gmock-matchers.h revision db22c227826b82e1ad05d6c47facfef73c99e057
1// Copyright 2007, Google Inc.
2// All rights reserved.
3//
4// Redistribution and use in source and binary forms, with or without
5// modification, are permitted provided that the following conditions are
6// met:
7//
8//     * Redistributions of source code must retain the above copyright
9// notice, this list of conditions and the following disclaimer.
10//     * Redistributions in binary form must reproduce the above
11// copyright notice, this list of conditions and the following disclaimer
12// in the documentation and/or other materials provided with the
13// distribution.
14//     * Neither the name of Google Inc. nor the names of its
15// contributors may be used to endorse or promote products derived from
16// this software without specific prior written permission.
17//
18// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29//
30// Author: wan@google.com (Zhanyong Wan)
31
32// Google Mock - a framework for writing C++ mock classes.
33//
34// This file implements some commonly used argument matchers.  More
35// matchers can be defined by the user implementing the
36// MatcherInterface<T> interface if necessary.
37
38#ifndef GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
39#define GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
40
41#include <algorithm>
42#include <limits>
43#include <ostream>  // NOLINT
44#include <sstream>
45#include <string>
46#include <vector>
47
48#include <gmock/gmock-printers.h>
49#include <gmock/internal/gmock-internal-utils.h>
50#include <gmock/internal/gmock-port.h>
51#include <gtest/gtest.h>
52
53namespace testing {
54
55// To implement a matcher Foo for type T, define:
56//   1. a class FooMatcherImpl that implements the
57//      MatcherInterface<T> interface, and
58//   2. a factory function that creates a Matcher<T> object from a
59//      FooMatcherImpl*.
60//
61// The two-level delegation design makes it possible to allow a user
62// to write "v" instead of "Eq(v)" where a Matcher is expected, which
63// is impossible if we pass matchers by pointers.  It also eases
64// ownership management as Matcher objects can now be copied like
65// plain values.
66
67// MatchResultListener is an abstract class.  Its << operator can be
68// used by a matcher to explain why a value matches or doesn't match.
69//
70// TODO(wan@google.com): add method
71//   bool InterestedInWhy(bool result) const;
72// to indicate whether the listener is interested in why the match
73// result is 'result'.
74class MatchResultListener {
75 public:
76  // Creates a listener object with the given underlying ostream.  The
77  // listener does not own the ostream.
78  explicit MatchResultListener(::std::ostream* os) : stream_(os) {}
79  virtual ~MatchResultListener() = 0;  // Makes this class abstract.
80
81  // Streams x to the underlying ostream; does nothing if the ostream
82  // is NULL.
83  template <typename T>
84  MatchResultListener& operator<<(const T& x) {
85    if (stream_ != NULL)
86      *stream_ << x;
87    return *this;
88  }
89
90  // Returns the underlying ostream.
91  ::std::ostream* stream() { return stream_; }
92
93 private:
94  ::std::ostream* const stream_;
95
96  GTEST_DISALLOW_COPY_AND_ASSIGN_(MatchResultListener);
97};
98
99inline MatchResultListener::~MatchResultListener() {
100}
101
102// The implementation of a matcher.
103template <typename T>
104class MatcherInterface {
105 public:
106  virtual ~MatcherInterface() {}
107
108  // Returns true iff the matcher matches x; also explains the match
109  // result to 'listener'.
110  //
111  // You should override this method when defining a new matcher.
112  //
113  // It's the responsibility of the caller (Google Mock) to guarantee
114  // that 'listener' is not NULL.  This helps to simplify a matcher's
115  // implementation when it doesn't care about the performance, as it
116  // can talk to 'listener' without checking its validity first.
117  // However, in order to implement dummy listeners efficiently,
118  // listener->stream() may be NULL.
119  virtual bool MatchAndExplain(T x, MatchResultListener* listener) const = 0;
120
121  // Describes this matcher to an ostream.
122  virtual void DescribeTo(::std::ostream* os) const = 0;
123
124  // Describes the negation of this matcher to an ostream.  For
125  // example, if the description of this matcher is "is greater than
126  // 7", the negated description could be "is not greater than 7".
127  // You are not required to override this when implementing
128  // MatcherInterface, but it is highly advised so that your matcher
129  // can produce good error messages.
130  virtual void DescribeNegationTo(::std::ostream* os) const {
131    *os << "not (";
132    DescribeTo(os);
133    *os << ")";
134  }
135};
136
137namespace internal {
138
139// A match result listener that ignores the explanation.
140class DummyMatchResultListener : public MatchResultListener {
141 public:
142  DummyMatchResultListener() : MatchResultListener(NULL) {}
143
144 private:
145  GTEST_DISALLOW_COPY_AND_ASSIGN_(DummyMatchResultListener);
146};
147
148// A match result listener that forwards the explanation to a given
149// ostream.  The difference between this and MatchResultListener is
150// that the former is concrete.
151class StreamMatchResultListener : public MatchResultListener {
152 public:
153  explicit StreamMatchResultListener(::std::ostream* os)
154      : MatchResultListener(os) {}
155
156 private:
157  GTEST_DISALLOW_COPY_AND_ASSIGN_(StreamMatchResultListener);
158};
159
160// A match result listener that stores the explanation in a string.
161class StringMatchResultListener : public MatchResultListener {
162 public:
163  StringMatchResultListener() : MatchResultListener(&ss_) {}
164
165  // Returns the explanation heard so far.
166  internal::string str() const { return ss_.str(); }
167
168 private:
169  ::std::stringstream ss_;
170
171  GTEST_DISALLOW_COPY_AND_ASSIGN_(StringMatchResultListener);
172};
173
174// An internal class for implementing Matcher<T>, which will derive
175// from it.  We put functionalities common to all Matcher<T>
176// specializations here to avoid code duplication.
177template <typename T>
178class MatcherBase {
179 public:
180  // Returns true iff the matcher matches x; also explains the match
181  // result to 'listener'.
182  bool MatchAndExplain(T x, MatchResultListener* listener) const {
183    return impl_->MatchAndExplain(x, listener);
184  }
185
186  // Returns true iff this matcher matches x.
187  bool Matches(T x) const {
188    DummyMatchResultListener dummy;
189    return MatchAndExplain(x, &dummy);
190  }
191
192  // Describes this matcher to an ostream.
193  void DescribeTo(::std::ostream* os) const { impl_->DescribeTo(os); }
194
195  // Describes the negation of this matcher to an ostream.
196  void DescribeNegationTo(::std::ostream* os) const {
197    impl_->DescribeNegationTo(os);
198  }
199
200  // Explains why x matches, or doesn't match, the matcher.
201  void ExplainMatchResultTo(T x, ::std::ostream* os) const {
202    StreamMatchResultListener listener(os);
203    MatchAndExplain(x, &listener);
204  }
205
206 protected:
207  MatcherBase() {}
208
209  // Constructs a matcher from its implementation.
210  explicit MatcherBase(const MatcherInterface<T>* impl)
211      : impl_(impl) {}
212
213  virtual ~MatcherBase() {}
214
215 private:
216  // shared_ptr (util/gtl/shared_ptr.h) and linked_ptr have similar
217  // interfaces.  The former dynamically allocates a chunk of memory
218  // to hold the reference count, while the latter tracks all
219  // references using a circular linked list without allocating
220  // memory.  It has been observed that linked_ptr performs better in
221  // typical scenarios.  However, shared_ptr can out-perform
222  // linked_ptr when there are many more uses of the copy constructor
223  // than the default constructor.
224  //
225  // If performance becomes a problem, we should see if using
226  // shared_ptr helps.
227  ::testing::internal::linked_ptr<const MatcherInterface<T> > impl_;
228};
229
230}  // namespace internal
231
232// A Matcher<T> is a copyable and IMMUTABLE (except by assignment)
233// object that can check whether a value of type T matches.  The
234// implementation of Matcher<T> is just a linked_ptr to const
235// MatcherInterface<T>, so copying is fairly cheap.  Don't inherit
236// from Matcher!
237template <typename T>
238class Matcher : public internal::MatcherBase<T> {
239 public:
240  // Constructs a null matcher.  Needed for storing Matcher objects in
241  // STL containers.
242  Matcher() {}
243
244  // Constructs a matcher from its implementation.
245  explicit Matcher(const MatcherInterface<T>* impl)
246      : internal::MatcherBase<T>(impl) {}
247
248  // Implicit constructor here allows people to write
249  // EXPECT_CALL(foo, Bar(5)) instead of EXPECT_CALL(foo, Bar(Eq(5))) sometimes
250  Matcher(T value);  // NOLINT
251};
252
253// The following two specializations allow the user to write str
254// instead of Eq(str) and "foo" instead of Eq("foo") when a string
255// matcher is expected.
256template <>
257class Matcher<const internal::string&>
258    : public internal::MatcherBase<const internal::string&> {
259 public:
260  Matcher() {}
261
262  explicit Matcher(const MatcherInterface<const internal::string&>* impl)
263      : internal::MatcherBase<const internal::string&>(impl) {}
264
265  // Allows the user to write str instead of Eq(str) sometimes, where
266  // str is a string object.
267  Matcher(const internal::string& s);  // NOLINT
268
269  // Allows the user to write "foo" instead of Eq("foo") sometimes.
270  Matcher(const char* s);  // NOLINT
271};
272
273template <>
274class Matcher<internal::string>
275    : public internal::MatcherBase<internal::string> {
276 public:
277  Matcher() {}
278
279  explicit Matcher(const MatcherInterface<internal::string>* impl)
280      : internal::MatcherBase<internal::string>(impl) {}
281
282  // Allows the user to write str instead of Eq(str) sometimes, where
283  // str is a string object.
284  Matcher(const internal::string& s);  // NOLINT
285
286  // Allows the user to write "foo" instead of Eq("foo") sometimes.
287  Matcher(const char* s);  // NOLINT
288};
289
290// The PolymorphicMatcher class template makes it easy to implement a
291// polymorphic matcher (i.e. a matcher that can match values of more
292// than one type, e.g. Eq(n) and NotNull()).
293//
294// To define a polymorphic matcher, a user should provide an Impl
295// class that has a DescribeTo() method and a DescribeNegationTo()
296// method, and define a member function (or member function template)
297//
298//   bool MatchAndExplain(const Value& value,
299//                        MatchResultListener* listener) const;
300//
301// See the definition of NotNull() for a complete example.
302template <class Impl>
303class PolymorphicMatcher {
304 public:
305  explicit PolymorphicMatcher(const Impl& an_impl) : impl_(an_impl) {}
306
307  // Returns a mutable reference to the underlying matcher
308  // implementation object.
309  Impl& mutable_impl() { return impl_; }
310
311  // Returns an immutable reference to the underlying matcher
312  // implementation object.
313  const Impl& impl() const { return impl_; }
314
315  template <typename T>
316  operator Matcher<T>() const {
317    return Matcher<T>(new MonomorphicImpl<T>(impl_));
318  }
319
320 private:
321  template <typename T>
322  class MonomorphicImpl : public MatcherInterface<T> {
323   public:
324    explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {}
325
326    virtual void DescribeTo(::std::ostream* os) const {
327      impl_.DescribeTo(os);
328    }
329
330    virtual void DescribeNegationTo(::std::ostream* os) const {
331      impl_.DescribeNegationTo(os);
332    }
333
334    virtual bool MatchAndExplain(T x, MatchResultListener* listener) const {
335      return impl_.MatchAndExplain(x, listener);
336    }
337
338   private:
339    const Impl impl_;
340
341    GTEST_DISALLOW_ASSIGN_(MonomorphicImpl);
342  };
343
344  Impl impl_;
345
346  GTEST_DISALLOW_ASSIGN_(PolymorphicMatcher);
347};
348
349// Creates a matcher from its implementation.  This is easier to use
350// than the Matcher<T> constructor as it doesn't require you to
351// explicitly write the template argument, e.g.
352//
353//   MakeMatcher(foo);
354// vs
355//   Matcher<const string&>(foo);
356template <typename T>
357inline Matcher<T> MakeMatcher(const MatcherInterface<T>* impl) {
358  return Matcher<T>(impl);
359};
360
361// Creates a polymorphic matcher from its implementation.  This is
362// easier to use than the PolymorphicMatcher<Impl> constructor as it
363// doesn't require you to explicitly write the template argument, e.g.
364//
365//   MakePolymorphicMatcher(foo);
366// vs
367//   PolymorphicMatcher<TypeOfFoo>(foo);
368template <class Impl>
369inline PolymorphicMatcher<Impl> MakePolymorphicMatcher(const Impl& impl) {
370  return PolymorphicMatcher<Impl>(impl);
371}
372
373// In order to be safe and clear, casting between different matcher
374// types is done explicitly via MatcherCast<T>(m), which takes a
375// matcher m and returns a Matcher<T>.  It compiles only when T can be
376// statically converted to the argument type of m.
377template <typename T, typename M>
378Matcher<T> MatcherCast(M m);
379
380// Implements SafeMatcherCast().
381//
382// We use an intermediate class to do the actual safe casting as Nokia's
383// Symbian compiler cannot decide between
384// template <T, M> ... (M) and
385// template <T, U> ... (const Matcher<U>&)
386// for function templates but can for member function templates.
387template <typename T>
388class SafeMatcherCastImpl {
389 public:
390  // This overload handles polymorphic matchers only since monomorphic
391  // matchers are handled by the next one.
392  template <typename M>
393  static inline Matcher<T> Cast(M polymorphic_matcher) {
394    return Matcher<T>(polymorphic_matcher);
395  }
396
397  // This overload handles monomorphic matchers.
398  //
399  // In general, if type T can be implicitly converted to type U, we can
400  // safely convert a Matcher<U> to a Matcher<T> (i.e. Matcher is
401  // contravariant): just keep a copy of the original Matcher<U>, convert the
402  // argument from type T to U, and then pass it to the underlying Matcher<U>.
403  // The only exception is when U is a reference and T is not, as the
404  // underlying Matcher<U> may be interested in the argument's address, which
405  // is not preserved in the conversion from T to U.
406  template <typename U>
407  static inline Matcher<T> Cast(const Matcher<U>& matcher) {
408    // Enforce that T can be implicitly converted to U.
