1// Copyright (C) 2016 and later: Unicode, Inc. and others.
2// License & terms of use: http://www.unicode.org/copyright.html
3/*
4******************************************************************************
5*   Copyright (C) 1997-2015, International Business Machines
6*   Corporation and others.  All Rights Reserved.
7******************************************************************************
8*   file name:  nfrule.cpp
9*   encoding:   US-ASCII
10*   tab size:   8 (not used)
11*   indentation:4
12*
13* Modification history
14* Date        Name      Comments
15* 10/11/2001  Doug      Ported from ICU4J
16*/
17
18#include "nfrule.h"
19
20#if U_HAVE_RBNF
21
22#include "unicode/localpointer.h"
23#include "unicode/rbnf.h"
24#include "unicode/tblcoll.h"
25#include "unicode/plurfmt.h"
26#include "unicode/upluralrules.h"
27#include "unicode/coleitr.h"
28#include "unicode/uchar.h"
29#include "nfrs.h"
30#include "nfrlist.h"
31#include "nfsubs.h"
32#include "patternprops.h"
33
34U_NAMESPACE_BEGIN
35
36NFRule::NFRule(const RuleBasedNumberFormat* _rbnf, const UnicodeString &_ruleText, UErrorCode &status)
37  : baseValue((int32_t)0)
38  , radix(10)
39  , exponent(0)
40  , decimalPoint(0)
41  , ruleText(_ruleText)
42  , sub1(NULL)
43  , sub2(NULL)
44  , formatter(_rbnf)
45  , rulePatternFormat(NULL)
46{
47    if (!ruleText.isEmpty()) {
48        parseRuleDescriptor(ruleText, status);
49    }
50}
51
52NFRule::~NFRule()
53{
54    if (sub1 != sub2) {
55        delete sub2;
56        sub2 = NULL;
57    }
58    delete sub1;
59    sub1 = NULL;
60    delete rulePatternFormat;
61    rulePatternFormat = NULL;
62}
63
64static const UChar gLeftBracket = 0x005b;
65static const UChar gRightBracket = 0x005d;
66static const UChar gColon = 0x003a;
67static const UChar gZero = 0x0030;
68static const UChar gNine = 0x0039;
69static const UChar gSpace = 0x0020;
70static const UChar gSlash = 0x002f;
71static const UChar gGreaterThan = 0x003e;
72static const UChar gLessThan = 0x003c;
73static const UChar gComma = 0x002c;
74static const UChar gDot = 0x002e;
75static const UChar gTick = 0x0027;
76//static const UChar gMinus = 0x002d;
77static const UChar gSemicolon = 0x003b;
78static const UChar gX = 0x0078;
79
80static const UChar gMinusX[] =                  {0x2D, 0x78, 0};    /* "-x" */
81static const UChar gInf[] =                     {0x49, 0x6E, 0x66, 0}; /* "Inf" */
82static const UChar gNaN[] =                     {0x4E, 0x61, 0x4E, 0}; /* "NaN" */
83
84static const UChar gDollarOpenParenthesis[] =   {0x24, 0x28, 0}; /* "$(" */
85static const UChar gClosedParenthesisDollar[] = {0x29, 0x24, 0}; /* ")$" */
86
87static const UChar gLessLess[] =                {0x3C, 0x3C, 0};    /* "<<" */
88static const UChar gLessPercent[] =             {0x3C, 0x25, 0};    /* "<%" */
89static const UChar gLessHash[] =                {0x3C, 0x23, 0};    /* "<#" */
90static const UChar gLessZero[] =                {0x3C, 0x30, 0};    /* "<0" */
91static const UChar gGreaterGreater[] =          {0x3E, 0x3E, 0};    /* ">>" */
92static const UChar gGreaterPercent[] =          {0x3E, 0x25, 0};    /* ">%" */
93static const UChar gGreaterHash[] =             {0x3E, 0x23, 0};    /* ">#" */
94static const UChar gGreaterZero[] =             {0x3E, 0x30, 0};    /* ">0" */
95static const UChar gEqualPercent[] =            {0x3D, 0x25, 0};    /* "=%" */
96static const UChar gEqualHash[] =               {0x3D, 0x23, 0};    /* "=#" */
97static const UChar gEqualZero[] =               {0x3D, 0x30, 0};    /* "=0" */
98static const UChar gGreaterGreaterGreater[] =   {0x3E, 0x3E, 0x3E, 0}; /* ">>>" */
99
100static const UChar * const RULE_PREFIXES[] = {
101    gLessLess, gLessPercent, gLessHash, gLessZero,
102    gGreaterGreater, gGreaterPercent,gGreaterHash, gGreaterZero,
103    gEqualPercent, gEqualHash, gEqualZero, NULL
104};
105
106void
107NFRule::makeRules(UnicodeString& description,
108                  NFRuleSet *owner,
109                  const NFRule *predecessor,
110                  const RuleBasedNumberFormat *rbnf,
111                  NFRuleList& rules,
112                  UErrorCode& status)
113{
114    // we know we're making at least one rule, so go ahead and
115    // new it up and initialize its basevalue and divisor
116    // (this also strips the rule descriptor, if any, off the
117    // descripton string)
118    NFRule* rule1 = new NFRule(rbnf, description, status);
119    /* test for NULL */
120    if (rule1 == 0) {
121        status = U_MEMORY_ALLOCATION_ERROR;
122        return;
123    }
124    description = rule1->ruleText;
125
126    // check the description to see whether there's text enclosed
127    // in brackets
128    int32_t brack1 = description.indexOf(gLeftBracket);
129    int32_t brack2 = brack1 < 0 ? -1 : description.indexOf(gRightBracket);
130
131    // if the description doesn't contain a matched pair of brackets,
132    // or if it's of a type that doesn't recognize bracketed text,
133    // then leave the description alone, initialize the rule's
134    // rule text and substitutions, and return that rule
135    if (brack2 < 0 || brack1 > brack2
136        || rule1->getType() == kProperFractionRule
137        || rule1->getType() == kNegativeNumberRule
138        || rule1->getType() == kInfinityRule
139        || rule1->getType() == kNaNRule)
140    {
141        rule1->extractSubstitutions(owner, description, predecessor, status);
142    }
143    else {
144        // if the description does contain a matched pair of brackets,
145        // then it's really shorthand for two rules (with one exception)
146        NFRule* rule2 = NULL;
147        UnicodeString sbuf;
148
149        // we'll actually only split the rule into two rules if its
150        // base value is an even multiple of its divisor (or it's one
151        // of the special rules)
152        if ((rule1->baseValue > 0
