypeBool"},
6553		{"vec2uint32", "%type = OpTypeVector %u32 2"},
6554		{"image", "%type = OpTypeImage %f32 2D 0 0 0 0 Unknown"},
6555		{"sampler", "%type = OpTypeSampler"},
6556		{"sampledimage", "%img = OpTypeImage %f32 2D 0 0 0 0 Unknown\n" "%type = OpTypeSampledImage %img"},
6557		{"function", "%type = OpTypeFunction %void %i32 %f32"},
6558		{"pointer", "%type = OpTypePointer Function %i32"},
6559		{"runtimearray", "%type = OpTypeRuntimeArray %f32"},
6560		{"array", "%c_u32_100 = OpConstant %u32 100\n" "%type = OpTypeArray %i32 %c_u32_100"},
6561		{"struct", "%type = OpTypeStruct %f32 %i32 %u32"}};
6562	for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(NameCodePair); ++testNdx)
6563	{
6564		fragments["pre_main"] = tests[testNdx].code;
6565		createTestsForAllStages(tests[testNdx].name, defaultColors, defaultColors, fragments, opUndefTests.get());
6566	}
6567	fragments.clear();
6568
6569	fragments["testfun"] =
6570		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
6571		"%param1 = OpFunctionParameter %v4f32\n"
6572		"%label_testfun = OpLabel\n"
6573		"%undef = OpUndef %f32\n"
6574		"%zero = OpFMul %f32 %undef %c_f32_0\n"
6575		"%a = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
6576		"%b = OpFAdd %f32 %a %zero\n"
6577		"%ret = OpVectorInsertDynamic %v4f32 %param1 %b %c_i32_0\n"
6578		"OpReturnValue %ret\n"
6579		"OpFunctionEnd\n"
6580		;
6581	createTestsForAllStages("float32", defaultColors, defaultColors, fragments, opUndefTests.get());
6582
6583	fragments["testfun"] =
6584		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
6585		"%param1 = OpFunctionParameter %v4f32\n"
6586		"%label_testfun = OpLabel\n"
6587		"%undef = OpUndef %i32\n"
6588		"%zero = OpIMul %i32 %undef %c_i32_0\n"
6589		"%a = OpVectorExtractDynamic %f32 %param1 %zero\n"
6590		"%ret = OpVectorInsertDynamic %v4f32 %param1 %a %c_i32_0\n"
6591		"OpReturnValue %ret\n"
6592		"OpFunctionEnd\n"
6593		;
6594	createTestsForAllStages("sint32", defaultColors, defaultColors, fragments, opUndefTests.get());
6595
6596	fragments["testfun"] =
6597		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
6598		"%param1 = OpFunctionParameter %v4f32\n"
6599		"%label_testfun = OpLabel\n"
6600		"%undef = OpUndef %u32\n"
6601		"%zero = OpIMul %u32 %undef %c_i32_0\n"
6602		"%a = OpVectorExtractDynamic %f32 %param1 %zero\n"
6603		"%ret = OpVectorInsertDynamic %v4f32 %param1 %a %c_i32_0\n"
6604		"OpReturnValue %ret\n"
6605		"OpFunctionEnd\n"
6606		;
6607	createTestsForAllStages("uint32", defaultColors, defaultColors, fragments, opUndefTests.get());
6608
6609	fragments["testfun"] =
6610		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
6611		"%param1 = OpFunctionParameter %v4f32\n"
6612		"%label_testfun = OpLabel\n"
6613		"%undef = OpUndef %v4f32\n"
6614		"%vzero = OpVectorTimesScalar %v4f32 %undef %c_f32_0\n"
6615		"%zero_0 = OpVectorExtractDynamic %f32 %vzero %c_i32_0\n"
6616		"%zero_1 = OpVectorExtractDynamic %f32 %vzero %c_i32_1\n"
6617		"%zero_2 = OpVectorExtractDynamic %f32 %vzero %c_i32_2\n"
6618		"%zero_3 = OpVectorExtractDynamic %f32 %vzero %c_i32_3\n"
6619		"%param1_0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
6620		"%param1_1 = OpVectorExtractDynamic %f32 %param1 %c_i32_1\n"
6621		"%param1_2 = OpVectorExtractDynamic %f32 %param1 %c_i32_2\n"
6622		"%param1_3 = OpVectorExtractDynamic %f32 %param1 %c_i32_3\n"
6623		"%sum_0 = OpFAdd %f32 %param1_0 %zero_0\n"
6624		"%sum_1 = OpFAdd %f32 %param1_1 %zero_1\n"
6625		"%sum_2 = OpFAdd %f32 %param1_2 %zero_2\n"
6626		"%sum_3 = OpFAdd %f32 %param1_3 %zero_3\n"
6627		"%ret3 = OpVectorInsertDynamic %v4f32 %param1 %sum_3 %c_i32_3\n"
6628		"%ret2 = OpVectorInsertDynamic %v4f32 %ret3 %sum_2 %c_i32_2\n"
6629		"%ret1 = OpVectorInsertDynamic %v4f32 %ret2 %sum_1 %c_i32_1\n"
6630		"%ret = OpVectorInsertDynamic %v4f32 %ret1 %sum_0 %c_i32_0\n"
6631		"OpReturnValue %ret\n"
6632		"OpFunctionEnd\n"
6633		;
6634	createTestsForAllStages("vec4float32", defaultColors, defaultColors, fragments, opUndefTests.get());
6635
6636	fragments["pre_main"] =
6637		"%v2f32 = OpTypeVector %f32 2\n"
6638		"%m2x2f32 = OpTypeMatrix %v2f32 2\n";
6639	fragments["testfun"] =
6640		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
6641		"%param1 = OpFunctionParameter %v4f32\n"
6642		"%label_testfun = OpLabel\n"
6643		"%undef = OpUndef %m2x2f32\n"
6644		"%mzero = OpMatrixTimesScalar %m2x2f32 %undef %c_f32_0\n"
6645		"%zero_0 = OpCompositeExtract %f32 %mzero 0 0\n"
6646		"%zero_1 = OpCompositeExtract %f32 %mzero 0 1\n"
6647		"%zero_2 = OpCompositeExtract %f32 %mzero 1 0\n"
6648		"%zero_3 = OpCompositeExtract %f32 %mzero 1 1\n"
