1// Copyright (C) 2016 and later: Unicode, Inc. and others.
2// License & terms of use: http://www.unicode.org/copyright.html
3/*
4******************************************************************************
5*   Copyright (C) 1997-2016, International Business Machines
6*   Corporation and others.  All Rights Reserved.
7******************************************************************************
8*   Date        Name        Description
9*   03/22/00    aliu        Adapted from original C++ ICU Hashtable.
10*   07/06/01    aliu        Modified to support int32_t keys on
11*                           platforms with sizeof(void*) < 32.
12******************************************************************************
13*/
14
15#include "uhash.h"
16#include "unicode/ustring.h"
17#include "cstring.h"
18#include "cmemory.h"
19#include "uassert.h"
20#include "ustr_imp.h"
21
22/* This hashtable is implemented as a double hash.  All elements are
23 * stored in a single array with no secondary storage for collision
24 * resolution (no linked list, etc.).  When there is a hash collision
25 * (when two unequal keys have the same hashcode) we resolve this by
26 * using a secondary hash.  The secondary hash is an increment
27 * computed as a hash function (a different one) of the primary
28 * hashcode.  This increment is added to the initial hash value to
29 * obtain further slots assigned to the same hash code.  For this to
30 * work, the length of the array and the increment must be relatively
31 * prime.  The easiest way to achieve this is to have the length of
32 * the array be prime, and the increment be any value from
33 * 1..length-1.
34 *
35 * Hashcodes are 32-bit integers.  We make sure all hashcodes are
36 * non-negative by masking off the top bit.  This has two effects: (1)
37 * modulo arithmetic is simplified.  If we allowed negative hashcodes,
38 * then when we computed hashcode % length, we could get a negative
39 * result, which we would then have to adjust back into range.  It's
40 * simpler to just make hashcodes non-negative. (2) It makes it easy
41 * to check for empty vs. occupied slots in the table.  We just mark
42 * empty or deleted slots with a negative hashcode.
43 *
44 * The central function is _uhash_find().  This function looks for a
45 * slot matching the given key and hashcode.  If one is found, it
46 * returns a pointer to that slot.  If the table is full, and no match
47 * is found, it returns NULL -- in theory.  This would make the code
48 * more complicated, since all callers of _uhash_find() would then
49 * have to check for a NULL result.  To keep this from happening, we
50 * don't allow the table to fill.  When there is only one
51 * empty/deleted slot left, uhash_put() will refuse to increase the
52 * count, and fail.  This simplifies the code.  In practice, one will
53 * seldom encounter this using default UHashtables.  However, if a
54 * hashtable is set to a U_FIXED resize policy, or if memory is
55 * exhausted, then the table may fill.
56 *
57 * High and low water ratios control rehashing.  They establish levels
58 * of fullness (from 0 to 1) outside of which the data array is
59 * reallocated and repopulated.  Setting the low water ratio to zero
60 * means the table will never shrink.  Setting the high water ratio to
61 * one means the table will never grow.  The ratios should be
62 * coordinated with the ratio between successive elements of the
63 * PRIMES table, so that when the primeIndex is incremented or
64 * decremented during rehashing, it brings the ratio of count / length
65 * back into the desired range (between low and high water ratios).
66 */
67
68/********************************************************************
69 * PRIVATE Constants, Macros
70 ********************************************************************/
71
72/* This is a list of non-consecutive primes chosen such that
73 * PRIMES[i+1] ~ 2*PRIMES[i].  (Currently, the ratio ranges from 1.81
74 * to 2.18; the inverse ratio ranges from 0.459 to 0.552.)  If this
75 * ratio is changed, the low and high water ratios should also be
76 * adjusted to suit.
77 *
78 * These prime numbers were also chosen so that they are the largest
79 * prime number while being less than a power of two.
80 */
81static const int32_t PRIMES[] = {
82    13, 31, 61, 127, 251, 509, 1021, 2039, 4093, 8191, 16381, 32749,
83    65521, 131071, 262139, 524287, 1048573, 2097143, 4194301, 8388593,
84    16777213, 33554393, 67108859, 134217689, 268435399, 536870909,
85    1073741789, 2147483647 /*, 4294967291 */
86};
87
88#define PRIMES_LENGTH UPRV_LENGTHOF(PRIMES)
89#define DEFAULT_PRIME_INDEX 3
90
91/* These ratios are tuned to the PRIMES array such that a resize
92 * places the table back into the zone of non-resizing.  That is,
93 * after a call to _uhash_rehash(), a subsequent call to
94 * _uhash_rehash() should do nothing (should not churn).  This is only
95 * a potential problem with U_GROW_AND_SHRINK.