409    GMOCK_COMPILE_ASSERT_((internal::ImplicitlyConvertible<T, U>::value),
410                          T_must_be_implicitly_convertible_to_U);
411    // Enforce that we are not converting a non-reference type T to a reference
412    // type U.
413    GMOCK_COMPILE_ASSERT_(
414        internal::is_reference<T>::value || !internal::is_reference<U>::value,
415        cannot_convert_non_referentce_arg_to_reference);
416    // In case both T and U are arithmetic types, enforce that the
417    // conversion is not lossy.
418    typedef GMOCK_REMOVE_CONST_(GMOCK_REMOVE_REFERENCE_(T)) RawT;
419    typedef GMOCK_REMOVE_CONST_(GMOCK_REMOVE_REFERENCE_(U)) RawU;
420    const bool kTIsOther = GMOCK_KIND_OF_(RawT) == internal::kOther;
421    const bool kUIsOther = GMOCK_KIND_OF_(RawU) == internal::kOther;
422    GMOCK_COMPILE_ASSERT_(
423        kTIsOther || kUIsOther ||
424        (internal::LosslessArithmeticConvertible<RawT, RawU>::value),
425        conversion_of_arithmetic_types_must_be_lossless);
426    return MatcherCast<T>(matcher);
427  }
428};
429
430template <typename T, typename M>
431inline Matcher<T> SafeMatcherCast(const M& polymorphic_matcher) {
432  return SafeMatcherCastImpl<T>::Cast(polymorphic_matcher);
433}
434
435// A<T>() returns a matcher that matches any value of type T.
436template <typename T>
437Matcher<T> A();
438
439// Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION
440// and MUST NOT BE USED IN USER CODE!!!
441namespace internal {
442
443// If the given string is not empty and os is not NULL, wraps the
444// string inside a pair of parentheses and streams the result to os.
445inline void StreamInParensAsNeeded(const internal::string& str,
446                                   ::std::ostream* os) {
447  if (!str.empty() && os != NULL) {
448    *os << " (" << str << ")";
449  }
450}
451
452// An internal helper class for doing compile-time loop on a tuple's
453// fields.
454template <size_t N>
455class TuplePrefix {
456 public:
457  // TuplePrefix<N>::Matches(matcher_tuple, value_tuple) returns true
458  // iff the first N fields of matcher_tuple matches the first N
459  // fields of value_tuple, respectively.
460  template <typename MatcherTuple, typename ValueTuple>
461  static bool Matches(const MatcherTuple& matcher_tuple,
462                      const ValueTuple& value_tuple) {
463    using ::std::tr1::get;
464    return TuplePrefix<N - 1>::Matches(matcher_tuple, value_tuple)
465        && get<N - 1>(matcher_tuple).Matches(get<N - 1>(value_tuple));
466  }
467
468  // TuplePrefix<N>::DescribeMatchFailuresTo(matchers, values, os)
469  // describes failures in matching the first N fields of matchers
470  // against the first N fields of values.  If there is no failure,
471  // nothing will be streamed to os.
472  template <typename MatcherTuple, typename ValueTuple>
473  static void DescribeMatchFailuresTo(const MatcherTuple& matchers,
474                                      const ValueTuple& values,
475                                      ::std::ostream* os) {
476    using ::std::tr1::tuple_element;
477    using ::std::tr1::get;
478
479    // First, describes failures in the first N - 1 fields.
480    TuplePrefix<N - 1>::DescribeMatchFailuresTo(matchers, values, os);
481
482    // Then describes the failure (if any) in the (N - 1)-th (0-based)
483    // field.
484    typename tuple_element<N - 1, MatcherTuple>::type matcher =
485        get<N - 1>(matchers);
486    typedef typename tuple_element<N - 1, ValueTuple>::type Value;
487    Value value = get<N - 1>(values);
488    StringMatchResultListener listener;
489    if (!matcher.MatchAndExplain(value, &listener)) {
490      // TODO(wan): include in the message the name of the parameter
491      // as used in MOCK_METHOD*() when possible.
492      *os << "  Expected arg #" << N - 1 << ": ";
493      get<N - 1>(matchers).DescribeTo(os);
494      *os << "\n           Actual: ";
495      // We remove the reference in type Value to prevent the
496      // universal printer from printing the address of value, which
497      // isn't interesting to the user most of the time.  The
498      // matcher's MatchAndExplain() method handles the case when
499      // the address is interesting.
500      internal::UniversalPrinter<GMOCK_REMOVE_REFERENCE_(Value)>::
501          Print(value, os);
502
503      StreamInParensAsNeeded(listener.str(), os);
504      *os << "\n";
505    }
506  }
507};
508
509// The base case.
510template <>
511class TuplePrefix<0> {
512 public:
513  template <typename MatcherTuple, typename ValueTuple>
514  static bool Matches(const MatcherTuple& /* matcher_tuple */,
515                      const ValueTuple& /* value_tuple */) {
516    return true;
517  }
518
519  template <typename MatcherTuple, typename ValueTuple>
520  static void DescribeMatchFailuresTo(const MatcherTuple& /* matchers */,
521                                      const ValueTuple& /* values */,
522                                      ::std::ostream* /* os */) {}
523};
524
525// TupleMatches(matcher_tuple, value_tuple) returns true iff all
526// matchers in matcher_tuple match the corresponding fields in
527// value_tuple.  It is a compiler error if matcher_tuple and
528// value_tuple have different number of fields or incompatible field
529// types.
530template <typename MatcherTuple, typename ValueTuple>
531bool TupleMatches(const MatcherTuple& matcher_tuple,
532                  const ValueTuple& value_tuple) {
533  using ::std::tr1::tuple_size;
534  // Makes sure that matcher_tuple and value_tuple have the same
535  // number of fields.
536  GMOCK_COMPILE_ASSERT_(tuple_size<MatcherTuple>::value ==
537                        tuple_size<ValueTuple>::value,
538                        matcher_and_value_have_different_numbers_of_fields);
539  return TuplePrefix<tuple_size<ValueTuple>::value>::
540      Matches(matcher_tuple, value_tuple);
541}
542
543// Describes failures in matching matchers against values.  If there
544// is no failure, nothing will be streamed to os.
545template <typename MatcherTuple, typename ValueTuple>
546void DescribeMatchFailureTupleTo(const MatcherTuple& matchers,
547                                 const ValueTuple& values,
548                                 ::std::ostream* os) {
549  using ::std::tr1::tuple_size;
550  TuplePrefix<tuple_size<MatcherTuple>::value>::DescribeMatchFailuresTo(
551      matchers, values, os);
552}
553
554// The MatcherCastImpl class template is a helper for implementing
555// MatcherCast().  We need this helper in order to partially
556// specialize the implementation of MatcherCast() (C++ allows
557// class/struct templates to be partially specialized, but not
558// function templates.).
559
560// This general version is used when MatcherCast()'s argument is a
561// polymorphic matcher (i.e. something that can be converted to a
562// Matcher but is not one yet; for example, Eq(value)).
563template <typename T, typename M>
564class MatcherCastImpl {
565 public:
566  static Matcher<T> Cast(M polymorphic_matcher) {
567    return Matcher<T>(polymorphic_matcher);
568  }
569};
570
571// This more specialized version is used when MatcherCast()'s argument
572// is already a Matcher.  This only compiles when type T can be
573// statically converted to type U.
574template <typename T, typename U>
575class MatcherCastImpl<T, Matcher<U> > {
576 public:
577  static Matcher<T> Cast(const Matcher<U>& source_matcher) {
578    return Matcher<T>(new Impl(source_matcher));
579  }
580
581 private:
582  class Impl : public MatcherInterface<T> {
583   public:
584    explicit Impl(const Matcher<U>& source_matcher)
585        : source_matcher_(source_matcher) {}
586
587    // We delegate the matching logic to the source matcher.
588    virtual bool MatchAndExplain(T x, MatchResultListener* listener) const {
589      return source_matcher_.MatchAndExplain(static_cast<U>(x), listener);
590    }
591
592    virtual void DescribeTo(::std::ostream* os) const {
593      source_matcher_.DescribeTo(os);
594    }
595
596    virtual void DescribeNegationTo(::std::ostream* os) const {
597      source_matcher_.DescribeNegationTo(os);
598    }
599
600   private:
601    const Matcher<U> source_matcher_;
602
603    GTEST_DISALLOW_ASSIGN_(Impl);
604  };
605};
606
607// This even more specialized version is used for efficiently casting
608// a matcher to its own type.
609template <typename T>
610class MatcherCastImpl<T, Matcher<T> > {
611 public:
612  static Matcher<T> Cast(const Matcher<T>& matcher) { return matcher; }
613};
614
615// Implements A<T>().
616template <typename T>
617class AnyMatcherImpl : public MatcherInterface<T> {
618 public:
619  virtual bool MatchAndExplain(
620      T /* x */, MatchResultListener* /* listener */) const { return true; }
621  virtual void DescribeTo(::std::ostream* os) const { *os << "is anything"; }
622  virtual void DescribeNegationTo(::std::ostream* os) const {
623    // This is mostly for completeness' safe, as it's not very useful
624    // to write Not(A<bool>()).  However we cannot completely rule out
625    // such a possibility, and it doesn't hurt to be prepared.
626    *os << "never matches";
627  }
628};
629
630// Implements _, a matcher that matches any value of any
631// type.  This is a polymorphic matcher, so we need a template type
632// conversion operator to make it appearing as a Matcher<T> for any
633// type T.
634class AnythingMatcher {
635 public:
636  template <typename T>
637  operator Matcher<T>() const { return A<T>(); }
638};
639
640// Implements a matcher that compares a given value with a
641// pre-supplied value using one of the ==, <=, <, etc, operators.  The
642// two values being compared don't have to have the same type.
643//
644// The matcher defined here is polymorphic (for example, Eq(5) can be
645// used to match an int, a short, a double, etc).  Therefore we use
646// a template type conversion operator in the implementation.
647//
648// We define this as a macro in order to eliminate duplicated source
649// code.
650//
651// The following template definition assumes that the Rhs parameter is
652// a "bare" type (i.e. neither 'const T' nor 'T&').
653#define GMOCK_IMPLEMENT_COMPARISON_MATCHER_(name, op, relation) \
654  template <typename Rhs> class name##Matcher { \
655   public: \
656    explicit name##Matcher(const Rhs& rhs) : rhs_(rhs) {} \
657    template <typename Lhs> \
658    operator Matcher<Lhs>() const { \
659      return MakeMatcher(new Impl<Lhs>(rhs_)); \
660    } \
661   private: \
662    template <typename Lhs> \
663    class Impl : public MatcherInterface<Lhs> { \
664     public: \
665      explicit Impl(const Rhs& rhs) : rhs_(rhs) {} \
666      virtual bool MatchAndExplain(\
667          Lhs lhs, MatchResultListener* /* listener */) const { \
668        return lhs op rhs_; \
669      } \
670      virtual void DescribeTo(::std::ostream* os) const { \
671        *os << "is " relation  " "; \
672        UniversalPrinter<Rhs>::Print(rhs_, os); \
673      } \
674      virtual void DescribeNegationTo(::std::ostream* os) const { \
675        *os << "is not " relation  " "; \
676        UniversalPrinter<Rhs>::Print(rhs_, os); \
677      } \
678     private: \
679      Rhs rhs_; \
680      GTEST_DISALLOW_ASSIGN_(Impl); \
681    }; \
682    Rhs rhs_; \
683    GTEST_DISALLOW_ASSIGN_(name##Matcher); \
684  }
685
686// Implements Eq(v), Ge(v), Gt(v), Le(v), Lt(v), and Ne(v)
687// respectively.
688GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Eq, ==, "equal to");
689GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Ge, >=, "greater than or equal to");
690GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Gt, >, "greater than");
691GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Le, <=, "less than or equal to");
692GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Lt, <, "less than");
693GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Ne, !=, "not equal to");
694
695#undef GMOCK_IMPLEMENT_COMPARISON_MATCHER_
696
697// Implements the polymorphic IsNull() matcher, which matches any raw or smart
698// pointer that is NULL.
699class IsNullMatcher {
700 public:
701  template <typename Pointer>
702  bool MatchAndExplain(const Pointer& p,
703                       MatchResultListener* /* listener */) const {
704    return GetRawPointer(p) == NULL;
705  }
706
707  void DescribeTo(::std::ostream* os) const { *os << "is NULL"; }
708  void DescribeNegationTo(::std::ostream* os) const {
709    *os << "is not NULL";
710  }
711};
712
713// Implements the polymorphic NotNull() matcher, which matches any raw or smart
714// pointer that is not NULL.
715class NotNullMatcher {
716 public:
717  template <typename Pointer>
718  bool MatchAndExplain(const Pointer& p,
719                       MatchResultListener* /* listener */) const {
720    return GetRawPointer(p) != NULL;
721  }
722
723  void DescribeTo(::std::ostream* os) const { *os << "is not NULL"; }
724  void DescribeNegationTo(::std::ostream* os) const {
725    *os << "is NULL";
726  }
727};
728
729// Ref(variable) matches any argument that is a reference to
730// 'variable'.  This matcher is polymorphic as it can match any
731// super type of the type of 'variable'.
732//
733// The RefMatcher template class implements Ref(variable).  It can
734// only be instantiated with a reference type.  This prevents a user
735// from mistakenly using Ref(x) to match a non-reference function
736// argument.  For example, the following will righteously cause a
737// compiler error:
738//
739//   int n;
740//   Matcher<int> m1 = Ref(n);   // This won't compile.
741//   Matcher<int&> m2 = Ref(n);  // This will compile.
742template <typename T>
743class RefMatcher;
744
745template <typename T>
746class RefMatcher<T&> {
747  // Google Mock is a generic framework and thus needs to support
748  // mocking any function types, including those that take non-const
749  // reference arguments.  Therefore the template parameter T (and
750  // Super below) can be instantiated to either a const type or a
751  // non-const type.
752 public:
753  // RefMatcher() takes a T& instead of const T&, as we want the
754  // compiler to catch using Ref(const_value) as a matcher for a
755  // non-const reference.