6649		"%param1_0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
6650		"%param1_1 = OpVectorExtractDynamic %f32 %param1 %c_i32_1\n"
6651		"%param1_2 = OpVectorExtractDynamic %f32 %param1 %c_i32_2\n"
6652		"%param1_3 = OpVectorExtractDynamic %f32 %param1 %c_i32_3\n"
6653		"%sum_0 = OpFAdd %f32 %param1_0 %zero_0\n"
6654		"%sum_1 = OpFAdd %f32 %param1_1 %zero_1\n"
6655		"%sum_2 = OpFAdd %f32 %param1_2 %zero_2\n"
6656		"%sum_3 = OpFAdd %f32 %param1_3 %zero_3\n"
6657		"%ret3 = OpVectorInsertDynamic %v4f32 %param1 %sum_3 %c_i32_3\n"
6658		"%ret2 = OpVectorInsertDynamic %v4f32 %ret3 %sum_2 %c_i32_2\n"
6659		"%ret1 = OpVectorInsertDynamic %v4f32 %ret2 %sum_1 %c_i32_1\n"
6660		"%ret = OpVectorInsertDynamic %v4f32 %ret1 %sum_0 %c_i32_0\n"
6661		"OpReturnValue %ret\n"
6662		"OpFunctionEnd\n"
6663		;
6664	createTestsForAllStages("matrix", defaultColors, defaultColors, fragments, opUndefTests.get());
6665
6666	return opUndefTests.release();
6667}
6668
6669void createOpQuantizeSingleOptionTests(tcu::TestCaseGroup* testCtx)
6670{
6671	const RGBA		inputColors[4]		=
6672	{
6673		RGBA(0,		0,		0,		255),
6674		RGBA(0,		0,		255,	255),
6675		RGBA(0,		255,	0,		255),
6676		RGBA(0,		255,	255,	255)
6677	};
6678
6679	const RGBA		expectedColors[4]	=
6680	{
6681		RGBA(255,	 0,		 0,		 255),
6682		RGBA(255,	 0,		 0,		 255),
6683		RGBA(255,	 0,		 0,		 255),
6684		RGBA(255,	 0,		 0,		 255)
6685	};
6686
6687	const struct SingleFP16Possibility
6688	{
6689		const char* name;
6690		const char* constant;
6691		float		valueAsFloat;
6692		const char* condition;
6693		// condition must evaluate to true after %test_constant = OpQuantizeToF16(%constant)
6694	}				tests[]				=
6695	{
6696		{
6697			"negative",
6698			"-0x1.3p1\n",
6699			-constructNormalizedFloat(1, 0x300000),
6700			"%cond = OpFOrdEqual %bool %c %test_constant\n"
6701		}, // -19
6702		{
6703			"positive",
6704			"0x1.0p7\n",
6705			constructNormalizedFloat(7, 0x000000),
6706			"%cond = OpFOrdEqual %bool %c %test_constant\n"
6707		},  // +128
6708		// SPIR-V requires that OpQuantizeToF16 flushes
6709		// any numbers that would end up denormalized in F16 to zero.
6710		{
6711			"denorm",
6712			"0x0.0006p-126\n",
6713			std::ldexp(1.5f, -140),
6714			"%cond = OpFOrdEqual %bool %c %c_f32_0\n"
6715		},  // denorm
6716		{
6717			"negative_denorm",
6718			"-0x0.0006p-126\n",
6719			-std::ldexp(1.5f, -140),
6720			"%cond = OpFOrdEqual %bool %c %c_f32_0\n"
6721		}, // -denorm
6722		{
6723			"too_small",
6724			"0x1.0p-16\n",
6725			std::ldexp(1.0f, -16),
6726			"%cond = OpFOrdEqual %bool %c %c_f32_0\n"
6727		},      // too small negative
6728		{
6729			"negative_too_small",
6730			"-0x1.0p-32\n",
6731			-std::ldexp(1.0f, -32),
6732			"%cond = OpFOrdEqual %bool %c %c_f32_0\n"
6733		},     // too small positive
6734		{
6735			"negative_inf",
6736			"-0x1.0p128\n",
6737			-std::ldexp(1.0f, 128),
6738			"%cond = OpFOrdEqual %bool %c %c_f32_0\n"
6739
6740			"%gz = OpFOrdLessThan %bool %c %c_f32_0\n"
6741			"%inf = OpIsInf %bool %c\n"
6742			"%cond = OpLogicalAnd %bool %gz %inf\n"
6743		},     // -inf to -inf
6744		{
6745			"inf",
6746			"0x1.0p128\n",
6747			std::ldexp(1.0f, 128),
6748
6749			"%gz = OpFOrdGreaterThan %bool %c %c_f32_0\n"
6750			"%inf = OpIsInf %bool %c\n"
6751			"%cond = OpLogicalAnd %bool %gz %inf\n"
6752		},     // +inf to +inf
6753		{
6754			"round_to_negative_inf",
6755			"-0x1.0p32\n",
6756			-std::ldexp(1.0f, 32),
6757
6758			"%gz = OpFOrdLessThan %bool %c %c_f32_0\n"
6759			"%inf = OpIsInf %bool %c\n"
6760			"%comp = OpLogicalAnd %bool %gz %inf\n"
6761		},     // round to -inf
6762		{
6763			"round_to_inf",
6764			"0x1.0p16\n",
6765			std::ldexp(1.0f, 16),
6766
6767			"%gz = OpFOrdGreaterThan %bool %c %c_f32_0\n"
6768			"%inf = OpIsInf %bool %c\n"
6769			"%cond = OpLogicalAnd %bool %gz %inf\n"
6770		},     // round to +inf
6771		{
6772			"nan",
6773			"0x1.1p128\n",
6774			std::numeric_limits<float>::quiet_NaN(),
6775
6776			"%nan = OpIsNan %bool %c\n"
6777			"%as_int = OpBitcast %i32 %c\n"
6778			"%positive = OpSGreaterThan %bool %as_int %c_i32_0\n"
6779			"%cond = OpLogicalAnd %bool %nan %positive\n"
6780		}, // nan
6781		{
6782			"negative_nan",
6783			"-0x1.0001p128\n",
6784			std::numeric_limits<float>::quiet_NaN(),
6785
6786			"%nan = OpIsNan %bool %c\n"
6787			"%as_int = OpBitcast %i32 %c\n"
6788			"%negative = OpSLessThan %bool %as_int %c_i32_0\n"
6789			"%cond = OpLogicalAnd %bool %nan %negative\n"
6790		} // -nan
6791	};
6792	const char*		constants			=
6793		"%test_constant = OpConstant %f32\n";
6794
6795	StringTemplate	function			(
