vktSpvAsmInstructionTests.cpp revision ed66b69f0010ec54ddf996f8353c1834befd1c1a
1/*-------------------------------------------------------------------------
2 * Vulkan Conformance Tests
3 * ------------------------
4 *
5 * Copyright (c) 2015 Google Inc.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and/or associated documentation files (the
9 * "Materials"), to deal in the Materials without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sublicense, and/or sell copies of the Materials, and to
12 * permit persons to whom the Materials are furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice(s) and this permission notice shall be
16 * included in all copies or substantial portions of the Materials.
17 *
18 * THE MATERIALS ARE PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21 * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
22 * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * MATERIALS OR THE USE OR OTHER DEALINGS IN THE MATERIALS.
25 *
26 *//*!
27 * \file
28 * \brief SPIR-V Assembly Tests for Instructions (special opcode/operand)
29 *//*--------------------------------------------------------------------*/
30
31#include "vktSpvAsmInstructionTests.hpp"
32
33#include "tcuCommandLine.hpp"
34#include "tcuFormatUtil.hpp"
35#include "tcuRGBA.hpp"
36#include "tcuStringTemplate.hpp"
37#include "tcuTestLog.hpp"
38#include "tcuVectorUtil.hpp"
39
40#include "vkDefs.hpp"
41#include "vkDeviceUtil.hpp"
42#include "vkMemUtil.hpp"
43#include "vkPlatform.hpp"
44#include "vkPrograms.hpp"
45#include "vkQueryUtil.hpp"
46#include "vkRef.hpp"
47#include "vkRefUtil.hpp"
48#include "vkStrUtil.hpp"
49#include "vkTypeUtil.hpp"
50
51#include "deRandom.hpp"
52#include "deStringUtil.hpp"
53#include "deUniquePtr.hpp"
54#include "tcuStringTemplate.hpp"
55
56#include <cmath>
57#include "vktSpvAsmComputeShaderCase.hpp"
58#include "vktSpvAsmComputeShaderTestUtil.hpp"
59#include "vktTestCaseUtil.hpp"
60
61#include <cmath>
62#include <limits>
63#include <map>
64#include <string>
65#include <sstream>
66
67namespace vkt
68{
69namespace SpirVAssembly
70{
71
72namespace
73{
74
75using namespace vk;
76using std::map;
77using std::string;
78using std::vector;
79using tcu::IVec3;
80using tcu::IVec4;
81using tcu::RGBA;
82using tcu::TestLog;
83using tcu::TestStatus;
84using tcu::Vec4;
85using de::UniquePtr;
86using tcu::StringTemplate;
87using tcu::Vec4;
88
89typedef Unique<VkShaderModule>			ModuleHandleUp;
90typedef de::SharedPtr<ModuleHandleUp>	ModuleHandleSp;
91
92template<typename T>	T			randomScalar	(de::Random& rnd, T minValue, T maxValue);
93template<> inline		float		randomScalar	(de::Random& rnd, float minValue, float maxValue)		{ return rnd.getFloat(minValue, maxValue);	}
94template<> inline		deInt32		randomScalar	(de::Random& rnd, deInt32 minValue, deInt32 maxValue)	{ return rnd.getInt(minValue, maxValue);	}
95
96template<typename T>
97static void fillRandomScalars (de::Random& rnd, T minValue, T maxValue, void* dst, int numValues, int offset = 0)
98{
99	T* const typedPtr = (T*)dst;
100	for (int ndx = 0; ndx < numValues; ndx++)
101		typedPtr[offset + ndx] = randomScalar<T>(rnd, minValue, maxValue);
102}
103
104struct CaseParameter
105{
106	const char*		name;
107	string			param;
108
109	CaseParameter	(const char* case_, const string& param_) : name(case_), param(param_) {}
110};
111
112// Assembly code used for testing OpNop, OpConstant{Null|Composite}, Op[No]Line, OpSource[Continued], OpSourceExtension, OpUndef is based on GLSL source code:
113//
114// #version 430
115//
116// layout(std140, set = 0, binding = 0) readonly buffer Input {
117//   float elements[];
118// } input_data;
119// layout(std140, set = 0, binding = 1) writeonly buffer Output {
120//   float elements[];
121// } output_data;
122//
123// layout (local_size_x = 1, local_size_y = 1, local_size_z = 1) in;
124//
125// void main() {
126//   uint x = gl_GlobalInvocationID.x;
127//   output_data.elements[x] = -input_data.elements[x];
128// }
129
130static const char* const s_ShaderPreamble =
131	"OpCapability Shader\n"
132	"OpMemoryModel Logical GLSL450\n"
133	"OpEntryPoint GLCompute %main \"main\" %id\n"
134	"OpExecutionMode %main LocalSize 1 1 1\n";
135
136static const char* const s_CommonTypes =
137	"%bool      = OpTypeBool\n"
138	"%void      = OpTypeVoid\n"
139	"%voidf     = OpTypeFunction %void\n"
140	"%u32       = OpTypeInt 32 0\n"
141	"%i32       = OpTypeInt 32 1\n"
142	"%f32       = OpTypeFloat 32\n"
143	"%uvec3     = OpTypeVector %u32 3\n"
144	"%fvec3     = OpTypeVector %f32 3\n"
145	"%uvec3ptr  = OpTypePointer Input %uvec3\n"
146	"%f32ptr    = OpTypePointer Uniform %f32\n"
147	"%f32arr    = OpTypeRuntimeArray %f32\n";
148
149// Declares two uniform variables (indata, outdata) of type "struct { float[] }". Depends on type "f32arr" (for "float[]").
150static const char* const s_InputOutputBuffer =
151	"%buf     = OpTypeStruct %f32arr\n"
152	"%bufptr  = OpTypePointer Uniform %buf\n"
153	"%indata    = OpVariable %bufptr Uniform\n"
154	"%outdata   = OpVariable %bufptr Uniform\n";
155
156// Declares buffer type and layout for uniform variables indata and outdata. Both of them are SSBO bounded to descriptor set 0.
157// indata is at binding point 0, while outdata is at 1.
158static const char* const s_InputOutputBufferTraits =
159	"OpDecorate %buf BufferBlock\n"
160	"OpDecorate %indata DescriptorSet 0\n"
161	"OpDecorate %indata Binding 0\n"
162	"OpDecorate %outdata DescriptorSet 0\n"
163	"OpDecorate %outdata Binding 1\n"
164	"OpDecorate %f32arr ArrayStride 4\n"
165	"OpMemberDecorate %buf 0 Offset 0\n";
166
167tcu::TestCaseGroup* createOpNopGroup (tcu::TestContext& testCtx)
168{
169	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opnop", "Test the OpNop instruction"));
170	ComputeShaderSpec				spec;
171	de::Random						rnd				(deStringHash(group->getName()));
172	const int						numElements		= 100;
173	vector<float>					positiveFloats	(numElements, 0);
174	vector<float>					negativeFloats	(numElements, 0);
175
176	fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
177
178	for (size_t ndx = 0; ndx < numElements; ++ndx)
179		negativeFloats[ndx] = -positiveFloats[ndx];
180
181	spec.assembly =
182		string(s_ShaderPreamble) +
183
184		"OpSource GLSL 430\n"
185		"OpName %main           \"main\"\n"
186		"OpName %id             \"gl_GlobalInvocationID\"\n"
187
188		"OpDecorate %id BuiltIn GlobalInvocationId\n"
189
190		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes)
191
192		+ string(s_InputOutputBuffer) +
193
194		"%id        = OpVariable %uvec3ptr Input\n"
195		"%zero      = OpConstant %i32 0\n"
196
197		"%main      = OpFunction %void None %voidf\n"
198		"%label     = OpLabel\n"
199		"%idval     = OpLoad %uvec3 %id\n"
200		"%x         = OpCompositeExtract %u32 %idval 0\n"
201
202		"             OpNop\n" // Inside a function body
203
204		"%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
205		"%inval     = OpLoad %f32 %inloc\n"
206		"%neg       = OpFNegate %f32 %inval\n"
207		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
208		"             OpStore %outloc %neg\n"
209		"             OpReturn\n"
210		"             OpFunctionEnd\n";
211	spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
212	spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
213	spec.numWorkGroups = IVec3(numElements, 1, 1);
214
215	group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "OpNop appearing at different places", spec));
216
217	return group.release();
218}
219
220tcu::TestCaseGroup* createOpLineGroup (tcu::TestContext& testCtx)
221{
222	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opline", "Test the OpLine instruction"));
223	ComputeShaderSpec				spec;
224	de::Random						rnd				(deStringHash(group->getName()));
225	const int						numElements		= 100;
226	vector<float>					positiveFloats	(numElements, 0);
227	vector<float>					negativeFloats	(numElements, 0);
228
229	fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
230
231	for (size_t ndx = 0; ndx < numElements; ++ndx)
232		negativeFloats[ndx] = -positiveFloats[ndx];
233
234	spec.assembly =
235		string(s_ShaderPreamble) +
236
237		"%fname1 = OpString \"negateInputs.comp\"\n"
238		"%fname2 = OpString \"negateInputs\"\n"
239
240		"OpSource GLSL 430\n"
241		"OpName %main           \"main\"\n"
242		"OpName %id             \"gl_GlobalInvocationID\"\n"
243
244		"OpDecorate %id BuiltIn GlobalInvocationId\n"
245
246		+ string(s_InputOutputBufferTraits) +
247
248		"OpLine %fname1 0 0\n" // At the earliest possible position
249
250		+ string(s_CommonTypes) + string(s_InputOutputBuffer) +
251
252		"OpLine %fname1 0 1\n" // Multiple OpLines in sequence
253		"OpLine %fname2 1 0\n" // Different filenames
254		"OpLine %fname1 1000 100000\n"
255
256		"%id        = OpVariable %uvec3ptr Input\n"
257		"%zero      = OpConstant %i32 0\n"
258
259		"OpLine %fname1 1 1\n" // Before a function
260
261		"%main      = OpFunction %void None %voidf\n"
262		"%label     = OpLabel\n"
263
264		"OpLine %fname1 1 1\n" // In a function
265
266		"%idval     = OpLoad %uvec3 %id\n"
267		"%x         = OpCompositeExtract %u32 %idval 0\n"
268		"%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
269		"%inval     = OpLoad %f32 %inloc\n"
270		"%neg       = OpFNegate %f32 %inval\n"
271		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
272		"             OpStore %outloc %neg\n"
273		"             OpReturn\n"
274		"             OpFunctionEnd\n";
275	spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
276	spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
277	spec.numWorkGroups = IVec3(numElements, 1, 1);
278
279	group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "OpLine appearing at different places", spec));
280
281	return group.release();
282}
283
284tcu::TestCaseGroup* createOpNoLineGroup (tcu::TestContext& testCtx)
285{
286	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opnoline", "Test the OpNoLine instruction"));
287	ComputeShaderSpec				spec;
288	de::Random						rnd				(deStringHash(group->getName()));
289	const int						numElements		= 100;
290	vector<float>					positiveFloats	(numElements, 0);
291	vector<float>					negativeFloats	(numElements, 0);
292
293	fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
294
295	for (size_t ndx = 0; ndx < numElements; ++ndx)
296		negativeFloats[ndx] = -positiveFloats[ndx];
297
298	spec.assembly =
299		string(s_ShaderPreamble) +
300
301		"%fname = OpString \"negateInputs.comp\"\n"
302
303		"OpSource GLSL 430\n"
304		"OpName %main           \"main\"\n"
305		"OpName %id             \"gl_GlobalInvocationID\"\n"
306
307		"OpDecorate %id BuiltIn GlobalInvocationId\n"
308
309		+ string(s_InputOutputBufferTraits) +
310
311		"OpNoLine\n" // At the earliest possible position, without preceding OpLine
312
313		+ string(s_CommonTypes) + string(s_InputOutputBuffer) +
314
315		"OpLine %fname 0 1\n"
316		"OpNoLine\n" // Immediately following a preceding OpLine
317
318		"OpLine %fname 1000 1\n"
319
320		"%id        = OpVariable %uvec3ptr Input\n"
321		"%zero      = OpConstant %i32 0\n"
322
323		"OpNoLine\n" // Contents after the previous OpLine
324
325		"%main      = OpFunction %void None %voidf\n"
326		"%label     = OpLabel\n"
327		"%idval     = OpLoad %uvec3 %id\n"
328		"%x         = OpCompositeExtract %u32 %idval 0\n"
329
330		"OpNoLine\n" // Multiple OpNoLine
331		"OpNoLine\n"
332		"OpNoLine\n"
333
334		"%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
335		"%inval     = OpLoad %f32 %inloc\n"
336		"%neg       = OpFNegate %f32 %inval\n"
337		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
338		"             OpStore %outloc %neg\n"
339		"             OpReturn\n"
340		"             OpFunctionEnd\n";
341	spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
342	spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
343	spec.numWorkGroups = IVec3(numElements, 1, 1);
344
345	group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "OpNoLine appearing at different places", spec));
346
347	return group.release();
348}
349
350// Compare instruction for the contraction compute case.
351// Returns true if the output is what is expected from the test case.
352bool compareNoContractCase(const std::vector<BufferSp>&, const vector<AllocationSp>& outputAllocs, const std::vector<BufferSp>& expectedOutputs)
353{
354	if (outputAllocs.size() != 1)
355		return false;
356
357	// We really just need this for size because we are not comparing the exact values.
358	const BufferSp&	expectedOutput	= expectedOutputs[0];
359	const float*	outputAsFloat	= static_cast<const float*>(outputAllocs[0]->getHostPtr());;
360
361	for(size_t i = 0; i < expectedOutput->getNumBytes() / sizeof(float); ++i) {
362		if (outputAsFloat[i] != 0.f &&
363			outputAsFloat[i] != -ldexp(1, -24)) {
364			return false;
365		}
366	}
367
368	return true;
369}
370
371tcu::TestCaseGroup* createNoContractionGroup (tcu::TestContext& testCtx)
372{
373	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "nocontraction", "Test the NoContraction decoration"));
374	vector<CaseParameter>			cases;
375	const int						numElements		= 100;
376	vector<float>					inputFloats1	(numElements, 0);
377	vector<float>					inputFloats2	(numElements, 0);
378	vector<float>					outputFloats	(numElements, 0);
379	const StringTemplate			shaderTemplate	(
380		string(s_ShaderPreamble) +
381
382		"OpName %main           \"main\"\n"
383		"OpName %id             \"gl_GlobalInvocationID\"\n"
384
385		"OpDecorate %id BuiltIn GlobalInvocationId\n"
386
387		"${DECORATION}\n"
388
389		"OpDecorate %buf BufferBlock\n"
390		"OpDecorate %indata1 DescriptorSet 0\n"
391		"OpDecorate %indata1 Binding 0\n"
392		"OpDecorate %indata2 DescriptorSet 0\n"
393		"OpDecorate %indata2 Binding 1\n"
394		"OpDecorate %outdata DescriptorSet 0\n"
395		"OpDecorate %outdata Binding 2\n"
396		"OpDecorate %f32arr ArrayStride 4\n"
397		"OpMemberDecorate %buf 0 Offset 0\n"
398
399		+ string(s_CommonTypes) +
400
401		"%buf        = OpTypeStruct %f32arr\n"
402		"%bufptr     = OpTypePointer Uniform %buf\n"
403		"%indata1    = OpVariable %bufptr Uniform\n"
404		"%indata2    = OpVariable %bufptr Uniform\n"
405		"%outdata    = OpVariable %bufptr Uniform\n"
406
407		"%id         = OpVariable %uvec3ptr Input\n"
408		"%zero       = OpConstant %i32 0\n"
409		"%c_f_m1     = OpConstant %f32 -1.\n"
410
411		"%main       = OpFunction %void None %voidf\n"
412		"%label      = OpLabel\n"
413		"%idval      = OpLoad %uvec3 %id\n"
414		"%x          = OpCompositeExtract %u32 %idval 0\n"
415		"%inloc1     = OpAccessChain %f32ptr %indata1 %zero %x\n"
416		"%inval1     = OpLoad %f32 %inloc1\n"
417		"%inloc2     = OpAccessChain %f32ptr %indata2 %zero %x\n"
418		"%inval2     = OpLoad %f32 %inloc2\n"
419		"%mul        = OpFMul %f32 %inval1 %inval2\n"
420		"%add        = OpFAdd %f32 %mul %c_f_m1\n"
421		"%outloc     = OpAccessChain %f32ptr %outdata %zero %x\n"
422		"              OpStore %outloc %add\n"
423		"              OpReturn\n"
424		"              OpFunctionEnd\n");
425
426	cases.push_back(CaseParameter("multiplication",	"OpDecorate %mul NoContraction"));
427	cases.push_back(CaseParameter("addition",		"OpDecorate %add NoContraction"));
428	cases.push_back(CaseParameter("both",			"OpDecorate %mul NoContraction\nOpDecorate %add NoContraction"));
429
430	for (size_t ndx = 0; ndx < numElements; ++ndx)
431	{
432		inputFloats1[ndx]	= 1.f + std::ldexp(1.f, -23); // 1 + 2^-23.
433		inputFloats2[ndx]	= 1.f - std::ldexp(1.f, -23); // 1 - 2^-23.
434		// Result for (1 + 2^-23) * (1 - 2^-23) - 1. With NoContraction, the multiplication will be
435		// conducted separately and the result is rounded to 1, or 0x1.fffffcp-1
436		// So the final result will be 0.f or 0x1p-24.
437		// If the operation is combined into a precise fused multiply-add, then the result would be
438		// 2^-46 (0xa8800000).
439		outputFloats[ndx]	= 0.f;
440	}
441
442	for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
443	{
444		map<string, string>		specializations;
445		ComputeShaderSpec		spec;
446
447		specializations["DECORATION"] = cases[caseNdx].param;
448		spec.assembly = shaderTemplate.specialize(specializations);
449		spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats1)));
450		spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats2)));
451		spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
452		spec.numWorkGroups = IVec3(numElements, 1, 1);
453		// Check against the two possible answers based on rounding mode.
454		spec.verifyIO = &compareNoContractCase;
455
456		group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
457	}
458	return group.release();
459}
460
461bool compareFRem(const std::vector<BufferSp>&, const vector<AllocationSp>& outputAllocs, const std::vector<BufferSp>& expectedOutputs)
462{
463	if (outputAllocs.size() != 1)
464		return false;
465
466	const BufferSp& expectedOutput = expectedOutputs[0];
467	const float *expectedOutputAsFloat = static_cast<const float*>(expectedOutput->data());
468	const float* outputAsFloat = static_cast<const float*>(outputAllocs[0]->getHostPtr());;
469
470	for (size_t idx = 0; idx < expectedOutput->getNumBytes() / sizeof(float); ++idx)
471	{
472		const float f0 = expectedOutputAsFloat[idx];
473		const float f1 = outputAsFloat[idx];
474		// \todo relative error needs to be fairly high because FRem may be implemented as
475		// (roughly) frac(a/b)*b, so LSB errors can be magnified. But this should be fine for now.
476		if (deFloatAbs((f1 - f0) / f0) > 0.02)
477			return false;
478	}
479
480	return true;
481}
482
483tcu::TestCaseGroup* createOpFRemGroup (tcu::TestContext& testCtx)
484{
485	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opfrem", "Test the OpFRem instruction"));
486	ComputeShaderSpec				spec;
487	de::Random						rnd				(deStringHash(group->getName()));
488	const int						numElements		= 200;
489	vector<float>					inputFloats1	(numElements, 0);
490	vector<float>					inputFloats2	(numElements, 0);
491	vector<float>					outputFloats	(numElements, 0);
492
493	fillRandomScalars(rnd, -10000.f, 10000.f, &inputFloats1[0], numElements);
494	fillRandomScalars(rnd, -100.f, 100.f, &inputFloats2[0], numElements);
495
496	for (size_t ndx = 0; ndx < numElements; ++ndx)
497	{
498		// Guard against divisors near zero.
499		if (std::fabs(inputFloats2[ndx]) < 1e-3)
500			inputFloats2[ndx] = 8.f;
501
502		// The return value of std::fmod() has the same sign as its first operand, which is how OpFRem spec'd.
503		outputFloats[ndx] = std::fmod(inputFloats1[ndx], inputFloats2[ndx]);
504	}
505
506	spec.assembly =
507		string(s_ShaderPreamble) +
508
509		"OpName %main           \"main\"\n"
510		"OpName %id             \"gl_GlobalInvocationID\"\n"
511
512		"OpDecorate %id BuiltIn GlobalInvocationId\n"
513
514		"OpDecorate %buf BufferBlock\n"
515		"OpDecorate %indata1 DescriptorSet 0\n"
516		"OpDecorate %indata1 Binding 0\n"
517		"OpDecorate %indata2 DescriptorSet 0\n"
518		"OpDecorate %indata2 Binding 1\n"
519		"OpDecorate %outdata DescriptorSet 0\n"
520		"OpDecorate %outdata Binding 2\n"
521		"OpDecorate %f32arr ArrayStride 4\n"
522		"OpMemberDecorate %buf 0 Offset 0\n"
523
524		+ string(s_CommonTypes) +
525
526		"%buf        = OpTypeStruct %f32arr\n"
527		"%bufptr     = OpTypePointer Uniform %buf\n"
528		"%indata1    = OpVariable %bufptr Uniform\n"
529		"%indata2    = OpVariable %bufptr Uniform\n"
530		"%outdata    = OpVariable %bufptr Uniform\n"
531
532		"%id        = OpVariable %uvec3ptr Input\n"
533		"%zero      = OpConstant %i32 0\n"
534
535		"%main      = OpFunction %void None %voidf\n"
536		"%label     = OpLabel\n"
537		"%idval     = OpLoad %uvec3 %id\n"
538		"%x         = OpCompositeExtract %u32 %idval 0\n"
539		"%inloc1    = OpAccessChain %f32ptr %indata1 %zero %x\n"
540		"%inval1    = OpLoad %f32 %inloc1\n"
541		"%inloc2    = OpAccessChain %f32ptr %indata2 %zero %x\n"
542		"%inval2    = OpLoad %f32 %inloc2\n"
543		"%rem       = OpFRem %f32 %inval1 %inval2\n"
544		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
545		"             OpStore %outloc %rem\n"
546		"             OpReturn\n"
547		"             OpFunctionEnd\n";
548
549	spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats1)));
550	spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats2)));
551	spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
552	spec.numWorkGroups = IVec3(numElements, 1, 1);
553	spec.verifyIO = &compareFRem;
554
555	group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "", spec));
556
557	return group.release();
558}
559
560// Copy contents in the input buffer to the output buffer.
561tcu::TestCaseGroup* createOpCopyMemoryGroup (tcu::TestContext& testCtx)
562{
563	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opcopymemory", "Test the OpCopyMemory instruction"));
564	de::Random						rnd				(deStringHash(group->getName()));
565	const int						numElements		= 100;
566
567	// The following case adds vec4(0., 0.5, 1.5, 2.5) to each of the elements in the input buffer and writes output to the output buffer.
568	ComputeShaderSpec				spec1;
569	vector<Vec4>					inputFloats1	(numElements);
570	vector<Vec4>					outputFloats1	(numElements);
571
572	fillRandomScalars(rnd, -200.f, 200.f, &inputFloats1[0], numElements * 4);
573
574	for (size_t ndx = 0; ndx < numElements; ++ndx)
575		outputFloats1[ndx] = inputFloats1[ndx] + Vec4(0.f, 0.5f, 1.5f, 2.5f);
576
577	spec1.assembly =
578		string(s_ShaderPreamble) +
579
580		"OpName %main           \"main\"\n"
581		"OpName %id             \"gl_GlobalInvocationID\"\n"
582
583		"OpDecorate %id BuiltIn GlobalInvocationId\n"
584		"OpDecorate %vec4arr ArrayStride 16\n"
585
586		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
587
588		"%vec4       = OpTypeVector %f32 4\n"
589		"%vec4ptr_u  = OpTypePointer Uniform %vec4\n"
590		"%vec4ptr_f  = OpTypePointer Function %vec4\n"
591		"%vec4arr    = OpTypeRuntimeArray %vec4\n"
592		"%buf        = OpTypeStruct %vec4arr\n"
593		"%bufptr     = OpTypePointer Uniform %buf\n"
594		"%indata     = OpVariable %bufptr Uniform\n"
595		"%outdata    = OpVariable %bufptr Uniform\n"
596
597		"%id         = OpVariable %uvec3ptr Input\n"
598		"%zero       = OpConstant %i32 0\n"
599		"%c_f_0      = OpConstant %f32 0.\n"
600		"%c_f_0_5    = OpConstant %f32 0.5\n"
601		"%c_f_1_5    = OpConstant %f32 1.5\n"
602		"%c_f_2_5    = OpConstant %f32 2.5\n"
603		"%c_vec4     = OpConstantComposite %vec4 %c_f_0 %c_f_0_5 %c_f_1_5 %c_f_2_5\n"
604
605		"%main       = OpFunction %void None %voidf\n"
606		"%label      = OpLabel\n"
607		"%v_vec4     = OpVariable %vec4ptr_f Function\n"
608		"%idval      = OpLoad %uvec3 %id\n"
609		"%x          = OpCompositeExtract %u32 %idval 0\n"
610		"%inloc      = OpAccessChain %vec4ptr_u %indata %zero %x\n"
611		"%outloc     = OpAccessChain %vec4ptr_u %outdata %zero %x\n"
612		"              OpCopyMemory %v_vec4 %inloc\n"
613		"%v_vec4_val = OpLoad %vec4 %v_vec4\n"
614		"%add        = OpFAdd %vec4 %v_vec4_val %c_vec4\n"
615		"              OpStore %outloc %add\n"
616		"              OpReturn\n"
617		"              OpFunctionEnd\n";
618
619	spec1.inputs.push_back(BufferSp(new Vec4Buffer(inputFloats1)));
620	spec1.outputs.push_back(BufferSp(new Vec4Buffer(outputFloats1)));
621	spec1.numWorkGroups = IVec3(numElements, 1, 1);
622
623	group->addChild(new SpvAsmComputeShaderCase(testCtx, "vector", "OpCopyMemory elements of vector type", spec1));
624
625	// The following case copies a float[100] variable from the input buffer to the output buffer.
626	ComputeShaderSpec				spec2;
627	vector<float>					inputFloats2	(numElements);
628	vector<float>					outputFloats2	(numElements);
629
630	fillRandomScalars(rnd, -200.f, 200.f, &inputFloats2[0], numElements);
631
632	for (size_t ndx = 0; ndx < numElements; ++ndx)
633		outputFloats2[ndx] = inputFloats2[ndx];
634
635	spec2.assembly =
636		string(s_ShaderPreamble) +
637
638		"OpName %main           \"main\"\n"
639		"OpName %id             \"gl_GlobalInvocationID\"\n"
640
641		"OpDecorate %id BuiltIn GlobalInvocationId\n"
642		"OpDecorate %f32arr100 ArrayStride 4\n"
643
644		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
645
646		"%hundred        = OpConstant %u32 100\n"
647		"%f32arr100      = OpTypeArray %f32 %hundred\n"
648		"%f32arr100ptr_f = OpTypePointer Function %f32arr100\n"
649		"%f32arr100ptr_u = OpTypePointer Uniform %f32arr100\n"
650		"%buf            = OpTypeStruct %f32arr100\n"
651		"%bufptr         = OpTypePointer Uniform %buf\n"
652		"%indata         = OpVariable %bufptr Uniform\n"
653		"%outdata        = OpVariable %bufptr Uniform\n"
654
655		"%id             = OpVariable %uvec3ptr Input\n"
656		"%zero           = OpConstant %i32 0\n"
657
658		"%main           = OpFunction %void None %voidf\n"
659		"%label          = OpLabel\n"
660		"%var            = OpVariable %f32arr100ptr_f Function\n"
661		"%inarr          = OpAccessChain %f32arr100ptr_u %indata %zero\n"
662		"%outarr         = OpAccessChain %f32arr100ptr_u %outdata %zero\n"
663		"                  OpCopyMemory %var %inarr\n"
664		"                  OpCopyMemory %outarr %var\n"
665		"                  OpReturn\n"
666		"                  OpFunctionEnd\n";
667
668	spec2.inputs.push_back(BufferSp(new Float32Buffer(inputFloats2)));
669	spec2.outputs.push_back(BufferSp(new Float32Buffer(outputFloats2)));
670	spec2.numWorkGroups = IVec3(1, 1, 1);
671
672	group->addChild(new SpvAsmComputeShaderCase(testCtx, "array", "OpCopyMemory elements of array type", spec2));
673
674	// The following case copies a struct{vec4, vec4, vec4, vec4} variable from the input buffer to the output buffer.
675	ComputeShaderSpec				spec3;
676	vector<float>					inputFloats3	(16);
677	vector<float>					outputFloats3	(16);
678
679	fillRandomScalars(rnd, -200.f, 200.f, &inputFloats3[0], 16);
680
681	for (size_t ndx = 0; ndx < 16; ++ndx)
682		outputFloats3[ndx] = inputFloats3[ndx];
683
684	spec3.assembly =
685		string(s_ShaderPreamble) +
686
687		"OpName %main           \"main\"\n"
688		"OpName %id             \"gl_GlobalInvocationID\"\n"
689
690		"OpDecorate %id BuiltIn GlobalInvocationId\n"
691		"OpMemberDecorate %buf 0 Offset 0\n"
692		"OpMemberDecorate %buf 1 Offset 16\n"
693		"OpMemberDecorate %buf 2 Offset 32\n"
694		"OpMemberDecorate %buf 3 Offset 48\n"
695
696		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
697
698		"%vec4      = OpTypeVector %f32 4\n"
699		"%buf       = OpTypeStruct %vec4 %vec4 %vec4 %vec4\n"
700		"%bufptr    = OpTypePointer Uniform %buf\n"
701		"%indata    = OpVariable %bufptr Uniform\n"
702		"%outdata   = OpVariable %bufptr Uniform\n"
703		"%vec4stptr = OpTypePointer Function %buf\n"
704
705		"%id        = OpVariable %uvec3ptr Input\n"
706		"%zero      = OpConstant %i32 0\n"
707
708		"%main      = OpFunction %void None %voidf\n"
709		"%label     = OpLabel\n"
710		"%var       = OpVariable %vec4stptr Function\n"
711		"             OpCopyMemory %var %indata\n"
712		"             OpCopyMemory %outdata %var\n"
713		"             OpReturn\n"
714		"             OpFunctionEnd\n";
715
716	spec3.inputs.push_back(BufferSp(new Float32Buffer(inputFloats3)));
717	spec3.outputs.push_back(BufferSp(new Float32Buffer(outputFloats3)));
718	spec3.numWorkGroups = IVec3(1, 1, 1);
719
720	group->addChild(new SpvAsmComputeShaderCase(testCtx, "struct", "OpCopyMemory elements of struct type", spec3));
721
722	// The following case negates multiple float variables from the input buffer and stores the results to the output buffer.
723	ComputeShaderSpec				spec4;
724	vector<float>					inputFloats4	(numElements);
725	vector<float>					outputFloats4	(numElements);
726
727	fillRandomScalars(rnd, -200.f, 200.f, &inputFloats4[0], numElements);
728
729	for (size_t ndx = 0; ndx < numElements; ++ndx)
730		outputFloats4[ndx] = -inputFloats4[ndx];
731
732	spec4.assembly =
733		string(s_ShaderPreamble) +
734
735		"OpName %main           \"main\"\n"
736		"OpName %id             \"gl_GlobalInvocationID\"\n"
737
738		"OpDecorate %id BuiltIn GlobalInvocationId\n"
739
740		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
741
742		"%f32ptr_f  = OpTypePointer Function %f32\n"
743		"%id        = OpVariable %uvec3ptr Input\n"
744		"%zero      = OpConstant %i32 0\n"
745
746		"%main      = OpFunction %void None %voidf\n"
747		"%label     = OpLabel\n"
748		"%var       = OpVariable %f32ptr_f Function\n"
749		"%idval     = OpLoad %uvec3 %id\n"
750		"%x         = OpCompositeExtract %u32 %idval 0\n"
751		"%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
752		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
753		"             OpCopyMemory %var %inloc\n"
754		"%val       = OpLoad %f32 %var\n"
755		"%neg       = OpFNegate %f32 %val\n"
756		"             OpStore %outloc %neg\n"
757		"             OpReturn\n"
758		"             OpFunctionEnd\n";
759
760	spec4.inputs.push_back(BufferSp(new Float32Buffer(inputFloats4)));
761	spec4.outputs.push_back(BufferSp(new Float32Buffer(outputFloats4)));
762	spec4.numWorkGroups = IVec3(numElements, 1, 1);
763
764	group->addChild(new SpvAsmComputeShaderCase(testCtx, "float", "OpCopyMemory elements of float type", spec4));
765
766	return group.release();
767}
768
769tcu::TestCaseGroup* createOpCopyObjectGroup (tcu::TestContext& testCtx)
770{
771	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opcopyobject", "Test the OpCopyObject instruction"));
772	ComputeShaderSpec				spec;
773	de::Random						rnd				(deStringHash(group->getName()));
774	const int						numElements		= 100;
775	vector<float>					inputFloats		(numElements, 0);
776	vector<float>					outputFloats	(numElements, 0);
777
778	fillRandomScalars(rnd, -200.f, 200.f, &inputFloats[0], numElements);
779
780	for (size_t ndx = 0; ndx < numElements; ++ndx)
781		outputFloats[ndx] = inputFloats[ndx] + 7.5f;
782
783	spec.assembly =
784		string(s_ShaderPreamble) +
785
786		"OpName %main           \"main\"\n"
787		"OpName %id             \"gl_GlobalInvocationID\"\n"
788
789		"OpDecorate %id BuiltIn GlobalInvocationId\n"
790
791		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
792
793		"%fmat     = OpTypeMatrix %fvec3 3\n"
794		"%three    = OpConstant %u32 3\n"
795		"%farr     = OpTypeArray %f32 %three\n"
796		"%fst      = OpTypeStruct %f32 %f32\n"
797
798		+ string(s_InputOutputBuffer) +
799
800		"%id            = OpVariable %uvec3ptr Input\n"
801		"%zero          = OpConstant %i32 0\n"
802		"%c_f           = OpConstant %f32 1.5\n"
803		"%c_fvec3       = OpConstantComposite %fvec3 %c_f %c_f %c_f\n"
804		"%c_fmat        = OpConstantComposite %fmat %c_fvec3 %c_fvec3 %c_fvec3\n"
805		"%c_farr        = OpConstantComposite %farr %c_f %c_f %c_f\n"
806		"%c_fst         = OpConstantComposite %fst %c_f %c_f\n"
807
808		"%main          = OpFunction %void None %voidf\n"
809		"%label         = OpLabel\n"
810		"%c_f_copy      = OpCopyObject %f32   %c_f\n"
811		"%c_fvec3_copy  = OpCopyObject %fvec3 %c_fvec3\n"
812		"%c_fmat_copy   = OpCopyObject %fmat  %c_fmat\n"
813		"%c_farr_copy   = OpCopyObject %farr  %c_farr\n"
814		"%c_fst_copy    = OpCopyObject %fst   %c_fst\n"
815		"%fvec3_elem    = OpCompositeExtract %f32 %c_fvec3_copy 0\n"
816		"%fmat_elem     = OpCompositeExtract %f32 %c_fmat_copy 1 2\n"
817		"%farr_elem     = OpCompositeExtract %f32 %c_farr_copy 2\n"
818		"%fst_elem      = OpCompositeExtract %f32 %c_fst_copy 1\n"
819		// Add up. 1.5 * 5 = 7.5.
820		"%add1          = OpFAdd %f32 %c_f_copy %fvec3_elem\n"
821		"%add2          = OpFAdd %f32 %add1     %fmat_elem\n"
822		"%add3          = OpFAdd %f32 %add2     %farr_elem\n"
823		"%add4          = OpFAdd %f32 %add3     %fst_elem\n"
824
825		"%idval         = OpLoad %uvec3 %id\n"
826		"%x             = OpCompositeExtract %u32 %idval 0\n"
827		"%inloc         = OpAccessChain %f32ptr %indata %zero %x\n"
828		"%outloc        = OpAccessChain %f32ptr %outdata %zero %x\n"
829		"%inval         = OpLoad %f32 %inloc\n"
830		"%add           = OpFAdd %f32 %add4 %inval\n"
831		"                 OpStore %outloc %add\n"
832		"                 OpReturn\n"
833		"                 OpFunctionEnd\n";
834	spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
835	spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
836	spec.numWorkGroups = IVec3(numElements, 1, 1);
837
838	group->addChild(new SpvAsmComputeShaderCase(testCtx, "spotcheck", "OpCopyObject on different types", spec));
839
840	return group.release();
841}
842// Assembly code used for testing OpUnreachable is based on GLSL source code:
843//
844// #version 430
845//
846// layout(std140, set = 0, binding = 0) readonly buffer Input {
847//   float elements[];
848// } input_data;
849// layout(std140, set = 0, binding = 1) writeonly buffer Output {
850//   float elements[];
851// } output_data;
852//
853// void not_called_func() {
854//   // place OpUnreachable here
855// }
856//
857// uint modulo4(uint val) {
858//   switch (val % uint(4)) {
859//     case 0:  return 3;
860//     case 1:  return 2;
861//     case 2:  return 1;
862//     case 3:  return 0;
863//     default: return 100; // place OpUnreachable here
864//   }
865// }
866//
867// uint const5() {
868//   return 5;
869//   // place OpUnreachable here
870// }
871//
872// void main() {
873//   uint x = gl_GlobalInvocationID.x;
874//   if (const5() > modulo4(1000)) {
875//     output_data.elements[x] = -input_data.elements[x];
876//   } else {
877//     // place OpUnreachable here
878//     output_data.elements[x] = input_data.elements[x];
879//   }
880// }
881
882tcu::TestCaseGroup* createOpUnreachableGroup (tcu::TestContext& testCtx)
883{
884	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opunreachable", "Test the OpUnreachable instruction"));
885	ComputeShaderSpec				spec;
886	de::Random						rnd				(deStringHash(group->getName()));
887	const int						numElements		= 100;
888	vector<float>					positiveFloats	(numElements, 0);
889	vector<float>					negativeFloats	(numElements, 0);
890
891	fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
892
893	for (size_t ndx = 0; ndx < numElements; ++ndx)
894		negativeFloats[ndx] = -positiveFloats[ndx];
895
896	spec.assembly =
897		string(s_ShaderPreamble) +
898
899		"OpSource GLSL 430\n"
900		"OpName %main            \"main\"\n"
901		"OpName %func_not_called_func \"not_called_func(\"\n"
902		"OpName %func_modulo4         \"modulo4(u1;\"\n"
903		"OpName %func_const5          \"const5(\"\n"
904		"OpName %id                   \"gl_GlobalInvocationID\"\n"
905
906		"OpDecorate %id BuiltIn GlobalInvocationId\n"
907
908		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
909
910		"%u32ptr    = OpTypePointer Function %u32\n"
911		"%uintfuint = OpTypeFunction %u32 %u32ptr\n"
912		"%unitf     = OpTypeFunction %u32\n"
913
914		"%id        = OpVariable %uvec3ptr Input\n"
915		"%zero      = OpConstant %u32 0\n"
916		"%one       = OpConstant %u32 1\n"
917		"%two       = OpConstant %u32 2\n"
918		"%three     = OpConstant %u32 3\n"
919		"%four      = OpConstant %u32 4\n"
920		"%five      = OpConstant %u32 5\n"
921		"%hundred   = OpConstant %u32 100\n"
922		"%thousand  = OpConstant %u32 1000\n"
923
924		+ string(s_InputOutputBuffer) +
925
926		// Main()
927		"%main   = OpFunction %void None %voidf\n"
928		"%main_entry  = OpLabel\n"
929		"%v_thousand  = OpVariable %u32ptr Function %thousand\n"
930		"%idval       = OpLoad %uvec3 %id\n"
931		"%x           = OpCompositeExtract %u32 %idval 0\n"
932		"%inloc       = OpAccessChain %f32ptr %indata %zero %x\n"
933		"%inval       = OpLoad %f32 %inloc\n"
934		"%outloc      = OpAccessChain %f32ptr %outdata %zero %x\n"
935		"%ret_const5  = OpFunctionCall %u32 %func_const5\n"
936		"%ret_modulo4 = OpFunctionCall %u32 %func_modulo4 %v_thousand\n"
937		"%cmp_gt      = OpUGreaterThan %bool %ret_const5 %ret_modulo4\n"
938		"               OpSelectionMerge %if_end None\n"
939		"               OpBranchConditional %cmp_gt %if_true %if_false\n"
940		"%if_true     = OpLabel\n"
941		"%negate      = OpFNegate %f32 %inval\n"
942		"               OpStore %outloc %negate\n"
943		"               OpBranch %if_end\n"
944		"%if_false    = OpLabel\n"
945		"               OpUnreachable\n" // Unreachable else branch for if statement
946		"%if_end      = OpLabel\n"
947		"               OpReturn\n"
948		"               OpFunctionEnd\n"
949
950		// not_called_function()
951		"%func_not_called_func  = OpFunction %void None %voidf\n"
952		"%not_called_func_entry = OpLabel\n"
953		"                         OpUnreachable\n" // Unreachable entry block in not called static function
954		"                         OpFunctionEnd\n"
955
956		// modulo4()
957		"%func_modulo4  = OpFunction %u32 None %uintfuint\n"
958		"%valptr        = OpFunctionParameter %u32ptr\n"
959		"%modulo4_entry = OpLabel\n"
960		"%val           = OpLoad %u32 %valptr\n"
961		"%modulo        = OpUMod %u32 %val %four\n"
962		"                 OpSelectionMerge %switch_merge None\n"
963		"                 OpSwitch %modulo %default 0 %case0 1 %case1 2 %case2 3 %case3\n"
964		"%case0         = OpLabel\n"
965		"                 OpReturnValue %three\n"
966		"%case1         = OpLabel\n"
967		"                 OpReturnValue %two\n"
968		"%case2         = OpLabel\n"
969		"                 OpReturnValue %one\n"
970		"%case3         = OpLabel\n"
971		"                 OpReturnValue %zero\n"
972		"%default       = OpLabel\n"
973		"                 OpUnreachable\n" // Unreachable default case for switch statement
974		"%switch_merge  = OpLabel\n"
975		"                 OpUnreachable\n" // Unreachable merge block for switch statement
976		"                 OpFunctionEnd\n"
977
978		// const5()
979		"%func_const5  = OpFunction %u32 None %unitf\n"
980		"%const5_entry = OpLabel\n"
981		"                OpReturnValue %five\n"
982		"%unreachable  = OpLabel\n"
983		"                OpUnreachable\n" // Unreachable block in function
984		"                OpFunctionEnd\n";
985	spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
986	spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
987	spec.numWorkGroups = IVec3(numElements, 1, 1);
988
989	group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "OpUnreachable appearing at different places", spec));
990
991	return group.release();
992}
993
994// Assembly code used for testing decoration group is based on GLSL source code:
995//
996// #version 430
997//
998// layout(std140, set = 0, binding = 0) readonly buffer Input0 {
999//   float elements[];
1000// } input_data0;
1001// layout(std140, set = 0, binding = 1) readonly buffer Input1 {
1002//   float elements[];
1003// } input_data1;
1004// layout(std140, set = 0, binding = 2) readonly buffer Input2 {
1005//   float elements[];
1006// } input_data2;
1007// layout(std140, set = 0, binding = 3) readonly buffer Input3 {
1008//   float elements[];
1009// } input_data3;
1010// layout(std140, set = 0, binding = 4) readonly buffer Input4 {
1011//   float elements[];
1012// } input_data4;
1013// layout(std140, set = 0, binding = 5) writeonly buffer Output {
1014//   float elements[];
1015// } output_data;
1016//
1017// void main() {
1018//   uint x = gl_GlobalInvocationID.x;
1019//   output_data.elements[x] = input_data0.elements[x] + input_data1.elements[x] + input_data2.elements[x] + input_data3.elements[x] + input_data4.elements[x];
1020// }
1021tcu::TestCaseGroup* createDecorationGroupGroup (tcu::TestContext& testCtx)
1022{
1023	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "decoration_group", "Test the OpDecorationGroup & OpGroupDecorate instruction"));
1024	ComputeShaderSpec				spec;
1025	de::Random						rnd				(deStringHash(group->getName()));
1026	const int						numElements		= 100;
1027	vector<float>					inputFloats0	(numElements, 0);
1028	vector<float>					inputFloats1	(numElements, 0);
1029	vector<float>					inputFloats2	(numElements, 0);
1030	vector<float>					inputFloats3	(numElements, 0);
1031	vector<float>					inputFloats4	(numElements, 0);
1032	vector<float>					outputFloats	(numElements, 0);
1033
1034	fillRandomScalars(rnd, -300.f, 300.f, &inputFloats0[0], numElements);
1035	fillRandomScalars(rnd, -300.f, 300.f, &inputFloats1[0], numElements);
1036	fillRandomScalars(rnd, -300.f, 300.f, &inputFloats2[0], numElements);
1037	fillRandomScalars(rnd, -300.f, 300.f, &inputFloats3[0], numElements);
1038	fillRandomScalars(rnd, -300.f, 300.f, &inputFloats4[0], numElements);
1039
1040
1041	for (size_t ndx = 0; ndx < numElements; ++ndx)
1042	{
1043		inputFloats0[ndx] = deFloatFloor(inputFloats0[ndx]);
1044		inputFloats1[ndx] = deFloatFloor(inputFloats1[ndx]);
1045		inputFloats2[ndx] = deFloatFloor(inputFloats2[ndx]);
1046		inputFloats3[ndx] = deFloatFloor(inputFloats3[ndx]);
1047		inputFloats4[ndx] = deFloatFloor(inputFloats4[ndx]);
1048	}
1049
1050	for (size_t ndx = 0; ndx < numElements; ++ndx)
1051		outputFloats[ndx] = inputFloats0[ndx] + inputFloats1[ndx] + inputFloats2[ndx] + inputFloats3[ndx] + inputFloats4[ndx];
1052
1053	spec.assembly =
1054		string(s_ShaderPreamble) +
1055
1056		"OpSource GLSL 430\n"
1057		"OpName %main \"main\"\n"
1058		"OpName %id \"gl_GlobalInvocationID\"\n"
1059
1060		// Not using group decoration on variable.
1061		"OpDecorate %id BuiltIn GlobalInvocationId\n"
1062		// Not using group decoration on type.
1063		"OpDecorate %f32arr ArrayStride 4\n"
1064
1065		"OpDecorate %groups BufferBlock\n"
1066		"OpDecorate %groupm Offset 0\n"
1067		"%groups = OpDecorationGroup\n"
1068		"%groupm = OpDecorationGroup\n"
1069
1070		// Group decoration on multiple structs.
1071		"OpGroupDecorate %groups %outbuf %inbuf0 %inbuf1 %inbuf2 %inbuf3 %inbuf4\n"
1072		// Group decoration on multiple struct members.
1073		"OpGroupMemberDecorate %groupm %outbuf 0 %inbuf0 0 %inbuf1 0 %inbuf2 0 %inbuf3 0 %inbuf4 0\n"
1074
1075		"OpDecorate %group1 DescriptorSet 0\n"
1076		"OpDecorate %group3 DescriptorSet 0\n"
1077		"OpDecorate %group3 NonWritable\n"
1078		"OpDecorate %group3 Restrict\n"
1079		"%group0 = OpDecorationGroup\n"
1080		"%group1 = OpDecorationGroup\n"
1081		"%group3 = OpDecorationGroup\n"
1082
1083		// Applying the same decoration group multiple times.
1084		"OpGroupDecorate %group1 %outdata\n"
1085		"OpGroupDecorate %group1 %outdata\n"
1086		"OpGroupDecorate %group1 %outdata\n"
1087		"OpDecorate %outdata DescriptorSet 0\n"
1088		"OpDecorate %outdata Binding 5\n"
1089		// Applying decoration group containing nothing.
1090		"OpGroupDecorate %group0 %indata0\n"
1091		"OpDecorate %indata0 DescriptorSet 0\n"
1092		"OpDecorate %indata0 Binding 0\n"
1093		// Applying decoration group containing one decoration.
1094		"OpGroupDecorate %group1 %indata1\n"
1095		"OpDecorate %indata1 Binding 1\n"
1096		// Applying decoration group containing multiple decorations.
1097		"OpGroupDecorate %group3 %indata2 %indata3\n"
1098		"OpDecorate %indata2 Binding 2\n"
1099		"OpDecorate %indata3 Binding 3\n"
1100		// Applying multiple decoration groups (with overlapping).
