1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2009-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10#ifndef EIGEN_SPARSE_SELFADJOINTVIEW_H
11#define EIGEN_SPARSE_SELFADJOINTVIEW_H
12
13namespace Eigen {
14
15/** \ingroup SparseCore_Module
16  * \class SparseSelfAdjointView
17  *
18  * \brief Pseudo expression to manipulate a triangular sparse matrix as a selfadjoint matrix.
19  *
20  * \param MatrixType the type of the dense matrix storing the coefficients
21  * \param Mode can be either \c #Lower or \c #Upper
22  *
23  * This class is an expression of a sefladjoint matrix from a triangular part of a matrix
24  * with given dense storage of the coefficients. It is the return type of MatrixBase::selfadjointView()
25  * and most of the time this is the only way that it is used.
26  *
27  * \sa SparseMatrixBase::selfadjointView()
28  */
29namespace internal {
30
31template<typename MatrixType, unsigned int Mode>
32struct traits<SparseSelfAdjointView<MatrixType,Mode> > : traits<MatrixType> {
33};
34
35template<int SrcMode,int DstMode,typename MatrixType,int DestOrder>
36void permute_symm_to_symm(const MatrixType& mat, SparseMatrix<typename MatrixType::Scalar,DestOrder,typename MatrixType::StorageIndex>& _dest, const typename MatrixType::StorageIndex* perm = 0);
37
38template<int Mode,typename MatrixType,int DestOrder>
39void permute_symm_to_fullsymm(const MatrixType& mat, SparseMatrix<typename MatrixType::Scalar,DestOrder,typename MatrixType::StorageIndex>& _dest, const typename MatrixType::StorageIndex* perm = 0);
40
41}
42
43template<typename MatrixType, unsigned int _Mode> class SparseSelfAdjointView
44  : public EigenBase<SparseSelfAdjointView<MatrixType,_Mode> >
45{
46  public:
47
48    enum {
49      Mode = _Mode,
50      RowsAtCompileTime = internal::traits<SparseSelfAdjointView>::RowsAtCompileTime,
51      ColsAtCompileTime = internal::traits<SparseSelfAdjointView>::ColsAtCompileTime
52    };
53
54    typedef EigenBase<SparseSelfAdjointView> Base;
55    typedef typename MatrixType::Scalar Scalar;
56    typedef typename MatrixType::StorageIndex StorageIndex;
57    typedef Matrix<StorageIndex,Dynamic,1> VectorI;
58    typedef typename internal::ref_selector<MatrixType>::non_const_type MatrixTypeNested;
59    typedef typename internal::remove_all<MatrixTypeNested>::type _MatrixTypeNested;
60
61    explicit inline SparseSelfAdjointView(MatrixType& matrix) : m_matrix(matrix)
62    {
63      eigen_assert(rows()==cols() && "SelfAdjointView is only for squared matrices");
64    }
65
66    inline Index rows() const { return m_matrix.rows(); }
67    inline Index cols() const { return m_matrix.cols(); }
68
69    /** \internal \returns a reference to the nested matrix */
70    const _MatrixTypeNested& matrix() const { return m_matrix; }
71    typename internal::remove_reference<MatrixTypeNested>::type& matrix() { return m_matrix; }
72
73    /** \returns an expression of the matrix product between a sparse self-adjoint matrix \c *this and a sparse matrix \a rhs.
74      *
75      * Note that there is no algorithmic advantage of performing such a product compared to a general sparse-sparse matrix product.
76      * Indeed, the SparseSelfadjointView operand is first copied into a temporary SparseMatrix before computing the product.
77      */
78    template<typename OtherDerived>
79    Product<SparseSelfAdjointView, OtherDerived>
80    operator*(const SparseMatrixBase<OtherDerived>& rhs) const
81    {
82      return Product<SparseSelfAdjointView, OtherDerived>(*this, rhs.derived());
83    }
84
85    /** \returns an expression of the matrix product between a sparse matrix \a lhs and a sparse self-adjoint matrix \a rhs.