96 */
97static const float RESIZE_POLICY_RATIO_TABLE[6] = {
98    /* low, high water ratio */
99    0.0F, 0.5F, /* U_GROW: Grow on demand, do not shrink */
100    0.1F, 0.5F, /* U_GROW_AND_SHRINK: Grow and shrink on demand */
101    0.0F, 1.0F  /* U_FIXED: Never change size */
102};
103
104/*
105  Invariants for hashcode values:
106
107  * DELETED < 0
108  * EMPTY < 0
109  * Real hashes >= 0
110
111  Hashcodes may not start out this way, but internally they are
112  adjusted so that they are always positive.  We assume 32-bit
113  hashcodes; adjust these constants for other hashcode sizes.
114*/
115#define HASH_DELETED    ((int32_t) 0x80000000)
116#define HASH_EMPTY      ((int32_t) HASH_DELETED + 1)
117
118#define IS_EMPTY_OR_DELETED(x) ((x) < 0)
119
120/* This macro expects a UHashTok.pointer as its keypointer and
121   valuepointer parameters */
122#define HASH_DELETE_KEY_VALUE(hash, keypointer, valuepointer) \
123            if (hash->keyDeleter != NULL && keypointer != NULL) { \
124                (*hash->keyDeleter)(keypointer); \
125            } \
126            if (hash->valueDeleter != NULL && valuepointer != NULL) { \
127                (*hash->valueDeleter)(valuepointer); \
128            }
129
130/*
131 * Constants for hinting whether a key or value is an integer
132 * or a pointer.  If a hint bit is zero, then the associated
133 * token is assumed to be an integer.
134 */
135#define HINT_KEY_POINTER   (1)
136#define HINT_VALUE_POINTER (2)
137
138/********************************************************************
139 * PRIVATE Implementation
140 ********************************************************************/
141
142static UHashTok
143_uhash_setElement(UHashtable *hash, UHashElement* e,
144                  int32_t hashcode,
145                  UHashTok key, UHashTok value, int8_t hint) {
146
147    UHashTok oldValue = e->value;
148    if (hash->keyDeleter != NULL && e->key.pointer != NULL &&
149        e->key.pointer != key.pointer) { /* Avoid double deletion */
150        (*hash->keyDeleter)(e->key.pointer);
151    }
152    if (hash->valueDeleter != NULL) {
153        if (oldValue.pointer != NULL &&
154            oldValue.pointer != value.pointer) { /* Avoid double deletion */
155            (*hash->valueDeleter)(oldValue.pointer);
156        }
157        oldValue.pointer = NULL;
158    }
159    /* Compilers should copy the UHashTok union correctly, but even if
160     * they do, memory heap tools (e.g. BoundsChecker) can get
161     * confused when a pointer is cloaked in a union and then copied.
162     * TO ALLEVIATE THIS, we use hints (based on what API the user is
163     * calling) to copy pointers when we know the user thinks
164     * something is a pointer. */
165    if (hint & HINT_KEY_POINTER) {
166        e->key.pointer = key.pointer;
167    } else {
168        e->key = key;
169    }
170    if (hint & HINT_VALUE_POINTER) {
171        e->value.pointer = value.pointer;
172    } else {
173        e->value = value;
174    }
175    e->hashcode = hashcode;
176    return oldValue;
177}
178
179/**
180 * Assumes that the given element is not empty or deleted.
181 */
182static UHashTok
183_uhash_internalRemoveElement(UHashtable *hash, UHashElement* e) {
184    UHashTok empty;
185    U_ASSERT(!IS_EMPTY_OR_DELETED(e->hashcode));
186    --hash->count;
187    empty.pointer = NULL; empty.integer = 0;
188    return _uhash_setElement(hash, e, HASH_DELETED, empty, empty, 0);
189}
190
191static void
192_uhash_internalSetResizePolicy(UHashtable *hash, enum UHashResizePolicy policy) {
193    U_ASSERT(hash != NULL);
194    U_ASSERT(((int32_t)policy) >= 0);
195    U_ASSERT(((int32_t)policy) < 3);
196    hash->lowWaterRatio  = RESIZE_POLICY_RATIO_TABLE[policy * 2];
197    hash->highWaterRatio = RESIZE_POLICY_RATIO_TABLE[policy * 2 + 1];
198}
199
200/**
201 * Allocate internal data array of a size determined by the given
202 * prime index.  If the index is out of range it is pinned into range.