6796		"%test_code     = OpFunction %v4f32 None %v4f32_function\n"
6797		"%param1        = OpFunctionParameter %v4f32\n"
6798		"%label_testfun = OpLabel\n"
6799		"%a             = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
6800		"%b             = OpFAdd %f32 %test_constant %a\n"
6801		"%c             = OpQuantizeToF16 %f32 %b\n"
6802		"${condition}\n"
6803		"%retval        = OpSelect %v4f32 %cond %c_v4f32_1_0_0_1 %param1"
6804		"                 OpReturnValue %retval\n"
6805	);
6806
6807	const char*		specDecorations		= "OpDecorate %test_constant SpecId 0\n";
6808	const char*		specConstants		=
6809			"%test_constant = OpSpecConstant %f32 0.\n"
6810			"%c             = OpSpecConstantOp %f32 QuantizeToF16 %test_constant\n";
6811
6812	StringTemplate	specConstantFunction(
6813		"%test_code     = OpFunction %v4f32 None %v4f32_function\n"
6814		"%param1        = OpFunctionParameter %v4f32\n"
6815		"%label_testfun = OpLabel\n"
6816		"${condition}\n"
6817		"%retval        = OpSelect %v4f32 %cond %c_v4f32_1_0_0_1 %param1"
6818		"                 OpReturnValue %retval\n"
6819	);
6820
6821	for (size_t idx = 0; idx < (sizeof(tests)/sizeof(tests[0])); ++idx)
6822	{
6823		map<string, string>								codeSpecialization;
6824		map<string, string>								fragments;
6825		codeSpecialization["condition"]					= tests[idx].condition;
6826		fragments["testfun"]							= function.specialize(codeSpecialization);
6827		fragments["pre_main"]							= string(constants) + tests[idx].constant + "\n";
6828		createTestsForAllStages(tests[idx].name, inputColors, expectedColors, fragments, testCtx);
6829	}
6830
6831	for (size_t idx = 0; idx < (sizeof(tests)/sizeof(tests[0])); ++idx)
6832	{
6833		map<string, string>								codeSpecialization;
6834		map<string, string>								fragments;
6835		vector<deInt32>									passConstants;
6836		deInt32											specConstant;
6837
6838		codeSpecialization["condition"]					= tests[idx].condition;
6839		fragments["testfun"]							= specConstantFunction.specialize(codeSpecialization);
6840		fragments["decoration"]							= specDecorations;
6841		fragments["pre_main"]							= specConstants;
6842
6843		memcpy(&specConstant, &tests[idx].valueAsFloat, sizeof(float));
6844		passConstants.push_back(specConstant);
6845
6846		createTestsForAllStages(string("spec_const_") + tests[idx].name, inputColors, expectedColors, fragments, passConstants, testCtx);
6847	}
6848}
6849
6850void createOpQuantizeTwoPossibilityTests(tcu::TestCaseGroup* testCtx)
6851{
6852	RGBA inputColors[4] =  {
6853		RGBA(0,		0,		0,		255),
6854		RGBA(0,		0,		255,	255),
6855		RGBA(0,		255,	0,		255),
6856		RGBA(0,		255,	255,	255)
6857	};
6858
6859	RGBA expectedColors[4] =
6860	{
6861		RGBA(255,	 0,		 0,		 255),
6862		RGBA(255,	 0,		 0,		 255),
6863		RGBA(255,	 0,		 0,		 255),
6864		RGBA(255,	 0,		 0,		 255)
6865	};
6866
6867	struct DualFP16Possibility
6868	{
6869		const char* name;
6870		const char* input;
6871		float		inputAsFloat;
6872		const char* possibleOutput1;
6873		const char* possibleOutput2;
6874	} tests[] = {
6875		{
6876			"positive_round_up_or_round_down",
6877			"0x1.3003p8",
6878			constructNormalizedFloat(8, 0x300300),
6879			"0x1.304p8",
6880			"0x1.3p8"
6881		},
6882		{
6883			"negative_round_up_or_round_down",
6884			"-0x1.6008p-7",
6885			-constructNormalizedFloat(8, 0x600800),
6886			"-0x1.6p-7",
6887			"-0x1.604p-7"
6888		},
6889		{
6890			"carry_bit",
6891			"0x1.01ep2",
6892			constructNormalizedFloat(8, 0x01e000),
6893			"0x1.01cp2",
6894			"0x1.02p2"
6895		},
6896		{
6897			"carry_to_exponent",
6898			"0x1.feep1",
6899			constructNormalizedFloat(8, 0xfee000),
6900			"0x1.ffcp1",
6901			"0x1.0p2"
6902		},
6903	};
6904	StringTemplate constants (
6905		"%input_const = OpConstant %f32 ${input}\n"
6906		"%possible_solution1 = OpConstant %f32 ${output1}\n"
6907		"%possible_solution2 = OpConstant %f32 ${output2}\n"
6908		);
6909
6910	StringTemplate specConstants (
6911		"%input_const = OpSpecConstant %f32 0.\n"
6912		"%possible_solution1 = OpConstant %f32 ${output1}\n"
6913		"%possible_solution2 = OpConstant %f32 ${output2}\n"
6914	);
6915
6916	const char* specDecorations = "OpDecorate %input_const  SpecId 0\n";
6917
6918	const char* function  =
6919		"%test_code     = OpFunction %v4f32 None %v4f32_function\n"
6920		"%param1        = OpFunctionParameter %v4f32\n"
6921		"%label_testfun = OpLabel\n"
6922		"%a             = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
6923		// For the purposes of this test we assume that 0.f will always get
6924		// faithfully passed through the pipeline stages.