86      *
87      * Note that there is no algorithmic advantage of performing such a product compared to a general sparse-sparse matrix product.
88      * Indeed, the SparseSelfadjointView operand is first copied into a temporary SparseMatrix before computing the product.
89      */
90    template<typename OtherDerived> friend
91    Product<OtherDerived, SparseSelfAdjointView>
92    operator*(const SparseMatrixBase<OtherDerived>& lhs, const SparseSelfAdjointView& rhs)
93    {
94      return Product<OtherDerived, SparseSelfAdjointView>(lhs.derived(), rhs);
95    }
96
97    /** Efficient sparse self-adjoint matrix times dense vector/matrix product */
98    template<typename OtherDerived>
99    Product<SparseSelfAdjointView,OtherDerived>
100    operator*(const MatrixBase<OtherDerived>& rhs) const
101    {
102      return Product<SparseSelfAdjointView,OtherDerived>(*this, rhs.derived());
103    }
104
105    /** Efficient dense vector/matrix times sparse self-adjoint matrix product */
106    template<typename OtherDerived> friend
107    Product<OtherDerived,SparseSelfAdjointView>
108    operator*(const MatrixBase<OtherDerived>& lhs, const SparseSelfAdjointView& rhs)
109    {
110      return Product<OtherDerived,SparseSelfAdjointView>(lhs.derived(), rhs);
111    }
112
113    /** Perform a symmetric rank K update of the selfadjoint matrix \c *this:
114      * \f$ this = this + \alpha ( u u^* ) \f$ where \a u is a vector or matrix.
115      *
116      * \returns a reference to \c *this
117      *
118      * To perform \f$ this = this + \alpha ( u^* u ) \f$ you can simply
119      * call this function with u.adjoint().
120      */
121    template<typename DerivedU>
122    SparseSelfAdjointView& rankUpdate(const SparseMatrixBase<DerivedU>& u, const Scalar& alpha = Scalar(1));
123
124    /** \returns an expression of P H P^-1 */
125    // TODO implement twists in a more evaluator friendly fashion
126    SparseSymmetricPermutationProduct<_MatrixTypeNested,Mode> twistedBy(const PermutationMatrix<Dynamic,Dynamic,StorageIndex>& perm) const
127    {
128      return SparseSymmetricPermutationProduct<_MatrixTypeNested,Mode>(m_matrix, perm);
129    }
130
131    template<typename SrcMatrixType,int SrcMode>
132    SparseSelfAdjointView& operator=(const SparseSymmetricPermutationProduct<SrcMatrixType,SrcMode>& permutedMatrix)
133    {
134      internal::call_assignment_no_alias_no_transpose(*this, permutedMatrix);
135      return *this;
136    }
137
138    SparseSelfAdjointView& operator=(const SparseSelfAdjointView& src)
139    {
140      PermutationMatrix<Dynamic,Dynamic,StorageIndex> pnull;
141      return *this = src.twistedBy(pnull);
142    }
143
144    template<typename SrcMatrixType,unsigned int SrcMode>
145    SparseSelfAdjointView& operator=(const SparseSelfAdjointView<SrcMatrixType,SrcMode>& src)
146    {
147      PermutationMatrix<Dynamic,Dynamic,StorageIndex> pnull;
148      return *this = src.twistedBy(pnull);
149    }
150
151    void resize(Index rows, Index cols)
152    {
153      EIGEN_ONLY_USED_FOR_DEBUG(rows);
154      EIGEN_ONLY_USED_FOR_DEBUG(cols);
155      eigen_assert(rows == this->rows() && cols == this->cols()
156                && "SparseSelfadjointView::resize() does not actually allow to resize.");
157    }
158
159  protected:
160
161    MatrixTypeNested m_matrix;