153            && (rule1->baseValue % util64_pow(rule1->radix, rule1->exponent)) == 0)
154            || rule1->getType() == kImproperFractionRule
155            || rule1->getType() == kMasterRule) {
156
157            // if it passes that test, new up the second rule.  If the
158            // rule set both rules will belong to is a fraction rule
159            // set, they both have the same base value; otherwise,
160            // increment the original rule's base value ("rule1" actually
161            // goes SECOND in the rule set's rule list)
162            rule2 = new NFRule(rbnf, UnicodeString(), status);
163            /* test for NULL */
164            if (rule2 == 0) {
165                status = U_MEMORY_ALLOCATION_ERROR;
166                return;
167            }
168            if (rule1->baseValue >= 0) {
169                rule2->baseValue = rule1->baseValue;
170                if (!owner->isFractionRuleSet()) {
171                    ++rule1->baseValue;
172                }
173            }
174
175            // if the description began with "x.x" and contains bracketed
176            // text, it describes both the improper fraction rule and
177            // the proper fraction rule
178            else if (rule1->getType() == kImproperFractionRule) {
179                rule2->setType(kProperFractionRule);
180            }
181
182            // if the description began with "x.0" and contains bracketed
183            // text, it describes both the master rule and the
184            // improper fraction rule
185            else if (rule1->getType() == kMasterRule) {
186                rule2->baseValue = rule1->baseValue;
187                rule1->setType(kImproperFractionRule);
188            }
189
190            // both rules have the same radix and exponent (i.e., the
191            // same divisor)
192            rule2->radix = rule1->radix;
193            rule2->exponent = rule1->exponent;
194
195            // rule2's rule text omits the stuff in brackets: initalize
196            // its rule text and substitutions accordingly
197            sbuf.append(description, 0, brack1);
198            if (brack2 + 1 < description.length()) {
199                sbuf.append(description, brack2 + 1, description.length() - brack2 - 1);
200            }
201            rule2->extractSubstitutions(owner, sbuf, predecessor, status);
202        }
203
204        // rule1's text includes the text in the brackets but omits
205        // the brackets themselves: initialize _its_ rule text and
206        // substitutions accordingly
207        sbuf.setTo(description, 0, brack1);
208        sbuf.append(description, brack1 + 1, brack2 - brack1 - 1);
209        if (brack2 + 1 < description.length()) {
210            sbuf.append(description, brack2 + 1, description.length() - brack2 - 1);
211        }
212        rule1->extractSubstitutions(owner, sbuf, predecessor, status);
213
214        // if we only have one rule, return it; if we have two, return
215        // a two-element array containing them (notice that rule2 goes
216        // BEFORE rule1 in the list: in all cases, rule2 OMITS the
217        // material in the brackets and rule1 INCLUDES the material
218        // in the brackets)
219        if (rule2 != NULL) {
220            if (rule2->baseValue >= kNoBase) {
221                rules.add(rule2);
222            }
223            else {
224                owner->setNonNumericalRule(rule2);
225            }
226        }
227    }
228    if (rule1->baseValue >= kNoBase) {
229        rules.add(rule1);
230    }
231    else {
232        owner->setNonNumericalRule(rule1);
233    }
234}
235
236/**
237 * This function parses the rule's rule descriptor (i.e., the base
238 * value and/or other tokens that precede the rule's rule text
239 * in the description) and sets the rule's base value, radix, and
240 * exponent according to the descriptor.  (If the description doesn't
241 * include a rule descriptor, then this function sets everything to
242 * default values and the rule set sets the rule's real base value).
243 * @param description The rule's description
244 * @return If "description" included a rule descriptor, this is
245 * "description" with the descriptor and any trailing whitespace
246 * stripped off.  Otherwise; it's "descriptor" unchangd.
247 */
248void
249NFRule::parseRuleDescriptor(UnicodeString& description, UErrorCode& status)
250{
251    // the description consists of a rule descriptor and a rule body,
252    // separated by a colon.  The rule descriptor is optional.  If
253    // it's omitted, just set the base value to 0.
254    int32_t p = description.indexOf(gColon);
255    if (p != -1) {
256        // copy the descriptor out into its own string and strip it,
257        // along with any trailing whitespace, out of the original
258        // description
259        UnicodeString descriptor;
260        descriptor.setTo(description, 0, p);
261
262        ++p;
263        while (p < description.length() && PatternProps::isWhiteSpace(description.charAt(p))) {
264            ++p;
265        }
266        description.removeBetween(0, p);
267
268        // check first to see if the rule descriptor matches the token
269        // for one of the special rules.  If it does, set the base
270        // value to the correct identifier value
271        int descriptorLength = descriptor.length();
272        UChar firstChar = descriptor.charAt(0);
273        UChar lastChar = descriptor.charAt(descriptorLength - 1);
274        if (firstChar >= gZero && firstChar <= gNine && lastChar != gX) {
275            // if the rule descriptor begins with a digit, it's a descriptor
276            // for a normal rule
277            // since we don't have Long.parseLong, and this isn't much work anyway,
278            // just build up the value as we encounter the digits.
