vktSpvAsmInstructionTests.cpp revision 7ad0bda65c2000719f873b87c40927502bfa6805
1/*-------------------------------------------------------------------------
2 * Vulkan Conformance Tests
3 * ------------------------
4 *
5 * Copyright (c) 2015 Google Inc.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and/or associated documentation files (the
9 * "Materials"), to deal in the Materials without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sublicense, and/or sell copies of the Materials, and to
12 * permit persons to whom the Materials are furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice(s) and this permission notice shall be
16 * included in all copies or substantial portions of the Materials.
17 *
18 * The Materials are Confidential Information as defined by the
19 * Khronos Membership Agreement until designated non-confidential by
20 * Khronos, at which point this condition clause shall be removed.
21 *
22 * THE MATERIALS ARE PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
23 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
24 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
25 * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
26 * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
27 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
28 * MATERIALS OR THE USE OR OTHER DEALINGS IN THE MATERIALS.
29 *
30 *//*!
31 * \file
32 * \brief SPIR-V Assembly Tests for Instructions (special opcode/operand)
33 *//*--------------------------------------------------------------------*/
34
35#include "vktSpvAsmInstructionTests.hpp"
36
37#include "tcuCommandLine.hpp"
38#include "tcuFormatUtil.hpp"
39#include "tcuRGBA.hpp"
40#include "tcuStringTemplate.hpp"
41#include "tcuTestLog.hpp"
42#include "tcuVectorUtil.hpp"
43
44#include "vkDefs.hpp"
45#include "vkDeviceUtil.hpp"
46#include "vkMemUtil.hpp"
47#include "vkPlatform.hpp"
48#include "vkPrograms.hpp"
49#include "vkQueryUtil.hpp"
50#include "vkRef.hpp"
51#include "vkRefUtil.hpp"
52#include "vkStrUtil.hpp"
53#include "vkTypeUtil.hpp"
54
55#include "deRandom.hpp"
56#include "deStringUtil.hpp"
57#include "deUniquePtr.hpp"
58#include "tcuStringTemplate.hpp"
59
60#include <cmath>
61#include "vktSpvAsmComputeShaderCase.hpp"
62#include "vktSpvAsmComputeShaderTestUtil.hpp"
63#include "vktTestCaseUtil.hpp"
64
65#include <cmath>
66#include <limits>
67#include <map>
68#include <string>
69#include <sstream>
70
71namespace vkt
72{
73namespace SpirVAssembly
74{
75
76namespace
77{
78
79using namespace vk;
80using std::map;
81using std::string;
82using std::vector;
83using tcu::IVec3;
84using tcu::IVec4;
85using tcu::RGBA;
86using tcu::TestLog;
87using tcu::TestStatus;
88using tcu::Vec4;
89using de::UniquePtr;
90using tcu::StringTemplate;
91using tcu::Vec4;
92
93typedef Unique<VkShaderModule>			ModuleHandleUp;
94typedef de::SharedPtr<ModuleHandleUp>	ModuleHandleSp;
95
96template<typename T>	T			randomScalar	(de::Random& rnd, T minValue, T maxValue);
97template<> inline		float		randomScalar	(de::Random& rnd, float minValue, float maxValue)		{ return rnd.getFloat(minValue, maxValue);	}
98template<> inline		deInt32		randomScalar	(de::Random& rnd, deInt32 minValue, deInt32 maxValue)	{ return rnd.getInt(minValue, maxValue);	}
99
100template<typename T>
101static void fillRandomScalars (de::Random& rnd, T minValue, T maxValue, void* dst, int numValues, int offset = 0)
102{
103	T* const typedPtr = (T*)dst;
104	for (int ndx = 0; ndx < numValues; ndx++)
105		typedPtr[offset + ndx] = randomScalar<T>(rnd, minValue, maxValue);
106}
107
108struct CaseParameter
109{
110	const char*		name;
111	string			param;
112
113	CaseParameter	(const char* case_, const string& param_) : name(case_), param(param_) {}
114};
115
116// Assembly code used for testing OpNop, OpConstant{Null|Composite}, Op[No]Line, OpSource[Continued], OpSourceExtension, OpUndef is based on GLSL source code:
117//
118// #version 430
119//
120// layout(std140, set = 0, binding = 0) readonly buffer Input {
121//   float elements[];
122// } input_data;
123// layout(std140, set = 0, binding = 1) writeonly buffer Output {
124//   float elements[];
125// } output_data;
126//
127// layout (local_size_x = 1, local_size_y = 1, local_size_z = 1) in;
128//
129// void main() {
130//   uint x = gl_GlobalInvocationID.x;
131//   output_data.elements[x] = -input_data.elements[x];
132// }
133
134static const char* const s_ShaderPreamble =
135	"OpCapability Shader\n"
136	"OpMemoryModel Logical GLSL450\n"
137	"OpEntryPoint GLCompute %main \"main\" %id\n"
138	"OpExecutionMode %main LocalSize 1 1 1\n";
139
140static const char* const s_CommonTypes =
141	"%bool      = OpTypeBool\n"
142	"%void      = OpTypeVoid\n"
143	"%voidf     = OpTypeFunction %void\n"
144	"%u32       = OpTypeInt 32 0\n"
145	"%i32       = OpTypeInt 32 1\n"
146	"%f32       = OpTypeFloat 32\n"
147	"%uvec3     = OpTypeVector %u32 3\n"
148	"%uvec3ptr  = OpTypePointer Input %uvec3\n"
149	"%f32ptr    = OpTypePointer Uniform %f32\n"
150	"%f32arr    = OpTypeRuntimeArray %f32\n";
151
152// Declares two uniform variables (indata, outdata) of type "struct { float[] }". Depends on type "f32arr" (for "float[]").
153static const char* const s_InputOutputBuffer =
154	"%inbuf     = OpTypeStruct %f32arr\n"
155	"%inbufptr  = OpTypePointer Uniform %inbuf\n"
156	"%indata    = OpVariable %inbufptr Uniform\n"
157	"%outbuf    = OpTypeStruct %f32arr\n"
158	"%outbufptr = OpTypePointer Uniform %outbuf\n"
159	"%outdata   = OpVariable %outbufptr Uniform\n";
160
161// Declares buffer type and layout for uniform variables indata and outdata. Both of them are SSBO bounded to descriptor set 0.
162// indata is at binding point 0, while outdata is at 1.
163static const char* const s_InputOutputBufferTraits =
164	"OpDecorate %inbuf BufferBlock\n"
165	"OpDecorate %indata DescriptorSet 0\n"
166	"OpDecorate %indata Binding 0\n"
167	"OpDecorate %outbuf BufferBlock\n"
168	"OpDecorate %outdata DescriptorSet 0\n"
169	"OpDecorate %outdata Binding 1\n"
170	"OpDecorate %f32arr ArrayStride 4\n"
171	"OpMemberDecorate %inbuf 0 Offset 0\n"
172	"OpMemberDecorate %outbuf 0 Offset 0\n";
173
174tcu::TestCaseGroup* createOpNopGroup (tcu::TestContext& testCtx)
175{
176	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opnop", "Test the OpNop instruction"));
177	ComputeShaderSpec				spec;
178	de::Random						rnd				(deStringHash(group->getName()));
179	const int						numElements		= 100;
180	vector<float>					positiveFloats	(numElements, 0);
181	vector<float>					negativeFloats	(numElements, 0);
182
183	fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
184
185	for (size_t ndx = 0; ndx < numElements; ++ndx)
186		negativeFloats[ndx] = -positiveFloats[ndx];
187
188	spec.assembly =
189		string(s_ShaderPreamble) +
190
191		"OpSource GLSL 430\n"
192		"OpName %main           \"main\"\n"
193		"OpName %id             \"gl_GlobalInvocationID\"\n"
194
195		"OpDecorate %id BuiltIn GlobalInvocationId\n"
196
197		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes)
198
199		+ string(s_InputOutputBuffer) +
200
201		"%id        = OpVariable %uvec3ptr Input\n"
202		"%zero      = OpConstant %i32 0\n"
203
204		"%main      = OpFunction %void None %voidf\n"
205		"%label     = OpLabel\n"
206		"%idval     = OpLoad %uvec3 %id\n"
207		"%x         = OpCompositeExtract %u32 %idval 0\n"
208
209		"             OpNop\n" // Inside a function body
210
211		"%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
212		"%inval     = OpLoad %f32 %inloc\n"
213		"%neg       = OpFNegate %f32 %inval\n"
214		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
215		"             OpStore %outloc %neg\n"
216		"             OpReturn\n"
217		"             OpFunctionEnd\n";
218	spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
219	spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
220	spec.numWorkGroups = IVec3(numElements, 1, 1);
221
222	group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "OpNop appearing at different places", spec));
223
224	return group.release();
225}
226
227tcu::TestCaseGroup* createOpLineGroup (tcu::TestContext& testCtx)
228{
229	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opline", "Test the OpLine instruction"));
230	ComputeShaderSpec				spec;
231	de::Random						rnd				(deStringHash(group->getName()));
232	const int						numElements		= 100;
233	vector<float>					positiveFloats	(numElements, 0);
234	vector<float>					negativeFloats	(numElements, 0);
235
236	fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
237
238	for (size_t ndx = 0; ndx < numElements; ++ndx)
239		negativeFloats[ndx] = -positiveFloats[ndx];
240
241	spec.assembly =
242		string(s_ShaderPreamble) +
243
244		"%fname1 = OpString \"negateInputs.comp\"\n"
245		"%fname2 = OpString \"negateInputs\"\n"
246
247		"OpSource GLSL 430\n"
248		"OpName %main           \"main\"\n"
249		"OpName %id             \"gl_GlobalInvocationID\"\n"
250
251		"OpDecorate %id BuiltIn GlobalInvocationId\n"
252
253		+ string(s_InputOutputBufferTraits) +
254
255		"OpLine %fname1 0 0\n" // At the earliest possible position
256
257		+ string(s_CommonTypes) + string(s_InputOutputBuffer) +
258
259		"OpLine %fname1 0 1\n" // Multiple OpLines in sequence
260		"OpLine %fname2 1 0\n" // Different filenames
261		"OpLine %fname1 1000 100000\n"
262
263		"%id        = OpVariable %uvec3ptr Input\n"
264		"%zero      = OpConstant %i32 0\n"
265
266		"OpLine %fname1 1 1\n" // Before a function
267
268		"%main      = OpFunction %void None %voidf\n"
269		"%label     = OpLabel\n"
270
271		"OpLine %fname1 1 1\n" // In a function
272
273		"%idval     = OpLoad %uvec3 %id\n"
274		"%x         = OpCompositeExtract %u32 %idval 0\n"
275		"%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
276		"%inval     = OpLoad %f32 %inloc\n"
277		"%neg       = OpFNegate %f32 %inval\n"
278		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
279		"             OpStore %outloc %neg\n"
280		"             OpReturn\n"
281		"             OpFunctionEnd\n";
282	spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
283	spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
284	spec.numWorkGroups = IVec3(numElements, 1, 1);
285
286	group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "OpLine appearing at different places", spec));
287
288	return group.release();
289}
290
291tcu::TestCaseGroup* createOpNoLineGroup (tcu::TestContext& testCtx)
292{
293	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opnoline", "Test the OpNoLine instruction"));
294	ComputeShaderSpec				spec;
295	de::Random						rnd				(deStringHash(group->getName()));
296	const int						numElements		= 100;
297	vector<float>					positiveFloats	(numElements, 0);
298	vector<float>					negativeFloats	(numElements, 0);
299
300	fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
301
302	for (size_t ndx = 0; ndx < numElements; ++ndx)
303		negativeFloats[ndx] = -positiveFloats[ndx];
304
305	spec.assembly =
306		string(s_ShaderPreamble) +
307
308		"%fname = OpString \"negateInputs.comp\"\n"
309
310		"OpSource GLSL 430\n"
311		"OpName %main           \"main\"\n"
312		"OpName %id             \"gl_GlobalInvocationID\"\n"
313
314		"OpDecorate %id BuiltIn GlobalInvocationId\n"
315
316		+ string(s_InputOutputBufferTraits) +
317
318		"OpNoLine\n" // At the earliest possible position, without preceding OpLine
319
320		+ string(s_CommonTypes) + string(s_InputOutputBuffer) +
321
322		"OpLine %fname 0 1\n"
323		"OpNoLine\n" // Immediately following a preceding OpLine
324
325		"OpLine %fname 1000 1\n"
326
327		"%id        = OpVariable %uvec3ptr Input\n"
328		"%zero      = OpConstant %i32 0\n"
329
330		"OpNoLine\n" // Contents after the previous OpLine
331
332		"%main      = OpFunction %void None %voidf\n"
333		"%label     = OpLabel\n"
334		"%idval     = OpLoad %uvec3 %id\n"
335		"%x         = OpCompositeExtract %u32 %idval 0\n"
336
337		"OpNoLine\n" // Multiple OpNoLine
338		"OpNoLine\n"
339		"OpNoLine\n"
340
341		"%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
342		"%inval     = OpLoad %f32 %inloc\n"
343		"%neg       = OpFNegate %f32 %inval\n"
344		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
345		"             OpStore %outloc %neg\n"
346		"             OpReturn\n"
347		"             OpFunctionEnd\n";
348	spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
349	spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
350	spec.numWorkGroups = IVec3(numElements, 1, 1);
351
352	group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "OpNoLine appearing at different places", spec));
353
354	return group.release();
355}
356
357tcu::TestCaseGroup* createNoContractionGroup (tcu::TestContext& testCtx)
358{
359	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "nocontraction", "Test the NoContraction decoration"));
360	vector<CaseParameter>			cases;
361	const int						numElements		= 100;
362	vector<float>					inputFloats1	(numElements, 0);
363	vector<float>					inputFloats2	(numElements, 0);
364	vector<float>					outputFloats	(numElements, 0);
365	const StringTemplate			shaderTemplate	(
366		string(s_ShaderPreamble) +
367
368		"OpName %main           \"main\"\n"
369		"OpName %id             \"gl_GlobalInvocationID\"\n"
370
371		"OpDecorate %id BuiltIn GlobalInvocationId\n"
372
373		"${DECORATION}\n"
374
375		"OpDecorate %inbuf1 BufferBlock\n"
376		"OpDecorate %indata1 DescriptorSet 0\n"
377		"OpDecorate %indata1 Binding 0\n"
378		"OpDecorate %inbuf2 BufferBlock\n"
379		"OpDecorate %indata2 DescriptorSet 0\n"
380		"OpDecorate %indata2 Binding 1\n"
381		"OpDecorate %outbuf BufferBlock\n"
382		"OpDecorate %outdata DescriptorSet 0\n"
383		"OpDecorate %outdata Binding 2\n"
384		"OpDecorate %f32arr ArrayStride 4\n"
385		"OpMemberDecorate %inbuf1 0 Offset 0\n"
386		"OpMemberDecorate %inbuf2 0 Offset 0\n"
387		"OpMemberDecorate %outbuf 0 Offset 0\n"
388
389		+ string(s_CommonTypes) +
390
391		"%inbuf1     = OpTypeStruct %f32arr\n"
392		"%inbufptr1  = OpTypePointer Uniform %inbuf1\n"
393		"%indata1    = OpVariable %inbufptr1 Uniform\n"
394		"%inbuf2     = OpTypeStruct %f32arr\n"
395		"%inbufptr2  = OpTypePointer Uniform %inbuf2\n"
396		"%indata2    = OpVariable %inbufptr2 Uniform\n"
397		"%outbuf     = OpTypeStruct %f32arr\n"
398		"%outbufptr  = OpTypePointer Uniform %outbuf\n"
399		"%outdata    = OpVariable %outbufptr Uniform\n"
400
401		"%id         = OpVariable %uvec3ptr Input\n"
402		"%zero       = OpConstant %i32 0\n"
403		"%c_f_m1     = OpConstant %f32 -1.\n"
404
405		"%main       = OpFunction %void None %voidf\n"
406		"%label      = OpLabel\n"
407		"%idval      = OpLoad %uvec3 %id\n"
408		"%x          = OpCompositeExtract %u32 %idval 0\n"
409		"%inloc1     = OpAccessChain %f32ptr %indata1 %zero %x\n"
410		"%inval1     = OpLoad %f32 %inloc1\n"
411		"%inloc2     = OpAccessChain %f32ptr %indata2 %zero %x\n"
412		"%inval2     = OpLoad %f32 %inloc2\n"
413		"%mul        = OpFMul %f32 %inval1 %inval2\n"
414		"%add        = OpFAdd %f32 %mul %c_f_m1\n"
415		"%outloc     = OpAccessChain %f32ptr %outdata %zero %x\n"
416		"              OpStore %outloc %add\n"
417		"              OpReturn\n"
418		"              OpFunctionEnd\n");
419
420	cases.push_back(CaseParameter("multiplication",	"OpDecorate %mul NoContraction"));
421	cases.push_back(CaseParameter("addition",		"OpDecorate %add NoContraction"));
422	cases.push_back(CaseParameter("both",			"OpDecorate %mul NoContraction\nOpDecorate %add NoContraction"));
423
424	for (size_t ndx = 0; ndx < numElements; ++ndx)
425	{
426		inputFloats1[ndx]	= 1.f + std::ldexp(1.f, -23); // 1 + 2^-23.
427		inputFloats2[ndx]	= 1.f - std::ldexp(1.f, -23); // 1 - 2^-23.
428		// Result for (1 + 2^-23) * (1 - 2^-23) - 1. With NoContraction, the multiplication will be
429		// conducted separately and the result is rounded to 1. So the final result will be 0.f.
430		// If the operation is combined into a precise fused multiply-add, then the result would be
431		// 2^-46 (0xa8800000).
432		outputFloats[ndx]	= 0.f;
433	}
434
435	for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
436	{
437		map<string, string>		specializations;
438		ComputeShaderSpec		spec;
439
440		specializations["DECORATION"] = cases[caseNdx].param;
441		spec.assembly = shaderTemplate.specialize(specializations);
442		spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats1)));
443		spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats2)));
444		spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
445		spec.numWorkGroups = IVec3(numElements, 1, 1);
446
447		group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
448	}
449	return group.release();
450}
451
452tcu::TestCaseGroup* createOpFRemGroup (tcu::TestContext& testCtx)
453{
454	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opfrem", "Test the OpFRem instruction"));
455	ComputeShaderSpec				spec;
456	de::Random						rnd				(deStringHash(group->getName()));
457	const int						numElements		= 200;
458	vector<float>					inputFloats1	(numElements, 0);
459	vector<float>					inputFloats2	(numElements, 0);
460	vector<float>					outputFloats	(numElements, 0);
461
462	fillRandomScalars(rnd, -10000.f, 10000.f, &inputFloats1[0], numElements);
463	fillRandomScalars(rnd, -100.f, 100.f, &inputFloats2[0], numElements);
464
465	for (size_t ndx = 0; ndx < numElements; ++ndx)
466	{
467		// Guard against divisors near zero.
468		if (std::fabs(inputFloats2[ndx]) < 1e-3)
469			inputFloats2[ndx] = 8.f;
470
471		// The return value of std::fmod() has the same sign as its first operand, which is how OpFRem spec'd.
472		outputFloats[ndx] = std::fmod(inputFloats1[ndx], inputFloats2[ndx]);
473	}
474
475	spec.assembly =
476		string(s_ShaderPreamble) +
477
478		"OpName %main           \"main\"\n"
479		"OpName %id             \"gl_GlobalInvocationID\"\n"
480
481		"OpDecorate %id BuiltIn GlobalInvocationId\n"
482
483		"OpDecorate %inbuf1 BufferBlock\n"
484		"OpDecorate %indata1 DescriptorSet 0\n"
485		"OpDecorate %indata1 Binding 0\n"
486		"OpDecorate %inbuf2 BufferBlock\n"
487		"OpDecorate %indata2 DescriptorSet 0\n"
488		"OpDecorate %indata2 Binding 1\n"
489		"OpDecorate %outbuf BufferBlock\n"
490		"OpDecorate %outdata DescriptorSet 0\n"
491		"OpDecorate %outdata Binding 2\n"
492		"OpDecorate %f32arr ArrayStride 4\n"
493		"OpMemberDecorate %inbuf1 0 Offset 0\n"
494		"OpMemberDecorate %inbuf2 0 Offset 0\n"
495		"OpMemberDecorate %outbuf 0 Offset 0\n"
496
497		+ string(s_CommonTypes) +
498
499		"%inbuf1     = OpTypeStruct %f32arr\n"
500		"%inbufptr1  = OpTypePointer Uniform %inbuf1\n"
501		"%indata1    = OpVariable %inbufptr1 Uniform\n"
502		"%inbuf2     = OpTypeStruct %f32arr\n"
503		"%inbufptr2  = OpTypePointer Uniform %inbuf2\n"
504		"%indata2    = OpVariable %inbufptr2 Uniform\n"
505		"%outbuf     = OpTypeStruct %f32arr\n"
506		"%outbufptr  = OpTypePointer Uniform %outbuf\n"
507		"%outdata    = OpVariable %outbufptr Uniform\n"
508
509		"%id        = OpVariable %uvec3ptr Input\n"
510		"%zero      = OpConstant %i32 0\n"
511
512		"%main      = OpFunction %void None %voidf\n"
513		"%label     = OpLabel\n"
514		"%idval     = OpLoad %uvec3 %id\n"
515		"%x         = OpCompositeExtract %u32 %idval 0\n"
516		"%inloc1    = OpAccessChain %f32ptr %indata1 %zero %x\n"
517		"%inval1    = OpLoad %f32 %inloc1\n"
518		"%inloc2    = OpAccessChain %f32ptr %indata2 %zero %x\n"
519		"%inval2    = OpLoad %f32 %inloc2\n"
520		"%rem       = OpFRem %f32 %inval1 %inval2\n"
521		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
522		"             OpStore %outloc %rem\n"
523		"             OpReturn\n"
524		"             OpFunctionEnd\n";
525
526	spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats1)));
527	spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats2)));
528	spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
529	spec.numWorkGroups = IVec3(numElements, 1, 1);
530
531	group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "", spec));
532
533	return group.release();
534}
535
536// Copy contents in the input buffer to the output buffer.
537tcu::TestCaseGroup* createOpCopyMemoryGroup (tcu::TestContext& testCtx)
538{
539	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opcopymemory", "Test the OpCopyMemory instruction"));
540	de::Random						rnd				(deStringHash(group->getName()));
541	const int						numElements		= 100;
542
543	// The following case adds vec4(0., 0.5, 1.5, 2.5) to each of the elements in the input buffer and writes output to the output buffer.
544	ComputeShaderSpec				spec1;
545	vector<Vec4>					inputFloats1	(numElements);
546	vector<Vec4>					outputFloats1	(numElements);
547
548	fillRandomScalars(rnd, -200.f, 200.f, &inputFloats1[0], numElements * 4);
549
550	for (size_t ndx = 0; ndx < numElements; ++ndx)
551		outputFloats1[ndx] = inputFloats1[ndx] + Vec4(0.f, 0.5f, 1.5f, 2.5f);
552
553	spec1.assembly =
554		string(s_ShaderPreamble) +
555
556		"OpName %main           \"main\"\n"
557		"OpName %id             \"gl_GlobalInvocationID\"\n"
558
559		"OpDecorate %id BuiltIn GlobalInvocationId\n"
560
561		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
562
563		"%vec4       = OpTypeVector %f32 4\n"
564		"%vec4ptr_u  = OpTypePointer Uniform %vec4\n"
565		"%vec4ptr_f  = OpTypePointer Function %vec4\n"
566		"%vec4arr    = OpTypeRuntimeArray %vec4\n"
567		"%inbuf      = OpTypeStruct %vec4arr\n"
568		"%inbufptr   = OpTypePointer Uniform %inbuf\n"
569		"%indata     = OpVariable %inbufptr Uniform\n"
570		"%outbuf     = OpTypeStruct %vec4arr\n"
571		"%outbufptr  = OpTypePointer Uniform %outbuf\n"
572		"%outdata    = OpVariable %outbufptr Uniform\n"
573
574		"%id         = OpVariable %uvec3ptr Input\n"
575		"%zero       = OpConstant %i32 0\n"
576		"%c_f_0      = OpConstant %f32 0.\n"
577		"%c_f_0_5    = OpConstant %f32 0.5\n"
578		"%c_f_1_5    = OpConstant %f32 1.5\n"
579		"%c_f_2_5    = OpConstant %f32 2.5\n"
580		"%c_vec4     = OpConstantComposite %vec4 %c_f_0 %c_f_0_5 %c_f_1_5 %c_f_2_5\n"
581
582		"%main       = OpFunction %void None %voidf\n"
583		"%label      = OpLabel\n"
584		"%v_vec4     = OpVariable %vec4ptr_f Function\n"
585		"%idval      = OpLoad %uvec3 %id\n"
586		"%x          = OpCompositeExtract %u32 %idval 0\n"
587		"%inloc      = OpAccessChain %vec4ptr_u %indata %zero %x\n"
588		"%outloc     = OpAccessChain %vec4ptr_u %outdata %zero %x\n"
589		"              OpCopyMemory %v_vec4 %inloc\n"
590		"%v_vec4_val = OpLoad %vec4 %v_vec4\n"
591		"%add        = OpFAdd %vec4 %v_vec4_val %c_vec4\n"
592		"              OpStore %outloc %add\n"
593		"              OpReturn\n"
594		"              OpFunctionEnd\n";
595
596	spec1.inputs.push_back(BufferSp(new Vec4Buffer(inputFloats1)));
597	spec1.outputs.push_back(BufferSp(new Vec4Buffer(outputFloats1)));
598	spec1.numWorkGroups = IVec3(numElements, 1, 1);
599
600	group->addChild(new SpvAsmComputeShaderCase(testCtx, "vector", "OpCopyMemory elements of vector type", spec1));
601
602	// The following case copies a float[100] variable from the input buffer to the output buffer.
603	ComputeShaderSpec				spec2;
604	vector<float>					inputFloats2	(numElements);
605	vector<float>					outputFloats2	(numElements);
606
607	fillRandomScalars(rnd, -200.f, 200.f, &inputFloats2[0], numElements);
608
609	for (size_t ndx = 0; ndx < numElements; ++ndx)
610		outputFloats2[ndx] = inputFloats2[ndx];
611
612	spec2.assembly =
613		string(s_ShaderPreamble) +
614
615		"OpName %main           \"main\"\n"
616		"OpName %id             \"gl_GlobalInvocationID\"\n"
617
618		"OpDecorate %id BuiltIn GlobalInvocationId\n"
619
620		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
621
622		"%hundred        = OpConstant %u32 100\n"
623		"%f32arr100      = OpTypeArray %f32 %hundred\n"
624		"%f32arr100ptr_f = OpTypePointer Function %f32arr100\n"
625		"%f32arr100ptr_u = OpTypePointer Uniform %f32arr100\n"
626		"%inbuf          = OpTypeStruct %f32arr100\n"
627		"%inbufptr       = OpTypePointer Uniform %inbuf\n"
628		"%indata         = OpVariable %inbufptr Uniform\n"
629		"%outbuf         = OpTypeStruct %f32arr100\n"
630		"%outbufptr      = OpTypePointer Uniform %outbuf\n"
631		"%outdata        = OpVariable %outbufptr Uniform\n"
632
633		"%id             = OpVariable %uvec3ptr Input\n"
634		"%zero           = OpConstant %i32 0\n"
635
636		"%main           = OpFunction %void None %voidf\n"
637		"%label          = OpLabel\n"
638		"%var            = OpVariable %f32arr100ptr_f Function\n"
639		"%inarr          = OpAccessChain %f32arr100ptr_u %indata %zero\n"
640		"%outarr         = OpAccessChain %f32arr100ptr_u %outdata %zero\n"
641		"                  OpCopyMemory %var %inarr\n"
642		"                  OpCopyMemory %outarr %var\n"
643		"                  OpReturn\n"
644		"                  OpFunctionEnd\n";
645
646	spec2.inputs.push_back(BufferSp(new Float32Buffer(inputFloats2)));
647	spec2.outputs.push_back(BufferSp(new Float32Buffer(outputFloats2)));
648	spec2.numWorkGroups = IVec3(1, 1, 1);
649
650	group->addChild(new SpvAsmComputeShaderCase(testCtx, "array", "OpCopyMemory elements of array type", spec2));
651
652	// The following case copies a struct{vec4, vec4, vec4, vec4} variable from the input buffer to the output buffer.
653	ComputeShaderSpec				spec3;
654	vector<float>					inputFloats3	(16);
655	vector<float>					outputFloats3	(16);
656
657	fillRandomScalars(rnd, -200.f, 200.f, &inputFloats3[0], 16);
658
659	for (size_t ndx = 0; ndx < 16; ++ndx)
660		outputFloats3[ndx] = -inputFloats3[ndx];
661
662	spec3.assembly =
663		string(s_ShaderPreamble) +
664
665		"OpName %main           \"main\"\n"
666		"OpName %id             \"gl_GlobalInvocationID\"\n"
667
668		"OpDecorate %id BuiltIn GlobalInvocationId\n"
669
670		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
671
672		"%vec4      = OpTypeVector %f32 4\n"
673		"%inbuf     = OpTypeStruct %vec4 %vec4 %vec4 %vec4\n"
674		"%inbufptr  = OpTypePointer Uniform %inbuf\n"
675		"%indata    = OpVariable %inbufptr Uniform\n"
676		"%outbuf    = OpTypeStruct %vec4 %vec4 %vec4 %vec4\n"
677		"%outbufptr = OpTypePointer Uniform %outbuf\n"
678		"%outdata   = OpVariable %outbufptr Uniform\n"
679		"%vec4stptr = OpTypePointer Function %inbuf\n"
680
681		"%id        = OpVariable %uvec3ptr Input\n"
682		"%zero      = OpConstant %i32 0\n"
683
684		"%main      = OpFunction %void None %voidf\n"
685		"%label     = OpLabel\n"
686		"%var       = OpVariable %vec4stptr Function\n"
687		"             OpCopyMemory %var %indata\n"
688		"             OpCopyMemory %outdata %var\n"
689		"             OpReturn\n"
690		"             OpFunctionEnd\n";
691
692	spec3.inputs.push_back(BufferSp(new Float32Buffer(inputFloats3)));
693	spec3.outputs.push_back(BufferSp(new Float32Buffer(outputFloats3)));
694	spec3.numWorkGroups = IVec3(1, 1, 1);
695
696	group->addChild(new SpvAsmComputeShaderCase(testCtx, "struct", "OpCopyMemory elements of struct type", spec3));
697
698	// The following case negates multiple float variables from the input buffer and stores the results to the output buffer.
699	ComputeShaderSpec				spec4;
700	vector<float>					inputFloats4	(numElements);
701	vector<float>					outputFloats4	(numElements);
702
703	fillRandomScalars(rnd, -200.f, 200.f, &inputFloats4[0], numElements);
704
705	for (size_t ndx = 0; ndx < numElements; ++ndx)
706		outputFloats4[ndx] = -inputFloats4[ndx];
707
708	spec4.assembly =
709		string(s_ShaderPreamble) +
710
711		"OpName %main           \"main\"\n"
712		"OpName %id             \"gl_GlobalInvocationID\"\n"
713
714		"OpDecorate %id BuiltIn GlobalInvocationId\n"
715
716		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
717
718		"%f32ptr_f  = OpTypePointer Function %f32\n"
719		"%id        = OpVariable %uvec3ptr Input\n"
720		"%zero      = OpConstant %i32 0\n"
721
722		"%main      = OpFunction %void None %voidf\n"
723		"%label     = OpLabel\n"
724		"%var       = OpVariable %f32ptr_f Function\n"
725		"%idval     = OpLoad %uvec3 %id\n"
726		"%x         = OpCompositeExtract %u32 %idval 0\n"
727		"%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
728		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
729		"             OpCopyMemory %var %inloc\n"
730		"%val       = OpLoad %f32 %var\n"
731		"%neg       = OpFNegate %f32 %val\n"
732		"             OpStore %outloc %neg\n"
733		"             OpReturn\n"
734		"             OpFunctionEnd\n";
735
736	spec4.inputs.push_back(BufferSp(new Float32Buffer(inputFloats4)));
737	spec4.outputs.push_back(BufferSp(new Float32Buffer(outputFloats4)));
738	spec4.numWorkGroups = IVec3(numElements, 1, 1);
739
740	group->addChild(new SpvAsmComputeShaderCase(testCtx, "float", "OpCopyMemory elements of float type", spec4));
741
742	return group.release();
743}
744
745tcu::TestCaseGroup* createOpCopyObjectGroup (tcu::TestContext& testCtx)
746{
747	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opcopyobject", "Test the OpCopyObject instruction"));
748	ComputeShaderSpec				spec;
749	de::Random						rnd				(deStringHash(group->getName()));
750	const int						numElements		= 100;
751	vector<float>					inputFloats		(numElements, 0);
752	vector<float>					outputFloats	(numElements, 0);
753
754	fillRandomScalars(rnd, -200.f, 200.f, &inputFloats[0], numElements);
755
756	for (size_t ndx = 0; ndx < numElements; ++ndx)
757		outputFloats[ndx] = inputFloats[ndx] + 7.5f;
758
759	spec.assembly =
760		string(s_ShaderPreamble) +
761
762		"OpName %main           \"main\"\n"
763		"OpName %id             \"gl_GlobalInvocationID\"\n"
764
765		"OpDecorate %id BuiltIn GlobalInvocationId\n"
766
767		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
768
769		"%fvec3    = OpTypeVector %f32 3\n"
770		"%fmat     = OpTypeMatrix %fvec3 3\n"
771		"%three    = OpConstant %u32 3\n"
772		"%farr     = OpTypeArray %f32 %three\n"
773		"%fst      = OpTypeStruct %f32 %f32\n"
774
775		+ string(s_InputOutputBuffer) +
776
777		"%id            = OpVariable %uvec3ptr Input\n"
778		"%zero          = OpConstant %i32 0\n"
779		"%c_f           = OpConstant %f32 1.5\n"
780		"%c_fvec3       = OpConstantComposite %fvec3 %c_f %c_f %c_f\n"
781		"%c_fmat        = OpConstantComposite %fmat %c_fvec3 %c_fvec3 %c_fvec3\n"
782		"%c_farr        = OpConstantComposite %farr %c_f %c_f %c_f\n"
783		"%c_fst         = OpConstantComposite %fst %c_f %c_f\n"
784
785		"%main          = OpFunction %void None %voidf\n"
786		"%label         = OpLabel\n"
787		"%c_f_copy      = OpCopyObject %f32   %c_f\n"
788		"%c_fvec3_copy  = OpCopyObject %fvec3 %c_fvec3\n"
789		"%c_fmat_copy   = OpCopyObject %fmat  %c_fmat\n"
790		"%c_farr_copy   = OpCopyObject %farr  %c_farr\n"
791		"%c_fst_copy    = OpCopyObject %fst   %c_fst\n"
792		"%fvec3_elem    = OpCompositeExtract %f32 %c_fvec3_copy 0\n"
793		"%fmat_elem     = OpCompositeExtract %f32 %c_fmat_copy 1 2\n"
794		"%farr_elem     = OpCompositeExtract %f32 %c_fmat_copy 2\n"
795		"%fst_elem      = OpCompositeExtract %f32 %c_fmat_copy 1\n"
796		// Add up. 1.5 * 5 = 7.5.
797		"%add1          = OpFAdd %f32 %c_f_copy %fvec3_elem\n"
798		"%add2          = OpFAdd %f32 %add1     %fmat_elem\n"
799		"%add3          = OpFAdd %f32 %add2     %farr_elem\n"
800		"%add4          = OpFAdd %f32 %add3     %fst_elem\n"
801
802		"%idval         = OpLoad %uvec3 %id\n"
803		"%x             = OpCompositeExtract %u32 %idval 0\n"
804		"%inloc         = OpAccessChain %f32ptr %indata %zero %x\n"
805		"%outloc        = OpAccessChain %f32ptr %outdata %zero %x\n"
806		"%inval         = OpLoad %f32 %inloc\n"
807		"%add           = OpFAdd %f32 %add4 %inval\n"
808		"                 OpStore %outloc %add\n"
809		"                 OpReturn\n"
810		"                 OpFunctionEnd\n";
811	spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
812	spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
813	spec.numWorkGroups = IVec3(numElements, 1, 1);
814
815	group->addChild(new SpvAsmComputeShaderCase(testCtx, "spotcheck", "OpCopyObject on different types", spec));
816
817	return group.release();
818}
819// Assembly code used for testing OpUnreachable is based on GLSL source code:
820//
821// #version 430
822//
823// layout(std140, set = 0, binding = 0) readonly buffer Input {
824//   float elements[];
825// } input_data;
826// layout(std140, set = 0, binding = 1) writeonly buffer Output {
827//   float elements[];
828// } output_data;
829//
830// void not_called_func() {
831//   // place OpUnreachable here
832// }
833//
834// uint modulo4(uint val) {
835//   switch (val % uint(4)) {
836//     case 0:  return 3;
837//     case 1:  return 2;
838//     case 2:  return 1;
839//     case 3:  return 0;
840//     default: return 100; // place OpUnreachable here
841//   }
842// }
843//
844// uint const5() {
845//   return 5;
846//   // place OpUnreachable here
847// }
848//
849// void main() {
850//   uint x = gl_GlobalInvocationID.x;
851//   if (const5() > modulo4(1000)) {
852//     output_data.elements[x] = -input_data.elements[x];
853//   } else {
854//     // place OpUnreachable here
855//     output_data.elements[x] = input_data.elements[x];
856//   }
857// }
858
859tcu::TestCaseGroup* createOpUnreachableGroup (tcu::TestContext& testCtx)
860{
861	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opunreachable", "Test the OpUnreachable instruction"));
862	ComputeShaderSpec				spec;
863	de::Random						rnd				(deStringHash(group->getName()));
864	const int						numElements		= 100;
865	vector<float>					positiveFloats	(numElements, 0);
866	vector<float>					negativeFloats	(numElements, 0);
867
868	fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
869
870	for (size_t ndx = 0; ndx < numElements; ++ndx)
871		negativeFloats[ndx] = -positiveFloats[ndx];
872
873	spec.assembly =
874		string(s_ShaderPreamble) +
875
876		"OpSource GLSL 430\n"
877		"OpName %main            \"main\"\n"
878		"OpName %func_not_called_func \"not_called_func(\"\n"
879		"OpName %func_modulo4         \"modulo4(u1;\"\n"
880		"OpName %func_const5          \"const5(\"\n"
881		"OpName %id                   \"gl_GlobalInvocationID\"\n"
882
883		"OpDecorate %id BuiltIn GlobalInvocationId\n"
884
885		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
886
887		"%u32ptr    = OpTypePointer Function %u32\n"
888		"%uintfuint = OpTypeFunction %u32 %u32ptr\n"
889		"%unitf     = OpTypeFunction %u32\n"
890
891		"%id        = OpVariable %uvec3ptr Input\n"
892		"%zero      = OpConstant %u32 0\n"
893		"%one       = OpConstant %u32 1\n"
894		"%two       = OpConstant %u32 2\n"
895		"%three     = OpConstant %u32 3\n"
896		"%four      = OpConstant %u32 4\n"
897		"%five      = OpConstant %u32 5\n"
898		"%hundred   = OpConstant %u32 100\n"
899		"%thousand  = OpConstant %u32 1000\n"
900
901		+ string(s_InputOutputBuffer) +
902
903		// Main()
904		"%main   = OpFunction %void None %voidf\n"
905		"%main_entry  = OpLabel\n"
906		"%idval       = OpLoad %uvec3 %id\n"
907		"%x           = OpCompositeExtract %u32 %idval 0\n"
908		"%inloc       = OpAccessChain %f32ptr %indata %zero %x\n"
909		"%inval       = OpLoad %f32 %inloc\n"
910		"%outloc      = OpAccessChain %f32ptr %outdata %zero %x\n"
911		"%ret_const5  = OpFunctionCall %u32 %func_const5\n"
912		"%ret_modulo4 = OpFunctionCall %u32 %func_modulo4 %thousand\n"
913		"%cmp_gt      = OpUGreaterThan %bool %ret_const5 %ret_modulo4\n"
914		"               OpSelectionMerge %if_end None\n"
915		"               OpBranchConditional %cmp_gt %if_true %if_false\n"
916		"%if_true     = OpLabel\n"
917		"%negate      = OpFNegate %f32 %inval\n"
918		"               OpStore %outloc %negate\n"
919		"               OpBranch %if_end\n"
920		"%if_false    = OpLabel\n"
921		"               OpUnreachable\n" // Unreachable else branch for if statement
922		"%if_end      = OpLabel\n"
923		"               OpReturn\n"
924		"               OpFunctionEnd\n"
925
926		// not_called_function()
927		"%func_not_called_func  = OpFunction %void None %voidf\n"
928		"%not_called_func_entry = OpLabel\n"
929		"                         OpUnreachable\n" // Unreachable entry block in not called static function
930		"                         OpFunctionEnd\n"
931
932		// modulo4()
933		"%func_modulo4  = OpFunction %u32 None %uintfuint\n"
934		"%valptr        = OpFunctionParameter %u32ptr\n"
935		"%modulo4_entry = OpLabel\n"
936		"%val           = OpLoad %u32 %valptr\n"
937		"%modulo        = OpUMod %u32 %val %four\n"
938		"                 OpSelectionMerge %switch_merge None\n"
939		"                 OpSwitch %modulo %default 0 %case0 1 %case1 2 %case2 3 %case3\n"
940		"%case0         = OpLabel\n"
941		"                 OpReturnValue %three\n"
942		"%case1         = OpLabel\n"
943		"                 OpReturnValue %two\n"
944		"%case2         = OpLabel\n"
945		"                 OpReturnValue %one\n"
946		"%case3         = OpLabel\n"
947		"                 OpReturnValue %zero\n"
948		"%default       = OpLabel\n"
949		"                 OpUnreachable\n" // Unreachable default case for switch statement
950		"%switch_merge  = OpLabel\n"
951		"                 OpUnreachable\n" // Unreachable merge block for switch statement
952		"                 OpFunctionEnd\n"
953
954		// const5()
955		"%func_const5  = OpFunction %u32 None %unitf\n"
956		"%const5_entry = OpLabel\n"
957		"                OpReturnValue %five\n"
958		"%unreachable  = OpLabel\n"
959		"                OpUnreachable\n" // Unreachable block in function
960		"                OpFunctionEnd\n";
961	spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
962	spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
963	spec.numWorkGroups = IVec3(numElements, 1, 1);
964
965	group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "OpUnreachable appearing at different places", spec));
966
967	return group.release();
968}
969
970// Assembly code used for testing decoration group is based on GLSL source code:
971//
972// #version 430
973//
974// layout(std140, set = 0, binding = 0) readonly buffer Input0 {
975//   float elements[];
976// } input_data0;
977// layout(std140, set = 0, binding = 1) readonly buffer Input1 {
978//   float elements[];
979// } input_data1;
980// layout(std140, set = 0, binding = 2) readonly buffer Input2 {
981//   float elements[];
982// } input_data2;
983// layout(std140, set = 0, binding = 3) readonly buffer Input3 {
984//   float elements[];
985// } input_data3;
986// layout(std140, set = 0, binding = 4) readonly buffer Input4 {
987//   float elements[];
988// } input_data4;
989// layout(std140, set = 0, binding = 5) writeonly buffer Output {
990//   float elements[];
991// } output_data;
992//
993// void main() {
994//   uint x = gl_GlobalInvocationID.x;
995//   output_data.elements[x] = input_data0.elements[x] + input_data1.elements[x] + input_data2.elements[x] + input_data3.elements[x] + input_data4.elements[x];
996// }
997tcu::TestCaseGroup* createDecorationGroupGroup (tcu::TestContext& testCtx)
998{
999	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "decoration_group", "Test the OpDecorationGroup & OpGroupDecorate instruction"));
1000	ComputeShaderSpec				spec;
1001	de::Random						rnd				(deStringHash(group->getName()));
1002	const int						numElements		= 100;
1003	vector<float>					inputFloats0	(numElements, 0);
1004	vector<float>					inputFloats1	(numElements, 0);
1005	vector<float>					inputFloats2	(numElements, 0);
1006	vector<float>					inputFloats3	(numElements, 0);
1007	vector<float>					inputFloats4	(numElements, 0);
1008	vector<float>					outputFloats	(numElements, 0);
1009
1010	fillRandomScalars(rnd, -300.f, 300.f, &inputFloats0[0], numElements);
1011	fillRandomScalars(rnd, -300.f, 300.f, &inputFloats1[0], numElements);
1012	fillRandomScalars(rnd, -300.f, 300.f, &inputFloats2[0], numElements);
1013	fillRandomScalars(rnd, -300.f, 300.f, &inputFloats3[0], numElements);
1014	fillRandomScalars(rnd, -300.f, 300.f, &inputFloats4[0], numElements);
1015
1016	for (size_t ndx = 0; ndx < numElements; ++ndx)
1017		outputFloats[ndx] = inputFloats0[ndx] + inputFloats1[ndx] + inputFloats2[ndx] + inputFloats3[ndx] + inputFloats4[ndx];
1018
1019	spec.assembly =
1020		string(s_ShaderPreamble) +
1021
1022		"OpSource GLSL 430\n"
1023		"OpName %main \"main\"\n"
1024		"OpName %id \"gl_GlobalInvocationID\"\n"
1025
1026		// Not using group decoration on variable.
1027		"OpDecorate %id BuiltIn GlobalInvocationId\n"
1028		// Not using group decoration on type.
1029		"OpDecorate %f32arr ArrayStride 4\n"
1030
1031		"OpDecorate %groups BufferBlock\n"
1032		"OpDecorate %groupm Offset 0\n"
1033		"%groups = OpDecorationGroup\n"
1034		"%groupm = OpDecorationGroup\n"
1035
1036		// Group decoration on multiple structs.
1037		"OpGroupDecorate %groups %outbuf %inbuf0 %inbuf1 %inbuf2 %inbuf3 %inbuf4\n"
1038		// Group decoration on multiple struct members.
1039		"OpGroupMemberDecorate %groupm %outbuf 0 %inbuf0 0 %inbuf1 0 %inbuf2 0 %inbuf3 0 %inbuf4 0\n"
1040
1041		"OpDecorate %group1 DescriptorSet 0\n"
1042		"OpDecorate %group3 DescriptorSet 0\n"
1043		"OpDecorate %group3 NonWritable\n"
1044		"OpDecorate %group3 Restrict\n"
1045		"%group0 = OpDecorationGroup\n"
1046		"%group1 = OpDecorationGroup\n"
1047		"%group3 = OpDecorationGroup\n"
1048
1049		// Applying the same decoration group multiple times.
1050		"OpGroupDecorate %group1 %outdata\n"
1051		"OpGroupDecorate %group1 %outdata\n"
1052		"OpGroupDecorate %group1 %outdata\n"
1053		"OpDecorate %outdata DescriptorSet 0\n"
1054		"OpDecorate %outdata Binding 5\n"
1055		// Applying decoration group containing nothing.
1056		"OpGroupDecorate %group0 %indata0\n"
1057		"OpDecorate %indata0 DescriptorSet 0\n"
1058		"OpDecorate %indata0 Binding 0\n"
1059		// Applying decoration group containing one decoration.
1060		"OpGroupDecorate %group1 %indata1\n"
1061		"OpDecorate %indata1 Binding 1\n"
1062		// Applying decoration group containing multiple decorations.
1063		"OpGroupDecorate %group3 %indata2 %indata3\n"
1064		"OpDecorate %indata2 Binding 2\n"
1065		"OpDecorate %indata3 Binding 3\n"
1066		// Applying multiple decoration groups (with overlapping).