162    //mutable VectorI m_countPerRow;
163    //mutable VectorI m_countPerCol;
164  private:
165    template<typename Dest> void evalTo(Dest &) const;
166};
167
168/***************************************************************************
169* Implementation of SparseMatrixBase methods
170***************************************************************************/
171
172template<typename Derived>
173template<unsigned int UpLo>
174typename SparseMatrixBase<Derived>::template ConstSelfAdjointViewReturnType<UpLo>::Type SparseMatrixBase<Derived>::selfadjointView() const
175{
176  return SparseSelfAdjointView<const Derived, UpLo>(derived());
177}
178
179template<typename Derived>
180template<unsigned int UpLo>
181typename SparseMatrixBase<Derived>::template SelfAdjointViewReturnType<UpLo>::Type SparseMatrixBase<Derived>::selfadjointView()
182{
183  return SparseSelfAdjointView<Derived, UpLo>(derived());
184}
185
186/***************************************************************************
187* Implementation of SparseSelfAdjointView methods
188***************************************************************************/
189
190template<typename MatrixType, unsigned int Mode>
191template<typename DerivedU>
192SparseSelfAdjointView<MatrixType,Mode>&
193SparseSelfAdjointView<MatrixType,Mode>::rankUpdate(const SparseMatrixBase<DerivedU>& u, const Scalar& alpha)
194{
195  SparseMatrix<Scalar,(MatrixType::Flags&RowMajorBit)?RowMajor:ColMajor> tmp = u * u.adjoint();
196  if(alpha==Scalar(0))
197    m_matrix = tmp.template triangularView<Mode>();
198  else
199    m_matrix += alpha * tmp.template triangularView<Mode>();
200
201  return *this;
202}
203
204namespace internal {
205
206// TODO currently a selfadjoint expression has the form SelfAdjointView<.,.>
207//      in the future selfadjoint-ness should be defined by the expression traits
208//      such that Transpose<SelfAdjointView<.,.> > is valid. (currently TriangularBase::transpose() is overloaded to make it work)
209template<typename MatrixType, unsigned int Mode>
210struct evaluator_traits<SparseSelfAdjointView<MatrixType,Mode> >
211{
212  typedef typename storage_kind_to_evaluator_kind<typename MatrixType::StorageKind>::Kind Kind;
213  typedef SparseSelfAdjointShape Shape;
214};
215
216struct SparseSelfAdjoint2Sparse {};
217
218template<> struct AssignmentKind<SparseShape,SparseSelfAdjointShape> { typedef SparseSelfAdjoint2Sparse Kind; };
219template<> struct AssignmentKind<SparseSelfAdjointShape,SparseShape> { typedef Sparse2Sparse Kind; };
220
221template< typename DstXprType, typename SrcXprType, typename Functor>
222struct Assignment<DstXprType, SrcXprType, Functor, SparseSelfAdjoint2Sparse>
223{
224  typedef typename DstXprType::StorageIndex StorageIndex;
225  typedef internal::assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar> AssignOpType;
226
227  template<typename DestScalar,int StorageOrder>
228  static void run(SparseMatrix<DestScalar,StorageOrder,StorageIndex> &dst, const SrcXprType &src, const AssignOpType&/*func*/)
229  {
230    internal::permute_symm_to_fullsymm<SrcXprType::Mode>(src.matrix(), dst);
231  }
232
233  // FIXME: the handling of += and -= in sparse matrices should be cleanup so that next two overloads could be reduced to:
234  template<typename DestScalar,int StorageOrder,typename AssignFunc>