756  explicit RefMatcher(T& x) : object_(x) {}  // NOLINT
757
758  template <typename Super>
759  operator Matcher<Super&>() const {
760    // By passing object_ (type T&) to Impl(), which expects a Super&,
761    // we make sure that Super is a super type of T.  In particular,
762    // this catches using Ref(const_value) as a matcher for a
763    // non-const reference, as you cannot implicitly convert a const
764    // reference to a non-const reference.
765    return MakeMatcher(new Impl<Super>(object_));
766  }
767
768 private:
769  template <typename Super>
770  class Impl : public MatcherInterface<Super&> {
771   public:
772    explicit Impl(Super& x) : object_(x) {}  // NOLINT
773
774    // MatchAndExplain() takes a Super& (as opposed to const Super&)
775    // in order to match the interface MatcherInterface<Super&>.
776    virtual bool MatchAndExplain(
777        Super& x, MatchResultListener* listener) const {
778      *listener << "is located @" << static_cast<const void*>(&x);
779      return &x == &object_;
780    }
781
782    virtual void DescribeTo(::std::ostream* os) const {
783      *os << "references the variable ";
784      UniversalPrinter<Super&>::Print(object_, os);
785    }
786
787    virtual void DescribeNegationTo(::std::ostream* os) const {
788      *os << "does not reference the variable ";
789      UniversalPrinter<Super&>::Print(object_, os);
790    }
791
792   private:
793    const Super& object_;
794
795    GTEST_DISALLOW_ASSIGN_(Impl);
796  };
797
798  T& object_;
799
800  GTEST_DISALLOW_ASSIGN_(RefMatcher);
801};
802
803// Polymorphic helper functions for narrow and wide string matchers.
804inline bool CaseInsensitiveCStringEquals(const char* lhs, const char* rhs) {
805  return String::CaseInsensitiveCStringEquals(lhs, rhs);
806}
807
808inline bool CaseInsensitiveCStringEquals(const wchar_t* lhs,
809                                         const wchar_t* rhs) {
810  return String::CaseInsensitiveWideCStringEquals(lhs, rhs);
811}
812
813// String comparison for narrow or wide strings that can have embedded NUL
814// characters.
815template <typename StringType>
816bool CaseInsensitiveStringEquals(const StringType& s1,
817                                 const StringType& s2) {
818  // Are the heads equal?
819  if (!CaseInsensitiveCStringEquals(s1.c_str(), s2.c_str())) {
820    return false;
821  }
822
823  // Skip the equal heads.
824  const typename StringType::value_type nul = 0;
825  const size_t i1 = s1.find(nul), i2 = s2.find(nul);
826
827  // Are we at the end of either s1 or s2?
828  if (i1 == StringType::npos || i2 == StringType::npos) {
829    return i1 == i2;
830  }
831
832  // Are the tails equal?
833  return CaseInsensitiveStringEquals(s1.substr(i1 + 1), s2.substr(i2 + 1));
834}
835
836// String matchers.
837
838// Implements equality-based string matchers like StrEq, StrCaseNe, and etc.
839template <typename StringType>
840class StrEqualityMatcher {
841 public:
842  typedef typename StringType::const_pointer ConstCharPointer;
843
844  StrEqualityMatcher(const StringType& str, bool expect_eq,
845                     bool case_sensitive)
846      : string_(str), expect_eq_(expect_eq), case_sensitive_(case_sensitive) {}
847
848  // When expect_eq_ is true, returns true iff s is equal to string_;
849  // otherwise returns true iff s is not equal to string_.
850  bool MatchAndExplain(ConstCharPointer s,
851                       MatchResultListener* listener) const {
852    if (s == NULL) {
853      return !expect_eq_;
854    }
855    return MatchAndExplain(StringType(s), listener);
856  }
857
858  bool MatchAndExplain(const StringType& s,
859                       MatchResultListener* /* listener */) const {
860    const bool eq = case_sensitive_ ? s == string_ :
861        CaseInsensitiveStringEquals(s, string_);
862    return expect_eq_ == eq;
863  }
864
865  void DescribeTo(::std::ostream* os) const {
866    DescribeToHelper(expect_eq_, os);
867  }
868
869  void DescribeNegationTo(::std::ostream* os) const {
870    DescribeToHelper(!expect_eq_, os);
871  }
872
873 private:
874  void DescribeToHelper(bool expect_eq, ::std::ostream* os) const {
875    *os << "is ";
876    if (!expect_eq) {
877      *os << "not ";
878    }
879    *os << "equal to ";
880    if (!case_sensitive_) {
881      *os << "(ignoring case) ";
882    }
883    UniversalPrinter<StringType>::Print(string_, os);
884  }
885
886  const StringType string_;
887  const bool expect_eq_;
888  const bool case_sensitive_;
889
890  GTEST_DISALLOW_ASSIGN_(StrEqualityMatcher);
891};
892
893// Implements the polymorphic HasSubstr(substring) matcher, which
894// can be used as a Matcher<T> as long as T can be converted to a
895// string.
896template <typename StringType>
897class HasSubstrMatcher {
898 public:
899  typedef typename StringType::const_pointer ConstCharPointer;
900
901  explicit HasSubstrMatcher(const StringType& substring)
902      : substring_(substring) {}
903
904  // These overloaded methods allow HasSubstr(substring) to be used as a
905  // Matcher<T> as long as T can be converted to string.  Returns true
906  // iff s contains substring_ as a substring.
907  bool MatchAndExplain(ConstCharPointer s,
908                       MatchResultListener* listener) const {
909    return s != NULL && MatchAndExplain(StringType(s), listener);
910  }
911
912  bool MatchAndExplain(const StringType& s,
913                       MatchResultListener* /* listener */) const {
914    return s.find(substring_) != StringType::npos;
915  }
916
917  // Describes what this matcher matches.
918  void DescribeTo(::std::ostream* os) const {
919    *os << "has substring ";
920    UniversalPrinter<StringType>::Print(substring_, os);
921  }
922
923  void DescribeNegationTo(::std::ostream* os) const {
924    *os << "has no substring ";
925    UniversalPrinter<StringType>::Print(substring_, os);
926  }
927
928 private:
929  const StringType substring_;
930
931  GTEST_DISALLOW_ASSIGN_(HasSubstrMatcher);
932};
933
934// Implements the polymorphic StartsWith(substring) matcher, which
935// can be used as a Matcher<T> as long as T can be converted to a
936// string.
937template <typename StringType>
938class StartsWithMatcher {
939 public:
940  typedef typename StringType::const_pointer ConstCharPointer;
941
942  explicit StartsWithMatcher(const StringType& prefix) : prefix_(prefix) {
943  }
944
945  // These overloaded methods allow StartsWith(prefix) to be used as a
946  // Matcher<T> as long as T can be converted to string.  Returns true
947  // iff s starts with prefix_.
948  bool MatchAndExplain(ConstCharPointer s,
949                       MatchResultListener* listener) const {
950    return s != NULL && MatchAndExplain(StringType(s), listener);
951  }
952
953  bool MatchAndExplain(const StringType& s,
954                       MatchResultListener* /* listener */) const {
955    return s.length() >= prefix_.length() &&
956        s.substr(0, prefix_.length()) == prefix_;
957  }
958
959  void DescribeTo(::std::ostream* os) const {
960    *os << "starts with ";
961    UniversalPrinter<StringType>::Print(prefix_, os);
962  }
963
964  void DescribeNegationTo(::std::ostream* os) const {
965    *os << "doesn't start with ";
966    UniversalPrinter<StringType>::Print(prefix_, os);
967  }
968
969 private:
970  const StringType prefix_;
971
972  GTEST_DISALLOW_ASSIGN_(StartsWithMatcher);
973};
974
975// Implements the polymorphic EndsWith(substring) matcher, which
976// can be used as a Matcher<T> as long as T can be converted to a
977// string.
978template <typename StringType>
979class EndsWithMatcher {
980 public:
981  typedef typename StringType::const_pointer ConstCharPointer;
982
983  explicit EndsWithMatcher(const StringType& suffix) : suffix_(suffix) {}
984
985  // These overloaded methods allow EndsWith(suffix) to be used as a
986  // Matcher<T> as long as T can be converted to string.  Returns true
987  // iff s ends with suffix_.
988  bool MatchAndExplain(ConstCharPointer s,
989                       MatchResultListener* listener) const {
990    return s != NULL && MatchAndExplain(StringType(s), listener);
991  }
992
993  bool MatchAndExplain(const StringType& s,
994                       MatchResultListener* /* listener */) const {
995    return s.length() >= suffix_.length() &&
996        s.substr(s.length() - suffix_.length()) == suffix_;
997  }
998
999  void DescribeTo(::std::ostream* os) const {
1000    *os << "ends with ";
1001    UniversalPrinter<StringType>::Print(suffix_, os);
1002  }
1003
1004  void DescribeNegationTo(::std::ostream* os) const {
1005    *os << "doesn't end with ";
1006    UniversalPrinter<StringType>::Print(suffix_, os);
1007  }
1008
1009 private:
1010  const StringType suffix_;
1011
1012  GTEST_DISALLOW_ASSIGN_(EndsWithMatcher);
1013};
1014
1015// Implements polymorphic matchers MatchesRegex(regex) and
1016// ContainsRegex(regex), which can be used as a Matcher<T> as long as
1017// T can be converted to a string.
1018class MatchesRegexMatcher {
1019 public:
1020  MatchesRegexMatcher(const RE* regex, bool full_match)
1021      : regex_(regex), full_match_(full_match) {}
1022
1023  // These overloaded methods allow MatchesRegex(regex) to be used as
1024  // a Matcher<T> as long as T can be converted to string.  Returns
1025  // true iff s matches regular expression regex.  When full_match_ is
1026  // true, a full match is done; otherwise a partial match is done.
1027  bool MatchAndExplain(const char* s,
1028                       MatchResultListener* listener) const {
1029    return s != NULL && MatchAndExplain(internal::string(s), listener);
1030  }
1031
1032  bool MatchAndExplain(const internal::string& s,
1033                       MatchResultListener* /* listener */) const {
1034    return full_match_ ? RE::FullMatch(s, *regex_) :
1035        RE::PartialMatch(s, *regex_);
1036  }
1037
1038  void DescribeTo(::std::ostream* os) const {
1039    *os << (full_match_ ? "matches" : "contains")
1040        << " regular expression ";
1041    UniversalPrinter<internal::string>::Print(regex_->pattern(), os);
1042  }
1043
1044  void DescribeNegationTo(::std::ostream* os) const {
1045    *os << "doesn't " << (full_match_ ? "match" : "contain")
1046        << " regular expression ";
1047    UniversalPrinter<internal::string>::Print(regex_->pattern(), os);
1048  }
1049
1050 private:
1051  const internal::linked_ptr<const RE> regex_;
1052  const bool full_match_;
1053
1054  GTEST_DISALLOW_ASSIGN_(MatchesRegexMatcher);
1055};
1056
1057// Implements a matcher that compares the two fields of a 2-tuple
1058// using one of the ==, <=, <, etc, operators.  The two fields being
1059// compared don't have to have the same type.
1060//
1061// The matcher defined here is polymorphic (for example, Eq() can be
1062// used to match a tuple<int, short>, a tuple<const long&, double>,
1063// etc).  Therefore we use a template type conversion operator in the
1064// implementation.
1065//
1066// We define this as a macro in order to eliminate duplicated source
1067// code.
1068#define GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(name, op) \
1069  class name##2Matcher { \
1070   public: \
1071    template <typename T1, typename T2> \
1072    operator Matcher<const ::std::tr1::tuple<T1, T2>&>() const { \
1073      return MakeMatcher(new Impl<T1, T2>); \
1074    } \
1075   private: \
1076    template <typename T1, typename T2> \
1077    class Impl : public MatcherInterface<const ::std::tr1::tuple<T1, T2>&> { \
1078     public: \
1079      virtual bool MatchAndExplain( \
1080          const ::std::tr1::tuple<T1, T2>& args, \
1081          MatchResultListener* /* listener */) const { \
1082        return ::std::tr1::get<0>(args) op ::std::tr1::get<1>(args); \
1083      } \
1084      virtual void DescribeTo(::std::ostream* os) const { \
1085        *os << "are a pair (x, y) where x " #op " y"; \
1086      } \
1087      virtual void DescribeNegationTo(::std::ostream* os) const { \
1088        *os << "are a pair (x, y) where x " #op " y is false"; \
1089      } \
1090    }; \
1091  }
1092
1093// Implements Eq(), Ge(), Gt(), Le(), Lt(), and Ne() respectively.
1094GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(Eq, ==);
1095GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(Ge, >=);
1096GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(Gt, >);
1097GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(Le, <=);
1098GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(Lt, <);
1099GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(Ne, !=);
1100
1101#undef GMOCK_IMPLEMENT_COMPARISON2_MATCHER_
1102
1103// Implements the Not(...) matcher for a particular argument type T.
1104// We do not nest it inside the NotMatcher class template, as that
1105// will prevent different instantiations of NotMatcher from sharing
1106// the same NotMatcherImpl<T> class.
1107template <typename T>
1108class NotMatcherImpl : public MatcherInterface<T> {
1109 public:
1110  explicit NotMatcherImpl(const Matcher<T>& matcher)
1111      : matcher_(matcher) {}
1112
1113  virtual bool MatchAndExplain(T x, MatchResultListener* listener) const {
1114    return !matcher_.MatchAndExplain(x, listener);
1115  }
1116
1117  virtual void DescribeTo(::std::ostream* os) const {
1118    matcher_.DescribeNegationTo(os);
1119  }
1120
1121  virtual void DescribeNegationTo(::std::ostream* os) const {
1122    matcher_.DescribeTo(os);
1123  }
1124
1125 private:
1126  const Matcher<T> matcher_;
1127
1128  GTEST_DISALLOW_ASSIGN_(NotMatcherImpl);
1129};
1130
1131// Implements the Not(m) matcher, which matches a value that doesn't
1132// match matcher m.
1133template <typename InnerMatcher>
1134class NotMatcher {
1135 public:
1136  explicit NotMatcher(InnerMatcher matcher) : matcher_(matcher) {}
1137
1138  // This template type conversion operator allows Not(m) to be used
1139  // to match any type m can match.
