vktSpvAsmInstructionTests.cpp revision d3a134f785654f638bc7a2cc9104a25788f46469
1/*-------------------------------------------------------------------------
2 * Vulkan Conformance Tests
3 * ------------------------
4 *
5 * Copyright (c) 2015 Google Inc.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and/or associated documentation files (the
9 * "Materials"), to deal in the Materials without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sublicense, and/or sell copies of the Materials, and to
12 * permit persons to whom the Materials are furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice(s) and this permission notice shall be
16 * included in all copies or substantial portions of the Materials.
17 *
18 * The Materials are Confidential Information as defined by the
19 * Khronos Membership Agreement until designated non-confidential by
20 * Khronos, at which point this condition clause shall be removed.
21 *
22 * THE MATERIALS ARE PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
23 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
24 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
25 * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
26 * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
27 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
28 * MATERIALS OR THE USE OR OTHER DEALINGS IN THE MATERIALS.
29 *
30 *//*!
31 * \file
32 * \brief SPIR-V Assembly Tests for Instructions (special opcode/operand)
33 *//*--------------------------------------------------------------------*/
34
35#include "vktSpvAsmInstructionTests.hpp"
36
37#include "tcuCommandLine.hpp"
38#include "tcuFormatUtil.hpp"
39#include "tcuRGBA.hpp"
40#include "tcuStringTemplate.hpp"
41#include "tcuTestLog.hpp"
42#include "tcuVectorUtil.hpp"
43
44#include "vkDefs.hpp"
45#include "vkDeviceUtil.hpp"
46#include "vkMemUtil.hpp"
47#include "vkPlatform.hpp"
48#include "vkPrograms.hpp"
49#include "vkQueryUtil.hpp"
50#include "vkRef.hpp"
51#include "vkRefUtil.hpp"
52#include "vkStrUtil.hpp"
53#include "vkTypeUtil.hpp"
54
55#include "deRandom.hpp"
56#include "deStringUtil.hpp"
57#include "deUniquePtr.hpp"
58#include "tcuStringTemplate.hpp"
59
60#include <cmath>
61#include "vktSpvAsmComputeShaderCase.hpp"
62#include "vktSpvAsmComputeShaderTestUtil.hpp"
63#include "vktTestCaseUtil.hpp"
64
65#include <cmath>
66#include <limits>
67#include <map>
68#include <string>
69#include <sstream>
70
71namespace vkt
72{
73namespace SpirVAssembly
74{
75
76namespace
77{
78
79using namespace vk;
80using std::map;
81using std::string;
82using std::vector;
83using tcu::IVec3;
84using tcu::IVec4;
85using tcu::RGBA;
86using tcu::TestLog;
87using tcu::TestStatus;
88using tcu::Vec4;
89using de::UniquePtr;
90using tcu::StringTemplate;
91using tcu::Vec4;
92
93typedef Unique<VkShaderModule>			ModuleHandleUp;
94typedef de::SharedPtr<ModuleHandleUp>	ModuleHandleSp;
95
96template<typename T>	T			randomScalar	(de::Random& rnd, T minValue, T maxValue);
97template<> inline		float		randomScalar	(de::Random& rnd, float minValue, float maxValue)		{ return rnd.getFloat(minValue, maxValue);	}
98template<> inline		deInt32		randomScalar	(de::Random& rnd, deInt32 minValue, deInt32 maxValue)	{ return rnd.getInt(minValue, maxValue);	}
99
100template<typename T>
101static void fillRandomScalars (de::Random& rnd, T minValue, T maxValue, void* dst, int numValues, int offset = 0)
102{
103	T* const typedPtr = (T*)dst;
104	for (int ndx = 0; ndx < numValues; ndx++)
105		typedPtr[offset + ndx] = randomScalar<T>(rnd, minValue, maxValue);
106}
107
108struct CaseParameter
109{
110	const char*		name;
111	string			param;
112
113	CaseParameter	(const char* case_, const string& param_) : name(case_), param(param_) {}
114};
115
116// Assembly code used for testing OpNop, OpConstant{Null|Composite}, Op[No]Line, OpSource[Continued], OpSourceExtension, OpUndef is based on GLSL source code:
117//
118// #version 430
119//
120// layout(std140, set = 0, binding = 0) readonly buffer Input {
121//   float elements[];
122// } input_data;
123// layout(std140, set = 0, binding = 1) writeonly buffer Output {
124//   float elements[];
125// } output_data;
126//
127// layout (local_size_x = 1, local_size_y = 1, local_size_z = 1) in;
128//
129// void main() {
130//   uint x = gl_GlobalInvocationID.x;
131//   output_data.elements[x] = -input_data.elements[x];
132// }
133
134static const char* const s_ShaderPreamble =
135	"OpCapability Shader\n"
136	"OpMemoryModel Logical GLSL450\n"
137	"OpEntryPoint GLCompute %main \"main\" %id\n"
138	"OpExecutionMode %main LocalSize 1 1 1\n";
139
140static const char* const s_CommonTypes =
141	"%bool      = OpTypeBool\n"
142	"%void      = OpTypeVoid\n"
143	"%voidf     = OpTypeFunction %void\n"
144	"%u32       = OpTypeInt 32 0\n"
145	"%i32       = OpTypeInt 32 1\n"
146	"%f32       = OpTypeFloat 32\n"
147	"%uvec3     = OpTypeVector %u32 3\n"
148	"%fvec3     = OpTypeVector %f32 3\n"
149	"%uvec3ptr  = OpTypePointer Input %uvec3\n"
150	"%f32ptr    = OpTypePointer Uniform %f32\n"
151	"%f32arr    = OpTypeRuntimeArray %f32\n";
152
153// Declares two uniform variables (indata, outdata) of type "struct { float[] }". Depends on type "f32arr" (for "float[]").
154static const char* const s_InputOutputBuffer =
155	"%inbuf     = OpTypeStruct %f32arr\n"
156	"%inbufptr  = OpTypePointer Uniform %inbuf\n"
157	"%indata    = OpVariable %inbufptr Uniform\n"
158	"%outbuf    = OpTypeStruct %f32arr\n"
159	"%outbufptr = OpTypePointer Uniform %outbuf\n"
160	"%outdata   = OpVariable %outbufptr Uniform\n";
161
162// Declares buffer type and layout for uniform variables indata and outdata. Both of them are SSBO bounded to descriptor set 0.
163// indata is at binding point 0, while outdata is at 1.
164static const char* const s_InputOutputBufferTraits =
165	"OpDecorate %inbuf BufferBlock\n"
166	"OpDecorate %indata DescriptorSet 0\n"
167	"OpDecorate %indata Binding 0\n"
168	"OpDecorate %outbuf BufferBlock\n"
169	"OpDecorate %outdata DescriptorSet 0\n"
170	"OpDecorate %outdata Binding 1\n"
171	"OpDecorate %f32arr ArrayStride 4\n"
172	"OpMemberDecorate %inbuf 0 Offset 0\n"
173	"OpMemberDecorate %outbuf 0 Offset 0\n";
174
175tcu::TestCaseGroup* createOpNopGroup (tcu::TestContext& testCtx)
176{
177	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opnop", "Test the OpNop instruction"));
178	ComputeShaderSpec				spec;
179	de::Random						rnd				(deStringHash(group->getName()));
180	const int						numElements		= 100;
181	vector<float>					positiveFloats	(numElements, 0);
182	vector<float>					negativeFloats	(numElements, 0);
183
184	fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
185
186	for (size_t ndx = 0; ndx < numElements; ++ndx)
187		negativeFloats[ndx] = -positiveFloats[ndx];
188
189	spec.assembly =
190		string(s_ShaderPreamble) +
191
192		"OpSource GLSL 430\n"
193		"OpName %main           \"main\"\n"
194		"OpName %id             \"gl_GlobalInvocationID\"\n"
195
196		"OpDecorate %id BuiltIn GlobalInvocationId\n"
197
198		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes)
199
200		+ string(s_InputOutputBuffer) +
201
202		"%id        = OpVariable %uvec3ptr Input\n"
203		"%zero      = OpConstant %i32 0\n"
204
205		"%main      = OpFunction %void None %voidf\n"
206		"%label     = OpLabel\n"
207		"%idval     = OpLoad %uvec3 %id\n"
208		"%x         = OpCompositeExtract %u32 %idval 0\n"
209
210		"             OpNop\n" // Inside a function body
211
212		"%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
213		"%inval     = OpLoad %f32 %inloc\n"
214		"%neg       = OpFNegate %f32 %inval\n"
215		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
216		"             OpStore %outloc %neg\n"
217		"             OpReturn\n"
218		"             OpFunctionEnd\n";
219	spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
220	spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
221	spec.numWorkGroups = IVec3(numElements, 1, 1);
222
223	group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "OpNop appearing at different places", spec));
224
225	return group.release();
226}
227
228tcu::TestCaseGroup* createOpLineGroup (tcu::TestContext& testCtx)
229{
230	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opline", "Test the OpLine instruction"));
231	ComputeShaderSpec				spec;
232	de::Random						rnd				(deStringHash(group->getName()));
233	const int						numElements		= 100;
234	vector<float>					positiveFloats	(numElements, 0);
235	vector<float>					negativeFloats	(numElements, 0);
236
237	fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
238
239	for (size_t ndx = 0; ndx < numElements; ++ndx)
240		negativeFloats[ndx] = -positiveFloats[ndx];
241
242	spec.assembly =
243		string(s_ShaderPreamble) +
244
245		"%fname1 = OpString \"negateInputs.comp\"\n"
246		"%fname2 = OpString \"negateInputs\"\n"
247
248		"OpSource GLSL 430\n"
249		"OpName %main           \"main\"\n"
250		"OpName %id             \"gl_GlobalInvocationID\"\n"
251
252		"OpDecorate %id BuiltIn GlobalInvocationId\n"
253
254		+ string(s_InputOutputBufferTraits) +
255
256		"OpLine %fname1 0 0\n" // At the earliest possible position
257
258		+ string(s_CommonTypes) + string(s_InputOutputBuffer) +
259
260		"OpLine %fname1 0 1\n" // Multiple OpLines in sequence
261		"OpLine %fname2 1 0\n" // Different filenames
262		"OpLine %fname1 1000 100000\n"
263
264		"%id        = OpVariable %uvec3ptr Input\n"
265		"%zero      = OpConstant %i32 0\n"
266
267		"OpLine %fname1 1 1\n" // Before a function
268
269		"%main      = OpFunction %void None %voidf\n"
270		"%label     = OpLabel\n"
271
272		"OpLine %fname1 1 1\n" // In a function
273
274		"%idval     = OpLoad %uvec3 %id\n"
275		"%x         = OpCompositeExtract %u32 %idval 0\n"
276		"%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
277		"%inval     = OpLoad %f32 %inloc\n"
278		"%neg       = OpFNegate %f32 %inval\n"
279		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
280		"             OpStore %outloc %neg\n"
281		"             OpReturn\n"
282		"             OpFunctionEnd\n";
283	spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
284	spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
285	spec.numWorkGroups = IVec3(numElements, 1, 1);
286
287	group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "OpLine appearing at different places", spec));
288
289	return group.release();
290}
291
292tcu::TestCaseGroup* createOpNoLineGroup (tcu::TestContext& testCtx)
293{
294	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opnoline", "Test the OpNoLine instruction"));
295	ComputeShaderSpec				spec;
296	de::Random						rnd				(deStringHash(group->getName()));
297	const int						numElements		= 100;
298	vector<float>					positiveFloats	(numElements, 0);
299	vector<float>					negativeFloats	(numElements, 0);
300
301	fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
302
303	for (size_t ndx = 0; ndx < numElements; ++ndx)
304		negativeFloats[ndx] = -positiveFloats[ndx];
305
306	spec.assembly =
307		string(s_ShaderPreamble) +
308
309		"%fname = OpString \"negateInputs.comp\"\n"
310
311		"OpSource GLSL 430\n"
312		"OpName %main           \"main\"\n"
313		"OpName %id             \"gl_GlobalInvocationID\"\n"
314
315		"OpDecorate %id BuiltIn GlobalInvocationId\n"
316
317		+ string(s_InputOutputBufferTraits) +
318
319		"OpNoLine\n" // At the earliest possible position, without preceding OpLine
320
321		+ string(s_CommonTypes) + string(s_InputOutputBuffer) +
322
323		"OpLine %fname 0 1\n"
324		"OpNoLine\n" // Immediately following a preceding OpLine
325
326		"OpLine %fname 1000 1\n"
327
328		"%id        = OpVariable %uvec3ptr Input\n"
329		"%zero      = OpConstant %i32 0\n"
330
331		"OpNoLine\n" // Contents after the previous OpLine
332
333		"%main      = OpFunction %void None %voidf\n"
334		"%label     = OpLabel\n"
335		"%idval     = OpLoad %uvec3 %id\n"
336		"%x         = OpCompositeExtract %u32 %idval 0\n"
337
338		"OpNoLine\n" // Multiple OpNoLine
339		"OpNoLine\n"
340		"OpNoLine\n"
341
342		"%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
343		"%inval     = OpLoad %f32 %inloc\n"
344		"%neg       = OpFNegate %f32 %inval\n"
345		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
346		"             OpStore %outloc %neg\n"
347		"             OpReturn\n"
348		"             OpFunctionEnd\n";
349	spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
350	spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
351	spec.numWorkGroups = IVec3(numElements, 1, 1);
352
353	group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "OpNoLine appearing at different places", spec));
354
355	return group.release();
356}
357
358tcu::TestCaseGroup* createNoContractionGroup (tcu::TestContext& testCtx)
359{
360	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "nocontraction", "Test the NoContraction decoration"));
361	vector<CaseParameter>			cases;
362	const int						numElements		= 100;
363	vector<float>					inputFloats1	(numElements, 0);
364	vector<float>					inputFloats2	(numElements, 0);
365	vector<float>					outputFloats	(numElements, 0);
366	const StringTemplate			shaderTemplate	(
367		string(s_ShaderPreamble) +
368
369		"OpName %main           \"main\"\n"
370		"OpName %id             \"gl_GlobalInvocationID\"\n"
371
372		"OpDecorate %id BuiltIn GlobalInvocationId\n"
373
374		"${DECORATION}\n"
375
376		"OpDecorate %inbuf1 BufferBlock\n"
377		"OpDecorate %indata1 DescriptorSet 0\n"
378		"OpDecorate %indata1 Binding 0\n"
379		"OpDecorate %inbuf2 BufferBlock\n"
380		"OpDecorate %indata2 DescriptorSet 0\n"
381		"OpDecorate %indata2 Binding 1\n"
382		"OpDecorate %outbuf BufferBlock\n"
383		"OpDecorate %outdata DescriptorSet 0\n"
384		"OpDecorate %outdata Binding 2\n"
385		"OpDecorate %f32arr ArrayStride 4\n"
386		"OpMemberDecorate %inbuf1 0 Offset 0\n"
387		"OpMemberDecorate %inbuf2 0 Offset 0\n"
388		"OpMemberDecorate %outbuf 0 Offset 0\n"
389
390		+ string(s_CommonTypes) +
391
392		"%inbuf1     = OpTypeStruct %f32arr\n"
393		"%inbufptr1  = OpTypePointer Uniform %inbuf1\n"
394		"%indata1    = OpVariable %inbufptr1 Uniform\n"
395		"%inbuf2     = OpTypeStruct %f32arr\n"
396		"%inbufptr2  = OpTypePointer Uniform %inbuf2\n"
397		"%indata2    = OpVariable %inbufptr2 Uniform\n"
398		"%outbuf     = OpTypeStruct %f32arr\n"
399		"%outbufptr  = OpTypePointer Uniform %outbuf\n"
400		"%outdata    = OpVariable %outbufptr Uniform\n"
401
402		"%id         = OpVariable %uvec3ptr Input\n"
403		"%zero       = OpConstant %i32 0\n"
404		"%c_f_m1     = OpConstant %f32 -1.\n"
405
406		"%main       = OpFunction %void None %voidf\n"
407		"%label      = OpLabel\n"
408		"%idval      = OpLoad %uvec3 %id\n"
409		"%x          = OpCompositeExtract %u32 %idval 0\n"
410		"%inloc1     = OpAccessChain %f32ptr %indata1 %zero %x\n"
411		"%inval1     = OpLoad %f32 %inloc1\n"
412		"%inloc2     = OpAccessChain %f32ptr %indata2 %zero %x\n"
413		"%inval2     = OpLoad %f32 %inloc2\n"
414		"%mul        = OpFMul %f32 %inval1 %inval2\n"
415		"%add        = OpFAdd %f32 %mul %c_f_m1\n"
416		"%outloc     = OpAccessChain %f32ptr %outdata %zero %x\n"
417		"              OpStore %outloc %add\n"
418		"              OpReturn\n"
419		"              OpFunctionEnd\n");
420
421	cases.push_back(CaseParameter("multiplication",	"OpDecorate %mul NoContraction"));
422	cases.push_back(CaseParameter("addition",		"OpDecorate %add NoContraction"));
423	cases.push_back(CaseParameter("both",			"OpDecorate %mul NoContraction\nOpDecorate %add NoContraction"));
424
425	for (size_t ndx = 0; ndx < numElements; ++ndx)
426	{
427		inputFloats1[ndx]	= 1.f + std::ldexp(1.f, -23); // 1 + 2^-23.
428		inputFloats2[ndx]	= 1.f - std::ldexp(1.f, -23); // 1 - 2^-23.
429		// Result for (1 + 2^-23) * (1 - 2^-23) - 1. With NoContraction, the multiplication will be
430		// conducted separately and the result is rounded to 1. So the final result will be 0.f.
431		// If the operation is combined into a precise fused multiply-add, then the result would be
432		// 2^-46 (0xa8800000).
433		outputFloats[ndx]	= 0.f;
434	}
435
436	for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
437	{
438		map<string, string>		specializations;
439		ComputeShaderSpec		spec;
440
441		specializations["DECORATION"] = cases[caseNdx].param;
442		spec.assembly = shaderTemplate.specialize(specializations);
443		spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats1)));
444		spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats2)));
445		spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
446		spec.numWorkGroups = IVec3(numElements, 1, 1);
447
448		group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
449	}
450	return group.release();
451}
452
453tcu::TestCaseGroup* createOpFRemGroup (tcu::TestContext& testCtx)
454{
455	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opfrem", "Test the OpFRem instruction"));
456	ComputeShaderSpec				spec;
457	de::Random						rnd				(deStringHash(group->getName()));
458	const int						numElements		= 200;
459	vector<float>					inputFloats1	(numElements, 0);
460	vector<float>					inputFloats2	(numElements, 0);
461	vector<float>					outputFloats	(numElements, 0);
462
463	fillRandomScalars(rnd, -10000.f, 10000.f, &inputFloats1[0], numElements);
464	fillRandomScalars(rnd, -100.f, 100.f, &inputFloats2[0], numElements);
465
466	for (size_t ndx = 0; ndx < numElements; ++ndx)
467	{
468		// Guard against divisors near zero.
469		if (std::fabs(inputFloats2[ndx]) < 1e-3)
470			inputFloats2[ndx] = 8.f;
471
472		// The return value of std::fmod() has the same sign as its first operand, which is how OpFRem spec'd.
473		outputFloats[ndx] = std::fmod(inputFloats1[ndx], inputFloats2[ndx]);
474	}
475
476	spec.assembly =
477		string(s_ShaderPreamble) +
478
479		"OpName %main           \"main\"\n"
480		"OpName %id             \"gl_GlobalInvocationID\"\n"
481
482		"OpDecorate %id BuiltIn GlobalInvocationId\n"
483
484		"OpDecorate %inbuf1 BufferBlock\n"
485		"OpDecorate %indata1 DescriptorSet 0\n"
486		"OpDecorate %indata1 Binding 0\n"
487		"OpDecorate %inbuf2 BufferBlock\n"
488		"OpDecorate %indata2 DescriptorSet 0\n"
489		"OpDecorate %indata2 Binding 1\n"
490		"OpDecorate %outbuf BufferBlock\n"
491		"OpDecorate %outdata DescriptorSet 0\n"
492		"OpDecorate %outdata Binding 2\n"
493		"OpDecorate %f32arr ArrayStride 4\n"
494		"OpMemberDecorate %inbuf1 0 Offset 0\n"
495		"OpMemberDecorate %inbuf2 0 Offset 0\n"
496		"OpMemberDecorate %outbuf 0 Offset 0\n"
497
498		+ string(s_CommonTypes) +
499
500		"%inbuf1     = OpTypeStruct %f32arr\n"
501		"%inbufptr1  = OpTypePointer Uniform %inbuf1\n"
502		"%indata1    = OpVariable %inbufptr1 Uniform\n"
503		"%inbuf2     = OpTypeStruct %f32arr\n"
504		"%inbufptr2  = OpTypePointer Uniform %inbuf2\n"
505		"%indata2    = OpVariable %inbufptr2 Uniform\n"
506		"%outbuf     = OpTypeStruct %f32arr\n"
507		"%outbufptr  = OpTypePointer Uniform %outbuf\n"
508		"%outdata    = OpVariable %outbufptr Uniform\n"
509
510		"%id        = OpVariable %uvec3ptr Input\n"
511		"%zero      = OpConstant %i32 0\n"
512
513		"%main      = OpFunction %void None %voidf\n"
514		"%label     = OpLabel\n"
515		"%idval     = OpLoad %uvec3 %id\n"
516		"%x         = OpCompositeExtract %u32 %idval 0\n"
517		"%inloc1    = OpAccessChain %f32ptr %indata1 %zero %x\n"
518		"%inval1    = OpLoad %f32 %inloc1\n"
519		"%inloc2    = OpAccessChain %f32ptr %indata2 %zero %x\n"
520		"%inval2    = OpLoad %f32 %inloc2\n"
521		"%rem       = OpFRem %f32 %inval1 %inval2\n"
522		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
523		"             OpStore %outloc %rem\n"
524		"             OpReturn\n"
525		"             OpFunctionEnd\n";
526
527	spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats1)));
528	spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats2)));
529	spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
530	spec.numWorkGroups = IVec3(numElements, 1, 1);
531
532	group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "", spec));
533
534	return group.release();
535}
536
537// Copy contents in the input buffer to the output buffer.
538tcu::TestCaseGroup* createOpCopyMemoryGroup (tcu::TestContext& testCtx)
539{
540	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opcopymemory", "Test the OpCopyMemory instruction"));
541	de::Random						rnd				(deStringHash(group->getName()));
542	const int						numElements		= 100;
543
544	// The following case adds vec4(0., 0.5, 1.5, 2.5) to each of the elements in the input buffer and writes output to the output buffer.
545	ComputeShaderSpec				spec1;
546	vector<Vec4>					inputFloats1	(numElements);
547	vector<Vec4>					outputFloats1	(numElements);
548
549	fillRandomScalars(rnd, -200.f, 200.f, &inputFloats1[0], numElements * 4);
550
551	for (size_t ndx = 0; ndx < numElements; ++ndx)
552		outputFloats1[ndx] = inputFloats1[ndx] + Vec4(0.f, 0.5f, 1.5f, 2.5f);
553
554	spec1.assembly =
555		string(s_ShaderPreamble) +
556
557		"OpName %main           \"main\"\n"
558		"OpName %id             \"gl_GlobalInvocationID\"\n"
559
560		"OpDecorate %id BuiltIn GlobalInvocationId\n"
561
562		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
563
564		"%vec4       = OpTypeVector %f32 4\n"
565		"%vec4ptr_u  = OpTypePointer Uniform %vec4\n"
566		"%vec4ptr_f  = OpTypePointer Function %vec4\n"
567		"%vec4arr    = OpTypeRuntimeArray %vec4\n"
568		"%inbuf      = OpTypeStruct %vec4arr\n"
569		"%inbufptr   = OpTypePointer Uniform %inbuf\n"
570		"%indata     = OpVariable %inbufptr Uniform\n"
571		"%outbuf     = OpTypeStruct %vec4arr\n"
572		"%outbufptr  = OpTypePointer Uniform %outbuf\n"
573		"%outdata    = OpVariable %outbufptr Uniform\n"
574
575		"%id         = OpVariable %uvec3ptr Input\n"
576		"%zero       = OpConstant %i32 0\n"
577		"%c_f_0      = OpConstant %f32 0.\n"
578		"%c_f_0_5    = OpConstant %f32 0.5\n"
579		"%c_f_1_5    = OpConstant %f32 1.5\n"
580		"%c_f_2_5    = OpConstant %f32 2.5\n"
581		"%c_vec4     = OpConstantComposite %vec4 %c_f_0 %c_f_0_5 %c_f_1_5 %c_f_2_5\n"
582
583		"%main       = OpFunction %void None %voidf\n"
584		"%label      = OpLabel\n"
585		"%v_vec4     = OpVariable %vec4ptr_f Function\n"
586		"%idval      = OpLoad %uvec3 %id\n"
587		"%x          = OpCompositeExtract %u32 %idval 0\n"
588		"%inloc      = OpAccessChain %vec4ptr_u %indata %zero %x\n"
589		"%outloc     = OpAccessChain %vec4ptr_u %outdata %zero %x\n"
590		"              OpCopyMemory %v_vec4 %inloc\n"
591		"%v_vec4_val = OpLoad %vec4 %v_vec4\n"
592		"%add        = OpFAdd %vec4 %v_vec4_val %c_vec4\n"
593		"              OpStore %outloc %add\n"
594		"              OpReturn\n"
595		"              OpFunctionEnd\n";
596
597	spec1.inputs.push_back(BufferSp(new Vec4Buffer(inputFloats1)));
598	spec1.outputs.push_back(BufferSp(new Vec4Buffer(outputFloats1)));
599	spec1.numWorkGroups = IVec3(numElements, 1, 1);
600
601	group->addChild(new SpvAsmComputeShaderCase(testCtx, "vector", "OpCopyMemory elements of vector type", spec1));
602
603	// The following case copies a float[100] variable from the input buffer to the output buffer.
604	ComputeShaderSpec				spec2;
605	vector<float>					inputFloats2	(numElements);
606	vector<float>					outputFloats2	(numElements);
607
608	fillRandomScalars(rnd, -200.f, 200.f, &inputFloats2[0], numElements);
609
610	for (size_t ndx = 0; ndx < numElements; ++ndx)
611		outputFloats2[ndx] = inputFloats2[ndx];
612
613	spec2.assembly =
614		string(s_ShaderPreamble) +
615
616		"OpName %main           \"main\"\n"
617		"OpName %id             \"gl_GlobalInvocationID\"\n"
618
619		"OpDecorate %id BuiltIn GlobalInvocationId\n"
620
621		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
622
623		"%hundred        = OpConstant %u32 100\n"
624		"%f32arr100      = OpTypeArray %f32 %hundred\n"
625		"%f32arr100ptr_f = OpTypePointer Function %f32arr100\n"
626		"%f32arr100ptr_u = OpTypePointer Uniform %f32arr100\n"
627		"%inbuf          = OpTypeStruct %f32arr100\n"
628		"%inbufptr       = OpTypePointer Uniform %inbuf\n"
629		"%indata         = OpVariable %inbufptr Uniform\n"
630		"%outbuf         = OpTypeStruct %f32arr100\n"
631		"%outbufptr      = OpTypePointer Uniform %outbuf\n"
632		"%outdata        = OpVariable %outbufptr Uniform\n"
633
634		"%id             = OpVariable %uvec3ptr Input\n"
635		"%zero           = OpConstant %i32 0\n"
636
637		"%main           = OpFunction %void None %voidf\n"
638		"%label          = OpLabel\n"
639		"%var            = OpVariable %f32arr100ptr_f Function\n"
640		"%inarr          = OpAccessChain %f32arr100ptr_u %indata %zero\n"
641		"%outarr         = OpAccessChain %f32arr100ptr_u %outdata %zero\n"
642		"                  OpCopyMemory %var %inarr\n"
643		"                  OpCopyMemory %outarr %var\n"
644		"                  OpReturn\n"
645		"                  OpFunctionEnd\n";
646
647	spec2.inputs.push_back(BufferSp(new Float32Buffer(inputFloats2)));
648	spec2.outputs.push_back(BufferSp(new Float32Buffer(outputFloats2)));
649	spec2.numWorkGroups = IVec3(1, 1, 1);
650
651	group->addChild(new SpvAsmComputeShaderCase(testCtx, "array", "OpCopyMemory elements of array type", spec2));
652
653	// The following case copies a struct{vec4, vec4, vec4, vec4} variable from the input buffer to the output buffer.
654	ComputeShaderSpec				spec3;
655	vector<float>					inputFloats3	(16);
656	vector<float>					outputFloats3	(16);
657
658	fillRandomScalars(rnd, -200.f, 200.f, &inputFloats3[0], 16);
659
660	for (size_t ndx = 0; ndx < 16; ++ndx)
661		outputFloats3[ndx] = -inputFloats3[ndx];
662
663	spec3.assembly =
664		string(s_ShaderPreamble) +
665
666		"OpName %main           \"main\"\n"
667		"OpName %id             \"gl_GlobalInvocationID\"\n"
668
669		"OpDecorate %id BuiltIn GlobalInvocationId\n"
670
671		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
672
673		"%vec4      = OpTypeVector %f32 4\n"
674		"%inbuf     = OpTypeStruct %vec4 %vec4 %vec4 %vec4\n"
675		"%inbufptr  = OpTypePointer Uniform %inbuf\n"
676		"%indata    = OpVariable %inbufptr Uniform\n"
677		"%outbuf    = OpTypeStruct %vec4 %vec4 %vec4 %vec4\n"
678		"%outbufptr = OpTypePointer Uniform %outbuf\n"
679		"%outdata   = OpVariable %outbufptr Uniform\n"
680		"%vec4stptr = OpTypePointer Function %inbuf\n"
681
682		"%id        = OpVariable %uvec3ptr Input\n"
683		"%zero      = OpConstant %i32 0\n"
684
685		"%main      = OpFunction %void None %voidf\n"
686		"%label     = OpLabel\n"
687		"%var       = OpVariable %vec4stptr Function\n"
688		"             OpCopyMemory %var %indata\n"
689		"             OpCopyMemory %outdata %var\n"
690		"             OpReturn\n"
691		"             OpFunctionEnd\n";
692
693	spec3.inputs.push_back(BufferSp(new Float32Buffer(inputFloats3)));
694	spec3.outputs.push_back(BufferSp(new Float32Buffer(outputFloats3)));
695	spec3.numWorkGroups = IVec3(1, 1, 1);
696
697	group->addChild(new SpvAsmComputeShaderCase(testCtx, "struct", "OpCopyMemory elements of struct type", spec3));
698
699	// The following case negates multiple float variables from the input buffer and stores the results to the output buffer.
700	ComputeShaderSpec				spec4;
701	vector<float>					inputFloats4	(numElements);
702	vector<float>					outputFloats4	(numElements);
703
704	fillRandomScalars(rnd, -200.f, 200.f, &inputFloats4[0], numElements);
705
706	for (size_t ndx = 0; ndx < numElements; ++ndx)
707		outputFloats4[ndx] = -inputFloats4[ndx];
708
709	spec4.assembly =
710		string(s_ShaderPreamble) +
711
712		"OpName %main           \"main\"\n"
713		"OpName %id             \"gl_GlobalInvocationID\"\n"
714
715		"OpDecorate %id BuiltIn GlobalInvocationId\n"
716
717		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
718
719		"%f32ptr_f  = OpTypePointer Function %f32\n"
720		"%id        = OpVariable %uvec3ptr Input\n"
721		"%zero      = OpConstant %i32 0\n"
722
723		"%main      = OpFunction %void None %voidf\n"
724		"%label     = OpLabel\n"
725		"%var       = OpVariable %f32ptr_f Function\n"
726		"%idval     = OpLoad %uvec3 %id\n"
727		"%x         = OpCompositeExtract %u32 %idval 0\n"
728		"%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
729		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
730		"             OpCopyMemory %var %inloc\n"
731		"%val       = OpLoad %f32 %var\n"
732		"%neg       = OpFNegate %f32 %val\n"
733		"             OpStore %outloc %neg\n"
734		"             OpReturn\n"
735		"             OpFunctionEnd\n";
736
737	spec4.inputs.push_back(BufferSp(new Float32Buffer(inputFloats4)));
738	spec4.outputs.push_back(BufferSp(new Float32Buffer(outputFloats4)));
739	spec4.numWorkGroups = IVec3(numElements, 1, 1);
740
741	group->addChild(new SpvAsmComputeShaderCase(testCtx, "float", "OpCopyMemory elements of float type", spec4));
742
743	return group.release();
744}
745
746tcu::TestCaseGroup* createOpCopyObjectGroup (tcu::TestContext& testCtx)
747{
748	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opcopyobject", "Test the OpCopyObject instruction"));
749	ComputeShaderSpec				spec;
750	de::Random						rnd				(deStringHash(group->getName()));
751	const int						numElements		= 100;
752	vector<float>					inputFloats		(numElements, 0);
753	vector<float>					outputFloats	(numElements, 0);
754
755	fillRandomScalars(rnd, -200.f, 200.f, &inputFloats[0], numElements);
756
757	for (size_t ndx = 0; ndx < numElements; ++ndx)
758		outputFloats[ndx] = inputFloats[ndx] + 7.5f;
759
760	spec.assembly =
761		string(s_ShaderPreamble) +
762
763		"OpName %main           \"main\"\n"
764		"OpName %id             \"gl_GlobalInvocationID\"\n"
765
766		"OpDecorate %id BuiltIn GlobalInvocationId\n"
767
768		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
769
770		"%fvec3    = OpTypeVector %f32 3\n"
771		"%fmat     = OpTypeMatrix %fvec3 3\n"
772		"%three    = OpConstant %u32 3\n"
773		"%farr     = OpTypeArray %f32 %three\n"
774		"%fst      = OpTypeStruct %f32 %f32\n"
775
776		+ string(s_InputOutputBuffer) +
777
778		"%id            = OpVariable %uvec3ptr Input\n"
779		"%zero          = OpConstant %i32 0\n"
780		"%c_f           = OpConstant %f32 1.5\n"
781		"%c_fvec3       = OpConstantComposite %fvec3 %c_f %c_f %c_f\n"
782		"%c_fmat        = OpConstantComposite %fmat %c_fvec3 %c_fvec3 %c_fvec3\n"
783		"%c_farr        = OpConstantComposite %farr %c_f %c_f %c_f\n"
784		"%c_fst         = OpConstantComposite %fst %c_f %c_f\n"
785
786		"%main          = OpFunction %void None %voidf\n"
787		"%label         = OpLabel\n"
788		"%c_f_copy      = OpCopyObject %f32   %c_f\n"
789		"%c_fvec3_copy  = OpCopyObject %fvec3 %c_fvec3\n"
790		"%c_fmat_copy   = OpCopyObject %fmat  %c_fmat\n"
791		"%c_farr_copy   = OpCopyObject %farr  %c_farr\n"
792		"%c_fst_copy    = OpCopyObject %fst   %c_fst\n"
793		"%fvec3_elem    = OpCompositeExtract %f32 %c_fvec3_copy 0\n"
794		"%fmat_elem     = OpCompositeExtract %f32 %c_fmat_copy 1 2\n"
795		"%farr_elem     = OpCompositeExtract %f32 %c_fmat_copy 2\n"
796		"%fst_elem      = OpCompositeExtract %f32 %c_fmat_copy 1\n"
797		// Add up. 1.5 * 5 = 7.5.
798		"%add1          = OpFAdd %f32 %c_f_copy %fvec3_elem\n"
799		"%add2          = OpFAdd %f32 %add1     %fmat_elem\n"
800		"%add3          = OpFAdd %f32 %add2     %farr_elem\n"
801		"%add4          = OpFAdd %f32 %add3     %fst_elem\n"
802
803		"%idval         = OpLoad %uvec3 %id\n"
804		"%x             = OpCompositeExtract %u32 %idval 0\n"
805		"%inloc         = OpAccessChain %f32ptr %indata %zero %x\n"
806		"%outloc        = OpAccessChain %f32ptr %outdata %zero %x\n"
807		"%inval         = OpLoad %f32 %inloc\n"
808		"%add           = OpFAdd %f32 %add4 %inval\n"
809		"                 OpStore %outloc %add\n"
810		"                 OpReturn\n"
811		"                 OpFunctionEnd\n";
812	spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
813	spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
814	spec.numWorkGroups = IVec3(numElements, 1, 1);
815
816	group->addChild(new SpvAsmComputeShaderCase(testCtx, "spotcheck", "OpCopyObject on different types", spec));
817
818	return group.release();
819}
820// Assembly code used for testing OpUnreachable is based on GLSL source code:
821//
822// #version 430
823//
824// layout(std140, set = 0, binding = 0) readonly buffer Input {
825//   float elements[];
826// } input_data;
827// layout(std140, set = 0, binding = 1) writeonly buffer Output {
828//   float elements[];
829// } output_data;
830//
831// void not_called_func() {
832//   // place OpUnreachable here
833// }
834//
835// uint modulo4(uint val) {
836//   switch (val % uint(4)) {
837//     case 0:  return 3;
838//     case 1:  return 2;
839//     case 2:  return 1;
840//     case 3:  return 0;
841//     default: return 100; // place OpUnreachable here
842//   }
843// }
844//
845// uint const5() {
846//   return 5;
847//   // place OpUnreachable here
848// }
849//
850// void main() {
851//   uint x = gl_GlobalInvocationID.x;
852//   if (const5() > modulo4(1000)) {
853//     output_data.elements[x] = -input_data.elements[x];
854//   } else {
855//     // place OpUnreachable here
856//     output_data.elements[x] = input_data.elements[x];
857//   }
858// }
859
860tcu::TestCaseGroup* createOpUnreachableGroup (tcu::TestContext& testCtx)
861{
862	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opunreachable", "Test the OpUnreachable instruction"));
863	ComputeShaderSpec				spec;
864	de::Random						rnd				(deStringHash(group->getName()));
865	const int						numElements		= 100;
866	vector<float>					positiveFloats	(numElements, 0);
867	vector<float>					negativeFloats	(numElements, 0);
868
869	fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
870
871	for (size_t ndx = 0; ndx < numElements; ++ndx)
872		negativeFloats[ndx] = -positiveFloats[ndx];
873
874	spec.assembly =
875		string(s_ShaderPreamble) +
876
877		"OpSource GLSL 430\n"
878		"OpName %main            \"main\"\n"
879		"OpName %func_not_called_func \"not_called_func(\"\n"
880		"OpName %func_modulo4         \"modulo4(u1;\"\n"
881		"OpName %func_const5          \"const5(\"\n"
882		"OpName %id                   \"gl_GlobalInvocationID\"\n"
883
884		"OpDecorate %id BuiltIn GlobalInvocationId\n"
885
886		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
887
888		"%u32ptr    = OpTypePointer Function %u32\n"
889		"%uintfuint = OpTypeFunction %u32 %u32ptr\n"
890		"%unitf     = OpTypeFunction %u32\n"
891
892		"%id        = OpVariable %uvec3ptr Input\n"
893		"%zero      = OpConstant %u32 0\n"
894		"%one       = OpConstant %u32 1\n"
895		"%two       = OpConstant %u32 2\n"
896		"%three     = OpConstant %u32 3\n"
897		"%four      = OpConstant %u32 4\n"
898		"%five      = OpConstant %u32 5\n"
899		"%hundred   = OpConstant %u32 100\n"
900		"%thousand  = OpConstant %u32 1000\n"
901
902		+ string(s_InputOutputBuffer) +
903
904		// Main()
905		"%main   = OpFunction %void None %voidf\n"
906		"%main_entry  = OpLabel\n"
907		"%idval       = OpLoad %uvec3 %id\n"
908		"%x           = OpCompositeExtract %u32 %idval 0\n"
909		"%inloc       = OpAccessChain %f32ptr %indata %zero %x\n"
910		"%inval       = OpLoad %f32 %inloc\n"
911		"%outloc      = OpAccessChain %f32ptr %outdata %zero %x\n"
912		"%ret_const5  = OpFunctionCall %u32 %func_const5\n"
913		"%ret_modulo4 = OpFunctionCall %u32 %func_modulo4 %thousand\n"
914		"%cmp_gt      = OpUGreaterThan %bool %ret_const5 %ret_modulo4\n"
915		"               OpSelectionMerge %if_end None\n"
916		"               OpBranchConditional %cmp_gt %if_true %if_false\n"
917		"%if_true     = OpLabel\n"
918		"%negate      = OpFNegate %f32 %inval\n"
919		"               OpStore %outloc %negate\n"
920		"               OpBranch %if_end\n"
921		"%if_false    = OpLabel\n"
922		"               OpUnreachable\n" // Unreachable else branch for if statement
923		"%if_end      = OpLabel\n"
924		"               OpReturn\n"
925		"               OpFunctionEnd\n"
926
927		// not_called_function()
928		"%func_not_called_func  = OpFunction %void None %voidf\n"
929		"%not_called_func_entry = OpLabel\n"
930		"                         OpUnreachable\n" // Unreachable entry block in not called static function
931		"                         OpFunctionEnd\n"
932
933		// modulo4()
934		"%func_modulo4  = OpFunction %u32 None %uintfuint\n"
935		"%valptr        = OpFunctionParameter %u32ptr\n"
936		"%modulo4_entry = OpLabel\n"
937		"%val           = OpLoad %u32 %valptr\n"
938		"%modulo        = OpUMod %u32 %val %four\n"
939		"                 OpSelectionMerge %switch_merge None\n"
940		"                 OpSwitch %modulo %default 0 %case0 1 %case1 2 %case2 3 %case3\n"
941		"%case0         = OpLabel\n"
942		"                 OpReturnValue %three\n"
943		"%case1         = OpLabel\n"
944		"                 OpReturnValue %two\n"
945		"%case2         = OpLabel\n"
946		"                 OpReturnValue %one\n"
947		"%case3         = OpLabel\n"
948		"                 OpReturnValue %zero\n"
949		"%default       = OpLabel\n"
950		"                 OpUnreachable\n" // Unreachable default case for switch statement
951		"%switch_merge  = OpLabel\n"
952		"                 OpUnreachable\n" // Unreachable merge block for switch statement
953		"                 OpFunctionEnd\n"
954
955		// const5()
956		"%func_const5  = OpFunction %u32 None %unitf\n"
957		"%const5_entry = OpLabel\n"
958		"                OpReturnValue %five\n"
959		"%unreachable  = OpLabel\n"
960		"                OpUnreachable\n" // Unreachable block in function
961		"                OpFunctionEnd\n";
962	spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
963	spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
964	spec.numWorkGroups = IVec3(numElements, 1, 1);
965
966	group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "OpUnreachable appearing at different places", spec));
967
968	return group.release();
969}
970
971// Assembly code used for testing decoration group is based on GLSL source code:
972//
973// #version 430
974//
975// layout(std140, set = 0, binding = 0) readonly buffer Input0 {
976//   float elements[];
977// } input_data0;
978// layout(std140, set = 0, binding = 1) readonly buffer Input1 {
979//   float elements[];
980// } input_data1;
981// layout(std140, set = 0, binding = 2) readonly buffer Input2 {
982//   float elements[];
983// } input_data2;
984// layout(std140, set = 0, binding = 3) readonly buffer Input3 {
985//   float elements[];
986// } input_data3;
987// layout(std140, set = 0, binding = 4) readonly buffer Input4 {
988//   float elements[];
989// } input_data4;
990// layout(std140, set = 0, binding = 5) writeonly buffer Output {
991//   float elements[];
992// } output_data;
993//
994// void main() {
995//   uint x = gl_GlobalInvocationID.x;
996//   output_data.elements[x] = input_data0.elements[x] + input_data1.elements[x] + input_data2.elements[x] + input_data3.elements[x] + input_data4.elements[x];
997// }
998tcu::TestCaseGroup* createDecorationGroupGroup (tcu::TestContext& testCtx)
999{
1000	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "decoration_group", "Test the OpDecorationGroup & OpGroupDecorate instruction"));
1001	ComputeShaderSpec				spec;
1002	de::Random						rnd				(deStringHash(group->getName()));
1003	const int						numElements		= 100;
1004	vector<float>					inputFloats0	(numElements, 0);
1005	vector<float>					inputFloats1	(numElements, 0);
1006	vector<float>					inputFloats2	(numElements, 0);
1007	vector<float>					inputFloats3	(numElements, 0);
1008	vector<float>					inputFloats4	(numElements, 0);
1009	vector<float>					outputFloats	(numElements, 0);
1010
1011	fillRandomScalars(rnd, -300.f, 300.f, &inputFloats0[0], numElements);
1012	fillRandomScalars(rnd, -300.f, 300.f, &inputFloats1[0], numElements);
1013	fillRandomScalars(rnd, -300.f, 300.f, &inputFloats2[0], numElements);
1014	fillRandomScalars(rnd, -300.f, 300.f, &inputFloats3[0], numElements);
1015	fillRandomScalars(rnd, -300.f, 300.f, &inputFloats4[0], numElements);
1016
1017	for (size_t ndx = 0; ndx < numElements; ++ndx)
1018		outputFloats[ndx] = inputFloats0[ndx] + inputFloats1[ndx] + inputFloats2[ndx] + inputFloats3[ndx] + inputFloats4[ndx];
1019
1020	spec.assembly =
1021		string(s_ShaderPreamble) +
1022
1023		"OpSource GLSL 430\n"
1024		"OpName %main \"main\"\n"
1025		"OpName %id \"gl_GlobalInvocationID\"\n"
1026
1027		// Not using group decoration on variable.
1028		"OpDecorate %id BuiltIn GlobalInvocationId\n"
1029		// Not using group decoration on type.
1030		"OpDecorate %f32arr ArrayStride 4\n"
1031
1032		"OpDecorate %groups BufferBlock\n"
1033		"OpDecorate %groupm Offset 0\n"
1034		"%groups = OpDecorationGroup\n"
1035		"%groupm = OpDecorationGroup\n"
1036
1037		// Group decoration on multiple structs.
1038		"OpGroupDecorate %groups %outbuf %inbuf0 %inbuf1 %inbuf2 %inbuf3 %inbuf4\n"
1039		// Group decoration on multiple struct members.
1040		"OpGroupMemberDecorate %groupm %outbuf 0 %inbuf0 0 %inbuf1 0 %inbuf2 0 %inbuf3 0 %inbuf4 0\n"
1041
1042		"OpDecorate %group1 DescriptorSet 0\n"
1043		"OpDecorate %group3 DescriptorSet 0\n"
1044		"OpDecorate %group3 NonWritable\n"
1045		"OpDecorate %group3 Restrict\n"
1046		"%group0 = OpDecorationGroup\n"
1047		"%group1 = OpDecorationGroup\n"
1048		"%group3 = OpDecorationGroup\n"
1049
1050		// Applying the same decoration group multiple times.
1051		"OpGroupDecorate %group1 %outdata\n"
1052		"OpGroupDecorate %group1 %outdata\n"
1053		"OpGroupDecorate %group1 %outdata\n"
1054		"OpDecorate %outdata DescriptorSet 0\n"
1055		"OpDecorate %outdata Binding 5\n"
1056		// Applying decoration group containing nothing.
1057		"OpGroupDecorate %group0 %indata0\n"
1058		"OpDecorate %indata0 DescriptorSet 0\n"
1059		"OpDecorate %indata0 Binding 0\n"
1060		// Applying decoration group containing one decoration.
1061		"OpGroupDecorate %group1 %indata1\n"
1062		"OpDecorate %indata1 Binding 1\n"
1063		// Applying decoration group containing multiple decorations.
1064		"OpGroupDecorate %group3 %indata2 %indata3\n"
1065		"OpDecorate %indata2 Binding 2\n"
1066		"OpDecorate %indata3 Binding 3\n"
1067		// Applying multiple decoration groups (with overlapping).