1067		"OpGroupDecorate %group0 %indata4\n"
1068		"OpGroupDecorate %group1 %indata4\n"
1069		"OpGroupDecorate %group3 %indata4\n"
1070		"OpDecorate %indata4 Binding 4\n"
1071
1072		+ string(s_CommonTypes) +
1073
1074		"%id   = OpVariable %uvec3ptr Input\n"
1075		"%zero = OpConstant %i32 0\n"
1076
1077		"%outbuf    = OpTypeStruct %f32arr\n"
1078		"%outbufptr = OpTypePointer Uniform %outbuf\n"
1079		"%outdata   = OpVariable %outbufptr Uniform\n"
1080		"%inbuf0    = OpTypeStruct %f32arr\n"
1081		"%inbuf0ptr = OpTypePointer Uniform %inbuf0\n"
1082		"%indata0   = OpVariable %inbuf0ptr Uniform\n"
1083		"%inbuf1    = OpTypeStruct %f32arr\n"
1084		"%inbuf1ptr = OpTypePointer Uniform %inbuf1\n"
1085		"%indata1   = OpVariable %inbuf1ptr Uniform\n"
1086		"%inbuf2    = OpTypeStruct %f32arr\n"
1087		"%inbuf2ptr = OpTypePointer Uniform %inbuf2\n"
1088		"%indata2   = OpVariable %inbuf2ptr Uniform\n"
1089		"%inbuf3    = OpTypeStruct %f32arr\n"
1090		"%inbuf3ptr = OpTypePointer Uniform %inbuf3\n"
1091		"%indata3   = OpVariable %inbuf3ptr Uniform\n"
1092		"%inbuf4    = OpTypeStruct %f32arr\n"
1093		"%inbufptr  = OpTypePointer Uniform %inbuf4\n"
1094		"%indata4   = OpVariable %inbufptr Uniform\n"
1095
1096		"%main   = OpFunction %void None %voidf\n"
1097		"%label  = OpLabel\n"
1098		"%idval  = OpLoad %uvec3 %id\n"
1099		"%x      = OpCompositeExtract %u32 %idval 0\n"
1100		"%inloc0 = OpAccessChain %f32ptr %indata0 %zero %x\n"
1101		"%inloc1 = OpAccessChain %f32ptr %indata1 %zero %x\n"
1102		"%inloc2 = OpAccessChain %f32ptr %indata2 %zero %x\n"
1103		"%inloc3 = OpAccessChain %f32ptr %indata3 %zero %x\n"
1104		"%inloc4 = OpAccessChain %f32ptr %indata4 %zero %x\n"
1105		"%outloc = OpAccessChain %f32ptr %outdata %zero %x\n"
1106		"%inval0 = OpLoad %f32 %inloc0\n"
1107		"%inval1 = OpLoad %f32 %inloc1\n"
1108		"%inval2 = OpLoad %f32 %inloc2\n"
1109		"%inval3 = OpLoad %f32 %inloc3\n"
1110		"%inval4 = OpLoad %f32 %inloc4\n"
1111		"%add0   = OpFAdd %f32 %inval0 %inval1\n"
1112		"%add1   = OpFAdd %f32 %add0 %inval2\n"
1113		"%add2   = OpFAdd %f32 %add1 %inval3\n"
1114		"%add    = OpFAdd %f32 %add2 %inval4\n"
1115		"          OpStore %outloc %add\n"
1116		"          OpReturn\n"
1117		"          OpFunctionEnd\n";
1118	spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats0)));
1119	spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats1)));
1120	spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats2)));
1121	spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats3)));
1122	spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats4)));
1123	spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
1124	spec.numWorkGroups = IVec3(numElements, 1, 1);
1125
1126	group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "decoration group cases", spec));
1127
1128	return group.release();
1129}
1130
1131struct SpecConstantTwoIntCase
1132{
1133	const char*		caseName;
1134	const char*		scDefinition0;
1135	const char*		scDefinition1;
1136	const char*		scResultType;
1137	const char*		scOperation;
1138	deInt32			scActualValue0;
1139	deInt32			scActualValue1;
1140	const char*		resultOperation;
1141	vector<deInt32>	expectedOutput;
1142
1143					SpecConstantTwoIntCase (const char* name,
1144											const char* definition0,
1145											const char* definition1,
1146											const char* resultType,
1147											const char* operation,
1148											deInt32 value0,
1149											deInt32 value1,
1150											const char* resultOp,
1151											const vector<deInt32>& output)
1152						: caseName			(name)
1153						, scDefinition0		(definition0)
1154						, scDefinition1		(definition1)
1155						, scResultType		(resultType)
1156						, scOperation		(operation)
1157						, scActualValue0	(value0)
1158						, scActualValue1	(value1)
1159						, resultOperation	(resultOp)
1160						, expectedOutput	(output) {}
1161};
1162
1163tcu::TestCaseGroup* createSpecConstantGroup (tcu::TestContext& testCtx)
1164{
1165	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opspecconstantop", "Test the OpSpecConstantOp instruction"));
1166	vector<SpecConstantTwoIntCase>	cases;
1167	de::Random						rnd				(deStringHash(group->getName()));
1168	const int						numElements		= 100;
1169	vector<deInt32>					inputInts		(numElements, 0);
1170	vector<deInt32>					outputInts1		(numElements, 0);
1171	vector<deInt32>					outputInts2		(numElements, 0);
1172	vector<deInt32>					outputInts3		(numElements, 0);
1173	vector<deInt32>					outputInts4		(numElements, 0);
1174	const StringTemplate			shaderTemplate	(
1175		string(s_ShaderPreamble) +
1176
1177		"OpName %main           \"main\"\n"
1178		"OpName %id             \"gl_GlobalInvocationID\"\n"
1179
1180		"OpDecorate %id BuiltIn GlobalInvocationId\n"
1181		"OpDecorate %sc_0  SpecId 0\n"
1182		"OpDecorate %sc_1  SpecId 1\n"
1183
1184		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
1185
1186		"%i32ptr    = OpTypePointer Uniform %i32\n"
1187		"%i32arr    = OpTypeRuntimeArray %i32\n"
1188		"%boolptr   = OpTypePointer Uniform %bool\n"
1189		"%boolarr   = OpTypeRuntimeArray %bool\n"
1190		"%inbuf     = OpTypeStruct %i32arr\n"
1191		"%inbufptr  = OpTypePointer Uniform %inbuf\n"
1192		"%indata    = OpVariable %inbufptr Uniform\n"
1193		"%outbuf    = OpTypeStruct %i32arr\n"
1194		"%outbufptr = OpTypePointer Uniform %outbuf\n"
1195		"%outdata   = OpVariable %outbufptr Uniform\n"
1196
1197		"%id        = OpVariable %uvec3ptr Input\n"
1198		"%zero      = OpConstant %i32 0\n"
1199
1200		"%sc_0      = OpSpecConstant${SC_DEF0}\n"
1201		"%sc_1      = OpSpecConstant${SC_DEF1}\n"
1202		"%sc_final  = OpSpecConstantOp ${SC_RESULT_TYPE} ${SC_OP}\n"
1203
1204		"%main      = OpFunction %void None %voidf\n"
1205		"%label     = OpLabel\n"
1206		"%idval     = OpLoad %uvec3 %id\n"
1207		"%x         = OpCompositeExtract %u32 %idval 0\n"
1208		"%inloc     = OpAccessChain %i32ptr %indata %zero %x\n"
1209		"%inval     = OpLoad %i32 %inloc\n"
1210		"%final     = ${GEN_RESULT}\n"
1211		"%outloc    = OpAccessChain %i32ptr %outdata %zero %x\n"
1212		"             OpStore %outloc %final\n"
1213		"             OpReturn\n"
1214		"             OpFunctionEnd\n");
1215
1216	fillRandomScalars(rnd, -65536, 65536, &inputInts[0], numElements);
1217
1218	for (size_t ndx = 0; ndx < numElements; ++ndx)
1219	{
1220		outputInts1[ndx] = inputInts[ndx] + 42;
1221		outputInts2[ndx] = inputInts[ndx];
1222		outputInts3[ndx] = inputInts[ndx] - 11200;
1223		outputInts4[ndx] = inputInts[ndx] + 1;
1224	}
1225
1226	const char addScToInput[]		= "OpIAdd %i32 %inval %sc_final";
1227	const char selectTrueUsingSc[]	= "OpSelect %i32 %sc_final %inval %zero";
1228	const char selectFalseUsingSc[]	= "OpSelect %i32 %sc_final %zero %inval";
1229
1230	cases.push_back(SpecConstantTwoIntCase("iadd",					" %i32 0",		" %i32 0",		"%i32",		"IAdd                 %sc_0 %sc_1",			62,		-20,	addScToInput,		outputInts1));
1231	cases.push_back(SpecConstantTwoIntCase("isub",					" %i32 0",		" %i32 0",		"%i32",		"ISub                 %sc_0 %sc_1",			100,	58,		addScToInput,		outputInts1));
1232	cases.push_back(SpecConstantTwoIntCase("imul",					" %i32 0",		" %i32 0",		"%i32",		"IMul                 %sc_0 %sc_1",			-2,		-21,	addScToInput,		outputInts1));
1233	cases.push_back(SpecConstantTwoIntCase("sdiv",					" %i32 0",		" %i32 0",		"%i32",		"SDiv                 %sc_0 %sc_1",			-126,	-3,		addScToInput,		outputInts1));
1234	cases.push_back(SpecConstantTwoIntCase("udiv",					" %i32 0",		" %i32 0",		"%i32",		"UDiv                 %sc_0 %sc_1",			126,	3,		addScToInput,		outputInts1));
1235	cases.push_back(SpecConstantTwoIntCase("srem",					" %i32 0",		" %i32 0",		"%i32",		"SRem                 %sc_0 %sc_1",			7,		3,		addScToInput,		outputInts4));
1236	cases.push_back(SpecConstantTwoIntCase("smod",					" %i32 0",		" %i32 0",		"%i32",		"SMod                 %sc_0 %sc_1",			7,		3,		addScToInput,		outputInts4));
1237	cases.push_back(SpecConstantTwoIntCase("umod",					" %i32 0",		" %i32 0",		"%i32",		"UMod                 %sc_0 %sc_1",			342,	50,		addScToInput,		outputInts1));
1238	cases.push_back(SpecConstantTwoIntCase("bitwiseand",			" %i32 0",		" %i32 0",		"%i32",		"BitwiseAnd           %sc_0 %sc_1",			42,		63,		addScToInput,		outputInts1));
1239	cases.push_back(SpecConstantTwoIntCase("bitwiseor",				" %i32 0",		" %i32 0",		"%i32",		"BitwiseOr            %sc_0 %sc_1",			34,		8,		addScToInput,		outputInts1));
1240	cases.push_back(SpecConstantTwoIntCase("bitwisexor",			" %i32 0",		" %i32 0",		"%i32",		"BitwiseXor           %sc_0 %sc_1",			18,		56,		addScToInput,		outputInts1));
1241	cases.push_back(SpecConstantTwoIntCase("shiftrightlogical",		" %i32 0",		" %i32 0",		"%i32",		"ShiftRightLogical    %sc_0 %sc_1",			168,	2,		addScToInput,		outputInts1));
1242	cases.push_back(SpecConstantTwoIntCase("shiftrightarithmetic",	" %i32 0",		" %i32 0",		"%i32",		"ShiftRightArithmetic %sc_0 %sc_1",			168,	2,		addScToInput,		outputInts1));
1243	cases.push_back(SpecConstantTwoIntCase("shiftleftlogical",		" %i32 0",		" %i32 0",		"%i32",		"ShiftLeftLogical     %sc_0 %sc_1",			21,		1,		addScToInput,		outputInts1));
1244	cases.push_back(SpecConstantTwoIntCase("slessthan",				" %i32 0",		" %i32 0",		"%bool",	"SLessThan            %sc_0 %sc_1",			-20,	-10,	selectTrueUsingSc,	outputInts2));
1245	cases.push_back(SpecConstantTwoIntCase("ulessthan",				" %i32 0",		" %i32 0",		"%bool",	"ULessThan            %sc_0 %sc_1",			10,		20,		selectTrueUsingSc,	outputInts2));
1246	cases.push_back(SpecConstantTwoIntCase("sgreaterthan",			" %i32 0",		" %i32 0",		"%bool",	"SGreaterThan         %sc_0 %sc_1",			-1000,	50,		selectFalseUsingSc,	outputInts2));
1247	cases.push_back(SpecConstantTwoIntCase("ugreaterthan",			" %i32 0",		" %i32 0",		"%bool",	"UGreaterThan         %sc_0 %sc_1",			10,		5,		selectTrueUsingSc,	outputInts2));
1248	cases.push_back(SpecConstantTwoIntCase("slessthanequal",		" %i32 0",		" %i32 0",		"%bool",	"SLessThanEqual       %sc_0 %sc_1",			-10,	-10,	selectTrueUsingSc,	outputInts2));
1249	cases.push_back(SpecConstantTwoIntCase("ulessthanequal",		" %i32 0",		" %i32 0",		"%bool",	"ULessThanEqual       %sc_0 %sc_1",			50,		100,	selectTrueUsingSc,	outputInts2));
1250	cases.push_back(SpecConstantTwoIntCase("sgreaterthanequal",		" %i32 0",		" %i32 0",		"%bool",	"SGreaterThanEqual    %sc_0 %sc_1",			-1000,	50,		selectFalseUsingSc,	outputInts2));
1251	cases.push_back(SpecConstantTwoIntCase("ugreaterthanequal",		" %i32 0",		" %i32 0",		"%bool",	"UGreaterThanEqual    %sc_0 %sc_1",			10,		10,		selectTrueUsingSc,	outputInts2));
1252	cases.push_back(SpecConstantTwoIntCase("iequal",				" %i32 0",		" %i32 0",		"%bool",	"IEqual               %sc_0 %sc_1",			42,		24,		selectFalseUsingSc,	outputInts2));
1253	cases.push_back(SpecConstantTwoIntCase("logicaland",			"True %bool",	"True %bool",	"%bool",	"LogicalAnd           %sc_0 %sc_1",			0,		1,		selectFalseUsingSc,	outputInts2));
1254	cases.push_back(SpecConstantTwoIntCase("logicalor",				"False %bool",	"False %bool",	"%bool",	"LogicalOr            %sc_0 %sc_1",			1,		0,		selectTrueUsingSc,	outputInts2));
1255	cases.push_back(SpecConstantTwoIntCase("logicalequal",			"True %bool",	"True %bool",	"%bool",	"LogicalEqual         %sc_0 %sc_1",			0,		1,		selectFalseUsingSc,	outputInts2));
1256	cases.push_back(SpecConstantTwoIntCase("logicalnotequal",		"False %bool",	"False %bool",	"%bool",	"LogicalNotEqual      %sc_0 %sc_1",			1,		0,		selectTrueUsingSc,	outputInts2));
1257	cases.push_back(SpecConstantTwoIntCase("snegate",				" %i32 0",		" %i32 0",		"%i32",		"SNegate              %sc_0",				-42,	0,		addScToInput,		outputInts1));
1258	cases.push_back(SpecConstantTwoIntCase("not",					" %i32 0",		" %i32 0",		"%i32",		"Not                  %sc_0",				-43,	0,		addScToInput,		outputInts1));
1259	cases.push_back(SpecConstantTwoIntCase("logicalnot",			"False %bool",	"False %bool",	"%bool",	"LogicalNot           %sc_0",				1,		0,		selectFalseUsingSc,	outputInts2));
1260	cases.push_back(SpecConstantTwoIntCase("select",				"False %bool",	" %i32 0",		"%i32",		"Select               %sc_0 %sc_1 %zero",	1,		42,		addScToInput,		outputInts1));
1261	// OpSConvert, OpFConvert: these two instructions involve ints/floats of different bitwidths.
1262
1263	for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
1264	{
1265		map<string, string>		specializations;
1266		ComputeShaderSpec		spec;
1267
1268		specializations["SC_DEF0"]			= cases[caseNdx].scDefinition0;
1269		specializations["SC_DEF1"]			= cases[caseNdx].scDefinition1;
1270		specializations["SC_RESULT_TYPE"]	= cases[caseNdx].scResultType;
1271		specializations["SC_OP"]			= cases[caseNdx].scOperation;
1272		specializations["GEN_RESULT"]		= cases[caseNdx].resultOperation;
1273
1274		spec.assembly = shaderTemplate.specialize(specializations);
1275		spec.inputs.push_back(BufferSp(new Int32Buffer(inputInts)));
1276		spec.outputs.push_back(BufferSp(new Int32Buffer(cases[caseNdx].expectedOutput)));
1277		spec.numWorkGroups = IVec3(numElements, 1, 1);
1278		spec.specConstants.push_back(cases[caseNdx].scActualValue0);
1279		spec.specConstants.push_back(cases[caseNdx].scActualValue1);
1280
1281		group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].caseName, cases[caseNdx].caseName, spec));
1282	}
1283
1284	ComputeShaderSpec				spec;
1285
1286	spec.assembly =
1287		string(s_ShaderPreamble) +
1288
1289		"OpName %main           \"main\"\n"
1290		"OpName %id             \"gl_GlobalInvocationID\"\n"
1291
1292		"OpDecorate %id BuiltIn GlobalInvocationId\n"
1293		"OpDecorate %sc_0  SpecId 0\n"
1294		"OpDecorate %sc_1  SpecId 1\n"
1295		"OpDecorate %sc_2  SpecId 2\n"
1296
1297		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
1298
1299		"%ivec3     = OpTypeVector %i32 3\n"
1300		"%i32ptr    = OpTypePointer Uniform %i32\n"
1301		"%i32arr    = OpTypeRuntimeArray %i32\n"
1302		"%boolptr   = OpTypePointer Uniform %bool\n"
1303		"%boolarr   = OpTypeRuntimeArray %bool\n"
1304		"%inbuf     = OpTypeStruct %i32arr\n"
1305		"%inbufptr  = OpTypePointer Uniform %inbuf\n"
1306		"%indata    = OpVariable %inbufptr Uniform\n"
1307		"%outbuf    = OpTypeStruct %i32arr\n"
1308		"%outbufptr = OpTypePointer Uniform %outbuf\n"
1309		"%outdata   = OpVariable %outbufptr Uniform\n"
1310
1311		"%id        = OpVariable %uvec3ptr Input\n"
1312		"%zero      = OpConstant %i32 0\n"
1313		"%ivec3_0   = OpConstantComposite %ivec3 %zero %zero %zero\n"
1314
1315		"%sc_0        = OpSpecConstant %i32 0\n"
1316		"%sc_1        = OpSpecConstant %i32 0\n"
1317		"%sc_2        = OpSpecConstant %i32 0\n"
1318		"%sc_vec3_0   = OpSpecConstantOp %ivec3 CompositeInsert  %sc_0        %ivec3_0   0\n"     // (sc_0, 0, 0)
1319		"%sc_vec3_1   = OpSpecConstantOp %ivec3 CompositeInsert  %sc_1        %ivec3_0   1\n"     // (0, sc_1, 0)
1320		"%sc_vec3_2   = OpSpecConstantOp %ivec3 CompositeInsert  %sc_2        %ivec3_0   2\n"     // (0, 0, sc_2)
1321		"%sc_vec3_01  = OpSpecConstantOp %ivec3 VectorShuffle    %sc_vec3_0   %sc_vec3_1 1 0 4\n" // (0,    sc_0, sc_1)
1322		"%sc_vec3_012 = OpSpecConstantOp %ivec3 VectorShuffle    %sc_vec3_01  %sc_vec3_2 5 1 2\n" // (sc_2, sc_0, sc_1)
1323		"%sc_ext_0    = OpSpecConstantOp %i32   CompositeExtract %sc_vec3_012            0\n"     // sc_2
1324		"%sc_ext_1    = OpSpecConstantOp %i32   CompositeExtract %sc_vec3_012            1\n"     // sc_0
1325		"%sc_ext_2    = OpSpecConstantOp %i32   CompositeExtract %sc_vec3_012            2\n"     // sc_1
1326		"%sc_sub      = OpSpecConstantOp %i32   ISub             %sc_ext_0    %sc_ext_1\n"        // (sc_2 - sc_0)
1327		"%sc_final    = OpSpecConstantOp %i32   IMul             %sc_sub      %sc_ext_2\n"        // (sc_2 - sc_0) * sc_1
1328
1329		"%main      = OpFunction %void None %voidf\n"
1330		"%label     = OpLabel\n"
1331		"%idval     = OpLoad %uvec3 %id\n"
1332		"%x         = OpCompositeExtract %u32 %idval 0\n"
1333		"%inloc     = OpAccessChain %i32ptr %indata %zero %x\n"
1334		"%inval     = OpLoad %i32 %inloc\n"
1335		"%final     = OpIAdd %i32 %inval %sc_final\n"
1336		"%outloc    = OpAccessChain %i32ptr %outdata %zero %x\n"
1337		"             OpStore %outloc %final\n"
1338		"             OpReturn\n"
1339		"             OpFunctionEnd\n";
1340	spec.inputs.push_back(BufferSp(new Int32Buffer(inputInts)));
1341	spec.outputs.push_back(BufferSp(new Int32Buffer(outputInts3)));
1342	spec.numWorkGroups = IVec3(numElements, 1, 1);
1343	spec.specConstants.push_back(123);
1344	spec.specConstants.push_back(56);
1345	spec.specConstants.push_back(-77);
1346
1347	group->addChild(new SpvAsmComputeShaderCase(testCtx, "vector_related", "VectorShuffle, CompositeExtract, & CompositeInsert", spec));
1348
1349	return group.release();
1350}
1351
1352tcu::TestCaseGroup* createOpPhiGroup (tcu::TestContext& testCtx)
1353{
1354	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opphi", "Test the OpPhi instruction"));
1355	ComputeShaderSpec				spec1;
1356	ComputeShaderSpec				spec2;
1357	ComputeShaderSpec				spec3;
1358	de::Random						rnd				(deStringHash(group->getName()));
1359	const int						numElements		= 100;
1360	vector<float>					inputFloats		(numElements, 0);
1361	vector<float>					outputFloats1	(numElements, 0);
1362	vector<float>					outputFloats2	(numElements, 0);
1363	vector<float>					outputFloats3	(numElements, 0);
1364
1365	fillRandomScalars(rnd, -300.f, 300.f, &inputFloats[0], numElements);
1366
1367	for (size_t ndx = 0; ndx < numElements; ++ndx)
1368	{
1369		switch (ndx % 3)
1370		{
1371			case 0:		outputFloats1[ndx] = inputFloats[ndx] + 5.5f;	break;
1372			case 1:		outputFloats1[ndx] = inputFloats[ndx] + 20.5f;	break;
1373			case 2:		outputFloats1[ndx] = inputFloats[ndx] + 1.75f;	break;
1374			default:	break;
1375		}
1376		outputFloats2[ndx] = inputFloats[ndx] + 6.5f * 3;
1377		outputFloats3[ndx] = 8.5f - inputFloats[ndx];
1378	}
1379
1380	spec1.assembly =
1381		string(s_ShaderPreamble) +
1382
1383		"OpSource GLSL 430\n"
1384		"OpName %main \"main\"\n"
1385		"OpName %id \"gl_GlobalInvocationID\"\n"
1386
1387		"OpDecorate %id BuiltIn GlobalInvocationId\n"
1388
1389		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
1390
1391		"%id = OpVariable %uvec3ptr Input\n"
1392		"%zero       = OpConstant %i32 0\n"
1393		"%three      = OpConstant %u32 3\n"
1394		"%constf5p5  = OpConstant %f32 5.5\n"
1395		"%constf20p5 = OpConstant %f32 20.5\n"
1396		"%constf1p75 = OpConstant %f32 1.75\n"
1397		"%constf8p5  = OpConstant %f32 8.5\n"
1398		"%constf6p5  = OpConstant %f32 6.5\n"
1399
1400		"%main     = OpFunction %void None %voidf\n"
1401		"%entry    = OpLabel\n"
1402		"%idval    = OpLoad %uvec3 %id\n"
1403		"%x        = OpCompositeExtract %u32 %idval 0\n"
1404		"%selector = OpUMod %u32 %x %three\n"
1405		"            OpSelectionMerge %phi None\n"
1406		"            OpSwitch %selector %default 0 %case0 1 %case1 2 %case2\n"
1407
1408		// Case 1 before OpPhi.
1409		"%case1    = OpLabel\n"
1410		"            OpBranch %phi\n"
1411
1412		"%default  = OpLabel\n"
1413		"            OpUnreachable\n"
1414
1415		"%phi      = OpLabel\n"
1416		"%operand  = OpPhi %f32   %constf1p75 %case2   %constf20p5 %case1   %constf5p5 %case0\n" // not in the order of blocks
1417		"%inloc    = OpAccessChain %f32ptr %indata %zero %x\n"
1418		"%inval    = OpLoad %f32 %inloc\n"
1419		"%add      = OpFAdd %f32 %inval %operand\n"
1420		"%outloc   = OpAccessChain %f32ptr %outdata %zero %x\n"
1421		"            OpStore %outloc %add\n"
1422		"            OpReturn\n"
1423
1424		// Case 0 after OpPhi.
1425		"%case0    = OpLabel\n"
1426		"            OpBranch %phi\n"
1427
1428
1429		// Case 2 after OpPhi.
1430		"%case2    = OpLabel\n"
1431		"            OpBranch %phi\n"
1432
1433		"            OpFunctionEnd\n";
1434	spec1.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
1435	spec1.outputs.push_back(BufferSp(new Float32Buffer(outputFloats1)));
1436	spec1.numWorkGroups = IVec3(numElements, 1, 1);
1437
1438	group->addChild(new SpvAsmComputeShaderCase(testCtx, "block", "out-of-order and unreachable blocks for OpPhi", spec1));
1439
1440	spec2.assembly =
1441		string(s_ShaderPreamble) +
1442
1443		"OpName %main \"main\"\n"
1444		"OpName %id \"gl_GlobalInvocationID\"\n"
1445
1446		"OpDecorate %id BuiltIn GlobalInvocationId\n"
1447
1448		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
1449
1450		"%id         = OpVariable %uvec3ptr Input\n"
1451		"%zero       = OpConstant %i32 0\n"
1452		"%one        = OpConstant %i32 1\n"
1453		"%three      = OpConstant %i32 3\n"
1454		"%constf6p5  = OpConstant %f32 6.5\n"
1455
1456		"%main       = OpFunction %void None %voidf\n"
1457		"%entry      = OpLabel\n"
1458		"%idval      = OpLoad %uvec3 %id\n"
1459		"%x          = OpCompositeExtract %u32 %idval 0\n"
1460		"%inloc      = OpAccessChain %f32ptr %indata %zero %x\n"
1461		"%outloc     = OpAccessChain %f32ptr %outdata %zero %x\n"
1462		"%inval      = OpLoad %f32 %inloc\n"
1463		"              OpBranch %phi\n"
1464
1465		"%phi        = OpLabel\n"
1466		"%step       = OpPhi %i32 %zero  %entry %step_next  %phi\n"
1467		"%accum      = OpPhi %f32 %inval %entry %accum_next %phi\n"
1468		"%step_next  = OpIAdd %i32 %step %one\n"
1469		"%accum_next = OpFAdd %f32 %accum %constf6p5\n"
1470		"%still_loop = OpSLessThan %bool %step %three\n"
1471		"              OpLoopMerge %exit %phi None\n"
1472		"              OpBranchConditional %still_loop %phi %exit\n"
1473
1474		"%exit       = OpLabel\n"
1475		"              OpStore %outloc %accum\n"
1476		"              OpReturn\n"
1477		"              OpFunctionEnd\n";
1478	spec2.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
1479	spec2.outputs.push_back(BufferSp(new Float32Buffer(outputFloats2)));
1480	spec2.numWorkGroups = IVec3(numElements, 1, 1);
1481
1482	group->addChild(new SpvAsmComputeShaderCase(testCtx, "induction", "The usual way induction variables are handled in LLVM IR", spec2));
1483
1484	spec3.assembly =
1485		string(s_ShaderPreamble) +
1486
1487		"OpName %main \"main\"\n"
1488		"OpName %id \"gl_GlobalInvocationID\"\n"
1489
1490		"OpDecorate %id BuiltIn GlobalInvocationId\n"
1491
1492		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
1493
1494		"%f32ptr_f   = OpTypePointer Function %f32\n"
1495		"%id         = OpVariable %uvec3ptr Input\n"
1496		"%true       = OpConstantTrue %bool\n"
1497		"%false      = OpConstantFalse %bool\n"
1498		"%zero       = OpConstant %i32 0\n"
1499		"%constf8p5  = OpConstant %f32 8.5\n"
1500
1501		"%main       = OpFunction %void None %voidf\n"
1502		"%entry      = OpLabel\n"
1503		"%b          = OpVariable %f32ptr_f Function %constf8p5\n"
1504		"%idval      = OpLoad %uvec3 %id\n"
1505		"%x          = OpCompositeExtract %u32 %idval 0\n"
1506		"%inloc      = OpAccessChain %f32ptr %indata %zero %x\n"
1507		"%outloc     = OpAccessChain %f32ptr %outdata %zero %x\n"
1508		"%a_init     = OpLoad %f32 %inloc\n"
1509		"%b_init     = OpLoad %f32 %b\n"
1510		"              OpBranch %phi\n"
1511
1512		"%phi        = OpLabel\n"
1513		"%still_loop = OpPhi %bool %true   %entry %false  %phi\n"
1514		"%a_next     = OpPhi %f32  %a_init %entry %b_next %phi\n"
1515		"%b_next     = OpPhi %f32  %b_init %entry %a_next %phi\n"
1516		"              OpLoopMerge %exit %phi None\n"
1517		"              OpBranchConditional %still_loop %phi %exit\n"
1518
1519		"%exit       = OpLabel\n"
1520		"%sub        = OpFSub %f32 %a_next %b_next\n"
1521		"              OpStore %outloc %sub\n"
1522		"              OpReturn\n"
1523		"              OpFunctionEnd\n";
1524	spec3.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
1525	spec3.outputs.push_back(BufferSp(new Float32Buffer(outputFloats3)));
1526	spec3.numWorkGroups = IVec3(numElements, 1, 1);
1527
1528	group->addChild(new SpvAsmComputeShaderCase(testCtx, "swap", "Swap the values of two variables using OpPhi", spec3));
1529
1530	return group.release();
1531}
1532
1533// Assembly code used for testing block order is based on GLSL source code:
1534//
1535// #version 430
1536//
1537// layout(std140, set = 0, binding = 0) readonly buffer Input {
1538//   float elements[];
1539// } input_data;
1540// layout(std140, set = 0, binding = 1) writeonly buffer Output {
1541//   float elements[];
1542// } output_data;
1543//
1544// void main() {
1545//   uint x = gl_GlobalInvocationID.x;
1546//   output_data.elements[x] = input_data.elements[x];
1547//   if (x > uint(50)) {
1548//     switch (x % uint(3)) {
1549//       case 0: output_data.elements[x] += 1.5f; break;
1550//       case 1: output_data.elements[x] += 42.f; break;
1551//       case 2: output_data.elements[x] -= 27.f; break;
1552//       default: break;
1553//     }
1554//   } else {
1555//     output_data.elements[x] = -input_data.elements[x];
1556//   }
1557// }
1558tcu::TestCaseGroup* createBlockOrderGroup (tcu::TestContext& testCtx)
1559{
1560	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "block_order", "Test block orders"));
1561	ComputeShaderSpec				spec;
1562	de::Random						rnd				(deStringHash(group->getName()));
1563	const int						numElements		= 100;
1564	vector<float>					inputFloats		(numElements, 0);
1565	vector<float>					outputFloats	(numElements, 0);
1566
1567	fillRandomScalars(rnd, -100.f, 100.f, &inputFloats[0], numElements);
1568
1569	for (size_t ndx = 0; ndx <= 50; ++ndx)
1570		outputFloats[ndx] = -inputFloats[ndx];
1571
1572	for (size_t ndx = 51; ndx < numElements; ++ndx)
1573	{
1574		switch (ndx % 3)
1575		{
1576			case 0:		outputFloats[ndx] = inputFloats[ndx] + 1.5f; break;
1577			case 1:		outputFloats[ndx] = inputFloats[ndx] + 42.f; break;
1578			case 2:		outputFloats[ndx] = inputFloats[ndx] - 27.f; break;
1579			default:	break;
1580		}
1581	}
1582
1583	spec.assembly =
1584		string(s_ShaderPreamble) +
1585
1586		"OpSource GLSL 430\n"
1587		"OpName %main \"main\"\n"
1588		"OpName %id \"gl_GlobalInvocationID\"\n"
1589
1590		"OpDecorate %id BuiltIn GlobalInvocationId\n"
1591
1592		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
1593
1594		"%u32ptr       = OpTypePointer Function %u32\n"
1595		"%u32ptr_input = OpTypePointer Input %u32\n"
1596
1597		+ string(s_InputOutputBuffer) +
1598
1599		"%id        = OpVariable %uvec3ptr Input\n"
1600		"%zero      = OpConstant %i32 0\n"
1601		"%const3    = OpConstant %u32 3\n"
1602		"%const50   = OpConstant %u32 50\n"
1603		"%constf1p5 = OpConstant %f32 1.5\n"
1604		"%constf27  = OpConstant %f32 27.0\n"
1605		"%constf42  = OpConstant %f32 42.0\n"
1606
1607		"%main = OpFunction %void None %voidf\n"
1608
1609		// entry block.
1610		"%entry    = OpLabel\n"
1611
1612		// Create a temporary variable to hold the value of gl_GlobalInvocationID.x.
1613		"%xvar     = OpVariable %u32ptr Function\n"
1614		"%xptr     = OpAccessChain %u32ptr_input %id %zero\n"
1615		"%x        = OpLoad %u32 %xptr\n"
1616		"            OpStore %xvar %x\n"
1617
1618		"%cmp      = OpUGreaterThan %bool %x %const50\n"
1619		"            OpSelectionMerge %if_merge None\n"
1620		"            OpBranchConditional %cmp %if_true %if_false\n"
1621
1622		// Merge block for switch-statement: placed at the beginning.
1623		"%switch_merge = OpLabel\n"
1624		"                OpBranch %if_merge\n"
1625
1626		// Case 1 for switch-statement.
1627		"%case1    = OpLabel\n"
1628		"%x_1      = OpLoad %u32 %xvar\n"
1629		"%inloc_1  = OpAccessChain %f32ptr %indata %zero %x_1\n"
1630		"%inval_1  = OpLoad %f32 %inloc_1\n"
1631		"%addf42   = OpFAdd %f32 %inval_1 %constf42\n"
1632		"%outloc_1 = OpAccessChain %f32ptr %outdata %zero %x_1\n"
1633		"            OpStore %outloc_1 %addf42\n"
1634		"            OpBranch %switch_merge\n"
1635
1636		// False branch for if-statement: placed in the middle of switch cases and before true branch.
1637		"%if_false = OpLabel\n"
1638		"%x_f      = OpLoad %u32 %xvar\n"
1639		"%inloc_f  = OpAccessChain %f32ptr %indata %zero %x_f\n"
1640		"%inval_f  = OpLoad %f32 %inloc_f\n"
1641		"%negate   = OpFNegate %f32 %inval_f\n"
1642		"%outloc_f = OpAccessChain %f32ptr %outdata %zero %x_f\n"
1643		"            OpStore %outloc_f %negate\n"
1644		"            OpBranch %if_merge\n"
1645
1646		// Merge block for if-statement: placed in the middle of true and false branch.
1647		"%if_merge = OpLabel\n"
1648		"            OpReturn\n"
1649
1650		// True branch for if-statement: placed in the middle of swtich cases and after the false branch.
1651		"%if_true  = OpLabel\n"
1652		"%xval_t   = OpLoad %u32 %xvar\n"
1653		"%mod      = OpUMod %u32 %xval_t %const3\n"
1654		"            OpSelectionMerge %switch_merge None\n"
1655		"            OpSwitch %mod %default 0 %case0 1 %case1 2 %case2\n"
1656
1657		// Case 2 for switch-statement.
1658		"%case2    = OpLabel\n"
1659		"%x_2      = OpLoad %u32 %xvar\n"
1660		"%inloc_2  = OpAccessChain %f32ptr %indata %zero %x_2\n"
1661		"%inval_2  = OpLoad %f32 %inloc_2\n"
1662		"%subf27   = OpFSub %f32 %inval_2 %constf27\n"
1663		"%outloc_2 = OpAccessChain %f32ptr %outdata %zero %x_2\n"
1664		"            OpStore %outloc_2 %subf27\n"
1665		"            OpBranch %switch_merge\n"
1666
1667		// Default case for switch-statement: placed in the middle of normal cases.
1668		"%default = OpLabel\n"
1669		"           OpBranch %switch_merge\n"
1670
1671		// Case 0 for switch-statement: out of order.
1672		"%case0    = OpLabel\n"
1673		"%x_0      = OpLoad %u32 %xvar\n"
1674		"%inloc_0  = OpAccessChain %f32ptr %indata %zero %x_0\n"
1675		"%inval_0  = OpLoad %f32 %inloc_0\n"
1676		"%addf1p5  = OpFAdd %f32 %inval_0 %constf1p5\n"
1677		"%outloc_0 = OpAccessChain %f32ptr %outdata %zero %x_0\n"
1678		"            OpStore %outloc_0 %addf1p5\n"
1679		"            OpBranch %switch_merge\n"
1680
1681		"            OpFunctionEnd\n";
1682	spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
1683	spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
1684	spec.numWorkGroups = IVec3(numElements, 1, 1);
1685
1686	group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "various out-of-order blocks", spec));
1687
1688	return group.release();
1689}
1690
1691tcu::TestCaseGroup* createMultipleShaderGroup (tcu::TestContext& testCtx)
1692{
1693	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "multiple_shaders", "Test multiple shaders in the same module"));
1694	ComputeShaderSpec				spec1;
1695	ComputeShaderSpec				spec2;
1696	de::Random						rnd				(deStringHash(group->getName()));
1697	const int						numElements		= 100;
1698	vector<float>					inputFloats		(numElements, 0);
1699	vector<float>					outputFloats1	(numElements, 0);
1700	vector<float>					outputFloats2	(numElements, 0);
1701	fillRandomScalars(rnd, -500.f, 500.f, &inputFloats[0], numElements);
1702
1703	for (size_t ndx = 0; ndx < numElements; ++ndx)
1704	{
1705		outputFloats1[ndx] = inputFloats[ndx] + inputFloats[ndx];
1706		outputFloats2[ndx] = -inputFloats[ndx];
1707	}
1708
1709	const string assembly(
1710		"OpCapability Shader\n"
1711		"OpMemoryModel Logical GLSL450\n"
1712		"OpEntryPoint GLCompute %comp_main1 \"entrypoint1\" %id\n"
1713		"OpEntryPoint GLCompute %comp_main2 \"entrypoint2\" %id\n"
1714		// A module cannot have two OpEntryPoint instructions with the same Execution Model and the same Name string.
1715		"OpEntryPoint Vertex    %vert_main  \"entrypoint2\" %vert_builtins %vertexID %instanceID\n"
1716		"OpExecutionMode %vert_main LocalSize 1 1 1\n"
1717
1718		"OpName %comp_main1              \"entrypoint1\"\n"
1719		"OpName %comp_main2              \"entrypoint2\"\n"
1720		"OpName %vert_main               \"entrypoint2\"\n"
1721		"OpName %id                      \"gl_GlobalInvocationID\"\n"
1722		"OpName %vert_builtin_st         \"gl_PerVertex\"\n"
1723		"OpName %vertexID                \"gl_VertexID\"\n"
1724		"OpName %instanceID              \"gl_InstanceID\"\n"
1725		"OpMemberName %vert_builtin_st 0 \"gl_Position\"\n"
1726		"OpMemberName %vert_builtin_st 1 \"gl_PointSize\"\n"
1727		"OpMemberName %vert_builtin_st 2 \"gl_ClipDistance\"\n"
1728
1729		"OpDecorate %id                      BuiltIn GlobalInvocationId\n"
1730		"OpDecorate %vertexID                BuiltIn VertexId\n"
1731		"OpDecorate %instanceID              BuiltIn InstanceId\n"
1732		"OpDecorate %vert_builtin_st         Block\n"
1733		"OpMemberDecorate %vert_builtin_st 0 BuiltIn Position\n"
1734		"OpMemberDecorate %vert_builtin_st 1 BuiltIn PointSize\n"
1735		"OpMemberDecorate %vert_builtin_st 2 BuiltIn ClipDistance\n"
1736
1737		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
1738
1739		"%i32ptr              = OpTypePointer Input %i32\n"
1740		"%vec4                = OpTypeVector %f32 4\n"
1741		"%vec4ptr             = OpTypePointer Output %vec4\n"
1742		"%f32arr1             = OpTypeArray %f32 %one\n"
1743		"%vert_builtin_st     = OpTypeStruct %vec4 %f32 %f32arr1\n"
1744		"%vert_builtin_st_ptr = OpTypePointer Output %vert_builtin_st\n"
1745		"%vert_builtins       = OpVariable %vert_builtin_st_ptr Output\n"
1746
1747		"%id         = OpVariable %uvec3ptr Input\n"
1748		"%vertexID   = OpVariable %i32ptr Input\n"
1749		"%instanceID = OpVariable %i32ptr Input\n"
1750		"%zero       = OpConstant %i32 0\n"
1751		"%one        = OpConstant %u32 1\n"
1752		"%c_f32_1    = OpConstant %f32 1\n"
1753		"%c_vec4_1   = OpConstantComposite %vec4 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_1\n"
1754
1755		// gl_Position = vec4(1.);
1756		"%vert_main  = OpFunction %void None %voidf\n"
1757		"%vert_entry = OpLabel\n"
1758		"%position   = OpAccessChain %vec4ptr %vert_builtins %zero\n"
1759		"              OpStore %position %c_vec4_1\n"
1760		"              OpReturn\n"
1761		"              OpFunctionEnd\n"
1762
1763		// Double inputs.
1764		"%comp_main1  = OpFunction %void None %voidf\n"
1765		"%comp1_entry = OpLabel\n"
1766		"%idval1      = OpLoad %uvec3 %id\n"
1767		"%x1          = OpCompositeExtract %u32 %idval1 0\n"
1768		"%inloc1      = OpAccessChain %f32ptr %indata %zero %x1\n"
1769		"%inval1      = OpLoad %f32 %inloc1\n"
1770		"%add         = OpFAdd %f32 %inval1 %inval1\n"
1771		"%outloc1     = OpAccessChain %f32ptr %outdata %zero %x1\n"
1772		"               OpStore %outloc1 %add\n"
1773		"               OpReturn\n"
1774		"               OpFunctionEnd\n"
1775
1776		// Negate inputs.
1777		"%comp_main2  = OpFunction %void None %voidf\n"
1778		"%comp2_entry = OpLabel\n"
1779		"%idval2      = OpLoad %uvec3 %id\n"
1780		"%x2          = OpCompositeExtract %u32 %idval2 0\n"
1781		"%inloc2      = OpAccessChain %f32ptr %indata %zero %x2\n"
1782		"%inval2      = OpLoad %f32 %inloc2\n"
1783		"%neg         = OpFNegate %f32 %inval2\n"
1784		"%outloc2     = OpAccessChain %f32ptr %outdata %zero %x2\n"
1785		"               OpStore %outloc2 %neg\n"
1786		"               OpReturn\n"
1787		"               OpFunctionEnd\n");
1788
1789	spec1.assembly = assembly;
1790	spec1.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
1791	spec1.outputs.push_back(BufferSp(new Float32Buffer(outputFloats1)));
1792	spec1.numWorkGroups = IVec3(numElements, 1, 1);
1793	spec1.entryPoint = "entrypoint1";
1794
1795	spec2.assembly = assembly;
1796	spec2.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
1797	spec2.outputs.push_back(BufferSp(new Float32Buffer(outputFloats2)));
1798	spec2.numWorkGroups = IVec3(numElements, 1, 1);
1799	spec2.entryPoint = "entrypoint2";
1800
1801	group->addChild(new SpvAsmComputeShaderCase(testCtx, "shader1", "multiple shaders in the same module", spec1));
1802	group->addChild(new SpvAsmComputeShaderCase(testCtx, "shader2", "multiple shaders in the same module", spec2));
1803
1804	return group.release();
1805}
1806
1807inline std::string makeLongUTF8String (size_t num4ByteChars)
1808{
1809	// An example of a longest valid UTF-8 character.  Be explicit about the
1810	// character type because Microsoft compilers can otherwise interpret the
1811	// character string as being over wide (16-bit) characters. Ideally, we
1812	// would just use a C++11 UTF-8 string literal, but we want to support older
1813	// Microsoft compilers.
1814	const std::basic_string<char> earthAfrica("\xF0\x9F\x8C\x8D");
1815	std::string longString;
1816	longString.reserve(num4ByteChars * 4);
1817	for (size_t count = 0; count < num4ByteChars; count++)
1818	{
1819		longString += earthAfrica;
1820	}
1821	return longString;
1822}
1823
1824tcu::TestCaseGroup* createOpSourceGroup (tcu::TestContext& testCtx)
1825{
1826	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opsource", "Tests the OpSource & OpSourceContinued instruction"));
1827	vector<CaseParameter>			cases;
1828	de::Random						rnd				(deStringHash(group->getName()));
1829	const int						numElements		= 100;
1830	vector<float>					positiveFloats	(numElements, 0);
1831	vector<float>					negativeFloats	(numElements, 0);
1832	const StringTemplate			shaderTemplate	(
1833		"OpCapability Shader\n"
1834		"OpMemoryModel Logical GLSL450\n"
1835
1836		"OpEntryPoint GLCompute %main \"main\" %id\n"
1837		"OpExecutionMode %main LocalSize 1 1 1\n"
1838
1839		"${SOURCE}\n"
1840
1841		"OpName %main           \"main\"\n"
1842		"OpName %id             \"gl_GlobalInvocationID\"\n"
1843
1844		"OpDecorate %id BuiltIn GlobalInvocationId\n"
1845
1846		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
1847
1848		"%id        = OpVariable %uvec3ptr Input\n"
1849		"%zero      = OpConstant %i32 0\n"
1850
1851		"%main      = OpFunction %void None %voidf\n"
1852		"%label     = OpLabel\n"
1853		"%idval     = OpLoad %uvec3 %id\n"
1854		"%x         = OpCompositeExtract %u32 %idval 0\n"
1855		"%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
1856		"%inval     = OpLoad %f32 %inloc\n"
1857		"%neg       = OpFNegate %f32 %inval\n"
1858		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
1859		"             OpStore %outloc %neg\n"
1860		"             OpReturn\n"
1861		"             OpFunctionEnd\n");
1862
1863	cases.push_back(CaseParameter("unknown_source",							"OpSource Unknown 0"));
1864	cases.push_back(CaseParameter("wrong_source",							"OpSource OpenCL_C 210"));
1865	cases.push_back(CaseParameter("normal_filename",						"%fname = OpString \"filename\"\n"
1866																			"OpSource GLSL 430 %fname"));
1867	cases.push_back(CaseParameter("empty_filename",							"%fname = OpString \"\"\n"
1868																			"OpSource GLSL 430 %fname"));
1869	cases.push_back(CaseParameter("normal_source_code",						"%fname = OpString \"filename\"\n"
1870																			"OpSource GLSL 430 %fname \"#version 430\nvoid main() {}\""));
1871	cases.push_back(CaseParameter("empty_source_code",						"%fname = OpString \"filename\"\n"
1872																			"OpSource GLSL 430 %fname \"\""));
1873	cases.push_back(CaseParameter("long_source_code",						"%fname = OpString \"filename\"\n"
1874																			"OpSource GLSL 430 %fname \"" + makeLongUTF8String(65530) + "ccc\"")); // word count: 65535
1875	cases.push_back(CaseParameter("utf8_source_code",						"%fname = OpString \"filename\"\n"
1876																			"OpSource GLSL 430 %fname \"\xE2\x98\x82\xE2\x98\x85\"")); // umbrella & black star symbol
1877	cases.push_back(CaseParameter("normal_sourcecontinued",					"%fname = OpString \"filename\"\n"
1878																			"OpSource GLSL 430 %fname \"#version 430\nvo\"\n"
1879																			"OpSourceContinued \"id main() {}\""));
1880	cases.push_back(CaseParameter("empty_sourcecontinued",					"%fname = OpString \"filename\"\n"
1881																			"OpSource GLSL 430 %fname \"#version 430\nvoid main() {}\"\n"
1882																			"OpSourceContinued \"\""));
1883	cases.push_back(CaseParameter("long_sourcecontinued",					"%fname = OpString \"filename\"\n"
1884																			"OpSource GLSL 430 %fname \"#version 430\nvoid main() {}\"\n"
1885																			"OpSourceContinued \"" + makeLongUTF8String(65533) + "ccc\"")); // word count: 65535
1886	cases.push_back(CaseParameter("utf8_sourcecontinued",					"%fname = OpString \"filename\"\n"
1887																			"OpSource GLSL 430 %fname \"#version 430\nvoid main() {}\"\n"
1888																			"OpSourceContinued \"\xE2\x98\x8E\xE2\x9A\x91\"")); // white telephone & black flag symbol
1889	cases.push_back(CaseParameter("multi_sourcecontinued",					"%fname = OpString \"filename\"\n"
1890																			"OpSource GLSL 430 %fname \"#version 430\n\"\n"
1891																			"OpSourceContinued \"void\"\n"
1892																			"OpSourceContinued \"main()\"\n"
1893																			"OpSourceContinued \"{}\""));
1894	cases.push_back(CaseParameter("empty_source_before_sourcecontinued",	"%fname = OpString \"filename\"\n"
1895																			"OpSource GLSL 430 %fname \"\"\n"
1896																			"OpSourceContinued \"#version 430\nvoid main() {}\""));
1897
1898	fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
1899
1900	for (size_t ndx = 0; ndx < numElements; ++ndx)
1901		negativeFloats[ndx] = -positiveFloats[ndx];
1902
1903	for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
1904	{
1905		map<string, string>		specializations;
1906		ComputeShaderSpec		spec;
1907
1908		specializations["SOURCE"] = cases[caseNdx].param;
1909		spec.assembly = shaderTemplate.specialize(specializations);
1910		spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
1911		spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
1912		spec.numWorkGroups = IVec3(numElements, 1, 1);
1913
1914		group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
1915	}
1916
1917	return group.release();
1918}
1919
1920tcu::TestCaseGroup* createOpSourceExtensionGroup (tcu::TestContext& testCtx)
1921{
1922	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opsourceextension", "Tests the OpSource instruction"));
1923	vector<CaseParameter>			cases;
1924	de::Random						rnd				(deStringHash(group->getName()));
1925	const int						numElements		= 100;
1926	vector<float>					inputFloats		(numElements, 0);
1927	vector<float>					outputFloats	(numElements, 0);
1928	const StringTemplate			shaderTemplate	(
1929		string(s_ShaderPreamble) +
1930
1931		"OpSourceExtension \"${EXTENSION}\"\n"
1932
1933		"OpName %main           \"main\"\n"
1934		"OpName %id             \"gl_GlobalInvocationID\"\n"
1935
1936		"OpDecorate %id BuiltIn GlobalInvocationId\n"
1937
1938		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
1939
1940		"%id        = OpVariable %uvec3ptr Input\n"
1941		"%zero      = OpConstant %i32 0\n"
1942
1943		"%main      = OpFunction %void None %voidf\n"
1944		"%label     = OpLabel\n"
1945		"%idval     = OpLoad %uvec3 %id\n"
1946		"%x         = OpCompositeExtract %u32 %idval 0\n"
1947		"%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
1948		"%inval     = OpLoad %f32 %inloc\n"
1949		"%neg       = OpFNegate %f32 %inval\n"
1950		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
1951		"             OpStore %outloc %neg\n"
1952		"             OpReturn\n"
1953		"             OpFunctionEnd\n");
1954
1955	cases.push_back(CaseParameter("empty_extension",	""));
1956	cases.push_back(CaseParameter("real_extension",		"GL_ARB_texture_rectangle"));
1957	cases.push_back(CaseParameter("fake_extension",		"GL_ARB_im_the_ultimate_extension"));
1958	cases.push_back(CaseParameter("utf8_extension",		"GL_ARB_\xE2\x98\x82\xE2\x98\x85"));
1959	cases.push_back(CaseParameter("long_extension",		makeLongUTF8String(65533) + "ccc")); // word count: 65535
1960
1961	fillRandomScalars(rnd, -200.f, 200.f, &inputFloats[0], numElements);
1962
1963	for (size_t ndx = 0; ndx < numElements; ++ndx)
1964		outputFloats[ndx] = -inputFloats[ndx];
1965
1966	for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
1967	{
1968		map<string, string>		specializations;
1969		ComputeShaderSpec		spec;
1970
1971		specializations["EXTENSION"] = cases[caseNdx].param;
1972		spec.assembly = shaderTemplate.specialize(specializations);
1973		spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
1974		spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
1975		spec.numWorkGroups = IVec3(numElements, 1, 1);
1976
1977		group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
1978	}
1979
1980	return group.release();
1981}
1982
1983// Checks that a compute shader can generate a constant null value of various types, without exercising a computation on it.
1984tcu::TestCaseGroup* createOpConstantNullGroup (tcu::TestContext& testCtx)
1985{
1986	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opconstantnull", "Tests the OpConstantNull instruction"));
1987	vector<CaseParameter>			cases;
1988	de::Random						rnd				(deStringHash(group->getName()));
1989	const int						numElements		= 100;
1990	vector<float>					positiveFloats	(numElements, 0);
1991	vector<float>					negativeFloats	(numElements, 0);
1992	const StringTemplate			shaderTemplate	(
1993		string(s_ShaderPreamble) +
1994
1995		"OpSource GLSL 430\n"
1996		"OpName %main           \"main\"\n"
1997		"OpName %id             \"gl_GlobalInvocationID\"\n"
1998
1999		"OpDecorate %id BuiltIn GlobalInvocationId\n"
2000
2001		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
2002
2003		"${TYPE}\n"
2004		"%null      = OpConstantNull %type\n"
2005
2006		"%id        = OpVariable %uvec3ptr Input\n"
2007		"%zero      = OpConstant %i32 0\n"
2008
2009		"%main      = OpFunction %void None %voidf\n"
2010		"%label     = OpLabel\n"
2011		"%idval     = OpLoad %uvec3 %id\n"
2012		"%x         = OpCompositeExtract %u32 %idval 0\n"
2013		"%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
2014		"%inval     = OpLoad %f32 %inloc\n"
2015		"%neg       = OpFNegate %f32 %inval\n"
2016		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
2017		"             OpStore %outloc %neg\n"
2018		"             OpReturn\n"
2019		"             OpFunctionEnd\n");
2020
2021	cases.push_back(CaseParameter("bool",			"%type = OpTypeBool"));
2022	cases.push_back(CaseParameter("sint32",			"%type = OpTypeInt 32 1"));
2023	cases.push_back(CaseParameter("uint32",			"%type = OpTypeInt 32 0"));
2024	cases.push_back(CaseParameter("float32",		"%type = OpTypeFloat 32"));
2025	cases.push_back(CaseParameter("vec4float32",	"%type = OpTypeVector %f32 4"));
2026	cases.push_back(CaseParameter("vec3bool",		"%type = OpTypeVector %bool 3"));
2027	cases.push_back(CaseParameter("vec2uint32",		"%type = OpTypeVector %u32 2"));
2028	cases.push_back(CaseParameter("matrix",			"%type = OpTypeMatrix %uvec3 3"));
2029	cases.push_back(CaseParameter("array",			"%100 = OpConstant %u32 100\n"
2030													"%type = OpTypeArray %i32 %100"));
2031	cases.push_back(CaseParameter("runtimearray",	"%type = OpTypeRuntimeArray %f32"));
2032	cases.push_back(CaseParameter("struct",			"%type = OpTypeStruct %f32 %i32 %u32"));
2033	cases.push_back(CaseParameter("pointer",		"%type = OpTypePointer Function %i32"));
2034
2035	fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
2036
2037	for (size_t ndx = 0; ndx < numElements; ++ndx)
2038		negativeFloats[ndx] = -positiveFloats[ndx];
2039
2040	for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
2041	{
2042		map<string, string>		specializations;
2043		ComputeShaderSpec		spec;
2044
2045		specializations["TYPE"] = cases[caseNdx].param;
2046		spec.assembly = shaderTemplate.specialize(specializations);
2047		spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
2048		spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
2049		spec.numWorkGroups = IVec3(numElements, 1, 1);
2050
2051		group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
2052	}
2053
2054	return group.release();
2055}
2056
2057// Checks that a compute shader can generate a constant composite value of various types, without exercising a computation on it.