203 * If the allocation fails the status is set to
204 * U_MEMORY_ALLOCATION_ERROR and all array storage is freed.  In
205 * either case the previous array pointer is overwritten.
206 *
207 * Caller must ensure primeIndex is in range 0..PRIME_LENGTH-1.
208 */
209static void
210_uhash_allocate(UHashtable *hash,
211                int32_t primeIndex,
212                UErrorCode *status) {
213
214    UHashElement *p, *limit;
215    UHashTok emptytok;
216
217    if (U_FAILURE(*status)) return;
218
219    U_ASSERT(primeIndex >= 0 && primeIndex < PRIMES_LENGTH);
220
221    hash->primeIndex = primeIndex;
222    hash->length = PRIMES[primeIndex];
223
224    p = hash->elements = (UHashElement*)
225        uprv_malloc(sizeof(UHashElement) * hash->length);
226
227    if (hash->elements == NULL) {
228        *status = U_MEMORY_ALLOCATION_ERROR;
229        return;
230    }
231
232    emptytok.pointer = NULL; /* Only one of these two is needed */
233    emptytok.integer = 0;    /* but we don't know which one. */
234
235    limit = p + hash->length;
236    while (p < limit) {
237        p->key = emptytok;
238        p->value = emptytok;
239        p->hashcode = HASH_EMPTY;
240        ++p;
241    }
242
243    hash->count = 0;
244    hash->lowWaterMark = (int32_t)(hash->length * hash->lowWaterRatio);
245    hash->highWaterMark = (int32_t)(hash->length * hash->highWaterRatio);
246}
247
248static UHashtable*
249_uhash_init(UHashtable *result,
250              UHashFunction *keyHash,
251              UKeyComparator *keyComp,
252              UValueComparator *valueComp,
253              int32_t primeIndex,
254              UErrorCode *status)
255{
256    if (U_FAILURE(*status)) return NULL;
257    U_ASSERT(keyHash != NULL);
258    U_ASSERT(keyComp != NULL);
259
260    result->keyHasher       = keyHash;
261    result->keyComparator   = keyComp;
262    result->valueComparator = valueComp;
263    result->keyDeleter      = NULL;
264    result->valueDeleter    = NULL;
265    result->allocated       = FALSE;
266    _uhash_internalSetResizePolicy(result, U_GROW);
267
268    _uhash_allocate(result, primeIndex, status);
269
270    if (U_FAILURE(*status)) {
271        return NULL;
272    }
273
274    return result;
275}
276
277static UHashtable*
278_uhash_create(UHashFunction *keyHash,
279              UKeyComparator *keyComp,
280              UValueComparator *valueComp,
281              int32_t primeIndex,
282              UErrorCode *status) {
283    UHashtable *result;
284
285    if (U_FAILURE(*status)) return NULL;
286
287    result = (UHashtable*) uprv_malloc(sizeof(UHashtable));
288    if (result == NULL) {
289        *status = U_MEMORY_ALLOCATION_ERROR;
290        return NULL;
291    }
292
293    _uhash_init(result, keyHash, keyComp, valueComp, primeIndex, status);
294    result->allocated       = TRUE;
295
296    if (U_FAILURE(*status)) {
297        uprv_free(result);
298        return NULL;
299    }
300
301    return result;
302}
303
304/**
305 * Look for a key in the table, or if no such key exists, the first
306 * empty slot matching the given hashcode.  Keys are compared using
307 * the keyComparator function.
308 *
309 * First find the start position, which is the hashcode modulo
310 * the length.  Test it to see if it is:
311 *
312 * a. identical:  First check the hash values for a quick check,
313 *    then compare keys for equality using keyComparator.
314 * b. deleted
315 * c. empty
316 *
317 * Stop if it is identical or empty, otherwise continue by adding a
318 * "jump" value (moduloing by the length again to keep it within
319 * range) and retesting.  For efficiency, there need enough empty
320 * values so that the searchs stop within a reasonable amount of time.
321 * This can be changed by changing the high/low water marks.
322 *
323 * In theory, this function can return NULL, if it is full (no empty
324 * or deleted slots) and if no matching key is found.  In practice, we
325 * prevent this elsewhere (in uhash_put) by making sure the last slot
326 * in the table is never filled.
327 *
328 * The size of the table should be prime for this algorithm to work;
329 * otherwise we are not guaranteed that the jump value (the secondary
330 * hash) is relatively prime to the table length.