279            int64_t val = 0;
280            p = 0;
281            UChar c = gSpace;
282
283            // begin parsing the descriptor: copy digits
284            // into "tempValue", skip periods, commas, and spaces,
285            // stop on a slash or > sign (or at the end of the string),
286            // and throw an exception on any other character
287            int64_t ll_10 = 10;
288            while (p < descriptorLength) {
289                c = descriptor.charAt(p);
290                if (c >= gZero && c <= gNine) {
291                    val = val * ll_10 + (int32_t)(c - gZero);
292                }
293                else if (c == gSlash || c == gGreaterThan) {
294                    break;
295                }
296                else if (PatternProps::isWhiteSpace(c) || c == gComma || c == gDot) {
297                }
298                else {
299                    // throw new IllegalArgumentException("Illegal character in rule descriptor");
300                    status = U_PARSE_ERROR;
301                    return;
302                }
303                ++p;
304            }
305
306            // we have the base value, so set it
307            setBaseValue(val, status);
308
309            // if we stopped the previous loop on a slash, we're
310            // now parsing the rule's radix.  Again, accumulate digits
311            // in tempValue, skip punctuation, stop on a > mark, and
312            // throw an exception on anything else
313            if (c == gSlash) {
314                val = 0;
315                ++p;
316                int64_t ll_10 = 10;
317                while (p < descriptorLength) {
318                    c = descriptor.charAt(p);
319                    if (c >= gZero && c <= gNine) {
320                        val = val * ll_10 + (int32_t)(c - gZero);
321                    }
322                    else if (c == gGreaterThan) {
323                        break;
324                    }
325                    else if (PatternProps::isWhiteSpace(c) || c == gComma || c == gDot) {
326                    }
327                    else {
328                        // throw new IllegalArgumentException("Illegal character is rule descriptor");
329                        status = U_PARSE_ERROR;
330                        return;
331                    }
332                    ++p;
333                }
334
335                // tempValue now contain's the rule's radix.  Set it
336                // accordingly, and recalculate the rule's exponent
337                radix = (int32_t)val;
338                if (radix == 0) {
339                    // throw new IllegalArgumentException("Rule can't have radix of 0");
340                    status = U_PARSE_ERROR;
341                }
342
343                exponent = expectedExponent();
344            }
345
346            // if we stopped the previous loop on a > sign, then continue
347            // for as long as we still see > signs.  For each one,
348            // decrement the exponent (unless the exponent is already 0).
349            // If we see another character before reaching the end of
350            // the descriptor, that's also a syntax error.
351            if (c == gGreaterThan) {
352                while (p < descriptor.length()) {
353                    c = descriptor.charAt(p);
354                    if (c == gGreaterThan && exponent > 0) {
355                        --exponent;
356                    } else {
357                        // throw new IllegalArgumentException("Illegal character in rule descriptor");
358                        status = U_PARSE_ERROR;
359                        return;
360                    }
361                    ++p;
362                }
363            }
364        }
365        else if (0 == descriptor.compare(gMinusX, 2)) {
366            setType(kNegativeNumberRule);
367        }
368        else if (descriptorLength == 3) {
369            if (firstChar == gZero && lastChar == gX) {
370                setBaseValue(kProperFractionRule, status);
371                decimalPoint = descriptor.charAt(1);
372            }
373            else if (firstChar == gX && lastChar == gX) {
374                setBaseValue(kImproperFractionRule, status);
375                decimalPoint = descriptor.charAt(1);
376            }
377            else if (firstChar == gX && lastChar == gZero) {
378                setBaseValue(kMasterRule, status);
379                decimalPoint = descriptor.charAt(1);
380            }
381            else if (descriptor.compare(gNaN, 3) == 0) {
382                setBaseValue(kNaNRule, status);
383            }
384            else if (descriptor.compare(gInf, 3) == 0) {
385                setBaseValue(kInfinityRule, status);
386            }
387        }
388    }
389    // else use the default base value for now.
390
391    // finally, if the rule body begins with an apostrophe, strip it off
392    // (this is generally used to put whitespace at the beginning of
393    // a rule's rule text)
394    if (description.length() > 0 && description.charAt(0) == gTick) {
395        description.removeBetween(0, 1);
396    }
397
398    // return the description with all the stuff we've just waded through
399    // stripped off the front.  It now contains just the rule body.
400    // return description;
401}
402
403/**
404* Searches the rule's rule text for the substitution tokens,
405* creates the substitutions, and removes the substitution tokens
406* from the rule's rule text.
407* @param owner The rule set containing this rule
408* @param predecessor The rule preseding this one in "owners" rule list
409* @param ownersOwner The RuleBasedFormat that owns this rule
410*/
411void
412NFRule::extractSubstitutions(const NFRuleSet* ruleSet,
413                             const UnicodeString &ruleText,
414                             const NFRule* predecessor,
415                             UErrorCode& status)
416{
417    if (U_FAILURE(status)) {
418        return;
419    }
420    this->ruleText = ruleText;
421    sub1 = extractSubstitution(ruleSet, predecessor, status);
422    if (sub1 == NULL) {
423        // Small optimization. There is no need to create a redundant NullSubstitution.