2058tcu::TestCaseGroup* createOpConstantCompositeGroup (tcu::TestContext& testCtx)
2059{
2060	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opconstantcomposite", "Tests the OpConstantComposite instruction"));
2061	vector<CaseParameter>			cases;
2062	de::Random						rnd				(deStringHash(group->getName()));
2063	const int						numElements		= 100;
2064	vector<float>					positiveFloats	(numElements, 0);
2065	vector<float>					negativeFloats	(numElements, 0);
2066	const StringTemplate			shaderTemplate	(
2067		string(s_ShaderPreamble) +
2068
2069		"OpSource GLSL 430\n"
2070		"OpName %main           \"main\"\n"
2071		"OpName %id             \"gl_GlobalInvocationID\"\n"
2072
2073		"OpDecorate %id BuiltIn GlobalInvocationId\n"
2074
2075		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
2076
2077		"%id        = OpVariable %uvec3ptr Input\n"
2078		"%zero      = OpConstant %i32 0\n"
2079
2080		"${CONSTANT}\n"
2081
2082		"%main      = OpFunction %void None %voidf\n"
2083		"%label     = OpLabel\n"
2084		"%idval     = OpLoad %uvec3 %id\n"
2085		"%x         = OpCompositeExtract %u32 %idval 0\n"
2086		"%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
2087		"%inval     = OpLoad %f32 %inloc\n"
2088		"%neg       = OpFNegate %f32 %inval\n"
2089		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
2090		"             OpStore %outloc %neg\n"
2091		"             OpReturn\n"
2092		"             OpFunctionEnd\n");
2093
2094	cases.push_back(CaseParameter("vector",			"%five = OpConstant %u32 5\n"
2095													"%const = OpConstantComposite %uvec3 %five %zero %five"));
2096	cases.push_back(CaseParameter("matrix",			"%m3uvec3 = OpTypeMatrix %uvec3 3\n"
2097													"%ten = OpConstant %u32 10\n"
2098													"%vec = OpConstantComposite %uvec3 %ten %zero %ten\n"
2099													"%mat = OpConstantComposite %m3uvec3 %vec %vec %vec"));
2100	cases.push_back(CaseParameter("struct",			"%m2vec3 = OpTypeMatrix %uvec3 2\n"
2101													"%struct = OpTypeStruct %u32 %f32 %uvec3 %m2vec3\n"
2102													"%one = OpConstant %u32 1\n"
2103													"%point5 = OpConstant %f32 0.5\n"
2104													"%vec = OpConstantComposite %uvec3 %one %one %zero\n"
2105													"%mat = OpConstantComposite %m2vec3 %vec %vec\n"
2106													"%const = OpConstantComposite %struct %one %point5 %vec %mat"));
2107	cases.push_back(CaseParameter("nested_struct",	"%st1 = OpTypeStruct %u32 %f32\n"
2108													"%st2 = OpTypeStruct %i32 %i32\n"
2109													"%struct = OpTypeStruct %st1 %st2\n"
2110													"%point5 = OpConstant %f32 0.5\n"
2111													"%one = OpConstant %u32 1\n"
2112													"%ten = OpConstant %i32 10\n"
2113													"%st1val = OpConstantComposite %st1 %one %point5\n"
2114													"%st2val = OpConstantComposite %st2 %ten %ten\n"
2115													"%const = OpConstantComposite %struct %st1val %st2val"));
2116
2117	fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
2118
2119	for (size_t ndx = 0; ndx < numElements; ++ndx)
2120		negativeFloats[ndx] = -positiveFloats[ndx];
2121
2122	for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
2123	{
2124		map<string, string>		specializations;
2125		ComputeShaderSpec		spec;
2126
2127		specializations["CONSTANT"] = cases[caseNdx].param;
2128		spec.assembly = shaderTemplate.specialize(specializations);
2129		spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
2130		spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
2131		spec.numWorkGroups = IVec3(numElements, 1, 1);
2132
2133		group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
2134	}
2135
2136	return group.release();
2137}
2138
2139// Creates a floating point number with the given exponent, and significand
2140// bits set. It can only create normalized numbers. Only the least significant
2141// 24 bits of the significand will be examined. The final bit of the
2142// significand will also be ignored. This allows alignment to be written
2143// similarly to C99 hex-floats.
2144// For example if you wanted to write 0x1.7f34p-12 you would call
2145// constructNormalizedFloat(-12, 0x7f3400)
2146float constructNormalizedFloat (deInt32 exponent, deUint32 significand)
2147{
2148	float f = 1.0f;
2149
2150	for (deInt32 idx = 0; idx < 23; ++idx)
2151	{
2152		f += ((significand & 0x800000) == 0) ? 0.f : std::ldexp(1.0f, -idx);
2153		significand <<= 1;
2154	}
2155
2156	return std::ldexp(f, exponent);
2157}
2158
2159// Compare instruction for the OpQuantizeF16 compute exact case.
2160// Returns true if the output is what is expected from the test case.
2161bool compareOpQuantizeF16ComputeExactCase (const std::vector<BufferSp>&, const vector<AllocationSp>& outputAllocs, const std::vector<BufferSp>& expectedOutputs)
2162{
2163	if (outputAllocs.size() != 1)
2164		return false;
2165
2166	// We really just need this for size because we cannot compare Nans.
2167	const BufferSp&	expectedOutput	= expectedOutputs[0];
2168	const float*	outputAsFloat	= static_cast<const float*>(outputAllocs[0]->getHostPtr());;
2169
2170	if (expectedOutput->getNumBytes() != 4*sizeof(float)) {
2171		return false;
2172	}
2173
2174	if (*outputAsFloat != constructNormalizedFloat(8, 0x304000) &&
2175		*outputAsFloat != constructNormalizedFloat(8, 0x300000)) {
2176		return false;
2177	}
2178
2179	if (*outputAsFloat != -constructNormalizedFloat(-7, 0x600000) &&
2180		*outputAsFloat != -constructNormalizedFloat(-7, 0x604000)) {
2181		return false;
2182	}
2183
2184	if (*outputAsFloat != constructNormalizedFloat(2, 0x01C000) &&
2185		*outputAsFloat != constructNormalizedFloat(2, 0x020000)) {
2186		return false;
2187	}
2188
2189	if (*outputAsFloat != constructNormalizedFloat(1, 0xFFC000) &&
2190		*outputAsFloat != constructNormalizedFloat(2, 0x000000)) {
2191		return false;
2192	}
2193
2194	return true;
2195}
2196
2197// Checks that every output from a test-case is a float NaN.
2198bool compareNan (const std::vector<BufferSp>&, const vector<AllocationSp>& outputAllocs, const std::vector<BufferSp>& expectedOutputs)
2199{
2200	if (outputAllocs.size() != 1)
2201		return false;
2202
2203	// We really just need this for size because we cannot compare Nans.
2204	const BufferSp& expectedOutput		= expectedOutputs[0];
2205	const float* output_as_float		= static_cast<const float*>(outputAllocs[0]->getHostPtr());;
2206
2207	for (size_t idx = 0; idx < expectedOutput->getNumBytes() / sizeof(float); ++idx)
2208	{
2209		if (!isnan(output_as_float[idx]))
2210		{
2211			return false;
2212		}
2213	}
2214
2215	return true;
2216}
2217
2218// Checks that a compute shader can generate a constant composite value of various types, without exercising a computation on it.
2219tcu::TestCaseGroup* createOpQuantizeToF16Group (tcu::TestContext& testCtx)
2220{
2221	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opquantize", "Tests the OpQuantizeToF16 instruction"));
2222
2223	const std::string shader (
2224		string(s_ShaderPreamble) +
2225
2226		"OpSource GLSL 430\n"
2227		"OpName %main           \"main\"\n"
2228		"OpName %id             \"gl_GlobalInvocationID\"\n"
2229
2230		"OpDecorate %id BuiltIn GlobalInvocationId\n"
2231
2232		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
2233
2234		"%id        = OpVariable %uvec3ptr Input\n"
2235		"%zero      = OpConstant %i32 0\n"
2236
2237		"%main      = OpFunction %void None %voidf\n"
2238		"%label     = OpLabel\n"
2239		"%idval     = OpLoad %uvec3 %id\n"
2240		"%x         = OpCompositeExtract %u32 %idval 0\n"
2241		"%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
2242		"%inval     = OpLoad %f32 %inloc\n"
2243		"%quant     = OpQuantizeToF16 %f32 %inval\n"
2244		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
2245		"             OpStore %outloc %quant\n"
2246		"             OpReturn\n"
2247		"             OpFunctionEnd\n");
2248
2249	{
2250		ComputeShaderSpec	spec;
2251		const deUint32		numElements		= 100;
2252		vector<float>		infinities;
2253		vector<float>		results;
2254
2255		infinities.reserve(numElements);
2256		results.reserve(numElements);
2257
2258		for (size_t idx = 0; idx < numElements; ++idx)
2259		{
2260			switch(idx % 4)
2261			{
2262				case 0:
2263					infinities.push_back(std::numeric_limits<float>::infinity());
2264					results.push_back(std::numeric_limits<float>::infinity());
2265					break;
2266				case 1:
2267					infinities.push_back(-std::numeric_limits<float>::infinity());
2268					results.push_back(-std::numeric_limits<float>::infinity());
2269					break;
2270				case 2:
2271					infinities.push_back(std::ldexp(1.0f, 16));
2272					results.push_back(std::numeric_limits<float>::infinity());
2273					break;
2274				case 3:
2275					infinities.push_back(std::ldexp(-1.0f, 32));
2276					results.push_back(-std::numeric_limits<float>::infinity());
2277					break;
2278			}
2279		}
2280
2281		spec.inputs.push_back(BufferSp(new Float32Buffer(infinities)));
2282		spec.outputs.push_back(BufferSp(new Float32Buffer(results)));
2283		spec.numWorkGroups = IVec3(numElements, 1, 1);
2284
2285		group->addChild(new SpvAsmComputeShaderCase(
2286			testCtx, "infinities", "Check that infinities propagated and created", spec));
2287	}
2288
2289	{
2290		ComputeShaderSpec	spec;
2291		vector<float>		nans;
2292		const deUint32		numElements		= 100;
2293
2294		nans.reserve(numElements);
2295
2296		for (size_t idx = 0; idx < numElements; ++idx)
2297		{
2298			if (idx % 2 == 0)
2299			{
2300				nans.push_back(std::numeric_limits<float>::quiet_NaN());
2301			}
2302			else
2303			{
2304				nans.push_back(-std::numeric_limits<float>::quiet_NaN());
2305			}
2306		}
2307
2308		spec.inputs.push_back(BufferSp(new Float32Buffer(nans)));
2309		spec.outputs.push_back(BufferSp(new Float32Buffer(nans)));
2310		spec.numWorkGroups = IVec3(numElements, 1, 1);
2311		spec.verifyIO = &compareNan;
2312
2313		group->addChild(new SpvAsmComputeShaderCase(
2314			testCtx, "propagated_nans", "Check that nans are propagated", spec));
2315	}
2316
2317	{
2318		ComputeShaderSpec	spec;
2319		vector<float>		small;
2320		vector<float>		zeros;
2321		const deUint32		numElements		= 100;
2322
2323		small.reserve(numElements);
2324		zeros.reserve(numElements);
2325
2326		for (size_t idx = 0; idx < numElements; ++idx)
2327		{
2328			switch(idx % 6)
2329			{
2330				case 0:
2331					small.push_back(0.f);
2332					zeros.push_back(0.f);
2333					break;
2334				case 1:
2335					small.push_back(-0.f);
2336					zeros.push_back(-0.f);
2337					break;
2338				case 2:
2339					small.push_back(std::ldexp(1.0f, -16));
2340					zeros.push_back(0.f);
2341					break;
2342				case 3:
2343					small.push_back(std::ldexp(-1.0f, -32));
2344					zeros.push_back(-0.f);
2345					break;
2346				case 4:
2347					small.push_back(std::ldexp(1.0f, -127));
2348					zeros.push_back(0.f);
2349					break;
2350				case 5:
2351					small.push_back(-std::ldexp(1.0f, -128));
2352					zeros.push_back(-0.f);
2353					break;
2354			}
2355		}
2356
2357		spec.inputs.push_back(BufferSp(new Float32Buffer(small)));
2358		spec.outputs.push_back(BufferSp(new Float32Buffer(zeros)));
2359		spec.numWorkGroups = IVec3(numElements, 1, 1);
2360
2361		group->addChild(new SpvAsmComputeShaderCase(
2362			testCtx, "flush_to_zero", "Check that values are zeroed correctly", spec));
2363	}
2364
2365	{
2366		ComputeShaderSpec	spec;
2367		vector<float>		exact;
2368		const deUint32		numElements		= 200;
2369
2370		exact.reserve(numElements);
2371
2372		for (size_t idx = 0; idx < numElements; ++idx)
2373			exact.push_back(static_cast<float>(idx - 100));
2374
2375		spec.inputs.push_back(BufferSp(new Float32Buffer(exact)));
2376		spec.outputs.push_back(BufferSp(new Float32Buffer(exact)));
2377		spec.numWorkGroups = IVec3(numElements, 1, 1);
2378
2379		group->addChild(new SpvAsmComputeShaderCase(
2380			testCtx, "exact", "Check that values exactly preserved where appropriate", spec));
2381	}
2382
2383	{
2384		ComputeShaderSpec	spec;
2385		vector<float>		inputs;
2386		const deUint32		numElements		= 4;
2387
2388		inputs.push_back(constructNormalizedFloat(8,	0x300300));
2389		inputs.push_back(-constructNormalizedFloat(-7,	0x600800));
2390		inputs.push_back(constructNormalizedFloat(2,	0x01E000));
2391		inputs.push_back(constructNormalizedFloat(1,	0xFFE000));
2392
2393		spec.verifyIO = &compareOpQuantizeF16ComputeExactCase;
2394		spec.inputs.push_back(BufferSp(new Float32Buffer(inputs)));
2395		spec.outputs.push_back(BufferSp(new Float32Buffer(inputs)));
2396		spec.numWorkGroups = IVec3(numElements, 1, 1);
2397
2398		group->addChild(new SpvAsmComputeShaderCase(
2399			testCtx, "rounded", "Check that are rounded when needed", spec));
2400	}
2401
2402	return group.release();
2403}
2404
2405// Performs a bitwise copy of source to the destination type Dest.
2406template <typename Dest, typename Src>
2407Dest bitwiseCast(Src source)
2408{
2409  Dest dest;
2410  DE_STATIC_ASSERT(sizeof(source) == sizeof(dest));
2411  deMemcpy(&dest, &source, sizeof(dest));
2412  return dest;
2413}
2414
2415tcu::TestCaseGroup* createSpecConstantOpQuantizeToF16Group (tcu::TestContext& testCtx)
2416{
2417	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opspecconstantop_opquantize", "Tests the OpQuantizeToF16 opcode for the OpSpecConstantOp instruction"));
2418
2419	const std::string shader (
2420		string(s_ShaderPreamble) +
2421
2422		"OpName %main           \"main\"\n"
2423		"OpName %id             \"gl_GlobalInvocationID\"\n"
2424
2425		"OpDecorate %id BuiltIn GlobalInvocationId\n"
2426
2427		"OpDecorate %sc_0  SpecId 0\n"
2428		"OpDecorate %sc_1  SpecId 1\n"
2429		"OpDecorate %sc_2  SpecId 2\n"
2430		"OpDecorate %sc_3  SpecId 3\n"
2431		"OpDecorate %sc_4  SpecId 4\n"
2432		"OpDecorate %sc_5  SpecId 5\n"
2433
2434		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
2435
2436		"%id        = OpVariable %uvec3ptr Input\n"
2437		"%zero      = OpConstant %i32 0\n"
2438		"%c_u32_6   = OpConstant %u32 6\n"
2439
2440		"%sc_0      = OpSpecConstant %f32 0.\n"
2441		"%sc_1      = OpSpecConstant %f32 0.\n"
2442		"%sc_2      = OpSpecConstant %f32 0.\n"
2443		"%sc_3      = OpSpecConstant %f32 0.\n"
2444		"%sc_4      = OpSpecConstant %f32 0.\n"
2445		"%sc_5      = OpSpecConstant %f32 0.\n"
2446
2447		"%sc_0_quant = OpSpecConstantOp %f32 QuantizeToF16 %sc_0\n"
2448		"%sc_1_quant = OpSpecConstantOp %f32 QuantizeToF16 %sc_1\n"
2449		"%sc_2_quant = OpSpecConstantOp %f32 QuantizeToF16 %sc_2\n"
2450		"%sc_3_quant = OpSpecConstantOp %f32 QuantizeToF16 %sc_3\n"
2451		"%sc_4_quant = OpSpecConstantOp %f32 QuantizeToF16 %sc_4\n"
2452		"%sc_5_quant = OpSpecConstantOp %f32 QuantizeToF16 %sc_5\n"
2453
2454		"%main      = OpFunction %void None %voidf\n"
2455		"%label     = OpLabel\n"
2456		"%idval     = OpLoad %uvec3 %id\n"
2457		"%x         = OpCompositeExtract %u32 %idval 0\n"
2458		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
2459		"%selector  = OpUMod %u32 %x %c_u32_6\n"
2460		"            OpSelectionMerge %exit None\n"
2461		"            OpSwitch %selector %exit 0 %case0 1 %case1 2 %case2 3 %case3 4 %case4 5 %case5\n"
2462
2463		"%case0     = OpLabel\n"
2464		"             OpStore %outloc %sc_0_quant\n"
2465		"             OpBranch %exit\n"
2466
2467		"%case1     = OpLabel\n"
2468		"             OpStore %outloc %sc_1_quant\n"
2469		"             OpBranch %exit\n"
2470
2471		"%case2     = OpLabel\n"
2472		"             OpStore %outloc %sc_2_quant\n"
2473		"             OpBranch %exit\n"
2474
2475		"%case3     = OpLabel\n"
2476		"             OpStore %outloc %sc_3_quant\n"
2477		"             OpBranch %exit\n"
2478
2479		"%case4     = OpLabel\n"
2480		"             OpStore %outloc %sc_4_quant\n"
2481		"             OpBranch %exit\n"
2482
2483		"%case5     = OpLabel\n"
2484		"             OpStore %outloc %sc_5_quant\n"
2485		"             OpBranch %exit\n"
2486
2487		"%exit      = OpLabel\n"
2488		"             OpReturn\n"
2489
2490		"             OpFunctionEnd\n");
2491
2492	{
2493		ComputeShaderSpec	spec;
2494		const deUint8		numCases	= 4;
2495		vector<float>		inputs		(numCases, 0.f);
2496		vector<float>		outputs;
2497
2498		spec.numWorkGroups = IVec3(numCases, 1, 1);
2499
2500		spec.specConstants.push_back(bitwiseCast<deUint32>(std::numeric_limits<float>::infinity()));
2501		spec.specConstants.push_back(bitwiseCast<deUint32>(-std::numeric_limits<float>::infinity()));
2502		spec.specConstants.push_back(bitwiseCast<deUint32>(std::ldexp(1.0f, 16)));
2503		spec.specConstants.push_back(bitwiseCast<deUint32>(std::ldexp(-1.0f, 32)));
2504
2505		outputs.push_back(std::numeric_limits<float>::infinity());
2506		outputs.push_back(-std::numeric_limits<float>::infinity());
2507		outputs.push_back(std::numeric_limits<float>::infinity());
2508		outputs.push_back(-std::numeric_limits<float>::infinity());
2509
2510		spec.inputs.push_back(BufferSp(new Float32Buffer(inputs)));
2511		spec.outputs.push_back(BufferSp(new Float32Buffer(outputs)));
2512
2513		group->addChild(new SpvAsmComputeShaderCase(
2514			testCtx, "infinities", "Check that infinities propagated and created", spec));
2515	}
2516
2517	{
2518		ComputeShaderSpec	spec;
2519		const deUint8		numCases	= 2;
2520		vector<float>		inputs		(numCases, 0.f);
2521		vector<float>		outputs;
2522
2523		spec.numWorkGroups	= IVec3(numCases, 1, 1);
2524		spec.verifyIO		= &compareNan;
2525
2526		outputs.push_back(std::numeric_limits<float>::quiet_NaN());
2527		outputs.push_back(-std::numeric_limits<float>::quiet_NaN());
2528
2529		for (deUint8 idx = 0; idx < numCases; ++idx)
2530			spec.specConstants.push_back(bitwiseCast<deUint32>(outputs[idx]));
2531
2532		spec.inputs.push_back(BufferSp(new Float32Buffer(inputs)));
2533		spec.outputs.push_back(BufferSp(new Float32Buffer(outputs)));
2534
2535		group->addChild(new SpvAsmComputeShaderCase(
2536			testCtx, "propagated_nans", "Check that nans are propagated", spec));
2537	}
2538
2539	{
2540		ComputeShaderSpec	spec;
2541		const deUint8		numCases	= 6;
2542		vector<float>		inputs		(numCases, 0.f);
2543		vector<float>		outputs;
2544
2545		spec.numWorkGroups	= IVec3(numCases, 1, 1);
2546
2547		spec.specConstants.push_back(bitwiseCast<deUint32>(0.f));
2548		spec.specConstants.push_back(bitwiseCast<deUint32>(-0.f));
2549		spec.specConstants.push_back(bitwiseCast<deUint32>(std::ldexp(1.0f, -16)));
2550		spec.specConstants.push_back(bitwiseCast<deUint32>(std::ldexp(-1.0f, -32)));
2551		spec.specConstants.push_back(bitwiseCast<deUint32>(std::ldexp(1.0f, -127)));
2552		spec.specConstants.push_back(bitwiseCast<deUint32>(-std::ldexp(1.0f, -128)));
2553
2554		outputs.push_back(0.f);
2555		outputs.push_back(-0.f);
2556		outputs.push_back(0.f);
2557		outputs.push_back(-0.f);
2558		outputs.push_back(0.f);
2559		outputs.push_back(-0.f);
2560
2561		spec.inputs.push_back(BufferSp(new Float32Buffer(inputs)));
2562		spec.outputs.push_back(BufferSp(new Float32Buffer(outputs)));
2563
2564		group->addChild(new SpvAsmComputeShaderCase(
2565			testCtx, "flush_to_zero", "Check that values are zeroed correctly", spec));
2566	}
2567
2568	{
2569		ComputeShaderSpec	spec;
2570		const deUint8		numCases	= 6;
2571		vector<float>		inputs		(numCases, 0.f);
2572		vector<float>		outputs;
2573
2574		spec.numWorkGroups	= IVec3(numCases, 1, 1);
2575
2576		for (deUint8 idx = 0; idx < 6; ++idx)
2577		{
2578			const float f = static_cast<float>(idx * 10 - 30) / 4.f;
2579			spec.specConstants.push_back(bitwiseCast<deUint32>(f));
2580			outputs.push_back(f);
2581		}
2582
2583		spec.inputs.push_back(BufferSp(new Float32Buffer(inputs)));
2584		spec.outputs.push_back(BufferSp(new Float32Buffer(outputs)));
2585
2586		group->addChild(new SpvAsmComputeShaderCase(
2587			testCtx, "exact", "Check that values exactly preserved where appropriate", spec));
2588	}
2589
2590	{
2591		ComputeShaderSpec	spec;
2592		const deUint8		numCases	= 4;
2593		vector<float>		inputs		(numCases, 0.f);
2594		vector<float>		outputs;
2595
2596		spec.numWorkGroups	= IVec3(numCases, 1, 1);
2597		spec.verifyIO		= &compareOpQuantizeF16ComputeExactCase;
2598
2599		outputs.push_back(constructNormalizedFloat(8, 0x300300));
2600		outputs.push_back(-constructNormalizedFloat(-7, 0x600800));
2601		outputs.push_back(constructNormalizedFloat(2, 0x01E000));
2602		outputs.push_back(constructNormalizedFloat(1, 0xFFE000));
2603
2604		for (deUint8 idx = 0; idx < numCases; ++idx)
2605			spec.specConstants.push_back(bitwiseCast<deUint32>(outputs[idx]));
2606
2607		spec.inputs.push_back(BufferSp(new Float32Buffer(inputs)));
2608		spec.outputs.push_back(BufferSp(new Float32Buffer(outputs)));
2609
2610		group->addChild(new SpvAsmComputeShaderCase(
2611			testCtx, "rounded", "Check that are rounded when needed", spec));
2612	}
2613
2614	return group.release();
2615}
2616
2617// Checks that constant null/composite values can be used in computation.
2618tcu::TestCaseGroup* createOpConstantUsageGroup (tcu::TestContext& testCtx)
2619{
2620	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opconstantnullcomposite", "Spotcheck the OpConstantNull & OpConstantComposite instruction"));
2621	ComputeShaderSpec				spec;
2622	de::Random						rnd				(deStringHash(group->getName()));
2623	const int						numElements		= 100;
2624	vector<float>					positiveFloats	(numElements, 0);
2625	vector<float>					negativeFloats	(numElements, 0);
2626
2627	fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
2628
2629	for (size_t ndx = 0; ndx < numElements; ++ndx)
2630		negativeFloats[ndx] = -positiveFloats[ndx];
2631
2632	spec.assembly =
2633		"OpCapability Shader\n"
2634		"%std450 = OpExtInstImport \"GLSL.std.450\"\n"
2635		"OpMemoryModel Logical GLSL450\n"
2636		"OpEntryPoint GLCompute %main \"main\" %id\n"
2637		"OpExecutionMode %main LocalSize 1 1 1\n"
2638
2639		"OpSource GLSL 430\n"
2640		"OpName %main           \"main\"\n"
2641		"OpName %id             \"gl_GlobalInvocationID\"\n"
2642
2643		"OpDecorate %id BuiltIn GlobalInvocationId\n"
2644
2645		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
2646
2647		"%fvec3     = OpTypeVector %f32 3\n"
2648		"%fmat      = OpTypeMatrix %fvec3 3\n"
2649		"%ten       = OpConstant %u32 10\n"
2650		"%f32arr10  = OpTypeArray %f32 %ten\n"
2651		"%fst       = OpTypeStruct %f32 %f32\n"
2652
2653		+ string(s_InputOutputBuffer) +
2654
2655		"%id        = OpVariable %uvec3ptr Input\n"
2656		"%zero      = OpConstant %i32 0\n"
2657
2658		// Create a bunch of null values
2659		"%unull     = OpConstantNull %u32\n"
2660		"%fnull     = OpConstantNull %f32\n"
2661		"%vnull     = OpConstantNull %fvec3\n"
2662		"%mnull     = OpConstantNull %fmat\n"
2663		"%anull     = OpConstantNull %f32arr10\n"
2664		"%snull     = OpConstantComposite %fst %fnull %fnull\n"
2665
2666		"%main      = OpFunction %void None %voidf\n"
2667		"%label     = OpLabel\n"
2668		"%idval     = OpLoad %uvec3 %id\n"
2669		"%x         = OpCompositeExtract %u32 %idval 0\n"
2670		"%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
2671		"%inval     = OpLoad %f32 %inloc\n"
2672		"%neg       = OpFNegate %f32 %inval\n"
2673
2674		// Get the abs() of (a certain element of) those null values
2675		"%unull_cov = OpConvertUToF %f32 %unull\n"
2676		"%unull_abs = OpExtInst %f32 %std450 FAbs %unull_cov\n"
2677		"%fnull_abs = OpExtInst %f32 %std450 FAbs %fnull\n"
2678		"%vnull_0   = OpCompositeExtract %f32 %vnull 0\n"
2679		"%vnull_abs = OpExtInst %f32 %std450 FAbs %vnull_0\n"
2680		"%mnull_12  = OpCompositeExtract %f32 %mnull 1 2\n"
2681		"%mnull_abs = OpExtInst %f32 %std450 FAbs %mnull_12\n"
2682		"%anull_3   = OpCompositeExtract %f32 %anull 3\n"
2683		"%anull_abs = OpExtInst %f32 %std450 FAbs %anull_3\n"
2684		"%snull_1   = OpCompositeExtract %f32 %snull 1\n"
2685		"%snull_abs = OpExtInst %f32 %std450 FAbs %snull_1\n"
2686
2687		// Add them all
2688		"%add1      = OpFAdd %f32 %neg  %unull_abs\n"
2689		"%add2      = OpFAdd %f32 %add1 %fnull_abs\n"
2690		"%add3      = OpFAdd %f32 %add2 %vnull_abs\n"
2691		"%add4      = OpFAdd %f32 %add3 %mnull_abs\n"
2692		"%add5      = OpFAdd %f32 %add4 %anull_abs\n"
2693		"%final     = OpFAdd %f32 %add5 %snull_abs\n"
2694
2695		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
2696		"             OpStore %outloc %final\n" // write to output
2697		"             OpReturn\n"
2698		"             OpFunctionEnd\n";
2699	spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
2700	spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
2701	spec.numWorkGroups = IVec3(numElements, 1, 1);
2702
2703	group->addChild(new SpvAsmComputeShaderCase(testCtx, "spotcheck", "Check that values constructed via OpConstantNull & OpConstantComposite can be used", spec));
2704
2705	return group.release();
2706}
2707
2708// Assembly code used for testing loop control is based on GLSL source code:
2709// #version 430
2710//
2711// layout(std140, set = 0, binding = 0) readonly buffer Input {
2712//   float elements[];
2713// } input_data;
2714// layout(std140, set = 0, binding = 1) writeonly buffer Output {
2715//   float elements[];
2716// } output_data;
2717//
2718// void main() {
2719//   uint x = gl_GlobalInvocationID.x;
2720//   output_data.elements[x] = input_data.elements[x];
2721//   for (uint i = 0; i < 4; ++i)
2722//     output_data.elements[x] += 1.f;
2723// }
2724tcu::TestCaseGroup* createLoopControlGroup (tcu::TestContext& testCtx)
2725{
2726	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "loop_control", "Tests loop control cases"));
2727	vector<CaseParameter>			cases;
2728	de::Random						rnd				(deStringHash(group->getName()));
2729	const int						numElements		= 100;
2730	vector<float>					inputFloats		(numElements, 0);
2731	vector<float>					outputFloats	(numElements, 0);
2732	const StringTemplate			shaderTemplate	(
2733		string(s_ShaderPreamble) +
2734
2735		"OpSource GLSL 430\n"
2736		"OpName %main \"main\"\n"
2737		"OpName %id \"gl_GlobalInvocationID\"\n"
2738
2739		"OpDecorate %id BuiltIn GlobalInvocationId\n"
2740
2741		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
2742
2743		"%u32ptr      = OpTypePointer Function %u32\n"
2744
2745		"%id          = OpVariable %uvec3ptr Input\n"
2746		"%zero        = OpConstant %i32 0\n"
2747		"%uzero       = OpConstant %u32 0\n"
2748		"%one         = OpConstant %i32 1\n"
2749		"%constf1     = OpConstant %f32 1.0\n"
2750		"%four        = OpConstant %u32 4\n"
2751
2752		"%main        = OpFunction %void None %voidf\n"
2753		"%entry       = OpLabel\n"
2754		"%i           = OpVariable %u32ptr Function\n"
2755		"               OpStore %i %uzero\n"
2756
2757		"%idval       = OpLoad %uvec3 %id\n"
2758		"%x           = OpCompositeExtract %u32 %idval 0\n"
2759		"%inloc       = OpAccessChain %f32ptr %indata %zero %x\n"
2760		"%inval       = OpLoad %f32 %inloc\n"
2761		"%outloc      = OpAccessChain %f32ptr %outdata %zero %x\n"
2762		"               OpStore %outloc %inval\n"
2763		"               OpBranch %loop_entry\n"
2764
2765		"%loop_entry  = OpLabel\n"
2766		"%i_val       = OpLoad %u32 %i\n"
2767		"%cmp_lt      = OpULessThan %bool %i_val %four\n"
2768		"               OpLoopMerge %loop_merge %loop_entry ${CONTROL}\n"
2769		"               OpBranchConditional %cmp_lt %loop_body %loop_merge\n"
2770		"%loop_body   = OpLabel\n"
2771		"%outval      = OpLoad %f32 %outloc\n"
2772		"%addf1       = OpFAdd %f32 %outval %constf1\n"
2773		"               OpStore %outloc %addf1\n"
2774		"%new_i       = OpIAdd %u32 %i_val %one\n"
2775		"               OpStore %i %new_i\n"
2776		"               OpBranch %loop_entry\n"
2777		"%loop_merge  = OpLabel\n"
2778		"               OpReturn\n"
2779		"               OpFunctionEnd\n");
2780
2781	cases.push_back(CaseParameter("none",				"None"));
2782	cases.push_back(CaseParameter("unroll",				"Unroll"));
2783	cases.push_back(CaseParameter("dont_unroll",		"DontUnroll"));
2784	cases.push_back(CaseParameter("unroll_dont_unroll",	"Unroll|DontUnroll"));
2785
2786	fillRandomScalars(rnd, -100.f, 100.f, &inputFloats[0], numElements);
2787
2788	for (size_t ndx = 0; ndx < numElements; ++ndx)
2789		outputFloats[ndx] = inputFloats[ndx] + 4.f;
2790
2791	for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
2792	{
2793		map<string, string>		specializations;
2794		ComputeShaderSpec		spec;
2795
2796		specializations["CONTROL"] = cases[caseNdx].param;
2797		spec.assembly = shaderTemplate.specialize(specializations);
2798		spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
2799		spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
2800		spec.numWorkGroups = IVec3(numElements, 1, 1);
2801
2802		group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
2803	}
2804
2805	return group.release();
2806}
2807
2808// Assembly code used for testing selection control is based on GLSL source code:
2809// #version 430
2810//
2811// layout(std140, set = 0, binding = 0) readonly buffer Input {
2812//   float elements[];
2813// } input_data;
2814// layout(std140, set = 0, binding = 1) writeonly buffer Output {
2815//   float elements[];
2816// } output_data;
2817//
2818// void main() {
2819//   uint x = gl_GlobalInvocationID.x;
2820//   float val = input_data.elements[x];
2821//   if (val > 10.f)
2822//     output_data.elements[x] = val + 1.f;
2823//   else
2824//     output_data.elements[x] = val - 1.f;
2825// }
2826tcu::TestCaseGroup* createSelectionControlGroup (tcu::TestContext& testCtx)
2827{
2828	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "selection_control", "Tests selection control cases"));
2829	vector<CaseParameter>			cases;
2830	de::Random						rnd				(deStringHash(group->getName()));
2831	const int						numElements		= 100;
2832	vector<float>					inputFloats		(numElements, 0);
2833	vector<float>					outputFloats	(numElements, 0);
2834	const StringTemplate			shaderTemplate	(
2835		string(s_ShaderPreamble) +
2836
2837		"OpSource GLSL 430\n"
2838		"OpName %main \"main\"\n"
2839		"OpName %id \"gl_GlobalInvocationID\"\n"
2840
2841		"OpDecorate %id BuiltIn GlobalInvocationId\n"
2842
2843		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
2844
2845		"%id       = OpVariable %uvec3ptr Input\n"
2846		"%zero     = OpConstant %i32 0\n"
2847		"%constf1  = OpConstant %f32 1.0\n"
2848		"%constf10 = OpConstant %f32 10.0\n"
2849
2850		"%main     = OpFunction %void None %voidf\n"
2851		"%entry    = OpLabel\n"
2852		"%idval    = OpLoad %uvec3 %id\n"
2853		"%x        = OpCompositeExtract %u32 %idval 0\n"
2854		"%inloc    = OpAccessChain %f32ptr %indata %zero %x\n"
2855		"%inval    = OpLoad %f32 %inloc\n"
2856		"%outloc   = OpAccessChain %f32ptr %outdata %zero %x\n"
2857		"%cmp_gt   = OpFOrdGreaterThan %bool %inval %constf10\n"
2858
2859		"            OpSelectionMerge %if_end ${CONTROL}\n"
2860		"            OpBranchConditional %cmp_gt %if_true %if_false\n"
2861		"%if_true  = OpLabel\n"
2862		"%addf1    = OpFAdd %f32 %inval %constf1\n"
2863		"            OpStore %outloc %addf1\n"
2864		"            OpBranch %if_end\n"
2865		"%if_false = OpLabel\n"
2866		"%subf1    = OpFSub %f32 %inval %constf1\n"
2867		"            OpStore %outloc %subf1\n"
2868		"            OpBranch %if_end\n"
2869		"%if_end   = OpLabel\n"
2870		"            OpReturn\n"
2871		"            OpFunctionEnd\n");
2872
2873	cases.push_back(CaseParameter("none",					"None"));
2874	cases.push_back(CaseParameter("flatten",				"Flatten"));
2875	cases.push_back(CaseParameter("dont_flatten",			"DontFlatten"));
2876	cases.push_back(CaseParameter("flatten_dont_flatten",	"DontFlatten|Flatten"));
2877
2878	fillRandomScalars(rnd, -100.f, 100.f, &inputFloats[0], numElements);
2879
2880	for (size_t ndx = 0; ndx < numElements; ++ndx)
2881		outputFloats[ndx] = inputFloats[ndx] + (inputFloats[ndx] > 10.f ? 1.f : -1.f);
2882
2883	for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
2884	{
2885		map<string, string>		specializations;
2886		ComputeShaderSpec		spec;
2887
2888		specializations["CONTROL"] = cases[caseNdx].param;
2889		spec.assembly = shaderTemplate.specialize(specializations);
2890		spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
2891		spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
2892		spec.numWorkGroups = IVec3(numElements, 1, 1);
2893
2894		group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
2895	}
2896
2897	return group.release();
2898}
2899
2900// Assembly code used for testing function control is based on GLSL source code:
2901//
2902// #version 430
2903//
2904// layout(std140, set = 0, binding = 0) readonly buffer Input {
2905//   float elements[];
2906// } input_data;
2907// layout(std140, set = 0, binding = 1) writeonly buffer Output {
2908//   float elements[];
2909// } output_data;
2910//
2911// float const10() { return 10.f; }
2912//
2913// void main() {
2914//   uint x = gl_GlobalInvocationID.x;
2915//   output_data.elements[x] = input_data.elements[x] + const10();
2916// }
2917tcu::TestCaseGroup* createFunctionControlGroup (tcu::TestContext& testCtx)
2918{
2919	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "function_control", "Tests function control cases"));
2920	vector<CaseParameter>			cases;
2921	de::Random						rnd				(deStringHash(group->getName()));
2922	const int						numElements		= 100;
2923	vector<float>					inputFloats		(numElements, 0);
2924	vector<float>					outputFloats	(numElements, 0);
2925	const StringTemplate			shaderTemplate	(
2926		string(s_ShaderPreamble) +
2927
2928		"OpSource GLSL 430\n"
2929		"OpName %main \"main\"\n"
2930		"OpName %func_const10 \"const10(\"\n"
2931		"OpName %id \"gl_GlobalInvocationID\"\n"
2932
2933		"OpDecorate %id BuiltIn GlobalInvocationId\n"
2934
2935		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
2936
2937		"%f32f = OpTypeFunction %f32\n"
2938		"%id = OpVariable %uvec3ptr Input\n"
2939		"%zero = OpConstant %i32 0\n"
2940		"%constf10 = OpConstant %f32 10.0\n"
2941
2942		"%main         = OpFunction %void None %voidf\n"
2943		"%entry        = OpLabel\n"
2944		"%idval        = OpLoad %uvec3 %id\n"
2945		"%x            = OpCompositeExtract %u32 %idval 0\n"
2946		"%inloc        = OpAccessChain %f32ptr %indata %zero %x\n"
2947		"%inval        = OpLoad %f32 %inloc\n"
2948		"%ret_10       = OpFunctionCall %f32 %func_const10\n"
2949		"%fadd         = OpFAdd %f32 %inval %ret_10\n"
2950		"%outloc       = OpAccessChain %f32ptr %outdata %zero %x\n"
2951		"                OpStore %outloc %fadd\n"
2952		"                OpReturn\n"
2953		"                OpFunctionEnd\n"
2954
2955		"%func_const10 = OpFunction %f32 ${CONTROL} %f32f\n"
2956		"%label        = OpLabel\n"
2957		"                OpReturnValue %constf10\n"
2958		"                OpFunctionEnd\n");
2959
2960	cases.push_back(CaseParameter("none",						"None"));
2961	cases.push_back(CaseParameter("inline",						"Inline"));
2962	cases.push_back(CaseParameter("dont_inline",				"DontInline"));
2963	cases.push_back(CaseParameter("pure",						"Pure"));
2964	cases.push_back(CaseParameter("const",						"Const"));
2965	cases.push_back(CaseParameter("inline_pure",				"Inline|Pure"));
2966	cases.push_back(CaseParameter("const_dont_inline",			"Const|DontInline"));
2967	cases.push_back(CaseParameter("inline_dont_inline",			"Inline|DontInline"));
2968	cases.push_back(CaseParameter("pure_inline_dont_inline",	"Pure|Inline|DontInline"));
2969
2970	fillRandomScalars(rnd, -100.f, 100.f, &inputFloats[0], numElements);
2971
2972	for (size_t ndx = 0; ndx < numElements; ++ndx)
2973		outputFloats[ndx] = inputFloats[ndx] + 10.f;
2974
2975	for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
2976	{
2977		map<string, string>		specializations;
2978		ComputeShaderSpec		spec;
2979
2980		specializations["CONTROL"] = cases[caseNdx].param;
2981		spec.assembly = shaderTemplate.specialize(specializations);
2982		spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
2983		spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
2984		spec.numWorkGroups = IVec3(numElements, 1, 1);
2985
2986		group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
2987	}
2988
2989	return group.release();
2990}
2991
2992tcu::TestCaseGroup* createMemoryAccessGroup (tcu::TestContext& testCtx)
2993{
2994	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "memory_access", "Tests memory access cases"));
2995	vector<CaseParameter>			cases;
2996	de::Random						rnd				(deStringHash(group->getName()));
2997	const int						numElements		= 100;
2998	vector<float>					inputFloats		(numElements, 0);
2999	vector<float>					outputFloats	(numElements, 0);
3000	const StringTemplate			shaderTemplate	(
3001		string(s_ShaderPreamble) +
3002
3003		"OpSource GLSL 430\n"
3004		"OpName %main           \"main\"\n"
3005		"OpName %id             \"gl_GlobalInvocationID\"\n"
3006
3007		"OpDecorate %id BuiltIn GlobalInvocationId\n"
3008
3009		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
3010
3011		"%f32ptr_f  = OpTypePointer Function %f32\n"
3012
3013		"%id        = OpVariable %uvec3ptr Input\n"
3014		"%zero      = OpConstant %i32 0\n"
3015		"%four      = OpConstant %i32 4\n"
3016
3017		"%main      = OpFunction %void None %voidf\n"
3018		"%label     = OpLabel\n"
3019		"%copy      = OpVariable %f32ptr_f Function\n"
3020		"%idval     = OpLoad %uvec3 %id ${ACCESS}\n"
3021		"%x         = OpCompositeExtract %u32 %idval 0\n"
3022		"%inloc     = OpAccessChain %f32ptr %indata  %zero %x\n"
3023		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
3024		"             OpCopyMemory %copy %inloc ${ACCESS}\n"
3025		"%val1      = OpLoad %f32 %copy\n"
3026		"%val2      = OpLoad %f32 %inloc\n"
3027		"%add       = OpFAdd %f32 %val1 %val2\n"
3028		"             OpStore %outloc %add ${ACCESS}\n"
3029		"             OpReturn\n"
3030		"             OpFunctionEnd\n");
3031
3032	cases.push_back(CaseParameter("null",					""));
3033	cases.push_back(CaseParameter("none",					"None"));
3034	cases.push_back(CaseParameter("volatile",				"Volatile"));
3035	cases.push_back(CaseParameter("aligned",				"Aligned 4"));
3036	cases.push_back(CaseParameter("nontemporal",			"Nontemporal"));
3037	cases.push_back(CaseParameter("aligned_nontemporal",	"Aligned|Nontemporal 4"));
3038	cases.push_back(CaseParameter("aligned_volatile",		"Volatile|Aligned 4"));
3039
3040	fillRandomScalars(rnd, -100.f, 100.f, &inputFloats[0], numElements);
3041
3042	for (size_t ndx = 0; ndx < numElements; ++ndx)
3043		outputFloats[ndx] = inputFloats[ndx] + inputFloats[ndx];
3044
3045	for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
3046	{
3047		map<string, string>		specializations;
3048		ComputeShaderSpec		spec;
3049
3050		specializations["ACCESS"] = cases[caseNdx].param;
3051		spec.assembly = shaderTemplate.specialize(specializations);
3052		spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
3053		spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
3054		spec.numWorkGroups = IVec3(numElements, 1, 1);
3055
3056		group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
3057	}
3058
3059	return group.release();
3060}
3061
3062// Checks that we can get undefined values for various types, without exercising a computation with it.
3063tcu::TestCaseGroup* createOpUndefGroup (tcu::TestContext& testCtx)
3064{
3065	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opundef", "Tests the OpUndef instruction"));
3066	vector<CaseParameter>			cases;
3067	de::Random						rnd				(deStringHash(group->getName()));
3068	const int						numElements		= 100;
3069	vector<float>					positiveFloats	(numElements, 0);
3070	vector<float>					negativeFloats	(numElements, 0);
3071	const StringTemplate			shaderTemplate	(
3072		string(s_ShaderPreamble) +
3073
3074		"OpSource GLSL 430\n"
3075		"OpName %main           \"main\"\n"
3076		"OpName %id             \"gl_GlobalInvocationID\"\n"
3077
3078		"OpDecorate %id BuiltIn GlobalInvocationId\n"
3079
3080		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
3081
3082		"${TYPE}\n"
3083
3084		"%id        = OpVariable %uvec3ptr Input\n"
3085		"%zero      = OpConstant %i32 0\n"
3086
3087		"%main      = OpFunction %void None %voidf\n"
3088		"%label     = OpLabel\n"
3089
3090		"%undef     = OpUndef %type\n"
3091
3092		"%idval     = OpLoad %uvec3 %id\n"
3093		"%x         = OpCompositeExtract %u32 %idval 0\n"
3094
3095		"%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
3096		"%inval     = OpLoad %f32 %inloc\n"
3097		"%neg       = OpFNegate %f32 %inval\n"
3098		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
3099		"             OpStore %outloc %neg\n"
3100		"             OpReturn\n"
3101		"             OpFunctionEnd\n");
3102
3103	cases.push_back(CaseParameter("bool",			"%type = OpTypeBool"));
3104	cases.push_back(CaseParameter("sint32",			"%type = OpTypeInt 32 1"));
3105	cases.push_back(CaseParameter("uint32",			"%type = OpTypeInt 32 0"));
3106	cases.push_back(CaseParameter("float32",		"%type = OpTypeFloat 32"));
3107	cases.push_back(CaseParameter("vec4float32",	"%type = OpTypeVector %f32 4"));
3108	cases.push_back(CaseParameter("vec2uint32",		"%type = OpTypeVector %u32 2"));
3109	cases.push_back(CaseParameter("matrix",			"%type = OpTypeMatrix %uvec3 3"));
3110	cases.push_back(CaseParameter("image",			"%type = OpTypeImage %f32 2D 0 0 0 0 Unknown"));
3111	cases.push_back(CaseParameter("sampler",		"%type = OpTypeSampler"));
3112	cases.push_back(CaseParameter("sampledimage",	"%img = OpTypeImage %f32 2D 0 0 0 0 Unknown\n"
3113													"%type = OpTypeSampledImage %img"));
3114	cases.push_back(CaseParameter("array",			"%100 = OpConstant %u32 100\n"
3115													"%type = OpTypeArray %i32 %100"));
3116	cases.push_back(CaseParameter("runtimearray",	"%type = OpTypeRuntimeArray %f32"));
3117	cases.push_back(CaseParameter("struct",			"%type = OpTypeStruct %f32 %i32 %u32"));
3118	cases.push_back(CaseParameter("pointer",		"%type = OpTypePointer Function %i32"));
3119
3120	fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
3121
3122	for (size_t ndx = 0; ndx < numElements; ++ndx)
3123		negativeFloats[ndx] = -positiveFloats[ndx];
3124
3125	for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
3126	{
3127		map<string, string>		specializations;
3128		ComputeShaderSpec		spec;
3129
3130		specializations["TYPE"] = cases[caseNdx].param;
3131		spec.assembly = shaderTemplate.specialize(specializations);
3132		spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
3133		spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
3134		spec.numWorkGroups = IVec3(numElements, 1, 1);
3135
3136		group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
3137	}
3138
3139		return group.release();
3140}
3141typedef std::pair<std::string, VkShaderStageFlagBits>	EntryToStage;
3142typedef map<string, vector<EntryToStage> >				ModuleMap;
3143typedef map<VkShaderStageFlagBits, vector<deInt32> >	StageToSpecConstantMap;
3144
3145// Context for a specific test instantiation. For example, an instantiation
3146// may test colors yellow/magenta/cyan/mauve in a tesselation shader
3147// with an entry point named 'main_to_the_main'
3148struct InstanceContext
3149{
3150	// Map of modules to what entry_points we care to use from those modules.
3151	ModuleMap				moduleMap;
3152	RGBA					inputColors[4];
3153	RGBA					outputColors[4];
3154	// Concrete SPIR-V code to test via boilerplate specialization.
3155	map<string, string>		testCodeFragments;
3156	StageToSpecConstantMap	specConstants;
3157	bool					hasTessellation;
3158	VkShaderStageFlagBits	requiredStages;
3159
3160	InstanceContext (const RGBA (&inputs)[4], const RGBA (&outputs)[4], const map<string, string>& testCodeFragments_, const StageToSpecConstantMap& specConstants_)
3161		: testCodeFragments		(testCodeFragments_)
3162		, specConstants			(specConstants_)
3163		, hasTessellation		(false)
3164		, requiredStages		(static_cast<VkShaderStageFlagBits>(0))
3165	{
3166		inputColors[0]		= inputs[0];
3167		inputColors[1]		= inputs[1];
3168		inputColors[2]		= inputs[2];
3169		inputColors[3]		= inputs[3];
3170
3171		outputColors[0]		= outputs[0];
3172		outputColors[1]		= outputs[1];
3173		outputColors[2]		= outputs[2];
3174		outputColors[3]		= outputs[3];
3175	}
3176
3177	InstanceContext (const InstanceContext& other)
3178		: moduleMap			(other.moduleMap)
3179		, testCodeFragments	(other.testCodeFragments)
3180		, specConstants		(other.specConstants)
3181		, hasTessellation	(other.hasTessellation)
3182		, requiredStages    (other.requiredStages)
3183	{
3184		inputColors[0]		= other.inputColors[0];
3185		inputColors[1]		= other.inputColors[1];
3186		inputColors[2]		= other.inputColors[2];
3187		inputColors[3]		= other.inputColors[3];
3188
3189		outputColors[0]		= other.outputColors[0];
3190		outputColors[1]		= other.outputColors[1];
3191		outputColors[2]		= other.outputColors[2];
3192		outputColors[3]		= other.outputColors[3];
3193	}
3194};
3195
3196// A description of a shader to be used for a single stage of the graphics pipeline.
3197struct ShaderElement
3198{
3199	// The module that contains this shader entrypoint.
3200	string					moduleName;
3201
3202	// The name of the entrypoint.
3203	string					entryName;
3204
3205	// Which shader stage this entry point represents.
3206	VkShaderStageFlagBits	stage;
3207
3208	ShaderElement (const string& moduleName_, const string& entryPoint_, VkShaderStageFlagBits shaderStage_)
3209		: moduleName(moduleName_)
3210		, entryName(entryPoint_)
3211		, stage(shaderStage_)
3212	{
3213	}
3214};
3215
3216void getDefaultColors (RGBA (&colors)[4])
3217{
3218	colors[0] = RGBA::white();
3219	colors[1] = RGBA::red();
3220	colors[2] = RGBA::green();
3221	colors[3] = RGBA::blue();
3222}
3223
3224void getHalfColorsFullAlpha (RGBA (&colors)[4])
3225{
3226	colors[0] = RGBA(127, 127, 127, 255);
3227	colors[1] = RGBA(127, 0,   0,	255);
3228	colors[2] = RGBA(0,	  127, 0,	255);
3229	colors[3] = RGBA(0,	  0,   127, 255);
3230}
3231
3232void getInvertedDefaultColors (RGBA (&colors)[4])
3233{
3234	colors[0] = RGBA(0,		0,		0,		255);
3235	colors[1] = RGBA(0,		255,	255,	255);
3236	colors[2] = RGBA(255,	0,		255,	255);
3237	colors[3] = RGBA(255,	255,	0,		255);
3238}
3239
3240// Turns a statically sized array of ShaderElements into an instance-context
3241// by setting up the mapping of modules to their contained shaders and stages.
3242// The inputs and expected outputs are given by inputColors and outputColors
3243template<size_t N>
3244InstanceContext createInstanceContext (const ShaderElement (&elements)[N], const RGBA (&inputColors)[4], const RGBA (&outputColors)[4], const map<string, string>& testCodeFragments, const StageToSpecConstantMap& specConstants)
3245{
3246	InstanceContext ctx (inputColors, outputColors, testCodeFragments, specConstants);
3247	for (size_t i = 0; i < N; ++i)
3248	{
3249		ctx.moduleMap[elements[i].moduleName].push_back(std::make_pair(elements[i].entryName, elements[i].stage));
3250		ctx.requiredStages = static_cast<VkShaderStageFlagBits>(ctx.requiredStages | elements[i].stage);
3251	}
3252	return ctx;
3253}
3254
3255template<size_t N>
3256inline InstanceContext createInstanceContext (const ShaderElement (&elements)[N], RGBA (&inputColors)[4], const RGBA (&outputColors)[4], const map<string, string>& testCodeFragments)
3257{
3258	return createInstanceContext(elements, inputColors, outputColors, testCodeFragments, StageToSpecConstantMap());
3259}
3260
3261// The same as createInstanceContext above, but with default colors.