331 */
332static UHashElement*
333_uhash_find(const UHashtable *hash, UHashTok key,
334            int32_t hashcode) {
335
336    int32_t firstDeleted = -1;  /* assume invalid index */
337    int32_t theIndex, startIndex;
338    int32_t jump = 0; /* lazy evaluate */
339    int32_t tableHash;
340    UHashElement *elements = hash->elements;
341
342    hashcode &= 0x7FFFFFFF; /* must be positive */
343    startIndex = theIndex = (hashcode ^ 0x4000000) % hash->length;
344
345    do {
346        tableHash = elements[theIndex].hashcode;
347        if (tableHash == hashcode) {          /* quick check */
348            if ((*hash->keyComparator)(key, elements[theIndex].key)) {
349                return &(elements[theIndex]);
350            }
351        } else if (!IS_EMPTY_OR_DELETED(tableHash)) {
352            /* We have hit a slot which contains a key-value pair,
353             * but for which the hash code does not match.  Keep
354             * looking.
355             */
356        } else if (tableHash == HASH_EMPTY) { /* empty, end o' the line */
357            break;
358        } else if (firstDeleted < 0) { /* remember first deleted */
359            firstDeleted = theIndex;
360        }
361        if (jump == 0) { /* lazy compute jump */
362            /* The jump value must be relatively prime to the table
363             * length.  As long as the length is prime, then any value
364             * 1..length-1 will be relatively prime to it.
365             */
366            jump = (hashcode % (hash->length - 1)) + 1;
367        }
368        theIndex = (theIndex + jump) % hash->length;
369    } while (theIndex != startIndex);
370
371    if (firstDeleted >= 0) {
372        theIndex = firstDeleted; /* reset if had deleted slot */
373    } else if (tableHash != HASH_EMPTY) {
374        /* We get to this point if the hashtable is full (no empty or
375         * deleted slots), and we've failed to find a match.  THIS
376         * WILL NEVER HAPPEN as long as uhash_put() makes sure that
377         * count is always < length.
378         */
379        U_ASSERT(FALSE);
380        return NULL; /* Never happens if uhash_put() behaves */
381    }
382    return &(elements[theIndex]);
383}
384
385/**
386 * Attempt to grow or shrink the data arrays in order to make the
387 * count fit between the high and low water marks.  hash_put() and
388 * hash_remove() call this method when the count exceeds the high or
389 * low water marks.  This method may do nothing, if memory allocation
390 * fails, or if the count is already in range, or if the length is
391 * already at the low or high limit.  In any case, upon return the
392 * arrays will be valid.
393 */
394static void
395_uhash_rehash(UHashtable *hash, UErrorCode *status) {
396
397    UHashElement *old = hash->elements;
398    int32_t oldLength = hash->length;
399    int32_t newPrimeIndex = hash->primeIndex;
400    int32_t i;
401
402    if (hash->count > hash->highWaterMark) {
403        if (++newPrimeIndex >= PRIMES_LENGTH) {
404            return;
405        }
406    } else if (hash->count < hash->lowWaterMark) {
407        if (--newPrimeIndex < 0) {
408            return;
409        }
410    } else {
411        return;
412    }
413
414    _uhash_allocate(hash, newPrimeIndex, status);
415
416    if (U_FAILURE(*status)) {
417        hash->elements = old;
418        hash->length = oldLength;
419        return;
420    }
421
422    for (i = oldLength - 1; i >= 0; --i) {
423        if (!IS_EMPTY_OR_DELETED(old[i].hashcode)) {
424            UHashElement *e = _uhash_find(hash, old[i].key, old[i].hashcode);
425            U_ASSERT(e != NULL);
426            U_ASSERT(e->hashcode == HASH_EMPTY);
427            e->key = old[i].key;
428            e->value = old[i].value;
429            e->hashcode = old[i].hashcode;
430            ++hash->count;
431        }
432    }
433
434    uprv_free(old);
435}
436
437static UHashTok
438_uhash_remove(UHashtable *hash,
439              UHashTok key) {
440    /* First find the position of the key in the table.  If the object
441     * has not been removed already, remove it.  If the user wanted
442     * keys deleted, then delete it also.  We have to put a special
443     * hashcode in that position that means that something has been
444     * deleted, since when we do a find, we have to continue PAST any
445     * deleted values.