235  static void run(SparseMatrix<DestScalar,StorageOrder,StorageIndex> &dst, const SrcXprType &src, const AssignFunc& func)
236  {
237    SparseMatrix<DestScalar,StorageOrder,StorageIndex> tmp(src.rows(),src.cols());
238    run(tmp, src, AssignOpType());
239    call_assignment_no_alias_no_transpose(dst, tmp, func);
240  }
241
242  template<typename DestScalar,int StorageOrder>
243  static void run(SparseMatrix<DestScalar,StorageOrder,StorageIndex> &dst, const SrcXprType &src,
244                  const internal::add_assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar>& /* func */)
245  {
246    SparseMatrix<DestScalar,StorageOrder,StorageIndex> tmp(src.rows(),src.cols());
247    run(tmp, src, AssignOpType());
248    dst += tmp;
249  }
250
251  template<typename DestScalar,int StorageOrder>
252  static void run(SparseMatrix<DestScalar,StorageOrder,StorageIndex> &dst, const SrcXprType &src,
253                  const internal::sub_assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar>& /* func */)
254  {
255    SparseMatrix<DestScalar,StorageOrder,StorageIndex> tmp(src.rows(),src.cols());
256    run(tmp, src, AssignOpType());
257    dst -= tmp;
258  }
259
260  template<typename DestScalar>
261  static void run(DynamicSparseMatrix<DestScalar,ColMajor,StorageIndex>& dst, const SrcXprType &src, const AssignOpType&/*func*/)
262  {
263    // TODO directly evaluate into dst;
264    SparseMatrix<DestScalar,ColMajor,StorageIndex> tmp(dst.rows(),dst.cols());
265    internal::permute_symm_to_fullsymm<SrcXprType::Mode>(src.matrix(), tmp);
266    dst = tmp;
267  }
268};
269
270} // end namespace internal
271
272/***************************************************************************
273* Implementation of sparse self-adjoint time dense matrix
274***************************************************************************/
275
276namespace internal {
277
278template<int Mode, typename SparseLhsType, typename DenseRhsType, typename DenseResType, typename AlphaType>
279inline void sparse_selfadjoint_time_dense_product(const SparseLhsType& lhs, const DenseRhsType& rhs, DenseResType& res, const AlphaType& alpha)
280{
281  EIGEN_ONLY_USED_FOR_DEBUG(alpha);
282
283  typedef typename internal::nested_eval<SparseLhsType,DenseRhsType::MaxColsAtCompileTime>::type SparseLhsTypeNested;
284  typedef typename internal::remove_all<SparseLhsTypeNested>::type SparseLhsTypeNestedCleaned;
285  typedef evaluator<SparseLhsTypeNestedCleaned> LhsEval;
286  typedef typename LhsEval::InnerIterator LhsIterator;
287  typedef typename SparseLhsType::Scalar LhsScalar;
288
289  enum {
290    LhsIsRowMajor = (LhsEval::Flags&RowMajorBit)==RowMajorBit,
291    ProcessFirstHalf =
292              ((Mode&(Upper|Lower))==(Upper|Lower))
293          || ( (Mode&Upper) && !LhsIsRowMajor)
294          || ( (Mode&Lower) && LhsIsRowMajor),
295    ProcessSecondHalf = !ProcessFirstHalf
296  };
297
298  SparseLhsTypeNested lhs_nested(lhs);
299  LhsEval lhsEval(lhs_nested);
300
301  // work on one column at once
302  for (Index k=0; k<rhs.cols(); ++k)
303  {
304    for (Index j=0; j<lhs.outerSize(); ++j)
305    {
306      LhsIterator i(lhsEval,j);
307      // handle diagonal coeff
308      if (ProcessSecondHalf)
309      {
310        while (i && i.index()<j) ++i;
311        if(i && i.index()==j)
312        {