1101		"OpGroupDecorate %group0 %indata4\n"
1102		"OpGroupDecorate %group1 %indata4\n"
1103		"OpGroupDecorate %group3 %indata4\n"
1104		"OpDecorate %indata4 Binding 4\n"
1105
1106		+ string(s_CommonTypes) +
1107
1108		"%id   = OpVariable %uvec3ptr Input\n"
1109		"%zero = OpConstant %i32 0\n"
1110
1111		"%outbuf    = OpTypeStruct %f32arr\n"
1112		"%outbufptr = OpTypePointer Uniform %outbuf\n"
1113		"%outdata   = OpVariable %outbufptr Uniform\n"
1114		"%inbuf0    = OpTypeStruct %f32arr\n"
1115		"%inbuf0ptr = OpTypePointer Uniform %inbuf0\n"
1116		"%indata0   = OpVariable %inbuf0ptr Uniform\n"
1117		"%inbuf1    = OpTypeStruct %f32arr\n"
1118		"%inbuf1ptr = OpTypePointer Uniform %inbuf1\n"
1119		"%indata1   = OpVariable %inbuf1ptr Uniform\n"
1120		"%inbuf2    = OpTypeStruct %f32arr\n"
1121		"%inbuf2ptr = OpTypePointer Uniform %inbuf2\n"
1122		"%indata2   = OpVariable %inbuf2ptr Uniform\n"
1123		"%inbuf3    = OpTypeStruct %f32arr\n"
1124		"%inbuf3ptr = OpTypePointer Uniform %inbuf3\n"
1125		"%indata3   = OpVariable %inbuf3ptr Uniform\n"
1126		"%inbuf4    = OpTypeStruct %f32arr\n"
1127		"%inbufptr  = OpTypePointer Uniform %inbuf4\n"
1128		"%indata4   = OpVariable %inbufptr Uniform\n"
1129
1130		"%main   = OpFunction %void None %voidf\n"
1131		"%label  = OpLabel\n"
1132		"%idval  = OpLoad %uvec3 %id\n"
1133		"%x      = OpCompositeExtract %u32 %idval 0\n"
1134		"%inloc0 = OpAccessChain %f32ptr %indata0 %zero %x\n"
1135		"%inloc1 = OpAccessChain %f32ptr %indata1 %zero %x\n"
1136		"%inloc2 = OpAccessChain %f32ptr %indata2 %zero %x\n"
1137		"%inloc3 = OpAccessChain %f32ptr %indata3 %zero %x\n"
1138		"%inloc4 = OpAccessChain %f32ptr %indata4 %zero %x\n"
1139		"%outloc = OpAccessChain %f32ptr %outdata %zero %x\n"
1140		"%inval0 = OpLoad %f32 %inloc0\n"
1141		"%inval1 = OpLoad %f32 %inloc1\n"
1142		"%inval2 = OpLoad %f32 %inloc2\n"
1143		"%inval3 = OpLoad %f32 %inloc3\n"
1144		"%inval4 = OpLoad %f32 %inloc4\n"
1145		"%add0   = OpFAdd %f32 %inval0 %inval1\n"
1146		"%add1   = OpFAdd %f32 %add0 %inval2\n"
1147		"%add2   = OpFAdd %f32 %add1 %inval3\n"
1148		"%add    = OpFAdd %f32 %add2 %inval4\n"
1149		"          OpStore %outloc %add\n"
1150		"          OpReturn\n"
1151		"          OpFunctionEnd\n";
1152	spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats0)));
1153	spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats1)));
1154	spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats2)));
1155	spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats3)));
1156	spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats4)));
1157	spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
1158	spec.numWorkGroups = IVec3(numElements, 1, 1);
1159
1160	group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "decoration group cases", spec));
1161
1162	return group.release();
1163}
1164
1165struct SpecConstantTwoIntCase
1166{
1167	const char*		caseName;
1168	const char*		scDefinition0;
1169	const char*		scDefinition1;
1170	const char*		scResultType;
1171	const char*		scOperation;
1172	deInt32			scActualValue0;
1173	deInt32			scActualValue1;
1174	const char*		resultOperation;
1175	vector<deInt32>	expectedOutput;
1176
1177					SpecConstantTwoIntCase (const char* name,
1178											const char* definition0,
1179											const char* definition1,
1180											const char* resultType,
1181											const char* operation,
1182											deInt32 value0,
1183											deInt32 value1,
1184											const char* resultOp,
1185											const vector<deInt32>& output)
1186						: caseName			(name)
1187						, scDefinition0		(definition0)
1188						, scDefinition1		(definition1)
1189						, scResultType		(resultType)
1190						, scOperation		(operation)
1191						, scActualValue0	(value0)
1192						, scActualValue1	(value1)
1193						, resultOperation	(resultOp)
1194						, expectedOutput	(output) {}
1195};
1196
1197tcu::TestCaseGroup* createSpecConstantGroup (tcu::TestContext& testCtx)
1198{
1199	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opspecconstantop", "Test the OpSpecConstantOp instruction"));
1200	vector<SpecConstantTwoIntCase>	cases;
1201	de::Random						rnd				(deStringHash(group->getName()));
1202	const int						numElements		= 100;
1203	vector<deInt32>					inputInts		(numElements, 0);
1204	vector<deInt32>					outputInts1		(numElements, 0);
1205	vector<deInt32>					outputInts2		(numElements, 0);
1206	vector<deInt32>					outputInts3		(numElements, 0);
1207	vector<deInt32>					outputInts4		(numElements, 0);
1208	const StringTemplate			shaderTemplate	(
1209		string(s_ShaderPreamble) +
1210
1211		"OpName %main           \"main\"\n"
1212		"OpName %id             \"gl_GlobalInvocationID\"\n"
1213
1214		"OpDecorate %id BuiltIn GlobalInvocationId\n"
1215		"OpDecorate %sc_0  SpecId 0\n"
1216		"OpDecorate %sc_1  SpecId 1\n"
1217		"OpDecorate %i32arr ArrayStride 4\n"
1218
1219		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
1220
1221		"%i32ptr    = OpTypePointer Uniform %i32\n"
1222		"%i32arr    = OpTypeRuntimeArray %i32\n"
1223		"%boolptr   = OpTypePointer Uniform %bool\n"
1224		"%boolarr   = OpTypeRuntimeArray %bool\n"
1225		"%buf     = OpTypeStruct %i32arr\n"
1226		"%bufptr  = OpTypePointer Uniform %buf\n"
1227		"%indata    = OpVariable %bufptr Uniform\n"
1228		"%outdata   = OpVariable %bufptr Uniform\n"
1229
1230		"%id        = OpVariable %uvec3ptr Input\n"
1231		"%zero      = OpConstant %i32 0\n"
1232
1233		"%sc_0      = OpSpecConstant${SC_DEF0}\n"
1234		"%sc_1      = OpSpecConstant${SC_DEF1}\n"
1235		"%sc_final  = OpSpecConstantOp ${SC_RESULT_TYPE} ${SC_OP}\n"
1236
1237		"%main      = OpFunction %void None %voidf\n"
1238		"%label     = OpLabel\n"
1239		"%idval     = OpLoad %uvec3 %id\n"
1240		"%x         = OpCompositeExtract %u32 %idval 0\n"
1241		"%inloc     = OpAccessChain %i32ptr %indata %zero %x\n"
1242		"%inval     = OpLoad %i32 %inloc\n"
1243		"%final     = ${GEN_RESULT}\n"
1244		"%outloc    = OpAccessChain %i32ptr %outdata %zero %x\n"
1245		"             OpStore %outloc %final\n"
1246		"             OpReturn\n"
1247		"             OpFunctionEnd\n");
1248
1249	fillRandomScalars(rnd, -65536, 65536, &inputInts[0], numElements);
1250
1251	for (size_t ndx = 0; ndx < numElements; ++ndx)
1252	{
1253		outputInts1[ndx] = inputInts[ndx] + 42;
1254		outputInts2[ndx] = inputInts[ndx];
1255		outputInts3[ndx] = inputInts[ndx] - 11200;
1256		outputInts4[ndx] = inputInts[ndx] + 1;
1257	}
1258
1259	const char addScToInput[]		= "OpIAdd %i32 %inval %sc_final";
1260	const char selectTrueUsingSc[]	= "OpSelect %i32 %sc_final %inval %zero";
1261	const char selectFalseUsingSc[]	= "OpSelect %i32 %sc_final %zero %inval";
1262
1263	cases.push_back(SpecConstantTwoIntCase("iadd",					" %i32 0",		" %i32 0",		"%i32",		"IAdd                 %sc_0 %sc_1",			62,		-20,	addScToInput,		outputInts1));
1264	cases.push_back(SpecConstantTwoIntCase("isub",					" %i32 0",		" %i32 0",		"%i32",		"ISub                 %sc_0 %sc_1",			100,	58,		addScToInput,		outputInts1));
1265	cases.push_back(SpecConstantTwoIntCase("imul",					" %i32 0",		" %i32 0",		"%i32",		"IMul                 %sc_0 %sc_1",			-2,		-21,	addScToInput,		outputInts1));
1266	cases.push_back(SpecConstantTwoIntCase("sdiv",					" %i32 0",		" %i32 0",		"%i32",		"SDiv                 %sc_0 %sc_1",			-126,	-3,		addScToInput,		outputInts1));
1267	cases.push_back(SpecConstantTwoIntCase("udiv",					" %i32 0",		" %i32 0",		"%i32",		"UDiv                 %sc_0 %sc_1",			126,	3,		addScToInput,		outputInts1));
1268	cases.push_back(SpecConstantTwoIntCase("srem",					" %i32 0",		" %i32 0",		"%i32",		"SRem                 %sc_0 %sc_1",			7,		3,		addScToInput,		outputInts4));
1269	cases.push_back(SpecConstantTwoIntCase("smod",					" %i32 0",		" %i32 0",		"%i32",		"SMod                 %sc_0 %sc_1",			7,		3,		addScToInput,		outputInts4));
1270	cases.push_back(SpecConstantTwoIntCase("umod",					" %i32 0",		" %i32 0",		"%i32",		"UMod                 %sc_0 %sc_1",			342,	50,		addScToInput,		outputInts1));
1271	cases.push_back(SpecConstantTwoIntCase("bitwiseand",			" %i32 0",		" %i32 0",		"%i32",		"BitwiseAnd           %sc_0 %sc_1",			42,		63,		addScToInput,		outputInts1));
1272	cases.push_back(SpecConstantTwoIntCase("bitwiseor",				" %i32 0",		" %i32 0",		"%i32",		"BitwiseOr            %sc_0 %sc_1",			34,		8,		addScToInput,		outputInts1));
1273	cases.push_back(SpecConstantTwoIntCase("bitwisexor",			" %i32 0",		" %i32 0",		"%i32",		"BitwiseXor           %sc_0 %sc_1",			18,		56,		addScToInput,		outputInts1));
1274	cases.push_back(SpecConstantTwoIntCase("shiftrightlogical",		" %i32 0",		" %i32 0",		"%i32",		"ShiftRightLogical    %sc_0 %sc_1",			168,	2,		addScToInput,		outputInts1));
1275	cases.push_back(SpecConstantTwoIntCase("shiftrightarithmetic",	" %i32 0",		" %i32 0",		"%i32",		"ShiftRightArithmetic %sc_0 %sc_1",			168,	2,		addScToInput,		outputInts1));
1276	cases.push_back(SpecConstantTwoIntCase("shiftleftlogical",		" %i32 0",		" %i32 0",		"%i32",		"ShiftLeftLogical     %sc_0 %sc_1",			21,		1,		addScToInput,		outputInts1));
1277	cases.push_back(SpecConstantTwoIntCase("slessthan",				" %i32 0",		" %i32 0",		"%bool",	"SLessThan            %sc_0 %sc_1",			-20,	-10,	selectTrueUsingSc,	outputInts2));
1278	cases.push_back(SpecConstantTwoIntCase("ulessthan",				" %i32 0",		" %i32 0",		"%bool",	"ULessThan            %sc_0 %sc_1",			10,		20,		selectTrueUsingSc,	outputInts2));
1279	cases.push_back(SpecConstantTwoIntCase("sgreaterthan",			" %i32 0",		" %i32 0",		"%bool",	"SGreaterThan         %sc_0 %sc_1",			-1000,	50,		selectFalseUsingSc,	outputInts2));
1280	cases.push_back(SpecConstantTwoIntCase("ugreaterthan",			" %i32 0",		" %i32 0",		"%bool",	"UGreaterThan         %sc_0 %sc_1",			10,		5,		selectTrueUsingSc,	outputInts2));
1281	cases.push_back(SpecConstantTwoIntCase("slessthanequal",		" %i32 0",		" %i32 0",		"%bool",	"SLessThanEqual       %sc_0 %sc_1",			-10,	-10,	selectTrueUsingSc,	outputInts2));
1282	cases.push_back(SpecConstantTwoIntCase("ulessthanequal",		" %i32 0",		" %i32 0",		"%bool",	"ULessThanEqual       %sc_0 %sc_1",			50,		100,	selectTrueUsingSc,	outputInts2));
1283	cases.push_back(SpecConstantTwoIntCase("sgreaterthanequal",		" %i32 0",		" %i32 0",		"%bool",	"SGreaterThanEqual    %sc_0 %sc_1",			-1000,	50,		selectFalseUsingSc,	outputInts2));
1284	cases.push_back(SpecConstantTwoIntCase("ugreaterthanequal",		" %i32 0",		" %i32 0",		"%bool",	"UGreaterThanEqual    %sc_0 %sc_1",			10,		10,		selectTrueUsingSc,	outputInts2));
1285	cases.push_back(SpecConstantTwoIntCase("iequal",				" %i32 0",		" %i32 0",		"%bool",	"IEqual               %sc_0 %sc_1",			42,		24,		selectFalseUsingSc,	outputInts2));
1286	cases.push_back(SpecConstantTwoIntCase("logicaland",			"True %bool",	"True %bool",	"%bool",	"LogicalAnd           %sc_0 %sc_1",			0,		1,		selectFalseUsingSc,	outputInts2));
1287	cases.push_back(SpecConstantTwoIntCase("logicalor",				"False %bool",	"False %bool",	"%bool",	"LogicalOr            %sc_0 %sc_1",			1,		0,		selectTrueUsingSc,	outputInts2));
1288	cases.push_back(SpecConstantTwoIntCase("logicalequal",			"True %bool",	"True %bool",	"%bool",	"LogicalEqual         %sc_0 %sc_1",			0,		1,		selectFalseUsingSc,	outputInts2));
1289	cases.push_back(SpecConstantTwoIntCase("logicalnotequal",		"False %bool",	"False %bool",	"%bool",	"LogicalNotEqual      %sc_0 %sc_1",			1,		0,		selectTrueUsingSc,	outputInts2));
1290	cases.push_back(SpecConstantTwoIntCase("snegate",				" %i32 0",		" %i32 0",		"%i32",		"SNegate              %sc_0",				-42,	0,		addScToInput,		outputInts1));
1291	cases.push_back(SpecConstantTwoIntCase("not",					" %i32 0",		" %i32 0",		"%i32",		"Not                  %sc_0",				-43,	0,		addScToInput,		outputInts1));
1292	cases.push_back(SpecConstantTwoIntCase("logicalnot",			"False %bool",	"False %bool",	"%bool",	"LogicalNot           %sc_0",				1,		0,		selectFalseUsingSc,	outputInts2));
1293	cases.push_back(SpecConstantTwoIntCase("select",				"False %bool",	" %i32 0",		"%i32",		"Select               %sc_0 %sc_1 %zero",	1,		42,		addScToInput,		outputInts1));
1294	// OpSConvert, OpFConvert: these two instructions involve ints/floats of different bitwidths.
1295
1296	for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
1297	{
1298		map<string, string>		specializations;
1299		ComputeShaderSpec		spec;
1300
1301		specializations["SC_DEF0"]			= cases[caseNdx].scDefinition0;
1302		specializations["SC_DEF1"]			= cases[caseNdx].scDefinition1;
1303		specializations["SC_RESULT_TYPE"]	= cases[caseNdx].scResultType;
1304		specializations["SC_OP"]			= cases[caseNdx].scOperation;
1305		specializations["GEN_RESULT"]		= cases[caseNdx].resultOperation;
1306
1307		spec.assembly = shaderTemplate.specialize(specializations);
1308		spec.inputs.push_back(BufferSp(new Int32Buffer(inputInts)));
1309		spec.outputs.push_back(BufferSp(new Int32Buffer(cases[caseNdx].expectedOutput)));
1310		spec.numWorkGroups = IVec3(numElements, 1, 1);
1311		spec.specConstants.push_back(cases[caseNdx].scActualValue0);
1312		spec.specConstants.push_back(cases[caseNdx].scActualValue1);
1313
1314		group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].caseName, cases[caseNdx].caseName, spec));
1315	}
1316
1317	ComputeShaderSpec				spec;
1318
1319	spec.assembly =
1320		string(s_ShaderPreamble) +
1321
1322		"OpName %main           \"main\"\n"
1323		"OpName %id             \"gl_GlobalInvocationID\"\n"
1324
1325		"OpDecorate %id BuiltIn GlobalInvocationId\n"
1326		"OpDecorate %sc_0  SpecId 0\n"
1327		"OpDecorate %sc_1  SpecId 1\n"
1328		"OpDecorate %sc_2  SpecId 2\n"
1329		"OpDecorate %i32arr ArrayStride 4\n"
1330
1331		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
1332
1333		"%ivec3     = OpTypeVector %i32 3\n"
1334		"%i32ptr    = OpTypePointer Uniform %i32\n"
1335		"%i32arr    = OpTypeRuntimeArray %i32\n"
1336		"%boolptr   = OpTypePointer Uniform %bool\n"
1337		"%boolarr   = OpTypeRuntimeArray %bool\n"
1338		"%buf     = OpTypeStruct %i32arr\n"
1339		"%bufptr  = OpTypePointer Uniform %buf\n"
1340		"%indata    = OpVariable %bufptr Uniform\n"
1341		"%outdata   = OpVariable %bufptr Uniform\n"
1342
1343		"%id        = OpVariable %uvec3ptr Input\n"
1344		"%zero      = OpConstant %i32 0\n"
1345		"%ivec3_0   = OpConstantComposite %ivec3 %zero %zero %zero\n"
1346
1347		"%sc_0        = OpSpecConstant %i32 0\n"
1348		"%sc_1        = OpSpecConstant %i32 0\n"
1349		"%sc_2        = OpSpecConstant %i32 0\n"
1350		"%sc_vec3_0   = OpSpecConstantOp %ivec3 CompositeInsert  %sc_0        %ivec3_0   0\n"     // (sc_0, 0, 0)
1351		"%sc_vec3_1   = OpSpecConstantOp %ivec3 CompositeInsert  %sc_1        %ivec3_0   1\n"     // (0, sc_1, 0)
1352		"%sc_vec3_2   = OpSpecConstantOp %ivec3 CompositeInsert  %sc_2        %ivec3_0   2\n"     // (0, 0, sc_2)
1353		"%sc_vec3_01  = OpSpecConstantOp %ivec3 VectorShuffle    %sc_vec3_0   %sc_vec3_1 1 0 4\n" // (0,    sc_0, sc_1)
1354		"%sc_vec3_012 = OpSpecConstantOp %ivec3 VectorShuffle    %sc_vec3_01  %sc_vec3_2 5 1 2\n" // (sc_2, sc_0, sc_1)
1355		"%sc_ext_0    = OpSpecConstantOp %i32   CompositeExtract %sc_vec3_012            0\n"     // sc_2
1356		"%sc_ext_1    = OpSpecConstantOp %i32   CompositeExtract %sc_vec3_012            1\n"     // sc_0
1357		"%sc_ext_2    = OpSpecConstantOp %i32   CompositeExtract %sc_vec3_012            2\n"     // sc_1
1358		"%sc_sub      = OpSpecConstantOp %i32   ISub             %sc_ext_0    %sc_ext_1\n"        // (sc_2 - sc_0)
1359		"%sc_final    = OpSpecConstantOp %i32   IMul             %sc_sub      %sc_ext_2\n"        // (sc_2 - sc_0) * sc_1
1360
1361		"%main      = OpFunction %void None %voidf\n"
1362		"%label     = OpLabel\n"
1363		"%idval     = OpLoad %uvec3 %id\n"
1364		"%x         = OpCompositeExtract %u32 %idval 0\n"
1365		"%inloc     = OpAccessChain %i32ptr %indata %zero %x\n"
1366		"%inval     = OpLoad %i32 %inloc\n"
1367		"%final     = OpIAdd %i32 %inval %sc_final\n"
1368		"%outloc    = OpAccessChain %i32ptr %outdata %zero %x\n"
1369		"             OpStore %outloc %final\n"
1370		"             OpReturn\n"
1371		"             OpFunctionEnd\n";
1372	spec.inputs.push_back(BufferSp(new Int32Buffer(inputInts)));
1373	spec.outputs.push_back(BufferSp(new Int32Buffer(outputInts3)));
1374	spec.numWorkGroups = IVec3(numElements, 1, 1);
1375	spec.specConstants.push_back(123);
1376	spec.specConstants.push_back(56);
1377	spec.specConstants.push_back(-77);
1378
1379	group->addChild(new SpvAsmComputeShaderCase(testCtx, "vector_related", "VectorShuffle, CompositeExtract, & CompositeInsert", spec));
1380
1381	return group.release();
1382}
1383
1384tcu::TestCaseGroup* createOpPhiGroup (tcu::TestContext& testCtx)
1385{
1386	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opphi", "Test the OpPhi instruction"));
1387	ComputeShaderSpec				spec1;
1388	ComputeShaderSpec				spec2;
1389	ComputeShaderSpec				spec3;
1390	de::Random						rnd				(deStringHash(group->getName()));
1391	const int						numElements		= 100;
1392	vector<float>					inputFloats		(numElements, 0);
1393	vector<float>					outputFloats1	(numElements, 0);
1394	vector<float>					outputFloats2	(numElements, 0);
1395	vector<float>					outputFloats3	(numElements, 0);
1396
1397	fillRandomScalars(rnd, -300.f, 300.f, &inputFloats[0], numElements);
1398
1399	for (size_t ndx = 0; ndx < numElements; ++ndx)
1400	{
1401		switch (ndx % 3)
1402		{
1403			case 0:		outputFloats1[ndx] = inputFloats[ndx] + 5.5f;	break;
1404			case 1:		outputFloats1[ndx] = inputFloats[ndx] + 20.5f;	break;
1405			case 2:		outputFloats1[ndx] = inputFloats[ndx] + 1.75f;	break;
1406			default:	break;
1407		}
1408		outputFloats2[ndx] = inputFloats[ndx] + 6.5f * 3;
1409		outputFloats3[ndx] = 8.5f - inputFloats[ndx];
1410	}
1411
1412	spec1.assembly =
1413		string(s_ShaderPreamble) +
1414
1415		"OpSource GLSL 430\n"
1416		"OpName %main \"main\"\n"
1417		"OpName %id \"gl_GlobalInvocationID\"\n"
1418
1419		"OpDecorate %id BuiltIn GlobalInvocationId\n"
1420
1421		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
1422
1423		"%id = OpVariable %uvec3ptr Input\n"
1424		"%zero       = OpConstant %i32 0\n"
1425		"%three      = OpConstant %u32 3\n"
1426		"%constf5p5  = OpConstant %f32 5.5\n"
1427		"%constf20p5 = OpConstant %f32 20.5\n"
1428		"%constf1p75 = OpConstant %f32 1.75\n"
1429		"%constf8p5  = OpConstant %f32 8.5\n"
1430		"%constf6p5  = OpConstant %f32 6.5\n"
1431
1432		"%main     = OpFunction %void None %voidf\n"
1433		"%entry    = OpLabel\n"
1434		"%idval    = OpLoad %uvec3 %id\n"
1435		"%x        = OpCompositeExtract %u32 %idval 0\n"
1436		"%selector = OpUMod %u32 %x %three\n"
1437		"            OpSelectionMerge %phi None\n"
1438		"            OpSwitch %selector %default 0 %case0 1 %case1 2 %case2\n"
1439
1440		// Case 1 before OpPhi.
1441		"%case1    = OpLabel\n"
1442		"            OpBranch %phi\n"
1443
1444		"%default  = OpLabel\n"
1445		"            OpUnreachable\n"
1446
1447		"%phi      = OpLabel\n"
1448		"%operand  = OpPhi %f32   %constf1p75 %case2   %constf20p5 %case1   %constf5p5 %case0\n" // not in the order of blocks
1449		"%inloc    = OpAccessChain %f32ptr %indata %zero %x\n"
1450		"%inval    = OpLoad %f32 %inloc\n"
1451		"%add      = OpFAdd %f32 %inval %operand\n"
1452		"%outloc   = OpAccessChain %f32ptr %outdata %zero %x\n"
1453		"            OpStore %outloc %add\n"
1454		"            OpReturn\n"
1455
1456		// Case 0 after OpPhi.
1457		"%case0    = OpLabel\n"
1458		"            OpBranch %phi\n"
1459
1460
1461		// Case 2 after OpPhi.
1462		"%case2    = OpLabel\n"
1463		"            OpBranch %phi\n"
1464
1465		"            OpFunctionEnd\n";
1466	spec1.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
1467	spec1.outputs.push_back(BufferSp(new Float32Buffer(outputFloats1)));
1468	spec1.numWorkGroups = IVec3(numElements, 1, 1);
1469
1470	group->addChild(new SpvAsmComputeShaderCase(testCtx, "block", "out-of-order and unreachable blocks for OpPhi", spec1));
1471
1472	spec2.assembly =
1473		string(s_ShaderPreamble) +
1474
1475		"OpName %main \"main\"\n"
1476		"OpName %id \"gl_GlobalInvocationID\"\n"
1477
1478		"OpDecorate %id BuiltIn GlobalInvocationId\n"
1479
1480		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
1481
1482		"%id         = OpVariable %uvec3ptr Input\n"
1483		"%zero       = OpConstant %i32 0\n"
1484		"%one        = OpConstant %i32 1\n"
1485		"%three      = OpConstant %i32 3\n"
1486		"%constf6p5  = OpConstant %f32 6.5\n"
1487
1488		"%main       = OpFunction %void None %voidf\n"
1489		"%entry      = OpLabel\n"
1490		"%idval      = OpLoad %uvec3 %id\n"
1491		"%x          = OpCompositeExtract %u32 %idval 0\n"
1492		"%inloc      = OpAccessChain %f32ptr %indata %zero %x\n"
1493		"%outloc     = OpAccessChain %f32ptr %outdata %zero %x\n"
1494		"%inval      = OpLoad %f32 %inloc\n"
1495		"              OpBranch %phi\n"
1496
1497		"%phi        = OpLabel\n"
1498		"%step       = OpPhi %i32 %zero  %entry %step_next  %phi\n"
1499		"%accum      = OpPhi %f32 %inval %entry %accum_next %phi\n"
1500		"%step_next  = OpIAdd %i32 %step %one\n"
1501		"%accum_next = OpFAdd %f32 %accum %constf6p5\n"
1502		"%still_loop = OpSLessThan %bool %step %three\n"
1503		"              OpLoopMerge %exit %phi None\n"
1504		"              OpBranchConditional %still_loop %phi %exit\n"
1505
1506		"%exit       = OpLabel\n"
1507		"              OpStore %outloc %accum\n"
1508		"              OpReturn\n"
1509		"              OpFunctionEnd\n";
1510	spec2.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
1511	spec2.outputs.push_back(BufferSp(new Float32Buffer(outputFloats2)));
1512	spec2.numWorkGroups = IVec3(numElements, 1, 1);
1513
1514	group->addChild(new SpvAsmComputeShaderCase(testCtx, "induction", "The usual way induction variables are handled in LLVM IR", spec2));
1515
1516	spec3.assembly =
1517		string(s_ShaderPreamble) +
1518
1519		"OpName %main \"main\"\n"
1520		"OpName %id \"gl_GlobalInvocationID\"\n"
1521
1522		"OpDecorate %id BuiltIn GlobalInvocationId\n"
1523
1524		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
1525
1526		"%f32ptr_f   = OpTypePointer Function %f32\n"
1527		"%id         = OpVariable %uvec3ptr Input\n"
1528		"%true       = OpConstantTrue %bool\n"
1529		"%false      = OpConstantFalse %bool\n"
1530		"%zero       = OpConstant %i32 0\n"
1531		"%constf8p5  = OpConstant %f32 8.5\n"
1532
1533		"%main       = OpFunction %void None %voidf\n"
1534		"%entry      = OpLabel\n"
1535		"%b          = OpVariable %f32ptr_f Function %constf8p5\n"
1536		"%idval      = OpLoad %uvec3 %id\n"
1537		"%x          = OpCompositeExtract %u32 %idval 0\n"
1538		"%inloc      = OpAccessChain %f32ptr %indata %zero %x\n"
1539		"%outloc     = OpAccessChain %f32ptr %outdata %zero %x\n"
1540		"%a_init     = OpLoad %f32 %inloc\n"
1541		"%b_init     = OpLoad %f32 %b\n"
1542		"              OpBranch %phi\n"
1543
1544		"%phi        = OpLabel\n"
1545		"%still_loop = OpPhi %bool %true   %entry %false  %phi\n"
1546		"%a_next     = OpPhi %f32  %a_init %entry %b_next %phi\n"
1547		"%b_next     = OpPhi %f32  %b_init %entry %a_next %phi\n"
1548		"              OpLoopMerge %exit %phi None\n"
1549		"              OpBranchConditional %still_loop %phi %exit\n"
1550
1551		"%exit       = OpLabel\n"
1552		"%sub        = OpFSub %f32 %a_next %b_next\n"
1553		"              OpStore %outloc %sub\n"
1554		"              OpReturn\n"
1555		"              OpFunctionEnd\n";
1556	spec3.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
1557	spec3.outputs.push_back(BufferSp(new Float32Buffer(outputFloats3)));
1558	spec3.numWorkGroups = IVec3(numElements, 1, 1);
1559
1560	group->addChild(new SpvAsmComputeShaderCase(testCtx, "swap", "Swap the values of two variables using OpPhi", spec3));
1561
1562	return group.release();
1563}
1564
1565// Assembly code used for testing block order is based on GLSL source code:
1566//
1567// #version 430
1568//
1569// layout(std140, set = 0, binding = 0) readonly buffer Input {
1570//   float elements[];
1571// } input_data;
1572// layout(std140, set = 0, binding = 1) writeonly buffer Output {
1573//   float elements[];
1574// } output_data;
1575//
1576// void main() {
1577//   uint x = gl_GlobalInvocationID.x;
1578//   output_data.elements[x] = input_data.elements[x];
1579//   if (x > uint(50)) {
1580//     switch (x % uint(3)) {
1581//       case 0: output_data.elements[x] += 1.5f; break;
1582//       case 1: output_data.elements[x] += 42.f; break;
1583//       case 2: output_data.elements[x] -= 27.f; break;
1584//       default: break;
1585//     }
1586//   } else {
1587//     output_data.elements[x] = -input_data.elements[x];
1588//   }
1589// }
1590tcu::TestCaseGroup* createBlockOrderGroup (tcu::TestContext& testCtx)
1591{
1592	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "block_order", "Test block orders"));
1593	ComputeShaderSpec				spec;
1594	de::Random						rnd				(deStringHash(group->getName()));
1595	const int						numElements		= 100;
1596	vector<float>					inputFloats		(numElements, 0);
1597	vector<float>					outputFloats	(numElements, 0);
1598
1599	fillRandomScalars(rnd, -100.f, 100.f, &inputFloats[0], numElements);
1600
1601	for (size_t ndx = 0; ndx < numElements; ++ndx)
1602		inputFloats[ndx] = deFloatFloor(inputFloats[ndx]);
1603
1604	for (size_t ndx = 0; ndx <= 50; ++ndx)
1605		outputFloats[ndx] = -inputFloats[ndx];
1606
1607	for (size_t ndx = 51; ndx < numElements; ++ndx)
1608	{
1609		switch (ndx % 3)
1610		{
1611			case 0:		outputFloats[ndx] = inputFloats[ndx] + 1.5f; break;
1612			case 1:		outputFloats[ndx] = inputFloats[ndx] + 42.f; break;
1613			case 2:		outputFloats[ndx] = inputFloats[ndx] - 27.f; break;
1614			default:	break;
1615		}
1616	}
1617
1618	spec.assembly =
1619		string(s_ShaderPreamble) +
1620
1621		"OpSource GLSL 430\n"
1622		"OpName %main \"main\"\n"
1623		"OpName %id \"gl_GlobalInvocationID\"\n"
1624
1625		"OpDecorate %id BuiltIn GlobalInvocationId\n"
1626
1627		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
1628
1629		"%u32ptr       = OpTypePointer Function %u32\n"
1630		"%u32ptr_input = OpTypePointer Input %u32\n"
1631
1632		+ string(s_InputOutputBuffer) +
1633
1634		"%id        = OpVariable %uvec3ptr Input\n"
1635		"%zero      = OpConstant %i32 0\n"
1636		"%const3    = OpConstant %u32 3\n"
1637		"%const50   = OpConstant %u32 50\n"
1638		"%constf1p5 = OpConstant %f32 1.5\n"
1639		"%constf27  = OpConstant %f32 27.0\n"
1640		"%constf42  = OpConstant %f32 42.0\n"
1641
1642		"%main = OpFunction %void None %voidf\n"
1643
1644		// entry block.
1645		"%entry    = OpLabel\n"
1646
1647		// Create a temporary variable to hold the value of gl_GlobalInvocationID.x.
1648		"%xvar     = OpVariable %u32ptr Function\n"
1649		"%xptr     = OpAccessChain %u32ptr_input %id %zero\n"
1650		"%x        = OpLoad %u32 %xptr\n"
1651		"            OpStore %xvar %x\n"
1652
1653		"%cmp      = OpUGreaterThan %bool %x %const50\n"
1654		"            OpSelectionMerge %if_merge None\n"
1655		"            OpBranchConditional %cmp %if_true %if_false\n"
1656
1657		// Merge block for switch-statement: placed at the beginning.
1658		"%switch_merge = OpLabel\n"
1659		"                OpBranch %if_merge\n"
1660
1661		// Case 1 for switch-statement.
1662		"%case1    = OpLabel\n"
1663		"%x_1      = OpLoad %u32 %xvar\n"
1664		"%inloc_1  = OpAccessChain %f32ptr %indata %zero %x_1\n"
1665		"%inval_1  = OpLoad %f32 %inloc_1\n"
1666		"%addf42   = OpFAdd %f32 %inval_1 %constf42\n"
1667		"%outloc_1 = OpAccessChain %f32ptr %outdata %zero %x_1\n"
1668		"            OpStore %outloc_1 %addf42\n"
1669		"            OpBranch %switch_merge\n"
1670
1671		// False branch for if-statement: placed in the middle of switch cases and before true branch.
1672		"%if_false = OpLabel\n"
1673		"%x_f      = OpLoad %u32 %xvar\n"
1674		"%inloc_f  = OpAccessChain %f32ptr %indata %zero %x_f\n"
1675		"%inval_f  = OpLoad %f32 %inloc_f\n"
1676		"%negate   = OpFNegate %f32 %inval_f\n"
1677		"%outloc_f = OpAccessChain %f32ptr %outdata %zero %x_f\n"
1678		"            OpStore %outloc_f %negate\n"
1679		"            OpBranch %if_merge\n"
1680
1681		// Merge block for if-statement: placed in the middle of true and false branch.
1682		"%if_merge = OpLabel\n"
1683		"            OpReturn\n"
1684
1685		// True branch for if-statement: placed in the middle of swtich cases and after the false branch.
1686		"%if_true  = OpLabel\n"
1687		"%xval_t   = OpLoad %u32 %xvar\n"
1688		"%mod      = OpUMod %u32 %xval_t %const3\n"
1689		"            OpSelectionMerge %switch_merge None\n"
1690		"            OpSwitch %mod %default 0 %case0 1 %case1 2 %case2\n"
1691
1692		// Case 2 for switch-statement.
1693		"%case2    = OpLabel\n"
1694		"%x_2      = OpLoad %u32 %xvar\n"
1695		"%inloc_2  = OpAccessChain %f32ptr %indata %zero %x_2\n"
1696		"%inval_2  = OpLoad %f32 %inloc_2\n"
1697		"%subf27   = OpFSub %f32 %inval_2 %constf27\n"
1698		"%outloc_2 = OpAccessChain %f32ptr %outdata %zero %x_2\n"
1699		"            OpStore %outloc_2 %subf27\n"
1700		"            OpBranch %switch_merge\n"
1701
1702		// Default case for switch-statement: placed in the middle of normal cases.
1703		"%default = OpLabel\n"
1704		"           OpBranch %switch_merge\n"
1705
1706		// Case 0 for switch-statement: out of order.
1707		"%case0    = OpLabel\n"
1708		"%x_0      = OpLoad %u32 %xvar\n"
1709		"%inloc_0  = OpAccessChain %f32ptr %indata %zero %x_0\n"
1710		"%inval_0  = OpLoad %f32 %inloc_0\n"
1711		"%addf1p5  = OpFAdd %f32 %inval_0 %constf1p5\n"
1712		"%outloc_0 = OpAccessChain %f32ptr %outdata %zero %x_0\n"
1713		"            OpStore %outloc_0 %addf1p5\n"
1714		"            OpBranch %switch_merge\n"
1715
1716		"            OpFunctionEnd\n";
1717	spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
1718	spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
1719	spec.numWorkGroups = IVec3(numElements, 1, 1);
1720
1721	group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "various out-of-order blocks", spec));
1722
1723	return group.release();
1724}
1725
1726tcu::TestCaseGroup* createMultipleShaderGroup (tcu::TestContext& testCtx)
1727{
1728	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "multiple_shaders", "Test multiple shaders in the same module"));
1729	ComputeShaderSpec				spec1;
1730	ComputeShaderSpec				spec2;
1731	de::Random						rnd				(deStringHash(group->getName()));
1732	const int						numElements		= 100;
1733	vector<float>					inputFloats		(numElements, 0);
1734	vector<float>					outputFloats1	(numElements, 0);
1735	vector<float>					outputFloats2	(numElements, 0);
1736	fillRandomScalars(rnd, -500.f, 500.f, &inputFloats[0], numElements);
1737
1738	for (size_t ndx = 0; ndx < numElements; ++ndx)
1739	{
1740		outputFloats1[ndx] = inputFloats[ndx] + inputFloats[ndx];
1741		outputFloats2[ndx] = -inputFloats[ndx];
1742	}
1743
1744	const string assembly(
1745		"OpCapability Shader\n"
1746		"OpCapability ClipDistance\n"
1747		"OpMemoryModel Logical GLSL450\n"
1748		"OpEntryPoint GLCompute %comp_main1 \"entrypoint1\" %id\n"
1749		"OpEntryPoint GLCompute %comp_main2 \"entrypoint2\" %id\n"
1750		// A module cannot have two OpEntryPoint instructions with the same Execution Model and the same Name string.
1751		"OpEntryPoint Vertex    %vert_main  \"entrypoint2\" %vert_builtins %vertexIndex %instanceIndex\n"
1752		"OpExecutionMode %comp_main1 LocalSize 1 1 1\n"
1753		"OpExecutionMode %comp_main2 LocalSize 1 1 1\n"
1754
1755		"OpName %comp_main1              \"entrypoint1\"\n"
1756		"OpName %comp_main2              \"entrypoint2\"\n"
1757		"OpName %vert_main               \"entrypoint2\"\n"
1758		"OpName %id                      \"gl_GlobalInvocationID\"\n"
1759		"OpName %vert_builtin_st         \"gl_PerVertex\"\n"
1760		"OpName %vertexIndex             \"gl_VertexIndex\"\n"
1761		"OpName %instanceIndex           \"gl_InstanceIndex\"\n"
1762		"OpMemberName %vert_builtin_st 0 \"gl_Position\"\n"
1763		"OpMemberName %vert_builtin_st 1 \"gl_PointSize\"\n"
1764		"OpMemberName %vert_builtin_st 2 \"gl_ClipDistance\"\n"
1765
1766		"OpDecorate %id                      BuiltIn GlobalInvocationId\n"
1767		"OpDecorate %vertexIndex             BuiltIn VertexIndex\n"
1768		"OpDecorate %instanceIndex           BuiltIn InstanceIndex\n"
1769		"OpDecorate %vert_builtin_st         Block\n"
1770		"OpMemberDecorate %vert_builtin_st 0 BuiltIn Position\n"
1771		"OpMemberDecorate %vert_builtin_st 1 BuiltIn PointSize\n"
1772		"OpMemberDecorate %vert_builtin_st 2 BuiltIn ClipDistance\n"
1773
1774		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
1775
1776		"%zero       = OpConstant %i32 0\n"
1777		"%one        = OpConstant %u32 1\n"
1778		"%c_f32_1    = OpConstant %f32 1\n"
1779
1780		"%i32ptr              = OpTypePointer Input %i32\n"
1781		"%vec4                = OpTypeVector %f32 4\n"
1782		"%vec4ptr             = OpTypePointer Output %vec4\n"
1783		"%f32arr1             = OpTypeArray %f32 %one\n"
1784		"%vert_builtin_st     = OpTypeStruct %vec4 %f32 %f32arr1\n"
1785		"%vert_builtin_st_ptr = OpTypePointer Output %vert_builtin_st\n"
1786		"%vert_builtins       = OpVariable %vert_builtin_st_ptr Output\n"
1787
1788		"%id         = OpVariable %uvec3ptr Input\n"
1789		"%vertexIndex = OpVariable %i32ptr Input\n"
1790		"%instanceIndex = OpVariable %i32ptr Input\n"
1791		"%c_vec4_1   = OpConstantComposite %vec4 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_1\n"
1792
1793		// gl_Position = vec4(1.);
1794		"%vert_main  = OpFunction %void None %voidf\n"
1795		"%vert_entry = OpLabel\n"
1796		"%position   = OpAccessChain %vec4ptr %vert_builtins %zero\n"
1797		"              OpStore %position %c_vec4_1\n"
1798		"              OpReturn\n"
1799		"              OpFunctionEnd\n"
1800
1801		// Double inputs.
1802		"%comp_main1  = OpFunction %void None %voidf\n"
1803		"%comp1_entry = OpLabel\n"
1804		"%idval1      = OpLoad %uvec3 %id\n"
1805		"%x1          = OpCompositeExtract %u32 %idval1 0\n"
1806		"%inloc1      = OpAccessChain %f32ptr %indata %zero %x1\n"
1807		"%inval1      = OpLoad %f32 %inloc1\n"
1808		"%add         = OpFAdd %f32 %inval1 %inval1\n"
1809		"%outloc1     = OpAccessChain %f32ptr %outdata %zero %x1\n"
1810		"               OpStore %outloc1 %add\n"
1811		"               OpReturn\n"
1812		"               OpFunctionEnd\n"
1813
1814		// Negate inputs.
1815		"%comp_main2  = OpFunction %void None %voidf\n"
1816		"%comp2_entry = OpLabel\n"
1817		"%idval2      = OpLoad %uvec3 %id\n"
1818		"%x2          = OpCompositeExtract %u32 %idval2 0\n"
1819		"%inloc2      = OpAccessChain %f32ptr %indata %zero %x2\n"
1820		"%inval2      = OpLoad %f32 %inloc2\n"
1821		"%neg         = OpFNegate %f32 %inval2\n"
1822		"%outloc2     = OpAccessChain %f32ptr %outdata %zero %x2\n"
1823		"               OpStore %outloc2 %neg\n"
1824		"               OpReturn\n"
1825		"               OpFunctionEnd\n");
1826
1827	spec1.assembly = assembly;
1828	spec1.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
1829	spec1.outputs.push_back(BufferSp(new Float32Buffer(outputFloats1)));
1830	spec1.numWorkGroups = IVec3(numElements, 1, 1);
1831	spec1.entryPoint = "entrypoint1";
1832
1833	spec2.assembly = assembly;
1834	spec2.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
1835	spec2.outputs.push_back(BufferSp(new Float32Buffer(outputFloats2)));
1836	spec2.numWorkGroups = IVec3(numElements, 1, 1);
1837	spec2.entryPoint = "entrypoint2";
1838
1839	group->addChild(new SpvAsmComputeShaderCase(testCtx, "shader1", "multiple shaders in the same module", spec1));
1840	group->addChild(new SpvAsmComputeShaderCase(testCtx, "shader2", "multiple shaders in the same module", spec2));
1841
1842	return group.release();
1843}
1844
1845inline std::string makeLongUTF8String (size_t num4ByteChars)
1846{
1847	// An example of a longest valid UTF-8 character.  Be explicit about the
1848	// character type because Microsoft compilers can otherwise interpret the
1849	// character string as being over wide (16-bit) characters. Ideally, we
1850	// would just use a C++11 UTF-8 string literal, but we want to support older
1851	// Microsoft compilers.
1852	const std::basic_string<char> earthAfrica("\xF0\x9F\x8C\x8D");
1853	std::string longString;
1854	longString.reserve(num4ByteChars * 4);
1855	for (size_t count = 0; count < num4ByteChars; count++)
1856	{
1857		longString += earthAfrica;
1858	}
1859	return longString;
1860}
1861
1862tcu::TestCaseGroup* createOpSourceGroup (tcu::TestContext& testCtx)
1863{
1864	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opsource", "Tests the OpSource & OpSourceContinued instruction"));
1865	vector<CaseParameter>			cases;
1866	de::Random						rnd				(deStringHash(group->getName()));
1867	const int						numElements		= 100;
1868	vector<float>					positiveFloats	(numElements, 0);
1869	vector<float>					negativeFloats	(numElements, 0);
1870	const StringTemplate			shaderTemplate	(
1871		"OpCapability Shader\n"
1872		"OpMemoryModel Logical GLSL450\n"
1873
1874		"OpEntryPoint GLCompute %main \"main\" %id\n"
1875		"OpExecutionMode %main LocalSize 1 1 1\n"
1876
1877		"${SOURCE}\n"
1878
1879		"OpName %main           \"main\"\n"
1880		"OpName %id             \"gl_GlobalInvocationID\"\n"
1881
1882		"OpDecorate %id BuiltIn GlobalInvocationId\n"
1883
1884		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
1885
1886		"%id        = OpVariable %uvec3ptr Input\n"
1887		"%zero      = OpConstant %i32 0\n"
1888
1889		"%main      = OpFunction %void None %voidf\n"
1890		"%label     = OpLabel\n"
1891		"%idval     = OpLoad %uvec3 %id\n"
1892		"%x         = OpCompositeExtract %u32 %idval 0\n"
1893		"%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
1894		"%inval     = OpLoad %f32 %inloc\n"
1895		"%neg       = OpFNegate %f32 %inval\n"
1896		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
1897		"             OpStore %outloc %neg\n"
1898		"             OpReturn\n"
1899		"             OpFunctionEnd\n");
1900
1901	cases.push_back(CaseParameter("unknown_source",							"OpSource Unknown 0"));
1902	cases.push_back(CaseParameter("wrong_source",							"OpSource OpenCL_C 210"));
1903	cases.push_back(CaseParameter("normal_filename",						"%fname = OpString \"filename\"\n"
1904																			"OpSource GLSL 430 %fname"));
1905	cases.push_back(CaseParameter("empty_filename",							"%fname = OpString \"\"\n"
1906																			"OpSource GLSL 430 %fname"));
1907	cases.push_back(CaseParameter("normal_source_code",						"%fname = OpString \"filename\"\n"
1908																			"OpSource GLSL 430 %fname \"#version 430\nvoid main() {}\""));
1909	cases.push_back(CaseParameter("empty_source_code",						"%fname = OpString \"filename\"\n"
1910																			"OpSource GLSL 430 %fname \"\""));
1911	cases.push_back(CaseParameter("long_source_code",						"%fname = OpString \"filename\"\n"
1912																			"OpSource GLSL 430 %fname \"" + makeLongUTF8String(65530) + "ccc\"")); // word count: 65535
1913	cases.push_back(CaseParameter("utf8_source_code",						"%fname = OpString \"filename\"\n"
1914																			"OpSource GLSL 430 %fname \"\xE2\x98\x82\xE2\x98\x85\"")); // umbrella & black star symbol
1915	cases.push_back(CaseParameter("normal_sourcecontinued",					"%fname = OpString \"filename\"\n"
1916																			"OpSource GLSL 430 %fname \"#version 430\nvo\"\n"
1917																			"OpSourceContinued \"id main() {}\""));
1918	cases.push_back(CaseParameter("empty_sourcecontinued",					"%fname = OpString \"filename\"\n"
1919																			"OpSource GLSL 430 %fname \"#version 430\nvoid main() {}\"\n"
1920																			"OpSourceContinued \"\""));
1921	cases.push_back(CaseParameter("long_sourcecontinued",					"%fname = OpString \"filename\"\n"
1922																			"OpSource GLSL 430 %fname \"#version 430\nvoid main() {}\"\n"
1923																			"OpSourceContinued \"" + makeLongUTF8String(65533) + "ccc\"")); // word count: 65535
1924	cases.push_back(CaseParameter("utf8_sourcecontinued",					"%fname = OpString \"filename\"\n"
1925																			"OpSource GLSL 430 %fname \"#version 430\nvoid main() {}\"\n"
1926																			"OpSourceContinued \"\xE2\x98\x8E\xE2\x9A\x91\"")); // white telephone & black flag symbol
1927	cases.push_back(CaseParameter("multi_sourcecontinued",					"%fname = OpString \"filename\"\n"
1928																			"OpSource GLSL 430 %fname \"#version 430\n\"\n"
1929																			"OpSourceContinued \"void\"\n"
1930																			"OpSourceContinued \"main()\"\n"
1931																			"OpSourceContinued \"{}\""));
1932	cases.push_back(CaseParameter("empty_source_before_sourcecontinued",	"%fname = OpString \"filename\"\n"
1933																			"OpSource GLSL 430 %fname \"\"\n"
1934																			"OpSourceContinued \"#version 430\nvoid main() {}\""));
1935
1936	fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
1937
1938	for (size_t ndx = 0; ndx < numElements; ++ndx)
1939		negativeFloats[ndx] = -positiveFloats[ndx];
1940
1941	for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
1942	{
1943		map<string, string>		specializations;
1944		ComputeShaderSpec		spec;
1945
1946		specializations["SOURCE"] = cases[caseNdx].param;
1947		spec.assembly = shaderTemplate.specialize(specializations);
1948		spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
1949		spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
1950		spec.numWorkGroups = IVec3(numElements, 1, 1);
1951
1952		group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
1953	}
1954
1955	return group.release();
1956}
1957
1958tcu::TestCaseGroup* createOpSourceExtensionGroup (tcu::TestContext& testCtx)
1959{
1960	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opsourceextension", "Tests the OpSource instruction"));
1961	vector<CaseParameter>			cases;
1962	de::Random						rnd				(deStringHash(group->getName()));
1963	const int						numElements		= 100;
1964	vector<float>					inputFloats		(numElements, 0);
1965	vector<float>					outputFloats	(numElements, 0);
1966	const StringTemplate			shaderTemplate	(
1967		string(s_ShaderPreamble) +
1968
1969		"OpSourceExtension \"${EXTENSION}\"\n"
1970
1971		"OpName %main           \"main\"\n"
1972		"OpName %id             \"gl_GlobalInvocationID\"\n"
1973
1974		"OpDecorate %id BuiltIn GlobalInvocationId\n"
1975
1976		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
1977
1978		"%id        = OpVariable %uvec3ptr Input\n"
1979		"%zero      = OpConstant %i32 0\n"
1980
1981		"%main      = OpFunction %void None %voidf\n"
1982		"%label     = OpLabel\n"
1983		"%idval     = OpLoad %uvec3 %id\n"
1984		"%x         = OpCompositeExtract %u32 %idval 0\n"
1985		"%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
1986		"%inval     = OpLoad %f32 %inloc\n"
1987		"%neg       = OpFNegate %f32 %inval\n"
1988		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
1989		"             OpStore %outloc %neg\n"
1990		"             OpReturn\n"
1991		"             OpFunctionEnd\n");
1992
1993	cases.push_back(CaseParameter("empty_extension",	""));
1994	cases.push_back(CaseParameter("real_extension",		"GL_ARB_texture_rectangle"));
1995	cases.push_back(CaseParameter("fake_extension",		"GL_ARB_im_the_ultimate_extension"));
1996	cases.push_back(CaseParameter("utf8_extension",		"GL_ARB_\xE2\x98\x82\xE2\x98\x85"));
1997	cases.push_back(CaseParameter("long_extension",		makeLongUTF8String(65533) + "ccc")); // word count: 65535
1998
1999	fillRandomScalars(rnd, -200.f, 200.f, &inputFloats[0], numElements);
2000
2001	for (size_t ndx = 0; ndx < numElements; ++ndx)
2002		outputFloats[ndx] = -inputFloats[ndx];
2003
2004	for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
2005	{
2006		map<string, string>		specializations;
2007		ComputeShaderSpec		spec;
2008
2009		specializations["EXTENSION"] = cases[caseNdx].param;
2010		spec.assembly = shaderTemplate.specialize(specializations);
2011		spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
2012		spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
2013		spec.numWorkGroups = IVec3(numElements, 1, 1);
2014
2015		group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
2016	}
2017
2018	return group.release();
2019}
2020
2021// Checks that a compute shader can generate a constant null value of various types, without exercising a computation on it.
2022tcu::TestCaseGroup* createOpConstantNullGroup (tcu::TestContext& testCtx)
2023{
2024	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opconstantnull", "Tests the OpConstantNull instruction"));
2025	vector<CaseParameter>			cases;
2026	de::Random						rnd				(deStringHash(group->getName()));
2027	const int						numElements		= 100;
2028	vector<float>					positiveFloats	(numElements, 0);
2029	vector<float>					negativeFloats	(numElements, 0);
2030	const StringTemplate			shaderTemplate	(
2031		string(s_ShaderPreamble) +
2032
2033		"OpSource GLSL 430\n"
2034		"OpName %main           \"main\"\n"
2035		"OpName %id             \"gl_GlobalInvocationID\"\n"
2036
2037		"OpDecorate %id BuiltIn GlobalInvocationId\n"
2038
2039		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
2040
2041		"${TYPE}\n"
2042		"%null      = OpConstantNull %type\n"
2043
2044		"%id        = OpVariable %uvec3ptr Input\n"
2045		"%zero      = OpConstant %i32 0\n"
2046
2047		"%main      = OpFunction %void None %voidf\n"
2048		"%label     = OpLabel\n"
2049		"%idval     = OpLoad %uvec3 %id\n"
2050		"%x         = OpCompositeExtract %u32 %idval 0\n"
2051		"%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
2052		"%inval     = OpLoad %f32 %inloc\n"
2053		"%neg       = OpFNegate %f32 %inval\n"
2054		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
2055		"             OpStore %outloc %neg\n"
2056		"             OpReturn\n"
2057		"             OpFunctionEnd\n");
2058
2059	cases.push_back(CaseParameter("bool",			"%type = OpTypeBool"));
2060	cases.push_back(CaseParameter("sint32",			"%type = OpTypeInt 32 1"));
2061	cases.push_back(CaseParameter("uint32",			"%type = OpTypeInt 32 0"));
2062	cases.push_back(CaseParameter("float32",		"%type = OpTypeFloat 32"));
2063	cases.push_back(CaseParameter("vec4float32",	"%type = OpTypeVector %f32 4"));
2064	cases.push_back(CaseParameter("vec3bool",		"%type = OpTypeVector %bool 3"));
2065	cases.push_back(CaseParameter("vec2uint32",		"%type = OpTypeVector %u32 2"));
2066	cases.push_back(CaseParameter("matrix",			"%type = OpTypeMatrix %fvec3 3"));
2067	cases.push_back(CaseParameter("array",			"%100 = OpConstant %u32 100\n"
2068													"%type = OpTypeArray %i32 %100"));
2069	cases.push_back(CaseParameter("struct",			"%type = OpTypeStruct %f32 %i32 %u32"));
2070	cases.push_back(CaseParameter("pointer",		"%type = OpTypePointer Function %i32"));
2071
2072	fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
2073
2074	for (size_t ndx = 0; ndx < numElements; ++ndx)
2075		negativeFloats[ndx] = -positiveFloats[ndx];
2076
2077	for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
2078	{
2079		map<string, string>		specializations;
2080		ComputeShaderSpec		spec;
2081
2082		specializations["TYPE"] = cases[caseNdx].param;
2083		spec.assembly = shaderTemplate.specialize(specializations);
2084		spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
2085		spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
2086		spec.numWorkGroups = IVec3(numElements, 1, 1);
2087
2088		group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
2089	}
2090
2091	return group.release();
2092}
2093
2094// Checks that a compute shader can generate a constant composite value of various types, without exercising a computation on it.