446     */
447    UHashTok result;
448    UHashElement* e = _uhash_find(hash, key, hash->keyHasher(key));
449    U_ASSERT(e != NULL);
450    result.pointer = NULL;
451    result.integer = 0;
452    if (!IS_EMPTY_OR_DELETED(e->hashcode)) {
453        result = _uhash_internalRemoveElement(hash, e);
454        if (hash->count < hash->lowWaterMark) {
455            UErrorCode status = U_ZERO_ERROR;
456            _uhash_rehash(hash, &status);
457        }
458    }
459    return result;
460}
461
462static UHashTok
463_uhash_put(UHashtable *hash,
464           UHashTok key,
465           UHashTok value,
466           int8_t hint,
467           UErrorCode *status) {
468
469    /* Put finds the position in the table for the new value.  If the
470     * key is already in the table, it is deleted, if there is a
471     * non-NULL keyDeleter.  Then the key, the hash and the value are
472     * all put at the position in their respective arrays.
473     */
474    int32_t hashcode;
475    UHashElement* e;
476    UHashTok emptytok;
477
478    if (U_FAILURE(*status)) {
479        goto err;
480    }
481    U_ASSERT(hash != NULL);
482    /* Cannot always check pointer here or iSeries sees NULL every time. */
483    if ((hint & HINT_VALUE_POINTER) && value.pointer == NULL) {
484        /* Disallow storage of NULL values, since NULL is returned by
485         * get() to indicate an absent key.  Storing NULL == removing.
486         */
487        return _uhash_remove(hash, key);
488    }
489    if (hash->count > hash->highWaterMark) {
490        _uhash_rehash(hash, status);
491        if (U_FAILURE(*status)) {
492            goto err;
493        }
494    }
495
496    hashcode = (*hash->keyHasher)(key);
497    e = _uhash_find(hash, key, hashcode);
498    U_ASSERT(e != NULL);
499
500    if (IS_EMPTY_OR_DELETED(e->hashcode)) {
501        /* Important: We must never actually fill the table up.  If we
502         * do so, then _uhash_find() will return NULL, and we'll have
503         * to check for NULL after every call to _uhash_find().  To
504         * avoid this we make sure there is always at least one empty
505         * or deleted slot in the table.  This only is a problem if we
506         * are out of memory and rehash isn't working.
507         */
508        ++hash->count;
509        if (hash->count == hash->length) {
510            /* Don't allow count to reach length */
511            --hash->count;
512            *status = U_MEMORY_ALLOCATION_ERROR;
513            goto err;
514        }
515    }
516
517    /* We must in all cases handle storage properly.  If there was an
518     * old key, then it must be deleted (if the deleter != NULL).
519     * Make hashcodes stored in table positive.
520     */
521    return _uhash_setElement(hash, e, hashcode & 0x7FFFFFFF, key, value, hint);
522
523 err:
524    /* If the deleters are non-NULL, this method adopts its key and/or
525     * value arguments, and we must be sure to delete the key and/or
526     * value in all cases, even upon failure.
527     */
528    HASH_DELETE_KEY_VALUE(hash, key.pointer, value.pointer);
529    emptytok.pointer = NULL; emptytok.integer = 0;
530    return emptytok;
531}
532
533
534/********************************************************************
535 * PUBLIC API
536 ********************************************************************/
537
538U_CAPI UHashtable* U_EXPORT2
539uhash_open(UHashFunction *keyHash,
540           UKeyComparator *keyComp,
541           UValueComparator *valueComp,
542           UErrorCode *status) {
543
544    return _uhash_create(keyHash, keyComp, valueComp, DEFAULT_PRIME_INDEX, status);
545}
546
547U_CAPI UHashtable* U_EXPORT2
548uhash_openSize(UHashFunction *keyHash,
549               UKeyComparator *keyComp,
550               UValueComparator *valueComp,
551               int32_t size,
552               UErrorCode *status) {
553
554    /* Find the smallest index i for which PRIMES[i] >= size. */
555    int32_t i = 0;
556    while (i<(PRIMES_LENGTH-1) && PRIMES[i]<size) {
557        ++i;
558    }
559