1068		"OpGroupDecorate %group0 %indata4\n"
1069		"OpGroupDecorate %group1 %indata4\n"
1070		"OpGroupDecorate %group3 %indata4\n"
1071		"OpDecorate %indata4 Binding 4\n"
1072
1073		+ string(s_CommonTypes) +
1074
1075		"%id   = OpVariable %uvec3ptr Input\n"
1076		"%zero = OpConstant %i32 0\n"
1077
1078		"%outbuf    = OpTypeStruct %f32arr\n"
1079		"%outbufptr = OpTypePointer Uniform %outbuf\n"
1080		"%outdata   = OpVariable %outbufptr Uniform\n"
1081		"%inbuf0    = OpTypeStruct %f32arr\n"
1082		"%inbuf0ptr = OpTypePointer Uniform %inbuf0\n"
1083		"%indata0   = OpVariable %inbuf0ptr Uniform\n"
1084		"%inbuf1    = OpTypeStruct %f32arr\n"
1085		"%inbuf1ptr = OpTypePointer Uniform %inbuf1\n"
1086		"%indata1   = OpVariable %inbuf1ptr Uniform\n"
1087		"%inbuf2    = OpTypeStruct %f32arr\n"
1088		"%inbuf2ptr = OpTypePointer Uniform %inbuf2\n"
1089		"%indata2   = OpVariable %inbuf2ptr Uniform\n"
1090		"%inbuf3    = OpTypeStruct %f32arr\n"
1091		"%inbuf3ptr = OpTypePointer Uniform %inbuf3\n"
1092		"%indata3   = OpVariable %inbuf3ptr Uniform\n"
1093		"%inbuf4    = OpTypeStruct %f32arr\n"
1094		"%inbufptr  = OpTypePointer Uniform %inbuf4\n"
1095		"%indata4   = OpVariable %inbufptr Uniform\n"
1096
1097		"%main   = OpFunction %void None %voidf\n"
1098		"%label  = OpLabel\n"
1099		"%idval  = OpLoad %uvec3 %id\n"
1100		"%x      = OpCompositeExtract %u32 %idval 0\n"
1101		"%inloc0 = OpAccessChain %f32ptr %indata0 %zero %x\n"
1102		"%inloc1 = OpAccessChain %f32ptr %indata1 %zero %x\n"
1103		"%inloc2 = OpAccessChain %f32ptr %indata2 %zero %x\n"
1104		"%inloc3 = OpAccessChain %f32ptr %indata3 %zero %x\n"
1105		"%inloc4 = OpAccessChain %f32ptr %indata4 %zero %x\n"
1106		"%outloc = OpAccessChain %f32ptr %outdata %zero %x\n"
1107		"%inval0 = OpLoad %f32 %inloc0\n"
1108		"%inval1 = OpLoad %f32 %inloc1\n"
1109		"%inval2 = OpLoad %f32 %inloc2\n"
1110		"%inval3 = OpLoad %f32 %inloc3\n"
1111		"%inval4 = OpLoad %f32 %inloc4\n"
1112		"%add0   = OpFAdd %f32 %inval0 %inval1\n"
1113		"%add1   = OpFAdd %f32 %add0 %inval2\n"
1114		"%add2   = OpFAdd %f32 %add1 %inval3\n"
1115		"%add    = OpFAdd %f32 %add2 %inval4\n"
1116		"          OpStore %outloc %add\n"
1117		"          OpReturn\n"
1118		"          OpFunctionEnd\n";
1119	spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats0)));
1120	spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats1)));
1121	spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats2)));
1122	spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats3)));
1123	spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats4)));
1124	spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
1125	spec.numWorkGroups = IVec3(numElements, 1, 1);
1126
1127	group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "decoration group cases", spec));
1128
1129	return group.release();
1130}
1131
1132struct SpecConstantTwoIntCase
1133{
1134	const char*		caseName;
1135	const char*		scDefinition0;
1136	const char*		scDefinition1;
1137	const char*		scResultType;
1138	const char*		scOperation;
1139	deInt32			scActualValue0;
1140	deInt32			scActualValue1;
1141	const char*		resultOperation;
1142	vector<deInt32>	expectedOutput;
1143
1144					SpecConstantTwoIntCase (const char* name,
1145											const char* definition0,
1146											const char* definition1,
1147											const char* resultType,
1148											const char* operation,
1149											deInt32 value0,
1150											deInt32 value1,
1151											const char* resultOp,
1152											const vector<deInt32>& output)
1153						: caseName			(name)
1154						, scDefinition0		(definition0)
1155						, scDefinition1		(definition1)
1156						, scResultType		(resultType)
1157						, scOperation		(operation)
1158						, scActualValue0	(value0)
1159						, scActualValue1	(value1)
1160						, resultOperation	(resultOp)
1161						, expectedOutput	(output) {}
1162};
1163
1164tcu::TestCaseGroup* createSpecConstantGroup (tcu::TestContext& testCtx)
1165{
1166	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opspecconstantop", "Test the OpSpecConstantOp instruction"));
1167	vector<SpecConstantTwoIntCase>	cases;
1168	de::Random						rnd				(deStringHash(group->getName()));
1169	const int						numElements		= 100;
1170	vector<deInt32>					inputInts		(numElements, 0);
1171	vector<deInt32>					outputInts1		(numElements, 0);
1172	vector<deInt32>					outputInts2		(numElements, 0);
1173	vector<deInt32>					outputInts3		(numElements, 0);
1174	vector<deInt32>					outputInts4		(numElements, 0);
1175	const StringTemplate			shaderTemplate	(
1176		string(s_ShaderPreamble) +
1177
1178		"OpName %main           \"main\"\n"
1179		"OpName %id             \"gl_GlobalInvocationID\"\n"
1180
1181		"OpDecorate %id BuiltIn GlobalInvocationId\n"
1182		"OpDecorate %sc_0  SpecId 0\n"
1183		"OpDecorate %sc_1  SpecId 1\n"
1184
1185		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
1186
1187		"%i32ptr    = OpTypePointer Uniform %i32\n"
1188		"%i32arr    = OpTypeRuntimeArray %i32\n"
1189		"%boolptr   = OpTypePointer Uniform %bool\n"
1190		"%boolarr   = OpTypeRuntimeArray %bool\n"
1191		"%inbuf     = OpTypeStruct %i32arr\n"
1192		"%inbufptr  = OpTypePointer Uniform %inbuf\n"
1193		"%indata    = OpVariable %inbufptr Uniform\n"
1194		"%outbuf    = OpTypeStruct %i32arr\n"
1195		"%outbufptr = OpTypePointer Uniform %outbuf\n"
1196		"%outdata   = OpVariable %outbufptr Uniform\n"
1197
1198		"%id        = OpVariable %uvec3ptr Input\n"
1199		"%zero      = OpConstant %i32 0\n"
1200
1201		"%sc_0      = OpSpecConstant${SC_DEF0}\n"
1202		"%sc_1      = OpSpecConstant${SC_DEF1}\n"
1203		"%sc_final  = OpSpecConstantOp ${SC_RESULT_TYPE} ${SC_OP}\n"
1204
1205		"%main      = OpFunction %void None %voidf\n"
1206		"%label     = OpLabel\n"
1207		"%idval     = OpLoad %uvec3 %id\n"
1208		"%x         = OpCompositeExtract %u32 %idval 0\n"
1209		"%inloc     = OpAccessChain %i32ptr %indata %zero %x\n"
1210		"%inval     = OpLoad %i32 %inloc\n"
1211		"%final     = ${GEN_RESULT}\n"
1212		"%outloc    = OpAccessChain %i32ptr %outdata %zero %x\n"
1213		"             OpStore %outloc %final\n"
1214		"             OpReturn\n"
1215		"             OpFunctionEnd\n");
1216
1217	fillRandomScalars(rnd, -65536, 65536, &inputInts[0], numElements);
1218
1219	for (size_t ndx = 0; ndx < numElements; ++ndx)
1220	{
1221		outputInts1[ndx] = inputInts[ndx] + 42;
1222		outputInts2[ndx] = inputInts[ndx];
1223		outputInts3[ndx] = inputInts[ndx] - 11200;
1224		outputInts4[ndx] = inputInts[ndx] + 1;
1225	}
1226
1227	const char addScToInput[]		= "OpIAdd %i32 %inval %sc_final";
1228	const char selectTrueUsingSc[]	= "OpSelect %i32 %sc_final %inval %zero";
1229	const char selectFalseUsingSc[]	= "OpSelect %i32 %sc_final %zero %inval";
1230
1231	cases.push_back(SpecConstantTwoIntCase("iadd",					" %i32 0",		" %i32 0",		"%i32",		"IAdd                 %sc_0 %sc_1",			62,		-20,	addScToInput,		outputInts1));
1232	cases.push_back(SpecConstantTwoIntCase("isub",					" %i32 0",		" %i32 0",		"%i32",		"ISub                 %sc_0 %sc_1",			100,	58,		addScToInput,		outputInts1));
1233	cases.push_back(SpecConstantTwoIntCase("imul",					" %i32 0",		" %i32 0",		"%i32",		"IMul                 %sc_0 %sc_1",			-2,		-21,	addScToInput,		outputInts1));
1234	cases.push_back(SpecConstantTwoIntCase("sdiv",					" %i32 0",		" %i32 0",		"%i32",		"SDiv                 %sc_0 %sc_1",			-126,	-3,		addScToInput,		outputInts1));
1235	cases.push_back(SpecConstantTwoIntCase("udiv",					" %i32 0",		" %i32 0",		"%i32",		"UDiv                 %sc_0 %sc_1",			126,	3,		addScToInput,		outputInts1));
1236	cases.push_back(SpecConstantTwoIntCase("srem",					" %i32 0",		" %i32 0",		"%i32",		"SRem                 %sc_0 %sc_1",			7,		3,		addScToInput,		outputInts4));
1237	cases.push_back(SpecConstantTwoIntCase("smod",					" %i32 0",		" %i32 0",		"%i32",		"SMod                 %sc_0 %sc_1",			7,		3,		addScToInput,		outputInts4));
1238	cases.push_back(SpecConstantTwoIntCase("umod",					" %i32 0",		" %i32 0",		"%i32",		"UMod                 %sc_0 %sc_1",			342,	50,		addScToInput,		outputInts1));
1239	cases.push_back(SpecConstantTwoIntCase("bitwiseand",			" %i32 0",		" %i32 0",		"%i32",		"BitwiseAnd           %sc_0 %sc_1",			42,		63,		addScToInput,		outputInts1));
1240	cases.push_back(SpecConstantTwoIntCase("bitwiseor",				" %i32 0",		" %i32 0",		"%i32",		"BitwiseOr            %sc_0 %sc_1",			34,		8,		addScToInput,		outputInts1));
1241	cases.push_back(SpecConstantTwoIntCase("bitwisexor",			" %i32 0",		" %i32 0",		"%i32",		"BitwiseXor           %sc_0 %sc_1",			18,		56,		addScToInput,		outputInts1));
1242	cases.push_back(SpecConstantTwoIntCase("shiftrightlogical",		" %i32 0",		" %i32 0",		"%i32",		"ShiftRightLogical    %sc_0 %sc_1",			168,	2,		addScToInput,		outputInts1));
1243	cases.push_back(SpecConstantTwoIntCase("shiftrightarithmetic",	" %i32 0",		" %i32 0",		"%i32",		"ShiftRightArithmetic %sc_0 %sc_1",			168,	2,		addScToInput,		outputInts1));
1244	cases.push_back(SpecConstantTwoIntCase("shiftleftlogical",		" %i32 0",		" %i32 0",		"%i32",		"ShiftLeftLogical     %sc_0 %sc_1",			21,		1,		addScToInput,		outputInts1));
1245	cases.push_back(SpecConstantTwoIntCase("slessthan",				" %i32 0",		" %i32 0",		"%bool",	"SLessThan            %sc_0 %sc_1",			-20,	-10,	selectTrueUsingSc,	outputInts2));
1246	cases.push_back(SpecConstantTwoIntCase("ulessthan",				" %i32 0",		" %i32 0",		"%bool",	"ULessThan            %sc_0 %sc_1",			10,		20,		selectTrueUsingSc,	outputInts2));
1247	cases.push_back(SpecConstantTwoIntCase("sgreaterthan",			" %i32 0",		" %i32 0",		"%bool",	"SGreaterThan         %sc_0 %sc_1",			-1000,	50,		selectFalseUsingSc,	outputInts2));
1248	cases.push_back(SpecConstantTwoIntCase("ugreaterthan",			" %i32 0",		" %i32 0",		"%bool",	"UGreaterThan         %sc_0 %sc_1",			10,		5,		selectTrueUsingSc,	outputInts2));
1249	cases.push_back(SpecConstantTwoIntCase("slessthanequal",		" %i32 0",		" %i32 0",		"%bool",	"SLessThanEqual       %sc_0 %sc_1",			-10,	-10,	selectTrueUsingSc,	outputInts2));
1250	cases.push_back(SpecConstantTwoIntCase("ulessthanequal",		" %i32 0",		" %i32 0",		"%bool",	"ULessThanEqual       %sc_0 %sc_1",			50,		100,	selectTrueUsingSc,	outputInts2));
1251	cases.push_back(SpecConstantTwoIntCase("sgreaterthanequal",		" %i32 0",		" %i32 0",		"%bool",	"SGreaterThanEqual    %sc_0 %sc_1",			-1000,	50,		selectFalseUsingSc,	outputInts2));
1252	cases.push_back(SpecConstantTwoIntCase("ugreaterthanequal",		" %i32 0",		" %i32 0",		"%bool",	"UGreaterThanEqual    %sc_0 %sc_1",			10,		10,		selectTrueUsingSc,	outputInts2));
1253	cases.push_back(SpecConstantTwoIntCase("iequal",				" %i32 0",		" %i32 0",		"%bool",	"IEqual               %sc_0 %sc_1",			42,		24,		selectFalseUsingSc,	outputInts2));
1254	cases.push_back(SpecConstantTwoIntCase("logicaland",			"True %bool",	"True %bool",	"%bool",	"LogicalAnd           %sc_0 %sc_1",			0,		1,		selectFalseUsingSc,	outputInts2));
1255	cases.push_back(SpecConstantTwoIntCase("logicalor",				"False %bool",	"False %bool",	"%bool",	"LogicalOr            %sc_0 %sc_1",			1,		0,		selectTrueUsingSc,	outputInts2));
1256	cases.push_back(SpecConstantTwoIntCase("logicalequal",			"True %bool",	"True %bool",	"%bool",	"LogicalEqual         %sc_0 %sc_1",			0,		1,		selectFalseUsingSc,	outputInts2));
1257	cases.push_back(SpecConstantTwoIntCase("logicalnotequal",		"False %bool",	"False %bool",	"%bool",	"LogicalNotEqual      %sc_0 %sc_1",			1,		0,		selectTrueUsingSc,	outputInts2));
1258	cases.push_back(SpecConstantTwoIntCase("snegate",				" %i32 0",		" %i32 0",		"%i32",		"SNegate              %sc_0",				-42,	0,		addScToInput,		outputInts1));
1259	cases.push_back(SpecConstantTwoIntCase("not",					" %i32 0",		" %i32 0",		"%i32",		"Not                  %sc_0",				-43,	0,		addScToInput,		outputInts1));
1260	cases.push_back(SpecConstantTwoIntCase("logicalnot",			"False %bool",	"False %bool",	"%bool",	"LogicalNot           %sc_0",				1,		0,		selectFalseUsingSc,	outputInts2));
1261	cases.push_back(SpecConstantTwoIntCase("select",				"False %bool",	" %i32 0",		"%i32",		"Select               %sc_0 %sc_1 %zero",	1,		42,		addScToInput,		outputInts1));
1262	// OpSConvert, OpFConvert: these two instructions involve ints/floats of different bitwidths.
1263
1264	for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
1265	{
1266		map<string, string>		specializations;
1267		ComputeShaderSpec		spec;
1268
1269		specializations["SC_DEF0"]			= cases[caseNdx].scDefinition0;
1270		specializations["SC_DEF1"]			= cases[caseNdx].scDefinition1;
1271		specializations["SC_RESULT_TYPE"]	= cases[caseNdx].scResultType;
1272		specializations["SC_OP"]			= cases[caseNdx].scOperation;
1273		specializations["GEN_RESULT"]		= cases[caseNdx].resultOperation;
1274
1275		spec.assembly = shaderTemplate.specialize(specializations);
1276		spec.inputs.push_back(BufferSp(new Int32Buffer(inputInts)));
1277		spec.outputs.push_back(BufferSp(new Int32Buffer(cases[caseNdx].expectedOutput)));
1278		spec.numWorkGroups = IVec3(numElements, 1, 1);
1279		spec.specConstants.push_back(cases[caseNdx].scActualValue0);
1280		spec.specConstants.push_back(cases[caseNdx].scActualValue1);
1281
1282		group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].caseName, cases[caseNdx].caseName, spec));
1283	}
1284
1285	ComputeShaderSpec				spec;
1286
1287	spec.assembly =
1288		string(s_ShaderPreamble) +
1289
1290		"OpName %main           \"main\"\n"
1291		"OpName %id             \"gl_GlobalInvocationID\"\n"
1292
1293		"OpDecorate %id BuiltIn GlobalInvocationId\n"
1294		"OpDecorate %sc_0  SpecId 0\n"
1295		"OpDecorate %sc_1  SpecId 1\n"
1296		"OpDecorate %sc_2  SpecId 2\n"
1297
1298		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
1299
1300		"%ivec3     = OpTypeVector %i32 3\n"
1301		"%i32ptr    = OpTypePointer Uniform %i32\n"
1302		"%i32arr    = OpTypeRuntimeArray %i32\n"
1303		"%boolptr   = OpTypePointer Uniform %bool\n"
1304		"%boolarr   = OpTypeRuntimeArray %bool\n"
1305		"%inbuf     = OpTypeStruct %i32arr\n"
1306		"%inbufptr  = OpTypePointer Uniform %inbuf\n"
1307		"%indata    = OpVariable %inbufptr Uniform\n"
1308		"%outbuf    = OpTypeStruct %i32arr\n"
1309		"%outbufptr = OpTypePointer Uniform %outbuf\n"
1310		"%outdata   = OpVariable %outbufptr Uniform\n"
1311
1312		"%id        = OpVariable %uvec3ptr Input\n"
1313		"%zero      = OpConstant %i32 0\n"
1314		"%ivec3_0   = OpConstantComposite %ivec3 %zero %zero %zero\n"
1315
1316		"%sc_0        = OpSpecConstant %i32 0\n"
1317		"%sc_1        = OpSpecConstant %i32 0\n"
1318		"%sc_2        = OpSpecConstant %i32 0\n"
1319		"%sc_vec3_0   = OpSpecConstantOp %ivec3 CompositeInsert  %sc_0        %ivec3_0   0\n"     // (sc_0, 0, 0)
1320		"%sc_vec3_1   = OpSpecConstantOp %ivec3 CompositeInsert  %sc_1        %ivec3_0   1\n"     // (0, sc_1, 0)
1321		"%sc_vec3_2   = OpSpecConstantOp %ivec3 CompositeInsert  %sc_2        %ivec3_0   2\n"     // (0, 0, sc_2)
1322		"%sc_vec3_01  = OpSpecConstantOp %ivec3 VectorShuffle    %sc_vec3_0   %sc_vec3_1 1 0 4\n" // (0,    sc_0, sc_1)
1323		"%sc_vec3_012 = OpSpecConstantOp %ivec3 VectorShuffle    %sc_vec3_01  %sc_vec3_2 5 1 2\n" // (sc_2, sc_0, sc_1)
1324		"%sc_ext_0    = OpSpecConstantOp %i32   CompositeExtract %sc_vec3_012            0\n"     // sc_2
1325		"%sc_ext_1    = OpSpecConstantOp %i32   CompositeExtract %sc_vec3_012            1\n"     // sc_0
1326		"%sc_ext_2    = OpSpecConstantOp %i32   CompositeExtract %sc_vec3_012            2\n"     // sc_1
1327		"%sc_sub      = OpSpecConstantOp %i32   ISub             %sc_ext_0    %sc_ext_1\n"        // (sc_2 - sc_0)
1328		"%sc_final    = OpSpecConstantOp %i32   IMul             %sc_sub      %sc_ext_2\n"        // (sc_2 - sc_0) * sc_1
1329
1330		"%main      = OpFunction %void None %voidf\n"
1331		"%label     = OpLabel\n"
1332		"%idval     = OpLoad %uvec3 %id\n"
1333		"%x         = OpCompositeExtract %u32 %idval 0\n"
1334		"%inloc     = OpAccessChain %i32ptr %indata %zero %x\n"
1335		"%inval     = OpLoad %i32 %inloc\n"
1336		"%final     = OpIAdd %i32 %inval %sc_final\n"
1337		"%outloc    = OpAccessChain %i32ptr %outdata %zero %x\n"
1338		"             OpStore %outloc %final\n"
1339		"             OpReturn\n"
1340		"             OpFunctionEnd\n";
1341	spec.inputs.push_back(BufferSp(new Int32Buffer(inputInts)));
1342	spec.outputs.push_back(BufferSp(new Int32Buffer(outputInts3)));
1343	spec.numWorkGroups = IVec3(numElements, 1, 1);
1344	spec.specConstants.push_back(123);
1345	spec.specConstants.push_back(56);
1346	spec.specConstants.push_back(-77);
1347
1348	group->addChild(new SpvAsmComputeShaderCase(testCtx, "vector_related", "VectorShuffle, CompositeExtract, & CompositeInsert", spec));
1349
1350	return group.release();
1351}
1352
1353tcu::TestCaseGroup* createOpPhiGroup (tcu::TestContext& testCtx)
1354{
1355	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opphi", "Test the OpPhi instruction"));
1356	ComputeShaderSpec				spec1;
1357	ComputeShaderSpec				spec2;
1358	ComputeShaderSpec				spec3;
1359	de::Random						rnd				(deStringHash(group->getName()));
1360	const int						numElements		= 100;
1361	vector<float>					inputFloats		(numElements, 0);
1362	vector<float>					outputFloats1	(numElements, 0);
1363	vector<float>					outputFloats2	(numElements, 0);
1364	vector<float>					outputFloats3	(numElements, 0);
1365
1366	fillRandomScalars(rnd, -300.f, 300.f, &inputFloats[0], numElements);
1367
1368	for (size_t ndx = 0; ndx < numElements; ++ndx)
1369	{
1370		switch (ndx % 3)
1371		{
1372			case 0:		outputFloats1[ndx] = inputFloats[ndx] + 5.5f;	break;
1373			case 1:		outputFloats1[ndx] = inputFloats[ndx] + 20.5f;	break;
1374			case 2:		outputFloats1[ndx] = inputFloats[ndx] + 1.75f;	break;
1375			default:	break;
1376		}
1377		outputFloats2[ndx] = inputFloats[ndx] + 6.5f * 3;
1378		outputFloats3[ndx] = 8.5f - inputFloats[ndx];
1379	}
1380
1381	spec1.assembly =
1382		string(s_ShaderPreamble) +
1383
1384		"OpSource GLSL 430\n"
1385		"OpName %main \"main\"\n"
1386		"OpName %id \"gl_GlobalInvocationID\"\n"
1387
1388		"OpDecorate %id BuiltIn GlobalInvocationId\n"
1389
1390		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
1391
1392		"%id = OpVariable %uvec3ptr Input\n"
1393		"%zero       = OpConstant %i32 0\n"
1394		"%three      = OpConstant %u32 3\n"
1395		"%constf5p5  = OpConstant %f32 5.5\n"
1396		"%constf20p5 = OpConstant %f32 20.5\n"
1397		"%constf1p75 = OpConstant %f32 1.75\n"
1398		"%constf8p5  = OpConstant %f32 8.5\n"
1399		"%constf6p5  = OpConstant %f32 6.5\n"
1400
1401		"%main     = OpFunction %void None %voidf\n"
1402		"%entry    = OpLabel\n"
1403		"%idval    = OpLoad %uvec3 %id\n"
1404		"%x        = OpCompositeExtract %u32 %idval 0\n"
1405		"%selector = OpUMod %u32 %x %three\n"
1406		"            OpSelectionMerge %phi None\n"
1407		"            OpSwitch %selector %default 0 %case0 1 %case1 2 %case2\n"
1408
1409		// Case 1 before OpPhi.
1410		"%case1    = OpLabel\n"
1411		"            OpBranch %phi\n"
1412
1413		"%default  = OpLabel\n"
1414		"            OpUnreachable\n"
1415
1416		"%phi      = OpLabel\n"
1417		"%operand  = OpPhi %f32   %constf1p75 %case2   %constf20p5 %case1   %constf5p5 %case0\n" // not in the order of blocks
1418		"%inloc    = OpAccessChain %f32ptr %indata %zero %x\n"
1419		"%inval    = OpLoad %f32 %inloc\n"
1420		"%add      = OpFAdd %f32 %inval %operand\n"
1421		"%outloc   = OpAccessChain %f32ptr %outdata %zero %x\n"
1422		"            OpStore %outloc %add\n"
1423		"            OpReturn\n"
1424
1425		// Case 0 after OpPhi.
1426		"%case0    = OpLabel\n"
1427		"            OpBranch %phi\n"
1428
1429
1430		// Case 2 after OpPhi.
1431		"%case2    = OpLabel\n"
1432		"            OpBranch %phi\n"
1433
1434		"            OpFunctionEnd\n";
1435	spec1.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
1436	spec1.outputs.push_back(BufferSp(new Float32Buffer(outputFloats1)));
1437	spec1.numWorkGroups = IVec3(numElements, 1, 1);
1438
1439	group->addChild(new SpvAsmComputeShaderCase(testCtx, "block", "out-of-order and unreachable blocks for OpPhi", spec1));
1440
1441	spec2.assembly =
1442		string(s_ShaderPreamble) +
1443
1444		"OpName %main \"main\"\n"
1445		"OpName %id \"gl_GlobalInvocationID\"\n"
1446
1447		"OpDecorate %id BuiltIn GlobalInvocationId\n"
1448
1449		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
1450
1451		"%id         = OpVariable %uvec3ptr Input\n"
1452		"%zero       = OpConstant %i32 0\n"
1453		"%one        = OpConstant %i32 1\n"
1454		"%three      = OpConstant %i32 3\n"
1455		"%constf6p5  = OpConstant %f32 6.5\n"
1456
1457		"%main       = OpFunction %void None %voidf\n"
1458		"%entry      = OpLabel\n"
1459		"%idval      = OpLoad %uvec3 %id\n"
1460		"%x          = OpCompositeExtract %u32 %idval 0\n"
1461		"%inloc      = OpAccessChain %f32ptr %indata %zero %x\n"
1462		"%outloc     = OpAccessChain %f32ptr %outdata %zero %x\n"
1463		"%inval      = OpLoad %f32 %inloc\n"
1464		"              OpBranch %phi\n"
1465
1466		"%phi        = OpLabel\n"
1467		"%step       = OpPhi %i32 %zero  %entry %step_next  %phi\n"
1468		"%accum      = OpPhi %f32 %inval %entry %accum_next %phi\n"
1469		"%step_next  = OpIAdd %i32 %step %one\n"
1470		"%accum_next = OpFAdd %f32 %accum %constf6p5\n"
1471		"%still_loop = OpSLessThan %bool %step %three\n"
1472		"              OpLoopMerge %exit %phi None\n"
1473		"              OpBranchConditional %still_loop %phi %exit\n"
1474
1475		"%exit       = OpLabel\n"
1476		"              OpStore %outloc %accum\n"
1477		"              OpReturn\n"
1478		"              OpFunctionEnd\n";
1479	spec2.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
1480	spec2.outputs.push_back(BufferSp(new Float32Buffer(outputFloats2)));
1481	spec2.numWorkGroups = IVec3(numElements, 1, 1);
1482
1483	group->addChild(new SpvAsmComputeShaderCase(testCtx, "induction", "The usual way induction variables are handled in LLVM IR", spec2));
1484
1485	spec3.assembly =
1486		string(s_ShaderPreamble) +
1487
1488		"OpName %main \"main\"\n"
1489		"OpName %id \"gl_GlobalInvocationID\"\n"
1490
1491		"OpDecorate %id BuiltIn GlobalInvocationId\n"
1492
1493		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
1494
1495		"%f32ptr_f   = OpTypePointer Function %f32\n"
1496		"%id         = OpVariable %uvec3ptr Input\n"
1497		"%true       = OpConstantTrue %bool\n"
1498		"%false      = OpConstantFalse %bool\n"
1499		"%zero       = OpConstant %i32 0\n"
1500		"%constf8p5  = OpConstant %f32 8.5\n"
1501
1502		"%main       = OpFunction %void None %voidf\n"
1503		"%entry      = OpLabel\n"
1504		"%b          = OpVariable %f32ptr_f Function %constf8p5\n"
1505		"%idval      = OpLoad %uvec3 %id\n"
1506		"%x          = OpCompositeExtract %u32 %idval 0\n"
1507		"%inloc      = OpAccessChain %f32ptr %indata %zero %x\n"
1508		"%outloc     = OpAccessChain %f32ptr %outdata %zero %x\n"
1509		"%a_init     = OpLoad %f32 %inloc\n"
1510		"%b_init     = OpLoad %f32 %b\n"
1511		"              OpBranch %phi\n"
1512
1513		"%phi        = OpLabel\n"
1514		"%still_loop = OpPhi %bool %true   %entry %false  %phi\n"
1515		"%a_next     = OpPhi %f32  %a_init %entry %b_next %phi\n"
1516		"%b_next     = OpPhi %f32  %b_init %entry %a_next %phi\n"
1517		"              OpLoopMerge %exit %phi None\n"
1518		"              OpBranchConditional %still_loop %phi %exit\n"
1519
1520		"%exit       = OpLabel\n"
1521		"%sub        = OpFSub %f32 %a_next %b_next\n"
1522		"              OpStore %outloc %sub\n"
1523		"              OpReturn\n"
1524		"              OpFunctionEnd\n";
1525	spec3.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
1526	spec3.outputs.push_back(BufferSp(new Float32Buffer(outputFloats3)));
1527	spec3.numWorkGroups = IVec3(numElements, 1, 1);
1528
1529	group->addChild(new SpvAsmComputeShaderCase(testCtx, "swap", "Swap the values of two variables using OpPhi", spec3));
1530
1531	return group.release();
1532}
1533
1534// Assembly code used for testing block order is based on GLSL source code:
1535//
1536// #version 430
1537//
1538// layout(std140, set = 0, binding = 0) readonly buffer Input {
1539//   float elements[];
1540// } input_data;
1541// layout(std140, set = 0, binding = 1) writeonly buffer Output {
1542//   float elements[];
1543// } output_data;
1544//
1545// void main() {
1546//   uint x = gl_GlobalInvocationID.x;
1547//   output_data.elements[x] = input_data.elements[x];
1548//   if (x > uint(50)) {
1549//     switch (x % uint(3)) {
1550//       case 0: output_data.elements[x] += 1.5f; break;
1551//       case 1: output_data.elements[x] += 42.f; break;
1552//       case 2: output_data.elements[x] -= 27.f; break;
1553//       default: break;
1554//     }
1555//   } else {
1556//     output_data.elements[x] = -input_data.elements[x];
1557//   }
1558// }
1559tcu::TestCaseGroup* createBlockOrderGroup (tcu::TestContext& testCtx)
1560{
1561	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "block_order", "Test block orders"));
1562	ComputeShaderSpec				spec;
1563	de::Random						rnd				(deStringHash(group->getName()));
1564	const int						numElements		= 100;
1565	vector<float>					inputFloats		(numElements, 0);
1566	vector<float>					outputFloats	(numElements, 0);
1567
1568	fillRandomScalars(rnd, -100.f, 100.f, &inputFloats[0], numElements);
1569
1570	for (size_t ndx = 0; ndx <= 50; ++ndx)
1571		outputFloats[ndx] = -inputFloats[ndx];
1572
1573	for (size_t ndx = 51; ndx < numElements; ++ndx)
1574	{
1575		switch (ndx % 3)
1576		{
1577			case 0:		outputFloats[ndx] = inputFloats[ndx] + 1.5f; break;
1578			case 1:		outputFloats[ndx] = inputFloats[ndx] + 42.f; break;
1579			case 2:		outputFloats[ndx] = inputFloats[ndx] - 27.f; break;
1580			default:	break;
1581		}
1582	}
1583
1584	spec.assembly =
1585		string(s_ShaderPreamble) +
1586
1587		"OpSource GLSL 430\n"
1588		"OpName %main \"main\"\n"
1589		"OpName %id \"gl_GlobalInvocationID\"\n"
1590
1591		"OpDecorate %id BuiltIn GlobalInvocationId\n"
1592
1593		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
1594
1595		"%u32ptr       = OpTypePointer Function %u32\n"
1596		"%u32ptr_input = OpTypePointer Input %u32\n"
1597
1598		+ string(s_InputOutputBuffer) +
1599
1600		"%id        = OpVariable %uvec3ptr Input\n"
1601		"%zero      = OpConstant %i32 0\n"
1602		"%const3    = OpConstant %u32 3\n"
1603		"%const50   = OpConstant %u32 50\n"
1604		"%constf1p5 = OpConstant %f32 1.5\n"
1605		"%constf27  = OpConstant %f32 27.0\n"
1606		"%constf42  = OpConstant %f32 42.0\n"
1607
1608		"%main = OpFunction %void None %voidf\n"
1609
1610		// entry block.
1611		"%entry    = OpLabel\n"
1612
1613		// Create a temporary variable to hold the value of gl_GlobalInvocationID.x.
1614		"%xvar     = OpVariable %u32ptr Function\n"
1615		"%xptr     = OpAccessChain %u32ptr_input %id %zero\n"
1616		"%x        = OpLoad %u32 %xptr\n"
1617		"            OpStore %xvar %x\n"
1618
1619		"%cmp      = OpUGreaterThan %bool %x %const50\n"
1620		"            OpSelectionMerge %if_merge None\n"
1621		"            OpBranchConditional %cmp %if_true %if_false\n"
1622
1623		// Merge block for switch-statement: placed at the beginning.
1624		"%switch_merge = OpLabel\n"
1625		"                OpBranch %if_merge\n"
1626
1627		// Case 1 for switch-statement.
1628		"%case1    = OpLabel\n"
1629		"%x_1      = OpLoad %u32 %xvar\n"
1630		"%inloc_1  = OpAccessChain %f32ptr %indata %zero %x_1\n"
1631		"%inval_1  = OpLoad %f32 %inloc_1\n"
1632		"%addf42   = OpFAdd %f32 %inval_1 %constf42\n"
1633		"%outloc_1 = OpAccessChain %f32ptr %outdata %zero %x_1\n"
1634		"            OpStore %outloc_1 %addf42\n"
1635		"            OpBranch %switch_merge\n"
1636
1637		// False branch for if-statement: placed in the middle of switch cases and before true branch.
1638		"%if_false = OpLabel\n"
1639		"%x_f      = OpLoad %u32 %xvar\n"
1640		"%inloc_f  = OpAccessChain %f32ptr %indata %zero %x_f\n"
1641		"%inval_f  = OpLoad %f32 %inloc_f\n"
1642		"%negate   = OpFNegate %f32 %inval_f\n"
1643		"%outloc_f = OpAccessChain %f32ptr %outdata %zero %x_f\n"
1644		"            OpStore %outloc_f %negate\n"
1645		"            OpBranch %if_merge\n"
1646
1647		// Merge block for if-statement: placed in the middle of true and false branch.
1648		"%if_merge = OpLabel\n"
1649		"            OpReturn\n"
1650
1651		// True branch for if-statement: placed in the middle of swtich cases and after the false branch.
1652		"%if_true  = OpLabel\n"
1653		"%xval_t   = OpLoad %u32 %xvar\n"
1654		"%mod      = OpUMod %u32 %xval_t %const3\n"
1655		"            OpSelectionMerge %switch_merge None\n"
1656		"            OpSwitch %mod %default 0 %case0 1 %case1 2 %case2\n"
1657
1658		// Case 2 for switch-statement.
1659		"%case2    = OpLabel\n"
1660		"%x_2      = OpLoad %u32 %xvar\n"
1661		"%inloc_2  = OpAccessChain %f32ptr %indata %zero %x_2\n"
1662		"%inval_2  = OpLoad %f32 %inloc_2\n"
1663		"%subf27   = OpFSub %f32 %inval_2 %constf27\n"
1664		"%outloc_2 = OpAccessChain %f32ptr %outdata %zero %x_2\n"
1665		"            OpStore %outloc_2 %subf27\n"
1666		"            OpBranch %switch_merge\n"
1667
1668		// Default case for switch-statement: placed in the middle of normal cases.
1669		"%default = OpLabel\n"
1670		"           OpBranch %switch_merge\n"
1671
1672		// Case 0 for switch-statement: out of order.
1673		"%case0    = OpLabel\n"
1674		"%x_0      = OpLoad %u32 %xvar\n"
1675		"%inloc_0  = OpAccessChain %f32ptr %indata %zero %x_0\n"
1676		"%inval_0  = OpLoad %f32 %inloc_0\n"
1677		"%addf1p5  = OpFAdd %f32 %inval_0 %constf1p5\n"
1678		"%outloc_0 = OpAccessChain %f32ptr %outdata %zero %x_0\n"
1679		"            OpStore %outloc_0 %addf1p5\n"
1680		"            OpBranch %switch_merge\n"
1681
1682		"            OpFunctionEnd\n";
1683	spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
1684	spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
1685	spec.numWorkGroups = IVec3(numElements, 1, 1);
1686
1687	group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "various out-of-order blocks", spec));
1688
1689	return group.release();
1690}
1691
1692tcu::TestCaseGroup* createMultipleShaderGroup (tcu::TestContext& testCtx)
1693{
1694	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "multiple_shaders", "Test multiple shaders in the same module"));
1695	ComputeShaderSpec				spec1;
1696	ComputeShaderSpec				spec2;
1697	de::Random						rnd				(deStringHash(group->getName()));
1698	const int						numElements		= 100;
1699	vector<float>					inputFloats		(numElements, 0);
1700	vector<float>					outputFloats1	(numElements, 0);
1701	vector<float>					outputFloats2	(numElements, 0);
1702	fillRandomScalars(rnd, -500.f, 500.f, &inputFloats[0], numElements);
1703
1704	for (size_t ndx = 0; ndx < numElements; ++ndx)
1705	{
1706		outputFloats1[ndx] = inputFloats[ndx] + inputFloats[ndx];
1707		outputFloats2[ndx] = -inputFloats[ndx];
1708	}
1709
1710	const string assembly(
1711		"OpCapability Shader\n"
1712		"OpMemoryModel Logical GLSL450\n"
1713		"OpEntryPoint GLCompute %comp_main1 \"entrypoint1\" %id\n"
1714		"OpEntryPoint GLCompute %comp_main2 \"entrypoint2\" %id\n"
1715		// A module cannot have two OpEntryPoint instructions with the same Execution Model and the same Name string.
1716		"OpEntryPoint Vertex    %vert_main  \"entrypoint2\" %vert_builtins %vertexID %instanceID\n"
1717		"OpExecutionMode %comp_main1 LocalSize 1 1 1\n"
1718		"OpExecutionMode %comp_main2 LocalSize 1 1 1\n"
1719
1720		"OpName %comp_main1              \"entrypoint1\"\n"
1721		"OpName %comp_main2              \"entrypoint2\"\n"
1722		"OpName %vert_main               \"entrypoint2\"\n"
1723		"OpName %id                      \"gl_GlobalInvocationID\"\n"
1724		"OpName %vert_builtin_st         \"gl_PerVertex\"\n"
1725		"OpName %vertexID                \"gl_VertexID\"\n"
1726		"OpName %instanceID              \"gl_InstanceID\"\n"
1727		"OpMemberName %vert_builtin_st 0 \"gl_Position\"\n"
1728		"OpMemberName %vert_builtin_st 1 \"gl_PointSize\"\n"
1729		"OpMemberName %vert_builtin_st 2 \"gl_ClipDistance\"\n"
1730
1731		"OpDecorate %id                      BuiltIn GlobalInvocationId\n"
1732		"OpDecorate %vertexID                BuiltIn VertexId\n"
1733		"OpDecorate %instanceID              BuiltIn InstanceId\n"
1734		"OpDecorate %vert_builtin_st         Block\n"
1735		"OpMemberDecorate %vert_builtin_st 0 BuiltIn Position\n"
1736		"OpMemberDecorate %vert_builtin_st 1 BuiltIn PointSize\n"
1737		"OpMemberDecorate %vert_builtin_st 2 BuiltIn ClipDistance\n"
1738
1739		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
1740
1741		"%zero       = OpConstant %i32 0\n"
1742		"%one        = OpConstant %u32 1\n"
1743		"%c_f32_1    = OpConstant %f32 1\n"
1744
1745		"%i32ptr              = OpTypePointer Input %i32\n"
1746		"%vec4                = OpTypeVector %f32 4\n"
1747		"%vec4ptr             = OpTypePointer Output %vec4\n"
1748		"%f32arr1             = OpTypeArray %f32 %one\n"
1749		"%vert_builtin_st     = OpTypeStruct %vec4 %f32 %f32arr1\n"
1750		"%vert_builtin_st_ptr = OpTypePointer Output %vert_builtin_st\n"
1751		"%vert_builtins       = OpVariable %vert_builtin_st_ptr Output\n"
1752
1753		"%id         = OpVariable %uvec3ptr Input\n"
1754		"%vertexID   = OpVariable %i32ptr Input\n"
1755		"%instanceID = OpVariable %i32ptr Input\n"
1756		"%c_vec4_1   = OpConstantComposite %vec4 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_1\n"
1757
1758		// gl_Position = vec4(1.);
1759		"%vert_main  = OpFunction %void None %voidf\n"
1760		"%vert_entry = OpLabel\n"
1761		"%position   = OpAccessChain %vec4ptr %vert_builtins %zero\n"
1762		"              OpStore %position %c_vec4_1\n"
1763		"              OpReturn\n"
1764		"              OpFunctionEnd\n"
1765
1766		// Double inputs.
1767		"%comp_main1  = OpFunction %void None %voidf\n"
1768		"%comp1_entry = OpLabel\n"
1769		"%idval1      = OpLoad %uvec3 %id\n"
1770		"%x1          = OpCompositeExtract %u32 %idval1 0\n"
1771		"%inloc1      = OpAccessChain %f32ptr %indata %zero %x1\n"
1772		"%inval1      = OpLoad %f32 %inloc1\n"
1773		"%add         = OpFAdd %f32 %inval1 %inval1\n"
1774		"%outloc1     = OpAccessChain %f32ptr %outdata %zero %x1\n"
1775		"               OpStore %outloc1 %add\n"
1776		"               OpReturn\n"
1777		"               OpFunctionEnd\n"
1778
1779		// Negate inputs.
1780		"%comp_main2  = OpFunction %void None %voidf\n"
1781		"%comp2_entry = OpLabel\n"
1782		"%idval2      = OpLoad %uvec3 %id\n"
1783		"%x2          = OpCompositeExtract %u32 %idval2 0\n"
1784		"%inloc2      = OpAccessChain %f32ptr %indata %zero %x2\n"
1785		"%inval2      = OpLoad %f32 %inloc2\n"
1786		"%neg         = OpFNegate %f32 %inval2\n"
1787		"%outloc2     = OpAccessChain %f32ptr %outdata %zero %x2\n"
1788		"               OpStore %outloc2 %neg\n"
1789		"               OpReturn\n"
1790		"               OpFunctionEnd\n");
1791
1792	spec1.assembly = assembly;
1793	spec1.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
1794	spec1.outputs.push_back(BufferSp(new Float32Buffer(outputFloats1)));
1795	spec1.numWorkGroups = IVec3(numElements, 1, 1);
1796	spec1.entryPoint = "entrypoint1";
1797
1798	spec2.assembly = assembly;
1799	spec2.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
1800	spec2.outputs.push_back(BufferSp(new Float32Buffer(outputFloats2)));
1801	spec2.numWorkGroups = IVec3(numElements, 1, 1);
1802	spec2.entryPoint = "entrypoint2";
1803
1804	group->addChild(new SpvAsmComputeShaderCase(testCtx, "shader1", "multiple shaders in the same module", spec1));
1805	group->addChild(new SpvAsmComputeShaderCase(testCtx, "shader2", "multiple shaders in the same module", spec2));
1806
1807	return group.release();
1808}
1809
1810inline std::string makeLongUTF8String (size_t num4ByteChars)
1811{
1812	// An example of a longest valid UTF-8 character.  Be explicit about the
1813	// character type because Microsoft compilers can otherwise interpret the
1814	// character string as being over wide (16-bit) characters. Ideally, we
1815	// would just use a C++11 UTF-8 string literal, but we want to support older
1816	// Microsoft compilers.
1817	const std::basic_string<char> earthAfrica("\xF0\x9F\x8C\x8D");
1818	std::string longString;
1819	longString.reserve(num4ByteChars * 4);
1820	for (size_t count = 0; count < num4ByteChars; count++)
1821	{
1822		longString += earthAfrica;
1823	}
1824	return longString;
1825}
1826
1827tcu::TestCaseGroup* createOpSourceGroup (tcu::TestContext& testCtx)
1828{
1829	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opsource", "Tests the OpSource & OpSourceContinued instruction"));
1830	vector<CaseParameter>			cases;
1831	de::Random						rnd				(deStringHash(group->getName()));
1832	const int						numElements		= 100;
1833	vector<float>					positiveFloats	(numElements, 0);
1834	vector<float>					negativeFloats	(numElements, 0);
1835	const StringTemplate			shaderTemplate	(
1836		"OpCapability Shader\n"
1837		"OpMemoryModel Logical GLSL450\n"
1838
1839		"OpEntryPoint GLCompute %main \"main\" %id\n"
1840		"OpExecutionMode %main LocalSize 1 1 1\n"
1841
1842		"${SOURCE}\n"
1843
1844		"OpName %main           \"main\"\n"
1845		"OpName %id             \"gl_GlobalInvocationID\"\n"
1846
1847		"OpDecorate %id BuiltIn GlobalInvocationId\n"
1848
1849		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
1850
1851		"%id        = OpVariable %uvec3ptr Input\n"
1852		"%zero      = OpConstant %i32 0\n"
1853
1854		"%main      = OpFunction %void None %voidf\n"
1855		"%label     = OpLabel\n"
1856		"%idval     = OpLoad %uvec3 %id\n"
1857		"%x         = OpCompositeExtract %u32 %idval 0\n"
1858		"%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
1859		"%inval     = OpLoad %f32 %inloc\n"
1860		"%neg       = OpFNegate %f32 %inval\n"
1861		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
1862		"             OpStore %outloc %neg\n"
1863		"             OpReturn\n"
1864		"             OpFunctionEnd\n");
1865
1866	cases.push_back(CaseParameter("unknown_source",							"OpSource Unknown 0"));
1867	cases.push_back(CaseParameter("wrong_source",							"OpSource OpenCL_C 210"));
1868	cases.push_back(CaseParameter("normal_filename",						"%fname = OpString \"filename\"\n"
1869																			"OpSource GLSL 430 %fname"));
1870	cases.push_back(CaseParameter("empty_filename",							"%fname = OpString \"\"\n"
1871																			"OpSource GLSL 430 %fname"));
1872	cases.push_back(CaseParameter("normal_source_code",						"%fname = OpString \"filename\"\n"
1873																			"OpSource GLSL 430 %fname \"#version 430\nvoid main() {}\""));
1874	cases.push_back(CaseParameter("empty_source_code",						"%fname = OpString \"filename\"\n"
1875																			"OpSource GLSL 430 %fname \"\""));
1876	cases.push_back(CaseParameter("long_source_code",						"%fname = OpString \"filename\"\n"
1877																			"OpSource GLSL 430 %fname \"" + makeLongUTF8String(65530) + "ccc\"")); // word count: 65535
1878	cases.push_back(CaseParameter("utf8_source_code",						"%fname = OpString \"filename\"\n"
1879																			"OpSource GLSL 430 %fname \"\xE2\x98\x82\xE2\x98\x85\"")); // umbrella & black star symbol
1880	cases.push_back(CaseParameter("normal_sourcecontinued",					"%fname = OpString \"filename\"\n"
1881																			"OpSource GLSL 430 %fname \"#version 430\nvo\"\n"
1882																			"OpSourceContinued \"id main() {}\""));
1883	cases.push_back(CaseParameter("empty_sourcecontinued",					"%fname = OpString \"filename\"\n"
1884																			"OpSource GLSL 430 %fname \"#version 430\nvoid main() {}\"\n"
1885																			"OpSourceContinued \"\""));
1886	cases.push_back(CaseParameter("long_sourcecontinued",					"%fname = OpString \"filename\"\n"
1887																			"OpSource GLSL 430 %fname \"#version 430\nvoid main() {}\"\n"
1888																			"OpSourceContinued \"" + makeLongUTF8String(65533) + "ccc\"")); // word count: 65535
1889	cases.push_back(CaseParameter("utf8_sourcecontinued",					"%fname = OpString \"filename\"\n"
1890																			"OpSource GLSL 430 %fname \"#version 430\nvoid main() {}\"\n"
1891																			"OpSourceContinued \"\xE2\x98\x8E\xE2\x9A\x91\"")); // white telephone & black flag symbol
1892	cases.push_back(CaseParameter("multi_sourcecontinued",					"%fname = OpString \"filename\"\n"
1893																			"OpSource GLSL 430 %fname \"#version 430\n\"\n"
1894																			"OpSourceContinued \"void\"\n"
1895																			"OpSourceContinued \"main()\"\n"
1896																			"OpSourceContinued \"{}\""));
1897	cases.push_back(CaseParameter("empty_source_before_sourcecontinued",	"%fname = OpString \"filename\"\n"
1898																			"OpSource GLSL 430 %fname \"\"\n"
1899																			"OpSourceContinued \"#version 430\nvoid main() {}\""));
1900
1901	fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
1902
1903	for (size_t ndx = 0; ndx < numElements; ++ndx)
1904		negativeFloats[ndx] = -positiveFloats[ndx];
1905
1906	for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
1907	{
1908		map<string, string>		specializations;
1909		ComputeShaderSpec		spec;
1910
1911		specializations["SOURCE"] = cases[caseNdx].param;
1912		spec.assembly = shaderTemplate.specialize(specializations);
1913		spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
1914		spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
1915		spec.numWorkGroups = IVec3(numElements, 1, 1);
1916
1917		group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
1918	}
1919
1920	return group.release();
1921}
1922
1923tcu::TestCaseGroup* createOpSourceExtensionGroup (tcu::TestContext& testCtx)
1924{
1925	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opsourceextension", "Tests the OpSource instruction"));
1926	vector<CaseParameter>			cases;
1927	de::Random						rnd				(deStringHash(group->getName()));
1928	const int						numElements		= 100;
1929	vector<float>					inputFloats		(numElements, 0);
1930	vector<float>					outputFloats	(numElements, 0);
1931	const StringTemplate			shaderTemplate	(
1932		string(s_ShaderPreamble) +
1933
1934		"OpSourceExtension \"${EXTENSION}\"\n"
1935
1936		"OpName %main           \"main\"\n"
1937		"OpName %id             \"gl_GlobalInvocationID\"\n"
1938
1939		"OpDecorate %id BuiltIn GlobalInvocationId\n"
1940
1941		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
1942
1943		"%id        = OpVariable %uvec3ptr Input\n"
1944		"%zero      = OpConstant %i32 0\n"
1945
1946		"%main      = OpFunction %void None %voidf\n"
1947		"%label     = OpLabel\n"
1948		"%idval     = OpLoad %uvec3 %id\n"
1949		"%x         = OpCompositeExtract %u32 %idval 0\n"
1950		"%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
1951		"%inval     = OpLoad %f32 %inloc\n"
1952		"%neg       = OpFNegate %f32 %inval\n"
1953		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
1954		"             OpStore %outloc %neg\n"
1955		"             OpReturn\n"
1956		"             OpFunctionEnd\n");
1957
1958	cases.push_back(CaseParameter("empty_extension",	""));
1959	cases.push_back(CaseParameter("real_extension",		"GL_ARB_texture_rectangle"));
1960	cases.push_back(CaseParameter("fake_extension",		"GL_ARB_im_the_ultimate_extension"));
1961	cases.push_back(CaseParameter("utf8_extension",		"GL_ARB_\xE2\x98\x82\xE2\x98\x85"));
1962	cases.push_back(CaseParameter("long_extension",		makeLongUTF8String(65533) + "ccc")); // word count: 65535
1963
1964	fillRandomScalars(rnd, -200.f, 200.f, &inputFloats[0], numElements);
1965
1966	for (size_t ndx = 0; ndx < numElements; ++ndx)
1967		outputFloats[ndx] = -inputFloats[ndx];
1968
1969	for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
1970	{
1971		map<string, string>		specializations;
1972		ComputeShaderSpec		spec;
1973
1974		specializations["EXTENSION"] = cases[caseNdx].param;
1975		spec.assembly = shaderTemplate.specialize(specializations);
1976		spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
1977		spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
1978		spec.numWorkGroups = IVec3(numElements, 1, 1);
1979
1980		group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
1981	}
1982
1983	return group.release();
1984}
1985
1986// Checks that a compute shader can generate a constant null value of various types, without exercising a computation on it.
1987tcu::TestCaseGroup* createOpConstantNullGroup (tcu::TestContext& testCtx)
1988{
1989	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opconstantnull", "Tests the OpConstantNull instruction"));
1990	vector<CaseParameter>			cases;
1991	de::Random						rnd				(deStringHash(group->getName()));
1992	const int						numElements		= 100;
1993	vector<float>					positiveFloats	(numElements, 0);
1994	vector<float>					negativeFloats	(numElements, 0);
1995	const StringTemplate			shaderTemplate	(
1996		string(s_ShaderPreamble) +
1997
1998		"OpSource GLSL 430\n"
1999		"OpName %main           \"main\"\n"
2000		"OpName %id             \"gl_GlobalInvocationID\"\n"
2001
2002		"OpDecorate %id BuiltIn GlobalInvocationId\n"
2003
2004		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
2005
2006		"${TYPE}\n"
2007		"%null      = OpConstantNull %type\n"
2008
2009		"%id        = OpVariable %uvec3ptr Input\n"
2010		"%zero      = OpConstant %i32 0\n"
2011
2012		"%main      = OpFunction %void None %voidf\n"
2013		"%label     = OpLabel\n"
2014		"%idval     = OpLoad %uvec3 %id\n"
2015		"%x         = OpCompositeExtract %u32 %idval 0\n"
2016		"%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
2017		"%inval     = OpLoad %f32 %inloc\n"
2018		"%neg       = OpFNegate %f32 %inval\n"
2019		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
2020		"             OpStore %outloc %neg\n"
2021		"             OpReturn\n"
2022		"             OpFunctionEnd\n");
2023
2024	cases.push_back(CaseParameter("bool",			"%type = OpTypeBool"));
2025	cases.push_back(CaseParameter("sint32",			"%type = OpTypeInt 32 1"));
2026	cases.push_back(CaseParameter("uint32",			"%type = OpTypeInt 32 0"));
2027	cases.push_back(CaseParameter("float32",		"%type = OpTypeFloat 32"));
2028	cases.push_back(CaseParameter("vec4float32",	"%type = OpTypeVector %f32 4"));
2029	cases.push_back(CaseParameter("vec3bool",		"%type = OpTypeVector %bool 3"));
2030	cases.push_back(CaseParameter("vec2uint32",		"%type = OpTypeVector %u32 2"));
2031	cases.push_back(CaseParameter("matrix",			"%type = OpTypeMatrix %fvec3 3"));
2032	cases.push_back(CaseParameter("array",			"%100 = OpConstant %u32 100\n"
2033													"%type = OpTypeArray %i32 %100"));
2034	cases.push_back(CaseParameter("runtimearray",	"%type = OpTypeRuntimeArray %f32"));
2035	cases.push_back(CaseParameter("struct",			"%type = OpTypeStruct %f32 %i32 %u32"));
2036	cases.push_back(CaseParameter("pointer",		"%type = OpTypePointer Function %i32"));
2037
2038	fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
2039
2040	for (size_t ndx = 0; ndx < numElements; ++ndx)
2041		negativeFloats[ndx] = -positiveFloats[ndx];
2042
2043	for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
2044	{
2045		map<string, string>		specializations;
2046		ComputeShaderSpec		spec;
2047
2048		specializations["TYPE"] = cases[caseNdx].param;
2049		spec.assembly = shaderTemplate.specialize(specializations);
2050		spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
2051		spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
2052		spec.numWorkGroups = IVec3(numElements, 1, 1);
2053
2054		group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
2055	}
2056
2057	return group.release();
2058}
2059
2060// Checks that a compute shader can generate a constant composite value of various types, without exercising a computation on it.