424        sub2 = NULL;
425    }
426    else {
427        sub2 = extractSubstitution(ruleSet, predecessor, status);
428    }
429    int32_t pluralRuleStart = this->ruleText.indexOf(gDollarOpenParenthesis, -1, 0);
430    int32_t pluralRuleEnd = (pluralRuleStart >= 0 ? this->ruleText.indexOf(gClosedParenthesisDollar, -1, pluralRuleStart) : -1);
431    if (pluralRuleEnd >= 0) {
432        int32_t endType = this->ruleText.indexOf(gComma, pluralRuleStart);
433        if (endType < 0) {
434            status = U_PARSE_ERROR;
435            return;
436        }
437        UnicodeString type(this->ruleText.tempSubString(pluralRuleStart + 2, endType - pluralRuleStart - 2));
438        UPluralType pluralType;
439        if (type.startsWith(UNICODE_STRING_SIMPLE("cardinal"))) {
440            pluralType = UPLURAL_TYPE_CARDINAL;
441        }
442        else if (type.startsWith(UNICODE_STRING_SIMPLE("ordinal"))) {
443            pluralType = UPLURAL_TYPE_ORDINAL;
444        }
445        else {
446            status = U_ILLEGAL_ARGUMENT_ERROR;
447            return;
448        }
449        rulePatternFormat = formatter->createPluralFormat(pluralType,
450                this->ruleText.tempSubString(endType + 1, pluralRuleEnd - endType - 1), status);
451    }
452}
453
454/**
455* Searches the rule's rule text for the first substitution token,
456* creates a substitution based on it, and removes the token from
457* the rule's rule text.
458* @param owner The rule set containing this rule
459* @param predecessor The rule preceding this one in the rule set's
460* rule list
461* @param ownersOwner The RuleBasedNumberFormat that owns this rule
462* @return The newly-created substitution.  This is never null; if
463* the rule text doesn't contain any substitution tokens, this will
464* be a NullSubstitution.
465*/
466NFSubstitution *
467NFRule::extractSubstitution(const NFRuleSet* ruleSet,
468                            const NFRule* predecessor,
469                            UErrorCode& status)
470{
471    NFSubstitution* result = NULL;
472
473    // search the rule's rule text for the first two characters of
474    // a substitution token
475    int32_t subStart = indexOfAnyRulePrefix();
476    int32_t subEnd = subStart;
477
478    // if we didn't find one, create a null substitution positioned
479    // at the end of the rule text
480    if (subStart == -1) {
481        return NULL;
482    }
483
484    // special-case the ">>>" token, since searching for the > at the
485    // end will actually find the > in the middle
486    if (ruleText.indexOf(gGreaterGreaterGreater, 3, 0) == subStart) {
487        subEnd = subStart + 2;
488
489        // otherwise the substitution token ends with the same character
490        // it began with
491    } else {
492        UChar c = ruleText.charAt(subStart);
493        subEnd = ruleText.indexOf(c, subStart + 1);
494        // special case for '<%foo<<'
495        if (c == gLessThan && subEnd != -1 && subEnd < ruleText.length() - 1 && ruleText.charAt(subEnd+1) == c) {
496            // ordinals use "=#,##0==%abbrev=" as their rule.  Notice that the '==' in the middle
497            // occurs because of the juxtaposition of two different rules.  The check for '<' is a hack
498            // to get around this.  Having the duplicate at the front would cause problems with
499            // rules like "<<%" to format, say, percents...
500            ++subEnd;
501        }
502   }
503
504    // if we don't find the end of the token (i.e., if we're on a single,
505    // unmatched token character), create a null substitution positioned
506    // at the end of the rule
507    if (subEnd == -1) {
508        return NULL;
509    }
510
511    // if we get here, we have a real substitution token (or at least
512    // some text bounded by substitution token characters).  Use
513    // makeSubstitution() to create the right kind of substitution
514    UnicodeString subToken;
515    subToken.setTo(ruleText, subStart, subEnd + 1 - subStart);
516    result = NFSubstitution::makeSubstitution(subStart, this, predecessor, ruleSet,
517        this->formatter, subToken, status);
518
519    // remove the substitution from the rule text
520    ruleText.removeBetween(subStart, subEnd+1);
521
522    return result;
523}
524
525/**
526 * Sets the rule's base value, and causes the radix and exponent
527 * to be recalculated.  This is used during construction when we
528 * don't know the rule's base value until after it's been
529 * constructed.  It should be used at any other time.
530 * @param The new base value for the rule.
531 */
532void
533NFRule::setBaseValue(int64_t newBaseValue, UErrorCode& status)
534{
535    // set the base value
536    baseValue = newBaseValue;
537    radix = 10;
538
539    // if this isn't a special rule, recalculate the radix and exponent
540    // (the radix always defaults to 10; if it's supposed to be something
541    // else, it's cleaned up by the caller and the exponent is
542    // recalculated again-- the only function that does this is
543    // NFRule.parseRuleDescriptor() )
544    if (baseValue >= 1) {
545        exponent = expectedExponent();
546
547        // this function gets called on a fully-constructed rule whose
548        // description didn't specify a base value.  This means it
549        // has substitutions, and some substitutions hold on to copies
550        // of the rule's divisor.  Fix their copies of the divisor.
551        if (sub1 != NULL) {
552            sub1->setDivisor(radix, exponent, status);
553        }
554        if (sub2 != NULL) {
555            sub2->setDivisor(radix, exponent, status);
556        }
557
558        // if this is a special rule, its radix and exponent are basically
559        // ignored.  Set them to "safe" default values
560    } else {
561        exponent = 0;
562    }
563}
564
565/**
566* This calculates the rule's exponent based on its radix and base
567* value.  This will be the highest power the radix can be raised to
568* and still produce a result less than or equal to the base value.