560    return _uhash_create(keyHash, keyComp, valueComp, i, status);
561}
562
563U_CAPI UHashtable* U_EXPORT2
564uhash_init(UHashtable *fillinResult,
565           UHashFunction *keyHash,
566           UKeyComparator *keyComp,
567           UValueComparator *valueComp,
568           UErrorCode *status) {
569
570    return _uhash_init(fillinResult, keyHash, keyComp, valueComp, DEFAULT_PRIME_INDEX, status);
571}
572
573U_CAPI void U_EXPORT2
574uhash_close(UHashtable *hash) {
575    if (hash == NULL) {
576        return;
577    }
578    if (hash->elements != NULL) {
579        if (hash->keyDeleter != NULL || hash->valueDeleter != NULL) {
580            int32_t pos=UHASH_FIRST;
581            UHashElement *e;
582            while ((e = (UHashElement*) uhash_nextElement(hash, &pos)) != NULL) {
583                HASH_DELETE_KEY_VALUE(hash, e->key.pointer, e->value.pointer);
584            }
585        }
586        uprv_free(hash->elements);
587        hash->elements = NULL;
588    }
589    if (hash->allocated) {
590        uprv_free(hash);
591    }
592}
593
594U_CAPI UHashFunction *U_EXPORT2
595uhash_setKeyHasher(UHashtable *hash, UHashFunction *fn) {
596    UHashFunction *result = hash->keyHasher;
597    hash->keyHasher = fn;
598    return result;
599}
600
601U_CAPI UKeyComparator *U_EXPORT2
602uhash_setKeyComparator(UHashtable *hash, UKeyComparator *fn) {
603    UKeyComparator *result = hash->keyComparator;
604    hash->keyComparator = fn;
605    return result;
606}
607U_CAPI UValueComparator *U_EXPORT2
608uhash_setValueComparator(UHashtable *hash, UValueComparator *fn){
609    UValueComparator *result = hash->valueComparator;
610    hash->valueComparator = fn;
611    return result;
612}
613
614U_CAPI UObjectDeleter *U_EXPORT2
615uhash_setKeyDeleter(UHashtable *hash, UObjectDeleter *fn) {
616    UObjectDeleter *result = hash->keyDeleter;
617    hash->keyDeleter = fn;
618    return result;
619}
620
621U_CAPI UObjectDeleter *U_EXPORT2
622uhash_setValueDeleter(UHashtable *hash, UObjectDeleter *fn) {
623    UObjectDeleter *result = hash->valueDeleter;
624    hash->valueDeleter = fn;
625    return result;
626}
627
628U_CAPI void U_EXPORT2
629uhash_setResizePolicy(UHashtable *hash, enum UHashResizePolicy policy) {
630    UErrorCode status = U_ZERO_ERROR;
631    _uhash_internalSetResizePolicy(hash, policy);
632    hash->lowWaterMark  = (int32_t)(hash->length * hash->lowWaterRatio);
633    hash->highWaterMark = (int32_t)(hash->length * hash->highWaterRatio);
634    _uhash_rehash(hash, &status);
635}
636
637U_CAPI int32_t U_EXPORT2
638uhash_count(const UHashtable *hash) {
639    return hash->count;
640}
641
642U_CAPI void* U_EXPORT2
643uhash_get(const UHashtable *hash,
644          const void* key) {
645    UHashTok keyholder;
646    keyholder.pointer = (void*) key;
647    return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.pointer;
648}
649
650U_CAPI void* U_EXPORT2
651uhash_iget(const UHashtable *hash,
652           int32_t key) {
653    UHashTok keyholder;
654    keyholder.integer = key;
655    return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.pointer;
656}
657
658U_CAPI int32_t U_EXPORT2
659uhash_geti(const UHashtable *hash,
660           const void* key) {
661    UHashTok keyholder;
662    keyholder.pointer = (void*) key;
663    return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.integer;
664}
665
666U_CAPI int32_t U_EXPORT2
667uhash_igeti(const UHashtable *hash,
668           int32_t key) {
669    UHashTok keyholder;
670    keyholder.integer = key;
671    return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.integer;
672}
673
674U_CAPI void* U_EXPORT2
675uhash_put(UHashtable *hash,
676          void* key,
677          void* value,
678          UErrorCode *status) {
679    UHashTok keyholder, valueholder;
680    keyholder.pointer = key;
681    valueholder.pointer = value;
682    return _uhash_put(hash, keyholder, valueholder,
683                      HINT_KEY_POINTER | HINT_VALUE_POINTER,
684                      status).pointer;
685}
686
687U_CAPI void* U_EXPORT2
688uhash_iput(UHashtable *hash,