2061tcu::TestCaseGroup* createOpConstantCompositeGroup (tcu::TestContext& testCtx)
2062{
2063	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opconstantcomposite", "Tests the OpConstantComposite instruction"));
2064	vector<CaseParameter>			cases;
2065	de::Random						rnd				(deStringHash(group->getName()));
2066	const int						numElements		= 100;
2067	vector<float>					positiveFloats	(numElements, 0);
2068	vector<float>					negativeFloats	(numElements, 0);
2069	const StringTemplate			shaderTemplate	(
2070		string(s_ShaderPreamble) +
2071
2072		"OpSource GLSL 430\n"
2073		"OpName %main           \"main\"\n"
2074		"OpName %id             \"gl_GlobalInvocationID\"\n"
2075
2076		"OpDecorate %id BuiltIn GlobalInvocationId\n"
2077
2078		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
2079
2080		"%id        = OpVariable %uvec3ptr Input\n"
2081		"%zero      = OpConstant %i32 0\n"
2082
2083		"${CONSTANT}\n"
2084
2085		"%main      = OpFunction %void None %voidf\n"
2086		"%label     = OpLabel\n"
2087		"%idval     = OpLoad %uvec3 %id\n"
2088		"%x         = OpCompositeExtract %u32 %idval 0\n"
2089		"%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
2090		"%inval     = OpLoad %f32 %inloc\n"
2091		"%neg       = OpFNegate %f32 %inval\n"
2092		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
2093		"             OpStore %outloc %neg\n"
2094		"             OpReturn\n"
2095		"             OpFunctionEnd\n");
2096
2097	cases.push_back(CaseParameter("vector",			"%five = OpConstant %u32 5\n"
2098													"%const = OpConstantComposite %uvec3 %five %zero %five"));
2099	cases.push_back(CaseParameter("matrix",			"%m3uvec3 = OpTypeMatrix %fvec3 3\n"
2100													"%ten = OpConstant %u32 10\n"
2101													"%vec = OpConstantComposite %uvec3 %ten %zero %ten\n"
2102													"%mat = OpConstantComposite %m3uvec3 %vec %vec %vec"));
2103	cases.push_back(CaseParameter("struct",			"%m2vec3 = OpTypeMatrix %fvec3 2\n"
2104													"%struct = OpTypeStruct %u32 %f32 %uvec3 %m2vec3\n"
2105													"%one = OpConstant %u32 1\n"
2106													"%point5 = OpConstant %f32 0.5\n"
2107													"%vec = OpConstantComposite %uvec3 %one %one %zero\n"
2108													"%mat = OpConstantComposite %m2vec3 %vec %vec\n"
2109													"%const = OpConstantComposite %struct %one %point5 %vec %mat"));
2110	cases.push_back(CaseParameter("nested_struct",	"%st1 = OpTypeStruct %u32 %f32\n"
2111													"%st2 = OpTypeStruct %i32 %i32\n"
2112													"%struct = OpTypeStruct %st1 %st2\n"
2113													"%point5 = OpConstant %f32 0.5\n"
2114													"%one = OpConstant %u32 1\n"
2115													"%ten = OpConstant %i32 10\n"
2116													"%st1val = OpConstantComposite %st1 %one %point5\n"
2117													"%st2val = OpConstantComposite %st2 %ten %ten\n"
2118													"%const = OpConstantComposite %struct %st1val %st2val"));
2119
2120	fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
2121
2122	for (size_t ndx = 0; ndx < numElements; ++ndx)
2123		negativeFloats[ndx] = -positiveFloats[ndx];
2124
2125	for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
2126	{
2127		map<string, string>		specializations;
2128		ComputeShaderSpec		spec;
2129
2130		specializations["CONSTANT"] = cases[caseNdx].param;
2131		spec.assembly = shaderTemplate.specialize(specializations);
2132		spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
2133		spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
2134		spec.numWorkGroups = IVec3(numElements, 1, 1);
2135
2136		group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
2137	}
2138
2139	return group.release();
2140}
2141
2142// Creates a floating point number with the given exponent, and significand
2143// bits set. It can only create normalized numbers. Only the least significant
2144// 24 bits of the significand will be examined. The final bit of the
2145// significand will also be ignored. This allows alignment to be written
2146// similarly to C99 hex-floats.
2147// For example if you wanted to write 0x1.7f34p-12 you would call
2148// constructNormalizedFloat(-12, 0x7f3400)
2149float constructNormalizedFloat (deInt32 exponent, deUint32 significand)
2150{
2151	float f = 1.0f;
2152
2153	for (deInt32 idx = 0; idx < 23; ++idx)
2154	{
2155		f += ((significand & 0x800000) == 0) ? 0.f : std::ldexp(1.0f, -idx);
2156		significand <<= 1;
2157	}
2158
2159	return std::ldexp(f, exponent);
2160}
2161
2162// Compare instruction for the OpQuantizeF16 compute exact case.
2163// Returns true if the output is what is expected from the test case.
2164bool compareOpQuantizeF16ComputeExactCase (const std::vector<BufferSp>&, const vector<AllocationSp>& outputAllocs, const std::vector<BufferSp>& expectedOutputs)
2165{
2166	if (outputAllocs.size() != 1)
2167		return false;
2168
2169	// We really just need this for size because we cannot compare Nans.
2170	const BufferSp&	expectedOutput	= expectedOutputs[0];
2171	const float*	outputAsFloat	= static_cast<const float*>(outputAllocs[0]->getHostPtr());;
2172
2173	if (expectedOutput->getNumBytes() != 4*sizeof(float)) {
2174		return false;
2175	}
2176
2177	if (*outputAsFloat != constructNormalizedFloat(8, 0x304000) &&
2178		*outputAsFloat != constructNormalizedFloat(8, 0x300000)) {
2179		return false;
2180	}
2181
2182	if (*outputAsFloat != -constructNormalizedFloat(-7, 0x600000) &&
2183		*outputAsFloat != -constructNormalizedFloat(-7, 0x604000)) {
2184		return false;
2185	}
2186
2187	if (*outputAsFloat != constructNormalizedFloat(2, 0x01C000) &&
2188		*outputAsFloat != constructNormalizedFloat(2, 0x020000)) {
2189		return false;
2190	}
2191
2192	if (*outputAsFloat != constructNormalizedFloat(1, 0xFFC000) &&
2193		*outputAsFloat != constructNormalizedFloat(2, 0x000000)) {
2194		return false;
2195	}
2196
2197	return true;
2198}
2199
2200// Checks that every output from a test-case is a float NaN.
2201bool compareNan (const std::vector<BufferSp>&, const vector<AllocationSp>& outputAllocs, const std::vector<BufferSp>& expectedOutputs)
2202{
2203	if (outputAllocs.size() != 1)
2204		return false;
2205
2206	// We really just need this for size because we cannot compare Nans.
2207	const BufferSp& expectedOutput		= expectedOutputs[0];
2208	const float* output_as_float		= static_cast<const float*>(outputAllocs[0]->getHostPtr());;
2209
2210	for (size_t idx = 0; idx < expectedOutput->getNumBytes() / sizeof(float); ++idx)
2211	{
2212		if (!isnan(output_as_float[idx]))
2213		{
2214			return false;
2215		}
2216	}
2217
2218	return true;
2219}
2220
2221// Checks that a compute shader can generate a constant composite value of various types, without exercising a computation on it.
2222tcu::TestCaseGroup* createOpQuantizeToF16Group (tcu::TestContext& testCtx)
2223{
2224	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opquantize", "Tests the OpQuantizeToF16 instruction"));
2225
2226	const std::string shader (
2227		string(s_ShaderPreamble) +
2228
2229		"OpSource GLSL 430\n"
2230		"OpName %main           \"main\"\n"
2231		"OpName %id             \"gl_GlobalInvocationID\"\n"
2232
2233		"OpDecorate %id BuiltIn GlobalInvocationId\n"
2234
2235		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
2236
2237		"%id        = OpVariable %uvec3ptr Input\n"
2238		"%zero      = OpConstant %i32 0\n"
2239
2240		"%main      = OpFunction %void None %voidf\n"
2241		"%label     = OpLabel\n"
2242		"%idval     = OpLoad %uvec3 %id\n"
2243		"%x         = OpCompositeExtract %u32 %idval 0\n"
2244		"%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
2245		"%inval     = OpLoad %f32 %inloc\n"
2246		"%quant     = OpQuantizeToF16 %f32 %inval\n"
2247		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
2248		"             OpStore %outloc %quant\n"
2249		"             OpReturn\n"
2250		"             OpFunctionEnd\n");
2251
2252	{
2253		ComputeShaderSpec	spec;
2254		const deUint32		numElements		= 100;
2255		vector<float>		infinities;
2256		vector<float>		results;
2257
2258		infinities.reserve(numElements);
2259		results.reserve(numElements);
2260
2261		for (size_t idx = 0; idx < numElements; ++idx)
2262		{
2263			switch(idx % 4)
2264			{
2265				case 0:
2266					infinities.push_back(std::numeric_limits<float>::infinity());
2267					results.push_back(std::numeric_limits<float>::infinity());
2268					break;
2269				case 1:
2270					infinities.push_back(-std::numeric_limits<float>::infinity());
2271					results.push_back(-std::numeric_limits<float>::infinity());
2272					break;
2273				case 2:
2274					infinities.push_back(std::ldexp(1.0f, 16));
2275					results.push_back(std::numeric_limits<float>::infinity());
2276					break;
2277				case 3:
2278					infinities.push_back(std::ldexp(-1.0f, 32));
2279					results.push_back(-std::numeric_limits<float>::infinity());
2280					break;
2281			}
2282		}
2283
2284		spec.inputs.push_back(BufferSp(new Float32Buffer(infinities)));
2285		spec.outputs.push_back(BufferSp(new Float32Buffer(results)));
2286		spec.numWorkGroups = IVec3(numElements, 1, 1);
2287
2288		group->addChild(new SpvAsmComputeShaderCase(
2289			testCtx, "infinities", "Check that infinities propagated and created", spec));
2290	}
2291
2292	{
2293		ComputeShaderSpec	spec;
2294		vector<float>		nans;
2295		const deUint32		numElements		= 100;
2296
2297		nans.reserve(numElements);
2298
2299		for (size_t idx = 0; idx < numElements; ++idx)
2300		{
2301			if (idx % 2 == 0)
2302			{
2303				nans.push_back(std::numeric_limits<float>::quiet_NaN());
2304			}
2305			else
2306			{
2307				nans.push_back(-std::numeric_limits<float>::quiet_NaN());
2308			}
2309		}
2310
2311		spec.inputs.push_back(BufferSp(new Float32Buffer(nans)));
2312		spec.outputs.push_back(BufferSp(new Float32Buffer(nans)));
2313		spec.numWorkGroups = IVec3(numElements, 1, 1);
2314		spec.verifyIO = &compareNan;
2315
2316		group->addChild(new SpvAsmComputeShaderCase(
2317			testCtx, "propagated_nans", "Check that nans are propagated", spec));
2318	}
2319
2320	{
2321		ComputeShaderSpec	spec;
2322		vector<float>		small;
2323		vector<float>		zeros;
2324		const deUint32		numElements		= 100;
2325
2326		small.reserve(numElements);
2327		zeros.reserve(numElements);
2328
2329		for (size_t idx = 0; idx < numElements; ++idx)
2330		{
2331			switch(idx % 6)
2332			{
2333				case 0:
2334					small.push_back(0.f);
2335					zeros.push_back(0.f);
2336					break;
2337				case 1:
2338					small.push_back(-0.f);
2339					zeros.push_back(-0.f);
2340					break;
2341				case 2:
2342					small.push_back(std::ldexp(1.0f, -16));
2343					zeros.push_back(0.f);
2344					break;
2345				case 3:
2346					small.push_back(std::ldexp(-1.0f, -32));
2347					zeros.push_back(-0.f);
2348					break;
2349				case 4:
2350					small.push_back(std::ldexp(1.0f, -127));
2351					zeros.push_back(0.f);
2352					break;
2353				case 5:
2354					small.push_back(-std::ldexp(1.0f, -128));
2355					zeros.push_back(-0.f);
2356					break;
2357			}
2358		}
2359
2360		spec.inputs.push_back(BufferSp(new Float32Buffer(small)));
2361		spec.outputs.push_back(BufferSp(new Float32Buffer(zeros)));
2362		spec.numWorkGroups = IVec3(numElements, 1, 1);
2363
2364		group->addChild(new SpvAsmComputeShaderCase(
2365			testCtx, "flush_to_zero", "Check that values are zeroed correctly", spec));
2366	}
2367
2368	{
2369		ComputeShaderSpec	spec;
2370		vector<float>		exact;
2371		const deUint32		numElements		= 200;
2372
2373		exact.reserve(numElements);
2374
2375		for (size_t idx = 0; idx < numElements; ++idx)
2376			exact.push_back(static_cast<float>(idx - 100));
2377
2378		spec.inputs.push_back(BufferSp(new Float32Buffer(exact)));
2379		spec.outputs.push_back(BufferSp(new Float32Buffer(exact)));
2380		spec.numWorkGroups = IVec3(numElements, 1, 1);
2381
2382		group->addChild(new SpvAsmComputeShaderCase(
2383			testCtx, "exact", "Check that values exactly preserved where appropriate", spec));
2384	}
2385
2386	{
2387		ComputeShaderSpec	spec;
2388		vector<float>		inputs;
2389		const deUint32		numElements		= 4;
2390
2391		inputs.push_back(constructNormalizedFloat(8,	0x300300));
2392		inputs.push_back(-constructNormalizedFloat(-7,	0x600800));
2393		inputs.push_back(constructNormalizedFloat(2,	0x01E000));
2394		inputs.push_back(constructNormalizedFloat(1,	0xFFE000));
2395
2396		spec.verifyIO = &compareOpQuantizeF16ComputeExactCase;
2397		spec.inputs.push_back(BufferSp(new Float32Buffer(inputs)));
2398		spec.outputs.push_back(BufferSp(new Float32Buffer(inputs)));
2399		spec.numWorkGroups = IVec3(numElements, 1, 1);
2400
2401		group->addChild(new SpvAsmComputeShaderCase(
2402			testCtx, "rounded", "Check that are rounded when needed", spec));
2403	}
2404
2405	return group.release();
2406}
2407
2408// Performs a bitwise copy of source to the destination type Dest.
2409template <typename Dest, typename Src>
2410Dest bitwiseCast(Src source)
2411{
2412  Dest dest;
2413  DE_STATIC_ASSERT(sizeof(source) == sizeof(dest));
2414  deMemcpy(&dest, &source, sizeof(dest));
2415  return dest;
2416}
2417
2418tcu::TestCaseGroup* createSpecConstantOpQuantizeToF16Group (tcu::TestContext& testCtx)
2419{
2420	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opspecconstantop_opquantize", "Tests the OpQuantizeToF16 opcode for the OpSpecConstantOp instruction"));
2421
2422	const std::string shader (
2423		string(s_ShaderPreamble) +
2424
2425		"OpName %main           \"main\"\n"
2426		"OpName %id             \"gl_GlobalInvocationID\"\n"
2427
2428		"OpDecorate %id BuiltIn GlobalInvocationId\n"
2429
2430		"OpDecorate %sc_0  SpecId 0\n"
2431		"OpDecorate %sc_1  SpecId 1\n"
2432		"OpDecorate %sc_2  SpecId 2\n"
2433		"OpDecorate %sc_3  SpecId 3\n"
2434		"OpDecorate %sc_4  SpecId 4\n"
2435		"OpDecorate %sc_5  SpecId 5\n"
2436
2437		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
2438
2439		"%id        = OpVariable %uvec3ptr Input\n"
2440		"%zero      = OpConstant %i32 0\n"
2441		"%c_u32_6   = OpConstant %u32 6\n"
2442
2443		"%sc_0      = OpSpecConstant %f32 0.\n"
2444		"%sc_1      = OpSpecConstant %f32 0.\n"
2445		"%sc_2      = OpSpecConstant %f32 0.\n"
2446		"%sc_3      = OpSpecConstant %f32 0.\n"
2447		"%sc_4      = OpSpecConstant %f32 0.\n"
2448		"%sc_5      = OpSpecConstant %f32 0.\n"
2449
2450		"%sc_0_quant = OpSpecConstantOp %f32 QuantizeToF16 %sc_0\n"
2451		"%sc_1_quant = OpSpecConstantOp %f32 QuantizeToF16 %sc_1\n"
2452		"%sc_2_quant = OpSpecConstantOp %f32 QuantizeToF16 %sc_2\n"
2453		"%sc_3_quant = OpSpecConstantOp %f32 QuantizeToF16 %sc_3\n"
2454		"%sc_4_quant = OpSpecConstantOp %f32 QuantizeToF16 %sc_4\n"
2455		"%sc_5_quant = OpSpecConstantOp %f32 QuantizeToF16 %sc_5\n"
2456
2457		"%main      = OpFunction %void None %voidf\n"
2458		"%label     = OpLabel\n"
2459		"%idval     = OpLoad %uvec3 %id\n"
2460		"%x         = OpCompositeExtract %u32 %idval 0\n"
2461		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
2462		"%selector  = OpUMod %u32 %x %c_u32_6\n"
2463		"            OpSelectionMerge %exit None\n"
2464		"            OpSwitch %selector %exit 0 %case0 1 %case1 2 %case2 3 %case3 4 %case4 5 %case5\n"
2465
2466		"%case0     = OpLabel\n"
2467		"             OpStore %outloc %sc_0_quant\n"
2468		"             OpBranch %exit\n"
2469
2470		"%case1     = OpLabel\n"
2471		"             OpStore %outloc %sc_1_quant\n"
2472		"             OpBranch %exit\n"
2473
2474		"%case2     = OpLabel\n"
2475		"             OpStore %outloc %sc_2_quant\n"
2476		"             OpBranch %exit\n"
2477
2478		"%case3     = OpLabel\n"
2479		"             OpStore %outloc %sc_3_quant\n"
2480		"             OpBranch %exit\n"
2481
2482		"%case4     = OpLabel\n"
2483		"             OpStore %outloc %sc_4_quant\n"
2484		"             OpBranch %exit\n"
2485
2486		"%case5     = OpLabel\n"
2487		"             OpStore %outloc %sc_5_quant\n"
2488		"             OpBranch %exit\n"
2489
2490		"%exit      = OpLabel\n"
2491		"             OpReturn\n"
2492
2493		"             OpFunctionEnd\n");
2494
2495	{
2496		ComputeShaderSpec	spec;
2497		const deUint8		numCases	= 4;
2498		vector<float>		inputs		(numCases, 0.f);
2499		vector<float>		outputs;
2500
2501		spec.numWorkGroups = IVec3(numCases, 1, 1);
2502
2503		spec.specConstants.push_back(bitwiseCast<deUint32>(std::numeric_limits<float>::infinity()));
2504		spec.specConstants.push_back(bitwiseCast<deUint32>(-std::numeric_limits<float>::infinity()));
2505		spec.specConstants.push_back(bitwiseCast<deUint32>(std::ldexp(1.0f, 16)));
2506		spec.specConstants.push_back(bitwiseCast<deUint32>(std::ldexp(-1.0f, 32)));
2507
2508		outputs.push_back(std::numeric_limits<float>::infinity());
2509		outputs.push_back(-std::numeric_limits<float>::infinity());
2510		outputs.push_back(std::numeric_limits<float>::infinity());
2511		outputs.push_back(-std::numeric_limits<float>::infinity());
2512
2513		spec.inputs.push_back(BufferSp(new Float32Buffer(inputs)));
2514		spec.outputs.push_back(BufferSp(new Float32Buffer(outputs)));
2515
2516		group->addChild(new SpvAsmComputeShaderCase(
2517			testCtx, "infinities", "Check that infinities propagated and created", spec));
2518	}
2519
2520	{
2521		ComputeShaderSpec	spec;
2522		const deUint8		numCases	= 2;
2523		vector<float>		inputs		(numCases, 0.f);
2524		vector<float>		outputs;
2525
2526		spec.numWorkGroups	= IVec3(numCases, 1, 1);
2527		spec.verifyIO		= &compareNan;
2528
2529		outputs.push_back(std::numeric_limits<float>::quiet_NaN());
2530		outputs.push_back(-std::numeric_limits<float>::quiet_NaN());
2531
2532		for (deUint8 idx = 0; idx < numCases; ++idx)
2533			spec.specConstants.push_back(bitwiseCast<deUint32>(outputs[idx]));
2534
2535		spec.inputs.push_back(BufferSp(new Float32Buffer(inputs)));
2536		spec.outputs.push_back(BufferSp(new Float32Buffer(outputs)));
2537
2538		group->addChild(new SpvAsmComputeShaderCase(
2539			testCtx, "propagated_nans", "Check that nans are propagated", spec));
2540	}
2541
2542	{
2543		ComputeShaderSpec	spec;
2544		const deUint8		numCases	= 6;
2545		vector<float>		inputs		(numCases, 0.f);
2546		vector<float>		outputs;
2547
2548		spec.numWorkGroups	= IVec3(numCases, 1, 1);
2549
2550		spec.specConstants.push_back(bitwiseCast<deUint32>(0.f));
2551		spec.specConstants.push_back(bitwiseCast<deUint32>(-0.f));
2552		spec.specConstants.push_back(bitwiseCast<deUint32>(std::ldexp(1.0f, -16)));
2553		spec.specConstants.push_back(bitwiseCast<deUint32>(std::ldexp(-1.0f, -32)));
2554		spec.specConstants.push_back(bitwiseCast<deUint32>(std::ldexp(1.0f, -127)));
2555		spec.specConstants.push_back(bitwiseCast<deUint32>(-std::ldexp(1.0f, -128)));
2556
2557		outputs.push_back(0.f);
2558		outputs.push_back(-0.f);
2559		outputs.push_back(0.f);
2560		outputs.push_back(-0.f);
2561		outputs.push_back(0.f);
2562		outputs.push_back(-0.f);
2563
2564		spec.inputs.push_back(BufferSp(new Float32Buffer(inputs)));
2565		spec.outputs.push_back(BufferSp(new Float32Buffer(outputs)));
2566
2567		group->addChild(new SpvAsmComputeShaderCase(
2568			testCtx, "flush_to_zero", "Check that values are zeroed correctly", spec));
2569	}
2570
2571	{
2572		ComputeShaderSpec	spec;
2573		const deUint8		numCases	= 6;
2574		vector<float>		inputs		(numCases, 0.f);
2575		vector<float>		outputs;
2576
2577		spec.numWorkGroups	= IVec3(numCases, 1, 1);
2578
2579		for (deUint8 idx = 0; idx < 6; ++idx)
2580		{
2581			const float f = static_cast<float>(idx * 10 - 30) / 4.f;
2582			spec.specConstants.push_back(bitwiseCast<deUint32>(f));
2583			outputs.push_back(f);
2584		}
2585
2586		spec.inputs.push_back(BufferSp(new Float32Buffer(inputs)));
2587		spec.outputs.push_back(BufferSp(new Float32Buffer(outputs)));
2588
2589		group->addChild(new SpvAsmComputeShaderCase(
2590			testCtx, "exact", "Check that values exactly preserved where appropriate", spec));
2591	}
2592
2593	{
2594		ComputeShaderSpec	spec;
2595		const deUint8		numCases	= 4;
2596		vector<float>		inputs		(numCases, 0.f);
2597		vector<float>		outputs;
2598
2599		spec.numWorkGroups	= IVec3(numCases, 1, 1);
2600		spec.verifyIO		= &compareOpQuantizeF16ComputeExactCase;
2601
2602		outputs.push_back(constructNormalizedFloat(8, 0x300300));
2603		outputs.push_back(-constructNormalizedFloat(-7, 0x600800));
2604		outputs.push_back(constructNormalizedFloat(2, 0x01E000));
2605		outputs.push_back(constructNormalizedFloat(1, 0xFFE000));
2606
2607		for (deUint8 idx = 0; idx < numCases; ++idx)
2608			spec.specConstants.push_back(bitwiseCast<deUint32>(outputs[idx]));
2609
2610		spec.inputs.push_back(BufferSp(new Float32Buffer(inputs)));
2611		spec.outputs.push_back(BufferSp(new Float32Buffer(outputs)));
2612
2613		group->addChild(new SpvAsmComputeShaderCase(
2614			testCtx, "rounded", "Check that are rounded when needed", spec));
2615	}
2616
2617	return group.release();
2618}
2619
2620// Checks that constant null/composite values can be used in computation.
2621tcu::TestCaseGroup* createOpConstantUsageGroup (tcu::TestContext& testCtx)
2622{
2623	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opconstantnullcomposite", "Spotcheck the OpConstantNull & OpConstantComposite instruction"));
2624	ComputeShaderSpec				spec;
2625	de::Random						rnd				(deStringHash(group->getName()));
2626	const int						numElements		= 100;
2627	vector<float>					positiveFloats	(numElements, 0);
2628	vector<float>					negativeFloats	(numElements, 0);
2629
2630	fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
2631
2632	for (size_t ndx = 0; ndx < numElements; ++ndx)
2633		negativeFloats[ndx] = -positiveFloats[ndx];
2634
2635	spec.assembly =
2636		"OpCapability Shader\n"
2637		"%std450 = OpExtInstImport \"GLSL.std.450\"\n"
2638		"OpMemoryModel Logical GLSL450\n"
2639		"OpEntryPoint GLCompute %main \"main\" %id\n"
2640		"OpExecutionMode %main LocalSize 1 1 1\n"
2641
2642		"OpSource GLSL 430\n"
2643		"OpName %main           \"main\"\n"
2644		"OpName %id             \"gl_GlobalInvocationID\"\n"
2645
2646		"OpDecorate %id BuiltIn GlobalInvocationId\n"
2647
2648		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
2649
2650		"%fvec3     = OpTypeVector %f32 3\n"
2651		"%fmat      = OpTypeMatrix %fvec3 3\n"
2652		"%ten       = OpConstant %u32 10\n"
2653		"%f32arr10  = OpTypeArray %f32 %ten\n"
2654		"%fst       = OpTypeStruct %f32 %f32\n"
2655
2656		+ string(s_InputOutputBuffer) +
2657
2658		"%id        = OpVariable %uvec3ptr Input\n"
2659		"%zero      = OpConstant %i32 0\n"
2660
2661		// Create a bunch of null values
2662		"%unull     = OpConstantNull %u32\n"
2663		"%fnull     = OpConstantNull %f32\n"
2664		"%vnull     = OpConstantNull %fvec3\n"
2665		"%mnull     = OpConstantNull %fmat\n"
2666		"%anull     = OpConstantNull %f32arr10\n"
2667		"%snull     = OpConstantComposite %fst %fnull %fnull\n"
2668
2669		"%main      = OpFunction %void None %voidf\n"
2670		"%label     = OpLabel\n"
2671		"%idval     = OpLoad %uvec3 %id\n"
2672		"%x         = OpCompositeExtract %u32 %idval 0\n"
2673		"%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
2674		"%inval     = OpLoad %f32 %inloc\n"
2675		"%neg       = OpFNegate %f32 %inval\n"
2676
2677		// Get the abs() of (a certain element of) those null values
2678		"%unull_cov = OpConvertUToF %f32 %unull\n"
2679		"%unull_abs = OpExtInst %f32 %std450 FAbs %unull_cov\n"
2680		"%fnull_abs = OpExtInst %f32 %std450 FAbs %fnull\n"
2681		"%vnull_0   = OpCompositeExtract %f32 %vnull 0\n"
2682		"%vnull_abs = OpExtInst %f32 %std450 FAbs %vnull_0\n"
2683		"%mnull_12  = OpCompositeExtract %f32 %mnull 1 2\n"
2684		"%mnull_abs = OpExtInst %f32 %std450 FAbs %mnull_12\n"
2685		"%anull_3   = OpCompositeExtract %f32 %anull 3\n"
2686		"%anull_abs = OpExtInst %f32 %std450 FAbs %anull_3\n"
2687		"%snull_1   = OpCompositeExtract %f32 %snull 1\n"
2688		"%snull_abs = OpExtInst %f32 %std450 FAbs %snull_1\n"
2689
2690		// Add them all
2691		"%add1      = OpFAdd %f32 %neg  %unull_abs\n"
2692		"%add2      = OpFAdd %f32 %add1 %fnull_abs\n"
2693		"%add3      = OpFAdd %f32 %add2 %vnull_abs\n"
2694		"%add4      = OpFAdd %f32 %add3 %mnull_abs\n"
2695		"%add5      = OpFAdd %f32 %add4 %anull_abs\n"
2696		"%final     = OpFAdd %f32 %add5 %snull_abs\n"
2697
2698		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
2699		"             OpStore %outloc %final\n" // write to output
2700		"             OpReturn\n"
2701		"             OpFunctionEnd\n";
2702	spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
2703	spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
2704	spec.numWorkGroups = IVec3(numElements, 1, 1);
2705
2706	group->addChild(new SpvAsmComputeShaderCase(testCtx, "spotcheck", "Check that values constructed via OpConstantNull & OpConstantComposite can be used", spec));
2707
2708	return group.release();
2709}
2710
2711// Assembly code used for testing loop control is based on GLSL source code:
2712// #version 430
2713//
2714// layout(std140, set = 0, binding = 0) readonly buffer Input {
2715//   float elements[];
2716// } input_data;
2717// layout(std140, set = 0, binding = 1) writeonly buffer Output {
2718//   float elements[];
2719// } output_data;
2720//
2721// void main() {
2722//   uint x = gl_GlobalInvocationID.x;
2723//   output_data.elements[x] = input_data.elements[x];
2724//   for (uint i = 0; i < 4; ++i)
2725//     output_data.elements[x] += 1.f;
2726// }
2727tcu::TestCaseGroup* createLoopControlGroup (tcu::TestContext& testCtx)
2728{
2729	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "loop_control", "Tests loop control cases"));
2730	vector<CaseParameter>			cases;
2731	de::Random						rnd				(deStringHash(group->getName()));
2732	const int						numElements		= 100;
2733	vector<float>					inputFloats		(numElements, 0);
2734	vector<float>					outputFloats	(numElements, 0);
2735	const StringTemplate			shaderTemplate	(
2736		string(s_ShaderPreamble) +
2737
2738		"OpSource GLSL 430\n"
2739		"OpName %main \"main\"\n"
2740		"OpName %id \"gl_GlobalInvocationID\"\n"
2741
2742		"OpDecorate %id BuiltIn GlobalInvocationId\n"
2743
2744		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
2745
2746		"%u32ptr      = OpTypePointer Function %u32\n"
2747
2748		"%id          = OpVariable %uvec3ptr Input\n"
2749		"%zero        = OpConstant %i32 0\n"
2750		"%uzero       = OpConstant %u32 0\n"
2751		"%one         = OpConstant %i32 1\n"
2752		"%constf1     = OpConstant %f32 1.0\n"
2753		"%four        = OpConstant %u32 4\n"
2754
2755		"%main        = OpFunction %void None %voidf\n"
2756		"%entry       = OpLabel\n"
2757		"%i           = OpVariable %u32ptr Function\n"
2758		"               OpStore %i %uzero\n"
2759
2760		"%idval       = OpLoad %uvec3 %id\n"
2761		"%x           = OpCompositeExtract %u32 %idval 0\n"
2762		"%inloc       = OpAccessChain %f32ptr %indata %zero %x\n"
2763		"%inval       = OpLoad %f32 %inloc\n"
2764		"%outloc      = OpAccessChain %f32ptr %outdata %zero %x\n"
2765		"               OpStore %outloc %inval\n"
2766		"               OpBranch %loop_entry\n"
2767
2768		"%loop_entry  = OpLabel\n"
2769		"%i_val       = OpLoad %u32 %i\n"
2770		"%cmp_lt      = OpULessThan %bool %i_val %four\n"
2771		"               OpLoopMerge %loop_merge %loop_entry ${CONTROL}\n"
2772		"               OpBranchConditional %cmp_lt %loop_body %loop_merge\n"
2773		"%loop_body   = OpLabel\n"
2774		"%outval      = OpLoad %f32 %outloc\n"
2775		"%addf1       = OpFAdd %f32 %outval %constf1\n"
2776		"               OpStore %outloc %addf1\n"
2777		"%new_i       = OpIAdd %u32 %i_val %one\n"
2778		"               OpStore %i %new_i\n"
2779		"               OpBranch %loop_entry\n"
2780		"%loop_merge  = OpLabel\n"
2781		"               OpReturn\n"
2782		"               OpFunctionEnd\n");
2783
2784	cases.push_back(CaseParameter("none",				"None"));
2785	cases.push_back(CaseParameter("unroll",				"Unroll"));
2786	cases.push_back(CaseParameter("dont_unroll",		"DontUnroll"));
2787	cases.push_back(CaseParameter("unroll_dont_unroll",	"Unroll|DontUnroll"));
2788
2789	fillRandomScalars(rnd, -100.f, 100.f, &inputFloats[0], numElements);
2790
2791	for (size_t ndx = 0; ndx < numElements; ++ndx)
2792		outputFloats[ndx] = inputFloats[ndx] + 4.f;
2793
2794	for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
2795	{
2796		map<string, string>		specializations;
2797		ComputeShaderSpec		spec;
2798
2799		specializations["CONTROL"] = cases[caseNdx].param;
2800		spec.assembly = shaderTemplate.specialize(specializations);
2801		spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
2802		spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
2803		spec.numWorkGroups = IVec3(numElements, 1, 1);
2804
2805		group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
2806	}
2807
2808	return group.release();
2809}
2810
2811// Assembly code used for testing selection control is based on GLSL source code:
2812// #version 430
2813//
2814// layout(std140, set = 0, binding = 0) readonly buffer Input {
2815//   float elements[];
2816// } input_data;
2817// layout(std140, set = 0, binding = 1) writeonly buffer Output {
2818//   float elements[];
2819// } output_data;
2820//
2821// void main() {
2822//   uint x = gl_GlobalInvocationID.x;
2823//   float val = input_data.elements[x];
2824//   if (val > 10.f)
2825//     output_data.elements[x] = val + 1.f;
2826//   else
2827//     output_data.elements[x] = val - 1.f;
2828// }
2829tcu::TestCaseGroup* createSelectionControlGroup (tcu::TestContext& testCtx)
2830{
2831	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "selection_control", "Tests selection control cases"));
2832	vector<CaseParameter>			cases;
2833	de::Random						rnd				(deStringHash(group->getName()));
2834	const int						numElements		= 100;
2835	vector<float>					inputFloats		(numElements, 0);
2836	vector<float>					outputFloats	(numElements, 0);
2837	const StringTemplate			shaderTemplate	(
2838		string(s_ShaderPreamble) +
2839
2840		"OpSource GLSL 430\n"
2841		"OpName %main \"main\"\n"
2842		"OpName %id \"gl_GlobalInvocationID\"\n"
2843
2844		"OpDecorate %id BuiltIn GlobalInvocationId\n"
2845
2846		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
2847
2848		"%id       = OpVariable %uvec3ptr Input\n"
2849		"%zero     = OpConstant %i32 0\n"
2850		"%constf1  = OpConstant %f32 1.0\n"
2851		"%constf10 = OpConstant %f32 10.0\n"
2852
2853		"%main     = OpFunction %void None %voidf\n"
2854		"%entry    = OpLabel\n"
2855		"%idval    = OpLoad %uvec3 %id\n"
2856		"%x        = OpCompositeExtract %u32 %idval 0\n"
2857		"%inloc    = OpAccessChain %f32ptr %indata %zero %x\n"
2858		"%inval    = OpLoad %f32 %inloc\n"
2859		"%outloc   = OpAccessChain %f32ptr %outdata %zero %x\n"
2860		"%cmp_gt   = OpFOrdGreaterThan %bool %inval %constf10\n"
2861
2862		"            OpSelectionMerge %if_end ${CONTROL}\n"
2863		"            OpBranchConditional %cmp_gt %if_true %if_false\n"
2864		"%if_true  = OpLabel\n"
2865		"%addf1    = OpFAdd %f32 %inval %constf1\n"
2866		"            OpStore %outloc %addf1\n"
2867		"            OpBranch %if_end\n"
2868		"%if_false = OpLabel\n"
2869		"%subf1    = OpFSub %f32 %inval %constf1\n"
2870		"            OpStore %outloc %subf1\n"
2871		"            OpBranch %if_end\n"
2872		"%if_end   = OpLabel\n"
2873		"            OpReturn\n"
2874		"            OpFunctionEnd\n");
2875
2876	cases.push_back(CaseParameter("none",					"None"));
2877	cases.push_back(CaseParameter("flatten",				"Flatten"));
2878	cases.push_back(CaseParameter("dont_flatten",			"DontFlatten"));
2879	cases.push_back(CaseParameter("flatten_dont_flatten",	"DontFlatten|Flatten"));
2880
2881	fillRandomScalars(rnd, -100.f, 100.f, &inputFloats[0], numElements);
2882
2883	for (size_t ndx = 0; ndx < numElements; ++ndx)
2884		outputFloats[ndx] = inputFloats[ndx] + (inputFloats[ndx] > 10.f ? 1.f : -1.f);
2885
2886	for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
2887	{
2888		map<string, string>		specializations;
2889		ComputeShaderSpec		spec;
2890
2891		specializations["CONTROL"] = cases[caseNdx].param;
2892		spec.assembly = shaderTemplate.specialize(specializations);
2893		spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
2894		spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
2895		spec.numWorkGroups = IVec3(numElements, 1, 1);
2896
2897		group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
2898	}
2899
2900	return group.release();
2901}
2902
2903// Assembly code used for testing function control is based on GLSL source code:
2904//
2905// #version 430
2906//
2907// layout(std140, set = 0, binding = 0) readonly buffer Input {
2908//   float elements[];
2909// } input_data;
2910// layout(std140, set = 0, binding = 1) writeonly buffer Output {
2911//   float elements[];
2912// } output_data;
2913//
2914// float const10() { return 10.f; }
2915//
2916// void main() {
2917//   uint x = gl_GlobalInvocationID.x;
2918//   output_data.elements[x] = input_data.elements[x] + const10();
2919// }
2920tcu::TestCaseGroup* createFunctionControlGroup (tcu::TestContext& testCtx)
2921{
2922	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "function_control", "Tests function control cases"));
2923	vector<CaseParameter>			cases;
2924	de::Random						rnd				(deStringHash(group->getName()));
2925	const int						numElements		= 100;
2926	vector<float>					inputFloats		(numElements, 0);
2927	vector<float>					outputFloats	(numElements, 0);
2928	const StringTemplate			shaderTemplate	(
2929		string(s_ShaderPreamble) +
2930
2931		"OpSource GLSL 430\n"
2932		"OpName %main \"main\"\n"
2933		"OpName %func_const10 \"const10(\"\n"
2934		"OpName %id \"gl_GlobalInvocationID\"\n"
2935
2936		"OpDecorate %id BuiltIn GlobalInvocationId\n"
2937
2938		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
2939
2940		"%f32f = OpTypeFunction %f32\n"
2941		"%id = OpVariable %uvec3ptr Input\n"
2942		"%zero = OpConstant %i32 0\n"
2943		"%constf10 = OpConstant %f32 10.0\n"
2944
2945		"%main         = OpFunction %void None %voidf\n"
2946		"%entry        = OpLabel\n"
2947		"%idval        = OpLoad %uvec3 %id\n"
2948		"%x            = OpCompositeExtract %u32 %idval 0\n"
2949		"%inloc        = OpAccessChain %f32ptr %indata %zero %x\n"
2950		"%inval        = OpLoad %f32 %inloc\n"
2951		"%ret_10       = OpFunctionCall %f32 %func_const10\n"
2952		"%fadd         = OpFAdd %f32 %inval %ret_10\n"
2953		"%outloc       = OpAccessChain %f32ptr %outdata %zero %x\n"
2954		"                OpStore %outloc %fadd\n"
2955		"                OpReturn\n"
2956		"                OpFunctionEnd\n"
2957
2958		"%func_const10 = OpFunction %f32 ${CONTROL} %f32f\n"
2959		"%label        = OpLabel\n"
2960		"                OpReturnValue %constf10\n"
2961		"                OpFunctionEnd\n");
2962
2963	cases.push_back(CaseParameter("none",						"None"));
2964	cases.push_back(CaseParameter("inline",						"Inline"));
2965	cases.push_back(CaseParameter("dont_inline",				"DontInline"));
2966	cases.push_back(CaseParameter("pure",						"Pure"));
2967	cases.push_back(CaseParameter("const",						"Const"));
2968	cases.push_back(CaseParameter("inline_pure",				"Inline|Pure"));
2969	cases.push_back(CaseParameter("const_dont_inline",			"Const|DontInline"));
2970	cases.push_back(CaseParameter("inline_dont_inline",			"Inline|DontInline"));
2971	cases.push_back(CaseParameter("pure_inline_dont_inline",	"Pure|Inline|DontInline"));
2972
2973	fillRandomScalars(rnd, -100.f, 100.f, &inputFloats[0], numElements);
2974
2975	for (size_t ndx = 0; ndx < numElements; ++ndx)
2976		outputFloats[ndx] = inputFloats[ndx] + 10.f;
2977
2978	for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
2979	{
2980		map<string, string>		specializations;
2981		ComputeShaderSpec		spec;
2982
2983		specializations["CONTROL"] = cases[caseNdx].param;
2984		spec.assembly = shaderTemplate.specialize(specializations);
2985		spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
2986		spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
2987		spec.numWorkGroups = IVec3(numElements, 1, 1);
2988
2989		group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
2990	}
2991
2992	return group.release();
2993}
2994
2995tcu::TestCaseGroup* createMemoryAccessGroup (tcu::TestContext& testCtx)
2996{
2997	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "memory_access", "Tests memory access cases"));
2998	vector<CaseParameter>			cases;
2999	de::Random						rnd				(deStringHash(group->getName()));
3000	const int						numElements		= 100;
3001	vector<float>					inputFloats		(numElements, 0);
3002	vector<float>					outputFloats	(numElements, 0);
3003	const StringTemplate			shaderTemplate	(
3004		string(s_ShaderPreamble) +
3005
3006		"OpSource GLSL 430\n"
3007		"OpName %main           \"main\"\n"
3008		"OpName %id             \"gl_GlobalInvocationID\"\n"
3009
3010		"OpDecorate %id BuiltIn GlobalInvocationId\n"
3011
3012		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
3013
3014		"%f32ptr_f  = OpTypePointer Function %f32\n"
3015
3016		"%id        = OpVariable %uvec3ptr Input\n"
3017		"%zero      = OpConstant %i32 0\n"
3018		"%four      = OpConstant %i32 4\n"
3019
3020		"%main      = OpFunction %void None %voidf\n"
3021		"%label     = OpLabel\n"
3022		"%copy      = OpVariable %f32ptr_f Function\n"
3023		"%idval     = OpLoad %uvec3 %id ${ACCESS}\n"
3024		"%x         = OpCompositeExtract %u32 %idval 0\n"
3025		"%inloc     = OpAccessChain %f32ptr %indata  %zero %x\n"
3026		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
3027		"             OpCopyMemory %copy %inloc ${ACCESS}\n"
3028		"%val1      = OpLoad %f32 %copy\n"
3029		"%val2      = OpLoad %f32 %inloc\n"
3030		"%add       = OpFAdd %f32 %val1 %val2\n"
3031		"             OpStore %outloc %add ${ACCESS}\n"
3032		"             OpReturn\n"
3033		"             OpFunctionEnd\n");
3034
3035	cases.push_back(CaseParameter("null",					""));
3036	cases.push_back(CaseParameter("none",					"None"));
3037	cases.push_back(CaseParameter("volatile",				"Volatile"));
3038	cases.push_back(CaseParameter("aligned",				"Aligned 4"));
3039	cases.push_back(CaseParameter("nontemporal",			"Nontemporal"));
3040	cases.push_back(CaseParameter("aligned_nontemporal",	"Aligned|Nontemporal 4"));
3041	cases.push_back(CaseParameter("aligned_volatile",		"Volatile|Aligned 4"));
3042
3043	fillRandomScalars(rnd, -100.f, 100.f, &inputFloats[0], numElements);
3044
3045	for (size_t ndx = 0; ndx < numElements; ++ndx)
3046		outputFloats[ndx] = inputFloats[ndx] + inputFloats[ndx];
3047
3048	for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
3049	{
3050		map<string, string>		specializations;
3051		ComputeShaderSpec		spec;
3052
3053		specializations["ACCESS"] = cases[caseNdx].param;
3054		spec.assembly = shaderTemplate.specialize(specializations);
3055		spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
3056		spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
3057		spec.numWorkGroups = IVec3(numElements, 1, 1);
3058
3059		group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
3060	}
3061
3062	return group.release();
3063}
3064
3065// Checks that we can get undefined values for various types, without exercising a computation with it.
3066tcu::TestCaseGroup* createOpUndefGroup (tcu::TestContext& testCtx)
3067{
3068	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opundef", "Tests the OpUndef instruction"));
3069	vector<CaseParameter>			cases;
3070	de::Random						rnd				(deStringHash(group->getName()));
3071	const int						numElements		= 100;
3072	vector<float>					positiveFloats	(numElements, 0);
3073	vector<float>					negativeFloats	(numElements, 0);
3074	const StringTemplate			shaderTemplate	(
3075		string(s_ShaderPreamble) +
3076
3077		"OpSource GLSL 430\n"
3078		"OpName %main           \"main\"\n"
3079		"OpName %id             \"gl_GlobalInvocationID\"\n"
3080
3081		"OpDecorate %id BuiltIn GlobalInvocationId\n"
3082
3083		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
3084
3085		"${TYPE}\n"
3086
3087		"%id        = OpVariable %uvec3ptr Input\n"
3088		"%zero      = OpConstant %i32 0\n"
3089
3090		"%main      = OpFunction %void None %voidf\n"
3091		"%label     = OpLabel\n"
3092
3093		"%undef     = OpUndef %type\n"
3094
3095		"%idval     = OpLoad %uvec3 %id\n"
3096		"%x         = OpCompositeExtract %u32 %idval 0\n"
3097
3098		"%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
3099		"%inval     = OpLoad %f32 %inloc\n"
3100		"%neg       = OpFNegate %f32 %inval\n"
3101		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
3102		"             OpStore %outloc %neg\n"
3103		"             OpReturn\n"
3104		"             OpFunctionEnd\n");
3105
3106	cases.push_back(CaseParameter("bool",			"%type = OpTypeBool"));
3107	cases.push_back(CaseParameter("sint32",			"%type = OpTypeInt 32 1"));
3108	cases.push_back(CaseParameter("uint32",			"%type = OpTypeInt 32 0"));
3109	cases.push_back(CaseParameter("float32",		"%type = OpTypeFloat 32"));
3110	cases.push_back(CaseParameter("vec4float32",	"%type = OpTypeVector %f32 4"));
3111	cases.push_back(CaseParameter("vec2uint32",		"%type = OpTypeVector %u32 2"));
3112	cases.push_back(CaseParameter("matrix",			"%type = OpTypeMatrix %fvec3 3"));
3113	cases.push_back(CaseParameter("image",			"%type = OpTypeImage %f32 2D 0 0 0 0 Unknown"));
3114	cases.push_back(CaseParameter("sampler",		"%type = OpTypeSampler"));
3115	cases.push_back(CaseParameter("sampledimage",	"%img = OpTypeImage %f32 2D 0 0 0 0 Unknown\n"
3116													"%type = OpTypeSampledImage %img"));
3117	cases.push_back(CaseParameter("array",			"%100 = OpConstant %u32 100\n"
3118													"%type = OpTypeArray %i32 %100"));
3119	cases.push_back(CaseParameter("runtimearray",	"%type = OpTypeRuntimeArray %f32"));
3120	cases.push_back(CaseParameter("struct",			"%type = OpTypeStruct %f32 %i32 %u32"));
3121	cases.push_back(CaseParameter("pointer",		"%type = OpTypePointer Function %i32"));
3122
3123	fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
3124
3125	for (size_t ndx = 0; ndx < numElements; ++ndx)
3126		negativeFloats[ndx] = -positiveFloats[ndx];
3127
3128	for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
3129	{
3130		map<string, string>		specializations;
3131		ComputeShaderSpec		spec;
3132
3133		specializations["TYPE"] = cases[caseNdx].param;
3134		spec.assembly = shaderTemplate.specialize(specializations);
3135		spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
3136		spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
3137		spec.numWorkGroups = IVec3(numElements, 1, 1);
3138
3139		group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
3140	}
3141
3142		return group.release();
3143}
3144typedef std::pair<std::string, VkShaderStageFlagBits>	EntryToStage;
3145typedef map<string, vector<EntryToStage> >				ModuleMap;
3146typedef map<VkShaderStageFlagBits, vector<deInt32> >	StageToSpecConstantMap;
3147
3148// Context for a specific test instantiation. For example, an instantiation
3149// may test colors yellow/magenta/cyan/mauve in a tesselation shader
3150// with an entry point named 'main_to_the_main'
3151struct InstanceContext
3152{
3153	// Map of modules to what entry_points we care to use from those modules.
3154	ModuleMap				moduleMap;
3155	RGBA					inputColors[4];
3156	RGBA					outputColors[4];
3157	// Concrete SPIR-V code to test via boilerplate specialization.
3158	map<string, string>		testCodeFragments;
3159	StageToSpecConstantMap	specConstants;
3160	bool					hasTessellation;
3161	VkShaderStageFlagBits	requiredStages;
3162
3163	InstanceContext (const RGBA (&inputs)[4], const RGBA (&outputs)[4], const map<string, string>& testCodeFragments_, const StageToSpecConstantMap& specConstants_)
3164		: testCodeFragments		(testCodeFragments_)
3165		, specConstants			(specConstants_)
3166		, hasTessellation		(false)
3167		, requiredStages		(static_cast<VkShaderStageFlagBits>(0))
3168	{
3169		inputColors[0]		= inputs[0];
3170		inputColors[1]		= inputs[1];
3171		inputColors[2]		= inputs[2];
3172		inputColors[3]		= inputs[3];
3173
3174		outputColors[0]		= outputs[0];
3175		outputColors[1]		= outputs[1];
3176		outputColors[2]		= outputs[2];
3177		outputColors[3]		= outputs[3];
3178	}
3179
3180	InstanceContext (const InstanceContext& other)
3181		: moduleMap			(other.moduleMap)
3182		, testCodeFragments	(other.testCodeFragments)
3183		, specConstants		(other.specConstants)
3184		, hasTessellation	(other.hasTessellation)
3185		, requiredStages    (other.requiredStages)
3186	{
3187		inputColors[0]		= other.inputColors[0];
3188		inputColors[1]		= other.inputColors[1];
3189		inputColors[2]		= other.inputColors[2];
3190		inputColors[3]		= other.inputColors[3];
3191
3192		outputColors[0]		= other.outputColors[0];
3193		outputColors[1]		= other.outputColors[1];
3194		outputColors[2]		= other.outputColors[2];
3195		outputColors[3]		= other.outputColors[3];
3196	}
3197};
3198
3199// A description of a shader to be used for a single stage of the graphics pipeline.
3200struct ShaderElement
3201{
3202	// The module that contains this shader entrypoint.
3203	string					moduleName;
3204
3205	// The name of the entrypoint.
3206	string					entryName;
3207
3208	// Which shader stage this entry point represents.
3209	VkShaderStageFlagBits	stage;
3210
3211	ShaderElement (const string& moduleName_, const string& entryPoint_, VkShaderStageFlagBits shaderStage_)
3212		: moduleName(moduleName_)
3213		, entryName(entryPoint_)
3214		, stage(shaderStage_)
3215	{
3216	}
3217};
3218
3219void getDefaultColors (RGBA (&colors)[4])
3220{
3221	colors[0] = RGBA::white();
3222	colors[1] = RGBA::red();
3223	colors[2] = RGBA::green();
3224	colors[3] = RGBA::blue();
3225}
3226
3227void getHalfColorsFullAlpha (RGBA (&colors)[4])
3228{
3229	colors[0] = RGBA(127, 127, 127, 255);
3230	colors[1] = RGBA(127, 0,   0,	255);
3231	colors[2] = RGBA(0,	  127, 0,	255);
3232	colors[3] = RGBA(0,	  0,   127, 255);
3233}
3234
3235void getInvertedDefaultColors (RGBA (&colors)[4])
3236{
3237	colors[0] = RGBA(0,		0,		0,		255);
3238	colors[1] = RGBA(0,		255,	255,	255);
3239	colors[2] = RGBA(255,	0,		255,	255);
3240	colors[3] = RGBA(255,	255,	0,		255);
3241}
3242
3243// Turns a statically sized array of ShaderElements into an instance-context
3244// by setting up the mapping of modules to their contained shaders and stages.
3245// The inputs and expected outputs are given by inputColors and outputColors
3246template<size_t N>
3247InstanceContext createInstanceContext (const ShaderElement (&elements)[N], const RGBA (&inputColors)[4], const RGBA (&outputColors)[4], const map<string, string>& testCodeFragments, const StageToSpecConstantMap& specConstants)
3248{
3249	InstanceContext ctx (inputColors, outputColors, testCodeFragments, specConstants);
3250	for (size_t i = 0; i < N; ++i)
3251	{
3252		ctx.moduleMap[elements[i].moduleName].push_back(std::make_pair(elements[i].entryName, elements[i].stage));
3253		ctx.requiredStages = static_cast<VkShaderStageFlagBits>(ctx.requiredStages | elements[i].stage);
3254	}
3255	return ctx;
3256}
3257
3258template<size_t N>
3259inline InstanceContext createInstanceContext (const ShaderElement (&elements)[N], RGBA (&inputColors)[4], const RGBA (&outputColors)[4], const map<string, string>& testCodeFragments)
3260{
3261	return createInstanceContext(elements, inputColors, outputColors, testCodeFragments, StageToSpecConstantMap());
3262}
3263
3264// The same as createInstanceContext above, but with default colors.