2095tcu::TestCaseGroup* createOpConstantCompositeGroup (tcu::TestContext& testCtx)
2096{
2097	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opconstantcomposite", "Tests the OpConstantComposite instruction"));
2098	vector<CaseParameter>			cases;
2099	de::Random						rnd				(deStringHash(group->getName()));
2100	const int						numElements		= 100;
2101	vector<float>					positiveFloats	(numElements, 0);
2102	vector<float>					negativeFloats	(numElements, 0);
2103	const StringTemplate			shaderTemplate	(
2104		string(s_ShaderPreamble) +
2105
2106		"OpSource GLSL 430\n"
2107		"OpName %main           \"main\"\n"
2108		"OpName %id             \"gl_GlobalInvocationID\"\n"
2109
2110		"OpDecorate %id BuiltIn GlobalInvocationId\n"
2111
2112		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
2113
2114		"%id        = OpVariable %uvec3ptr Input\n"
2115		"%zero      = OpConstant %i32 0\n"
2116
2117		"${CONSTANT}\n"
2118
2119		"%main      = OpFunction %void None %voidf\n"
2120		"%label     = OpLabel\n"
2121		"%idval     = OpLoad %uvec3 %id\n"
2122		"%x         = OpCompositeExtract %u32 %idval 0\n"
2123		"%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
2124		"%inval     = OpLoad %f32 %inloc\n"
2125		"%neg       = OpFNegate %f32 %inval\n"
2126		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
2127		"             OpStore %outloc %neg\n"
2128		"             OpReturn\n"
2129		"             OpFunctionEnd\n");
2130
2131	cases.push_back(CaseParameter("vector",			"%five = OpConstant %u32 5\n"
2132													"%const = OpConstantComposite %uvec3 %five %zero %five"));
2133	cases.push_back(CaseParameter("matrix",			"%m3fvec3 = OpTypeMatrix %fvec3 3\n"
2134													"%ten = OpConstant %f32 10.\n"
2135													"%fzero = OpConstant %f32 0.\n"
2136													"%vec = OpConstantComposite %fvec3 %ten %fzero %ten\n"
2137													"%mat = OpConstantComposite %m3fvec3 %vec %vec %vec"));
2138	cases.push_back(CaseParameter("struct",			"%m2vec3 = OpTypeMatrix %fvec3 2\n"
2139													"%struct = OpTypeStruct %i32 %f32 %fvec3 %m2vec3\n"
2140													"%fzero = OpConstant %f32 0.\n"
2141													"%one = OpConstant %f32 1.\n"
2142													"%point5 = OpConstant %f32 0.5\n"
2143													"%vec = OpConstantComposite %fvec3 %one %one %fzero\n"
2144													"%mat = OpConstantComposite %m2vec3 %vec %vec\n"
2145													"%const = OpConstantComposite %struct %zero %point5 %vec %mat"));
2146	cases.push_back(CaseParameter("nested_struct",	"%st1 = OpTypeStruct %u32 %f32\n"
2147													"%st2 = OpTypeStruct %i32 %i32\n"
2148													"%struct = OpTypeStruct %st1 %st2\n"
2149													"%point5 = OpConstant %f32 0.5\n"
2150													"%one = OpConstant %u32 1\n"
2151													"%ten = OpConstant %i32 10\n"
2152													"%st1val = OpConstantComposite %st1 %one %point5\n"
2153													"%st2val = OpConstantComposite %st2 %ten %ten\n"
2154													"%const = OpConstantComposite %struct %st1val %st2val"));
2155
2156	fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
2157
2158	for (size_t ndx = 0; ndx < numElements; ++ndx)
2159		negativeFloats[ndx] = -positiveFloats[ndx];
2160
2161	for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
2162	{
2163		map<string, string>		specializations;
2164		ComputeShaderSpec		spec;
2165
2166		specializations["CONSTANT"] = cases[caseNdx].param;
2167		spec.assembly = shaderTemplate.specialize(specializations);
2168		spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
2169		spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
2170		spec.numWorkGroups = IVec3(numElements, 1, 1);
2171
2172		group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
2173	}
2174
2175	return group.release();
2176}
2177
2178// Creates a floating point number with the given exponent, and significand
2179// bits set. It can only create normalized numbers. Only the least significant
2180// 24 bits of the significand will be examined. The final bit of the
2181// significand will also be ignored. This allows alignment to be written
2182// similarly to C99 hex-floats.
2183// For example if you wanted to write 0x1.7f34p-12 you would call
2184// constructNormalizedFloat(-12, 0x7f3400)
2185float constructNormalizedFloat (deInt32 exponent, deUint32 significand)
2186{
2187	float f = 1.0f;
2188
2189	for (deInt32 idx = 0; idx < 23; ++idx)
2190	{
2191		f += ((significand & 0x800000) == 0) ? 0.f : std::ldexp(1.0f, -(idx + 1));
2192		significand <<= 1;
2193	}
2194
2195	return std::ldexp(f, exponent);
2196}
2197
2198// Compare instruction for the OpQuantizeF16 compute exact case.
2199// Returns true if the output is what is expected from the test case.
2200bool compareOpQuantizeF16ComputeExactCase (const std::vector<BufferSp>&, const vector<AllocationSp>& outputAllocs, const std::vector<BufferSp>& expectedOutputs)
2201{
2202	if (outputAllocs.size() != 1)
2203		return false;
2204
2205	// We really just need this for size because we cannot compare Nans.
2206	const BufferSp&	expectedOutput	= expectedOutputs[0];
2207	const float*	outputAsFloat	= static_cast<const float*>(outputAllocs[0]->getHostPtr());;
2208
2209	if (expectedOutput->getNumBytes() != 4*sizeof(float)) {
2210		return false;
2211	}
2212
2213	if (*outputAsFloat != constructNormalizedFloat(8, 0x304000) &&
2214		*outputAsFloat != constructNormalizedFloat(8, 0x300000)) {
2215		return false;
2216	}
2217	outputAsFloat++;
2218
2219	if (*outputAsFloat != -constructNormalizedFloat(-7, 0x600000) &&
2220		*outputAsFloat != -constructNormalizedFloat(-7, 0x604000)) {
2221		return false;
2222	}
2223	outputAsFloat++;
2224
2225	if (*outputAsFloat != constructNormalizedFloat(2, 0x01C000) &&
2226		*outputAsFloat != constructNormalizedFloat(2, 0x020000)) {
2227		return false;
2228	}
2229	outputAsFloat++;
2230
2231	if (*outputAsFloat != constructNormalizedFloat(1, 0xFFC000) &&
2232		*outputAsFloat != constructNormalizedFloat(2, 0x000000)) {
2233		return false;
2234	}
2235
2236	return true;
2237}
2238
2239// Checks that every output from a test-case is a float NaN.
2240bool compareNan (const std::vector<BufferSp>&, const vector<AllocationSp>& outputAllocs, const std::vector<BufferSp>& expectedOutputs)
2241{
2242	if (outputAllocs.size() != 1)
2243		return false;
2244
2245	// We really just need this for size because we cannot compare Nans.
2246	const BufferSp& expectedOutput		= expectedOutputs[0];
2247	const float* output_as_float		= static_cast<const float*>(outputAllocs[0]->getHostPtr());;
2248
2249	for (size_t idx = 0; idx < expectedOutput->getNumBytes() / sizeof(float); ++idx)
2250	{
2251		if (!isnan(output_as_float[idx]))
2252		{
2253			return false;
2254		}
2255	}
2256
2257	return true;
2258}
2259
2260// Checks that a compute shader can generate a constant composite value of various types, without exercising a computation on it.
2261tcu::TestCaseGroup* createOpQuantizeToF16Group (tcu::TestContext& testCtx)
2262{
2263	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opquantize", "Tests the OpQuantizeToF16 instruction"));
2264
2265	const std::string shader (
2266		string(s_ShaderPreamble) +
2267
2268		"OpSource GLSL 430\n"
2269		"OpName %main           \"main\"\n"
2270		"OpName %id             \"gl_GlobalInvocationID\"\n"
2271
2272		"OpDecorate %id BuiltIn GlobalInvocationId\n"
2273
2274		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
2275
2276		"%id        = OpVariable %uvec3ptr Input\n"
2277		"%zero      = OpConstant %i32 0\n"
2278
2279		"%main      = OpFunction %void None %voidf\n"
2280		"%label     = OpLabel\n"
2281		"%idval     = OpLoad %uvec3 %id\n"
2282		"%x         = OpCompositeExtract %u32 %idval 0\n"
2283		"%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
2284		"%inval     = OpLoad %f32 %inloc\n"
2285		"%quant     = OpQuantizeToF16 %f32 %inval\n"
2286		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
2287		"             OpStore %outloc %quant\n"
2288		"             OpReturn\n"
2289		"             OpFunctionEnd\n");
2290
2291	{
2292		ComputeShaderSpec	spec;
2293		const deUint32		numElements		= 100;
2294		vector<float>		infinities;
2295		vector<float>		results;
2296
2297		infinities.reserve(numElements);
2298		results.reserve(numElements);
2299
2300		for (size_t idx = 0; idx < numElements; ++idx)
2301		{
2302			switch(idx % 4)
2303			{
2304				case 0:
2305					infinities.push_back(std::numeric_limits<float>::infinity());
2306					results.push_back(std::numeric_limits<float>::infinity());
2307					break;
2308				case 1:
2309					infinities.push_back(-std::numeric_limits<float>::infinity());
2310					results.push_back(-std::numeric_limits<float>::infinity());
2311					break;
2312				case 2:
2313					infinities.push_back(std::ldexp(1.0f, 16));
2314					results.push_back(std::numeric_limits<float>::infinity());
2315					break;
2316				case 3:
2317					infinities.push_back(std::ldexp(-1.0f, 32));
2318					results.push_back(-std::numeric_limits<float>::infinity());
2319					break;
2320			}
2321		}
2322
2323		spec.assembly = shader;
2324		spec.inputs.push_back(BufferSp(new Float32Buffer(infinities)));
2325		spec.outputs.push_back(BufferSp(new Float32Buffer(results)));
2326		spec.numWorkGroups = IVec3(numElements, 1, 1);
2327
2328		group->addChild(new SpvAsmComputeShaderCase(
2329			testCtx, "infinities", "Check that infinities propagated and created", spec));
2330	}
2331
2332	{
2333		ComputeShaderSpec	spec;
2334		vector<float>		nans;
2335		const deUint32		numElements		= 100;
2336
2337		nans.reserve(numElements);
2338
2339		for (size_t idx = 0; idx < numElements; ++idx)
2340		{
2341			if (idx % 2 == 0)
2342			{
2343				nans.push_back(std::numeric_limits<float>::quiet_NaN());
2344			}
2345			else
2346			{
2347				nans.push_back(-std::numeric_limits<float>::quiet_NaN());
2348			}
2349		}
2350
2351		spec.assembly = shader;
2352		spec.inputs.push_back(BufferSp(new Float32Buffer(nans)));
2353		spec.outputs.push_back(BufferSp(new Float32Buffer(nans)));
2354		spec.numWorkGroups = IVec3(numElements, 1, 1);
2355		spec.verifyIO = &compareNan;
2356
2357		group->addChild(new SpvAsmComputeShaderCase(
2358			testCtx, "propagated_nans", "Check that nans are propagated", spec));
2359	}
2360
2361	{
2362		ComputeShaderSpec	spec;
2363		vector<float>		small;
2364		vector<float>		zeros;
2365		const deUint32		numElements		= 100;
2366
2367		small.reserve(numElements);
2368		zeros.reserve(numElements);
2369
2370		for (size_t idx = 0; idx < numElements; ++idx)
2371		{
2372			switch(idx % 6)
2373			{
2374				case 0:
2375					small.push_back(0.f);
2376					zeros.push_back(0.f);
2377					break;
2378				case 1:
2379					small.push_back(-0.f);
2380					zeros.push_back(-0.f);
2381					break;
2382				case 2:
2383					small.push_back(std::ldexp(1.0f, -16));
2384					zeros.push_back(0.f);
2385					break;
2386				case 3:
2387					small.push_back(std::ldexp(-1.0f, -32));
2388					zeros.push_back(-0.f);
2389					break;
2390				case 4:
2391					small.push_back(std::ldexp(1.0f, -127));
2392					zeros.push_back(0.f);
2393					break;
2394				case 5:
2395					small.push_back(-std::ldexp(1.0f, -128));
2396					zeros.push_back(-0.f);
2397					break;
2398			}
2399		}
2400
2401		spec.assembly = shader;
2402		spec.inputs.push_back(BufferSp(new Float32Buffer(small)));
2403		spec.outputs.push_back(BufferSp(new Float32Buffer(zeros)));
2404		spec.numWorkGroups = IVec3(numElements, 1, 1);
2405
2406		group->addChild(new SpvAsmComputeShaderCase(
2407			testCtx, "flush_to_zero", "Check that values are zeroed correctly", spec));
2408	}
2409
2410	{
2411		ComputeShaderSpec	spec;
2412		vector<float>		exact;
2413		const deUint32		numElements		= 200;
2414
2415		exact.reserve(numElements);
2416
2417		for (size_t idx = 0; idx < numElements; ++idx)
2418			exact.push_back(static_cast<float>(static_cast<int>(idx) - 100));
2419
2420		spec.assembly = shader;
2421		spec.inputs.push_back(BufferSp(new Float32Buffer(exact)));
2422		spec.outputs.push_back(BufferSp(new Float32Buffer(exact)));
2423		spec.numWorkGroups = IVec3(numElements, 1, 1);
2424
2425		group->addChild(new SpvAsmComputeShaderCase(
2426			testCtx, "exact", "Check that values exactly preserved where appropriate", spec));
2427	}
2428
2429	{
2430		ComputeShaderSpec	spec;
2431		vector<float>		inputs;
2432		const deUint32		numElements		= 4;
2433
2434		inputs.push_back(constructNormalizedFloat(8,	0x300300));
2435		inputs.push_back(-constructNormalizedFloat(-7,	0x600800));
2436		inputs.push_back(constructNormalizedFloat(2,	0x01E000));
2437		inputs.push_back(constructNormalizedFloat(1,	0xFFE000));
2438
2439		spec.assembly = shader;
2440		spec.verifyIO = &compareOpQuantizeF16ComputeExactCase;
2441		spec.inputs.push_back(BufferSp(new Float32Buffer(inputs)));
2442		spec.outputs.push_back(BufferSp(new Float32Buffer(inputs)));
2443		spec.numWorkGroups = IVec3(numElements, 1, 1);
2444
2445		group->addChild(new SpvAsmComputeShaderCase(
2446			testCtx, "rounded", "Check that are rounded when needed", spec));
2447	}
2448
2449	return group.release();
2450}
2451
2452// Performs a bitwise copy of source to the destination type Dest.
2453template <typename Dest, typename Src>
2454Dest bitwiseCast(Src source)
2455{
2456  Dest dest;
2457  DE_STATIC_ASSERT(sizeof(source) == sizeof(dest));
2458  deMemcpy(&dest, &source, sizeof(dest));
2459  return dest;
2460}
2461
2462tcu::TestCaseGroup* createSpecConstantOpQuantizeToF16Group (tcu::TestContext& testCtx)
2463{
2464	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opspecconstantop_opquantize", "Tests the OpQuantizeToF16 opcode for the OpSpecConstantOp instruction"));
2465
2466	const std::string shader (
2467		string(s_ShaderPreamble) +
2468
2469		"OpName %main           \"main\"\n"
2470		"OpName %id             \"gl_GlobalInvocationID\"\n"
2471
2472		"OpDecorate %id BuiltIn GlobalInvocationId\n"
2473
2474		"OpDecorate %sc_0  SpecId 0\n"
2475		"OpDecorate %sc_1  SpecId 1\n"
2476		"OpDecorate %sc_2  SpecId 2\n"
2477		"OpDecorate %sc_3  SpecId 3\n"
2478		"OpDecorate %sc_4  SpecId 4\n"
2479		"OpDecorate %sc_5  SpecId 5\n"
2480
2481		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
2482
2483		"%id        = OpVariable %uvec3ptr Input\n"
2484		"%zero      = OpConstant %i32 0\n"
2485		"%c_u32_6   = OpConstant %u32 6\n"
2486
2487		"%sc_0      = OpSpecConstant %f32 0.\n"
2488		"%sc_1      = OpSpecConstant %f32 0.\n"
2489		"%sc_2      = OpSpecConstant %f32 0.\n"
2490		"%sc_3      = OpSpecConstant %f32 0.\n"
2491		"%sc_4      = OpSpecConstant %f32 0.\n"
2492		"%sc_5      = OpSpecConstant %f32 0.\n"
2493
2494		"%sc_0_quant = OpSpecConstantOp %f32 QuantizeToF16 %sc_0\n"
2495		"%sc_1_quant = OpSpecConstantOp %f32 QuantizeToF16 %sc_1\n"
2496		"%sc_2_quant = OpSpecConstantOp %f32 QuantizeToF16 %sc_2\n"
2497		"%sc_3_quant = OpSpecConstantOp %f32 QuantizeToF16 %sc_3\n"
2498		"%sc_4_quant = OpSpecConstantOp %f32 QuantizeToF16 %sc_4\n"
2499		"%sc_5_quant = OpSpecConstantOp %f32 QuantizeToF16 %sc_5\n"
2500
2501		"%main      = OpFunction %void None %voidf\n"
2502		"%label     = OpLabel\n"
2503		"%idval     = OpLoad %uvec3 %id\n"
2504		"%x         = OpCompositeExtract %u32 %idval 0\n"
2505		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
2506		"%selector  = OpUMod %u32 %x %c_u32_6\n"
2507		"            OpSelectionMerge %exit None\n"
2508		"            OpSwitch %selector %exit 0 %case0 1 %case1 2 %case2 3 %case3 4 %case4 5 %case5\n"
2509
2510		"%case0     = OpLabel\n"
2511		"             OpStore %outloc %sc_0_quant\n"
2512		"             OpBranch %exit\n"
2513
2514		"%case1     = OpLabel\n"
2515		"             OpStore %outloc %sc_1_quant\n"
2516		"             OpBranch %exit\n"
2517
2518		"%case2     = OpLabel\n"
2519		"             OpStore %outloc %sc_2_quant\n"
2520		"             OpBranch %exit\n"
2521
2522		"%case3     = OpLabel\n"
2523		"             OpStore %outloc %sc_3_quant\n"
2524		"             OpBranch %exit\n"
2525
2526		"%case4     = OpLabel\n"
2527		"             OpStore %outloc %sc_4_quant\n"
2528		"             OpBranch %exit\n"
2529
2530		"%case5     = OpLabel\n"
2531		"             OpStore %outloc %sc_5_quant\n"
2532		"             OpBranch %exit\n"
2533
2534		"%exit      = OpLabel\n"
2535		"             OpReturn\n"
2536
2537		"             OpFunctionEnd\n");
2538
2539	{
2540		ComputeShaderSpec	spec;
2541		const deUint8		numCases	= 4;
2542		vector<float>		inputs		(numCases, 0.f);
2543		vector<float>		outputs;
2544
2545		spec.assembly		= shader;
2546		spec.numWorkGroups	= IVec3(numCases, 1, 1);
2547
2548		spec.specConstants.push_back(bitwiseCast<deUint32>(std::numeric_limits<float>::infinity()));
2549		spec.specConstants.push_back(bitwiseCast<deUint32>(-std::numeric_limits<float>::infinity()));
2550		spec.specConstants.push_back(bitwiseCast<deUint32>(std::ldexp(1.0f, 16)));
2551		spec.specConstants.push_back(bitwiseCast<deUint32>(std::ldexp(-1.0f, 32)));
2552
2553		outputs.push_back(std::numeric_limits<float>::infinity());
2554		outputs.push_back(-std::numeric_limits<float>::infinity());
2555		outputs.push_back(std::numeric_limits<float>::infinity());
2556		outputs.push_back(-std::numeric_limits<float>::infinity());
2557
2558		spec.inputs.push_back(BufferSp(new Float32Buffer(inputs)));
2559		spec.outputs.push_back(BufferSp(new Float32Buffer(outputs)));
2560
2561		group->addChild(new SpvAsmComputeShaderCase(
2562			testCtx, "infinities", "Check that infinities propagated and created", spec));
2563	}
2564
2565	{
2566		ComputeShaderSpec	spec;
2567		const deUint8		numCases	= 2;
2568		vector<float>		inputs		(numCases, 0.f);
2569		vector<float>		outputs;
2570
2571		spec.assembly		= shader;
2572		spec.numWorkGroups	= IVec3(numCases, 1, 1);
2573		spec.verifyIO		= &compareNan;
2574
2575		outputs.push_back(std::numeric_limits<float>::quiet_NaN());
2576		outputs.push_back(-std::numeric_limits<float>::quiet_NaN());
2577
2578		for (deUint8 idx = 0; idx < numCases; ++idx)
2579			spec.specConstants.push_back(bitwiseCast<deUint32>(outputs[idx]));
2580
2581		spec.inputs.push_back(BufferSp(new Float32Buffer(inputs)));
2582		spec.outputs.push_back(BufferSp(new Float32Buffer(outputs)));
2583
2584		group->addChild(new SpvAsmComputeShaderCase(
2585			testCtx, "propagated_nans", "Check that nans are propagated", spec));
2586	}
2587
2588	{
2589		ComputeShaderSpec	spec;
2590		const deUint8		numCases	= 6;
2591		vector<float>		inputs		(numCases, 0.f);
2592		vector<float>		outputs;
2593
2594		spec.assembly		= shader;
2595		spec.numWorkGroups	= IVec3(numCases, 1, 1);
2596
2597		spec.specConstants.push_back(bitwiseCast<deUint32>(0.f));
2598		spec.specConstants.push_back(bitwiseCast<deUint32>(-0.f));
2599		spec.specConstants.push_back(bitwiseCast<deUint32>(std::ldexp(1.0f, -16)));
2600		spec.specConstants.push_back(bitwiseCast<deUint32>(std::ldexp(-1.0f, -32)));
2601		spec.specConstants.push_back(bitwiseCast<deUint32>(std::ldexp(1.0f, -127)));
2602		spec.specConstants.push_back(bitwiseCast<deUint32>(-std::ldexp(1.0f, -128)));
2603
2604		outputs.push_back(0.f);
2605		outputs.push_back(-0.f);
2606		outputs.push_back(0.f);
2607		outputs.push_back(-0.f);
2608		outputs.push_back(0.f);
2609		outputs.push_back(-0.f);
2610
2611		spec.inputs.push_back(BufferSp(new Float32Buffer(inputs)));
2612		spec.outputs.push_back(BufferSp(new Float32Buffer(outputs)));
2613
2614		group->addChild(new SpvAsmComputeShaderCase(
2615			testCtx, "flush_to_zero", "Check that values are zeroed correctly", spec));
2616	}
2617
2618	{
2619		ComputeShaderSpec	spec;
2620		const deUint8		numCases	= 6;
2621		vector<float>		inputs		(numCases, 0.f);
2622		vector<float>		outputs;
2623
2624		spec.assembly		= shader;
2625		spec.numWorkGroups	= IVec3(numCases, 1, 1);
2626
2627		for (deUint8 idx = 0; idx < 6; ++idx)
2628		{
2629			const float f = static_cast<float>(idx * 10 - 30) / 4.f;
2630			spec.specConstants.push_back(bitwiseCast<deUint32>(f));
2631			outputs.push_back(f);
2632		}
2633
2634		spec.inputs.push_back(BufferSp(new Float32Buffer(inputs)));
2635		spec.outputs.push_back(BufferSp(new Float32Buffer(outputs)));
2636
2637		group->addChild(new SpvAsmComputeShaderCase(
2638			testCtx, "exact", "Check that values exactly preserved where appropriate", spec));
2639	}
2640
2641	{
2642		ComputeShaderSpec	spec;
2643		const deUint8		numCases	= 4;
2644		vector<float>		inputs		(numCases, 0.f);
2645		vector<float>		outputs;
2646
2647		spec.assembly		= shader;
2648		spec.numWorkGroups	= IVec3(numCases, 1, 1);
2649		spec.verifyIO		= &compareOpQuantizeF16ComputeExactCase;
2650
2651		outputs.push_back(constructNormalizedFloat(8, 0x300300));
2652		outputs.push_back(-constructNormalizedFloat(-7, 0x600800));
2653		outputs.push_back(constructNormalizedFloat(2, 0x01E000));
2654		outputs.push_back(constructNormalizedFloat(1, 0xFFE000));
2655
2656		for (deUint8 idx = 0; idx < numCases; ++idx)
2657			spec.specConstants.push_back(bitwiseCast<deUint32>(outputs[idx]));
2658
2659		spec.inputs.push_back(BufferSp(new Float32Buffer(inputs)));
2660		spec.outputs.push_back(BufferSp(new Float32Buffer(outputs)));
2661
2662		group->addChild(new SpvAsmComputeShaderCase(
2663			testCtx, "rounded", "Check that are rounded when needed", spec));
2664	}
2665
2666	return group.release();
2667}
2668
2669// Checks that constant null/composite values can be used in computation.
2670tcu::TestCaseGroup* createOpConstantUsageGroup (tcu::TestContext& testCtx)
2671{
2672	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opconstantnullcomposite", "Spotcheck the OpConstantNull & OpConstantComposite instruction"));
2673	ComputeShaderSpec				spec;
2674	de::Random						rnd				(deStringHash(group->getName()));
2675	const int						numElements		= 100;
2676	vector<float>					positiveFloats	(numElements, 0);
2677	vector<float>					negativeFloats	(numElements, 0);
2678
2679	fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
2680
2681	for (size_t ndx = 0; ndx < numElements; ++ndx)
2682		negativeFloats[ndx] = -positiveFloats[ndx];
2683
2684	spec.assembly =
2685		"OpCapability Shader\n"
2686		"%std450 = OpExtInstImport \"GLSL.std.450\"\n"
2687		"OpMemoryModel Logical GLSL450\n"
2688		"OpEntryPoint GLCompute %main \"main\" %id\n"
2689		"OpExecutionMode %main LocalSize 1 1 1\n"
2690
2691		"OpSource GLSL 430\n"
2692		"OpName %main           \"main\"\n"
2693		"OpName %id             \"gl_GlobalInvocationID\"\n"
2694
2695		"OpDecorate %id BuiltIn GlobalInvocationId\n"
2696
2697		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
2698
2699		"%fmat      = OpTypeMatrix %fvec3 3\n"
2700		"%ten       = OpConstant %u32 10\n"
2701		"%f32arr10  = OpTypeArray %f32 %ten\n"
2702		"%fst       = OpTypeStruct %f32 %f32\n"
2703
2704		+ string(s_InputOutputBuffer) +
2705
2706		"%id        = OpVariable %uvec3ptr Input\n"
2707		"%zero      = OpConstant %i32 0\n"
2708
2709		// Create a bunch of null values
2710		"%unull     = OpConstantNull %u32\n"
2711		"%fnull     = OpConstantNull %f32\n"
2712		"%vnull     = OpConstantNull %fvec3\n"
2713		"%mnull     = OpConstantNull %fmat\n"
2714		"%anull     = OpConstantNull %f32arr10\n"
2715		"%snull     = OpConstantComposite %fst %fnull %fnull\n"
2716
2717		"%main      = OpFunction %void None %voidf\n"
2718		"%label     = OpLabel\n"
2719		"%idval     = OpLoad %uvec3 %id\n"
2720		"%x         = OpCompositeExtract %u32 %idval 0\n"
2721		"%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
2722		"%inval     = OpLoad %f32 %inloc\n"
2723		"%neg       = OpFNegate %f32 %inval\n"
2724
2725		// Get the abs() of (a certain element of) those null values
2726		"%unull_cov = OpConvertUToF %f32 %unull\n"
2727		"%unull_abs = OpExtInst %f32 %std450 FAbs %unull_cov\n"
2728		"%fnull_abs = OpExtInst %f32 %std450 FAbs %fnull\n"
2729		"%vnull_0   = OpCompositeExtract %f32 %vnull 0\n"
2730		"%vnull_abs = OpExtInst %f32 %std450 FAbs %vnull_0\n"
2731		"%mnull_12  = OpCompositeExtract %f32 %mnull 1 2\n"
2732		"%mnull_abs = OpExtInst %f32 %std450 FAbs %mnull_12\n"
2733		"%anull_3   = OpCompositeExtract %f32 %anull 3\n"
2734		"%anull_abs = OpExtInst %f32 %std450 FAbs %anull_3\n"
2735		"%snull_1   = OpCompositeExtract %f32 %snull 1\n"
2736		"%snull_abs = OpExtInst %f32 %std450 FAbs %snull_1\n"
2737
2738		// Add them all
2739		"%add1      = OpFAdd %f32 %neg  %unull_abs\n"
2740		"%add2      = OpFAdd %f32 %add1 %fnull_abs\n"
2741		"%add3      = OpFAdd %f32 %add2 %vnull_abs\n"
2742		"%add4      = OpFAdd %f32 %add3 %mnull_abs\n"
2743		"%add5      = OpFAdd %f32 %add4 %anull_abs\n"
2744		"%final     = OpFAdd %f32 %add5 %snull_abs\n"
2745
2746		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
2747		"             OpStore %outloc %final\n" // write to output
2748		"             OpReturn\n"
2749		"             OpFunctionEnd\n";
2750	spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
2751	spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
2752	spec.numWorkGroups = IVec3(numElements, 1, 1);
2753
2754	group->addChild(new SpvAsmComputeShaderCase(testCtx, "spotcheck", "Check that values constructed via OpConstantNull & OpConstantComposite can be used", spec));
2755
2756	return group.release();
2757}
2758
2759// Assembly code used for testing loop control is based on GLSL source code:
2760// #version 430
2761//
2762// layout(std140, set = 0, binding = 0) readonly buffer Input {
2763//   float elements[];
2764// } input_data;
2765// layout(std140, set = 0, binding = 1) writeonly buffer Output {
2766//   float elements[];
2767// } output_data;
2768//
2769// void main() {
2770//   uint x = gl_GlobalInvocationID.x;
2771//   output_data.elements[x] = input_data.elements[x];
2772//   for (uint i = 0; i < 4; ++i)
2773//     output_data.elements[x] += 1.f;
2774// }
2775tcu::TestCaseGroup* createLoopControlGroup (tcu::TestContext& testCtx)
2776{
2777	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "loop_control", "Tests loop control cases"));
2778	vector<CaseParameter>			cases;
2779	de::Random						rnd				(deStringHash(group->getName()));
2780	const int						numElements		= 100;
2781	vector<float>					inputFloats		(numElements, 0);
2782	vector<float>					outputFloats	(numElements, 0);
2783	const StringTemplate			shaderTemplate	(
2784		string(s_ShaderPreamble) +
2785
2786		"OpSource GLSL 430\n"
2787		"OpName %main \"main\"\n"
2788		"OpName %id \"gl_GlobalInvocationID\"\n"
2789
2790		"OpDecorate %id BuiltIn GlobalInvocationId\n"
2791
2792		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
2793
2794		"%u32ptr      = OpTypePointer Function %u32\n"
2795
2796		"%id          = OpVariable %uvec3ptr Input\n"
2797		"%zero        = OpConstant %i32 0\n"
2798		"%uzero       = OpConstant %u32 0\n"
2799		"%one         = OpConstant %i32 1\n"
2800		"%constf1     = OpConstant %f32 1.0\n"
2801		"%four        = OpConstant %u32 4\n"
2802
2803		"%main        = OpFunction %void None %voidf\n"
2804		"%entry       = OpLabel\n"
2805		"%i           = OpVariable %u32ptr Function\n"
2806		"               OpStore %i %uzero\n"
2807
2808		"%idval       = OpLoad %uvec3 %id\n"
2809		"%x           = OpCompositeExtract %u32 %idval 0\n"
2810		"%inloc       = OpAccessChain %f32ptr %indata %zero %x\n"
2811		"%inval       = OpLoad %f32 %inloc\n"
2812		"%outloc      = OpAccessChain %f32ptr %outdata %zero %x\n"
2813		"               OpStore %outloc %inval\n"
2814		"               OpBranch %loop_entry\n"
2815
2816		"%loop_entry  = OpLabel\n"
2817		"%i_val       = OpLoad %u32 %i\n"
2818		"%cmp_lt      = OpULessThan %bool %i_val %four\n"
2819		"               OpLoopMerge %loop_merge %loop_entry ${CONTROL}\n"
2820		"               OpBranchConditional %cmp_lt %loop_body %loop_merge\n"
2821		"%loop_body   = OpLabel\n"
2822		"%outval      = OpLoad %f32 %outloc\n"
2823		"%addf1       = OpFAdd %f32 %outval %constf1\n"
2824		"               OpStore %outloc %addf1\n"
2825		"%new_i       = OpIAdd %u32 %i_val %one\n"
2826		"               OpStore %i %new_i\n"
2827		"               OpBranch %loop_entry\n"
2828		"%loop_merge  = OpLabel\n"
2829		"               OpReturn\n"
2830		"               OpFunctionEnd\n");
2831
2832	cases.push_back(CaseParameter("none",				"None"));
2833	cases.push_back(CaseParameter("unroll",				"Unroll"));
2834	cases.push_back(CaseParameter("dont_unroll",		"DontUnroll"));
2835	cases.push_back(CaseParameter("unroll_dont_unroll",	"Unroll|DontUnroll"));
2836
2837	fillRandomScalars(rnd, -100.f, 100.f, &inputFloats[0], numElements);
2838
2839	for (size_t ndx = 0; ndx < numElements; ++ndx)
2840		outputFloats[ndx] = inputFloats[ndx] + 4.f;
2841
2842	for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
2843	{
2844		map<string, string>		specializations;
2845		ComputeShaderSpec		spec;
2846
2847		specializations["CONTROL"] = cases[caseNdx].param;
2848		spec.assembly = shaderTemplate.specialize(specializations);
2849		spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
2850		spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
2851		spec.numWorkGroups = IVec3(numElements, 1, 1);
2852
2853		group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
2854	}
2855
2856	return group.release();
2857}
2858
2859// Assembly code used for testing selection control is based on GLSL source code:
2860// #version 430
2861//
2862// layout(std140, set = 0, binding = 0) readonly buffer Input {
2863//   float elements[];
2864// } input_data;
2865// layout(std140, set = 0, binding = 1) writeonly buffer Output {
2866//   float elements[];
2867// } output_data;
2868//
2869// void main() {
2870//   uint x = gl_GlobalInvocationID.x;
2871//   float val = input_data.elements[x];
2872//   if (val > 10.f)
2873//     output_data.elements[x] = val + 1.f;
2874//   else
2875//     output_data.elements[x] = val - 1.f;
2876// }
2877tcu::TestCaseGroup* createSelectionControlGroup (tcu::TestContext& testCtx)
2878{
2879	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "selection_control", "Tests selection control cases"));
2880	vector<CaseParameter>			cases;
2881	de::Random						rnd				(deStringHash(group->getName()));
2882	const int						numElements		= 100;
2883	vector<float>					inputFloats		(numElements, 0);
2884	vector<float>					outputFloats	(numElements, 0);
2885	const StringTemplate			shaderTemplate	(
2886		string(s_ShaderPreamble) +
2887
2888		"OpSource GLSL 430\n"
2889		"OpName %main \"main\"\n"
2890		"OpName %id \"gl_GlobalInvocationID\"\n"
2891
2892		"OpDecorate %id BuiltIn GlobalInvocationId\n"
2893
2894		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
2895
2896		"%id       = OpVariable %uvec3ptr Input\n"
2897		"%zero     = OpConstant %i32 0\n"
2898		"%constf1  = OpConstant %f32 1.0\n"
2899		"%constf10 = OpConstant %f32 10.0\n"
2900
2901		"%main     = OpFunction %void None %voidf\n"
2902		"%entry    = OpLabel\n"
2903		"%idval    = OpLoad %uvec3 %id\n"
2904		"%x        = OpCompositeExtract %u32 %idval 0\n"
2905		"%inloc    = OpAccessChain %f32ptr %indata %zero %x\n"
2906		"%inval    = OpLoad %f32 %inloc\n"
2907		"%outloc   = OpAccessChain %f32ptr %outdata %zero %x\n"
2908		"%cmp_gt   = OpFOrdGreaterThan %bool %inval %constf10\n"
2909
2910		"            OpSelectionMerge %if_end ${CONTROL}\n"
2911		"            OpBranchConditional %cmp_gt %if_true %if_false\n"
2912		"%if_true  = OpLabel\n"
2913		"%addf1    = OpFAdd %f32 %inval %constf1\n"
2914		"            OpStore %outloc %addf1\n"
2915		"            OpBranch %if_end\n"
2916		"%if_false = OpLabel\n"
2917		"%subf1    = OpFSub %f32 %inval %constf1\n"
2918		"            OpStore %outloc %subf1\n"
2919		"            OpBranch %if_end\n"
2920		"%if_end   = OpLabel\n"
2921		"            OpReturn\n"
2922		"            OpFunctionEnd\n");
2923
2924	cases.push_back(CaseParameter("none",					"None"));
2925	cases.push_back(CaseParameter("flatten",				"Flatten"));
2926	cases.push_back(CaseParameter("dont_flatten",			"DontFlatten"));
2927	cases.push_back(CaseParameter("flatten_dont_flatten",	"DontFlatten|Flatten"));
2928
2929	fillRandomScalars(rnd, -100.f, 100.f, &inputFloats[0], numElements);
2930
2931	for (size_t ndx = 0; ndx < numElements; ++ndx)
2932		outputFloats[ndx] = inputFloats[ndx] + (inputFloats[ndx] > 10.f ? 1.f : -1.f);
2933
2934	for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
2935	{
2936		map<string, string>		specializations;
2937		ComputeShaderSpec		spec;
2938
2939		specializations["CONTROL"] = cases[caseNdx].param;
2940		spec.assembly = shaderTemplate.specialize(specializations);
2941		spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
2942		spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
2943		spec.numWorkGroups = IVec3(numElements, 1, 1);
2944
2945		group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
2946	}
2947
2948	return group.release();
2949}
2950
2951// Assembly code used for testing function control is based on GLSL source code:
2952//
2953// #version 430
2954//
2955// layout(std140, set = 0, binding = 0) readonly buffer Input {
2956//   float elements[];
2957// } input_data;
2958// layout(std140, set = 0, binding = 1) writeonly buffer Output {
2959//   float elements[];
2960// } output_data;
2961//
2962// float const10() { return 10.f; }
2963//
2964// void main() {
2965//   uint x = gl_GlobalInvocationID.x;
2966//   output_data.elements[x] = input_data.elements[x] + const10();
2967// }
2968tcu::TestCaseGroup* createFunctionControlGroup (tcu::TestContext& testCtx)
2969{
2970	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "function_control", "Tests function control cases"));
2971	vector<CaseParameter>			cases;
2972	de::Random						rnd				(deStringHash(group->getName()));
2973	const int						numElements		= 100;
2974	vector<float>					inputFloats		(numElements, 0);
2975	vector<float>					outputFloats	(numElements, 0);
2976	const StringTemplate			shaderTemplate	(
2977		string(s_ShaderPreamble) +
2978
2979		"OpSource GLSL 430\n"
2980		"OpName %main \"main\"\n"
2981		"OpName %func_const10 \"const10(\"\n"
2982		"OpName %id \"gl_GlobalInvocationID\"\n"
2983
2984		"OpDecorate %id BuiltIn GlobalInvocationId\n"
2985
2986		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
2987
2988		"%f32f = OpTypeFunction %f32\n"
2989		"%id = OpVariable %uvec3ptr Input\n"
2990		"%zero = OpConstant %i32 0\n"
2991		"%constf10 = OpConstant %f32 10.0\n"
2992
2993		"%main         = OpFunction %void None %voidf\n"
2994		"%entry        = OpLabel\n"
2995		"%idval        = OpLoad %uvec3 %id\n"
2996		"%x            = OpCompositeExtract %u32 %idval 0\n"
2997		"%inloc        = OpAccessChain %f32ptr %indata %zero %x\n"
2998		"%inval        = OpLoad %f32 %inloc\n"
2999		"%ret_10       = OpFunctionCall %f32 %func_const10\n"
3000		"%fadd         = OpFAdd %f32 %inval %ret_10\n"
3001		"%outloc       = OpAccessChain %f32ptr %outdata %zero %x\n"
3002		"                OpStore %outloc %fadd\n"
3003		"                OpReturn\n"
3004		"                OpFunctionEnd\n"
3005
3006		"%func_const10 = OpFunction %f32 ${CONTROL} %f32f\n"
3007		"%label        = OpLabel\n"
3008		"                OpReturnValue %constf10\n"
3009		"                OpFunctionEnd\n");
3010
3011	cases.push_back(CaseParameter("none",						"None"));
3012	cases.push_back(CaseParameter("inline",						"Inline"));
3013	cases.push_back(CaseParameter("dont_inline",				"DontInline"));
3014	cases.push_back(CaseParameter("pure",						"Pure"));
3015	cases.push_back(CaseParameter("const",						"Const"));
3016	cases.push_back(CaseParameter("inline_pure",				"Inline|Pure"));
3017	cases.push_back(CaseParameter("const_dont_inline",			"Const|DontInline"));
3018	cases.push_back(CaseParameter("inline_dont_inline",			"Inline|DontInline"));
3019	cases.push_back(CaseParameter("pure_inline_dont_inline",	"Pure|Inline|DontInline"));
3020
3021	fillRandomScalars(rnd, -100.f, 100.f, &inputFloats[0], numElements);
3022
3023	for (size_t ndx = 0; ndx < numElements; ++ndx)
3024		outputFloats[ndx] = inputFloats[ndx] + 10.f;
3025
3026	for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
3027	{
3028		map<string, string>		specializations;
3029		ComputeShaderSpec		spec;
3030
3031		specializations["CONTROL"] = cases[caseNdx].param;
3032		spec.assembly = shaderTemplate.specialize(specializations);
3033		spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
3034		spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
3035		spec.numWorkGroups = IVec3(numElements, 1, 1);
3036
3037		group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
3038	}
3039
3040	return group.release();
3041}
3042
3043tcu::TestCaseGroup* createMemoryAccessGroup (tcu::TestContext& testCtx)
3044{
3045	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "memory_access", "Tests memory access cases"));
3046	vector<CaseParameter>			cases;
3047	de::Random						rnd				(deStringHash(group->getName()));
3048	const int						numElements		= 100;
3049	vector<float>					inputFloats		(numElements, 0);
3050	vector<float>					outputFloats	(numElements, 0);
3051	const StringTemplate			shaderTemplate	(
3052		string(s_ShaderPreamble) +
3053
3054		"OpSource GLSL 430\n"
3055		"OpName %main           \"main\"\n"
3056		"OpName %id             \"gl_GlobalInvocationID\"\n"
3057
3058		"OpDecorate %id BuiltIn GlobalInvocationId\n"
3059
3060		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
3061
3062		"%f32ptr_f  = OpTypePointer Function %f32\n"
3063
3064		"%id        = OpVariable %uvec3ptr Input\n"
3065		"%zero      = OpConstant %i32 0\n"
3066		"%four      = OpConstant %i32 4\n"
3067
3068		"%main      = OpFunction %void None %voidf\n"
3069		"%label     = OpLabel\n"
3070		"%copy      = OpVariable %f32ptr_f Function\n"
3071		"%idval     = OpLoad %uvec3 %id ${ACCESS}\n"
3072		"%x         = OpCompositeExtract %u32 %idval 0\n"
3073		"%inloc     = OpAccessChain %f32ptr %indata  %zero %x\n"
3074		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
3075		"             OpCopyMemory %copy %inloc ${ACCESS}\n"
3076		"%val1      = OpLoad %f32 %copy\n"
3077		"%val2      = OpLoad %f32 %inloc\n"
3078		"%add       = OpFAdd %f32 %val1 %val2\n"
3079		"             OpStore %outloc %add ${ACCESS}\n"
3080		"             OpReturn\n"
3081		"             OpFunctionEnd\n");
3082
3083	cases.push_back(CaseParameter("null",					""));
3084	cases.push_back(CaseParameter("none",					"None"));
3085	cases.push_back(CaseParameter("volatile",				"Volatile"));
3086	cases.push_back(CaseParameter("aligned",				"Aligned 4"));
3087	cases.push_back(CaseParameter("nontemporal",			"Nontemporal"));
3088	cases.push_back(CaseParameter("aligned_nontemporal",	"Aligned|Nontemporal 4"));
3089	cases.push_back(CaseParameter("aligned_volatile",		"Volatile|Aligned 4"));
3090
3091	fillRandomScalars(rnd, -100.f, 100.f, &inputFloats[0], numElements);
3092
3093	for (size_t ndx = 0; ndx < numElements; ++ndx)
3094		outputFloats[ndx] = inputFloats[ndx] + inputFloats[ndx];
3095
3096	for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
3097	{
3098		map<string, string>		specializations;
3099		ComputeShaderSpec		spec;
3100
3101		specializations["ACCESS"] = cases[caseNdx].param;
3102		spec.assembly = shaderTemplate.specialize(specializations);
3103		spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
3104		spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
3105		spec.numWorkGroups = IVec3(numElements, 1, 1);
3106
3107		group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
3108	}
3109
3110	return group.release();
3111}
3112
3113// Checks that we can get undefined values for various types, without exercising a computation with it.
3114tcu::TestCaseGroup* createOpUndefGroup (tcu::TestContext& testCtx)
3115{
3116	de::MovePtr<tcu::TestCaseGroup>	group			(new tcu::TestCaseGroup(testCtx, "opundef", "Tests the OpUndef instruction"));
3117	vector<CaseParameter>			cases;
3118	de::Random						rnd				(deStringHash(group->getName()));
3119	const int						numElements		= 100;
3120	vector<float>					positiveFloats	(numElements, 0);
3121	vector<float>					negativeFloats	(numElements, 0);
3122	const StringTemplate			shaderTemplate	(
3123		string(s_ShaderPreamble) +
3124
3125		"OpSource GLSL 430\n"
3126		"OpName %main           \"main\"\n"
3127		"OpName %id             \"gl_GlobalInvocationID\"\n"
3128
3129		"OpDecorate %id BuiltIn GlobalInvocationId\n"
3130
3131		+ string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
3132
3133		"${TYPE}\n"
3134
3135		"%id        = OpVariable %uvec3ptr Input\n"
3136		"%zero      = OpConstant %i32 0\n"
3137
3138		"%main      = OpFunction %void None %voidf\n"
3139		"%label     = OpLabel\n"
3140
3141		"%undef     = OpUndef %type\n"
3142
3143		"%idval     = OpLoad %uvec3 %id\n"
3144		"%x         = OpCompositeExtract %u32 %idval 0\n"
3145
3146		"%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
3147		"%inval     = OpLoad %f32 %inloc\n"
3148		"%neg       = OpFNegate %f32 %inval\n"
3149		"%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
3150		"             OpStore %outloc %neg\n"
3151		"             OpReturn\n"
3152		"             OpFunctionEnd\n");
3153
3154	cases.push_back(CaseParameter("bool",			"%type = OpTypeBool"));
3155	cases.push_back(CaseParameter("sint32",			"%type = OpTypeInt 32 1"));
3156	cases.push_back(CaseParameter("uint32",			"%type = OpTypeInt 32 0"));
3157	cases.push_back(CaseParameter("float32",		"%type = OpTypeFloat 32"));
3158	cases.push_back(CaseParameter("vec4float32",	"%type = OpTypeVector %f32 4"));
3159	cases.push_back(CaseParameter("vec2uint32",		"%type = OpTypeVector %u32 2"));
3160	cases.push_back(CaseParameter("matrix",			"%type = OpTypeMatrix %fvec3 3"));
3161	cases.push_back(CaseParameter("image",			"%type = OpTypeImage %f32 2D 0 0 0 1 Unknown"));
3162	cases.push_back(CaseParameter("sampler",		"%type = OpTypeSampler"));
3163	cases.push_back(CaseParameter("sampledimage",	"%img = OpTypeImage %f32 2D 0 0 0 1 Unknown\n"
3164													"%type = OpTypeSampledImage %img"));
3165	cases.push_back(CaseParameter("array",			"%100 = OpConstant %u32 100\n"
3166													"%type = OpTypeArray %i32 %100"));
3167	cases.push_back(CaseParameter("runtimearray",	"%type = OpTypeRuntimeArray %f32"));
3168	cases.push_back(CaseParameter("struct",			"%type = OpTypeStruct %f32 %i32 %u32"));
3169	cases.push_back(CaseParameter("pointer",		"%type = OpTypePointer Function %i32"));
3170
3171	fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
3172
3173	for (size_t ndx = 0; ndx < numElements; ++ndx)
3174		negativeFloats[ndx] = -positiveFloats[ndx];
3175
3176	for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
3177	{
3178		map<string, string>		specializations;
3179		ComputeShaderSpec		spec;
3180
3181		specializations["TYPE"] = cases[caseNdx].param;
3182		spec.assembly = shaderTemplate.specialize(specializations);
3183		spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
3184		spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
3185		spec.numWorkGroups = IVec3(numElements, 1, 1);
3186
3187		group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
3188	}
3189
3190		return group.release();
3191}
3192typedef std::pair<std::string, VkShaderStageFlagBits>	EntryToStage;
3193typedef map<string, vector<EntryToStage> >				ModuleMap;
3194typedef map<VkShaderStageFlagBits, vector<deInt32> >	StageToSpecConstantMap;
3195
3196// Context for a specific test instantiation. For example, an instantiation
3197// may test colors yellow/magenta/cyan/mauve in a tesselation shader
3198// with an entry point named 'main_to_the_main'
3199struct InstanceContext
3200{
3201	// Map of modules to what entry_points we care to use from those modules.
3202	ModuleMap				moduleMap;
3203	RGBA					inputColors[4];
3204	RGBA					outputColors[4];
3205	// Concrete SPIR-V code to test via boilerplate specialization.
3206	map<string, string>		testCodeFragments;
3207	StageToSpecConstantMap	specConstants;
3208	bool					hasTessellation;
3209	VkShaderStageFlagBits	requiredStages;
3210
3211	InstanceContext (const RGBA (&inputs)[4], const RGBA (&outputs)[4], const map<string, string>& testCodeFragments_, const StageToSpecConstantMap& specConstants_)
3212		: testCodeFragments		(testCodeFragments_)
3213		, specConstants			(specConstants_)
3214		, hasTessellation		(false)
3215		, requiredStages		(static_cast<VkShaderStageFlagBits>(0))
3216	{
3217		inputColors[0]		= inputs[0];
3218		inputColors[1]		= inputs[1];
3219		inputColors[2]		= inputs[2];
3220		inputColors[3]		= inputs[3];
3221
3222		outputColors[0]		= outputs[0];
3223		outputColors[1]		= outputs[1];
3224		outputColors[2]		= outputs[2];
3225		outputColors[3]		= outputs[3];
3226	}
3227
3228	InstanceContext (const InstanceContext& other)
3229		: moduleMap			(other.moduleMap)
3230		, testCodeFragments	(other.testCodeFragments)
3231		, specConstants		(other.specConstants)
3232		, hasTessellation	(other.hasTessellation)
3233		, requiredStages    (other.requiredStages)
3234	{
3235		inputColors[0]		= other.inputColors[0];
3236		inputColors[1]		= other.inputColors[1];
3237		inputColors[2]		= other.inputColors[2];
3238		inputColors[3]		= other.inputColors[3];
3239
3240		outputColors[0]		= other.outputColors[0];
3241		outputColors[1]		= other.outputColors[1];
3242		outputColors[2]		= other.outputColors[2];
3243		outputColors[3]		= other.outputColors[3];
3244	}
3245};
3246
3247// A description of a shader to be used for a single stage of the graphics pipeline.
3248struct ShaderElement
3249{
3250	// The module that contains this shader entrypoint.
3251	string					moduleName;
3252
3253	// The name of the entrypoint.
3254	string					entryName;
3255
3256	// Which shader stage this entry point represents.
3257	VkShaderStageFlagBits	stage;
3258
3259	ShaderElement (const string& moduleName_, const string& entryPoint_, VkShaderStageFlagBits shaderStage_)
3260		: moduleName(moduleName_)
3261		, entryName(entryPoint_)
3262		, stage(shaderStage_)
3263	{
3264	}
3265};
3266
3267void getDefaultColors (RGBA (&colors)[4])
3268{
3269	colors[0] = RGBA::white();
3270	colors[1] = RGBA::red();
3271	colors[2] = RGBA::green();
3272	colors[3] = RGBA::blue();
3273}
3274
3275void getHalfColorsFullAlpha (RGBA (&colors)[4])
3276{
3277	colors[0] = RGBA(127, 127, 127, 255);
3278	colors[1] = RGBA(127, 0,   0,	255);
3279	colors[2] = RGBA(0,	  127, 0,	255);
3280	colors[3] = RGBA(0,	  0,   127, 255);
3281}
3282
3283void getInvertedDefaultColors (RGBA (&colors)[4])
3284{
3285	colors[0] = RGBA(0,		0,		0,		255);
3286	colors[1] = RGBA(0,		255,	255,	255);
3287	colors[2] = RGBA(255,	0,		255,	255);
3288	colors[3] = RGBA(255,	255,	0,		255);
3289}
3290
3291// Turns a statically sized array of ShaderElements into an instance-context
3292// by setting up the mapping of modules to their contained shaders and stages.
3293// The inputs and expected outputs are given by inputColors and outputColors
3294template<size_t N>
3295InstanceContext createInstanceContext (const ShaderElement (&elements)[N], const RGBA (&inputColors)[4], const RGBA (&outputColors)[4], const map<string, string>& testCodeFragments, const StageToSpecConstantMap& specConstants)
3296{
3297	InstanceContext ctx (inputColors, outputColors, testCodeFragments, specConstants);
3298	for (size_t i = 0; i < N; ++i)
3299	{
3300		ctx.moduleMap[elements[i].moduleName].push_back(std::make_pair(elements[i].entryName, elements[i].stage));
3301		ctx.requiredStages = static_cast<VkShaderStageFlagBits>(ctx.requiredStages | elements[i].stage);
3302	}
3303	return ctx;
3304}
3305
3306template<size_t N>
3307inline InstanceContext createInstanceContext (const ShaderElement (&elements)[N], RGBA (&inputColors)[4], const RGBA (&outputColors)[4], const map<string, string>& testCodeFragments)
3308{
3309	return createInstanceContext(elements, inputColors, outputColors, testCodeFragments, StageToSpecConstantMap());
3310}
3311
3312// The same as createInstanceContext above, but with default colors.