3262template<size_t N>
3263InstanceContext createInstanceContext (const ShaderElement (&elements)[N], const map<string, string>& testCodeFragments)
3264{
3265	RGBA defaultColors[4];
3266	getDefaultColors(defaultColors);
3267	return createInstanceContext(elements, defaultColors, defaultColors, testCodeFragments);
3268}
3269
3270// For the current InstanceContext, constructs the required modules and shader stage create infos.
3271void createPipelineShaderStages (const DeviceInterface& vk, const VkDevice vkDevice, InstanceContext& instance, Context& context, vector<ModuleHandleSp>& modules, vector<VkPipelineShaderStageCreateInfo>& createInfos)
3272{
3273	for (ModuleMap::const_iterator moduleNdx = instance.moduleMap.begin(); moduleNdx != instance.moduleMap.end(); ++moduleNdx)
3274	{
3275		const ModuleHandleSp mod(new Unique<VkShaderModule>(createShaderModule(vk, vkDevice, context.getBinaryCollection().get(moduleNdx->first), 0)));
3276		modules.push_back(ModuleHandleSp(mod));
3277		for (vector<EntryToStage>::const_iterator shaderNdx = moduleNdx->second.begin(); shaderNdx != moduleNdx->second.end(); ++shaderNdx)
3278		{
3279			const EntryToStage&						stage			= *shaderNdx;
3280			const VkPipelineShaderStageCreateInfo	shaderParam		=
3281			{
3282				VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,	//	VkStructureType			sType;
3283				DE_NULL,												//	const void*				pNext;
3284				(VkPipelineShaderStageCreateFlags)0,
3285				stage.second,											//	VkShaderStageFlagBits	stage;
3286				**modules.back(),										//	VkShaderModule			module;
3287				stage.first.c_str(),									//	const char*				pName;
3288				(const VkSpecializationInfo*)DE_NULL,
3289			};
3290			createInfos.push_back(shaderParam);
3291		}
3292	}
3293}
3294
3295#define SPIRV_ASSEMBLY_TYPES																	\
3296	"%void = OpTypeVoid\n"																		\
3297	"%bool = OpTypeBool\n"																		\
3298																								\
3299	"%i32 = OpTypeInt 32 1\n"																	\
3300	"%u32 = OpTypeInt 32 0\n"																	\
3301																								\
3302	"%f32 = OpTypeFloat 32\n"																	\
3303	"%v3f32 = OpTypeVector %f32 3\n"															\
3304	"%v4f32 = OpTypeVector %f32 4\n"															\
3305																								\
3306	"%v4f32_function = OpTypeFunction %v4f32 %v4f32\n"											\
3307	"%fun = OpTypeFunction %void\n"																\
3308																								\
3309	"%ip_f32 = OpTypePointer Input %f32\n"														\
3310	"%ip_i32 = OpTypePointer Input %i32\n"														\
3311	"%ip_v3f32 = OpTypePointer Input %v3f32\n"													\
3312	"%ip_v4f32 = OpTypePointer Input %v4f32\n"													\
3313																								\
3314	"%op_f32 = OpTypePointer Output %f32\n"														\
3315	"%op_v4f32 = OpTypePointer Output %v4f32\n"													\
3316																								\
3317	"%fp_f32   = OpTypePointer Function %f32\n"													\
3318	"%fp_i32   = OpTypePointer Function %i32\n"													\
3319	"%fp_v4f32 = OpTypePointer Function %v4f32\n"
3320
3321#define SPIRV_ASSEMBLY_CONSTANTS																\
3322	"%c_f32_1 = OpConstant %f32 1.0\n"															\
3323	"%c_f32_0 = OpConstant %f32 0.0\n"															\
3324	"%c_f32_0_5 = OpConstant %f32 0.5\n"														\
3325	"%c_f32_n1  = OpConstant %f32 -1.\n"														\
3326	"%c_f32_7 = OpConstant %f32 7.0\n"															\
3327	"%c_f32_8 = OpConstant %f32 8.0\n"															\
3328	"%c_i32_0 = OpConstant %i32 0\n"															\
3329	"%c_i32_1 = OpConstant %i32 1\n"															\
3330	"%c_i32_2 = OpConstant %i32 2\n"															\
3331	"%c_i32_3 = OpConstant %i32 3\n"															\
3332	"%c_i32_4 = OpConstant %i32 4\n"															\
3333	"%c_u32_0 = OpConstant %u32 0\n"															\
3334	"%c_u32_1 = OpConstant %u32 1\n"															\
3335	"%c_u32_2 = OpConstant %u32 2\n"															\
3336	"%c_u32_3 = OpConstant %u32 3\n"															\
3337	"%c_u32_32 = OpConstant %u32 32\n"															\
3338	"%c_u32_4 = OpConstant %u32 4\n"															\
3339	"%c_u32_31_bits = OpConstant %u32 0x7FFFFFFF\n"												\
3340	"%c_v4f32_1_1_1_1 = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_1\n"		\
3341	"%c_v4f32_1_0_0_1 = OpConstantComposite %v4f32 %c_f32_1 %c_f32_0 %c_f32_0 %c_f32_1\n"		\
3342	"%c_v4f32_0_5_0_5_0_5_0_5 = OpConstantComposite %v4f32 %c_f32_0_5 %c_f32_0_5 %c_f32_0_5 %c_f32_0_5\n"
3343
3344#define SPIRV_ASSEMBLY_ARRAYS																	\
3345	"%a1f32 = OpTypeArray %f32 %c_u32_1\n"														\
3346	"%a2f32 = OpTypeArray %f32 %c_u32_2\n"														\
3347	"%a3v4f32 = OpTypeArray %v4f32 %c_u32_3\n"													\
3348	"%a4f32 = OpTypeArray %f32 %c_u32_4\n"														\
3349	"%a32v4f32 = OpTypeArray %v4f32 %c_u32_32\n"												\
3350	"%ip_a3v4f32 = OpTypePointer Input %a3v4f32\n"												\
3351	"%ip_a32v4f32 = OpTypePointer Input %a32v4f32\n"											\
3352	"%op_a2f32 = OpTypePointer Output %a2f32\n"													\
3353	"%op_a3v4f32 = OpTypePointer Output %a3v4f32\n"												\
3354	"%op_a4f32 = OpTypePointer Output %a4f32\n"
3355
3356// Creates vertex-shader assembly by specializing a boilerplate StringTemplate
3357// on fragments, which must (at least) map "testfun" to an OpFunction definition
3358// for %test_code that takes and returns a %v4f32.  Boilerplate IDs are prefixed
3359// with "BP_" to avoid collisions with fragments.
3360//
3361// It corresponds roughly to this GLSL:
3362//;
3363// layout(location = 0) in vec4 position;
3364// layout(location = 1) in vec4 color;
3365// layout(location = 1) out highp vec4 vtxColor;
3366// void main (void) { gl_Position = position; vtxColor = test_func(color); }
3367string makeVertexShaderAssembly(const map<string, string>& fragments)
3368{
3369// \todo [2015-11-23 awoloszyn] Remove OpName once these have stabalized
3370	static const char vertexShaderBoilerplate[] =
3371		"OpCapability Shader\n"
3372		"OpMemoryModel Logical GLSL450\n"
3373		"OpEntryPoint Vertex %main \"main\" %BP_stream %BP_position %BP_vtx_color %BP_color %BP_gl_VertexID %BP_gl_InstanceID\n"
3374		"${debug:opt}\n"
3375		"OpName %main \"main\"\n"
3376		"OpName %BP_gl_PerVertex \"gl_PerVertex\"\n"
3377		"OpMemberName %BP_gl_PerVertex 0 \"gl_Position\"\n"
3378		"OpMemberName %BP_gl_PerVertex 1 \"gl_PointSize\"\n"
3379		"OpMemberName %BP_gl_PerVertex 2 \"gl_ClipDistance\"\n"
3380		"OpMemberName %BP_gl_PerVertex 3 \"gl_CullDistance\"\n"
3381		"OpName %test_code \"testfun(vf4;\"\n"
3382		"OpName %BP_stream \"\"\n"
3383		"OpName %BP_position \"position\"\n"
3384		"OpName %BP_vtx_color \"vtxColor\"\n"
3385		"OpName %BP_color \"color\"\n"
3386		"OpName %BP_gl_VertexID \"gl_VertexID\"\n"
3387		"OpName %BP_gl_InstanceID \"gl_InstanceID\"\n"
3388		"OpMemberDecorate %BP_gl_PerVertex 0 BuiltIn Position\n"
3389		"OpMemberDecorate %BP_gl_PerVertex 1 BuiltIn PointSize\n"
3390		"OpMemberDecorate %BP_gl_PerVertex 2 BuiltIn ClipDistance\n"
3391		"OpMemberDecorate %BP_gl_PerVertex 3 BuiltIn CullDistance\n"
3392		"OpDecorate %BP_gl_PerVertex Block\n"
3393		"OpDecorate %BP_position Location 0\n"
3394		"OpDecorate %BP_vtx_color Location 1\n"
3395		"OpDecorate %BP_color Location 1\n"
3396		"OpDecorate %BP_gl_VertexID BuiltIn VertexId\n"
3397		"OpDecorate %BP_gl_InstanceID BuiltIn InstanceId\n"
3398		"${decoration:opt}\n"
3399		SPIRV_ASSEMBLY_TYPES
3400		SPIRV_ASSEMBLY_CONSTANTS
3401		SPIRV_ASSEMBLY_ARRAYS
3402		"%BP_gl_PerVertex = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
3403		"%BP_op_gl_PerVertex = OpTypePointer Output %BP_gl_PerVertex\n"
3404		"%BP_stream = OpVariable %BP_op_gl_PerVertex Output\n"
3405		"%BP_position = OpVariable %ip_v4f32 Input\n"
3406		"%BP_vtx_color = OpVariable %op_v4f32 Output\n"
3407		"%BP_color = OpVariable %ip_v4f32 Input\n"
3408		"%BP_gl_VertexID = OpVariable %ip_i32 Input\n"
3409		"%BP_gl_InstanceID = OpVariable %ip_i32 Input\n"
3410		"${pre_main:opt}\n"
3411		"%main = OpFunction %void None %fun\n"
3412		"%BP_label = OpLabel\n"
3413		"%BP_pos = OpLoad %v4f32 %BP_position\n"
3414		"%BP_gl_pos = OpAccessChain %op_v4f32 %BP_stream %c_i32_0\n"
3415		"OpStore %BP_gl_pos %BP_pos\n"
3416		"%BP_col = OpLoad %v4f32 %BP_color\n"
3417		"%BP_col_transformed = OpFunctionCall %v4f32 %test_code %BP_col\n"
3418		"OpStore %BP_vtx_color %BP_col_transformed\n"
3419		"OpReturn\n"
3420		"OpFunctionEnd\n"
3421		"${testfun}\n";
3422	return tcu::StringTemplate(vertexShaderBoilerplate).specialize(fragments);
3423}
3424
3425// Creates tess-control-shader assembly by specializing a boilerplate
3426// StringTemplate on fragments, which must (at least) map "testfun" to an
3427// OpFunction definition for %test_code that takes and returns a %v4f32.
3428// Boilerplate IDs are prefixed with "BP_" to avoid collisions with fragments.
3429//
3430// It roughly corresponds to the following GLSL.
3431//
3432// #version 450
3433// layout(vertices = 3) out;
3434// layout(location = 1) in vec4 in_color[];
3435// layout(location = 1) out vec4 out_color[];
3436//
3437// void main() {
3438//   out_color[gl_InvocationID] = testfun(in_color[gl_InvocationID]);
3439//   gl_out[gl_InvocationID].gl_Position = gl_in[gl_InvocationID].gl_Position;
3440//   if (gl_InvocationID == 0) {
3441//     gl_TessLevelOuter[0] = 1.0;
3442//     gl_TessLevelOuter[1] = 1.0;
3443//     gl_TessLevelOuter[2] = 1.0;
3444//     gl_TessLevelInner[0] = 1.0;
3445//   }
3446// }
3447string makeTessControlShaderAssembly (const map<string, string>& fragments)
3448{
3449	static const char tessControlShaderBoilerplate[] =
3450		"OpCapability Tessellation\n"
3451		"OpMemoryModel Logical GLSL450\n"
3452		"OpEntryPoint TessellationControl %BP_main \"main\" %BP_out_color %BP_gl_InvocationID %BP_in_color %BP_gl_out %BP_gl_in %BP_gl_TessLevelOuter %BP_gl_TessLevelInner\n"
3453		"OpExecutionMode %BP_main OutputVertices 3\n"
3454		"${debug:opt}\n"
3455		"OpName %BP_main \"main\"\n"
3456		"OpName %test_code \"testfun(vf4;\"\n"
3457		"OpName %BP_out_color \"out_color\"\n"
3458		"OpName %BP_gl_InvocationID \"gl_InvocationID\"\n"
3459		"OpName %BP_in_color \"in_color\"\n"
3460		"OpName %BP_gl_PerVertex \"gl_PerVertex\"\n"
3461		"OpMemberName %BP_gl_PerVertex 0 \"gl_Position\"\n"
3462		"OpMemberName %BP_gl_PerVertex 1 \"gl_PointSize\"\n"
3463		"OpMemberName %BP_gl_PerVertex 2 \"gl_ClipDistance\"\n"
3464		"OpMemberName %BP_gl_PerVertex 3 \"gl_CullDistance\"\n"
3465		"OpName %BP_gl_out \"gl_out\"\n"
3466		"OpName %BP_gl_PVOut \"gl_PerVertex\"\n"
3467		"OpMemberName %BP_gl_PVOut 0 \"gl_Position\"\n"
3468		"OpMemberName %BP_gl_PVOut 1 \"gl_PointSize\"\n"
3469		"OpMemberName %BP_gl_PVOut 2 \"gl_ClipDistance\"\n"
3470		"OpMemberName %BP_gl_PVOut 3 \"gl_CullDistance\"\n"
3471		"OpName %BP_gl_in \"gl_in\"\n"
3472		"OpName %BP_gl_TessLevelOuter \"gl_TessLevelOuter\"\n"
3473		"OpName %BP_gl_TessLevelInner \"gl_TessLevelInner\"\n"
3474		"OpDecorate %BP_out_color Location 1\n"
3475		"OpDecorate %BP_gl_InvocationID BuiltIn InvocationId\n"
3476		"OpDecorate %BP_in_color Location 1\n"
3477		"OpMemberDecorate %BP_gl_PerVertex 0 BuiltIn Position\n"
3478		"OpMemberDecorate %BP_gl_PerVertex 1 BuiltIn PointSize\n"
3479		"OpMemberDecorate %BP_gl_PerVertex 2 BuiltIn ClipDistance\n"
3480		"OpMemberDecorate %BP_gl_PerVertex 3 BuiltIn CullDistance\n"
3481		"OpDecorate %BP_gl_PerVertex Block\n"
3482		"OpMemberDecorate %BP_gl_PVOut 0 BuiltIn Position\n"
3483		"OpMemberDecorate %BP_gl_PVOut 1 BuiltIn PointSize\n"
3484		"OpMemberDecorate %BP_gl_PVOut 2 BuiltIn ClipDistance\n"
3485		"OpMemberDecorate %BP_gl_PVOut 3 BuiltIn CullDistance\n"
3486		"OpDecorate %BP_gl_PVOut Block\n"
3487		"OpDecorate %BP_gl_TessLevelOuter Patch\n"
3488		"OpDecorate %BP_gl_TessLevelOuter BuiltIn TessLevelOuter\n"
3489		"OpDecorate %BP_gl_TessLevelInner Patch\n"
3490		"OpDecorate %BP_gl_TessLevelInner BuiltIn TessLevelInner\n"
3491		"${decoration:opt}\n"
3492		SPIRV_ASSEMBLY_TYPES
3493		SPIRV_ASSEMBLY_CONSTANTS
3494		SPIRV_ASSEMBLY_ARRAYS
3495		"%BP_out_color = OpVariable %op_a3v4f32 Output\n"
3496		"%BP_gl_InvocationID = OpVariable %ip_i32 Input\n"
3497		"%BP_in_color = OpVariable %ip_a32v4f32 Input\n"
3498		"%BP_gl_PerVertex = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
3499		"%BP_a3_gl_PerVertex = OpTypeArray %BP_gl_PerVertex %c_u32_3\n"
3500		"%BP_op_a3_gl_PerVertex = OpTypePointer Output %BP_a3_gl_PerVertex\n"
3501		"%BP_gl_out = OpVariable %BP_op_a3_gl_PerVertex Output\n"
3502		"%BP_gl_PVOut = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
3503		"%BP_a32_gl_PVOut = OpTypeArray %BP_gl_PVOut %c_u32_32\n"
3504		"%BP_ip_a32_gl_PVOut = OpTypePointer Input %BP_a32_gl_PVOut\n"
3505		"%BP_gl_in = OpVariable %BP_ip_a32_gl_PVOut Input\n"
3506		"%BP_gl_TessLevelOuter = OpVariable %op_a4f32 Output\n"
3507		"%BP_gl_TessLevelInner = OpVariable %op_a2f32 Output\n"
3508		"${pre_main:opt}\n"
3509
3510		"%BP_main = OpFunction %void None %fun\n"
3511		"%BP_label = OpLabel\n"
3512
3513		"%BP_gl_Invoc = OpLoad %i32 %BP_gl_InvocationID\n"
3514
3515		"%BP_in_col_loc = OpAccessChain %ip_v4f32 %BP_in_color %BP_gl_Invoc\n"
3516		"%BP_out_col_loc = OpAccessChain %op_v4f32 %BP_out_color %BP_gl_Invoc\n"
3517		"%BP_in_col_val = OpLoad %v4f32 %BP_in_col_loc\n"
3518		"%BP_clr_transformed = OpFunctionCall %v4f32 %test_code %BP_in_col_val\n"
3519		"OpStore %BP_out_col_loc %BP_clr_transformed\n"
3520
3521		"%BP_in_pos_loc = OpAccessChain %ip_v4f32 %BP_gl_in %BP_gl_Invoc %c_i32_0\n"
3522		"%BP_out_pos_loc = OpAccessChain %op_v4f32 %BP_gl_out %BP_gl_Invoc %c_i32_0\n"
3523		"%BP_in_pos_val = OpLoad %v4f32 %BP_in_pos_loc\n"
3524		"OpStore %BP_out_pos_loc %BP_in_pos_val\n"
3525
3526		"%BP_cmp = OpIEqual %bool %BP_gl_Invoc %c_i32_0\n"
3527		"OpSelectionMerge %BP_merge_label None\n"
3528		"OpBranchConditional %BP_cmp %BP_if_label %BP_merge_label\n"
3529		"%BP_if_label = OpLabel\n"
3530		"%BP_gl_TessLevelOuterPos_0 = OpAccessChain %op_f32 %BP_gl_TessLevelOuter %c_i32_0\n"
3531		"%BP_gl_TessLevelOuterPos_1 = OpAccessChain %op_f32 %BP_gl_TessLevelOuter %c_i32_1\n"
3532		"%BP_gl_TessLevelOuterPos_2 = OpAccessChain %op_f32 %BP_gl_TessLevelOuter %c_i32_2\n"
3533		"%BP_gl_TessLevelInnerPos_0 = OpAccessChain %op_f32 %BP_gl_TessLevelInner %c_i32_0\n"
3534		"OpStore %BP_gl_TessLevelOuterPos_0 %c_f32_1\n"
3535		"OpStore %BP_gl_TessLevelOuterPos_1 %c_f32_1\n"
3536		"OpStore %BP_gl_TessLevelOuterPos_2 %c_f32_1\n"
3537		"OpStore %BP_gl_TessLevelInnerPos_0 %c_f32_1\n"
3538		"OpBranch %BP_merge_label\n"
3539		"%BP_merge_label = OpLabel\n"
3540		"OpReturn\n"
3541		"OpFunctionEnd\n"
3542		"${testfun}\n";
3543	return tcu::StringTemplate(tessControlShaderBoilerplate).specialize(fragments);
3544}
3545
3546// Creates tess-evaluation-shader assembly by specializing a boilerplate
3547// StringTemplate on fragments, which must (at least) map "testfun" to an
3548// OpFunction definition for %test_code that takes and returns a %v4f32.
3549// Boilerplate IDs are prefixed with "BP_" to avoid collisions with fragments.
3550//
3551// It roughly corresponds to the following glsl.
3552//
3553// #version 450
3554//
3555// layout(triangles, equal_spacing, ccw) in;
3556// layout(location = 1) in vec4 in_color[];
3557// layout(location = 1) out vec4 out_color;
3558//
3559// #define interpolate(val)
3560//   vec4(gl_TessCoord.x) * val[0] + vec4(gl_TessCoord.y) * val[1] +
3561//          vec4(gl_TessCoord.z) * val[2]
3562//
3563// void main() {
3564//   gl_Position = vec4(gl_TessCoord.x) * gl_in[0].gl_Position +
3565//                  vec4(gl_TessCoord.y) * gl_in[1].gl_Position +
3566//                  vec4(gl_TessCoord.z) * gl_in[2].gl_Position;
3567//   out_color = testfun(interpolate(in_color));
3568// }
3569string makeTessEvalShaderAssembly(const map<string, string>& fragments)
3570{
3571	static const char tessEvalBoilerplate[] =
3572		"OpCapability Tessellation\n"
3573		"OpMemoryModel Logical GLSL450\n"
3574		"OpEntryPoint TessellationEvaluation %BP_main \"main\" %BP_stream %BP_gl_TessCoord %BP_gl_in %BP_out_color %BP_in_color\n"
3575		"OpExecutionMode %BP_main Triangles\n"
3576		"OpExecutionMode %BP_main SpacingEqual\n"
3577		"OpExecutionMode %BP_main VertexOrderCcw\n"
3578		"${debug:opt}\n"
3579		"OpName %BP_main \"main\"\n"
3580		"OpName %test_code \"testfun(vf4;\"\n"
3581		"OpName %BP_gl_PerVertexOut \"gl_PerVertex\"\n"
3582		"OpMemberName %BP_gl_PerVertexOut 0 \"gl_Position\"\n"
3583		"OpMemberName %BP_gl_PerVertexOut 1 \"gl_PointSize\"\n"
3584		"OpMemberName %BP_gl_PerVertexOut 2 \"gl_ClipDistance\"\n"
3585		"OpMemberName %BP_gl_PerVertexOut 3 \"gl_CullDistance\"\n"
3586		"OpName %BP_stream \"\"\n"
3587		"OpName %BP_gl_TessCoord \"gl_TessCoord\"\n"
3588		"OpName %BP_gl_PerVertexIn \"gl_PerVertex\"\n"
3589		"OpMemberName %BP_gl_PerVertexIn 0 \"gl_Position\"\n"
3590		"OpMemberName %BP_gl_PerVertexIn 1 \"gl_PointSize\"\n"
3591		"OpMemberName %BP_gl_PerVertexIn 2 \"gl_ClipDistance\"\n"
3592		"OpMemberName %BP_gl_PerVertexIn 3 \"gl_CullDistance\"\n"
3593		"OpName %BP_gl_in \"gl_in\"\n"
3594		"OpName %BP_out_color \"out_color\"\n"
3595		"OpName %BP_in_color \"in_color\"\n"
3596		"OpMemberDecorate %BP_gl_PerVertexOut 0 BuiltIn Position\n"
3597		"OpMemberDecorate %BP_gl_PerVertexOut 1 BuiltIn PointSize\n"
3598		"OpMemberDecorate %BP_gl_PerVertexOut 2 BuiltIn ClipDistance\n"
3599		"OpMemberDecorate %BP_gl_PerVertexOut 3 BuiltIn CullDistance\n"
3600		"OpDecorate %BP_gl_PerVertexOut Block\n"
3601		"OpDecorate %BP_gl_TessCoord BuiltIn TessCoord\n"
3602		"OpMemberDecorate %BP_gl_PerVertexIn 0 BuiltIn Position\n"
3603		"OpMemberDecorate %BP_gl_PerVertexIn 1 BuiltIn PointSize\n"
3604		"OpMemberDecorate %BP_gl_PerVertexIn 2 BuiltIn ClipDistance\n"
3605		"OpMemberDecorate %BP_gl_PerVertexIn 3 BuiltIn CullDistance\n"
3606		"OpDecorate %BP_gl_PerVertexIn Block\n"
3607		"OpDecorate %BP_out_color Location 1\n"
3608		"OpDecorate %BP_in_color Location 1\n"
3609		"${decoration:opt}\n"
3610		SPIRV_ASSEMBLY_TYPES
3611		SPIRV_ASSEMBLY_CONSTANTS
3612		SPIRV_ASSEMBLY_ARRAYS
3613		"%BP_gl_PerVertexOut = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
3614		"%BP_op_gl_PerVertexOut = OpTypePointer Output %BP_gl_PerVertexOut\n"
3615		"%BP_stream = OpVariable %BP_op_gl_PerVertexOut Output\n"
3616		"%BP_gl_TessCoord = OpVariable %ip_v3f32 Input\n"
3617		"%BP_gl_PerVertexIn = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
3618		"%BP_a32_gl_PerVertexIn = OpTypeArray %BP_gl_PerVertexIn %c_u32_32\n"
3619		"%BP_ip_a32_gl_PerVertexIn = OpTypePointer Input %BP_a32_gl_PerVertexIn\n"
3620		"%BP_gl_in = OpVariable %BP_ip_a32_gl_PerVertexIn Input\n"
3621		"%BP_out_color = OpVariable %op_v4f32 Output\n"
3622		"%BP_in_color = OpVariable %ip_a32v4f32 Input\n"
3623		"${pre_main:opt}\n"
3624		"%BP_main = OpFunction %void None %fun\n"
3625		"%BP_label = OpLabel\n"
3626		"%BP_gl_TC_0 = OpAccessChain %ip_f32 %BP_gl_TessCoord %c_u32_0\n"
3627		"%BP_gl_TC_1 = OpAccessChain %ip_f32 %BP_gl_TessCoord %c_u32_1\n"
3628		"%BP_gl_TC_2 = OpAccessChain %ip_f32 %BP_gl_TessCoord %c_u32_2\n"
3629		"%BP_gl_in_gl_Pos_0 = OpAccessChain %ip_v4f32 %BP_gl_in %c_i32_0 %c_i32_0\n"
3630		"%BP_gl_in_gl_Pos_1 = OpAccessChain %ip_v4f32 %BP_gl_in %c_i32_1 %c_i32_0\n"
3631		"%BP_gl_in_gl_Pos_2 = OpAccessChain %ip_v4f32 %BP_gl_in %c_i32_2 %c_i32_0\n"
3632
3633		"%BP_gl_OPos = OpAccessChain %op_v4f32 %BP_stream %c_i32_0\n"
3634		"%BP_in_color_0 = OpAccessChain %ip_v4f32 %BP_in_color %c_i32_0\n"
3635		"%BP_in_color_1 = OpAccessChain %ip_v4f32 %BP_in_color %c_i32_1\n"
3636		"%BP_in_color_2 = OpAccessChain %ip_v4f32 %BP_in_color %c_i32_2\n"
3637
3638		"%BP_TC_W_0 = OpLoad %f32 %BP_gl_TC_0\n"
3639		"%BP_TC_W_1 = OpLoad %f32 %BP_gl_TC_1\n"
3640		"%BP_TC_W_2 = OpLoad %f32 %BP_gl_TC_2\n"
3641		"%BP_v4f32_TC_0 = OpCompositeConstruct %v4f32 %BP_TC_W_0 %BP_TC_W_0 %BP_TC_W_0 %BP_TC_W_0\n"
3642		"%BP_v4f32_TC_1 = OpCompositeConstruct %v4f32 %BP_TC_W_1 %BP_TC_W_1 %BP_TC_W_1 %BP_TC_W_1\n"
3643		"%BP_v4f32_TC_2 = OpCompositeConstruct %v4f32 %BP_TC_W_2 %BP_TC_W_2 %BP_TC_W_2 %BP_TC_W_2\n"
3644
3645		"%BP_gl_IP_0 = OpLoad %v4f32 %BP_gl_in_gl_Pos_0\n"
3646		"%BP_gl_IP_1 = OpLoad %v4f32 %BP_gl_in_gl_Pos_1\n"
3647		"%BP_gl_IP_2 = OpLoad %v4f32 %BP_gl_in_gl_Pos_2\n"
3648
3649		"%BP_IP_W_0 = OpFMul %v4f32 %BP_v4f32_TC_0 %BP_gl_IP_0\n"
3650		"%BP_IP_W_1 = OpFMul %v4f32 %BP_v4f32_TC_1 %BP_gl_IP_1\n"
3651		"%BP_IP_W_2 = OpFMul %v4f32 %BP_v4f32_TC_2 %BP_gl_IP_2\n"
3652
3653		"%BP_pos_sum_0 = OpFAdd %v4f32 %BP_IP_W_0 %BP_IP_W_1\n"
3654		"%BP_pos_sum_1 = OpFAdd %v4f32 %BP_pos_sum_0 %BP_IP_W_2\n"
3655
3656		"OpStore %BP_gl_OPos %BP_pos_sum_1\n"
3657
3658		"%BP_IC_0 = OpLoad %v4f32 %BP_in_color_0\n"
3659		"%BP_IC_1 = OpLoad %v4f32 %BP_in_color_1\n"
3660		"%BP_IC_2 = OpLoad %v4f32 %BP_in_color_2\n"
3661
3662		"%BP_IC_W_0 = OpFMul %v4f32 %BP_v4f32_TC_0 %BP_IC_0\n"
3663		"%BP_IC_W_1 = OpFMul %v4f32 %BP_v4f32_TC_1 %BP_IC_1\n"
3664		"%BP_IC_W_2 = OpFMul %v4f32 %BP_v4f32_TC_2 %BP_IC_2\n"
3665
3666		"%BP_col_sum_0 = OpFAdd %v4f32 %BP_IC_W_0 %BP_IC_W_1\n"
3667		"%BP_col_sum_1 = OpFAdd %v4f32 %BP_col_sum_0 %BP_IC_W_2\n"
3668
3669		"%BP_clr_transformed = OpFunctionCall %v4f32 %test_code %BP_col_sum_1\n"
3670
3671		"OpStore %BP_out_color %BP_clr_transformed\n"
3672		"OpReturn\n"
3673		"OpFunctionEnd\n"
3674		"${testfun}\n";
3675	return tcu::StringTemplate(tessEvalBoilerplate).specialize(fragments);
3676}
3677
3678// Creates geometry-shader assembly by specializing a boilerplate StringTemplate
3679// on fragments, which must (at least) map "testfun" to an OpFunction definition
3680// for %test_code that takes and returns a %v4f32.  Boilerplate IDs are prefixed
3681// with "BP_" to avoid collisions with fragments.
3682//
3683// Derived from this GLSL:
3684//
3685// #version 450
3686// layout(triangles) in;
3687// layout(triangle_strip, max_vertices = 3) out;
3688//
3689// layout(location = 1) in vec4 in_color[];
3690// layout(location = 1) out vec4 out_color;
3691//
3692// void main() {
3693//   gl_Position = gl_in[0].gl_Position;
3694//   out_color = test_fun(in_color[0]);
3695//   EmitVertex();
3696//   gl_Position = gl_in[1].gl_Position;
3697//   out_color = test_fun(in_color[1]);
3698//   EmitVertex();
3699//   gl_Position = gl_in[2].gl_Position;
3700//   out_color = test_fun(in_color[2]);
3701//   EmitVertex();
3702//   EndPrimitive();
3703// }
3704string makeGeometryShaderAssembly(const map<string, string>& fragments)
3705{
3706	static const char geometryShaderBoilerplate[] =
3707		"OpCapability Geometry\n"
3708		"OpMemoryModel Logical GLSL450\n"
3709		"OpEntryPoint Geometry %BP_main \"main\" %BP_out_gl_position %BP_gl_in %BP_out_color %BP_in_color\n"
3710		"OpExecutionMode %BP_main Triangles\n"
3711		"OpExecutionMode %BP_main Invocations 0\n"
3712		"OpExecutionMode %BP_main OutputTriangleStrip\n"
3713		"OpExecutionMode %BP_main OutputVertices 3\n"
3714		"${debug:opt}\n"
3715		"OpName %BP_main \"main\"\n"
3716		"OpName %BP_per_vertex_in \"gl_PerVertex\"\n"
3717		"OpMemberName %BP_per_vertex_in 0 \"gl_Position\"\n"
3718		"OpMemberName %BP_per_vertex_in 1 \"gl_PointSize\"\n"
3719		"OpMemberName %BP_per_vertex_in 2 \"gl_ClipDistance\"\n"
3720		"OpMemberName %BP_per_vertex_in 3 \"gl_CullDistance\"\n"
3721		"OpName %BP_gl_in \"gl_in\"\n"
3722		"OpName %BP_out_color \"out_color\"\n"
3723		"OpName %BP_in_color \"in_color\"\n"
3724		"OpName %test_code \"testfun(vf4;\"\n"
3725		"OpDecorate %BP_out_gl_position BuiltIn Position\n"
3726		"OpMemberDecorate %BP_per_vertex_in 0 BuiltIn Position\n"
3727		"OpMemberDecorate %BP_per_vertex_in 1 BuiltIn PointSize\n"
3728		"OpMemberDecorate %BP_per_vertex_in 2 BuiltIn ClipDistance\n"
3729		"OpMemberDecorate %BP_per_vertex_in 3 BuiltIn CullDistance\n"
3730		"OpDecorate %BP_per_vertex_in Block\n"
3731		"OpDecorate %BP_out_color Location 1\n"
3732		"OpDecorate %BP_out_color Stream 0\n"
3733		"OpDecorate %BP_in_color Location 1\n"
3734		"${decoration:opt}\n"
3735		SPIRV_ASSEMBLY_TYPES
3736		SPIRV_ASSEMBLY_CONSTANTS
3737		SPIRV_ASSEMBLY_ARRAYS
3738		"%BP_per_vertex_in = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
3739		"%BP_a3_per_vertex_in = OpTypeArray %BP_per_vertex_in %c_u32_3\n"
3740		"%BP_ip_a3_per_vertex_in = OpTypePointer Input %BP_a3_per_vertex_in\n"
3741
3742		"%BP_gl_in = OpVariable %BP_ip_a3_per_vertex_in Input\n"
3743		"%BP_out_color = OpVariable %op_v4f32 Output\n"
3744		"%BP_in_color = OpVariable %ip_a3v4f32 Input\n"
3745		"%BP_out_gl_position = OpVariable %op_v4f32 Output\n"
3746		"${pre_main:opt}\n"
3747
3748		"%BP_main = OpFunction %void None %fun\n"
3749		"%BP_label = OpLabel\n"
3750		"%BP_gl_in_0_gl_position = OpAccessChain %ip_v4f32 %BP_gl_in %c_i32_0 %c_i32_0\n"
3751		"%BP_gl_in_1_gl_position = OpAccessChain %ip_v4f32 %BP_gl_in %c_i32_1 %c_i32_0\n"
3752		"%BP_gl_in_2_gl_position = OpAccessChain %ip_v4f32 %BP_gl_in %c_i32_2 %c_i32_0\n"
3753
3754		"%BP_in_position_0 = OpLoad %v4f32 %BP_gl_in_0_gl_position\n"
3755		"%BP_in_position_1 = OpLoad %v4f32 %BP_gl_in_1_gl_position\n"
3756		"%BP_in_position_2 = OpLoad %v4f32 %BP_gl_in_2_gl_position \n"
3757
3758		"%BP_in_color_0_ptr = OpAccessChain %ip_v4f32 %BP_in_color %c_i32_0\n"
3759		"%BP_in_color_1_ptr = OpAccessChain %ip_v4f32 %BP_in_color %c_i32_1\n"
3760		"%BP_in_color_2_ptr = OpAccessChain %ip_v4f32 %BP_in_color %c_i32_2\n"
3761
3762		"%BP_in_color_0 = OpLoad %v4f32 %BP_in_color_0_ptr\n"
3763		"%BP_in_color_1 = OpLoad %v4f32 %BP_in_color_1_ptr\n"
3764		"%BP_in_color_2 = OpLoad %v4f32 %BP_in_color_2_ptr\n"
3765
3766		"%BP_transformed_in_color_0 = OpFunctionCall %v4f32 %test_code %BP_in_color_0\n"
3767		"%BP_transformed_in_color_1 = OpFunctionCall %v4f32 %test_code %BP_in_color_1\n"
3768		"%BP_transformed_in_color_2 = OpFunctionCall %v4f32 %test_code %BP_in_color_2\n"
3769
3770
3771		"OpStore %BP_out_gl_position %BP_in_position_0\n"
3772		"OpStore %BP_out_color %BP_transformed_in_color_0\n"
3773		"OpEmitVertex\n"
3774
3775		"OpStore %BP_out_gl_position %BP_in_position_1\n"
3776		"OpStore %BP_out_color %BP_transformed_in_color_1\n"
3777		"OpEmitVertex\n"
3778
3779		"OpStore %BP_out_gl_position %BP_in_position_2\n"
3780		"OpStore %BP_out_color %BP_transformed_in_color_2\n"
3781		"OpEmitVertex\n"
3782
3783		"OpEndPrimitive\n"
3784		"OpReturn\n"
3785		"OpFunctionEnd\n"
3786		"${testfun}\n";
3787	return tcu::StringTemplate(geometryShaderBoilerplate).specialize(fragments);
3788}
3789
3790// Creates fragment-shader assembly by specializing a boilerplate StringTemplate
3791// on fragments, which must (at least) map "testfun" to an OpFunction definition
3792// for %test_code that takes and returns a %v4f32.  Boilerplate IDs are prefixed
3793// with "BP_" to avoid collisions with fragments.
3794//
3795// Derived from this GLSL:
3796//
3797// layout(location = 1) in highp vec4 vtxColor;
3798// layout(location = 0) out highp vec4 fragColor;
3799// highp vec4 testfun(highp vec4 x) { return x; }
3800// void main(void) { fragColor = testfun(vtxColor); }
3801//
3802// with modifications including passing vtxColor by value and ripping out
3803// testfun() definition.
3804string makeFragmentShaderAssembly(const map<string, string>& fragments)
3805{
3806	static const char fragmentShaderBoilerplate[] =
3807		"OpCapability Shader\n"
3808		"OpMemoryModel Logical GLSL450\n"
3809		"OpEntryPoint Fragment %BP_main \"main\" %BP_vtxColor %BP_fragColor\n"
3810		"OpExecutionMode %BP_main OriginUpperLeft\n"
3811		"${debug:opt}\n"
3812		"OpName %BP_main \"main\"\n"
3813		"OpName %BP_fragColor \"fragColor\"\n"
3814		"OpName %BP_vtxColor \"vtxColor\"\n"
3815		"OpName %test_code \"testfun(vf4;\"\n"
3816		"OpDecorate %BP_fragColor Location 0\n"
3817		"OpDecorate %BP_vtxColor Location 1\n"
3818		"${decoration:opt}\n"
3819		SPIRV_ASSEMBLY_TYPES
3820		SPIRV_ASSEMBLY_CONSTANTS
3821		SPIRV_ASSEMBLY_ARRAYS
3822		"%BP_fragColor = OpVariable %op_v4f32 Output\n"
3823		"%BP_vtxColor = OpVariable %ip_v4f32 Input\n"
3824		"${pre_main:opt}\n"
3825		"%BP_main = OpFunction %void None %fun\n"
3826		"%BP_label_main = OpLabel\n"
3827		"%BP_tmp1 = OpLoad %v4f32 %BP_vtxColor\n"
3828		"%BP_tmp2 = OpFunctionCall %v4f32 %test_code %BP_tmp1\n"
3829		"OpStore %BP_fragColor %BP_tmp2\n"
3830		"OpReturn\n"
3831		"OpFunctionEnd\n"
3832		"${testfun}\n";
3833	return tcu::StringTemplate(fragmentShaderBoilerplate).specialize(fragments);
3834}
3835
3836// Creates fragments that specialize into a simple pass-through shader (of any kind).
3837map<string, string> passthruFragments(void)
3838{
3839	map<string, string> fragments;
3840	fragments["testfun"] =
3841		// A %test_code function that returns its argument unchanged.
3842		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
3843		"%param1 = OpFunctionParameter %v4f32\n"
3844		"%label_testfun = OpLabel\n"
3845		"OpReturnValue %param1\n"
3846		"OpFunctionEnd\n";
3847	return fragments;
3848}
3849
3850// Adds shader assembly text to dst.spirvAsmSources for all shader kinds.
3851// Vertex shader gets custom code from context, the rest are pass-through.
3852void addShaderCodeCustomVertex(vk::SourceCollections& dst, InstanceContext context)
3853{
3854	map<string, string> passthru = passthruFragments();
3855	dst.spirvAsmSources.add("vert") << makeVertexShaderAssembly(context.testCodeFragments);
3856	dst.spirvAsmSources.add("frag") << makeFragmentShaderAssembly(passthru);
3857}
3858
3859// Adds shader assembly text to dst.spirvAsmSources for all shader kinds.
3860// Tessellation control shader gets custom code from context, the rest are
3861// pass-through.
3862void addShaderCodeCustomTessControl(vk::SourceCollections& dst, InstanceContext context)
3863{
3864	map<string, string> passthru = passthruFragments();
3865	dst.spirvAsmSources.add("vert") << makeVertexShaderAssembly(passthru);
3866	dst.spirvAsmSources.add("tessc") << makeTessControlShaderAssembly(context.testCodeFragments);
3867	dst.spirvAsmSources.add("tesse") << makeTessEvalShaderAssembly(passthru);
3868	dst.spirvAsmSources.add("frag") << makeFragmentShaderAssembly(passthru);
3869}
3870
3871// Adds shader assembly text to dst.spirvAsmSources for all shader kinds.
3872// Tessellation evaluation shader gets custom code from context, the rest are
3873// pass-through.
3874void addShaderCodeCustomTessEval(vk::SourceCollections& dst, InstanceContext context)
3875{
3876	map<string, string> passthru = passthruFragments();
3877	dst.spirvAsmSources.add("vert") << makeVertexShaderAssembly(passthru);
3878	dst.spirvAsmSources.add("tessc") << makeTessControlShaderAssembly(passthru);
3879	dst.spirvAsmSources.add("tesse") << makeTessEvalShaderAssembly(context.testCodeFragments);
3880	dst.spirvAsmSources.add("frag") << makeFragmentShaderAssembly(passthru);
3881}
3882
3883// Adds shader assembly text to dst.spirvAsmSources for all shader kinds.
3884// Geometry shader gets custom code from context, the rest are pass-through.
3885void addShaderCodeCustomGeometry(vk::SourceCollections& dst, InstanceContext context)
3886{
3887	map<string, string> passthru = passthruFragments();
3888	dst.spirvAsmSources.add("vert") << makeVertexShaderAssembly(passthru);
3889	dst.spirvAsmSources.add("geom") << makeGeometryShaderAssembly(context.testCodeFragments);
3890	dst.spirvAsmSources.add("frag") << makeFragmentShaderAssembly(passthru);
3891}
3892
3893// Adds shader assembly text to dst.spirvAsmSources for all shader kinds.
3894// Fragment shader gets custom code from context, the rest are pass-through.