3265template<size_t N>
3266InstanceContext createInstanceContext (const ShaderElement (&elements)[N], const map<string, string>& testCodeFragments)
3267{
3268	RGBA defaultColors[4];
3269	getDefaultColors(defaultColors);
3270	return createInstanceContext(elements, defaultColors, defaultColors, testCodeFragments);
3271}
3272
3273// For the current InstanceContext, constructs the required modules and shader stage create infos.
3274void createPipelineShaderStages (const DeviceInterface& vk, const VkDevice vkDevice, InstanceContext& instance, Context& context, vector<ModuleHandleSp>& modules, vector<VkPipelineShaderStageCreateInfo>& createInfos)
3275{
3276	for (ModuleMap::const_iterator moduleNdx = instance.moduleMap.begin(); moduleNdx != instance.moduleMap.end(); ++moduleNdx)
3277	{
3278		const ModuleHandleSp mod(new Unique<VkShaderModule>(createShaderModule(vk, vkDevice, context.getBinaryCollection().get(moduleNdx->first), 0)));
3279		modules.push_back(ModuleHandleSp(mod));
3280		for (vector<EntryToStage>::const_iterator shaderNdx = moduleNdx->second.begin(); shaderNdx != moduleNdx->second.end(); ++shaderNdx)
3281		{
3282			const EntryToStage&						stage			= *shaderNdx;
3283			const VkPipelineShaderStageCreateInfo	shaderParam		=
3284			{
3285				VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,	//	VkStructureType			sType;
3286				DE_NULL,												//	const void*				pNext;
3287				(VkPipelineShaderStageCreateFlags)0,
3288				stage.second,											//	VkShaderStageFlagBits	stage;
3289				**modules.back(),										//	VkShaderModule			module;
3290				stage.first.c_str(),									//	const char*				pName;
3291				(const VkSpecializationInfo*)DE_NULL,
3292			};
3293			createInfos.push_back(shaderParam);
3294		}
3295	}
3296}
3297
3298#define SPIRV_ASSEMBLY_TYPES																	\
3299	"%void = OpTypeVoid\n"																		\
3300	"%bool = OpTypeBool\n"																		\
3301																								\
3302	"%i32 = OpTypeInt 32 1\n"																	\
3303	"%u32 = OpTypeInt 32 0\n"																	\
3304																								\
3305	"%f32 = OpTypeFloat 32\n"																	\
3306	"%v3f32 = OpTypeVector %f32 3\n"															\
3307	"%v4f32 = OpTypeVector %f32 4\n"															\
3308																								\
3309	"%v4f32_function = OpTypeFunction %v4f32 %v4f32\n"											\
3310	"%fun = OpTypeFunction %void\n"																\
3311																								\
3312	"%ip_f32 = OpTypePointer Input %f32\n"														\
3313	"%ip_i32 = OpTypePointer Input %i32\n"														\
3314	"%ip_v3f32 = OpTypePointer Input %v3f32\n"													\
3315	"%ip_v4f32 = OpTypePointer Input %v4f32\n"													\
3316																								\
3317	"%op_f32 = OpTypePointer Output %f32\n"														\
3318	"%op_v4f32 = OpTypePointer Output %v4f32\n"													\
3319																								\
3320	"%fp_f32   = OpTypePointer Function %f32\n"													\
3321	"%fp_i32   = OpTypePointer Function %i32\n"													\
3322	"%fp_v4f32 = OpTypePointer Function %v4f32\n"
3323
3324#define SPIRV_ASSEMBLY_CONSTANTS																\
3325	"%c_f32_1 = OpConstant %f32 1.0\n"															\
3326	"%c_f32_0 = OpConstant %f32 0.0\n"															\
3327	"%c_f32_0_5 = OpConstant %f32 0.5\n"														\
3328	"%c_f32_n1  = OpConstant %f32 -1.\n"														\
3329	"%c_f32_7 = OpConstant %f32 7.0\n"															\
3330	"%c_f32_8 = OpConstant %f32 8.0\n"															\
3331	"%c_i32_0 = OpConstant %i32 0\n"															\
3332	"%c_i32_1 = OpConstant %i32 1\n"															\
3333	"%c_i32_2 = OpConstant %i32 2\n"															\
3334	"%c_i32_3 = OpConstant %i32 3\n"															\
3335	"%c_i32_4 = OpConstant %i32 4\n"															\
3336	"%c_u32_0 = OpConstant %u32 0\n"															\
3337	"%c_u32_1 = OpConstant %u32 1\n"															\
3338	"%c_u32_2 = OpConstant %u32 2\n"															\
3339	"%c_u32_3 = OpConstant %u32 3\n"															\
3340	"%c_u32_32 = OpConstant %u32 32\n"															\
3341	"%c_u32_4 = OpConstant %u32 4\n"															\
3342	"%c_u32_31_bits = OpConstant %u32 0x7FFFFFFF\n"												\
3343	"%c_v4f32_1_1_1_1 = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_1\n"		\
3344	"%c_v4f32_1_0_0_1 = OpConstantComposite %v4f32 %c_f32_1 %c_f32_0 %c_f32_0 %c_f32_1\n"		\
3345	"%c_v4f32_0_5_0_5_0_5_0_5 = OpConstantComposite %v4f32 %c_f32_0_5 %c_f32_0_5 %c_f32_0_5 %c_f32_0_5\n"
3346
3347#define SPIRV_ASSEMBLY_ARRAYS																	\
3348	"%a1f32 = OpTypeArray %f32 %c_u32_1\n"														\
3349	"%a2f32 = OpTypeArray %f32 %c_u32_2\n"														\
3350	"%a3v4f32 = OpTypeArray %v4f32 %c_u32_3\n"													\
3351	"%a4f32 = OpTypeArray %f32 %c_u32_4\n"														\
3352	"%a32v4f32 = OpTypeArray %v4f32 %c_u32_32\n"												\
3353	"%ip_a3v4f32 = OpTypePointer Input %a3v4f32\n"												\
3354	"%ip_a32v4f32 = OpTypePointer Input %a32v4f32\n"											\
3355	"%op_a2f32 = OpTypePointer Output %a2f32\n"													\
3356	"%op_a3v4f32 = OpTypePointer Output %a3v4f32\n"												\
3357	"%op_a4f32 = OpTypePointer Output %a4f32\n"
3358
3359// Creates vertex-shader assembly by specializing a boilerplate StringTemplate
3360// on fragments, which must (at least) map "testfun" to an OpFunction definition
3361// for %test_code that takes and returns a %v4f32.  Boilerplate IDs are prefixed
3362// with "BP_" to avoid collisions with fragments.
3363//
3364// It corresponds roughly to this GLSL:
3365//;
3366// layout(location = 0) in vec4 position;
3367// layout(location = 1) in vec4 color;
3368// layout(location = 1) out highp vec4 vtxColor;
3369// void main (void) { gl_Position = position; vtxColor = test_func(color); }
3370string makeVertexShaderAssembly(const map<string, string>& fragments)
3371{
3372// \todo [2015-11-23 awoloszyn] Remove OpName once these have stabalized
3373	static const char vertexShaderBoilerplate[] =
3374		"OpCapability Shader\n"
3375		"OpMemoryModel Logical GLSL450\n"
3376		"OpEntryPoint Vertex %main \"main\" %BP_stream %BP_position %BP_vtx_color %BP_color %BP_gl_VertexID %BP_gl_InstanceID\n"
3377		"${debug:opt}\n"
3378		"OpName %main \"main\"\n"
3379		"OpName %BP_gl_PerVertex \"gl_PerVertex\"\n"
3380		"OpMemberName %BP_gl_PerVertex 0 \"gl_Position\"\n"
3381		"OpMemberName %BP_gl_PerVertex 1 \"gl_PointSize\"\n"
3382		"OpMemberName %BP_gl_PerVertex 2 \"gl_ClipDistance\"\n"
3383		"OpMemberName %BP_gl_PerVertex 3 \"gl_CullDistance\"\n"
3384		"OpName %test_code \"testfun(vf4;\"\n"
3385		"OpName %BP_stream \"\"\n"
3386		"OpName %BP_position \"position\"\n"
3387		"OpName %BP_vtx_color \"vtxColor\"\n"
3388		"OpName %BP_color \"color\"\n"
3389		"OpName %BP_gl_VertexID \"gl_VertexID\"\n"
3390		"OpName %BP_gl_InstanceID \"gl_InstanceID\"\n"
3391		"OpMemberDecorate %BP_gl_PerVertex 0 BuiltIn Position\n"
3392		"OpMemberDecorate %BP_gl_PerVertex 1 BuiltIn PointSize\n"
3393		"OpMemberDecorate %BP_gl_PerVertex 2 BuiltIn ClipDistance\n"
3394		"OpMemberDecorate %BP_gl_PerVertex 3 BuiltIn CullDistance\n"
3395		"OpDecorate %BP_gl_PerVertex Block\n"
3396		"OpDecorate %BP_position Location 0\n"
3397		"OpDecorate %BP_vtx_color Location 1\n"
3398		"OpDecorate %BP_color Location 1\n"
3399		"OpDecorate %BP_gl_VertexID BuiltIn VertexId\n"
3400		"OpDecorate %BP_gl_InstanceID BuiltIn InstanceId\n"
3401		"${decoration:opt}\n"
3402		SPIRV_ASSEMBLY_TYPES
3403		SPIRV_ASSEMBLY_CONSTANTS
3404		SPIRV_ASSEMBLY_ARRAYS
3405		"%BP_gl_PerVertex = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
3406		"%BP_op_gl_PerVertex = OpTypePointer Output %BP_gl_PerVertex\n"
3407		"%BP_stream = OpVariable %BP_op_gl_PerVertex Output\n"
3408		"%BP_position = OpVariable %ip_v4f32 Input\n"
3409		"%BP_vtx_color = OpVariable %op_v4f32 Output\n"
3410		"%BP_color = OpVariable %ip_v4f32 Input\n"
3411		"%BP_gl_VertexID = OpVariable %ip_i32 Input\n"
3412		"%BP_gl_InstanceID = OpVariable %ip_i32 Input\n"
3413		"${pre_main:opt}\n"
3414		"%main = OpFunction %void None %fun\n"
3415		"%BP_label = OpLabel\n"
3416		"%BP_pos = OpLoad %v4f32 %BP_position\n"
3417		"%BP_gl_pos = OpAccessChain %op_v4f32 %BP_stream %c_i32_0\n"
3418		"OpStore %BP_gl_pos %BP_pos\n"
3419		"%BP_col = OpLoad %v4f32 %BP_color\n"
3420		"%BP_col_transformed = OpFunctionCall %v4f32 %test_code %BP_col\n"
3421		"OpStore %BP_vtx_color %BP_col_transformed\n"
3422		"OpReturn\n"
3423		"OpFunctionEnd\n"
3424		"${testfun}\n";
3425	return tcu::StringTemplate(vertexShaderBoilerplate).specialize(fragments);
3426}
3427
3428// Creates tess-control-shader assembly by specializing a boilerplate
3429// StringTemplate on fragments, which must (at least) map "testfun" to an
3430// OpFunction definition for %test_code that takes and returns a %v4f32.
3431// Boilerplate IDs are prefixed with "BP_" to avoid collisions with fragments.
3432//
3433// It roughly corresponds to the following GLSL.
3434//
3435// #version 450
3436// layout(vertices = 3) out;
3437// layout(location = 1) in vec4 in_color[];
3438// layout(location = 1) out vec4 out_color[];
3439//
3440// void main() {
3441//   out_color[gl_InvocationID] = testfun(in_color[gl_InvocationID]);
3442//   gl_out[gl_InvocationID].gl_Position = gl_in[gl_InvocationID].gl_Position;
3443//   if (gl_InvocationID == 0) {
3444//     gl_TessLevelOuter[0] = 1.0;
3445//     gl_TessLevelOuter[1] = 1.0;
3446//     gl_TessLevelOuter[2] = 1.0;
3447//     gl_TessLevelInner[0] = 1.0;
3448//   }
3449// }
3450string makeTessControlShaderAssembly (const map<string, string>& fragments)
3451{
3452	static const char tessControlShaderBoilerplate[] =
3453		"OpCapability Tessellation\n"
3454		"OpMemoryModel Logical GLSL450\n"
3455		"OpEntryPoint TessellationControl %BP_main \"main\" %BP_out_color %BP_gl_InvocationID %BP_in_color %BP_gl_out %BP_gl_in %BP_gl_TessLevelOuter %BP_gl_TessLevelInner\n"
3456		"OpExecutionMode %BP_main OutputVertices 3\n"
3457		"${debug:opt}\n"
3458		"OpName %BP_main \"main\"\n"
3459		"OpName %test_code \"testfun(vf4;\"\n"
3460		"OpName %BP_out_color \"out_color\"\n"
3461		"OpName %BP_gl_InvocationID \"gl_InvocationID\"\n"
3462		"OpName %BP_in_color \"in_color\"\n"
3463		"OpName %BP_gl_PerVertex \"gl_PerVertex\"\n"
3464		"OpMemberName %BP_gl_PerVertex 0 \"gl_Position\"\n"
3465		"OpMemberName %BP_gl_PerVertex 1 \"gl_PointSize\"\n"
3466		"OpMemberName %BP_gl_PerVertex 2 \"gl_ClipDistance\"\n"
3467		"OpMemberName %BP_gl_PerVertex 3 \"gl_CullDistance\"\n"
3468		"OpName %BP_gl_out \"gl_out\"\n"
3469		"OpName %BP_gl_PVOut \"gl_PerVertex\"\n"
3470		"OpMemberName %BP_gl_PVOut 0 \"gl_Position\"\n"
3471		"OpMemberName %BP_gl_PVOut 1 \"gl_PointSize\"\n"
3472		"OpMemberName %BP_gl_PVOut 2 \"gl_ClipDistance\"\n"
3473		"OpMemberName %BP_gl_PVOut 3 \"gl_CullDistance\"\n"
3474		"OpName %BP_gl_in \"gl_in\"\n"
3475		"OpName %BP_gl_TessLevelOuter \"gl_TessLevelOuter\"\n"
3476		"OpName %BP_gl_TessLevelInner \"gl_TessLevelInner\"\n"
3477		"OpDecorate %BP_out_color Location 1\n"
3478		"OpDecorate %BP_gl_InvocationID BuiltIn InvocationId\n"
3479		"OpDecorate %BP_in_color Location 1\n"
3480		"OpMemberDecorate %BP_gl_PerVertex 0 BuiltIn Position\n"
3481		"OpMemberDecorate %BP_gl_PerVertex 1 BuiltIn PointSize\n"
3482		"OpMemberDecorate %BP_gl_PerVertex 2 BuiltIn ClipDistance\n"
3483		"OpMemberDecorate %BP_gl_PerVertex 3 BuiltIn CullDistance\n"
3484		"OpDecorate %BP_gl_PerVertex Block\n"
3485		"OpMemberDecorate %BP_gl_PVOut 0 BuiltIn Position\n"
3486		"OpMemberDecorate %BP_gl_PVOut 1 BuiltIn PointSize\n"
3487		"OpMemberDecorate %BP_gl_PVOut 2 BuiltIn ClipDistance\n"
3488		"OpMemberDecorate %BP_gl_PVOut 3 BuiltIn CullDistance\n"
3489		"OpDecorate %BP_gl_PVOut Block\n"
3490		"OpDecorate %BP_gl_TessLevelOuter Patch\n"
3491		"OpDecorate %BP_gl_TessLevelOuter BuiltIn TessLevelOuter\n"
3492		"OpDecorate %BP_gl_TessLevelInner Patch\n"
3493		"OpDecorate %BP_gl_TessLevelInner BuiltIn TessLevelInner\n"
3494		"${decoration:opt}\n"
3495		SPIRV_ASSEMBLY_TYPES
3496		SPIRV_ASSEMBLY_CONSTANTS
3497		SPIRV_ASSEMBLY_ARRAYS
3498		"%BP_out_color = OpVariable %op_a3v4f32 Output\n"
3499		"%BP_gl_InvocationID = OpVariable %ip_i32 Input\n"
3500		"%BP_in_color = OpVariable %ip_a32v4f32 Input\n"
3501		"%BP_gl_PerVertex = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
3502		"%BP_a3_gl_PerVertex = OpTypeArray %BP_gl_PerVertex %c_u32_3\n"
3503		"%BP_op_a3_gl_PerVertex = OpTypePointer Output %BP_a3_gl_PerVertex\n"
3504		"%BP_gl_out = OpVariable %BP_op_a3_gl_PerVertex Output\n"
3505		"%BP_gl_PVOut = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
3506		"%BP_a32_gl_PVOut = OpTypeArray %BP_gl_PVOut %c_u32_32\n"
3507		"%BP_ip_a32_gl_PVOut = OpTypePointer Input %BP_a32_gl_PVOut\n"
3508		"%BP_gl_in = OpVariable %BP_ip_a32_gl_PVOut Input\n"
3509		"%BP_gl_TessLevelOuter = OpVariable %op_a4f32 Output\n"
3510		"%BP_gl_TessLevelInner = OpVariable %op_a2f32 Output\n"
3511		"${pre_main:opt}\n"
3512
3513		"%BP_main = OpFunction %void None %fun\n"
3514		"%BP_label = OpLabel\n"
3515
3516		"%BP_gl_Invoc = OpLoad %i32 %BP_gl_InvocationID\n"
3517
3518		"%BP_in_col_loc = OpAccessChain %ip_v4f32 %BP_in_color %BP_gl_Invoc\n"
3519		"%BP_out_col_loc = OpAccessChain %op_v4f32 %BP_out_color %BP_gl_Invoc\n"
3520		"%BP_in_col_val = OpLoad %v4f32 %BP_in_col_loc\n"
3521		"%BP_clr_transformed = OpFunctionCall %v4f32 %test_code %BP_in_col_val\n"
3522		"OpStore %BP_out_col_loc %BP_clr_transformed\n"
3523
3524		"%BP_in_pos_loc = OpAccessChain %ip_v4f32 %BP_gl_in %BP_gl_Invoc %c_i32_0\n"
3525		"%BP_out_pos_loc = OpAccessChain %op_v4f32 %BP_gl_out %BP_gl_Invoc %c_i32_0\n"
3526		"%BP_in_pos_val = OpLoad %v4f32 %BP_in_pos_loc\n"
3527		"OpStore %BP_out_pos_loc %BP_in_pos_val\n"
3528
3529		"%BP_cmp = OpIEqual %bool %BP_gl_Invoc %c_i32_0\n"
3530		"OpSelectionMerge %BP_merge_label None\n"
3531		"OpBranchConditional %BP_cmp %BP_if_label %BP_merge_label\n"
3532		"%BP_if_label = OpLabel\n"
3533		"%BP_gl_TessLevelOuterPos_0 = OpAccessChain %op_f32 %BP_gl_TessLevelOuter %c_i32_0\n"
3534		"%BP_gl_TessLevelOuterPos_1 = OpAccessChain %op_f32 %BP_gl_TessLevelOuter %c_i32_1\n"
3535		"%BP_gl_TessLevelOuterPos_2 = OpAccessChain %op_f32 %BP_gl_TessLevelOuter %c_i32_2\n"
3536		"%BP_gl_TessLevelInnerPos_0 = OpAccessChain %op_f32 %BP_gl_TessLevelInner %c_i32_0\n"
3537		"OpStore %BP_gl_TessLevelOuterPos_0 %c_f32_1\n"
3538		"OpStore %BP_gl_TessLevelOuterPos_1 %c_f32_1\n"
3539		"OpStore %BP_gl_TessLevelOuterPos_2 %c_f32_1\n"
3540		"OpStore %BP_gl_TessLevelInnerPos_0 %c_f32_1\n"
3541		"OpBranch %BP_merge_label\n"
3542		"%BP_merge_label = OpLabel\n"
3543		"OpReturn\n"
3544		"OpFunctionEnd\n"
3545		"${testfun}\n";
3546	return tcu::StringTemplate(tessControlShaderBoilerplate).specialize(fragments);
3547}
3548
3549// Creates tess-evaluation-shader assembly by specializing a boilerplate
3550// StringTemplate on fragments, which must (at least) map "testfun" to an
3551// OpFunction definition for %test_code that takes and returns a %v4f32.
3552// Boilerplate IDs are prefixed with "BP_" to avoid collisions with fragments.
3553//
3554// It roughly corresponds to the following glsl.
3555//
3556// #version 450
3557//
3558// layout(triangles, equal_spacing, ccw) in;
3559// layout(location = 1) in vec4 in_color[];
3560// layout(location = 1) out vec4 out_color;
3561//
3562// #define interpolate(val)
3563//   vec4(gl_TessCoord.x) * val[0] + vec4(gl_TessCoord.y) * val[1] +
3564//          vec4(gl_TessCoord.z) * val[2]
3565//
3566// void main() {
3567//   gl_Position = vec4(gl_TessCoord.x) * gl_in[0].gl_Position +
3568//                  vec4(gl_TessCoord.y) * gl_in[1].gl_Position +
3569//                  vec4(gl_TessCoord.z) * gl_in[2].gl_Position;
3570//   out_color = testfun(interpolate(in_color));
3571// }
3572string makeTessEvalShaderAssembly(const map<string, string>& fragments)
3573{
3574	static const char tessEvalBoilerplate[] =
3575		"OpCapability Tessellation\n"
3576		"OpMemoryModel Logical GLSL450\n"
3577		"OpEntryPoint TessellationEvaluation %BP_main \"main\" %BP_stream %BP_gl_TessCoord %BP_gl_in %BP_out_color %BP_in_color\n"
3578		"OpExecutionMode %BP_main Triangles\n"
3579		"OpExecutionMode %BP_main SpacingEqual\n"
3580		"OpExecutionMode %BP_main VertexOrderCcw\n"
3581		"${debug:opt}\n"
3582		"OpName %BP_main \"main\"\n"
3583		"OpName %test_code \"testfun(vf4;\"\n"
3584		"OpName %BP_gl_PerVertexOut \"gl_PerVertex\"\n"
3585		"OpMemberName %BP_gl_PerVertexOut 0 \"gl_Position\"\n"
3586		"OpMemberName %BP_gl_PerVertexOut 1 \"gl_PointSize\"\n"
3587		"OpMemberName %BP_gl_PerVertexOut 2 \"gl_ClipDistance\"\n"
3588		"OpMemberName %BP_gl_PerVertexOut 3 \"gl_CullDistance\"\n"
3589		"OpName %BP_stream \"\"\n"
3590		"OpName %BP_gl_TessCoord \"gl_TessCoord\"\n"
3591		"OpName %BP_gl_PerVertexIn \"gl_PerVertex\"\n"
3592		"OpMemberName %BP_gl_PerVertexIn 0 \"gl_Position\"\n"
3593		"OpMemberName %BP_gl_PerVertexIn 1 \"gl_PointSize\"\n"
3594		"OpMemberName %BP_gl_PerVertexIn 2 \"gl_ClipDistance\"\n"
3595		"OpMemberName %BP_gl_PerVertexIn 3 \"gl_CullDistance\"\n"
3596		"OpName %BP_gl_in \"gl_in\"\n"
3597		"OpName %BP_out_color \"out_color\"\n"
3598		"OpName %BP_in_color \"in_color\"\n"
3599		"OpMemberDecorate %BP_gl_PerVertexOut 0 BuiltIn Position\n"
3600		"OpMemberDecorate %BP_gl_PerVertexOut 1 BuiltIn PointSize\n"
3601		"OpMemberDecorate %BP_gl_PerVertexOut 2 BuiltIn ClipDistance\n"
3602		"OpMemberDecorate %BP_gl_PerVertexOut 3 BuiltIn CullDistance\n"
3603		"OpDecorate %BP_gl_PerVertexOut Block\n"
3604		"OpDecorate %BP_gl_TessCoord BuiltIn TessCoord\n"
3605		"OpMemberDecorate %BP_gl_PerVertexIn 0 BuiltIn Position\n"
3606		"OpMemberDecorate %BP_gl_PerVertexIn 1 BuiltIn PointSize\n"
3607		"OpMemberDecorate %BP_gl_PerVertexIn 2 BuiltIn ClipDistance\n"
3608		"OpMemberDecorate %BP_gl_PerVertexIn 3 BuiltIn CullDistance\n"
3609		"OpDecorate %BP_gl_PerVertexIn Block\n"
3610		"OpDecorate %BP_out_color Location 1\n"
3611		"OpDecorate %BP_in_color Location 1\n"
3612		"${decoration:opt}\n"
3613		SPIRV_ASSEMBLY_TYPES
3614		SPIRV_ASSEMBLY_CONSTANTS
3615		SPIRV_ASSEMBLY_ARRAYS
3616		"%BP_gl_PerVertexOut = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
3617		"%BP_op_gl_PerVertexOut = OpTypePointer Output %BP_gl_PerVertexOut\n"
3618		"%BP_stream = OpVariable %BP_op_gl_PerVertexOut Output\n"
3619		"%BP_gl_TessCoord = OpVariable %ip_v3f32 Input\n"
3620		"%BP_gl_PerVertexIn = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
3621		"%BP_a32_gl_PerVertexIn = OpTypeArray %BP_gl_PerVertexIn %c_u32_32\n"
3622		"%BP_ip_a32_gl_PerVertexIn = OpTypePointer Input %BP_a32_gl_PerVertexIn\n"
3623		"%BP_gl_in = OpVariable %BP_ip_a32_gl_PerVertexIn Input\n"
3624		"%BP_out_color = OpVariable %op_v4f32 Output\n"
3625		"%BP_in_color = OpVariable %ip_a32v4f32 Input\n"
3626		"${pre_main:opt}\n"
3627		"%BP_main = OpFunction %void None %fun\n"
3628		"%BP_label = OpLabel\n"
3629		"%BP_gl_TC_0 = OpAccessChain %ip_f32 %BP_gl_TessCoord %c_u32_0\n"
3630		"%BP_gl_TC_1 = OpAccessChain %ip_f32 %BP_gl_TessCoord %c_u32_1\n"
3631		"%BP_gl_TC_2 = OpAccessChain %ip_f32 %BP_gl_TessCoord %c_u32_2\n"
3632		"%BP_gl_in_gl_Pos_0 = OpAccessChain %ip_v4f32 %BP_gl_in %c_i32_0 %c_i32_0\n"
3633		"%BP_gl_in_gl_Pos_1 = OpAccessChain %ip_v4f32 %BP_gl_in %c_i32_1 %c_i32_0\n"
3634		"%BP_gl_in_gl_Pos_2 = OpAccessChain %ip_v4f32 %BP_gl_in %c_i32_2 %c_i32_0\n"
3635
3636		"%BP_gl_OPos = OpAccessChain %op_v4f32 %BP_stream %c_i32_0\n"
3637		"%BP_in_color_0 = OpAccessChain %ip_v4f32 %BP_in_color %c_i32_0\n"
3638		"%BP_in_color_1 = OpAccessChain %ip_v4f32 %BP_in_color %c_i32_1\n"
3639		"%BP_in_color_2 = OpAccessChain %ip_v4f32 %BP_in_color %c_i32_2\n"
3640
3641		"%BP_TC_W_0 = OpLoad %f32 %BP_gl_TC_0\n"
3642		"%BP_TC_W_1 = OpLoad %f32 %BP_gl_TC_1\n"
3643		"%BP_TC_W_2 = OpLoad %f32 %BP_gl_TC_2\n"
3644		"%BP_v4f32_TC_0 = OpCompositeConstruct %v4f32 %BP_TC_W_0 %BP_TC_W_0 %BP_TC_W_0 %BP_TC_W_0\n"
3645		"%BP_v4f32_TC_1 = OpCompositeConstruct %v4f32 %BP_TC_W_1 %BP_TC_W_1 %BP_TC_W_1 %BP_TC_W_1\n"
3646		"%BP_v4f32_TC_2 = OpCompositeConstruct %v4f32 %BP_TC_W_2 %BP_TC_W_2 %BP_TC_W_2 %BP_TC_W_2\n"
3647
3648		"%BP_gl_IP_0 = OpLoad %v4f32 %BP_gl_in_gl_Pos_0\n"
3649		"%BP_gl_IP_1 = OpLoad %v4f32 %BP_gl_in_gl_Pos_1\n"
3650		"%BP_gl_IP_2 = OpLoad %v4f32 %BP_gl_in_gl_Pos_2\n"
3651
3652		"%BP_IP_W_0 = OpFMul %v4f32 %BP_v4f32_TC_0 %BP_gl_IP_0\n"
3653		"%BP_IP_W_1 = OpFMul %v4f32 %BP_v4f32_TC_1 %BP_gl_IP_1\n"
3654		"%BP_IP_W_2 = OpFMul %v4f32 %BP_v4f32_TC_2 %BP_gl_IP_2\n"
3655
3656		"%BP_pos_sum_0 = OpFAdd %v4f32 %BP_IP_W_0 %BP_IP_W_1\n"
3657		"%BP_pos_sum_1 = OpFAdd %v4f32 %BP_pos_sum_0 %BP_IP_W_2\n"
3658
3659		"OpStore %BP_gl_OPos %BP_pos_sum_1\n"
3660
3661		"%BP_IC_0 = OpLoad %v4f32 %BP_in_color_0\n"
3662		"%BP_IC_1 = OpLoad %v4f32 %BP_in_color_1\n"
3663		"%BP_IC_2 = OpLoad %v4f32 %BP_in_color_2\n"
3664
3665		"%BP_IC_W_0 = OpFMul %v4f32 %BP_v4f32_TC_0 %BP_IC_0\n"
3666		"%BP_IC_W_1 = OpFMul %v4f32 %BP_v4f32_TC_1 %BP_IC_1\n"
3667		"%BP_IC_W_2 = OpFMul %v4f32 %BP_v4f32_TC_2 %BP_IC_2\n"
3668
3669		"%BP_col_sum_0 = OpFAdd %v4f32 %BP_IC_W_0 %BP_IC_W_1\n"
3670		"%BP_col_sum_1 = OpFAdd %v4f32 %BP_col_sum_0 %BP_IC_W_2\n"
3671
3672		"%BP_clr_transformed = OpFunctionCall %v4f32 %test_code %BP_col_sum_1\n"
3673
3674		"OpStore %BP_out_color %BP_clr_transformed\n"
3675		"OpReturn\n"
3676		"OpFunctionEnd\n"
3677		"${testfun}\n";
3678	return tcu::StringTemplate(tessEvalBoilerplate).specialize(fragments);
3679}
3680
3681// Creates geometry-shader assembly by specializing a boilerplate StringTemplate
3682// on fragments, which must (at least) map "testfun" to an OpFunction definition
3683// for %test_code that takes and returns a %v4f32.  Boilerplate IDs are prefixed
3684// with "BP_" to avoid collisions with fragments.
3685//
3686// Derived from this GLSL:
3687//
3688// #version 450
3689// layout(triangles) in;
3690// layout(triangle_strip, max_vertices = 3) out;
3691//
3692// layout(location = 1) in vec4 in_color[];
3693// layout(location = 1) out vec4 out_color;
3694//
3695// void main() {
3696//   gl_Position = gl_in[0].gl_Position;
3697//   out_color = test_fun(in_color[0]);
3698//   EmitVertex();
3699//   gl_Position = gl_in[1].gl_Position;
3700//   out_color = test_fun(in_color[1]);
3701//   EmitVertex();
3702//   gl_Position = gl_in[2].gl_Position;
3703//   out_color = test_fun(in_color[2]);
3704//   EmitVertex();
3705//   EndPrimitive();
3706// }
3707string makeGeometryShaderAssembly(const map<string, string>& fragments)
3708{
3709	static const char geometryShaderBoilerplate[] =
3710		"OpCapability Geometry\n"
3711		"OpMemoryModel Logical GLSL450\n"
3712		"OpEntryPoint Geometry %BP_main \"main\" %BP_out_gl_position %BP_gl_in %BP_out_color %BP_in_color\n"
3713		"OpExecutionMode %BP_main Triangles\n"
3714		"OpExecutionMode %BP_main Invocations 0\n"
3715		"OpExecutionMode %BP_main OutputTriangleStrip\n"
3716		"OpExecutionMode %BP_main OutputVertices 3\n"
3717		"${debug:opt}\n"
3718		"OpName %BP_main \"main\"\n"
3719		"OpName %BP_per_vertex_in \"gl_PerVertex\"\n"
3720		"OpMemberName %BP_per_vertex_in 0 \"gl_Position\"\n"
3721		"OpMemberName %BP_per_vertex_in 1 \"gl_PointSize\"\n"
3722		"OpMemberName %BP_per_vertex_in 2 \"gl_ClipDistance\"\n"
3723		"OpMemberName %BP_per_vertex_in 3 \"gl_CullDistance\"\n"
3724		"OpName %BP_gl_in \"gl_in\"\n"
3725		"OpName %BP_out_color \"out_color\"\n"
3726		"OpName %BP_in_color \"in_color\"\n"
3727		"OpName %test_code \"testfun(vf4;\"\n"
3728		"OpDecorate %BP_out_gl_position BuiltIn Position\n"
3729		"OpMemberDecorate %BP_per_vertex_in 0 BuiltIn Position\n"
3730		"OpMemberDecorate %BP_per_vertex_in 1 BuiltIn PointSize\n"
3731		"OpMemberDecorate %BP_per_vertex_in 2 BuiltIn ClipDistance\n"
3732		"OpMemberDecorate %BP_per_vertex_in 3 BuiltIn CullDistance\n"
3733		"OpDecorate %BP_per_vertex_in Block\n"
3734		"OpDecorate %BP_out_color Location 1\n"
3735		"OpDecorate %BP_out_color Stream 0\n"
3736		"OpDecorate %BP_in_color Location 1\n"
3737		"${decoration:opt}\n"
3738		SPIRV_ASSEMBLY_TYPES
3739		SPIRV_ASSEMBLY_CONSTANTS
3740		SPIRV_ASSEMBLY_ARRAYS
3741		"%BP_per_vertex_in = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
3742		"%BP_a3_per_vertex_in = OpTypeArray %BP_per_vertex_in %c_u32_3\n"
3743		"%BP_ip_a3_per_vertex_in = OpTypePointer Input %BP_a3_per_vertex_in\n"
3744
3745		"%BP_gl_in = OpVariable %BP_ip_a3_per_vertex_in Input\n"
3746		"%BP_out_color = OpVariable %op_v4f32 Output\n"
3747		"%BP_in_color = OpVariable %ip_a3v4f32 Input\n"
3748		"%BP_out_gl_position = OpVariable %op_v4f32 Output\n"
3749		"${pre_main:opt}\n"
3750
3751		"%BP_main = OpFunction %void None %fun\n"
3752		"%BP_label = OpLabel\n"
3753		"%BP_gl_in_0_gl_position = OpAccessChain %ip_v4f32 %BP_gl_in %c_i32_0 %c_i32_0\n"
3754		"%BP_gl_in_1_gl_position = OpAccessChain %ip_v4f32 %BP_gl_in %c_i32_1 %c_i32_0\n"
3755		"%BP_gl_in_2_gl_position = OpAccessChain %ip_v4f32 %BP_gl_in %c_i32_2 %c_i32_0\n"
3756
3757		"%BP_in_position_0 = OpLoad %v4f32 %BP_gl_in_0_gl_position\n"
3758		"%BP_in_position_1 = OpLoad %v4f32 %BP_gl_in_1_gl_position\n"
3759		"%BP_in_position_2 = OpLoad %v4f32 %BP_gl_in_2_gl_position \n"
3760
3761		"%BP_in_color_0_ptr = OpAccessChain %ip_v4f32 %BP_in_color %c_i32_0\n"
3762		"%BP_in_color_1_ptr = OpAccessChain %ip_v4f32 %BP_in_color %c_i32_1\n"
3763		"%BP_in_color_2_ptr = OpAccessChain %ip_v4f32 %BP_in_color %c_i32_2\n"
3764
3765		"%BP_in_color_0 = OpLoad %v4f32 %BP_in_color_0_ptr\n"
3766		"%BP_in_color_1 = OpLoad %v4f32 %BP_in_color_1_ptr\n"
3767		"%BP_in_color_2 = OpLoad %v4f32 %BP_in_color_2_ptr\n"
3768
3769		"%BP_transformed_in_color_0 = OpFunctionCall %v4f32 %test_code %BP_in_color_0\n"
3770		"%BP_transformed_in_color_1 = OpFunctionCall %v4f32 %test_code %BP_in_color_1\n"
3771		"%BP_transformed_in_color_2 = OpFunctionCall %v4f32 %test_code %BP_in_color_2\n"
3772
3773
3774		"OpStore %BP_out_gl_position %BP_in_position_0\n"
3775		"OpStore %BP_out_color %BP_transformed_in_color_0\n"
3776		"OpEmitVertex\n"
3777
3778		"OpStore %BP_out_gl_position %BP_in_position_1\n"
3779		"OpStore %BP_out_color %BP_transformed_in_color_1\n"
3780		"OpEmitVertex\n"
3781
3782		"OpStore %BP_out_gl_position %BP_in_position_2\n"
3783		"OpStore %BP_out_color %BP_transformed_in_color_2\n"
3784		"OpEmitVertex\n"
3785
3786		"OpEndPrimitive\n"
3787		"OpReturn\n"
3788		"OpFunctionEnd\n"
3789		"${testfun}\n";
3790	return tcu::StringTemplate(geometryShaderBoilerplate).specialize(fragments);
3791}
3792
3793// Creates fragment-shader assembly by specializing a boilerplate StringTemplate
3794// on fragments, which must (at least) map "testfun" to an OpFunction definition
3795// for %test_code that takes and returns a %v4f32.  Boilerplate IDs are prefixed
3796// with "BP_" to avoid collisions with fragments.
3797//
3798// Derived from this GLSL:
3799//
3800// layout(location = 1) in highp vec4 vtxColor;
3801// layout(location = 0) out highp vec4 fragColor;
3802// highp vec4 testfun(highp vec4 x) { return x; }
3803// void main(void) { fragColor = testfun(vtxColor); }
3804//
3805// with modifications including passing vtxColor by value and ripping out
3806// testfun() definition.
3807string makeFragmentShaderAssembly(const map<string, string>& fragments)
3808{
3809	static const char fragmentShaderBoilerplate[] =
3810		"OpCapability Shader\n"
3811		"OpMemoryModel Logical GLSL450\n"
3812		"OpEntryPoint Fragment %BP_main \"main\" %BP_vtxColor %BP_fragColor\n"
3813		"OpExecutionMode %BP_main OriginUpperLeft\n"
3814		"${debug:opt}\n"
3815		"OpName %BP_main \"main\"\n"
3816		"OpName %BP_fragColor \"fragColor\"\n"
3817		"OpName %BP_vtxColor \"vtxColor\"\n"
3818		"OpName %test_code \"testfun(vf4;\"\n"
3819		"OpDecorate %BP_fragColor Location 0\n"
3820		"OpDecorate %BP_vtxColor Location 1\n"
3821		"${decoration:opt}\n"
3822		SPIRV_ASSEMBLY_TYPES
3823		SPIRV_ASSEMBLY_CONSTANTS
3824		SPIRV_ASSEMBLY_ARRAYS
3825		"%BP_fragColor = OpVariable %op_v4f32 Output\n"
3826		"%BP_vtxColor = OpVariable %ip_v4f32 Input\n"
3827		"${pre_main:opt}\n"
3828		"%BP_main = OpFunction %void None %fun\n"
3829		"%BP_label_main = OpLabel\n"
3830		"%BP_tmp1 = OpLoad %v4f32 %BP_vtxColor\n"
3831		"%BP_tmp2 = OpFunctionCall %v4f32 %test_code %BP_tmp1\n"
3832		"OpStore %BP_fragColor %BP_tmp2\n"
3833		"OpReturn\n"
3834		"OpFunctionEnd\n"
3835		"${testfun}\n";
3836	return tcu::StringTemplate(fragmentShaderBoilerplate).specialize(fragments);
3837}
3838
3839// Creates fragments that specialize into a simple pass-through shader (of any kind).
3840map<string, string> passthruFragments(void)
3841{
3842	map<string, string> fragments;
3843	fragments["testfun"] =
3844		// A %test_code function that returns its argument unchanged.
3845		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
3846		"%param1 = OpFunctionParameter %v4f32\n"
3847		"%label_testfun = OpLabel\n"
3848		"OpReturnValue %param1\n"
3849		"OpFunctionEnd\n";
3850	return fragments;
3851}
3852
3853// Adds shader assembly text to dst.spirvAsmSources for all shader kinds.
3854// Vertex shader gets custom code from context, the rest are pass-through.
3855void addShaderCodeCustomVertex(vk::SourceCollections& dst, InstanceContext context)
3856{
3857	map<string, string> passthru = passthruFragments();
3858	dst.spirvAsmSources.add("vert") << makeVertexShaderAssembly(context.testCodeFragments);
3859	dst.spirvAsmSources.add("frag") << makeFragmentShaderAssembly(passthru);
3860}
3861
3862// Adds shader assembly text to dst.spirvAsmSources for all shader kinds.
3863// Tessellation control shader gets custom code from context, the rest are
3864// pass-through.
3865void addShaderCodeCustomTessControl(vk::SourceCollections& dst, InstanceContext context)
3866{
3867	map<string, string> passthru = passthruFragments();
3868	dst.spirvAsmSources.add("vert") << makeVertexShaderAssembly(passthru);
3869	dst.spirvAsmSources.add("tessc") << makeTessControlShaderAssembly(context.testCodeFragments);
3870	dst.spirvAsmSources.add("tesse") << makeTessEvalShaderAssembly(passthru);
3871	dst.spirvAsmSources.add("frag") << makeFragmentShaderAssembly(passthru);
3872}
3873
3874// Adds shader assembly text to dst.spirvAsmSources for all shader kinds.
3875// Tessellation evaluation shader gets custom code from context, the rest are
3876// pass-through.
3877void addShaderCodeCustomTessEval(vk::SourceCollections& dst, InstanceContext context)
3878{
3879	map<string, string> passthru = passthruFragments();
3880	dst.spirvAsmSources.add("vert") << makeVertexShaderAssembly(passthru);
3881	dst.spirvAsmSources.add("tessc") << makeTessControlShaderAssembly(passthru);
3882	dst.spirvAsmSources.add("tesse") << makeTessEvalShaderAssembly(context.testCodeFragments);
3883	dst.spirvAsmSources.add("frag") << makeFragmentShaderAssembly(passthru);
3884}
3885
3886// Adds shader assembly text to dst.spirvAsmSources for all shader kinds.
3887// Geometry shader gets custom code from context, the rest are pass-through.
3888void addShaderCodeCustomGeometry(vk::SourceCollections& dst, InstanceContext context)
3889{
3890	map<string, string> passthru = passthruFragments();
3891	dst.spirvAsmSources.add("vert") << makeVertexShaderAssembly(passthru);
3892	dst.spirvAsmSources.add("geom") << makeGeometryShaderAssembly(context.testCodeFragments);
3893	dst.spirvAsmSources.add("frag") << makeFragmentShaderAssembly(passthru);
3894}
3895
3896// Adds shader assembly text to dst.spirvAsmSources for all shader kinds.
3897// Fragment shader gets custom code from context, the rest are pass-through.