3313template<size_t N>
3314InstanceContext createInstanceContext (const ShaderElement (&elements)[N], const map<string, string>& testCodeFragments)
3315{
3316	RGBA defaultColors[4];
3317	getDefaultColors(defaultColors);
3318	return createInstanceContext(elements, defaultColors, defaultColors, testCodeFragments);
3319}
3320
3321// For the current InstanceContext, constructs the required modules and shader stage create infos.
3322void createPipelineShaderStages (const DeviceInterface& vk, const VkDevice vkDevice, InstanceContext& instance, Context& context, vector<ModuleHandleSp>& modules, vector<VkPipelineShaderStageCreateInfo>& createInfos)
3323{
3324	for (ModuleMap::const_iterator moduleNdx = instance.moduleMap.begin(); moduleNdx != instance.moduleMap.end(); ++moduleNdx)
3325	{
3326		const ModuleHandleSp mod(new Unique<VkShaderModule>(createShaderModule(vk, vkDevice, context.getBinaryCollection().get(moduleNdx->first), 0)));
3327		modules.push_back(ModuleHandleSp(mod));
3328		for (vector<EntryToStage>::const_iterator shaderNdx = moduleNdx->second.begin(); shaderNdx != moduleNdx->second.end(); ++shaderNdx)
3329		{
3330			const EntryToStage&						stage			= *shaderNdx;
3331			const VkPipelineShaderStageCreateInfo	shaderParam		=
3332			{
3333				VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,	//	VkStructureType			sType;
3334				DE_NULL,												//	const void*				pNext;
3335				(VkPipelineShaderStageCreateFlags)0,
3336				stage.second,											//	VkShaderStageFlagBits	stage;
3337				**modules.back(),										//	VkShaderModule			module;
3338				stage.first.c_str(),									//	const char*				pName;
3339				(const VkSpecializationInfo*)DE_NULL,
3340			};
3341			createInfos.push_back(shaderParam);
3342		}
3343	}
3344}
3345
3346#define SPIRV_ASSEMBLY_TYPES																	\
3347	"%void = OpTypeVoid\n"																		\
3348	"%bool = OpTypeBool\n"																		\
3349																								\
3350	"%i32 = OpTypeInt 32 1\n"																	\
3351	"%u32 = OpTypeInt 32 0\n"																	\
3352																								\
3353	"%f32 = OpTypeFloat 32\n"																	\
3354	"%v3f32 = OpTypeVector %f32 3\n"															\
3355	"%v4f32 = OpTypeVector %f32 4\n"															\
3356	"%v4bool = OpTypeVector %bool 4\n"															\
3357																								\
3358	"%v4f32_function = OpTypeFunction %v4f32 %v4f32\n"											\
3359	"%fun = OpTypeFunction %void\n"																\
3360																								\
3361	"%ip_f32 = OpTypePointer Input %f32\n"														\
3362	"%ip_i32 = OpTypePointer Input %i32\n"														\
3363	"%ip_v3f32 = OpTypePointer Input %v3f32\n"													\
3364	"%ip_v4f32 = OpTypePointer Input %v4f32\n"													\
3365																								\
3366	"%op_f32 = OpTypePointer Output %f32\n"														\
3367	"%op_v4f32 = OpTypePointer Output %v4f32\n"													\
3368																								\
3369	"%fp_f32   = OpTypePointer Function %f32\n"													\
3370	"%fp_i32   = OpTypePointer Function %i32\n"													\
3371	"%fp_v4f32 = OpTypePointer Function %v4f32\n"
3372
3373#define SPIRV_ASSEMBLY_CONSTANTS																\
3374	"%c_f32_1 = OpConstant %f32 1.0\n"															\
3375	"%c_f32_0 = OpConstant %f32 0.0\n"															\
3376	"%c_f32_0_5 = OpConstant %f32 0.5\n"														\
3377	"%c_f32_n1  = OpConstant %f32 -1.\n"														\
3378	"%c_f32_7 = OpConstant %f32 7.0\n"															\
3379	"%c_f32_8 = OpConstant %f32 8.0\n"															\
3380	"%c_i32_0 = OpConstant %i32 0\n"															\
3381	"%c_i32_1 = OpConstant %i32 1\n"															\
3382	"%c_i32_2 = OpConstant %i32 2\n"															\
3383	"%c_i32_3 = OpConstant %i32 3\n"															\
3384	"%c_i32_4 = OpConstant %i32 4\n"															\
3385	"%c_u32_0 = OpConstant %u32 0\n"															\
3386	"%c_u32_1 = OpConstant %u32 1\n"															\
3387	"%c_u32_2 = OpConstant %u32 2\n"															\
3388	"%c_u32_3 = OpConstant %u32 3\n"															\
3389	"%c_u32_32 = OpConstant %u32 32\n"															\
3390	"%c_u32_4 = OpConstant %u32 4\n"															\
3391	"%c_u32_31_bits = OpConstant %u32 0x7FFFFFFF\n"												\
3392	"%c_v4f32_1_1_1_1 = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_1\n"		\
3393	"%c_v4f32_1_0_0_1 = OpConstantComposite %v4f32 %c_f32_1 %c_f32_0 %c_f32_0 %c_f32_1\n"		\
3394	"%c_v4f32_0_5_0_5_0_5_0_5 = OpConstantComposite %v4f32 %c_f32_0_5 %c_f32_0_5 %c_f32_0_5 %c_f32_0_5\n"
3395
3396#define SPIRV_ASSEMBLY_ARRAYS																	\
3397	"%a1f32 = OpTypeArray %f32 %c_u32_1\n"														\
3398	"%a2f32 = OpTypeArray %f32 %c_u32_2\n"														\
3399	"%a3v4f32 = OpTypeArray %v4f32 %c_u32_3\n"													\
3400	"%a4f32 = OpTypeArray %f32 %c_u32_4\n"														\
3401	"%a32v4f32 = OpTypeArray %v4f32 %c_u32_32\n"												\
3402	"%ip_a3v4f32 = OpTypePointer Input %a3v4f32\n"												\
3403	"%ip_a32v4f32 = OpTypePointer Input %a32v4f32\n"											\
3404	"%op_a2f32 = OpTypePointer Output %a2f32\n"													\
3405	"%op_a3v4f32 = OpTypePointer Output %a3v4f32\n"												\
3406	"%op_a4f32 = OpTypePointer Output %a4f32\n"
3407
3408// Creates vertex-shader assembly by specializing a boilerplate StringTemplate
3409// on fragments, which must (at least) map "testfun" to an OpFunction definition
3410// for %test_code that takes and returns a %v4f32.  Boilerplate IDs are prefixed
3411// with "BP_" to avoid collisions with fragments.
3412//
3413// It corresponds roughly to this GLSL:
3414//;
3415// layout(location = 0) in vec4 position;
3416// layout(location = 1) in vec4 color;
3417// layout(location = 1) out highp vec4 vtxColor;
3418// void main (void) { gl_Position = position; vtxColor = test_func(color); }
3419string makeVertexShaderAssembly(const map<string, string>& fragments)
3420{
3421// \todo [2015-11-23 awoloszyn] Remove OpName once these have stabalized
3422	static const char vertexShaderBoilerplate[] =
3423		"OpCapability Shader\n"
3424		"OpCapability ClipDistance\n"
3425		"OpCapability CullDistance\n"
3426		"OpMemoryModel Logical GLSL450\n"
3427		"OpEntryPoint Vertex %main \"main\" %BP_stream %BP_position %BP_vtx_color %BP_color %BP_gl_VertexIndex %BP_gl_InstanceIndex\n"
3428		"${debug:opt}\n"
3429		"OpName %main \"main\"\n"
3430		"OpName %BP_gl_PerVertex \"gl_PerVertex\"\n"
3431		"OpMemberName %BP_gl_PerVertex 0 \"gl_Position\"\n"
3432		"OpMemberName %BP_gl_PerVertex 1 \"gl_PointSize\"\n"
3433		"OpMemberName %BP_gl_PerVertex 2 \"gl_ClipDistance\"\n"
3434		"OpMemberName %BP_gl_PerVertex 3 \"gl_CullDistance\"\n"
3435		"OpName %test_code \"testfun(vf4;\"\n"
3436		"OpName %BP_stream \"\"\n"
3437		"OpName %BP_position \"position\"\n"
3438		"OpName %BP_vtx_color \"vtxColor\"\n"
3439		"OpName %BP_color \"color\"\n"
3440		"OpName %BP_gl_VertexIndex \"gl_VertexIndex\"\n"
3441		"OpName %BP_gl_InstanceIndex \"gl_InstanceIndex\"\n"
3442		"OpMemberDecorate %BP_gl_PerVertex 0 BuiltIn Position\n"
3443		"OpMemberDecorate %BP_gl_PerVertex 1 BuiltIn PointSize\n"
3444		"OpMemberDecorate %BP_gl_PerVertex 2 BuiltIn ClipDistance\n"
3445		"OpMemberDecorate %BP_gl_PerVertex 3 BuiltIn CullDistance\n"
3446		"OpDecorate %BP_gl_PerVertex Block\n"
3447		"OpDecorate %BP_position Location 0\n"
3448		"OpDecorate %BP_vtx_color Location 1\n"
3449		"OpDecorate %BP_color Location 1\n"
3450		"OpDecorate %BP_gl_VertexIndex BuiltIn VertexIndex\n"
3451		"OpDecorate %BP_gl_InstanceIndex BuiltIn InstanceIndex\n"
3452		"${decoration:opt}\n"
3453		SPIRV_ASSEMBLY_TYPES
3454		SPIRV_ASSEMBLY_CONSTANTS
3455		SPIRV_ASSEMBLY_ARRAYS
3456		"%BP_gl_PerVertex = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
3457		"%BP_op_gl_PerVertex = OpTypePointer Output %BP_gl_PerVertex\n"
3458		"%BP_stream = OpVariable %BP_op_gl_PerVertex Output\n"
3459		"%BP_position = OpVariable %ip_v4f32 Input\n"
3460		"%BP_vtx_color = OpVariable %op_v4f32 Output\n"
3461		"%BP_color = OpVariable %ip_v4f32 Input\n"
3462		"%BP_gl_VertexIndex = OpVariable %ip_i32 Input\n"
3463		"%BP_gl_InstanceIndex = OpVariable %ip_i32 Input\n"
3464		"${pre_main:opt}\n"
3465		"%main = OpFunction %void None %fun\n"
3466		"%BP_label = OpLabel\n"
3467		"%BP_pos = OpLoad %v4f32 %BP_position\n"
3468		"%BP_gl_pos = OpAccessChain %op_v4f32 %BP_stream %c_i32_0\n"
3469		"OpStore %BP_gl_pos %BP_pos\n"
3470		"%BP_col = OpLoad %v4f32 %BP_color\n"
3471		"%BP_col_transformed = OpFunctionCall %v4f32 %test_code %BP_col\n"
3472		"OpStore %BP_vtx_color %BP_col_transformed\n"
3473		"OpReturn\n"
3474		"OpFunctionEnd\n"
3475		"${testfun}\n";
3476	return tcu::StringTemplate(vertexShaderBoilerplate).specialize(fragments);
3477}
3478
3479// Creates tess-control-shader assembly by specializing a boilerplate
3480// StringTemplate on fragments, which must (at least) map "testfun" to an
3481// OpFunction definition for %test_code that takes and returns a %v4f32.
3482// Boilerplate IDs are prefixed with "BP_" to avoid collisions with fragments.
3483//
3484// It roughly corresponds to the following GLSL.
3485//
3486// #version 450
3487// layout(vertices = 3) out;
3488// layout(location = 1) in vec4 in_color[];
3489// layout(location = 1) out vec4 out_color[];
3490//
3491// void main() {
3492//   out_color[gl_InvocationID] = testfun(in_color[gl_InvocationID]);
3493//   gl_out[gl_InvocationID].gl_Position = gl_in[gl_InvocationID].gl_Position;
3494//   if (gl_InvocationID == 0) {
3495//     gl_TessLevelOuter[0] = 1.0;
3496//     gl_TessLevelOuter[1] = 1.0;
3497//     gl_TessLevelOuter[2] = 1.0;
3498//     gl_TessLevelInner[0] = 1.0;
3499//   }
3500// }
3501string makeTessControlShaderAssembly (const map<string, string>& fragments)
3502{
3503	static const char tessControlShaderBoilerplate[] =
3504		"OpCapability Tessellation\n"
3505		"OpCapability ClipDistance\n"
3506		"OpCapability CullDistance\n"
3507		"OpMemoryModel Logical GLSL450\n"
3508		"OpEntryPoint TessellationControl %BP_main \"main\" %BP_out_color %BP_gl_InvocationID %BP_in_color %BP_gl_out %BP_gl_in %BP_gl_TessLevelOuter %BP_gl_TessLevelInner\n"
3509		"OpExecutionMode %BP_main OutputVertices 3\n"
3510		"${debug:opt}\n"
3511		"OpName %BP_main \"main\"\n"
3512		"OpName %test_code \"testfun(vf4;\"\n"
3513		"OpName %BP_out_color \"out_color\"\n"
3514		"OpName %BP_gl_InvocationID \"gl_InvocationID\"\n"
3515		"OpName %BP_in_color \"in_color\"\n"
3516		"OpName %BP_gl_PerVertex \"gl_PerVertex\"\n"
3517		"OpMemberName %BP_gl_PerVertex 0 \"gl_Position\"\n"
3518		"OpMemberName %BP_gl_PerVertex 1 \"gl_PointSize\"\n"
3519		"OpMemberName %BP_gl_PerVertex 2 \"gl_ClipDistance\"\n"
3520		"OpMemberName %BP_gl_PerVertex 3 \"gl_CullDistance\"\n"
3521		"OpName %BP_gl_out \"gl_out\"\n"
3522		"OpName %BP_gl_PVOut \"gl_PerVertex\"\n"
3523		"OpMemberName %BP_gl_PVOut 0 \"gl_Position\"\n"
3524		"OpMemberName %BP_gl_PVOut 1 \"gl_PointSize\"\n"
3525		"OpMemberName %BP_gl_PVOut 2 \"gl_ClipDistance\"\n"
3526		"OpMemberName %BP_gl_PVOut 3 \"gl_CullDistance\"\n"
3527		"OpName %BP_gl_in \"gl_in\"\n"
3528		"OpName %BP_gl_TessLevelOuter \"gl_TessLevelOuter\"\n"
3529		"OpName %BP_gl_TessLevelInner \"gl_TessLevelInner\"\n"
3530		"OpDecorate %BP_out_color Location 1\n"
3531		"OpDecorate %BP_gl_InvocationID BuiltIn InvocationId\n"
3532		"OpDecorate %BP_in_color Location 1\n"
3533		"OpMemberDecorate %BP_gl_PerVertex 0 BuiltIn Position\n"
3534		"OpMemberDecorate %BP_gl_PerVertex 1 BuiltIn PointSize\n"
3535		"OpMemberDecorate %BP_gl_PerVertex 2 BuiltIn ClipDistance\n"
3536		"OpMemberDecorate %BP_gl_PerVertex 3 BuiltIn CullDistance\n"
3537		"OpDecorate %BP_gl_PerVertex Block\n"
3538		"OpMemberDecorate %BP_gl_PVOut 0 BuiltIn Position\n"
3539		"OpMemberDecorate %BP_gl_PVOut 1 BuiltIn PointSize\n"
3540		"OpMemberDecorate %BP_gl_PVOut 2 BuiltIn ClipDistance\n"
3541		"OpMemberDecorate %BP_gl_PVOut 3 BuiltIn CullDistance\n"
3542		"OpDecorate %BP_gl_PVOut Block\n"
3543		"OpDecorate %BP_gl_TessLevelOuter Patch\n"
3544		"OpDecorate %BP_gl_TessLevelOuter BuiltIn TessLevelOuter\n"
3545		"OpDecorate %BP_gl_TessLevelInner Patch\n"
3546		"OpDecorate %BP_gl_TessLevelInner BuiltIn TessLevelInner\n"
3547		"${decoration:opt}\n"
3548		SPIRV_ASSEMBLY_TYPES
3549		SPIRV_ASSEMBLY_CONSTANTS
3550		SPIRV_ASSEMBLY_ARRAYS
3551		"%BP_out_color = OpVariable %op_a3v4f32 Output\n"
3552		"%BP_gl_InvocationID = OpVariable %ip_i32 Input\n"
3553		"%BP_in_color = OpVariable %ip_a32v4f32 Input\n"
3554		"%BP_gl_PerVertex = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
3555		"%BP_a3_gl_PerVertex = OpTypeArray %BP_gl_PerVertex %c_u32_3\n"
3556		"%BP_op_a3_gl_PerVertex = OpTypePointer Output %BP_a3_gl_PerVertex\n"
3557		"%BP_gl_out = OpVariable %BP_op_a3_gl_PerVertex Output\n"
3558		"%BP_gl_PVOut = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
3559		"%BP_a32_gl_PVOut = OpTypeArray %BP_gl_PVOut %c_u32_32\n"
3560		"%BP_ip_a32_gl_PVOut = OpTypePointer Input %BP_a32_gl_PVOut\n"
3561		"%BP_gl_in = OpVariable %BP_ip_a32_gl_PVOut Input\n"
3562		"%BP_gl_TessLevelOuter = OpVariable %op_a4f32 Output\n"
3563		"%BP_gl_TessLevelInner = OpVariable %op_a2f32 Output\n"
3564		"${pre_main:opt}\n"
3565
3566		"%BP_main = OpFunction %void None %fun\n"
3567		"%BP_label = OpLabel\n"
3568
3569		"%BP_gl_Invoc = OpLoad %i32 %BP_gl_InvocationID\n"
3570
3571		"%BP_in_col_loc = OpAccessChain %ip_v4f32 %BP_in_color %BP_gl_Invoc\n"
3572		"%BP_out_col_loc = OpAccessChain %op_v4f32 %BP_out_color %BP_gl_Invoc\n"
3573		"%BP_in_col_val = OpLoad %v4f32 %BP_in_col_loc\n"
3574		"%BP_clr_transformed = OpFunctionCall %v4f32 %test_code %BP_in_col_val\n"
3575		"OpStore %BP_out_col_loc %BP_clr_transformed\n"
3576
3577		"%BP_in_pos_loc = OpAccessChain %ip_v4f32 %BP_gl_in %BP_gl_Invoc %c_i32_0\n"
3578		"%BP_out_pos_loc = OpAccessChain %op_v4f32 %BP_gl_out %BP_gl_Invoc %c_i32_0\n"
3579		"%BP_in_pos_val = OpLoad %v4f32 %BP_in_pos_loc\n"
3580		"OpStore %BP_out_pos_loc %BP_in_pos_val\n"
3581
3582		"%BP_cmp = OpIEqual %bool %BP_gl_Invoc %c_i32_0\n"
3583		"OpSelectionMerge %BP_merge_label None\n"
3584		"OpBranchConditional %BP_cmp %BP_if_label %BP_merge_label\n"
3585		"%BP_if_label = OpLabel\n"
3586		"%BP_gl_TessLevelOuterPos_0 = OpAccessChain %op_f32 %BP_gl_TessLevelOuter %c_i32_0\n"
3587		"%BP_gl_TessLevelOuterPos_1 = OpAccessChain %op_f32 %BP_gl_TessLevelOuter %c_i32_1\n"
3588		"%BP_gl_TessLevelOuterPos_2 = OpAccessChain %op_f32 %BP_gl_TessLevelOuter %c_i32_2\n"
3589		"%BP_gl_TessLevelInnerPos_0 = OpAccessChain %op_f32 %BP_gl_TessLevelInner %c_i32_0\n"
3590		"OpStore %BP_gl_TessLevelOuterPos_0 %c_f32_1\n"
3591		"OpStore %BP_gl_TessLevelOuterPos_1 %c_f32_1\n"
3592		"OpStore %BP_gl_TessLevelOuterPos_2 %c_f32_1\n"
3593		"OpStore %BP_gl_TessLevelInnerPos_0 %c_f32_1\n"
3594		"OpBranch %BP_merge_label\n"
3595		"%BP_merge_label = OpLabel\n"
3596		"OpReturn\n"
3597		"OpFunctionEnd\n"
3598		"${testfun}\n";
3599	return tcu::StringTemplate(tessControlShaderBoilerplate).specialize(fragments);
3600}
3601
3602// Creates tess-evaluation-shader assembly by specializing a boilerplate
3603// StringTemplate on fragments, which must (at least) map "testfun" to an
3604// OpFunction definition for %test_code that takes and returns a %v4f32.
3605// Boilerplate IDs are prefixed with "BP_" to avoid collisions with fragments.
3606//
3607// It roughly corresponds to the following glsl.
3608//
3609// #version 450
3610//
3611// layout(triangles, equal_spacing, ccw) in;
3612// layout(location = 1) in vec4 in_color[];
3613// layout(location = 1) out vec4 out_color;
3614//
3615// #define interpolate(val)
3616//   vec4(gl_TessCoord.x) * val[0] + vec4(gl_TessCoord.y) * val[1] +
3617//          vec4(gl_TessCoord.z) * val[2]
3618//
3619// void main() {
3620//   gl_Position = vec4(gl_TessCoord.x) * gl_in[0].gl_Position +
3621//                  vec4(gl_TessCoord.y) * gl_in[1].gl_Position +
3622//                  vec4(gl_TessCoord.z) * gl_in[2].gl_Position;
3623//   out_color = testfun(interpolate(in_color));
3624// }
3625string makeTessEvalShaderAssembly(const map<string, string>& fragments)
3626{
3627	static const char tessEvalBoilerplate[] =
3628		"OpCapability Tessellation\n"
3629		"OpCapability ClipDistance\n"
3630		"OpCapability CullDistance\n"
3631		"OpMemoryModel Logical GLSL450\n"
3632		"OpEntryPoint TessellationEvaluation %BP_main \"main\" %BP_stream %BP_gl_TessCoord %BP_gl_in %BP_out_color %BP_in_color\n"
3633		"OpExecutionMode %BP_main Triangles\n"
3634		"OpExecutionMode %BP_main SpacingEqual\n"
3635		"OpExecutionMode %BP_main VertexOrderCcw\n"
3636		"${debug:opt}\n"
3637		"OpName %BP_main \"main\"\n"
3638		"OpName %test_code \"testfun(vf4;\"\n"
3639		"OpName %BP_gl_PerVertexOut \"gl_PerVertex\"\n"
3640		"OpMemberName %BP_gl_PerVertexOut 0 \"gl_Position\"\n"
3641		"OpMemberName %BP_gl_PerVertexOut 1 \"gl_PointSize\"\n"
3642		"OpMemberName %BP_gl_PerVertexOut 2 \"gl_ClipDistance\"\n"
3643		"OpMemberName %BP_gl_PerVertexOut 3 \"gl_CullDistance\"\n"
3644		"OpName %BP_stream \"\"\n"
3645		"OpName %BP_gl_TessCoord \"gl_TessCoord\"\n"
3646		"OpName %BP_gl_PerVertexIn \"gl_PerVertex\"\n"
3647		"OpMemberName %BP_gl_PerVertexIn 0 \"gl_Position\"\n"
3648		"OpMemberName %BP_gl_PerVertexIn 1 \"gl_PointSize\"\n"
3649		"OpMemberName %BP_gl_PerVertexIn 2 \"gl_ClipDistance\"\n"
3650		"OpMemberName %BP_gl_PerVertexIn 3 \"gl_CullDistance\"\n"
3651		"OpName %BP_gl_in \"gl_in\"\n"
3652		"OpName %BP_out_color \"out_color\"\n"
3653		"OpName %BP_in_color \"in_color\"\n"
3654		"OpMemberDecorate %BP_gl_PerVertexOut 0 BuiltIn Position\n"
3655		"OpMemberDecorate %BP_gl_PerVertexOut 1 BuiltIn PointSize\n"
3656		"OpMemberDecorate %BP_gl_PerVertexOut 2 BuiltIn ClipDistance\n"
3657		"OpMemberDecorate %BP_gl_PerVertexOut 3 BuiltIn CullDistance\n"
3658		"OpDecorate %BP_gl_PerVertexOut Block\n"
3659		"OpDecorate %BP_gl_TessCoord BuiltIn TessCoord\n"
3660		"OpMemberDecorate %BP_gl_PerVertexIn 0 BuiltIn Position\n"
3661		"OpMemberDecorate %BP_gl_PerVertexIn 1 BuiltIn PointSize\n"
3662		"OpMemberDecorate %BP_gl_PerVertexIn 2 BuiltIn ClipDistance\n"
3663		"OpMemberDecorate %BP_gl_PerVertexIn 3 BuiltIn CullDistance\n"
3664		"OpDecorate %BP_gl_PerVertexIn Block\n"
3665		"OpDecorate %BP_out_color Location 1\n"
3666		"OpDecorate %BP_in_color Location 1\n"
3667		"${decoration:opt}\n"
3668		SPIRV_ASSEMBLY_TYPES
3669		SPIRV_ASSEMBLY_CONSTANTS
3670		SPIRV_ASSEMBLY_ARRAYS
3671		"%BP_gl_PerVertexOut = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
3672		"%BP_op_gl_PerVertexOut = OpTypePointer Output %BP_gl_PerVertexOut\n"
3673		"%BP_stream = OpVariable %BP_op_gl_PerVertexOut Output\n"
3674		"%BP_gl_TessCoord = OpVariable %ip_v3f32 Input\n"
3675		"%BP_gl_PerVertexIn = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
3676		"%BP_a32_gl_PerVertexIn = OpTypeArray %BP_gl_PerVertexIn %c_u32_32\n"
3677		"%BP_ip_a32_gl_PerVertexIn = OpTypePointer Input %BP_a32_gl_PerVertexIn\n"
3678		"%BP_gl_in = OpVariable %BP_ip_a32_gl_PerVertexIn Input\n"
3679		"%BP_out_color = OpVariable %op_v4f32 Output\n"
3680		"%BP_in_color = OpVariable %ip_a32v4f32 Input\n"
3681		"${pre_main:opt}\n"
3682		"%BP_main = OpFunction %void None %fun\n"
3683		"%BP_label = OpLabel\n"
3684		"%BP_gl_TC_0 = OpAccessChain %ip_f32 %BP_gl_TessCoord %c_u32_0\n"
3685		"%BP_gl_TC_1 = OpAccessChain %ip_f32 %BP_gl_TessCoord %c_u32_1\n"
3686		"%BP_gl_TC_2 = OpAccessChain %ip_f32 %BP_gl_TessCoord %c_u32_2\n"
3687		"%BP_gl_in_gl_Pos_0 = OpAccessChain %ip_v4f32 %BP_gl_in %c_i32_0 %c_i32_0\n"
3688		"%BP_gl_in_gl_Pos_1 = OpAccessChain %ip_v4f32 %BP_gl_in %c_i32_1 %c_i32_0\n"
3689		"%BP_gl_in_gl_Pos_2 = OpAccessChain %ip_v4f32 %BP_gl_in %c_i32_2 %c_i32_0\n"
3690
3691		"%BP_gl_OPos = OpAccessChain %op_v4f32 %BP_stream %c_i32_0\n"
3692		"%BP_in_color_0 = OpAccessChain %ip_v4f32 %BP_in_color %c_i32_0\n"
3693		"%BP_in_color_1 = OpAccessChain %ip_v4f32 %BP_in_color %c_i32_1\n"
3694		"%BP_in_color_2 = OpAccessChain %ip_v4f32 %BP_in_color %c_i32_2\n"
3695
3696		"%BP_TC_W_0 = OpLoad %f32 %BP_gl_TC_0\n"
3697		"%BP_TC_W_1 = OpLoad %f32 %BP_gl_TC_1\n"
3698		"%BP_TC_W_2 = OpLoad %f32 %BP_gl_TC_2\n"
3699		"%BP_v4f32_TC_0 = OpCompositeConstruct %v4f32 %BP_TC_W_0 %BP_TC_W_0 %BP_TC_W_0 %BP_TC_W_0\n"
3700		"%BP_v4f32_TC_1 = OpCompositeConstruct %v4f32 %BP_TC_W_1 %BP_TC_W_1 %BP_TC_W_1 %BP_TC_W_1\n"
3701		"%BP_v4f32_TC_2 = OpCompositeConstruct %v4f32 %BP_TC_W_2 %BP_TC_W_2 %BP_TC_W_2 %BP_TC_W_2\n"
3702
3703		"%BP_gl_IP_0 = OpLoad %v4f32 %BP_gl_in_gl_Pos_0\n"
3704		"%BP_gl_IP_1 = OpLoad %v4f32 %BP_gl_in_gl_Pos_1\n"
3705		"%BP_gl_IP_2 = OpLoad %v4f32 %BP_gl_in_gl_Pos_2\n"
3706
3707		"%BP_IP_W_0 = OpFMul %v4f32 %BP_v4f32_TC_0 %BP_gl_IP_0\n"
3708		"%BP_IP_W_1 = OpFMul %v4f32 %BP_v4f32_TC_1 %BP_gl_IP_1\n"
3709		"%BP_IP_W_2 = OpFMul %v4f32 %BP_v4f32_TC_2 %BP_gl_IP_2\n"
3710
3711		"%BP_pos_sum_0 = OpFAdd %v4f32 %BP_IP_W_0 %BP_IP_W_1\n"
3712		"%BP_pos_sum_1 = OpFAdd %v4f32 %BP_pos_sum_0 %BP_IP_W_2\n"
3713
3714		"OpStore %BP_gl_OPos %BP_pos_sum_1\n"
3715
3716		"%BP_IC_0 = OpLoad %v4f32 %BP_in_color_0\n"
3717		"%BP_IC_1 = OpLoad %v4f32 %BP_in_color_1\n"
3718		"%BP_IC_2 = OpLoad %v4f32 %BP_in_color_2\n"
3719
3720		"%BP_IC_W_0 = OpFMul %v4f32 %BP_v4f32_TC_0 %BP_IC_0\n"
3721		"%BP_IC_W_1 = OpFMul %v4f32 %BP_v4f32_TC_1 %BP_IC_1\n"
3722		"%BP_IC_W_2 = OpFMul %v4f32 %BP_v4f32_TC_2 %BP_IC_2\n"
3723
3724		"%BP_col_sum_0 = OpFAdd %v4f32 %BP_IC_W_0 %BP_IC_W_1\n"
3725		"%BP_col_sum_1 = OpFAdd %v4f32 %BP_col_sum_0 %BP_IC_W_2\n"
3726
3727		"%BP_clr_transformed = OpFunctionCall %v4f32 %test_code %BP_col_sum_1\n"
3728
3729		"OpStore %BP_out_color %BP_clr_transformed\n"
3730		"OpReturn\n"
3731		"OpFunctionEnd\n"
3732		"${testfun}\n";
3733	return tcu::StringTemplate(tessEvalBoilerplate).specialize(fragments);
3734}
3735
3736// Creates geometry-shader assembly by specializing a boilerplate StringTemplate
3737// on fragments, which must (at least) map "testfun" to an OpFunction definition
3738// for %test_code that takes and returns a %v4f32.  Boilerplate IDs are prefixed
3739// with "BP_" to avoid collisions with fragments.
3740//
3741// Derived from this GLSL:
3742//
3743// #version 450
3744// layout(triangles) in;
3745// layout(triangle_strip, max_vertices = 3) out;
3746//
3747// layout(location = 1) in vec4 in_color[];
3748// layout(location = 1) out vec4 out_color;
3749//
3750// void main() {
3751//   gl_Position = gl_in[0].gl_Position;
3752//   out_color = test_fun(in_color[0]);
3753//   EmitVertex();
3754//   gl_Position = gl_in[1].gl_Position;
3755//   out_color = test_fun(in_color[1]);
3756//   EmitVertex();
3757//   gl_Position = gl_in[2].gl_Position;
3758//   out_color = test_fun(in_color[2]);
3759//   EmitVertex();
3760//   EndPrimitive();
3761// }
3762string makeGeometryShaderAssembly(const map<string, string>& fragments)
3763{
3764	static const char geometryShaderBoilerplate[] =
3765		"OpCapability Geometry\n"
3766		"OpCapability ClipDistance\n"
3767		"OpCapability CullDistance\n"
3768		"OpMemoryModel Logical GLSL450\n"
3769		"OpEntryPoint Geometry %BP_main \"main\" %BP_out_gl_position %BP_gl_in %BP_out_color %BP_in_color\n"
3770		"OpExecutionMode %BP_main Triangles\n"
3771		"OpExecutionMode %BP_main Invocations 0\n"
3772		"OpExecutionMode %BP_main OutputTriangleStrip\n"
3773		"OpExecutionMode %BP_main OutputVertices 3\n"
3774		"${debug:opt}\n"
3775		"OpName %BP_main \"main\"\n"
3776		"OpName %BP_per_vertex_in \"gl_PerVertex\"\n"
3777		"OpMemberName %BP_per_vertex_in 0 \"gl_Position\"\n"
3778		"OpMemberName %BP_per_vertex_in 1 \"gl_PointSize\"\n"
3779		"OpMemberName %BP_per_vertex_in 2 \"gl_ClipDistance\"\n"
3780		"OpMemberName %BP_per_vertex_in 3 \"gl_CullDistance\"\n"
3781		"OpName %BP_gl_in \"gl_in\"\n"
3782		"OpName %BP_out_color \"out_color\"\n"
3783		"OpName %BP_in_color \"in_color\"\n"
3784		"OpName %test_code \"testfun(vf4;\"\n"
3785		"OpDecorate %BP_out_gl_position BuiltIn Position\n"
3786		"OpMemberDecorate %BP_per_vertex_in 0 BuiltIn Position\n"
3787		"OpMemberDecorate %BP_per_vertex_in 1 BuiltIn PointSize\n"
3788		"OpMemberDecorate %BP_per_vertex_in 2 BuiltIn ClipDistance\n"
3789		"OpMemberDecorate %BP_per_vertex_in 3 BuiltIn CullDistance\n"
3790		"OpDecorate %BP_per_vertex_in Block\n"
3791		"OpDecorate %BP_out_color Location 1\n"
3792		"OpDecorate %BP_in_color Location 1\n"
3793		"${decoration:opt}\n"
3794		SPIRV_ASSEMBLY_TYPES
3795		SPIRV_ASSEMBLY_CONSTANTS
3796		SPIRV_ASSEMBLY_ARRAYS
3797		"%BP_per_vertex_in = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
3798		"%BP_a3_per_vertex_in = OpTypeArray %BP_per_vertex_in %c_u32_3\n"
3799		"%BP_ip_a3_per_vertex_in = OpTypePointer Input %BP_a3_per_vertex_in\n"
3800
3801		"%BP_gl_in = OpVariable %BP_ip_a3_per_vertex_in Input\n"
3802		"%BP_out_color = OpVariable %op_v4f32 Output\n"
3803		"%BP_in_color = OpVariable %ip_a3v4f32 Input\n"
3804		"%BP_out_gl_position = OpVariable %op_v4f32 Output\n"
3805		"${pre_main:opt}\n"
3806
3807		"%BP_main = OpFunction %void None %fun\n"
3808		"%BP_label = OpLabel\n"
3809		"%BP_gl_in_0_gl_position = OpAccessChain %ip_v4f32 %BP_gl_in %c_i32_0 %c_i32_0\n"
3810		"%BP_gl_in_1_gl_position = OpAccessChain %ip_v4f32 %BP_gl_in %c_i32_1 %c_i32_0\n"
3811		"%BP_gl_in_2_gl_position = OpAccessChain %ip_v4f32 %BP_gl_in %c_i32_2 %c_i32_0\n"
3812
3813		"%BP_in_position_0 = OpLoad %v4f32 %BP_gl_in_0_gl_position\n"
3814		"%BP_in_position_1 = OpLoad %v4f32 %BP_gl_in_1_gl_position\n"
3815		"%BP_in_position_2 = OpLoad %v4f32 %BP_gl_in_2_gl_position \n"
3816
3817		"%BP_in_color_0_ptr = OpAccessChain %ip_v4f32 %BP_in_color %c_i32_0\n"
3818		"%BP_in_color_1_ptr = OpAccessChain %ip_v4f32 %BP_in_color %c_i32_1\n"
3819		"%BP_in_color_2_ptr = OpAccessChain %ip_v4f32 %BP_in_color %c_i32_2\n"
3820
3821		"%BP_in_color_0 = OpLoad %v4f32 %BP_in_color_0_ptr\n"
3822		"%BP_in_color_1 = OpLoad %v4f32 %BP_in_color_1_ptr\n"
3823		"%BP_in_color_2 = OpLoad %v4f32 %BP_in_color_2_ptr\n"
3824
3825		"%BP_transformed_in_color_0 = OpFunctionCall %v4f32 %test_code %BP_in_color_0\n"
3826		"%BP_transformed_in_color_1 = OpFunctionCall %v4f32 %test_code %BP_in_color_1\n"
3827		"%BP_transformed_in_color_2 = OpFunctionCall %v4f32 %test_code %BP_in_color_2\n"
3828
3829
3830		"OpStore %BP_out_gl_position %BP_in_position_0\n"
3831		"OpStore %BP_out_color %BP_transformed_in_color_0\n"
3832		"OpEmitVertex\n"
3833
3834		"OpStore %BP_out_gl_position %BP_in_position_1\n"
3835		"OpStore %BP_out_color %BP_transformed_in_color_1\n"
3836		"OpEmitVertex\n"
3837
3838		"OpStore %BP_out_gl_position %BP_in_position_2\n"
3839		"OpStore %BP_out_color %BP_transformed_in_color_2\n"
3840		"OpEmitVertex\n"
3841
3842		"OpEndPrimitive\n"
3843		"OpReturn\n"
3844		"OpFunctionEnd\n"
3845		"${testfun}\n";
3846	return tcu::StringTemplate(geometryShaderBoilerplate).specialize(fragments);
3847}
3848
3849// Creates fragment-shader assembly by specializing a boilerplate StringTemplate
3850// on fragments, which must (at least) map "testfun" to an OpFunction definition
3851// for %test_code that takes and returns a %v4f32.  Boilerplate IDs are prefixed
3852// with "BP_" to avoid collisions with fragments.
3853//
3854// Derived from this GLSL:
3855//
3856// layout(location = 1) in highp vec4 vtxColor;
3857// layout(location = 0) out highp vec4 fragColor;
3858// highp vec4 testfun(highp vec4 x) { return x; }
3859// void main(void) { fragColor = testfun(vtxColor); }
3860//
3861// with modifications including passing vtxColor by value and ripping out
3862// testfun() definition.
3863string makeFragmentShaderAssembly(const map<string, string>& fragments)
3864{
3865	static const char fragmentShaderBoilerplate[] =
3866		"OpCapability Shader\n"
3867		"OpMemoryModel Logical GLSL450\n"
3868		"OpEntryPoint Fragment %BP_main \"main\" %BP_vtxColor %BP_fragColor\n"
3869		"OpExecutionMode %BP_main OriginUpperLeft\n"
3870		"${debug:opt}\n"
3871		"OpName %BP_main \"main\"\n"
3872		"OpName %BP_fragColor \"fragColor\"\n"
3873		"OpName %BP_vtxColor \"vtxColor\"\n"
3874		"OpName %test_code \"testfun(vf4;\"\n"
3875		"OpDecorate %BP_fragColor Location 0\n"
3876		"OpDecorate %BP_vtxColor Location 1\n"
3877		"${decoration:opt}\n"
3878		SPIRV_ASSEMBLY_TYPES
3879		SPIRV_ASSEMBLY_CONSTANTS
3880		SPIRV_ASSEMBLY_ARRAYS
3881		"%BP_fragColor = OpVariable %op_v4f32 Output\n"
3882		"%BP_vtxColor = OpVariable %ip_v4f32 Input\n"
3883		"${pre_main:opt}\n"
3884		"%BP_main = OpFunction %void None %fun\n"
3885		"%BP_label_main = OpLabel\n"
3886		"%BP_tmp1 = OpLoad %v4f32 %BP_vtxColor\n"
3887		"%BP_tmp2 = OpFunctionCall %v4f32 %test_code %BP_tmp1\n"
3888		"OpStore %BP_fragColor %BP_tmp2\n"
3889		"OpReturn\n"
3890		"OpFunctionEnd\n"
3891		"${testfun}\n";
3892	return tcu::StringTemplate(fragmentShaderBoilerplate).specialize(fragments);
3893}
3894
3895// Creates fragments that specialize into a simple pass-through shader (of any kind).
3896map<string, string> passthruFragments(void)
3897{
3898	map<string, string> fragments;
3899	fragments["testfun"] =
3900		// A %test_code function that returns its argument unchanged.
3901		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
3902		"%param1 = OpFunctionParameter %v4f32\n"
3903		"%label_testfun = OpLabel\n"
3904		"OpReturnValue %param1\n"
3905		"OpFunctionEnd\n";
3906	return fragments;
3907}
3908
3909// Adds shader assembly text to dst.spirvAsmSources for all shader kinds.
3910// Vertex shader gets custom code from context, the rest are pass-through.
3911void addShaderCodeCustomVertex(vk::SourceCollections& dst, InstanceContext context)
3912{
3913	map<string, string> passthru = passthruFragments();
3914	dst.spirvAsmSources.add("vert") << makeVertexShaderAssembly(context.testCodeFragments);
3915	dst.spirvAsmSources.add("frag") << makeFragmentShaderAssembly(passthru);
3916}
3917
3918// Adds shader assembly text to dst.spirvAsmSources for all shader kinds.
3919// Tessellation control shader gets custom code from context, the rest are
3920// pass-through.
3921void addShaderCodeCustomTessControl(vk::SourceCollections& dst, InstanceContext context)
3922{
3923	map<string, string> passthru = passthruFragments();
3924	dst.spirvAsmSources.add("vert") << makeVertexShaderAssembly(passthru);
3925	dst.spirvAsmSources.add("tessc") << makeTessControlShaderAssembly(context.testCodeFragments);
3926	dst.spirvAsmSources.add("tesse") << makeTessEvalShaderAssembly(passthru);
3927	dst.spirvAsmSources.add("frag") << makeFragmentShaderAssembly(passthru);
3928}
3929
3930// Adds shader assembly text to dst.spirvAsmSources for all shader kinds.
3931// Tessellation evaluation shader gets custom code from context, the rest are
3932// pass-through.
3933void addShaderCodeCustomTessEval(vk::SourceCollections& dst, InstanceContext context)
3934{
3935	map<string, string> passthru = passthruFragments();
3936	dst.spirvAsmSources.add("vert") << makeVertexShaderAssembly(passthru);
3937	dst.spirvAsmSources.add("tessc") << makeTessControlShaderAssembly(passthru);
3938	dst.spirvAsmSources.add("tesse") << makeTessEvalShaderAssembly(context.testCodeFragments);
3939	dst.spirvAsmSources.add("frag") << makeFragmentShaderAssembly(passthru);
3940}
3941
3942// Adds shader assembly text to dst.spirvAsmSources for all shader kinds.
3943// Geometry shader gets custom code from context, the rest are pass-through.
3944void addShaderCodeCustomGeometry(vk::SourceCollections& dst, InstanceContext context)
3945{
3946	map<string, string> passthru = passthruFragments();
3947	dst.spirvAsmSources.add("vert") << makeVertexShaderAssembly(passthru);
3948	dst.spirvAsmSources.add("geom") << makeGeometryShaderAssembly(context.testCodeFragments);
3949	dst.spirvAsmSources.add("frag") << makeFragmentShaderAssembly(passthru);
3950}
3951
3952// Adds shader assembly text to dst.spirvAsmSources for all shader kinds.
3953// Fragment shader gets custom code from context, the rest are pass-through.