569*/
570int16_t
571NFRule::expectedExponent() const
572{
573    // since the log of 0, or the log base 0 of something, causes an
574    // error, declare the exponent in these cases to be 0 (we also
575    // deal with the special-rule identifiers here)
576    if (radix == 0 || baseValue < 1) {
577        return 0;
578    }
579
580    // we get rounding error in some cases-- for example, log 1000 / log 10
581    // gives us 1.9999999996 instead of 2.  The extra logic here is to take
582    // that into account
583    int16_t tempResult = (int16_t)(uprv_log((double)baseValue) / uprv_log((double)radix));
584    int64_t temp = util64_pow(radix, tempResult + 1);
585    if (temp <= baseValue) {
586        tempResult += 1;
587    }
588    return tempResult;
589}
590
591/**
592 * Searches the rule's rule text for any of the specified strings.
593 * @return The index of the first match in the rule's rule text
594 * (i.e., the first substring in the rule's rule text that matches
595 * _any_ of the strings in "strings").  If none of the strings in
596 * "strings" is found in the rule's rule text, returns -1.
597 */
598int32_t
599NFRule::indexOfAnyRulePrefix() const
600{
601    int result = -1;
602    for (int i = 0; RULE_PREFIXES[i]; i++) {
603        int32_t pos = ruleText.indexOf(*RULE_PREFIXES[i]);
604        if (pos != -1 && (result == -1 || pos < result)) {
605            result = pos;
606        }
607    }
608    return result;
609}
610
611//-----------------------------------------------------------------------
612// boilerplate
613//-----------------------------------------------------------------------
614
615static UBool
616util_equalSubstitutions(const NFSubstitution* sub1, const NFSubstitution* sub2)
617{
618    if (sub1) {
619        if (sub2) {
620            return *sub1 == *sub2;
621        }
622    } else if (!sub2) {
623        return TRUE;
624    }
625    return FALSE;
626}
627
628/**
629* Tests two rules for equality.
630* @param that The rule to compare this one against
631* @return True is the two rules are functionally equivalent
632*/
633UBool
634NFRule::operator==(const NFRule& rhs) const
635{
636    return baseValue == rhs.baseValue
637        && radix == rhs.radix
638        && exponent == rhs.exponent
639        && ruleText == rhs.ruleText
640        && util_equalSubstitutions(sub1, rhs.sub1)
641        && util_equalSubstitutions(sub2, rhs.sub2);
642}
643
644/**
645* Returns a textual representation of the rule.  This won't
646* necessarily be the same as the description that this rule
647* was created with, but it will produce the same result.
648* @return A textual description of the rule
649*/
650static void util_append64(UnicodeString& result, int64_t n)
651{
652    UChar buffer[256];
653    int32_t len = util64_tou(n, buffer, sizeof(buffer));
654    UnicodeString temp(buffer, len);
655    result.append(temp);
656}
657
658void
659NFRule::_appendRuleText(UnicodeString& result) const
660{
661    switch (getType()) {
662    case kNegativeNumberRule: result.append(gMinusX, 2); break;
663    case kImproperFractionRule: result.append(gX).append(decimalPoint == 0 ? gDot : decimalPoint).append(gX); break;
664    case kProperFractionRule: result.append(gZero).append(decimalPoint == 0 ? gDot : decimalPoint).append(gX); break;
665    case kMasterRule: result.append(gX).append(decimalPoint == 0 ? gDot : decimalPoint).append(gZero); break;
666    case kInfinityRule: result.append(gInf, 3); break;
667    case kNaNRule: result.append(gNaN, 3); break;
668    default:
669        // for a normal rule, write out its base value, and if the radix is
670        // something other than 10, write out the radix (with the preceding
671        // slash, of course).  Then calculate the expected exponent and if
672        // if isn't the same as the actual exponent, write an appropriate
673        // number of > signs.  Finally, terminate the whole thing with
674        // a colon.
675        util_append64(result, baseValue);
676        if (radix != 10) {
677            result.append(gSlash);
678            util_append64(result, radix);
679        }
680        int numCarets = expectedExponent() - exponent;
681        for (int i = 0; i < numCarets; i++) {
682            result.append(gGreaterThan);
683        }
684        break;
685    }
686    result.append(gColon);
687    result.append(gSpace);
688
689    // if the rule text begins with a space, write an apostrophe
690    // (whitespace after the rule descriptor is ignored; the
691    // apostrophe is used to make the whitespace significant)
692    if (ruleText.charAt(0) == gSpace && (sub1 == NULL || sub1->getPos() != 0)) {
693        result.append(gTick);
694    }
695
696    // now, write the rule's rule text, inserting appropriate
697    // substitution tokens in the appropriate places
698    UnicodeString ruleTextCopy;
699    ruleTextCopy.setTo(ruleText);
700
701    UnicodeString temp;
702    if (sub2 != NULL) {
703        sub2->toString(temp);
704        ruleTextCopy.insert(sub2->getPos(), temp);
705    }
706    if (sub1 != NULL) {
707        sub1->toString(temp);
708        ruleTextCopy.insert(sub1->getPos(), temp);
709    }
710
711    result.append(ruleTextCopy);
712
713    // and finally, top the whole thing off with a semicolon and
714    // return the result
715    result.append(gSemicolon);
716}
717
718//-----------------------------------------------------------------------
719// formatting
720//-----------------------------------------------------------------------
721
722/**
723* Formats the number, and inserts the resulting text into
724* toInsertInto.