313          res(j,k) += alpha * i.value() * rhs(j,k);
314          ++i;
315        }
316      }
317
318      // premultiplied rhs for scatters
319      typename ScalarBinaryOpTraits<AlphaType, typename DenseRhsType::Scalar>::ReturnType rhs_j(alpha*rhs(j,k));
320      // accumulator for partial scalar product
321      typename DenseResType::Scalar res_j(0);
322      for(; (ProcessFirstHalf ? i && i.index() < j : i) ; ++i)
323      {
324        LhsScalar lhs_ij = i.value();
325        if(!LhsIsRowMajor) lhs_ij = numext::conj(lhs_ij);
326        res_j += lhs_ij * rhs(i.index(),k);
327        res(i.index(),k) += numext::conj(lhs_ij) * rhs_j;
328      }
329      res(j,k) += alpha * res_j;
330
331      // handle diagonal coeff
332      if (ProcessFirstHalf && i && (i.index()==j))
333        res(j,k) += alpha * i.value() * rhs(j,k);
334    }
335  }
336}
337
338
339template<typename LhsView, typename Rhs, int ProductType>
340struct generic_product_impl<LhsView, Rhs, SparseSelfAdjointShape, DenseShape, ProductType>
341: generic_product_impl_base<LhsView, Rhs, generic_product_impl<LhsView, Rhs, SparseSelfAdjointShape, DenseShape, ProductType> >
342{
343  template<typename Dest>
344  static void scaleAndAddTo(Dest& dst, const LhsView& lhsView, const Rhs& rhs, const typename Dest::Scalar& alpha)
345  {
346    typedef typename LhsView::_MatrixTypeNested Lhs;
347    typedef typename nested_eval<Lhs,Dynamic>::type LhsNested;
348    typedef typename nested_eval<Rhs,Dynamic>::type RhsNested;
349    LhsNested lhsNested(lhsView.matrix());
350    RhsNested rhsNested(rhs);
351
352    internal::sparse_selfadjoint_time_dense_product<LhsView::Mode>(lhsNested, rhsNested, dst, alpha);
353  }
354};
355
356template<typename Lhs, typename RhsView, int ProductType>
357struct generic_product_impl<Lhs, RhsView, DenseShape, SparseSelfAdjointShape, ProductType>
358: generic_product_impl_base<Lhs, RhsView, generic_product_impl<Lhs, RhsView, DenseShape, SparseSelfAdjointShape, ProductType> >
359{
360  template<typename Dest>
361  static void scaleAndAddTo(Dest& dst, const Lhs& lhs, const RhsView& rhsView, const typename Dest::Scalar& alpha)
362  {
363    typedef typename RhsView::_MatrixTypeNested Rhs;
364    typedef typename nested_eval<Lhs,Dynamic>::type LhsNested;
365    typedef typename nested_eval<Rhs,Dynamic>::type RhsNested;
366    LhsNested lhsNested(lhs);
367    RhsNested rhsNested(rhsView.matrix());
368
369    // transpose everything
370    Transpose<Dest> dstT(dst);
371    internal::sparse_selfadjoint_time_dense_product<RhsView::Mode>(rhsNested.transpose(), lhsNested.transpose(), dstT, alpha);
372  }
373};
374
375// NOTE: these two overloads are needed to evaluate the sparse selfadjoint view into a full sparse matrix
376// TODO: maybe the copy could be handled by generic_product_impl so that these overloads would not be needed anymore
377
378template<typename LhsView, typename Rhs, int ProductTag>
379struct product_evaluator<Product<LhsView, Rhs, DefaultProduct>, ProductTag, SparseSelfAdjointShape, SparseShape>
380  : public evaluator<typename Product<typename Rhs::PlainObject, Rhs, DefaultProduct>::PlainObject>
381{
382  typedef Product<LhsView, Rhs, DefaultProduct> XprType;
383  typedef typename XprType::PlainObject PlainObject;
384  typedef evaluator<PlainObject> Base;
385