3898void addShaderCodeCustomFragment(vk::SourceCollections& dst, InstanceContext context)
3899{
3900	map<string, string> passthru = passthruFragments();
3901	dst.spirvAsmSources.add("vert") << makeVertexShaderAssembly(passthru);
3902	dst.spirvAsmSources.add("frag") << makeFragmentShaderAssembly(context.testCodeFragments);
3903}
3904
3905void createCombinedModule(vk::SourceCollections& dst, InstanceContext)
3906{
3907	// \todo [2015-12-07 awoloszyn] Make tessellation / geometry conditional
3908	// \todo [2015-12-07 awoloszyn] Remove OpName and OpMemberName at some point
3909	dst.spirvAsmSources.add("module") <<
3910		"OpCapability Shader\n"
3911		"OpCapability Geometry\n"
3912		"OpCapability Tessellation\n"
3913		"OpMemoryModel Logical GLSL450\n"
3914
3915		"OpEntryPoint Vertex %vert_main \"main\" %vert_Position %vert_vtxColor %vert_color %vert_vtxPosition %vert_vertex_id %vert_instance_id\n"
3916		"OpEntryPoint Geometry %geom_main \"main\" %geom_out_gl_position %geom_gl_in %geom_out_color %geom_in_color\n"
3917		"OpEntryPoint TessellationControl %tessc_main \"main\" %tessc_out_color %tessc_gl_InvocationID %tessc_in_color %tessc_out_position %tessc_in_position %tessc_gl_TessLevelOuter %tessc_gl_TessLevelInner\n"
3918		"OpEntryPoint TessellationEvaluation %tesse_main \"main\" %tesse_stream %tesse_gl_tessCoord %tesse_in_position %tesse_out_color %tesse_in_color \n"
3919		"OpEntryPoint Fragment %frag_main \"main\" %frag_vtxColor %frag_fragColor\n"
3920
3921		"OpExecutionMode %geom_main Triangles\n"
3922		"OpExecutionMode %geom_main Invocations 0\n"
3923		"OpExecutionMode %geom_main OutputTriangleStrip\n"
3924		"OpExecutionMode %geom_main OutputVertices 3\n"
3925
3926		"OpExecutionMode %tessc_main OutputVertices 3\n"
3927
3928		"OpExecutionMode %tesse_main Triangles\n"
3929
3930		"OpExecutionMode %frag_main OriginUpperLeft\n"
3931
3932		"; Vertex decorations\n"
3933		"OpName %vert_main \"main\"\n"
3934		"OpName %vert_vtxPosition \"vtxPosition\"\n"
3935		"OpName %vert_Position \"position\"\n"
3936		"OpName %vert_vtxColor \"vtxColor\"\n"
3937		"OpName %vert_color \"color\"\n"
3938		"OpName %vert_vertex_id \"gl_VertexID\"\n"
3939		"OpName %vert_instance_id \"gl_InstanceID\"\n"
3940		"OpDecorate %vert_vtxPosition Location 2\n"
3941		"OpDecorate %vert_Position Location 0\n"
3942		"OpDecorate %vert_vtxColor Location 1\n"
3943		"OpDecorate %vert_color Location 1\n"
3944		"OpDecorate %vert_vertex_id BuiltIn VertexId\n"
3945		"OpDecorate %vert_instance_id BuiltIn InstanceId\n"
3946
3947		"; Geometry decorations\n"
3948		"OpName %geom_main \"main\"\n"
3949		"OpName %geom_per_vertex_in \"gl_PerVertex\"\n"
3950		"OpMemberName %geom_per_vertex_in 0 \"gl_Position\"\n"
3951		"OpMemberName %geom_per_vertex_in 1 \"gl_PointSize\"\n"
3952		"OpMemberName %geom_per_vertex_in 2 \"gl_ClipDistance\"\n"
3953		"OpMemberName %geom_per_vertex_in 3 \"gl_CullDistance\"\n"
3954		"OpName %geom_gl_in \"gl_in\"\n"
3955		"OpName %geom_out_color \"out_color\"\n"
3956		"OpName %geom_in_color \"in_color\"\n"
3957		"OpDecorate %geom_out_gl_position BuiltIn Position\n"
3958		"OpMemberDecorate %geom_per_vertex_in 0 BuiltIn Position\n"
3959		"OpMemberDecorate %geom_per_vertex_in 1 BuiltIn PointSize\n"
3960		"OpMemberDecorate %geom_per_vertex_in 2 BuiltIn ClipDistance\n"
3961		"OpMemberDecorate %geom_per_vertex_in 3 BuiltIn CullDistance\n"
3962		"OpDecorate %geom_per_vertex_in Block\n"
3963		"OpDecorate %geom_out_color Location 1\n"
3964		"OpDecorate %geom_out_color Stream 0\n"
3965		"OpDecorate %geom_in_color Location 1\n"
3966
3967		"; Tessellation Control decorations\n"
3968		"OpName %tessc_main \"main\"\n"
3969		"OpName %tessc_out_color \"out_color\"\n"
3970		"OpName %tessc_gl_InvocationID \"gl_InvocationID\"\n"
3971		"OpName %tessc_in_color \"in_color\"\n"
3972		"OpName %tessc_out_position \"out_position\"\n"
3973		"OpName %tessc_in_position \"in_position\"\n"
3974		"OpName %tessc_gl_TessLevelOuter \"gl_TessLevelOuter\"\n"
3975		"OpName %tessc_gl_TessLevelInner \"gl_TessLevelInner\"\n"
3976		"OpDecorate %tessc_out_color Location 1\n"
3977		"OpDecorate %tessc_gl_InvocationID BuiltIn InvocationId\n"
3978		"OpDecorate %tessc_in_color Location 1\n"
3979		"OpDecorate %tessc_out_position Location 2\n"
3980		"OpDecorate %tessc_in_position Location 2\n"
3981		"OpDecorate %tessc_gl_TessLevelOuter Patch\n"
3982		"OpDecorate %tessc_gl_TessLevelOuter BuiltIn TessLevelOuter\n"
3983		"OpDecorate %tessc_gl_TessLevelInner Patch\n"
3984		"OpDecorate %tessc_gl_TessLevelInner BuiltIn TessLevelInner\n"
3985
3986		"; Tessellation Evaluation decorations\n"
3987		"OpName %tesse_main \"main\"\n"
3988		"OpName %tesse_per_vertex_out \"gl_PerVertex\"\n"
3989		"OpMemberName %tesse_per_vertex_out 0 \"gl_Position\"\n"
3990		"OpMemberName %tesse_per_vertex_out 1 \"gl_PointSize\"\n"
3991		"OpMemberName %tesse_per_vertex_out 2 \"gl_ClipDistance\"\n"
3992		"OpMemberName %tesse_per_vertex_out 3 \"gl_CullDistance\"\n"
3993		"OpName %tesse_stream \"\"\n"
3994		"OpName %tesse_gl_tessCoord \"gl_TessCoord\"\n"
3995		"OpName %tesse_in_position \"in_position\"\n"
3996		"OpName %tesse_out_color \"out_color\"\n"
3997		"OpName %tesse_in_color \"in_color\"\n"
3998		"OpMemberDecorate %tesse_per_vertex_out 0 BuiltIn Position\n"
3999		"OpMemberDecorate %tesse_per_vertex_out 1 BuiltIn PointSize\n"
4000		"OpMemberDecorate %tesse_per_vertex_out 2 BuiltIn ClipDistance\n"
4001		"OpMemberDecorate %tesse_per_vertex_out 3 BuiltIn CullDistance\n"
4002		"OpDecorate %tesse_per_vertex_out Block\n"
4003		"OpDecorate %tesse_gl_tessCoord BuiltIn TessCoord\n"
4004		"OpDecorate %tesse_in_position Location 2\n"
4005		"OpDecorate %tesse_out_color Location 1\n"
4006		"OpDecorate %tesse_in_color Location 1\n"
4007
4008		"; Fragment decorations\n"
4009		"OpName %frag_main \"main\"\n"
4010		"OpName %frag_fragColor \"fragColor\"\n"
4011		"OpName %frag_vtxColor \"vtxColor\"\n"
4012		"OpDecorate %frag_fragColor Location 0\n"
4013		"OpDecorate %frag_vtxColor Location 1\n"
4014
4015		SPIRV_ASSEMBLY_TYPES
4016		SPIRV_ASSEMBLY_CONSTANTS
4017		SPIRV_ASSEMBLY_ARRAYS
4018
4019		"; Vertex Variables\n"
4020		"%vert_vtxPosition = OpVariable %op_v4f32 Output\n"
4021		"%vert_Position = OpVariable %ip_v4f32 Input\n"
4022		"%vert_vtxColor = OpVariable %op_v4f32 Output\n"
4023		"%vert_color = OpVariable %ip_v4f32 Input\n"
4024		"%vert_vertex_id = OpVariable %ip_i32 Input\n"
4025		"%vert_instance_id = OpVariable %ip_i32 Input\n"
4026
4027		"; Geometry Variables\n"
4028		"%geom_per_vertex_in = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
4029		"%geom_a3_per_vertex_in = OpTypeArray %geom_per_vertex_in %c_u32_3\n"
4030		"%geom_ip_a3_per_vertex_in = OpTypePointer Input %geom_a3_per_vertex_in\n"
4031		"%geom_gl_in = OpVariable %geom_ip_a3_per_vertex_in Input\n"
4032		"%geom_out_color = OpVariable %op_v4f32 Output\n"
4033		"%geom_in_color = OpVariable %ip_a3v4f32 Input\n"
4034		"%geom_out_gl_position = OpVariable %op_v4f32 Output\n"
4035
4036		"; Tessellation Control Variables\n"
4037		"%tessc_out_color = OpVariable %op_a3v4f32 Output\n"
4038		"%tessc_gl_InvocationID = OpVariable %ip_i32 Input\n"
4039		"%tessc_in_color = OpVariable %ip_a32v4f32 Input\n"
4040		"%tessc_out_position = OpVariable %op_a3v4f32 Output\n"
4041		"%tessc_in_position = OpVariable %ip_a32v4f32 Input\n"
4042		"%tessc_gl_TessLevelOuter = OpVariable %op_a4f32 Output\n"
4043		"%tessc_gl_TessLevelInner = OpVariable %op_a2f32 Output\n"
4044
4045		"; Tessellation Evaluation Decorations\n"
4046		"%tesse_per_vertex_out = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
4047		"%tesse_op_per_vertex_out = OpTypePointer Output %tesse_per_vertex_out\n"
4048		"%tesse_stream = OpVariable %tesse_op_per_vertex_out Output\n"
4049		"%tesse_gl_tessCoord = OpVariable %ip_v3f32 Input\n"
4050		"%tesse_in_position = OpVariable %ip_a32v4f32 Input\n"
4051		"%tesse_out_color = OpVariable %op_v4f32 Output\n"
4052		"%tesse_in_color = OpVariable %ip_a32v4f32 Input\n"
4053
4054		"; Fragment Variables\n"
4055		"%frag_fragColor = OpVariable %op_v4f32 Output\n"
4056		"%frag_vtxColor = OpVariable %ip_v4f32 Input\n"
4057
4058		"; Vertex Entry\n"
4059		"%vert_main = OpFunction %void None %fun\n"
4060		"%vert_label = OpLabel\n"
4061		"%vert_tmp_position = OpLoad %v4f32 %vert_Position\n"
4062		"OpStore %vert_vtxPosition %vert_tmp_position\n"
4063		"%vert_tmp_color = OpLoad %v4f32 %vert_color\n"
4064		"OpStore %vert_vtxColor %vert_tmp_color\n"
4065		"OpReturn\n"
4066		"OpFunctionEnd\n"
4067
4068		"; Geometry Entry\n"
4069		"%geom_main = OpFunction %void None %fun\n"
4070		"%geom_label = OpLabel\n"
4071		"%geom_gl_in_0_gl_position = OpAccessChain %ip_v4f32 %geom_gl_in %c_i32_0 %c_i32_0\n"
4072		"%geom_gl_in_1_gl_position = OpAccessChain %ip_v4f32 %geom_gl_in %c_i32_1 %c_i32_0\n"
4073		"%geom_gl_in_2_gl_position = OpAccessChain %ip_v4f32 %geom_gl_in %c_i32_2 %c_i32_0\n"
4074		"%geom_in_position_0 = OpLoad %v4f32 %geom_gl_in_0_gl_position\n"
4075		"%geom_in_position_1 = OpLoad %v4f32 %geom_gl_in_1_gl_position\n"
4076		"%geom_in_position_2 = OpLoad %v4f32 %geom_gl_in_2_gl_position \n"
4077		"%geom_in_color_0_ptr = OpAccessChain %ip_v4f32 %geom_in_color %c_i32_0\n"
4078		"%geom_in_color_1_ptr = OpAccessChain %ip_v4f32 %geom_in_color %c_i32_1\n"
4079		"%geom_in_color_2_ptr = OpAccessChain %ip_v4f32 %geom_in_color %c_i32_2\n"
4080		"%geom_in_color_0 = OpLoad %v4f32 %geom_in_color_0_ptr\n"
4081		"%geom_in_color_1 = OpLoad %v4f32 %geom_in_color_1_ptr\n"
4082		"%geom_in_color_2 = OpLoad %v4f32 %geom_in_color_2_ptr\n"
4083		"OpStore %geom_out_gl_position %geom_in_position_0\n"
4084		"OpStore %geom_out_color %geom_in_color_0\n"
4085		"OpEmitVertex\n"
4086		"OpStore %geom_out_gl_position %geom_in_position_1\n"
4087		"OpStore %geom_out_color %geom_in_color_1\n"
4088		"OpEmitVertex\n"
4089		"OpStore %geom_out_gl_position %geom_in_position_2\n"
4090		"OpStore %geom_out_color %geom_in_color_2\n"
4091		"OpEmitVertex\n"
4092		"OpEndPrimitive\n"
4093		"OpReturn\n"
4094		"OpFunctionEnd\n"
4095
4096		"; Tessellation Control Entry\n"
4097		"%tessc_main = OpFunction %void None %fun\n"
4098		"%tessc_label = OpLabel\n"
4099		"%tessc_invocation_id = OpLoad %i32 %tessc_gl_InvocationID\n"
4100		"%tessc_in_color_ptr = OpAccessChain %ip_v4f32 %tessc_in_color %tessc_invocation_id\n"
4101		"%tessc_in_position_ptr = OpAccessChain %ip_v4f32 %tessc_in_position %tessc_invocation_id\n"
4102		"%tessc_in_color_val = OpLoad %v4f32 %tessc_in_color_ptr\n"
4103		"%tessc_in_position_val = OpLoad %v4f32 %tessc_in_position_ptr\n"
4104		"%tessc_out_color_ptr = OpAccessChain %op_v4f32 %tessc_out_color %tessc_invocation_id\n"
4105		"%tessc_out_position_ptr = OpAccessChain %op_v4f32 %tessc_out_position %tessc_invocation_id\n"
4106		"OpStore %tessc_out_color_ptr %tessc_in_color_val\n"
4107		"OpStore %tessc_out_position_ptr %tessc_in_position_val\n"
4108		"%tessc_is_first_invocation = OpIEqual %bool %tessc_invocation_id %c_i32_0\n"
4109		"OpSelectionMerge %tessc_merge_label None\n"
4110		"OpBranchConditional %tessc_is_first_invocation %tessc_first_invocation %tessc_merge_label\n"
4111		"%tessc_first_invocation = OpLabel\n"
4112		"%tessc_tess_outer_0 = OpAccessChain %op_f32 %tessc_gl_TessLevelOuter %c_i32_0\n"
4113		"%tessc_tess_outer_1 = OpAccessChain %op_f32 %tessc_gl_TessLevelOuter %c_i32_1\n"
4114		"%tessc_tess_outer_2 = OpAccessChain %op_f32 %tessc_gl_TessLevelOuter %c_i32_2\n"
4115		"%tessc_tess_inner = OpAccessChain %op_f32 %tessc_gl_TessLevelInner %c_i32_0\n"
4116		"OpStore %tessc_tess_outer_0 %c_f32_1\n"
4117		"OpStore %tessc_tess_outer_1 %c_f32_1\n"
4118		"OpStore %tessc_tess_outer_2 %c_f32_1\n"
4119		"OpStore %tessc_tess_inner %c_f32_1\n"
4120		"OpBranch %tessc_merge_label\n"
4121		"%tessc_merge_label = OpLabel\n"
4122		"OpReturn\n"
4123		"OpFunctionEnd\n"
4124
4125		"; Tessellation Evaluation Entry\n"
4126		"%tesse_main = OpFunction %void None %fun\n"
4127		"%tesse_label = OpLabel\n"
4128		"%tesse_tc_0_ptr = OpAccessChain %ip_f32 %tesse_gl_tessCoord %c_u32_0\n"
4129		"%tesse_tc_1_ptr = OpAccessChain %ip_f32 %tesse_gl_tessCoord %c_u32_1\n"
4130		"%tesse_tc_2_ptr = OpAccessChain %ip_f32 %tesse_gl_tessCoord %c_u32_2\n"
4131		"%tesse_tc_0 = OpLoad %f32 %tesse_tc_0_ptr\n"
4132		"%tesse_tc_1 = OpLoad %f32 %tesse_tc_1_ptr\n"
4133		"%tesse_tc_2 = OpLoad %f32 %tesse_tc_2_ptr\n"
4134		"%tesse_in_pos_0_ptr = OpAccessChain %ip_v4f32 %tesse_in_position %c_i32_0\n"
4135		"%tesse_in_pos_1_ptr = OpAccessChain %ip_v4f32 %tesse_in_position %c_i32_1\n"
4136		"%tesse_in_pos_2_ptr = OpAccessChain %ip_v4f32 %tesse_in_position %c_i32_2\n"
4137		"%tesse_in_pos_0 = OpLoad %v4f32 %tesse_in_pos_0_ptr\n"
4138		"%tesse_in_pos_1 = OpLoad %v4f32 %tesse_in_pos_1_ptr\n"
4139		"%tesse_in_pos_2 = OpLoad %v4f32 %tesse_in_pos_2_ptr\n"
4140		"%tesse_in_pos_0_weighted = OpVectorTimesScalar %v4f32 %tesse_tc_0 %tesse_in_pos_0\n"
4141		"%tesse_in_pos_1_weighted = OpVectorTimesScalar %v4f32 %tesse_tc_1 %tesse_in_pos_1\n"
4142		"%tesse_in_pos_2_weighted = OpVectorTimesScalar %v4f32 %tesse_tc_2 %tesse_in_pos_2\n"
4143		"%tesse_out_pos_ptr = OpAccessChain %op_v4f32 %tesse_stream %c_i32_0\n"
4144		"%tesse_in_pos_0_plus_pos_1 = OpFAdd %v4f32 %tesse_in_pos_0_weighted %tesse_in_pos_1_weighted\n"
4145		"%tesse_computed_out = OpFAdd %v4f32 %tesse_in_pos_0_plus_pos_1 %tesse_in_pos_2_weighted\n"
4146		"OpStore %tesse_out_pos_ptr %tesse_computed_out\n"
4147		"%tesse_in_clr_0_ptr = OpAccessChain %ip_v4f32 %tesse_in_color %c_i32_0\n"
4148		"%tesse_in_clr_1_ptr = OpAccessChain %ip_v4f32 %tesse_in_color %c_i32_1\n"
4149		"%tesse_in_clr_2_ptr = OpAccessChain %ip_v4f32 %tesse_in_color %c_i32_2\n"
4150		"%tesse_in_clr_0 = OpLoad %v4f32 %tesse_in_clr_0_ptr\n"
4151		"%tesse_in_clr_1 = OpLoad %v4f32 %tesse_in_clr_1_ptr\n"
4152		"%tesse_in_clr_2 = OpLoad %v4f32 %tesse_in_clr_2_ptr\n"
4153		"%tesse_in_clr_0_weighted = OpVectorTimesScalar %v4f32 %tesse_tc_0 %tesse_in_clr_0\n"
4154		"%tesse_in_clr_1_weighted = OpVectorTimesScalar %v4f32 %tesse_tc_1 %tesse_in_clr_1\n"
4155		"%tesse_in_clr_2_weighted = OpVectorTimesScalar %v4f32 %tesse_tc_2 %tesse_in_clr_2\n"
4156		"%tesse_in_clr_0_plus_col_1 = OpFAdd %v4f32 %tesse_in_clr_0_weighted %tesse_in_clr_1_weighted\n"
4157		"%tesse_computed_clr = OpFAdd %v4f32 %tesse_in_clr_0_plus_col_1 %tesse_in_clr_2_weighted\n"
4158		"OpStore %tesse_out_color %tesse_computed_clr\n"
4159		"OpReturn\n"
4160		"OpFunctionEnd\n"
4161
4162		"; Fragment Entry\n"
4163		"%frag_main = OpFunction %void None %fun\n"
4164		"%frag_label_main = OpLabel\n"
4165		"%frag_tmp1 = OpLoad %v4f32 %frag_vtxColor\n"
4166		"OpStore %frag_fragColor %frag_tmp1\n"
4167		"OpReturn\n"
4168		"OpFunctionEnd\n";
4169}
4170
4171// This has two shaders of each stage. The first
4172// is a passthrough, the second inverts the color.
4173void createMultipleEntries(vk::SourceCollections& dst, InstanceContext)
4174{
4175	dst.spirvAsmSources.add("vert") <<
4176	// This module contains 2 vertex shaders. One that is a passthrough
4177	// and a second that inverts the color of the output (1.0 - color).
4178		"OpCapability Shader\n"
4179		"OpMemoryModel Logical GLSL450\n"
4180		"OpEntryPoint Vertex %main \"vert1\" %Position %vtxColor %color %vtxPosition %vertex_id %instance_id\n"
4181		"OpEntryPoint Vertex %main2 \"vert2\" %Position %vtxColor %color %vtxPosition %vertex_id %instance_id\n"
4182
4183		"OpName %main \"frag1\"\n"
4184		"OpName %main2 \"frag2\"\n"
4185		"OpName %vtxPosition \"vtxPosition\"\n"
4186		"OpName %Position \"position\"\n"
4187		"OpName %vtxColor \"vtxColor\"\n"
4188		"OpName %color \"color\"\n"
4189		"OpName %vertex_id \"gl_VertexID\"\n"
4190		"OpName %instance_id \"gl_InstanceID\"\n"
4191
4192		"OpDecorate %vtxPosition Location 2\n"
4193		"OpDecorate %Position Location 0\n"
4194		"OpDecorate %vtxColor Location 1\n"
4195		"OpDecorate %color Location 1\n"
4196		"OpDecorate %vertex_id BuiltIn VertexId\n"
4197		"OpDecorate %instance_id BuiltIn InstanceId\n"
4198		SPIRV_ASSEMBLY_TYPES
4199		SPIRV_ASSEMBLY_CONSTANTS
4200		SPIRV_ASSEMBLY_ARRAYS
4201		"%cval = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_0\n"
4202		"%vtxPosition = OpVariable %op_v4f32 Output\n"
4203		"%Position = OpVariable %ip_v4f32 Input\n"
4204		"%vtxColor = OpVariable %op_v4f32 Output\n"
4205		"%color = OpVariable %ip_v4f32 Input\n"
4206		"%vertex_id = OpVariable %ip_i32 Input\n"
4207		"%instance_id = OpVariable %ip_i32 Input\n"
4208
4209		"%main = OpFunction %void None %fun\n"
4210		"%label = OpLabel\n"
4211		"%tmp_position = OpLoad %v4f32 %Position\n"
4212		"OpStore %vtxPosition %tmp_position\n"
4213		"%tmp_color = OpLoad %v4f32 %color\n"
4214		"OpStore %vtxColor %tmp_color\n"
4215		"OpReturn\n"
4216		"OpFunctionEnd\n"
4217
4218		"%main2 = OpFunction %void None %fun\n"
4219		"%label2 = OpLabel\n"
4220		"%tmp_position2 = OpLoad %v4f32 %Position\n"
4221		"OpStore %vtxPosition %tmp_position2\n"
4222		"%tmp_color2 = OpLoad %v4f32 %color\n"
4223		"%tmp_color3 = OpFSub %v4f32 %cval %tmp_color2\n"
4224		"OpStore %vtxColor %tmp_color3\n"
4225		"OpReturn\n"
4226		"OpFunctionEnd\n";
4227
4228	dst.spirvAsmSources.add("frag") <<
4229		// This is a single module that contains 2 fragment shaders.
4230		// One that passes color through and the other that inverts the output
4231		// color (1.0 - color).
4232		"OpCapability Shader\n"
4233		"OpMemoryModel Logical GLSL450\n"
4234		"OpEntryPoint Fragment %main \"frag1\" %vtxColor %fragColor\n"
4235		"OpEntryPoint Fragment %main2 \"frag2\" %vtxColor %fragColor\n"
4236		"OpExecutionMode %main OriginUpperLeft\n"
4237		"OpExecutionMode %main2 OriginUpperLeft\n"
4238
4239		"OpName %main \"frag1\"\n"
4240		"OpName %main2 \"frag2\"\n"
4241		"OpName %fragColor \"fragColor\"\n"
4242		"OpName %vtxColor \"vtxColor\"\n"
4243		"OpDecorate %fragColor Location 0\n"
4244		"OpDecorate %vtxColor Location 1\n"
4245		SPIRV_ASSEMBLY_TYPES
4246		SPIRV_ASSEMBLY_CONSTANTS
4247		SPIRV_ASSEMBLY_ARRAYS
4248		"%cval = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_0\n"
4249		"%fragColor = OpVariable %op_v4f32 Output\n"
4250		"%vtxColor = OpVariable %ip_v4f32 Input\n"
4251
4252		"%main = OpFunction %void None %fun\n"
4253		"%label_main = OpLabel\n"
4254		"%tmp1 = OpLoad %v4f32 %vtxColor\n"
4255		"OpStore %fragColor %tmp1\n"
4256		"OpReturn\n"
4257		"OpFunctionEnd\n"
4258
4259		"%main2 = OpFunction %void None %fun\n"
4260		"%label_main2 = OpLabel\n"
4261		"%tmp2 = OpLoad %v4f32 %vtxColor\n"
4262		"%tmp3 = OpFSub %v4f32 %cval %tmp2\n"
4263		"OpStore %fragColor %tmp3\n"
4264		"OpReturn\n"
4265		"OpFunctionEnd\n";
4266
4267	dst.spirvAsmSources.add("geom") <<
4268		"OpCapability Geometry\n"
4269		"OpMemoryModel Logical GLSL450\n"
4270		"OpEntryPoint Geometry %geom1_main \"geom1\" %out_gl_position %gl_in %out_color %in_color\n"
4271		"OpEntryPoint Geometry %geom2_main \"geom2\" %out_gl_position %gl_in %out_color %in_color\n"
4272		"OpExecutionMode %geom1_main Triangles\n"
4273		"OpExecutionMode %geom2_main Triangles\n"
4274		"OpExecutionMode %geom1_main Invocations 0\n"
4275		"OpExecutionMode %geom2_main Invocations 0\n"
4276		"OpExecutionMode %geom1_main OutputTriangleStrip\n"
4277		"OpExecutionMode %geom2_main OutputTriangleStrip\n"
4278		"OpExecutionMode %geom1_main OutputVertices 3\n"
4279		"OpExecutionMode %geom2_main OutputVertices 3\n"
4280		"OpName %geom1_main \"geom1\"\n"
4281		"OpName %geom2_main \"geom2\"\n"
4282		"OpName %per_vertex_in \"gl_PerVertex\"\n"
4283		"OpMemberName %per_vertex_in 0 \"gl_Position\"\n"
4284		"OpMemberName %per_vertex_in 1 \"gl_PointSize\"\n"
4285		"OpMemberName %per_vertex_in 2 \"gl_ClipDistance\"\n"
4286		"OpMemberName %per_vertex_in 3 \"gl_CullDistance\"\n"
4287		"OpName %gl_in \"gl_in\"\n"
4288		"OpName %out_color \"out_color\"\n"
4289		"OpName %in_color \"in_color\"\n"
4290		"OpDecorate %out_gl_position BuiltIn Position\n"
4291		"OpMemberDecorate %per_vertex_in 0 BuiltIn Position\n"
4292		"OpMemberDecorate %per_vertex_in 1 BuiltIn PointSize\n"
4293		"OpMemberDecorate %per_vertex_in 2 BuiltIn ClipDistance\n"
4294		"OpMemberDecorate %per_vertex_in 3 BuiltIn CullDistance\n"
4295		"OpDecorate %per_vertex_in Block\n"
4296		"OpDecorate %out_color Location 1\n"
4297		"OpDecorate %out_color Stream 0\n"
4298		"OpDecorate %in_color Location 1\n"
4299		SPIRV_ASSEMBLY_TYPES
4300		SPIRV_ASSEMBLY_CONSTANTS
4301		SPIRV_ASSEMBLY_ARRAYS
4302		"%cval = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_0\n"
4303		"%per_vertex_in = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
4304		"%a3_per_vertex_in = OpTypeArray %per_vertex_in %c_u32_3\n"
4305		"%ip_a3_per_vertex_in = OpTypePointer Input %a3_per_vertex_in\n"
4306		"%gl_in = OpVariable %ip_a3_per_vertex_in Input\n"
4307		"%out_color = OpVariable %op_v4f32 Output\n"
4308		"%in_color = OpVariable %ip_a3v4f32 Input\n"
4309		"%out_gl_position = OpVariable %op_v4f32 Output\n"
4310
4311		"%geom1_main = OpFunction %void None %fun\n"
4312		"%geom1_label = OpLabel\n"
4313		"%geom1_gl_in_0_gl_position = OpAccessChain %ip_v4f32 %gl_in %c_i32_0 %c_i32_0\n"
4314		"%geom1_gl_in_1_gl_position = OpAccessChain %ip_v4f32 %gl_in %c_i32_1 %c_i32_0\n"
4315		"%geom1_gl_in_2_gl_position = OpAccessChain %ip_v4f32 %gl_in %c_i32_2 %c_i32_0\n"
4316		"%geom1_in_position_0 = OpLoad %v4f32 %geom1_gl_in_0_gl_position\n"
4317		"%geom1_in_position_1 = OpLoad %v4f32 %geom1_gl_in_1_gl_position\n"
4318		"%geom1_in_position_2 = OpLoad %v4f32 %geom1_gl_in_2_gl_position \n"
4319		"%geom1_in_color_0_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_0\n"
4320		"%geom1_in_color_1_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_1\n"
4321		"%geom1_in_color_2_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_2\n"
4322		"%geom1_in_color_0 = OpLoad %v4f32 %geom1_in_color_0_ptr\n"
4323		"%geom1_in_color_1 = OpLoad %v4f32 %geom1_in_color_1_ptr\n"
4324		"%geom1_in_color_2 = OpLoad %v4f32 %geom1_in_color_2_ptr\n"
4325		"OpStore %out_gl_position %geom1_in_position_0\n"
4326		"OpStore %out_color %geom1_in_color_0\n"
4327		"OpEmitVertex\n"
4328		"OpStore %out_gl_position %geom1_in_position_1\n"
4329		"OpStore %out_color %geom1_in_color_1\n"
4330		"OpEmitVertex\n"
4331		"OpStore %out_gl_position %geom1_in_position_2\n"
4332		"OpStore %out_color %geom1_in_color_2\n"
4333		"OpEmitVertex\n"
4334		"OpEndPrimitive\n"
4335		"OpReturn\n"
4336		"OpFunctionEnd\n"
4337
4338		"%geom2_main = OpFunction %void None %fun\n"
4339		"%geom2_label = OpLabel\n"
4340		"%geom2_gl_in_0_gl_position = OpAccessChain %ip_v4f32 %gl_in %c_i32_0 %c_i32_0\n"
4341		"%geom2_gl_in_1_gl_position = OpAccessChain %ip_v4f32 %gl_in %c_i32_1 %c_i32_0\n"
4342		"%geom2_gl_in_2_gl_position = OpAccessChain %ip_v4f32 %gl_in %c_i32_2 %c_i32_0\n"
4343		"%geom2_in_position_0 = OpLoad %v4f32 %geom2_gl_in_0_gl_position\n"
4344		"%geom2_in_position_1 = OpLoad %v4f32 %geom2_gl_in_1_gl_position\n"
4345		"%geom2_in_position_2 = OpLoad %v4f32 %geom2_gl_in_2_gl_position \n"
4346		"%geom2_in_color_0_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_0\n"
4347		"%geom2_in_color_1_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_1\n"
4348		"%geom2_in_color_2_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_2\n"
4349		"%geom2_in_color_0 = OpLoad %v4f32 %geom2_in_color_0_ptr\n"
4350		"%geom2_in_color_1 = OpLoad %v4f32 %geom2_in_color_1_ptr\n"
4351		"%geom2_in_color_2 = OpLoad %v4f32 %geom2_in_color_2_ptr\n"
4352		"%geom2_transformed_in_color_0 = OpFSub %v4f32 %cval %geom2_in_color_0\n"
4353		"%geom2_transformed_in_color_1 = OpFSub %v4f32 %cval %geom2_in_color_1\n"
4354		"%geom2_transformed_in_color_2 = OpFSub %v4f32 %cval %geom2_in_color_2\n"
4355		"OpStore %out_gl_position %geom2_in_position_0\n"
4356		"OpStore %out_color %geom2_transformed_in_color_0\n"
4357		"OpEmitVertex\n"
4358		"OpStore %out_gl_position %geom2_in_position_1\n"
4359		"OpStore %out_color %geom2_transformed_in_color_1\n"
4360		"OpEmitVertex\n"
4361		"OpStore %out_gl_position %geom2_in_position_2\n"
4362		"OpStore %out_color %geom2_transformed_in_color_2\n"
4363		"OpEmitVertex\n"
4364		"OpEndPrimitive\n"
4365		"OpReturn\n"
4366		"OpFunctionEnd\n";
4367
4368	dst.spirvAsmSources.add("tessc") <<
4369		"OpCapability Tessellation\n"
4370		"OpMemoryModel Logical GLSL450\n"
4371		"OpEntryPoint TessellationControl %tessc1_main \"tessc1\" %out_color %gl_InvocationID %in_color %out_position %in_position %gl_TessLevelOuter %gl_TessLevelInner\n"
4372		"OpEntryPoint TessellationControl %tessc2_main \"tessc2\" %out_color %gl_InvocationID %in_color %out_position %in_position %gl_TessLevelOuter %gl_TessLevelInner\n"
4373		"OpExecutionMode %tessc1_main OutputVertices 3\n"
4374		"OpExecutionMode %tessc2_main OutputVertices 3\n"
4375		"OpName %tessc1_main \"tessc1\"\n"
4376		"OpName %tessc2_main \"tessc2\"\n"
4377		"OpName %out_color \"out_color\"\n"
4378		"OpName %gl_InvocationID \"gl_InvocationID\"\n"
4379		"OpName %in_color \"in_color\"\n"
4380		"OpName %out_position \"out_position\"\n"
4381		"OpName %in_position \"in_position\"\n"
4382		"OpName %gl_TessLevelOuter \"gl_TessLevelOuter\"\n"
4383		"OpName %gl_TessLevelInner \"gl_TessLevelInner\"\n"
4384		"OpDecorate %out_color Location 1\n"
4385		"OpDecorate %gl_InvocationID BuiltIn InvocationId\n"
4386		"OpDecorate %in_color Location 1\n"
4387		"OpDecorate %out_position Location 2\n"
4388		"OpDecorate %in_position Location 2\n"
4389		"OpDecorate %gl_TessLevelOuter Patch\n"
4390		"OpDecorate %gl_TessLevelOuter BuiltIn TessLevelOuter\n"
4391		"OpDecorate %gl_TessLevelInner Patch\n"
4392		"OpDecorate %gl_TessLevelInner BuiltIn TessLevelInner\n"
4393		SPIRV_ASSEMBLY_TYPES
4394		SPIRV_ASSEMBLY_CONSTANTS
4395		SPIRV_ASSEMBLY_ARRAYS
4396		"%cval = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_0\n"
4397		"%out_color = OpVariable %op_a3v4f32 Output\n"
4398		"%gl_InvocationID = OpVariable %ip_i32 Input\n"
4399		"%in_color = OpVariable %ip_a32v4f32 Input\n"
4400		"%out_position = OpVariable %op_a3v4f32 Output\n"
4401		"%in_position = OpVariable %ip_a32v4f32 Input\n"
4402		"%gl_TessLevelOuter = OpVariable %op_a4f32 Output\n"
4403		"%gl_TessLevelInner = OpVariable %op_a2f32 Output\n"
4404
4405		"%tessc1_main = OpFunction %void None %fun\n"
4406		"%tessc1_label = OpLabel\n"
4407		"%tessc1_invocation_id = OpLoad %i32 %gl_InvocationID\n"
4408		"%tessc1_in_color_ptr = OpAccessChain %ip_v4f32 %in_color %tessc1_invocation_id\n"
4409		"%tessc1_in_position_ptr = OpAccessChain %ip_v4f32 %in_position %tessc1_invocation_id\n"
4410		"%tessc1_in_color_val = OpLoad %v4f32 %tessc1_in_color_ptr\n"
4411		"%tessc1_in_position_val = OpLoad %v4f32 %tessc1_in_position_ptr\n"
4412		"%tessc1_out_color_ptr = OpAccessChain %op_v4f32 %out_color %tessc1_invocation_id\n"
4413		"%tessc1_out_position_ptr = OpAccessChain %op_v4f32 %out_position %tessc1_invocation_id\n"
4414		"OpStore %tessc1_out_color_ptr %tessc1_in_color_val\n"
4415		"OpStore %tessc1_out_position_ptr %tessc1_in_position_val\n"
4416		"%tessc1_is_first_invocation = OpIEqual %bool %tessc1_invocation_id %c_i32_0\n"
4417		"OpSelectionMerge %tessc1_merge_label None\n"
4418		"OpBranchConditional %tessc1_is_first_invocation %tessc1_first_invocation %tessc1_merge_label\n"
4419		"%tessc1_first_invocation = OpLabel\n"
4420		"%tessc1_tess_outer_0 = OpAccessChain %op_f32 %gl_TessLevelOuter %c_i32_0\n"
4421		"%tessc1_tess_outer_1 = OpAccessChain %op_f32 %gl_TessLevelOuter %c_i32_1\n"
4422		"%tessc1_tess_outer_2 = OpAccessChain %op_f32 %gl_TessLevelOuter %c_i32_2\n"
4423		"%tessc1_tess_inner = OpAccessChain %op_f32 %gl_TessLevelInner %c_i32_0\n"
4424		"OpStore %tessc1_tess_outer_0 %c_f32_1\n"
4425		"OpStore %tessc1_tess_outer_1 %c_f32_1\n"
4426		"OpStore %tessc1_tess_outer_2 %c_f32_1\n"
4427		"OpStore %tessc1_tess_inner %c_f32_1\n"
4428		"OpBranch %tessc1_merge_label\n"
4429		"%tessc1_merge_label = OpLabel\n"
4430		"OpReturn\n"
4431		"OpFunctionEnd\n"
4432
4433		"%tessc2_main = OpFunction %void None %fun\n"
4434		"%tessc2_label = OpLabel\n"
4435		"%tessc2_invocation_id = OpLoad %i32 %gl_InvocationID\n"
4436		"%tessc2_in_color_ptr = OpAccessChain %ip_v4f32 %in_color %tessc2_invocation_id\n"
4437		"%tessc2_in_position_ptr = OpAccessChain %ip_v4f32 %in_position %tessc2_invocation_id\n"
4438		"%tessc2_in_color_val = OpLoad %v4f32 %tessc2_in_color_ptr\n"
4439		"%tessc2_in_position_val = OpLoad %v4f32 %tessc2_in_position_ptr\n"
4440		"%tessc2_out_color_ptr = OpAccessChain %op_v4f32 %out_color %tessc2_invocation_id\n"
4441		"%tessc2_out_position_ptr = OpAccessChain %op_v4f32 %out_position %tessc2_invocation_id\n"
4442		"%tessc2_transformed_color = OpFSub %v4f32 %cval %tessc2_in_color_val\n"
4443		"OpStore %tessc2_out_color_ptr %tessc2_transformed_color\n"
4444		"OpStore %tessc2_out_position_ptr %tessc2_in_position_val\n"
4445		"%tessc2_is_first_invocation = OpIEqual %bool %tessc2_invocation_id %c_i32_0\n"
4446		"OpSelectionMerge %tessc2_merge_label None\n"
4447		"OpBranchConditional %tessc2_is_first_invocation %tessc2_first_invocation %tessc2_merge_label\n"
4448		"%tessc2_first_invocation = OpLabel\n"
4449		"%tessc2_tess_outer_0 = OpAccessChain %op_f32 %gl_TessLevelOuter %c_i32_0\n"
4450		"%tessc2_tess_outer_1 = OpAccessChain %op_f32 %gl_TessLevelOuter %c_i32_1\n"
4451		"%tessc2_tess_outer_2 = OpAccessChain %op_f32 %gl_TessLevelOuter %c_i32_2\n"
4452		"%tessc2_tess_inner = OpAccessChain %op_f32 %gl_TessLevelInner %c_i32_0\n"
4453		"OpStore %tessc2_tess_outer_0 %c_f32_1\n"
4454		"OpStore %tessc2_tess_outer_1 %c_f32_1\n"
4455		"OpStore %tessc2_tess_outer_2 %c_f32_1\n"
4456		"OpStore %tessc2_tess_inner %c_f32_1\n"
4457		"OpBranch %tessc2_merge_label\n"
4458		"%tessc2_merge_label = OpLabel\n"
4459		"OpReturn\n"
4460		"OpFunctionEnd\n";
4461
4462	dst.spirvAsmSources.add("tesse") <<
4463		"OpCapability Tessellation\n"
4464		"OpMemoryModel Logical GLSL450\n"
4465		"OpEntryPoint TessellationEvaluation %tesse1_main \"tesse1\" %stream %gl_tessCoord %in_position %out_color %in_color \n"
4466		"OpEntryPoint TessellationEvaluation %tesse2_main \"tesse2\" %stream %gl_tessCoord %in_position %out_color %in_color \n"
4467		"OpExecutionMode %tesse1_main Triangles\n"
4468		"OpExecutionMode %tesse2_main Triangles\n"
4469		"OpName %tesse1_main \"tesse1\"\n"
4470		"OpName %tesse2_main \"tesse2\"\n"
4471		"OpName %per_vertex_out \"gl_PerVertex\"\n"
4472		"OpMemberName %per_vertex_out 0 \"gl_Position\"\n"
4473		"OpMemberName %per_vertex_out 1 \"gl_PointSize\"\n"
4474		"OpMemberName %per_vertex_out 2 \"gl_ClipDistance\"\n"
4475		"OpMemberName %per_vertex_out 3 \"gl_CullDistance\"\n"
4476		"OpName %stream \"\"\n"
4477		"OpName %gl_tessCoord \"gl_TessCoord\"\n"
4478		"OpName %in_position \"in_position\"\n"
4479		"OpName %out_color \"out_color\"\n"
4480		"OpName %in_color \"in_color\"\n"
4481		"OpMemberDecorate %per_vertex_out 0 BuiltIn Position\n"
4482		"OpMemberDecorate %per_vertex_out 1 BuiltIn PointSize\n"
4483		"OpMemberDecorate %per_vertex_out 2 BuiltIn ClipDistance\n"
4484		"OpMemberDecorate %per_vertex_out 3 BuiltIn CullDistance\n"
4485		"OpDecorate %per_vertex_out Block\n"
4486		"OpDecorate %gl_tessCoord BuiltIn TessCoord\n"
4487		"OpDecorate %in_position Location 2\n"
4488		"OpDecorate %out_color Location 1\n"
4489		"OpDecorate %in_color Location 1\n"
4490		SPIRV_ASSEMBLY_TYPES
4491		SPIRV_ASSEMBLY_CONSTANTS
4492		SPIRV_ASSEMBLY_ARRAYS
4493		"%cval = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_0\n"
4494		"%per_vertex_out = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
4495		"%op_per_vertex_out = OpTypePointer Output %per_vertex_out\n"
4496		"%stream = OpVariable %op_per_vertex_out Output\n"
4497		"%gl_tessCoord = OpVariable %ip_v3f32 Input\n"
4498		"%in_position = OpVariable %ip_a32v4f32 Input\n"
4499		"%out_color = OpVariable %op_v4f32 Output\n"
4500		"%in_color = OpVariable %ip_a32v4f32 Input\n"
4501
4502		"%tesse1_main = OpFunction %void None %fun\n"
4503		"%tesse1_label = OpLabel\n"
4504		"%tesse1_tc_0_ptr = OpAccessChain %ip_f32 %gl_tessCoord %c_u32_0\n"
4505		"%tesse1_tc_1_ptr = OpAccessChain %ip_f32 %gl_tessCoord %c_u32_1\n"
4506		"%tesse1_tc_2_ptr = OpAccessChain %ip_f32 %gl_tessCoord %c_u32_2\n"
4507		"%tesse1_tc_0 = OpLoad %f32 %tesse1_tc_0_ptr\n"
4508		"%tesse1_tc_1 = OpLoad %f32 %tesse1_tc_1_ptr\n"
4509		"%tesse1_tc_2 = OpLoad %f32 %tesse1_tc_2_ptr\n"
4510		"%tesse1_in_pos_0_ptr = OpAccessChain %ip_v4f32 %in_position %c_i32_0\n"
4511		"%tesse1_in_pos_1_ptr = OpAccessChain %ip_v4f32 %in_position %c_i32_1\n"
4512		"%tesse1_in_pos_2_ptr = OpAccessChain %ip_v4f32 %in_position %c_i32_2\n"
4513		"%tesse1_in_pos_0 = OpLoad %v4f32 %tesse1_in_pos_0_ptr\n"
4514		"%tesse1_in_pos_1 = OpLoad %v4f32 %tesse1_in_pos_1_ptr\n"
4515		"%tesse1_in_pos_2 = OpLoad %v4f32 %tesse1_in_pos_2_ptr\n"
4516		"%tesse1_in_pos_0_weighted = OpVectorTimesScalar %v4f32 %tesse1_tc_0 %tesse1_in_pos_0\n"
4517		"%tesse1_in_pos_1_weighted = OpVectorTimesScalar %v4f32 %tesse1_tc_1 %tesse1_in_pos_1\n"
4518		"%tesse1_in_pos_2_weighted = OpVectorTimesScalar %v4f32 %tesse1_tc_2 %tesse1_in_pos_2\n"
4519		"%tesse1_out_pos_ptr = OpAccessChain %op_v4f32 %stream %c_i32_0\n"
4520		"%tesse1_in_pos_0_plus_pos_1 = OpFAdd %v4f32 %tesse1_in_pos_0_weighted %tesse1_in_pos_1_weighted\n"
4521		"%tesse1_computed_out = OpFAdd %v4f32 %tesse1_in_pos_0_plus_pos_1 %tesse1_in_pos_2_weighted\n"
4522		"OpStore %tesse1_out_pos_ptr %tesse1_computed_out\n"
4523		"%tesse1_in_clr_0_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_0\n"
4524		"%tesse1_in_clr_1_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_1\n"
4525		"%tesse1_in_clr_2_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_2\n"
4526		"%tesse1_in_clr_0 = OpLoad %v4f32 %tesse1_in_clr_0_ptr\n"
4527		"%tesse1_in_clr_1 = OpLoad %v4f32 %tesse1_in_clr_1_ptr\n"
4528		"%tesse1_in_clr_2 = OpLoad %v4f32 %tesse1_in_clr_2_ptr\n"
4529		"%tesse1_in_clr_0_weighted = OpVectorTimesScalar %v4f32 %tesse1_tc_0 %tesse1_in_clr_0\n"
4530		"%tesse1_in_clr_1_weighted = OpVectorTimesScalar %v4f32 %tesse1_tc_1 %tesse1_in_clr_1\n"
4531		"%tesse1_in_clr_2_weighted = OpVectorTimesScalar %v4f32 %tesse1_tc_2 %tesse1_in_clr_2\n"
4532		"%tesse1_in_clr_0_plus_col_1 = OpFAdd %v4f32 %tesse1_in_clr_0_weighted %tesse1_in_clr_1_weighted\n"
4533		"%tesse1_computed_clr = OpFAdd %v4f32 %tesse1_in_clr_0_plus_col_1 %tesse1_in_clr_2_weighted\n"
4534		"OpStore %out_color %tesse1_computed_clr\n"
4535		"OpReturn\n"
4536		"OpFunctionEnd\n"
4537
4538		"%tesse2_main = OpFunction %void None %fun\n"
4539		"%tesse2_label = OpLabel\n"
4540		"%tesse2_tc_0_ptr = OpAccessChain %ip_f32 %gl_tessCoord %c_u32_0\n"
4541		"%tesse2_tc_1_ptr = OpAccessChain %ip_f32 %gl_tessCoord %c_u32_1\n"
4542		"%tesse2_tc_2_ptr = OpAccessChain %ip_f32 %gl_tessCoord %c_u32_2\n"
4543		"%tesse2_tc_0 = OpLoad %f32 %tesse2_tc_0_ptr\n"
4544		"%tesse2_tc_1 = OpLoad %f32 %tesse2_tc_1_ptr\n"
4545		"%tesse2_tc_2 = OpLoad %f32 %tesse2_tc_2_ptr\n"
4546		"%tesse2_in_pos_0_ptr = OpAccessChain %ip_v4f32 %in_position %c_i32_0\n"
4547		"%tesse2_in_pos_1_ptr = OpAccessChain %ip_v4f32 %in_position %c_i32_1\n"
4548		"%tesse2_in_pos_2_ptr = OpAccessChain %ip_v4f32 %in_position %c_i32_2\n"
4549		"%tesse2_in_pos_0 = OpLoad %v4f32 %tesse2_in_pos_0_ptr\n"
4550		"%tesse2_in_pos_1 = OpLoad %v4f32 %tesse2_in_pos_1_ptr\n"
4551		"%tesse2_in_pos_2 = OpLoad %v4f32 %tesse2_in_pos_2_ptr\n"
4552		"%tesse2_in_pos_0_weighted = OpVectorTimesScalar %v4f32 %tesse2_tc_0 %tesse2_in_pos_0\n"
4553		"%tesse2_in_pos_1_weighted = OpVectorTimesScalar %v4f32 %tesse2_tc_1 %tesse2_in_pos_1\n"
4554		"%tesse2_in_pos_2_weighted = OpVectorTimesScalar %v4f32 %tesse2_tc_2 %tesse2_in_pos_2\n"
4555		"%tesse2_out_pos_ptr = OpAccessChain %op_v4f32 %stream %c_i32_0\n"
4556		"%tesse2_in_pos_0_plus_pos_1 = OpFAdd %v4f32 %tesse2_in_pos_0_weighted %tesse2_in_pos_1_weighted\n"
4557		"%tesse2_computed_out = OpFAdd %v4f32 %tesse2_in_pos_0_plus_pos_1 %tesse2_in_pos_2_weighted\n"
4558		"OpStore %tesse2_out_pos_ptr %tesse2_computed_out\n"
4559		"%tesse2_in_clr_0_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_0\n"
4560		"%tesse2_in_clr_1_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_1\n"
4561		"%tesse2_in_clr_2_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_2\n"
4562		"%tesse2_in_clr_0 = OpLoad %v4f32 %tesse2_in_clr_0_ptr\n"
4563		"%tesse2_in_clr_1 = OpLoad %v4f32 %tesse2_in_clr_1_ptr\n"
4564		"%tesse2_in_clr_2 = OpLoad %v4f32 %tesse2_in_clr_2_ptr\n"
4565		"%tesse2_in_clr_0_weighted = OpVectorTimesScalar %v4f32 %tesse2_tc_0 %tesse2_in_clr_0\n"
4566		"%tesse2_in_clr_1_weighted = OpVectorTimesScalar %v4f32 %tesse2_tc_1 %tesse2_in_clr_1\n"
4567		"%tesse2_in_clr_2_weighted = OpVectorTimesScalar %v4f32 %tesse2_tc_2 %tesse2_in_clr_2\n"
4568		"%tesse2_in_clr_0_plus_col_1 = OpFAdd %v4f32 %tesse2_in_clr_0_weighted %tesse2_in_clr_1_weighted\n"
4569		"%tesse2_computed_clr = OpFAdd %v4f32 %tesse2_in_clr_0_plus_col_1 %tesse2_in_clr_2_weighted\n"
4570		"%tesse2_clr_transformed = OpFSub %v4f32 %cval %tesse2_computed_clr\n"
4571		"OpStore %out_color %tesse2_clr_transformed\n"
4572		"OpReturn\n"
4573		"OpFunctionEnd\n";
4574}
4575
4576// Sets up and runs a Vulkan pipeline, then spot-checks the resulting image.
4577// Feeds the pipeline a set of colored triangles, which then must occur in the
4578// rendered image.  The surface is cleared before executing the pipeline, so
4579// whatever the shaders draw can be directly spot-checked.
4580TestStatus runAndVerifyDefaultPipeline (Context& context, InstanceContext instance)
4581{
4582	const VkDevice								vkDevice				= context.getDevice();
4583	const DeviceInterface&						vk						= context.getDeviceInterface();
4584	const VkQueue								queue					= context.getUniversalQueue();
4585	const deUint32								queueFamilyIndex		= context.getUniversalQueueFamilyIndex();
4586	const tcu::IVec2							renderSize				(256, 256);
4587	vector<ModuleHandleSp>						modules;
4588	map<VkShaderStageFlagBits, VkShaderModule>	moduleByStage;
4589	const int									testSpecificSeed		= 31354125;
4590	const int									seed					= context.getTestContext().getCommandLine().getBaseSeed() ^ testSpecificSeed;
4591	bool										supportsGeometry		= false;
4592	bool										supportsTessellation	= false;
4593	bool										hasTessellation         = false;
4594
4595	const VkPhysicalDeviceFeatures&				features				= context.getDeviceFeatures();
4596	supportsGeometry		= features.geometryShader;
4597	supportsTessellation	= features.tessellationShader;
4598	hasTessellation			= (instance.requiredStages & VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT) ||
4599								(instance.requiredStages & VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT);
4600
4601	if (hasTessellation && !supportsTessellation)
4602	{
4603		throw tcu::NotSupportedError(std::string("Tessellation not supported"));
4604	}
4605
4606	if ((instance.requiredStages & VK_SHADER_STAGE_GEOMETRY_BIT) &&
4607		!supportsGeometry)
4608	{
4609		throw tcu::NotSupportedError(std::string("Geometry not supported"));
4610	}
4611
4612	de::Random(seed).shuffle(instance.inputColors, instance.inputColors+4);
4613	de::Random(seed).shuffle(instance.outputColors, instance.outputColors+4);
4614	const Vec4								vertexData[]			=
4615	{
4616		// Upper left corner:
4617		Vec4(-1.0f, -1.0f, 0.0f, 1.0f), instance.inputColors[0].toVec(),
4618		Vec4(-0.5f, -1.0f, 0.0f, 1.0f), instance.inputColors[0].toVec(),
4619		Vec4(-1.0f, -0.5f, 0.0f, 1.0f), instance.inputColors[0].toVec(),
4620
4621		// Upper right corner:
4622		Vec4(+0.5f, -1.0f, 0.0f, 1.0f), instance.inputColors[1].toVec(),
4623		Vec4(+1.0f, -1.0f, 0.0f, 1.0f), instance.inputColors[1].toVec(),
4624		Vec4(+1.0f, -0.5f, 0.0f, 1.0f), instance.inputColors[1].toVec(),
4625
4626		// Lower left corner:
4627		Vec4(-1.0f, +0.5f, 0.0f, 1.0f), instance.inputColors[2].toVec(),
4628		Vec4(-0.5f, +1.0f, 0.0f, 1.0f), instance.inputColors[2].toVec(),
4629		Vec4(-1.0f, +1.0f, 0.0f, 1.0f), instance.inputColors[2].toVec(),
4630
4631		// Lower right corner:
4632		Vec4(+1.0f, +0.5f, 0.0f, 1.0f), instance.inputColors[3].toVec(),
4633		Vec4(+1.0f, +1.0f, 0.0f, 1.0f), instance.inputColors[3].toVec(),
4634		Vec4(+0.5f, +1.0f, 0.0f, 1.0f), instance.inputColors[3].toVec()
4635	};
4636	const size_t							singleVertexDataSize	= 2 * sizeof(Vec4);
4637	const size_t							vertexCount				= sizeof(vertexData) / singleVertexDataSize;
4638
4639	const VkBufferCreateInfo				vertexBufferParams		=
4640	{
4641		VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO,	//	VkStructureType		sType;
4642		DE_NULL,								//	const void*			pNext;
4643		0u,										//	VkBufferCreateFlags	flags;
4644		(VkDeviceSize)sizeof(vertexData),		//	VkDeviceSize		size;
4645		VK_BUFFER_USAGE_VERTEX_BUFFER_BIT,		//	VkBufferUsageFlags	usage;
4646		VK_SHARING_MODE_EXCLUSIVE,				//	VkSharingMode		sharingMode;
4647		1u,										//	deUint32			queueFamilyCount;
4648		&queueFamilyIndex,						//	const deUint32*		pQueueFamilyIndices;
4649	};
4650	const Unique<VkBuffer>					vertexBuffer			(createBuffer(vk, vkDevice, &vertexBufferParams));
4651	const UniquePtr<Allocation>				vertexBufferMemory		(context.getDefaultAllocator().allocate(getBufferMemoryRequirements(vk, vkDevice, *vertexBuffer), MemoryRequirement::HostVisible));
4652
4653	VK_CHECK(vk.bindBufferMemory(vkDevice, *vertexBuffer, vertexBufferMemory->getMemory(), vertexBufferMemory->getOffset()));
4654
4655	const VkDeviceSize						imageSizeBytes			= (VkDeviceSize)(sizeof(deUint32)*renderSize.x()*renderSize.y());
4656	const VkBufferCreateInfo				readImageBufferParams	=
4657	{
4658		VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO,		//	VkStructureType		sType;
4659		DE_NULL,									//	const void*			pNext;
4660		0u,											//	VkBufferCreateFlags	flags;
4661		imageSizeBytes,								//	VkDeviceSize		size;
4662		VK_BUFFER_USAGE_TRANSFER_DST_BIT,			//	VkBufferUsageFlags	usage;
4663		VK_SHARING_MODE_EXCLUSIVE,					//	VkSharingMode		sharingMode;
4664		1u,											//	deUint32			queueFamilyCount;
4665		&queueFamilyIndex,							//	const deUint32*		pQueueFamilyIndices;
4666	};
4667	const Unique<VkBuffer>					readImageBuffer			(createBuffer(vk, vkDevice, &readImageBufferParams));
4668	const UniquePtr<Allocation>				readImageBufferMemory	(context.getDefaultAllocator().allocate(getBufferMemoryRequirements(vk, vkDevice, *readImageBuffer), MemoryRequirement::HostVisible));
4669
4670	VK_CHECK(vk.bindBufferMemory(vkDevice, *readImageBuffer, readImageBufferMemory->getMemory(), readImageBufferMemory->getOffset()));
4671
4672	const VkImageCreateInfo					imageParams				=
4673	{
4674		VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,									//	VkStructureType		sType;
4675		DE_NULL,																//	const void*			pNext;
4676		0u,																		//	VkImageCreateFlags	flags;
4677		VK_IMAGE_TYPE_2D,														//	VkImageType			imageType;
4678		VK_FORMAT_R8G8B8A8_UNORM,												//	VkFormat			format;
4679		{ renderSize.x(), renderSize.y(), 1 },									//	VkExtent3D			extent;
4680		1u,																		//	deUint32			mipLevels;
4681		1u,																		//	deUint32			arraySize;
4682		VK_SAMPLE_COUNT_1_BIT,													//	deUint32			samples;
4683		VK_IMAGE_TILING_OPTIMAL,												//	VkImageTiling		tiling;
4684		VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT|VK_IMAGE_USAGE_TRANSFER_SRC_BIT,	//	VkImageUsageFlags	usage;
4685		VK_SHARING_MODE_EXCLUSIVE,												//	VkSharingMode		sharingMode;
4686		1u,																		//	deUint32			queueFamilyCount;
4687		&queueFamilyIndex,														//	const deUint32*		pQueueFamilyIndices;
4688		VK_IMAGE_LAYOUT_UNDEFINED,												//	VkImageLayout		initialLayout;
4689	};
4690
4691	const Unique<VkImage>					image					(createImage(vk, vkDevice, &imageParams));
4692	const UniquePtr<Allocation>				imageMemory				(context.getDefaultAllocator().allocate(getImageMemoryRequirements(vk, vkDevice, *image), MemoryRequirement::Any));
4693
4694	VK_CHECK(vk.bindImageMemory(vkDevice, *image, imageMemory->getMemory(), imageMemory->getOffset()));
4695
4696	const VkAttachmentDescription			colorAttDesc			=
4697	{
4698		0u,												//	VkAttachmentDescriptionFlags	flags;
4699		VK_FORMAT_R8G8B8A8_UNORM,						//	VkFormat						format;
4700		VK_SAMPLE_COUNT_1_BIT,							//	deUint32						samples;
4701		VK_ATTACHMENT_LOAD_OP_CLEAR,					//	VkAttachmentLoadOp				loadOp;
4702		VK_ATTACHMENT_STORE_OP_STORE,					//	VkAttachmentStoreOp				storeOp;
4703		VK_ATTACHMENT_LOAD_OP_DONT_CARE,				//	VkAttachmentLoadOp				stencilLoadOp;
4704		VK_ATTACHMENT_STORE_OP_DONT_CARE,				//	VkAttachmentStoreOp				stencilStoreOp;
4705		VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,		//	VkImageLayout					initialLayout;
4706		VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,		//	VkImageLayout					finalLayout;
4707	};
4708	const VkAttachmentReference				colorAttRef				=
4709	{
4710		0u,												//	deUint32		attachment;
4711		VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,		//	VkImageLayout	layout;
4712	};
4713	const VkSubpassDescription				subpassDesc				=
4714	{
4715		0u,												//	VkSubpassDescriptionFlags		flags;
4716		VK_PIPELINE_BIND_POINT_GRAPHICS,				//	VkPipelineBindPoint				pipelineBindPoint;
4717		0u,												//	deUint32						inputCount;
4718		DE_NULL,										//	const VkAttachmentReference*	pInputAttachments;
4719		1u,												//	deUint32						colorCount;
4720		&colorAttRef,									//	const VkAttachmentReference*	pColorAttachments;
4721		DE_NULL,										//	const VkAttachmentReference*	pResolveAttachments;
4722		DE_NULL,										//	const VkAttachmentReference*	pDepthStencilAttachment;
4723		0u,												//	deUint32						preserveCount;
4724		DE_NULL,										//	const VkAttachmentReference*	pPreserveAttachments;
4725
4726	};
4727	const VkRenderPassCreateInfo			renderPassParams		=
4728	{
4729		VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO,		//	VkStructureType					sType;
4730		DE_NULL,										//	const void*						pNext;
4731		(VkRenderPassCreateFlags)0,
4732		1u,												//	deUint32						attachmentCount;
4733		&colorAttDesc,									//	const VkAttachmentDescription*	pAttachments;
4734		1u,												//	deUint32						subpassCount;
4735		&subpassDesc,									//	const VkSubpassDescription*		pSubpasses;
4736		0u,												//	deUint32						dependencyCount;
4737		DE_NULL,										//	const VkSubpassDependency*		pDependencies;
4738	};
4739	const Unique<VkRenderPass>				renderPass				(createRenderPass(vk, vkDevice, &renderPassParams));
4740
4741	const VkImageViewCreateInfo				colorAttViewParams		=
4742	{
4743		VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,		//	VkStructureType				sType;
4744		DE_NULL,										//	const void*					pNext;
4745		0u,												//	VkImageViewCreateFlags		flags;
4746		*image,											//	VkImage						image;
4747		VK_IMAGE_VIEW_TYPE_2D,							//	VkImageViewType				viewType;
4748		VK_FORMAT_R8G8B8A8_UNORM,						//	VkFormat					format;
4749		{
4750			VK_COMPONENT_SWIZZLE_R,
4751			VK_COMPONENT_SWIZZLE_G,
4752			VK_COMPONENT_SWIZZLE_B,
4753			VK_COMPONENT_SWIZZLE_A
4754		},												//	VkChannelMapping			channels;
4755		{
4756			VK_IMAGE_ASPECT_COLOR_BIT,						//	VkImageAspectFlags	aspectMask;
4757			0u,												//	deUint32			baseMipLevel;
4758			1u,												//	deUint32			mipLevels;
4759			0u,												//	deUint32			baseArrayLayer;
4760			1u,												//	deUint32			arraySize;
4761		},												//	VkImageSubresourceRange		subresourceRange;
4762	};
4763	const Unique<VkImageView>				colorAttView			(createImageView(vk, vkDevice, &colorAttViewParams));
4764
4765
4766	// Pipeline layout
4767	const VkPipelineLayoutCreateInfo		pipelineLayoutParams	=
4768	{
4769		VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,			//	VkStructureType					sType;
4770		DE_NULL,												//	const void*						pNext;
4771		(VkPipelineLayoutCreateFlags)0,
4772		0u,														//	deUint32						descriptorSetCount;
4773		DE_NULL,												//	const VkDescriptorSetLayout*	pSetLayouts;
4774		0u,														//	deUint32						pushConstantRangeCount;
4775		DE_NULL,												//	const VkPushConstantRange*		pPushConstantRanges;
4776	};
4777	const Unique<VkPipelineLayout>			pipelineLayout			(createPipelineLayout(vk, vkDevice, &pipelineLayoutParams));
4778
4779	// Pipeline
4780	vector<VkPipelineShaderStageCreateInfo>		shaderStageParams;
4781	// We need these vectors to make sure that information about specialization constants for each stage can outlive createGraphicsPipeline().