3954void addShaderCodeCustomFragment(vk::SourceCollections& dst, InstanceContext context)
3955{
3956	map<string, string> passthru = passthruFragments();
3957	dst.spirvAsmSources.add("vert") << makeVertexShaderAssembly(passthru);
3958	dst.spirvAsmSources.add("frag") << makeFragmentShaderAssembly(context.testCodeFragments);
3959}
3960
3961void createCombinedModule(vk::SourceCollections& dst, InstanceContext)
3962{
3963	// \todo [2015-12-07 awoloszyn] Make tessellation / geometry conditional
3964	// \todo [2015-12-07 awoloszyn] Remove OpName and OpMemberName at some point
3965	dst.spirvAsmSources.add("module") <<
3966		"OpCapability Shader\n"
3967		"OpCapability ClipDistance\n"
3968		"OpCapability CullDistance\n"
3969		"OpCapability Geometry\n"
3970		"OpCapability Tessellation\n"
3971		"OpMemoryModel Logical GLSL450\n"
3972
3973		"OpEntryPoint Vertex %vert_main \"main\" %vert_Position %vert_vtxColor %vert_color %vert_vtxPosition %vert_vertex_id %vert_instance_id\n"
3974		"OpEntryPoint Geometry %geom_main \"main\" %geom_out_gl_position %geom_gl_in %geom_out_color %geom_in_color\n"
3975		"OpEntryPoint TessellationControl %tessc_main \"main\" %tessc_out_color %tessc_gl_InvocationID %tessc_in_color %tessc_out_position %tessc_in_position %tessc_gl_TessLevelOuter %tessc_gl_TessLevelInner\n"
3976		"OpEntryPoint TessellationEvaluation %tesse_main \"main\" %tesse_stream %tesse_gl_tessCoord %tesse_in_position %tesse_out_color %tesse_in_color \n"
3977		"OpEntryPoint Fragment %frag_main \"main\" %frag_vtxColor %frag_fragColor\n"
3978
3979		"OpExecutionMode %geom_main Triangles\n"
3980		"OpExecutionMode %geom_main Invocations 0\n"
3981		"OpExecutionMode %geom_main OutputTriangleStrip\n"
3982		"OpExecutionMode %geom_main OutputVertices 3\n"
3983
3984		"OpExecutionMode %tessc_main OutputVertices 3\n"
3985
3986		"OpExecutionMode %tesse_main Triangles\n"
3987
3988		"OpExecutionMode %frag_main OriginUpperLeft\n"
3989
3990		"OpName %vert_main \"main\"\n"
3991		"OpName %vert_vtxPosition \"vtxPosition\"\n"
3992		"OpName %vert_Position \"position\"\n"
3993		"OpName %vert_vtxColor \"vtxColor\"\n"
3994		"OpName %vert_color \"color\"\n"
3995		"OpName %vert_vertex_id \"gl_VertexIndex\"\n"
3996		"OpName %vert_instance_id \"gl_InstanceIndex\"\n"
3997		"OpName %geom_main \"main\"\n"
3998		"OpName %geom_per_vertex_in \"gl_PerVertex\"\n"
3999		"OpMemberName %geom_per_vertex_in 0 \"gl_Position\"\n"
4000		"OpMemberName %geom_per_vertex_in 1 \"gl_PointSize\"\n"
4001		"OpMemberName %geom_per_vertex_in 2 \"gl_ClipDistance\"\n"
4002		"OpMemberName %geom_per_vertex_in 3 \"gl_CullDistance\"\n"
4003		"OpName %geom_gl_in \"gl_in\"\n"
4004		"OpName %geom_out_color \"out_color\"\n"
4005		"OpName %geom_in_color \"in_color\"\n"
4006		"OpName %tessc_main \"main\"\n"
4007		"OpName %tessc_out_color \"out_color\"\n"
4008		"OpName %tessc_gl_InvocationID \"gl_InvocationID\"\n"
4009		"OpName %tessc_in_color \"in_color\"\n"
4010		"OpName %tessc_out_position \"out_position\"\n"
4011		"OpName %tessc_in_position \"in_position\"\n"
4012		"OpName %tessc_gl_TessLevelOuter \"gl_TessLevelOuter\"\n"
4013		"OpName %tessc_gl_TessLevelInner \"gl_TessLevelInner\"\n"
4014		"OpName %tesse_main \"main\"\n"
4015		"OpName %tesse_per_vertex_out \"gl_PerVertex\"\n"
4016		"OpMemberName %tesse_per_vertex_out 0 \"gl_Position\"\n"
4017		"OpMemberName %tesse_per_vertex_out 1 \"gl_PointSize\"\n"
4018		"OpMemberName %tesse_per_vertex_out 2 \"gl_ClipDistance\"\n"
4019		"OpMemberName %tesse_per_vertex_out 3 \"gl_CullDistance\"\n"
4020		"OpName %tesse_stream \"\"\n"
4021		"OpName %tesse_gl_tessCoord \"gl_TessCoord\"\n"
4022		"OpName %tesse_in_position \"in_position\"\n"
4023		"OpName %tesse_out_color \"out_color\"\n"
4024		"OpName %tesse_in_color \"in_color\"\n"
4025		"OpName %frag_main \"main\"\n"
4026		"OpName %frag_fragColor \"fragColor\"\n"
4027		"OpName %frag_vtxColor \"vtxColor\"\n"
4028
4029		"; Vertex decorations\n"
4030		"OpDecorate %vert_vtxPosition Location 2\n"
4031		"OpDecorate %vert_Position Location 0\n"
4032		"OpDecorate %vert_vtxColor Location 1\n"
4033		"OpDecorate %vert_color Location 1\n"
4034		"OpDecorate %vert_vertex_id BuiltIn VertexIndex\n"
4035		"OpDecorate %vert_instance_id BuiltIn InstanceIndex\n"
4036
4037		"; Geometry decorations\n"
4038		"OpDecorate %geom_out_gl_position BuiltIn Position\n"
4039		"OpMemberDecorate %geom_per_vertex_in 0 BuiltIn Position\n"
4040		"OpMemberDecorate %geom_per_vertex_in 1 BuiltIn PointSize\n"
4041		"OpMemberDecorate %geom_per_vertex_in 2 BuiltIn ClipDistance\n"
4042		"OpMemberDecorate %geom_per_vertex_in 3 BuiltIn CullDistance\n"
4043		"OpDecorate %geom_per_vertex_in Block\n"
4044		"OpDecorate %geom_out_color Location 1\n"
4045		"OpDecorate %geom_in_color Location 1\n"
4046
4047		"; Tessellation Control decorations\n"
4048		"OpDecorate %tessc_out_color Location 1\n"
4049		"OpDecorate %tessc_gl_InvocationID BuiltIn InvocationId\n"
4050		"OpDecorate %tessc_in_color Location 1\n"
4051		"OpDecorate %tessc_out_position Location 2\n"
4052		"OpDecorate %tessc_in_position Location 2\n"
4053		"OpDecorate %tessc_gl_TessLevelOuter Patch\n"
4054		"OpDecorate %tessc_gl_TessLevelOuter BuiltIn TessLevelOuter\n"
4055		"OpDecorate %tessc_gl_TessLevelInner Patch\n"
4056		"OpDecorate %tessc_gl_TessLevelInner BuiltIn TessLevelInner\n"
4057
4058		"; Tessellation Evaluation decorations\n"
4059		"OpMemberDecorate %tesse_per_vertex_out 0 BuiltIn Position\n"
4060		"OpMemberDecorate %tesse_per_vertex_out 1 BuiltIn PointSize\n"
4061		"OpMemberDecorate %tesse_per_vertex_out 2 BuiltIn ClipDistance\n"
4062		"OpMemberDecorate %tesse_per_vertex_out 3 BuiltIn CullDistance\n"
4063		"OpDecorate %tesse_per_vertex_out Block\n"
4064		"OpDecorate %tesse_gl_tessCoord BuiltIn TessCoord\n"
4065		"OpDecorate %tesse_in_position Location 2\n"
4066		"OpDecorate %tesse_out_color Location 1\n"
4067		"OpDecorate %tesse_in_color Location 1\n"
4068
4069		"; Fragment decorations\n"
4070		"OpDecorate %frag_fragColor Location 0\n"
4071		"OpDecorate %frag_vtxColor Location 1\n"
4072
4073		SPIRV_ASSEMBLY_TYPES
4074		SPIRV_ASSEMBLY_CONSTANTS
4075		SPIRV_ASSEMBLY_ARRAYS
4076
4077		"; Vertex Variables\n"
4078		"%vert_vtxPosition = OpVariable %op_v4f32 Output\n"
4079		"%vert_Position = OpVariable %ip_v4f32 Input\n"
4080		"%vert_vtxColor = OpVariable %op_v4f32 Output\n"
4081		"%vert_color = OpVariable %ip_v4f32 Input\n"
4082		"%vert_vertex_id = OpVariable %ip_i32 Input\n"
4083		"%vert_instance_id = OpVariable %ip_i32 Input\n"
4084
4085		"; Geometry Variables\n"
4086		"%geom_per_vertex_in = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
4087		"%geom_a3_per_vertex_in = OpTypeArray %geom_per_vertex_in %c_u32_3\n"
4088		"%geom_ip_a3_per_vertex_in = OpTypePointer Input %geom_a3_per_vertex_in\n"
4089		"%geom_gl_in = OpVariable %geom_ip_a3_per_vertex_in Input\n"
4090		"%geom_out_color = OpVariable %op_v4f32 Output\n"
4091		"%geom_in_color = OpVariable %ip_a3v4f32 Input\n"
4092		"%geom_out_gl_position = OpVariable %op_v4f32 Output\n"
4093
4094		"; Tessellation Control Variables\n"
4095		"%tessc_out_color = OpVariable %op_a3v4f32 Output\n"
4096		"%tessc_gl_InvocationID = OpVariable %ip_i32 Input\n"
4097		"%tessc_in_color = OpVariable %ip_a32v4f32 Input\n"
4098		"%tessc_out_position = OpVariable %op_a3v4f32 Output\n"
4099		"%tessc_in_position = OpVariable %ip_a32v4f32 Input\n"
4100		"%tessc_gl_TessLevelOuter = OpVariable %op_a4f32 Output\n"
4101		"%tessc_gl_TessLevelInner = OpVariable %op_a2f32 Output\n"
4102
4103		"; Tessellation Evaluation Decorations\n"
4104		"%tesse_per_vertex_out = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
4105		"%tesse_op_per_vertex_out = OpTypePointer Output %tesse_per_vertex_out\n"
4106		"%tesse_stream = OpVariable %tesse_op_per_vertex_out Output\n"
4107		"%tesse_gl_tessCoord = OpVariable %ip_v3f32 Input\n"
4108		"%tesse_in_position = OpVariable %ip_a32v4f32 Input\n"
4109		"%tesse_out_color = OpVariable %op_v4f32 Output\n"
4110		"%tesse_in_color = OpVariable %ip_a32v4f32 Input\n"
4111
4112		"; Fragment Variables\n"
4113		"%frag_fragColor = OpVariable %op_v4f32 Output\n"
4114		"%frag_vtxColor = OpVariable %ip_v4f32 Input\n"
4115
4116		"; Vertex Entry\n"
4117		"%vert_main = OpFunction %void None %fun\n"
4118		"%vert_label = OpLabel\n"
4119		"%vert_tmp_position = OpLoad %v4f32 %vert_Position\n"
4120		"OpStore %vert_vtxPosition %vert_tmp_position\n"
4121		"%vert_tmp_color = OpLoad %v4f32 %vert_color\n"
4122		"OpStore %vert_vtxColor %vert_tmp_color\n"
4123		"OpReturn\n"
4124		"OpFunctionEnd\n"
4125
4126		"; Geometry Entry\n"
4127		"%geom_main = OpFunction %void None %fun\n"
4128		"%geom_label = OpLabel\n"
4129		"%geom_gl_in_0_gl_position = OpAccessChain %ip_v4f32 %geom_gl_in %c_i32_0 %c_i32_0\n"
4130		"%geom_gl_in_1_gl_position = OpAccessChain %ip_v4f32 %geom_gl_in %c_i32_1 %c_i32_0\n"
4131		"%geom_gl_in_2_gl_position = OpAccessChain %ip_v4f32 %geom_gl_in %c_i32_2 %c_i32_0\n"
4132		"%geom_in_position_0 = OpLoad %v4f32 %geom_gl_in_0_gl_position\n"
4133		"%geom_in_position_1 = OpLoad %v4f32 %geom_gl_in_1_gl_position\n"
4134		"%geom_in_position_2 = OpLoad %v4f32 %geom_gl_in_2_gl_position \n"
4135		"%geom_in_color_0_ptr = OpAccessChain %ip_v4f32 %geom_in_color %c_i32_0\n"
4136		"%geom_in_color_1_ptr = OpAccessChain %ip_v4f32 %geom_in_color %c_i32_1\n"
4137		"%geom_in_color_2_ptr = OpAccessChain %ip_v4f32 %geom_in_color %c_i32_2\n"
4138		"%geom_in_color_0 = OpLoad %v4f32 %geom_in_color_0_ptr\n"
4139		"%geom_in_color_1 = OpLoad %v4f32 %geom_in_color_1_ptr\n"
4140		"%geom_in_color_2 = OpLoad %v4f32 %geom_in_color_2_ptr\n"
4141		"OpStore %geom_out_gl_position %geom_in_position_0\n"
4142		"OpStore %geom_out_color %geom_in_color_0\n"
4143		"OpEmitVertex\n"
4144		"OpStore %geom_out_gl_position %geom_in_position_1\n"
4145		"OpStore %geom_out_color %geom_in_color_1\n"
4146		"OpEmitVertex\n"
4147		"OpStore %geom_out_gl_position %geom_in_position_2\n"
4148		"OpStore %geom_out_color %geom_in_color_2\n"
4149		"OpEmitVertex\n"
4150		"OpEndPrimitive\n"
4151		"OpReturn\n"
4152		"OpFunctionEnd\n"
4153
4154		"; Tessellation Control Entry\n"
4155		"%tessc_main = OpFunction %void None %fun\n"
4156		"%tessc_label = OpLabel\n"
4157		"%tessc_invocation_id = OpLoad %i32 %tessc_gl_InvocationID\n"
4158		"%tessc_in_color_ptr = OpAccessChain %ip_v4f32 %tessc_in_color %tessc_invocation_id\n"
4159		"%tessc_in_position_ptr = OpAccessChain %ip_v4f32 %tessc_in_position %tessc_invocation_id\n"
4160		"%tessc_in_color_val = OpLoad %v4f32 %tessc_in_color_ptr\n"
4161		"%tessc_in_position_val = OpLoad %v4f32 %tessc_in_position_ptr\n"
4162		"%tessc_out_color_ptr = OpAccessChain %op_v4f32 %tessc_out_color %tessc_invocation_id\n"
4163		"%tessc_out_position_ptr = OpAccessChain %op_v4f32 %tessc_out_position %tessc_invocation_id\n"
4164		"OpStore %tessc_out_color_ptr %tessc_in_color_val\n"
4165		"OpStore %tessc_out_position_ptr %tessc_in_position_val\n"
4166		"%tessc_is_first_invocation = OpIEqual %bool %tessc_invocation_id %c_i32_0\n"
4167		"OpSelectionMerge %tessc_merge_label None\n"
4168		"OpBranchConditional %tessc_is_first_invocation %tessc_first_invocation %tessc_merge_label\n"
4169		"%tessc_first_invocation = OpLabel\n"
4170		"%tessc_tess_outer_0 = OpAccessChain %op_f32 %tessc_gl_TessLevelOuter %c_i32_0\n"
4171		"%tessc_tess_outer_1 = OpAccessChain %op_f32 %tessc_gl_TessLevelOuter %c_i32_1\n"
4172		"%tessc_tess_outer_2 = OpAccessChain %op_f32 %tessc_gl_TessLevelOuter %c_i32_2\n"
4173		"%tessc_tess_inner = OpAccessChain %op_f32 %tessc_gl_TessLevelInner %c_i32_0\n"
4174		"OpStore %tessc_tess_outer_0 %c_f32_1\n"
4175		"OpStore %tessc_tess_outer_1 %c_f32_1\n"
4176		"OpStore %tessc_tess_outer_2 %c_f32_1\n"
4177		"OpStore %tessc_tess_inner %c_f32_1\n"
4178		"OpBranch %tessc_merge_label\n"
4179		"%tessc_merge_label = OpLabel\n"
4180		"OpReturn\n"
4181		"OpFunctionEnd\n"
4182
4183		"; Tessellation Evaluation Entry\n"
4184		"%tesse_main = OpFunction %void None %fun\n"
4185		"%tesse_label = OpLabel\n"
4186		"%tesse_tc_0_ptr = OpAccessChain %ip_f32 %tesse_gl_tessCoord %c_u32_0\n"
4187		"%tesse_tc_1_ptr = OpAccessChain %ip_f32 %tesse_gl_tessCoord %c_u32_1\n"
4188		"%tesse_tc_2_ptr = OpAccessChain %ip_f32 %tesse_gl_tessCoord %c_u32_2\n"
4189		"%tesse_tc_0 = OpLoad %f32 %tesse_tc_0_ptr\n"
4190		"%tesse_tc_1 = OpLoad %f32 %tesse_tc_1_ptr\n"
4191		"%tesse_tc_2 = OpLoad %f32 %tesse_tc_2_ptr\n"
4192		"%tesse_in_pos_0_ptr = OpAccessChain %ip_v4f32 %tesse_in_position %c_i32_0\n"
4193		"%tesse_in_pos_1_ptr = OpAccessChain %ip_v4f32 %tesse_in_position %c_i32_1\n"
4194		"%tesse_in_pos_2_ptr = OpAccessChain %ip_v4f32 %tesse_in_position %c_i32_2\n"
4195		"%tesse_in_pos_0 = OpLoad %v4f32 %tesse_in_pos_0_ptr\n"
4196		"%tesse_in_pos_1 = OpLoad %v4f32 %tesse_in_pos_1_ptr\n"
4197		"%tesse_in_pos_2 = OpLoad %v4f32 %tesse_in_pos_2_ptr\n"
4198		"%tesse_in_pos_0_weighted = OpVectorTimesScalar %v4f32 %tesse_tc_0 %tesse_in_pos_0\n"
4199		"%tesse_in_pos_1_weighted = OpVectorTimesScalar %v4f32 %tesse_tc_1 %tesse_in_pos_1\n"
4200		"%tesse_in_pos_2_weighted = OpVectorTimesScalar %v4f32 %tesse_tc_2 %tesse_in_pos_2\n"
4201		"%tesse_out_pos_ptr = OpAccessChain %op_v4f32 %tesse_stream %c_i32_0\n"
4202		"%tesse_in_pos_0_plus_pos_1 = OpFAdd %v4f32 %tesse_in_pos_0_weighted %tesse_in_pos_1_weighted\n"
4203		"%tesse_computed_out = OpFAdd %v4f32 %tesse_in_pos_0_plus_pos_1 %tesse_in_pos_2_weighted\n"
4204		"OpStore %tesse_out_pos_ptr %tesse_computed_out\n"
4205		"%tesse_in_clr_0_ptr = OpAccessChain %ip_v4f32 %tesse_in_color %c_i32_0\n"
4206		"%tesse_in_clr_1_ptr = OpAccessChain %ip_v4f32 %tesse_in_color %c_i32_1\n"
4207		"%tesse_in_clr_2_ptr = OpAccessChain %ip_v4f32 %tesse_in_color %c_i32_2\n"
4208		"%tesse_in_clr_0 = OpLoad %v4f32 %tesse_in_clr_0_ptr\n"
4209		"%tesse_in_clr_1 = OpLoad %v4f32 %tesse_in_clr_1_ptr\n"
4210		"%tesse_in_clr_2 = OpLoad %v4f32 %tesse_in_clr_2_ptr\n"
4211		"%tesse_in_clr_0_weighted = OpVectorTimesScalar %v4f32 %tesse_tc_0 %tesse_in_clr_0\n"
4212		"%tesse_in_clr_1_weighted = OpVectorTimesScalar %v4f32 %tesse_tc_1 %tesse_in_clr_1\n"
4213		"%tesse_in_clr_2_weighted = OpVectorTimesScalar %v4f32 %tesse_tc_2 %tesse_in_clr_2\n"
4214		"%tesse_in_clr_0_plus_col_1 = OpFAdd %v4f32 %tesse_in_clr_0_weighted %tesse_in_clr_1_weighted\n"
4215		"%tesse_computed_clr = OpFAdd %v4f32 %tesse_in_clr_0_plus_col_1 %tesse_in_clr_2_weighted\n"
4216		"OpStore %tesse_out_color %tesse_computed_clr\n"
4217		"OpReturn\n"
4218		"OpFunctionEnd\n"
4219
4220		"; Fragment Entry\n"
4221		"%frag_main = OpFunction %void None %fun\n"
4222		"%frag_label_main = OpLabel\n"
4223		"%frag_tmp1 = OpLoad %v4f32 %frag_vtxColor\n"
4224		"OpStore %frag_fragColor %frag_tmp1\n"
4225		"OpReturn\n"
4226		"OpFunctionEnd\n";
4227}
4228
4229// This has two shaders of each stage. The first
4230// is a passthrough, the second inverts the color.
4231void createMultipleEntries(vk::SourceCollections& dst, InstanceContext)
4232{
4233	dst.spirvAsmSources.add("vert") <<
4234	// This module contains 2 vertex shaders. One that is a passthrough
4235	// and a second that inverts the color of the output (1.0 - color).
4236		"OpCapability Shader\n"
4237		"OpMemoryModel Logical GLSL450\n"
4238		"OpEntryPoint Vertex %main \"vert1\" %Position %vtxColor %color %vtxPosition %vertex_id %instance_id\n"
4239		"OpEntryPoint Vertex %main2 \"vert2\" %Position %vtxColor %color %vtxPosition %vertex_id %instance_id\n"
4240
4241		"OpName %main \"vert1\"\n"
4242		"OpName %main2 \"vert2\"\n"
4243		"OpName %vtxPosition \"vtxPosition\"\n"
4244		"OpName %Position \"position\"\n"
4245		"OpName %vtxColor \"vtxColor\"\n"
4246		"OpName %color \"color\"\n"
4247		"OpName %vertex_id \"gl_VertexIndex\"\n"
4248		"OpName %instance_id \"gl_InstanceIndex\"\n"
4249
4250		"OpDecorate %vtxPosition Location 2\n"
4251		"OpDecorate %Position Location 0\n"
4252		"OpDecorate %vtxColor Location 1\n"
4253		"OpDecorate %color Location 1\n"
4254		"OpDecorate %vertex_id BuiltIn VertexIndex\n"
4255		"OpDecorate %instance_id BuiltIn InstanceIndex\n"
4256		SPIRV_ASSEMBLY_TYPES
4257		SPIRV_ASSEMBLY_CONSTANTS
4258		SPIRV_ASSEMBLY_ARRAYS
4259		"%cval = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_0\n"
4260		"%vtxPosition = OpVariable %op_v4f32 Output\n"
4261		"%Position = OpVariable %ip_v4f32 Input\n"
4262		"%vtxColor = OpVariable %op_v4f32 Output\n"
4263		"%color = OpVariable %ip_v4f32 Input\n"
4264		"%vertex_id = OpVariable %ip_i32 Input\n"
4265		"%instance_id = OpVariable %ip_i32 Input\n"
4266
4267		"%main = OpFunction %void None %fun\n"
4268		"%label = OpLabel\n"
4269		"%tmp_position = OpLoad %v4f32 %Position\n"
4270		"OpStore %vtxPosition %tmp_position\n"
4271		"%tmp_color = OpLoad %v4f32 %color\n"
4272		"OpStore %vtxColor %tmp_color\n"
4273		"OpReturn\n"
4274		"OpFunctionEnd\n"
4275
4276		"%main2 = OpFunction %void None %fun\n"
4277		"%label2 = OpLabel\n"
4278		"%tmp_position2 = OpLoad %v4f32 %Position\n"
4279		"OpStore %vtxPosition %tmp_position2\n"
4280		"%tmp_color2 = OpLoad %v4f32 %color\n"
4281		"%tmp_color3 = OpFSub %v4f32 %cval %tmp_color2\n"
4282		"%tmp_color4 = OpVectorInsertDynamic %v4f32 %tmp_color3 %c_f32_1 %c_i32_3\n"
4283		"OpStore %vtxColor %tmp_color4\n"
4284		"OpReturn\n"
4285		"OpFunctionEnd\n";
4286
4287	dst.spirvAsmSources.add("frag") <<
4288		// This is a single module that contains 2 fragment shaders.
4289		// One that passes color through and the other that inverts the output
4290		// color (1.0 - color).
4291		"OpCapability Shader\n"
4292		"OpMemoryModel Logical GLSL450\n"
4293		"OpEntryPoint Fragment %main \"frag1\" %vtxColor %fragColor\n"
4294		"OpEntryPoint Fragment %main2 \"frag2\" %vtxColor %fragColor\n"
4295		"OpExecutionMode %main OriginUpperLeft\n"
4296		"OpExecutionMode %main2 OriginUpperLeft\n"
4297
4298		"OpName %main \"frag1\"\n"
4299		"OpName %main2 \"frag2\"\n"
4300		"OpName %fragColor \"fragColor\"\n"
4301		"OpName %vtxColor \"vtxColor\"\n"
4302		"OpDecorate %fragColor Location 0\n"
4303		"OpDecorate %vtxColor Location 1\n"
4304		SPIRV_ASSEMBLY_TYPES
4305		SPIRV_ASSEMBLY_CONSTANTS
4306		SPIRV_ASSEMBLY_ARRAYS
4307		"%cval = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_0\n"
4308		"%fragColor = OpVariable %op_v4f32 Output\n"
4309		"%vtxColor = OpVariable %ip_v4f32 Input\n"
4310
4311		"%main = OpFunction %void None %fun\n"
4312		"%label_main = OpLabel\n"
4313		"%tmp1 = OpLoad %v4f32 %vtxColor\n"
4314		"OpStore %fragColor %tmp1\n"
4315		"OpReturn\n"
4316		"OpFunctionEnd\n"
4317
4318		"%main2 = OpFunction %void None %fun\n"
4319		"%label_main2 = OpLabel\n"
4320		"%tmp2 = OpLoad %v4f32 %vtxColor\n"
4321		"%tmp3 = OpFSub %v4f32 %cval %tmp2\n"
4322		"%tmp4 = OpVectorInsertDynamic %v4f32 %tmp3 %c_f32_1 %c_i32_3\n"
4323		"OpStore %fragColor %tmp4\n"
4324		"OpReturn\n"
4325		"OpFunctionEnd\n";
4326
4327	dst.spirvAsmSources.add("geom") <<
4328		"OpCapability Geometry\n"
4329		"OpCapability ClipDistance\n"
4330		"OpCapability CullDistance\n"
4331		"OpMemoryModel Logical GLSL450\n"
4332		"OpEntryPoint Geometry %geom1_main \"geom1\" %out_gl_position %gl_in %out_color %in_color\n"
4333		"OpEntryPoint Geometry %geom2_main \"geom2\" %out_gl_position %gl_in %out_color %in_color\n"
4334		"OpExecutionMode %geom1_main Triangles\n"
4335		"OpExecutionMode %geom2_main Triangles\n"
4336		"OpExecutionMode %geom1_main Invocations 0\n"
4337		"OpExecutionMode %geom2_main Invocations 0\n"
4338		"OpExecutionMode %geom1_main OutputTriangleStrip\n"
4339		"OpExecutionMode %geom2_main OutputTriangleStrip\n"
4340		"OpExecutionMode %geom1_main OutputVertices 3\n"
4341		"OpExecutionMode %geom2_main OutputVertices 3\n"
4342		"OpName %geom1_main \"geom1\"\n"
4343		"OpName %geom2_main \"geom2\"\n"
4344		"OpName %per_vertex_in \"gl_PerVertex\"\n"
4345		"OpMemberName %per_vertex_in 0 \"gl_Position\"\n"
4346		"OpMemberName %per_vertex_in 1 \"gl_PointSize\"\n"
4347		"OpMemberName %per_vertex_in 2 \"gl_ClipDistance\"\n"
4348		"OpMemberName %per_vertex_in 3 \"gl_CullDistance\"\n"
4349		"OpName %gl_in \"gl_in\"\n"
4350		"OpName %out_color \"out_color\"\n"
4351		"OpName %in_color \"in_color\"\n"
4352		"OpDecorate %out_gl_position BuiltIn Position\n"
4353		"OpMemberDecorate %per_vertex_in 0 BuiltIn Position\n"
4354		"OpMemberDecorate %per_vertex_in 1 BuiltIn PointSize\n"
4355		"OpMemberDecorate %per_vertex_in 2 BuiltIn ClipDistance\n"
4356		"OpMemberDecorate %per_vertex_in 3 BuiltIn CullDistance\n"
4357		"OpDecorate %per_vertex_in Block\n"
4358		"OpDecorate %out_color Location 1\n"
4359		"OpDecorate %in_color Location 1\n"
4360		SPIRV_ASSEMBLY_TYPES
4361		SPIRV_ASSEMBLY_CONSTANTS
4362		SPIRV_ASSEMBLY_ARRAYS
4363		"%cval = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_0\n"
4364		"%per_vertex_in = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
4365		"%a3_per_vertex_in = OpTypeArray %per_vertex_in %c_u32_3\n"
4366		"%ip_a3_per_vertex_in = OpTypePointer Input %a3_per_vertex_in\n"
4367		"%gl_in = OpVariable %ip_a3_per_vertex_in Input\n"
4368		"%out_color = OpVariable %op_v4f32 Output\n"
4369		"%in_color = OpVariable %ip_a3v4f32 Input\n"
4370		"%out_gl_position = OpVariable %op_v4f32 Output\n"
4371
4372		"%geom1_main = OpFunction %void None %fun\n"
4373		"%geom1_label = OpLabel\n"
4374		"%geom1_gl_in_0_gl_position = OpAccessChain %ip_v4f32 %gl_in %c_i32_0 %c_i32_0\n"
4375		"%geom1_gl_in_1_gl_position = OpAccessChain %ip_v4f32 %gl_in %c_i32_1 %c_i32_0\n"
4376		"%geom1_gl_in_2_gl_position = OpAccessChain %ip_v4f32 %gl_in %c_i32_2 %c_i32_0\n"
4377		"%geom1_in_position_0 = OpLoad %v4f32 %geom1_gl_in_0_gl_position\n"
4378		"%geom1_in_position_1 = OpLoad %v4f32 %geom1_gl_in_1_gl_position\n"
4379		"%geom1_in_position_2 = OpLoad %v4f32 %geom1_gl_in_2_gl_position \n"
4380		"%geom1_in_color_0_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_0\n"
4381		"%geom1_in_color_1_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_1\n"
4382		"%geom1_in_color_2_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_2\n"
4383		"%geom1_in_color_0 = OpLoad %v4f32 %geom1_in_color_0_ptr\n"
4384		"%geom1_in_color_1 = OpLoad %v4f32 %geom1_in_color_1_ptr\n"
4385		"%geom1_in_color_2 = OpLoad %v4f32 %geom1_in_color_2_ptr\n"
4386		"OpStore %out_gl_position %geom1_in_position_0\n"
4387		"OpStore %out_color %geom1_in_color_0\n"
4388		"OpEmitVertex\n"
4389		"OpStore %out_gl_position %geom1_in_position_1\n"
4390		"OpStore %out_color %geom1_in_color_1\n"
4391		"OpEmitVertex\n"
4392		"OpStore %out_gl_position %geom1_in_position_2\n"
4393		"OpStore %out_color %geom1_in_color_2\n"
4394		"OpEmitVertex\n"
4395		"OpEndPrimitive\n"
4396		"OpReturn\n"
4397		"OpFunctionEnd\n"
4398
4399		"%geom2_main = OpFunction %void None %fun\n"
4400		"%geom2_label = OpLabel\n"
4401		"%geom2_gl_in_0_gl_position = OpAccessChain %ip_v4f32 %gl_in %c_i32_0 %c_i32_0\n"
4402		"%geom2_gl_in_1_gl_position = OpAccessChain %ip_v4f32 %gl_in %c_i32_1 %c_i32_0\n"
4403		"%geom2_gl_in_2_gl_position = OpAccessChain %ip_v4f32 %gl_in %c_i32_2 %c_i32_0\n"
4404		"%geom2_in_position_0 = OpLoad %v4f32 %geom2_gl_in_0_gl_position\n"
4405		"%geom2_in_position_1 = OpLoad %v4f32 %geom2_gl_in_1_gl_position\n"
4406		"%geom2_in_position_2 = OpLoad %v4f32 %geom2_gl_in_2_gl_position \n"
4407		"%geom2_in_color_0_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_0\n"
4408		"%geom2_in_color_1_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_1\n"
4409		"%geom2_in_color_2_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_2\n"
4410		"%geom2_in_color_0 = OpLoad %v4f32 %geom2_in_color_0_ptr\n"
4411		"%geom2_in_color_1 = OpLoad %v4f32 %geom2_in_color_1_ptr\n"
4412		"%geom2_in_color_2 = OpLoad %v4f32 %geom2_in_color_2_ptr\n"
4413		"%geom2_transformed_in_color_0 = OpFSub %v4f32 %cval %geom2_in_color_0\n"
4414		"%geom2_transformed_in_color_1 = OpFSub %v4f32 %cval %geom2_in_color_1\n"
4415		"%geom2_transformed_in_color_2 = OpFSub %v4f32 %cval %geom2_in_color_2\n"
4416		"%geom2_transformed_in_color_0_a = OpVectorInsertDynamic %v4f32 %geom2_transformed_in_color_0 %c_f32_1 %c_i32_3\n"
4417		"%geom2_transformed_in_color_1_a = OpVectorInsertDynamic %v4f32 %geom2_transformed_in_color_1 %c_f32_1 %c_i32_3\n"
4418		"%geom2_transformed_in_color_2_a = OpVectorInsertDynamic %v4f32 %geom2_transformed_in_color_2 %c_f32_1 %c_i32_3\n"
4419		"OpStore %out_gl_position %geom2_in_position_0\n"
4420		"OpStore %out_color %geom2_transformed_in_color_0_a\n"
4421		"OpEmitVertex\n"
4422		"OpStore %out_gl_position %geom2_in_position_1\n"
4423		"OpStore %out_color %geom2_transformed_in_color_1_a\n"
4424		"OpEmitVertex\n"
4425		"OpStore %out_gl_position %geom2_in_position_2\n"
4426		"OpStore %out_color %geom2_transformed_in_color_2_a\n"
4427		"OpEmitVertex\n"
4428		"OpEndPrimitive\n"
4429		"OpReturn\n"
4430		"OpFunctionEnd\n";
4431
4432	dst.spirvAsmSources.add("tessc") <<
4433		"OpCapability Tessellation\n"
4434		"OpMemoryModel Logical GLSL450\n"
4435		"OpEntryPoint TessellationControl %tessc1_main \"tessc1\" %out_color %gl_InvocationID %in_color %out_position %in_position %gl_TessLevelOuter %gl_TessLevelInner\n"
4436		"OpEntryPoint TessellationControl %tessc2_main \"tessc2\" %out_color %gl_InvocationID %in_color %out_position %in_position %gl_TessLevelOuter %gl_TessLevelInner\n"
4437		"OpExecutionMode %tessc1_main OutputVertices 3\n"
4438		"OpExecutionMode %tessc2_main OutputVertices 3\n"
4439		"OpName %tessc1_main \"tessc1\"\n"
4440		"OpName %tessc2_main \"tessc2\"\n"
4441		"OpName %out_color \"out_color\"\n"
4442		"OpName %gl_InvocationID \"gl_InvocationID\"\n"
4443		"OpName %in_color \"in_color\"\n"
4444		"OpName %out_position \"out_position\"\n"
4445		"OpName %in_position \"in_position\"\n"
4446		"OpName %gl_TessLevelOuter \"gl_TessLevelOuter\"\n"
4447		"OpName %gl_TessLevelInner \"gl_TessLevelInner\"\n"
4448		"OpDecorate %out_color Location 1\n"
4449		"OpDecorate %gl_InvocationID BuiltIn InvocationId\n"
4450		"OpDecorate %in_color Location 1\n"
4451		"OpDecorate %out_position Location 2\n"
4452		"OpDecorate %in_position Location 2\n"
4453		"OpDecorate %gl_TessLevelOuter Patch\n"
4454		"OpDecorate %gl_TessLevelOuter BuiltIn TessLevelOuter\n"
4455		"OpDecorate %gl_TessLevelInner Patch\n"
4456		"OpDecorate %gl_TessLevelInner BuiltIn TessLevelInner\n"
4457		SPIRV_ASSEMBLY_TYPES
4458		SPIRV_ASSEMBLY_CONSTANTS
4459		SPIRV_ASSEMBLY_ARRAYS
4460		"%cval = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_0\n"
4461		"%out_color = OpVariable %op_a3v4f32 Output\n"
4462		"%gl_InvocationID = OpVariable %ip_i32 Input\n"
4463		"%in_color = OpVariable %ip_a32v4f32 Input\n"
4464		"%out_position = OpVariable %op_a3v4f32 Output\n"
4465		"%in_position = OpVariable %ip_a32v4f32 Input\n"
4466		"%gl_TessLevelOuter = OpVariable %op_a4f32 Output\n"
4467		"%gl_TessLevelInner = OpVariable %op_a2f32 Output\n"
4468
4469		"%tessc1_main = OpFunction %void None %fun\n"
4470		"%tessc1_label = OpLabel\n"
4471		"%tessc1_invocation_id = OpLoad %i32 %gl_InvocationID\n"
4472		"%tessc1_in_color_ptr = OpAccessChain %ip_v4f32 %in_color %tessc1_invocation_id\n"
4473		"%tessc1_in_position_ptr = OpAccessChain %ip_v4f32 %in_position %tessc1_invocation_id\n"
4474		"%tessc1_in_color_val = OpLoad %v4f32 %tessc1_in_color_ptr\n"
4475		"%tessc1_in_position_val = OpLoad %v4f32 %tessc1_in_position_ptr\n"
4476		"%tessc1_out_color_ptr = OpAccessChain %op_v4f32 %out_color %tessc1_invocation_id\n"
4477		"%tessc1_out_position_ptr = OpAccessChain %op_v4f32 %out_position %tessc1_invocation_id\n"
4478		"OpStore %tessc1_out_color_ptr %tessc1_in_color_val\n"
4479		"OpStore %tessc1_out_position_ptr %tessc1_in_position_val\n"
4480		"%tessc1_is_first_invocation = OpIEqual %bool %tessc1_invocation_id %c_i32_0\n"
4481		"OpSelectionMerge %tessc1_merge_label None\n"
4482		"OpBranchConditional %tessc1_is_first_invocation %tessc1_first_invocation %tessc1_merge_label\n"
4483		"%tessc1_first_invocation = OpLabel\n"
4484		"%tessc1_tess_outer_0 = OpAccessChain %op_f32 %gl_TessLevelOuter %c_i32_0\n"
4485		"%tessc1_tess_outer_1 = OpAccessChain %op_f32 %gl_TessLevelOuter %c_i32_1\n"
4486		"%tessc1_tess_outer_2 = OpAccessChain %op_f32 %gl_TessLevelOuter %c_i32_2\n"
4487		"%tessc1_tess_inner = OpAccessChain %op_f32 %gl_TessLevelInner %c_i32_0\n"
4488		"OpStore %tessc1_tess_outer_0 %c_f32_1\n"
4489		"OpStore %tessc1_tess_outer_1 %c_f32_1\n"
4490		"OpStore %tessc1_tess_outer_2 %c_f32_1\n"
4491		"OpStore %tessc1_tess_inner %c_f32_1\n"
4492		"OpBranch %tessc1_merge_label\n"
4493		"%tessc1_merge_label = OpLabel\n"
4494		"OpReturn\n"
4495		"OpFunctionEnd\n"
4496
4497		"%tessc2_main = OpFunction %void None %fun\n"
4498		"%tessc2_label = OpLabel\n"
4499		"%tessc2_invocation_id = OpLoad %i32 %gl_InvocationID\n"
4500		"%tessc2_in_color_ptr = OpAccessChain %ip_v4f32 %in_color %tessc2_invocation_id\n"
4501		"%tessc2_in_position_ptr = OpAccessChain %ip_v4f32 %in_position %tessc2_invocation_id\n"
4502		"%tessc2_in_color_val = OpLoad %v4f32 %tessc2_in_color_ptr\n"
4503		"%tessc2_in_position_val = OpLoad %v4f32 %tessc2_in_position_ptr\n"
4504		"%tessc2_out_color_ptr = OpAccessChain %op_v4f32 %out_color %tessc2_invocation_id\n"
4505		"%tessc2_out_position_ptr = OpAccessChain %op_v4f32 %out_position %tessc2_invocation_id\n"
4506		"%tessc2_transformed_color = OpFSub %v4f32 %cval %tessc2_in_color_val\n"
4507		"%tessc2_transformed_color_a = OpVectorInsertDynamic %v4f32 %tessc2_transformed_color %c_f32_1 %c_i32_3\n"
4508		"OpStore %tessc2_out_color_ptr %tessc2_transformed_color_a\n"
4509		"OpStore %tessc2_out_position_ptr %tessc2_in_position_val\n"
4510		"%tessc2_is_first_invocation = OpIEqual %bool %tessc2_invocation_id %c_i32_0\n"
4511		"OpSelectionMerge %tessc2_merge_label None\n"
4512		"OpBranchConditional %tessc2_is_first_invocation %tessc2_first_invocation %tessc2_merge_label\n"
4513		"%tessc2_first_invocation = OpLabel\n"
4514		"%tessc2_tess_outer_0 = OpAccessChain %op_f32 %gl_TessLevelOuter %c_i32_0\n"
4515		"%tessc2_tess_outer_1 = OpAccessChain %op_f32 %gl_TessLevelOuter %c_i32_1\n"
4516		"%tessc2_tess_outer_2 = OpAccessChain %op_f32 %gl_TessLevelOuter %c_i32_2\n"
4517		"%tessc2_tess_inner = OpAccessChain %op_f32 %gl_TessLevelInner %c_i32_0\n"
4518		"OpStore %tessc2_tess_outer_0 %c_f32_1\n"
4519		"OpStore %tessc2_tess_outer_1 %c_f32_1\n"
4520		"OpStore %tessc2_tess_outer_2 %c_f32_1\n"
4521		"OpStore %tessc2_tess_inner %c_f32_1\n"
4522		"OpBranch %tessc2_merge_label\n"
4523		"%tessc2_merge_label = OpLabel\n"
4524		"OpReturn\n"
4525		"OpFunctionEnd\n";
4526
4527	dst.spirvAsmSources.add("tesse") <<
4528		"OpCapability Tessellation\n"
4529		"OpCapability ClipDistance\n"
4530		"OpCapability CullDistance\n"
4531		"OpMemoryModel Logical GLSL450\n"
4532		"OpEntryPoint TessellationEvaluation %tesse1_main \"tesse1\" %stream %gl_tessCoord %in_position %out_color %in_color \n"
4533		"OpEntryPoint TessellationEvaluation %tesse2_main \"tesse2\" %stream %gl_tessCoord %in_position %out_color %in_color \n"
4534		"OpExecutionMode %tesse1_main Triangles\n"
4535		"OpExecutionMode %tesse2_main Triangles\n"
4536		"OpName %tesse1_main \"tesse1\"\n"
4537		"OpName %tesse2_main \"tesse2\"\n"
4538		"OpName %per_vertex_out \"gl_PerVertex\"\n"
4539		"OpMemberName %per_vertex_out 0 \"gl_Position\"\n"
4540		"OpMemberName %per_vertex_out 1 \"gl_PointSize\"\n"
4541		"OpMemberName %per_vertex_out 2 \"gl_ClipDistance\"\n"
4542		"OpMemberName %per_vertex_out 3 \"gl_CullDistance\"\n"
4543		"OpName %stream \"\"\n"
4544		"OpName %gl_tessCoord \"gl_TessCoord\"\n"
4545		"OpName %in_position \"in_position\"\n"
4546		"OpName %out_color \"out_color\"\n"
4547		"OpName %in_color \"in_color\"\n"
4548		"OpMemberDecorate %per_vertex_out 0 BuiltIn Position\n"
4549		"OpMemberDecorate %per_vertex_out 1 BuiltIn PointSize\n"
4550		"OpMemberDecorate %per_vertex_out 2 BuiltIn ClipDistance\n"
4551		"OpMemberDecorate %per_vertex_out 3 BuiltIn CullDistance\n"
4552		"OpDecorate %per_vertex_out Block\n"
4553		"OpDecorate %gl_tessCoord BuiltIn TessCoord\n"
4554		"OpDecorate %in_position Location 2\n"
4555		"OpDecorate %out_color Location 1\n"
4556		"OpDecorate %in_color Location 1\n"
4557		SPIRV_ASSEMBLY_TYPES
4558		SPIRV_ASSEMBLY_CONSTANTS
4559		SPIRV_ASSEMBLY_ARRAYS
4560		"%cval = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_0\n"
4561		"%per_vertex_out = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
4562		"%op_per_vertex_out = OpTypePointer Output %per_vertex_out\n"
4563		"%stream = OpVariable %op_per_vertex_out Output\n"
4564		"%gl_tessCoord = OpVariable %ip_v3f32 Input\n"
4565		"%in_position = OpVariable %ip_a32v4f32 Input\n"
4566		"%out_color = OpVariable %op_v4f32 Output\n"
4567		"%in_color = OpVariable %ip_a32v4f32 Input\n"
4568
4569		"%tesse1_main = OpFunction %void None %fun\n"
4570		"%tesse1_label = OpLabel\n"
4571		"%tesse1_tc_0_ptr = OpAccessChain %ip_f32 %gl_tessCoord %c_u32_0\n"
4572		"%tesse1_tc_1_ptr = OpAccessChain %ip_f32 %gl_tessCoord %c_u32_1\n"
4573		"%tesse1_tc_2_ptr = OpAccessChain %ip_f32 %gl_tessCoord %c_u32_2\n"
4574		"%tesse1_tc_0 = OpLoad %f32 %tesse1_tc_0_ptr\n"
4575		"%tesse1_tc_1 = OpLoad %f32 %tesse1_tc_1_ptr\n"
4576		"%tesse1_tc_2 = OpLoad %f32 %tesse1_tc_2_ptr\n"
4577		"%tesse1_in_pos_0_ptr = OpAccessChain %ip_v4f32 %in_position %c_i32_0\n"
4578		"%tesse1_in_pos_1_ptr = OpAccessChain %ip_v4f32 %in_position %c_i32_1\n"
4579		"%tesse1_in_pos_2_ptr = OpAccessChain %ip_v4f32 %in_position %c_i32_2\n"
4580		"%tesse1_in_pos_0 = OpLoad %v4f32 %tesse1_in_pos_0_ptr\n"
4581		"%tesse1_in_pos_1 = OpLoad %v4f32 %tesse1_in_pos_1_ptr\n"
4582		"%tesse1_in_pos_2 = OpLoad %v4f32 %tesse1_in_pos_2_ptr\n"
4583		"%tesse1_in_pos_0_weighted = OpVectorTimesScalar %v4f32 %tesse1_tc_0 %tesse1_in_pos_0\n"
4584		"%tesse1_in_pos_1_weighted = OpVectorTimesScalar %v4f32 %tesse1_tc_1 %tesse1_in_pos_1\n"
4585		"%tesse1_in_pos_2_weighted = OpVectorTimesScalar %v4f32 %tesse1_tc_2 %tesse1_in_pos_2\n"
4586		"%tesse1_out_pos_ptr = OpAccessChain %op_v4f32 %stream %c_i32_0\n"
4587		"%tesse1_in_pos_0_plus_pos_1 = OpFAdd %v4f32 %tesse1_in_pos_0_weighted %tesse1_in_pos_1_weighted\n"
4588		"%tesse1_computed_out = OpFAdd %v4f32 %tesse1_in_pos_0_plus_pos_1 %tesse1_in_pos_2_weighted\n"
4589		"OpStore %tesse1_out_pos_ptr %tesse1_computed_out\n"
4590		"%tesse1_in_clr_0_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_0\n"
4591		"%tesse1_in_clr_1_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_1\n"
4592		"%tesse1_in_clr_2_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_2\n"
4593		"%tesse1_in_clr_0 = OpLoad %v4f32 %tesse1_in_clr_0_ptr\n"
4594		"%tesse1_in_clr_1 = OpLoad %v4f32 %tesse1_in_clr_1_ptr\n"
4595		"%tesse1_in_clr_2 = OpLoad %v4f32 %tesse1_in_clr_2_ptr\n"
4596		"%tesse1_in_clr_0_weighted = OpVectorTimesScalar %v4f32 %tesse1_tc_0 %tesse1_in_clr_0\n"
4597		"%tesse1_in_clr_1_weighted = OpVectorTimesScalar %v4f32 %tesse1_tc_1 %tesse1_in_clr_1\n"
4598		"%tesse1_in_clr_2_weighted = OpVectorTimesScalar %v4f32 %tesse1_tc_2 %tesse1_in_clr_2\n"
4599		"%tesse1_in_clr_0_plus_col_1 = OpFAdd %v4f32 %tesse1_in_clr_0_weighted %tesse1_in_clr_1_weighted\n"
4600		"%tesse1_computed_clr = OpFAdd %v4f32 %tesse1_in_clr_0_plus_col_1 %tesse1_in_clr_2_weighted\n"
4601		"OpStore %out_color %tesse1_computed_clr\n"
4602		"OpReturn\n"
4603		"OpFunctionEnd\n"
4604
4605		"%tesse2_main = OpFunction %void None %fun\n"
4606		"%tesse2_label = OpLabel\n"
4607		"%tesse2_tc_0_ptr = OpAccessChain %ip_f32 %gl_tessCoord %c_u32_0\n"
4608		"%tesse2_tc_1_ptr = OpAccessChain %ip_f32 %gl_tessCoord %c_u32_1\n"
4609		"%tesse2_tc_2_ptr = OpAccessChain %ip_f32 %gl_tessCoord %c_u32_2\n"
4610		"%tesse2_tc_0 = OpLoad %f32 %tesse2_tc_0_ptr\n"
4611		"%tesse2_tc_1 = OpLoad %f32 %tesse2_tc_1_ptr\n"
4612		"%tesse2_tc_2 = OpLoad %f32 %tesse2_tc_2_ptr\n"
4613		"%tesse2_in_pos_0_ptr = OpAccessChain %ip_v4f32 %in_position %c_i32_0\n"
4614		"%tesse2_in_pos_1_ptr = OpAccessChain %ip_v4f32 %in_position %c_i32_1\n"
4615		"%tesse2_in_pos_2_ptr = OpAccessChain %ip_v4f32 %in_position %c_i32_2\n"
4616		"%tesse2_in_pos_0 = OpLoad %v4f32 %tesse2_in_pos_0_ptr\n"
4617		"%tesse2_in_pos_1 = OpLoad %v4f32 %tesse2_in_pos_1_ptr\n"
4618		"%tesse2_in_pos_2 = OpLoad %v4f32 %tesse2_in_pos_2_ptr\n"
4619		"%tesse2_in_pos_0_weighted = OpVectorTimesScalar %v4f32 %tesse2_tc_0 %tesse2_in_pos_0\n"
4620		"%tesse2_in_pos_1_weighted = OpVectorTimesScalar %v4f32 %tesse2_tc_1 %tesse2_in_pos_1\n"
4621		"%tesse2_in_pos_2_weighted = OpVectorTimesScalar %v4f32 %tesse2_tc_2 %tesse2_in_pos_2\n"
4622		"%tesse2_out_pos_ptr = OpAccessChain %op_v4f32 %stream %c_i32_0\n"
4623		"%tesse2_in_pos_0_plus_pos_1 = OpFAdd %v4f32 %tesse2_in_pos_0_weighted %tesse2_in_pos_1_weighted\n"
4624		"%tesse2_computed_out = OpFAdd %v4f32 %tesse2_in_pos_0_plus_pos_1 %tesse2_in_pos_2_weighted\n"
4625		"OpStore %tesse2_out_pos_ptr %tesse2_computed_out\n"
4626		"%tesse2_in_clr_0_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_0\n"
4627		"%tesse2_in_clr_1_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_1\n"
4628		"%tesse2_in_clr_2_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_2\n"
4629		"%tesse2_in_clr_0 = OpLoad %v4f32 %tesse2_in_clr_0_ptr\n"
4630		"%tesse2_in_clr_1 = OpLoad %v4f32 %tesse2_in_clr_1_ptr\n"
4631		"%tesse2_in_clr_2 = OpLoad %v4f32 %tesse2_in_clr_2_ptr\n"
4632		"%tesse2_in_clr_0_weighted = OpVectorTimesScalar %v4f32 %tesse2_tc_0 %tesse2_in_clr_0\n"
4633		"%tesse2_in_clr_1_weighted = OpVectorTimesScalar %v4f32 %tesse2_tc_1 %tesse2_in_clr_1\n"
4634		"%tesse2_in_clr_2_weighted = OpVectorTimesScalar %v4f32 %tesse2_tc_2 %tesse2_in_clr_2\n"
4635		"%tesse2_in_clr_0_plus_col_1 = OpFAdd %v4f32 %tesse2_in_clr_0_weighted %tesse2_in_clr_1_weighted\n"
4636		"%tesse2_computed_clr = OpFAdd %v4f32 %tesse2_in_clr_0_plus_col_1 %tesse2_in_clr_2_weighted\n"
4637		"%tesse2_clr_transformed = OpFSub %v4f32 %cval %tesse2_computed_clr\n"
4638		"%tesse2_clr_transformed_a = OpVectorInsertDynamic %v4f32 %tesse2_clr_transformed %c_f32_1 %c_i32_3\n"
4639		"OpStore %out_color %tesse2_clr_transformed_a\n"
4640		"OpReturn\n"
4641		"OpFunctionEnd\n";
4642}
4643
4644// Sets up and runs a Vulkan pipeline, then spot-checks the resulting image.
4645// Feeds the pipeline a set of colored triangles, which then must occur in the
4646// rendered image.  The surface is cleared before executing the pipeline, so
4647// whatever the shaders draw can be directly spot-checked.
4648TestStatus runAndVerifyDefaultPipeline (Context& context, InstanceContext instance)
4649{
4650	const VkDevice								vkDevice				= context.getDevice();
4651	const DeviceInterface&						vk						= context.getDeviceInterface();
4652	const VkQueue								queue					= context.getUniversalQueue();
4653	const deUint32								queueFamilyIndex		= context.getUniversalQueueFamilyIndex();
4654	const tcu::UVec2							renderSize				(256, 256);
4655	vector<ModuleHandleSp>						modules;
4656	map<VkShaderStageFlagBits, VkShaderModule>	moduleByStage;
4657	const int									testSpecificSeed		= 31354125;
4658	const int									seed					= context.getTestContext().getCommandLine().getBaseSeed() ^ testSpecificSeed;
4659	bool										supportsGeometry		= false;
4660	bool										supportsTessellation	= false;
4661	bool										hasTessellation         = false;
4662
4663	const VkPhysicalDeviceFeatures&				features				= context.getDeviceFeatures();
4664	supportsGeometry		= features.geometryShader == VK_TRUE;
4665	supportsTessellation	= features.tessellationShader == VK_TRUE;
4666	hasTessellation			= (instance.requiredStages & VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT) ||
4667								(instance.requiredStages & VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT);
4668
4669	if (hasTessellation && !supportsTessellation)
4670	{
4671		throw tcu::NotSupportedError(std::string("Tessellation not supported"));
4672	}
4673
4674	if ((instance.requiredStages & VK_SHADER_STAGE_GEOMETRY_BIT) &&
4675		!supportsGeometry)
4676	{
4677		throw tcu::NotSupportedError(std::string("Geometry not supported"));
4678	}
4679
4680	de::Random(seed).shuffle(instance.inputColors, instance.inputColors+4);
4681	de::Random(seed).shuffle(instance.outputColors, instance.outputColors+4);
4682	const Vec4								vertexData[]			=
4683	{
4684		// Upper left corner:
4685		Vec4(-1.0f, -1.0f, 0.0f, 1.0f), instance.inputColors[0].toVec(),
4686		Vec4(-0.5f, -1.0f, 0.0f, 1.0f), instance.inputColors[0].toVec(),
4687		Vec4(-1.0f, -0.5f, 0.0f, 1.0f), instance.inputColors[0].toVec(),
4688
4689		// Upper right corner:
4690		Vec4(+0.5f, -1.0f, 0.0f, 1.0f), instance.inputColors[1].toVec(),
4691		Vec4(+1.0f, -1.0f, 0.0f, 1.0f), instance.inputColors[1].toVec(),
4692		Vec4(+1.0f, -0.5f, 0.0f, 1.0f), instance.inputColors[1].toVec(),
4693
4694		// Lower left corner:
4695		Vec4(-1.0f, +0.5f, 0.0f, 1.0f), instance.inputColors[2].toVec(),
4696		Vec4(-0.5f, +1.0f, 0.0f, 1.0f), instance.inputColors[2].toVec(),
4697		Vec4(-1.0f, +1.0f, 0.0f, 1.0f), instance.inputColors[2].toVec(),
4698
4699		// Lower right corner:
4700		Vec4(+1.0f, +0.5f, 0.0f, 1.0f), instance.inputColors[3].toVec(),
4701		Vec4(+1.0f, +1.0f, 0.0f, 1.0f), instance.inputColors[3].toVec(),
4702		Vec4(+0.5f, +1.0f, 0.0f, 1.0f), instance.inputColors[3].toVec()
4703	};
4704	const size_t							singleVertexDataSize	= 2 * sizeof(Vec4);
4705	const size_t							vertexCount				= sizeof(vertexData) / singleVertexDataSize;
4706
4707	const VkBufferCreateInfo				vertexBufferParams		=
4708	{
4709		VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO,	//	VkStructureType		sType;
4710		DE_NULL,								//	const void*			pNext;
4711		0u,										//	VkBufferCreateFlags	flags;
4712		(VkDeviceSize)sizeof(vertexData),		//	VkDeviceSize		size;
4713		VK_BUFFER_USAGE_VERTEX_BUFFER_BIT,		//	VkBufferUsageFlags	usage;
4714		VK_SHARING_MODE_EXCLUSIVE,				//	VkSharingMode		sharingMode;
4715		1u,										//	deUint32			queueFamilyCount;
4716		&queueFamilyIndex,						//	const deUint32*		pQueueFamilyIndices;
4717	};
4718	const Unique<VkBuffer>					vertexBuffer			(createBuffer(vk, vkDevice, &vertexBufferParams));
4719	const UniquePtr<Allocation>				vertexBufferMemory		(context.getDefaultAllocator().allocate(getBufferMemoryRequirements(vk, vkDevice, *vertexBuffer), MemoryRequirement::HostVisible));
4720
4721	VK_CHECK(vk.bindBufferMemory(vkDevice, *vertexBuffer, vertexBufferMemory->getMemory(), vertexBufferMemory->getOffset()));
4722
4723	const VkDeviceSize						imageSizeBytes			= (VkDeviceSize)(sizeof(deUint32)*renderSize.x()*renderSize.y());
4724	const VkBufferCreateInfo				readImageBufferParams	=
4725	{
4726		VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO,		//	VkStructureType		sType;
4727		DE_NULL,									//	const void*			pNext;
4728		0u,											//	VkBufferCreateFlags	flags;
4729		imageSizeBytes,								//	VkDeviceSize		size;
4730		VK_BUFFER_USAGE_TRANSFER_DST_BIT,			//	VkBufferUsageFlags	usage;
4731		VK_SHARING_MODE_EXCLUSIVE,					//	VkSharingMode		sharingMode;
4732		1u,											//	deUint32			queueFamilyCount;
4733		&queueFamilyIndex,							//	const deUint32*		pQueueFamilyIndices;
4734	};
4735	const Unique<VkBuffer>					readImageBuffer			(createBuffer(vk, vkDevice, &readImageBufferParams));
4736	const UniquePtr<Allocation>				readImageBufferMemory	(context.getDefaultAllocator().allocate(getBufferMemoryRequirements(vk, vkDevice, *readImageBuffer), MemoryRequirement::HostVisible));
4737
4738	VK_CHECK(vk.bindBufferMemory(vkDevice, *readImageBuffer, readImageBufferMemory->getMemory(), readImageBufferMemory->getOffset()));
4739
4740	const VkImageCreateInfo					imageParams				=
4741	{
4742		VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,									//	VkStructureType		sType;
4743		DE_NULL,																//	const void*			pNext;
4744		0u,																		//	VkImageCreateFlags	flags;
4745		VK_IMAGE_TYPE_2D,														//	VkImageType			imageType;
4746		VK_FORMAT_R8G8B8A8_UNORM,												//	VkFormat			format;
4747		{ renderSize.x(), renderSize.y(), 1 },									//	VkExtent3D			extent;
4748		1u,																		//	deUint32			mipLevels;
4749		1u,																		//	deUint32			arraySize;
4750		VK_SAMPLE_COUNT_1_BIT,													//	deUint32			samples;
4751		VK_IMAGE_TILING_OPTIMAL,												//	VkImageTiling		tiling;
4752		VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT|VK_IMAGE_USAGE_TRANSFER_SRC_BIT,	//	VkImageUsageFlags	usage;
4753		VK_SHARING_MODE_EXCLUSIVE,												//	VkSharingMode		sharingMode;
4754		1u,																		//	deUint32			queueFamilyCount;
4755		&queueFamilyIndex,														//	const deUint32*		pQueueFamilyIndices;
4756		VK_IMAGE_LAYOUT_UNDEFINED,												//	VkImageLayout		initialLayout;
4757	};
4758
4759	const Unique<VkImage>					image					(createImage(vk, vkDevice, &imageParams));
4760	const UniquePtr<Allocation>				imageMemory				(context.getDefaultAllocator().allocate(getImageMemoryRequirements(vk, vkDevice, *image), MemoryRequirement::Any));
4761
4762	VK_CHECK(vk.bindImageMemory(vkDevice, *image, imageMemory->getMemory(), imageMemory->getOffset()));
4763
4764	const VkAttachmentDescription			colorAttDesc			=
4765	{
4766		0u,												//	VkAttachmentDescriptionFlags	flags;
4767		VK_FORMAT_R8G8B8A8_UNORM,						//	VkFormat						format;
4768		VK_SAMPLE_COUNT_1_BIT,							//	deUint32						samples;
4769		VK_ATTACHMENT_LOAD_OP_CLEAR,					//	VkAttachmentLoadOp				loadOp;
4770		VK_ATTACHMENT_STORE_OP_STORE,					//	VkAttachmentStoreOp				storeOp;
4771		VK_ATTACHMENT_LOAD_OP_DONT_CARE,				//	VkAttachmentLoadOp				stencilLoadOp;
4772		VK_ATTACHMENT_STORE_OP_DONT_CARE,				//	VkAttachmentStoreOp				stencilStoreOp;
4773		VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,		//	VkImageLayout					initialLayout;
4774		VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,		//	VkImageLayout					finalLayout;
4775	};
4776	const VkAttachmentReference				colorAttRef				=
4777	{
4778		0u,												//	deUint32		attachment;
4779		VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,		//	VkImageLayout	layout;
4780	};
4781	const VkSubpassDescription				subpassDesc				=
4782	{
4783		0u,												//	VkSubpassDescriptionFlags		flags;
4784		VK_PIPELINE_BIND_POINT_GRAPHICS,				//	VkPipelineBindPoint				pipelineBindPoint;
4785		0u,												//	deUint32						inputCount;
4786		DE_NULL,										//	const VkAttachmentReference*	pInputAttachments;
4787		1u,												//	deUint32						colorCount;
4788		&colorAttRef,									//	const VkAttachmentReference*	pColorAttachments;
4789		DE_NULL,										//	const VkAttachmentReference*	pResolveAttachments;
4790		DE_NULL,										//	const VkAttachmentReference*	pDepthStencilAttachment;
4791		0u,												//	deUint32						preserveCount;
4792		DE_NULL,										//	const VkAttachmentReference*	pPreserveAttachments;
4793
4794	};
4795	const VkRenderPassCreateInfo			renderPassParams		=
4796	{
4797		VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO,		//	VkStructureType					sType;
4798		DE_NULL,										//	const void*						pNext;
4799		(VkRenderPassCreateFlags)0,
4800		1u,												//	deUint32						attachmentCount;
4801		&colorAttDesc,									//	const VkAttachmentDescription*	pAttachments;
4802		1u,												//	deUint32						subpassCount;
4803		&subpassDesc,									//	const VkSubpassDescription*		pSubpasses;
4804		0u,												//	deUint32						dependencyCount;
4805		DE_NULL,										//	const VkSubpassDependency*		pDependencies;
4806	};
4807	const Unique<VkRenderPass>				renderPass				(createRenderPass(vk, vkDevice, &renderPassParams));
4808
4809	const VkImageViewCreateInfo				colorAttViewParams		=
4810	{
4811		VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,		//	VkStructureType				sType;
4812		DE_NULL,										//	const void*					pNext;
4813		0u,												//	VkImageViewCreateFlags		flags;
4814		*image,											//	VkImage						image;
4815		VK_IMAGE_VIEW_TYPE_2D,							//	VkImageViewType				viewType;
4816		VK_FORMAT_R8G8B8A8_UNORM,						//	VkFormat					format;
4817		{
4818			VK_COMPONENT_SWIZZLE_R,
4819			VK_COMPONENT_SWIZZLE_G,
4820			VK_COMPONENT_SWIZZLE_B,
4821			VK_COMPONENT_SWIZZLE_A
4822		},												//	VkChannelMapping			channels;
4823		{
4824			VK_IMAGE_ASPECT_COLOR_BIT,						//	VkImageAspectFlags	aspectMask;
4825			0u,												//	deUint32			baseMipLevel;
4826			1u,												//	deUint32			mipLevels;
4827			0u,												//	deUint32			baseArrayLayer;
4828			1u,												//	deUint32			arraySize;
4829		},												//	VkImageSubresourceRange		subresourceRange;
4830	};
4831	const Unique<VkImageView>				colorAttView			(createImageView(vk, vkDevice, &colorAttViewParams));
4832
4833
4834	// Pipeline layout
4835	const VkPipelineLayoutCreateInfo		pipelineLayoutParams	=
4836	{
4837		VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,			//	VkStructureType					sType;
4838		DE_NULL,												//	const void*						pNext;
4839		(VkPipelineLayoutCreateFlags)0,
4840		0u,														//	deUint32						descriptorSetCount;
4841		DE_NULL,												//	const VkDescriptorSetLayout*	pSetLayouts;
4842		0u,														//	deUint32						pushConstantRangeCount;
4843		DE_NULL,												//	const VkPushConstantRange*		pPushConstantRanges;
4844	};
4845	const Unique<VkPipelineLayout>			pipelineLayout			(createPipelineLayout(vk, vkDevice, &pipelineLayoutParams));
4846
4847	// Pipeline
4848	vector<VkPipelineShaderStageCreateInfo>		shaderStageParams;
4849	// We need these vectors to make sure that information about specialization constants for each stage can outlive createGraphicsPipeline().