6925		"%b             = OpFAdd %f32 %test_constant %a\n"
6926		"%c             = OpQuantizeToF16 %f32 %b\n"
6927		"%eq_1          = OpFOrdEqual %bool %c %possible_solution1\n"
6928		"%eq_2          = OpFOrdEqual %bool %c %possible_solution2\n"
6929		"%cond          = OpLogicalOr %bool %eq_1 %eq_2\n"
6930		"%retval        = OpSelect %v4f32 %cond %c_v4f32_1_0_0_1 %param1"
6931		"                 OpReturnValue %retval\n";
6932
6933	for(size_t idx = 0; idx < (sizeof(tests)/sizeof(tests[0])); ++idx) {
6934		map<string, string>									fragments;
6935		map<string, string>									constantSpecialization;
6936
6937		constantSpecialization["input"]						= tests[idx].input;
6938		constantSpecialization["output1"]					= tests[idx].possibleOutput1;
6939		constantSpecialization["output2"]					= tests[idx].possibleOutput2;
6940		fragments["testfun"]								= function;
6941		fragments["pre_main"]								= constants.specialize(constantSpecialization);
6942		createTestsForAllStages(tests[idx].name, inputColors, expectedColors, fragments, testCtx);
6943	}
6944
6945	for(size_t idx = 0; idx < (sizeof(tests)/sizeof(tests[0])); ++idx) {
6946		map<string, string>									fragments;
6947		map<string, string>									constantSpecialization;
6948		vector<deInt32>										passConstants;
6949		deInt32												specConstant;
6950
6951		constantSpecialization["output1"]					= tests[idx].possibleOutput1;
6952		constantSpecialization["output2"]					= tests[idx].possibleOutput2;
6953		fragments["testfun"]								= function;
6954		fragments["decoration"]								= specDecorations;
6955		fragments["pre_main"]								= specConstants.specialize(constantSpecialization);
6956
6957		memcpy(&specConstant, &tests[idx].inputAsFloat, sizeof(float));
6958		passConstants.push_back(specConstant);
6959
6960		createTestsForAllStages(string("spec_const_") + tests[idx].name, inputColors, expectedColors, fragments, passConstants, testCtx);
6961	}
6962}
6963
6964tcu::TestCaseGroup* createOpQuantizeTests(tcu::TestContext& testCtx)
6965{
6966	de::MovePtr<tcu::TestCaseGroup> opQuantizeTests (new tcu::TestCaseGroup(testCtx, "opquantize", "Test OpQuantizeToF16"));
6967	createOpQuantizeSingleOptionTests(opQuantizeTests.get());
6968	createOpQuantizeTwoPossibilityTests(opQuantizeTests.get());
6969	return opQuantizeTests.release();
6970}
6971
6972struct ShaderPermutation
6973{
6974	deUint8 vertexPermutation;
6975	deUint8 geometryPermutation;
6976	deUint8 tesscPermutation;
6977	deUint8 tessePermutation;
6978	deUint8 fragmentPermutation;
6979};
6980
6981ShaderPermutation getShaderPermutation(deUint8 inputValue)
6982{
6983	ShaderPermutation	permutation =
6984	{
6985		static_cast<deUint8>(inputValue & 0x10? 1u: 0u),
6986		static_cast<deUint8>(inputValue & 0x08? 1u: 0u),
6987		static_cast<deUint8>(inputValue & 0x04? 1u: 0u),
6988		static_cast<deUint8>(inputValue & 0x02? 1u: 0u),
6989		static_cast<deUint8>(inputValue & 0x01? 1u: 0u)
6990	};
6991	return permutation;
6992}
6993
6994tcu::TestCaseGroup* createModuleTests(tcu::TestContext& testCtx)
6995{
6996	RGBA								defaultColors[4];
6997	RGBA								invertedColors[4];
6998	de::MovePtr<tcu::TestCaseGroup>		moduleTests			(new tcu::TestCaseGroup(testCtx, "module", "Multiple entry points into shaders"));
6999
7000	const ShaderElement					combinedPipeline[]	=
7001	{
7002		ShaderElement("module", "main", VK_SHADER_STAGE_VERTEX_BIT),
7003		ShaderElement("module", "main", VK_SHADER_STAGE_GEOMETRY_BIT),
7004		ShaderElement("module", "main", VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT),
7005		ShaderElement("module", "main", VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT),
7006		ShaderElement("module", "main", VK_SHADER_STAGE_FRAGMENT_BIT)
7007	};
7008
7009	getDefaultColors(defaultColors);
7010	getInvertedDefaultColors(invertedColors);
7011	addFunctionCaseWithPrograms<InstanceContext>(moduleTests.get(), "same-module", "", createCombinedModule, runAndVerifyDefaultPipeline, createInstanceContext(combinedPipeline, map<string, string>()));
7012
7013	const char* numbers[] =
7014	{
7015		"1", "2"
7016	};
7017
7018	for (deInt8 idx = 0; idx < 32; ++idx)
7019	{
7020		ShaderPermutation			permutation		= getShaderPermutation(idx);
7021		string						name			= string("vert") + numbers[permutation.vertexPermutation] + "-geom" + numbers[permutation.geometryPermutation] + "-tessc" + numbers[permutation.tesscPermutation] + "-tesse" + numbers[permutation.tessePermutation] + "-frag" + numbers[permutation.fragmentPermutation];
7022		const ShaderElement			pipeline[]		=
7023		{
7024			ShaderElement("vert",	string("vert") +	numbers[permutation.vertexPermutation],		VK_SHADER_STAGE_VERTEX_BIT),
7025			ShaderElement("geom",	string("geom") +	numbers[permutation.geometryPermutation],	VK_SHADER_STAGE_GEOMETRY_BIT),
7026			ShaderElement("tessc",	string("tessc") +	numbers[permutation.tesscPermutation],		VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT),
7027			ShaderElement("tesse",	string("tesse") +	numbers[permutation.tessePermutation],		VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT),
7028			ShaderElement("frag",	string("frag") +	numbers[permutation.fragmentPermutation],	VK_SHADER_STAGE_FRAGMENT_BIT)
7029		};
7030
7031		// If there are an even number of swaps, then it should be no-op.
7032		// If there are an odd number, the color should be flipped.
7033		if ((permutation.vertexPermutation + permutation.geometryPermutation + permutation.tesscPermutation + permutation.tessePermutation + permutation.fragmentPermutation) % 2 == 0)
7034		{
7035			addFunctionCaseWithPrograms<InstanceContext>(moduleTests.get(), name, "", createMultipleEntries, runAndVerifyDefaultPipeline, createInstanceContext(pipeline, defaultColors, defaultColors, map<string, string>()));
7036		}
7037		else
7038		{
7039			addFunctionCaseWithPrograms<InstanceContext>(moduleTests.get(), name, "", createMultipleEntries, runAndVerifyDefaultPipeline, createInstanceContext(pipeline, defaultColors, invertedColors, map<string, string>()));
7040		}
7041	}
7042	return moduleTests.release();
7043}
7044
7045tcu::TestCaseGroup* createLoopTests(tcu::TestContext& testCtx)
7046{
7047	de::MovePtr<tcu::TestCaseGroup> testGroup(new tcu::TestCaseGroup(testCtx, "loop", "Looping control flow"));
7048	RGBA defaultColors[4];
7049	getDefaultColors(defaultColors);
7050	map<string, string> fragments;
7051
7052	// A loop with a single block. The Continue Target is the loop block
7053	// itself. In SPIR-V terms, the "loop construct" contains no blocks at all
7054	// -- the "continue construct" forms the entire loop.