3895void addShaderCodeCustomFragment(vk::SourceCollections& dst, InstanceContext context)
3896{
3897	map<string, string> passthru = passthruFragments();
3898	dst.spirvAsmSources.add("vert") << makeVertexShaderAssembly(passthru);
3899	dst.spirvAsmSources.add("frag") << makeFragmentShaderAssembly(context.testCodeFragments);
3900}
3901
3902void createCombinedModule(vk::SourceCollections& dst, InstanceContext)
3903{
3904	// \todo [2015-12-07 awoloszyn] Make tessellation / geometry conditional
3905	// \todo [2015-12-07 awoloszyn] Remove OpName and OpMemberName at some point
3906	dst.spirvAsmSources.add("module") <<
3907		"OpCapability Shader\n"
3908		"OpCapability Geometry\n"
3909		"OpCapability Tessellation\n"
3910		"OpMemoryModel Logical GLSL450\n"
3911
3912		"OpEntryPoint Vertex %vert_main \"main\" %vert_Position %vert_vtxColor %vert_color %vert_vtxPosition %vert_vertex_id %vert_instance_id\n"
3913		"OpEntryPoint Geometry %geom_main \"main\" %geom_out_gl_position %geom_gl_in %geom_out_color %geom_in_color\n"
3914		"OpEntryPoint TessellationControl %tessc_main \"main\" %tessc_out_color %tessc_gl_InvocationID %tessc_in_color %tessc_out_position %tessc_in_position %tessc_gl_TessLevelOuter %tessc_gl_TessLevelInner\n"
3915		"OpEntryPoint TessellationEvaluation %tesse_main \"main\" %tesse_stream %tesse_gl_tessCoord %tesse_in_position %tesse_out_color %tesse_in_color \n"
3916		"OpEntryPoint Fragment %frag_main \"main\" %frag_vtxColor %frag_fragColor\n"
3917
3918		"OpExecutionMode %geom_main Triangles\n"
3919		"OpExecutionMode %geom_main Invocations 0\n"
3920		"OpExecutionMode %geom_main OutputTriangleStrip\n"
3921		"OpExecutionMode %geom_main OutputVertices 3\n"
3922
3923		"OpExecutionMode %tessc_main OutputVertices 3\n"
3924
3925		"OpExecutionMode %tesse_main Triangles\n"
3926
3927		"OpExecutionMode %frag_main OriginUpperLeft\n"
3928
3929		"; Vertex decorations\n"
3930		"OpName %vert_main \"main\"\n"
3931		"OpName %vert_vtxPosition \"vtxPosition\"\n"
3932		"OpName %vert_Position \"position\"\n"
3933		"OpName %vert_vtxColor \"vtxColor\"\n"
3934		"OpName %vert_color \"color\"\n"
3935		"OpName %vert_vertex_id \"gl_VertexID\"\n"
3936		"OpName %vert_instance_id \"gl_InstanceID\"\n"
3937		"OpDecorate %vert_vtxPosition Location 2\n"
3938		"OpDecorate %vert_Position Location 0\n"
3939		"OpDecorate %vert_vtxColor Location 1\n"
3940		"OpDecorate %vert_color Location 1\n"
3941		"OpDecorate %vert_vertex_id BuiltIn VertexId\n"
3942		"OpDecorate %vert_instance_id BuiltIn InstanceId\n"
3943
3944		"; Geometry decorations\n"
3945		"OpName %geom_main \"main\"\n"
3946		"OpName %geom_per_vertex_in \"gl_PerVertex\"\n"
3947		"OpMemberName %geom_per_vertex_in 0 \"gl_Position\"\n"
3948		"OpMemberName %geom_per_vertex_in 1 \"gl_PointSize\"\n"
3949		"OpMemberName %geom_per_vertex_in 2 \"gl_ClipDistance\"\n"
3950		"OpMemberName %geom_per_vertex_in 3 \"gl_CullDistance\"\n"
3951		"OpName %geom_gl_in \"gl_in\"\n"
3952		"OpName %geom_out_color \"out_color\"\n"
3953		"OpName %geom_in_color \"in_color\"\n"
3954		"OpDecorate %geom_out_gl_position BuiltIn Position\n"
3955		"OpMemberDecorate %geom_per_vertex_in 0 BuiltIn Position\n"
3956		"OpMemberDecorate %geom_per_vertex_in 1 BuiltIn PointSize\n"
3957		"OpMemberDecorate %geom_per_vertex_in 2 BuiltIn ClipDistance\n"
3958		"OpMemberDecorate %geom_per_vertex_in 3 BuiltIn CullDistance\n"
3959		"OpDecorate %geom_per_vertex_in Block\n"
3960		"OpDecorate %geom_out_color Location 1\n"
3961		"OpDecorate %geom_out_color Stream 0\n"
3962		"OpDecorate %geom_in_color Location 1\n"
3963
3964		"; Tessellation Control decorations\n"
3965		"OpName %tessc_main \"main\"\n"
3966		"OpName %tessc_out_color \"out_color\"\n"
3967		"OpName %tessc_gl_InvocationID \"gl_InvocationID\"\n"
3968		"OpName %tessc_in_color \"in_color\"\n"
3969		"OpName %tessc_out_position \"out_position\"\n"
3970		"OpName %tessc_in_position \"in_position\"\n"
3971		"OpName %tessc_gl_TessLevelOuter \"gl_TessLevelOuter\"\n"
3972		"OpName %tessc_gl_TessLevelInner \"gl_TessLevelInner\"\n"
3973		"OpDecorate %tessc_out_color Location 1\n"
3974		"OpDecorate %tessc_gl_InvocationID BuiltIn InvocationId\n"
3975		"OpDecorate %tessc_in_color Location 1\n"
3976		"OpDecorate %tessc_out_position Location 2\n"
3977		"OpDecorate %tessc_in_position Location 2\n"
3978		"OpDecorate %tessc_gl_TessLevelOuter Patch\n"
3979		"OpDecorate %tessc_gl_TessLevelOuter BuiltIn TessLevelOuter\n"
3980		"OpDecorate %tessc_gl_TessLevelInner Patch\n"
3981		"OpDecorate %tessc_gl_TessLevelInner BuiltIn TessLevelInner\n"
3982
3983		"; Tessellation Evaluation decorations\n"
3984		"OpName %tesse_main \"main\"\n"
3985		"OpName %tesse_per_vertex_out \"gl_PerVertex\"\n"
3986		"OpMemberName %tesse_per_vertex_out 0 \"gl_Position\"\n"
3987		"OpMemberName %tesse_per_vertex_out 1 \"gl_PointSize\"\n"
3988		"OpMemberName %tesse_per_vertex_out 2 \"gl_ClipDistance\"\n"
3989		"OpMemberName %tesse_per_vertex_out 3 \"gl_CullDistance\"\n"
3990		"OpName %tesse_stream \"\"\n"
3991		"OpName %tesse_gl_tessCoord \"gl_TessCoord\"\n"
3992		"OpName %tesse_in_position \"in_position\"\n"
3993		"OpName %tesse_out_color \"out_color\"\n"
3994		"OpName %tesse_in_color \"in_color\"\n"
3995		"OpMemberDecorate %tesse_per_vertex_out 0 BuiltIn Position\n"
3996		"OpMemberDecorate %tesse_per_vertex_out 1 BuiltIn PointSize\n"
3997		"OpMemberDecorate %tesse_per_vertex_out 2 BuiltIn ClipDistance\n"
3998		"OpMemberDecorate %tesse_per_vertex_out 3 BuiltIn CullDistance\n"
3999		"OpDecorate %tesse_per_vertex_out Block\n"
4000		"OpDecorate %tesse_gl_tessCoord BuiltIn TessCoord\n"
4001		"OpDecorate %tesse_in_position Location 2\n"
4002		"OpDecorate %tesse_out_color Location 1\n"
4003		"OpDecorate %tesse_in_color Location 1\n"
4004
4005		"; Fragment decorations\n"
4006		"OpName %frag_main \"main\"\n"
4007		"OpName %frag_fragColor \"fragColor\"\n"
4008		"OpName %frag_vtxColor \"vtxColor\"\n"
4009		"OpDecorate %frag_fragColor Location 0\n"
4010		"OpDecorate %frag_vtxColor Location 1\n"
4011
4012		SPIRV_ASSEMBLY_TYPES
4013		SPIRV_ASSEMBLY_CONSTANTS
4014		SPIRV_ASSEMBLY_ARRAYS
4015
4016		"; Vertex Variables\n"
4017		"%vert_vtxPosition = OpVariable %op_v4f32 Output\n"
4018		"%vert_Position = OpVariable %ip_v4f32 Input\n"
4019		"%vert_vtxColor = OpVariable %op_v4f32 Output\n"
4020		"%vert_color = OpVariable %ip_v4f32 Input\n"
4021		"%vert_vertex_id = OpVariable %ip_i32 Input\n"
4022		"%vert_instance_id = OpVariable %ip_i32 Input\n"
4023
4024		"; Geometry Variables\n"
4025		"%geom_per_vertex_in = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
4026		"%geom_a3_per_vertex_in = OpTypeArray %geom_per_vertex_in %c_u32_3\n"
4027		"%geom_ip_a3_per_vertex_in = OpTypePointer Input %geom_a3_per_vertex_in\n"
4028		"%geom_gl_in = OpVariable %geom_ip_a3_per_vertex_in Input\n"
4029		"%geom_out_color = OpVariable %op_v4f32 Output\n"
4030		"%geom_in_color = OpVariable %ip_a3v4f32 Input\n"
4031		"%geom_out_gl_position = OpVariable %op_v4f32 Output\n"
4032
4033		"; Tessellation Control Variables\n"
4034		"%tessc_out_color = OpVariable %op_a3v4f32 Output\n"
4035		"%tessc_gl_InvocationID = OpVariable %ip_i32 Input\n"
4036		"%tessc_in_color = OpVariable %ip_a32v4f32 Input\n"
4037		"%tessc_out_position = OpVariable %op_a3v4f32 Output\n"
4038		"%tessc_in_position = OpVariable %ip_a32v4f32 Input\n"
4039		"%tessc_gl_TessLevelOuter = OpVariable %op_a4f32 Output\n"
4040		"%tessc_gl_TessLevelInner = OpVariable %op_a2f32 Output\n"
4041
4042		"; Tessellation Evaluation Decorations\n"
4043		"%tesse_per_vertex_out = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
4044		"%tesse_op_per_vertex_out = OpTypePointer Output %tesse_per_vertex_out\n"
4045		"%tesse_stream = OpVariable %tesse_op_per_vertex_out Output\n"
4046		"%tesse_gl_tessCoord = OpVariable %ip_v3f32 Input\n"
4047		"%tesse_in_position = OpVariable %ip_a32v4f32 Input\n"
4048		"%tesse_out_color = OpVariable %op_v4f32 Output\n"
4049		"%tesse_in_color = OpVariable %ip_a32v4f32 Input\n"
4050
4051		"; Fragment Variables\n"
4052		"%frag_fragColor = OpVariable %op_v4f32 Output\n"
4053		"%frag_vtxColor = OpVariable %ip_v4f32 Input\n"
4054
4055		"; Vertex Entry\n"
4056		"%vert_main = OpFunction %void None %fun\n"
4057		"%vert_label = OpLabel\n"
4058		"%vert_tmp_position = OpLoad %v4f32 %vert_Position\n"
4059		"OpStore %vert_vtxPosition %vert_tmp_position\n"
4060		"%vert_tmp_color = OpLoad %v4f32 %vert_color\n"
4061		"OpStore %vert_vtxColor %vert_tmp_color\n"
4062		"OpReturn\n"
4063		"OpFunctionEnd\n"
4064
4065		"; Geometry Entry\n"
4066		"%geom_main = OpFunction %void None %fun\n"
4067		"%geom_label = OpLabel\n"
4068		"%geom_gl_in_0_gl_position = OpAccessChain %ip_v4f32 %geom_gl_in %c_i32_0 %c_i32_0\n"
4069		"%geom_gl_in_1_gl_position = OpAccessChain %ip_v4f32 %geom_gl_in %c_i32_1 %c_i32_0\n"
4070		"%geom_gl_in_2_gl_position = OpAccessChain %ip_v4f32 %geom_gl_in %c_i32_2 %c_i32_0\n"
4071		"%geom_in_position_0 = OpLoad %v4f32 %geom_gl_in_0_gl_position\n"
4072		"%geom_in_position_1 = OpLoad %v4f32 %geom_gl_in_1_gl_position\n"
4073		"%geom_in_position_2 = OpLoad %v4f32 %geom_gl_in_2_gl_position \n"
4074		"%geom_in_color_0_ptr = OpAccessChain %ip_v4f32 %geom_in_color %c_i32_0\n"
4075		"%geom_in_color_1_ptr = OpAccessChain %ip_v4f32 %geom_in_color %c_i32_1\n"
4076		"%geom_in_color_2_ptr = OpAccessChain %ip_v4f32 %geom_in_color %c_i32_2\n"
4077		"%geom_in_color_0 = OpLoad %v4f32 %geom_in_color_0_ptr\n"
4078		"%geom_in_color_1 = OpLoad %v4f32 %geom_in_color_1_ptr\n"
4079		"%geom_in_color_2 = OpLoad %v4f32 %geom_in_color_2_ptr\n"
4080		"OpStore %geom_out_gl_position %geom_in_position_0\n"
4081		"OpStore %geom_out_color %geom_in_color_0\n"
4082		"OpEmitVertex\n"
4083		"OpStore %geom_out_gl_position %geom_in_position_1\n"
4084		"OpStore %geom_out_color %geom_in_color_1\n"
4085		"OpEmitVertex\n"
4086		"OpStore %geom_out_gl_position %geom_in_position_2\n"
4087		"OpStore %geom_out_color %geom_in_color_2\n"
4088		"OpEmitVertex\n"
4089		"OpEndPrimitive\n"
4090		"OpReturn\n"
4091		"OpFunctionEnd\n"
4092
4093		"; Tessellation Control Entry\n"
4094		"%tessc_main = OpFunction %void None %fun\n"
4095		"%tessc_label = OpLabel\n"
4096		"%tessc_invocation_id = OpLoad %i32 %tessc_gl_InvocationID\n"
4097		"%tessc_in_color_ptr = OpAccessChain %ip_v4f32 %tessc_in_color %tessc_invocation_id\n"
4098		"%tessc_in_position_ptr = OpAccessChain %ip_v4f32 %tessc_in_position %tessc_invocation_id\n"
4099		"%tessc_in_color_val = OpLoad %v4f32 %tessc_in_color_ptr\n"
4100		"%tessc_in_position_val = OpLoad %v4f32 %tessc_in_position_ptr\n"
4101		"%tessc_out_color_ptr = OpAccessChain %op_v4f32 %tessc_out_color %tessc_invocation_id\n"
4102		"%tessc_out_position_ptr = OpAccessChain %op_v4f32 %tessc_out_position %tessc_invocation_id\n"
4103		"OpStore %tessc_out_color_ptr %tessc_in_color_val\n"
4104		"OpStore %tessc_out_position_ptr %tessc_in_position_val\n"
4105		"%tessc_is_first_invocation = OpIEqual %bool %tessc_invocation_id %c_i32_0\n"
4106		"OpSelectionMerge %tessc_merge_label None\n"
4107		"OpBranchConditional %tessc_is_first_invocation %tessc_first_invocation %tessc_merge_label\n"
4108		"%tessc_first_invocation = OpLabel\n"
4109		"%tessc_tess_outer_0 = OpAccessChain %op_f32 %tessc_gl_TessLevelOuter %c_i32_0\n"
4110		"%tessc_tess_outer_1 = OpAccessChain %op_f32 %tessc_gl_TessLevelOuter %c_i32_1\n"
4111		"%tessc_tess_outer_2 = OpAccessChain %op_f32 %tessc_gl_TessLevelOuter %c_i32_2\n"
4112		"%tessc_tess_inner = OpAccessChain %op_f32 %tessc_gl_TessLevelInner %c_i32_0\n"
4113		"OpStore %tessc_tess_outer_0 %c_f32_1\n"
4114		"OpStore %tessc_tess_outer_1 %c_f32_1\n"
4115		"OpStore %tessc_tess_outer_2 %c_f32_1\n"
4116		"OpStore %tessc_tess_inner %c_f32_1\n"
4117		"OpBranch %tessc_merge_label\n"
4118		"%tessc_merge_label = OpLabel\n"
4119		"OpReturn\n"
4120		"OpFunctionEnd\n"
4121
4122		"; Tessellation Evaluation Entry\n"
4123		"%tesse_main = OpFunction %void None %fun\n"
4124		"%tesse_label = OpLabel\n"
4125		"%tesse_tc_0_ptr = OpAccessChain %ip_f32 %tesse_gl_tessCoord %c_u32_0\n"
4126		"%tesse_tc_1_ptr = OpAccessChain %ip_f32 %tesse_gl_tessCoord %c_u32_1\n"
4127		"%tesse_tc_2_ptr = OpAccessChain %ip_f32 %tesse_gl_tessCoord %c_u32_2\n"
4128		"%tesse_tc_0 = OpLoad %f32 %tesse_tc_0_ptr\n"
4129		"%tesse_tc_1 = OpLoad %f32 %tesse_tc_1_ptr\n"
4130		"%tesse_tc_2 = OpLoad %f32 %tesse_tc_2_ptr\n"
4131		"%tesse_in_pos_0_ptr = OpAccessChain %ip_v4f32 %tesse_in_position %c_i32_0\n"
4132		"%tesse_in_pos_1_ptr = OpAccessChain %ip_v4f32 %tesse_in_position %c_i32_1\n"
4133		"%tesse_in_pos_2_ptr = OpAccessChain %ip_v4f32 %tesse_in_position %c_i32_2\n"
4134		"%tesse_in_pos_0 = OpLoad %v4f32 %tesse_in_pos_0_ptr\n"
4135		"%tesse_in_pos_1 = OpLoad %v4f32 %tesse_in_pos_1_ptr\n"
4136		"%tesse_in_pos_2 = OpLoad %v4f32 %tesse_in_pos_2_ptr\n"
4137		"%tesse_in_pos_0_weighted = OpVectorTimesScalar %v4f32 %tesse_tc_0 %tesse_in_pos_0\n"
4138		"%tesse_in_pos_1_weighted = OpVectorTimesScalar %v4f32 %tesse_tc_1 %tesse_in_pos_1\n"
4139		"%tesse_in_pos_2_weighted = OpVectorTimesScalar %v4f32 %tesse_tc_2 %tesse_in_pos_2\n"
4140		"%tesse_out_pos_ptr = OpAccessChain %op_v4f32 %tesse_stream %c_i32_0\n"
4141		"%tesse_in_pos_0_plus_pos_1 = OpFAdd %v4f32 %tesse_in_pos_0_weighted %tesse_in_pos_1_weighted\n"
4142		"%tesse_computed_out = OpFAdd %v4f32 %tesse_in_pos_0_plus_pos_1 %tesse_in_pos_2_weighted\n"
4143		"OpStore %tesse_out_pos_ptr %tesse_computed_out\n"
4144		"%tesse_in_clr_0_ptr = OpAccessChain %ip_v4f32 %tesse_in_color %c_i32_0\n"
4145		"%tesse_in_clr_1_ptr = OpAccessChain %ip_v4f32 %tesse_in_color %c_i32_1\n"
4146		"%tesse_in_clr_2_ptr = OpAccessChain %ip_v4f32 %tesse_in_color %c_i32_2\n"
4147		"%tesse_in_clr_0 = OpLoad %v4f32 %tesse_in_clr_0_ptr\n"
4148		"%tesse_in_clr_1 = OpLoad %v4f32 %tesse_in_clr_1_ptr\n"
4149		"%tesse_in_clr_2 = OpLoad %v4f32 %tesse_in_clr_2_ptr\n"
4150		"%tesse_in_clr_0_weighted = OpVectorTimesScalar %v4f32 %tesse_tc_0 %tesse_in_clr_0\n"
4151		"%tesse_in_clr_1_weighted = OpVectorTimesScalar %v4f32 %tesse_tc_1 %tesse_in_clr_1\n"
4152		"%tesse_in_clr_2_weighted = OpVectorTimesScalar %v4f32 %tesse_tc_2 %tesse_in_clr_2\n"
4153		"%tesse_in_clr_0_plus_col_1 = OpFAdd %v4f32 %tesse_in_clr_0_weighted %tesse_in_clr_1_weighted\n"
4154		"%tesse_computed_clr = OpFAdd %v4f32 %tesse_in_clr_0_plus_col_1 %tesse_in_clr_2_weighted\n"
4155		"OpStore %tesse_out_color %tesse_computed_clr\n"
4156		"OpReturn\n"
4157		"OpFunctionEnd\n"
4158
4159		"; Fragment Entry\n"
4160		"%frag_main = OpFunction %void None %fun\n"
4161		"%frag_label_main = OpLabel\n"
4162		"%frag_tmp1 = OpLoad %v4f32 %frag_vtxColor\n"
4163		"OpStore %frag_fragColor %frag_tmp1\n"
4164		"OpReturn\n"
4165		"OpFunctionEnd\n";
4166}
4167
4168// This has two shaders of each stage. The first
4169// is a passthrough, the second inverts the color.
4170void createMultipleEntries(vk::SourceCollections& dst, InstanceContext)
4171{
4172	dst.spirvAsmSources.add("vert") <<
4173	// This module contains 2 vertex shaders. One that is a passthrough
4174	// and a second that inverts the color of the output (1.0 - color).
4175		"OpCapability Shader\n"
4176		"OpMemoryModel Logical GLSL450\n"
4177		"OpEntryPoint Vertex %main \"vert1\" %Position %vtxColor %color %vtxPosition %vertex_id %instance_id\n"
4178		"OpEntryPoint Vertex %main2 \"vert2\" %Position %vtxColor %color %vtxPosition %vertex_id %instance_id\n"
4179
4180		"OpName %main \"frag1\"\n"
4181		"OpName %main2 \"frag2\"\n"
4182		"OpName %vtxPosition \"vtxPosition\"\n"
4183		"OpName %Position \"position\"\n"
4184		"OpName %vtxColor \"vtxColor\"\n"
4185		"OpName %color \"color\"\n"
4186		"OpName %vertex_id \"gl_VertexID\"\n"
4187		"OpName %instance_id \"gl_InstanceID\"\n"
4188
4189		"OpDecorate %vtxPosition Location 2\n"
4190		"OpDecorate %Position Location 0\n"
4191		"OpDecorate %vtxColor Location 1\n"
4192		"OpDecorate %color Location 1\n"
4193		"OpDecorate %vertex_id BuiltIn VertexId\n"
4194		"OpDecorate %instance_id BuiltIn InstanceId\n"
4195		SPIRV_ASSEMBLY_TYPES
4196		SPIRV_ASSEMBLY_CONSTANTS
4197		SPIRV_ASSEMBLY_ARRAYS
4198		"%cval = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_0\n"
4199		"%vtxPosition = OpVariable %op_v4f32 Output\n"
4200		"%Position = OpVariable %ip_v4f32 Input\n"
4201		"%vtxColor = OpVariable %op_v4f32 Output\n"
4202		"%color = OpVariable %ip_v4f32 Input\n"
4203		"%vertex_id = OpVariable %ip_i32 Input\n"
4204		"%instance_id = OpVariable %ip_i32 Input\n"
4205
4206		"%main = OpFunction %void None %fun\n"
4207		"%label = OpLabel\n"
4208		"%tmp_position = OpLoad %v4f32 %Position\n"
4209		"OpStore %vtxPosition %tmp_position\n"
4210		"%tmp_color = OpLoad %v4f32 %color\n"
4211		"OpStore %vtxColor %tmp_color\n"
4212		"OpReturn\n"
4213		"OpFunctionEnd\n"
4214
4215		"%main2 = OpFunction %void None %fun\n"
4216		"%label2 = OpLabel\n"
4217		"%tmp_position2 = OpLoad %v4f32 %Position\n"
4218		"OpStore %vtxPosition %tmp_position2\n"
4219		"%tmp_color2 = OpLoad %v4f32 %color\n"
4220		"%tmp_color3 = OpFSub %v4f32 %cval %tmp_color2\n"
4221		"OpStore %vtxColor %tmp_color3\n"
4222		"OpReturn\n"
4223		"OpFunctionEnd\n";
4224
4225	dst.spirvAsmSources.add("frag") <<
4226		// This is a single module that contains 2 fragment shaders.
4227		// One that passes color through and the other that inverts the output
4228		// color (1.0 - color).
4229		"OpCapability Shader\n"
4230		"OpMemoryModel Logical GLSL450\n"
4231		"OpEntryPoint Fragment %main \"frag1\" %vtxColor %fragColor\n"
4232		"OpEntryPoint Fragment %main2 \"frag2\" %vtxColor %fragColor\n"
4233		"OpExecutionMode %main OriginUpperLeft\n"
4234		"OpExecutionMode %main2 OriginUpperLeft\n"
4235
4236		"OpName %main \"frag1\"\n"
4237		"OpName %main2 \"frag2\"\n"
4238		"OpName %fragColor \"fragColor\"\n"
4239		"OpName %vtxColor \"vtxColor\"\n"
4240		"OpDecorate %fragColor Location 0\n"
4241		"OpDecorate %vtxColor Location 1\n"
4242		SPIRV_ASSEMBLY_TYPES
4243		SPIRV_ASSEMBLY_CONSTANTS
4244		SPIRV_ASSEMBLY_ARRAYS
4245		"%cval = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_0\n"
4246		"%fragColor = OpVariable %op_v4f32 Output\n"
4247		"%vtxColor = OpVariable %ip_v4f32 Input\n"
4248
4249		"%main = OpFunction %void None %fun\n"
4250		"%label_main = OpLabel\n"
4251		"%tmp1 = OpLoad %v4f32 %vtxColor\n"
4252		"OpStore %fragColor %tmp1\n"
4253		"OpReturn\n"
4254		"OpFunctionEnd\n"
4255
4256		"%main2 = OpFunction %void None %fun\n"
4257		"%label_main2 = OpLabel\n"
4258		"%tmp2 = OpLoad %v4f32 %vtxColor\n"
4259		"%tmp3 = OpFSub %v4f32 %cval %tmp2\n"
4260		"OpStore %fragColor %tmp3\n"
4261		"OpReturn\n"
4262		"OpFunctionEnd\n";
4263
4264	dst.spirvAsmSources.add("geom") <<
4265		"OpCapability Geometry\n"
4266		"OpMemoryModel Logical GLSL450\n"
4267		"OpEntryPoint Geometry %geom1_main \"geom1\" %out_gl_position %gl_in %out_color %in_color\n"
4268		"OpEntryPoint Geometry %geom2_main \"geom2\" %out_gl_position %gl_in %out_color %in_color\n"
4269		"OpExecutionMode %geom1_main Triangles\n"
4270		"OpExecutionMode %geom2_main Triangles\n"
4271		"OpExecutionMode %geom1_main Invocations 0\n"
4272		"OpExecutionMode %geom2_main Invocations 0\n"
4273		"OpExecutionMode %geom1_main OutputTriangleStrip\n"
4274		"OpExecutionMode %geom2_main OutputTriangleStrip\n"
4275		"OpExecutionMode %geom1_main OutputVertices 3\n"
4276		"OpExecutionMode %geom2_main OutputVertices 3\n"
4277		"OpName %geom1_main \"geom1\"\n"
4278		"OpName %geom2_main \"geom2\"\n"
4279		"OpName %per_vertex_in \"gl_PerVertex\"\n"
4280		"OpMemberName %per_vertex_in 0 \"gl_Position\"\n"
4281		"OpMemberName %per_vertex_in 1 \"gl_PointSize\"\n"
4282		"OpMemberName %per_vertex_in 2 \"gl_ClipDistance\"\n"
4283		"OpMemberName %per_vertex_in 3 \"gl_CullDistance\"\n"
4284		"OpName %gl_in \"gl_in\"\n"
4285		"OpName %out_color \"out_color\"\n"
4286		"OpName %in_color \"in_color\"\n"
4287		"OpDecorate %out_gl_position BuiltIn Position\n"
4288		"OpMemberDecorate %per_vertex_in 0 BuiltIn Position\n"
4289		"OpMemberDecorate %per_vertex_in 1 BuiltIn PointSize\n"
4290		"OpMemberDecorate %per_vertex_in 2 BuiltIn ClipDistance\n"
4291		"OpMemberDecorate %per_vertex_in 3 BuiltIn CullDistance\n"
4292		"OpDecorate %per_vertex_in Block\n"
4293		"OpDecorate %out_color Location 1\n"
4294		"OpDecorate %out_color Stream 0\n"
4295		"OpDecorate %in_color Location 1\n"
4296		SPIRV_ASSEMBLY_TYPES
4297		SPIRV_ASSEMBLY_CONSTANTS
4298		SPIRV_ASSEMBLY_ARRAYS
4299		"%cval = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_0\n"
4300		"%per_vertex_in = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
4301		"%a3_per_vertex_in = OpTypeArray %per_vertex_in %c_u32_3\n"
4302		"%ip_a3_per_vertex_in = OpTypePointer Input %a3_per_vertex_in\n"
4303		"%gl_in = OpVariable %ip_a3_per_vertex_in Input\n"
4304		"%out_color = OpVariable %op_v4f32 Output\n"
4305		"%in_color = OpVariable %ip_a3v4f32 Input\n"
4306		"%out_gl_position = OpVariable %op_v4f32 Output\n"
4307
4308		"%geom1_main = OpFunction %void None %fun\n"
4309		"%geom1_label = OpLabel\n"
4310		"%geom1_gl_in_0_gl_position = OpAccessChain %ip_v4f32 %gl_in %c_i32_0 %c_i32_0\n"
4311		"%geom1_gl_in_1_gl_position = OpAccessChain %ip_v4f32 %gl_in %c_i32_1 %c_i32_0\n"
4312		"%geom1_gl_in_2_gl_position = OpAccessChain %ip_v4f32 %gl_in %c_i32_2 %c_i32_0\n"
4313		"%geom1_in_position_0 = OpLoad %v4f32 %geom1_gl_in_0_gl_position\n"
4314		"%geom1_in_position_1 = OpLoad %v4f32 %geom1_gl_in_1_gl_position\n"
4315		"%geom1_in_position_2 = OpLoad %v4f32 %geom1_gl_in_2_gl_position \n"
4316		"%geom1_in_color_0_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_0\n"
4317		"%geom1_in_color_1_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_1\n"
4318		"%geom1_in_color_2_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_2\n"
4319		"%geom1_in_color_0 = OpLoad %v4f32 %geom1_in_color_0_ptr\n"
4320		"%geom1_in_color_1 = OpLoad %v4f32 %geom1_in_color_1_ptr\n"
4321		"%geom1_in_color_2 = OpLoad %v4f32 %geom1_in_color_2_ptr\n"
4322		"OpStore %out_gl_position %geom1_in_position_0\n"
4323		"OpStore %out_color %geom1_in_color_0\n"
4324		"OpEmitVertex\n"
4325		"OpStore %out_gl_position %geom1_in_position_1\n"
4326		"OpStore %out_color %geom1_in_color_1\n"
4327		"OpEmitVertex\n"
4328		"OpStore %out_gl_position %geom1_in_position_2\n"
4329		"OpStore %out_color %geom1_in_color_2\n"
4330		"OpEmitVertex\n"
4331		"OpEndPrimitive\n"
4332		"OpReturn\n"
4333		"OpFunctionEnd\n"
4334
4335		"%geom2_main = OpFunction %void None %fun\n"
4336		"%geom2_label = OpLabel\n"
4337		"%geom2_gl_in_0_gl_position = OpAccessChain %ip_v4f32 %gl_in %c_i32_0 %c_i32_0\n"
4338		"%geom2_gl_in_1_gl_position = OpAccessChain %ip_v4f32 %gl_in %c_i32_1 %c_i32_0\n"
4339		"%geom2_gl_in_2_gl_position = OpAccessChain %ip_v4f32 %gl_in %c_i32_2 %c_i32_0\n"
4340		"%geom2_in_position_0 = OpLoad %v4f32 %geom2_gl_in_0_gl_position\n"
4341		"%geom2_in_position_1 = OpLoad %v4f32 %geom2_gl_in_1_gl_position\n"
4342		"%geom2_in_position_2 = OpLoad %v4f32 %geom2_gl_in_2_gl_position \n"
4343		"%geom2_in_color_0_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_0\n"
4344		"%geom2_in_color_1_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_1\n"
4345		"%geom2_in_color_2_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_2\n"
4346		"%geom2_in_color_0 = OpLoad %v4f32 %geom2_in_color_0_ptr\n"
4347		"%geom2_in_color_1 = OpLoad %v4f32 %geom2_in_color_1_ptr\n"
4348		"%geom2_in_color_2 = OpLoad %v4f32 %geom2_in_color_2_ptr\n"
4349		"%geom2_transformed_in_color_0 = OpFSub %v4f32 %cval %geom2_in_color_0\n"
4350		"%geom2_transformed_in_color_1 = OpFSub %v4f32 %cval %geom2_in_color_1\n"
4351		"%geom2_transformed_in_color_2 = OpFSub %v4f32 %cval %geom2_in_color_2\n"
4352		"OpStore %out_gl_position %geom2_in_position_0\n"
4353		"OpStore %out_color %geom2_transformed_in_color_0\n"
4354		"OpEmitVertex\n"
4355		"OpStore %out_gl_position %geom2_in_position_1\n"
4356		"OpStore %out_color %geom2_transformed_in_color_1\n"
4357		"OpEmitVertex\n"
4358		"OpStore %out_gl_position %geom2_in_position_2\n"
4359		"OpStore %out_color %geom2_transformed_in_color_2\n"
4360		"OpEmitVertex\n"
4361		"OpEndPrimitive\n"
4362		"OpReturn\n"
4363		"OpFunctionEnd\n";
4364
4365	dst.spirvAsmSources.add("tessc") <<
4366		"OpCapability Tessellation\n"
4367		"OpMemoryModel Logical GLSL450\n"
4368		"OpEntryPoint TessellationControl %tessc1_main \"tessc1\" %out_color %gl_InvocationID %in_color %out_position %in_position %gl_TessLevelOuter %gl_TessLevelInner\n"
4369		"OpEntryPoint TessellationControl %tessc2_main \"tessc2\" %out_color %gl_InvocationID %in_color %out_position %in_position %gl_TessLevelOuter %gl_TessLevelInner\n"
4370		"OpExecutionMode %tessc1_main OutputVertices 3\n"
4371		"OpExecutionMode %tessc2_main OutputVertices 3\n"
4372		"OpName %tessc1_main \"tessc1\"\n"
4373		"OpName %tessc2_main \"tessc2\"\n"
4374		"OpName %out_color \"out_color\"\n"
4375		"OpName %gl_InvocationID \"gl_InvocationID\"\n"
4376		"OpName %in_color \"in_color\"\n"
4377		"OpName %out_position \"out_position\"\n"
4378		"OpName %in_position \"in_position\"\n"
4379		"OpName %gl_TessLevelOuter \"gl_TessLevelOuter\"\n"
4380		"OpName %gl_TessLevelInner \"gl_TessLevelInner\"\n"
4381		"OpDecorate %out_color Location 1\n"
4382		"OpDecorate %gl_InvocationID BuiltIn InvocationId\n"
4383		"OpDecorate %in_color Location 1\n"
4384		"OpDecorate %out_position Location 2\n"
4385		"OpDecorate %in_position Location 2\n"
4386		"OpDecorate %gl_TessLevelOuter Patch\n"
4387		"OpDecorate %gl_TessLevelOuter BuiltIn TessLevelOuter\n"
4388		"OpDecorate %gl_TessLevelInner Patch\n"
4389		"OpDecorate %gl_TessLevelInner BuiltIn TessLevelInner\n"
4390		SPIRV_ASSEMBLY_TYPES
4391		SPIRV_ASSEMBLY_CONSTANTS
4392		SPIRV_ASSEMBLY_ARRAYS
4393		"%cval = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_0\n"
4394		"%out_color = OpVariable %op_a3v4f32 Output\n"
4395		"%gl_InvocationID = OpVariable %ip_i32 Input\n"
4396		"%in_color = OpVariable %ip_a32v4f32 Input\n"
4397		"%out_position = OpVariable %op_a3v4f32 Output\n"
4398		"%in_position = OpVariable %ip_a32v4f32 Input\n"
4399		"%gl_TessLevelOuter = OpVariable %op_a4f32 Output\n"
4400		"%gl_TessLevelInner = OpVariable %op_a2f32 Output\n"
4401
4402		"%tessc1_main = OpFunction %void None %fun\n"
4403		"%tessc1_label = OpLabel\n"
4404		"%tessc1_invocation_id = OpLoad %i32 %gl_InvocationID\n"
4405		"%tessc1_in_color_ptr = OpAccessChain %ip_v4f32 %in_color %tessc1_invocation_id\n"
4406		"%tessc1_in_position_ptr = OpAccessChain %ip_v4f32 %in_position %tessc1_invocation_id\n"
4407		"%tessc1_in_color_val = OpLoad %v4f32 %tessc1_in_color_ptr\n"
4408		"%tessc1_in_position_val = OpLoad %v4f32 %tessc1_in_position_ptr\n"
4409		"%tessc1_out_color_ptr = OpAccessChain %op_v4f32 %out_color %tessc1_invocation_id\n"
4410		"%tessc1_out_position_ptr = OpAccessChain %op_v4f32 %out_position %tessc1_invocation_id\n"
4411		"OpStore %tessc1_out_color_ptr %tessc1_in_color_val\n"
4412		"OpStore %tessc1_out_position_ptr %tessc1_in_position_val\n"
4413		"%tessc1_is_first_invocation = OpIEqual %bool %tessc1_invocation_id %c_i32_0\n"
4414		"OpSelectionMerge %tessc1_merge_label None\n"
4415		"OpBranchConditional %tessc1_is_first_invocation %tessc1_first_invocation %tessc1_merge_label\n"
4416		"%tessc1_first_invocation = OpLabel\n"
4417		"%tessc1_tess_outer_0 = OpAccessChain %op_f32 %gl_TessLevelOuter %c_i32_0\n"
4418		"%tessc1_tess_outer_1 = OpAccessChain %op_f32 %gl_TessLevelOuter %c_i32_1\n"
4419		"%tessc1_tess_outer_2 = OpAccessChain %op_f32 %gl_TessLevelOuter %c_i32_2\n"
4420		"%tessc1_tess_inner = OpAccessChain %op_f32 %gl_TessLevelInner %c_i32_0\n"
4421		"OpStore %tessc1_tess_outer_0 %c_f32_1\n"
4422		"OpStore %tessc1_tess_outer_1 %c_f32_1\n"
4423		"OpStore %tessc1_tess_outer_2 %c_f32_1\n"
4424		"OpStore %tessc1_tess_inner %c_f32_1\n"
4425		"OpBranch %tessc1_merge_label\n"
4426		"%tessc1_merge_label = OpLabel\n"
4427		"OpReturn\n"
4428		"OpFunctionEnd\n"
4429
4430		"%tessc2_main = OpFunction %void None %fun\n"
4431		"%tessc2_label = OpLabel\n"
4432		"%tessc2_invocation_id = OpLoad %i32 %gl_InvocationID\n"
4433		"%tessc2_in_color_ptr = OpAccessChain %ip_v4f32 %in_color %tessc2_invocation_id\n"
4434		"%tessc2_in_position_ptr = OpAccessChain %ip_v4f32 %in_position %tessc2_invocation_id\n"
4435		"%tessc2_in_color_val = OpLoad %v4f32 %tessc2_in_color_ptr\n"
4436		"%tessc2_in_position_val = OpLoad %v4f32 %tessc2_in_position_ptr\n"
4437		"%tessc2_out_color_ptr = OpAccessChain %op_v4f32 %out_color %tessc2_invocation_id\n"
4438		"%tessc2_out_position_ptr = OpAccessChain %op_v4f32 %out_position %tessc2_invocation_id\n"
4439		"%tessc2_transformed_color = OpFSub %v4f32 %cval %tessc2_in_color_val\n"
4440		"OpStore %tessc2_out_color_ptr %tessc2_transformed_color\n"
4441		"OpStore %tessc2_out_position_ptr %tessc2_in_position_val\n"
4442		"%tessc2_is_first_invocation = OpIEqual %bool %tessc2_invocation_id %c_i32_0\n"
4443		"OpSelectionMerge %tessc2_merge_label None\n"
4444		"OpBranchConditional %tessc2_is_first_invocation %tessc2_first_invocation %tessc2_merge_label\n"
4445		"%tessc2_first_invocation = OpLabel\n"
4446		"%tessc2_tess_outer_0 = OpAccessChain %op_f32 %gl_TessLevelOuter %c_i32_0\n"
4447		"%tessc2_tess_outer_1 = OpAccessChain %op_f32 %gl_TessLevelOuter %c_i32_1\n"
4448		"%tessc2_tess_outer_2 = OpAccessChain %op_f32 %gl_TessLevelOuter %c_i32_2\n"
4449		"%tessc2_tess_inner = OpAccessChain %op_f32 %gl_TessLevelInner %c_i32_0\n"
4450		"OpStore %tessc2_tess_outer_0 %c_f32_1\n"
4451		"OpStore %tessc2_tess_outer_1 %c_f32_1\n"
4452		"OpStore %tessc2_tess_outer_2 %c_f32_1\n"
4453		"OpStore %tessc2_tess_inner %c_f32_1\n"
4454		"OpBranch %tessc2_merge_label\n"
4455		"%tessc2_merge_label = OpLabel\n"
4456		"OpReturn\n"
4457		"OpFunctionEnd\n";
4458
4459	dst.spirvAsmSources.add("tesse") <<
4460		"OpCapability Tessellation\n"
4461		"OpMemoryModel Logical GLSL450\n"
4462		"OpEntryPoint TessellationEvaluation %tesse1_main \"tesse1\" %stream %gl_tessCoord %in_position %out_color %in_color \n"
4463		"OpEntryPoint TessellationEvaluation %tesse2_main \"tesse2\" %stream %gl_tessCoord %in_position %out_color %in_color \n"
4464		"OpExecutionMode %tesse1_main Triangles\n"
4465		"OpExecutionMode %tesse2_main Triangles\n"
4466		"OpName %tesse1_main \"tesse1\"\n"
4467		"OpName %tesse2_main \"tesse2\"\n"
4468		"OpName %per_vertex_out \"gl_PerVertex\"\n"
4469		"OpMemberName %per_vertex_out 0 \"gl_Position\"\n"
4470		"OpMemberName %per_vertex_out 1 \"gl_PointSize\"\n"
4471		"OpMemberName %per_vertex_out 2 \"gl_ClipDistance\"\n"
4472		"OpMemberName %per_vertex_out 3 \"gl_CullDistance\"\n"
4473		"OpName %stream \"\"\n"
4474		"OpName %gl_tessCoord \"gl_TessCoord\"\n"
4475		"OpName %in_position \"in_position\"\n"
4476		"OpName %out_color \"out_color\"\n"
4477		"OpName %in_color \"in_color\"\n"
4478		"OpMemberDecorate %per_vertex_out 0 BuiltIn Position\n"
4479		"OpMemberDecorate %per_vertex_out 1 BuiltIn PointSize\n"
4480		"OpMemberDecorate %per_vertex_out 2 BuiltIn ClipDistance\n"
4481		"OpMemberDecorate %per_vertex_out 3 BuiltIn CullDistance\n"
4482		"OpDecorate %per_vertex_out Block\n"
4483		"OpDecorate %gl_tessCoord BuiltIn TessCoord\n"
4484		"OpDecorate %in_position Location 2\n"
4485		"OpDecorate %out_color Location 1\n"
4486		"OpDecorate %in_color Location 1\n"
4487		SPIRV_ASSEMBLY_TYPES
4488		SPIRV_ASSEMBLY_CONSTANTS
4489		SPIRV_ASSEMBLY_ARRAYS
4490		"%cval = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_0\n"
4491		"%per_vertex_out = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
4492		"%op_per_vertex_out = OpTypePointer Output %per_vertex_out\n"
4493		"%stream = OpVariable %op_per_vertex_out Output\n"
4494		"%gl_tessCoord = OpVariable %ip_v3f32 Input\n"
4495		"%in_position = OpVariable %ip_a32v4f32 Input\n"
4496		"%out_color = OpVariable %op_v4f32 Output\n"
4497		"%in_color = OpVariable %ip_a32v4f32 Input\n"
4498
4499		"%tesse1_main = OpFunction %void None %fun\n"
4500		"%tesse1_label = OpLabel\n"
4501		"%tesse1_tc_0_ptr = OpAccessChain %ip_f32 %gl_tessCoord %c_u32_0\n"
4502		"%tesse1_tc_1_ptr = OpAccessChain %ip_f32 %gl_tessCoord %c_u32_1\n"
4503		"%tesse1_tc_2_ptr = OpAccessChain %ip_f32 %gl_tessCoord %c_u32_2\n"
4504		"%tesse1_tc_0 = OpLoad %f32 %tesse1_tc_0_ptr\n"
4505		"%tesse1_tc_1 = OpLoad %f32 %tesse1_tc_1_ptr\n"
4506		"%tesse1_tc_2 = OpLoad %f32 %tesse1_tc_2_ptr\n"
4507		"%tesse1_in_pos_0_ptr = OpAccessChain %ip_v4f32 %in_position %c_i32_0\n"
4508		"%tesse1_in_pos_1_ptr = OpAccessChain %ip_v4f32 %in_position %c_i32_1\n"
4509		"%tesse1_in_pos_2_ptr = OpAccessChain %ip_v4f32 %in_position %c_i32_2\n"
4510		"%tesse1_in_pos_0 = OpLoad %v4f32 %tesse1_in_pos_0_ptr\n"
4511		"%tesse1_in_pos_1 = OpLoad %v4f32 %tesse1_in_pos_1_ptr\n"
4512		"%tesse1_in_pos_2 = OpLoad %v4f32 %tesse1_in_pos_2_ptr\n"
4513		"%tesse1_in_pos_0_weighted = OpVectorTimesScalar %v4f32 %tesse1_tc_0 %tesse1_in_pos_0\n"
4514		"%tesse1_in_pos_1_weighted = OpVectorTimesScalar %v4f32 %tesse1_tc_1 %tesse1_in_pos_1\n"
4515		"%tesse1_in_pos_2_weighted = OpVectorTimesScalar %v4f32 %tesse1_tc_2 %tesse1_in_pos_2\n"
4516		"%tesse1_out_pos_ptr = OpAccessChain %op_v4f32 %stream %c_i32_0\n"
4517		"%tesse1_in_pos_0_plus_pos_1 = OpFAdd %v4f32 %tesse1_in_pos_0_weighted %tesse1_in_pos_1_weighted\n"
4518		"%tesse1_computed_out = OpFAdd %v4f32 %tesse1_in_pos_0_plus_pos_1 %tesse1_in_pos_2_weighted\n"
4519		"OpStore %tesse1_out_pos_ptr %tesse1_computed_out\n"
4520		"%tesse1_in_clr_0_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_0\n"
4521		"%tesse1_in_clr_1_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_1\n"
4522		"%tesse1_in_clr_2_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_2\n"
4523		"%tesse1_in_clr_0 = OpLoad %v4f32 %tesse1_in_clr_0_ptr\n"
4524		"%tesse1_in_clr_1 = OpLoad %v4f32 %tesse1_in_clr_1_ptr\n"
4525		"%tesse1_in_clr_2 = OpLoad %v4f32 %tesse1_in_clr_2_ptr\n"
4526		"%tesse1_in_clr_0_weighted = OpVectorTimesScalar %v4f32 %tesse1_tc_0 %tesse1_in_clr_0\n"
4527		"%tesse1_in_clr_1_weighted = OpVectorTimesScalar %v4f32 %tesse1_tc_1 %tesse1_in_clr_1\n"
4528		"%tesse1_in_clr_2_weighted = OpVectorTimesScalar %v4f32 %tesse1_tc_2 %tesse1_in_clr_2\n"
4529		"%tesse1_in_clr_0_plus_col_1 = OpFAdd %v4f32 %tesse1_in_clr_0_weighted %tesse1_in_clr_1_weighted\n"
4530		"%tesse1_computed_clr = OpFAdd %v4f32 %tesse1_in_clr_0_plus_col_1 %tesse1_in_clr_2_weighted\n"
4531		"OpStore %out_color %tesse1_computed_clr\n"
4532		"OpReturn\n"
4533		"OpFunctionEnd\n"
4534
4535		"%tesse2_main = OpFunction %void None %fun\n"
4536		"%tesse2_label = OpLabel\n"
4537		"%tesse2_tc_0_ptr = OpAccessChain %ip_f32 %gl_tessCoord %c_u32_0\n"
4538		"%tesse2_tc_1_ptr = OpAccessChain %ip_f32 %gl_tessCoord %c_u32_1\n"
4539		"%tesse2_tc_2_ptr = OpAccessChain %ip_f32 %gl_tessCoord %c_u32_2\n"
4540		"%tesse2_tc_0 = OpLoad %f32 %tesse2_tc_0_ptr\n"
4541		"%tesse2_tc_1 = OpLoad %f32 %tesse2_tc_1_ptr\n"
4542		"%tesse2_tc_2 = OpLoad %f32 %tesse2_tc_2_ptr\n"
4543		"%tesse2_in_pos_0_ptr = OpAccessChain %ip_v4f32 %in_position %c_i32_0\n"
4544		"%tesse2_in_pos_1_ptr = OpAccessChain %ip_v4f32 %in_position %c_i32_1\n"
4545		"%tesse2_in_pos_2_ptr = OpAccessChain %ip_v4f32 %in_position %c_i32_2\n"
4546		"%tesse2_in_pos_0 = OpLoad %v4f32 %tesse2_in_pos_0_ptr\n"
4547		"%tesse2_in_pos_1 = OpLoad %v4f32 %tesse2_in_pos_1_ptr\n"
4548		"%tesse2_in_pos_2 = OpLoad %v4f32 %tesse2_in_pos_2_ptr\n"
4549		"%tesse2_in_pos_0_weighted = OpVectorTimesScalar %v4f32 %tesse2_tc_0 %tesse2_in_pos_0\n"
4550		"%tesse2_in_pos_1_weighted = OpVectorTimesScalar %v4f32 %tesse2_tc_1 %tesse2_in_pos_1\n"
4551		"%tesse2_in_pos_2_weighted = OpVectorTimesScalar %v4f32 %tesse2_tc_2 %tesse2_in_pos_2\n"
4552		"%tesse2_out_pos_ptr = OpAccessChain %op_v4f32 %stream %c_i32_0\n"
4553		"%tesse2_in_pos_0_plus_pos_1 = OpFAdd %v4f32 %tesse2_in_pos_0_weighted %tesse2_in_pos_1_weighted\n"
4554		"%tesse2_computed_out = OpFAdd %v4f32 %tesse2_in_pos_0_plus_pos_1 %tesse2_in_pos_2_weighted\n"
4555		"OpStore %tesse2_out_pos_ptr %tesse2_computed_out\n"
4556		"%tesse2_in_clr_0_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_0\n"
4557		"%tesse2_in_clr_1_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_1\n"
4558		"%tesse2_in_clr_2_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_2\n"
4559		"%tesse2_in_clr_0 = OpLoad %v4f32 %tesse2_in_clr_0_ptr\n"
4560		"%tesse2_in_clr_1 = OpLoad %v4f32 %tesse2_in_clr_1_ptr\n"
4561		"%tesse2_in_clr_2 = OpLoad %v4f32 %tesse2_in_clr_2_ptr\n"
4562		"%tesse2_in_clr_0_weighted = OpVectorTimesScalar %v4f32 %tesse2_tc_0 %tesse2_in_clr_0\n"
4563		"%tesse2_in_clr_1_weighted = OpVectorTimesScalar %v4f32 %tesse2_tc_1 %tesse2_in_clr_1\n"
4564		"%tesse2_in_clr_2_weighted = OpVectorTimesScalar %v4f32 %tesse2_tc_2 %tesse2_in_clr_2\n"
4565		"%tesse2_in_clr_0_plus_col_1 = OpFAdd %v4f32 %tesse2_in_clr_0_weighted %tesse2_in_clr_1_weighted\n"
4566		"%tesse2_computed_clr = OpFAdd %v4f32 %tesse2_in_clr_0_plus_col_1 %tesse2_in_clr_2_weighted\n"
4567		"%tesse2_clr_transformed = OpFSub %v4f32 %cval %tesse2_computed_clr\n"
4568		"OpStore %out_color %tesse2_clr_transformed\n"
4569		"OpReturn\n"
4570		"OpFunctionEnd\n";
4571}
4572
4573// Sets up and runs a Vulkan pipeline, then spot-checks the resulting image.
4574// Feeds the pipeline a set of colored triangles, which then must occur in the
4575// rendered image.  The surface is cleared before executing the pipeline, so
4576// whatever the shaders draw can be directly spot-checked.
4577TestStatus runAndVerifyDefaultPipeline (Context& context, InstanceContext instance)
4578{
4579	const VkDevice								vkDevice				= context.getDevice();
4580	const DeviceInterface&						vk						= context.getDeviceInterface();
4581	const VkQueue								queue					= context.getUniversalQueue();
4582	const deUint32								queueFamilyIndex		= context.getUniversalQueueFamilyIndex();
4583	const tcu::IVec2							renderSize				(256, 256);
4584	vector<ModuleHandleSp>						modules;
4585	map<VkShaderStageFlagBits, VkShaderModule>	moduleByStage;
4586	const int									testSpecificSeed		= 31354125;
4587	const int									seed					= context.getTestContext().getCommandLine().getBaseSeed() ^ testSpecificSeed;
4588	bool										supportsGeometry		= false;
4589	bool										supportsTessellation	= false;
4590	bool										hasTessellation         = false;
4591
4592	const VkPhysicalDeviceFeatures&				features				= context.getDeviceFeatures();
4593	supportsGeometry		= features.geometryShader;
4594	supportsTessellation	= features.tessellationShader;
4595	hasTessellation			= (instance.requiredStages & VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT) ||
4596								(instance.requiredStages & VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT);
4597
4598	if (hasTessellation && !supportsTessellation)
4599	{
4600		throw tcu::NotSupportedError(std::string("Tessellation not supported"));
4601	}
4602
4603	if ((instance.requiredStages & VK_SHADER_STAGE_GEOMETRY_BIT) &&
4604		!supportsGeometry)
4605	{
4606		throw tcu::NotSupportedError(std::string("Geometry not supported"));
4607	}
4608
4609	de::Random(seed).shuffle(instance.inputColors, instance.inputColors+4);
4610	de::Random(seed).shuffle(instance.outputColors, instance.outputColors+4);
4611	const Vec4								vertexData[]			=
4612	{
4613		// Upper left corner:
4614		Vec4(-1.0f, -1.0f, 0.0f, 1.0f), instance.inputColors[0].toVec(),
4615		Vec4(-0.5f, -1.0f, 0.0f, 1.0f), instance.inputColors[0].toVec(),
4616		Vec4(-1.0f, -0.5f, 0.0f, 1.0f), instance.inputColors[0].toVec(),
4617
4618		// Upper right corner:
4619		Vec4(+0.5f, -1.0f, 0.0f, 1.0f), instance.inputColors[1].toVec(),
4620		Vec4(+1.0f, -1.0f, 0.0f, 1.0f), instance.inputColors[1].toVec(),
4621		Vec4(+1.0f, -0.5f, 0.0f, 1.0f), instance.inputColors[1].toVec(),
4622
4623		// Lower left corner:
4624		Vec4(-1.0f, +0.5f, 0.0f, 1.0f), instance.inputColors[2].toVec(),
4625		Vec4(-0.5f, +1.0f, 0.0f, 1.0f), instance.inputColors[2].toVec(),
4626		Vec4(-1.0f, +1.0f, 0.0f, 1.0f), instance.inputColors[2].toVec(),
4627
4628		// Lower right corner:
4629		Vec4(+1.0f, +0.5f, 0.0f, 1.0f), instance.inputColors[3].toVec(),
4630		Vec4(+1.0f, +1.0f, 0.0f, 1.0f), instance.inputColors[3].toVec(),
4631		Vec4(+0.5f, +1.0f, 0.0f, 1.0f), instance.inputColors[3].toVec()
4632	};
4633	const size_t							singleVertexDataSize	= 2 * sizeof(Vec4);
4634	const size_t							vertexCount				= sizeof(vertexData) / singleVertexDataSize;
4635
4636	const VkBufferCreateInfo				vertexBufferParams		=
4637	{
4638		VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO,	//	VkStructureType		sType;
4639		DE_NULL,								//	const void*			pNext;
4640		0u,										//	VkBufferCreateFlags	flags;
4641		(VkDeviceSize)sizeof(vertexData),		//	VkDeviceSize		size;
4642		VK_BUFFER_USAGE_VERTEX_BUFFER_BIT,		//	VkBufferUsageFlags	usage;
4643		VK_SHARING_MODE_EXCLUSIVE,				//	VkSharingMode		sharingMode;
4644		1u,										//	deUint32			queueFamilyCount;
4645		&queueFamilyIndex,						//	const deUint32*		pQueueFamilyIndices;
4646	};
4647	const Unique<VkBuffer>					vertexBuffer			(createBuffer(vk, vkDevice, &vertexBufferParams));
4648	const UniquePtr<Allocation>				vertexBufferMemory		(context.getDefaultAllocator().allocate(getBufferMemoryRequirements(vk, vkDevice, *vertexBuffer), MemoryRequirement::HostVisible));
4649
4650	VK_CHECK(vk.bindBufferMemory(vkDevice, *vertexBuffer, vertexBufferMemory->getMemory(), vertexBufferMemory->getOffset()));
4651
4652	const VkDeviceSize						imageSizeBytes			= (VkDeviceSize)(sizeof(deUint32)*renderSize.x()*renderSize.y());
4653	const VkBufferCreateInfo				readImageBufferParams	=
4654	{
4655		VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO,		//	VkStructureType		sType;
4656		DE_NULL,									//	const void*			pNext;
4657		0u,											//	VkBufferCreateFlags	flags;
4658		imageSizeBytes,								//	VkDeviceSize		size;
4659		VK_BUFFER_USAGE_TRANSFER_DST_BIT,			//	VkBufferUsageFlags	usage;
4660		VK_SHARING_MODE_EXCLUSIVE,					//	VkSharingMode		sharingMode;
4661		1u,											//	deUint32			queueFamilyCount;
4662		&queueFamilyIndex,							//	const deUint32*		pQueueFamilyIndices;
4663	};
4664	const Unique<VkBuffer>					readImageBuffer			(createBuffer(vk, vkDevice, &readImageBufferParams));
4665	const UniquePtr<Allocation>				readImageBufferMemory	(context.getDefaultAllocator().allocate(getBufferMemoryRequirements(vk, vkDevice, *readImageBuffer), MemoryRequirement::HostVisible));
4666
4667	VK_CHECK(vk.bindBufferMemory(vkDevice, *readImageBuffer, readImageBufferMemory->getMemory(), readImageBufferMemory->getOffset()));
4668
4669	const VkImageCreateInfo					imageParams				=
4670	{
4671		VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,									//	VkStructureType		sType;
4672		DE_NULL,																//	const void*			pNext;
4673		0u,																		//	VkImageCreateFlags	flags;
4674		VK_IMAGE_TYPE_2D,														//	VkImageType			imageType;
4675		VK_FORMAT_R8G8B8A8_UNORM,												//	VkFormat			format;
4676		{ renderSize.x(), renderSize.y(), 1 },									//	VkExtent3D			extent;
4677		1u,																		//	deUint32			mipLevels;
4678		1u,																		//	deUint32			arraySize;
4679		VK_SAMPLE_COUNT_1_BIT,													//	deUint32			samples;
4680		VK_IMAGE_TILING_OPTIMAL,												//	VkImageTiling		tiling;
4681		VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT|VK_IMAGE_USAGE_TRANSFER_SRC_BIT,	//	VkImageUsageFlags	usage;
4682		VK_SHARING_MODE_EXCLUSIVE,												//	VkSharingMode		sharingMode;
4683		1u,																		//	deUint32			queueFamilyCount;
4684		&queueFamilyIndex,														//	const deUint32*		pQueueFamilyIndices;
4685		VK_IMAGE_LAYOUT_UNDEFINED,												//	VkImageLayout		initialLayout;
4686	};
4687
4688	const Unique<VkImage>					image					(createImage(vk, vkDevice, &imageParams));
4689	const UniquePtr<Allocation>				imageMemory				(context.getDefaultAllocator().allocate(getImageMemoryRequirements(vk, vkDevice, *image), MemoryRequirement::Any));
4690
4691	VK_CHECK(vk.bindImageMemory(vkDevice, *image, imageMemory->getMemory(), imageMemory->getOffset()));
4692
4693	const VkAttachmentDescription			colorAttDesc			=
4694	{
4695		0u,												//	VkAttachmentDescriptionFlags	flags;
4696		VK_FORMAT_R8G8B8A8_UNORM,						//	VkFormat						format;
4697		VK_SAMPLE_COUNT_1_BIT,							//	deUint32						samples;
4698		VK_ATTACHMENT_LOAD_OP_CLEAR,					//	VkAttachmentLoadOp				loadOp;
4699		VK_ATTACHMENT_STORE_OP_STORE,					//	VkAttachmentStoreOp				storeOp;
4700		VK_ATTACHMENT_LOAD_OP_DONT_CARE,				//	VkAttachmentLoadOp				stencilLoadOp;
4701		VK_ATTACHMENT_STORE_OP_DONT_CARE,				//	VkAttachmentStoreOp				stencilStoreOp;
4702		VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,		//	VkImageLayout					initialLayout;
4703		VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,		//	VkImageLayout					finalLayout;
4704	};
4705	const VkAttachmentReference				colorAttRef				=
4706	{
4707		0u,												//	deUint32		attachment;
4708		VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,		//	VkImageLayout	layout;
4709	};
4710	const VkSubpassDescription				subpassDesc				=
4711	{
4712		0u,												//	VkSubpassDescriptionFlags		flags;
4713		VK_PIPELINE_BIND_POINT_GRAPHICS,				//	VkPipelineBindPoint				pipelineBindPoint;
4714		0u,												//	deUint32						inputCount;
4715		DE_NULL,										//	const VkAttachmentReference*	pInputAttachments;
4716		1u,												//	deUint32						colorCount;
4717		&colorAttRef,									//	const VkAttachmentReference*	pColorAttachments;
4718		DE_NULL,										//	const VkAttachmentReference*	pResolveAttachments;
4719		DE_NULL,										//	const VkAttachmentReference*	pDepthStencilAttachment;
4720		0u,												//	deUint32						preserveCount;
4721		DE_NULL,										//	const VkAttachmentReference*	pPreserveAttachments;
4722
4723	};
4724	const VkRenderPassCreateInfo			renderPassParams		=
4725	{
4726		VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO,		//	VkStructureType					sType;
4727		DE_NULL,										//	const void*						pNext;
4728		(VkRenderPassCreateFlags)0,
4729		1u,												//	deUint32						attachmentCount;
4730		&colorAttDesc,									//	const VkAttachmentDescription*	pAttachments;
4731		1u,												//	deUint32						subpassCount;
4732		&subpassDesc,									//	const VkSubpassDescription*		pSubpasses;
4733		0u,												//	deUint32						dependencyCount;
4734		DE_NULL,										//	const VkSubpassDependency*		pDependencies;
4735	};
4736	const Unique<VkRenderPass>				renderPass				(createRenderPass(vk, vkDevice, &renderPassParams));
4737
4738	const VkImageViewCreateInfo				colorAttViewParams		=
4739	{
4740		VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,		//	VkStructureType				sType;
4741		DE_NULL,										//	const void*					pNext;
4742		0u,												//	VkImageViewCreateFlags		flags;
4743		*image,											//	VkImage						image;
4744		VK_IMAGE_VIEW_TYPE_2D,							//	VkImageViewType				viewType;
4745		VK_FORMAT_R8G8B8A8_UNORM,						//	VkFormat					format;
4746		{
4747			VK_COMPONENT_SWIZZLE_R,
4748			VK_COMPONENT_SWIZZLE_G,
4749			VK_COMPONENT_SWIZZLE_B,
4750			VK_COMPONENT_SWIZZLE_A
4751		},												//	VkChannelMapping			channels;
4752		{
4753			VK_IMAGE_ASPECT_COLOR_BIT,						//	VkImageAspectFlags	aspectMask;
4754			0u,												//	deUint32			baseMipLevel;
4755			1u,												//	deUint32			mipLevels;
4756			0u,												//	deUint32			baseArrayLayer;
4757			1u,												//	deUint32			arraySize;
4758		},												//	VkImageSubresourceRange		subresourceRange;
4759	};
4760	const Unique<VkImageView>				colorAttView			(createImageView(vk, vkDevice, &colorAttViewParams));
4761
4762
4763	// Pipeline layout
4764	const VkPipelineLayoutCreateInfo		pipelineLayoutParams	=
4765	{
4766		VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,			//	VkStructureType					sType;
4767		DE_NULL,												//	const void*						pNext;
4768		(VkPipelineLayoutCreateFlags)0,
4769		0u,														//	deUint32						descriptorSetCount;
4770		DE_NULL,												//	const VkDescriptorSetLayout*	pSetLayouts;
4771		0u,														//	deUint32						pushConstantRangeCount;
4772		DE_NULL,												//	const VkPushConstantRange*		pPushConstantRanges;
4773	};
4774	const Unique<VkPipelineLayout>			pipelineLayout			(createPipelineLayout(vk, vkDevice, &pipelineLayoutParams));
4775
4776	// Pipeline
4777	vector<VkPipelineShaderStageCreateInfo>		shaderStageParams;
4778	// We need these vectors to make sure that information about specialization constants for each stage can outlive createGraphicsPipeline().