1140  template <typename T>
1141  operator Matcher<T>() const {
1142    return Matcher<T>(new NotMatcherImpl<T>(SafeMatcherCast<T>(matcher_)));
1143  }
1144
1145 private:
1146  InnerMatcher matcher_;
1147
1148  GTEST_DISALLOW_ASSIGN_(NotMatcher);
1149};
1150
1151// Implements the AllOf(m1, m2) matcher for a particular argument type
1152// T. We do not nest it inside the BothOfMatcher class template, as
1153// that will prevent different instantiations of BothOfMatcher from
1154// sharing the same BothOfMatcherImpl<T> class.
1155template <typename T>
1156class BothOfMatcherImpl : public MatcherInterface<T> {
1157 public:
1158  BothOfMatcherImpl(const Matcher<T>& matcher1, const Matcher<T>& matcher2)
1159      : matcher1_(matcher1), matcher2_(matcher2) {}
1160
1161  virtual void DescribeTo(::std::ostream* os) const {
1162    *os << "(";
1163    matcher1_.DescribeTo(os);
1164    *os << ") and (";
1165    matcher2_.DescribeTo(os);
1166    *os << ")";
1167  }
1168
1169  virtual void DescribeNegationTo(::std::ostream* os) const {
1170    *os << "not ";
1171    DescribeTo(os);
1172  }
1173
1174  virtual bool MatchAndExplain(T x, MatchResultListener* listener) const {
1175    // If either matcher1_ or matcher2_ doesn't match x, we only need
1176    // to explain why one of them fails.
1177    StringMatchResultListener listener1;
1178    if (!matcher1_.MatchAndExplain(x, &listener1)) {
1179      *listener << listener1.str();
1180      return false;
1181    }
1182
1183    StringMatchResultListener listener2;
1184    if (!matcher2_.MatchAndExplain(x, &listener2)) {
1185      *listener << listener2.str();
1186      return false;
1187    }
1188
1189    // Otherwise we need to explain why *both* of them match.
1190    const internal::string s1 = listener1.str();
1191    const internal::string s2 = listener2.str();
1192
1193    if (s1 == "") {
1194      *listener << s2;
1195    } else {
1196      *listener << s1;
1197      if (s2 != "") {
1198        *listener << "; " << s2;
1199      }
1200    }
1201    return true;
1202  }
1203
1204 private:
1205  const Matcher<T> matcher1_;
1206  const Matcher<T> matcher2_;
1207
1208  GTEST_DISALLOW_ASSIGN_(BothOfMatcherImpl);
1209};
1210
1211// Used for implementing the AllOf(m_1, ..., m_n) matcher, which
1212// matches a value that matches all of the matchers m_1, ..., and m_n.
1213template <typename Matcher1, typename Matcher2>
1214class BothOfMatcher {
1215 public:
1216  BothOfMatcher(Matcher1 matcher1, Matcher2 matcher2)
1217      : matcher1_(matcher1), matcher2_(matcher2) {}
1218
1219  // This template type conversion operator allows a
1220  // BothOfMatcher<Matcher1, Matcher2> object to match any type that
1221  // both Matcher1 and Matcher2 can match.
1222  template <typename T>
1223  operator Matcher<T>() const {
1224    return Matcher<T>(new BothOfMatcherImpl<T>(SafeMatcherCast<T>(matcher1_),
1225                                               SafeMatcherCast<T>(matcher2_)));
1226  }
1227
1228 private:
1229  Matcher1 matcher1_;
1230  Matcher2 matcher2_;
1231
1232  GTEST_DISALLOW_ASSIGN_(BothOfMatcher);
1233};
1234
1235// Implements the AnyOf(m1, m2) matcher for a particular argument type
1236// T.  We do not nest it inside the AnyOfMatcher class template, as
1237// that will prevent different instantiations of AnyOfMatcher from
1238// sharing the same EitherOfMatcherImpl<T> class.
1239template <typename T>
1240class EitherOfMatcherImpl : public MatcherInterface<T> {
1241 public:
1242  EitherOfMatcherImpl(const Matcher<T>& matcher1, const Matcher<T>& matcher2)
1243      : matcher1_(matcher1), matcher2_(matcher2) {}
1244
1245  virtual void DescribeTo(::std::ostream* os) const {
1246    *os << "(";
1247    matcher1_.DescribeTo(os);
1248    *os << ") or (";
1249    matcher2_.DescribeTo(os);
1250    *os << ")";
1251  }
1252
1253  virtual void DescribeNegationTo(::std::ostream* os) const {
1254    *os << "not ";
1255    DescribeTo(os);
1256  }
1257
1258  virtual bool MatchAndExplain(T x, MatchResultListener* listener) const {
1259    // If either matcher1_ or matcher2_ matches x, we just need to
1260    // explain why *one* of them matches.
1261    StringMatchResultListener listener1;
1262    if (matcher1_.MatchAndExplain(x, &listener1)) {
1263      *listener << listener1.str();
1264      return true;
1265    }
1266
1267    StringMatchResultListener listener2;
1268    if (matcher2_.MatchAndExplain(x, &listener2)) {
1269      *listener << listener2.str();
1270      return true;
1271    }
1272
1273    // Otherwise we need to explain why *both* of them fail.
1274    const internal::string s1 = listener1.str();
1275    const internal::string s2 = listener2.str();
1276
1277    if (s1 == "") {
1278      *listener << s2;
1279    } else {
1280      *listener << s1;
1281      if (s2 != "") {
1282        *listener << "; " << s2;
1283      }
1284    }
1285    return false;
1286  }
1287
1288 private:
1289  const Matcher<T> matcher1_;
1290  const Matcher<T> matcher2_;
1291
1292  GTEST_DISALLOW_ASSIGN_(EitherOfMatcherImpl);
1293};
1294
1295// Used for implementing the AnyOf(m_1, ..., m_n) matcher, which
1296// matches a value that matches at least one of the matchers m_1, ...,
1297// and m_n.
1298template <typename Matcher1, typename Matcher2>
1299class EitherOfMatcher {
1300 public:
1301  EitherOfMatcher(Matcher1 matcher1, Matcher2 matcher2)
1302      : matcher1_(matcher1), matcher2_(matcher2) {}
1303
1304  // This template type conversion operator allows a
1305  // EitherOfMatcher<Matcher1, Matcher2> object to match any type that
1306  // both Matcher1 and Matcher2 can match.
1307  template <typename T>
1308  operator Matcher<T>() const {
1309    return Matcher<T>(new EitherOfMatcherImpl<T>(
1310        SafeMatcherCast<T>(matcher1_), SafeMatcherCast<T>(matcher2_)));
1311  }
1312
1313 private:
1314  Matcher1 matcher1_;
1315  Matcher2 matcher2_;
1316
1317  GTEST_DISALLOW_ASSIGN_(EitherOfMatcher);
1318};
1319
1320// Used for implementing Truly(pred), which turns a predicate into a
1321// matcher.
1322template <typename Predicate>
1323class TrulyMatcher {
1324 public:
1325  explicit TrulyMatcher(Predicate pred) : predicate_(pred) {}
1326
1327  // This method template allows Truly(pred) to be used as a matcher
1328  // for type T where T is the argument type of predicate 'pred'.  The
1329  // argument is passed by reference as the predicate may be
1330  // interested in the address of the argument.
1331  template <typename T>
1332  bool MatchAndExplain(T& x,  // NOLINT
1333                       MatchResultListener* /* listener */) const {
1334#if GTEST_OS_WINDOWS
1335    // MSVC warns about converting a value into bool (warning 4800).
1336#pragma warning(push)          // Saves the current warning state.
1337#pragma warning(disable:4800)  // Temporarily disables warning 4800.
1338#endif  // GTEST_OS_WINDOWS
1339    return predicate_(x);
1340#if GTEST_OS_WINDOWS
1341#pragma warning(pop)           // Restores the warning state.
1342#endif  // GTEST_OS_WINDOWS
1343  }
1344
1345  void DescribeTo(::std::ostream* os) const {
1346    *os << "satisfies the given predicate";
1347  }
1348
1349  void DescribeNegationTo(::std::ostream* os) const {
1350    *os << "doesn't satisfy the given predicate";
1351  }
1352
1353 private:
1354  Predicate predicate_;
1355
1356  GTEST_DISALLOW_ASSIGN_(TrulyMatcher);
1357};
1358
1359// Used for implementing Matches(matcher), which turns a matcher into
1360// a predicate.
1361template <typename M>
1362class MatcherAsPredicate {
1363 public:
1364  explicit MatcherAsPredicate(M matcher) : matcher_(matcher) {}
1365
1366  // This template operator() allows Matches(m) to be used as a
1367  // predicate on type T where m is a matcher on type T.
1368  //
1369  // The argument x is passed by reference instead of by value, as
1370  // some matcher may be interested in its address (e.g. as in
1371  // Matches(Ref(n))(x)).
1372  template <typename T>
1373  bool operator()(const T& x) const {
1374    // We let matcher_ commit to a particular type here instead of
1375    // when the MatcherAsPredicate object was constructed.  This
1376    // allows us to write Matches(m) where m is a polymorphic matcher
1377    // (e.g. Eq(5)).
1378    //
1379    // If we write Matcher<T>(matcher_).Matches(x) here, it won't
1380    // compile when matcher_ has type Matcher<const T&>; if we write
1381    // Matcher<const T&>(matcher_).Matches(x) here, it won't compile
1382    // when matcher_ has type Matcher<T>; if we just write
1383    // matcher_.Matches(x), it won't compile when matcher_ is
1384    // polymorphic, e.g. Eq(5).
1385    //
1386    // MatcherCast<const T&>() is necessary for making the code work
1387    // in all of the above situations.
1388    return MatcherCast<const T&>(matcher_).Matches(x);
1389  }
1390
1391 private:
1392  M matcher_;
1393
1394  GTEST_DISALLOW_ASSIGN_(MatcherAsPredicate);
1395};
1396
1397// For implementing ASSERT_THAT() and EXPECT_THAT().  The template
1398// argument M must be a type that can be converted to a matcher.
1399template <typename M>
1400class PredicateFormatterFromMatcher {
1401 public:
1402  explicit PredicateFormatterFromMatcher(const M& m) : matcher_(m) {}
1403
1404  // This template () operator allows a PredicateFormatterFromMatcher
1405  // object to act as a predicate-formatter suitable for using with
1406  // Google Test's EXPECT_PRED_FORMAT1() macro.
1407  template <typename T>
1408  AssertionResult operator()(const char* value_text, const T& x) const {
1409    // We convert matcher_ to a Matcher<const T&> *now* instead of
1410    // when the PredicateFormatterFromMatcher object was constructed,
1411    // as matcher_ may be polymorphic (e.g. NotNull()) and we won't
1412    // know which type to instantiate it to until we actually see the
1413    // type of x here.
1414    //
1415    // We write MatcherCast<const T&>(matcher_) instead of
1416    // Matcher<const T&>(matcher_), as the latter won't compile when
1417    // matcher_ has type Matcher<T> (e.g. An<int>()).
1418    const Matcher<const T&> matcher = MatcherCast<const T&>(matcher_);
1419    StringMatchResultListener listener;
1420    if (matcher.MatchAndExplain(x, &listener)) {
1421      return AssertionSuccess();
1422    } else {
1423      ::std::stringstream ss;
1424      ss << "Value of: " << value_text << "\n"
1425         << "Expected: ";
1426      matcher.DescribeTo(&ss);
1427      ss << "\n  Actual: ";
1428      UniversalPrinter<T>::Print(x, &ss);
1429      StreamInParensAsNeeded(listener.str(), &ss);
1430      return AssertionFailure(Message() << ss.str());
1431    }
1432  }
1433
1434 private:
1435  const M matcher_;
1436
1437  GTEST_DISALLOW_ASSIGN_(PredicateFormatterFromMatcher);
1438};
1439
1440// A helper function for converting a matcher to a predicate-formatter
1441// without the user needing to explicitly write the type.  This is
1442// used for implementing ASSERT_THAT() and EXPECT_THAT().
1443template <typename M>
1444inline PredicateFormatterFromMatcher<M>
1445MakePredicateFormatterFromMatcher(const M& matcher) {
1446  return PredicateFormatterFromMatcher<M>(matcher);
1447}
1448
1449// Implements the polymorphic floating point equality matcher, which
1450// matches two float values using ULP-based approximation.  The
1451// template is meant to be instantiated with FloatType being either
1452// float or double.
1453template <typename FloatType>
1454class FloatingEqMatcher {
1455 public:
1456  // Constructor for FloatingEqMatcher.
1457  // The matcher's input will be compared with rhs.  The matcher treats two
1458  // NANs as equal if nan_eq_nan is true.  Otherwise, under IEEE standards,
1459  // equality comparisons between NANs will always return false.
1460  FloatingEqMatcher(FloatType rhs, bool nan_eq_nan) :
1461    rhs_(rhs), nan_eq_nan_(nan_eq_nan) {}
1462
1463  // Implements floating point equality matcher as a Matcher<T>.
1464  template <typename T>
1465  class Impl : public MatcherInterface<T> {
1466   public:
1467    Impl(FloatType rhs, bool nan_eq_nan) :
1468      rhs_(rhs), nan_eq_nan_(nan_eq_nan) {}
1469
1470    virtual bool MatchAndExplain(T value,
1471                                 MatchResultListener* /* listener */) const {
1472      const FloatingPoint<FloatType> lhs(value), rhs(rhs_);
1473
1474      // Compares NaNs first, if nan_eq_nan_ is true.
1475      if (nan_eq_nan_ && lhs.is_nan()) {
1476        return rhs.is_nan();
1477      }
1478
1479      return lhs.AlmostEquals(rhs);
1480    }
1481
1482    virtual void DescribeTo(::std::ostream* os) const {
1483      // os->precision() returns the previously set precision, which we
1484      // store to restore the ostream to its original configuration
1485      // after outputting.
1486      const ::std::streamsize old_precision = os->precision(
1487          ::std::numeric_limits<FloatType>::digits10 + 2);
1488      if (FloatingPoint<FloatType>(rhs_).is_nan()) {
1489        if (nan_eq_nan_) {
1490          *os << "is NaN";
1491        } else {
1492          *os << "never matches";
1493        }
1494      } else {
1495        *os << "is approximately " << rhs_;
1496      }
1497      os->precision(old_precision);
1498    }
1499
1500    virtual void DescribeNegationTo(::std::ostream* os) const {
1501      // As before, get original precision.