7055	fragments["testfun"] =
7056		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
7057		"%param1 = OpFunctionParameter %v4f32\n"
7058
7059		"%entry = OpLabel\n"
7060		"%val0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
7061		"OpBranch %loop\n"
7062
7063		";adds and subtracts 1.0 to %val in alternate iterations\n"
7064		"%loop = OpLabel\n"
7065		"%count = OpPhi %i32 %c_i32_4 %entry %count__ %loop\n"
7066		"%delta = OpPhi %f32 %c_f32_1 %entry %minus_delta %loop\n"
7067		"%val1 = OpPhi %f32 %val0 %entry %val %loop\n"
7068		"%val = OpFAdd %f32 %val1 %delta\n"
7069		"%minus_delta = OpFSub %f32 %c_f32_0 %delta\n"
7070		"%count__ = OpISub %i32 %count %c_i32_1\n"
7071		"%again = OpSGreaterThan %bool %count__ %c_i32_0\n"
7072		"OpLoopMerge %exit %loop None\n"
7073		"OpBranchConditional %again %loop %exit\n"
7074
7075		"%exit = OpLabel\n"
7076		"%result = OpVectorInsertDynamic %v4f32 %param1 %val %c_i32_0\n"
7077		"OpReturnValue %result\n"
7078
7079		"OpFunctionEnd\n"
7080		;
7081	createTestsForAllStages("single-block", defaultColors, defaultColors, fragments, testGroup.get());
7082
7083	// Body comprised of multiple basic blocks.
7084	const StringTemplate multiBlock(
7085		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
7086		"%param1 = OpFunctionParameter %v4f32\n"
7087
7088		"%entry = OpLabel\n"
7089		"%val0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
7090		"OpBranch %loop\n"
7091
7092		";adds and subtracts 1.0 to %val in alternate iterations\n"
7093		"%loop = OpLabel\n"
7094		"%count = OpPhi %i32 %c_i32_4 %entry %count__ %gather\n"
7095		"%delta = OpPhi %f32 %c_f32_1 %entry %delta_next %gather\n"
7096		"%val1 = OpPhi %f32 %val0 %entry %val %gather\n"
7097		// There are several possibilities for the Continue Target below.  Each
7098		// will be specialized into a separate test case.
7099		"OpLoopMerge %exit ${continue_target} None\n"
7100		"OpBranch %if\n"
7101
7102		"%if = OpLabel\n"
7103		";delta_next = (delta > 0) ? -1 : 1;\n"
7104		"%gt0 = OpFOrdGreaterThan %bool %delta %c_f32_0\n"
7105		"OpSelectionMerge %gather DontFlatten\n"
7106		"OpBranchConditional %gt0 %even %odd ;tells us if %count is even or odd\n"
7107
7108		"%odd = OpLabel\n"
7109		"OpBranch %gather\n"
7110
7111		"%even = OpLabel\n"
7112		"OpBranch %gather\n"
7113
7114		"%gather = OpLabel\n"
7115		"%delta_next = OpPhi %f32 %c_f32_n1 %even %c_f32_1 %odd\n"
7116		"%val = OpFAdd %f32 %val1 %delta\n"
7117		"%count__ = OpISub %i32 %count %c_i32_1\n"
7118		"%again = OpSGreaterThan %bool %count__ %c_i32_0\n"
7119		"OpBranchConditional %again %loop %exit\n"
7120
7121		"%exit = OpLabel\n"
7122		"%result = OpVectorInsertDynamic %v4f32 %param1 %val %c_i32_0\n"
7123		"OpReturnValue %result\n"
7124
7125		"OpFunctionEnd\n");
7126
7127	map<string, string> continue_target;
7128
7129	// The Continue Target is the loop block itself.
7130	continue_target["continue_target"] = "%loop";
7131	fragments["testfun"] = multiBlock.specialize(continue_target);
7132	createTestsForAllStages("multi-block-continue-construct", defaultColors, defaultColors, fragments, testGroup.get());
7133
7134	// The Continue Target is at the end of the loop.
7135	continue_target["continue_target"] = "%gather";
7136	fragments["testfun"] = multiBlock.specialize(continue_target);
7137	createTestsForAllStages("multi-block-loop-construct", defaultColors, defaultColors, fragments, testGroup.get());
7138
7139	// A loop with continue statement.
7140	fragments["testfun"] =
7141		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
7142		"%param1 = OpFunctionParameter %v4f32\n"
7143
7144		"%entry = OpLabel\n"
7145		"%val0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
7146		"OpBranch %loop\n"
7147
7148		";adds 4, 3, and 1 to %val0 (skips 2)\n"
7149		"%loop = OpLabel\n"
7150		"%count = OpPhi %i32 %c_i32_4 %entry %count__ %continue\n"
7151		"%val1 = OpPhi %f32 %val0 %entry %val %continue\n"
7152		"OpLoopMerge %exit %continue None\n"
7153		"OpBranch %if\n"
7154
7155		"%if = OpLabel\n"
7156		";skip if %count==2\n"
7157		"%eq2 = OpIEqual %bool %count %c_i32_2\n"
7158		"OpSelectionMerge %continue DontFlatten\n"
7159		"OpBranchConditional %eq2 %continue %body\n"
7160
7161		"%body = OpLabel\n"
7162		"%fcount = OpConvertSToF %f32 %count\n"
7163		"%val2 = OpFAdd %f32 %val1 %fcount\n"
7164		"OpBranch %continue\n"
7165
7166		"%continue = OpLabel\n"
7167		"%val = OpPhi %f32 %val2 %body %val1 %if\n"
7168		"%count__ = OpISub %i32 %count %c_i32_1\n"
7169		"%again = OpSGreaterThan %bool %count__ %c_i32_0\n"
7170		"OpBranchConditional %again %loop %exit\n"
7171
7172		"%exit = OpLabel\n"
7173		"%same = OpFSub %f32 %val %c_f32_8\n"
7174		"%result = OpVectorInsertDynamic %v4f32 %param1 %same %c_i32_0\n"
7175		"OpReturnValue %result\n"
7176		"OpFunctionEnd\n";
7177	createTestsForAllStages("continue", defaultColors, defaultColors, fragments, testGroup.get());
7178
7179	// A loop with early exit.  May be specialized with either break or return.