386  product_evaluator(const XprType& xpr)
387    : m_lhs(xpr.lhs()), m_result(xpr.rows(), xpr.cols())
388  {
389    ::new (static_cast<Base*>(this)) Base(m_result);
390    generic_product_impl<typename Rhs::PlainObject, Rhs, SparseShape, SparseShape, ProductTag>::evalTo(m_result, m_lhs, xpr.rhs());
391  }
392
393protected:
394  typename Rhs::PlainObject m_lhs;
395  PlainObject m_result;
396};
397
398template<typename Lhs, typename RhsView, int ProductTag>
399struct product_evaluator<Product<Lhs, RhsView, DefaultProduct>, ProductTag, SparseShape, SparseSelfAdjointShape>
400  : public evaluator<typename Product<Lhs, typename Lhs::PlainObject, DefaultProduct>::PlainObject>
401{
402  typedef Product<Lhs, RhsView, DefaultProduct> XprType;
403  typedef typename XprType::PlainObject PlainObject;
404  typedef evaluator<PlainObject> Base;
405
406  product_evaluator(const XprType& xpr)
407    : m_rhs(xpr.rhs()), m_result(xpr.rows(), xpr.cols())
408  {
409    ::new (static_cast<Base*>(this)) Base(m_result);
410    generic_product_impl<Lhs, typename Lhs::PlainObject, SparseShape, SparseShape, ProductTag>::evalTo(m_result, xpr.lhs(), m_rhs);
411  }
412
413protected:
414  typename Lhs::PlainObject m_rhs;
415  PlainObject m_result;
416};
417
418} // namespace internal
419
420/***************************************************************************
421* Implementation of symmetric copies and permutations
422***************************************************************************/
423namespace internal {
424
425template<int Mode,typename MatrixType,int DestOrder>
426void permute_symm_to_fullsymm(const MatrixType& mat, SparseMatrix<typename MatrixType::Scalar,DestOrder,typename MatrixType::StorageIndex>& _dest, const typename MatrixType::StorageIndex* perm)
427{
428  typedef typename MatrixType::StorageIndex StorageIndex;
429  typedef typename MatrixType::Scalar Scalar;
430  typedef SparseMatrix<Scalar,DestOrder,StorageIndex> Dest;
431  typedef Matrix<StorageIndex,Dynamic,1> VectorI;
432  typedef evaluator<MatrixType> MatEval;
433  typedef typename evaluator<MatrixType>::InnerIterator MatIterator;
434
435  MatEval matEval(mat);
436  Dest& dest(_dest.derived());
437  enum {
438    StorageOrderMatch = int(Dest::IsRowMajor) == int(MatrixType::IsRowMajor)
439  };
440
441  Index size = mat.rows();
442  VectorI count;
443  count.resize(size);
444  count.setZero();
445  dest.resize(size,size);
446  for(Index j = 0; j<size; ++j)
447  {
448    Index jp = perm ? perm[j] : j;
449    for(MatIterator it(matEval,j); it; ++it)
450    {
451      Index i = it.index();
452      Index r = it.row();
453      Index c = it.col();
454      Index ip = perm ? perm[i] : i;
455      if(Mode==(Upper|Lower))
456        count[StorageOrderMatch ? jp : ip]++;
457      else if(r==c)
458        count[ip]++;
459      else if(( Mode==Lower && r>c) || ( Mode==Upper && r<c))
460      {
461        count[ip]++;
462        count[jp]++;
463      }
464    }
465  }
466  Index nnz = count.sum();
467
468  // reserve space
469  dest.resizeNonZeros(nnz);
470  dest.outerIndexPtr()[0] = 0;
471  for(Index j=0; j<size; ++j)
472    dest.outerIndexPtr()[j+1] = dest.outerIndexPtr()[j] + count[j];
473  for(Index j=0; j<size; ++j)
474    count[j] = dest.outerIndexPtr()[j];
475
476  // copy data
477  for(StorageIndex j = 0; j<size; ++j)
478  {