689           int32_t key,
690           void* value,
691           UErrorCode *status) {
692    UHashTok keyholder, valueholder;
693    keyholder.integer = key;
694    valueholder.pointer = value;
695    return _uhash_put(hash, keyholder, valueholder,
696                      HINT_VALUE_POINTER,
697                      status).pointer;
698}
699
700U_CAPI int32_t U_EXPORT2
701uhash_puti(UHashtable *hash,
702           void* key,
703           int32_t value,
704           UErrorCode *status) {
705    UHashTok keyholder, valueholder;
706    keyholder.pointer = key;
707    valueholder.integer = value;
708    return _uhash_put(hash, keyholder, valueholder,
709                      HINT_KEY_POINTER,
710                      status).integer;
711}
712
713
714U_CAPI int32_t U_EXPORT2
715uhash_iputi(UHashtable *hash,
716           int32_t key,
717           int32_t value,
718           UErrorCode *status) {
719    UHashTok keyholder, valueholder;
720    keyholder.integer = key;
721    valueholder.integer = value;
722    return _uhash_put(hash, keyholder, valueholder,
723                      0, /* neither is a ptr */
724                      status).integer;
725}
726
727U_CAPI void* U_EXPORT2
728uhash_remove(UHashtable *hash,
729             const void* key) {
730    UHashTok keyholder;
731    keyholder.pointer = (void*) key;
732    return _uhash_remove(hash, keyholder).pointer;
733}
734
735U_CAPI void* U_EXPORT2
736uhash_iremove(UHashtable *hash,
737              int32_t key) {
738    UHashTok keyholder;
739    keyholder.integer = key;
740    return _uhash_remove(hash, keyholder).pointer;
741}
742
743U_CAPI int32_t U_EXPORT2
744uhash_removei(UHashtable *hash,
745              const void* key) {
746    UHashTok keyholder;
747    keyholder.pointer = (void*) key;
748    return _uhash_remove(hash, keyholder).integer;
749}
750
751U_CAPI int32_t U_EXPORT2
752uhash_iremovei(UHashtable *hash,
753               int32_t key) {
754    UHashTok keyholder;
755    keyholder.integer = key;
756    return _uhash_remove(hash, keyholder).integer;
757}
758
759U_CAPI void U_EXPORT2
760uhash_removeAll(UHashtable *hash) {
761    int32_t pos = UHASH_FIRST;
762    const UHashElement *e;
763    U_ASSERT(hash != NULL);
764    if (hash->count != 0) {
765        while ((e = uhash_nextElement(hash, &pos)) != NULL) {
766            uhash_removeElement(hash, e);
767        }
768    }
769    U_ASSERT(hash->count == 0);
770}
771
772U_CAPI const UHashElement* U_EXPORT2
773uhash_find(const UHashtable *hash, const void* key) {
774    UHashTok keyholder;
775    const UHashElement *e;
776    keyholder.pointer = (void*) key;
777    e = _uhash_find(hash, keyholder, hash->keyHasher(keyholder));
778    return IS_EMPTY_OR_DELETED(e->hashcode) ? NULL : e;
779}
780
781U_CAPI const UHashElement* U_EXPORT2
782uhash_nextElement(const UHashtable *hash, int32_t *pos) {
783    /* Walk through the array until we find an element that is not
784     * EMPTY and not DELETED.
785     */
786    int32_t i;
787    U_ASSERT(hash != NULL);
788    for (i = *pos + 1; i < hash->length; ++i) {
789        if (!IS_EMPTY_OR_DELETED(hash->elements[i].hashcode)) {
790            *pos = i;
791            return &(hash->elements[i]);
792        }
793    }
794
795    /* No more elements */
796    return NULL;
797}
798
799U_CAPI void* U_EXPORT2
800uhash_removeElement(UHashtable *hash, const UHashElement* e) {
801    U_ASSERT(hash != NULL);
802    U_ASSERT(e != NULL);
803    if (!IS_EMPTY_OR_DELETED(e->hashcode)) {
804        UHashElement *nce = (UHashElement *)e;
805        return _uhash_internalRemoveElement(hash, nce).pointer;
806    }
807    return NULL;
808}
809
810/********************************************************************
811 * UHashTok convenience
812 ********************************************************************/
813
814/**
815 * Return a UHashTok for an integer.
816 */
817/*U_CAPI UHashTok U_EXPORT2
818uhash_toki(int32_t i) {
819    UHashTok tok;
820    tok.integer = i;
821    return tok;
822}*/
823
824/**
825 * Return a UHashTok for a pointer.