7180	StringTemplate earlyExitLoop(
7181		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
7182		"%param1 = OpFunctionParameter %v4f32\n"
7183
7184		"%entry = OpLabel\n"
7185		";param1 components are between 0 and 1, so dot product is 4 or less\n"
7186		"%dot = OpDot %f32 %param1 %param1\n"
7187		"%div = OpFDiv %f32 %dot %c_f32_5\n"
7188		"%zero = OpConvertFToU %u32 %div\n"
7189		"%two = OpIAdd %i32 %zero %c_i32_2\n"
7190		"%val0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
7191		"OpBranch %loop\n"
7192
7193		";adds 4 and 3 to %val0 (exits early)\n"
7194		"%loop = OpLabel\n"
7195		"%count = OpPhi %i32 %c_i32_4 %entry %count__ %continue\n"
7196		"%val1 = OpPhi %f32 %val0 %entry %val %continue\n"
7197		"OpLoopMerge %exit %continue None\n"
7198		"OpBranch %if\n"
7199
7200		"%if = OpLabel\n"
7201		";end loop if %count==%two\n"
7202		"%above2 = OpSGreaterThan %bool %count %two\n"
7203		"OpSelectionMerge %continue DontFlatten\n"
7204		// This can either branch to %exit or to another block with OpReturnValue %param1.
7205		"OpBranchConditional %above2 %body ${branch_destination}\n"
7206
7207		"%body = OpLabel\n"
7208		"%fcount = OpConvertSToF %f32 %count\n"
7209		"%val2 = OpFAdd %f32 %val1 %fcount\n"
7210		"OpBranch %continue\n"
7211
7212		"%continue = OpLabel\n"
7213		"%val = OpPhi %f32 %val2 %body %val1 %if\n"
7214		"%count__ = OpISub %i32 %count %c_i32_1\n"
7215		"%again = OpSGreaterThan %bool %count__ %c_i32_0\n"
7216		"OpBranchConditional %again %loop %exit\n"
7217
7218		"%exit = OpLabel\n"
7219		"%same = OpFSub %f32 %val %c_f32_7\n"
7220		"%result = OpVectorInsertDynamic %v4f32 %param1 %same %c_i32_0\n"
7221		"OpReturnValue %result\n"
7222		"OpFunctionEnd\n");
7223
7224	map<string, string> branch_destination;
7225
7226	// A loop with break.
7227	branch_destination["branch_destination"] = "%exit";
7228	fragments["testfun"] = earlyExitLoop.specialize(branch_destination);
7229	createTestsForAllStages("break", defaultColors, defaultColors, fragments, testGroup.get());
7230
7231	// A loop with return.
7232	branch_destination["branch_destination"] = "%early_exit\n"
7233		"%early_exit = OpLabel\n"
7234		"OpReturnValue %param1\n";
7235	fragments["testfun"] = earlyExitLoop.specialize(branch_destination);
7236	createTestsForAllStages("return", defaultColors, defaultColors, fragments, testGroup.get());
7237
7238	return testGroup.release();
7239}
7240
7241// Adds a new test to group using custom fragments for the tessellation-control
7242// stage and passthrough fragments for all other stages.  Uses default colors
7243// for input and expected output.
7244void addTessCtrlTest(tcu::TestCaseGroup* group, const char* name, const map<string, string>& fragments)
7245{
7246	RGBA defaultColors[4];
7247	getDefaultColors(defaultColors);
7248	const ShaderElement pipelineStages[] =
7249	{
7250		ShaderElement("vert", "main", VK_SHADER_STAGE_VERTEX_BIT),
7251		ShaderElement("tessc", "main", VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT),
7252		ShaderElement("tesse", "main", VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT),
7253		ShaderElement("geom", "main", VK_SHADER_STAGE_GEOMETRY_BIT),
7254		ShaderElement("frag", "main", VK_SHADER_STAGE_FRAGMENT_BIT),
7255	};
7256
7257	addFunctionCaseWithPrograms<InstanceContext>(group, name, "", addShaderCodeCustomTessControl,
7258												 runAndVerifyDefaultPipeline, createInstanceContext(
7259													 pipelineStages, defaultColors, defaultColors, fragments, StageToSpecConstantMap()));
7260}
7261
7262// A collection of tests putting OpControlBarrier in places GLSL forbids but SPIR-V allows.
7263tcu::TestCaseGroup* createBarrierTests(tcu::TestContext& testCtx)
7264{
7265	de::MovePtr<tcu::TestCaseGroup> testGroup(new tcu::TestCaseGroup(testCtx, "barrier", "OpControlBarrier"));
7266	map<string, string> fragments;
7267
7268	// A barrier inside a function body.
7269	fragments["pre_main"] =
7270		"%Workgroup = OpConstant %i32 2\n"
7271		"%SequentiallyConsistent = OpConstant %i32 0x10\n";
7272	fragments["testfun"] =
7273		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
7274		"%param1 = OpFunctionParameter %v4f32\n"
7275		"%label_testfun = OpLabel\n"
7276		"OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
7277		"OpReturnValue %param1\n"
7278		"OpFunctionEnd\n";
7279	addTessCtrlTest(testGroup.get(), "in-function", fragments);
7280
7281	// Common setup code for the following tests.
7282	fragments["pre_main"] =
7283		"%Workgroup = OpConstant %i32 2\n"
7284		"%SequentiallyConsistent = OpConstant %i32 0x10\n"
7285		"%c_f32_5 = OpConstant %f32 5.\n";
7286	const string setupPercentZero =	 // Begins %test_code function with code that sets %zero to 0u but cannot be optimized away.
7287		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
7288		"%param1 = OpFunctionParameter %v4f32\n"
7289		"%entry = OpLabel\n"
7290		";param1 components are between 0 and 1, so dot product is 4 or less\n"
7291		"%dot = OpDot %f32 %param1 %param1\n"
7292		"%div = OpFDiv %f32 %dot %c_f32_5\n"
7293		"%zero = OpConvertFToU %u32 %div\n";
7294
7295	// Barriers inside OpSwitch branches.
7296	fragments["testfun"] =
7297		setupPercentZero +
7298		"OpSelectionMerge %switch_exit None\n"
7299		"OpSwitch %zero %switch_default 0 %case0 1 %case1 ;should always go to %case0\n"
7300
7301		"%case1 = OpLabel\n"
7302		";This barrier should never be executed, but its presence makes test failure more likely when there's a bug.\n"
7303		"OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
7304		"%wrong_branch_alert1 = OpVectorInsertDynamic %v4f32 %param1 %c_f32_0_5 %c_i32_0\n"
7305		"OpBranch %switch_exit\n"
7306
7307		"%switch_default = OpLabel\n"
7308		"%wrong_branch_alert2 = OpVectorInsertDynamic %v4f32 %param1 %c_f32_0_5 %c_i32_0\n"
7309		";This barrier should never be executed, but its presence makes test failure more likely when there's a bug.\n"
7310		"OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
7311		"OpBranch %switch_exit\n"
7312
7313		"%case0 = OpLabel\n"
7314		"OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
7315		"OpBranch %switch_exit\n"
7316
7317		"%switch_exit = OpLabel\n"
7318		"%ret = OpPhi %v4f32 %param1 %case0 %wrong_branch_alert1 %case1 %wrong_branch_alert2 %switch_default\n"
7319		"OpReturnValue %ret\n"
7320		"OpFunctionEnd\n";
7321	addTessCtrlTest(testGroup.get(), "in-switch", fragments);
7322
7323	// Barriers inside if-then-else.