4850	vector<vector<VkSpecializationMapEntry> >	specConstantEntries;
4851	vector<VkSpecializationInfo>				specializationInfos;
4852	createPipelineShaderStages(vk, vkDevice, instance, context, modules, shaderStageParams);
4853
4854	// And we don't want the reallocation of these vectors to invalidate pointers pointing to their contents.
4855	specConstantEntries.reserve(shaderStageParams.size());
4856	specializationInfos.reserve(shaderStageParams.size());
4857
4858	// Patch the specialization info field in PipelineShaderStageCreateInfos.
4859	for (vector<VkPipelineShaderStageCreateInfo>::iterator stageInfo = shaderStageParams.begin(); stageInfo != shaderStageParams.end(); ++stageInfo)
4860	{
4861		const StageToSpecConstantMap::const_iterator stageIt = instance.specConstants.find(stageInfo->stage);
4862
4863		if (stageIt != instance.specConstants.end())
4864		{
4865			const size_t						numSpecConstants	= stageIt->second.size();
4866			vector<VkSpecializationMapEntry>	entries;
4867			VkSpecializationInfo				specInfo;
4868
4869			entries.resize(numSpecConstants);
4870
4871			// Only support 32-bit integers as spec constants now. And their constant IDs are numbered sequentially starting from 0.
4872			for (size_t ndx = 0; ndx < numSpecConstants; ++ndx)
4873			{
4874				entries[ndx].constantID	= (deUint32)ndx;
4875				entries[ndx].offset		= deUint32(ndx * sizeof(deInt32));
4876				entries[ndx].size		= sizeof(deInt32);
4877			}
4878
4879			specConstantEntries.push_back(entries);
4880
4881			specInfo.mapEntryCount	= (deUint32)numSpecConstants;
4882			specInfo.pMapEntries	= specConstantEntries.back().data();
4883			specInfo.dataSize		= numSpecConstants * sizeof(deInt32);
4884			specInfo.pData			= stageIt->second.data();
4885			specializationInfos.push_back(specInfo);
4886
4887			stageInfo->pSpecializationInfo = &specializationInfos.back();
4888		}
4889	}
4890	const VkPipelineDepthStencilStateCreateInfo	depthStencilParams		=
4891	{
4892		VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO,	//	VkStructureType		sType;
4893		DE_NULL,													//	const void*			pNext;
4894		(VkPipelineDepthStencilStateCreateFlags)0,
4895		DE_FALSE,													//	deUint32			depthTestEnable;
4896		DE_FALSE,													//	deUint32			depthWriteEnable;
4897		VK_COMPARE_OP_ALWAYS,										//	VkCompareOp			depthCompareOp;
4898		DE_FALSE,													//	deUint32			depthBoundsTestEnable;
4899		DE_FALSE,													//	deUint32			stencilTestEnable;
4900		{
4901			VK_STENCIL_OP_KEEP,											//	VkStencilOp	stencilFailOp;
4902			VK_STENCIL_OP_KEEP,											//	VkStencilOp	stencilPassOp;
4903			VK_STENCIL_OP_KEEP,											//	VkStencilOp	stencilDepthFailOp;
4904			VK_COMPARE_OP_ALWAYS,										//	VkCompareOp	stencilCompareOp;
4905			0u,															//	deUint32	stencilCompareMask;
4906			0u,															//	deUint32	stencilWriteMask;
4907			0u,															//	deUint32	stencilReference;
4908		},															//	VkStencilOpState	front;
4909		{
4910			VK_STENCIL_OP_KEEP,											//	VkStencilOp	stencilFailOp;
4911			VK_STENCIL_OP_KEEP,											//	VkStencilOp	stencilPassOp;
4912			VK_STENCIL_OP_KEEP,											//	VkStencilOp	stencilDepthFailOp;
4913			VK_COMPARE_OP_ALWAYS,										//	VkCompareOp	stencilCompareOp;
4914			0u,															//	deUint32	stencilCompareMask;
4915			0u,															//	deUint32	stencilWriteMask;
4916			0u,															//	deUint32	stencilReference;
4917		},															//	VkStencilOpState	back;
4918		-1.0f,														//	float				minDepthBounds;
4919		+1.0f,														//	float				maxDepthBounds;
4920	};
4921	const VkViewport						viewport0				=
4922	{
4923		0.0f,														//	float	originX;
4924		0.0f,														//	float	originY;
4925		(float)renderSize.x(),										//	float	width;
4926		(float)renderSize.y(),										//	float	height;
4927		0.0f,														//	float	minDepth;
4928		1.0f,														//	float	maxDepth;
4929	};
4930	const VkRect2D							scissor0				=
4931	{
4932		{
4933			0u,															//	deInt32	x;
4934			0u,															//	deInt32	y;
4935		},															//	VkOffset2D	offset;
4936		{
4937			renderSize.x(),												//	deInt32	width;
4938			renderSize.y(),												//	deInt32	height;
4939		},															//	VkExtent2D	extent;
4940	};
4941	const VkPipelineViewportStateCreateInfo		viewportParams			=
4942	{
4943		VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO,		//	VkStructureType		sType;
4944		DE_NULL,													//	const void*			pNext;
4945		(VkPipelineViewportStateCreateFlags)0,
4946		1u,															//	deUint32			viewportCount;
4947		&viewport0,
4948		1u,
4949		&scissor0
4950	};
4951	const VkSampleMask							sampleMask				= ~0u;
4952	const VkPipelineMultisampleStateCreateInfo	multisampleParams		=
4953	{
4954		VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO,	//	VkStructureType			sType;
4955		DE_NULL,													//	const void*				pNext;
4956		(VkPipelineMultisampleStateCreateFlags)0,
4957		VK_SAMPLE_COUNT_1_BIT,										//	VkSampleCountFlagBits	rasterSamples;
4958		DE_FALSE,													//	deUint32				sampleShadingEnable;
4959		0.0f,														//	float					minSampleShading;
4960		&sampleMask,												//	const VkSampleMask*		pSampleMask;
4961		DE_FALSE,													//	VkBool32				alphaToCoverageEnable;
4962		DE_FALSE,													//	VkBool32				alphaToOneEnable;
4963	};
4964	const VkPipelineRasterizationStateCreateInfo	rasterParams		=
4965	{
4966		VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO,	//	VkStructureType	sType;
4967		DE_NULL,													//	const void*		pNext;
4968		(VkPipelineRasterizationStateCreateFlags)0,
4969		DE_TRUE,													//	deUint32		depthClipEnable;
4970		DE_FALSE,													//	deUint32		rasterizerDiscardEnable;
4971		VK_POLYGON_MODE_FILL,										//	VkFillMode		fillMode;
4972		VK_CULL_MODE_NONE,											//	VkCullMode		cullMode;
4973		VK_FRONT_FACE_COUNTER_CLOCKWISE,							//	VkFrontFace		frontFace;
4974		VK_FALSE,													//	VkBool32		depthBiasEnable;
4975		0.0f,														//	float			depthBias;
4976		0.0f,														//	float			depthBiasClamp;
4977		0.0f,														//	float			slopeScaledDepthBias;
4978		1.0f,														//	float			lineWidth;
4979	};
4980	const VkPrimitiveTopology topology = hasTessellation? VK_PRIMITIVE_TOPOLOGY_PATCH_LIST: VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
4981	const VkPipelineInputAssemblyStateCreateInfo	inputAssemblyParams	=
4982	{
4983		VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO,	//	VkStructureType		sType;
4984		DE_NULL,														//	const void*			pNext;
4985		(VkPipelineInputAssemblyStateCreateFlags)0,
4986		topology,														//	VkPrimitiveTopology	topology;
4987		DE_FALSE,														//	deUint32			primitiveRestartEnable;
4988	};
4989	const VkVertexInputBindingDescription		vertexBinding0 =
4990	{
4991		0u,									// deUint32					binding;
4992		deUint32(singleVertexDataSize),		// deUint32					strideInBytes;
4993		VK_VERTEX_INPUT_RATE_VERTEX			// VkVertexInputStepRate	stepRate;
4994	};
4995	const VkVertexInputAttributeDescription		vertexAttrib0[2] =
4996	{
4997		{
4998			0u,									// deUint32	location;
4999			0u,									// deUint32	binding;
5000			VK_FORMAT_R32G32B32A32_SFLOAT,		// VkFormat	format;
5001			0u									// deUint32	offsetInBytes;
5002		},
5003		{
5004			1u,									// deUint32	location;
5005			0u,									// deUint32	binding;
5006			VK_FORMAT_R32G32B32A32_SFLOAT,		// VkFormat	format;
5007			sizeof(Vec4),						// deUint32	offsetInBytes;
5008		}
5009	};
5010
5011	const VkPipelineVertexInputStateCreateInfo	vertexInputStateParams	=
5012	{
5013		VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO,	//	VkStructureType								sType;
5014		DE_NULL,													//	const void*									pNext;
5015		(VkPipelineVertexInputStateCreateFlags)0,
5016		1u,															//	deUint32									bindingCount;
5017		&vertexBinding0,											//	const VkVertexInputBindingDescription*		pVertexBindingDescriptions;
5018		2u,															//	deUint32									attributeCount;
5019		vertexAttrib0,												//	const VkVertexInputAttributeDescription*	pVertexAttributeDescriptions;
5020	};
5021	const VkPipelineColorBlendAttachmentState	attBlendParams			=
5022	{
5023		DE_FALSE,													//	deUint32		blendEnable;
5024		VK_BLEND_FACTOR_ONE,										//	VkBlend			srcBlendColor;
5025		VK_BLEND_FACTOR_ZERO,										//	VkBlend			destBlendColor;
5026		VK_BLEND_OP_ADD,											//	VkBlendOp		blendOpColor;
5027		VK_BLEND_FACTOR_ONE,										//	VkBlend			srcBlendAlpha;
5028		VK_BLEND_FACTOR_ZERO,										//	VkBlend			destBlendAlpha;
5029		VK_BLEND_OP_ADD,											//	VkBlendOp		blendOpAlpha;
5030		(VK_COLOR_COMPONENT_R_BIT|
5031		 VK_COLOR_COMPONENT_G_BIT|
5032		 VK_COLOR_COMPONENT_B_BIT|
5033		 VK_COLOR_COMPONENT_A_BIT),									//	VkChannelFlags	channelWriteMask;
5034	};
5035	const VkPipelineColorBlendStateCreateInfo	blendParams				=
5036	{
5037		VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO,	//	VkStructureType								sType;
5038		DE_NULL,													//	const void*									pNext;
5039		(VkPipelineColorBlendStateCreateFlags)0,
5040		DE_FALSE,													//	VkBool32									logicOpEnable;
5041		VK_LOGIC_OP_COPY,											//	VkLogicOp									logicOp;
5042		1u,															//	deUint32									attachmentCount;
5043		&attBlendParams,											//	const VkPipelineColorBlendAttachmentState*	pAttachments;
5044		{ 0.0f, 0.0f, 0.0f, 0.0f },									//	float										blendConst[4];
5045	};
5046	const VkPipelineDynamicStateCreateInfo	dynamicStateInfo		=
5047	{
5048		VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO,	//	VkStructureType			sType;
5049		DE_NULL,												//	const void*				pNext;
5050		(VkPipelineDynamicStateCreateFlags)0,
5051		0u,														//	deUint32				dynamicStateCount;
5052		DE_NULL													//	const VkDynamicState*	pDynamicStates;
5053	};
5054
5055	const VkPipelineTessellationStateCreateInfo	tessellationState	=
5056	{
5057		VK_STRUCTURE_TYPE_PIPELINE_TESSELLATION_STATE_CREATE_INFO,
5058		DE_NULL,
5059		(VkPipelineTessellationStateCreateFlags)0,
5060		3u
5061	};
5062
5063	const VkPipelineTessellationStateCreateInfo* tessellationInfo	=	hasTessellation ? &tessellationState: DE_NULL;
5064	const VkGraphicsPipelineCreateInfo		pipelineParams			=
5065	{
5066		VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO,		//	VkStructureType									sType;
5067		DE_NULL,												//	const void*										pNext;
5068		0u,														//	VkPipelineCreateFlags							flags;
5069		(deUint32)shaderStageParams.size(),						//	deUint32										stageCount;
5070		&shaderStageParams[0],									//	const VkPipelineShaderStageCreateInfo*			pStages;
5071		&vertexInputStateParams,								//	const VkPipelineVertexInputStateCreateInfo*		pVertexInputState;
5072		&inputAssemblyParams,									//	const VkPipelineInputAssemblyStateCreateInfo*	pInputAssemblyState;
5073		tessellationInfo,										//	const VkPipelineTessellationStateCreateInfo*	pTessellationState;
5074		&viewportParams,										//	const VkPipelineViewportStateCreateInfo*		pViewportState;
5075		&rasterParams,											//	const VkPipelineRasterStateCreateInfo*			pRasterState;
5076		&multisampleParams,										//	const VkPipelineMultisampleStateCreateInfo*		pMultisampleState;
5077		&depthStencilParams,									//	const VkPipelineDepthStencilStateCreateInfo*	pDepthStencilState;
5078		&blendParams,											//	const VkPipelineColorBlendStateCreateInfo*		pColorBlendState;
5079		&dynamicStateInfo,										//	const VkPipelineDynamicStateCreateInfo*			pDynamicState;
5080		*pipelineLayout,										//	VkPipelineLayout								layout;
5081		*renderPass,											//	VkRenderPass									renderPass;
5082		0u,														//	deUint32										subpass;
5083		DE_NULL,												//	VkPipeline										basePipelineHandle;
5084		0u,														//	deInt32											basePipelineIndex;
5085	};
5086
5087	const Unique<VkPipeline>				pipeline				(createGraphicsPipeline(vk, vkDevice, DE_NULL, &pipelineParams));
5088
5089	// Framebuffer
5090	const VkFramebufferCreateInfo			framebufferParams		=
5091	{
5092		VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO,				//	VkStructureType		sType;
5093		DE_NULL,												//	const void*			pNext;
5094		(VkFramebufferCreateFlags)0,
5095		*renderPass,											//	VkRenderPass		renderPass;
5096		1u,														//	deUint32			attachmentCount;
5097		&*colorAttView,											//	const VkImageView*	pAttachments;
5098		(deUint32)renderSize.x(),								//	deUint32			width;
5099		(deUint32)renderSize.y(),								//	deUint32			height;
5100		1u,														//	deUint32			layers;
5101	};
5102	const Unique<VkFramebuffer>				framebuffer				(createFramebuffer(vk, vkDevice, &framebufferParams));
5103
5104	const VkCommandPoolCreateInfo			cmdPoolParams			=
5105	{
5106		VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO,					//	VkStructureType			sType;
5107		DE_NULL,													//	const void*				pNext;
5108		VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT,				//	VkCmdPoolCreateFlags	flags;
5109		queueFamilyIndex,											//	deUint32				queueFamilyIndex;
5110	};
5111	const Unique<VkCommandPool>				cmdPool					(createCommandPool(vk, vkDevice, &cmdPoolParams));
5112
5113	// Command buffer
5114	const VkCommandBufferAllocateInfo		cmdBufParams			=
5115	{
5116		VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO,			//	VkStructureType			sType;
5117		DE_NULL,												//	const void*				pNext;
5118		*cmdPool,												//	VkCmdPool				pool;
5119		VK_COMMAND_BUFFER_LEVEL_PRIMARY,						//	VkCmdBufferLevel		level;
5120		1u,														//	deUint32				count;
5121	};
5122	const Unique<VkCommandBuffer>			cmdBuf					(allocateCommandBuffer(vk, vkDevice, &cmdBufParams));
5123
5124	const VkCommandBufferBeginInfo			cmdBufBeginParams		=
5125	{
5126		VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO,			//	VkStructureType				sType;
5127		DE_NULL,												//	const void*					pNext;
5128		(VkCommandBufferUsageFlags)0,
5129		(const VkCommandBufferInheritanceInfo*)DE_NULL,
5130	};
5131
5132	// Record commands
5133	VK_CHECK(vk.beginCommandBuffer(*cmdBuf, &cmdBufBeginParams));
5134
5135	{
5136		const VkMemoryBarrier		vertFlushBarrier	=
5137		{
5138			VK_STRUCTURE_TYPE_MEMORY_BARRIER,			//	VkStructureType		sType;
5139			DE_NULL,									//	const void*			pNext;
5140			VK_ACCESS_HOST_WRITE_BIT,					//	VkMemoryOutputFlags	outputMask;
5141			VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT,		//	VkMemoryInputFlags	inputMask;
5142		};
5143		const VkImageMemoryBarrier	colorAttBarrier		=
5144		{
5145			VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,		//	VkStructureType			sType;
5146			DE_NULL,									//	const void*				pNext;
5147			0u,											//	VkMemoryOutputFlags		outputMask;
5148			VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,		//	VkMemoryInputFlags		inputMask;
5149			VK_IMAGE_LAYOUT_UNDEFINED,					//	VkImageLayout			oldLayout;
5150			VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,	//	VkImageLayout			newLayout;
5151			queueFamilyIndex,							//	deUint32				srcQueueFamilyIndex;
5152			queueFamilyIndex,							//	deUint32				destQueueFamilyIndex;
5153			*image,										//	VkImage					image;
5154			{
5155				VK_IMAGE_ASPECT_COLOR_BIT,					//	VkImageAspect	aspect;
5156				0u,											//	deUint32		baseMipLevel;
5157				1u,											//	deUint32		mipLevels;
5158				0u,											//	deUint32		baseArraySlice;
5159				1u,											//	deUint32		arraySize;
5160			}											//	VkImageSubresourceRange	subresourceRange;
5161		};
5162		vk.cmdPipelineBarrier(*cmdBuf, VK_PIPELINE_STAGE_HOST_BIT, VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT, (VkDependencyFlags)0, 1, &vertFlushBarrier, 0, (const VkBufferMemoryBarrier*)DE_NULL, 1, &colorAttBarrier);
5163	}
5164
5165	{
5166		const VkClearValue			clearValue		= makeClearValueColorF32(0.125f, 0.25f, 0.75f, 1.0f);
5167		const VkRenderPassBeginInfo	passBeginParams	=
5168		{
5169			VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO,			//	VkStructureType		sType;
5170			DE_NULL,											//	const void*			pNext;
5171			*renderPass,										//	VkRenderPass		renderPass;
5172			*framebuffer,										//	VkFramebuffer		framebuffer;
5173			{ { 0, 0 }, { renderSize.x(), renderSize.y() } },	//	VkRect2D			renderArea;
5174			1u,													//	deUint32			clearValueCount;
5175			&clearValue,										//	const VkClearValue*	pClearValues;
5176		};
5177		vk.cmdBeginRenderPass(*cmdBuf, &passBeginParams, VK_SUBPASS_CONTENTS_INLINE);
5178	}
5179
5180	vk.cmdBindPipeline(*cmdBuf, VK_PIPELINE_BIND_POINT_GRAPHICS, *pipeline);
5181	{
5182		const VkDeviceSize bindingOffset = 0;
5183		vk.cmdBindVertexBuffers(*cmdBuf, 0u, 1u, &vertexBuffer.get(), &bindingOffset);
5184	}
5185	vk.cmdDraw(*cmdBuf, deUint32(vertexCount), 1u /*run pipeline once*/, 0u /*first vertex*/, 0u /*first instanceIndex*/);
5186	vk.cmdEndRenderPass(*cmdBuf);
5187
5188	{
5189		const VkImageMemoryBarrier	renderFinishBarrier	=
5190		{
5191			VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,		//	VkStructureType			sType;
5192			DE_NULL,									//	const void*				pNext;
5193			VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,		//	VkMemoryOutputFlags		outputMask;
5194			VK_ACCESS_TRANSFER_READ_BIT,				//	VkMemoryInputFlags		inputMask;
5195			VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,	//	VkImageLayout			oldLayout;
5196			VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,		//	VkImageLayout			newLayout;
5197			queueFamilyIndex,							//	deUint32				srcQueueFamilyIndex;
5198			queueFamilyIndex,							//	deUint32				destQueueFamilyIndex;
5199			*image,										//	VkImage					image;
5200			{
5201				VK_IMAGE_ASPECT_COLOR_BIT,					//	VkImageAspectFlags	aspectMask;
5202				0u,											//	deUint32			baseMipLevel;
5203				1u,											//	deUint32			mipLevels;
5204				0u,											//	deUint32			baseArraySlice;
5205				1u,											//	deUint32			arraySize;
5206			}											//	VkImageSubresourceRange	subresourceRange;
5207		};
5208		vk.cmdPipelineBarrier(*cmdBuf, VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, (VkDependencyFlags)0, 0, (const VkMemoryBarrier*)DE_NULL, 0, (const VkBufferMemoryBarrier*)DE_NULL, 1, &renderFinishBarrier);
5209	}
5210
5211	{
5212		const VkBufferImageCopy	copyParams	=
5213		{
5214			(VkDeviceSize)0u,						//	VkDeviceSize			bufferOffset;
5215			(deUint32)renderSize.x(),				//	deUint32				bufferRowLength;
5216			(deUint32)renderSize.y(),				//	deUint32				bufferImageHeight;
5217			{
5218				VK_IMAGE_ASPECT_COLOR_BIT,				//	VkImageAspect		aspect;
5219				0u,										//	deUint32			mipLevel;
5220				0u,										//	deUint32			arrayLayer;
5221				1u,										//	deUint32			arraySize;
5222			},										//	VkImageSubresourceCopy	imageSubresource;
5223			{ 0u, 0u, 0u },							//	VkOffset3D				imageOffset;
5224			{ renderSize.x(), renderSize.y(), 1u }	//	VkExtent3D				imageExtent;
5225		};
5226		vk.cmdCopyImageToBuffer(*cmdBuf, *image, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, *readImageBuffer, 1u, &copyParams);
5227	}
5228
5229	{
5230		const VkBufferMemoryBarrier	copyFinishBarrier	=
5231		{
5232			VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER,	//	VkStructureType		sType;
5233			DE_NULL,									//	const void*			pNext;
5234			VK_ACCESS_TRANSFER_WRITE_BIT,				//	VkMemoryOutputFlags	outputMask;
5235			VK_ACCESS_HOST_READ_BIT,					//	VkMemoryInputFlags	inputMask;
5236			queueFamilyIndex,							//	deUint32			srcQueueFamilyIndex;
5237			queueFamilyIndex,							//	deUint32			destQueueFamilyIndex;
5238			*readImageBuffer,							//	VkBuffer			buffer;
5239			0u,											//	VkDeviceSize		offset;
5240			imageSizeBytes								//	VkDeviceSize		size;
5241		};
5242		vk.cmdPipelineBarrier(*cmdBuf, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_HOST_BIT, (VkDependencyFlags)0, 0, (const VkMemoryBarrier*)DE_NULL, 1, &copyFinishBarrier, 0, (const VkImageMemoryBarrier*)DE_NULL);
5243	}
5244
5245	VK_CHECK(vk.endCommandBuffer(*cmdBuf));
5246
5247	// Upload vertex data
5248	{
5249		const VkMappedMemoryRange	range			=
5250		{
5251			VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE,	//	VkStructureType	sType;
5252			DE_NULL,								//	const void*		pNext;
5253			vertexBufferMemory->getMemory(),		//	VkDeviceMemory	mem;
5254			0,										//	VkDeviceSize	offset;
5255			(VkDeviceSize)sizeof(vertexData),		//	VkDeviceSize	size;
5256		};
5257		void*						vertexBufPtr	= vertexBufferMemory->getHostPtr();
5258
5259		deMemcpy(vertexBufPtr, &vertexData[0], sizeof(vertexData));
5260		VK_CHECK(vk.flushMappedMemoryRanges(vkDevice, 1u, &range));
5261	}
5262
5263	// Submit & wait for completion
5264	{
5265		const VkFenceCreateInfo	fenceParams	=
5266		{
5267			VK_STRUCTURE_TYPE_FENCE_CREATE_INFO,	//	VkStructureType		sType;
5268			DE_NULL,								//	const void*			pNext;
5269			0u,										//	VkFenceCreateFlags	flags;
5270		};
5271		const Unique<VkFence>	fence		(createFence(vk, vkDevice, &fenceParams));
5272		const VkSubmitInfo		submitInfo	=
5273		{
5274			VK_STRUCTURE_TYPE_SUBMIT_INFO,
5275			DE_NULL,
5276			0u,
5277			(const VkSemaphore*)DE_NULL,
5278			(const VkPipelineStageFlags*)DE_NULL,
5279			1u,
5280			&cmdBuf.get(),
5281			0u,
5282			(const VkSemaphore*)DE_NULL,
5283		};
5284
5285		VK_CHECK(vk.queueSubmit(queue, 1u, &submitInfo, *fence));
5286		VK_CHECK(vk.waitForFences(vkDevice, 1u, &fence.get(), DE_TRUE, ~0ull));
5287	}
5288
5289	const void* imagePtr	= readImageBufferMemory->getHostPtr();
5290	const tcu::ConstPixelBufferAccess pixelBuffer(tcu::TextureFormat(tcu::TextureFormat::RGBA, tcu::TextureFormat::UNORM_INT8),
5291												  renderSize.x(), renderSize.y(), 1, imagePtr);
5292	// Log image
5293	{
5294		const VkMappedMemoryRange	range		=
5295		{
5296			VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE,	//	VkStructureType	sType;
5297			DE_NULL,								//	const void*		pNext;
5298			readImageBufferMemory->getMemory(),		//	VkDeviceMemory	mem;
5299			0,										//	VkDeviceSize	offset;
5300			imageSizeBytes,							//	VkDeviceSize	size;
5301		};
5302
5303		VK_CHECK(vk.invalidateMappedMemoryRanges(vkDevice, 1u, &range));
5304		context.getTestContext().getLog() << TestLog::Image("Result", "Result", pixelBuffer);
5305	}
5306
5307	const RGBA threshold(1, 1, 1, 1);
5308	const RGBA upperLeft(pixelBuffer.getPixel(1, 1));
5309	if (!tcu::compareThreshold(upperLeft, instance.outputColors[0], threshold))
5310		return TestStatus::fail("Upper left corner mismatch");
5311
5312	const RGBA upperRight(pixelBuffer.getPixel(pixelBuffer.getWidth() - 1, 1));
5313	if (!tcu::compareThreshold(upperRight, instance.outputColors[1], threshold))
5314		return TestStatus::fail("Upper right corner mismatch");
5315
5316	const RGBA lowerLeft(pixelBuffer.getPixel(1, pixelBuffer.getHeight() - 1));
5317	if (!tcu::compareThreshold(lowerLeft, instance.outputColors[2], threshold))
5318		return TestStatus::fail("Lower left corner mismatch");
5319
5320	const RGBA lowerRight(pixelBuffer.getPixel(pixelBuffer.getWidth() - 1, pixelBuffer.getHeight() - 1));
5321	if (!tcu::compareThreshold(lowerRight, instance.outputColors[3], threshold))
5322		return TestStatus::fail("Lower right corner mismatch");
5323
5324	return TestStatus::pass("Rendered output matches input");
5325}
5326
5327void createTestsForAllStages (const std::string& name, const RGBA (&inputColors)[4], const RGBA (&outputColors)[4], const map<string, string>& testCodeFragments, const vector<deInt32>& specConstants, tcu::TestCaseGroup* tests)
5328{
5329	const ShaderElement		vertFragPipelineStages[]		=
5330	{
5331		ShaderElement("vert", "main", VK_SHADER_STAGE_VERTEX_BIT),
5332		ShaderElement("frag", "main", VK_SHADER_STAGE_FRAGMENT_BIT),
5333	};
5334
5335	const ShaderElement		tessPipelineStages[]			=
5336	{
5337		ShaderElement("vert", "main", VK_SHADER_STAGE_VERTEX_BIT),
5338		ShaderElement("tessc", "main", VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT),
5339		ShaderElement("tesse", "main", VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT),
5340		ShaderElement("frag", "main", VK_SHADER_STAGE_FRAGMENT_BIT),
5341	};
5342
5343	const ShaderElement		geomPipelineStages[]				=
5344	{
5345		ShaderElement("vert", "main", VK_SHADER_STAGE_VERTEX_BIT),
5346		ShaderElement("geom", "main", VK_SHADER_STAGE_GEOMETRY_BIT),
5347		ShaderElement("frag", "main", VK_SHADER_STAGE_FRAGMENT_BIT),
5348	};
5349
5350	StageToSpecConstantMap	specConstantMap;
5351
5352	specConstantMap[VK_SHADER_STAGE_VERTEX_BIT] = specConstants;
5353	addFunctionCaseWithPrograms<InstanceContext>(tests, name + "_vert", "", addShaderCodeCustomVertex, runAndVerifyDefaultPipeline,
5354												 createInstanceContext(vertFragPipelineStages, inputColors, outputColors, testCodeFragments, specConstantMap));
5355
5356	specConstantMap.clear();
5357	specConstantMap[VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT] = specConstants;
5358	addFunctionCaseWithPrograms<InstanceContext>(tests, name + "_tessc", "", addShaderCodeCustomTessControl, runAndVerifyDefaultPipeline,
5359												 createInstanceContext(tessPipelineStages, inputColors, outputColors, testCodeFragments, specConstantMap));
5360
5361	specConstantMap.clear();
5362	specConstantMap[VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT] = specConstants;
5363	addFunctionCaseWithPrograms<InstanceContext>(tests, name + "_tesse", "", addShaderCodeCustomTessEval, runAndVerifyDefaultPipeline,
5364												 createInstanceContext(tessPipelineStages, inputColors, outputColors, testCodeFragments, specConstantMap));
5365
5366	specConstantMap.clear();
5367	specConstantMap[VK_SHADER_STAGE_GEOMETRY_BIT] = specConstants;
5368	addFunctionCaseWithPrograms<InstanceContext>(tests, name + "_geom", "", addShaderCodeCustomGeometry, runAndVerifyDefaultPipeline,
5369												 createInstanceContext(geomPipelineStages, inputColors, outputColors, testCodeFragments, specConstantMap));
5370
5371	specConstantMap.clear();
5372	specConstantMap[VK_SHADER_STAGE_FRAGMENT_BIT] = specConstants;
5373	addFunctionCaseWithPrograms<InstanceContext>(tests, name + "_frag", "", addShaderCodeCustomFragment, runAndVerifyDefaultPipeline,
5374												 createInstanceContext(vertFragPipelineStages, inputColors, outputColors, testCodeFragments, specConstantMap));
5375}
5376
5377inline void createTestsForAllStages (const std::string& name, const RGBA (&inputColors)[4], const RGBA (&outputColors)[4], const map<string, string>& testCodeFragments, tcu::TestCaseGroup* tests)
5378{
5379	vector<deInt32> noSpecConstants;
5380	createTestsForAllStages(name, inputColors, outputColors, testCodeFragments, noSpecConstants, tests);
5381}
5382
5383} // anonymous
5384
5385tcu::TestCaseGroup* createOpSourceTests (tcu::TestContext& testCtx)
5386{
5387	struct NameCodePair { string name, code; };
5388	RGBA							defaultColors[4];
5389	de::MovePtr<tcu::TestCaseGroup> opSourceTests			(new tcu::TestCaseGroup(testCtx, "opsource", "OpSource instruction"));
5390	const std::string				opsourceGLSLWithFile	= "%opsrcfile = OpString \"foo.vert\"\nOpSource GLSL 450 %opsrcfile ";
5391	map<string, string>				fragments				= passthruFragments();
5392	const NameCodePair				tests[]					=
5393	{
5394		{"unknown", "OpSource Unknown 321"},
5395		{"essl", "OpSource ESSL 310"},
5396		{"glsl", "OpSource GLSL 450"},
5397		{"opencl_cpp", "OpSource OpenCL_CPP 120"},
5398		{"opencl_c", "OpSource OpenCL_C 120"},
5399		{"multiple", "OpSource GLSL 450\nOpSource GLSL 450"},
5400		{"file", opsourceGLSLWithFile},
5401		{"source", opsourceGLSLWithFile + "\"void main(){}\""},
5402		// Longest possible source string: SPIR-V limits instructions to 65535
5403		// words, of which the first 4 are opsourceGLSLWithFile; the rest will
5404		// contain 65530 UTF8 characters (one word each) plus one last word
5405		// containing 3 ASCII characters and \0.
5406		{"longsource", opsourceGLSLWithFile + '"' + makeLongUTF8String(65530) + "ccc" + '"'}
5407	};
5408
5409	getDefaultColors(defaultColors);
5410	for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(NameCodePair); ++testNdx)
5411	{
5412		fragments["debug"] = tests[testNdx].code;
5413		createTestsForAllStages(tests[testNdx].name, defaultColors, defaultColors, fragments, opSourceTests.get());
5414	}
5415
5416	return opSourceTests.release();
5417}
5418
5419tcu::TestCaseGroup* createOpSourceContinuedTests (tcu::TestContext& testCtx)
5420{
5421	struct NameCodePair { string name, code; };
5422	RGBA								defaultColors[4];
5423	de::MovePtr<tcu::TestCaseGroup>		opSourceTests		(new tcu::TestCaseGroup(testCtx, "opsourcecontinued", "OpSourceContinued instruction"));
5424	map<string, string>					fragments			= passthruFragments();
5425	const std::string					opsource			= "%opsrcfile = OpString \"foo.vert\"\nOpSource GLSL 450 %opsrcfile \"void main(){}\"\n";
5426	const NameCodePair					tests[]				=
5427	{
5428		{"empty", opsource + "OpSourceContinued \"\""},
5429		{"short", opsource + "OpSourceContinued \"abcde\""},
5430		{"multiple", opsource + "OpSourceContinued \"abcde\"\nOpSourceContinued \"fghij\""},
5431		// Longest possible source string: SPIR-V limits instructions to 65535
5432		// words, of which the first one is OpSourceContinued/length; the rest
5433		// will contain 65533 UTF8 characters (one word each) plus one last word
5434		// containing 3 ASCII characters and \0.
5435		{"long", opsource + "OpSourceContinued \"" + makeLongUTF8String(65533) + "ccc\""}
5436	};
5437
5438	getDefaultColors(defaultColors);
5439	for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(NameCodePair); ++testNdx)
5440	{
5441		fragments["debug"] = tests[testNdx].code;
5442		createTestsForAllStages(tests[testNdx].name, defaultColors, defaultColors, fragments, opSourceTests.get());
5443	}
5444
5445	return opSourceTests.release();
5446}
5447
5448tcu::TestCaseGroup* createOpNoLineTests(tcu::TestContext& testCtx)
5449{
5450	RGBA								 defaultColors[4];
5451	de::MovePtr<tcu::TestCaseGroup>		 opLineTests		 (new tcu::TestCaseGroup(testCtx, "opnoline", "OpNoLine instruction"));
5452	map<string, string>					 fragments;
5453	getDefaultColors(defaultColors);
5454	fragments["debug"]			=
5455		"%name = OpString \"name\"\n";
5456
5457	fragments["pre_main"]	=
5458		"OpNoLine\n"
5459		"OpNoLine\n"
5460		"OpLine %name 1 1\n"
5461		"OpNoLine\n"
5462		"OpLine %name 1 1\n"
5463		"OpLine %name 1 1\n"
5464		"%second_function = OpFunction %v4f32 None %v4f32_function\n"
5465		"OpNoLine\n"
5466		"OpLine %name 1 1\n"
5467		"OpNoLine\n"
5468		"OpLine %name 1 1\n"
5469		"OpLine %name 1 1\n"
5470		"%second_param1 = OpFunctionParameter %v4f32\n"
5471		"OpNoLine\n"
5472		"OpNoLine\n"
5473		"%label_secondfunction = OpLabel\n"
5474		"OpNoLine\n"
5475		"OpReturnValue %second_param1\n"
5476		"OpFunctionEnd\n"
5477		"OpNoLine\n"
5478		"OpNoLine\n";
5479
5480	fragments["testfun"]		=
5481		// A %test_code function that returns its argument unchanged.
5482		"OpNoLine\n"
5483		"OpNoLine\n"
5484		"OpLine %name 1 1\n"
5485		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
5486		"OpNoLine\n"
5487		"%param1 = OpFunctionParameter %v4f32\n"
5488		"OpNoLine\n"
5489		"OpNoLine\n"
5490		"%label_testfun = OpLabel\n"
5491		"OpNoLine\n"
5492		"%val1 = OpFunctionCall %v4f32 %second_function %param1\n"
5493		"OpReturnValue %val1\n"
5494		"OpFunctionEnd\n"
5495		"OpLine %name 1 1\n"
5496		"OpNoLine\n";
5497
5498	createTestsForAllStages("opnoline", defaultColors, defaultColors, fragments, opLineTests.get());
5499
5500	return opLineTests.release();
5501}
5502
5503
5504tcu::TestCaseGroup* createOpLineTests(tcu::TestContext& testCtx)
5505{
5506	RGBA													defaultColors[4];
5507	de::MovePtr<tcu::TestCaseGroup>							opLineTests			(new tcu::TestCaseGroup(testCtx, "opline", "OpLine instruction"));
5508	map<string, string>										fragments;
5509	std::vector<std::pair<std::string, std::string> >		problemStrings;
5510
5511	problemStrings.push_back(std::make_pair<std::string, std::string>("empty_name", ""));
5512	problemStrings.push_back(std::make_pair<std::string, std::string>("short_name", "short_name"));
5513	problemStrings.push_back(std::make_pair<std::string, std::string>("long_name", makeLongUTF8String(65530) + "ccc"));
5514	getDefaultColors(defaultColors);
5515
5516	fragments["debug"]			=
5517		"%other_name = OpString \"other_name\"\n";
5518
5519	fragments["pre_main"]	=
5520		"OpLine %file_name 32 0\n"
5521		"OpLine %file_name 32 32\n"
5522		"OpLine %file_name 32 40\n"
5523		"OpLine %other_name 32 40\n"
5524		"OpLine %other_name 0 100\n"
5525		"OpLine %other_name 0 4294967295\n"
5526		"OpLine %other_name 4294967295 0\n"
5527		"OpLine %other_name 32 40\n"
5528		"OpLine %file_name 0 0\n"
5529		"%second_function = OpFunction %v4f32 None %v4f32_function\n"
5530		"OpLine %file_name 1 0\n"
5531		"%second_param1 = OpFunctionParameter %v4f32\n"
5532		"OpLine %file_name 1 3\n"
5533		"OpLine %file_name 1 2\n"
5534		"%label_secondfunction = OpLabel\n"
5535		"OpLine %file_name 0 2\n"
5536		"OpReturnValue %second_param1\n"
5537		"OpFunctionEnd\n"
5538		"OpLine %file_name 0 2\n"
5539		"OpLine %file_name 0 2\n";
5540
5541	fragments["testfun"]		=
5542		// A %test_code function that returns its argument unchanged.
5543		"OpLine %file_name 1 0\n"
5544		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
5545		"OpLine %file_name 16 330\n"
5546		"%param1 = OpFunctionParameter %v4f32\n"
5547		"OpLine %file_name 14 442\n"
5548		"%label_testfun = OpLabel\n"
5549		"OpLine %file_name 11 1024\n"
5550		"%val1 = OpFunctionCall %v4f32 %second_function %param1\n"
5551		"OpLine %file_name 2 97\n"
5552		"OpReturnValue %val1\n"
5553		"OpFunctionEnd\n"
5554		"OpLine %file_name 5 32\n";
5555
5556	for (size_t i = 0; i < problemStrings.size(); ++i)
5557	{
5558		map<string, string> testFragments = fragments;
5559		testFragments["debug"] += "%file_name = OpString \"" + problemStrings[i].second + "\"\n";
5560		createTestsForAllStages(string("opline") + "_" + problemStrings[i].first, defaultColors, defaultColors, testFragments, opLineTests.get());
5561	}
5562
5563	return opLineTests.release();
5564}
5565
5566tcu::TestCaseGroup* createOpConstantNullTests(tcu::TestContext& testCtx)
5567{
5568	de::MovePtr<tcu::TestCaseGroup> opConstantNullTests		(new tcu::TestCaseGroup(testCtx, "opconstantnull", "OpConstantNull instruction"));
5569	RGBA							colors[4];
5570
5571
5572	const char						functionStart[] =
5573		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
5574		"%param1 = OpFunctionParameter %v4f32\n"
5575		"%lbl    = OpLabel\n";
5576
5577	const char						functionEnd[]	=
5578		"OpReturnValue %transformed_param\n"
5579		"OpFunctionEnd\n";
5580
5581	struct NameConstantsCode
5582	{
5583		string name;
5584		string constants;
5585		string code;
5586	};
5587
5588	NameConstantsCode tests[] =
5589	{
5590		{
5591			"vec4",
5592			"%cnull = OpConstantNull %v4f32\n",
5593			"%transformed_param = OpFAdd %v4f32 %param1 %cnull\n"
5594		},
5595		{
5596			"float",
5597			"%cnull = OpConstantNull %f32\n",
5598			"%vp = OpVariable %fp_v4f32 Function\n"
5599			"%v  = OpLoad %v4f32 %vp\n"
5600			"%v0 = OpVectorInsertDynamic %v4f32 %v %cnull %c_i32_0\n"
5601			"%v1 = OpVectorInsertDynamic %v4f32 %v0 %cnull %c_i32_1\n"
5602			"%v2 = OpVectorInsertDynamic %v4f32 %v1 %cnull %c_i32_2\n"
5603			"%v3 = OpVectorInsertDynamic %v4f32 %v2 %cnull %c_i32_3\n"
5604			"%transformed_param = OpFAdd %v4f32 %param1 %v3\n"
5605		},
5606		{
5607			"bool",
5608			"%cnull             = OpConstantNull %bool\n",
5609			"%v                 = OpVariable %fp_v4f32 Function\n"
5610			"                     OpStore %v %param1\n"
5611			"                     OpSelectionMerge %false_label None\n"
5612			"                     OpBranchConditional %cnull %true_label %false_label\n"
5613			"%true_label        = OpLabel\n"
5614			"                     OpStore %v %c_v4f32_0_5_0_5_0_5_0_5\n"
5615			"                     OpBranch %false_label\n"
5616			"%false_label       = OpLabel\n"
5617			"%transformed_param = OpLoad %v4f32 %v\n"
5618		},
5619		{
5620			"i32",
5621			"%cnull             = OpConstantNull %i32\n",
5622			"%v                 = OpVariable %fp_v4f32 Function %c_v4f32_0_5_0_5_0_5_0_5\n"
5623			"%b                 = OpIEqual %bool %cnull %c_i32_0\n"
5624			"                     OpSelectionMerge %false_label None\n"
5625			"                     OpBranchConditional %b %true_label %false_label\n"
5626			"%true_label        = OpLabel\n"
5627			"                     OpStore %v %param1\n"
5628			"                     OpBranch %false_label\n"
5629			"%false_label       = OpLabel\n"
5630			"%transformed_param = OpLoad %v4f32 %v\n"
5631		},
5632		{
5633			"struct",
5634			"%stype             = OpTypeStruct %f32 %v4f32\n"
5635			"%fp_stype          = OpTypePointer Function %stype\n"
5636			"%cnull             = OpConstantNull %stype\n",
5637			"%v                 = OpVariable %fp_stype Function %cnull\n"
5638			"%f                 = OpAccessChain %fp_v4f32 %v %c_i32_1\n"
5639			"%f_val             = OpLoad %v4f32 %f\n"
5640			"%transformed_param = OpFAdd %v4f32 %param1 %f_val\n"
5641		},
5642		{
5643			"array",
5644			"%a4_v4f32          = OpTypeArray %v4f32 %c_u32_4\n"
5645			"%fp_a4_v4f32       = OpTypePointer Function %a4_v4f32\n"
5646			"%cnull             = OpConstantNull %a4_v4f32\n",
5647			"%v                 = OpVariable %fp_a4_v4f32 Function %cnull\n"
5648			"%f                 = OpAccessChain %fp_v4f32 %v %c_u32_0\n"
5649			"%f1                = OpAccessChain %fp_v4f32 %v %c_u32_1\n"
5650			"%f2                = OpAccessChain %fp_v4f32 %v %c_u32_2\n"
5651			"%f3                = OpAccessChain %fp_v4f32 %v %c_u32_3\n"
5652			"%f_val             = OpLoad %v4f32 %f\n"
5653			"%f1_val            = OpLoad %v4f32 %f1\n"
5654			"%f2_val            = OpLoad %v4f32 %f2\n"
5655			"%f3_val            = OpLoad %v4f32 %f3\n"
5656			"%t0                = OpFAdd %v4f32 %param1 %f_val\n"
5657			"%t1                = OpFAdd %v4f32 %t0 %f1_val\n"
5658			"%t2                = OpFAdd %v4f32 %t1 %f2_val\n"
5659			"%transformed_param = OpFAdd %v4f32 %t2 %f3_val\n"
5660		},
5661		{
5662			"matrix",
5663			"%mat4x4_f32        = OpTypeMatrix %v4f32 4\n"
5664			"%cnull             = OpConstantNull %mat4x4_f32\n",
5665			// Our null matrix * any vector should result in a zero vector.