4779	vector<vector<VkSpecializationMapEntry> >	specConstantEntries;
4780	vector<VkSpecializationInfo>				specializationInfos;
4781	createPipelineShaderStages(vk, vkDevice, instance, context, modules, shaderStageParams);
4782
4783	// And we don't want the reallocation of these vectors to invalidate pointers pointing to their contents.
4784	specConstantEntries.reserve(shaderStageParams.size());
4785	specializationInfos.reserve(shaderStageParams.size());
4786
4787	// Patch the specialization info field in PipelineShaderStageCreateInfos.
4788	for (vector<VkPipelineShaderStageCreateInfo>::iterator stageInfo = shaderStageParams.begin(); stageInfo != shaderStageParams.end(); ++stageInfo)
4789	{
4790		const StageToSpecConstantMap::const_iterator stageIt = instance.specConstants.find(stageInfo->stage);
4791
4792		if (stageIt != instance.specConstants.end())
4793		{
4794			const size_t						numSpecConstants	= stageIt->second.size();
4795			vector<VkSpecializationMapEntry>	entries;
4796			VkSpecializationInfo				specInfo;
4797
4798			entries.resize(numSpecConstants);
4799
4800			// Only support 32-bit integers as spec constants now. And their constant IDs are numbered sequentially starting from 0.
4801			for (size_t ndx = 0; ndx < numSpecConstants; ++ndx)
4802			{
4803				entries[ndx].constantID	= (deUint32)ndx;
4804				entries[ndx].offset		= deUint32(ndx * sizeof(deInt32));
4805				entries[ndx].size		= sizeof(deInt32);
4806			}
4807
4808			specConstantEntries.push_back(entries);
4809
4810			specInfo.mapEntryCount	= (deUint32)numSpecConstants;
4811			specInfo.pMapEntries	= specConstantEntries.back().data();
4812			specInfo.dataSize		= numSpecConstants * sizeof(deInt32);
4813			specInfo.pData			= stageIt->second.data();
4814			specializationInfos.push_back(specInfo);
4815
4816			stageInfo->pSpecializationInfo = &specializationInfos.back();
4817		}
4818	}
4819	const VkPipelineDepthStencilStateCreateInfo	depthStencilParams		=
4820	{
4821		VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO,	//	VkStructureType		sType;
4822		DE_NULL,													//	const void*			pNext;
4823		(VkPipelineDepthStencilStateCreateFlags)0,
4824		DE_FALSE,													//	deUint32			depthTestEnable;
4825		DE_FALSE,													//	deUint32			depthWriteEnable;
4826		VK_COMPARE_OP_ALWAYS,										//	VkCompareOp			depthCompareOp;
4827		DE_FALSE,													//	deUint32			depthBoundsTestEnable;
4828		DE_FALSE,													//	deUint32			stencilTestEnable;
4829		{
4830			VK_STENCIL_OP_KEEP,											//	VkStencilOp	stencilFailOp;
4831			VK_STENCIL_OP_KEEP,											//	VkStencilOp	stencilPassOp;
4832			VK_STENCIL_OP_KEEP,											//	VkStencilOp	stencilDepthFailOp;
4833			VK_COMPARE_OP_ALWAYS,										//	VkCompareOp	stencilCompareOp;
4834			0u,															//	deUint32	stencilCompareMask;
4835			0u,															//	deUint32	stencilWriteMask;
4836			0u,															//	deUint32	stencilReference;
4837		},															//	VkStencilOpState	front;
4838		{
4839			VK_STENCIL_OP_KEEP,											//	VkStencilOp	stencilFailOp;
4840			VK_STENCIL_OP_KEEP,											//	VkStencilOp	stencilPassOp;
4841			VK_STENCIL_OP_KEEP,											//	VkStencilOp	stencilDepthFailOp;
4842			VK_COMPARE_OP_ALWAYS,										//	VkCompareOp	stencilCompareOp;
4843			0u,															//	deUint32	stencilCompareMask;
4844			0u,															//	deUint32	stencilWriteMask;
4845			0u,															//	deUint32	stencilReference;
4846		},															//	VkStencilOpState	back;
4847		-1.0f,														//	float				minDepthBounds;
4848		+1.0f,														//	float				maxDepthBounds;
4849	};
4850	const VkViewport						viewport0				=
4851	{
4852		0.0f,														//	float	originX;
4853		0.0f,														//	float	originY;
4854		(float)renderSize.x(),										//	float	width;
4855		(float)renderSize.y(),										//	float	height;
4856		0.0f,														//	float	minDepth;
4857		1.0f,														//	float	maxDepth;
4858	};
4859	const VkRect2D							scissor0				=
4860	{
4861		{
4862			0u,															//	deInt32	x;
4863			0u,															//	deInt32	y;
4864		},															//	VkOffset2D	offset;
4865		{
4866			renderSize.x(),												//	deInt32	width;
4867			renderSize.y(),												//	deInt32	height;
4868		},															//	VkExtent2D	extent;
4869	};
4870	const VkPipelineViewportStateCreateInfo		viewportParams			=
4871	{
4872		VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO,		//	VkStructureType		sType;
4873		DE_NULL,													//	const void*			pNext;
4874		(VkPipelineViewportStateCreateFlags)0,
4875		1u,															//	deUint32			viewportCount;
4876		&viewport0,
4877		1u,
4878		&scissor0
4879	};
4880	const VkSampleMask							sampleMask				= ~0u;
4881	const VkPipelineMultisampleStateCreateInfo	multisampleParams		=
4882	{
4883		VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO,	//	VkStructureType			sType;
4884		DE_NULL,													//	const void*				pNext;
4885		(VkPipelineMultisampleStateCreateFlags)0,
4886		VK_SAMPLE_COUNT_1_BIT,										//	VkSampleCountFlagBits	rasterSamples;
4887		DE_FALSE,													//	deUint32				sampleShadingEnable;
4888		0.0f,														//	float					minSampleShading;
4889		&sampleMask,												//	const VkSampleMask*		pSampleMask;
4890		DE_FALSE,													//	VkBool32				alphaToCoverageEnable;
4891		DE_FALSE,													//	VkBool32				alphaToOneEnable;
4892	};
4893	const VkPipelineRasterizationStateCreateInfo	rasterParams		=
4894	{
4895		VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO,	//	VkStructureType	sType;
4896		DE_NULL,													//	const void*		pNext;
4897		(VkPipelineRasterizationStateCreateFlags)0,
4898		DE_TRUE,													//	deUint32		depthClipEnable;
4899		DE_FALSE,													//	deUint32		rasterizerDiscardEnable;
4900		VK_POLYGON_MODE_FILL,										//	VkFillMode		fillMode;
4901		VK_CULL_MODE_NONE,											//	VkCullMode		cullMode;
4902		VK_FRONT_FACE_COUNTER_CLOCKWISE,							//	VkFrontFace		frontFace;
4903		VK_FALSE,													//	VkBool32		depthBiasEnable;
4904		0.0f,														//	float			depthBias;
4905		0.0f,														//	float			depthBiasClamp;
4906		0.0f,														//	float			slopeScaledDepthBias;
4907		1.0f,														//	float			lineWidth;
4908	};
4909	const VkPrimitiveTopology topology = hasTessellation? VK_PRIMITIVE_TOPOLOGY_PATCH_LIST: VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
4910	const VkPipelineInputAssemblyStateCreateInfo	inputAssemblyParams	=
4911	{
4912		VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO,	//	VkStructureType		sType;
4913		DE_NULL,														//	const void*			pNext;
4914		(VkPipelineInputAssemblyStateCreateFlags)0,
4915		topology,														//	VkPrimitiveTopology	topology;
4916		DE_FALSE,														//	deUint32			primitiveRestartEnable;
4917	};
4918	const VkVertexInputBindingDescription		vertexBinding0 =
4919	{
4920		0u,									// deUint32					binding;
4921		deUint32(singleVertexDataSize),		// deUint32					strideInBytes;
4922		VK_VERTEX_INPUT_RATE_VERTEX			// VkVertexInputStepRate	stepRate;
4923	};
4924	const VkVertexInputAttributeDescription		vertexAttrib0[2] =
4925	{
4926		{
4927			0u,									// deUint32	location;
4928			0u,									// deUint32	binding;
4929			VK_FORMAT_R32G32B32A32_SFLOAT,		// VkFormat	format;
4930			0u									// deUint32	offsetInBytes;
4931		},
4932		{
4933			1u,									// deUint32	location;
4934			0u,									// deUint32	binding;
4935			VK_FORMAT_R32G32B32A32_SFLOAT,		// VkFormat	format;
4936			sizeof(Vec4),						// deUint32	offsetInBytes;
4937		}
4938	};
4939
4940	const VkPipelineVertexInputStateCreateInfo	vertexInputStateParams	=
4941	{
4942		VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO,	//	VkStructureType								sType;
4943		DE_NULL,													//	const void*									pNext;
4944		(VkPipelineVertexInputStateCreateFlags)0,
4945		1u,															//	deUint32									bindingCount;
4946		&vertexBinding0,											//	const VkVertexInputBindingDescription*		pVertexBindingDescriptions;
4947		2u,															//	deUint32									attributeCount;
4948		vertexAttrib0,												//	const VkVertexInputAttributeDescription*	pVertexAttributeDescriptions;
4949	};
4950	const VkPipelineColorBlendAttachmentState	attBlendParams			=
4951	{
4952		DE_FALSE,													//	deUint32		blendEnable;
4953		VK_BLEND_FACTOR_ONE,										//	VkBlend			srcBlendColor;
4954		VK_BLEND_FACTOR_ZERO,										//	VkBlend			destBlendColor;
4955		VK_BLEND_OP_ADD,											//	VkBlendOp		blendOpColor;
4956		VK_BLEND_FACTOR_ONE,										//	VkBlend			srcBlendAlpha;
4957		VK_BLEND_FACTOR_ZERO,										//	VkBlend			destBlendAlpha;
4958		VK_BLEND_OP_ADD,											//	VkBlendOp		blendOpAlpha;
4959		(VK_COLOR_COMPONENT_R_BIT|
4960		 VK_COLOR_COMPONENT_G_BIT|
4961		 VK_COLOR_COMPONENT_B_BIT|
4962		 VK_COLOR_COMPONENT_A_BIT),									//	VkChannelFlags	channelWriteMask;
4963	};
4964	const VkPipelineColorBlendStateCreateInfo	blendParams				=
4965	{
4966		VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO,	//	VkStructureType								sType;
4967		DE_NULL,													//	const void*									pNext;
4968		(VkPipelineColorBlendStateCreateFlags)0,
4969		DE_FALSE,													//	VkBool32									logicOpEnable;
4970		VK_LOGIC_OP_COPY,											//	VkLogicOp									logicOp;
4971		1u,															//	deUint32									attachmentCount;
4972		&attBlendParams,											//	const VkPipelineColorBlendAttachmentState*	pAttachments;
4973		{ 0.0f, 0.0f, 0.0f, 0.0f },									//	float										blendConst[4];
4974	};
4975	const VkPipelineDynamicStateCreateInfo	dynamicStateInfo		=
4976	{
4977		VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO,	//	VkStructureType			sType;
4978		DE_NULL,												//	const void*				pNext;
4979		(VkPipelineDynamicStateCreateFlags)0,
4980		0u,														//	deUint32				dynamicStateCount;
4981		DE_NULL													//	const VkDynamicState*	pDynamicStates;
4982	};
4983
4984	const VkPipelineTessellationStateCreateInfo	tessellationState	=
4985	{
4986		VK_STRUCTURE_TYPE_PIPELINE_TESSELLATION_STATE_CREATE_INFO,
4987		DE_NULL,
4988		(VkPipelineTesselationStateCreateFlags)0,
4989		3u
4990	};
4991
4992	const VkPipelineTessellationStateCreateInfo* tessellationInfo	=	hasTessellation ? &tessellationState: DE_NULL;
4993	const VkGraphicsPipelineCreateInfo		pipelineParams			=
4994	{
4995		VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO,		//	VkStructureType									sType;
4996		DE_NULL,												//	const void*										pNext;
4997		0u,														//	VkPipelineCreateFlags							flags;
4998		(deUint32)shaderStageParams.size(),						//	deUint32										stageCount;
4999		&shaderStageParams[0],									//	const VkPipelineShaderStageCreateInfo*			pStages;
5000		&vertexInputStateParams,								//	const VkPipelineVertexInputStateCreateInfo*		pVertexInputState;
5001		&inputAssemblyParams,									//	const VkPipelineInputAssemblyStateCreateInfo*	pInputAssemblyState;
5002		tessellationInfo,										//	const VkPipelineTessellationStateCreateInfo*	pTessellationState;
5003		&viewportParams,										//	const VkPipelineViewportStateCreateInfo*		pViewportState;
5004		&rasterParams,											//	const VkPipelineRasterStateCreateInfo*			pRasterState;
5005		&multisampleParams,										//	const VkPipelineMultisampleStateCreateInfo*		pMultisampleState;
5006		&depthStencilParams,									//	const VkPipelineDepthStencilStateCreateInfo*	pDepthStencilState;
5007		&blendParams,											//	const VkPipelineColorBlendStateCreateInfo*		pColorBlendState;
5008		&dynamicStateInfo,										//	const VkPipelineDynamicStateCreateInfo*			pDynamicState;
5009		*pipelineLayout,										//	VkPipelineLayout								layout;
5010		*renderPass,											//	VkRenderPass									renderPass;
5011		0u,														//	deUint32										subpass;
5012		DE_NULL,												//	VkPipeline										basePipelineHandle;
5013		0u,														//	deInt32											basePipelineIndex;
5014	};
5015
5016	const Unique<VkPipeline>				pipeline				(createGraphicsPipeline(vk, vkDevice, DE_NULL, &pipelineParams));
5017
5018	// Framebuffer
5019	const VkFramebufferCreateInfo			framebufferParams		=
5020	{
5021		VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO,				//	VkStructureType		sType;
5022		DE_NULL,												//	const void*			pNext;
5023		(VkFramebufferCreateFlags)0,
5024		*renderPass,											//	VkRenderPass		renderPass;
5025		1u,														//	deUint32			attachmentCount;
5026		&*colorAttView,											//	const VkImageView*	pAttachments;
5027		(deUint32)renderSize.x(),								//	deUint32			width;
5028		(deUint32)renderSize.y(),								//	deUint32			height;
5029		1u,														//	deUint32			layers;
5030	};
5031	const Unique<VkFramebuffer>				framebuffer				(createFramebuffer(vk, vkDevice, &framebufferParams));
5032
5033	const VkCommandPoolCreateInfo			cmdPoolParams			=
5034	{
5035		VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO,					//	VkStructureType			sType;
5036		DE_NULL,													//	const void*				pNext;
5037		VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT,				//	VkCmdPoolCreateFlags	flags;
5038		queueFamilyIndex,											//	deUint32				queueFamilyIndex;
5039	};
5040	const Unique<VkCommandPool>				cmdPool					(createCommandPool(vk, vkDevice, &cmdPoolParams));
5041
5042	// Command buffer
5043	const VkCommandBufferAllocateInfo		cmdBufParams			=
5044	{
5045		VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO,			//	VkStructureType			sType;
5046		DE_NULL,												//	const void*				pNext;
5047		*cmdPool,												//	VkCmdPool				pool;
5048		VK_COMMAND_BUFFER_LEVEL_PRIMARY,						//	VkCmdBufferLevel		level;
5049		1u,														//	deUint32				count;
5050	};
5051	const Unique<VkCommandBuffer>			cmdBuf					(allocateCommandBuffer(vk, vkDevice, &cmdBufParams));
5052
5053	const VkCommandBufferBeginInfo			cmdBufBeginParams		=
5054	{
5055		VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO,			//	VkStructureType				sType;
5056		DE_NULL,												//	const void*					pNext;
5057		(VkCommandBufferUsageFlags)0,
5058		DE_NULL,												//	VkRenderPass				renderPass;
5059		0u,														//	deUint32					subpass;
5060		DE_NULL,												//	VkFramebuffer				framebuffer;
5061		VK_FALSE,												//	VkBool32					occlusionQueryEnable;
5062		(VkQueryControlFlags)0,
5063		(VkQueryPipelineStatisticFlags)0,
5064	};
5065
5066	// Record commands
5067	VK_CHECK(vk.beginCommandBuffer(*cmdBuf, &cmdBufBeginParams));
5068
5069	{
5070		const VkMemoryBarrier		vertFlushBarrier	=
5071		{
5072			VK_STRUCTURE_TYPE_MEMORY_BARRIER,			//	VkStructureType		sType;
5073			DE_NULL,									//	const void*			pNext;
5074			VK_ACCESS_HOST_WRITE_BIT,					//	VkMemoryOutputFlags	outputMask;
5075			VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT,		//	VkMemoryInputFlags	inputMask;
5076		};
5077		const VkImageMemoryBarrier	colorAttBarrier		=
5078		{
5079			VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,		//	VkStructureType			sType;
5080			DE_NULL,									//	const void*				pNext;
5081			0u,											//	VkMemoryOutputFlags		outputMask;
5082			VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,		//	VkMemoryInputFlags		inputMask;
5083			VK_IMAGE_LAYOUT_UNDEFINED,					//	VkImageLayout			oldLayout;
5084			VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,	//	VkImageLayout			newLayout;
5085			queueFamilyIndex,							//	deUint32				srcQueueFamilyIndex;
5086			queueFamilyIndex,							//	deUint32				destQueueFamilyIndex;
5087			*image,										//	VkImage					image;
5088			{
5089				VK_IMAGE_ASPECT_COLOR_BIT,					//	VkImageAspect	aspect;
5090				0u,											//	deUint32		baseMipLevel;
5091				1u,											//	deUint32		mipLevels;
5092				0u,											//	deUint32		baseArraySlice;
5093				1u,											//	deUint32		arraySize;
5094			}											//	VkImageSubresourceRange	subresourceRange;
5095		};
5096		const void*				barriers[]				= { &vertFlushBarrier, &colorAttBarrier };
5097		vk.cmdPipelineBarrier(*cmdBuf, VK_PIPELINE_STAGE_HOST_BIT, VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT, DE_FALSE, (deUint32)DE_LENGTH_OF_ARRAY(barriers), barriers);
5098	}
5099
5100	{
5101		const VkClearValue			clearValue		= makeClearValueColorF32(0.125f, 0.25f, 0.75f, 1.0f);
5102		const VkRenderPassBeginInfo	passBeginParams	=
5103		{
5104			VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO,			//	VkStructureType		sType;
5105			DE_NULL,											//	const void*			pNext;
5106			*renderPass,										//	VkRenderPass		renderPass;
5107			*framebuffer,										//	VkFramebuffer		framebuffer;
5108			{ { 0, 0 }, { renderSize.x(), renderSize.y() } },	//	VkRect2D			renderArea;
5109			1u,													//	deUint32			clearValueCount;
5110			&clearValue,										//	const VkClearValue*	pClearValues;
5111		};
5112		vk.cmdBeginRenderPass(*cmdBuf, &passBeginParams, VK_SUBPASS_CONTENTS_INLINE);
5113	}
5114
5115	vk.cmdBindPipeline(*cmdBuf, VK_PIPELINE_BIND_POINT_GRAPHICS, *pipeline);
5116	{
5117		const VkDeviceSize bindingOffset = 0;
5118		vk.cmdBindVertexBuffers(*cmdBuf, 0u, 1u, &vertexBuffer.get(), &bindingOffset);
5119	}
5120	vk.cmdDraw(*cmdBuf, deUint32(vertexCount), 1u /*run pipeline once*/, 0u /*first vertex*/, 0u /*first instanceIndex*/);
5121	vk.cmdEndRenderPass(*cmdBuf);
5122
5123	{
5124		const VkImageMemoryBarrier	renderFinishBarrier	=
5125		{
5126			VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,		//	VkStructureType			sType;
5127			DE_NULL,									//	const void*				pNext;
5128			VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,		//	VkMemoryOutputFlags		outputMask;
5129			VK_ACCESS_TRANSFER_READ_BIT,				//	VkMemoryInputFlags		inputMask;
5130			VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,	//	VkImageLayout			oldLayout;
5131			VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,		//	VkImageLayout			newLayout;
5132			queueFamilyIndex,							//	deUint32				srcQueueFamilyIndex;
5133			queueFamilyIndex,							//	deUint32				destQueueFamilyIndex;
5134			*image,										//	VkImage					image;
5135			{
5136				VK_IMAGE_ASPECT_COLOR_BIT,					//	VkImageAspectFlags	aspectMask;
5137				0u,											//	deUint32			baseMipLevel;
5138				1u,											//	deUint32			mipLevels;
5139				0u,											//	deUint32			baseArraySlice;
5140				1u,											//	deUint32			arraySize;
5141			}											//	VkImageSubresourceRange	subresourceRange;
5142		};
5143		const void*				barriers[]				= { &renderFinishBarrier };
5144		vk.cmdPipelineBarrier(*cmdBuf, VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, DE_FALSE, (deUint32)DE_LENGTH_OF_ARRAY(barriers), barriers);
5145	}
5146
5147	{
5148		const VkBufferImageCopy	copyParams	=
5149		{
5150			(VkDeviceSize)0u,						//	VkDeviceSize			bufferOffset;
5151			(deUint32)renderSize.x(),				//	deUint32				bufferRowLength;
5152			(deUint32)renderSize.y(),				//	deUint32				bufferImageHeight;
5153			{
5154				VK_IMAGE_ASPECT_COLOR_BIT,				//	VkImageAspect		aspect;
5155				0u,										//	deUint32			mipLevel;
5156				0u,										//	deUint32			arrayLayer;
5157				1u,										//	deUint32			arraySize;
5158			},										//	VkImageSubresourceCopy	imageSubresource;
5159			{ 0u, 0u, 0u },							//	VkOffset3D				imageOffset;
5160			{ renderSize.x(), renderSize.y(), 1u }	//	VkExtent3D				imageExtent;
5161		};
5162		vk.cmdCopyImageToBuffer(*cmdBuf, *image, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, *readImageBuffer, 1u, &copyParams);
5163	}
5164
5165	{
5166		const VkBufferMemoryBarrier	copyFinishBarrier	=
5167		{
5168			VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER,	//	VkStructureType		sType;
5169			DE_NULL,									//	const void*			pNext;
5170			VK_ACCESS_TRANSFER_WRITE_BIT,				//	VkMemoryOutputFlags	outputMask;
5171			VK_ACCESS_HOST_READ_BIT,					//	VkMemoryInputFlags	inputMask;
5172			queueFamilyIndex,							//	deUint32			srcQueueFamilyIndex;
5173			queueFamilyIndex,							//	deUint32			destQueueFamilyIndex;
5174			*readImageBuffer,							//	VkBuffer			buffer;
5175			0u,											//	VkDeviceSize		offset;
5176			imageSizeBytes								//	VkDeviceSize		size;
5177		};
5178		const void*				barriers[]				= { &copyFinishBarrier };
5179		vk.cmdPipelineBarrier(*cmdBuf, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_HOST_BIT, DE_FALSE, (deUint32)DE_LENGTH_OF_ARRAY(barriers), barriers);
5180	}
5181
5182	VK_CHECK(vk.endCommandBuffer(*cmdBuf));
5183
5184	// Upload vertex data
5185	{
5186		const VkMappedMemoryRange	range			=
5187		{
5188			VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE,	//	VkStructureType	sType;
5189			DE_NULL,								//	const void*		pNext;
5190			vertexBufferMemory->getMemory(),		//	VkDeviceMemory	mem;
5191			0,										//	VkDeviceSize	offset;
5192			(VkDeviceSize)sizeof(vertexData),		//	VkDeviceSize	size;
5193		};
5194		void*						vertexBufPtr	= vertexBufferMemory->getHostPtr();
5195
5196		deMemcpy(vertexBufPtr, &vertexData[0], sizeof(vertexData));
5197		VK_CHECK(vk.flushMappedMemoryRanges(vkDevice, 1u, &range));
5198	}
5199
5200	// Submit & wait for completion
5201	{
5202		const VkFenceCreateInfo	fenceParams	=
5203		{
5204			VK_STRUCTURE_TYPE_FENCE_CREATE_INFO,	//	VkStructureType		sType;
5205			DE_NULL,								//	const void*			pNext;
5206			0u,										//	VkFenceCreateFlags	flags;
5207		};
5208		const Unique<VkFence>	fence		(createFence(vk, vkDevice, &fenceParams));
5209		const VkSubmitInfo		submitInfo	=
5210		{
5211			VK_STRUCTURE_TYPE_SUBMIT_INFO,
5212			DE_NULL,
5213			0u,
5214			(const VkSemaphore*)DE_NULL,
5215			1u,
5216			&cmdBuf.get(),
5217			0u,
5218			(const VkSemaphore*)DE_NULL,
5219		};
5220
5221		VK_CHECK(vk.queueSubmit(queue, 1u, &submitInfo, *fence));
5222		VK_CHECK(vk.waitForFences(vkDevice, 1u, &fence.get(), DE_TRUE, ~0ull));
5223	}
5224
5225	const void* imagePtr	= readImageBufferMemory->getHostPtr();
5226	const tcu::ConstPixelBufferAccess pixelBuffer(tcu::TextureFormat(tcu::TextureFormat::RGBA, tcu::TextureFormat::UNORM_INT8),
5227												  renderSize.x(), renderSize.y(), 1, imagePtr);
5228	// Log image
5229	{
5230		const VkMappedMemoryRange	range		=
5231		{
5232			VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE,	//	VkStructureType	sType;
5233			DE_NULL,								//	const void*		pNext;
5234			readImageBufferMemory->getMemory(),		//	VkDeviceMemory	mem;
5235			0,										//	VkDeviceSize	offset;
5236			imageSizeBytes,							//	VkDeviceSize	size;
5237		};
5238
5239		VK_CHECK(vk.invalidateMappedMemoryRanges(vkDevice, 1u, &range));
5240		context.getTestContext().getLog() << TestLog::Image("Result", "Result", pixelBuffer);
5241	}
5242
5243	const RGBA threshold(1, 1, 1, 1);
5244	const RGBA upperLeft(pixelBuffer.getPixel(1, 1));
5245	if (!tcu::compareThreshold(upperLeft, instance.outputColors[0], threshold))
5246		return TestStatus::fail("Upper left corner mismatch");
5247
5248	const RGBA upperRight(pixelBuffer.getPixel(pixelBuffer.getWidth() - 1, 1));
5249	if (!tcu::compareThreshold(upperRight, instance.outputColors[1], threshold))
5250		return TestStatus::fail("Upper right corner mismatch");
5251
5252	const RGBA lowerLeft(pixelBuffer.getPixel(1, pixelBuffer.getHeight() - 1));
5253	if (!tcu::compareThreshold(lowerLeft, instance.outputColors[2], threshold))
5254		return TestStatus::fail("Lower left corner mismatch");
5255
5256	const RGBA lowerRight(pixelBuffer.getPixel(pixelBuffer.getWidth() - 1, pixelBuffer.getHeight() - 1));
5257	if (!tcu::compareThreshold(lowerRight, instance.outputColors[3], threshold))
5258		return TestStatus::fail("Lower right corner mismatch");
5259
5260	return TestStatus::pass("Rendered output matches input");
5261}
5262
5263void createTestsForAllStages (const std::string& name, const RGBA (&inputColors)[4], const RGBA (&outputColors)[4], const map<string, string>& testCodeFragments, const vector<deInt32>& specConstants, tcu::TestCaseGroup* tests)
5264{
5265	const ShaderElement		vertFragPipelineStages[]		=
5266	{
5267		ShaderElement("vert", "main", VK_SHADER_STAGE_VERTEX_BIT),
5268		ShaderElement("frag", "main", VK_SHADER_STAGE_FRAGMENT_BIT),
5269	};
5270
5271	const ShaderElement		tessPipelineStages[]			=
5272	{
5273		ShaderElement("vert", "main", VK_SHADER_STAGE_VERTEX_BIT),
5274		ShaderElement("tessc", "main", VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT),
5275		ShaderElement("tesse", "main", VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT),
5276		ShaderElement("frag", "main", VK_SHADER_STAGE_FRAGMENT_BIT),
5277	};
5278
5279	const ShaderElement		geomPipelineStages[]				=
5280	{
5281		ShaderElement("vert", "main", VK_SHADER_STAGE_VERTEX_BIT),
5282		ShaderElement("geom", "main", VK_SHADER_STAGE_GEOMETRY_BIT),
5283		ShaderElement("frag", "main", VK_SHADER_STAGE_FRAGMENT_BIT),
5284	};
5285
5286	StageToSpecConstantMap	specConstantMap;
5287
5288	specConstantMap[VK_SHADER_STAGE_VERTEX_BIT] = specConstants;
5289	addFunctionCaseWithPrograms<InstanceContext>(tests, name + "_vert", "", addShaderCodeCustomVertex, runAndVerifyDefaultPipeline,
5290												 createInstanceContext(vertFragPipelineStages, inputColors, outputColors, testCodeFragments, specConstantMap));
5291
5292	specConstantMap.clear();
5293	specConstantMap[VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT] = specConstants;
5294	addFunctionCaseWithPrograms<InstanceContext>(tests, name + "_tessc", "", addShaderCodeCustomTessControl, runAndVerifyDefaultPipeline,
5295												 createInstanceContext(tessPipelineStages, inputColors, outputColors, testCodeFragments, specConstantMap));
5296
5297	specConstantMap.clear();
5298	specConstantMap[VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT] = specConstants;
5299	addFunctionCaseWithPrograms<InstanceContext>(tests, name + "_tesse", "", addShaderCodeCustomTessEval, runAndVerifyDefaultPipeline,
5300												 createInstanceContext(tessPipelineStages, inputColors, outputColors, testCodeFragments, specConstantMap));
5301
5302	specConstantMap.clear();
5303	specConstantMap[VK_SHADER_STAGE_GEOMETRY_BIT] = specConstants;
5304	addFunctionCaseWithPrograms<InstanceContext>(tests, name + "_geom", "", addShaderCodeCustomGeometry, runAndVerifyDefaultPipeline,
5305												 createInstanceContext(geomPipelineStages, inputColors, outputColors, testCodeFragments, specConstantMap));
5306
5307	specConstantMap.clear();
5308	specConstantMap[VK_SHADER_STAGE_FRAGMENT_BIT] = specConstants;
5309	addFunctionCaseWithPrograms<InstanceContext>(tests, name + "_frag", "", addShaderCodeCustomFragment, runAndVerifyDefaultPipeline,
5310												 createInstanceContext(vertFragPipelineStages, inputColors, outputColors, testCodeFragments, specConstantMap));
5311}
5312
5313inline void createTestsForAllStages (const std::string& name, const RGBA (&inputColors)[4], const RGBA (&outputColors)[4], const map<string, string>& testCodeFragments, tcu::TestCaseGroup* tests)
5314{
5315	vector<deInt32> noSpecConstants;
5316	createTestsForAllStages(name, inputColors, outputColors, testCodeFragments, noSpecConstants, tests);
5317}
5318
5319} // anonymous
5320
5321tcu::TestCaseGroup* createOpSourceTests (tcu::TestContext& testCtx)
5322{
5323	struct NameCodePair { string name, code; };
5324	RGBA							defaultColors[4];
5325	de::MovePtr<tcu::TestCaseGroup> opSourceTests			(new tcu::TestCaseGroup(testCtx, "opsource", "OpSource instruction"));
5326	const std::string				opsourceGLSLWithFile	= "%opsrcfile = OpString \"foo.vert\"\nOpSource GLSL 450 %opsrcfile ";
5327	map<string, string>				fragments				= passthruFragments();
5328	const NameCodePair				tests[]					=
5329	{
5330		{"unknown", "OpSource Unknown 321"},
5331		{"essl", "OpSource ESSL 310"},
5332		{"glsl", "OpSource GLSL 450"},
5333		{"opencl_cpp", "OpSource OpenCL_CPP 120"},
5334		{"opencl_c", "OpSource OpenCL_C 120"},
5335		{"multiple", "OpSource GLSL 450\nOpSource GLSL 450"},
5336		{"file", opsourceGLSLWithFile},
5337		{"source", opsourceGLSLWithFile + "\"void main(){}\""},
5338		// Longest possible source string: SPIR-V limits instructions to 65535
5339		// words, of which the first 4 are opsourceGLSLWithFile; the rest will
5340		// contain 65530 UTF8 characters (one word each) plus one last word
5341		// containing 3 ASCII characters and \0.
5342		{"longsource", opsourceGLSLWithFile + '"' + makeLongUTF8String(65530) + "ccc" + '"'}
5343	};
5344
5345	getDefaultColors(defaultColors);
5346	for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(NameCodePair); ++testNdx)
5347	{
5348		fragments["debug"] = tests[testNdx].code;
5349		createTestsForAllStages(tests[testNdx].name, defaultColors, defaultColors, fragments, opSourceTests.get());
5350	}
5351
5352	return opSourceTests.release();
5353}
5354
5355tcu::TestCaseGroup* createOpSourceContinuedTests (tcu::TestContext& testCtx)
5356{
5357	struct NameCodePair { string name, code; };
5358	RGBA								defaultColors[4];
5359	de::MovePtr<tcu::TestCaseGroup>		opSourceTests		(new tcu::TestCaseGroup(testCtx, "opsourcecontinued", "OpSourceContinued instruction"));
5360	map<string, string>					fragments			= passthruFragments();
5361	const std::string					opsource			= "%opsrcfile = OpString \"foo.vert\"\nOpSource GLSL 450 %opsrcfile \"void main(){}\"\n";
5362	const NameCodePair					tests[]				=
5363	{
5364		{"empty", opsource + "OpSourceContinued \"\""},
5365		{"short", opsource + "OpSourceContinued \"abcde\""},
5366		{"multiple", opsource + "OpSourceContinued \"abcde\"\nOpSourceContinued \"fghij\""},
5367		// Longest possible source string: SPIR-V limits instructions to 65535
5368		// words, of which the first one is OpSourceContinued/length; the rest
5369		// will contain 65533 UTF8 characters (one word each) plus one last word
5370		// containing 3 ASCII characters and \0.
5371		{"long", opsource + "OpSourceContinued \"" + makeLongUTF8String(65533) + "ccc\""}
5372	};
5373
5374	getDefaultColors(defaultColors);
5375	for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(NameCodePair); ++testNdx)
5376	{
5377		fragments["debug"] = tests[testNdx].code;
5378		createTestsForAllStages(tests[testNdx].name, defaultColors, defaultColors, fragments, opSourceTests.get());
5379	}
5380
5381	return opSourceTests.release();
5382}
5383
5384tcu::TestCaseGroup* createOpNoLineTests(tcu::TestContext& testCtx)
5385{
5386	RGBA								 defaultColors[4];
5387	de::MovePtr<tcu::TestCaseGroup>		 opLineTests		 (new tcu::TestCaseGroup(testCtx, "opnoline", "OpNoLine instruction"));
5388	map<string, string>					 fragments;
5389	getDefaultColors(defaultColors);
5390	fragments["debug"]			=
5391		"%name = OpString \"name\"\n";
5392
5393	fragments["pre_main"]	=
5394		"OpNoLine\n"
5395		"OpNoLine\n"
5396		"OpLine %name 1 1\n"
5397		"OpNoLine\n"
5398		"OpLine %name 1 1\n"
5399		"OpLine %name 1 1\n"
5400		"%second_function = OpFunction %v4f32 None %v4f32_function\n"
5401		"OpNoLine\n"
5402		"OpLine %name 1 1\n"
5403		"OpNoLine\n"
5404		"OpLine %name 1 1\n"
5405		"OpLine %name 1 1\n"
5406		"%second_param1 = OpFunctionParameter %v4f32\n"
5407		"OpNoLine\n"
5408		"OpNoLine\n"
5409		"%label_secondfunction = OpLabel\n"
5410		"OpNoLine\n"
5411		"OpReturnValue %second_param1\n"
5412		"OpFunctionEnd\n"
5413		"OpNoLine\n"
5414		"OpNoLine\n";
5415
5416	fragments["testfun"]		=
5417		// A %test_code function that returns its argument unchanged.
5418		"OpNoLine\n"
5419		"OpNoLine\n"
5420		"OpLine %name 1 1\n"
5421		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
5422		"OpNoLine\n"
5423		"%param1 = OpFunctionParameter %v4f32\n"
5424		"OpNoLine\n"
5425		"OpNoLine\n"
5426		"%label_testfun = OpLabel\n"
5427		"OpNoLine\n"
5428		"%val1 = OpFunctionCall %v4f32 %second_function %param1\n"
5429		"OpReturnValue %val1\n"
5430		"OpFunctionEnd\n"
5431		"OpLine %name 1 1\n"
5432		"OpNoLine\n";
5433
5434	createTestsForAllStages("opnoline", defaultColors, defaultColors, fragments, opLineTests.get());
5435
5436	return opLineTests.release();
5437}
5438
5439
5440tcu::TestCaseGroup* createOpLineTests(tcu::TestContext& testCtx)
5441{
5442	RGBA													defaultColors[4];
5443	de::MovePtr<tcu::TestCaseGroup>							opLineTests			(new tcu::TestCaseGroup(testCtx, "opline", "OpLine instruction"));
5444	map<string, string>										fragments;
5445	std::vector<std::pair<std::string, std::string> >		problemStrings;
5446
5447	problemStrings.push_back(std::make_pair<std::string, std::string>("empty_name", ""));
5448	problemStrings.push_back(std::make_pair<std::string, std::string>("short_name", "short_name"));
5449	problemStrings.push_back(std::make_pair<std::string, std::string>("long_name", makeLongUTF8String(65530) + "ccc"));
5450	getDefaultColors(defaultColors);
5451
5452	fragments["debug"]			=
5453		"%other_name = OpString \"other_name\"\n";
5454
5455	fragments["pre_main"]	=
5456		"OpLine %file_name 32 0\n"
5457		"OpLine %file_name 32 32\n"
5458		"OpLine %file_name 32 40\n"
5459		"OpLine %other_name 32 40\n"
5460		"OpLine %other_name 0 100\n"
5461		"OpLine %other_name 0 4294967295\n"
5462		"OpLine %other_name 4294967295 0\n"
5463		"OpLine %other_name 32 40\n"
5464		"OpLine %file_name 0 0\n"
5465		"%second_function = OpFunction %v4f32 None %v4f32_function\n"
5466		"OpLine %file_name 1 0\n"
5467		"%second_param1 = OpFunctionParameter %v4f32\n"
5468		"OpLine %file_name 1 3\n"
5469		"OpLine %file_name 1 2\n"
5470		"%label_secondfunction = OpLabel\n"
5471		"OpLine %file_name 0 2\n"
5472		"OpReturnValue %second_param1\n"
5473		"OpFunctionEnd\n"
5474		"OpLine %file_name 0 2\n"
5475		"OpLine %file_name 0 2\n";
5476
5477	fragments["testfun"]		=
5478		// A %test_code function that returns its argument unchanged.
5479		"OpLine %file_name 1 0\n"
5480		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
5481		"OpLine %file_name 16 330\n"
5482		"%param1 = OpFunctionParameter %v4f32\n"
5483		"OpLine %file_name 14 442\n"
5484		"%label_testfun = OpLabel\n"
5485		"OpLine %file_name 11 1024\n"
5486		"%val1 = OpFunctionCall %v4f32 %second_function %param1\n"
5487		"OpLine %file_name 2 97\n"
5488		"OpReturnValue %val1\n"
5489		"OpFunctionEnd\n"
5490		"OpLine %file_name 5 32\n";
5491
5492	for (size_t i = 0; i < problemStrings.size(); ++i)
5493	{
5494		map<string, string> testFragments = fragments;
5495		testFragments["debug"] += "%file_name = OpString \"" + problemStrings[i].second + "\"\n";
5496		createTestsForAllStages(string("opline") + "_" + problemStrings[i].first, defaultColors, defaultColors, testFragments, opLineTests.get());
5497	}
5498
5499	return opLineTests.release();
5500}
5501
5502tcu::TestCaseGroup* createOpConstantNullTests(tcu::TestContext& testCtx)
5503{
5504	de::MovePtr<tcu::TestCaseGroup> opConstantNullTests		(new tcu::TestCaseGroup(testCtx, "opconstantnull", "OpConstantNull instruction"));
5505	RGBA							colors[4];
5506
5507
5508	const char						functionStart[] =
5509		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
5510		"%param1 = OpFunctionParameter %v4f32\n"
5511		"%lbl    = OpLabel\n";
5512
5513	const char						functionEnd[]	=
5514		"OpReturnValue %transformed_param\n"
5515		"OpFunctionEnd\n";
5516
5517	struct NameConstantsCode
5518	{
5519		string name;
5520		string constants;
5521		string code;
5522	};
5523
5524	NameConstantsCode tests[] =
5525	{
5526		{
5527			"vec4",
5528			"%cnull = OpConstantNull %v4f32\n",
5529			"%transformed_param = OpFAdd %v4f32 %param1 %cnull\n"
5530		},
5531		{
5532			"float",
5533			"%cnull = OpConstantNull %f32\n",
5534			"%vp = OpVariable %fp_v4f32 Function\n"
5535			"%v  = OpLoad %v4f32 %vp\n"
5536			"%v0 = OpVectorInsertDynamic %v4f32 %v %cnull %c_i32_0\n"
5537			"%v1 = OpVectorInsertDynamic %v4f32 %v0 %cnull %c_i32_1\n"
5538			"%v2 = OpVectorInsertDynamic %v4f32 %v1 %cnull %c_i32_2\n"
5539			"%v3 = OpVectorInsertDynamic %v4f32 %v2 %cnull %c_i32_3\n"
5540			"%transformed_param = OpFAdd %v4f32 %param1 %v3\n"
5541		},
5542		{
5543			"bool",
5544			"%cnull             = OpConstantNull %bool\n",
5545			"%v                 = OpVariable %fp_v4f32 Function\n"
5546			"                     OpStore %v %param1\n"
5547			"                     OpSelectionMerge %false_label None\n"
5548			"                     OpBranchConditional %cnull %true_label %false_label\n"
5549			"%true_label        = OpLabel\n"
5550			"                     OpStore %v %c_v4f32_0_5_0_5_0_5_0_5\n"
5551			"                     OpBranch %false_label\n"
5552			"%false_label       = OpLabel\n"
5553			"%transformed_param = OpLoad %v4f32 %v\n"
5554		},
5555		{
5556			"i32",
5557			"%cnull             = OpConstantNull %i32\n",
5558			"%v                 = OpVariable %fp_v4f32 Function %c_v4f32_0_5_0_5_0_5_0_5\n"
5559			"%b                 = OpIEqual %bool %cnull %c_i32_0\n"
5560			"                     OpSelectionMerge %false_label None\n"
5561			"                     OpBranchConditional %b %true_label %false_label\n"
5562			"%true_label        = OpLabel\n"
5563			"                     OpStore %v %param1\n"
5564			"                     OpBranch %false_label\n"
5565			"%false_label       = OpLabel\n"
5566			"%transformed_param = OpLoad %v4f32 %v\n"
5567		},
5568		{
5569			"struct",
5570			"%stype             = OpTypeStruct %f32 %v4f32\n"
5571			"%fp_stype          = OpTypePointer Function %stype\n"
5572			"%cnull             = OpConstantNull %stype\n",
5573			"%v                 = OpVariable %fp_stype Function %cnull\n"
5574			"%f                 = OpAccessChain %fp_v4f32 %v %c_i32_1\n"
5575			"%f_val             = OpLoad %v4f32 %f\n"
5576			"%transformed_param = OpFAdd %v4f32 %param1 %f_val\n"
5577		},
5578		{
5579			"array",
5580			"%a4_v4f32          = OpTypeArray %v4f32 %c_u32_4\n"
5581			"%fp_a4_v4f32       = OpTypePointer Function %a4_v4f32\n"
5582			"%cnull             = OpConstantNull %a4_v4f32\n",
5583			"%v                 = OpVariable %fp_a4_v4f32 Function %cnull\n"
5584			"%f                 = OpAccessChain %fp_v4f32 %v %c_u32_0\n"
5585			"%f1                = OpAccessChain %fp_v4f32 %v %c_u32_1\n"
5586			"%f2                = OpAccessChain %fp_v4f32 %v %c_u32_2\n"
5587			"%f3                = OpAccessChain %fp_v4f32 %v %c_u32_3\n"
5588			"%f_val             = OpLoad %v4f32 %f\n"
5589			"%f1_val            = OpLoad %v4f32 %f1\n"
5590			"%f2_val            = OpLoad %v4f32 %f2\n"
5591			"%f3_val            = OpLoad %v4f32 %f3\n"
5592			"%t0                = OpFAdd %v4f32 %param1 %f_val\n"
5593			"%t1                = OpFAdd %v4f32 %t0 %f1_val\n"
5594			"%t2                = OpFAdd %v4f32 %t1 %f2_val\n"
5595			"%transformed_param = OpFAdd %v4f32 %t2 %f3_val\n"
5596		},
5597		{
5598			"matrix",
5599			"%mat4x4_f32        = OpTypeMatrix %v4f32 4\n"
5600			"%cnull             = OpConstantNull %mat4x4_f32\n",
5601			// Our null matrix * any vector should result in a zero vector.