4782	vector<vector<VkSpecializationMapEntry> >	specConstantEntries;
4783	vector<VkSpecializationInfo>				specializationInfos;
4784	createPipelineShaderStages(vk, vkDevice, instance, context, modules, shaderStageParams);
4785
4786	// And we don't want the reallocation of these vectors to invalidate pointers pointing to their contents.
4787	specConstantEntries.reserve(shaderStageParams.size());
4788	specializationInfos.reserve(shaderStageParams.size());
4789
4790	// Patch the specialization info field in PipelineShaderStageCreateInfos.
4791	for (vector<VkPipelineShaderStageCreateInfo>::iterator stageInfo = shaderStageParams.begin(); stageInfo != shaderStageParams.end(); ++stageInfo)
4792	{
4793		const StageToSpecConstantMap::const_iterator stageIt = instance.specConstants.find(stageInfo->stage);
4794
4795		if (stageIt != instance.specConstants.end())
4796		{
4797			const size_t						numSpecConstants	= stageIt->second.size();
4798			vector<VkSpecializationMapEntry>	entries;
4799			VkSpecializationInfo				specInfo;
4800
4801			entries.resize(numSpecConstants);
4802
4803			// Only support 32-bit integers as spec constants now. And their constant IDs are numbered sequentially starting from 0.
4804			for (size_t ndx = 0; ndx < numSpecConstants; ++ndx)
4805			{
4806				entries[ndx].constantID	= (deUint32)ndx;
4807				entries[ndx].offset		= deUint32(ndx * sizeof(deInt32));
4808				entries[ndx].size		= sizeof(deInt32);
4809			}
4810
4811			specConstantEntries.push_back(entries);
4812
4813			specInfo.mapEntryCount	= (deUint32)numSpecConstants;
4814			specInfo.pMapEntries	= specConstantEntries.back().data();
4815			specInfo.dataSize		= numSpecConstants * sizeof(deInt32);
4816			specInfo.pData			= stageIt->second.data();
4817			specializationInfos.push_back(specInfo);
4818
4819			stageInfo->pSpecializationInfo = &specializationInfos.back();
4820		}
4821	}
4822	const VkPipelineDepthStencilStateCreateInfo	depthStencilParams		=
4823	{
4824		VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO,	//	VkStructureType		sType;
4825		DE_NULL,													//	const void*			pNext;
4826		(VkPipelineDepthStencilStateCreateFlags)0,
4827		DE_FALSE,													//	deUint32			depthTestEnable;
4828		DE_FALSE,													//	deUint32			depthWriteEnable;
4829		VK_COMPARE_OP_ALWAYS,										//	VkCompareOp			depthCompareOp;
4830		DE_FALSE,													//	deUint32			depthBoundsTestEnable;
4831		DE_FALSE,													//	deUint32			stencilTestEnable;
4832		{
4833			VK_STENCIL_OP_KEEP,											//	VkStencilOp	stencilFailOp;
4834			VK_STENCIL_OP_KEEP,											//	VkStencilOp	stencilPassOp;
4835			VK_STENCIL_OP_KEEP,											//	VkStencilOp	stencilDepthFailOp;
4836			VK_COMPARE_OP_ALWAYS,										//	VkCompareOp	stencilCompareOp;
4837			0u,															//	deUint32	stencilCompareMask;
4838			0u,															//	deUint32	stencilWriteMask;
4839			0u,															//	deUint32	stencilReference;
4840		},															//	VkStencilOpState	front;
4841		{
4842			VK_STENCIL_OP_KEEP,											//	VkStencilOp	stencilFailOp;
4843			VK_STENCIL_OP_KEEP,											//	VkStencilOp	stencilPassOp;
4844			VK_STENCIL_OP_KEEP,											//	VkStencilOp	stencilDepthFailOp;
4845			VK_COMPARE_OP_ALWAYS,										//	VkCompareOp	stencilCompareOp;
4846			0u,															//	deUint32	stencilCompareMask;
4847			0u,															//	deUint32	stencilWriteMask;
4848			0u,															//	deUint32	stencilReference;
4849		},															//	VkStencilOpState	back;
4850		-1.0f,														//	float				minDepthBounds;
4851		+1.0f,														//	float				maxDepthBounds;
4852	};
4853	const VkViewport						viewport0				=
4854	{
4855		0.0f,														//	float	originX;
4856		0.0f,														//	float	originY;
4857		(float)renderSize.x(),										//	float	width;
4858		(float)renderSize.y(),										//	float	height;
4859		0.0f,														//	float	minDepth;
4860		1.0f,														//	float	maxDepth;
4861	};
4862	const VkRect2D							scissor0				=
4863	{
4864		{
4865			0u,															//	deInt32	x;
4866			0u,															//	deInt32	y;
4867		},															//	VkOffset2D	offset;
4868		{
4869			renderSize.x(),												//	deInt32	width;
4870			renderSize.y(),												//	deInt32	height;
4871		},															//	VkExtent2D	extent;
4872	};
4873	const VkPipelineViewportStateCreateInfo		viewportParams			=
4874	{
4875		VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO,		//	VkStructureType		sType;
4876		DE_NULL,													//	const void*			pNext;
4877		(VkPipelineViewportStateCreateFlags)0,
4878		1u,															//	deUint32			viewportCount;
4879		&viewport0,
4880		1u,
4881		&scissor0
4882	};
4883	const VkSampleMask							sampleMask				= ~0u;
4884	const VkPipelineMultisampleStateCreateInfo	multisampleParams		=
4885	{
4886		VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO,	//	VkStructureType			sType;
4887		DE_NULL,													//	const void*				pNext;
4888		(VkPipelineMultisampleStateCreateFlags)0,
4889		VK_SAMPLE_COUNT_1_BIT,										//	VkSampleCountFlagBits	rasterSamples;
4890		DE_FALSE,													//	deUint32				sampleShadingEnable;
4891		0.0f,														//	float					minSampleShading;
4892		&sampleMask,												//	const VkSampleMask*		pSampleMask;
4893		DE_FALSE,													//	VkBool32				alphaToCoverageEnable;
4894		DE_FALSE,													//	VkBool32				alphaToOneEnable;
4895	};
4896	const VkPipelineRasterizationStateCreateInfo	rasterParams		=
4897	{
4898		VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO,	//	VkStructureType	sType;
4899		DE_NULL,													//	const void*		pNext;
4900		(VkPipelineRasterizationStateCreateFlags)0,
4901		DE_TRUE,													//	deUint32		depthClipEnable;
4902		DE_FALSE,													//	deUint32		rasterizerDiscardEnable;
4903		VK_POLYGON_MODE_FILL,										//	VkFillMode		fillMode;
4904		VK_CULL_MODE_NONE,											//	VkCullMode		cullMode;
4905		VK_FRONT_FACE_COUNTER_CLOCKWISE,							//	VkFrontFace		frontFace;
4906		VK_FALSE,													//	VkBool32		depthBiasEnable;
4907		0.0f,														//	float			depthBias;
4908		0.0f,														//	float			depthBiasClamp;
4909		0.0f,														//	float			slopeScaledDepthBias;
4910		1.0f,														//	float			lineWidth;
4911	};
4912	const VkPrimitiveTopology topology = hasTessellation? VK_PRIMITIVE_TOPOLOGY_PATCH_LIST: VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
4913	const VkPipelineInputAssemblyStateCreateInfo	inputAssemblyParams	=
4914	{
4915		VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO,	//	VkStructureType		sType;
4916		DE_NULL,														//	const void*			pNext;
4917		(VkPipelineInputAssemblyStateCreateFlags)0,
4918		topology,														//	VkPrimitiveTopology	topology;
4919		DE_FALSE,														//	deUint32			primitiveRestartEnable;
4920	};
4921	const VkVertexInputBindingDescription		vertexBinding0 =
4922	{
4923		0u,									// deUint32					binding;
4924		deUint32(singleVertexDataSize),		// deUint32					strideInBytes;
4925		VK_VERTEX_INPUT_RATE_VERTEX			// VkVertexInputStepRate	stepRate;
4926	};
4927	const VkVertexInputAttributeDescription		vertexAttrib0[2] =
4928	{
4929		{
4930			0u,									// deUint32	location;
4931			0u,									// deUint32	binding;
4932			VK_FORMAT_R32G32B32A32_SFLOAT,		// VkFormat	format;
4933			0u									// deUint32	offsetInBytes;
4934		},
4935		{
4936			1u,									// deUint32	location;
4937			0u,									// deUint32	binding;
4938			VK_FORMAT_R32G32B32A32_SFLOAT,		// VkFormat	format;
4939			sizeof(Vec4),						// deUint32	offsetInBytes;
4940		}
4941	};
4942
4943	const VkPipelineVertexInputStateCreateInfo	vertexInputStateParams	=
4944	{
4945		VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO,	//	VkStructureType								sType;
4946		DE_NULL,													//	const void*									pNext;
4947		(VkPipelineVertexInputStateCreateFlags)0,
4948		1u,															//	deUint32									bindingCount;
4949		&vertexBinding0,											//	const VkVertexInputBindingDescription*		pVertexBindingDescriptions;
4950		2u,															//	deUint32									attributeCount;
4951		vertexAttrib0,												//	const VkVertexInputAttributeDescription*	pVertexAttributeDescriptions;
4952	};
4953	const VkPipelineColorBlendAttachmentState	attBlendParams			=
4954	{
4955		DE_FALSE,													//	deUint32		blendEnable;
4956		VK_BLEND_FACTOR_ONE,										//	VkBlend			srcBlendColor;
4957		VK_BLEND_FACTOR_ZERO,										//	VkBlend			destBlendColor;
4958		VK_BLEND_OP_ADD,											//	VkBlendOp		blendOpColor;
4959		VK_BLEND_FACTOR_ONE,										//	VkBlend			srcBlendAlpha;
4960		VK_BLEND_FACTOR_ZERO,										//	VkBlend			destBlendAlpha;
4961		VK_BLEND_OP_ADD,											//	VkBlendOp		blendOpAlpha;
4962		(VK_COLOR_COMPONENT_R_BIT|
4963		 VK_COLOR_COMPONENT_G_BIT|
4964		 VK_COLOR_COMPONENT_B_BIT|
4965		 VK_COLOR_COMPONENT_A_BIT),									//	VkChannelFlags	channelWriteMask;
4966	};
4967	const VkPipelineColorBlendStateCreateInfo	blendParams				=
4968	{
4969		VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO,	//	VkStructureType								sType;
4970		DE_NULL,													//	const void*									pNext;
4971		(VkPipelineColorBlendStateCreateFlags)0,
4972		DE_FALSE,													//	VkBool32									logicOpEnable;
4973		VK_LOGIC_OP_COPY,											//	VkLogicOp									logicOp;
4974		1u,															//	deUint32									attachmentCount;
4975		&attBlendParams,											//	const VkPipelineColorBlendAttachmentState*	pAttachments;
4976		{ 0.0f, 0.0f, 0.0f, 0.0f },									//	float										blendConst[4];
4977	};
4978	const VkPipelineDynamicStateCreateInfo	dynamicStateInfo		=
4979	{
4980		VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO,	//	VkStructureType			sType;
4981		DE_NULL,												//	const void*				pNext;
4982		(VkPipelineDynamicStateCreateFlags)0,
4983		0u,														//	deUint32				dynamicStateCount;
4984		DE_NULL													//	const VkDynamicState*	pDynamicStates;
4985	};
4986
4987	const VkPipelineTessellationStateCreateInfo	tessellationState	=
4988	{
4989		VK_STRUCTURE_TYPE_PIPELINE_TESSELLATION_STATE_CREATE_INFO,
4990		DE_NULL,
4991		(VkPipelineTesselationStateCreateFlags)0,
4992		3u
4993	};
4994
4995	const VkPipelineTessellationStateCreateInfo* tessellationInfo	=	hasTessellation ? &tessellationState: DE_NULL;
4996	const VkGraphicsPipelineCreateInfo		pipelineParams			=
4997	{
4998		VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO,		//	VkStructureType									sType;
4999		DE_NULL,												//	const void*										pNext;
5000		0u,														//	VkPipelineCreateFlags							flags;
5001		(deUint32)shaderStageParams.size(),						//	deUint32										stageCount;
5002		&shaderStageParams[0],									//	const VkPipelineShaderStageCreateInfo*			pStages;
5003		&vertexInputStateParams,								//	const VkPipelineVertexInputStateCreateInfo*		pVertexInputState;
5004		&inputAssemblyParams,									//	const VkPipelineInputAssemblyStateCreateInfo*	pInputAssemblyState;
5005		tessellationInfo,										//	const VkPipelineTessellationStateCreateInfo*	pTessellationState;
5006		&viewportParams,										//	const VkPipelineViewportStateCreateInfo*		pViewportState;
5007		&rasterParams,											//	const VkPipelineRasterStateCreateInfo*			pRasterState;
5008		&multisampleParams,										//	const VkPipelineMultisampleStateCreateInfo*		pMultisampleState;
5009		&depthStencilParams,									//	const VkPipelineDepthStencilStateCreateInfo*	pDepthStencilState;
5010		&blendParams,											//	const VkPipelineColorBlendStateCreateInfo*		pColorBlendState;
5011		&dynamicStateInfo,										//	const VkPipelineDynamicStateCreateInfo*			pDynamicState;
5012		*pipelineLayout,										//	VkPipelineLayout								layout;
5013		*renderPass,											//	VkRenderPass									renderPass;
5014		0u,														//	deUint32										subpass;
5015		DE_NULL,												//	VkPipeline										basePipelineHandle;
5016		0u,														//	deInt32											basePipelineIndex;
5017	};
5018
5019	const Unique<VkPipeline>				pipeline				(createGraphicsPipeline(vk, vkDevice, DE_NULL, &pipelineParams));
5020
5021	// Framebuffer
5022	const VkFramebufferCreateInfo			framebufferParams		=
5023	{
5024		VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO,				//	VkStructureType		sType;
5025		DE_NULL,												//	const void*			pNext;
5026		(VkFramebufferCreateFlags)0,
5027		*renderPass,											//	VkRenderPass		renderPass;
5028		1u,														//	deUint32			attachmentCount;
5029		&*colorAttView,											//	const VkImageView*	pAttachments;
5030		(deUint32)renderSize.x(),								//	deUint32			width;
5031		(deUint32)renderSize.y(),								//	deUint32			height;
5032		1u,														//	deUint32			layers;
5033	};
5034	const Unique<VkFramebuffer>				framebuffer				(createFramebuffer(vk, vkDevice, &framebufferParams));
5035
5036	const VkCommandPoolCreateInfo			cmdPoolParams			=
5037	{
5038		VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO,					//	VkStructureType			sType;
5039		DE_NULL,													//	const void*				pNext;
5040		VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT,				//	VkCmdPoolCreateFlags	flags;
5041		queueFamilyIndex,											//	deUint32				queueFamilyIndex;
5042	};
5043	const Unique<VkCommandPool>				cmdPool					(createCommandPool(vk, vkDevice, &cmdPoolParams));
5044
5045	// Command buffer
5046	const VkCommandBufferAllocateInfo		cmdBufParams			=
5047	{
5048		VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO,			//	VkStructureType			sType;
5049		DE_NULL,												//	const void*				pNext;
5050		*cmdPool,												//	VkCmdPool				pool;
5051		VK_COMMAND_BUFFER_LEVEL_PRIMARY,						//	VkCmdBufferLevel		level;
5052		1u,														//	deUint32				count;
5053	};
5054	const Unique<VkCommandBuffer>			cmdBuf					(allocateCommandBuffer(vk, vkDevice, &cmdBufParams));
5055
5056	const VkCommandBufferBeginInfo			cmdBufBeginParams		=
5057	{
5058		VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO,			//	VkStructureType				sType;
5059		DE_NULL,												//	const void*					pNext;
5060		(VkCommandBufferUsageFlags)0,
5061		DE_NULL,												//	VkRenderPass				renderPass;
5062		0u,														//	deUint32					subpass;
5063		DE_NULL,												//	VkFramebuffer				framebuffer;
5064		VK_FALSE,												//	VkBool32					occlusionQueryEnable;
5065		(VkQueryControlFlags)0,
5066		(VkQueryPipelineStatisticFlags)0,
5067	};
5068
5069	// Record commands
5070	VK_CHECK(vk.beginCommandBuffer(*cmdBuf, &cmdBufBeginParams));
5071
5072	{
5073		const VkMemoryBarrier		vertFlushBarrier	=
5074		{
5075			VK_STRUCTURE_TYPE_MEMORY_BARRIER,			//	VkStructureType		sType;
5076			DE_NULL,									//	const void*			pNext;
5077			VK_ACCESS_HOST_WRITE_BIT,					//	VkMemoryOutputFlags	outputMask;
5078			VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT,		//	VkMemoryInputFlags	inputMask;
5079		};
5080		const VkImageMemoryBarrier	colorAttBarrier		=
5081		{
5082			VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,		//	VkStructureType			sType;
5083			DE_NULL,									//	const void*				pNext;
5084			0u,											//	VkMemoryOutputFlags		outputMask;
5085			VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,		//	VkMemoryInputFlags		inputMask;
5086			VK_IMAGE_LAYOUT_UNDEFINED,					//	VkImageLayout			oldLayout;
5087			VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,	//	VkImageLayout			newLayout;
5088			queueFamilyIndex,							//	deUint32				srcQueueFamilyIndex;
5089			queueFamilyIndex,							//	deUint32				destQueueFamilyIndex;
5090			*image,										//	VkImage					image;
5091			{
5092				VK_IMAGE_ASPECT_COLOR_BIT,					//	VkImageAspect	aspect;
5093				0u,											//	deUint32		baseMipLevel;
5094				1u,											//	deUint32		mipLevels;
5095				0u,											//	deUint32		baseArraySlice;
5096				1u,											//	deUint32		arraySize;
5097			}											//	VkImageSubresourceRange	subresourceRange;
5098		};
5099		const void*				barriers[]				= { &vertFlushBarrier, &colorAttBarrier };
5100		vk.cmdPipelineBarrier(*cmdBuf, VK_PIPELINE_STAGE_HOST_BIT, VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT, DE_FALSE, (deUint32)DE_LENGTH_OF_ARRAY(barriers), barriers);
5101	}
5102
5103	{
5104		const VkClearValue			clearValue		= makeClearValueColorF32(0.125f, 0.25f, 0.75f, 1.0f);
5105		const VkRenderPassBeginInfo	passBeginParams	=
5106		{
5107			VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO,			//	VkStructureType		sType;
5108			DE_NULL,											//	const void*			pNext;
5109			*renderPass,										//	VkRenderPass		renderPass;
5110			*framebuffer,										//	VkFramebuffer		framebuffer;
5111			{ { 0, 0 }, { renderSize.x(), renderSize.y() } },	//	VkRect2D			renderArea;
5112			1u,													//	deUint32			clearValueCount;
5113			&clearValue,										//	const VkClearValue*	pClearValues;
5114		};
5115		vk.cmdBeginRenderPass(*cmdBuf, &passBeginParams, VK_SUBPASS_CONTENTS_INLINE);
5116	}
5117
5118	vk.cmdBindPipeline(*cmdBuf, VK_PIPELINE_BIND_POINT_GRAPHICS, *pipeline);
5119	{
5120		const VkDeviceSize bindingOffset = 0;
5121		vk.cmdBindVertexBuffers(*cmdBuf, 0u, 1u, &vertexBuffer.get(), &bindingOffset);
5122	}
5123	vk.cmdDraw(*cmdBuf, deUint32(vertexCount), 1u /*run pipeline once*/, 0u /*first vertex*/, 0u /*first instanceIndex*/);
5124	vk.cmdEndRenderPass(*cmdBuf);
5125
5126	{
5127		const VkImageMemoryBarrier	renderFinishBarrier	=
5128		{
5129			VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,		//	VkStructureType			sType;
5130			DE_NULL,									//	const void*				pNext;
5131			VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,		//	VkMemoryOutputFlags		outputMask;
5132			VK_ACCESS_TRANSFER_READ_BIT,				//	VkMemoryInputFlags		inputMask;
5133			VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,	//	VkImageLayout			oldLayout;
5134			VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,		//	VkImageLayout			newLayout;
5135			queueFamilyIndex,							//	deUint32				srcQueueFamilyIndex;
5136			queueFamilyIndex,							//	deUint32				destQueueFamilyIndex;
5137			*image,										//	VkImage					image;
5138			{
5139				VK_IMAGE_ASPECT_COLOR_BIT,					//	VkImageAspectFlags	aspectMask;
5140				0u,											//	deUint32			baseMipLevel;
5141				1u,											//	deUint32			mipLevels;
5142				0u,											//	deUint32			baseArraySlice;
5143				1u,											//	deUint32			arraySize;
5144			}											//	VkImageSubresourceRange	subresourceRange;
5145		};
5146		const void*				barriers[]				= { &renderFinishBarrier };
5147		vk.cmdPipelineBarrier(*cmdBuf, VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, DE_FALSE, (deUint32)DE_LENGTH_OF_ARRAY(barriers), barriers);
5148	}
5149
5150	{
5151		const VkBufferImageCopy	copyParams	=
5152		{
5153			(VkDeviceSize)0u,						//	VkDeviceSize			bufferOffset;
5154			(deUint32)renderSize.x(),				//	deUint32				bufferRowLength;
5155			(deUint32)renderSize.y(),				//	deUint32				bufferImageHeight;
5156			{
5157				VK_IMAGE_ASPECT_COLOR_BIT,				//	VkImageAspect		aspect;
5158				0u,										//	deUint32			mipLevel;
5159				0u,										//	deUint32			arrayLayer;
5160				1u,										//	deUint32			arraySize;
5161			},										//	VkImageSubresourceCopy	imageSubresource;
5162			{ 0u, 0u, 0u },							//	VkOffset3D				imageOffset;
5163			{ renderSize.x(), renderSize.y(), 1u }	//	VkExtent3D				imageExtent;
5164		};
5165		vk.cmdCopyImageToBuffer(*cmdBuf, *image, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, *readImageBuffer, 1u, &copyParams);
5166	}
5167
5168	{
5169		const VkBufferMemoryBarrier	copyFinishBarrier	=
5170		{
5171			VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER,	//	VkStructureType		sType;
5172			DE_NULL,									//	const void*			pNext;
5173			VK_ACCESS_TRANSFER_WRITE_BIT,				//	VkMemoryOutputFlags	outputMask;
5174			VK_ACCESS_HOST_READ_BIT,					//	VkMemoryInputFlags	inputMask;
5175			queueFamilyIndex,							//	deUint32			srcQueueFamilyIndex;
5176			queueFamilyIndex,							//	deUint32			destQueueFamilyIndex;
5177			*readImageBuffer,							//	VkBuffer			buffer;
5178			0u,											//	VkDeviceSize		offset;
5179			imageSizeBytes								//	VkDeviceSize		size;
5180		};
5181		const void*				barriers[]				= { &copyFinishBarrier };
5182		vk.cmdPipelineBarrier(*cmdBuf, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_HOST_BIT, DE_FALSE, (deUint32)DE_LENGTH_OF_ARRAY(barriers), barriers);
5183	}
5184
5185	VK_CHECK(vk.endCommandBuffer(*cmdBuf));
5186
5187	// Upload vertex data
5188	{
5189		const VkMappedMemoryRange	range			=
5190		{
5191			VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE,	//	VkStructureType	sType;
5192			DE_NULL,								//	const void*		pNext;
5193			vertexBufferMemory->getMemory(),		//	VkDeviceMemory	mem;
5194			0,										//	VkDeviceSize	offset;
5195			(VkDeviceSize)sizeof(vertexData),		//	VkDeviceSize	size;
5196		};
5197		void*						vertexBufPtr	= vertexBufferMemory->getHostPtr();
5198
5199		deMemcpy(vertexBufPtr, &vertexData[0], sizeof(vertexData));
5200		VK_CHECK(vk.flushMappedMemoryRanges(vkDevice, 1u, &range));
5201	}
5202
5203	// Submit & wait for completion
5204	{
5205		const VkFenceCreateInfo	fenceParams	=
5206		{
5207			VK_STRUCTURE_TYPE_FENCE_CREATE_INFO,	//	VkStructureType		sType;
5208			DE_NULL,								//	const void*			pNext;
5209			0u,										//	VkFenceCreateFlags	flags;
5210		};
5211		const Unique<VkFence>	fence		(createFence(vk, vkDevice, &fenceParams));
5212		const VkSubmitInfo		submitInfo	=
5213		{
5214			VK_STRUCTURE_TYPE_SUBMIT_INFO,
5215			DE_NULL,
5216			0u,
5217			(const VkSemaphore*)DE_NULL,
5218			1u,
5219			&cmdBuf.get(),
5220			0u,
5221			(const VkSemaphore*)DE_NULL,
5222		};
5223
5224		VK_CHECK(vk.queueSubmit(queue, 1u, &submitInfo, *fence));
5225		VK_CHECK(vk.waitForFences(vkDevice, 1u, &fence.get(), DE_TRUE, ~0ull));
5226	}
5227
5228	const void* imagePtr	= readImageBufferMemory->getHostPtr();
5229	const tcu::ConstPixelBufferAccess pixelBuffer(tcu::TextureFormat(tcu::TextureFormat::RGBA, tcu::TextureFormat::UNORM_INT8),
5230												  renderSize.x(), renderSize.y(), 1, imagePtr);
5231	// Log image
5232	{
5233		const VkMappedMemoryRange	range		=
5234		{
5235			VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE,	//	VkStructureType	sType;
5236			DE_NULL,								//	const void*		pNext;
5237			readImageBufferMemory->getMemory(),		//	VkDeviceMemory	mem;
5238			0,										//	VkDeviceSize	offset;
5239			imageSizeBytes,							//	VkDeviceSize	size;
5240		};
5241
5242		VK_CHECK(vk.invalidateMappedMemoryRanges(vkDevice, 1u, &range));
5243		context.getTestContext().getLog() << TestLog::Image("Result", "Result", pixelBuffer);
5244	}
5245
5246	const RGBA threshold(1, 1, 1, 1);
5247	const RGBA upperLeft(pixelBuffer.getPixel(1, 1));
5248	if (!tcu::compareThreshold(upperLeft, instance.outputColors[0], threshold))
5249		return TestStatus::fail("Upper left corner mismatch");
5250
5251	const RGBA upperRight(pixelBuffer.getPixel(pixelBuffer.getWidth() - 1, 1));
5252	if (!tcu::compareThreshold(upperRight, instance.outputColors[1], threshold))
5253		return TestStatus::fail("Upper right corner mismatch");
5254
5255	const RGBA lowerLeft(pixelBuffer.getPixel(1, pixelBuffer.getHeight() - 1));
5256	if (!tcu::compareThreshold(lowerLeft, instance.outputColors[2], threshold))
5257		return TestStatus::fail("Lower left corner mismatch");
5258
5259	const RGBA lowerRight(pixelBuffer.getPixel(pixelBuffer.getWidth() - 1, pixelBuffer.getHeight() - 1));
5260	if (!tcu::compareThreshold(lowerRight, instance.outputColors[3], threshold))
5261		return TestStatus::fail("Lower right corner mismatch");
5262
5263	return TestStatus::pass("Rendered output matches input");
5264}
5265
5266void createTestsForAllStages (const std::string& name, const RGBA (&inputColors)[4], const RGBA (&outputColors)[4], const map<string, string>& testCodeFragments, const vector<deInt32>& specConstants, tcu::TestCaseGroup* tests)
5267{
5268	const ShaderElement		vertFragPipelineStages[]		=
5269	{
5270		ShaderElement("vert", "main", VK_SHADER_STAGE_VERTEX_BIT),
5271		ShaderElement("frag", "main", VK_SHADER_STAGE_FRAGMENT_BIT),
5272	};
5273
5274	const ShaderElement		tessPipelineStages[]			=
5275	{
5276		ShaderElement("vert", "main", VK_SHADER_STAGE_VERTEX_BIT),
5277		ShaderElement("tessc", "main", VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT),
5278		ShaderElement("tesse", "main", VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT),
5279		ShaderElement("frag", "main", VK_SHADER_STAGE_FRAGMENT_BIT),
5280	};
5281
5282	const ShaderElement		geomPipelineStages[]				=
5283	{
5284		ShaderElement("vert", "main", VK_SHADER_STAGE_VERTEX_BIT),
5285		ShaderElement("geom", "main", VK_SHADER_STAGE_GEOMETRY_BIT),
5286		ShaderElement("frag", "main", VK_SHADER_STAGE_FRAGMENT_BIT),
5287	};
5288
5289	StageToSpecConstantMap	specConstantMap;
5290
5291	specConstantMap[VK_SHADER_STAGE_VERTEX_BIT] = specConstants;
5292	addFunctionCaseWithPrograms<InstanceContext>(tests, name + "_vert", "", addShaderCodeCustomVertex, runAndVerifyDefaultPipeline,
5293												 createInstanceContext(vertFragPipelineStages, inputColors, outputColors, testCodeFragments, specConstantMap));
5294
5295	specConstantMap.clear();
5296	specConstantMap[VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT] = specConstants;
5297	addFunctionCaseWithPrograms<InstanceContext>(tests, name + "_tessc", "", addShaderCodeCustomTessControl, runAndVerifyDefaultPipeline,
5298												 createInstanceContext(tessPipelineStages, inputColors, outputColors, testCodeFragments, specConstantMap));
5299
5300	specConstantMap.clear();
5301	specConstantMap[VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT] = specConstants;
5302	addFunctionCaseWithPrograms<InstanceContext>(tests, name + "_tesse", "", addShaderCodeCustomTessEval, runAndVerifyDefaultPipeline,
5303												 createInstanceContext(tessPipelineStages, inputColors, outputColors, testCodeFragments, specConstantMap));
5304
5305	specConstantMap.clear();
5306	specConstantMap[VK_SHADER_STAGE_GEOMETRY_BIT] = specConstants;
5307	addFunctionCaseWithPrograms<InstanceContext>(tests, name + "_geom", "", addShaderCodeCustomGeometry, runAndVerifyDefaultPipeline,
5308												 createInstanceContext(geomPipelineStages, inputColors, outputColors, testCodeFragments, specConstantMap));
5309
5310	specConstantMap.clear();
5311	specConstantMap[VK_SHADER_STAGE_FRAGMENT_BIT] = specConstants;
5312	addFunctionCaseWithPrograms<InstanceContext>(tests, name + "_frag", "", addShaderCodeCustomFragment, runAndVerifyDefaultPipeline,
5313												 createInstanceContext(vertFragPipelineStages, inputColors, outputColors, testCodeFragments, specConstantMap));
5314}
5315
5316inline void createTestsForAllStages (const std::string& name, const RGBA (&inputColors)[4], const RGBA (&outputColors)[4], const map<string, string>& testCodeFragments, tcu::TestCaseGroup* tests)
5317{
5318	vector<deInt32> noSpecConstants;
5319	createTestsForAllStages(name, inputColors, outputColors, testCodeFragments, noSpecConstants, tests);
5320}
5321
5322} // anonymous
5323
5324tcu::TestCaseGroup* createOpSourceTests (tcu::TestContext& testCtx)
5325{
5326	struct NameCodePair { string name, code; };
5327	RGBA							defaultColors[4];
5328	de::MovePtr<tcu::TestCaseGroup> opSourceTests			(new tcu::TestCaseGroup(testCtx, "opsource", "OpSource instruction"));
5329	const std::string				opsourceGLSLWithFile	= "%opsrcfile = OpString \"foo.vert\"\nOpSource GLSL 450 %opsrcfile ";
5330	map<string, string>				fragments				= passthruFragments();
5331	const NameCodePair				tests[]					=
5332	{
5333		{"unknown", "OpSource Unknown 321"},
5334		{"essl", "OpSource ESSL 310"},
5335		{"glsl", "OpSource GLSL 450"},
5336		{"opencl_cpp", "OpSource OpenCL_CPP 120"},
5337		{"opencl_c", "OpSource OpenCL_C 120"},
5338		{"multiple", "OpSource GLSL 450\nOpSource GLSL 450"},
5339		{"file", opsourceGLSLWithFile},
5340		{"source", opsourceGLSLWithFile + "\"void main(){}\""},
5341		// Longest possible source string: SPIR-V limits instructions to 65535
5342		// words, of which the first 4 are opsourceGLSLWithFile; the rest will
5343		// contain 65530 UTF8 characters (one word each) plus one last word
5344		// containing 3 ASCII characters and \0.
5345		{"longsource", opsourceGLSLWithFile + '"' + makeLongUTF8String(65530) + "ccc" + '"'}
5346	};
5347
5348	getDefaultColors(defaultColors);
5349	for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(NameCodePair); ++testNdx)
5350	{
5351		fragments["debug"] = tests[testNdx].code;
5352		createTestsForAllStages(tests[testNdx].name, defaultColors, defaultColors, fragments, opSourceTests.get());
5353	}
5354
5355	return opSourceTests.release();
5356}
5357
5358tcu::TestCaseGroup* createOpSourceContinuedTests (tcu::TestContext& testCtx)
5359{
5360	struct NameCodePair { string name, code; };
5361	RGBA								defaultColors[4];
5362	de::MovePtr<tcu::TestCaseGroup>		opSourceTests		(new tcu::TestCaseGroup(testCtx, "opsourcecontinued", "OpSourceContinued instruction"));
5363	map<string, string>					fragments			= passthruFragments();
5364	const std::string					opsource			= "%opsrcfile = OpString \"foo.vert\"\nOpSource GLSL 450 %opsrcfile \"void main(){}\"\n";
5365	const NameCodePair					tests[]				=
5366	{
5367		{"empty", opsource + "OpSourceContinued \"\""},
5368		{"short", opsource + "OpSourceContinued \"abcde\""},
5369		{"multiple", opsource + "OpSourceContinued \"abcde\"\nOpSourceContinued \"fghij\""},
5370		// Longest possible source string: SPIR-V limits instructions to 65535
5371		// words, of which the first one is OpSourceContinued/length; the rest
5372		// will contain 65533 UTF8 characters (one word each) plus one last word
5373		// containing 3 ASCII characters and \0.
5374		{"long", opsource + "OpSourceContinued \"" + makeLongUTF8String(65533) + "ccc\""}
5375	};
5376
5377	getDefaultColors(defaultColors);
5378	for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(NameCodePair); ++testNdx)
5379	{
5380		fragments["debug"] = tests[testNdx].code;
5381		createTestsForAllStages(tests[testNdx].name, defaultColors, defaultColors, fragments, opSourceTests.get());
5382	}
5383
5384	return opSourceTests.release();
5385}
5386
5387tcu::TestCaseGroup* createOpNoLineTests(tcu::TestContext& testCtx)
5388{
5389	RGBA								 defaultColors[4];
5390	de::MovePtr<tcu::TestCaseGroup>		 opLineTests		 (new tcu::TestCaseGroup(testCtx, "opnoline", "OpNoLine instruction"));
5391	map<string, string>					 fragments;
5392	getDefaultColors(defaultColors);
5393	fragments["debug"]			=
5394		"%name = OpString \"name\"\n";
5395
5396	fragments["pre_main"]	=
5397		"OpNoLine\n"
5398		"OpNoLine\n"
5399		"OpLine %name 1 1\n"
5400		"OpNoLine\n"
5401		"OpLine %name 1 1\n"
5402		"OpLine %name 1 1\n"
5403		"%second_function = OpFunction %v4f32 None %v4f32_function\n"
5404		"OpNoLine\n"
5405		"OpLine %name 1 1\n"
5406		"OpNoLine\n"
5407		"OpLine %name 1 1\n"
5408		"OpLine %name 1 1\n"
5409		"%second_param1 = OpFunctionParameter %v4f32\n"
5410		"OpNoLine\n"
5411		"OpNoLine\n"
5412		"%label_secondfunction = OpLabel\n"
5413		"OpNoLine\n"
5414		"OpReturnValue %second_param1\n"
5415		"OpFunctionEnd\n"
5416		"OpNoLine\n"
5417		"OpNoLine\n";
5418
5419	fragments["testfun"]		=
5420		// A %test_code function that returns its argument unchanged.
5421		"OpNoLine\n"
5422		"OpNoLine\n"
5423		"OpLine %name 1 1\n"
5424		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
5425		"OpNoLine\n"
5426		"%param1 = OpFunctionParameter %v4f32\n"
5427		"OpNoLine\n"
5428		"OpNoLine\n"
5429		"%label_testfun = OpLabel\n"
5430		"OpNoLine\n"
5431		"%val1 = OpFunctionCall %v4f32 %second_function %param1\n"
5432		"OpReturnValue %val1\n"
5433		"OpFunctionEnd\n"
5434		"OpLine %name 1 1\n"
5435		"OpNoLine\n";
5436
5437	createTestsForAllStages("opnoline", defaultColors, defaultColors, fragments, opLineTests.get());
5438
5439	return opLineTests.release();
5440}
5441
5442
5443tcu::TestCaseGroup* createOpLineTests(tcu::TestContext& testCtx)
5444{
5445	RGBA													defaultColors[4];
5446	de::MovePtr<tcu::TestCaseGroup>							opLineTests			(new tcu::TestCaseGroup(testCtx, "opline", "OpLine instruction"));
5447	map<string, string>										fragments;
5448	std::vector<std::pair<std::string, std::string> >		problemStrings;
5449
5450	problemStrings.push_back(std::make_pair<std::string, std::string>("empty_name", ""));
5451	problemStrings.push_back(std::make_pair<std::string, std::string>("short_name", "short_name"));
5452	problemStrings.push_back(std::make_pair<std::string, std::string>("long_name", makeLongUTF8String(65530) + "ccc"));
5453	getDefaultColors(defaultColors);
5454
5455	fragments["debug"]			=
5456		"%other_name = OpString \"other_name\"\n";
5457
5458	fragments["pre_main"]	=
5459		"OpLine %file_name 32 0\n"
5460		"OpLine %file_name 32 32\n"
5461		"OpLine %file_name 32 40\n"
5462		"OpLine %other_name 32 40\n"
5463		"OpLine %other_name 0 100\n"
5464		"OpLine %other_name 0 4294967295\n"
5465		"OpLine %other_name 4294967295 0\n"
5466		"OpLine %other_name 32 40\n"
5467		"OpLine %file_name 0 0\n"
5468		"%second_function = OpFunction %v4f32 None %v4f32_function\n"
5469		"OpLine %file_name 1 0\n"
5470		"%second_param1 = OpFunctionParameter %v4f32\n"
5471		"OpLine %file_name 1 3\n"
5472		"OpLine %file_name 1 2\n"
5473		"%label_secondfunction = OpLabel\n"
5474		"OpLine %file_name 0 2\n"
5475		"OpReturnValue %second_param1\n"
5476		"OpFunctionEnd\n"
5477		"OpLine %file_name 0 2\n"
5478		"OpLine %file_name 0 2\n";
5479
5480	fragments["testfun"]		=
5481		// A %test_code function that returns its argument unchanged.
5482		"OpLine %file_name 1 0\n"
5483		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
5484		"OpLine %file_name 16 330\n"
5485		"%param1 = OpFunctionParameter %v4f32\n"
5486		"OpLine %file_name 14 442\n"
5487		"%label_testfun = OpLabel\n"
5488		"OpLine %file_name 11 1024\n"
5489		"%val1 = OpFunctionCall %v4f32 %second_function %param1\n"
5490		"OpLine %file_name 2 97\n"
5491		"OpReturnValue %val1\n"
5492		"OpFunctionEnd\n"
5493		"OpLine %file_name 5 32\n";
5494
5495	for (size_t i = 0; i < problemStrings.size(); ++i)
5496	{
5497		map<string, string> testFragments = fragments;
5498		testFragments["debug"] += "%file_name = OpString \"" + problemStrings[i].second + "\"\n";
5499		createTestsForAllStages(string("opline") + "_" + problemStrings[i].first, defaultColors, defaultColors, testFragments, opLineTests.get());
5500	}
5501
5502	return opLineTests.release();
5503}
5504
5505tcu::TestCaseGroup* createOpConstantNullTests(tcu::TestContext& testCtx)
5506{
5507	de::MovePtr<tcu::TestCaseGroup> opConstantNullTests		(new tcu::TestCaseGroup(testCtx, "opconstantnull", "OpConstantNull instruction"));
5508	RGBA							colors[4];
5509
5510
5511	const char						functionStart[] =
5512		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
5513		"%param1 = OpFunctionParameter %v4f32\n"
5514		"%lbl    = OpLabel\n";
5515
5516	const char						functionEnd[]	=
5517		"OpReturnValue %transformed_param\n"
5518		"OpFunctionEnd\n";
5519
5520	struct NameConstantsCode
5521	{
5522		string name;
5523		string constants;
5524		string code;
5525	};
5526
5527	NameConstantsCode tests[] =
5528	{
5529		{
5530			"vec4",
5531			"%cnull = OpConstantNull %v4f32\n",
5532			"%transformed_param = OpFAdd %v4f32 %param1 %cnull\n"
5533		},
5534		{
5535			"float",
5536			"%cnull = OpConstantNull %f32\n",
5537			"%vp = OpVariable %fp_v4f32 Function\n"
5538			"%v  = OpLoad %v4f32 %vp\n"
5539			"%v0 = OpVectorInsertDynamic %v4f32 %v %cnull %c_i32_0\n"
5540			"%v1 = OpVectorInsertDynamic %v4f32 %v0 %cnull %c_i32_1\n"
5541			"%v2 = OpVectorInsertDynamic %v4f32 %v1 %cnull %c_i32_2\n"
5542			"%v3 = OpVectorInsertDynamic %v4f32 %v2 %cnull %c_i32_3\n"
5543			"%transformed_param = OpFAdd %v4f32 %param1 %v3\n"
5544		},
5545		{
5546			"bool",
5547			"%cnull             = OpConstantNull %bool\n",
5548			"%v                 = OpVariable %fp_v4f32 Function\n"
5549			"                     OpStore %v %param1\n"
5550			"                     OpSelectionMerge %false_label None\n"
5551			"                     OpBranchConditional %cnull %true_label %false_label\n"
5552			"%true_label        = OpLabel\n"
5553			"                     OpStore %v %c_v4f32_0_5_0_5_0_5_0_5\n"
5554			"                     OpBranch %false_label\n"
5555			"%false_label       = OpLabel\n"
5556			"%transformed_param = OpLoad %v4f32 %v\n"
5557		},
5558		{
5559			"i32",
5560			"%cnull             = OpConstantNull %i32\n",
5561			"%v                 = OpVariable %fp_v4f32 Function %c_v4f32_0_5_0_5_0_5_0_5\n"
5562			"%b                 = OpIEqual %bool %cnull %c_i32_0\n"
5563			"                     OpSelectionMerge %false_label None\n"
5564			"                     OpBranchConditional %b %true_label %false_label\n"
5565			"%true_label        = OpLabel\n"
5566			"                     OpStore %v %param1\n"
5567			"                     OpBranch %false_label\n"
5568			"%false_label       = OpLabel\n"
5569			"%transformed_param = OpLoad %v4f32 %v\n"
5570		},
5571		{
5572			"struct",
5573			"%stype             = OpTypeStruct %f32 %v4f32\n"
5574			"%fp_stype          = OpTypePointer Function %stype\n"
5575			"%cnull             = OpConstantNull %stype\n",
5576			"%v                 = OpVariable %fp_stype Function %cnull\n"
5577			"%f                 = OpAccessChain %fp_v4f32 %v %c_i32_1\n"
5578			"%f_val             = OpLoad %v4f32 %f\n"
5579			"%transformed_param = OpFAdd %v4f32 %param1 %f_val\n"
5580		},
5581		{
5582			"array",
5583			"%a4_v4f32          = OpTypeArray %v4f32 %c_u32_4\n"
5584			"%fp_a4_v4f32       = OpTypePointer Function %a4_v4f32\n"
5585			"%cnull             = OpConstantNull %a4_v4f32\n",
5586			"%v                 = OpVariable %fp_a4_v4f32 Function %cnull\n"
5587			"%f                 = OpAccessChain %fp_v4f32 %v %c_u32_0\n"
5588			"%f1                = OpAccessChain %fp_v4f32 %v %c_u32_1\n"
5589			"%f2                = OpAccessChain %fp_v4f32 %v %c_u32_2\n"
5590			"%f3                = OpAccessChain %fp_v4f32 %v %c_u32_3\n"
5591			"%f_val             = OpLoad %v4f32 %f\n"
5592			"%f1_val            = OpLoad %v4f32 %f1\n"
5593			"%f2_val            = OpLoad %v4f32 %f2\n"
5594			"%f3_val            = OpLoad %v4f32 %f3\n"
5595			"%t0                = OpFAdd %v4f32 %param1 %f_val\n"
5596			"%t1                = OpFAdd %v4f32 %t0 %f1_val\n"
5597			"%t2                = OpFAdd %v4f32 %t1 %f2_val\n"
5598			"%transformed_param = OpFAdd %v4f32 %t2 %f3_val\n"
5599		},
5600		{
5601			"matrix",
5602			"%mat4x4_f32        = OpTypeMatrix %v4f32 4\n"
5603			"%cnull             = OpConstantNull %mat4x4_f32\n",
5604			// Our null matrix * any vector should result in a zero vector.