725* @param number The number being formatted
726* @param toInsertInto The string where the resultant text should
727* be inserted
728* @param pos The position in toInsertInto where the resultant text
729* should be inserted
730*/
731void
732NFRule::doFormat(int64_t number, UnicodeString& toInsertInto, int32_t pos, int32_t recursionCount, UErrorCode& status) const
733{
734    // first, insert the rule's rule text into toInsertInto at the
735    // specified position, then insert the results of the substitutions
736    // into the right places in toInsertInto (notice we do the
737    // substitutions in reverse order so that the offsets don't get
738    // messed up)
739    int32_t pluralRuleStart = ruleText.length();
740    int32_t lengthOffset = 0;
741    if (!rulePatternFormat) {
742        toInsertInto.insert(pos, ruleText);
743    }
744    else {
745        pluralRuleStart = ruleText.indexOf(gDollarOpenParenthesis, -1, 0);
746        int pluralRuleEnd = ruleText.indexOf(gClosedParenthesisDollar, -1, pluralRuleStart);
747        int initialLength = toInsertInto.length();
748        if (pluralRuleEnd < ruleText.length() - 1) {
749            toInsertInto.insert(pos, ruleText.tempSubString(pluralRuleEnd + 2));
750        }
751        toInsertInto.insert(pos,
752            rulePatternFormat->format((int32_t)(number/uprv_pow(radix, exponent)), status));
753        if (pluralRuleStart > 0) {
754            toInsertInto.insert(pos, ruleText.tempSubString(0, pluralRuleStart));
755        }
756        lengthOffset = ruleText.length() - (toInsertInto.length() - initialLength);
757    }
758
759    if (sub2 != NULL) {
760        sub2->doSubstitution(number, toInsertInto, pos - (sub2->getPos() > pluralRuleStart ? lengthOffset : 0), recursionCount, status);
761    }
762    if (sub1 != NULL) {
763        sub1->doSubstitution(number, toInsertInto, pos - (sub1->getPos() > pluralRuleStart ? lengthOffset : 0), recursionCount, status);
764    }
765}
766
767/**
768* Formats the number, and inserts the resulting text into
769* toInsertInto.
770* @param number The number being formatted
771* @param toInsertInto The string where the resultant text should
772* be inserted
773* @param pos The position in toInsertInto where the resultant text
774* should be inserted
775*/
776void
777NFRule::doFormat(double number, UnicodeString& toInsertInto, int32_t pos, int32_t recursionCount, UErrorCode& status) const
778{
779    // first, insert the rule's rule text into toInsertInto at the
780    // specified position, then insert the results of the substitutions
781    // into the right places in toInsertInto
782    // [again, we have two copies of this routine that do the same thing
783    // so that we don't sacrifice precision in a long by casting it
784    // to a double]
785    int32_t pluralRuleStart = ruleText.length();
786    int32_t lengthOffset = 0;
787    if (!rulePatternFormat) {
788        toInsertInto.insert(pos, ruleText);
789    }
790    else {
791        pluralRuleStart = ruleText.indexOf(gDollarOpenParenthesis, -1, 0);
792        int pluralRuleEnd = ruleText.indexOf(gClosedParenthesisDollar, -1, pluralRuleStart);
793        int initialLength = toInsertInto.length();
794        if (pluralRuleEnd < ruleText.length() - 1) {
795            toInsertInto.insert(pos, ruleText.tempSubString(pluralRuleEnd + 2));
796        }
797        double pluralVal = number;
798        if (0 <= pluralVal && pluralVal < 1) {
799            // We're in a fractional rule, and we have to match the NumeratorSubstitution behavior.
800            // 2.3 can become 0.2999999999999998 for the fraction due to rounding errors.
801            pluralVal = uprv_round(pluralVal * uprv_pow(radix, exponent));
802        }
803        else {
804            pluralVal = pluralVal / uprv_pow(radix, exponent);
805        }
806        toInsertInto.insert(pos, rulePatternFormat->format((int32_t)(pluralVal), status));
807        if (pluralRuleStart > 0) {
808            toInsertInto.insert(pos, ruleText.tempSubString(0, pluralRuleStart));
809        }
810        lengthOffset = ruleText.length() - (toInsertInto.length() - initialLength);
811    }
812
813    if (sub2 != NULL) {
814        sub2->doSubstitution(number, toInsertInto, pos - (sub2->getPos() > pluralRuleStart ? lengthOffset : 0), recursionCount, status);
815    }
816    if (sub1 != NULL) {
817        sub1->doSubstitution(number, toInsertInto, pos - (sub1->getPos() > pluralRuleStart ? lengthOffset : 0), recursionCount, status);
818    }
819}
820
821/**
822* Used by the owning rule set to determine whether to invoke the
823* rollback rule (i.e., whether this rule or the one that precedes
824* it in the rule set's list should be used to format the number)
825* @param The number being formatted
826* @return True if the rule set should use the rule that precedes
827* this one in its list; false if it should use this rule
828*/
829UBool
830NFRule::shouldRollBack(double number) const
831{
832    // we roll back if the rule contains a modulus substitution,
833    // the number being formatted is an even multiple of the rule's
834    // divisor, and the rule's base value is NOT an even multiple
835    // of its divisor
836    // In other words, if the original description had
837    //    100: << hundred[ >>];
838    // that expands into
839    //    100: << hundred;
840    //    101: << hundred >>;
841    // internally.  But when we're formatting 200, if we use the rule
842    // at 101, which would normally apply, we get "two hundred zero".