7324	fragments["testfun"] =
7325		setupPercentZero +
7326		"%eq0 = OpIEqual %bool %zero %c_u32_0\n"
7327		"OpSelectionMerge %exit DontFlatten\n"
7328		"OpBranchConditional %eq0 %then %else\n"
7329
7330		"%else = OpLabel\n"
7331		";This barrier should never be executed, but its presence makes test failure more likely when there's a bug.\n"
7332		"OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
7333		"%wrong_branch_alert = OpVectorInsertDynamic %v4f32 %param1 %c_f32_0_5 %c_i32_0\n"
7334		"OpBranch %exit\n"
7335
7336		"%then = OpLabel\n"
7337		"OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
7338		"OpBranch %exit\n"
7339
7340		"%exit = OpLabel\n"
7341		"%ret = OpPhi %v4f32 %param1 %then %wrong_branch_alert %else\n"
7342		"OpReturnValue %ret\n"
7343		"OpFunctionEnd\n";
7344	addTessCtrlTest(testGroup.get(), "in-if", fragments);
7345
7346	// A barrier after control-flow reconvergence, tempting the compiler to attempt something like this:
7347	// http://lists.llvm.org/pipermail/llvm-dev/2009-October/026317.html.
7348	fragments["testfun"] =
7349		setupPercentZero +
7350		"%thread_id = OpLoad %i32 %gl_InvocationID\n"
7351		"%thread0 = OpIEqual %bool %thread_id %c_i32_0\n"
7352		"OpSelectionMerge %exit DontFlatten\n"
7353		"OpBranchConditional %thread0 %then %else\n"
7354
7355		"%else = OpLabel\n"
7356		"%val0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
7357		"OpBranch %exit\n"
7358
7359		"%then = OpLabel\n"
7360		"%val1 = OpVectorExtractDynamic %f32 %param1 %zero\n"
7361		"OpBranch %exit\n"
7362
7363		"%exit = OpLabel\n"
7364		"%val = OpPhi %f32 %val0 %else %val1 %then\n"
7365		"OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
7366		"%ret = OpVectorInsertDynamic %v4f32 %param1 %val %zero\n"
7367		"OpReturnValue %ret\n"
7368		"OpFunctionEnd\n";
7369	addTessCtrlTest(testGroup.get(), "after-divergent-if", fragments);
7370
7371	// A barrier inside a loop.
7372	fragments["pre_main"] =
7373		"%Workgroup = OpConstant %i32 2\n"
7374		"%SequentiallyConsistent = OpConstant %i32 0x10\n"
7375		"%c_f32_10 = OpConstant %f32 10.\n";
7376	fragments["testfun"] =
7377		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
7378		"%param1 = OpFunctionParameter %v4f32\n"
7379		"%entry = OpLabel\n"
7380		"%val0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
7381		"OpBranch %loop\n"
7382
7383		";adds 4, 3, 2, and 1 to %val0\n"
7384		"%loop = OpLabel\n"
7385		"%count = OpPhi %i32 %c_i32_4 %entry %count__ %latch\n"
7386		"%val1 = OpPhi %f32 %val0 %entry %val %loop\n"
7387		"OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
7388		"%fcount = OpConvertSToF %f32 %count\n"
7389		"%val = OpFAdd %f32 %val1 %fcount\n"
7390		"%count__ = OpISub %i32 %count %c_i32_1\n"
7391		"%again = OpSGreaterThan %bool %count__ %c_i32_0\n"
7392		"OpLoopMerge %exit %loop None\n"
7393		"OpBranchConditional %again %loop %exit\n"
7394
7395		"%exit = OpLabel\n"
7396		"%same = OpFSub %f32 %val %c_f32_10\n"
7397		"%ret = OpVectorInsertDynamic %v4f32 %param1 %same %c_i32_0\n"
7398		"OpReturnValue %ret\n"
7399		"OpFunctionEnd\n";
7400	addTessCtrlTest(testGroup.get(), "in-loop", fragments);
7401
7402	return testGroup.release();
7403}
7404
7405// Test for the OpFRem instruction.
7406tcu::TestCaseGroup* createFRemTests(tcu::TestContext& testCtx)
7407{
7408	de::MovePtr<tcu::TestCaseGroup>		testGroup(new tcu::TestCaseGroup(testCtx, "frem", "OpFRem"));
7409	map<string, string>					fragments;
7410	RGBA								inputColors[4];
7411	RGBA								outputColors[4];
7412
7413	fragments["pre_main"]				 =
7414		"%c_f32_3 = OpConstant %f32 3.0\n"
7415		"%c_f32_n3 = OpConstant %f32 -3.0\n"
7416		"%c_f32_4 = OpConstant %f32 4.0\n"
7417		"%c_f32_p75 = OpConstant %f32 0.75\n"
7418		"%c_v4f32_p75_p75_p75_p75 = OpConstantComposite %v4f32 %c_f32_p75 %c_f32_p75 %c_f32_p75 %c_f32_p75 \n"
7419		"%c_v4f32_4_4_4_4 = OpConstantComposite %v4f32 %c_f32_4 %c_f32_4 %c_f32_4 %c_f32_4\n"
7420		"%c_v4f32_3_n3_3_n3 = OpConstantComposite %v4f32 %c_f32_3 %c_f32_n3 %c_f32_3 %c_f32_n3\n";
7421
7422	// The test does the following.