1502      const ::std::streamsize old_precision = os->precision(
1503          ::std::numeric_limits<FloatType>::digits10 + 2);
1504      if (FloatingPoint<FloatType>(rhs_).is_nan()) {
1505        if (nan_eq_nan_) {
1506          *os << "is not NaN";
1507        } else {
1508          *os << "is anything";
1509        }
1510      } else {
1511        *os << "is not approximately " << rhs_;
1512      }
1513      // Restore original precision.
1514      os->precision(old_precision);
1515    }
1516
1517   private:
1518    const FloatType rhs_;
1519    const bool nan_eq_nan_;
1520
1521    GTEST_DISALLOW_ASSIGN_(Impl);
1522  };
1523
1524  // The following 3 type conversion operators allow FloatEq(rhs) and
1525  // NanSensitiveFloatEq(rhs) to be used as a Matcher<float>, a
1526  // Matcher<const float&>, or a Matcher<float&>, but nothing else.
1527  // (While Google's C++ coding style doesn't allow arguments passed
1528  // by non-const reference, we may see them in code not conforming to
1529  // the style.  Therefore Google Mock needs to support them.)
1530  operator Matcher<FloatType>() const {
1531    return MakeMatcher(new Impl<FloatType>(rhs_, nan_eq_nan_));
1532  }
1533
1534  operator Matcher<const FloatType&>() const {
1535    return MakeMatcher(new Impl<const FloatType&>(rhs_, nan_eq_nan_));
1536  }
1537
1538  operator Matcher<FloatType&>() const {
1539    return MakeMatcher(new Impl<FloatType&>(rhs_, nan_eq_nan_));
1540  }
1541 private:
1542  const FloatType rhs_;
1543  const bool nan_eq_nan_;
1544
1545  GTEST_DISALLOW_ASSIGN_(FloatingEqMatcher);
1546};
1547
1548// Implements the Pointee(m) matcher for matching a pointer whose
1549// pointee matches matcher m.  The pointer can be either raw or smart.
1550template <typename InnerMatcher>
1551class PointeeMatcher {
1552 public:
1553  explicit PointeeMatcher(const InnerMatcher& matcher) : matcher_(matcher) {}
1554
1555  // This type conversion operator template allows Pointee(m) to be
1556  // used as a matcher for any pointer type whose pointee type is
1557  // compatible with the inner matcher, where type Pointer can be
1558  // either a raw pointer or a smart pointer.
1559  //
1560  // The reason we do this instead of relying on
1561  // MakePolymorphicMatcher() is that the latter is not flexible
1562  // enough for implementing the DescribeTo() method of Pointee().
1563  template <typename Pointer>
1564  operator Matcher<Pointer>() const {
1565    return MakeMatcher(new Impl<Pointer>(matcher_));
1566  }
1567
1568 private:
1569  // The monomorphic implementation that works for a particular pointer type.
1570  template <typename Pointer>
1571  class Impl : public MatcherInterface<Pointer> {
1572   public:
1573    typedef typename PointeeOf<GMOCK_REMOVE_CONST_(  // NOLINT
1574        GMOCK_REMOVE_REFERENCE_(Pointer))>::type Pointee;
1575
1576    explicit Impl(const InnerMatcher& matcher)
1577        : matcher_(MatcherCast<const Pointee&>(matcher)) {}
1578
1579    virtual void DescribeTo(::std::ostream* os) const {
1580      *os << "points to a value that ";
1581      matcher_.DescribeTo(os);
1582    }
1583
1584    virtual void DescribeNegationTo(::std::ostream* os) const {
1585      *os << "does not point to a value that ";
1586      matcher_.DescribeTo(os);
1587    }
1588
1589    virtual bool MatchAndExplain(Pointer pointer,
1590                                 MatchResultListener* listener) const {
1591      if (GetRawPointer(pointer) == NULL)
1592        return false;
1593
1594      StringMatchResultListener inner_listener;
1595      const bool match = matcher_.MatchAndExplain(*pointer, &inner_listener);
1596      const internal::string s = inner_listener.str();
1597      if (s != "") {
1598        *listener << "points to a value that " << s;
1599      }
1600      return match;
1601    }
1602
1603   private:
1604    const Matcher<const Pointee&> matcher_;
1605
1606    GTEST_DISALLOW_ASSIGN_(Impl);
1607  };
1608
1609  const InnerMatcher matcher_;
1610
1611  GTEST_DISALLOW_ASSIGN_(PointeeMatcher);
1612};
1613
1614// Implements the Field() matcher for matching a field (i.e. member
1615// variable) of an object.
1616template <typename Class, typename FieldType>
1617class FieldMatcher {
1618 public:
1619  FieldMatcher(FieldType Class::*field,
1620               const Matcher<const FieldType&>& matcher)
1621      : field_(field), matcher_(matcher) {}
1622
1623  void DescribeTo(::std::ostream* os) const {
1624    *os << "the given field ";
1625    matcher_.DescribeTo(os);
1626  }
1627
1628  void DescribeNegationTo(::std::ostream* os) const {
1629    *os << "the given field ";
1630    matcher_.DescribeNegationTo(os);
1631  }
1632
1633  template <typename T>
1634  bool MatchAndExplain(const T& value, MatchResultListener* listener) const {
1635    return MatchAndExplainImpl(
1636        typename ::testing::internal::
1637            is_pointer<GMOCK_REMOVE_CONST_(T)>::type(),
1638        value, listener);
1639  }
1640
1641 private:
1642  // The first argument of MatchAndExplainImpl() is needed to help
1643  // Symbian's C++ compiler choose which overload to use.  Its type is
1644  // true_type iff the Field() matcher is used to match a pointer.
1645  bool MatchAndExplainImpl(false_type /* is_not_pointer */, const Class& obj,
1646                           MatchResultListener* listener) const {
1647    StringMatchResultListener inner_listener;
1648    const bool match = matcher_.MatchAndExplain(obj.*field_, &inner_listener);
1649    const internal::string s = inner_listener.str();
1650    if (s != "") {
1651      *listener << "the given field " << s;
1652    }
1653    return match;
1654  }
1655
1656  bool MatchAndExplainImpl(true_type /* is_pointer */, const Class* p,
1657                           MatchResultListener* listener) const {
1658    if (p == NULL)
1659      return false;
1660
1661    // Since *p has a field, it must be a class/struct/union type and
1662    // thus cannot be a pointer.  Therefore we pass false_type() as
1663    // the first argument.
1664    return MatchAndExplainImpl(false_type(), *p, listener);
1665  }
1666
1667  const FieldType Class::*field_;
1668  const Matcher<const FieldType&> matcher_;
1669
1670  GTEST_DISALLOW_ASSIGN_(FieldMatcher);
1671};
1672
1673// Implements the Property() matcher for matching a property
1674// (i.e. return value of a getter method) of an object.
1675template <typename Class, typename PropertyType>
1676class PropertyMatcher {
1677 public:
1678  // The property may have a reference type, so 'const PropertyType&'
1679  // may cause double references and fail to compile.  That's why we
1680  // need GMOCK_REFERENCE_TO_CONST, which works regardless of
1681  // PropertyType being a reference or not.
1682  typedef GMOCK_REFERENCE_TO_CONST_(PropertyType) RefToConstProperty;
1683
1684  PropertyMatcher(PropertyType (Class::*property)() const,
1685                  const Matcher<RefToConstProperty>& matcher)
1686      : property_(property), matcher_(matcher) {}
1687
1688  void DescribeTo(::std::ostream* os) const {
1689    *os << "the given property ";
1690    matcher_.DescribeTo(os);
1691  }
1692
1693  void DescribeNegationTo(::std::ostream* os) const {
1694    *os << "the given property ";
1695    matcher_.DescribeNegationTo(os);
1696  }
1697
1698  template <typename T>
1699  bool MatchAndExplain(const T&value, MatchResultListener* listener) const {
1700    return MatchAndExplainImpl(
1701        typename ::testing::internal::
1702            is_pointer<GMOCK_REMOVE_CONST_(T)>::type(),
1703        value, listener);
1704  }
1705
1706 private:
1707  // The first argument of MatchAndExplainImpl() is needed to help
1708  // Symbian's C++ compiler choose which overload to use.  Its type is
1709  // true_type iff the Property() matcher is used to match a pointer.
1710  bool MatchAndExplainImpl(false_type /* is_not_pointer */, const Class& obj,
1711                           MatchResultListener* listener) const {
1712    StringMatchResultListener inner_listener;
1713    const bool match = matcher_.MatchAndExplain((obj.*property_)(),
1714                                                &inner_listener);
1715    const internal::string s = inner_listener.str();
1716    if (s != "") {
1717      *listener << "the given property " << s;
1718    }
1719    return match;
1720  }
1721
1722  bool MatchAndExplainImpl(true_type /* is_pointer */, const Class* p,
1723                           MatchResultListener* listener) const {
1724    if (p == NULL)
1725      return false;
1726
1727    // Since *p has a property method, it must be a class/struct/union
1728    // type and thus cannot be a pointer.  Therefore we pass
1729    // false_type() as the first argument.
1730    return MatchAndExplainImpl(false_type(), *p, listener);
1731  }
1732
1733  PropertyType (Class::*property_)() const;
1734  const Matcher<RefToConstProperty> matcher_;
1735
1736  GTEST_DISALLOW_ASSIGN_(PropertyMatcher);
1737};
1738
1739// Type traits specifying various features of different functors for ResultOf.
1740// The default template specifies features for functor objects.
1741// Functor classes have to typedef argument_type and result_type
1742// to be compatible with ResultOf.
1743template <typename Functor>
1744struct CallableTraits {
1745  typedef typename Functor::result_type ResultType;
1746  typedef Functor StorageType;
1747
1748  static void CheckIsValid(Functor /* functor */) {}
1749  template <typename T>
1750  static ResultType Invoke(Functor f, T arg) { return f(arg); }
1751};
1752
1753// Specialization for function pointers.
1754template <typename ArgType, typename ResType>
1755struct CallableTraits<ResType(*)(ArgType)> {
1756  typedef ResType ResultType;
1757  typedef ResType(*StorageType)(ArgType);
1758
1759  static void CheckIsValid(ResType(*f)(ArgType)) {
1760    GTEST_CHECK_(f != NULL)
1761        << "NULL function pointer is passed into ResultOf().";
1762  }
1763  template <typename T>
1764  static ResType Invoke(ResType(*f)(ArgType), T arg) {
1765    return (*f)(arg);
1766  }
1767};
1768
1769// Implements the ResultOf() matcher for matching a return value of a
1770// unary function of an object.
1771template <typename Callable>
1772class ResultOfMatcher {
1773 public:
1774  typedef typename CallableTraits<Callable>::ResultType ResultType;
1775
1776  ResultOfMatcher(Callable callable, const Matcher<ResultType>& matcher)
1777      : callable_(callable), matcher_(matcher) {
1778    CallableTraits<Callable>::CheckIsValid(callable_);
1779  }
1780
1781  template <typename T>
1782  operator Matcher<T>() const {
1783    return Matcher<T>(new Impl<T>(callable_, matcher_));
1784  }
1785
1786 private:
1787  typedef typename CallableTraits<Callable>::StorageType CallableStorageType;
1788
1789  template <typename T>
1790  class Impl : public MatcherInterface<T> {
1791   public:
1792    Impl(CallableStorageType callable, const Matcher<ResultType>& matcher)
1793        : callable_(callable), matcher_(matcher) {}
1794
1795    virtual void DescribeTo(::std::ostream* os) const {
1796      *os << "result of the given callable ";
1797      matcher_.DescribeTo(os);
1798    }
1799
1800    virtual void DescribeNegationTo(::std::ostream* os) const {
1801      *os << "result of the given callable ";
1802      matcher_.DescribeNegationTo(os);
1803    }
1804
1805    virtual bool MatchAndExplain(T obj, MatchResultListener* listener) const {
1806      StringMatchResultListener inner_listener;
1807      const bool match = matcher_.MatchAndExplain(
1808          CallableTraits<Callable>::template Invoke<T>(callable_, obj),
1809          &inner_listener);
1810
1811      const internal::string s = inner_listener.str();
1812      if (s != "")
1813        *listener << "result of the given callable " << s;
1814
1815      return match;
1816    }
1817
1818   private:
1819    // Functors often define operator() as non-const method even though
1820    // they are actualy stateless. But we need to use them even when
1821    // 'this' is a const pointer. It's the user's responsibility not to
1822    // use stateful callables with ResultOf(), which does't guarantee
1823    // how many times the callable will be invoked.
1824    mutable CallableStorageType callable_;
1825    const Matcher<ResultType> matcher_;
1826
1827    GTEST_DISALLOW_ASSIGN_(Impl);
1828  };  // class Impl
1829
1830  const CallableStorageType callable_;
1831  const Matcher<ResultType> matcher_;
1832
1833  GTEST_DISALLOW_ASSIGN_(ResultOfMatcher);
1834};
1835
1836// Implements an equality matcher for any STL-style container whose elements
1837// support ==. This matcher is like Eq(), but its failure explanations provide
1838// more detailed information that is useful when the container is used as a set.
1839// The failure message reports elements that are in one of the operands but not
1840// the other. The failure messages do not report duplicate or out-of-order
1841// elements in the containers (which don't properly matter to sets, but can
1842// occur if the containers are vectors or lists, for example).
1843//
1844// Uses the container's const_iterator, value_type, operator ==,
1845// begin(), and end().
1846template <typename Container>
1847class ContainerEqMatcher {
1848 public:
1849  typedef internal::StlContainerView<Container> View;
1850  typedef typename View::type StlContainer;
1851  typedef typename View::const_reference StlContainerReference;
1852
1853  // We make a copy of rhs in case the elements in it are modified
1854  // after this matcher is created.
1855  explicit ContainerEqMatcher(const Container& rhs) : rhs_(View::Copy(rhs)) {
1856    // Makes sure the user doesn't instantiate this class template
1857    // with a const or reference type.