843    // To prevent this, we roll back and use the rule at 100 instead.
844    // This is the logic that makes this happen: the rule at 101 has
845    // a modulus substitution, its base value isn't an even multiple
846    // of 100, and the value we're trying to format _is_ an even
847    // multiple of 100.  This is called the "rollback rule."
848    if ((sub1 != NULL && sub1->isModulusSubstitution()) || (sub2 != NULL && sub2->isModulusSubstitution())) {
849        int64_t re = util64_pow(radix, exponent);
850        return uprv_fmod(number, (double)re) == 0 && (baseValue % re) != 0;
851    }
852    return FALSE;
853}
854
855//-----------------------------------------------------------------------
856// parsing
857//-----------------------------------------------------------------------
858
859/**
860* Attempts to parse the string with this rule.
861* @param text The string being parsed
862* @param parsePosition On entry, the value is ignored and assumed to
863* be 0. On exit, this has been updated with the position of the first
864* character not consumed by matching the text against this rule
865* (if this rule doesn't match the text at all, the parse position
866* if left unchanged (presumably at 0) and the function returns
867* new Long(0)).
868* @param isFractionRule True if this rule is contained within a
869* fraction rule set.  This is only used if the rule has no
870* substitutions.
871* @return If this rule matched the text, this is the rule's base value
872* combined appropriately with the results of parsing the substitutions.
873* If nothing matched, this is new Long(0) and the parse position is
874* left unchanged.  The result will be an instance of Long if the
875* result is an integer and Double otherwise.  The result is never null.
876*/
877#ifdef RBNF_DEBUG
878#include <stdio.h>
879
880static void dumpUS(FILE* f, const UnicodeString& us) {
881  int len = us.length();
882  char* buf = (char *)uprv_malloc((len+1)*sizeof(char)); //new char[len+1];
883  if (buf != NULL) {
884	  us.extract(0, len, buf);
885	  buf[len] = 0;
886	  fprintf(f, "%s", buf);
887	  uprv_free(buf); //delete[] buf;
888  }
889}
890#endif
891UBool
892NFRule::doParse(const UnicodeString& text,
893                ParsePosition& parsePosition,
894                UBool isFractionRule,
895                double upperBound,
896                Formattable& resVal) const
897{
898    // internally we operate on a copy of the string being parsed
899    // (because we're going to change it) and use our own ParsePosition
900    ParsePosition pp;
901    UnicodeString workText(text);
902
903    int32_t sub1Pos = sub1 != NULL ? sub1->getPos() : ruleText.length();
904    int32_t sub2Pos = sub2 != NULL ? sub2->getPos() : ruleText.length();
905
906    // check to see whether the text before the first substitution
907    // matches the text at the beginning of the string being
908    // parsed.  If it does, strip that off the front of workText;
909    // otherwise, dump out with a mismatch
910    UnicodeString prefix;
911    prefix.setTo(ruleText, 0, sub1Pos);
912
913#ifdef RBNF_DEBUG
914    fprintf(stderr, "doParse %p ", this);
915    {
916        UnicodeString rt;
917        _appendRuleText(rt);
918        dumpUS(stderr, rt);
919    }
920
921    fprintf(stderr, " text: '");
922    dumpUS(stderr, text);
923    fprintf(stderr, "' prefix: '");
924    dumpUS(stderr, prefix);
925#endif
926    stripPrefix(workText, prefix, pp);
927    int32_t prefixLength = text.length() - workText.length();
928
929#ifdef RBNF_DEBUG
930    fprintf(stderr, "' pl: %d ppi: %d s1p: %d\n", prefixLength, pp.getIndex(), sub1Pos);
931#endif
932
933    if (pp.getIndex() == 0 && sub1Pos != 0) {
934        // commented out because ParsePosition doesn't have error index in 1.1.x
935        // restored for ICU4C port
936        parsePosition.setErrorIndex(pp.getErrorIndex());
937        resVal.setLong(0);
938        return TRUE;
939    }
940    if (baseValue == kInfinityRule) {
941        // If you match this, don't try to perform any calculations on it.
942        parsePosition.setIndex(pp.getIndex());
943        resVal.setDouble(uprv_getInfinity());
944        return TRUE;
945    }
946    if (baseValue == kNaNRule) {
947        // If you match this, don't try to perform any calculations on it.
948        parsePosition.setIndex(pp.getIndex());
949        resVal.setDouble(uprv_getNaN());
950        return TRUE;
951    }
952
953    // this is the fun part.  The basic guts of the rule-matching
954    // logic is matchToDelimiter(), which is called twice.  The first
955    // time it searches the input string for the rule text BETWEEN
956    // the substitutions and tries to match the intervening text
957    // in the input string with the first substitution.  If that
958    // succeeds, it then calls it again, this time to look for the
959    // rule text after the second substitution and to match the
960    // intervening input text against the second substitution.
961    //
962    // For example, say we have a rule that looks like this:
963    //    first << middle >> last;
964    // and input text that looks like this:
965    //    first one middle two last
966    // First we use stripPrefix() to match "first " in both places and
967    // strip it off the front, leaving
968    //    one middle two last
969    // Then we use matchToDelimiter() to match " middle " and try to
970    // match "one" against a substitution.  If it's successful, we now
971    // have
972    //    two last
973    // We use matchToDelimiter() a second time to match " last" and
974    // try to match "two" against a substitution.  If "two" matches
975    // the substitution, we have a successful parse.
976    //
977    // Since it's possible in many cases to find multiple instances
978    // of each of these pieces of rule text in the input string,
979    // we need to try all the possible combinations of these
980    // locations.  This prevents us from prematurely declaring a mismatch,
981    // and makes sure we match as much input text as we can.