5666			"%v                 = OpVectorTimesMatrix %v4f32 %param1 %cnull\n"
5667			"%transformed_param = OpFAdd %v4f32 %param1 %v\n"
5668		}
5669	};
5670
5671	getHalfColorsFullAlpha(colors);
5672
5673	for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(NameConstantsCode); ++testNdx)
5674	{
5675		map<string, string> fragments;
5676		fragments["pre_main"] = tests[testNdx].constants;
5677		fragments["testfun"] = string(functionStart) + tests[testNdx].code + functionEnd;
5678		createTestsForAllStages(tests[testNdx].name, colors, colors, fragments, opConstantNullTests.get());
5679	}
5680	return opConstantNullTests.release();
5681}
5682tcu::TestCaseGroup* createOpConstantCompositeTests(tcu::TestContext& testCtx)
5683{
5684	de::MovePtr<tcu::TestCaseGroup> opConstantCompositeTests		(new tcu::TestCaseGroup(testCtx, "opconstantcomposite", "OpConstantComposite instruction"));
5685	RGBA							inputColors[4];
5686	RGBA							outputColors[4];
5687
5688
5689	const char						functionStart[]	 =
5690		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
5691		"%param1 = OpFunctionParameter %v4f32\n"
5692		"%lbl    = OpLabel\n";
5693
5694	const char						functionEnd[]		=
5695		"OpReturnValue %transformed_param\n"
5696		"OpFunctionEnd\n";
5697
5698	struct NameConstantsCode
5699	{
5700		string name;
5701		string constants;
5702		string code;
5703	};
5704
5705	NameConstantsCode tests[] =
5706	{
5707		{
5708			"vec4",
5709
5710			"%cval              = OpConstantComposite %v4f32 %c_f32_0_5 %c_f32_0_5 %c_f32_0_5 %c_f32_0\n",
5711			"%transformed_param = OpFAdd %v4f32 %param1 %cval\n"
5712		},
5713		{
5714			"struct",
5715
5716			"%stype             = OpTypeStruct %v4f32 %f32\n"
5717			"%fp_stype          = OpTypePointer Function %stype\n"
5718			"%f32_n_1           = OpConstant %f32 -1.0\n"
5719			"%f32_1_5           = OpConstant %f32 !0x3fc00000\n" // +1.5
5720			"%cvec              = OpConstantComposite %v4f32 %f32_1_5 %f32_1_5 %f32_1_5 %c_f32_1\n"
5721			"%cval              = OpConstantComposite %stype %cvec %f32_n_1\n",
5722
5723			"%v                 = OpVariable %fp_stype Function %cval\n"
5724			"%vec_ptr           = OpAccessChain %fp_v4f32 %v %c_u32_0\n"
5725			"%f32_ptr           = OpAccessChain %fp_f32 %v %c_u32_1\n"
5726			"%vec_val           = OpLoad %v4f32 %vec_ptr\n"
5727			"%f32_val           = OpLoad %f32 %f32_ptr\n"
5728			"%tmp1              = OpVectorTimesScalar %v4f32 %c_v4f32_1_1_1_1 %f32_val\n" // vec4(-1)
5729			"%tmp2              = OpFAdd %v4f32 %tmp1 %param1\n" // param1 + vec4(-1)
5730			"%transformed_param = OpFAdd %v4f32 %tmp2 %vec_val\n" // param1 + vec4(-1) + vec4(1.5, 1.5, 1.5, 1.0)
5731		},
5732		{
5733			// [1|0|0|0.5] [x] = x + 0.5
5734			// [0|1|0|0.5] [y] = y + 0.5
5735			// [0|0|1|0.5] [z] = z + 0.5
5736			// [0|0|0|1  ] [1] = 1
5737			"matrix",
5738
5739			"%mat4x4_f32          = OpTypeMatrix %v4f32 4\n"
5740		    "%v4f32_1_0_0_0       = OpConstantComposite %v4f32 %c_f32_1 %c_f32_0 %c_f32_0 %c_f32_0\n"
5741		    "%v4f32_0_1_0_0       = OpConstantComposite %v4f32 %c_f32_0 %c_f32_1 %c_f32_0 %c_f32_0\n"
5742		    "%v4f32_0_0_1_0       = OpConstantComposite %v4f32 %c_f32_0 %c_f32_0 %c_f32_1 %c_f32_0\n"
5743		    "%v4f32_0_5_0_5_0_5_1 = OpConstantComposite %v4f32 %c_f32_0_5 %c_f32_0_5 %c_f32_0_5 %c_f32_1\n"
5744			"%cval                = OpConstantComposite %mat4x4_f32 %v4f32_1_0_0_0 %v4f32_0_1_0_0 %v4f32_0_0_1_0 %v4f32_0_5_0_5_0_5_1\n",
5745
5746			"%transformed_param   = OpMatrixTimesVector %v4f32 %cval %param1\n"
5747		},
5748		{
5749			"array",
5750
5751			"%c_v4f32_1_1_1_0     = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_0\n"
5752			"%fp_a4f32            = OpTypePointer Function %a4f32\n"
5753			"%f32_n_1             = OpConstant %f32 -1.0\n"
5754			"%f32_1_5             = OpConstant %f32 !0x3fc00000\n" // +1.5
5755			"%carr                = OpConstantComposite %a4f32 %c_f32_0 %f32_n_1 %f32_1_5 %c_f32_0\n",
5756
5757			"%v                   = OpVariable %fp_a4f32 Function %carr\n"
5758			"%f                   = OpAccessChain %fp_f32 %v %c_u32_0\n"
5759			"%f1                  = OpAccessChain %fp_f32 %v %c_u32_1\n"
5760			"%f2                  = OpAccessChain %fp_f32 %v %c_u32_2\n"
5761			"%f3                  = OpAccessChain %fp_f32 %v %c_u32_3\n"
5762			"%f_val               = OpLoad %f32 %f\n"
5763			"%f1_val              = OpLoad %f32 %f1\n"
5764			"%f2_val              = OpLoad %f32 %f2\n"
5765			"%f3_val              = OpLoad %f32 %f3\n"
5766			"%ftot1               = OpFAdd %f32 %f_val %f1_val\n"
5767			"%ftot2               = OpFAdd %f32 %ftot1 %f2_val\n"
5768			"%ftot3               = OpFAdd %f32 %ftot2 %f3_val\n"  // 0 - 1 + 1.5 + 0
5769			"%add_vec             = OpVectorTimesScalar %v4f32 %c_v4f32_1_1_1_0 %ftot3\n"
5770			"%transformed_param   = OpFAdd %v4f32 %param1 %add_vec\n"
5771		},
5772		{
5773			//
5774			// [
5775			//   {
5776			//      0.0,
5777			//      [ 1.0, 1.0, 1.0, 1.0]
5778			//   },
5779			//   {
5780			//      1.0,
5781			//      [ 0.0, 0.5, 0.0, 0.0]
5782			//   }, //     ^^^
5783			//   {
5784			//      0.0,
5785			//      [ 1.0, 1.0, 1.0, 1.0]
5786			//   }
5787			// ]
5788			"array_of_struct_of_array",
5789
5790			"%c_v4f32_1_1_1_0     = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_0\n"
5791			"%fp_a4f32            = OpTypePointer Function %a4f32\n"
5792			"%stype               = OpTypeStruct %f32 %a4f32\n"
5793			"%a3stype             = OpTypeArray %stype %c_u32_3\n"
5794			"%fp_a3stype          = OpTypePointer Function %a3stype\n"
5795			"%ca4f32_0            = OpConstantComposite %a4f32 %c_f32_0 %c_f32_0_5 %c_f32_0 %c_f32_0\n"
5796			"%ca4f32_1            = OpConstantComposite %a4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_1\n"
5797			"%cstype1             = OpConstantComposite %stype %c_f32_0 %ca4f32_1\n"
5798			"%cstype2             = OpConstantComposite %stype %c_f32_1 %ca4f32_0\n"
5799			"%carr                = OpConstantComposite %a3stype %cstype1 %cstype2 %cstype1",
5800
5801			"%v                   = OpVariable %fp_a3stype Function %carr\n"
5802			"%f                   = OpAccessChain %fp_f32 %v %c_u32_1 %c_u32_1 %c_u32_1\n"
5803			"%f_l                 = OpLoad %f32 %f\n"
5804			"%add_vec             = OpVectorTimesScalar %v4f32 %c_v4f32_1_1_1_0 %f_l\n"
5805			"%transformed_param   = OpFAdd %v4f32 %param1 %add_vec\n"
5806		}
5807	};
5808
5809	getHalfColorsFullAlpha(inputColors);
5810	outputColors[0] = RGBA(255, 255, 255, 255);
5811	outputColors[1] = RGBA(255, 127, 127, 255);
5812	outputColors[2] = RGBA(127, 255, 127, 255);
5813	outputColors[3] = RGBA(127, 127, 255, 255);
5814
5815	for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(NameConstantsCode); ++testNdx)
5816	{
5817		map<string, string> fragments;
5818		fragments["pre_main"] = tests[testNdx].constants;
5819		fragments["testfun"] = string(functionStart) + tests[testNdx].code + functionEnd;
5820		createTestsForAllStages(tests[testNdx].name, inputColors, outputColors, fragments, opConstantCompositeTests.get());
5821	}
5822	return opConstantCompositeTests.release();
5823}
5824
5825tcu::TestCaseGroup* createSelectionBlockOrderTests(tcu::TestContext& testCtx)
5826{
5827	de::MovePtr<tcu::TestCaseGroup> group				(new tcu::TestCaseGroup(testCtx, "selection_block_order", "Out-of-order blocks for selection"));
5828	RGBA							inputColors[4];
5829	RGBA							outputColors[4];
5830	map<string, string>				fragments;
5831
5832	// vec4 test_code(vec4 param) {
5833	//   vec4 result = param;
5834	//   for (int i = 0; i < 4; ++i) {
5835	//     if (i == 0) result[i] = 0.;
5836	//     else        result[i] = 1. - result[i];
5837	//   }
5838	//   return result;
5839	// }
5840	const char						function[]			=
5841		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
5842		"%param1    = OpFunctionParameter %v4f32\n"
5843		"%lbl       = OpLabel\n"
5844		"%iptr      = OpVariable %fp_i32 Function\n"
5845		"%result    = OpVariable %fp_v4f32 Function\n"
5846		"             OpStore %iptr %c_i32_0\n"
5847		"             OpStore %result %param1\n"
5848		"             OpBranch %loop\n"
5849
5850		// Loop entry block.
5851		"%loop      = OpLabel\n"
5852		"%ival      = OpLoad %i32 %iptr\n"
5853		"%lt_4      = OpSLessThan %bool %ival %c_i32_4\n"
5854		"             OpLoopMerge %exit %loop None\n"
5855		"             OpBranchConditional %lt_4 %if_entry %exit\n"
5856
5857		// Merge block for loop.
5858		"%exit      = OpLabel\n"
5859		"%ret       = OpLoad %v4f32 %result\n"
5860		"             OpReturnValue %ret\n"
5861
5862		// If-statement entry block.
5863		"%if_entry  = OpLabel\n"
5864		"%loc       = OpAccessChain %fp_f32 %result %ival\n"
5865		"%eq_0      = OpIEqual %bool %ival %c_i32_0\n"
5866		"             OpSelectionMerge %if_exit None\n"
5867		"             OpBranchConditional %eq_0 %if_true %if_false\n"
5868
5869		// False branch for if-statement.
5870		"%if_false  = OpLabel\n"
5871		"%val       = OpLoad %f32 %loc\n"
5872		"%sub       = OpFSub %f32 %c_f32_1 %val\n"
5873		"             OpStore %loc %sub\n"
5874		"             OpBranch %if_exit\n"
5875
5876		// Merge block for if-statement.
5877		"%if_exit   = OpLabel\n"
5878		"%ival_next = OpIAdd %i32 %ival %c_i32_1\n"
5879		"             OpStore %iptr %ival_next\n"
5880		"             OpBranch %loop\n"
5881
5882		// True branch for if-statement.
5883		"%if_true   = OpLabel\n"
5884		"             OpStore %loc %c_f32_0\n"
5885		"             OpBranch %if_exit\n"
5886
5887		"             OpFunctionEnd\n";
5888
5889	fragments["testfun"]	= function;
5890
5891	inputColors[0]			= RGBA(127, 127, 127, 0);
5892	inputColors[1]			= RGBA(127, 0,   0,   0);
5893	inputColors[2]			= RGBA(0,   127, 0,   0);
5894	inputColors[3]			= RGBA(0,   0,   127, 0);
5895
5896	outputColors[0]			= RGBA(0, 128, 128, 255);
5897	outputColors[1]			= RGBA(0, 255, 255, 255);
5898	outputColors[2]			= RGBA(0, 128, 255, 255);
5899	outputColors[3]			= RGBA(0, 255, 128, 255);
5900
5901	createTestsForAllStages("out_of_order", inputColors, outputColors, fragments, group.get());
5902
5903	return group.release();
5904}
5905
5906tcu::TestCaseGroup* createSwitchBlockOrderTests(tcu::TestContext& testCtx)
5907{
5908	de::MovePtr<tcu::TestCaseGroup> group				(new tcu::TestCaseGroup(testCtx, "switch_block_order", "Out-of-order blocks for switch"));
5909	RGBA							inputColors[4];
5910	RGBA							outputColors[4];
5911	map<string, string>				fragments;
5912
5913	const char						typesAndConstants[]	=
5914		"%c_f32_p2  = OpConstant %f32 0.2\n"
5915		"%c_f32_p4  = OpConstant %f32 0.4\n"
5916		"%c_f32_p6  = OpConstant %f32 0.6\n"
5917		"%c_f32_p8  = OpConstant %f32 0.8\n";
5918
5919	// vec4 test_code(vec4 param) {
5920	//   vec4 result = param;
5921	//   for (int i = 0; i < 4; ++i) {
5922	//     switch (i) {
5923	//       case 0: result[i] += .2; break;
5924	//       case 1: result[i] += .6; break;
5925	//       case 2: result[i] += .4; break;
5926	//       case 3: result[i] += .8; break;
5927	//       default: break; // unreachable
5928	//     }
5929	//   }
5930	//   return result;
5931	// }
5932	const char						function[]			=
5933		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
5934		"%param1    = OpFunctionParameter %v4f32\n"
5935		"%lbl       = OpLabel\n"
5936		"%iptr      = OpVariable %fp_i32 Function\n"
5937		"%result    = OpVariable %fp_v4f32 Function\n"
5938		"             OpStore %iptr %c_i32_0\n"
5939		"             OpStore %result %param1\n"
5940		"             OpBranch %loop\n"
5941
5942		// Loop entry block.
5943		"%loop      = OpLabel\n"
5944		"%ival      = OpLoad %i32 %iptr\n"
5945		"%lt_4      = OpSLessThan %bool %ival %c_i32_4\n"
5946		"             OpLoopMerge %exit %loop None\n"
5947		"             OpBranchConditional %lt_4 %switch_entry %exit\n"
5948
5949		// Merge block for loop.
5950		"%exit      = OpLabel\n"
5951		"%ret       = OpLoad %v4f32 %result\n"
5952		"             OpReturnValue %ret\n"
5953
5954		// Switch-statement entry block.
5955		"%switch_entry   = OpLabel\n"
5956		"%loc            = OpAccessChain %fp_f32 %result %ival\n"
5957		"%val            = OpLoad %f32 %loc\n"
5958		"                  OpSelectionMerge %switch_exit None\n"
5959		"                  OpSwitch %ival %switch_default 0 %case0 1 %case1 2 %case2 3 %case3\n"
5960
5961		"%case2          = OpLabel\n"
5962		"%addp4          = OpFAdd %f32 %val %c_f32_p4\n"
5963		"                  OpStore %loc %addp4\n"
5964		"                  OpBranch %switch_exit\n"
5965
5966		"%switch_default = OpLabel\n"
5967		"                  OpUnreachable\n"
5968
5969		"%case3          = OpLabel\n"
5970		"%addp8          = OpFAdd %f32 %val %c_f32_p8\n"
5971		"                  OpStore %loc %addp8\n"
5972		"                  OpBranch %switch_exit\n"
5973
5974		"%case0          = OpLabel\n"
5975		"%addp2          = OpFAdd %f32 %val %c_f32_p2\n"
5976		"                  OpStore %loc %addp2\n"
5977		"                  OpBranch %switch_exit\n"
5978
5979		// Merge block for switch-statement.
5980		"%switch_exit    = OpLabel\n"
5981		"%ival_next      = OpIAdd %i32 %ival %c_i32_1\n"
5982		"                  OpStore %iptr %ival_next\n"
5983		"                  OpBranch %loop\n"
5984
5985		"%case1          = OpLabel\n"
5986		"%addp6          = OpFAdd %f32 %val %c_f32_p6\n"
5987		"                  OpStore %loc %addp6\n"
5988		"                  OpBranch %switch_exit\n"
5989
5990		"                  OpFunctionEnd\n";
5991
5992	fragments["pre_main"]	= typesAndConstants;
5993	fragments["testfun"]	= function;
5994
5995	inputColors[0]			= RGBA(127, 27,  127, 51);
5996	inputColors[1]			= RGBA(127, 0,   0,   51);
5997	inputColors[2]			= RGBA(0,   27,  0,   51);
5998	inputColors[3]			= RGBA(0,   0,   127, 51);
5999
6000	outputColors[0]			= RGBA(178, 180, 229, 255);
6001	outputColors[1]			= RGBA(178, 153, 102, 255);
6002	outputColors[2]			= RGBA(51,  180, 102, 255);
6003	outputColors[3]			= RGBA(51,  153, 229, 255);
6004
6005	createTestsForAllStages("out_of_order", inputColors, outputColors, fragments, group.get());
6006
6007	return group.release();
6008}
6009
6010tcu::TestCaseGroup* createDecorationGroupTests(tcu::TestContext& testCtx)
6011{
6012	de::MovePtr<tcu::TestCaseGroup> group				(new tcu::TestCaseGroup(testCtx, "decoration_group", "Decoration group tests"));
6013	RGBA							inputColors[4];
6014	RGBA							outputColors[4];
6015	map<string, string>				fragments;
6016
6017	const char						decorations[]		=
6018		"OpDecorate %array_group         ArrayStride 4\n"
6019		"OpDecorate %struct_member_group Offset 0\n"
6020		"%array_group         = OpDecorationGroup\n"
6021		"%struct_member_group = OpDecorationGroup\n"
6022
6023		"OpDecorate %group1 RelaxedPrecision\n"
6024		"OpDecorate %group3 RelaxedPrecision\n"
6025		"OpDecorate %group3 Invariant\n"
6026		"OpDecorate %group3 Restrict\n"
6027		"%group0 = OpDecorationGroup\n"
6028		"%group1 = OpDecorationGroup\n"
6029		"%group3 = OpDecorationGroup\n";
6030
6031	const char						typesAndConstants[]	=
6032		"%a3f32     = OpTypeArray %f32 %c_u32_3\n"
6033		"%struct1   = OpTypeStruct %a3f32\n"
6034		"%struct2   = OpTypeStruct %a3f32\n"
6035		"%fp_struct1 = OpTypePointer Function %struct1\n"
6036		"%fp_struct2 = OpTypePointer Function %struct2\n"
6037		"%c_f32_2    = OpConstant %f32 2.\n"
6038		"%c_f32_n2   = OpConstant %f32 -2.\n"
6039
6040		"%c_a3f32_1 = OpConstantComposite %a3f32 %c_f32_1 %c_f32_2 %c_f32_1\n"
6041		"%c_a3f32_2 = OpConstantComposite %a3f32 %c_f32_n1 %c_f32_n2 %c_f32_n1\n"
6042		"%c_struct1 = OpConstantComposite %struct1 %c_a3f32_1\n"
6043		"%c_struct2 = OpConstantComposite %struct2 %c_a3f32_2\n";
6044
6045	const char						function[]			=
6046		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
6047		"%param     = OpFunctionParameter %v4f32\n"
6048		"%entry     = OpLabel\n"
6049		"%result    = OpVariable %fp_v4f32 Function\n"
6050		"%v_struct1 = OpVariable %fp_struct1 Function\n"
6051		"%v_struct2 = OpVariable %fp_struct2 Function\n"
6052		"             OpStore %result %param\n"
6053		"             OpStore %v_struct1 %c_struct1\n"
6054		"             OpStore %v_struct2 %c_struct2\n"
6055		"%ptr1      = OpAccessChain %fp_f32 %v_struct1 %c_i32_0 %c_i32_2\n"
6056		"%val1      = OpLoad %f32 %ptr1\n"
6057		"%ptr2      = OpAccessChain %fp_f32 %v_struct2 %c_i32_0 %c_i32_2\n"
6058		"%val2      = OpLoad %f32 %ptr2\n"
6059		"%addvalues = OpFAdd %f32 %val1 %val2\n"
6060		"%ptr       = OpAccessChain %fp_f32 %result %c_i32_1\n"
6061		"%val       = OpLoad %f32 %ptr\n"
6062		"%addresult = OpFAdd %f32 %addvalues %val\n"
6063		"             OpStore %ptr %addresult\n"
6064		"%ret       = OpLoad %v4f32 %result\n"
6065		"             OpReturnValue %ret\n"
6066		"             OpFunctionEnd\n";
6067
6068	struct CaseNameDecoration
6069	{
6070		string name;
6071		string decoration;
6072	};
6073
6074	CaseNameDecoration tests[] =
6075	{
6076		{
6077			"same_decoration_group_on_multiple_types",
6078			"OpGroupMemberDecorate %struct_member_group %struct1 0 %struct2 0\n"
6079		},
6080		{
6081			"empty_decoration_group",
6082			"OpGroupDecorate %group0      %a3f32\n"
6083			"OpGroupDecorate %group0      %result\n"
6084		},
6085		{
6086			"one_element_decoration_group",
6087			"OpGroupDecorate %array_group %a3f32\n"
6088		},
6089		{
6090			"multiple_elements_decoration_group",
6091			"OpGroupDecorate %group3      %v_struct1\n"
6092		},
6093		{
6094			"multiple_decoration_groups_on_same_variable",
6095			"OpGroupDecorate %group0      %v_struct2\n"
6096			"OpGroupDecorate %group1      %v_struct2\n"
6097			"OpGroupDecorate %group3      %v_struct2\n"
6098		},
6099		{
6100			"same_decoration_group_multiple_times",
6101			"OpGroupDecorate %group1      %addvalues\n"
6102			"OpGroupDecorate %group1      %addvalues\n"
6103			"OpGroupDecorate %group1      %addvalues\n"
6104		},
6105
6106	};
6107
6108	getHalfColorsFullAlpha(inputColors);
6109	getHalfColorsFullAlpha(outputColors);
6110
6111	for (size_t idx = 0; idx < (sizeof(tests) / sizeof(tests[0])); ++idx)
6112	{
6113		fragments["decoration"]	= decorations + tests[idx].decoration;
6114		fragments["pre_main"]	= typesAndConstants;
6115		fragments["testfun"]	= function;
6116
6117		createTestsForAllStages(tests[idx].name, inputColors, outputColors, fragments, group.get());
6118	}
6119
6120	return group.release();
6121}
6122
6123struct SpecConstantTwoIntGraphicsCase
6124{
6125	const char*		caseName;
6126	const char*		scDefinition0;
6127	const char*		scDefinition1;
6128	const char*		scResultType;
6129	const char*		scOperation;
6130	deInt32			scActualValue0;
6131	deInt32			scActualValue1;
6132	const char*		resultOperation;
6133	RGBA			expectedColors[4];
6134
6135					SpecConstantTwoIntGraphicsCase (const char* name,
6136											const char* definition0,
6137											const char* definition1,
6138											const char* resultType,
6139											const char* operation,
6140											deInt32		value0,
6141											deInt32		value1,
6142											const char* resultOp,
6143											const RGBA	(&output)[4])
6144						: caseName			(name)
6145						, scDefinition0		(definition0)
6146						, scDefinition1		(definition1)
6147						, scResultType		(resultType)
6148						, scOperation		(operation)
6149						, scActualValue0	(value0)
6150						, scActualValue1	(value1)
6151						, resultOperation	(resultOp)
6152	{
6153		expectedColors[0] = output[0];
6154		expectedColors[1] = output[1];
6155		expectedColors[2] = output[2];
6156		expectedColors[3] = output[3];
6157	}
6158};
6159
6160tcu::TestCaseGroup* createSpecConstantTests (tcu::TestContext& testCtx)
6161{
6162	de::MovePtr<tcu::TestCaseGroup> group				(new tcu::TestCaseGroup(testCtx, "opspecconstantop", "Test the OpSpecConstantOp instruction"));
6163	vector<SpecConstantTwoIntGraphicsCase>	cases;
6164	RGBA							inputColors[4];
6165	RGBA							outputColors0[4];
6166	RGBA							outputColors1[4];
6167	RGBA							outputColors2[4];
6168
6169	const char	decorations1[]			=
6170		"OpDecorate %sc_0  SpecId 0\n"
6171		"OpDecorate %sc_1  SpecId 1\n";
6172
6173	const char	typesAndConstants1[]	=
6174		"%sc_0      = OpSpecConstant${SC_DEF0}\n"
6175		"%sc_1      = OpSpecConstant${SC_DEF1}\n"
6176		"%sc_op     = OpSpecConstantOp ${SC_RESULT_TYPE} ${SC_OP}\n";
6177
6178	const char	function1[]				=
6179		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
6180		"%param     = OpFunctionParameter %v4f32\n"
6181		"%label     = OpLabel\n"
6182		"%result    = OpVariable %fp_v4f32 Function\n"
6183		"             OpStore %result %param\n"
6184		"%gen       = ${GEN_RESULT}\n"
6185		"%index     = OpIAdd %i32 %gen %c_i32_1\n"
6186		"%loc       = OpAccessChain %fp_f32 %result %index\n"
6187		"%val       = OpLoad %f32 %loc\n"
6188		"%add       = OpFAdd %f32 %val %c_f32_0_5\n"
6189		"             OpStore %loc %add\n"
6190		"%ret       = OpLoad %v4f32 %result\n"
6191		"             OpReturnValue %ret\n"
6192		"             OpFunctionEnd\n";
6193
6194	inputColors[0] = RGBA(127, 127, 127, 255);
6195	inputColors[1] = RGBA(127, 0,   0,   255);
6196	inputColors[2] = RGBA(0,   127, 0,   255);
6197	inputColors[3] = RGBA(0,   0,   127, 255);
6198
6199	// Derived from inputColors[x] by adding 128 to inputColors[x][0].
6200	outputColors0[0] = RGBA(255, 127, 127, 255);
6201	outputColors0[1] = RGBA(255, 0,   0,   255);
6202	outputColors0[2] = RGBA(128, 127, 0,   255);
6203	outputColors0[3] = RGBA(128, 0,   127, 255);
6204
6205	// Derived from inputColors[x] by adding 128 to inputColors[x][1].
6206	outputColors1[0] = RGBA(127, 255, 127, 255);
6207	outputColors1[1] = RGBA(127, 128, 0,   255);
6208	outputColors1[2] = RGBA(0,   255, 0,   255);
6209	outputColors1[3] = RGBA(0,   128, 127, 255);
6210
6211	// Derived from inputColors[x] by adding 128 to inputColors[x][2].
6212	outputColors2[0] = RGBA(127, 127, 255, 255);
6213	outputColors2[1] = RGBA(127, 0,   128, 255);
6214	outputColors2[2] = RGBA(0,   127, 128, 255);
6215	outputColors2[3] = RGBA(0,   0,   255, 255);
6216
6217	const char addZeroToSc[]		= "OpIAdd %i32 %c_i32_0 %sc_op";
6218	const char selectTrueUsingSc[]	= "OpSelect %i32 %sc_op %c_i32_1 %c_i32_0";
6219	const char selectFalseUsingSc[]	= "OpSelect %i32 %sc_op %c_i32_0 %c_i32_1";
6220
6221	cases.push_back(SpecConstantTwoIntGraphicsCase("iadd",					" %i32 0",		" %i32 0",		"%i32",		"IAdd                 %sc_0 %sc_1",				19,		-20,	addZeroToSc,		outputColors0));
6222	cases.push_back(SpecConstantTwoIntGraphicsCase("isub",					" %i32 0",		" %i32 0",		"%i32",		"ISub                 %sc_0 %sc_1",				19,		20,		addZeroToSc,		outputColors0));
6223	cases.push_back(SpecConstantTwoIntGraphicsCase("imul",					" %i32 0",		" %i32 0",		"%i32",		"IMul                 %sc_0 %sc_1",				-1,		-1,		addZeroToSc,		outputColors2));
6224	cases.push_back(SpecConstantTwoIntGraphicsCase("sdiv",					" %i32 0",		" %i32 0",		"%i32",		"SDiv                 %sc_0 %sc_1",				-126,	126,	addZeroToSc,		outputColors0));
6225	cases.push_back(SpecConstantTwoIntGraphicsCase("udiv",					" %i32 0",		" %i32 0",		"%i32",		"UDiv                 %sc_0 %sc_1",				126,	126,	addZeroToSc,		outputColors2));
6226	cases.push_back(SpecConstantTwoIntGraphicsCase("srem",					" %i32 0",		" %i32 0",		"%i32",		"SRem                 %sc_0 %sc_1",				3,		2,		addZeroToSc,		outputColors2));
6227	cases.push_back(SpecConstantTwoIntGraphicsCase("smod",					" %i32 0",		" %i32 0",		"%i32",		"SMod                 %sc_0 %sc_1",				3,		2,		addZeroToSc,		outputColors2));
6228	cases.push_back(SpecConstantTwoIntGraphicsCase("umod",					" %i32 0",		" %i32 0",		"%i32",		"UMod                 %sc_0 %sc_1",				1001,	500,	addZeroToSc,		outputColors2));
6229	cases.push_back(SpecConstantTwoIntGraphicsCase("bitwiseand",			" %i32 0",		" %i32 0",		"%i32",		"BitwiseAnd           %sc_0 %sc_1",				0x33,	0x0d,	addZeroToSc,		outputColors2));
6230	cases.push_back(SpecConstantTwoIntGraphicsCase("bitwiseor",				" %i32 0",		" %i32 0",		"%i32",		"BitwiseOr            %sc_0 %sc_1",				0,		1,		addZeroToSc,		outputColors2));
6231	cases.push_back(SpecConstantTwoIntGraphicsCase("bitwisexor",			" %i32 0",		" %i32 0",		"%i32",		"BitwiseXor           %sc_0 %sc_1",				0x2e,	0x2f,	addZeroToSc,		outputColors2));
6232	cases.push_back(SpecConstantTwoIntGraphicsCase("shiftrightlogical",		" %i32 0",		" %i32 0",		"%i32",		"ShiftRightLogical    %sc_0 %sc_1",				2,		1,		addZeroToSc,		outputColors2));
6233	cases.push_back(SpecConstantTwoIntGraphicsCase("shiftrightarithmetic",	" %i32 0",		" %i32 0",		"%i32",		"ShiftRightArithmetic %sc_0 %sc_1",				-4,		2,		addZeroToSc,		outputColors0));
6234	cases.push_back(SpecConstantTwoIntGraphicsCase("shiftleftlogical",		" %i32 0",		" %i32 0",		"%i32",		"ShiftLeftLogical     %sc_0 %sc_1",				1,		0,		addZeroToSc,		outputColors2));
6235	cases.push_back(SpecConstantTwoIntGraphicsCase("slessthan",				" %i32 0",		" %i32 0",		"%bool",	"SLessThan            %sc_0 %sc_1",				-20,	-10,	selectTrueUsingSc,	outputColors2));
6236	cases.push_back(SpecConstantTwoIntGraphicsCase("ulessthan",				" %i32 0",		" %i32 0",		"%bool",	"ULessThan            %sc_0 %sc_1",				10,		20,		selectTrueUsingSc,	outputColors2));
6237	cases.push_back(SpecConstantTwoIntGraphicsCase("sgreaterthan",			" %i32 0",		" %i32 0",		"%bool",	"SGreaterThan         %sc_0 %sc_1",				-1000,	50,		selectFalseUsingSc,	outputColors2));
6238	cases.push_back(SpecConstantTwoIntGraphicsCase("ugreaterthan",			" %i32 0",		" %i32 0",		"%bool",	"UGreaterThan         %sc_0 %sc_1",				10,		5,		selectTrueUsingSc,	outputColors2));
6239	cases.push_back(SpecConstantTwoIntGraphicsCase("slessthanequal",		" %i32 0",		" %i32 0",		"%bool",	"SLessThanEqual       %sc_0 %sc_1",				-10,	-10,	selectTrueUsingSc,	outputColors2));
6240	cases.push_back(SpecConstantTwoIntGraphicsCase("ulessthanequal",		" %i32 0",		" %i32 0",		"%bool",	"ULessThanEqual       %sc_0 %sc_1",				50,		100,	selectTrueUsingSc,	outputColors2));
6241	cases.push_back(SpecConstantTwoIntGraphicsCase("sgreaterthanequal",		" %i32 0",		" %i32 0",		"%bool",	"SGreaterThanEqual    %sc_0 %sc_1",				-1000,	50,		selectFalseUsingSc,	outputColors2));
6242	cases.push_back(SpecConstantTwoIntGraphicsCase("ugreaterthanequal",		" %i32 0",		" %i32 0",		"%bool",	"UGreaterThanEqual    %sc_0 %sc_1",				10,		10,		selectTrueUsingSc,	outputColors2));
6243	cases.push_back(SpecConstantTwoIntGraphicsCase("iequal",				" %i32 0",		" %i32 0",		"%bool",	"IEqual               %sc_0 %sc_1",				42,		24,		selectFalseUsingSc,	outputColors2));
6244	cases.push_back(SpecConstantTwoIntGraphicsCase("logicaland",			"True %bool",	"True %bool",	"%bool",	"LogicalAnd           %sc_0 %sc_1",				0,		1,		selectFalseUsingSc,	outputColors2));
6245	cases.push_back(SpecConstantTwoIntGraphicsCase("logicalor",				"False %bool",	"False %bool",	"%bool",	"LogicalOr            %sc_0 %sc_1",				1,		0,		selectTrueUsingSc,	outputColors2));
6246	cases.push_back(SpecConstantTwoIntGraphicsCase("logicalequal",			"True %bool",	"True %bool",	"%bool",	"LogicalEqual         %sc_0 %sc_1",				0,		1,		selectFalseUsingSc,	outputColors2));
6247	cases.push_back(SpecConstantTwoIntGraphicsCase("logicalnotequal",		"False %bool",	"False %bool",	"%bool",	"LogicalNotEqual      %sc_0 %sc_1",				1,		0,		selectTrueUsingSc,	outputColors2));
6248	cases.push_back(SpecConstantTwoIntGraphicsCase("snegate",				" %i32 0",		" %i32 0",		"%i32",		"SNegate              %sc_0",					-1,		0,		addZeroToSc,		outputColors2));
6249	cases.push_back(SpecConstantTwoIntGraphicsCase("not",					" %i32 0",		" %i32 0",		"%i32",		"Not                  %sc_0",					-2,		0,		addZeroToSc,		outputColors2));
6250	cases.push_back(SpecConstantTwoIntGraphicsCase("logicalnot",			"False %bool",	"False %bool",	"%bool",	"LogicalNot           %sc_0",					1,		0,		selectFalseUsingSc,	outputColors2));
6251	cases.push_back(SpecConstantTwoIntGraphicsCase("select",				"False %bool",	" %i32 0",		"%i32",		"Select               %sc_0 %sc_1 %c_i32_0",	1,		1,		addZeroToSc,		outputColors2));
6252	// OpSConvert, OpFConvert: these two instructions involve ints/floats of different bitwidths.
6253	// \todo[2015-12-1 antiagainst] OpQuantizeToF16
6254
6255	for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
6256	{
6257		map<string, string>	specializations;
6258		map<string, string>	fragments;
6259		vector<deInt32>		specConstants;
6260
6261		specializations["SC_DEF0"]			= cases[caseNdx].scDefinition0;
6262		specializations["SC_DEF1"]			= cases[caseNdx].scDefinition1;
6263		specializations["SC_RESULT_TYPE"]	= cases[caseNdx].scResultType;
6264		specializations["SC_OP"]			= cases[caseNdx].scOperation;
6265		specializations["GEN_RESULT"]		= cases[caseNdx].resultOperation;
6266
6267		fragments["decoration"]				= tcu::StringTemplate(decorations1).specialize(specializations);
6268		fragments["pre_main"]				= tcu::StringTemplate(typesAndConstants1).specialize(specializations);
6269		fragments["testfun"]				= tcu::StringTemplate(function1).specialize(specializations);
6270
6271		specConstants.push_back(cases[caseNdx].scActualValue0);
6272		specConstants.push_back(cases[caseNdx].scActualValue1);
6273
6274		createTestsForAllStages(cases[caseNdx].caseName, inputColors, cases[caseNdx].expectedColors, fragments, specConstants, group.get());
6275	}
6276
6277	const char	decorations2[]			=
6278		"OpDecorate %sc_0  SpecId 0\n"
6279		"OpDecorate %sc_1  SpecId 1\n"
6280		"OpDecorate %sc_2  SpecId 2\n";
6281
6282	const char	typesAndConstants2[]	=
6283		"%v3i32     = OpTypeVector %i32 3\n"
6284
6285		"%sc_0      = OpSpecConstant %i32 0\n"
6286		"%sc_1      = OpSpecConstant %i32 0\n"
6287		"%sc_2      = OpSpecConstant %i32 0\n"
6288
6289		"%vec3_0      = OpConstantComposite %v3i32 %c_i32_0 %c_i32_0 %c_i32_0\n"
6290		"%sc_vec3_0   = OpSpecConstantOp %v3i32 CompositeInsert  %sc_0        %vec3_0    0\n"     // (sc_0, 0, 0)
6291		"%sc_vec3_1   = OpSpecConstantOp %v3i32 CompositeInsert  %sc_1        %vec3_0    1\n"     // (0, sc_1, 0)
6292		"%sc_vec3_2   = OpSpecConstantOp %v3i32 CompositeInsert  %sc_2        %vec3_0    2\n"     // (0, 0, sc_2)
6293		"%sc_vec3_01  = OpSpecConstantOp %v3i32 VectorShuffle    %sc_vec3_0   %sc_vec3_1 1 0 4\n" // (0,    sc_0, sc_1)
6294		"%sc_vec3_012 = OpSpecConstantOp %v3i32 VectorShuffle    %sc_vec3_01  %sc_vec3_2 5 1 2\n" // (sc_2, sc_0, sc_1)
6295		"%sc_ext_0    = OpSpecConstantOp %i32   CompositeExtract %sc_vec3_012            0\n"     // sc_2
6296		"%sc_ext_1    = OpSpecConstantOp %i32   CompositeExtract %sc_vec3_012            1\n"     // sc_0
6297		"%sc_ext_2    = OpSpecConstantOp %i32   CompositeExtract %sc_vec3_012            2\n"     // sc_1
6298		"%sc_sub      = OpSpecConstantOp %i32   ISub             %sc_ext_0    %sc_ext_1\n"        // (sc_2 - sc_0)
6299		"%sc_final    = OpSpecConstantOp %i32   IMul             %sc_sub      %sc_ext_2\n";       // (sc_2 - sc_0) * sc_1
6300
6301	const char	function2[]				=
6302		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
6303		"%param     = OpFunctionParameter %v4f32\n"
6304		"%label     = OpLabel\n"
6305		"%result    = OpVariable %fp_v4f32 Function\n"
6306		"             OpStore %result %param\n"
6307		"%loc       = OpAccessChain %fp_f32 %result %sc_final\n"
6308		"%val       = OpLoad %f32 %loc\n"
6309		"%add       = OpFAdd %f32 %val %c_f32_0_5\n"
6310		"             OpStore %loc %add\n"
6311		"%ret       = OpLoad %v4f32 %result\n"
6312		"             OpReturnValue %ret\n"
6313		"             OpFunctionEnd\n";
6314
6315	map<string, string>	fragments;
6316	vector<deInt32>		specConstants;
6317
6318	fragments["decoration"]	= decorations2;
6319	fragments["pre_main"]	= typesAndConstants2;
6320	fragments["testfun"]	= function2;
6321
6322	specConstants.push_back(56789);
6323	specConstants.push_back(-2);
6324	specConstants.push_back(56788);
6325
6326	createTestsForAllStages("vector_related", inputColors, outputColors2, fragments, specConstants, group.get());
6327
6328	return group.release();
6329}
6330
6331tcu::TestCaseGroup* createOpPhiTests(tcu::TestContext& testCtx)
6332{
6333	de::MovePtr<tcu::TestCaseGroup> group				(new tcu::TestCaseGroup(testCtx, "opphi", "Test the OpPhi instruction"));
6334	RGBA							inputColors[4];
6335	RGBA							outputColors1[4];
6336	RGBA							outputColors2[4];
6337	RGBA							outputColors3[4];
6338	map<string, string>				fragments1;
6339	map<string, string>				fragments2;
6340	map<string, string>				fragments3;
6341
6342	const char	typesAndConstants1[]	=
6343		"%c_f32_p2  = OpConstant %f32 0.2\n"
6344		"%c_f32_p4  = OpConstant %f32 0.4\n"
6345		"%c_f32_p5  = OpConstant %f32 0.5\n"
6346		"%c_f32_p8  = OpConstant %f32 0.8\n";
6347
6348	// vec4 test_code(vec4 param) {
6349	//   vec4 result = param;
6350	//   for (int i = 0; i < 4; ++i) {
6351	//     float operand;
6352	//     switch (i) {
6353	//       case 0: operand = .2; break;
6354	//       case 1: operand = .5; break;
6355	//       case 2: operand = .4; break;
6356	//       case 3: operand = .0; break;
6357	//       default: break; // unreachable
6358	//     }
6359	//     result[i] += operand;
6360	//   }
6361	//   return result;
6362	// }
6363	const char	function1[]				=
6364		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
6365		"%param1    = OpFunctionParameter %v4f32\n"
6366		"%lbl       = OpLabel\n"
6367		"%iptr      = OpVariable %fp_i32 Function\n"
6368		"%result    = OpVariable %fp_v4f32 Function\n"
6369		"             OpStore %iptr %c_i32_0\n"
6370		"             OpStore %result %param1\n"
6371		"             OpBranch %loop\n"
6372
6373		"%loop      = OpLabel\n"
6374		"%ival      = OpLoad %i32 %iptr\n"
6375		"%lt_4      = OpSLessThan %bool %ival %c_i32_4\n"
6376		"             OpLoopMerge %exit %loop None\n"
6377		"             OpBranchConditional %lt_4 %entry %exit\n"
6378
6379		"%entry     = OpLabel\n"
6380		"%loc       = OpAccessChain %fp_f32 %result %ival\n"
6381		"%val       = OpLoad %f32 %loc\n"
6382		"             OpSelectionMerge %phi None\n"
6383		"             OpSwitch %ival %default 0 %case0 1 %case1 2 %case2 3 %case3\n"
6384
6385		"%case0     = OpLabel\n"
6386		"             OpBranch %phi\n"
6387		"%case1     = OpLabel\n"
6388		"             OpBranch %phi\n"
6389		"%case2     = OpLabel\n"
6390		"             OpBranch %phi\n"
6391		"%case3     = OpLabel\n"
6392		"             OpBranch %phi\n"
6393
6394		"%default   = OpLabel\n"
6395		"             OpUnreachable\n"
6396
6397		"%phi       = OpLabel\n"
6398		"%operand   = OpPhi %f32 %c_f32_p4 %case2 %c_f32_p5 %case1 %c_f32_p2 %case0 %c_f32_0 %case3\n" // not in the order of blocks
6399		"%add       = OpFAdd %f32 %val %operand\n"
6400		"             OpStore %loc %add\n"
6401		"%ival_next = OpIAdd %i32 %ival %c_i32_1\n"
6402		"             OpStore %iptr %ival_next\n"
6403		"             OpBranch %loop\n"
6404
6405		"%exit      = OpLabel\n"
6406		"%ret       = OpLoad %v4f32 %result\n"
6407		"             OpReturnValue %ret\n"
6408
6409		"             OpFunctionEnd\n";
6410
6411	fragments1["pre_main"]	= typesAndConstants1;
6412	fragments1["testfun"]	= function1;
6413
6414	getHalfColorsFullAlpha(inputColors);
6415
6416	outputColors1[0]		= RGBA(178, 255, 229, 255);
6417	outputColors1[1]		= RGBA(178, 127, 102, 255);
6418	outputColors1[2]		= RGBA(51,  255, 102, 255);
6419	outputColors1[3]		= RGBA(51,  127, 229, 255);
6420
6421	createTestsForAllStages("out_of_order", inputColors, outputColors1, fragments1, group.get());
6422
6423	const char	typesAndConstants2[]	=
6424		"%c_f32_p2  = OpConstant %f32 0.2\n";
6425
6426	// Add .4 to the second element of the given parameter.
6427	const char	function2[]				=
6428		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
6429		"%param     = OpFunctionParameter %v4f32\n"
6430		"%entry     = OpLabel\n"
6431		"%result    = OpVariable %fp_v4f32 Function\n"
6432		"             OpStore %result %param\n"
6433		"%loc       = OpAccessChain %fp_f32 %result %c_i32_1\n"
6434		"%val       = OpLoad %f32 %loc\n"
6435		"             OpBranch %phi\n"
6436
6437		"%phi        = OpLabel\n"
6438		"%step       = OpPhi %i32 %c_i32_0  %entry %step_next  %phi\n"
6439		"%accum      = OpPhi %f32 %val      %entry %accum_next %phi\n"
6440		"%step_next  = OpIAdd %i32 %step  %c_i32_1\n"
6441		"%accum_next = OpFAdd %f32 %accum %c_f32_p2\n"
6442		"%still_loop = OpSLessThan %bool %step %c_i32_2\n"
6443		"              OpLoopMerge %exit %phi None\n"
6444		"              OpBranchConditional %still_loop %phi %exit\n"
6445
6446		"%exit       = OpLabel\n"
6447		"              OpStore %loc %accum\n"
6448		"%ret        = OpLoad %v4f32 %result\n"
6449		"              OpReturnValue %ret\n"
6450
6451		"              OpFunctionEnd\n";
6452
6453	fragments2["pre_main"]	= typesAndConstants2;
6454	fragments2["testfun"]	= function2;
6455
6456	outputColors2[0]			= RGBA(127, 229, 127, 255);
6457	outputColors2[1]			= RGBA(127, 102, 0,   255);
6458	outputColors2[2]			= RGBA(0,   229, 0,   255);
6459	outputColors2[3]			= RGBA(0,   102, 127, 255);
6460
6461	createTestsForAllStages("induction", inputColors, outputColors2, fragments2, group.get());
6462
6463	const char	typesAndConstants3[]	=
6464		"%true      = OpConstantTrue %bool\n"
6465		"%false     = OpConstantFalse %bool\n"
6466		"%c_f32_p2  = OpConstant %f32 0.2\n";
6467
6468	// Swap the second and the third element of the given parameter.
6469	const char	function3[]				=
6470		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
6471		"%param     = OpFunctionParameter %v4f32\n"
6472		"%entry     = OpLabel\n"
6473		"%result    = OpVariable %fp_v4f32 Function\n"
6474		"             OpStore %result %param\n"
6475		"%a_loc     = OpAccessChain %fp_f32 %result %c_i32_1\n"
6476		"%a_init    = OpLoad %f32 %a_loc\n"
6477		"%b_loc     = OpAccessChain %fp_f32 %result %c_i32_2\n"
6478		"%b_init    = OpLoad %f32 %b_loc\n"
6479		"             OpBranch %phi\n"
6480
6481		"%phi        = OpLabel\n"
6482		"%still_loop = OpPhi %bool %true   %entry %false  %phi\n"
6483		"%a_next     = OpPhi %f32  %a_init %entry %b_next %phi\n"
6484		"%b_next     = OpPhi %f32  %b_init %entry %a_next %phi\n"
6485		"              OpLoopMerge %exit %phi None\n"
6486		"              OpBranchConditional %still_loop %phi %exit\n"
6487
6488		"%exit       = OpLabel\n"
6489		"              OpStore %a_loc %a_next\n"
6490		"              OpStore %b_loc %b_next\n"
6491		"%ret        = OpLoad %v4f32 %result\n"
6492		"              OpReturnValue %ret\n"
6493
6494		"              OpFunctionEnd\n";
6495
6496	fragments3["pre_main"]	= typesAndConstants3;
6497	fragments3["testfun"]	= function3;
6498
6499	outputColors3[0]			= RGBA(127, 127, 127, 255);
6500	outputColors3[1]			= RGBA(127, 0,   0,   255);
6501	outputColors3[2]			= RGBA(0,   0,   127, 255);
6502	outputColors3[3]			= RGBA(0,   127, 0,   255);
6503
6504	createTestsForAllStages("swap", inputColors, outputColors3, fragments3, group.get());
6505
6506	return group.release();
6507}
6508
6509tcu::TestCaseGroup* createNoContractionTests(tcu::TestContext& testCtx)
6510{
6511	de::MovePtr<tcu::TestCaseGroup> group			(new tcu::TestCaseGroup(testCtx, "nocontraction", "Test the NoContraction decoration"));
6512	RGBA							inputColors[4];
6513	RGBA							outputColors[4];
6514
6515	// With NoContraction, (1 + 2^-23) * (1 - 2^-23) - 1 should be conducted as a multiplication and an addition separately.
6516	// For the multiplication, the result is 1 - 2^-46, which is out of the precision range for 32-bit float. (32-bit float
6517	// only have 23-bit fraction.) So it will be rounded to 1. Or 0x1.fffffc. Then the final result is 0 or -0x1p-24.
6518	// On the contrary, the result will be 2^-46, which is a normalized number perfectly representable as 32-bit float.
6519	const char						constantsAndTypes[]	 =
6520		"%c_vec4_0       = OpConstantComposite %v4f32 %c_f32_0 %c_f32_0 %c_f32_0 %c_f32_1\n"
6521		"%c_vec4_1       = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_1\n"
6522		"%c_f32_1pl2_23  = OpConstant %f32 0x1.000002p+0\n" // 1 + 2^-23
6523		"%c_f32_1mi2_23  = OpConstant %f32 0x1.fffffcp-1\n" // 1 - 2^-23
6524		"%c_f32_n1pn24   = OpConstant %f32 -0x1p-24\n"
6525		;
6526
6527	const char						function[]	 =
6528		"%test_code      = OpFunction %v4f32 None %v4f32_function\n"
6529		"%param          = OpFunctionParameter %v4f32\n"
6530		"%label          = OpLabel\n"
6531		"%var1           = OpVariable %fp_f32 Function %c_f32_1pl2_23\n"
6532		"%var2           = OpVariable %fp_f32 Function\n"
6533		"%red            = OpCompositeExtract %f32 %param 0\n"
6534		"%plus_red       = OpFAdd %f32 %c_f32_1mi2_23 %red\n"
6535		"                  OpStore %var2 %plus_red\n"
6536		"%val1           = OpLoad %f32 %var1\n"
6537		"%val2           = OpLoad %f32 %var2\n"
6538		"%mul            = OpFMul %f32 %val1 %val2\n"
6539		"%add            = OpFAdd %f32 %mul %c_f32_n1\n"
6540		"%is0            = OpFOrdEqual %bool %add %c_f32_0\n"
6541		"%isn1n24         = OpFOrdEqual %bool %add %c_f32_n1pn24\n"
6542		"%success        = OpLogicalOr %bool %is0 %isn1n24\n"
6543		"%v4success      = OpCompositeConstruct %v4bool %success %success %success %success\n"
6544		"%ret            = OpSelect %v4f32 %v4success %c_vec4_0 %c_vec4_1\n"
6545		"                  OpReturnValue %ret\n"
6546		"                  OpFunctionEnd\n";
6547
6548	struct CaseNameDecoration
6549	{
6550		string name;
6551		string decoration;
6552	};
6553
6554
6555	CaseNameDecoration tests[] = {
6556		{"multiplication",	"OpDecorate %mul NoContraction"},
6557		{"addition",		"OpDecorate %add NoContraction"},
6558		{"both",			"OpDecorate %mul NoContraction\nOpDecorate %add NoContraction"},
6559	};
6560
6561	getHalfColorsFullAlpha(inputColors);
6562
6563	for (deUint8 idx = 0; idx < 4; ++idx)
6564	{
6565		inputColors[idx].setRed(0);
6566		outputColors[idx] = RGBA(0, 0, 0, 255);
6567	}
6568
6569	for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(CaseNameDecoration); ++testNdx)
6570	{
6571		map<string, string> fragments;
6572
6573		fragments["decoration"] = tests[testNdx].decoration;
6574		fragments["pre_main"] = constantsAndTypes;
6575		fragments["testfun"] = function;
6576
6577		createTestsForAllStages(tests[testNdx].name, inputColors, outputColors, fragments, group.get());
6578	}
6579
6580	return group.release();
6581}
6582
6583tcu::TestCaseGroup* createMemoryAccessTests(tcu::TestContext& testCtx)
6584{
6585	de::MovePtr<tcu::TestCaseGroup> memoryAccessTests (new tcu::TestCaseGroup(testCtx, "opmemoryaccess", "Memory Semantics"));
6586	RGBA							colors[4];
6587
6588	const char						constantsAndTypes[]	 =
6589		"%c_a2f32_1         = OpConstantComposite %a2f32 %c_f32_1 %c_f32_1\n"
6590		"%fp_a2f32          = OpTypePointer Function %a2f32\n"
6591		"%stype             = OpTypeStruct  %v4f32 %a2f32 %f32\n"
6592		"%fp_stype          = OpTypePointer Function %stype\n";
6593
6594	const char						function[]	 =
6595		"%test_code         = OpFunction %v4f32 None %v4f32_function\n"
6596		"%param1            = OpFunctionParameter %v4f32\n"
6597		"%lbl               = OpLabel\n"
6598		"%v1                = OpVariable %fp_v4f32 Function\n"
6599		"%v2                = OpVariable %fp_a2f32 Function\n"
6600		"%v3                = OpVariable %fp_f32 Function\n"
6601		"%v                 = OpVariable %fp_stype Function\n"
6602		"%vv                = OpVariable %fp_stype Function\n"
6603		"%vvv               = OpVariable %fp_f32 Function\n"
6604
6605		"                     OpStore %v1 %c_v4f32_1_1_1_1\n"
6606		"                     OpStore %v2 %c_a2f32_1\n"
6607		"                     OpStore %v3 %c_f32_1\n"
6608
6609		"%p_v4f32          = OpAccessChain %fp_v4f32 %v %c_u32_0\n"
6610		"%p_a2f32          = OpAccessChain %fp_a2f32 %v %c_u32_1\n"
6611		"%p_f32            = OpAccessChain %fp_f32 %v %c_u32_2\n"
6612		"%v1_v             = OpLoad %v4f32 %v1 ${access_type}\n"
6613		"%v2_v             = OpLoad %a2f32 %v2 ${access_type}\n"
6614		"%v3_v             = OpLoad %f32 %v3 ${access_type}\n"
6615
6616		"                    OpStore %p_v4f32 %v1_v ${access_type}\n"
6617		"                    OpStore %p_a2f32 %v2_v ${access_type}\n"
6618		"                    OpStore %p_f32 %v3_v ${access_type}\n"
6619
6620		"                    OpCopyMemory %vv %v ${access_type}\n"
6621		"                    OpCopyMemory %vvv %p_f32 ${access_type}\n"
6622
6623		"%p_f32_2          = OpAccessChain %fp_f32 %vv %c_u32_2\n"
6624		"%v_f32_2          = OpLoad %f32 %p_f32_2\n"
6625		"%v_f32_3          = OpLoad %f32 %vvv\n"
6626
6627		"%ret1             = OpVectorTimesScalar %v4f32 %param1 %v_f32_2\n"
6628		"%ret2             = OpVectorTimesScalar %v4f32 %ret1 %v_f32_3\n"
6629		"                    OpReturnValue %ret2\n"
6630		"                    OpFunctionEnd\n";
6631
6632	struct NameMemoryAccess
6633	{
6634		string name;
6635		string accessType;
6636	};
6637
6638
6639	NameMemoryAccess tests[] =
6640	{
6641		{ "none", "" },
6642		{ "volatile", "Volatile" },
6643		{ "aligned",  "Aligned 1" },
6644		{ "volatile_aligned",  "Volatile|Aligned 1" },
6645		{ "nontemporal_aligned",  "Nontemporal|Aligned 1" },
6646		{ "volatile_nontemporal",  "Volatile|Nontemporal" },
6647		{ "volatile_nontermporal_aligned",  "Volatile|Nontemporal|Aligned 1" },
6648	};
6649
6650	getHalfColorsFullAlpha(colors);
6651
6652	for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(NameMemoryAccess); ++testNdx)
6653	{
6654		map<string, string> fragments;
6655		map<string, string> memoryAccess;
6656		memoryAccess["access_type"] = tests[testNdx].accessType;
6657
6658		fragments["pre_main"] = constantsAndTypes;
6659		fragments["testfun"] = tcu::StringTemplate(function).specialize(memoryAccess);
6660		createTestsForAllStages(tests[testNdx].name, colors, colors, fragments, memoryAccessTests.get());
6661	}
6662	return memoryAccessTests.release();
6663}
6664tcu::TestCaseGroup* createOpUndefTests(tcu::TestContext& testCtx)
6665{
6666	de::MovePtr<tcu::TestCaseGroup>		opUndefTests		 (new tcu::TestCaseGroup(testCtx, "opundef", "Test OpUndef"));
6667	RGBA								defaultColors[4];
6668	map<string, string>					fragments;
6669	getDefaultColors(defaultColors);
6670
6671	// First, simple cases that don't do anything with the OpUndef result.