1858    testing::StaticAssertTypeEq<Container,
1859        GMOCK_REMOVE_CONST_(GMOCK_REMOVE_REFERENCE_(Container))>();
1860  }
1861
1862  void DescribeTo(::std::ostream* os) const {
1863    *os << "equals ";
1864    UniversalPrinter<StlContainer>::Print(rhs_, os);
1865  }
1866  void DescribeNegationTo(::std::ostream* os) const {
1867    *os << "does not equal ";
1868    UniversalPrinter<StlContainer>::Print(rhs_, os);
1869  }
1870
1871  template <typename LhsContainer>
1872  bool MatchAndExplain(const LhsContainer& lhs,
1873                       MatchResultListener* listener) const {
1874    // GMOCK_REMOVE_CONST_() is needed to work around an MSVC 8.0 bug
1875    // that causes LhsContainer to be a const type sometimes.
1876    typedef internal::StlContainerView<GMOCK_REMOVE_CONST_(LhsContainer)>
1877        LhsView;
1878    typedef typename LhsView::type LhsStlContainer;
1879    StlContainerReference lhs_stl_container = LhsView::ConstReference(lhs);
1880    if (lhs_stl_container == rhs_)
1881      return true;
1882
1883    ::std::ostream* const os = listener->stream();
1884    if (os != NULL) {
1885      // Something is different. Check for missing values first.
1886      bool printed_header = false;
1887      for (typename LhsStlContainer::const_iterator it =
1888               lhs_stl_container.begin();
1889           it != lhs_stl_container.end(); ++it) {
1890        if (internal::ArrayAwareFind(rhs_.begin(), rhs_.end(), *it) ==
1891            rhs_.end()) {
1892          if (printed_header) {
1893            *os << ", ";
1894          } else {
1895            *os << "Only in actual: ";
1896            printed_header = true;
1897          }
1898          UniversalPrinter<typename LhsStlContainer::value_type>::
1899              Print(*it, os);
1900        }
1901      }
1902
1903      // Now check for extra values.
1904      bool printed_header2 = false;
1905      for (typename StlContainer::const_iterator it = rhs_.begin();
1906           it != rhs_.end(); ++it) {
1907        if (internal::ArrayAwareFind(
1908                lhs_stl_container.begin(), lhs_stl_container.end(), *it) ==
1909            lhs_stl_container.end()) {
1910          if (printed_header2) {
1911            *os << ", ";
1912          } else {
1913            *os << (printed_header ? "; not" : "Not") << " in actual: ";
1914            printed_header2 = true;
1915          }
1916          UniversalPrinter<typename StlContainer::value_type>::Print(*it, os);
1917        }
1918      }
1919    }
1920
1921    return false;
1922  }
1923
1924 private:
1925  const StlContainer rhs_;
1926
1927  GTEST_DISALLOW_ASSIGN_(ContainerEqMatcher);
1928};
1929
1930// Implements Contains(element_matcher) for the given argument type Container.
1931template <typename Container>
1932class ContainsMatcherImpl : public MatcherInterface<Container> {
1933 public:
1934  typedef GMOCK_REMOVE_CONST_(GMOCK_REMOVE_REFERENCE_(Container)) RawContainer;
1935  typedef StlContainerView<RawContainer> View;
1936  typedef typename View::type StlContainer;
1937  typedef typename View::const_reference StlContainerReference;
1938  typedef typename StlContainer::value_type Element;
1939
1940  template <typename InnerMatcher>
1941  explicit ContainsMatcherImpl(InnerMatcher inner_matcher)
1942      : inner_matcher_(
1943          testing::SafeMatcherCast<const Element&>(inner_matcher)) {}
1944
1945  // Describes what this matcher does.
1946  virtual void DescribeTo(::std::ostream* os) const {
1947    *os << "contains at least one element that ";
1948    inner_matcher_.DescribeTo(os);
1949  }
1950
1951  // Describes what the negation of this matcher does.
1952  virtual void DescribeNegationTo(::std::ostream* os) const {
1953    *os << "doesn't contain any element that ";
1954    inner_matcher_.DescribeTo(os);
1955  }
1956
1957  virtual bool MatchAndExplain(Container container,
1958                               MatchResultListener* listener) const {
1959    StlContainerReference stl_container = View::ConstReference(container);
1960    size_t i = 0;
1961    for (typename StlContainer::const_iterator it = stl_container.begin();
1962         it != stl_container.end(); ++it, ++i) {
1963      if (inner_matcher_.Matches(*it)) {
1964        *listener << "element " << i << " matches";
1965        return true;
1966      }
1967    }
1968    return false;
1969  }
1970
1971 private:
1972  const Matcher<const Element&> inner_matcher_;
1973
1974  GTEST_DISALLOW_ASSIGN_(ContainsMatcherImpl);
1975};
1976
1977// Implements polymorphic Contains(element_matcher).
1978template <typename M>
1979class ContainsMatcher {
1980 public:
1981  explicit ContainsMatcher(M m) : inner_matcher_(m) {}
1982
1983  template <typename Container>
1984  operator Matcher<Container>() const {
1985    return MakeMatcher(new ContainsMatcherImpl<Container>(inner_matcher_));
1986  }
1987
1988 private:
1989  const M inner_matcher_;
1990
1991  GTEST_DISALLOW_ASSIGN_(ContainsMatcher);
1992};
1993
1994// Implements Key(inner_matcher) for the given argument pair type.
1995// Key(inner_matcher) matches an std::pair whose 'first' field matches
1996// inner_matcher.  For example, Contains(Key(Ge(5))) can be used to match an
1997// std::map that contains at least one element whose key is >= 5.
1998template <typename PairType>
1999class KeyMatcherImpl : public MatcherInterface<PairType> {
2000 public:
2001  typedef GMOCK_REMOVE_CONST_(GMOCK_REMOVE_REFERENCE_(PairType)) RawPairType;
2002  typedef typename RawPairType::first_type KeyType;
2003
2004  template <typename InnerMatcher>
2005  explicit KeyMatcherImpl(InnerMatcher inner_matcher)
2006      : inner_matcher_(
2007          testing::SafeMatcherCast<const KeyType&>(inner_matcher)) {
2008  }
2009
2010  // Returns true iff 'key_value.first' (the key) matches the inner matcher.
2011  virtual bool MatchAndExplain(PairType key_value,
2012                               MatchResultListener* listener) const {
2013    return inner_matcher_.MatchAndExplain(key_value.first, listener);
2014  }
2015
2016  // Describes what this matcher does.
2017  virtual void DescribeTo(::std::ostream* os) const {
2018    *os << "has a key that ";
2019    inner_matcher_.DescribeTo(os);
2020  }
2021
2022  // Describes what the negation of this matcher does.
2023  virtual void DescribeNegationTo(::std::ostream* os) const {
2024    *os << "doesn't have a key that ";
2025    inner_matcher_.DescribeTo(os);
2026  }
2027
2028 private:
2029  const Matcher<const KeyType&> inner_matcher_;
2030
2031  GTEST_DISALLOW_ASSIGN_(KeyMatcherImpl);
2032};
2033
2034// Implements polymorphic Key(matcher_for_key).
2035template <typename M>
2036class KeyMatcher {
2037 public:
2038  explicit KeyMatcher(M m) : matcher_for_key_(m) {}
2039
2040  template <typename PairType>
2041  operator Matcher<PairType>() const {
2042    return MakeMatcher(new KeyMatcherImpl<PairType>(matcher_for_key_));
2043  }
2044
2045 private:
2046  const M matcher_for_key_;
2047
2048  GTEST_DISALLOW_ASSIGN_(KeyMatcher);
2049};
2050
2051// Implements Pair(first_matcher, second_matcher) for the given argument pair
2052// type with its two matchers. See Pair() function below.
2053template <typename PairType>
2054class PairMatcherImpl : public MatcherInterface<PairType> {
2055 public:
2056  typedef GMOCK_REMOVE_CONST_(GMOCK_REMOVE_REFERENCE_(PairType)) RawPairType;
2057  typedef typename RawPairType::first_type FirstType;
2058  typedef typename RawPairType::second_type SecondType;
2059
2060  template <typename FirstMatcher, typename SecondMatcher>
2061  PairMatcherImpl(FirstMatcher first_matcher, SecondMatcher second_matcher)
2062      : first_matcher_(
2063            testing::SafeMatcherCast<const FirstType&>(first_matcher)),
2064        second_matcher_(
2065            testing::SafeMatcherCast<const SecondType&>(second_matcher)) {
2066  }
2067
2068  // Describes what this matcher does.
2069  virtual void DescribeTo(::std::ostream* os) const {
2070    *os << "has a first field that ";
2071    first_matcher_.DescribeTo(os);
2072    *os << ", and has a second field that ";
2073    second_matcher_.DescribeTo(os);
2074  }
2075
2076  // Describes what the negation of this matcher does.
2077  virtual void DescribeNegationTo(::std::ostream* os) const {
2078    *os << "has a first field that ";
2079    first_matcher_.DescribeNegationTo(os);
2080    *os << ", or has a second field that ";
2081    second_matcher_.DescribeNegationTo(os);
2082  }
2083
2084  // Returns true iff 'a_pair.first' matches first_matcher and 'a_pair.second'
2085  // matches second_matcher.
2086  virtual bool MatchAndExplain(PairType a_pair,
2087                               MatchResultListener* listener) const {
2088    StringMatchResultListener listener1;
2089    const bool match1 = first_matcher_.MatchAndExplain(a_pair.first,
2090                                                       &listener1);
2091    internal::string s1 = listener1.str();
2092    if (s1 != "") {
2093      s1 = "the first field " + s1;
2094    }
2095    if (!match1) {
2096      *listener << s1;
2097      return false;
2098    }
2099
2100    StringMatchResultListener listener2;
2101    const bool match2 = second_matcher_.MatchAndExplain(a_pair.second,
2102                                                        &listener2);
2103    internal::string s2 = listener2.str();
2104    if (s2 != "") {
2105      s2 = "the second field " + s2;
2106    }
2107    if (!match2) {
2108      *listener << s2;
2109      return false;
2110    }
2111
2112    *listener << s1;
2113    if (s1 != "" && s2 != "") {
2114      *listener << ", and ";
2115    }
2116    *listener << s2;
2117    return true;
2118  }
2119
2120 private:
2121  const Matcher<const FirstType&> first_matcher_;
2122  const Matcher<const SecondType&> second_matcher_;
2123
2124  GTEST_DISALLOW_ASSIGN_(PairMatcherImpl);
2125};
2126
2127// Implements polymorphic Pair(first_matcher, second_matcher).
2128template <typename FirstMatcher, typename SecondMatcher>
2129class PairMatcher {
2130 public:
2131  PairMatcher(FirstMatcher first_matcher, SecondMatcher second_matcher)
2132      : first_matcher_(first_matcher), second_matcher_(second_matcher) {}
2133
2134  template <typename PairType>
2135  operator Matcher<PairType> () const {
2136    return MakeMatcher(
2137        new PairMatcherImpl<PairType>(
2138            first_matcher_, second_matcher_));
2139  }
2140
2141 private:
2142  const FirstMatcher first_matcher_;
2143  const SecondMatcher second_matcher_;
2144
2145  GTEST_DISALLOW_ASSIGN_(PairMatcher);
2146};
2147
2148// Implements ElementsAre() and ElementsAreArray().
2149template <typename Container>
2150class ElementsAreMatcherImpl : public MatcherInterface<Container> {
2151 public:
2152  typedef GMOCK_REMOVE_CONST_(GMOCK_REMOVE_REFERENCE_(Container)) RawContainer;
2153  typedef internal::StlContainerView<RawContainer> View;
2154  typedef typename View::type StlContainer;
2155  typedef typename View::const_reference StlContainerReference;
2156  typedef typename StlContainer::value_type Element;
2157
2158  // Constructs the matcher from a sequence of element values or
2159  // element matchers.
2160  template <typename InputIter>
2161  ElementsAreMatcherImpl(InputIter first, size_t a_count) {
2162    matchers_.reserve(a_count);
2163    InputIter it = first;
2164    for (size_t i = 0; i != a_count; ++i, ++it) {
2165      matchers_.push_back(MatcherCast<const Element&>(*it));
2166    }
2167  }
2168
2169  // Describes what this matcher does.
2170  virtual void DescribeTo(::std::ostream* os) const {
2171    if (count() == 0) {
2172      *os << "is empty";
2173    } else if (count() == 1) {
2174      *os << "has 1 element that ";
2175      matchers_[0].DescribeTo(os);
2176    } else {
2177      *os << "has " << Elements(count()) << " where\n";
2178      for (size_t i = 0; i != count(); ++i) {
2179        *os << "element " << i << " ";
2180        matchers_[i].DescribeTo(os);
2181        if (i + 1 < count()) {
2182          *os << ",\n";
2183        }
2184      }
2185    }
2186  }
2187
2188  // Describes what the negation of this matcher does.
2189  virtual void DescribeNegationTo(::std::ostream* os) const {
2190    if (count() == 0) {
2191      *os << "is not empty";
2192      return;
2193    }
2194
2195    *os << "does not have " << Elements(count()) << ", or\n";
2196    for (size_t i = 0; i != count(); ++i) {
2197      *os << "element " << i << " ";
2198      matchers_[i].DescribeNegationTo(os);
2199      if (i + 1 < count()) {
2200        *os << ", or\n";
2201      }
2202    }
2203  }
2204
2205  virtual bool MatchAndExplain(Container container,
2206                               MatchResultListener* listener) const {
2207    StlContainerReference stl_container = View::ConstReference(container);
2208    const size_t actual_count = stl_container.size();
2209    if (actual_count != count()) {
2210      // The element count doesn't match.  If the container is empty,
2211      // there's no need to explain anything as Google Mock already
2212      // prints the empty container.  Otherwise we just need to show
2213      // how many elements there actually are.
2214      if (actual_count != 0) {
2215        *listener << "has " << Elements(actual_count);
2216      }
2217      return false;
2218    }
2219
2220    typename StlContainer::const_iterator it = stl_container.begin();
2221    // explanations[i] is the explanation of the element at index i.