5602			"%v                 = OpVectorTimesMatrix %v4f32 %param1 %cnull\n"
5603			"%transformed_param = OpFAdd %v4f32 %param1 %v\n"
5604		}
5605	};
5606
5607	getHalfColorsFullAlpha(colors);
5608
5609	for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(NameConstantsCode); ++testNdx)
5610	{
5611		map<string, string> fragments;
5612		fragments["pre_main"] = tests[testNdx].constants;
5613		fragments["testfun"] = string(functionStart) + tests[testNdx].code + functionEnd;
5614		createTestsForAllStages(tests[testNdx].name, colors, colors, fragments, opConstantNullTests.get());
5615	}
5616	return opConstantNullTests.release();
5617}
5618tcu::TestCaseGroup* createOpConstantCompositeTests(tcu::TestContext& testCtx)
5619{
5620	de::MovePtr<tcu::TestCaseGroup> opConstantCompositeTests		(new tcu::TestCaseGroup(testCtx, "opconstantcomposite", "OpConstantComposite instruction"));
5621	RGBA							inputColors[4];
5622	RGBA							outputColors[4];
5623
5624
5625	const char						functionStart[]	 =
5626		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
5627		"%param1 = OpFunctionParameter %v4f32\n"
5628		"%lbl    = OpLabel\n";
5629
5630	const char						functionEnd[]		=
5631		"OpReturnValue %transformed_param\n"
5632		"OpFunctionEnd\n";
5633
5634	struct NameConstantsCode
5635	{
5636		string name;
5637		string constants;
5638		string code;
5639	};
5640
5641	NameConstantsCode tests[] =
5642	{
5643		{
5644			"vec4",
5645
5646			"%cval              = OpConstantComposite %v4f32 %c_f32_0_5 %c_f32_0_5 %c_f32_0_5 %c_f32_0\n",
5647			"%transformed_param = OpFAdd %v4f32 %param1 %cval\n"
5648		},
5649		{
5650			"struct",
5651
5652			"%stype             = OpTypeStruct %v4f32 %f32\n"
5653			"%fp_stype          = OpTypePointer Function %stype\n"
5654			"%f32_n_1           = OpConstant %f32 -1.0\n"
5655			"%f32_1_5           = OpConstant %f32 !0x3fc00000\n" // +1.5
5656			"%cvec              = OpConstantComposite %v4f32 %f32_1_5 %f32_1_5 %f32_1_5 %c_f32_1\n"
5657			"%cval              = OpConstantComposite %stype %cvec %f32_n_1\n",
5658
5659			"%v                 = OpVariable %fp_stype Function %cval\n"
5660			"%vec_ptr           = OpAccessChain %fp_v4f32 %v %c_u32_0\n"
5661			"%f32_ptr           = OpAccessChain %fp_v4f32 %v %c_u32_1\n"
5662			"%vec_val           = OpLoad %v4f32 %vec_ptr\n"
5663			"%f32_val           = OpLoad %v4f32 %f32_ptr\n"
5664			"%tmp1              = OpVectorTimesScalar %v4f32 %c_v4f32_1_1_1_1 %f32_val\n" // vec4(-1)
5665			"%tmp2              = OpFAdd %v4f32 %tmp1 %param1\n" // param1 + vec4(-1)
5666			"%transformed_param = OpFAdd %v4f32 %tmp2 %vec_val\n" // param1 + vec4(-1) + vec4(1.5, 1.5, 1.5, 1.0)
5667		},
5668		{
5669			// [1|0|0|0.5] [x] = x + 0.5
5670			// [0|1|0|0.5] [y] = y + 0.5
5671			// [0|0|1|0.5] [z] = z + 0.5
5672			// [0|0|0|1  ] [1] = 1
5673			"matrix",
5674
5675			"%mat4x4_f32          = OpTypeMatrix %v4f32 4\n"
5676		    "%v4f32_1_0_0_0       = OpConstantComposite %v4f32 %c_f32_1 %c_f32_0 %c_f32_0 %c_f32_0\n"
5677		    "%v4f32_0_1_0_0       = OpConstantComposite %v4f32 %c_f32_0 %c_f32_1 %c_f32_0 %c_f32_0\n"
5678		    "%v4f32_0_0_1_0       = OpConstantComposite %v4f32 %c_f32_0 %c_f32_0 %c_f32_1 %c_f32_0\n"
5679		    "%v4f32_0_5_0_5_0_5_1 = OpConstantComposite %v4f32 %c_f32_0_5 %c_f32_0_5 %c_f32_0_5 %c_f32_1\n"
5680			"%cval                = OpConstantComposite %mat4x4_f32 %v4f32_1_0_0_0 %v4f32_0_1_0_0 %v4f32_0_0_1_0 %v4f32_0_5_0_5_0_5_1\n",
5681
5682			"%transformed_param   = OpMatrixTimesVector %v4f32 %cval %param1\n"
5683		},
5684		{
5685			"array",
5686
5687			"%c_v4f32_1_1_1_0     = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_0\n"
5688			"%fp_a4f32            = OpTypePointer Function %a4f32\n"
5689			"%f32_n_1             = OpConstant %f32 -1.0\n"
5690			"%f32_1_5             = OpConstant %f32 !0x3fc00000\n" // +1.5
5691			"%carr                = OpConstantComposite %a4f32 %c_f32_0 %f32_n_1 %f32_1_5 %c_f32_0\n",
5692
5693			"%v                   = OpVariable %fp_a4f32 Function %carr\n"
5694			"%f                   = OpAccessChain %fp_f32 %v %c_u32_0\n"
5695			"%f1                  = OpAccessChain %fp_f32 %v %c_u32_1\n"
5696			"%f2                  = OpAccessChain %fp_f32 %v %c_u32_2\n"
5697			"%f3                  = OpAccessChain %fp_f32 %v %c_u32_3\n"
5698			"%f_val               = OpLoad %f32 %f\n"
5699			"%f1_val              = OpLoad %f32 %f1\n"
5700			"%f2_val              = OpLoad %f32 %f2\n"
5701			"%f3_val              = OpLoad %f32 %f3\n"
5702			"%ftot1               = OpFAdd %f32 %f_val %f1_val\n"
5703			"%ftot2               = OpFAdd %f32 %ftot1 %f2_val\n"
5704			"%ftot3               = OpFAdd %f32 %ftot2 %f3_val\n"  // 0 - 1 + 1.5 + 0
5705			"%add_vec             = OpVectorTimesScalar %v4f32 %c_v4f32_1_1_1_0 %ftot3\n"
5706			"%transformed_param   = OpFAdd %v4f32 %param1 %add_vec\n"
5707		},
5708		{
5709			//
5710			// [
5711			//   {
5712			//      0.0,
5713			//      [ 1.0, 1.0, 1.0, 1.0]
5714			//   },
5715			//   {
5716			//      1.0,
5717			//      [ 0.0, 0.5, 0.0, 0.0]
5718			//   }, //     ^^^
5719			//   {
5720			//      0.0,
5721			//      [ 1.0, 1.0, 1.0, 1.0]
5722			//   }
5723			// ]
5724			"array_of_struct_of_array",
5725
5726			"%c_v4f32_1_1_1_0     = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_0\n"
5727			"%fp_a4f32            = OpTypePointer Function %a4f32\n"
5728			"%stype               = OpTypeStruct %f32 %a4f32\n"
5729			"%a3stype             = OpTypeArray %stype %c_u32_3\n"
5730			"%fp_a3stype          = OpTypePointer Function %a3stype\n"
5731			"%ca4f32_0            = OpConstantComposite %a4f32 %c_f32_0 %c_f32_0_5 %c_f32_0 %c_f32_0\n"
5732			"%ca4f32_1            = OpConstantComposite %a4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_1\n"
5733			"%cstype1             = OpConstantComposite %stype %c_f32_0 %ca4f32_1\n"
5734			"%cstype2             = OpConstantComposite %stype %c_f32_1 %ca4f32_0\n"
5735			"%carr                = OpConstantComposite %a3stype %cstype1 %cstype2 %cstype1",
5736
5737			"%v                   = OpVariable %fp_a3stype Function %carr\n"
5738			"%f                   = OpAccessChain %fp_f32 %v %c_u32_1 %c_u32_1 %c_u32_1\n"
5739			"%add_vec             = OpVectorTimesScalar %v4f32 %c_v4f32_1_1_1_0 %f\n"
5740			"%transformed_param   = OpFAdd %v4f32 %param1 %add_vec\n"
5741		}
5742	};
5743
5744	getHalfColorsFullAlpha(inputColors);
5745	outputColors[0] = RGBA(255, 255, 255, 255);
5746	outputColors[1] = RGBA(255, 127, 127, 255);
5747	outputColors[2] = RGBA(127, 255, 127, 255);
5748	outputColors[3] = RGBA(127, 127, 255, 255);
5749
5750	for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(NameConstantsCode); ++testNdx)
5751	{
5752		map<string, string> fragments;
5753		fragments["pre_main"] = tests[testNdx].constants;
5754		fragments["testfun"] = string(functionStart) + tests[testNdx].code + functionEnd;
5755		createTestsForAllStages(tests[testNdx].name, inputColors, outputColors, fragments, opConstantCompositeTests.get());
5756	}
5757	return opConstantCompositeTests.release();
5758}
5759
5760tcu::TestCaseGroup* createSelectionBlockOrderTests(tcu::TestContext& testCtx)
5761{
5762	de::MovePtr<tcu::TestCaseGroup> group				(new tcu::TestCaseGroup(testCtx, "selection_block_order", "Out-of-order blocks for selection"));
5763	RGBA							inputColors[4];
5764	RGBA							outputColors[4];
5765	map<string, string>				fragments;
5766
5767	// vec4 test_code(vec4 param) {
5768	//   vec4 result = param;
5769	//   for (int i = 0; i < 4; ++i) {
5770	//     if (i == 0) result[i] = 0.;
5771	//     else        result[i] = 1. - result[i];
5772	//   }
5773	//   return result;
5774	// }
5775	const char						function[]			=
5776		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
5777		"%param1    = OpFunctionParameter %v4f32\n"
5778		"%lbl       = OpLabel\n"
5779		"%iptr      = OpVariable %fp_i32 Function\n"
5780		"             OpStore %iptr %c_i32_0\n"
5781		"%result    = OpVariable %fp_v4f32 Function\n"
5782		"             OpStore %result %param1\n"
5783		"             OpBranch %loop\n"
5784
5785		// Loop entry block.
5786		"%loop      = OpLabel\n"
5787		"%ival      = OpLoad %i32 %iptr\n"
5788		"%lt_4      = OpSLessThan %bool %ival %c_i32_4\n"
5789		"             OpLoopMerge %exit %loop None\n"
5790		"             OpBranchConditional %lt_4 %if_entry %exit\n"
5791
5792		// Merge block for loop.
5793		"%exit      = OpLabel\n"
5794		"%ret       = OpLoad %v4f32 %result\n"
5795		"             OpReturnValue %ret\n"
5796
5797		// If-statement entry block.
5798		"%if_entry  = OpLabel\n"
5799		"%loc       = OpAccessChain %fp_f32 %result %ival\n"
5800		"%eq_0      = OpIEqual %bool %ival %c_i32_0\n"
5801		"             OpSelectionMerge %if_exit None\n"
5802		"             OpBranchConditional %eq_0 %if_true %if_false\n"
5803
5804		// False branch for if-statement.
5805		"%if_false  = OpLabel\n"
5806		"%val       = OpLoad %f32 %loc\n"
5807		"%sub       = OpFSub %f32 %c_f32_1 %val\n"
5808		"             OpStore %loc %sub\n"
5809		"             OpBranch %if_exit\n"
5810
5811		// Merge block for if-statement.
5812		"%if_exit   = OpLabel\n"
5813		"%ival_next = OpIAdd %i32 %ival %c_i32_1\n"
5814		"             OpStore %iptr %ival_next\n"
5815		"             OpBranch %loop\n"
5816
5817		// True branch for if-statement.
5818		"%if_true   = OpLabel\n"
5819		"             OpStore %loc %c_f32_0\n"
5820		"             OpBranch %if_exit\n"
5821
5822		"             OpFunctionEnd\n";
5823
5824	fragments["testfun"]	= function;
5825
5826	inputColors[0]			= RGBA(127, 127, 127, 0);
5827	inputColors[1]			= RGBA(127, 0,   0,   0);
5828	inputColors[2]			= RGBA(0,   127, 0,   0);
5829	inputColors[3]			= RGBA(0,   0,   127, 0);
5830
5831	outputColors[0]			= RGBA(0, 128, 128, 255);
5832	outputColors[1]			= RGBA(0, 255, 255, 255);
5833	outputColors[2]			= RGBA(0, 128, 255, 255);
5834	outputColors[3]			= RGBA(0, 255, 128, 255);
5835
5836	createTestsForAllStages("out_of_order", inputColors, outputColors, fragments, group.get());
5837
5838	return group.release();
5839}
5840
5841tcu::TestCaseGroup* createSwitchBlockOrderTests(tcu::TestContext& testCtx)
5842{
5843	de::MovePtr<tcu::TestCaseGroup> group				(new tcu::TestCaseGroup(testCtx, "switch_block_order", "Out-of-order blocks for switch"));
5844	RGBA							inputColors[4];
5845	RGBA							outputColors[4];
5846	map<string, string>				fragments;
5847
5848	const char						typesAndConstants[]	=
5849		"%c_f32_p2  = OpConstant %f32 0.2\n"
5850		"%c_f32_p4  = OpConstant %f32 0.4\n"
5851		"%c_f32_p6  = OpConstant %f32 0.6\n"
5852		"%c_f32_p8  = OpConstant %f32 0.8\n";
5853
5854	// vec4 test_code(vec4 param) {
5855	//   vec4 result = param;
5856	//   for (int i = 0; i < 4; ++i) {
5857	//     switch (i) {
5858	//       case 0: result[i] += .2; break;
5859	//       case 1: result[i] += .6; break;
5860	//       case 2: result[i] += .4; break;
5861	//       case 3: result[i] += .8; break;
5862	//       default: break; // unreachable
5863	//     }
5864	//   }
5865	//   return result;
5866	// }
5867	const char						function[]			=
5868		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
5869		"%param1    = OpFunctionParameter %v4f32\n"
5870		"%lbl       = OpLabel\n"
5871		"%iptr      = OpVariable %fp_i32 Function\n"
5872		"             OpStore %iptr %c_i32_0\n"
5873		"%result    = OpVariable %fp_v4f32 Function\n"
5874		"             OpStore %result %param1\n"
5875		"             OpBranch %loop\n"
5876
5877		// Loop entry block.
5878		"%loop      = OpLabel\n"
5879		"%ival      = OpLoad %i32 %iptr\n"
5880		"%lt_4      = OpSLessThan %bool %ival %c_i32_4\n"
5881		"             OpLoopMerge %exit %loop None\n"
5882		"             OpBranchConditional %lt_4 %switch_entry %exit\n"
5883
5884		// Merge block for loop.
5885		"%exit      = OpLabel\n"
5886		"%ret       = OpLoad %v4f32 %result\n"
5887		"             OpReturnValue %ret\n"
5888
5889		// Switch-statement entry block.
5890		"%switch_entry   = OpLabel\n"
5891		"%loc            = OpAccessChain %fp_f32 %result %ival\n"
5892		"%val            = OpLoad %f32 %loc\n"
5893		"                  OpSelectionMerge %switch_exit None\n"
5894		"                  OpSwitch %ival %switch_default 0 %case0 1 %case1 2 %case2 3 %case3\n"
5895
5896		"%case2          = OpLabel\n"
5897		"%addp4          = OpFAdd %f32 %val %c_f32_p4\n"
5898		"                  OpStore %loc %addp4\n"
5899		"                  OpBranch %switch_exit\n"
5900
5901		"%switch_default = OpLabel\n"
5902		"                  OpUnreachable\n"
5903
5904		"%case3          = OpLabel\n"
5905		"%addp8          = OpFAdd %f32 %val %c_f32_p8\n"
5906		"                  OpStore %loc %addp8\n"
5907		"                  OpBranch %switch_exit\n"
5908
5909		"%case0          = OpLabel\n"
5910		"%addp2          = OpFAdd %f32 %val %c_f32_p2\n"
5911		"                  OpStore %loc %addp2\n"
5912		"                  OpBranch %switch_exit\n"
5913
5914		// Merge block for switch-statement.
5915		"%switch_exit    = OpLabel\n"
5916		"%ival_next      = OpIAdd %i32 %ival %c_i32_1\n"
5917		"                  OpStore %iptr %ival_next\n"
5918		"                  OpBranch %loop\n"
5919
5920		"%case1          = OpLabel\n"
5921		"%addp6          = OpFAdd %f32 %val %c_f32_p6\n"
5922		"                  OpStore %loc %addp6\n"
5923		"                  OpBranch %switch_exit\n"
5924
5925		"                  OpFunctionEnd\n";
5926
5927	fragments["pre_main"]	= typesAndConstants;
5928	fragments["testfun"]	= function;
5929
5930	inputColors[0]			= RGBA(127, 27,  127, 51);
5931	inputColors[1]			= RGBA(127, 0,   0,   51);
5932	inputColors[2]			= RGBA(0,   27,  0,   51);
5933	inputColors[3]			= RGBA(0,   0,   127, 51);
5934
5935	outputColors[0]			= RGBA(178, 180, 229, 255);
5936	outputColors[1]			= RGBA(178, 153, 102, 255);
5937	outputColors[2]			= RGBA(51,  180, 102, 255);
5938	outputColors[3]			= RGBA(51,  153, 229, 255);
5939
5940	createTestsForAllStages("out_of_order", inputColors, outputColors, fragments, group.get());
5941
5942	return group.release();
5943}
5944
5945tcu::TestCaseGroup* createDecorationGroupTests(tcu::TestContext& testCtx)
5946{
5947	de::MovePtr<tcu::TestCaseGroup> group				(new tcu::TestCaseGroup(testCtx, "decoration_group", "Decoration group tests"));
5948	RGBA							inputColors[4];
5949	RGBA							outputColors[4];
5950	map<string, string>				fragments;
5951
5952	const char						decorations[]		=
5953		"OpDecorate %array_group         ArrayStride 4\n"
5954		"OpDecorate %struct_member_group Offset 0\n"
5955		"%array_group         = OpDecorationGroup\n"
5956		"%struct_member_group = OpDecorationGroup\n"
5957
5958		"OpDecorate %group1 RelaxedPrecision\n"
5959		"OpDecorate %group3 RelaxedPrecision\n"
5960		"OpDecorate %group3 Invariant\n"
5961		"OpDecorate %group3 Restrict\n"
5962		"%group0 = OpDecorationGroup\n"
5963		"%group1 = OpDecorationGroup\n"
5964		"%group3 = OpDecorationGroup\n";
5965
5966	const char						typesAndConstants[]	=
5967		"%a3f32     = OpTypeArray %f32 %c_u32_3\n"
5968		"%struct1   = OpTypeStruct %a3f32\n"
5969		"%struct2   = OpTypeStruct %a3f32\n"
5970		"%fp_struct1 = OpTypePointer Function %struct1\n"
5971		"%fp_struct2 = OpTypePointer Function %struct2\n"
5972		"%c_f32_2    = OpConstant %f32 2.\n"
5973		"%c_f32_n2   = OpConstant %f32 -2.\n"
5974
5975		"%c_a3f32_1 = OpConstantComposite %a3f32 %c_f32_1 %c_f32_2 %c_f32_1\n"
5976		"%c_a3f32_2 = OpConstantComposite %a3f32 %c_f32_n1 %c_f32_n2 %c_f32_n1\n"
5977		"%c_struct1 = OpConstantComposite %struct1 %c_a3f32_1\n"
5978		"%c_struct2 = OpConstantComposite %struct2 %c_a3f32_2\n";
5979
5980	const char						function[]			=
5981		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
5982		"%param     = OpFunctionParameter %v4f32\n"
5983		"%entry     = OpLabel\n"
5984		"%result    = OpVariable %fp_v4f32 Function\n"
5985		"             OpStore %result %param\n"
5986		"%v_struct1 = OpVariable %fp_struct1 Function\n"
5987		"             OpStore %v_struct1 %c_struct1\n"
5988		"%v_struct2 = OpVariable %fp_struct2 Function\n"
5989		"             OpStore %v_struct2 %c_struct2\n"
5990		"%ptr1      = OpAccessChain %fp_f32 %v_struct1 %c_i32_0 %c_i32_1\n"
5991		"%val1      = OpLoad %f32 %ptr1\n"
5992		"%ptr2      = OpAccessChain %fp_f32 %v_struct2 %c_i32_0 %c_i32_2\n"
5993		"%val2      = OpLoad %f32 %ptr2\n"
5994		"%addvalues = OpFAdd %f32 %val1 %val2\n"
5995		"%ptr       = OpAccessChain %fp_f32 %result %c_i32_1\n"
5996		"%val       = OpLoad %f32 %ptr\n"
5997		"%addresult = OpFAdd %f32 %addvalues %val\n"
5998		"             OpStore %ptr %addresult\n"
5999		"%ret       = OpLoad %v4f32 %result\n"
6000		"             OpReturnValue %ret\n"
6001		"             OpFunctionEnd\n";
6002
6003	struct CaseNameDecoration
6004	{
6005		string name;
6006		string decoration;
6007	};
6008
6009	CaseNameDecoration tests[] =
6010	{
6011		{
6012			"same_decoration_group_on_multiple_types",
6013			"OpGroupMemberDecorate %struct_member_group %struct1 0 %struct2 0\n"
6014		},
6015		{
6016			"empty_decoration_group",
6017			"OpGroupDecorate %group0      %a3f32\n"
6018			"OpGroupDecorate %group0      %result\n"
6019		},
6020		{
6021			"one_element_decoration_group",
6022			"OpGroupDecorate %array_group %a3f32\n"
6023		},
6024		{
6025			"multiple_elements_decoration_group",
6026			"OpGroupDecorate %group3      %v_struct1\n"
6027		},
6028		{
6029			"multiple_decoration_groups_on_same_variable",
6030			"OpGroupDecorate %group0      %v_struct2\n"
6031			"OpGroupDecorate %group1      %v_struct2\n"
6032			"OpGroupDecorate %group3      %v_struct2\n"
6033		},
6034		{
6035			"same_decoration_group_multiple_times",
6036			"OpGroupDecorate %group1      %addvalues\n"
6037			"OpGroupDecorate %group1      %addvalues\n"
6038			"OpGroupDecorate %group1      %addvalues\n"
6039		},
6040
6041	};
6042
6043	getHalfColorsFullAlpha(inputColors);
6044	getHalfColorsFullAlpha(outputColors);
6045
6046	for (size_t idx = 0; idx < (sizeof(tests) / sizeof(tests[0])); ++idx)
6047	{
6048		fragments["decoration"]	= decorations + tests[idx].decoration;
6049		fragments["pre_main"]	= typesAndConstants;
6050		fragments["testfun"]	= function;
6051
6052		createTestsForAllStages(tests[idx].name, inputColors, outputColors, fragments, group.get());
6053	}
6054
6055	return group.release();
6056}
6057
6058struct SpecConstantTwoIntGraphicsCase
6059{
6060	const char*		caseName;
6061	const char*		scDefinition0;
6062	const char*		scDefinition1;
6063	const char*		scResultType;
6064	const char*		scOperation;
6065	deInt32			scActualValue0;
6066	deInt32			scActualValue1;
6067	const char*		resultOperation;
6068	RGBA			expectedColors[4];
6069
6070					SpecConstantTwoIntGraphicsCase (const char* name,
6071											const char* definition0,
6072											const char* definition1,
6073											const char* resultType,
6074											const char* operation,
6075											deInt32		value0,
6076											deInt32		value1,
6077											const char* resultOp,
6078											const RGBA	(&output)[4])
6079						: caseName			(name)
6080						, scDefinition0		(definition0)
6081						, scDefinition1		(definition1)
6082						, scResultType		(resultType)
6083						, scOperation		(operation)
6084						, scActualValue0	(value0)
6085						, scActualValue1	(value1)
6086						, resultOperation	(resultOp)
6087	{
6088		expectedColors[0] = output[0];
6089		expectedColors[1] = output[1];
6090		expectedColors[2] = output[2];
6091		expectedColors[3] = output[3];
6092	}
6093};
6094
6095tcu::TestCaseGroup* createSpecConstantTests (tcu::TestContext& testCtx)
6096{
6097	de::MovePtr<tcu::TestCaseGroup> group				(new tcu::TestCaseGroup(testCtx, "opspecconstantop", "Test the OpSpecConstantOp instruction"));
6098	vector<SpecConstantTwoIntGraphicsCase>	cases;
6099	RGBA							inputColors[4];
6100	RGBA							outputColors0[4];
6101	RGBA							outputColors1[4];
6102	RGBA							outputColors2[4];
6103
6104	const char	decorations1[]			=
6105		"OpDecorate %sc_0  SpecId 0\n"
6106		"OpDecorate %sc_1  SpecId 1\n";
6107
6108	const char	typesAndConstants1[]	=
6109		"%sc_0      = OpSpecConstant${SC_DEF0}\n"
6110		"%sc_1      = OpSpecConstant${SC_DEF1}\n"
6111		"%sc_op     = OpSpecConstantOp ${SC_RESULT_TYPE} ${SC_OP}\n";
6112
6113	const char	function1[]				=
6114		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
6115		"%param     = OpFunctionParameter %v4f32\n"
6116		"%label     = OpLabel\n"
6117		"%result    = OpVariable %fp_v4f32 Function\n"
6118		"             OpStore %result %param\n"
6119		"%gen       = ${GEN_RESULT}\n"
6120		"%index     = OpIAdd %i32 %gen %c_i32_1\n"
6121		"%loc       = OpAccessChain %fp_f32 %result %index\n"
6122		"%val       = OpLoad %f32 %loc\n"
6123		"%add       = OpFAdd %f32 %val %c_f32_0_5\n"
6124		"             OpStore %loc %add\n"
6125		"%ret       = OpLoad %v4f32 %result\n"
6126		"             OpReturnValue %ret\n"
6127		"             OpFunctionEnd\n";
6128
6129	inputColors[0] = RGBA(127, 127, 127, 255);
6130	inputColors[1] = RGBA(127, 0,   0,   255);
6131	inputColors[2] = RGBA(0,   127, 0,   255);
6132	inputColors[3] = RGBA(0,   0,   127, 255);
6133
6134	// Derived from inputColors[x] by adding 128 to inputColors[x][0].
6135	outputColors0[0] = RGBA(255, 127, 127, 255);
6136	outputColors0[1] = RGBA(255, 0,   0,   255);
6137	outputColors0[2] = RGBA(128, 127, 0,   255);
6138	outputColors0[3] = RGBA(128, 0,   127, 255);
6139
6140	// Derived from inputColors[x] by adding 128 to inputColors[x][1].
6141	outputColors1[0] = RGBA(127, 255, 127, 255);
6142	outputColors1[1] = RGBA(127, 128, 0,   255);
6143	outputColors1[2] = RGBA(0,   255, 0,   255);
6144	outputColors1[3] = RGBA(0,   128, 127, 255);
6145
6146	// Derived from inputColors[x] by adding 128 to inputColors[x][2].
6147	outputColors2[0] = RGBA(127, 127, 255, 255);
6148	outputColors2[1] = RGBA(127, 0,   128, 255);
6149	outputColors2[2] = RGBA(0,   127, 128, 255);
6150	outputColors2[3] = RGBA(0,   0,   255, 255);
6151
6152	const char addZeroToSc[]		= "OpIAdd %i32 %c_i32_0 %sc_op";
6153	const char selectTrueUsingSc[]	= "OpSelect %i32 %sc_op %c_i32_1 %c_i32_0";
6154	const char selectFalseUsingSc[]	= "OpSelect %i32 %sc_op %c_i32_0 %c_i32_1";
6155
6156	cases.push_back(SpecConstantTwoIntGraphicsCase("iadd",					" %i32 0",		" %i32 0",		"%i32",		"IAdd                 %sc_0 %sc_1",				19,		-20,	addZeroToSc,		outputColors0));
6157	cases.push_back(SpecConstantTwoIntGraphicsCase("isub",					" %i32 0",		" %i32 0",		"%i32",		"ISub                 %sc_0 %sc_1",				19,		20,		addZeroToSc,		outputColors0));
6158	cases.push_back(SpecConstantTwoIntGraphicsCase("imul",					" %i32 0",		" %i32 0",		"%i32",		"IMul                 %sc_0 %sc_1",				-1,		-1,		addZeroToSc,		outputColors2));
6159	cases.push_back(SpecConstantTwoIntGraphicsCase("sdiv",					" %i32 0",		" %i32 0",		"%i32",		"SDiv                 %sc_0 %sc_1",				-126,	126,	addZeroToSc,		outputColors0));
6160	cases.push_back(SpecConstantTwoIntGraphicsCase("udiv",					" %i32 0",		" %i32 0",		"%i32",		"UDiv                 %sc_0 %sc_1",				126,	126,	addZeroToSc,		outputColors2));
6161	cases.push_back(SpecConstantTwoIntGraphicsCase("srem",					" %i32 0",		" %i32 0",		"%i32",		"SRem                 %sc_0 %sc_1",				3,		2,		addZeroToSc,		outputColors2));
6162	cases.push_back(SpecConstantTwoIntGraphicsCase("smod",					" %i32 0",		" %i32 0",		"%i32",		"SMod                 %sc_0 %sc_1",				3,		2,		addZeroToSc,		outputColors2));
6163	cases.push_back(SpecConstantTwoIntGraphicsCase("umod",					" %i32 0",		" %i32 0",		"%i32",		"UMod                 %sc_0 %sc_1",				1001,	500,	addZeroToSc,		outputColors2));
6164	cases.push_back(SpecConstantTwoIntGraphicsCase("bitwiseand",			" %i32 0",		" %i32 0",		"%i32",		"BitwiseAnd           %sc_0 %sc_1",				0x33,	0x0d,	addZeroToSc,		outputColors2));
6165	cases.push_back(SpecConstantTwoIntGraphicsCase("bitwiseor",				" %i32 0",		" %i32 0",		"%i32",		"BitwiseOr            %sc_0 %sc_1",				0,		1,		addZeroToSc,		outputColors2));
6166	cases.push_back(SpecConstantTwoIntGraphicsCase("bitwisexor",			" %i32 0",		" %i32 0",		"%i32",		"BitwiseAnd           %sc_0 %sc_1",				0x2e,	0x2f,	addZeroToSc,		outputColors2));
6167	cases.push_back(SpecConstantTwoIntGraphicsCase("shiftrightlogical",		" %i32 0",		" %i32 0",		"%i32",		"ShiftRightLogical    %sc_0 %sc_1",				2,		1,		addZeroToSc,		outputColors2));
6168	cases.push_back(SpecConstantTwoIntGraphicsCase("shiftrightarithmetic",	" %i32 0",		" %i32 0",		"%i32",		"ShiftRightArithmetic %sc_0 %sc_1",				-4,		2,		addZeroToSc,		outputColors0));
6169	cases.push_back(SpecConstantTwoIntGraphicsCase("shiftleftlogical",		" %i32 0",		" %i32 0",		"%i32",		"ShiftLeftLogical     %sc_0 %sc_1",				1,		0,		addZeroToSc,		outputColors2));
6170	cases.push_back(SpecConstantTwoIntGraphicsCase("slessthan",				" %i32 0",		" %i32 0",		"%bool",	"SLessThan            %sc_0 %sc_1",				-20,	-10,	selectTrueUsingSc,	outputColors2));
6171	cases.push_back(SpecConstantTwoIntGraphicsCase("ulessthan",				" %i32 0",		" %i32 0",		"%bool",	"ULessThan            %sc_0 %sc_1",				10,		20,		selectTrueUsingSc,	outputColors2));
6172	cases.push_back(SpecConstantTwoIntGraphicsCase("sgreaterthan",			" %i32 0",		" %i32 0",		"%bool",	"SGreaterThan         %sc_0 %sc_1",				-1000,	50,		selectFalseUsingSc,	outputColors2));
6173	cases.push_back(SpecConstantTwoIntGraphicsCase("ugreaterthan",			" %i32 0",		" %i32 0",		"%bool",	"UGreaterThan         %sc_0 %sc_1",				10,		5,		selectTrueUsingSc,	outputColors2));
6174	cases.push_back(SpecConstantTwoIntGraphicsCase("slessthanequal",		" %i32 0",		" %i32 0",		"%bool",	"SLessThanEqual       %sc_0 %sc_1",				-10,	-10,	selectTrueUsingSc,	outputColors2));
6175	cases.push_back(SpecConstantTwoIntGraphicsCase("ulessthanequal",		" %i32 0",		" %i32 0",		"%bool",	"ULessThanEqual       %sc_0 %sc_1",				50,		100,	selectTrueUsingSc,	outputColors2));
6176	cases.push_back(SpecConstantTwoIntGraphicsCase("sgreaterthanequal",		" %i32 0",		" %i32 0",		"%bool",	"SGreaterThanEqual    %sc_0 %sc_1",				-1000,	50,		selectFalseUsingSc,	outputColors2));
6177	cases.push_back(SpecConstantTwoIntGraphicsCase("ugreaterthanequal",		" %i32 0",		" %i32 0",		"%bool",	"UGreaterThanEqual    %sc_0 %sc_1",				10,		10,		selectTrueUsingSc,	outputColors2));
6178	cases.push_back(SpecConstantTwoIntGraphicsCase("iequal",				" %i32 0",		" %i32 0",		"%bool",	"IEqual               %sc_0 %sc_1",				42,		24,		selectFalseUsingSc,	outputColors2));
6179	cases.push_back(SpecConstantTwoIntGraphicsCase("logicaland",			"True %bool",	"True %bool",	"%bool",	"LogicalAnd           %sc_0 %sc_1",				0,		1,		selectFalseUsingSc,	outputColors2));
6180	cases.push_back(SpecConstantTwoIntGraphicsCase("logicalor",				"False %bool",	"False %bool",	"%bool",	"LogicalOr            %sc_0 %sc_1",				1,		0,		selectTrueUsingSc,	outputColors2));
6181	cases.push_back(SpecConstantTwoIntGraphicsCase("logicalequal",			"True %bool",	"True %bool",	"%bool",	"LogicalEqual         %sc_0 %sc_1",				0,		1,		selectFalseUsingSc,	outputColors2));
6182	cases.push_back(SpecConstantTwoIntGraphicsCase("logicalnotequal",		"False %bool",	"False %bool",	"%bool",	"LogicalNotEqual      %sc_0 %sc_1",				1,		0,		selectTrueUsingSc,	outputColors2));
6183	cases.push_back(SpecConstantTwoIntGraphicsCase("snegate",				" %i32 0",		" %i32 0",		"%i32",		"SNegate              %sc_0",					-1,		0,		addZeroToSc,		outputColors2));
6184	cases.push_back(SpecConstantTwoIntGraphicsCase("not",					" %i32 0",		" %i32 0",		"%i32",		"Not                  %sc_0",					-2,		0,		addZeroToSc,		outputColors2));
6185	cases.push_back(SpecConstantTwoIntGraphicsCase("logicalnot",			"False %bool",	"False %bool",	"%bool",	"LogicalNot           %sc_0",					1,		0,		selectFalseUsingSc,	outputColors2));
6186	cases.push_back(SpecConstantTwoIntGraphicsCase("select",				"False %bool",	" %i32 0",		"%i32",		"Select               %sc_0 %sc_1 %c_i32_0",	1,		1,		addZeroToSc,		outputColors2));
6187	// OpSConvert, OpFConvert: these two instructions involve ints/floats of different bitwidths.
6188	// \todo[2015-12-1 antiagainst] OpQuantizeToF16
6189
6190	for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
6191	{
6192		map<string, string>	specializations;
6193		map<string, string>	fragments;
6194		vector<deInt32>		specConstants;
6195
6196		specializations["SC_DEF0"]			= cases[caseNdx].scDefinition0;
6197		specializations["SC_DEF1"]			= cases[caseNdx].scDefinition1;
6198		specializations["SC_RESULT_TYPE"]	= cases[caseNdx].scResultType;
6199		specializations["SC_OP"]			= cases[caseNdx].scOperation;
6200		specializations["GEN_RESULT"]		= cases[caseNdx].resultOperation;
6201
6202		fragments["decoration"]				= tcu::StringTemplate(decorations1).specialize(specializations);
6203		fragments["pre_main"]				= tcu::StringTemplate(typesAndConstants1).specialize(specializations);
6204		fragments["testfun"]				= tcu::StringTemplate(function1).specialize(specializations);
6205
6206		specConstants.push_back(cases[caseNdx].scActualValue0);
6207		specConstants.push_back(cases[caseNdx].scActualValue1);
6208
6209		createTestsForAllStages(cases[caseNdx].caseName, inputColors, cases[caseNdx].expectedColors, fragments, specConstants, group.get());
6210	}
6211
6212	const char	decorations2[]			=
6213		"OpDecorate %sc_0  SpecId 0\n"
6214		"OpDecorate %sc_1  SpecId 1\n"
6215		"OpDecorate %sc_2  SpecId 2\n";
6216
6217	const char	typesAndConstants2[]	=
6218		"%v3i32     = OpTypeVector %i32 3\n"
6219
6220		"%sc_0      = OpSpecConstant %i32 0\n"
6221		"%sc_1      = OpSpecConstant %i32 0\n"
6222		"%sc_2      = OpSpecConstant %i32 0\n"
6223
6224		"%vec3_0      = OpConstantComposite %v3i32 %c_i32_0 %c_i32_0 %c_i32_0\n"
6225		"%sc_vec3_0   = OpSpecConstantOp %v3i32 CompositeInsert  %sc_0        %vec3_0    0\n"     // (sc_0, 0, 0)
6226		"%sc_vec3_1   = OpSpecConstantOp %v3i32 CompositeInsert  %sc_1        %vec3_0    1\n"     // (0, sc_1, 0)
6227		"%sc_vec3_2   = OpSpecConstantOp %v3i32 CompositeInsert  %sc_2        %vec3_0    2\n"     // (0, 0, sc_2)
6228		"%sc_vec3_01  = OpSpecConstantOp %v3i32 VectorShuffle    %sc_vec3_0   %sc_vec3_1 1 0 4\n" // (0,    sc_0, sc_1)
6229		"%sc_vec3_012 = OpSpecConstantOp %v3i32 VectorShuffle    %sc_vec3_01  %sc_vec3_2 5 1 2\n" // (sc_2, sc_0, sc_1)
6230		"%sc_ext_0    = OpSpecConstantOp %i32   CompositeExtract %sc_vec3_012            0\n"     // sc_2
6231		"%sc_ext_1    = OpSpecConstantOp %i32   CompositeExtract %sc_vec3_012            1\n"     // sc_0
6232		"%sc_ext_2    = OpSpecConstantOp %i32   CompositeExtract %sc_vec3_012            2\n"     // sc_1
6233		"%sc_sub      = OpSpecConstantOp %i32   ISub             %sc_ext_0    %sc_ext_1\n"        // (sc_2 - sc_0)
6234		"%sc_final    = OpSpecConstantOp %i32   IMul             %sc_sub      %sc_ext_2\n";       // (sc_2 - sc_0) * sc_1
6235
6236	const char	function2[]				=
6237		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
6238		"%param     = OpFunctionParameter %v4f32\n"
6239		"%label     = OpLabel\n"
6240		"%result    = OpVariable %fp_v4f32 Function\n"
6241		"             OpStore %result %param\n"
6242		"%loc       = OpAccessChain %fp_f32 %result %sc_final\n"
6243		"%val       = OpLoad %f32 %loc\n"
6244		"%add       = OpFAdd %f32 %val %c_f32_0_5\n"
6245		"             OpStore %loc %add\n"
6246		"%ret       = OpLoad %v4f32 %result\n"
6247		"             OpReturnValue %ret\n"
6248		"             OpFunctionEnd\n";
6249
6250	map<string, string>	fragments;
6251	vector<deInt32>		specConstants;
6252
6253	fragments["decoration"]	= decorations2;
6254	fragments["pre_main"]	= typesAndConstants2;
6255	fragments["testfun"]	= function2;
6256
6257	specConstants.push_back(56789);
6258	specConstants.push_back(-2);
6259	specConstants.push_back(56788);
6260
6261	createTestsForAllStages("vector_related", inputColors, outputColors2, fragments, specConstants, group.get());
6262
6263	return group.release();
6264}
6265
6266tcu::TestCaseGroup* createOpPhiTests(tcu::TestContext& testCtx)
6267{
6268	de::MovePtr<tcu::TestCaseGroup> group				(new tcu::TestCaseGroup(testCtx, "opphi", "Test the OpPhi instruction"));
6269	RGBA							inputColors[4];
6270	RGBA							outputColors1[4];
6271	RGBA							outputColors2[4];
6272	RGBA							outputColors3[4];
6273	map<string, string>				fragments1;
6274	map<string, string>				fragments2;
6275	map<string, string>				fragments3;
6276
6277	const char	typesAndConstants1[]	=
6278		"%c_f32_p2  = OpConstant %f32 0.2\n"
6279		"%c_f32_p4  = OpConstant %f32 0.4\n"
6280		"%c_f32_p6  = OpConstant %f32 0.6\n"
6281		"%c_f32_p8  = OpConstant %f32 0.8\n";
6282
6283	// vec4 test_code(vec4 param) {
6284	//   vec4 result = param;
6285	//   for (int i = 0; i < 4; ++i) {
6286	//     float operand;
6287	//     switch (i) {
6288	//       case 0: operand = .2; break;
6289	//       case 1: operand = .6; break;
6290	//       case 2: operand = .4; break;
6291	//       case 3: operand = .0; break;
6292	//       default: break; // unreachable
6293	//     }
6294	//     result[i] += operand;
6295	//   }
6296	//   return result;
6297	// }
6298	const char	function1[]				=
6299		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
6300		"%param1    = OpFunctionParameter %v4f32\n"
6301		"%lbl       = OpLabel\n"
6302		"%iptr      = OpVariable %fp_i32 Function\n"
6303		"             OpStore %iptr %c_i32_0\n"
6304		"%result    = OpVariable %fp_v4f32 Function\n"
6305		"             OpStore %result %param1\n"
6306		"             OpBranch %loop\n"
6307
6308		"%loop      = OpLabel\n"
6309		"%ival      = OpLoad %i32 %iptr\n"
6310		"%lt_4      = OpSLessThan %bool %ival %c_i32_4\n"
6311		"             OpLoopMerge %exit %loop None\n"
6312		"             OpBranchConditional %lt_4 %entry %exit\n"
6313
6314		"%entry     = OpLabel\n"
6315		"%loc       = OpAccessChain %fp_f32 %result %ival\n"
6316		"%val       = OpLoad %f32 %loc\n"
6317		"             OpSelectionMerge %phi None\n"
6318		"             OpSwitch %ival %default 0 %case0 1 %case1 2 %case2 3 %case3\n"
6319
6320		"%case0     = OpLabel\n"
6321		"             OpBranch %phi\n"
6322		"%case1     = OpLabel\n"
6323		"             OpBranch %phi\n"
6324		"%case2     = OpLabel\n"
6325		"             OpBranch %phi\n"
6326		"%case3     = OpLabel\n"
6327		"             OpBranch %phi\n"
6328
6329		"%default   = OpLabel\n"
6330		"             OpUnreachable\n"
6331
6332		"%phi       = OpLabel\n"
6333		"%operand   = OpPhi %f32 %c_f32_p4 %case2 %c_f32_p6 %case1 %c_f32_p2 %case0 %c_f32_0 %case3\n" // not in the order of blocks
6334		"%add       = OpFAdd %f32 %val %operand\n"
6335		"             OpStore %loc %add\n"
6336		"%ival_next = OpIAdd %i32 %ival %c_i32_1\n"
6337		"             OpStore %iptr %ival_next\n"
6338		"             OpBranch %loop\n"
6339
6340		"%exit      = OpLabel\n"
6341		"%ret       = OpLoad %v4f32 %result\n"
6342		"             OpReturnValue %ret\n"
6343
6344		"             OpFunctionEnd\n";
6345
6346	fragments1["pre_main"]	= typesAndConstants1;
6347	fragments1["testfun"]	= function1;
6348
6349	getHalfColorsFullAlpha(inputColors);
6350
6351	outputColors1[0]		= RGBA(178, 180, 229, 255);
6352	outputColors1[1]		= RGBA(178, 153, 102, 255);
6353	outputColors1[2]		= RGBA(51,  180, 102, 255);
6354	outputColors1[3]		= RGBA(51,  153, 229, 255);
6355
6356	createTestsForAllStages("out_of_order", inputColors, outputColors1, fragments1, group.get());
6357
6358	const char	typesAndConstants2[]	=
6359		"%c_f32_p2  = OpConstant %f32 0.2\n";
6360
6361	// Add .4 to the second element of the given parameter.
6362	const char	function2[]				=
6363		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
6364		"%param     = OpFunctionParameter %v4f32\n"
6365		"%entry     = OpLabel\n"
6366		"%result    = OpVariable %fp_v4f32 Function\n"
6367		"             OpStore %result %param\n"
6368		"%loc       = OpAccessChain %fp_f32 %result %c_i32_1\n"
6369		"%val       = OpLoad %f32 %loc\n"
6370		"             OpBranch %phi\n"
6371
6372		"%phi        = OpLabel\n"
6373		"%step       = OpPhi %i32 %c_i32_0  %entry %step_next  %phi\n"
6374		"%accum      = OpPhi %f32 %val      %entry %accum_next %phi\n"
6375		"%step_next  = OpIAdd %i32 %step  %c_i32_1\n"
6376		"%accum_next = OpFAdd %f32 %accum %c_f32_p2\n"
6377		"%still_loop = OpSLessThan %bool %step %c_i32_2\n"
6378		"              OpLoopMerge %exit %phi None\n"
6379		"              OpBranchConditional %still_loop %phi %exit\n"
6380
6381		"%exit       = OpLabel\n"
6382		"              OpStore %loc %accum\n"
6383		"%ret        = OpLoad %v4f32 %result\n"
6384		"              OpReturnValue %ret\n"
6385
6386		"              OpFunctionEnd\n";
6387
6388	fragments2["pre_main"]	= typesAndConstants2;
6389	fragments2["testfun"]	= function2;
6390
6391	outputColors2[0]			= RGBA(127, 229, 127, 255);
6392	outputColors2[1]			= RGBA(127, 102, 0,   255);
6393	outputColors2[2]			= RGBA(0,   229, 0,   255);
6394	outputColors2[3]			= RGBA(0,   102, 127, 255);
6395
6396	createTestsForAllStages("induction", inputColors, outputColors2, fragments2, group.get());
6397
6398	const char	typesAndConstants3[]	=
6399		"%true      = OpConstantTrue %bool\n"
6400		"%false     = OpConstantFalse %bool\n"
6401		"%c_f32_p2  = OpConstant %f32 0.2\n";
6402
6403	// Swap the second and the third element of the given parameter.
6404	const char	function3[]				=
6405		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
6406		"%param     = OpFunctionParameter %v4f32\n"
6407		"%entry     = OpLabel\n"
6408		"%result    = OpVariable %fp_v4f32 Function\n"
6409		"             OpStore %result %param\n"
6410		"%a_loc     = OpAccessChain %fp_f32 %result %c_i32_1\n"
6411		"%a_init    = OpLoad %f32 %a_loc\n"
6412		"%b_loc     = OpAccessChain %fp_f32 %result %c_i32_2\n"
6413		"%b_init    = OpLoad %f32 %b_loc\n"
6414		"             OpBranch %phi\n"
6415
6416		"%phi        = OpLabel\n"
6417		"%still_loop = OpPhi %bool %true   %entry %false  %phi\n"
6418		"%a_next     = OpPhi %f32  %a_init %entry %b_next %phi\n"
6419		"%b_next     = OpPhi %f32  %b_init %entry %a_next %phi\n"
6420		"              OpLoopMerge %exit %phi None\n"
6421		"              OpBranchConditional %still_loop %phi %exit\n"
6422
6423		"%exit       = OpLabel\n"
6424		"              OpStore %a_loc %a_next\n"
6425		"              OpStore %b_loc %b_next\n"
6426		"%ret        = OpLoad %v4f32 %result\n"
6427		"              OpReturnValue %ret\n"
6428
6429		"              OpFunctionEnd\n";
6430
6431	fragments3["pre_main"]	= typesAndConstants3;
6432	fragments3["testfun"]	= function3;
6433
6434	outputColors3[0]			= RGBA(127, 127, 127, 255);
6435	outputColors3[1]			= RGBA(127, 0,   0,   255);
6436	outputColors3[2]			= RGBA(0,   0,   127, 255);
6437	outputColors3[3]			= RGBA(0,   127, 0,   255);
6438
6439	createTestsForAllStages("swap", inputColors, outputColors3, fragments3, group.get());
6440
6441	return group.release();
6442}
6443
6444tcu::TestCaseGroup* createNoContractionTests(tcu::TestContext& testCtx)
6445{
6446	de::MovePtr<tcu::TestCaseGroup> group			(new tcu::TestCaseGroup(testCtx, "nocontraction", "Test the NoContraction decoration"));
6447	RGBA							inputColors[4];
6448	RGBA							outputColors[4];
6449
6450	// With NoContraction, (1 + 2^-23) * (1 - 2^-23) - 1 should be conducted as a multiplication and an addition separately.
6451	// For the multiplication, the result is 1 - 2^-46, which is out of the precision range for 32-bit float. (32-bit float
6452	// only have 23-bit fraction.) So it will be rounded to 1. Then the final result is 0. On the contrary, the result will
6453	// be 2^-46, which is a normalized number perfectly representable as 32-bit float.
6454	const char						constantsAndTypes[]	 =
6455		"%c_vec4_0       = OpConstantComposite %v4f32 %c_f32_0 %c_f32_0 %c_f32_0 %c_f32_1\n"
6456		"%c_vec4_1       = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_1\n"
6457		"%c_f32_1pl2_23  = OpConstant %f32 0x1.000002p+0\n" // 1 + 2^-23
6458		"%c_f32_1mi2_23  = OpConstant %f32 0x1.fffffcp-1\n" // 1 - 2^-23
6459		;
6460
6461	const char						function[]	 =
6462		"%test_code      = OpFunction %v4f32 None %v4f32_function\n"
6463		"%param          = OpFunctionParameter %v4f32\n"
6464		"%label          = OpLabel\n"
6465		"%var1           = OpVariable %fp_f32 Function %c_f32_1pl2_23\n"
6466		"%var2           = OpVariable %fp_f32 Function\n"
6467		"%red            = OpCompositeExtract %f32 %param 0\n"
6468		"%plus_red       = OpFAdd %f32 %c_f32_1mi2_23 %red\n"
6469		"                  OpStore %var2 %plus_red\n"
6470		"%val1           = OpLoad %f32 %var1\n"
6471		"%val2           = OpLoad %f32 %var2\n"
6472		"%mul            = OpFMul %f32 %val1 %val2\n"
6473		"%add            = OpFAdd %f32 %mul %c_f32_n1\n"
6474		"%is0            = OpFOrdEqual %bool %add %c_f32_0\n"
6475		"%ret            = OpSelect %v4f32 %is0 %c_vec4_0 %c_vec4_1\n"
6476		"                  OpReturnValue %ret\n"
6477		"                  OpFunctionEnd\n";
6478
6479	struct CaseNameDecoration
6480	{
6481		string name;
6482		string decoration;
6483	};
6484
6485
6486	CaseNameDecoration tests[] = {
6487		{"multiplication",	"OpDecorate %mul NoContraction"},
6488		{"addition",		"OpDecorate %add NoContraction"},
6489		{"both",			"OpDecorate %mul NoContraction\nOpDecorate %add NoContraction"},
6490	};
6491
6492	getHalfColorsFullAlpha(inputColors);
6493
6494	for (deUint8 idx = 0; idx < 4; ++idx)
6495	{
6496		inputColors[idx].setRed(0);
6497		outputColors[idx] = RGBA(0, 0, 0, 255);
6498	}
6499
6500	for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(CaseNameDecoration); ++testNdx)
6501	{
6502		map<string, string> fragments;
6503
6504		fragments["decoration"] = tests[testNdx].decoration;
6505		fragments["pre_main"] = constantsAndTypes;
6506		fragments["testfun"] = function;
6507
6508		createTestsForAllStages(tests[testNdx].name, inputColors, outputColors, fragments, group.get());
6509	}
6510
6511	return group.release();
6512}
6513
6514tcu::TestCaseGroup* createMemoryAccessTests(tcu::TestContext& testCtx)
6515{
6516	de::MovePtr<tcu::TestCaseGroup> memoryAccessTests (new tcu::TestCaseGroup(testCtx, "opmemoryaccess", "Memory Semantics"));
6517	RGBA							colors[4];
6518
6519	const char						constantsAndTypes[]	 =
6520		"%c_a2f32_1         = OpConstantComposite %a2f32 %c_f32_1 %c_f32_1\n"
6521		"%fp_a2f32          = OpTypePointer Function %a2f32\n"
6522		"%stype             = OpTypeStruct  %v4f32 %a2f32 %f32\n"
6523		"%fp_stype          = OpTypePointer Function %stype\n";
6524
6525	const char						function[]	 =
6526		"%test_code         = OpFunction %v4f32 None %v4f32_function\n"
6527		"%param1            = OpFunctionParameter %v4f32\n"
6528		"%lbl               = OpLabel\n"
6529		"%v1                = OpVariable %fp_v4f32 Function\n"
6530		"                     OpStore %v1 %c_v4f32_1_1_1_1\n"
6531		"%v2                = OpVariable %fp_a2f32 Function\n"
6532		"                     OpStore %v2 %c_a2f32_1\n"
6533		"%v3                = OpVariable %fp_f32 Function\n"
6534		"                     OpStore %v3 %c_f32_1\n"
6535
6536		"%v                 = OpVariable %fp_stype Function\n"
6537		"%vv                = OpVariable %fp_stype Function\n"
6538		"%vvv               = OpVariable %fp_f32 Function\n"
6539
6540		"%p_v4f32          = OpAccessChain %fp_v4f32 %v %c_u32_0\n"
6541		"%p_a2f32          = OpAccessChain %fp_a2f32 %v %c_u32_1\n"
6542		"%p_f32            = OpAccessChain %fp_f32 %v %c_u32_2\n"
6543		"%v1_v             = OpLoad %v4f32 %v1 ${access_type}\n"
6544		"%v2_v             = OpLoad %a2f32 %v2 ${access_type}\n"
6545		"%v3_v             = OpLoad %f32 %v3 ${access_type}\n"
6546
6547		"                    OpStore %p_v4f32 %v1_v ${access_type}\n"
6548		"                    OpStore %p_a2f32 %v2_v ${access_type}\n"
6549		"                    OpStore %p_f32 %v3_v ${access_type}\n"
6550
6551		"                    OpCopyMemory %vv %v ${access_type}\n"
6552		"                    OpCopyMemory %vvv %p_f32 ${access_type}\n"
6553
6554		"%p_f32_2          = OpAccessChain %fp_f32 %vv %c_u32_2\n"
6555		"%v_f32_2          = OpLoad %f32 %p_f32_2\n"
6556		"%v_f32_3          = OpLoad %f32 %vvv\n"
6557
6558		"%ret1             = OpVectorTimesScalar %v4f32 %param1 %v_f32_2\n"
6559		"%ret2             = OpVectorTimesScalar %v4f32 %ret1 %v_f32_3\n"
6560		"                    OpReturnValue %ret2\n"
6561		"                    OpFunctionEnd\n";
6562
6563	struct NameMemoryAccess
6564	{
6565		string name;
6566		string accessType;
6567	};
6568
6569
6570	NameMemoryAccess tests[] =
6571	{
6572		{ "none", "" },
6573		{ "volatile", "Volatile" },
6574		{ "aligned",  "Aligned 1" },
6575		{ "volatile_aligned",  "Volatile|Aligned 1" },
6576		{ "nontemporal_aligned",  "Nontemporal|Aligned 1" },
6577		{ "volatile_nontemporal",  "Volatile|Nontemporal" },
6578		{ "volatile_nontermporal_aligned",  "Volatile|Nontemporal|Aligned 1" },
6579	};
6580
6581	getHalfColorsFullAlpha(colors);
6582
6583	for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(NameMemoryAccess); ++testNdx)
6584	{
6585		map<string, string> fragments;
6586		map<string, string> memoryAccess;
6587		memoryAccess["access_type"] = tests[testNdx].accessType;
6588
6589		fragments["pre_main"] = constantsAndTypes;
6590		fragments["testfun"] = tcu::StringTemplate(function).specialize(memoryAccess);
6591		createTestsForAllStages(tests[testNdx].name, colors, colors, fragments, memoryAccessTests.get());
6592	}
6593	return memoryAccessTests.release();
6594}
6595tcu::TestCaseGroup* createOpUndefTests(tcu::TestContext& testCtx)
6596{
6597	de::MovePtr<tcu::TestCaseGroup>		opUndefTests		 (new tcu::TestCaseGroup(testCtx, "opundef", "Test OpUndef"));
6598	RGBA								defaultColors[4];
6599	map<string, string>					fragments;
6600	getDefaultColors(defaultColors);
6601
6602	// First, simple cases that don't do anything with the OpUndef result.