826 */
827/*U_CAPI UHashTok U_EXPORT2
828uhash_tokp(void* p) {
829    UHashTok tok;
830    tok.pointer = p;
831    return tok;
832}*/
833
834/********************************************************************
835 * PUBLIC Key Hash Functions
836 ********************************************************************/
837
838U_CAPI int32_t U_EXPORT2
839uhash_hashUChars(const UHashTok key) {
840    const UChar *s = (const UChar *)key.pointer;
841    return s == NULL ? 0 : ustr_hashUCharsN(s, u_strlen(s));
842}
843
844U_CAPI int32_t U_EXPORT2
845uhash_hashChars(const UHashTok key) {
846    const char *s = (const char *)key.pointer;
847    return s == NULL ? 0 : ustr_hashCharsN(s, uprv_strlen(s));
848}
849
850U_CAPI int32_t U_EXPORT2
851uhash_hashIChars(const UHashTok key) {
852    const char *s = (const char *)key.pointer;
853    return s == NULL ? 0 : ustr_hashICharsN(s, uprv_strlen(s));
854}
855
856U_CAPI UBool U_EXPORT2
857uhash_equals(const UHashtable* hash1, const UHashtable* hash2){
858    int32_t count1, count2, pos, i;
859
860    if(hash1==hash2){
861        return TRUE;
862    }
863
864    /*
865     * Make sure that we are comparing 2 valid hashes of the same type
866     * with valid comparison functions.
867     * Without valid comparison functions, a binary comparison
868     * of the hash values will yield random results on machines
869     * with 64-bit pointers and 32-bit integer hashes.
870     * A valueComparator is normally optional.
871     */
872    if (hash1==NULL || hash2==NULL ||
873        hash1->keyComparator != hash2->keyComparator ||
874        hash1->valueComparator != hash2->valueComparator ||
875        hash1->valueComparator == NULL)
876    {
877        /*
878        Normally we would return an error here about incompatible hash tables,
879        but we return FALSE instead.
880        */
881        return FALSE;
882    }
883
884    count1 = uhash_count(hash1);
885    count2 = uhash_count(hash2);
886    if(count1!=count2){
887        return FALSE;
888    }
889
890    pos=UHASH_FIRST;
891    for(i=0; i<count1; i++){
892        const UHashElement* elem1 = uhash_nextElement(hash1, &pos);
893        const UHashTok key1 = elem1->key;
894        const UHashTok val1 = elem1->value;
895        /* here the keys are not compared, instead the key form hash1 is used to fetch
896         * value from hash2. If the hashes are equal then then both hashes should
897         * contain equal values for the same key!
898         */
899        const UHashElement* elem2 = _uhash_find(hash2, key1, hash2->keyHasher(key1));
900        const UHashTok val2 = elem2->value;
901        if(hash1->valueComparator(val1, val2)==FALSE){
902            return FALSE;
903        }
904    }
905    return TRUE;
906}
907
908/********************************************************************
909 * PUBLIC Comparator Functions
910 ********************************************************************/
911
912U_CAPI UBool U_EXPORT2
913uhash_compareUChars(const UHashTok key1, const UHashTok key2) {
914    const UChar *p1 = (const UChar*) key1.pointer;
915    const UChar *p2 = (const UChar*) key2.pointer;
916    if (p1 == p2) {
917        return TRUE;
918    }
919    if (p1 == NULL || p2 == NULL) {
920        return FALSE;
921    }
922    while (*p1 != 0 && *p1 == *p2) {
923        ++p1;
924        ++p2;
925    }
926    return (UBool)(*p1 == *p2);
927}
928
929U_CAPI UBool U_EXPORT2
930uhash_compareChars(const UHashTok key1, const UHashTok key2) {
931    const char *p1 = (const char*) key1.pointer;
932    const char *p2 = (const char*) key2.pointer;
933    if (p1 == p2) {
934        return TRUE;
935    }
936    if (p1 == NULL || p2 == NULL) {
937        return FALSE;
938    }
939    while (*p1 != 0 && *p1 == *p2) {
940        ++p1;
941        ++p2;
942    }
943    return (UBool)(*p1 == *p2);
944}
945
946U_CAPI UBool U_EXPORT2
947uhash_compareIChars(const UHashTok key1, const UHashTok key2) {
948    const char *p1 = (const char*) key1.pointer;
949    const char *p2 = (const char*) key2.pointer;
950    if (p1 == p2) {
951        return TRUE;
952    }
953    if (p1 == NULL || p2 == NULL) {
954        return FALSE;
955    }
956    while (*p1 != 0 && uprv_tolower(*p1) == uprv_tolower(*p2)) {
957        ++p1;
958        ++p2;
959    }
960    return (UBool)(*p1 == *p2);
961}
962
963/********************************************************************
964 * PUBLIC int32_t Support Functions
965 ********************************************************************/
966
967U_CAPI int32_t U_EXPORT2
968uhash_hashLong(const UHashTok key) {
969    return key.integer;
970}
971
972U_CAPI UBool U_EXPORT2
973uhash_compareLong(const UHashTok key1, const UHashTok key2) {
974    return (UBool)(key1.integer == key2.integer);
975}
976