7423	// vec4 result = (param1 * 8.0) - 4.0;
7424	// return (frem(result.x,3) + 0.75, frem(result.y, -3) + 0.75, 0, 1)
7425	fragments["testfun"]				 =
7426		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
7427		"%param1 = OpFunctionParameter %v4f32\n"
7428		"%label_testfun = OpLabel\n"
7429		"%v_times_8 = OpVectorTimesScalar %v4f32 %param1 %c_f32_8\n"
7430		"%minus_4 = OpFSub %v4f32 %v_times_8 %c_v4f32_4_4_4_4\n"
7431		"%frem = OpFRem %v4f32 %minus_4 %c_v4f32_3_n3_3_n3\n"
7432		"%added = OpFAdd %v4f32 %frem %c_v4f32_p75_p75_p75_p75\n"
7433		"%xyz_1 = OpVectorInsertDynamic %v4f32 %added %c_f32_1 %c_i32_3\n"
7434		"%xy_0_1 = OpVectorInsertDynamic %v4f32 %xyz_1 %c_f32_0 %c_i32_2\n"
7435		"OpReturnValue %xy_0_1\n"
7436		"OpFunctionEnd\n";
7437
7438
7439	inputColors[0]		= RGBA(16,	16,		0, 255);
7440	inputColors[1]		= RGBA(232, 232,	0, 255);
7441	inputColors[2]		= RGBA(232, 16,		0, 255);
7442	inputColors[3]		= RGBA(16,	232,	0, 255);
7443
7444	outputColors[0]		= RGBA(64,	64,		0, 255);
7445	outputColors[1]		= RGBA(255, 255,	0, 255);
7446	outputColors[2]		= RGBA(255, 64,		0, 255);
7447	outputColors[3]		= RGBA(64,	255,	0, 255);
7448
7449	createTestsForAllStages("frem", inputColors, outputColors, fragments, testGroup.get());
7450	return testGroup.release();
7451}
7452
7453tcu::TestCaseGroup* createInstructionTests (tcu::TestContext& testCtx)
7454{
7455	de::MovePtr<tcu::TestCaseGroup> instructionTests	(new tcu::TestCaseGroup(testCtx, "instruction", "Instructions with special opcodes/operands"));
7456	de::MovePtr<tcu::TestCaseGroup> computeTests		(new tcu::TestCaseGroup(testCtx, "compute", "Compute Instructions with special opcodes/operands"));
7457	de::MovePtr<tcu::TestCaseGroup> graphicsTests		(new tcu::TestCaseGroup(testCtx, "graphics", "Graphics Instructions with special opcodes/operands"));
7458
7459	computeTests->addChild(createOpNopGroup(testCtx));
7460	computeTests->addChild(createOpLineGroup(testCtx));
7461	computeTests->addChild(createOpNoLineGroup(testCtx));
7462	computeTests->addChild(createOpConstantNullGroup(testCtx));
7463	computeTests->addChild(createOpConstantCompositeGroup(testCtx));
7464	computeTests->addChild(createOpConstantUsageGroup(testCtx));
7465	computeTests->addChild(createSpecConstantGroup(testCtx));
7466	computeTests->addChild(createOpSourceGroup(testCtx));
7467	computeTests->addChild(createOpSourceExtensionGroup(testCtx));
7468	computeTests->addChild(createDecorationGroupGroup(testCtx));
7469	computeTests->addChild(createOpPhiGroup(testCtx));
7470	computeTests->addChild(createLoopControlGroup(testCtx));
7471	computeTests->addChild(createFunctionControlGroup(testCtx));
7472	computeTests->addChild(createSelectionControlGroup(testCtx));
7473	computeTests->addChild(createBlockOrderGroup(testCtx));
7474	computeTests->addChild(createMultipleShaderGroup(testCtx));
7475	computeTests->addChild(createMemoryAccessGroup(testCtx));
7476	computeTests->addChild(createOpCopyMemoryGroup(testCtx));
7477	computeTests->addChild(createOpCopyObjectGroup(testCtx));
7478	computeTests->addChild(createNoContractionGroup(testCtx));
7479	computeTests->addChild(createOpUndefGroup(testCtx));
7480	computeTests->addChild(createOpUnreachableGroup(testCtx));
7481	computeTests ->addChild(createOpQuantizeToF16Group(testCtx));
7482	computeTests ->addChild(createOpFRemGroup(testCtx));
7483
7484	RGBA defaultColors[4];
7485	getDefaultColors(defaultColors);
7486
7487	de::MovePtr<tcu::TestCaseGroup> opnopTests (new tcu::TestCaseGroup(testCtx, "opnop", "Test OpNop"));
7488	map<string, string> opNopFragments;
7489	opNopFragments["testfun"] =
7490		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
7491		"%param1 = OpFunctionParameter %v4f32\n"
7492		"%label_testfun = OpLabel\n"
7493		"OpNop\n"
7494		"OpNop\n"
7495		"OpNop\n"
7496		"OpNop\n"
7497		"OpNop\n"
7498		"OpNop\n"
7499		"OpNop\n"
7500		"OpNop\n"
7501		"%a = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
7502		"%b = OpFAdd %f32 %a %a\n"
7503		"OpNop\n"
7504		"%c = OpFSub %f32 %b %a\n"
7505		"%ret = OpVectorInsertDynamic %v4f32 %param1 %c %c_i32_0\n"
7506		"OpNop\n"
7507		"OpNop\n"
7508		"OpReturnValue %ret\n"
7509		"OpFunctionEnd\n"
7510		;
7511	createTestsForAllStages("opnop", defaultColors, defaultColors, opNopFragments, opnopTests.get());
7512
7513
7514	graphicsTests->addChild(opnopTests.release());
7515	graphicsTests->addChild(createOpSourceTests(testCtx));
7516	graphicsTests->addChild(createOpSourceContinuedTests(testCtx));
7517	graphicsTests->addChild(createOpLineTests(testCtx));
7518	graphicsTests->addChild(createOpNoLineTests(testCtx));
7519	graphicsTests->addChild(createOpConstantNullTests(testCtx));
7520	graphicsTests->addChild(createOpConstantCompositeTests(testCtx));
7521	graphicsTests->addChild(createMemoryAccessTests(testCtx));
7522	graphicsTests->addChild(createOpUndefTests(testCtx));
7523	graphicsTests->addChild(createSelectionBlockOrderTests(testCtx));
7524	graphicsTests->addChild(createModuleTests(testCtx));
7525	graphicsTests->addChild(createSwitchBlockOrderTests(testCtx));
7526	graphicsTests->addChild(createOpPhiTests(testCtx));
7527	graphicsTests->addChild(createNoContractionTests(testCtx));
7528	graphicsTests->addChild(createOpQuantizeTests(testCtx));
7529	graphicsTests->addChild(createLoopTests(testCtx));
7530	graphicsTests->addChild(createSpecConstantTests(testCtx));
7531	graphicsTests->addChild(createSpecConstantOpQuantizeToF16Group(testCtx));
7532	graphicsTests->addChild(createBarrierTests(testCtx));
7533	graphicsTests->addChild(createDecorationGroupTests(testCtx));
7534	graphicsTests->addChild(createFRemTests(testCtx));
7535
7536	instructionTests->addChild(computeTests.release());
7537	instructionTests->addChild(graphicsTests.release());
7538
7539	return instructionTests.release();
7540}
7541
7542} // SpirVAssembly
7543} // vkt
7544