6672	fragments["testfun"] =
6673		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
6674		"%param1 = OpFunctionParameter %v4f32\n"
6675		"%label_testfun = OpLabel\n"
6676		"%undef = OpUndef %type\n"
6677		"OpReturnValue %param1\n"
6678		"OpFunctionEnd\n"
6679		;
6680	struct NameCodePair { string name, code; };
6681	const NameCodePair tests[] =
6682	{
6683		{"bool", "%type = OpTypeBool"},
6684		{"vec2uint32", "%type = OpTypeVector %u32 2"},
6685		{"image", "%type = OpTypeImage %f32 2D 0 0 0 1 Unknown"},
6686		{"sampler", "%type = OpTypeSampler"},
6687		{"sampledimage", "%img = OpTypeImage %f32 2D 0 0 0 1 Unknown\n" "%type = OpTypeSampledImage %img"},
6688		{"pointer", "%type = OpTypePointer Function %i32"},
6689		{"runtimearray", "%type = OpTypeRuntimeArray %f32"},
6690		{"array", "%c_u32_100 = OpConstant %u32 100\n" "%type = OpTypeArray %i32 %c_u32_100"},
6691		{"struct", "%type = OpTypeStruct %f32 %i32 %u32"}};
6692	for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(NameCodePair); ++testNdx)
6693	{
6694		fragments["pre_main"] = tests[testNdx].code;
6695		createTestsForAllStages(tests[testNdx].name, defaultColors, defaultColors, fragments, opUndefTests.get());
6696	}
6697	fragments.clear();
6698
6699	fragments["testfun"] =
6700		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
6701		"%param1 = OpFunctionParameter %v4f32\n"
6702		"%label_testfun = OpLabel\n"
6703		"%undef = OpUndef %f32\n"
6704		"%zero = OpFMul %f32 %undef %c_f32_0\n"
6705		"%a = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
6706		"%b = OpFAdd %f32 %a %zero\n"
6707		"%ret = OpVectorInsertDynamic %v4f32 %param1 %b %c_i32_0\n"
6708		"OpReturnValue %ret\n"
6709		"OpFunctionEnd\n"
6710		;
6711	createTestsForAllStages("float32", defaultColors, defaultColors, fragments, opUndefTests.get());
6712
6713	fragments["testfun"] =
6714		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
6715		"%param1 = OpFunctionParameter %v4f32\n"
6716		"%label_testfun = OpLabel\n"
6717		"%undef = OpUndef %i32\n"
6718		"%zero = OpIMul %i32 %undef %c_i32_0\n"
6719		"%a = OpVectorExtractDynamic %f32 %param1 %zero\n"
6720		"%ret = OpVectorInsertDynamic %v4f32 %param1 %a %c_i32_0\n"
6721		"OpReturnValue %ret\n"
6722		"OpFunctionEnd\n"
6723		;
6724	createTestsForAllStages("sint32", defaultColors, defaultColors, fragments, opUndefTests.get());
6725
6726	fragments["testfun"] =
6727		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
6728		"%param1 = OpFunctionParameter %v4f32\n"
6729		"%label_testfun = OpLabel\n"
6730		"%undef = OpUndef %u32\n"
6731		"%zero = OpIMul %u32 %undef %c_i32_0\n"
6732		"%a = OpVectorExtractDynamic %f32 %param1 %zero\n"
6733		"%ret = OpVectorInsertDynamic %v4f32 %param1 %a %c_i32_0\n"
6734		"OpReturnValue %ret\n"
6735		"OpFunctionEnd\n"
6736		;
6737	createTestsForAllStages("uint32", defaultColors, defaultColors, fragments, opUndefTests.get());
6738
6739	fragments["testfun"] =
6740		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
6741		"%param1 = OpFunctionParameter %v4f32\n"
6742		"%label_testfun = OpLabel\n"
6743		"%undef = OpUndef %v4f32\n"
6744		"%vzero = OpVectorTimesScalar %v4f32 %undef %c_f32_0\n"
6745		"%zero_0 = OpVectorExtractDynamic %f32 %vzero %c_i32_0\n"
6746		"%zero_1 = OpVectorExtractDynamic %f32 %vzero %c_i32_1\n"
6747		"%zero_2 = OpVectorExtractDynamic %f32 %vzero %c_i32_2\n"
6748		"%zero_3 = OpVectorExtractDynamic %f32 %vzero %c_i32_3\n"
6749		"%param1_0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
6750		"%param1_1 = OpVectorExtractDynamic %f32 %param1 %c_i32_1\n"
6751		"%param1_2 = OpVectorExtractDynamic %f32 %param1 %c_i32_2\n"
6752		"%param1_3 = OpVectorExtractDynamic %f32 %param1 %c_i32_3\n"
6753		"%sum_0 = OpFAdd %f32 %param1_0 %zero_0\n"
6754		"%sum_1 = OpFAdd %f32 %param1_1 %zero_1\n"
6755		"%sum_2 = OpFAdd %f32 %param1_2 %zero_2\n"
6756		"%sum_3 = OpFAdd %f32 %param1_3 %zero_3\n"
6757		"%ret3 = OpVectorInsertDynamic %v4f32 %param1 %sum_3 %c_i32_3\n"
6758		"%ret2 = OpVectorInsertDynamic %v4f32 %ret3 %sum_2 %c_i32_2\n"
6759		"%ret1 = OpVectorInsertDynamic %v4f32 %ret2 %sum_1 %c_i32_1\n"
6760		"%ret = OpVectorInsertDynamic %v4f32 %ret1 %sum_0 %c_i32_0\n"
6761		"OpReturnValue %ret\n"
6762		"OpFunctionEnd\n"
6763		;
6764	createTestsForAllStages("vec4float32", defaultColors, defaultColors, fragments, opUndefTests.get());
6765
6766	fragments["pre_main"] =
6767		"%v2f32 = OpTypeVector %f32 2\n"
6768		"%m2x2f32 = OpTypeMatrix %v2f32 2\n";
6769	fragments["testfun"] =
6770		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
6771		"%param1 = OpFunctionParameter %v4f32\n"
6772		"%label_testfun = OpLabel\n"
6773		"%undef = OpUndef %m2x2f32\n"
6774		"%mzero = OpMatrixTimesScalar %m2x2f32 %undef %c_f32_0\n"
6775		"%zero_0 = OpCompositeExtract %f32 %mzero 0 0\n"
6776		"%zero_1 = OpCompositeExtract %f32 %mzero 0 1\n"
6777		"%zero_2 = OpCompositeExtract %f32 %mzero 1 0\n"
6778		"%zero_3 = OpCompositeExtract %f32 %mzero 1 1\n"
6779		"%param1_0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
6780		"%param1_1 = OpVectorExtractDynamic %f32 %param1 %c_i32_1\n"
6781		"%param1_2 = OpVectorExtractDynamic %f32 %param1 %c_i32_2\n"
6782		"%param1_3 = OpVectorExtractDynamic %f32 %param1 %c_i32_3\n"
6783		"%sum_0 = OpFAdd %f32 %param1_0 %zero_0\n"
6784		"%sum_1 = OpFAdd %f32 %param1_1 %zero_1\n"
6785		"%sum_2 = OpFAdd %f32 %param1_2 %zero_2\n"
6786		"%sum_3 = OpFAdd %f32 %param1_3 %zero_3\n"
6787		"%ret3 = OpVectorInsertDynamic %v4f32 %param1 %sum_3 %c_i32_3\n"
6788		"%ret2 = OpVectorInsertDynamic %v4f32 %ret3 %sum_2 %c_i32_2\n"
6789		"%ret1 = OpVectorInsertDynamic %v4f32 %ret2 %sum_1 %c_i32_1\n"
6790		"%ret = OpVectorInsertDynamic %v4f32 %ret1 %sum_0 %c_i32_0\n"
6791		"OpReturnValue %ret\n"
6792		"OpFunctionEnd\n"
6793		;
6794	createTestsForAllStages("matrix", defaultColors, defaultColors, fragments, opUndefTests.get());
6795
6796	return opUndefTests.release();
6797}
6798
6799void createOpQuantizeSingleOptionTests(tcu::TestCaseGroup* testCtx)
6800{
6801	const RGBA		inputColors[4]		=
6802	{
6803		RGBA(0,		0,		0,		255),
6804		RGBA(0,		0,		255,	255),
6805		RGBA(0,		255,	0,		255),
6806		RGBA(0,		255,	255,	255)
6807	};
6808
6809	const RGBA		expectedColors[4]	=
6810	{
6811		RGBA(255,	 0,		 0,		 255),
6812		RGBA(255,	 0,		 0,		 255),
6813		RGBA(255,	 0,		 0,		 255),
6814		RGBA(255,	 0,		 0,		 255)
6815	};
6816
6817	const struct SingleFP16Possibility
6818	{
6819		const char* name;
6820		const char* constant;  // Value to assign to %test_constant.
6821		float		valueAsFloat;
6822		const char* condition; // Must assign to %cond an expression that evaluates to true after %c = OpQuantizeToF16(%test_constant + 0).
6823	}				tests[]				=
6824	{
6825		{
6826			"negative",
6827			"-0x1.3p1\n",
6828			-constructNormalizedFloat(1, 0x300000),
6829			"%cond = OpFOrdEqual %bool %c %test_constant\n"
6830		}, // -19
6831		{
6832			"positive",
6833			"0x1.0p7\n",
6834			constructNormalizedFloat(7, 0x000000),
6835			"%cond = OpFOrdEqual %bool %c %test_constant\n"
6836		},  // +128
6837		// SPIR-V requires that OpQuantizeToF16 flushes
6838		// any numbers that would end up denormalized in F16 to zero.
6839		{
6840			"denorm",
6841			"0x0.0006p-126\n",
6842			std::ldexp(1.5f, -140),
6843			"%cond = OpFOrdEqual %bool %c %c_f32_0\n"
6844		},  // denorm
6845		{
6846			"negative_denorm",
6847			"-0x0.0006p-126\n",
6848			-std::ldexp(1.5f, -140),
6849			"%cond = OpFOrdEqual %bool %c %c_f32_0\n"
6850		}, // -denorm
6851		{
6852			"too_small",
6853			"0x1.0p-16\n",
6854			std::ldexp(1.0f, -16),
6855			"%cond = OpFOrdEqual %bool %c %c_f32_0\n"
6856		},     // too small positive
6857		{
6858			"negative_too_small",
6859			"-0x1.0p-32\n",
6860			-std::ldexp(1.0f, -32),
6861			"%cond = OpFOrdEqual %bool %c %c_f32_0\n"
6862		},      // too small negative
6863		{
6864			"negative_inf",
6865			"-0x1.0p128\n",
6866			-std::ldexp(1.0f, 128),
6867
6868			"%gz = OpFOrdLessThan %bool %c %c_f32_0\n"
6869			"%inf = OpIsInf %bool %c\n"
6870			"%cond = OpLogicalAnd %bool %gz %inf\n"
6871		},     // -inf to -inf
6872		{
6873			"inf",
6874			"0x1.0p128\n",
6875			std::ldexp(1.0f, 128),
6876
6877			"%gz = OpFOrdGreaterThan %bool %c %c_f32_0\n"
6878			"%inf = OpIsInf %bool %c\n"
6879			"%cond = OpLogicalAnd %bool %gz %inf\n"
6880		},     // +inf to +inf
6881		{
6882			"round_to_negative_inf",
6883			"-0x1.0p32\n",
6884			-std::ldexp(1.0f, 32),
6885
6886			"%gz = OpFOrdLessThan %bool %c %c_f32_0\n"
6887			"%inf = OpIsInf %bool %c\n"
6888			"%cond = OpLogicalAnd %bool %gz %inf\n"
6889		},     // round to -inf
6890		{
6891			"round_to_inf",
6892			"0x1.0p16\n",
6893			std::ldexp(1.0f, 16),
6894
6895			"%gz = OpFOrdGreaterThan %bool %c %c_f32_0\n"
6896			"%inf = OpIsInf %bool %c\n"
6897			"%cond = OpLogicalAnd %bool %gz %inf\n"
6898		},     // round to +inf
6899		{
6900			"nan",
6901			"0x1.1p128\n",
6902			std::numeric_limits<float>::quiet_NaN(),
6903
6904			// Test for any NaN value, as NaNs are not preserved
6905			"%direct_quant = OpQuantizeToF16 %f32 %test_constant\n"
6906			"%cond = OpIsNan %bool %direct_quant\n"
6907		}, // nan
6908		{
6909			"negative_nan",
6910			"-0x1.0001p128\n",
6911			std::numeric_limits<float>::quiet_NaN(),
6912
6913			// Test for any NaN value, as NaNs are not preserved
6914			"%direct_quant = OpQuantizeToF16 %f32 %test_constant\n"
6915			"%cond = OpIsNan %bool %direct_quant\n"
6916		} // -nan
6917	};
6918	const char*		constants			=
6919		"%test_constant = OpConstant %f32 ";  // The value will be test.constant.
6920
6921	StringTemplate	function			(
6922		"%test_code     = OpFunction %v4f32 None %v4f32_function\n"
6923		"%param1        = OpFunctionParameter %v4f32\n"
6924		"%label_testfun = OpLabel\n"
6925		"%a             = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
6926		"%b             = OpFAdd %f32 %test_constant %a\n"
6927		"%c             = OpQuantizeToF16 %f32 %b\n"
6928		"${condition}\n"
6929		"%v4cond        = OpCompositeConstruct %v4bool %cond %cond %cond %cond\n"
6930		"%retval        = OpSelect %v4f32 %v4cond %c_v4f32_1_0_0_1 %param1\n"
6931		"                 OpReturnValue %retval\n"
6932		"OpFunctionEnd\n"
6933	);
6934
6935	const char*		specDecorations		= "OpDecorate %test_constant SpecId 0\n";
6936	const char*		specConstants		=
6937			"%test_constant = OpSpecConstant %f32 0.\n"
6938			"%c             = OpSpecConstantOp %f32 QuantizeToF16 %test_constant\n";
6939
6940	StringTemplate	specConstantFunction(
6941		"%test_code     = OpFunction %v4f32 None %v4f32_function\n"
6942		"%param1        = OpFunctionParameter %v4f32\n"
6943		"%label_testfun = OpLabel\n"
6944		"${condition}\n"
6945		"%v4cond        = OpCompositeConstruct %v4bool %cond %cond %cond %cond\n"
6946		"%retval        = OpSelect %v4f32 %v4cond %c_v4f32_1_0_0_1 %param1\n"
6947		"                 OpReturnValue %retval\n"
6948		"OpFunctionEnd\n"
6949	);
6950
6951	for (size_t idx = 0; idx < (sizeof(tests)/sizeof(tests[0])); ++idx)
6952	{
6953		map<string, string>								codeSpecialization;
6954		map<string, string>								fragments;
6955		codeSpecialization["condition"]					= tests[idx].condition;
6956		fragments["testfun"]							= function.specialize(codeSpecialization);
6957		fragments["pre_main"]							= string(constants) + tests[idx].constant + "\n";
6958		createTestsForAllStages(tests[idx].name, inputColors, expectedColors, fragments, testCtx);
6959	}
6960
6961	for (size_t idx = 0; idx < (sizeof(tests)/sizeof(tests[0])); ++idx)
6962	{
6963		map<string, string>								codeSpecialization;
6964		map<string, string>								fragments;
6965		vector<deInt32>									passConstants;
6966		deInt32											specConstant;
6967
6968		codeSpecialization["condition"]					= tests[idx].condition;
6969		fragments["testfun"]							= specConstantFunction.specialize(codeSpecialization);
6970		fragments["decoration"]							= specDecorations;
6971		fragments["pre_main"]							= specConstants;
6972
6973		memcpy(&specConstant, &tests[idx].valueAsFloat, sizeof(float));
6974		passConstants.push_back(specConstant);
6975
6976		createTestsForAllStages(string("spec_const_") + tests[idx].name, inputColors, expectedColors, fragments, passConstants, testCtx);
6977	}
6978}
6979
6980void createOpQuantizeTwoPossibilityTests(tcu::TestCaseGroup* testCtx)
6981{
6982	RGBA inputColors[4] =  {
6983		RGBA(0,		0,		0,		255),
6984		RGBA(0,		0,		255,	255),
6985		RGBA(0,		255,	0,		255),
6986		RGBA(0,		255,	255,	255)
6987	};
6988
6989	RGBA expectedColors[4] =
6990	{
6991		RGBA(255,	 0,		 0,		 255),
6992		RGBA(255,	 0,		 0,		 255),
6993		RGBA(255,	 0,		 0,		 255),
6994		RGBA(255,	 0,		 0,		 255)
6995	};
6996
6997	struct DualFP16Possibility
6998	{
6999		const char* name;
7000		const char* input;
7001		float		inputAsFloat;
7002		const char* possibleOutput1;
7003		const char* possibleOutput2;
7004	} tests[] = {
7005		{
7006			"positive_round_up_or_round_down",
7007			"0x1.3003p8",
7008			constructNormalizedFloat(8, 0x300300),
7009			"0x1.304p8",
7010			"0x1.3p8"
7011		},
7012		{
7013			"negative_round_up_or_round_down",
7014			"-0x1.6008p-7",
7015			-constructNormalizedFloat(-7, 0x600800),
7016			"-0x1.6p-7",
7017			"-0x1.604p-7"
7018		},
7019		{
7020			"carry_bit",
7021			"0x1.01ep2",
7022			constructNormalizedFloat(2, 0x01e000),
7023			"0x1.01cp2",
7024			"0x1.02p2"
7025		},
7026		{
7027			"carry_to_exponent",
7028			"0x1.ffep1",
7029			constructNormalizedFloat(1, 0xffe000),
7030			"0x1.ffcp1",
7031			"0x1.0p2"
7032		},
7033	};
7034	StringTemplate constants (
7035		"%input_const = OpConstant %f32 ${input}\n"
7036		"%possible_solution1 = OpConstant %f32 ${output1}\n"
7037		"%possible_solution2 = OpConstant %f32 ${output2}\n"
7038		);
7039
7040	StringTemplate specConstants (
7041		"%input_const = OpSpecConstant %f32 0.\n"
7042		"%possible_solution1 = OpConstant %f32 ${output1}\n"
7043		"%possible_solution2 = OpConstant %f32 ${output2}\n"
7044	);
7045
7046	const char* specDecorations = "OpDecorate %input_const  SpecId 0\n";
7047
7048	const char* function  =
7049		"%test_code     = OpFunction %v4f32 None %v4f32_function\n"
7050		"%param1        = OpFunctionParameter %v4f32\n"
7051		"%label_testfun = OpLabel\n"
7052		"%a             = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
7053		// For the purposes of this test we assume that 0.f will always get
7054		// faithfully passed through the pipeline stages.
7055		"%b             = OpFAdd %f32 %input_const %a\n"
7056		"%c             = OpQuantizeToF16 %f32 %b\n"
7057		"%eq_1          = OpFOrdEqual %bool %c %possible_solution1\n"
7058		"%eq_2          = OpFOrdEqual %bool %c %possible_solution2\n"
7059		"%cond          = OpLogicalOr %bool %eq_1 %eq_2\n"
7060		"%v4cond        = OpCompositeConstruct %v4bool %cond %cond %cond %cond\n"
7061		"%retval        = OpSelect %v4f32 %v4cond %c_v4f32_1_0_0_1 %param1"
7062		"                 OpReturnValue %retval\n"
7063		"OpFunctionEnd\n";
7064
7065	for(size_t idx = 0; idx < (sizeof(tests)/sizeof(tests[0])); ++idx) {
7066		map<string, string>									fragments;
7067		map<string, string>									constantSpecialization;
7068
7069		constantSpecialization["input"]						= tests[idx].input;
7070		constantSpecialization["output1"]					= tests[idx].possibleOutput1;
7071		constantSpecialization["output2"]					= tests[idx].possibleOutput2;
7072		fragments["testfun"]								= function;
7073		fragments["pre_main"]								= constants.specialize(constantSpecialization);
7074		createTestsForAllStages(tests[idx].name, inputColors, expectedColors, fragments, testCtx);
7075	}
7076
7077	for(size_t idx = 0; idx < (sizeof(tests)/sizeof(tests[0])); ++idx) {
7078		map<string, string>									fragments;
7079		map<string, string>									constantSpecialization;
7080		vector<deInt32>										passConstants;
7081		deInt32												specConstant;
7082
7083		constantSpecialization["output1"]					= tests[idx].possibleOutput1;
7084		constantSpecialization["output2"]					= tests[idx].possibleOutput2;
7085		fragments["testfun"]								= function;
7086		fragments["decoration"]								= specDecorations;
7087		fragments["pre_main"]								= specConstants.specialize(constantSpecialization);
7088
7089		memcpy(&specConstant, &tests[idx].inputAsFloat, sizeof(float));
7090		passConstants.push_back(specConstant);
7091
7092		createTestsForAllStages(string("spec_const_") + tests[idx].name, inputColors, expectedColors, fragments, passConstants, testCtx);
7093	}
7094}
7095
7096tcu::TestCaseGroup* createOpQuantizeTests(tcu::TestContext& testCtx)
7097{
7098	de::MovePtr<tcu::TestCaseGroup> opQuantizeTests (new tcu::TestCaseGroup(testCtx, "opquantize", "Test OpQuantizeToF16"));
7099	createOpQuantizeSingleOptionTests(opQuantizeTests.get());
7100	createOpQuantizeTwoPossibilityTests(opQuantizeTests.get());
7101	return opQuantizeTests.release();
7102}
7103
7104struct ShaderPermutation
7105{
7106	deUint8 vertexPermutation;
7107	deUint8 geometryPermutation;
7108	deUint8 tesscPermutation;
7109	deUint8 tessePermutation;
7110	deUint8 fragmentPermutation;
7111};
7112
7113ShaderPermutation getShaderPermutation(deUint8 inputValue)
7114{
7115	ShaderPermutation	permutation =
7116	{
7117		static_cast<deUint8>(inputValue & 0x10? 1u: 0u),
7118		static_cast<deUint8>(inputValue & 0x08? 1u: 0u),
7119		static_cast<deUint8>(inputValue & 0x04? 1u: 0u),
7120		static_cast<deUint8>(inputValue & 0x02? 1u: 0u),
7121		static_cast<deUint8>(inputValue & 0x01? 1u: 0u)
7122	};
7123	return permutation;
7124}
7125
7126tcu::TestCaseGroup* createModuleTests(tcu::TestContext& testCtx)
7127{
7128	RGBA								defaultColors[4];
7129	RGBA								invertedColors[4];
7130	de::MovePtr<tcu::TestCaseGroup>		moduleTests			(new tcu::TestCaseGroup(testCtx, "module", "Multiple entry points into shaders"));
7131
7132	const ShaderElement					combinedPipeline[]	=
7133	{
7134		ShaderElement("module", "main", VK_SHADER_STAGE_VERTEX_BIT),
7135		ShaderElement("module", "main", VK_SHADER_STAGE_GEOMETRY_BIT),
7136		ShaderElement("module", "main", VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT),
7137		ShaderElement("module", "main", VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT),
7138		ShaderElement("module", "main", VK_SHADER_STAGE_FRAGMENT_BIT)
7139	};
7140
7141	getDefaultColors(defaultColors);
7142	getInvertedDefaultColors(invertedColors);
7143	addFunctionCaseWithPrograms<InstanceContext>(moduleTests.get(), "same_module", "", createCombinedModule, runAndVerifyDefaultPipeline, createInstanceContext(combinedPipeline, map<string, string>()));
7144
7145	const char* numbers[] =
7146	{
7147		"1", "2"
7148	};
7149
7150	for (deInt8 idx = 0; idx < 32; ++idx)
7151	{
7152		ShaderPermutation			permutation		= getShaderPermutation(idx);
7153		string						name			= string("vert") + numbers[permutation.vertexPermutation] + "_geom" + numbers[permutation.geometryPermutation] + "_tessc" + numbers[permutation.tesscPermutation] + "_tesse" + numbers[permutation.tessePermutation] + "_frag" + numbers[permutation.fragmentPermutation];
7154		const ShaderElement			pipeline[]		=
7155		{
7156			ShaderElement("vert",	string("vert") +	numbers[permutation.vertexPermutation],		VK_SHADER_STAGE_VERTEX_BIT),
7157			ShaderElement("geom",	string("geom") +	numbers[permutation.geometryPermutation],	VK_SHADER_STAGE_GEOMETRY_BIT),
7158			ShaderElement("tessc",	string("tessc") +	numbers[permutation.tesscPermutation],		VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT),
7159			ShaderElement("tesse",	string("tesse") +	numbers[permutation.tessePermutation],		VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT),
7160			ShaderElement("frag",	string("frag") +	numbers[permutation.fragmentPermutation],	VK_SHADER_STAGE_FRAGMENT_BIT)
7161		};
7162
7163		// If there are an even number of swaps, then it should be no-op.
7164		// If there are an odd number, the color should be flipped.
7165		if ((permutation.vertexPermutation + permutation.geometryPermutation + permutation.tesscPermutation + permutation.tessePermutation + permutation.fragmentPermutation) % 2 == 0)
7166		{
7167			addFunctionCaseWithPrograms<InstanceContext>(moduleTests.get(), name, "", createMultipleEntries, runAndVerifyDefaultPipeline, createInstanceContext(pipeline, defaultColors, defaultColors, map<string, string>()));
7168		}
7169		else
7170		{
7171			addFunctionCaseWithPrograms<InstanceContext>(moduleTests.get(), name, "", createMultipleEntries, runAndVerifyDefaultPipeline, createInstanceContext(pipeline, defaultColors, invertedColors, map<string, string>()));
7172		}
7173	}
7174	return moduleTests.release();
7175}
7176
7177tcu::TestCaseGroup* createLoopTests(tcu::TestContext& testCtx)
7178{
7179	de::MovePtr<tcu::TestCaseGroup> testGroup(new tcu::TestCaseGroup(testCtx, "loop", "Looping control flow"));
7180	RGBA defaultColors[4];
7181	getDefaultColors(defaultColors);
7182	map<string, string> fragments;
7183	fragments["pre_main"] =
7184		"%c_f32_5 = OpConstant %f32 5.\n";
7185
7186	// A loop with a single block. The Continue Target is the loop block
7187	// itself. In SPIR-V terms, the "loop construct" contains no blocks at all
7188	// -- the "continue construct" forms the entire loop.
7189	fragments["testfun"] =
7190		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
7191		"%param1 = OpFunctionParameter %v4f32\n"
7192
7193		"%entry = OpLabel\n"
7194		"%val0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
7195		"OpBranch %loop\n"
7196
7197		";adds and subtracts 1.0 to %val in alternate iterations\n"
7198		"%loop = OpLabel\n"
7199		"%count = OpPhi %i32 %c_i32_4 %entry %count__ %loop\n"
7200		"%delta = OpPhi %f32 %c_f32_1 %entry %minus_delta %loop\n"
7201		"%val1 = OpPhi %f32 %val0 %entry %val %loop\n"
7202		"%val = OpFAdd %f32 %val1 %delta\n"
7203		"%minus_delta = OpFSub %f32 %c_f32_0 %delta\n"
7204		"%count__ = OpISub %i32 %count %c_i32_1\n"
7205		"%again = OpSGreaterThan %bool %count__ %c_i32_0\n"
7206		"OpLoopMerge %exit %loop None\n"
7207		"OpBranchConditional %again %loop %exit\n"
7208
7209		"%exit = OpLabel\n"
7210		"%result = OpVectorInsertDynamic %v4f32 %param1 %val %c_i32_0\n"
7211		"OpReturnValue %result\n"
7212
7213		"OpFunctionEnd\n"
7214		;
7215	createTestsForAllStages("single_block", defaultColors, defaultColors, fragments, testGroup.get());
7216
7217	// Body comprised of multiple basic blocks.
7218	const StringTemplate multiBlock(
7219		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
7220		"%param1 = OpFunctionParameter %v4f32\n"
7221
7222		"%entry = OpLabel\n"
7223		"%val0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
7224		"OpBranch %loop\n"
7225
7226		";adds and subtracts 1.0 to %val in alternate iterations\n"
7227		"%loop = OpLabel\n"
7228		"%count = OpPhi %i32 %c_i32_4 %entry %count__ %gather\n"
7229		"%delta = OpPhi %f32 %c_f32_1 %entry %delta_next %gather\n"
7230		"%val1 = OpPhi %f32 %val0 %entry %val %gather\n"
7231		// There are several possibilities for the Continue Target below.  Each
7232		// will be specialized into a separate test case.
7233		"OpLoopMerge %exit ${continue_target} None\n"
7234		"OpBranch %if\n"
7235
7236		"%if = OpLabel\n"
7237		";delta_next = (delta > 0) ? -1 : 1;\n"
7238		"%gt0 = OpFOrdGreaterThan %bool %delta %c_f32_0\n"
7239		"OpSelectionMerge %gather DontFlatten\n"
7240		"OpBranchConditional %gt0 %even %odd ;tells us if %count is even or odd\n"
7241
7242		"%odd = OpLabel\n"
7243		"OpBranch %gather\n"
7244
7245		"%even = OpLabel\n"
7246		"OpBranch %gather\n"
7247
7248		"%gather = OpLabel\n"
7249		"%delta_next = OpPhi %f32 %c_f32_n1 %even %c_f32_1 %odd\n"
7250		"%val = OpFAdd %f32 %val1 %delta\n"
7251		"%count__ = OpISub %i32 %count %c_i32_1\n"
7252		"%again = OpSGreaterThan %bool %count__ %c_i32_0\n"
7253		"OpBranchConditional %again %loop %exit\n"
7254
7255		"%exit = OpLabel\n"
7256		"%result = OpVectorInsertDynamic %v4f32 %param1 %val %c_i32_0\n"
7257		"OpReturnValue %result\n"
7258
7259		"OpFunctionEnd\n");
7260
7261	map<string, string> continue_target;
7262
7263	// The Continue Target is the loop block itself.
7264	continue_target["continue_target"] = "%loop";
7265	fragments["testfun"] = multiBlock.specialize(continue_target);
7266	createTestsForAllStages("multi_block_continue_construct", defaultColors, defaultColors, fragments, testGroup.get());
7267
7268	// The Continue Target is at the end of the loop.
7269	continue_target["continue_target"] = "%gather";
7270	fragments["testfun"] = multiBlock.specialize(continue_target);
7271	createTestsForAllStages("multi_block_loop_construct", defaultColors, defaultColors, fragments, testGroup.get());
7272
7273	// A loop with continue statement.
7274	fragments["testfun"] =
7275		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
7276		"%param1 = OpFunctionParameter %v4f32\n"
7277
7278		"%entry = OpLabel\n"
7279		"%val0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
7280		"OpBranch %loop\n"
7281
7282		";adds 4, 3, and 1 to %val0 (skips 2)\n"
7283		"%loop = OpLabel\n"
7284		"%count = OpPhi %i32 %c_i32_4 %entry %count__ %continue\n"
7285		"%val1 = OpPhi %f32 %val0 %entry %val %continue\n"
7286		"OpLoopMerge %exit %continue None\n"
7287		"OpBranch %if\n"
7288
7289		"%if = OpLabel\n"
7290		";skip if %count==2\n"
7291		"%eq2 = OpIEqual %bool %count %c_i32_2\n"
7292		"OpSelectionMerge %continue DontFlatten\n"
7293		"OpBranchConditional %eq2 %continue %body\n"
7294
7295		"%body = OpLabel\n"
7296		"%fcount = OpConvertSToF %f32 %count\n"
7297		"%val2 = OpFAdd %f32 %val1 %fcount\n"
7298		"OpBranch %continue\n"
7299
7300		"%continue = OpLabel\n"
7301		"%val = OpPhi %f32 %val2 %body %val1 %if\n"
7302		"%count__ = OpISub %i32 %count %c_i32_1\n"
7303		"%again = OpSGreaterThan %bool %count__ %c_i32_0\n"
7304		"OpBranchConditional %again %loop %exit\n"
7305
7306		"%exit = OpLabel\n"
7307		"%same = OpFSub %f32 %val %c_f32_8\n"
7308		"%result = OpVectorInsertDynamic %v4f32 %param1 %same %c_i32_0\n"
7309		"OpReturnValue %result\n"
7310		"OpFunctionEnd\n";
7311	createTestsForAllStages("continue", defaultColors, defaultColors, fragments, testGroup.get());
7312
7313	// A loop with break.
7314	fragments["testfun"] =
7315		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
7316		"%param1 = OpFunctionParameter %v4f32\n"
7317
7318		"%entry = OpLabel\n"
7319		";param1 components are between 0 and 1, so dot product is 4 or less\n"
7320		"%dot = OpDot %f32 %param1 %param1\n"
7321		"%div = OpFDiv %f32 %dot %c_f32_5\n"
7322		"%zero = OpConvertFToU %u32 %div\n"
7323		"%two = OpIAdd %i32 %zero %c_i32_2\n"
7324		"%val0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
7325		"OpBranch %loop\n"
7326
7327		";adds 4 and 3 to %val0 (exits early)\n"
7328		"%loop = OpLabel\n"
7329		"%count = OpPhi %i32 %c_i32_4 %entry %count__ %continue\n"
7330		"%val1 = OpPhi %f32 %val0 %entry %val2 %continue\n"
7331		"OpLoopMerge %exit %continue None\n"
7332		"OpBranch %if\n"
7333
7334		"%if = OpLabel\n"
7335		";end loop if %count==%two\n"
7336		"%above2 = OpSGreaterThan %bool %count %two\n"
7337		"OpSelectionMerge %continue DontFlatten\n"
7338		"OpBranchConditional %above2 %body %exit\n"
7339
7340		"%body = OpLabel\n"
7341		"%fcount = OpConvertSToF %f32 %count\n"
7342		"%val2 = OpFAdd %f32 %val1 %fcount\n"
7343		"OpBranch %continue\n"
7344
7345		"%continue = OpLabel\n"
7346		"%count__ = OpISub %i32 %count %c_i32_1\n"
7347		"%again = OpSGreaterThan %bool %count__ %c_i32_0\n"
7348		"OpBranchConditional %again %loop %exit\n"
7349
7350		"%exit = OpLabel\n"
7351		"%val_post = OpPhi %f32 %val2 %continue %val1 %if\n"
7352		"%same = OpFSub %f32 %val_post %c_f32_7\n"
7353		"%result = OpVectorInsertDynamic %v4f32 %param1 %same %c_i32_0\n"
7354		"OpReturnValue %result\n"
7355		"OpFunctionEnd\n";
7356	createTestsForAllStages("break", defaultColors, defaultColors, fragments, testGroup.get());
7357
7358	// A loop with return.
7359	fragments["testfun"] =
7360		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
7361		"%param1 = OpFunctionParameter %v4f32\n"
7362
7363		"%entry = OpLabel\n"
7364		";param1 components are between 0 and 1, so dot product is 4 or less\n"
7365		"%dot = OpDot %f32 %param1 %param1\n"
7366		"%div = OpFDiv %f32 %dot %c_f32_5\n"
7367		"%zero = OpConvertFToU %u32 %div\n"
7368		"%two = OpIAdd %i32 %zero %c_i32_2\n"
7369		"%val0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
7370		"OpBranch %loop\n"
7371
7372		";returns early without modifying %param1\n"
7373		"%loop = OpLabel\n"
7374		"%count = OpPhi %i32 %c_i32_4 %entry %count__ %continue\n"
7375		"%val1 = OpPhi %f32 %val0 %entry %val2 %continue\n"
7376		"OpLoopMerge %exit %continue None\n"
7377		"OpBranch %if\n"
7378
7379		"%if = OpLabel\n"
7380		";return if %count==%two\n"
7381		"%above2 = OpSGreaterThan %bool %count %two\n"
7382		"OpSelectionMerge %continue DontFlatten\n"
7383		"OpBranchConditional %above2 %body %early_exit\n"
7384
7385		"%early_exit = OpLabel\n"
7386		"OpReturnValue %param1\n"
7387
7388		"%body = OpLabel\n"
7389		"%fcount = OpConvertSToF %f32 %count\n"
7390		"%val2 = OpFAdd %f32 %val1 %fcount\n"
7391		"OpBranch %continue\n"
7392
7393		"%continue = OpLabel\n"
7394		"%count__ = OpISub %i32 %count %c_i32_1\n"
7395		"%again = OpSGreaterThan %bool %count__ %c_i32_0\n"
7396		"OpBranchConditional %again %loop %exit\n"
7397
7398		"%exit = OpLabel\n"
7399		";should never get here, so return an incorrect result\n"
7400		"%result = OpVectorInsertDynamic %v4f32 %param1 %val2 %c_i32_0\n"
7401		"OpReturnValue %result\n"
7402		"OpFunctionEnd\n";
7403	createTestsForAllStages("return", defaultColors, defaultColors, fragments, testGroup.get());
7404
7405	return testGroup.release();
7406}
7407
7408// Adds a new test to group using custom fragments for the tessellation-control
7409// stage and passthrough fragments for all other stages.  Uses default colors
7410// for input and expected output.
7411void addTessCtrlTest(tcu::TestCaseGroup* group, const char* name, const map<string, string>& fragments)
7412{
7413	RGBA defaultColors[4];
7414	getDefaultColors(defaultColors);
7415	const ShaderElement pipelineStages[] =
7416	{
7417		ShaderElement("vert", "main", VK_SHADER_STAGE_VERTEX_BIT),
7418		ShaderElement("tessc", "main", VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT),
7419		ShaderElement("tesse", "main", VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT),
7420		ShaderElement("frag", "main", VK_SHADER_STAGE_FRAGMENT_BIT),
7421	};
7422
7423	addFunctionCaseWithPrograms<InstanceContext>(group, name, "", addShaderCodeCustomTessControl,
7424												 runAndVerifyDefaultPipeline, createInstanceContext(
7425													 pipelineStages, defaultColors, defaultColors, fragments, StageToSpecConstantMap()));
7426}
7427
7428// A collection of tests putting OpControlBarrier in places GLSL forbids but SPIR-V allows.
7429tcu::TestCaseGroup* createBarrierTests(tcu::TestContext& testCtx)
7430{
7431	de::MovePtr<tcu::TestCaseGroup> testGroup(new tcu::TestCaseGroup(testCtx, "barrier", "OpControlBarrier"));
7432	map<string, string> fragments;
7433
7434	// A barrier inside a function body.
7435	fragments["pre_main"] =
7436		"%Workgroup = OpConstant %i32 2\n"
7437		"%SequentiallyConsistent = OpConstant %i32 0x10\n";
7438	fragments["testfun"] =
7439		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
7440		"%param1 = OpFunctionParameter %v4f32\n"
7441		"%label_testfun = OpLabel\n"
7442		"OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
7443		"OpReturnValue %param1\n"
7444		"OpFunctionEnd\n";
7445	addTessCtrlTest(testGroup.get(), "in_function", fragments);
7446
7447	// Common setup code for the following tests.
7448	fragments["pre_main"] =
7449		"%Workgroup = OpConstant %i32 2\n"
7450		"%SequentiallyConsistent = OpConstant %i32 0x10\n"
7451		"%c_f32_5 = OpConstant %f32 5.\n";
7452	const string setupPercentZero =	 // Begins %test_code function with code that sets %zero to 0u but cannot be optimized away.
7453		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
7454		"%param1 = OpFunctionParameter %v4f32\n"
7455		"%entry = OpLabel\n"
7456		";param1 components are between 0 and 1, so dot product is 4 or less\n"
7457		"%dot = OpDot %f32 %param1 %param1\n"
7458		"%div = OpFDiv %f32 %dot %c_f32_5\n"
7459		"%zero = OpConvertFToU %u32 %div\n";
7460
7461	// Barriers inside OpSwitch branches.
7462	fragments["testfun"] =
7463		setupPercentZero +
7464		"OpSelectionMerge %switch_exit None\n"
7465		"OpSwitch %zero %switch_default 0 %case0 1 %case1 ;should always go to %case0\n"
7466
7467		"%case1 = OpLabel\n"
7468		";This barrier should never be executed, but its presence makes test failure more likely when there's a bug.\n"
7469		"OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
7470		"%wrong_branch_alert1 = OpVectorInsertDynamic %v4f32 %param1 %c_f32_0_5 %c_i32_0\n"
7471		"OpBranch %switch_exit\n"
7472
7473		"%switch_default = OpLabel\n"
7474		"%wrong_branch_alert2 = OpVectorInsertDynamic %v4f32 %param1 %c_f32_0_5 %c_i32_0\n"
7475		";This barrier should never be executed, but its presence makes test failure more likely when there's a bug.\n"
7476		"OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
7477		"OpBranch %switch_exit\n"
7478
7479		"%case0 = OpLabel\n"
7480		"OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
7481		"OpBranch %switch_exit\n"
7482
7483		"%switch_exit = OpLabel\n"
7484		"%ret = OpPhi %v4f32 %param1 %case0 %wrong_branch_alert1 %case1 %wrong_branch_alert2 %switch_default\n"
7485		"OpReturnValue %ret\n"
7486		"OpFunctionEnd\n";
7487	addTessCtrlTest(testGroup.get(), "in_switch", fragments);
7488
7489	// Barriers inside if-then-else.
7490	fragments["testfun"] =
7491		setupPercentZero +
7492		"%eq0 = OpIEqual %bool %zero %c_u32_0\n"
7493		"OpSelectionMerge %exit DontFlatten\n"
7494		"OpBranchConditional %eq0 %then %else\n"
7495
7496		"%else = OpLabel\n"
7497		";This barrier should never be executed, but its presence makes test failure more likely when there's a bug.\n"
7498		"OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
7499		"%wrong_branch_alert = OpVectorInsertDynamic %v4f32 %param1 %c_f32_0_5 %c_i32_0\n"
7500		"OpBranch %exit\n"
7501
7502		"%then = OpLabel\n"
7503		"OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
7504		"OpBranch %exit\n"
7505
7506		"%exit = OpLabel\n"
7507		"%ret = OpPhi %v4f32 %param1 %then %wrong_branch_alert %else\n"
7508		"OpReturnValue %ret\n"
7509		"OpFunctionEnd\n";
7510	addTessCtrlTest(testGroup.get(), "in_if", fragments);
7511
7512	// A barrier after control-flow reconvergence, tempting the compiler to attempt something like this:
7513	// http://lists.llvm.org/pipermail/llvm-dev/2009-October/026317.html.
7514	fragments["testfun"] =
7515		setupPercentZero +
7516		"%thread_id = OpLoad %i32 %BP_gl_InvocationID\n"
7517		"%thread0 = OpIEqual %bool %thread_id %c_i32_0\n"
7518		"OpSelectionMerge %exit DontFlatten\n"
7519		"OpBranchConditional %thread0 %then %else\n"
7520
7521		"%else = OpLabel\n"
7522		"%val0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
7523		"OpBranch %exit\n"
7524
7525		"%then = OpLabel\n"
7526		"%val1 = OpVectorExtractDynamic %f32 %param1 %zero\n"
7527		"OpBranch %exit\n"
7528
7529		"%exit = OpLabel\n"
7530		"%val = OpPhi %f32 %val0 %else %val1 %then\n"
7531		"OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
7532		"%ret = OpVectorInsertDynamic %v4f32 %param1 %val %zero\n"
7533		"OpReturnValue %ret\n"
7534		"OpFunctionEnd\n";
7535	addTessCtrlTest(testGroup.get(), "after_divergent_if", fragments);
7536
7537	// A barrier inside a loop.
7538	fragments["pre_main"] =
7539		"%Workgroup = OpConstant %i32 2\n"
7540		"%SequentiallyConsistent = OpConstant %i32 0x10\n"
7541		"%c_f32_10 = OpConstant %f32 10.\n";
7542	fragments["testfun"] =
7543		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
7544		"%param1 = OpFunctionParameter %v4f32\n"
7545		"%entry = OpLabel\n"
7546		"%val0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
7547		"OpBranch %loop\n"
7548
7549		";adds 4, 3, 2, and 1 to %val0\n"
7550		"%loop = OpLabel\n"
7551		"%count = OpPhi %i32 %c_i32_4 %entry %count__ %loop\n"
7552		"%val1 = OpPhi %f32 %val0 %entry %val %loop\n"
7553		"OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
7554		"%fcount = OpConvertSToF %f32 %count\n"
7555		"%val = OpFAdd %f32 %val1 %fcount\n"
7556		"%count__ = OpISub %i32 %count %c_i32_1\n"
7557		"%again = OpSGreaterThan %bool %count__ %c_i32_0\n"
7558		"OpLoopMerge %exit %loop None\n"
7559		"OpBranchConditional %again %loop %exit\n"
7560
7561		"%exit = OpLabel\n"
7562		"%same = OpFSub %f32 %val %c_f32_10\n"
7563		"%ret = OpVectorInsertDynamic %v4f32 %param1 %same %c_i32_0\n"
7564		"OpReturnValue %ret\n"
7565		"OpFunctionEnd\n";
7566	addTessCtrlTest(testGroup.get(), "in_loop", fragments);
7567
7568	return testGroup.release();
7569}
7570
7571// Test for the OpFRem instruction.
7572tcu::TestCaseGroup* createFRemTests(tcu::TestContext& testCtx)
7573{
7574	de::MovePtr<tcu::TestCaseGroup>		testGroup(new tcu::TestCaseGroup(testCtx, "frem", "OpFRem"));
7575	map<string, string>					fragments;
7576	RGBA								inputColors[4];
7577	RGBA								outputColors[4];
7578
7579	fragments["pre_main"]				 =
7580		"%c_f32_3 = OpConstant %f32 3.0\n"
7581		"%c_f32_n3 = OpConstant %f32 -3.0\n"
7582		"%c_f32_4 = OpConstant %f32 4.0\n"
7583		"%c_f32_p75 = OpConstant %f32 0.75\n"
7584		"%c_v4f32_p75_p75_p75_p75 = OpConstantComposite %v4f32 %c_f32_p75 %c_f32_p75 %c_f32_p75 %c_f32_p75 \n"
7585		"%c_v4f32_4_4_4_4 = OpConstantComposite %v4f32 %c_f32_4 %c_f32_4 %c_f32_4 %c_f32_4\n"
7586		"%c_v4f32_3_n3_3_n3 = OpConstantComposite %v4f32 %c_f32_3 %c_f32_n3 %c_f32_3 %c_f32_n3\n";
7587
7588	// The test does the following.
7589	// vec4 result = (param1 * 8.0) - 4.0;
7590	// return (frem(result.x,3) + 0.75, frem(result.y, -3) + 0.75, 0, 1)
7591	fragments["testfun"]				 =
7592		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
7593		"%param1 = OpFunctionParameter %v4f32\n"
7594		"%label_testfun = OpLabel\n"
7595		"%v_times_8 = OpVectorTimesScalar %v4f32 %param1 %c_f32_8\n"
7596		"%minus_4 = OpFSub %v4f32 %v_times_8 %c_v4f32_4_4_4_4\n"
7597		"%frem = OpFRem %v4f32 %minus_4 %c_v4f32_3_n3_3_n3\n"
7598		"%added = OpFAdd %v4f32 %frem %c_v4f32_p75_p75_p75_p75\n"
7599		"%xyz_1 = OpVectorInsertDynamic %v4f32 %added %c_f32_1 %c_i32_3\n"
7600		"%xy_0_1 = OpVectorInsertDynamic %v4f32 %xyz_1 %c_f32_0 %c_i32_2\n"
7601		"OpReturnValue %xy_0_1\n"
7602		"OpFunctionEnd\n";
7603
7604
7605	inputColors[0]		= RGBA(16,	16,		0, 255);
7606	inputColors[1]		= RGBA(232, 232,	0, 255);
7607	inputColors[2]		= RGBA(232, 16,		0, 255);
7608	inputColors[3]		= RGBA(16,	232,	0, 255);
7609
7610	outputColors[0]		= RGBA(64,	64,		0, 255);
7611	outputColors[1]		= RGBA(255, 255,	0, 255);
7612	outputColors[2]		= RGBA(255, 64,		0, 255);
7613	outputColors[3]		= RGBA(64,	255,	0, 255);
7614
7615	createTestsForAllStages("frem", inputColors, outputColors, fragments, testGroup.get());
7616	return testGroup.release();
7617}
7618
7619tcu::TestCaseGroup* createInstructionTests (tcu::TestContext& testCtx)
7620{
7621	de::MovePtr<tcu::TestCaseGroup> instructionTests	(new tcu::TestCaseGroup(testCtx, "instruction", "Instructions with special opcodes/operands"));
7622	de::MovePtr<tcu::TestCaseGroup> computeTests		(new tcu::TestCaseGroup(testCtx, "compute", "Compute Instructions with special opcodes/operands"));
7623	de::MovePtr<tcu::TestCaseGroup> graphicsTests		(new tcu::TestCaseGroup(testCtx, "graphics", "Graphics Instructions with special opcodes/operands"));
7624
7625	computeTests->addChild(createOpNopGroup(testCtx));
7626	computeTests->addChild(createOpLineGroup(testCtx));
7627	computeTests->addChild(createOpNoLineGroup(testCtx));
7628	computeTests->addChild(createOpConstantNullGroup(testCtx));
7629	computeTests->addChild(createOpConstantCompositeGroup(testCtx));
7630	computeTests->addChild(createOpConstantUsageGroup(testCtx));
7631	computeTests->addChild(createSpecConstantGroup(testCtx));
7632	computeTests->addChild(createOpSourceGroup(testCtx));
7633	computeTests->addChild(createOpSourceExtensionGroup(testCtx));
7634	computeTests->addChild(createDecorationGroupGroup(testCtx));
7635	computeTests->addChild(createOpPhiGroup(testCtx));
7636	computeTests->addChild(createLoopControlGroup(testCtx));
7637	computeTests->addChild(createFunctionControlGroup(testCtx));
7638	computeTests->addChild(createSelectionControlGroup(testCtx));
7639	computeTests->addChild(createBlockOrderGroup(testCtx));
7640	computeTests->addChild(createMultipleShaderGroup(testCtx));
7641	computeTests->addChild(createMemoryAccessGroup(testCtx));
7642	computeTests->addChild(createOpCopyMemoryGroup(testCtx));
7643	computeTests->addChild(createOpCopyObjectGroup(testCtx));
7644	computeTests->addChild(createNoContractionGroup(testCtx));
7645	computeTests->addChild(createOpUndefGroup(testCtx));
7646	computeTests->addChild(createOpUnreachableGroup(testCtx));
7647	computeTests ->addChild(createOpQuantizeToF16Group(testCtx));
7648	computeTests ->addChild(createOpFRemGroup(testCtx));
7649
7650	RGBA defaultColors[4];
7651	getDefaultColors(defaultColors);
7652
7653	de::MovePtr<tcu::TestCaseGroup> opnopTests (new tcu::TestCaseGroup(testCtx, "opnop", "Test OpNop"));
7654	map<string, string> opNopFragments;
7655	opNopFragments["testfun"] =
7656		"%test_code = OpFunction %v4f32 None %v4f32_function\n"
7657		"%param1 = OpFunctionParameter %v4f32\n"
7658		"%label_testfun = OpLabel\n"
7659		"OpNop\n"
7660		"OpNop\n"
7661		"OpNop\n"
7662		"OpNop\n"
7663		"OpNop\n"
7664		"OpNop\n"
7665		"OpNop\n"
7666		"OpNop\n"
7667		"%a = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
7668		"%b = OpFAdd %f32 %a %a\n"
7669		"OpNop\n"
7670		"%c = OpFSub %f32 %b %a\n"
7671		"%ret = OpVectorInsertDynamic %v4f32 %param1 %c %c_i32_0\n"
7672		"OpNop\n"
7673		"OpNop\n"
7674		"OpReturnValue %ret\n"
7675		"OpFunctionEnd\n"
7676		;
7677	createTestsForAllStages("opnop", defaultColors, defaultColors, opNopFragments, opnopTests.get());
7678
7679
7680	graphicsTests->addChild(opnopTests.release());
7681	graphicsTests->addChild(createOpSourceTests(testCtx));
7682	graphicsTests->addChild(createOpSourceContinuedTests(testCtx));
7683	graphicsTests->addChild(createOpLineTests(testCtx));
7684	graphicsTests->addChild(createOpNoLineTests(testCtx));
7685	graphicsTests->addChild(createOpConstantNullTests(testCtx));
7686	graphicsTests->addChild(createOpConstantCompositeTests(testCtx));
7687	graphicsTests->addChild(createMemoryAccessTests(testCtx));
7688	graphicsTests->addChild(createOpUndefTests(testCtx));
7689	graphicsTests->addChild(createSelectionBlockOrderTests(testCtx));
7690	graphicsTests->addChild(createModuleTests(testCtx));
7691	graphicsTests->addChild(createSwitchBlockOrderTests(testCtx));
7692	graphicsTests->addChild(createOpPhiTests(testCtx));
7693	graphicsTests->addChild(createNoContractionTests(testCtx));
7694	graphicsTests->addChild(createOpQuantizeTests(testCtx));
7695	graphicsTests->addChild(createLoopTests(testCtx));
7696	graphicsTests->addChild(createSpecConstantTests(testCtx));
7697	graphicsTests->addChild(createSpecConstantOpQuantizeToF16Group(testCtx));
7698	graphicsTests->addChild(createBarrierTests(testCtx));
7699	graphicsTests->addChild(createDecorationGroupTests(testCtx));
7700	graphicsTests->addChild(createFRemTests(testCtx));
7701
7702	instructionTests->addChild(computeTests.release());
7703	instructionTests->addChild(graphicsTests.release());
7704
7705	return instructionTests.release();
7706}
7707
7708} // SpirVAssembly
7709} // vkt
7710