479    for(MatIterator it(matEval,j); it; ++it)
480    {
481      StorageIndex i = internal::convert_index<StorageIndex>(it.index());
482      Index r = it.row();
483      Index c = it.col();
484
485      StorageIndex jp = perm ? perm[j] : j;
486      StorageIndex ip = perm ? perm[i] : i;
487
488      if(Mode==(Upper|Lower))
489      {
490        Index k = count[StorageOrderMatch ? jp : ip]++;
491        dest.innerIndexPtr()[k] = StorageOrderMatch ? ip : jp;
492        dest.valuePtr()[k] = it.value();
493      }
494      else if(r==c)
495      {
496        Index k = count[ip]++;
497        dest.innerIndexPtr()[k] = ip;
498        dest.valuePtr()[k] = it.value();
499      }
500      else if(( (Mode&Lower)==Lower && r>c) || ( (Mode&Upper)==Upper && r<c))
501      {
502        if(!StorageOrderMatch)
503          std::swap(ip,jp);
504        Index k = count[jp]++;
505        dest.innerIndexPtr()[k] = ip;
506        dest.valuePtr()[k] = it.value();
507        k = count[ip]++;
508        dest.innerIndexPtr()[k] = jp;
509        dest.valuePtr()[k] = numext::conj(it.value());
510      }
511    }
512  }
513}
514
515template<int _SrcMode,int _DstMode,typename MatrixType,int DstOrder>
516void permute_symm_to_symm(const MatrixType& mat, SparseMatrix<typename MatrixType::Scalar,DstOrder,typename MatrixType::StorageIndex>& _dest, const typename MatrixType::StorageIndex* perm)
517{
518  typedef typename MatrixType::StorageIndex StorageIndex;
519  typedef typename MatrixType::Scalar Scalar;
520  SparseMatrix<Scalar,DstOrder,StorageIndex>& dest(_dest.derived());
521  typedef Matrix<StorageIndex,Dynamic,1> VectorI;
522  typedef evaluator<MatrixType> MatEval;
523  typedef typename evaluator<MatrixType>::InnerIterator MatIterator;
524
525  enum {
526    SrcOrder = MatrixType::IsRowMajor ? RowMajor : ColMajor,
527    StorageOrderMatch = int(SrcOrder) == int(DstOrder),
528    DstMode = DstOrder==RowMajor ? (_DstMode==Upper ? Lower : Upper) : _DstMode,
529    SrcMode = SrcOrder==RowMajor ? (_SrcMode==Upper ? Lower : Upper) : _SrcMode
530  };
531
532  MatEval matEval(mat);
533
534  Index size = mat.rows();
535  VectorI count(size);
536  count.setZero();
537  dest.resize(size,size);
538  for(StorageIndex j = 0; j<size; ++j)
539  {
540    StorageIndex jp = perm ? perm[j] : j;
541    for(MatIterator it(matEval,j); it; ++it)
542    {
543      StorageIndex i = it.index();
544      if((int(SrcMode)==int(Lower) && i<j) || (int(SrcMode)==int(Upper) && i>j))
545        continue;
546
547      StorageIndex ip = perm ? perm[i] : i;
548      count[int(DstMode)==int(Lower) ? (std::min)(ip,jp) : (std::max)(ip,jp)]++;
549    }
550  }
551  dest.outerIndexPtr()[0] = 0;
552  for(Index j=0; j<size; ++j)
553    dest.outerIndexPtr()[j+1] = dest.outerIndexPtr()[j] + count[j];
554  dest.resizeNonZeros(dest.outerIndexPtr()[size]);
555  for(Index j=0; j<size; ++j)
556    count[j] = dest.outerIndexPtr()[j];
557
558  for(StorageIndex j = 0; j<size; ++j)
559  {
560
561    for(MatIterator it(matEval,j); it; ++it)
562    {
563      StorageIndex i = it.index();
564      if((int(SrcMode)==int(Lower) && i<j) || (int(SrcMode)==int(Upper) && i>j))
565        continue;
566
567      StorageIndex jp = perm ? perm[j] : j;
568      StorageIndex ip = perm? perm[i] : i;
569
570      Index k = count[int(DstMode)==int(Lower) ? (std::min)(ip,jp) : (std::max)(ip,jp)]++;