2222    std::vector<internal::string> explanations(count());
2223    for (size_t i = 0; i != count();  ++it, ++i) {
2224      StringMatchResultListener s;
2225      if (matchers_[i].MatchAndExplain(*it, &s)) {
2226        explanations[i] = s.str();
2227      } else {
2228        // The container has the right size but the i-th element
2229        // doesn't match its expectation.
2230        *listener << "element " << i << " doesn't match";
2231
2232        StreamInParensAsNeeded(s.str(), listener->stream());
2233        return false;
2234      }
2235    }
2236
2237    // Every element matches its expectation.  We need to explain why
2238    // (the obvious ones can be skipped).
2239
2240    bool reason_printed = false;
2241    for (size_t i = 0; i != count(); ++i) {
2242      const internal::string& s = explanations[i];
2243      if (!s.empty()) {
2244        if (reason_printed) {
2245          *listener << ",\n";
2246        }
2247        *listener << "element " << i << " " << s;
2248        reason_printed = true;
2249      }
2250    }
2251
2252    return true;
2253  }
2254
2255 private:
2256  static Message Elements(size_t count) {
2257    return Message() << count << (count == 1 ? " element" : " elements");
2258  }
2259
2260  size_t count() const { return matchers_.size(); }
2261  std::vector<Matcher<const Element&> > matchers_;
2262
2263  GTEST_DISALLOW_ASSIGN_(ElementsAreMatcherImpl);
2264};
2265
2266// Implements ElementsAre() of 0 arguments.
2267class ElementsAreMatcher0 {
2268 public:
2269  ElementsAreMatcher0() {}
2270
2271  template <typename Container>
2272  operator Matcher<Container>() const {
2273    typedef GMOCK_REMOVE_CONST_(GMOCK_REMOVE_REFERENCE_(Container))
2274        RawContainer;
2275    typedef typename internal::StlContainerView<RawContainer>::type::value_type
2276        Element;
2277
2278    const Matcher<const Element&>* const matchers = NULL;
2279    return MakeMatcher(new ElementsAreMatcherImpl<Container>(matchers, 0));
2280  }
2281};
2282
2283// Implements ElementsAreArray().
2284template <typename T>
2285class ElementsAreArrayMatcher {
2286 public:
2287  ElementsAreArrayMatcher(const T* first, size_t count) :
2288      first_(first), count_(count) {}
2289
2290  template <typename Container>
2291  operator Matcher<Container>() const {
2292    typedef GMOCK_REMOVE_CONST_(GMOCK_REMOVE_REFERENCE_(Container))
2293        RawContainer;
2294    typedef typename internal::StlContainerView<RawContainer>::type::value_type
2295        Element;
2296
2297    return MakeMatcher(new ElementsAreMatcherImpl<Container>(first_, count_));
2298  }
2299
2300 private:
2301  const T* const first_;
2302  const size_t count_;
2303
2304  GTEST_DISALLOW_ASSIGN_(ElementsAreArrayMatcher);
2305};
2306
2307// Constants denoting interpolations in a matcher description string.
2308const int kTupleInterpolation = -1;    // "%(*)s"
2309const int kPercentInterpolation = -2;  // "%%"
2310const int kInvalidInterpolation = -3;  // "%" followed by invalid text
2311
2312// Records the location and content of an interpolation.
2313struct Interpolation {
2314  Interpolation(const char* start, const char* end, int param)
2315      : start_pos(start), end_pos(end), param_index(param) {}
2316
2317  // Points to the start of the interpolation (the '%' character).
2318  const char* start_pos;
2319  // Points to the first character after the interpolation.
2320  const char* end_pos;
2321  // 0-based index of the interpolated matcher parameter;
2322  // kTupleInterpolation for "%(*)s"; kPercentInterpolation for "%%".
2323  int param_index;
2324};
2325
2326typedef ::std::vector<Interpolation> Interpolations;
2327
2328// Parses a matcher description string and returns a vector of
2329// interpolations that appear in the string; generates non-fatal
2330// failures iff 'description' is an invalid matcher description.
2331// 'param_names' is a NULL-terminated array of parameter names in the
2332// order they appear in the MATCHER_P*() parameter list.
2333Interpolations ValidateMatcherDescription(
2334    const char* param_names[], const char* description);
2335
2336// Returns the actual matcher description, given the matcher name,
2337// user-supplied description template string, interpolations in the
2338// string, and the printed values of the matcher parameters.
2339string FormatMatcherDescription(
2340    const char* matcher_name, const char* description,
2341    const Interpolations& interp, const Strings& param_values);
2342
2343}  // namespace internal
2344
2345// Implements MatcherCast().
2346template <typename T, typename M>
2347inline Matcher<T> MatcherCast(M matcher) {
2348  return internal::MatcherCastImpl<T, M>::Cast(matcher);
2349}
2350
2351// _ is a matcher that matches anything of any type.
2352//
2353// This definition is fine as:
2354//
2355//   1. The C++ standard permits using the name _ in a namespace that
2356//      is not the global namespace or ::std.
2357//   2. The AnythingMatcher class has no data member or constructor,
2358//      so it's OK to create global variables of this type.
2359//   3. c-style has approved of using _ in this case.
2360const internal::AnythingMatcher _ = {};
2361// Creates a matcher that matches any value of the given type T.
2362template <typename T>
2363inline Matcher<T> A() { return MakeMatcher(new internal::AnyMatcherImpl<T>()); }
2364
2365// Creates a matcher that matches any value of the given type T.
2366template <typename T>
2367inline Matcher<T> An() { return A<T>(); }
2368
2369// Creates a polymorphic matcher that matches anything equal to x.
2370// Note: if the parameter of Eq() were declared as const T&, Eq("foo")
2371// wouldn't compile.
2372template <typename T>
2373inline internal::EqMatcher<T> Eq(T x) { return internal::EqMatcher<T>(x); }
2374
2375// Constructs a Matcher<T> from a 'value' of type T.  The constructed
2376// matcher matches any value that's equal to 'value'.
2377template <typename T>
2378Matcher<T>::Matcher(T value) { *this = Eq(value); }
2379
2380// Creates a monomorphic matcher that matches anything with type Lhs
2381// and equal to rhs.  A user may need to use this instead of Eq(...)
2382// in order to resolve an overloading ambiguity.
2383//
2384// TypedEq<T>(x) is just a convenient short-hand for Matcher<T>(Eq(x))
2385// or Matcher<T>(x), but more readable than the latter.
2386//
2387// We could define similar monomorphic matchers for other comparison
2388// operations (e.g. TypedLt, TypedGe, and etc), but decided not to do
2389// it yet as those are used much less than Eq() in practice.  A user
2390// can always write Matcher<T>(Lt(5)) to be explicit about the type,
2391// for example.
2392template <typename Lhs, typename Rhs>
2393inline Matcher<Lhs> TypedEq(const Rhs& rhs) { return Eq(rhs); }
2394
2395// Creates a polymorphic matcher that matches anything >= x.
2396template <typename Rhs>
2397inline internal::GeMatcher<Rhs> Ge(Rhs x) {
2398  return internal::GeMatcher<Rhs>(x);
2399}
2400
2401// Creates a polymorphic matcher that matches anything > x.
2402template <typename Rhs>
2403inline internal::GtMatcher<Rhs> Gt(Rhs x) {
2404  return internal::GtMatcher<Rhs>(x);
2405}
2406
2407// Creates a polymorphic matcher that matches anything <= x.
2408template <typename Rhs>
2409inline internal::LeMatcher<Rhs> Le(Rhs x) {
2410  return internal::LeMatcher<Rhs>(x);
2411}
2412
2413// Creates a polymorphic matcher that matches anything < x.
2414template <typename Rhs>
2415inline internal::LtMatcher<Rhs> Lt(Rhs x) {
2416  return internal::LtMatcher<Rhs>(x);
2417}
2418
2419// Creates a polymorphic matcher that matches anything != x.
2420template <typename Rhs>
2421inline internal::NeMatcher<Rhs> Ne(Rhs x) {
2422  return internal::NeMatcher<Rhs>(x);
2423}
2424
2425// Creates a polymorphic matcher that matches any NULL pointer.
2426inline PolymorphicMatcher<internal::IsNullMatcher > IsNull() {
2427  return MakePolymorphicMatcher(internal::IsNullMatcher());
2428}
2429
2430// Creates a polymorphic matcher that matches any non-NULL pointer.
2431// This is convenient as Not(NULL) doesn't compile (the compiler
2432// thinks that that expression is comparing a pointer with an integer).
2433inline PolymorphicMatcher<internal::NotNullMatcher > NotNull() {
2434  return MakePolymorphicMatcher(internal::NotNullMatcher());
2435}
2436
2437// Creates a polymorphic matcher that matches any argument that
2438// references variable x.
2439template <typename T>
2440inline internal::RefMatcher<T&> Ref(T& x) {  // NOLINT
2441  return internal::RefMatcher<T&>(x);
2442}
2443
2444// Creates a matcher that matches any double argument approximately
2445// equal to rhs, where two NANs are considered unequal.
2446inline internal::FloatingEqMatcher<double> DoubleEq(double rhs) {
2447  return internal::FloatingEqMatcher<double>(rhs, false);
2448}
2449
2450// Creates a matcher that matches any double argument approximately
2451// equal to rhs, including NaN values when rhs is NaN.
2452inline internal::FloatingEqMatcher<double> NanSensitiveDoubleEq(double rhs) {
2453  return internal::FloatingEqMatcher<double>(rhs, true);
2454}
2455
2456// Creates a matcher that matches any float argument approximately
2457// equal to rhs, where two NANs are considered unequal.
2458inline internal::FloatingEqMatcher<float> FloatEq(float rhs) {
2459  return internal::FloatingEqMatcher<float>(rhs, false);
2460}
2461
2462// Creates a matcher that matches any double argument approximately
2463// equal to rhs, including NaN values when rhs is NaN.
2464inline internal::FloatingEqMatcher<float> NanSensitiveFloatEq(float rhs) {
2465  return internal::FloatingEqMatcher<float>(rhs, true);
2466}
2467
2468// Creates a matcher that matches a pointer (raw or smart) that points
2469// to a value that matches inner_matcher.
2470template <typename InnerMatcher>
2471inline internal::PointeeMatcher<InnerMatcher> Pointee(
2472    const InnerMatcher& inner_matcher) {
2473  return internal::PointeeMatcher<InnerMatcher>(inner_matcher);
2474}
2475
2476// Creates a matcher that matches an object whose given field matches
2477// 'matcher'.  For example,
2478//   Field(&Foo::number, Ge(5))
2479// matches a Foo object x iff x.number >= 5.
2480template <typename Class, typename FieldType, typename FieldMatcher>
2481inline PolymorphicMatcher<
2482  internal::FieldMatcher<Class, FieldType> > Field(
2483    FieldType Class::*field, const FieldMatcher& matcher) {
2484  return MakePolymorphicMatcher(
2485      internal::FieldMatcher<Class, FieldType>(
2486          field, MatcherCast<const FieldType&>(matcher)));
2487  // The call to MatcherCast() is required for supporting inner
2488  // matchers of compatible types.  For example, it allows
2489  //   Field(&Foo::bar, m)
2490  // to compile where bar is an int32 and m is a matcher for int64.
2491}
2492
2493// Creates a matcher that matches an object whose given property
2494// matches 'matcher'.  For example,
2495//   Property(&Foo::str, StartsWith("hi"))
2496// matches a Foo object x iff x.str() starts with "hi".
2497template <typename Class, typename PropertyType, typename PropertyMatcher>
2498inline PolymorphicMatcher<
2499  internal::PropertyMatcher<Class, PropertyType> > Property(
2500    PropertyType (Class::*property)() const, const PropertyMatcher& matcher) {
2501  return MakePolymorphicMatcher(
2502      internal::PropertyMatcher<Class, PropertyType>(
2503          property,
2504          MatcherCast<GMOCK_REFERENCE_TO_CONST_(PropertyType)>(matcher)));
2505  // The call to MatcherCast() is required for supporting inner
2506  // matchers of compatible types.  For example, it allows
2507  //   Property(&Foo::bar, m)
2508  // to compile where bar() returns an int32 and m is a matcher for int64.
2509}
2510
2511// Creates a matcher that matches an object iff the result of applying
2512// a callable to x matches 'matcher'.
2513// For example,
2514//   ResultOf(f, StartsWith("hi"))
2515// matches a Foo object x iff f(x) starts with "hi".
2516// callable parameter can be a function, function pointer, or a functor.
2517// Callable has to satisfy the following conditions:
2518//   * It is required to keep no state affecting the results of
2519//     the calls on it and make no assumptions about how many calls
2520//     will be made. Any state it keeps must be protected from the
2521//     concurrent access.
2522//   * If it is a function object, it has to define type result_type.
2523//     We recommend deriving your functor classes from std::unary_function.
2524template <typename Callable, typename ResultOfMatcher>
2525internal::ResultOfMatcher<Callable> ResultOf(
2526    Callable callable, const ResultOfMatcher& matcher) {
2527  return internal::ResultOfMatcher<Callable>(
2528          callable,
2529          MatcherCast<typename internal::CallableTraits<Callable>::ResultType>(
2530              matcher));
2531  // The call to MatcherCast() is required for supporting inner
2532  // matchers of compatible types.  For example, it allows
2533  //   ResultOf(Function, m)
2534  // to compile where Function() returns an int32 and m is a matcher for int64.
2535}
2536
2537// String matchers.
2538
2539// Matches a string equal to str.
2540inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::string> >
2541    StrEq(const internal::string& str) {
2542  return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::string>(
2543      str, true, true));
2544}
2545
2546// Matches a string not equal to str.
2547inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::string> >
2548    StrNe(const internal::string& str) {
2549  return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::string>(
2550      str, false, true));
2551}
2552
2553// Matches a string equal to str, ignoring case.
2554inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::string> >
2555    StrCaseEq(const internal::string& str) {
2556  return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::string>(
2557      str, true, false));
2558}
2559
2560// Matches a string not equal to str, ignoring case.
2561inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::string> >
2562    StrCaseNe(const internal::string& str) {
2563  return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::string>(
2564      str, false, false));
2565}
2566
2567// Creates a matcher that matches any string, std::string, or C string
2568// that contains the given substring.