5605			"%v                 = OpVectorTimesMatrix %v4f32 %param1 %cnull\n"
5606			"%transformed_param = OpFAdd %v4f32 %param1 %v\n"
5607		}
5608	};
5609
5610	getHalfColorsFullAlpha(colors);
5611
5612	for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(NameConstantsCode); ++testNdx)
5613	{
5614		map<string, string> fragments;
5615		fragments["pre_main"] = tests[testNdx].constants;
5616		fragments["testfun"] = string(functionStart) + tests[testNdx].code + functionEnd;
5617		createTestsForAllStages(tests[testNdx].name, colors, colors, fragments, opConstantNullTests.get());
5618	}
5619	return opConstantNullTests.release();
5620}
5621tcu::TestCaseGroup* createOpConstantCompositeTests(tcu::TestContext& testCtx)
5622{
5623	de::MovePtr<tcu::TestCaseGroup> opConstantCompositeTests		(new tcu::TestCaseGroup(testCtx, "opconstantcomposite", "OpConstantComposite instruction"));
5624	RGBA							inputColors[4];
5625	RGBA							outputColors[4];
5626
5627
5628	const char						functionStart[]	 =
5629		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
5630		"%param1 = OpFunctionParameter %v4f32\n"
5631		"%lbl    = OpLabel\n";
5632
5633	const char						functionEnd[]		=
5634		"OpReturnValue %transformed_param\n"
5635		"OpFunctionEnd\n";
5636
5637	struct NameConstantsCode
5638	{
5639		string name;
5640		string constants;
5641		string code;
5642	};
5643
5644	NameConstantsCode tests[] =
5645	{
5646		{
5647			"vec4",
5648
5649			"%cval              = OpConstantComposite %v4f32 %c_f32_0_5 %c_f32_0_5 %c_f32_0_5 %c_f32_0\n",
5650			"%transformed_param = OpFAdd %v4f32 %param1 %cval\n"
5651		},
5652		{
5653			"struct",
5654
5655			"%stype             = OpTypeStruct %v4f32 %f32\n"
5656			"%fp_stype          = OpTypePointer Function %stype\n"
5657			"%f32_n_1           = OpConstant %f32 -1.0\n"
5658			"%f32_1_5           = OpConstant %f32 !0x3fc00000\n" // +1.5
5659			"%cvec              = OpConstantComposite %v4f32 %f32_1_5 %f32_1_5 %f32_1_5 %c_f32_1\n"
5660			"%cval              = OpConstantComposite %stype %cvec %f32_n_1\n",
5661
5662			"%v                 = OpVariable %fp_stype Function %cval\n"
5663			"%vec_ptr           = OpAccessChain %fp_v4f32 %v %c_u32_0\n"
5664			"%f32_ptr           = OpAccessChain %fp_v4f32 %v %c_u32_1\n"
5665			"%vec_val           = OpLoad %v4f32 %vec_ptr\n"
5666			"%f32_val           = OpLoad %v4f32 %f32_ptr\n"
5667			"%tmp1              = OpVectorTimesScalar %v4f32 %c_v4f32_1_1_1_1 %f32_val\n" // vec4(-1)
5668			"%tmp2              = OpFAdd %v4f32 %tmp1 %param1\n" // param1 + vec4(-1)
5669			"%transformed_param = OpFAdd %v4f32 %tmp2 %vec_val\n" // param1 + vec4(-1) + vec4(1.5, 1.5, 1.5, 1.0)
5670		},
5671		{
5672			// [1|0|0|0.5] [x] = x + 0.5
5673			// [0|1|0|0.5] [y] = y + 0.5
5674			// [0|0|1|0.5] [z] = z + 0.5
5675			// [0|0|0|1  ] [1] = 1
5676			"matrix",
5677
5678			"%mat4x4_f32          = OpTypeMatrix %v4f32 4\n"
5679		    "%v4f32_1_0_0_0       = OpConstantComposite %v4f32 %c_f32_1 %c_f32_0 %c_f32_0 %c_f32_0\n"
5680		    "%v4f32_0_1_0_0       = OpConstantComposite %v4f32 %c_f32_0 %c_f32_1 %c_f32_0 %c_f32_0\n"
5681		    "%v4f32_0_0_1_0       = OpConstantComposite %v4f32 %c_f32_0 %c_f32_0 %c_f32_1 %c_f32_0\n"
5682		    "%v4f32_0_5_0_5_0_5_1 = OpConstantComposite %v4f32 %c_f32_0_5 %c_f32_0_5 %c_f32_0_5 %c_f32_1\n"
5683			"%cval                = OpConstantComposite %mat4x4_f32 %v4f32_1_0_0_0 %v4f32_0_1_0_0 %v4f32_0_0_1_0 %v4f32_0_5_0_5_0_5_1\n",
5684
5685			"%transformed_param   = OpMatrixTimesVector %v4f32 %cval %param1\n"
5686		},
5687		{
5688			"array",
5689
5690			"%c_v4f32_1_1_1_0     = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_0\n"
5691			"%fp_a4f32            = OpTypePointer Function %a4f32\n"
5692			"%f32_n_1             = OpConstant %f32 -1.0\n"
5693			"%f32_1_5             = OpConstant %f32 !0x3fc00000\n" // +1.5
5694			"%carr                = OpConstantComposite %a4f32 %c_f32_0 %f32_n_1 %f32_1_5 %c_f32_0\n",
5695
5696			"%v                   = OpVariable %fp_a4f32 Function %carr\n"
5697			"%f                   = OpAccessChain %fp_f32 %v %c_u32_0\n"
5698			"%f1                  = OpAccessChain %fp_f32 %v %c_u32_1\n"
5699			"%f2                  = OpAccessChain %fp_f32 %v %c_u32_2\n"
5700			"%f3                  = OpAccessChain %fp_f32 %v %c_u32_3\n"
5701			"%f_val               = OpLoad %f32 %f\n"
5702			"%f1_val              = OpLoad %f32 %f1\n"
5703			"%f2_val              = OpLoad %f32 %f2\n"
5704			"%f3_val              = OpLoad %f32 %f3\n"
5705			"%ftot1               = OpFAdd %f32 %f_val %f1_val\n"
5706			"%ftot2               = OpFAdd %f32 %ftot1 %f2_val\n"
5707			"%ftot3               = OpFAdd %f32 %ftot2 %f3_val\n"  // 0 - 1 + 1.5 + 0
5708			"%add_vec             = OpVectorTimesScalar %v4f32 %c_v4f32_1_1_1_0 %ftot3\n"
5709			"%transformed_param   = OpFAdd %v4f32 %param1 %add_vec\n"
5710		},
5711		{
5712			//
5713			// [
5714			//   {
5715			//      0.0,
5716			//      [ 1.0, 1.0, 1.0, 1.0]
5717			//   },
5718			//   {
5719			//      1.0,
5720			//      [ 0.0, 0.5, 0.0, 0.0]
5721			//   }, //     ^^^
5722			//   {
5723			//      0.0,
5724			//      [ 1.0, 1.0, 1.0, 1.0]
5725			//   }
5726			// ]
5727			"array_of_struct_of_array",
5728
5729			"%c_v4f32_1_1_1_0     = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_0\n"
5730			"%fp_a4f32            = OpTypePointer Function %a4f32\n"
5731			"%stype               = OpTypeStruct %f32 %a4f32\n"
5732			"%a3stype             = OpTypeArray %stype %c_u32_3\n"
5733			"%fp_a3stype          = OpTypePointer Function %a3stype\n"
5734			"%ca4f32_0            = OpConstantComposite %a4f32 %c_f32_0 %c_f32_0_5 %c_f32_0 %c_f32_0\n"
5735			"%ca4f32_1            = OpConstantComposite %a4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_1\n"
5736			"%cstype1             = OpConstantComposite %stype %c_f32_0 %ca4f32_1\n"
5737			"%cstype2             = OpConstantComposite %stype %c_f32_1 %ca4f32_0\n"
5738			"%carr                = OpConstantComposite %a3stype %cstype1 %cstype2 %cstype1",
5739
5740			"%v                   = OpVariable %fp_a3stype Function %carr\n"
5741			"%f                   = OpAccessChain %fp_f32 %v %c_u32_1 %c_u32_1 %c_u32_1\n"
5742			"%add_vec             = OpVectorTimesScalar %v4f32 %c_v4f32_1_1_1_0 %f\n"
5743			"%transformed_param   = OpFAdd %v4f32 %param1 %add_vec\n"
5744		}
5745	};
5746
5747	getHalfColorsFullAlpha(inputColors);
5748	outputColors[0] = RGBA(255, 255, 255, 255);
5749	outputColors[1] = RGBA(255, 127, 127, 255);
5750	outputColors[2] = RGBA(127, 255, 127, 255);
5751	outputColors[3] = RGBA(127, 127, 255, 255);
5752
5753	for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(NameConstantsCode); ++testNdx)
5754	{
5755		map<string, string> fragments;
5756		fragments["pre_main"] = tests[testNdx].constants;
5757		fragments["testfun"] = string(functionStart) + tests[testNdx].code + functionEnd;
5758		createTestsForAllStages(tests[testNdx].name, inputColors, outputColors, fragments, opConstantCompositeTests.get());
5759	}
5760	return opConstantCompositeTests.release();
5761}
5762
5763tcu::TestCaseGroup* createSelectionBlockOrderTests(tcu::TestContext& testCtx)
5764{
5765	de::MovePtr<tcu::TestCaseGroup> group				(new tcu::TestCaseGroup(testCtx, "selection_block_order", "Out-of-order blocks for selection"));
5766	RGBA							inputColors[4];
5767	RGBA							outputColors[4];
5768	map<string, string>				fragments;
5769
5770	// vec4 test_code(vec4 param) {
5771	//   vec4 result = param;
5772	//   for (int i = 0; i < 4; ++i) {
5773	//     if (i == 0) result[i] = 0.;
5774	//     else        result[i] = 1. - result[i];
5775	//   }
5776	//   return result;
5777	// }
5778	const char						function[]			=
5779		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
5780		"%param1    = OpFunctionParameter %v4f32\n"
5781		"%lbl       = OpLabel\n"
5782		"%iptr      = OpVariable %fp_i32 Function\n"
5783		"             OpStore %iptr %c_i32_0\n"
5784		"%result    = OpVariable %fp_v4f32 Function\n"
5785		"             OpStore %result %param1\n"
5786		"             OpBranch %loop\n"
5787
5788		// Loop entry block.
5789		"%loop      = OpLabel\n"
5790		"%ival      = OpLoad %i32 %iptr\n"
5791		"%lt_4      = OpSLessThan %bool %ival %c_i32_4\n"
5792		"             OpLoopMerge %exit %loop None\n"
5793		"             OpBranchConditional %lt_4 %if_entry %exit\n"
5794
5795		// Merge block for loop.
5796		"%exit      = OpLabel\n"
5797		"%ret       = OpLoad %v4f32 %result\n"
5798		"             OpReturnValue %ret\n"
5799
5800		// If-statement entry block.
5801		"%if_entry  = OpLabel\n"
5802		"%loc       = OpAccessChain %fp_f32 %result %ival\n"
5803		"%eq_0      = OpIEqual %bool %ival %c_i32_0\n"
5804		"             OpSelectionMerge %if_exit None\n"
5805		"             OpBranchConditional %eq_0 %if_true %if_false\n"
5806
5807		// False branch for if-statement.
5808		"%if_false  = OpLabel\n"
5809		"%val       = OpLoad %f32 %loc\n"
5810		"%sub       = OpFSub %f32 %c_f32_1 %val\n"
5811		"             OpStore %loc %sub\n"
5812		"             OpBranch %if_exit\n"
5813
5814		// Merge block for if-statement.
5815		"%if_exit   = OpLabel\n"
5816		"%ival_next = OpIAdd %i32 %ival %c_i32_1\n"
5817		"             OpStore %iptr %ival_next\n"
5818		"             OpBranch %loop\n"
5819
5820		// True branch for if-statement.
5821		"%if_true   = OpLabel\n"
5822		"             OpStore %loc %c_f32_0\n"
5823		"             OpBranch %if_exit\n"
5824
5825		"             OpFunctionEnd\n";
5826
5827	fragments["testfun"]	= function;
5828
5829	inputColors[0]			= RGBA(127, 127, 127, 0);
5830	inputColors[1]			= RGBA(127, 0,   0,   0);
5831	inputColors[2]			= RGBA(0,   127, 0,   0);
5832	inputColors[3]			= RGBA(0,   0,   127, 0);
5833
5834	outputColors[0]			= RGBA(0, 128, 128, 255);
5835	outputColors[1]			= RGBA(0, 255, 255, 255);
5836	outputColors[2]			= RGBA(0, 128, 255, 255);
5837	outputColors[3]			= RGBA(0, 255, 128, 255);
5838
5839	createTestsForAllStages("out_of_order", inputColors, outputColors, fragments, group.get());
5840
5841	return group.release();
5842}
5843
5844tcu::TestCaseGroup* createSwitchBlockOrderTests(tcu::TestContext& testCtx)
5845{
5846	de::MovePtr<tcu::TestCaseGroup> group				(new tcu::TestCaseGroup(testCtx, "switch_block_order", "Out-of-order blocks for switch"));
5847	RGBA							inputColors[4];
5848	RGBA							outputColors[4];
5849	map<string, string>				fragments;
5850
5851	const char						typesAndConstants[]	=
5852		"%c_f32_p2  = OpConstant %f32 0.2\n"
5853		"%c_f32_p4  = OpConstant %f32 0.4\n"
5854		"%c_f32_p6  = OpConstant %f32 0.6\n"
5855		"%c_f32_p8  = OpConstant %f32 0.8\n";
5856
5857	// vec4 test_code(vec4 param) {
5858	//   vec4 result = param;
5859	//   for (int i = 0; i < 4; ++i) {
5860	//     switch (i) {
5861	//       case 0: result[i] += .2; break;
5862	//       case 1: result[i] += .6; break;
5863	//       case 2: result[i] += .4; break;
5864	//       case 3: result[i] += .8; break;
5865	//       default: break; // unreachable
5866	//     }
5867	//   }
5868	//   return result;
5869	// }
5870	const char						function[]			=
5871		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
5872		"%param1    = OpFunctionParameter %v4f32\n"
5873		"%lbl       = OpLabel\n"
5874		"%iptr      = OpVariable %fp_i32 Function\n"
5875		"             OpStore %iptr %c_i32_0\n"
5876		"%result    = OpVariable %fp_v4f32 Function\n"
5877		"             OpStore %result %param1\n"
5878		"             OpBranch %loop\n"
5879
5880		// Loop entry block.
5881		"%loop      = OpLabel\n"
5882		"%ival      = OpLoad %i32 %iptr\n"
5883		"%lt_4      = OpSLessThan %bool %ival %c_i32_4\n"
5884		"             OpLoopMerge %exit %loop None\n"
5885		"             OpBranchConditional %lt_4 %switch_entry %exit\n"
5886
5887		// Merge block for loop.
5888		"%exit      = OpLabel\n"
5889		"%ret       = OpLoad %v4f32 %result\n"
5890		"             OpReturnValue %ret\n"
5891
5892		// Switch-statement entry block.
5893		"%switch_entry   = OpLabel\n"
5894		"%loc            = OpAccessChain %fp_f32 %result %ival\n"
5895		"%val            = OpLoad %f32 %loc\n"
5896		"                  OpSelectionMerge %switch_exit None\n"
5897		"                  OpSwitch %ival %switch_default 0 %case0 1 %case1 2 %case2 3 %case3\n"
5898
5899		"%case2          = OpLabel\n"
5900		"%addp4          = OpFAdd %f32 %val %c_f32_p4\n"
5901		"                  OpStore %loc %addp4\n"
5902		"                  OpBranch %switch_exit\n"
5903
5904		"%switch_default = OpLabel\n"
5905		"                  OpUnreachable\n"
5906
5907		"%case3          = OpLabel\n"
5908		"%addp8          = OpFAdd %f32 %val %c_f32_p8\n"
5909		"                  OpStore %loc %addp8\n"
5910		"                  OpBranch %switch_exit\n"
5911
5912		"%case0          = OpLabel\n"
5913		"%addp2          = OpFAdd %f32 %val %c_f32_p2\n"
5914		"                  OpStore %loc %addp2\n"
5915		"                  OpBranch %switch_exit\n"
5916
5917		// Merge block for switch-statement.
5918		"%switch_exit    = OpLabel\n"
5919		"%ival_next      = OpIAdd %i32 %ival %c_i32_1\n"
5920		"                  OpStore %iptr %ival_next\n"
5921		"                  OpBranch %loop\n"
5922
5923		"%case1          = OpLabel\n"
5924		"%addp6          = OpFAdd %f32 %val %c_f32_p6\n"
5925		"                  OpStore %loc %addp6\n"
5926		"                  OpBranch %switch_exit\n"
5927
5928		"                  OpFunctionEnd\n";
5929
5930	fragments["pre_main"]	= typesAndConstants;
5931	fragments["testfun"]	= function;
5932
5933	inputColors[0]			= RGBA(127, 27,  127, 51);
5934	inputColors[1]			= RGBA(127, 0,   0,   51);
5935	inputColors[2]			= RGBA(0,   27,  0,   51);
5936	inputColors[3]			= RGBA(0,   0,   127, 51);
5937
5938	outputColors[0]			= RGBA(178, 180, 229, 255);
5939	outputColors[1]			= RGBA(178, 153, 102, 255);
5940	outputColors[2]			= RGBA(51,  180, 102, 255);
5941	outputColors[3]			= RGBA(51,  153, 229, 255);
5942
5943	createTestsForAllStages("out_of_order", inputColors, outputColors, fragments, group.get());
5944
5945	return group.release();
5946}
5947
5948tcu::TestCaseGroup* createDecorationGroupTests(tcu::TestContext& testCtx)
5949{
5950	de::MovePtr<tcu::TestCaseGroup> group				(new tcu::TestCaseGroup(testCtx, "decoration_group", "Decoration group tests"));
5951	RGBA							inputColors[4];
5952	RGBA							outputColors[4];
5953	map<string, string>				fragments;
5954
5955	const char						decorations[]		=
5956		"OpDecorate %array_group         ArrayStride 4\n"
5957		"OpDecorate %struct_member_group Offset 0\n"
5958		"%array_group         = OpDecorationGroup\n"
5959		"%struct_member_group = OpDecorationGroup\n"
5960
5961		"OpDecorate %group1 RelaxedPrecision\n"
5962		"OpDecorate %group3 RelaxedPrecision\n"
5963		"OpDecorate %group3 Invariant\n"
5964		"OpDecorate %group3 Restrict\n"
5965		"%group0 = OpDecorationGroup\n"
5966		"%group1 = OpDecorationGroup\n"
5967		"%group3 = OpDecorationGroup\n";
5968
5969	const char						typesAndConstants[]	=
5970		"%a3f32     = OpTypeArray %f32 %c_u32_3\n"
5971		"%struct1   = OpTypeStruct %a3f32\n"
5972		"%struct2   = OpTypeStruct %a3f32\n"
5973		"%fp_struct1 = OpTypePointer Function %struct1\n"
5974		"%fp_struct2 = OpTypePointer Function %struct2\n"
5975		"%c_f32_2    = OpConstant %f32 2.\n"
5976		"%c_f32_n2   = OpConstant %f32 -2.\n"
5977
5978		"%c_a3f32_1 = OpConstantComposite %a3f32 %c_f32_1 %c_f32_2 %c_f32_1\n"
5979		"%c_a3f32_2 = OpConstantComposite %a3f32 %c_f32_n1 %c_f32_n2 %c_f32_n1\n"
5980		"%c_struct1 = OpConstantComposite %struct1 %c_a3f32_1\n"
5981		"%c_struct2 = OpConstantComposite %struct2 %c_a3f32_2\n";
5982
5983	const char						function[]			=
5984		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
5985		"%param     = OpFunctionParameter %v4f32\n"
5986		"%entry     = OpLabel\n"
5987		"%result    = OpVariable %fp_v4f32 Function\n"
5988		"             OpStore %result %param\n"
5989		"%v_struct1 = OpVariable %fp_struct1 Function\n"
5990		"             OpStore %v_struct1 %c_struct1\n"
5991		"%v_struct2 = OpVariable %fp_struct2 Function\n"
5992		"             OpStore %v_struct2 %c_struct2\n"
5993		"%ptr1      = OpAccessChain %fp_f32 %v_struct1 %c_i32_0 %c_i32_1\n"
5994		"%val1      = OpLoad %f32 %ptr1\n"
5995		"%ptr2      = OpAccessChain %fp_f32 %v_struct2 %c_i32_0 %c_i32_2\n"
5996		"%val2      = OpLoad %f32 %ptr2\n"
5997		"%addvalues = OpFAdd %f32 %val1 %val2\n"
5998		"%ptr       = OpAccessChain %fp_f32 %result %c_i32_1\n"
5999		"%val       = OpLoad %f32 %ptr\n"
6000		"%addresult = OpFAdd %f32 %addvalues %val\n"
6001		"             OpStore %ptr %addresult\n"
6002		"%ret       = OpLoad %v4f32 %result\n"
6003		"             OpReturnValue %ret\n"
6004		"             OpFunctionEnd\n";
6005
6006	struct CaseNameDecoration
6007	{
6008		string name;
6009		string decoration;
6010	};
6011
6012	CaseNameDecoration tests[] =
6013	{
6014		{
6015			"same_decoration_group_on_multiple_types",
6016			"OpGroupMemberDecorate %struct_member_group %struct1 0 %struct2 0\n"
6017		},
6018		{
6019			"empty_decoration_group",
6020			"OpGroupDecorate %group0      %a3f32\n"
6021			"OpGroupDecorate %group0      %result\n"
6022		},
6023		{
6024			"one_element_decoration_group",
6025			"OpGroupDecorate %array_group %a3f32\n"
6026		},
6027		{
6028			"multiple_elements_decoration_group",
6029			"OpGroupDecorate %group3      %v_struct1\n"
6030		},
6031		{
6032			"multiple_decoration_groups_on_same_variable",
6033			"OpGroupDecorate %group0      %v_struct2\n"
6034			"OpGroupDecorate %group1      %v_struct2\n"
6035			"OpGroupDecorate %group3      %v_struct2\n"
6036		},
6037		{
6038			"same_decoration_group_multiple_times",
6039			"OpGroupDecorate %group1      %addvalues\n"
6040			"OpGroupDecorate %group1      %addvalues\n"
6041			"OpGroupDecorate %group1      %addvalues\n"
6042		},
6043
6044	};
6045
6046	getHalfColorsFullAlpha(inputColors);
6047	getHalfColorsFullAlpha(outputColors);
6048
6049	for (size_t idx = 0; idx < (sizeof(tests) / sizeof(tests[0])); ++idx)
6050	{
6051		fragments["decoration"]	= decorations + tests[idx].decoration;
6052		fragments["pre_main"]	= typesAndConstants;
6053		fragments["testfun"]	= function;
6054
6055		createTestsForAllStages(tests[idx].name, inputColors, outputColors, fragments, group.get());
6056	}
6057
6058	return group.release();
6059}
6060
6061struct SpecConstantTwoIntGraphicsCase
6062{
6063	const char*		caseName;
6064	const char*		scDefinition0;
6065	const char*		scDefinition1;
6066	const char*		scResultType;
6067	const char*		scOperation;
6068	deInt32			scActualValue0;
6069	deInt32			scActualValue1;
6070	const char*		resultOperation;
6071	RGBA			expectedColors[4];
6072
6073					SpecConstantTwoIntGraphicsCase (const char* name,
6074											const char* definition0,
6075											const char* definition1,
6076											const char* resultType,
6077											const char* operation,
6078											deInt32		value0,
6079											deInt32		value1,
6080											const char* resultOp,
6081											const RGBA	(&output)[4])
6082						: caseName			(name)
6083						, scDefinition0		(definition0)
6084						, scDefinition1		(definition1)
6085						, scResultType		(resultType)
6086						, scOperation		(operation)
6087						, scActualValue0	(value0)
6088						, scActualValue1	(value1)
6089						, resultOperation	(resultOp)
6090	{
6091		expectedColors[0] = output[0];
6092		expectedColors[1] = output[1];
6093		expectedColors[2] = output[2];
6094		expectedColors[3] = output[3];
6095	}
6096};
6097
6098tcu::TestCaseGroup* createSpecConstantTests (tcu::TestContext& testCtx)
6099{
6100	de::MovePtr<tcu::TestCaseGroup> group				(new tcu::TestCaseGroup(testCtx, "opspecconstantop", "Test the OpSpecConstantOp instruction"));
6101	vector<SpecConstantTwoIntGraphicsCase>	cases;
6102	RGBA							inputColors[4];
6103	RGBA							outputColors0[4];
6104	RGBA							outputColors1[4];
6105	RGBA							outputColors2[4];
6106
6107	const char	decorations1[]			=
6108		"OpDecorate %sc_0  SpecId 0\n"
6109		"OpDecorate %sc_1  SpecId 1\n";
6110
6111	const char	typesAndConstants1[]	=
6112		"%sc_0      = OpSpecConstant${SC_DEF0}\n"
6113		"%sc_1      = OpSpecConstant${SC_DEF1}\n"
6114		"%sc_op     = OpSpecConstantOp ${SC_RESULT_TYPE} ${SC_OP}\n";
6115
6116	const char	function1[]				=
6117		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
6118		"%param     = OpFunctionParameter %v4f32\n"
6119		"%label     = OpLabel\n"
6120		"%result    = OpVariable %fp_v4f32 Function\n"
6121		"             OpStore %result %param\n"
6122		"%gen       = ${GEN_RESULT}\n"
6123		"%index     = OpIAdd %i32 %gen %c_i32_1\n"
6124		"%loc       = OpAccessChain %fp_f32 %result %index\n"
6125		"%val       = OpLoad %f32 %loc\n"
6126		"%add       = OpFAdd %f32 %val %c_f32_0_5\n"
6127		"             OpStore %loc %add\n"
6128		"%ret       = OpLoad %v4f32 %result\n"
6129		"             OpReturnValue %ret\n"
6130		"             OpFunctionEnd\n";
6131
6132	inputColors[0] = RGBA(127, 127, 127, 255);
6133	inputColors[1] = RGBA(127, 0,   0,   255);
6134	inputColors[2] = RGBA(0,   127, 0,   255);
6135	inputColors[3] = RGBA(0,   0,   127, 255);
6136
6137	// Derived from inputColors[x] by adding 128 to inputColors[x][0].
6138	outputColors0[0] = RGBA(255, 127, 127, 255);
6139	outputColors0[1] = RGBA(255, 0,   0,   255);
6140	outputColors0[2] = RGBA(128, 127, 0,   255);
6141	outputColors0[3] = RGBA(128, 0,   127, 255);
6142
6143	// Derived from inputColors[x] by adding 128 to inputColors[x][1].
6144	outputColors1[0] = RGBA(127, 255, 127, 255);
6145	outputColors1[1] = RGBA(127, 128, 0,   255);
6146	outputColors1[2] = RGBA(0,   255, 0,   255);
6147	outputColors1[3] = RGBA(0,   128, 127, 255);
6148
6149	// Derived from inputColors[x] by adding 128 to inputColors[x][2].
6150	outputColors2[0] = RGBA(127, 127, 255, 255);
6151	outputColors2[1] = RGBA(127, 0,   128, 255);
6152	outputColors2[2] = RGBA(0,   127, 128, 255);
6153	outputColors2[3] = RGBA(0,   0,   255, 255);
6154
6155	const char addZeroToSc[]		= "OpIAdd %i32 %c_i32_0 %sc_op";
6156	const char selectTrueUsingSc[]	= "OpSelect %i32 %sc_op %c_i32_1 %c_i32_0";
6157	const char selectFalseUsingSc[]	= "OpSelect %i32 %sc_op %c_i32_0 %c_i32_1";
6158
6159	cases.push_back(SpecConstantTwoIntGraphicsCase("iadd",					" %i32 0",		" %i32 0",		"%i32",		"IAdd                 %sc_0 %sc_1",				19,		-20,	addZeroToSc,		outputColors0));
6160	cases.push_back(SpecConstantTwoIntGraphicsCase("isub",					" %i32 0",		" %i32 0",		"%i32",		"ISub                 %sc_0 %sc_1",				19,		20,		addZeroToSc,		outputColors0));
6161	cases.push_back(SpecConstantTwoIntGraphicsCase("imul",					" %i32 0",		" %i32 0",		"%i32",		"IMul                 %sc_0 %sc_1",				-1,		-1,		addZeroToSc,		outputColors2));
6162	cases.push_back(SpecConstantTwoIntGraphicsCase("sdiv",					" %i32 0",		" %i32 0",		"%i32",		"SDiv                 %sc_0 %sc_1",				-126,	126,	addZeroToSc,		outputColors0));
6163	cases.push_back(SpecConstantTwoIntGraphicsCase("udiv",					" %i32 0",		" %i32 0",		"%i32",		"UDiv                 %sc_0 %sc_1",				126,	126,	addZeroToSc,		outputColors2));
6164	cases.push_back(SpecConstantTwoIntGraphicsCase("srem",					" %i32 0",		" %i32 0",		"%i32",		"SRem                 %sc_0 %sc_1",				3,		2,		addZeroToSc,		outputColors2));
6165	cases.push_back(SpecConstantTwoIntGraphicsCase("smod",					" %i32 0",		" %i32 0",		"%i32",		"SMod                 %sc_0 %sc_1",				3,		2,		addZeroToSc,		outputColors2));
6166	cases.push_back(SpecConstantTwoIntGraphicsCase("umod",					" %i32 0",		" %i32 0",		"%i32",		"UMod                 %sc_0 %sc_1",				1001,	500,	addZeroToSc,		outputColors2));
6167	cases.push_back(SpecConstantTwoIntGraphicsCase("bitwiseand",			" %i32 0",		" %i32 0",		"%i32",		"BitwiseAnd           %sc_0 %sc_1",				0x33,	0x0d,	addZeroToSc,		outputColors2));
6168	cases.push_back(SpecConstantTwoIntGraphicsCase("bitwiseor",				" %i32 0",		" %i32 0",		"%i32",		"BitwiseOr            %sc_0 %sc_1",				0,		1,		addZeroToSc,		outputColors2));
6169	cases.push_back(SpecConstantTwoIntGraphicsCase("bitwisexor",			" %i32 0",		" %i32 0",		"%i32",		"BitwiseAnd           %sc_0 %sc_1",				0x2e,	0x2f,	addZeroToSc,		outputColors2));
6170	cases.push_back(SpecConstantTwoIntGraphicsCase("shiftrightlogical",		" %i32 0",		" %i32 0",		"%i32",		"ShiftRightLogical    %sc_0 %sc_1",				2,		1,		addZeroToSc,		outputColors2));
6171	cases.push_back(SpecConstantTwoIntGraphicsCase("shiftrightarithmetic",	" %i32 0",		" %i32 0",		"%i32",		"ShiftRightArithmetic %sc_0 %sc_1",				-4,		2,		addZeroToSc,		outputColors0));
6172	cases.push_back(SpecConstantTwoIntGraphicsCase("shiftleftlogical",		" %i32 0",		" %i32 0",		"%i32",		"ShiftLeftLogical     %sc_0 %sc_1",				1,		0,		addZeroToSc,		outputColors2));
6173	cases.push_back(SpecConstantTwoIntGraphicsCase("slessthan",				" %i32 0",		" %i32 0",		"%bool",	"SLessThan            %sc_0 %sc_1",				-20,	-10,	selectTrueUsingSc,	outputColors2));
6174	cases.push_back(SpecConstantTwoIntGraphicsCase("ulessthan",				" %i32 0",		" %i32 0",		"%bool",	"ULessThan            %sc_0 %sc_1",				10,		20,		selectTrueUsingSc,	outputColors2));
6175	cases.push_back(SpecConstantTwoIntGraphicsCase("sgreaterthan",			" %i32 0",		" %i32 0",		"%bool",	"SGreaterThan         %sc_0 %sc_1",				-1000,	50,		selectFalseUsingSc,	outputColors2));
6176	cases.push_back(SpecConstantTwoIntGraphicsCase("ugreaterthan",			" %i32 0",		" %i32 0",		"%bool",	"UGreaterThan         %sc_0 %sc_1",				10,		5,		selectTrueUsingSc,	outputColors2));
6177	cases.push_back(SpecConstantTwoIntGraphicsCase("slessthanequal",		" %i32 0",		" %i32 0",		"%bool",	"SLessThanEqual       %sc_0 %sc_1",				-10,	-10,	selectTrueUsingSc,	outputColors2));
6178	cases.push_back(SpecConstantTwoIntGraphicsCase("ulessthanequal",		" %i32 0",		" %i32 0",		"%bool",	"ULessThanEqual       %sc_0 %sc_1",				50,		100,	selectTrueUsingSc,	outputColors2));
6179	cases.push_back(SpecConstantTwoIntGraphicsCase("sgreaterthanequal",		" %i32 0",		" %i32 0",		"%bool",	"SGreaterThanEqual    %sc_0 %sc_1",				-1000,	50,		selectFalseUsingSc,	outputColors2));
6180	cases.push_back(SpecConstantTwoIntGraphicsCase("ugreaterthanequal",		" %i32 0",		" %i32 0",		"%bool",	"UGreaterThanEqual    %sc_0 %sc_1",				10,		10,		selectTrueUsingSc,	outputColors2));
6181	cases.push_back(SpecConstantTwoIntGraphicsCase("iequal",				" %i32 0",		" %i32 0",		"%bool",	"IEqual               %sc_0 %sc_1",				42,		24,		selectFalseUsingSc,	outputColors2));
6182	cases.push_back(SpecConstantTwoIntGraphicsCase("logicaland",			"True %bool",	"True %bool",	"%bool",	"LogicalAnd           %sc_0 %sc_1",				0,		1,		selectFalseUsingSc,	outputColors2));
6183	cases.push_back(SpecConstantTwoIntGraphicsCase("logicalor",				"False %bool",	"False %bool",	"%bool",	"LogicalOr            %sc_0 %sc_1",				1,		0,		selectTrueUsingSc,	outputColors2));
6184	cases.push_back(SpecConstantTwoIntGraphicsCase("logicalequal",			"True %bool",	"True %bool",	"%bool",	"LogicalEqual         %sc_0 %sc_1",				0,		1,		selectFalseUsingSc,	outputColors2));
6185	cases.push_back(SpecConstantTwoIntGraphicsCase("logicalnotequal",		"False %bool",	"False %bool",	"%bool",	"LogicalNotEqual      %sc_0 %sc_1",				1,		0,		selectTrueUsingSc,	outputColors2));
6186	cases.push_back(SpecConstantTwoIntGraphicsCase("snegate",				" %i32 0",		" %i32 0",		"%i32",		"SNegate              %sc_0",					-1,		0,		addZeroToSc,		outputColors2));
6187	cases.push_back(SpecConstantTwoIntGraphicsCase("not",					" %i32 0",		" %i32 0",		"%i32",		"Not                  %sc_0",					-2,		0,		addZeroToSc,		outputColors2));
6188	cases.push_back(SpecConstantTwoIntGraphicsCase("logicalnot",			"False %bool",	"False %bool",	"%bool",	"LogicalNot           %sc_0",					1,		0,		selectFalseUsingSc,	outputColors2));
6189	cases.push_back(SpecConstantTwoIntGraphicsCase("select",				"False %bool",	" %i32 0",		"%i32",		"Select               %sc_0 %sc_1 %c_i32_0",	1,		1,		addZeroToSc,		outputColors2));
6190	// OpSConvert, OpFConvert: these two instructions involve ints/floats of different bitwidths.
6191	// \todo[2015-12-1 antiagainst] OpQuantizeToF16
6192
6193	for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
6194	{
6195		map<string, string>	specializations;
6196		map<string, string>	fragments;
6197		vector<deInt32>		specConstants;
6198
6199		specializations["SC_DEF0"]			= cases[caseNdx].scDefinition0;
6200		specializations["SC_DEF1"]			= cases[caseNdx].scDefinition1;
6201		specializations["SC_RESULT_TYPE"]	= cases[caseNdx].scResultType;
6202		specializations["SC_OP"]			= cases[caseNdx].scOperation;
6203		specializations["GEN_RESULT"]		= cases[caseNdx].resultOperation;
6204
6205		fragments["decoration"]				= tcu::StringTemplate(decorations1).specialize(specializations);
6206		fragments["pre_main"]				= tcu::StringTemplate(typesAndConstants1).specialize(specializations);
6207		fragments["testfun"]				= tcu::StringTemplate(function1).specialize(specializations);
6208
6209		specConstants.push_back(cases[caseNdx].scActualValue0);
6210		specConstants.push_back(cases[caseNdx].scActualValue1);
6211
6212		createTestsForAllStages(cases[caseNdx].caseName, inputColors, cases[caseNdx].expectedColors, fragments, specConstants, group.get());
6213	}
6214
6215	const char	decorations2[]			=
6216		"OpDecorate %sc_0  SpecId 0\n"
6217		"OpDecorate %sc_1  SpecId 1\n"
6218		"OpDecorate %sc_2  SpecId 2\n";
6219
6220	const char	typesAndConstants2[]	=
6221		"%v3i32     = OpTypeVector %i32 3\n"
6222
6223		"%sc_0      = OpSpecConstant %i32 0\n"
6224		"%sc_1      = OpSpecConstant %i32 0\n"
6225		"%sc_2      = OpSpecConstant %i32 0\n"
6226
6227		"%vec3_0      = OpConstantComposite %v3i32 %c_i32_0 %c_i32_0 %c_i32_0\n"
6228		"%sc_vec3_0   = OpSpecConstantOp %v3i32 CompositeInsert  %sc_0        %vec3_0    0\n"     // (sc_0, 0, 0)
6229		"%sc_vec3_1   = OpSpecConstantOp %v3i32 CompositeInsert  %sc_1        %vec3_0    1\n"     // (0, sc_1, 0)
6230		"%sc_vec3_2   = OpSpecConstantOp %v3i32 CompositeInsert  %sc_2        %vec3_0    2\n"     // (0, 0, sc_2)
6231		"%sc_vec3_01  = OpSpecConstantOp %v3i32 VectorShuffle    %sc_vec3_0   %sc_vec3_1 1 0 4\n" // (0,    sc_0, sc_1)
6232		"%sc_vec3_012 = OpSpecConstantOp %v3i32 VectorShuffle    %sc_vec3_01  %sc_vec3_2 5 1 2\n" // (sc_2, sc_0, sc_1)
6233		"%sc_ext_0    = OpSpecConstantOp %i32   CompositeExtract %sc_vec3_012            0\n"     // sc_2
6234		"%sc_ext_1    = OpSpecConstantOp %i32   CompositeExtract %sc_vec3_012            1\n"     // sc_0
6235		"%sc_ext_2    = OpSpecConstantOp %i32   CompositeExtract %sc_vec3_012            2\n"     // sc_1
6236		"%sc_sub      = OpSpecConstantOp %i32   ISub             %sc_ext_0    %sc_ext_1\n"        // (sc_2 - sc_0)
6237		"%sc_final    = OpSpecConstantOp %i32   IMul             %sc_sub      %sc_ext_2\n";       // (sc_2 - sc_0) * sc_1
6238
6239	const char	function2[]				=
6240		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
6241		"%param     = OpFunctionParameter %v4f32\n"
6242		"%label     = OpLabel\n"
6243		"%result    = OpVariable %fp_v4f32 Function\n"
6244		"             OpStore %result %param\n"
6245		"%loc       = OpAccessChain %fp_f32 %result %sc_final\n"
6246		"%val       = OpLoad %f32 %loc\n"
6247		"%add       = OpFAdd %f32 %val %c_f32_0_5\n"
6248		"             OpStore %loc %add\n"
6249		"%ret       = OpLoad %v4f32 %result\n"
6250		"             OpReturnValue %ret\n"
6251		"             OpFunctionEnd\n";
6252
6253	map<string, string>	fragments;
6254	vector<deInt32>		specConstants;
6255
6256	fragments["decoration"]	= decorations2;
6257	fragments["pre_main"]	= typesAndConstants2;
6258	fragments["testfun"]	= function2;
6259
6260	specConstants.push_back(56789);
6261	specConstants.push_back(-2);
6262	specConstants.push_back(56788);
6263
6264	createTestsForAllStages("vector_related", inputColors, outputColors2, fragments, specConstants, group.get());
6265
6266	return group.release();
6267}
6268
6269tcu::TestCaseGroup* createOpPhiTests(tcu::TestContext& testCtx)
6270{
6271	de::MovePtr<tcu::TestCaseGroup> group				(new tcu::TestCaseGroup(testCtx, "opphi", "Test the OpPhi instruction"));
6272	RGBA							inputColors[4];
6273	RGBA							outputColors1[4];
6274	RGBA							outputColors2[4];
6275	RGBA							outputColors3[4];
6276	map<string, string>				fragments1;
6277	map<string, string>				fragments2;
6278	map<string, string>				fragments3;
6279
6280	const char	typesAndConstants1[]	=
6281		"%c_f32_p2  = OpConstant %f32 0.2\n"
6282		"%c_f32_p4  = OpConstant %f32 0.4\n"
6283		"%c_f32_p6  = OpConstant %f32 0.6\n"
6284		"%c_f32_p8  = OpConstant %f32 0.8\n";
6285
6286	// vec4 test_code(vec4 param) {
6287	//   vec4 result = param;
6288	//   for (int i = 0; i < 4; ++i) {
6289	//     float operand;
6290	//     switch (i) {
6291	//       case 0: operand = .2; break;
6292	//       case 1: operand = .6; break;
6293	//       case 2: operand = .4; break;
6294	//       case 3: operand = .0; break;
6295	//       default: break; // unreachable
6296	//     }
6297	//     result[i] += operand;
6298	//   }
6299	//   return result;
6300	// }
6301	const char	function1[]				=
6302		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
6303		"%param1    = OpFunctionParameter %v4f32\n"
6304		"%lbl       = OpLabel\n"
6305		"%iptr      = OpVariable %fp_i32 Function\n"
6306		"             OpStore %iptr %c_i32_0\n"
6307		"%result    = OpVariable %fp_v4f32 Function\n"
6308		"             OpStore %result %param1\n"
6309		"             OpBranch %loop\n"
6310
6311		"%loop      = OpLabel\n"
6312		"%ival      = OpLoad %i32 %iptr\n"
6313		"%lt_4      = OpSLessThan %bool %ival %c_i32_4\n"
6314		"             OpLoopMerge %exit %loop None\n"
6315		"             OpBranchConditional %lt_4 %entry %exit\n"
6316
6317		"%entry     = OpLabel\n"
6318		"%loc       = OpAccessChain %fp_f32 %result %ival\n"
6319		"%val       = OpLoad %f32 %loc\n"
6320		"             OpSelectionMerge %phi None\n"
6321		"             OpSwitch %ival %default 0 %case0 1 %case1 2 %case2 3 %case3\n"
6322
6323		"%case0     = OpLabel\n"
6324		"             OpBranch %phi\n"
6325		"%case1     = OpLabel\n"
6326		"             OpBranch %phi\n"
6327		"%case2     = OpLabel\n"
6328		"             OpBranch %phi\n"
6329		"%case3     = OpLabel\n"
6330		"             OpBranch %phi\n"
6331
6332		"%default   = OpLabel\n"
6333		"             OpUnreachable\n"
6334
6335		"%phi       = OpLabel\n"
6336		"%operand   = OpPhi %f32 %c_f32_p4 %case2 %c_f32_p6 %case1 %c_f32_p2 %case0 %c_f32_0 %case3\n" // not in the order of blocks
6337		"%add       = OpFAdd %f32 %val %operand\n"
6338		"             OpStore %loc %add\n"
6339		"%ival_next = OpIAdd %i32 %ival %c_i32_1\n"
6340		"             OpStore %iptr %ival_next\n"
6341		"             OpBranch %loop\n"
6342
6343		"%exit      = OpLabel\n"
6344		"%ret       = OpLoad %v4f32 %result\n"
6345		"             OpReturnValue %ret\n"
6346
6347		"             OpFunctionEnd\n";
6348
6349	fragments1["pre_main"]	= typesAndConstants1;
6350	fragments1["testfun"]	= function1;
6351
6352	getHalfColorsFullAlpha(inputColors);
6353
6354	outputColors1[0]		= RGBA(178, 180, 229, 255);
6355	outputColors1[1]		= RGBA(178, 153, 102, 255);
6356	outputColors1[2]		= RGBA(51,  180, 102, 255);
6357	outputColors1[3]		= RGBA(51,  153, 229, 255);
6358
6359	createTestsForAllStages("out_of_order", inputColors, outputColors1, fragments1, group.get());
6360
6361	const char	typesAndConstants2[]	=
6362		"%c_f32_p2  = OpConstant %f32 0.2\n";
6363
6364	// Add .4 to the second element of the given parameter.
6365	const char	function2[]				=
6366		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
6367		"%param     = OpFunctionParameter %v4f32\n"
6368		"%entry     = OpLabel\n"
6369		"%result    = OpVariable %fp_v4f32 Function\n"
6370		"             OpStore %result %param\n"
6371		"%loc       = OpAccessChain %fp_f32 %result %c_i32_1\n"
6372		"%val       = OpLoad %f32 %loc\n"
6373		"             OpBranch %phi\n"
6374
6375		"%phi        = OpLabel\n"
6376		"%step       = OpPhi %i32 %c_i32_0  %entry %step_next  %phi\n"
6377		"%accum      = OpPhi %f32 %val      %entry %accum_next %phi\n"
6378		"%step_next  = OpIAdd %i32 %step  %c_i32_1\n"
6379		"%accum_next = OpFAdd %f32 %accum %c_f32_p2\n"
6380		"%still_loop = OpSLessThan %bool %step %c_i32_2\n"
6381		"              OpLoopMerge %exit %phi None\n"
6382		"              OpBranchConditional %still_loop %phi %exit\n"
6383
6384		"%exit       = OpLabel\n"
6385		"              OpStore %loc %accum\n"
6386		"%ret        = OpLoad %v4f32 %result\n"
6387		"              OpReturnValue %ret\n"
6388
6389		"              OpFunctionEnd\n";
6390
6391	fragments2["pre_main"]	= typesAndConstants2;
6392	fragments2["testfun"]	= function2;
6393
6394	outputColors2[0]			= RGBA(127, 229, 127, 255);
6395	outputColors2[1]			= RGBA(127, 102, 0,   255);
6396	outputColors2[2]			= RGBA(0,   229, 0,   255);
6397	outputColors2[3]			= RGBA(0,   102, 127, 255);
6398
6399	createTestsForAllStages("induction", inputColors, outputColors2, fragments2, group.get());
6400
6401	const char	typesAndConstants3[]	=
6402		"%true      = OpConstantTrue %bool\n"
6403		"%false     = OpConstantFalse %bool\n"
6404		"%c_f32_p2  = OpConstant %f32 0.2\n";
6405
6406	// Swap the second and the third element of the given parameter.
6407	const char	function3[]				=
6408		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
6409		"%param     = OpFunctionParameter %v4f32\n"
6410		"%entry     = OpLabel\n"
6411		"%result    = OpVariable %fp_v4f32 Function\n"
6412		"             OpStore %result %param\n"
6413		"%a_loc     = OpAccessChain %fp_f32 %result %c_i32_1\n"
6414		"%a_init    = OpLoad %f32 %a_loc\n"
6415		"%b_loc     = OpAccessChain %fp_f32 %result %c_i32_2\n"
6416		"%b_init    = OpLoad %f32 %b_loc\n"
6417		"             OpBranch %phi\n"
6418
6419		"%phi        = OpLabel\n"
6420		"%still_loop = OpPhi %bool %true   %entry %false  %phi\n"
6421		"%a_next     = OpPhi %f32  %a_init %entry %b_next %phi\n"
6422		"%b_next     = OpPhi %f32  %b_init %entry %a_next %phi\n"
6423		"              OpLoopMerge %exit %phi None\n"
6424		"              OpBranchConditional %still_loop %phi %exit\n"
6425
6426		"%exit       = OpLabel\n"
6427		"              OpStore %a_loc %a_next\n"
6428		"              OpStore %b_loc %b_next\n"
6429		"%ret        = OpLoad %v4f32 %result\n"
6430		"              OpReturnValue %ret\n"
6431
6432		"              OpFunctionEnd\n";
6433
6434	fragments3["pre_main"]	= typesAndConstants3;
6435	fragments3["testfun"]	= function3;
6436
6437	outputColors3[0]			= RGBA(127, 127, 127, 255);
6438	outputColors3[1]			= RGBA(127, 0,   0,   255);
6439	outputColors3[2]			= RGBA(0,   0,   127, 255);
6440	outputColors3[3]			= RGBA(0,   127, 0,   255);
6441
6442	createTestsForAllStages("swap", inputColors, outputColors3, fragments3, group.get());
6443
6444	return group.release();
6445}
6446
6447tcu::TestCaseGroup* createNoContractionTests(tcu::TestContext& testCtx)
6448{
6449	de::MovePtr<tcu::TestCaseGroup> group			(new tcu::TestCaseGroup(testCtx, "nocontraction", "Test the NoContraction decoration"));
6450	RGBA							inputColors[4];
6451	RGBA							outputColors[4];
6452
6453	// With NoContraction, (1 + 2^-23) * (1 - 2^-23) - 1 should be conducted as a multiplication and an addition separately.
6454	// For the multiplication, the result is 1 - 2^-46, which is out of the precision range for 32-bit float. (32-bit float
6455	// only have 23-bit fraction.) So it will be rounded to 1. Then the final result is 0. On the contrary, the result will
6456	// be 2^-46, which is a normalized number perfectly representable as 32-bit float.
6457	const char						constantsAndTypes[]	 =
6458		"%c_vec4_0       = OpConstantComposite %v4f32 %c_f32_0 %c_f32_0 %c_f32_0 %c_f32_1\n"
6459		"%c_vec4_1       = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_1\n"
6460		"%c_f32_1pl2_23  = OpConstant %f32 0x1.000002p+0\n" // 1 + 2^-23
6461		"%c_f32_1mi2_23  = OpConstant %f32 0x1.fffffcp-1\n" // 1 - 2^-23
6462		;
6463
6464	const char						function[]	 =
6465		"%test_code      = OpFunction %v4f32 None %v4f32_function\n"
6466		"%param          = OpFunctionParameter %v4f32\n"
6467		"%label          = OpLabel\n"
6468		"%var1           = OpVariable %fp_f32 Function %c_f32_1pl2_23\n"
6469		"%var2           = OpVariable %fp_f32 Function\n"
6470		"%red            = OpCompositeExtract %f32 %param 0\n"
6471		"%plus_red       = OpFAdd %f32 %c_f32_1mi2_23 %red\n"
6472		"                  OpStore %var2 %plus_red\n"
6473		"%val1           = OpLoad %f32 %var1\n"
6474		"%val2           = OpLoad %f32 %var2\n"
6475		"%mul            = OpFMul %f32 %val1 %val2\n"
6476		"%add            = OpFAdd %f32 %mul %c_f32_n1\n"
6477		"%is0            = OpFOrdEqual %bool %add %c_f32_0\n"
6478		"%ret            = OpSelect %v4f32 %is0 %c_vec4_0 %c_vec4_1\n"
6479		"                  OpReturnValue %ret\n"
6480		"                  OpFunctionEnd\n";
6481
6482	struct CaseNameDecoration
6483	{
6484		string name;
6485		string decoration;
6486	};
6487
6488
6489	CaseNameDecoration tests[] = {
6490		{"multiplication",	"OpDecorate %mul NoContraction"},
6491		{"addition",		"OpDecorate %add NoContraction"},
6492		{"both",			"OpDecorate %mul NoContraction\nOpDecorate %add NoContraction"},
6493	};
6494
6495	getHalfColorsFullAlpha(inputColors);
6496
6497	for (deUint8 idx = 0; idx < 4; ++idx)
6498	{
6499		inputColors[idx].setRed(0);
6500		outputColors[idx] = RGBA(0, 0, 0, 255);
6501	}
6502
6503	for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(CaseNameDecoration); ++testNdx)
6504	{
6505		map<string, string> fragments;
6506
6507		fragments["decoration"] = tests[testNdx].decoration;
6508		fragments["pre_main"] = constantsAndTypes;
6509		fragments["testfun"] = function;
6510
6511		createTestsForAllStages(tests[testNdx].name, inputColors, outputColors, fragments, group.get());
6512	}
6513
6514	return group.release();
6515}
6516
6517tcu::TestCaseGroup* createMemoryAccessTests(tcu::TestContext& testCtx)
6518{
6519	de::MovePtr<tcu::TestCaseGroup> memoryAccessTests (new tcu::TestCaseGroup(testCtx, "opmemoryaccess", "Memory Semantics"));
6520	RGBA							colors[4];
6521
6522	const char						constantsAndTypes[]	 =
6523		"%c_a2f32_1         = OpConstantComposite %a2f32 %c_f32_1 %c_f32_1\n"
6524		"%fp_a2f32          = OpTypePointer Function %a2f32\n"
6525		"%stype             = OpTypeStruct  %v4f32 %a2f32 %f32\n"
6526		"%fp_stype          = OpTypePointer Function %stype\n";
6527
6528	const char						function[]	 =
6529		"%test_code         = OpFunction %v4f32 None %v4f32_function\n"
6530		"%param1            = OpFunctionParameter %v4f32\n"
6531		"%lbl               = OpLabel\n"
6532		"%v1                = OpVariable %fp_v4f32 Function\n"
6533		"                     OpStore %v1 %c_v4f32_1_1_1_1\n"
6534		"%v2                = OpVariable %fp_a2f32 Function\n"
6535		"                     OpStore %v2 %c_a2f32_1\n"
6536		"%v3                = OpVariable %fp_f32 Function\n"
6537		"                     OpStore %v3 %c_f32_1\n"
6538
6539		"%v                 = OpVariable %fp_stype Function\n"
6540		"%vv                = OpVariable %fp_stype Function\n"
6541		"%vvv               = OpVariable %fp_f32 Function\n"
6542
6543		"%p_v4f32          = OpAccessChain %fp_v4f32 %v %c_u32_0\n"
6544		"%p_a2f32          = OpAccessChain %fp_a2f32 %v %c_u32_1\n"
6545		"%p_f32            = OpAccessChain %fp_f32 %v %c_u32_2\n"
6546		"%v1_v             = OpLoad %v4f32 %v1 ${access_type}\n"
6547		"%v2_v             = OpLoad %a2f32 %v2 ${access_type}\n"
6548		"%v3_v             = OpLoad %f32 %v3 ${access_type}\n"
6549
6550		"                    OpStore %p_v4f32 %v1_v ${access_type}\n"
6551		"                    OpStore %p_a2f32 %v2_v ${access_type}\n"
6552		"                    OpStore %p_f32 %v3_v ${access_type}\n"
6553
6554		"                    OpCopyMemory %vv %v ${access_type}\n"
6555		"                    OpCopyMemory %vvv %p_f32 ${access_type}\n"
6556
6557		"%p_f32_2          = OpAccessChain %fp_f32 %vv %c_u32_2\n"
6558		"%v_f32_2          = OpLoad %f32 %p_f32_2\n"
6559		"%v_f32_3          = OpLoad %f32 %vvv\n"
6560
6561		"%ret1             = OpVectorTimesScalar %v4f32 %param1 %v_f32_2\n"
6562		"%ret2             = OpVectorTimesScalar %v4f32 %ret1 %v_f32_3\n"
6563		"                    OpReturnValue %ret2\n"
6564		"                    OpFunctionEnd\n";
6565
6566	struct NameMemoryAccess
6567	{
6568		string name;
6569		string accessType;
6570	};
6571
6572
6573	NameMemoryAccess tests[] =
6574	{
6575		{ "none", "" },
6576		{ "volatile", "Volatile" },
6577		{ "aligned",  "Aligned 1" },
6578		{ "volatile_aligned",  "Volatile|Aligned 1" },
6579		{ "nontemporal_aligned",  "Nontemporal|Aligned 1" },
6580		{ "volatile_nontemporal",  "Volatile|Nontemporal" },
6581		{ "volatile_nontermporal_aligned",  "Volatile|Nontemporal|Aligned 1" },
6582	};
6583
6584	getHalfColorsFullAlpha(colors);
6585
6586	for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(NameMemoryAccess); ++testNdx)
6587	{
6588		map<string, string> fragments;
6589		map<string, string> memoryAccess;
6590		memoryAccess["access_type"] = tests[testNdx].accessType;
6591
6592		fragments["pre_main"] = constantsAndTypes;
6593		fragments["testfun"] = tcu::StringTemplate(function).specialize(memoryAccess);
6594		createTestsForAllStages(tests[testNdx].name, colors, colors, fragments, memoryAccessTests.get());
6595	}
6596	return memoryAccessTests.release();
6597}
6598tcu::TestCaseGroup* createOpUndefTests(tcu::TestContext& testCtx)
6599{
6600	de::MovePtr<tcu::TestCaseGroup>		opUndefTests		 (new tcu::TestCaseGroup(testCtx, "opundef", "Test OpUndef"));
6601	RGBA								defaultColors[4];
6602	map<string, string>					fragments;
6603	getDefaultColors(defaultColors);
6604
6605	// First, simple cases that don't do anything with the OpUndef result.