571      dest.innerIndexPtr()[k] = int(DstMode)==int(Lower) ? (std::max)(ip,jp) : (std::min)(ip,jp);
572
573      if(!StorageOrderMatch) std::swap(ip,jp);
574      if( ((int(DstMode)==int(Lower) && ip<jp) || (int(DstMode)==int(Upper) && ip>jp)))
575        dest.valuePtr()[k] = numext::conj(it.value());
576      else
577        dest.valuePtr()[k] = it.value();
578    }
579  }
580}
581
582}
583
584// TODO implement twists in a more evaluator friendly fashion
585
586namespace internal {
587
588template<typename MatrixType, int Mode>
589struct traits<SparseSymmetricPermutationProduct<MatrixType,Mode> > : traits<MatrixType> {
590};
591
592}
593
594template<typename MatrixType,int Mode>
595class SparseSymmetricPermutationProduct
596  : public EigenBase<SparseSymmetricPermutationProduct<MatrixType,Mode> >
597{
598  public:
599    typedef typename MatrixType::Scalar Scalar;
600    typedef typename MatrixType::StorageIndex StorageIndex;
601    enum {
602      RowsAtCompileTime = internal::traits<SparseSymmetricPermutationProduct>::RowsAtCompileTime,
603      ColsAtCompileTime = internal::traits<SparseSymmetricPermutationProduct>::ColsAtCompileTime
604    };
605  protected:
606    typedef PermutationMatrix<Dynamic,Dynamic,StorageIndex> Perm;
607  public:
608    typedef Matrix<StorageIndex,Dynamic,1> VectorI;
609    typedef typename MatrixType::Nested MatrixTypeNested;
610    typedef typename internal::remove_all<MatrixTypeNested>::type NestedExpression;
611
612    SparseSymmetricPermutationProduct(const MatrixType& mat, const Perm& perm)
613      : m_matrix(mat), m_perm(perm)
614    {}
615
616    inline Index rows() const { return m_matrix.rows(); }
617    inline Index cols() const { return m_matrix.cols(); }
618
619    const NestedExpression& matrix() const { return m_matrix; }
620    const Perm& perm() const { return m_perm; }
621
622  protected:
623    MatrixTypeNested m_matrix;
624    const Perm& m_perm;
625
626};
627
628namespace internal {
629
630template<typename DstXprType, typename MatrixType, int Mode, typename Scalar>
631struct Assignment<DstXprType, SparseSymmetricPermutationProduct<MatrixType,Mode>, internal::assign_op<Scalar,typename MatrixType::Scalar>, Sparse2Sparse>
632{
633  typedef SparseSymmetricPermutationProduct<MatrixType,Mode> SrcXprType;
634  typedef typename DstXprType::StorageIndex DstIndex;
635  template<int Options>
636  static void run(SparseMatrix<Scalar,Options,DstIndex> &dst, const SrcXprType &src, const internal::assign_op<Scalar,typename MatrixType::Scalar> &)
637  {
638    // internal::permute_symm_to_fullsymm<Mode>(m_matrix,_dest,m_perm.indices().data());
639    SparseMatrix<Scalar,(Options&RowMajor)==RowMajor ? ColMajor : RowMajor, DstIndex> tmp;
640    internal::permute_symm_to_fullsymm<Mode>(src.matrix(),tmp,src.perm().indices().data());
641    dst = tmp;
642  }
643
644  template<typename DestType,unsigned int DestMode>
645  static void run(SparseSelfAdjointView<DestType,DestMode>& dst, const SrcXprType &src, const internal::assign_op<Scalar,typename MatrixType::Scalar> &)
646  {
647    internal::permute_symm_to_symm<Mode,DestMode>(src.matrix(),dst.matrix(),src.perm().indices().data());
648  }
649};
650
651} // end namespace internal
652
653} // end namespace Eigen
654
655#endif // EIGEN_SPARSE_SELFADJOINTVIEW_H
656