2569inline PolymorphicMatcher<internal::HasSubstrMatcher<internal::string> >
2570    HasSubstr(const internal::string& substring) {
2571  return MakePolymorphicMatcher(internal::HasSubstrMatcher<internal::string>(
2572      substring));
2573}
2574
2575// Matches a string that starts with 'prefix' (case-sensitive).
2576inline PolymorphicMatcher<internal::StartsWithMatcher<internal::string> >
2577    StartsWith(const internal::string& prefix) {
2578  return MakePolymorphicMatcher(internal::StartsWithMatcher<internal::string>(
2579      prefix));
2580}
2581
2582// Matches a string that ends with 'suffix' (case-sensitive).
2583inline PolymorphicMatcher<internal::EndsWithMatcher<internal::string> >
2584    EndsWith(const internal::string& suffix) {
2585  return MakePolymorphicMatcher(internal::EndsWithMatcher<internal::string>(
2586      suffix));
2587}
2588
2589// Matches a string that fully matches regular expression 'regex'.
2590// The matcher takes ownership of 'regex'.
2591inline PolymorphicMatcher<internal::MatchesRegexMatcher> MatchesRegex(
2592    const internal::RE* regex) {
2593  return MakePolymorphicMatcher(internal::MatchesRegexMatcher(regex, true));
2594}
2595inline PolymorphicMatcher<internal::MatchesRegexMatcher> MatchesRegex(
2596    const internal::string& regex) {
2597  return MatchesRegex(new internal::RE(regex));
2598}
2599
2600// Matches a string that contains regular expression 'regex'.
2601// The matcher takes ownership of 'regex'.
2602inline PolymorphicMatcher<internal::MatchesRegexMatcher> ContainsRegex(
2603    const internal::RE* regex) {
2604  return MakePolymorphicMatcher(internal::MatchesRegexMatcher(regex, false));
2605}
2606inline PolymorphicMatcher<internal::MatchesRegexMatcher> ContainsRegex(
2607    const internal::string& regex) {
2608  return ContainsRegex(new internal::RE(regex));
2609}
2610
2611#if GTEST_HAS_GLOBAL_WSTRING || GTEST_HAS_STD_WSTRING
2612// Wide string matchers.
2613
2614// Matches a string equal to str.
2615inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::wstring> >
2616    StrEq(const internal::wstring& str) {
2617  return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::wstring>(
2618      str, true, true));
2619}
2620
2621// Matches a string not equal to str.
2622inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::wstring> >
2623    StrNe(const internal::wstring& str) {
2624  return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::wstring>(
2625      str, false, true));
2626}
2627
2628// Matches a string equal to str, ignoring case.
2629inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::wstring> >
2630    StrCaseEq(const internal::wstring& str) {
2631  return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::wstring>(
2632      str, true, false));
2633}
2634
2635// Matches a string not equal to str, ignoring case.
2636inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::wstring> >
2637    StrCaseNe(const internal::wstring& str) {
2638  return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::wstring>(
2639      str, false, false));
2640}
2641
2642// Creates a matcher that matches any wstring, std::wstring, or C wide string
2643// that contains the given substring.
2644inline PolymorphicMatcher<internal::HasSubstrMatcher<internal::wstring> >
2645    HasSubstr(const internal::wstring& substring) {
2646  return MakePolymorphicMatcher(internal::HasSubstrMatcher<internal::wstring>(
2647      substring));
2648}
2649
2650// Matches a string that starts with 'prefix' (case-sensitive).
2651inline PolymorphicMatcher<internal::StartsWithMatcher<internal::wstring> >
2652    StartsWith(const internal::wstring& prefix) {
2653  return MakePolymorphicMatcher(internal::StartsWithMatcher<internal::wstring>(
2654      prefix));
2655}
2656
2657// Matches a string that ends with 'suffix' (case-sensitive).
2658inline PolymorphicMatcher<internal::EndsWithMatcher<internal::wstring> >
2659    EndsWith(const internal::wstring& suffix) {
2660  return MakePolymorphicMatcher(internal::EndsWithMatcher<internal::wstring>(
2661      suffix));
2662}
2663
2664#endif  // GTEST_HAS_GLOBAL_WSTRING || GTEST_HAS_STD_WSTRING
2665
2666// Creates a polymorphic matcher that matches a 2-tuple where the
2667// first field == the second field.
2668inline internal::Eq2Matcher Eq() { return internal::Eq2Matcher(); }
2669
2670// Creates a polymorphic matcher that matches a 2-tuple where the
2671// first field >= the second field.
2672inline internal::Ge2Matcher Ge() { return internal::Ge2Matcher(); }
2673
2674// Creates a polymorphic matcher that matches a 2-tuple where the
2675// first field > the second field.
2676inline internal::Gt2Matcher Gt() { return internal::Gt2Matcher(); }
2677
2678// Creates a polymorphic matcher that matches a 2-tuple where the
2679// first field <= the second field.
2680inline internal::Le2Matcher Le() { return internal::Le2Matcher(); }
2681
2682// Creates a polymorphic matcher that matches a 2-tuple where the
2683// first field < the second field.
2684inline internal::Lt2Matcher Lt() { return internal::Lt2Matcher(); }
2685
2686// Creates a polymorphic matcher that matches a 2-tuple where the
2687// first field != the second field.
2688inline internal::Ne2Matcher Ne() { return internal::Ne2Matcher(); }
2689
2690// Creates a matcher that matches any value of type T that m doesn't
2691// match.
2692template <typename InnerMatcher>
2693inline internal::NotMatcher<InnerMatcher> Not(InnerMatcher m) {
2694  return internal::NotMatcher<InnerMatcher>(m);
2695}
2696
2697// Creates a matcher that matches any value that matches all of the
2698// given matchers.
2699//
2700// For now we only support up to 5 matchers.  Support for more
2701// matchers can be added as needed, or the user can use nested
2702// AllOf()s.
2703template <typename Matcher1, typename Matcher2>
2704inline internal::BothOfMatcher<Matcher1, Matcher2>
2705AllOf(Matcher1 m1, Matcher2 m2) {
2706  return internal::BothOfMatcher<Matcher1, Matcher2>(m1, m2);
2707}
2708
2709template <typename Matcher1, typename Matcher2, typename Matcher3>
2710inline internal::BothOfMatcher<Matcher1,
2711           internal::BothOfMatcher<Matcher2, Matcher3> >
2712AllOf(Matcher1 m1, Matcher2 m2, Matcher3 m3) {
2713  return AllOf(m1, AllOf(m2, m3));
2714}
2715
2716template <typename Matcher1, typename Matcher2, typename Matcher3,
2717          typename Matcher4>
2718inline internal::BothOfMatcher<Matcher1,
2719           internal::BothOfMatcher<Matcher2,
2720               internal::BothOfMatcher<Matcher3, Matcher4> > >
2721AllOf(Matcher1 m1, Matcher2 m2, Matcher3 m3, Matcher4 m4) {
2722  return AllOf(m1, AllOf(m2, m3, m4));
2723}
2724
2725template <typename Matcher1, typename Matcher2, typename Matcher3,
2726          typename Matcher4, typename Matcher5>
2727inline internal::BothOfMatcher<Matcher1,
2728           internal::BothOfMatcher<Matcher2,
2729               internal::BothOfMatcher<Matcher3,
2730                   internal::BothOfMatcher<Matcher4, Matcher5> > > >
2731AllOf(Matcher1 m1, Matcher2 m2, Matcher3 m3, Matcher4 m4, Matcher5 m5) {
2732  return AllOf(m1, AllOf(m2, m3, m4, m5));
2733}
2734
2735// Creates a matcher that matches any value that matches at least one
2736// of the given matchers.
2737//
2738// For now we only support up to 5 matchers.  Support for more
2739// matchers can be added as needed, or the user can use nested
2740// AnyOf()s.
2741template <typename Matcher1, typename Matcher2>
2742inline internal::EitherOfMatcher<Matcher1, Matcher2>
2743AnyOf(Matcher1 m1, Matcher2 m2) {
2744  return internal::EitherOfMatcher<Matcher1, Matcher2>(m1, m2);
2745}
2746
2747template <typename Matcher1, typename Matcher2, typename Matcher3>
2748inline internal::EitherOfMatcher<Matcher1,
2749           internal::EitherOfMatcher<Matcher2, Matcher3> >
2750AnyOf(Matcher1 m1, Matcher2 m2, Matcher3 m3) {
2751  return AnyOf(m1, AnyOf(m2, m3));
2752}
2753
2754template <typename Matcher1, typename Matcher2, typename Matcher3,
2755          typename Matcher4>
2756inline internal::EitherOfMatcher<Matcher1,
2757           internal::EitherOfMatcher<Matcher2,
2758               internal::EitherOfMatcher<Matcher3, Matcher4> > >
2759AnyOf(Matcher1 m1, Matcher2 m2, Matcher3 m3, Matcher4 m4) {
2760  return AnyOf(m1, AnyOf(m2, m3, m4));
2761}
2762
2763template <typename Matcher1, typename Matcher2, typename Matcher3,
2764          typename Matcher4, typename Matcher5>
2765inline internal::EitherOfMatcher<Matcher1,
2766           internal::EitherOfMatcher<Matcher2,
2767               internal::EitherOfMatcher<Matcher3,
2768                   internal::EitherOfMatcher<Matcher4, Matcher5> > > >
2769AnyOf(Matcher1 m1, Matcher2 m2, Matcher3 m3, Matcher4 m4, Matcher5 m5) {
2770  return AnyOf(m1, AnyOf(m2, m3, m4, m5));
2771}
2772
2773// Returns a matcher that matches anything that satisfies the given
2774// predicate.  The predicate can be any unary function or functor
2775// whose return type can be implicitly converted to bool.
2776template <typename Predicate>
2777inline PolymorphicMatcher<internal::TrulyMatcher<Predicate> >
2778Truly(Predicate pred) {
2779  return MakePolymorphicMatcher(internal::TrulyMatcher<Predicate>(pred));
2780}
2781
2782// Returns a matcher that matches an equal container.
2783// This matcher behaves like Eq(), but in the event of mismatch lists the
2784// values that are included in one container but not the other. (Duplicate
2785// values and order differences are not explained.)
2786template <typename Container>
2787inline PolymorphicMatcher<internal::ContainerEqMatcher<  // NOLINT
2788                            GMOCK_REMOVE_CONST_(Container)> >
2789    ContainerEq(const Container& rhs) {
2790  // This following line is for working around a bug in MSVC 8.0,
2791  // which causes Container to be a const type sometimes.
2792  typedef GMOCK_REMOVE_CONST_(Container) RawContainer;
2793  return MakePolymorphicMatcher(
2794      internal::ContainerEqMatcher<RawContainer>(rhs));
2795}
2796
2797// Matches an STL-style container or a native array that contains at
2798// least one element matching the given value or matcher.
2799//
2800// Examples:
2801//   ::std::set<int> page_ids;
2802//   page_ids.insert(3);
2803//   page_ids.insert(1);
2804//   EXPECT_THAT(page_ids, Contains(1));
2805//   EXPECT_THAT(page_ids, Contains(Gt(2)));
2806//   EXPECT_THAT(page_ids, Not(Contains(4)));
2807//
2808//   ::std::map<int, size_t> page_lengths;
2809//   page_lengths[1] = 100;
2810//   EXPECT_THAT(page_lengths,
2811//               Contains(::std::pair<const int, size_t>(1, 100)));
2812//
2813//   const char* user_ids[] = { "joe", "mike", "tom" };
2814//   EXPECT_THAT(user_ids, Contains(Eq(::std::string("tom"))));
2815template <typename M>
2816inline internal::ContainsMatcher<M> Contains(M matcher) {
2817  return internal::ContainsMatcher<M>(matcher);
2818}
2819
2820// Key(inner_matcher) matches an std::pair whose 'first' field matches
2821// inner_matcher.  For example, Contains(Key(Ge(5))) can be used to match an
2822// std::map that contains at least one element whose key is >= 5.
2823template <typename M>
2824inline internal::KeyMatcher<M> Key(M inner_matcher) {
2825  return internal::KeyMatcher<M>(inner_matcher);
2826}
2827
2828// Pair(first_matcher, second_matcher) matches a std::pair whose 'first' field
2829// matches first_matcher and whose 'second' field matches second_matcher.  For
2830// example, EXPECT_THAT(map_type, ElementsAre(Pair(Ge(5), "foo"))) can be used
2831// to match a std::map<int, string> that contains exactly one element whose key
2832// is >= 5 and whose value equals "foo".
2833template <typename FirstMatcher, typename SecondMatcher>
2834inline internal::PairMatcher<FirstMatcher, SecondMatcher>
2835Pair(FirstMatcher first_matcher, SecondMatcher second_matcher) {
2836  return internal::PairMatcher<FirstMatcher, SecondMatcher>(
2837      first_matcher, second_matcher);
2838}
2839
2840// Returns a predicate that is satisfied by anything that matches the
2841// given matcher.
2842template <typename M>
2843inline internal::MatcherAsPredicate<M> Matches(M matcher) {
2844  return internal::MatcherAsPredicate<M>(matcher);
2845}
2846
2847// Returns true iff the value matches the matcher.
2848template <typename T, typename M>
2849inline bool Value(const T& value, M matcher) {
2850  return testing::Matches(matcher)(value);
2851}
2852
2853// AllArgs(m) is a synonym of m.  This is useful in
2854//
2855//   EXPECT_CALL(foo, Bar(_, _)).With(AllArgs(Eq()));
2856//
2857// which is easier to read than
2858//
2859//   EXPECT_CALL(foo, Bar(_, _)).With(Eq());
2860template <typename InnerMatcher>
2861inline InnerMatcher AllArgs(const InnerMatcher& matcher) { return matcher; }
2862
2863// These macros allow using matchers to check values in Google Test
2864// tests.  ASSERT_THAT(value, matcher) and EXPECT_THAT(value, matcher)
2865// succeed iff the value matches the matcher.  If the assertion fails,
2866// the value and the description of the matcher will be printed.
2867#define ASSERT_THAT(value, matcher) ASSERT_PRED_FORMAT1(\
2868    ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value)
2869#define EXPECT_THAT(value, matcher) EXPECT_PRED_FORMAT1(\
2870    ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value)
2871
2872}  // namespace testing
2873
2874#endif  // GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
2875