6606	fragments["testfun"] =
6607		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
6608		"%param1 = OpFunctionParameter %v4f32\n"
6609		"%label_testfun = OpLabel\n"
6610		"%undef = OpUndef %type\n"
6611		"OpReturnValue %param1\n"
6612		"OpFunctionEnd\n"
6613		;
6614	struct NameCodePair { string name, code; };
6615	const NameCodePair tests[] =
6616	{
6617		{"bool", "%type = OpTypeBool"},
6618		{"vec2uint32", "%type = OpTypeVector %u32 2"},
6619		{"image", "%type = OpTypeImage %f32 2D 0 0 0 0 Unknown"},
6620		{"sampler", "%type = OpTypeSampler"},
6621		{"sampledimage", "%img = OpTypeImage %f32 2D 0 0 0 0 Unknown\n" "%type = OpTypeSampledImage %img"},
6622		{"pointer", "%type = OpTypePointer Function %i32"},
6623		{"runtimearray", "%type = OpTypeRuntimeArray %f32"},
6624		{"array", "%c_u32_100 = OpConstant %u32 100\n" "%type = OpTypeArray %i32 %c_u32_100"},
6625		{"struct", "%type = OpTypeStruct %f32 %i32 %u32"}};
6626	for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(NameCodePair); ++testNdx)
6627	{
6628		fragments["pre_main"] = tests[testNdx].code;
6629		createTestsForAllStages(tests[testNdx].name, defaultColors, defaultColors, fragments, opUndefTests.get());
6630	}
6631	fragments.clear();
6632
6633	fragments["testfun"] =
6634		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
6635		"%param1 = OpFunctionParameter %v4f32\n"
6636		"%label_testfun = OpLabel\n"
6637		"%undef = OpUndef %f32\n"
6638		"%zero = OpFMul %f32 %undef %c_f32_0\n"
6639		"%a = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
6640		"%b = OpFAdd %f32 %a %zero\n"
6641		"%ret = OpVectorInsertDynamic %v4f32 %param1 %b %c_i32_0\n"
6642		"OpReturnValue %ret\n"
6643		"OpFunctionEnd\n"
6644		;
6645	createTestsForAllStages("float32", defaultColors, defaultColors, fragments, opUndefTests.get());
6646
6647	fragments["testfun"] =
6648		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
6649		"%param1 = OpFunctionParameter %v4f32\n"
6650		"%label_testfun = OpLabel\n"
6651		"%undef = OpUndef %i32\n"
6652		"%zero = OpIMul %i32 %undef %c_i32_0\n"
6653		"%a = OpVectorExtractDynamic %f32 %param1 %zero\n"
6654		"%ret = OpVectorInsertDynamic %v4f32 %param1 %a %c_i32_0\n"
6655		"OpReturnValue %ret\n"
6656		"OpFunctionEnd\n"
6657		;
6658	createTestsForAllStages("sint32", defaultColors, defaultColors, fragments, opUndefTests.get());
6659
6660	fragments["testfun"] =
6661		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
6662		"%param1 = OpFunctionParameter %v4f32\n"
6663		"%label_testfun = OpLabel\n"
6664		"%undef = OpUndef %u32\n"
6665		"%zero = OpIMul %u32 %undef %c_i32_0\n"
6666		"%a = OpVectorExtractDynamic %f32 %param1 %zero\n"
6667		"%ret = OpVectorInsertDynamic %v4f32 %param1 %a %c_i32_0\n"
6668		"OpReturnValue %ret\n"
6669		"OpFunctionEnd\n"
6670		;
6671	createTestsForAllStages("uint32", defaultColors, defaultColors, fragments, opUndefTests.get());
6672
6673	fragments["testfun"] =
6674		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
6675		"%param1 = OpFunctionParameter %v4f32\n"
6676		"%label_testfun = OpLabel\n"
6677		"%undef = OpUndef %v4f32\n"
6678		"%vzero = OpVectorTimesScalar %v4f32 %undef %c_f32_0\n"
6679		"%zero_0 = OpVectorExtractDynamic %f32 %vzero %c_i32_0\n"
6680		"%zero_1 = OpVectorExtractDynamic %f32 %vzero %c_i32_1\n"
6681		"%zero_2 = OpVectorExtractDynamic %f32 %vzero %c_i32_2\n"
6682		"%zero_3 = OpVectorExtractDynamic %f32 %vzero %c_i32_3\n"
6683		"%param1_0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
6684		"%param1_1 = OpVectorExtractDynamic %f32 %param1 %c_i32_1\n"
6685		"%param1_2 = OpVectorExtractDynamic %f32 %param1 %c_i32_2\n"
6686		"%param1_3 = OpVectorExtractDynamic %f32 %param1 %c_i32_3\n"
6687		"%sum_0 = OpFAdd %f32 %param1_0 %zero_0\n"
6688		"%sum_1 = OpFAdd %f32 %param1_1 %zero_1\n"
6689		"%sum_2 = OpFAdd %f32 %param1_2 %zero_2\n"
6690		"%sum_3 = OpFAdd %f32 %param1_3 %zero_3\n"
6691		"%ret3 = OpVectorInsertDynamic %v4f32 %param1 %sum_3 %c_i32_3\n"
6692		"%ret2 = OpVectorInsertDynamic %v4f32 %ret3 %sum_2 %c_i32_2\n"
6693		"%ret1 = OpVectorInsertDynamic %v4f32 %ret2 %sum_1 %c_i32_1\n"
6694		"%ret = OpVectorInsertDynamic %v4f32 %ret1 %sum_0 %c_i32_0\n"
6695		"OpReturnValue %ret\n"
6696		"OpFunctionEnd\n"
6697		;
6698	createTestsForAllStages("vec4float32", defaultColors, defaultColors, fragments, opUndefTests.get());
6699
6700	fragments["pre_main"] =
6701		"%v2f32 = OpTypeVector %f32 2\n"
6702		"%m2x2f32 = OpTypeMatrix %v2f32 2\n";
6703	fragments["testfun"] =
6704		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
6705		"%param1 = OpFunctionParameter %v4f32\n"
6706		"%label_testfun = OpLabel\n"
6707		"%undef = OpUndef %m2x2f32\n"
6708		"%mzero = OpMatrixTimesScalar %m2x2f32 %undef %c_f32_0\n"
6709		"%zero_0 = OpCompositeExtract %f32 %mzero 0 0\n"
6710		"%zero_1 = OpCompositeExtract %f32 %mzero 0 1\n"
6711		"%zero_2 = OpCompositeExtract %f32 %mzero 1 0\n"
6712		"%zero_3 = OpCompositeExtract %f32 %mzero 1 1\n"
6713		"%param1_0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
6714		"%param1_1 = OpVectorExtractDynamic %f32 %param1 %c_i32_1\n"
6715		"%param1_2 = OpVectorExtractDynamic %f32 %param1 %c_i32_2\n"
6716		"%param1_3 = OpVectorExtractDynamic %f32 %param1 %c_i32_3\n"
6717		"%sum_0 = OpFAdd %f32 %param1_0 %zero_0\n"
6718		"%sum_1 = OpFAdd %f32 %param1_1 %zero_1\n"
6719		"%sum_2 = OpFAdd %f32 %param1_2 %zero_2\n"
6720		"%sum_3 = OpFAdd %f32 %param1_3 %zero_3\n"
6721		"%ret3 = OpVectorInsertDynamic %v4f32 %param1 %sum_3 %c_i32_3\n"
6722		"%ret2 = OpVectorInsertDynamic %v4f32 %ret3 %sum_2 %c_i32_2\n"
6723		"%ret1 = OpVectorInsertDynamic %v4f32 %ret2 %sum_1 %c_i32_1\n"
6724		"%ret = OpVectorInsertDynamic %v4f32 %ret1 %sum_0 %c_i32_0\n"
6725		"OpReturnValue %ret\n"
6726		"OpFunctionEnd\n"
6727		;
6728	createTestsForAllStages("matrix", defaultColors, defaultColors, fragments, opUndefTests.get());
6729
6730	return opUndefTests.release();
6731}
6732
6733void createOpQuantizeSingleOptionTests(tcu::TestCaseGroup* testCtx)
6734{
6735	const RGBA		inputColors[4]		=
6736	{
6737		RGBA(0,		0,		0,		255),
6738		RGBA(0,		0,		255,	255),
6739		RGBA(0,		255,	0,		255),
6740		RGBA(0,		255,	255,	255)
6741	};
6742
6743	const RGBA		expectedColors[4]	=
6744	{
6745		RGBA(255,	 0,		 0,		 255),
6746		RGBA(255,	 0,		 0,		 255),
6747		RGBA(255,	 0,		 0,		 255),
6748		RGBA(255,	 0,		 0,		 255)
6749	};
6750
6751	const struct SingleFP16Possibility
6752	{
6753		const char* name;
6754		const char* constant;  // Value to assign to %test_constant.
6755		float		valueAsFloat;
6756		const char* condition; // Must assign to %cond an expression that evaluates to true after %c = OpQuantizeToF16(%test_constant + 0).
6757	}				tests[]				=
6758	{
6759		{
6760			"negative",
6761			"-0x1.3p1\n",
6762			-constructNormalizedFloat(1, 0x300000),
6763			"%cond = OpFOrdEqual %bool %c %test_constant\n"
6764		}, // -19
6765		{
6766			"positive",
6767			"0x1.0p7\n",
6768			constructNormalizedFloat(7, 0x000000),
6769			"%cond = OpFOrdEqual %bool %c %test_constant\n"
6770		},  // +128
6771		// SPIR-V requires that OpQuantizeToF16 flushes
6772		// any numbers that would end up denormalized in F16 to zero.
6773		{
6774			"denorm",
6775			"0x0.0006p-126\n",
6776			std::ldexp(1.5f, -140),
6777			"%cond = OpFOrdEqual %bool %c %c_f32_0\n"
6778		},  // denorm
6779		{
6780			"negative_denorm",
6781			"-0x0.0006p-126\n",
6782			-std::ldexp(1.5f, -140),
6783			"%cond = OpFOrdEqual %bool %c %c_f32_0\n"
6784		}, // -denorm
6785		{
6786			"too_small",
6787			"0x1.0p-16\n",
6788			std::ldexp(1.0f, -16),
6789			"%cond = OpFOrdEqual %bool %c %c_f32_0\n"
6790		},     // too small positive
6791		{
6792			"negative_too_small",
6793			"-0x1.0p-32\n",
6794			-std::ldexp(1.0f, -32),
6795			"%cond = OpFOrdEqual %bool %c %c_f32_0\n"
6796		},      // too small negative
6797		{
6798			"negative_inf",
6799			"-0x1.0p128\n",
6800			-std::ldexp(1.0f, 128),
6801
6802			"%gz = OpFOrdLessThan %bool %c %c_f32_0\n"
6803			"%inf = OpIsInf %bool %c\n"
6804			"%cond = OpLogicalAnd %bool %gz %inf\n"
6805		},     // -inf to -inf
6806		{
6807			"inf",
6808			"0x1.0p128\n",
6809			std::ldexp(1.0f, 128),
6810
6811			"%gz = OpFOrdGreaterThan %bool %c %c_f32_0\n"
6812			"%inf = OpIsInf %bool %c\n"
6813			"%cond = OpLogicalAnd %bool %gz %inf\n"
6814		},     // +inf to +inf
6815		{
6816			"round_to_negative_inf",
6817			"-0x1.0p32\n",
6818			-std::ldexp(1.0f, 32),
6819
6820			"%gz = OpFOrdLessThan %bool %c %c_f32_0\n"
6821			"%inf = OpIsInf %bool %c\n"
6822			"%cond = OpLogicalAnd %bool %gz %inf\n"
6823		},     // round to -inf
6824		{
6825			"round_to_inf",
6826			"0x1.0p16\n",
6827			std::ldexp(1.0f, 16),
6828
6829			"%gz = OpFOrdGreaterThan %bool %c %c_f32_0\n"
6830			"%inf = OpIsInf %bool %c\n"
6831			"%cond = OpLogicalAnd %bool %gz %inf\n"
6832		},     // round to +inf
6833		{
6834			"nan",
6835			"0x1.1p128\n",
6836			std::numeric_limits<float>::quiet_NaN(),
6837
6838			// Can't use %c, because NaN+0 isn't necessarily a NaN (Vulkan spec A.4).
6839			"%direct_quant = OpQuantizeToF16 %f32 %test_constant\n"
6840			"%nan = OpIsNan %bool %direct_quant\n"
6841			"%as_int = OpBitcast %i32 %direct_quant\n"
6842			"%positive = OpSGreaterThan %bool %as_int %c_i32_0\n"
6843			"%cond = OpLogicalAnd %bool %nan %positive\n"
6844		}, // nan
6845		{
6846			"negative_nan",
6847			"-0x1.0001p128\n",
6848			std::numeric_limits<float>::quiet_NaN(),
6849
6850			// Can't use %c, because NaN+0 isn't necessarily a NaN (Vulkan spec A.4).
6851			"%direct_quant = OpQuantizeToF16 %f32 %test_constant\n"
6852			"%nan = OpIsNan %bool %direct_quant\n"
6853			"%as_int = OpBitcast %i32 %direct_quant\n"
6854			"%negative = OpSLessThan %bool %as_int %c_i32_0\n"
6855			"%cond = OpLogicalAnd %bool %nan %negative\n"
6856		} // -nan
6857	};
6858	const char*		constants			=
6859		"%test_constant = OpConstant %f32 ";  // The value will be test.constant.
6860
6861	StringTemplate	function			(
6862		"%test_code     = OpFunction %v4f32 None %v4f32_function\n"
6863		"%param1        = OpFunctionParameter %v4f32\n"
6864		"%label_testfun = OpLabel\n"
6865		"%a             = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
6866		"%b             = OpFAdd %f32 %test_constant %a\n"
6867		"%c             = OpQuantizeToF16 %f32 %b\n"
6868		"${condition}\n"
6869		"%retval        = OpSelect %v4f32 %cond %c_v4f32_1_0_0_1 %param1"
6870		"                 OpReturnValue %retval\n"
6871		"OpFunctionEnd\n"
6872	);
6873
6874	const char*		specDecorations		= "OpDecorate %test_constant SpecId 0\n";
6875	const char*		specConstants		=
6876			"%test_constant = OpSpecConstant %f32 0.\n"
6877			"%c             = OpSpecConstantOp %f32 QuantizeToF16 %test_constant\n";
6878
6879	StringTemplate	specConstantFunction(
6880		"%test_code     = OpFunction %v4f32 None %v4f32_function\n"
6881		"%param1        = OpFunctionParameter %v4f32\n"
6882		"%label_testfun = OpLabel\n"
6883		"${condition}\n"
6884		"%retval        = OpSelect %v4f32 %cond %c_v4f32_1_0_0_1 %param1"
6885		"                 OpReturnValue %retval\n"
6886		"OpFunctionEnd\n"
6887	);
6888
6889	for (size_t idx = 0; idx < (sizeof(tests)/sizeof(tests[0])); ++idx)
6890	{
6891		map<string, string>								codeSpecialization;
6892		map<string, string>								fragments;
6893		codeSpecialization["condition"]					= tests[idx].condition;
6894		fragments["testfun"]							= function.specialize(codeSpecialization);
6895		fragments["pre_main"]							= string(constants) + tests[idx].constant + "\n";
6896		createTestsForAllStages(tests[idx].name, inputColors, expectedColors, fragments, testCtx);
6897	}
6898
6899	for (size_t idx = 0; idx < (sizeof(tests)/sizeof(tests[0])); ++idx)
6900	{
6901		map<string, string>								codeSpecialization;
6902		map<string, string>								fragments;
6903		vector<deInt32>									passConstants;
6904		deInt32											specConstant;
6905
6906		codeSpecialization["condition"]					= tests[idx].condition;
6907		fragments["testfun"]							= specConstantFunction.specialize(codeSpecialization);
6908		fragments["decoration"]							= specDecorations;
6909		fragments["pre_main"]							= specConstants;
6910
6911		memcpy(&specConstant, &tests[idx].valueAsFloat, sizeof(float));
6912		passConstants.push_back(specConstant);
6913
6914		createTestsForAllStages(string("spec_const_") + tests[idx].name, inputColors, expectedColors, fragments, passConstants, testCtx);
6915	}
6916}
6917
6918void createOpQuantizeTwoPossibilityTests(tcu::TestCaseGroup* testCtx)
6919{
6920	RGBA inputColors[4] =  {
6921		RGBA(0,		0,		0,		255),
6922		RGBA(0,		0,		255,	255),
6923		RGBA(0,		255,	0,		255),
6924		RGBA(0,		255,	255,	255)
6925	};
6926
6927	RGBA expectedColors[4] =
6928	{
6929		RGBA(255,	 0,		 0,		 255),
6930		RGBA(255,	 0,		 0,		 255),
6931		RGBA(255,	 0,		 0,		 255),
6932		RGBA(255,	 0,		 0,		 255)
6933	};
6934
6935	struct DualFP16Possibility
6936	{
6937		const char* name;
6938		const char* input;
6939		float		inputAsFloat;
6940		const char* possibleOutput1;
6941		const char* possibleOutput2;
6942	} tests[] = {
6943		{
6944			"positive_round_up_or_round_down",
6945			"0x1.3003p8",
6946			constructNormalizedFloat(8, 0x300300),
6947			"0x1.304p8",
6948			"0x1.3p8"
6949		},
6950		{
6951			"negative_round_up_or_round_down",
6952			"-0x1.6008p-7",
6953			-constructNormalizedFloat(8, 0x600800),
6954			"-0x1.6p-7",
6955			"-0x1.604p-7"
6956		},
6957		{
6958			"carry_bit",
6959			"0x1.01ep2",
6960			constructNormalizedFloat(8, 0x01e000),
6961			"0x1.01cp2",
6962			"0x1.02p2"
6963		},
6964		{
6965			"carry_to_exponent",
6966			"0x1.feep1",
6967			constructNormalizedFloat(8, 0xfee000),
6968			"0x1.ffcp1",
6969			"0x1.0p2"
6970		},
6971	};
6972	StringTemplate constants (
6973		"%input_const = OpConstant %f32 ${input}\n"
6974		"%possible_solution1 = OpConstant %f32 ${output1}\n"
6975		"%possible_solution2 = OpConstant %f32 ${output2}\n"
6976		);
6977
6978	StringTemplate specConstants (
6979		"%input_const = OpSpecConstant %f32 0.\n"
6980		"%possible_solution1 = OpConstant %f32 ${output1}\n"
6981		"%possible_solution2 = OpConstant %f32 ${output2}\n"
6982	);
6983
6984	const char* specDecorations = "OpDecorate %input_const  SpecId 0\n";
6985
6986	const char* function  =
6987		"%test_code     = OpFunction %v4f32 None %v4f32_function\n"
6988		"%param1        = OpFunctionParameter %v4f32\n"
6989		"%label_testfun = OpLabel\n"
6990		"%a             = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
6991		// For the purposes of this test we assume that 0.f will always get
6992		// faithfully passed through the pipeline stages.
6993		"%b             = OpFAdd %f32 %input_const %a\n"
6994		"%c             = OpQuantizeToF16 %f32 %b\n"
6995		"%eq_1          = OpFOrdEqual %bool %c %possible_solution1\n"
6996		"%eq_2          = OpFOrdEqual %bool %c %possible_solution2\n"
6997		"%cond          = OpLogicalOr %bool %eq_1 %eq_2\n"
6998		"%retval        = OpSelect %v4f32 %cond %c_v4f32_1_0_0_1 %param1"
6999		"                 OpReturnValue %retval\n"
7000		"OpFunctionEnd\n";
7001
7002	for(size_t idx = 0; idx < (sizeof(tests)/sizeof(tests[0])); ++idx) {
7003		map<string, string>									fragments;
7004		map<string, string>									constantSpecialization;
7005
7006		constantSpecialization["input"]						= tests[idx].input;
7007		constantSpecialization["output1"]					= tests[idx].possibleOutput1;
7008		constantSpecialization["output2"]					= tests[idx].possibleOutput2;
7009		fragments["testfun"]								= function;
7010		fragments["pre_main"]								= constants.specialize(constantSpecialization);
7011		createTestsForAllStages(tests[idx].name, inputColors, expectedColors, fragments, testCtx);
7012	}
7013
7014	for(size_t idx = 0; idx < (sizeof(tests)/sizeof(tests[0])); ++idx) {
7015		map<string, string>									fragments;
7016		map<string, string>									constantSpecialization;
7017		vector<deInt32>										passConstants;
7018		deInt32												specConstant;
7019
7020		constantSpecialization["output1"]					= tests[idx].possibleOutput1;
7021		constantSpecialization["output2"]					= tests[idx].possibleOutput2;
7022		fragments["testfun"]								= function;
7023		fragments["decoration"]								= specDecorations;
7024		fragments["pre_main"]								= specConstants.specialize(constantSpecialization);
7025
7026		memcpy(&specConstant, &tests[idx].inputAsFloat, sizeof(float));
7027		passConstants.push_back(specConstant);
7028
7029		createTestsForAllStages(string("spec_const_") + tests[idx].name, inputColors, expectedColors, fragments, passConstants, testCtx);
7030	}
7031}
7032
7033tcu::TestCaseGroup* createOpQuantizeTests(tcu::TestContext& testCtx)
7034{
7035	de::MovePtr<tcu::TestCaseGroup> opQuantizeTests (new tcu::TestCaseGroup(testCtx, "opquantize", "Test OpQuantizeToF16"));
7036	createOpQuantizeSingleOptionTests(opQuantizeTests.get());
7037	createOpQuantizeTwoPossibilityTests(opQuantizeTests.get());
7038	return opQuantizeTests.release();
7039}
7040
7041struct ShaderPermutation
7042{
7043	deUint8 vertexPermutation;
7044	deUint8 geometryPermutation;
7045	deUint8 tesscPermutation;
7046	deUint8 tessePermutation;
7047	deUint8 fragmentPermutation;
7048};
7049
7050ShaderPermutation getShaderPermutation(deUint8 inputValue)
7051{
7052	ShaderPermutation	permutation =
7053	{
7054		static_cast<deUint8>(inputValue & 0x10? 1u: 0u),
7055		static_cast<deUint8>(inputValue & 0x08? 1u: 0u),
7056		static_cast<deUint8>(inputValue & 0x04? 1u: 0u),
7057		static_cast<deUint8>(inputValue & 0x02? 1u: 0u),
7058		static_cast<deUint8>(inputValue & 0x01? 1u: 0u)
7059	};
7060	return permutation;
7061}
7062
7063tcu::TestCaseGroup* createModuleTests(tcu::TestContext& testCtx)
7064{
7065	RGBA								defaultColors[4];
7066	RGBA								invertedColors[4];
7067	de::MovePtr<tcu::TestCaseGroup>		moduleTests			(new tcu::TestCaseGroup(testCtx, "module", "Multiple entry points into shaders"));
7068
7069	const ShaderElement					combinedPipeline[]	=
7070	{
7071		ShaderElement("module", "main", VK_SHADER_STAGE_VERTEX_BIT),
7072		ShaderElement("module", "main", VK_SHADER_STAGE_GEOMETRY_BIT),
7073		ShaderElement("module", "main", VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT),
7074		ShaderElement("module", "main", VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT),
7075		ShaderElement("module", "main", VK_SHADER_STAGE_FRAGMENT_BIT)
7076	};
7077
7078	getDefaultColors(defaultColors);
7079	getInvertedDefaultColors(invertedColors);
7080	addFunctionCaseWithPrograms<InstanceContext>(moduleTests.get(), "same_module", "", createCombinedModule, runAndVerifyDefaultPipeline, createInstanceContext(combinedPipeline, map<string, string>()));
7081
7082	const char* numbers[] =
7083	{
7084		"1", "2"
7085	};
7086
7087	for (deInt8 idx = 0; idx < 32; ++idx)
7088	{
7089		ShaderPermutation			permutation		= getShaderPermutation(idx);
7090		string						name			= string("vert") + numbers[permutation.vertexPermutation] + "_geom" + numbers[permutation.geometryPermutation] + "_tessc" + numbers[permutation.tesscPermutation] + "_tesse" + numbers[permutation.tessePermutation] + "_frag" + numbers[permutation.fragmentPermutation];
7091		const ShaderElement			pipeline[]		=
7092		{
7093			ShaderElement("vert",	string("vert") +	numbers[permutation.vertexPermutation],		VK_SHADER_STAGE_VERTEX_BIT),
7094			ShaderElement("geom",	string("geom") +	numbers[permutation.geometryPermutation],	VK_SHADER_STAGE_GEOMETRY_BIT),
7095			ShaderElement("tessc",	string("tessc") +	numbers[permutation.tesscPermutation],		VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT),
7096			ShaderElement("tesse",	string("tesse") +	numbers[permutation.tessePermutation],		VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT),
7097			ShaderElement("frag",	string("frag") +	numbers[permutation.fragmentPermutation],	VK_SHADER_STAGE_FRAGMENT_BIT)
7098		};
7099
7100		// If there are an even number of swaps, then it should be no-op.
7101		// If there are an odd number, the color should be flipped.
7102		if ((permutation.vertexPermutation + permutation.geometryPermutation + permutation.tesscPermutation + permutation.tessePermutation + permutation.fragmentPermutation) % 2 == 0)
7103		{
7104			addFunctionCaseWithPrograms<InstanceContext>(moduleTests.get(), name, "", createMultipleEntries, runAndVerifyDefaultPipeline, createInstanceContext(pipeline, defaultColors, defaultColors, map<string, string>()));
7105		}
7106		else
7107		{
7108			addFunctionCaseWithPrograms<InstanceContext>(moduleTests.get(), name, "", createMultipleEntries, runAndVerifyDefaultPipeline, createInstanceContext(pipeline, defaultColors, invertedColors, map<string, string>()));
7109		}
7110	}
7111	return moduleTests.release();
7112}
7113
7114tcu::TestCaseGroup* createLoopTests(tcu::TestContext& testCtx)
7115{
7116	de::MovePtr<tcu::TestCaseGroup> testGroup(new tcu::TestCaseGroup(testCtx, "loop", "Looping control flow"));
7117	RGBA defaultColors[4];
7118	getDefaultColors(defaultColors);
7119	map<string, string> fragments;
7120	fragments["pre_main"] =
7121		"%c_f32_5 = OpConstant %f32 5.\n";
7122
7123	// A loop with a single block. The Continue Target is the loop block
7124	// itself. In SPIR-V terms, the "loop construct" contains no blocks at all
7125	// -- the "continue construct" forms the entire loop.
7126	fragments["testfun"] =
7127		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
7128		"%param1 = OpFunctionParameter %v4f32\n"
7129
7130		"%entry = OpLabel\n"
7131		"%val0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
7132		"OpBranch %loop\n"
7133
7134		";adds and subtracts 1.0 to %val in alternate iterations\n"
7135		"%loop = OpLabel\n"
7136		"%count = OpPhi %i32 %c_i32_4 %entry %count__ %loop\n"
7137		"%delta = OpPhi %f32 %c_f32_1 %entry %minus_delta %loop\n"
7138		"%val1 = OpPhi %f32 %val0 %entry %val %loop\n"
7139		"%val = OpFAdd %f32 %val1 %delta\n"
7140		"%minus_delta = OpFSub %f32 %c_f32_0 %delta\n"
7141		"%count__ = OpISub %i32 %count %c_i32_1\n"
7142		"%again = OpSGreaterThan %bool %count__ %c_i32_0\n"
7143		"OpLoopMerge %exit %loop None\n"
7144		"OpBranchConditional %again %loop %exit\n"
7145
7146		"%exit = OpLabel\n"
7147		"%result = OpVectorInsertDynamic %v4f32 %param1 %val %c_i32_0\n"
7148		"OpReturnValue %result\n"
7149
7150		"OpFunctionEnd\n"
7151		;
7152	createTestsForAllStages("single_block", defaultColors, defaultColors, fragments, testGroup.get());
7153
7154	// Body comprised of multiple basic blocks.
7155	const StringTemplate multiBlock(
7156		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
7157		"%param1 = OpFunctionParameter %v4f32\n"
7158
7159		"%entry = OpLabel\n"
7160		"%val0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
7161		"OpBranch %loop\n"
7162
7163		";adds and subtracts 1.0 to %val in alternate iterations\n"
7164		"%loop = OpLabel\n"
7165		"%count = OpPhi %i32 %c_i32_4 %entry %count__ %gather\n"
7166		"%delta = OpPhi %f32 %c_f32_1 %entry %delta_next %gather\n"
7167		"%val1 = OpPhi %f32 %val0 %entry %val %gather\n"
7168		// There are several possibilities for the Continue Target below.  Each
7169		// will be specialized into a separate test case.
7170		"OpLoopMerge %exit ${continue_target} None\n"
7171		"OpBranch %if\n"
7172
7173		"%if = OpLabel\n"
7174		";delta_next = (delta > 0) ? -1 : 1;\n"
7175		"%gt0 = OpFOrdGreaterThan %bool %delta %c_f32_0\n"
7176		"OpSelectionMerge %gather DontFlatten\n"
7177		"OpBranchConditional %gt0 %even %odd ;tells us if %count is even or odd\n"
7178
7179		"%odd = OpLabel\n"
7180		"OpBranch %gather\n"
7181
7182		"%even = OpLabel\n"
7183		"OpBranch %gather\n"
7184
7185		"%gather = OpLabel\n"
7186		"%delta_next = OpPhi %f32 %c_f32_n1 %even %c_f32_1 %odd\n"
7187		"%val = OpFAdd %f32 %val1 %delta\n"
7188		"%count__ = OpISub %i32 %count %c_i32_1\n"
7189		"%again = OpSGreaterThan %bool %count__ %c_i32_0\n"
7190		"OpBranchConditional %again %loop %exit\n"
7191
7192		"%exit = OpLabel\n"
7193		"%result = OpVectorInsertDynamic %v4f32 %param1 %val %c_i32_0\n"
7194		"OpReturnValue %result\n"
7195
7196		"OpFunctionEnd\n");
7197
7198	map<string, string> continue_target;
7199
7200	// The Continue Target is the loop block itself.
7201	continue_target["continue_target"] = "%loop";
7202	fragments["testfun"] = multiBlock.specialize(continue_target);
7203	createTestsForAllStages("multi_block_continue_construct", defaultColors, defaultColors, fragments, testGroup.get());
7204
7205	// The Continue Target is at the end of the loop.
7206	continue_target["continue_target"] = "%gather";
7207	fragments["testfun"] = multiBlock.specialize(continue_target);
7208	createTestsForAllStages("multi_block_loop_construct", defaultColors, defaultColors, fragments, testGroup.get());
7209
7210	// A loop with continue statement.
7211	fragments["testfun"] =
7212		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
7213		"%param1 = OpFunctionParameter %v4f32\n"
7214
7215		"%entry = OpLabel\n"
7216		"%val0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
7217		"OpBranch %loop\n"
7218
7219		";adds 4, 3, and 1 to %val0 (skips 2)\n"
7220		"%loop = OpLabel\n"
7221		"%count = OpPhi %i32 %c_i32_4 %entry %count__ %continue\n"
7222		"%val1 = OpPhi %f32 %val0 %entry %val %continue\n"
7223		"OpLoopMerge %exit %continue None\n"
7224		"OpBranch %if\n"
7225
7226		"%if = OpLabel\n"
7227		";skip if %count==2\n"
7228		"%eq2 = OpIEqual %bool %count %c_i32_2\n"
7229		"OpSelectionMerge %continue DontFlatten\n"
7230		"OpBranchConditional %eq2 %continue %body\n"
7231
7232		"%body = OpLabel\n"
7233		"%fcount = OpConvertSToF %f32 %count\n"
7234		"%val2 = OpFAdd %f32 %val1 %fcount\n"
7235		"OpBranch %continue\n"
7236
7237		"%continue = OpLabel\n"
7238		"%val = OpPhi %f32 %val2 %body %val1 %if\n"
7239		"%count__ = OpISub %i32 %count %c_i32_1\n"
7240		"%again = OpSGreaterThan %bool %count__ %c_i32_0\n"
7241		"OpBranchConditional %again %loop %exit\n"
7242
7243		"%exit = OpLabel\n"
7244		"%same = OpFSub %f32 %val %c_f32_8\n"
7245		"%result = OpVectorInsertDynamic %v4f32 %param1 %same %c_i32_0\n"
7246		"OpReturnValue %result\n"
7247		"OpFunctionEnd\n";
7248	createTestsForAllStages("continue", defaultColors, defaultColors, fragments, testGroup.get());
7249
7250	// A loop with early exit.  May be specialized with either break or return.
7251	StringTemplate earlyExitLoop(
7252		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
7253		"%param1 = OpFunctionParameter %v4f32\n"
7254
7255		"%entry = OpLabel\n"
7256		";param1 components are between 0 and 1, so dot product is 4 or less\n"
7257		"%dot = OpDot %f32 %param1 %param1\n"
7258		"%div = OpFDiv %f32 %dot %c_f32_5\n"
7259		"%zero = OpConvertFToU %u32 %div\n"
7260		"%two = OpIAdd %i32 %zero %c_i32_2\n"
7261		"%val0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
7262		"OpBranch %loop\n"
7263
7264		";adds 4 and 3 to %val0 (exits early)\n"
7265		"%loop = OpLabel\n"
7266		"%count = OpPhi %i32 %c_i32_4 %entry %count__ %continue\n"
7267		"%val1 = OpPhi %f32 %val0 %entry %val %continue\n"
7268		"OpLoopMerge %exit %continue None\n"
7269		"OpBranch %if\n"
7270
7271		"%if = OpLabel\n"
7272		";end loop if %count==%two\n"
7273		"%above2 = OpSGreaterThan %bool %count %two\n"
7274		"OpSelectionMerge %continue DontFlatten\n"
7275		// This can either branch to %exit or to another block with OpReturnValue %param1.
7276		"OpBranchConditional %above2 %body ${branch_destination}\n"
7277
7278		"%body = OpLabel\n"
7279		"%fcount = OpConvertSToF %f32 %count\n"
7280		"%val2 = OpFAdd %f32 %val1 %fcount\n"
7281		"OpBranch %continue\n"
7282
7283		"%continue = OpLabel\n"
7284		"%val = OpPhi %f32 %val2 %body %val1 %if\n"
7285		"%count__ = OpISub %i32 %count %c_i32_1\n"
7286		"%again = OpSGreaterThan %bool %count__ %c_i32_0\n"
7287		"OpBranchConditional %again %loop %exit\n"
7288
7289		"%exit = OpLabel\n"
7290		"%same = OpFSub %f32 %val %c_f32_7\n"
7291		"%result = OpVectorInsertDynamic %v4f32 %param1 %same %c_i32_0\n"
7292		"OpReturnValue %result\n"
7293		"OpFunctionEnd\n");
7294
7295	map<string, string> branch_destination;
7296
7297	// A loop with break.
7298	branch_destination["branch_destination"] = "%exit";
7299	fragments["testfun"] = earlyExitLoop.specialize(branch_destination);
7300	createTestsForAllStages("break", defaultColors, defaultColors, fragments, testGroup.get());
7301
7302	// A loop with return.
7303	branch_destination["branch_destination"] = "%early_exit\n"
7304		"%early_exit = OpLabel\n"
7305		"OpReturnValue %param1\n";
7306	fragments["testfun"] = earlyExitLoop.specialize(branch_destination);
7307	createTestsForAllStages("return", defaultColors, defaultColors, fragments, testGroup.get());
7308
7309	return testGroup.release();
7310}
7311
7312// Adds a new test to group using custom fragments for the tessellation-control
7313// stage and passthrough fragments for all other stages.  Uses default colors
7314// for input and expected output.
7315void addTessCtrlTest(tcu::TestCaseGroup* group, const char* name, const map<string, string>& fragments)
7316{
7317	RGBA defaultColors[4];
7318	getDefaultColors(defaultColors);
7319	const ShaderElement pipelineStages[] =
7320	{
7321		ShaderElement("vert", "main", VK_SHADER_STAGE_VERTEX_BIT),
7322		ShaderElement("tessc", "main", VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT),
7323		ShaderElement("tesse", "main", VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT),
7324		ShaderElement("geom", "main", VK_SHADER_STAGE_GEOMETRY_BIT),
7325		ShaderElement("frag", "main", VK_SHADER_STAGE_FRAGMENT_BIT),
7326	};
7327
7328	addFunctionCaseWithPrograms<InstanceContext>(group, name, "", addShaderCodeCustomTessControl,
7329												 runAndVerifyDefaultPipeline, createInstanceContext(
7330													 pipelineStages, defaultColors, defaultColors, fragments, StageToSpecConstantMap()));
7331}
7332
7333// A collection of tests putting OpControlBarrier in places GLSL forbids but SPIR-V allows.
7334tcu::TestCaseGroup* createBarrierTests(tcu::TestContext& testCtx)
7335{
7336	de::MovePtr<tcu::TestCaseGroup> testGroup(new tcu::TestCaseGroup(testCtx, "barrier", "OpControlBarrier"));
7337	map<string, string> fragments;
7338
7339	// A barrier inside a function body.
7340	fragments["pre_main"] =
7341		"%Workgroup = OpConstant %i32 2\n"
7342		"%SequentiallyConsistent = OpConstant %i32 0x10\n";
7343	fragments["testfun"] =
7344		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
7345		"%param1 = OpFunctionParameter %v4f32\n"
7346		"%label_testfun = OpLabel\n"
7347		"OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
7348		"OpReturnValue %param1\n"
7349		"OpFunctionEnd\n";
7350	addTessCtrlTest(testGroup.get(), "in_function", fragments);
7351
7352	// Common setup code for the following tests.
7353	fragments["pre_main"] =
7354		"%Workgroup = OpConstant %i32 2\n"
7355		"%SequentiallyConsistent = OpConstant %i32 0x10\n"
7356		"%c_f32_5 = OpConstant %f32 5.\n";
7357	const string setupPercentZero =	 // Begins %test_code function with code that sets %zero to 0u but cannot be optimized away.
7358		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
7359		"%param1 = OpFunctionParameter %v4f32\n"
7360		"%entry = OpLabel\n"
7361		";param1 components are between 0 and 1, so dot product is 4 or less\n"
7362		"%dot = OpDot %f32 %param1 %param1\n"
7363		"%div = OpFDiv %f32 %dot %c_f32_5\n"
7364		"%zero = OpConvertFToU %u32 %div\n";
7365
7366	// Barriers inside OpSwitch branches.
7367	fragments["testfun"] =
7368		setupPercentZero +
7369		"OpSelectionMerge %switch_exit None\n"
7370		"OpSwitch %zero %switch_default 0 %case0 1 %case1 ;should always go to %case0\n"
7371
7372		"%case1 = OpLabel\n"
7373		";This barrier should never be executed, but its presence makes test failure more likely when there's a bug.\n"
7374		"OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
7375		"%wrong_branch_alert1 = OpVectorInsertDynamic %v4f32 %param1 %c_f32_0_5 %c_i32_0\n"
7376		"OpBranch %switch_exit\n"
7377
7378		"%switch_default = OpLabel\n"
7379		"%wrong_branch_alert2 = OpVectorInsertDynamic %v4f32 %param1 %c_f32_0_5 %c_i32_0\n"
7380		";This barrier should never be executed, but its presence makes test failure more likely when there's a bug.\n"
7381		"OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
7382		"OpBranch %switch_exit\n"
7383
7384		"%case0 = OpLabel\n"
7385		"OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
7386		"OpBranch %switch_exit\n"
7387
7388		"%switch_exit = OpLabel\n"
7389		"%ret = OpPhi %v4f32 %param1 %case0 %wrong_branch_alert1 %case1 %wrong_branch_alert2 %switch_default\n"
7390		"OpReturnValue %ret\n"
7391		"OpFunctionEnd\n";
7392	addTessCtrlTest(testGroup.get(), "in_switch", fragments);
7393
7394	// Barriers inside if-then-else.
7395	fragments["testfun"] =
7396		setupPercentZero +
7397		"%eq0 = OpIEqual %bool %zero %c_u32_0\n"
7398		"OpSelectionMerge %exit DontFlatten\n"
7399		"OpBranchConditional %eq0 %then %else\n"
7400
7401		"%else = OpLabel\n"
7402		";This barrier should never be executed, but its presence makes test failure more likely when there's a bug.\n"
7403		"OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
7404		"%wrong_branch_alert = OpVectorInsertDynamic %v4f32 %param1 %c_f32_0_5 %c_i32_0\n"
7405		"OpBranch %exit\n"
7406
7407		"%then = OpLabel\n"
7408		"OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
7409		"OpBranch %exit\n"
7410
7411		"%exit = OpLabel\n"
7412		"%ret = OpPhi %v4f32 %param1 %then %wrong_branch_alert %else\n"
7413		"OpReturnValue %ret\n"
7414		"OpFunctionEnd\n";
7415	addTessCtrlTest(testGroup.get(), "in_if", fragments);
7416
7417	// A barrier after control-flow reconvergence, tempting the compiler to attempt something like this:
7418	// http://lists.llvm.org/pipermail/llvm-dev/2009-October/026317.html.
7419	fragments["testfun"] =
7420		setupPercentZero +
7421		"%thread_id = OpLoad %i32 %BP_gl_InvocationID\n"
7422		"%thread0 = OpIEqual %bool %thread_id %c_i32_0\n"
7423		"OpSelectionMerge %exit DontFlatten\n"
7424		"OpBranchConditional %thread0 %then %else\n"
7425
7426		"%else = OpLabel\n"
7427		"%val0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
7428		"OpBranch %exit\n"
7429
7430		"%then = OpLabel\n"
7431		"%val1 = OpVectorExtractDynamic %f32 %param1 %zero\n"
7432		"OpBranch %exit\n"
7433
7434		"%exit = OpLabel\n"
7435		"%val = OpPhi %f32 %val0 %else %val1 %then\n"
7436		"OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
7437		"%ret = OpVectorInsertDynamic %v4f32 %param1 %val %zero\n"
7438		"OpReturnValue %ret\n"
7439		"OpFunctionEnd\n";
7440	addTessCtrlTest(testGroup.get(), "after_divergent_if", fragments);
7441
7442	// A barrier inside a loop.
7443	fragments["pre_main"] =
7444		"%Workgroup = OpConstant %i32 2\n"
7445		"%SequentiallyConsistent = OpConstant %i32 0x10\n"
7446		"%c_f32_10 = OpConstant %f32 10.\n";
7447	fragments["testfun"] =
7448		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
7449		"%param1 = OpFunctionParameter %v4f32\n"
7450		"%entry = OpLabel\n"
7451		"%val0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
7452		"OpBranch %loop\n"
7453
7454		";adds 4, 3, 2, and 1 to %val0\n"
7455		"%loop = OpLabel\n"
7456		"%count = OpPhi %i32 %c_i32_4 %entry %count__ %loop\n"
7457		"%val1 = OpPhi %f32 %val0 %entry %val %loop\n"
7458		"OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
7459		"%fcount = OpConvertSToF %f32 %count\n"
7460		"%val = OpFAdd %f32 %val1 %fcount\n"
7461		"%count__ = OpISub %i32 %count %c_i32_1\n"
7462		"%again = OpSGreaterThan %bool %count__ %c_i32_0\n"
7463		"OpLoopMerge %exit %loop None\n"
7464		"OpBranchConditional %again %loop %exit\n"
7465
7466		"%exit = OpLabel\n"
7467		"%same = OpFSub %f32 %val %c_f32_10\n"
7468		"%ret = OpVectorInsertDynamic %v4f32 %param1 %same %c_i32_0\n"
7469		"OpReturnValue %ret\n"
7470		"OpFunctionEnd\n";
7471	addTessCtrlTest(testGroup.get(), "in_loop", fragments);
7472
7473	return testGroup.release();
7474}
7475
7476// Test for the OpFRem instruction.
7477tcu::TestCaseGroup* createFRemTests(tcu::TestContext& testCtx)
7478{
7479	de::MovePtr<tcu::TestCaseGroup>		testGroup(new tcu::TestCaseGroup(testCtx, "frem", "OpFRem"));
7480	map<string, string>					fragments;
7481	RGBA								inputColors[4];
7482	RGBA								outputColors[4];
7483
7484	fragments["pre_main"]				 =
7485		"%c_f32_3 = OpConstant %f32 3.0\n"
7486		"%c_f32_n3 = OpConstant %f32 -3.0\n"
7487		"%c_f32_4 = OpConstant %f32 4.0\n"
7488		"%c_f32_p75 = OpConstant %f32 0.75\n"
7489		"%c_v4f32_p75_p75_p75_p75 = OpConstantComposite %v4f32 %c_f32_p75 %c_f32_p75 %c_f32_p75 %c_f32_p75 \n"
7490		"%c_v4f32_4_4_4_4 = OpConstantComposite %v4f32 %c_f32_4 %c_f32_4 %c_f32_4 %c_f32_4\n"
7491		"%c_v4f32_3_n3_3_n3 = OpConstantComposite %v4f32 %c_f32_3 %c_f32_n3 %c_f32_3 %c_f32_n3\n";
7492
7493	// The test does the following.
7494	// vec4 result = (param1 * 8.0) - 4.0;
7495	// return (frem(result.x,3) + 0.75, frem(result.y, -3) + 0.75, 0, 1)
7496	fragments["testfun"]				 =
7497		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
7498		"%param1 = OpFunctionParameter %v4f32\n"
7499		"%label_testfun = OpLabel\n"
7500		"%v_times_8 = OpVectorTimesScalar %v4f32 %param1 %c_f32_8\n"
7501		"%minus_4 = OpFSub %v4f32 %v_times_8 %c_v4f32_4_4_4_4\n"
7502		"%frem = OpFRem %v4f32 %minus_4 %c_v4f32_3_n3_3_n3\n"
7503		"%added = OpFAdd %v4f32 %frem %c_v4f32_p75_p75_p75_p75\n"
7504		"%xyz_1 = OpVectorInsertDynamic %v4f32 %added %c_f32_1 %c_i32_3\n"
7505		"%xy_0_1 = OpVectorInsertDynamic %v4f32 %xyz_1 %c_f32_0 %c_i32_2\n"
7506		"OpReturnValue %xy_0_1\n"
7507		"OpFunctionEnd\n";
7508
7509
7510	inputColors[0]		= RGBA(16,	16,		0, 255);
7511	inputColors[1]		= RGBA(232, 232,	0, 255);
7512	inputColors[2]		= RGBA(232, 16,		0, 255);
7513	inputColors[3]		= RGBA(16,	232,	0, 255);
7514
7515	outputColors[0]		= RGBA(64,	64,		0, 255);
7516	outputColors[1]		= RGBA(255, 255,	0, 255);
7517	outputColors[2]		= RGBA(255, 64,		0, 255);
7518	outputColors[3]		= RGBA(64,	255,	0, 255);
7519
7520	createTestsForAllStages("frem", inputColors, outputColors, fragments, testGroup.get());
7521	return testGroup.release();
7522}
7523
7524tcu::TestCaseGroup* createInstructionTests (tcu::TestContext& testCtx)
7525{
7526	de::MovePtr<tcu::TestCaseGroup> instructionTests	(new tcu::TestCaseGroup(testCtx, "instruction", "Instructions with special opcodes/operands"));
7527	de::MovePtr<tcu::TestCaseGroup> computeTests		(new tcu::TestCaseGroup(testCtx, "compute", "Compute Instructions with special opcodes/operands"));
7528	de::MovePtr<tcu::TestCaseGroup> graphicsTests		(new tcu::TestCaseGroup(testCtx, "graphics", "Graphics Instructions with special opcodes/operands"));
7529
7530	computeTests->addChild(createOpNopGroup(testCtx));
7531	computeTests->addChild(createOpLineGroup(testCtx));
7532	computeTests->addChild(createOpNoLineGroup(testCtx));
7533	computeTests->addChild(createOpConstantNullGroup(testCtx));
7534	computeTests->addChild(createOpConstantCompositeGroup(testCtx));
7535	computeTests->addChild(createOpConstantUsageGroup(testCtx));
7536	computeTests->addChild(createSpecConstantGroup(testCtx));
7537	computeTests->addChild(createOpSourceGroup(testCtx));
7538	computeTests->addChild(createOpSourceExtensionGroup(testCtx));
7539	computeTests->addChild(createDecorationGroupGroup(testCtx));
7540	computeTests->addChild(createOpPhiGroup(testCtx));
7541	computeTests->addChild(createLoopControlGroup(testCtx));
7542	computeTests->addChild(createFunctionControlGroup(testCtx));
7543	computeTests->addChild(createSelectionControlGroup(testCtx));
7544	computeTests->addChild(createBlockOrderGroup(testCtx));
7545	computeTests->addChild(createMultipleShaderGroup(testCtx));
7546	computeTests->addChild(createMemoryAccessGroup(testCtx));
7547	computeTests->addChild(createOpCopyMemoryGroup(testCtx));
7548	computeTests->addChild(createOpCopyObjectGroup(testCtx));
7549	computeTests->addChild(createNoContractionGroup(testCtx));
7550	computeTests->addChild(createOpUndefGroup(testCtx));
7551	computeTests->addChild(createOpUnreachableGroup(testCtx));
7552	computeTests ->addChild(createOpQuantizeToF16Group(testCtx));
7553	computeTests ->addChild(createOpFRemGroup(testCtx));
7554
7555	RGBA defaultColors[4];
7556	getDefaultColors(defaultColors);
7557
7558	de::MovePtr<tcu::TestCaseGroup> opnopTests (new tcu::TestCaseGroup(testCtx, "opnop", "Test OpNop"));
7559	map<string, string> opNopFragments;
7560	opNopFragments["testfun"] =
7561		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
7562		"%param1 = OpFunctionParameter %v4f32\n"
7563		"%label_testfun = OpLabel\n"
7564		"OpNop\n"
7565		"OpNop\n"
7566		"OpNop\n"
7567		"OpNop\n"
7568		"OpNop\n"
7569		"OpNop\n"
7570		"OpNop\n"
7571		"OpNop\n"
7572		"%a = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
7573		"%b = OpFAdd %f32 %a %a\n"
7574		"OpNop\n"
7575		"%c = OpFSub %f32 %b %a\n"
7576		"%ret = OpVectorInsertDynamic %v4f32 %param1 %c %c_i32_0\n"
7577		"OpNop\n"
7578		"OpNop\n"
7579		"OpReturnValue %ret\n"
7580		"OpFunctionEnd\n"
7581		;
7582	createTestsForAllStages("opnop", defaultColors, defaultColors, opNopFragments, opnopTests.get());
7583
7584
7585	graphicsTests->addChild(opnopTests.release());
7586	graphicsTests->addChild(createOpSourceTests(testCtx));
7587	graphicsTests->addChild(createOpSourceContinuedTests(testCtx));
7588	graphicsTests->addChild(createOpLineTests(testCtx));
7589	graphicsTests->addChild(createOpNoLineTests(testCtx));
7590	graphicsTests->addChild(createOpConstantNullTests(testCtx));
7591	graphicsTests->addChild(createOpConstantCompositeTests(testCtx));
7592	graphicsTests->addChild(createMemoryAccessTests(testCtx));
7593	graphicsTests->addChild(createOpUndefTests(testCtx));
7594	graphicsTests->addChild(createSelectionBlockOrderTests(testCtx));
7595	graphicsTests->addChild(createModuleTests(testCtx));
7596	graphicsTests->addChild(createSwitchBlockOrderTests(testCtx));
7597	graphicsTests->addChild(createOpPhiTests(testCtx));
7598	graphicsTests->addChild(createNoContractionTests(testCtx));
7599	graphicsTests->addChild(createOpQuantizeTests(testCtx));
7600	graphicsTests->addChild(createLoopTests(testCtx));
7601	graphicsTests->addChild(createSpecConstantTests(testCtx));
7602	graphicsTests->addChild(createSpecConstantOpQuantizeToF16Group(testCtx));
7603	graphicsTests->addChild(createBarrierTests(testCtx));
7604	graphicsTests->addChild(createDecorationGroupTests(testCtx));
7605	graphicsTests->addChild(createFRemTests(testCtx));
7606
7607	instructionTests->addChild(computeTests.release());
7608	instructionTests->addChild(graphicsTests.release());
7609
7610	return instructionTests.release();
7611}
7612
7613} // SpirVAssembly
7614} // vkt
7615