6603	fragments["testfun"] =
6604		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
6605		"%param1 = OpFunctionParameter %v4f32\n"
6606		"%label_testfun = OpLabel\n"
6607		"%undef = OpUndef %type\n"
6608		"OpReturnValue %param1\n"
6609		"OpFunctionEnd\n"
6610		;
6611	struct NameCodePair { string name, code; };
6612	const NameCodePair tests[] =
6613	{
6614		{"bool", "%type = OpTypeBool"},
6615		{"vec2uint32", "%type = OpTypeVector %u32 2"},
6616		{"image", "%type = OpTypeImage %f32 2D 0 0 0 0 Unknown"},
6617		{"sampler", "%type = OpTypeSampler"},
6618		{"sampledimage", "%img = OpTypeImage %f32 2D 0 0 0 0 Unknown\n" "%type = OpTypeSampledImage %img"},
6619		{"pointer", "%type = OpTypePointer Function %i32"},
6620		{"runtimearray", "%type = OpTypeRuntimeArray %f32"},
6621		{"array", "%c_u32_100 = OpConstant %u32 100\n" "%type = OpTypeArray %i32 %c_u32_100"},
6622		{"struct", "%type = OpTypeStruct %f32 %i32 %u32"}};
6623	for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(NameCodePair); ++testNdx)
6624	{
6625		fragments["pre_main"] = tests[testNdx].code;
6626		createTestsForAllStages(tests[testNdx].name, defaultColors, defaultColors, fragments, opUndefTests.get());
6627	}
6628	fragments.clear();
6629
6630	fragments["testfun"] =
6631		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
6632		"%param1 = OpFunctionParameter %v4f32\n"
6633		"%label_testfun = OpLabel\n"
6634		"%undef = OpUndef %f32\n"
6635		"%zero = OpFMul %f32 %undef %c_f32_0\n"
6636		"%a = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
6637		"%b = OpFAdd %f32 %a %zero\n"
6638		"%ret = OpVectorInsertDynamic %v4f32 %param1 %b %c_i32_0\n"
6639		"OpReturnValue %ret\n"
6640		"OpFunctionEnd\n"
6641		;
6642	createTestsForAllStages("float32", defaultColors, defaultColors, fragments, opUndefTests.get());
6643
6644	fragments["testfun"] =
6645		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
6646		"%param1 = OpFunctionParameter %v4f32\n"
6647		"%label_testfun = OpLabel\n"
6648		"%undef = OpUndef %i32\n"
6649		"%zero = OpIMul %i32 %undef %c_i32_0\n"
6650		"%a = OpVectorExtractDynamic %f32 %param1 %zero\n"
6651		"%ret = OpVectorInsertDynamic %v4f32 %param1 %a %c_i32_0\n"
6652		"OpReturnValue %ret\n"
6653		"OpFunctionEnd\n"
6654		;
6655	createTestsForAllStages("sint32", defaultColors, defaultColors, fragments, opUndefTests.get());
6656
6657	fragments["testfun"] =
6658		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
6659		"%param1 = OpFunctionParameter %v4f32\n"
6660		"%label_testfun = OpLabel\n"
6661		"%undef = OpUndef %u32\n"
6662		"%zero = OpIMul %u32 %undef %c_i32_0\n"
6663		"%a = OpVectorExtractDynamic %f32 %param1 %zero\n"
6664		"%ret = OpVectorInsertDynamic %v4f32 %param1 %a %c_i32_0\n"
6665		"OpReturnValue %ret\n"
6666		"OpFunctionEnd\n"
6667		;
6668	createTestsForAllStages("uint32", defaultColors, defaultColors, fragments, opUndefTests.get());
6669
6670	fragments["testfun"] =
6671		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
6672		"%param1 = OpFunctionParameter %v4f32\n"
6673		"%label_testfun = OpLabel\n"
6674		"%undef = OpUndef %v4f32\n"
6675		"%vzero = OpVectorTimesScalar %v4f32 %undef %c_f32_0\n"
6676		"%zero_0 = OpVectorExtractDynamic %f32 %vzero %c_i32_0\n"
6677		"%zero_1 = OpVectorExtractDynamic %f32 %vzero %c_i32_1\n"
6678		"%zero_2 = OpVectorExtractDynamic %f32 %vzero %c_i32_2\n"
6679		"%zero_3 = OpVectorExtractDynamic %f32 %vzero %c_i32_3\n"
6680		"%param1_0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
6681		"%param1_1 = OpVectorExtractDynamic %f32 %param1 %c_i32_1\n"
6682		"%param1_2 = OpVectorExtractDynamic %f32 %param1 %c_i32_2\n"
6683		"%param1_3 = OpVectorExtractDynamic %f32 %param1 %c_i32_3\n"
6684		"%sum_0 = OpFAdd %f32 %param1_0 %zero_0\n"
6685		"%sum_1 = OpFAdd %f32 %param1_1 %zero_1\n"
6686		"%sum_2 = OpFAdd %f32 %param1_2 %zero_2\n"
6687		"%sum_3 = OpFAdd %f32 %param1_3 %zero_3\n"
6688		"%ret3 = OpVectorInsertDynamic %v4f32 %param1 %sum_3 %c_i32_3\n"
6689		"%ret2 = OpVectorInsertDynamic %v4f32 %ret3 %sum_2 %c_i32_2\n"
6690		"%ret1 = OpVectorInsertDynamic %v4f32 %ret2 %sum_1 %c_i32_1\n"
6691		"%ret = OpVectorInsertDynamic %v4f32 %ret1 %sum_0 %c_i32_0\n"
6692		"OpReturnValue %ret\n"
6693		"OpFunctionEnd\n"
6694		;
6695	createTestsForAllStages("vec4float32", defaultColors, defaultColors, fragments, opUndefTests.get());
6696
6697	fragments["pre_main"] =
6698		"%v2f32 = OpTypeVector %f32 2\n"
6699		"%m2x2f32 = OpTypeMatrix %v2f32 2\n";
6700	fragments["testfun"] =
6701		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
6702		"%param1 = OpFunctionParameter %v4f32\n"
6703		"%label_testfun = OpLabel\n"
6704		"%undef = OpUndef %m2x2f32\n"
6705		"%mzero = OpMatrixTimesScalar %m2x2f32 %undef %c_f32_0\n"
6706		"%zero_0 = OpCompositeExtract %f32 %mzero 0 0\n"
6707		"%zero_1 = OpCompositeExtract %f32 %mzero 0 1\n"
6708		"%zero_2 = OpCompositeExtract %f32 %mzero 1 0\n"
6709		"%zero_3 = OpCompositeExtract %f32 %mzero 1 1\n"
6710		"%param1_0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
6711		"%param1_1 = OpVectorExtractDynamic %f32 %param1 %c_i32_1\n"
6712		"%param1_2 = OpVectorExtractDynamic %f32 %param1 %c_i32_2\n"
6713		"%param1_3 = OpVectorExtractDynamic %f32 %param1 %c_i32_3\n"
6714		"%sum_0 = OpFAdd %f32 %param1_0 %zero_0\n"
6715		"%sum_1 = OpFAdd %f32 %param1_1 %zero_1\n"
6716		"%sum_2 = OpFAdd %f32 %param1_2 %zero_2\n"
6717		"%sum_3 = OpFAdd %f32 %param1_3 %zero_3\n"
6718		"%ret3 = OpVectorInsertDynamic %v4f32 %param1 %sum_3 %c_i32_3\n"
6719		"%ret2 = OpVectorInsertDynamic %v4f32 %ret3 %sum_2 %c_i32_2\n"
6720		"%ret1 = OpVectorInsertDynamic %v4f32 %ret2 %sum_1 %c_i32_1\n"
6721		"%ret = OpVectorInsertDynamic %v4f32 %ret1 %sum_0 %c_i32_0\n"
6722		"OpReturnValue %ret\n"
6723		"OpFunctionEnd\n"
6724		;
6725	createTestsForAllStages("matrix", defaultColors, defaultColors, fragments, opUndefTests.get());
6726
6727	return opUndefTests.release();
6728}
6729
6730void createOpQuantizeSingleOptionTests(tcu::TestCaseGroup* testCtx)
6731{
6732	const RGBA		inputColors[4]		=
6733	{
6734		RGBA(0,		0,		0,		255),
6735		RGBA(0,		0,		255,	255),
6736		RGBA(0,		255,	0,		255),
6737		RGBA(0,		255,	255,	255)
6738	};
6739
6740	const RGBA		expectedColors[4]	=
6741	{
6742		RGBA(255,	 0,		 0,		 255),
6743		RGBA(255,	 0,		 0,		 255),
6744		RGBA(255,	 0,		 0,		 255),
6745		RGBA(255,	 0,		 0,		 255)
6746	};
6747
6748	const struct SingleFP16Possibility
6749	{
6750		const char* name;
6751		const char* constant;  // Value to assign to %test_constant.
6752		float		valueAsFloat;
6753		const char* condition; // Must assign to %cond an expression that evaluates to true after %c = OpQuantizeToF16(%test_constant + 0).
6754	}				tests[]				=
6755	{
6756		{
6757			"negative",
6758			"-0x1.3p1\n",
6759			-constructNormalizedFloat(1, 0x300000),
6760			"%cond = OpFOrdEqual %bool %c %test_constant\n"
6761		}, // -19
6762		{
6763			"positive",
6764			"0x1.0p7\n",
6765			constructNormalizedFloat(7, 0x000000),
6766			"%cond = OpFOrdEqual %bool %c %test_constant\n"
6767		},  // +128
6768		// SPIR-V requires that OpQuantizeToF16 flushes
6769		// any numbers that would end up denormalized in F16 to zero.
6770		{
6771			"denorm",
6772			"0x0.0006p-126\n",
6773			std::ldexp(1.5f, -140),
6774			"%cond = OpFOrdEqual %bool %c %c_f32_0\n"
6775		},  // denorm
6776		{
6777			"negative_denorm",
6778			"-0x0.0006p-126\n",
6779			-std::ldexp(1.5f, -140),
6780			"%cond = OpFOrdEqual %bool %c %c_f32_0\n"
6781		}, // -denorm
6782		{
6783			"too_small",
6784			"0x1.0p-16\n",
6785			std::ldexp(1.0f, -16),
6786			"%cond = OpFOrdEqual %bool %c %c_f32_0\n"
6787		},     // too small positive
6788		{
6789			"negative_too_small",
6790			"-0x1.0p-32\n",
6791			-std::ldexp(1.0f, -32),
6792			"%cond = OpFOrdEqual %bool %c %c_f32_0\n"
6793		},      // too small negative
6794		{
6795			"negative_inf",
6796			"-0x1.0p128\n",
6797			-std::ldexp(1.0f, 128),
6798
6799			"%gz = OpFOrdLessThan %bool %c %c_f32_0\n"
6800			"%inf = OpIsInf %bool %c\n"
6801			"%cond = OpLogicalAnd %bool %gz %inf\n"
6802		},     // -inf to -inf
6803		{
6804			"inf",
6805			"0x1.0p128\n",
6806			std::ldexp(1.0f, 128),
6807
6808			"%gz = OpFOrdGreaterThan %bool %c %c_f32_0\n"
6809			"%inf = OpIsInf %bool %c\n"
6810			"%cond = OpLogicalAnd %bool %gz %inf\n"
6811		},     // +inf to +inf
6812		{
6813			"round_to_negative_inf",
6814			"-0x1.0p32\n",
6815			-std::ldexp(1.0f, 32),
6816
6817			"%gz = OpFOrdLessThan %bool %c %c_f32_0\n"
6818			"%inf = OpIsInf %bool %c\n"
6819			"%cond = OpLogicalAnd %bool %gz %inf\n"
6820		},     // round to -inf
6821		{
6822			"round_to_inf",
6823			"0x1.0p16\n",
6824			std::ldexp(1.0f, 16),
6825
6826			"%gz = OpFOrdGreaterThan %bool %c %c_f32_0\n"
6827			"%inf = OpIsInf %bool %c\n"
6828			"%cond = OpLogicalAnd %bool %gz %inf\n"
6829		},     // round to +inf
6830		{
6831			"nan",
6832			"0x1.1p128\n",
6833			std::numeric_limits<float>::quiet_NaN(),
6834
6835			// Can't use %c, because NaN+0 isn't necessarily a NaN (Vulkan spec A.4).
6836			"%direct_quant = OpQuantizeToF16 %f32 %test_constant\n"
6837			"%nan = OpIsNan %bool %direct_quant\n"
6838			"%as_int = OpBitcast %i32 %direct_quant\n"
6839			"%positive = OpSGreaterThan %bool %as_int %c_i32_0\n"
6840			"%cond = OpLogicalAnd %bool %nan %positive\n"
6841		}, // nan
6842		{
6843			"negative_nan",
6844			"-0x1.0001p128\n",
6845			std::numeric_limits<float>::quiet_NaN(),
6846
6847			// Can't use %c, because NaN+0 isn't necessarily a NaN (Vulkan spec A.4).
6848			"%direct_quant = OpQuantizeToF16 %f32 %test_constant\n"
6849			"%nan = OpIsNan %bool %direct_quant\n"
6850			"%as_int = OpBitcast %i32 %direct_quant\n"
6851			"%negative = OpSLessThan %bool %as_int %c_i32_0\n"
6852			"%cond = OpLogicalAnd %bool %nan %negative\n"
6853		} // -nan
6854	};
6855	const char*		constants			=
6856		"%test_constant = OpConstant %f32 ";  // The value will be test.constant.
6857
6858	StringTemplate	function			(
6859		"%test_code     = OpFunction %v4f32 None %v4f32_function\n"
6860		"%param1        = OpFunctionParameter %v4f32\n"
6861		"%label_testfun = OpLabel\n"
6862		"%a             = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
6863		"%b             = OpFAdd %f32 %test_constant %a\n"
6864		"%c             = OpQuantizeToF16 %f32 %b\n"
6865		"${condition}\n"
6866		"%retval        = OpSelect %v4f32 %cond %c_v4f32_1_0_0_1 %param1"
6867		"                 OpReturnValue %retval\n"
6868		"OpFunctionEnd\n"
6869	);
6870
6871	const char*		specDecorations		= "OpDecorate %test_constant SpecId 0\n";
6872	const char*		specConstants		=
6873			"%test_constant = OpSpecConstant %f32 0.\n"
6874			"%c             = OpSpecConstantOp %f32 QuantizeToF16 %test_constant\n";
6875
6876	StringTemplate	specConstantFunction(
6877		"%test_code     = OpFunction %v4f32 None %v4f32_function\n"
6878		"%param1        = OpFunctionParameter %v4f32\n"
6879		"%label_testfun = OpLabel\n"
6880		"${condition}\n"
6881		"%retval        = OpSelect %v4f32 %cond %c_v4f32_1_0_0_1 %param1"
6882		"                 OpReturnValue %retval\n"
6883		"OpFunctionEnd\n"
6884	);
6885
6886	for (size_t idx = 0; idx < (sizeof(tests)/sizeof(tests[0])); ++idx)
6887	{
6888		map<string, string>								codeSpecialization;
6889		map<string, string>								fragments;
6890		codeSpecialization["condition"]					= tests[idx].condition;
6891		fragments["testfun"]							= function.specialize(codeSpecialization);
6892		fragments["pre_main"]							= string(constants) + tests[idx].constant + "\n";
6893		createTestsForAllStages(tests[idx].name, inputColors, expectedColors, fragments, testCtx);
6894	}
6895
6896	for (size_t idx = 0; idx < (sizeof(tests)/sizeof(tests[0])); ++idx)
6897	{
6898		map<string, string>								codeSpecialization;
6899		map<string, string>								fragments;
6900		vector<deInt32>									passConstants;
6901		deInt32											specConstant;
6902
6903		codeSpecialization["condition"]					= tests[idx].condition;
6904		fragments["testfun"]							= specConstantFunction.specialize(codeSpecialization);
6905		fragments["decoration"]							= specDecorations;
6906		fragments["pre_main"]							= specConstants;
6907
6908		memcpy(&specConstant, &tests[idx].valueAsFloat, sizeof(float));
6909		passConstants.push_back(specConstant);
6910
6911		createTestsForAllStages(string("spec_const_") + tests[idx].name, inputColors, expectedColors, fragments, passConstants, testCtx);
6912	}
6913}
6914
6915void createOpQuantizeTwoPossibilityTests(tcu::TestCaseGroup* testCtx)
6916{
6917	RGBA inputColors[4] =  {
6918		RGBA(0,		0,		0,		255),
6919		RGBA(0,		0,		255,	255),
6920		RGBA(0,		255,	0,		255),
6921		RGBA(0,		255,	255,	255)
6922	};
6923
6924	RGBA expectedColors[4] =
6925	{
6926		RGBA(255,	 0,		 0,		 255),
6927		RGBA(255,	 0,		 0,		 255),
6928		RGBA(255,	 0,		 0,		 255),
6929		RGBA(255,	 0,		 0,		 255)
6930	};
6931
6932	struct DualFP16Possibility
6933	{
6934		const char* name;
6935		const char* input;
6936		float		inputAsFloat;
6937		const char* possibleOutput1;
6938		const char* possibleOutput2;
6939	} tests[] = {
6940		{
6941			"positive_round_up_or_round_down",
6942			"0x1.3003p8",
6943			constructNormalizedFloat(8, 0x300300),
6944			"0x1.304p8",
6945			"0x1.3p8"
6946		},
6947		{
6948			"negative_round_up_or_round_down",
6949			"-0x1.6008p-7",
6950			-constructNormalizedFloat(8, 0x600800),
6951			"-0x1.6p-7",
6952			"-0x1.604p-7"
6953		},
6954		{
6955			"carry_bit",
6956			"0x1.01ep2",
6957			constructNormalizedFloat(8, 0x01e000),
6958			"0x1.01cp2",
6959			"0x1.02p2"
6960		},
6961		{
6962			"carry_to_exponent",
6963			"0x1.feep1",
6964			constructNormalizedFloat(8, 0xfee000),
6965			"0x1.ffcp1",
6966			"0x1.0p2"
6967		},
6968	};
6969	StringTemplate constants (
6970		"%input_const = OpConstant %f32 ${input}\n"
6971		"%possible_solution1 = OpConstant %f32 ${output1}\n"
6972		"%possible_solution2 = OpConstant %f32 ${output2}\n"
6973		);
6974
6975	StringTemplate specConstants (
6976		"%input_const = OpSpecConstant %f32 0.\n"
6977		"%possible_solution1 = OpConstant %f32 ${output1}\n"
6978		"%possible_solution2 = OpConstant %f32 ${output2}\n"
6979	);
6980
6981	const char* specDecorations = "OpDecorate %input_const  SpecId 0\n";
6982
6983	const char* function  =
6984		"%test_code     = OpFunction %v4f32 None %v4f32_function\n"
6985		"%param1        = OpFunctionParameter %v4f32\n"
6986		"%label_testfun = OpLabel\n"
6987		"%a             = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
6988		// For the purposes of this test we assume that 0.f will always get
6989		// faithfully passed through the pipeline stages.
6990		"%b             = OpFAdd %f32 %input_const %a\n"
6991		"%c             = OpQuantizeToF16 %f32 %b\n"
6992		"%eq_1          = OpFOrdEqual %bool %c %possible_solution1\n"
6993		"%eq_2          = OpFOrdEqual %bool %c %possible_solution2\n"
6994		"%cond          = OpLogicalOr %bool %eq_1 %eq_2\n"
6995		"%retval        = OpSelect %v4f32 %cond %c_v4f32_1_0_0_1 %param1"
6996		"                 OpReturnValue %retval\n"
6997		"OpFunctionEnd\n";
6998
6999	for(size_t idx = 0; idx < (sizeof(tests)/sizeof(tests[0])); ++idx) {
7000		map<string, string>									fragments;
7001		map<string, string>									constantSpecialization;
7002
7003		constantSpecialization["input"]						= tests[idx].input;
7004		constantSpecialization["output1"]					= tests[idx].possibleOutput1;
7005		constantSpecialization["output2"]					= tests[idx].possibleOutput2;
7006		fragments["testfun"]								= function;
7007		fragments["pre_main"]								= constants.specialize(constantSpecialization);
7008		createTestsForAllStages(tests[idx].name, inputColors, expectedColors, fragments, testCtx);
7009	}
7010
7011	for(size_t idx = 0; idx < (sizeof(tests)/sizeof(tests[0])); ++idx) {
7012		map<string, string>									fragments;
7013		map<string, string>									constantSpecialization;
7014		vector<deInt32>										passConstants;
7015		deInt32												specConstant;
7016
7017		constantSpecialization["output1"]					= tests[idx].possibleOutput1;
7018		constantSpecialization["output2"]					= tests[idx].possibleOutput2;
7019		fragments["testfun"]								= function;
7020		fragments["decoration"]								= specDecorations;
7021		fragments["pre_main"]								= specConstants.specialize(constantSpecialization);
7022
7023		memcpy(&specConstant, &tests[idx].inputAsFloat, sizeof(float));
7024		passConstants.push_back(specConstant);
7025
7026		createTestsForAllStages(string("spec_const_") + tests[idx].name, inputColors, expectedColors, fragments, passConstants, testCtx);
7027	}
7028}
7029
7030tcu::TestCaseGroup* createOpQuantizeTests(tcu::TestContext& testCtx)
7031{
7032	de::MovePtr<tcu::TestCaseGroup> opQuantizeTests (new tcu::TestCaseGroup(testCtx, "opquantize", "Test OpQuantizeToF16"));
7033	createOpQuantizeSingleOptionTests(opQuantizeTests.get());
7034	createOpQuantizeTwoPossibilityTests(opQuantizeTests.get());
7035	return opQuantizeTests.release();
7036}
7037
7038struct ShaderPermutation
7039{
7040	deUint8 vertexPermutation;
7041	deUint8 geometryPermutation;
7042	deUint8 tesscPermutation;
7043	deUint8 tessePermutation;
7044	deUint8 fragmentPermutation;
7045};
7046
7047ShaderPermutation getShaderPermutation(deUint8 inputValue)
7048{
7049	ShaderPermutation	permutation =
7050	{
7051		static_cast<deUint8>(inputValue & 0x10? 1u: 0u),
7052		static_cast<deUint8>(inputValue & 0x08? 1u: 0u),
7053		static_cast<deUint8>(inputValue & 0x04? 1u: 0u),
7054		static_cast<deUint8>(inputValue & 0x02? 1u: 0u),
7055		static_cast<deUint8>(inputValue & 0x01? 1u: 0u)
7056	};
7057	return permutation;
7058}
7059
7060tcu::TestCaseGroup* createModuleTests(tcu::TestContext& testCtx)
7061{
7062	RGBA								defaultColors[4];
7063	RGBA								invertedColors[4];
7064	de::MovePtr<tcu::TestCaseGroup>		moduleTests			(new tcu::TestCaseGroup(testCtx, "module", "Multiple entry points into shaders"));
7065
7066	const ShaderElement					combinedPipeline[]	=
7067	{
7068		ShaderElement("module", "main", VK_SHADER_STAGE_VERTEX_BIT),
7069		ShaderElement("module", "main", VK_SHADER_STAGE_GEOMETRY_BIT),
7070		ShaderElement("module", "main", VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT),
7071		ShaderElement("module", "main", VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT),
7072		ShaderElement("module", "main", VK_SHADER_STAGE_FRAGMENT_BIT)
7073	};
7074
7075	getDefaultColors(defaultColors);
7076	getInvertedDefaultColors(invertedColors);
7077	addFunctionCaseWithPrograms<InstanceContext>(moduleTests.get(), "same_module", "", createCombinedModule, runAndVerifyDefaultPipeline, createInstanceContext(combinedPipeline, map<string, string>()));
7078
7079	const char* numbers[] =
7080	{
7081		"1", "2"
7082	};
7083
7084	for (deInt8 idx = 0; idx < 32; ++idx)
7085	{
7086		ShaderPermutation			permutation		= getShaderPermutation(idx);
7087		string						name			= string("vert") + numbers[permutation.vertexPermutation] + "_geom" + numbers[permutation.geometryPermutation] + "_tessc" + numbers[permutation.tesscPermutation] + "_tesse" + numbers[permutation.tessePermutation] + "_frag" + numbers[permutation.fragmentPermutation];
7088		const ShaderElement			pipeline[]		=
7089		{
7090			ShaderElement("vert",	string("vert") +	numbers[permutation.vertexPermutation],		VK_SHADER_STAGE_VERTEX_BIT),
7091			ShaderElement("geom",	string("geom") +	numbers[permutation.geometryPermutation],	VK_SHADER_STAGE_GEOMETRY_BIT),
7092			ShaderElement("tessc",	string("tessc") +	numbers[permutation.tesscPermutation],		VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT),
7093			ShaderElement("tesse",	string("tesse") +	numbers[permutation.tessePermutation],		VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT),
7094			ShaderElement("frag",	string("frag") +	numbers[permutation.fragmentPermutation],	VK_SHADER_STAGE_FRAGMENT_BIT)
7095		};
7096
7097		// If there are an even number of swaps, then it should be no-op.
7098		// If there are an odd number, the color should be flipped.
7099		if ((permutation.vertexPermutation + permutation.geometryPermutation + permutation.tesscPermutation + permutation.tessePermutation + permutation.fragmentPermutation) % 2 == 0)
7100		{
7101			addFunctionCaseWithPrograms<InstanceContext>(moduleTests.get(), name, "", createMultipleEntries, runAndVerifyDefaultPipeline, createInstanceContext(pipeline, defaultColors, defaultColors, map<string, string>()));
7102		}
7103		else
7104		{
7105			addFunctionCaseWithPrograms<InstanceContext>(moduleTests.get(), name, "", createMultipleEntries, runAndVerifyDefaultPipeline, createInstanceContext(pipeline, defaultColors, invertedColors, map<string, string>()));
7106		}
7107	}
7108	return moduleTests.release();
7109}
7110
7111tcu::TestCaseGroup* createLoopTests(tcu::TestContext& testCtx)
7112{
7113	de::MovePtr<tcu::TestCaseGroup> testGroup(new tcu::TestCaseGroup(testCtx, "loop", "Looping control flow"));
7114	RGBA defaultColors[4];
7115	getDefaultColors(defaultColors);
7116	map<string, string> fragments;
7117	fragments["pre_main"] =
7118		"%c_f32_5 = OpConstant %f32 5.\n";
7119
7120	// A loop with a single block. The Continue Target is the loop block
7121	// itself. In SPIR-V terms, the "loop construct" contains no blocks at all
7122	// -- the "continue construct" forms the entire loop.
7123	fragments["testfun"] =
7124		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
7125		"%param1 = OpFunctionParameter %v4f32\n"
7126
7127		"%entry = OpLabel\n"
7128		"%val0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
7129		"OpBranch %loop\n"
7130
7131		";adds and subtracts 1.0 to %val in alternate iterations\n"
7132		"%loop = OpLabel\n"
7133		"%count = OpPhi %i32 %c_i32_4 %entry %count__ %loop\n"
7134		"%delta = OpPhi %f32 %c_f32_1 %entry %minus_delta %loop\n"
7135		"%val1 = OpPhi %f32 %val0 %entry %val %loop\n"
7136		"%val = OpFAdd %f32 %val1 %delta\n"
7137		"%minus_delta = OpFSub %f32 %c_f32_0 %delta\n"
7138		"%count__ = OpISub %i32 %count %c_i32_1\n"
7139		"%again = OpSGreaterThan %bool %count__ %c_i32_0\n"
7140		"OpLoopMerge %exit %loop None\n"
7141		"OpBranchConditional %again %loop %exit\n"
7142
7143		"%exit = OpLabel\n"
7144		"%result = OpVectorInsertDynamic %v4f32 %param1 %val %c_i32_0\n"
7145		"OpReturnValue %result\n"
7146
7147		"OpFunctionEnd\n"
7148		;
7149	createTestsForAllStages("single_block", defaultColors, defaultColors, fragments, testGroup.get());
7150
7151	// Body comprised of multiple basic blocks.
7152	const StringTemplate multiBlock(
7153		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
7154		"%param1 = OpFunctionParameter %v4f32\n"
7155
7156		"%entry = OpLabel\n"
7157		"%val0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
7158		"OpBranch %loop\n"
7159
7160		";adds and subtracts 1.0 to %val in alternate iterations\n"
7161		"%loop = OpLabel\n"
7162		"%count = OpPhi %i32 %c_i32_4 %entry %count__ %gather\n"
7163		"%delta = OpPhi %f32 %c_f32_1 %entry %delta_next %gather\n"
7164		"%val1 = OpPhi %f32 %val0 %entry %val %gather\n"
7165		// There are several possibilities for the Continue Target below.  Each
7166		// will be specialized into a separate test case.
7167		"OpLoopMerge %exit ${continue_target} None\n"
7168		"OpBranch %if\n"
7169
7170		"%if = OpLabel\n"
7171		";delta_next = (delta > 0) ? -1 : 1;\n"
7172		"%gt0 = OpFOrdGreaterThan %bool %delta %c_f32_0\n"
7173		"OpSelectionMerge %gather DontFlatten\n"
7174		"OpBranchConditional %gt0 %even %odd ;tells us if %count is even or odd\n"
7175
7176		"%odd = OpLabel\n"
7177		"OpBranch %gather\n"
7178
7179		"%even = OpLabel\n"
7180		"OpBranch %gather\n"
7181
7182		"%gather = OpLabel\n"
7183		"%delta_next = OpPhi %f32 %c_f32_n1 %even %c_f32_1 %odd\n"
7184		"%val = OpFAdd %f32 %val1 %delta\n"
7185		"%count__ = OpISub %i32 %count %c_i32_1\n"
7186		"%again = OpSGreaterThan %bool %count__ %c_i32_0\n"
7187		"OpBranchConditional %again %loop %exit\n"
7188
7189		"%exit = OpLabel\n"
7190		"%result = OpVectorInsertDynamic %v4f32 %param1 %val %c_i32_0\n"
7191		"OpReturnValue %result\n"
7192
7193		"OpFunctionEnd\n");
7194
7195	map<string, string> continue_target;
7196
7197	// The Continue Target is the loop block itself.
7198	continue_target["continue_target"] = "%loop";
7199	fragments["testfun"] = multiBlock.specialize(continue_target);
7200	createTestsForAllStages("multi_block_continue_construct", defaultColors, defaultColors, fragments, testGroup.get());
7201
7202	// The Continue Target is at the end of the loop.
7203	continue_target["continue_target"] = "%gather";
7204	fragments["testfun"] = multiBlock.specialize(continue_target);
7205	createTestsForAllStages("multi_block_loop_construct", defaultColors, defaultColors, fragments, testGroup.get());
7206
7207	// A loop with continue statement.
7208	fragments["testfun"] =
7209		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
7210		"%param1 = OpFunctionParameter %v4f32\n"
7211
7212		"%entry = OpLabel\n"
7213		"%val0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
7214		"OpBranch %loop\n"
7215
7216		";adds 4, 3, and 1 to %val0 (skips 2)\n"
7217		"%loop = OpLabel\n"
7218		"%count = OpPhi %i32 %c_i32_4 %entry %count__ %continue\n"
7219		"%val1 = OpPhi %f32 %val0 %entry %val %continue\n"
7220		"OpLoopMerge %exit %continue None\n"
7221		"OpBranch %if\n"
7222
7223		"%if = OpLabel\n"
7224		";skip if %count==2\n"
7225		"%eq2 = OpIEqual %bool %count %c_i32_2\n"
7226		"OpSelectionMerge %continue DontFlatten\n"
7227		"OpBranchConditional %eq2 %continue %body\n"
7228
7229		"%body = OpLabel\n"
7230		"%fcount = OpConvertSToF %f32 %count\n"
7231		"%val2 = OpFAdd %f32 %val1 %fcount\n"
7232		"OpBranch %continue\n"
7233
7234		"%continue = OpLabel\n"
7235		"%val = OpPhi %f32 %val2 %body %val1 %if\n"
7236		"%count__ = OpISub %i32 %count %c_i32_1\n"
7237		"%again = OpSGreaterThan %bool %count__ %c_i32_0\n"
7238		"OpBranchConditional %again %loop %exit\n"
7239
7240		"%exit = OpLabel\n"
7241		"%same = OpFSub %f32 %val %c_f32_8\n"
7242		"%result = OpVectorInsertDynamic %v4f32 %param1 %same %c_i32_0\n"
7243		"OpReturnValue %result\n"
7244		"OpFunctionEnd\n";
7245	createTestsForAllStages("continue", defaultColors, defaultColors, fragments, testGroup.get());
7246
7247	// A loop with early exit.  May be specialized with either break or return.
7248	StringTemplate earlyExitLoop(
7249		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
7250		"%param1 = OpFunctionParameter %v4f32\n"
7251
7252		"%entry = OpLabel\n"
7253		";param1 components are between 0 and 1, so dot product is 4 or less\n"
7254		"%dot = OpDot %f32 %param1 %param1\n"
7255		"%div = OpFDiv %f32 %dot %c_f32_5\n"
7256		"%zero = OpConvertFToU %u32 %div\n"
7257		"%two = OpIAdd %i32 %zero %c_i32_2\n"
7258		"%val0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
7259		"OpBranch %loop\n"
7260
7261		";adds 4 and 3 to %val0 (exits early)\n"
7262		"%loop = OpLabel\n"
7263		"%count = OpPhi %i32 %c_i32_4 %entry %count__ %continue\n"
7264		"%val1 = OpPhi %f32 %val0 %entry %val %continue\n"
7265		"OpLoopMerge %exit %continue None\n"
7266		"OpBranch %if\n"
7267
7268		"%if = OpLabel\n"
7269		";end loop if %count==%two\n"
7270		"%above2 = OpSGreaterThan %bool %count %two\n"
7271		"OpSelectionMerge %continue DontFlatten\n"
7272		// This can either branch to %exit or to another block with OpReturnValue %param1.
7273		"OpBranchConditional %above2 %body ${branch_destination}\n"
7274
7275		"%body = OpLabel\n"
7276		"%fcount = OpConvertSToF %f32 %count\n"
7277		"%val2 = OpFAdd %f32 %val1 %fcount\n"
7278		"OpBranch %continue\n"
7279
7280		"%continue = OpLabel\n"
7281		"%val = OpPhi %f32 %val2 %body %val1 %if\n"
7282		"%count__ = OpISub %i32 %count %c_i32_1\n"
7283		"%again = OpSGreaterThan %bool %count__ %c_i32_0\n"
7284		"OpBranchConditional %again %loop %exit\n"
7285
7286		"%exit = OpLabel\n"
7287		"%same = OpFSub %f32 %val %c_f32_7\n"
7288		"%result = OpVectorInsertDynamic %v4f32 %param1 %same %c_i32_0\n"
7289		"OpReturnValue %result\n"
7290		"OpFunctionEnd\n");
7291
7292	map<string, string> branch_destination;
7293
7294	// A loop with break.
7295	branch_destination["branch_destination"] = "%exit";
7296	fragments["testfun"] = earlyExitLoop.specialize(branch_destination);
7297	createTestsForAllStages("break", defaultColors, defaultColors, fragments, testGroup.get());
7298
7299	// A loop with return.
7300	branch_destination["branch_destination"] = "%early_exit\n"
7301		"%early_exit = OpLabel\n"
7302		"OpReturnValue %param1\n";
7303	fragments["testfun"] = earlyExitLoop.specialize(branch_destination);
7304	createTestsForAllStages("return", defaultColors, defaultColors, fragments, testGroup.get());
7305
7306	return testGroup.release();
7307}
7308
7309// Adds a new test to group using custom fragments for the tessellation-control
7310// stage and passthrough fragments for all other stages.  Uses default colors
7311// for input and expected output.
7312void addTessCtrlTest(tcu::TestCaseGroup* group, const char* name, const map<string, string>& fragments)
7313{
7314	RGBA defaultColors[4];
7315	getDefaultColors(defaultColors);
7316	const ShaderElement pipelineStages[] =
7317	{
7318		ShaderElement("vert", "main", VK_SHADER_STAGE_VERTEX_BIT),
7319		ShaderElement("tessc", "main", VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT),
7320		ShaderElement("tesse", "main", VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT),
7321		ShaderElement("geom", "main", VK_SHADER_STAGE_GEOMETRY_BIT),
7322		ShaderElement("frag", "main", VK_SHADER_STAGE_FRAGMENT_BIT),
7323	};
7324
7325	addFunctionCaseWithPrograms<InstanceContext>(group, name, "", addShaderCodeCustomTessControl,
7326												 runAndVerifyDefaultPipeline, createInstanceContext(
7327													 pipelineStages, defaultColors, defaultColors, fragments, StageToSpecConstantMap()));
7328}
7329
7330// A collection of tests putting OpControlBarrier in places GLSL forbids but SPIR-V allows.
7331tcu::TestCaseGroup* createBarrierTests(tcu::TestContext& testCtx)
7332{
7333	de::MovePtr<tcu::TestCaseGroup> testGroup(new tcu::TestCaseGroup(testCtx, "barrier", "OpControlBarrier"));
7334	map<string, string> fragments;
7335
7336	// A barrier inside a function body.
7337	fragments["pre_main"] =
7338		"%Workgroup = OpConstant %i32 2\n"
7339		"%SequentiallyConsistent = OpConstant %i32 0x10\n";
7340	fragments["testfun"] =
7341		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
7342		"%param1 = OpFunctionParameter %v4f32\n"
7343		"%label_testfun = OpLabel\n"
7344		"OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
7345		"OpReturnValue %param1\n"
7346		"OpFunctionEnd\n";
7347	addTessCtrlTest(testGroup.get(), "in_function", fragments);
7348
7349	// Common setup code for the following tests.
7350	fragments["pre_main"] =
7351		"%Workgroup = OpConstant %i32 2\n"
7352		"%SequentiallyConsistent = OpConstant %i32 0x10\n"
7353		"%c_f32_5 = OpConstant %f32 5.\n";
7354	const string setupPercentZero =	 // Begins %test_code function with code that sets %zero to 0u but cannot be optimized away.
7355		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
7356		"%param1 = OpFunctionParameter %v4f32\n"
7357		"%entry = OpLabel\n"
7358		";param1 components are between 0 and 1, so dot product is 4 or less\n"
7359		"%dot = OpDot %f32 %param1 %param1\n"
7360		"%div = OpFDiv %f32 %dot %c_f32_5\n"
7361		"%zero = OpConvertFToU %u32 %div\n";
7362
7363	// Barriers inside OpSwitch branches.
7364	fragments["testfun"] =
7365		setupPercentZero +
7366		"OpSelectionMerge %switch_exit None\n"
7367		"OpSwitch %zero %switch_default 0 %case0 1 %case1 ;should always go to %case0\n"
7368
7369		"%case1 = OpLabel\n"
7370		";This barrier should never be executed, but its presence makes test failure more likely when there's a bug.\n"
7371		"OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
7372		"%wrong_branch_alert1 = OpVectorInsertDynamic %v4f32 %param1 %c_f32_0_5 %c_i32_0\n"
7373		"OpBranch %switch_exit\n"
7374
7375		"%switch_default = OpLabel\n"
7376		"%wrong_branch_alert2 = OpVectorInsertDynamic %v4f32 %param1 %c_f32_0_5 %c_i32_0\n"
7377		";This barrier should never be executed, but its presence makes test failure more likely when there's a bug.\n"
7378		"OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
7379		"OpBranch %switch_exit\n"
7380
7381		"%case0 = OpLabel\n"
7382		"OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
7383		"OpBranch %switch_exit\n"
7384
7385		"%switch_exit = OpLabel\n"
7386		"%ret = OpPhi %v4f32 %param1 %case0 %wrong_branch_alert1 %case1 %wrong_branch_alert2 %switch_default\n"
7387		"OpReturnValue %ret\n"
7388		"OpFunctionEnd\n";
7389	addTessCtrlTest(testGroup.get(), "in_switch", fragments);
7390
7391	// Barriers inside if-then-else.
7392	fragments["testfun"] =
7393		setupPercentZero +
7394		"%eq0 = OpIEqual %bool %zero %c_u32_0\n"
7395		"OpSelectionMerge %exit DontFlatten\n"
7396		"OpBranchConditional %eq0 %then %else\n"
7397
7398		"%else = OpLabel\n"
7399		";This barrier should never be executed, but its presence makes test failure more likely when there's a bug.\n"
7400		"OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
7401		"%wrong_branch_alert = OpVectorInsertDynamic %v4f32 %param1 %c_f32_0_5 %c_i32_0\n"
7402		"OpBranch %exit\n"
7403
7404		"%then = OpLabel\n"
7405		"OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
7406		"OpBranch %exit\n"
7407
7408		"%exit = OpLabel\n"
7409		"%ret = OpPhi %v4f32 %param1 %then %wrong_branch_alert %else\n"
7410		"OpReturnValue %ret\n"
7411		"OpFunctionEnd\n";
7412	addTessCtrlTest(testGroup.get(), "in_if", fragments);
7413
7414	// A barrier after control-flow reconvergence, tempting the compiler to attempt something like this:
7415	// http://lists.llvm.org/pipermail/llvm-dev/2009-October/026317.html.
7416	fragments["testfun"] =
7417		setupPercentZero +
7418		"%thread_id = OpLoad %i32 %BP_gl_InvocationID\n"
7419		"%thread0 = OpIEqual %bool %thread_id %c_i32_0\n"
7420		"OpSelectionMerge %exit DontFlatten\n"
7421		"OpBranchConditional %thread0 %then %else\n"
7422
7423		"%else = OpLabel\n"
7424		"%val0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
7425		"OpBranch %exit\n"
7426
7427		"%then = OpLabel\n"
7428		"%val1 = OpVectorExtractDynamic %f32 %param1 %zero\n"
7429		"OpBranch %exit\n"
7430
7431		"%exit = OpLabel\n"
7432		"%val = OpPhi %f32 %val0 %else %val1 %then\n"
7433		"OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
7434		"%ret = OpVectorInsertDynamic %v4f32 %param1 %val %zero\n"
7435		"OpReturnValue %ret\n"
7436		"OpFunctionEnd\n";
7437	addTessCtrlTest(testGroup.get(), "after_divergent_if", fragments);
7438
7439	// A barrier inside a loop.
7440	fragments["pre_main"] =
7441		"%Workgroup = OpConstant %i32 2\n"
7442		"%SequentiallyConsistent = OpConstant %i32 0x10\n"
7443		"%c_f32_10 = OpConstant %f32 10.\n";
7444	fragments["testfun"] =
7445		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
7446		"%param1 = OpFunctionParameter %v4f32\n"
7447		"%entry = OpLabel\n"
7448		"%val0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
7449		"OpBranch %loop\n"
7450
7451		";adds 4, 3, 2, and 1 to %val0\n"
7452		"%loop = OpLabel\n"
7453		"%count = OpPhi %i32 %c_i32_4 %entry %count__ %loop\n"
7454		"%val1 = OpPhi %f32 %val0 %entry %val %loop\n"
7455		"OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
7456		"%fcount = OpConvertSToF %f32 %count\n"
7457		"%val = OpFAdd %f32 %val1 %fcount\n"
7458		"%count__ = OpISub %i32 %count %c_i32_1\n"
7459		"%again = OpSGreaterThan %bool %count__ %c_i32_0\n"
7460		"OpLoopMerge %exit %loop None\n"
7461		"OpBranchConditional %again %loop %exit\n"
7462
7463		"%exit = OpLabel\n"
7464		"%same = OpFSub %f32 %val %c_f32_10\n"
7465		"%ret = OpVectorInsertDynamic %v4f32 %param1 %same %c_i32_0\n"
7466		"OpReturnValue %ret\n"
7467		"OpFunctionEnd\n";
7468	addTessCtrlTest(testGroup.get(), "in_loop", fragments);
7469
7470	return testGroup.release();
7471}
7472
7473// Test for the OpFRem instruction.
7474tcu::TestCaseGroup* createFRemTests(tcu::TestContext& testCtx)
7475{
7476	de::MovePtr<tcu::TestCaseGroup>		testGroup(new tcu::TestCaseGroup(testCtx, "frem", "OpFRem"));
7477	map<string, string>					fragments;
7478	RGBA								inputColors[4];
7479	RGBA								outputColors[4];
7480
7481	fragments["pre_main"]				 =
7482		"%c_f32_3 = OpConstant %f32 3.0\n"
7483		"%c_f32_n3 = OpConstant %f32 -3.0\n"
7484		"%c_f32_4 = OpConstant %f32 4.0\n"
7485		"%c_f32_p75 = OpConstant %f32 0.75\n"
7486		"%c_v4f32_p75_p75_p75_p75 = OpConstantComposite %v4f32 %c_f32_p75 %c_f32_p75 %c_f32_p75 %c_f32_p75 \n"
7487		"%c_v4f32_4_4_4_4 = OpConstantComposite %v4f32 %c_f32_4 %c_f32_4 %c_f32_4 %c_f32_4\n"
7488		"%c_v4f32_3_n3_3_n3 = OpConstantComposite %v4f32 %c_f32_3 %c_f32_n3 %c_f32_3 %c_f32_n3\n";
7489
7490	// The test does the following.
7491	// vec4 result = (param1 * 8.0) - 4.0;
7492	// return (frem(result.x,3) + 0.75, frem(result.y, -3) + 0.75, 0, 1)
7493	fragments["testfun"]				 =
7494		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
7495		"%param1 = OpFunctionParameter %v4f32\n"
7496		"%label_testfun = OpLabel\n"
7497		"%v_times_8 = OpVectorTimesScalar %v4f32 %param1 %c_f32_8\n"
7498		"%minus_4 = OpFSub %v4f32 %v_times_8 %c_v4f32_4_4_4_4\n"
7499		"%frem = OpFRem %v4f32 %minus_4 %c_v4f32_3_n3_3_n3\n"
7500		"%added = OpFAdd %v4f32 %frem %c_v4f32_p75_p75_p75_p75\n"
7501		"%xyz_1 = OpVectorInsertDynamic %v4f32 %added %c_f32_1 %c_i32_3\n"
7502		"%xy_0_1 = OpVectorInsertDynamic %v4f32 %xyz_1 %c_f32_0 %c_i32_2\n"
7503		"OpReturnValue %xy_0_1\n"
7504		"OpFunctionEnd\n";
7505
7506
7507	inputColors[0]		= RGBA(16,	16,		0, 255);
7508	inputColors[1]		= RGBA(232, 232,	0, 255);
7509	inputColors[2]		= RGBA(232, 16,		0, 255);
7510	inputColors[3]		= RGBA(16,	232,	0, 255);
7511
7512	outputColors[0]		= RGBA(64,	64,		0, 255);
7513	outputColors[1]		= RGBA(255, 255,	0, 255);
7514	outputColors[2]		= RGBA(255, 64,		0, 255);
7515	outputColors[3]		= RGBA(64,	255,	0, 255);
7516
7517	createTestsForAllStages("frem", inputColors, outputColors, fragments, testGroup.get());
7518	return testGroup.release();
7519}
7520
7521tcu::TestCaseGroup* createInstructionTests (tcu::TestContext& testCtx)
7522{
7523	de::MovePtr<tcu::TestCaseGroup> instructionTests	(new tcu::TestCaseGroup(testCtx, "instruction", "Instructions with special opcodes/operands"));
7524	de::MovePtr<tcu::TestCaseGroup> computeTests		(new tcu::TestCaseGroup(testCtx, "compute", "Compute Instructions with special opcodes/operands"));
7525	de::MovePtr<tcu::TestCaseGroup> graphicsTests		(new tcu::TestCaseGroup(testCtx, "graphics", "Graphics Instructions with special opcodes/operands"));
7526
7527	computeTests->addChild(createOpNopGroup(testCtx));
7528	computeTests->addChild(createOpLineGroup(testCtx));
7529	computeTests->addChild(createOpNoLineGroup(testCtx));
7530	computeTests->addChild(createOpConstantNullGroup(testCtx));
7531	computeTests->addChild(createOpConstantCompositeGroup(testCtx));
7532	computeTests->addChild(createOpConstantUsageGroup(testCtx));
7533	computeTests->addChild(createSpecConstantGroup(testCtx));
7534	computeTests->addChild(createOpSourceGroup(testCtx));
7535	computeTests->addChild(createOpSourceExtensionGroup(testCtx));
7536	computeTests->addChild(createDecorationGroupGroup(testCtx));
7537	computeTests->addChild(createOpPhiGroup(testCtx));
7538	computeTests->addChild(createLoopControlGroup(testCtx));
7539	computeTests->addChild(createFunctionControlGroup(testCtx));
7540	computeTests->addChild(createSelectionControlGroup(testCtx));
7541	computeTests->addChild(createBlockOrderGroup(testCtx));
7542	computeTests->addChild(createMultipleShaderGroup(testCtx));
7543	computeTests->addChild(createMemoryAccessGroup(testCtx));
7544	computeTests->addChild(createOpCopyMemoryGroup(testCtx));
7545	computeTests->addChild(createOpCopyObjectGroup(testCtx));
7546	computeTests->addChild(createNoContractionGroup(testCtx));
7547	computeTests->addChild(createOpUndefGroup(testCtx));
7548	computeTests->addChild(createOpUnreachableGroup(testCtx));
7549	computeTests ->addChild(createOpQuantizeToF16Group(testCtx));
7550	computeTests ->addChild(createOpFRemGroup(testCtx));
7551
7552	RGBA defaultColors[4];
7553	getDefaultColors(defaultColors);
7554
7555	de::MovePtr<tcu::TestCaseGroup> opnopTests (new tcu::TestCaseGroup(testCtx, "opnop", "Test OpNop"));
7556	map<string, string> opNopFragments;
7557	opNopFragments["testfun"] =
7558		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
7559		"%param1 = OpFunctionParameter %v4f32\n"
7560		"%label_testfun = OpLabel\n"
7561		"OpNop\n"
7562		"OpNop\n"
7563		"OpNop\n"
7564		"OpNop\n"
7565		"OpNop\n"
7566		"OpNop\n"
7567		"OpNop\n"
7568		"OpNop\n"
7569		"%a = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
7570		"%b = OpFAdd %f32 %a %a\n"
7571		"OpNop\n"
7572		"%c = OpFSub %f32 %b %a\n"
7573		"%ret = OpVectorInsertDynamic %v4f32 %param1 %c %c_i32_0\n"
7574		"OpNop\n"
7575		"OpNop\n"
7576		"OpReturnValue %ret\n"
7577		"OpFunctionEnd\n"
7578		;
7579	createTestsForAllStages("opnop", defaultColors, defaultColors, opNopFragments, opnopTests.get());
7580
7581
7582	graphicsTests->addChild(opnopTests.release());
7583	graphicsTests->addChild(createOpSourceTests(testCtx));
7584	graphicsTests->addChild(createOpSourceContinuedTests(testCtx));
7585	graphicsTests->addChild(createOpLineTests(testCtx));
7586	graphicsTests->addChild(createOpNoLineTests(testCtx));
7587	graphicsTests->addChild(createOpConstantNullTests(testCtx));
7588	graphicsTests->addChild(createOpConstantCompositeTests(testCtx));
7589	graphicsTests->addChild(createMemoryAccessTests(testCtx));
7590	graphicsTests->addChild(createOpUndefTests(testCtx));
7591	graphicsTests->addChild(createSelectionBlockOrderTests(testCtx));
7592	graphicsTests->addChild(createModuleTests(testCtx));
7593	graphicsTests->addChild(createSwitchBlockOrderTests(testCtx));
7594	graphicsTests->addChild(createOpPhiTests(testCtx));
7595	graphicsTests->addChild(createNoContractionTests(testCtx));
7596	graphicsTests->addChild(createOpQuantizeTests(testCtx));
7597	graphicsTests->addChild(createLoopTests(testCtx));
7598	graphicsTests->addChild(createSpecConstantTests(testCtx));
7599	graphicsTests->addChild(createSpecConstantOpQuantizeToF16Group(testCtx));
7600	graphicsTests->addChild(createBarrierTests(testCtx));
7601	graphicsTests->addChild(createDecorationGroupTests(testCtx));
7602	graphicsTests->addChild(createFRemTests(testCtx));
7603
7604	instructionTests->addChild(computeTests.release());
7605	instructionTests->addChild(graphicsTests.release());
7606
7607	return instructionTests.release();
7608}
7609
7610} // SpirVAssembly
7611} // vkt
7612