982    int highWaterMark = 0;
983    double result = 0;
984    int start = 0;
985    double tempBaseValue = (double)(baseValue <= 0 ? 0 : baseValue);
986
987    UnicodeString temp;
988    do {
989        // our partial parse result starts out as this rule's base
990        // value.  If it finds a successful match, matchToDelimiter()
991        // will compose this in some way with what it gets back from
992        // the substitution, giving us a new partial parse result
993        pp.setIndex(0);
994
995        temp.setTo(ruleText, sub1Pos, sub2Pos - sub1Pos);
996        double partialResult = matchToDelimiter(workText, start, tempBaseValue,
997            temp, pp, sub1,
998            upperBound);
999
1000        // if we got a successful match (or were trying to match a
1001        // null substitution), pp is now pointing at the first unmatched
1002        // character.  Take note of that, and try matchToDelimiter()
1003        // on the input text again
1004        if (pp.getIndex() != 0 || sub1 == NULL) {
1005            start = pp.getIndex();
1006
1007            UnicodeString workText2;
1008            workText2.setTo(workText, pp.getIndex(), workText.length() - pp.getIndex());
1009            ParsePosition pp2;
1010
1011            // the second matchToDelimiter() will compose our previous
1012            // partial result with whatever it gets back from its
1013            // substitution if there's a successful match, giving us
1014            // a real result
1015            temp.setTo(ruleText, sub2Pos, ruleText.length() - sub2Pos);
1016            partialResult = matchToDelimiter(workText2, 0, partialResult,
1017                temp, pp2, sub2,
1018                upperBound);
1019
1020            // if we got a successful match on this second
1021            // matchToDelimiter() call, update the high-water mark
1022            // and result (if necessary)
1023            if (pp2.getIndex() != 0 || sub2 == NULL) {
1024                if (prefixLength + pp.getIndex() + pp2.getIndex() > highWaterMark) {
1025                    highWaterMark = prefixLength + pp.getIndex() + pp2.getIndex();
1026                    result = partialResult;
1027                }
1028            }
1029            else {
1030                // commented out because ParsePosition doesn't have error index in 1.1.x
1031                // restored for ICU4C port
1032                int32_t temp = pp2.getErrorIndex() + sub1Pos + pp.getIndex();
1033                if (temp> parsePosition.getErrorIndex()) {
1034                    parsePosition.setErrorIndex(temp);
1035                }
1036            }
1037        }
1038        else {
1039            // commented out because ParsePosition doesn't have error index in 1.1.x
1040            // restored for ICU4C port
1041            int32_t temp = sub1Pos + pp.getErrorIndex();
1042            if (temp > parsePosition.getErrorIndex()) {
1043                parsePosition.setErrorIndex(temp);
1044            }
1045        }
1046        // keep trying to match things until the outer matchToDelimiter()
1047        // call fails to make a match (each time, it picks up where it
1048        // left off the previous time)
1049    } while (sub1Pos != sub2Pos
1050        && pp.getIndex() > 0
1051        && pp.getIndex() < workText.length()
1052        && pp.getIndex() != start);
1053
1054    // update the caller's ParsePosition with our high-water mark
1055    // (i.e., it now points at the first character this function
1056    // didn't match-- the ParsePosition is therefore unchanged if
1057    // we didn't match anything)
1058    parsePosition.setIndex(highWaterMark);
1059    // commented out because ParsePosition doesn't have error index in 1.1.x
1060    // restored for ICU4C port
1061    if (highWaterMark > 0) {
1062        parsePosition.setErrorIndex(0);
1063    }
1064
1065    // this is a hack for one unusual condition: Normally, whether this
1066    // rule belong to a fraction rule set or not is handled by its
1067    // substitutions.  But if that rule HAS NO substitutions, then
1068    // we have to account for it here.  By definition, if the matching
1069    // rule in a fraction rule set has no substitutions, its numerator
1070    // is 1, and so the result is the reciprocal of its base value.
1071    if (isFractionRule && highWaterMark > 0 && sub1 == NULL) {
1072        result = 1 / result;
1073    }
1074
1075    resVal.setDouble(result);
1076    return TRUE; // ??? do we need to worry if it is a long or a double?
1077}
1078
1079/**
1080* This function is used by parse() to match the text being parsed
1081* against a possible prefix string.  This function
1082* matches characters from the beginning of the string being parsed
1083* to characters from the prospective prefix.  If they match, pp is
1084* updated to the first character not matched, and the result is
1085* the unparsed part of the string.  If they don't match, the whole
1086* string is returned, and pp is left unchanged.
1087* @param text The string being parsed
1088* @param prefix The text to match against
1089* @param pp On entry, ignored and assumed to be 0.  On exit, points
1090* to the first unmatched character (assuming the whole prefix matched),
1091* or is unchanged (if the whole prefix didn't match).
1092* @return If things match, this is the unparsed part of "text";
1093* if they didn't match, this is "text".
1094*/
1095void
1096NFRule::stripPrefix(UnicodeString& text, const UnicodeString& prefix, ParsePosition& pp) const
1097{
1098    // if the prefix text is empty, dump out without doing anything
1099    if (prefix.length() != 0) {
1100    	UErrorCode status = U_ZERO_ERROR;
1101        // use prefixLength() to match the beginning of
1102        // "text" against "prefix".  This function returns the
1103        // number of characters from "text" that matched (or 0 if
1104        // we didn't match the whole prefix)
1105        int32_t pfl = prefixLength(text, prefix, status);
1106        if (U_FAILURE(status)) { // Memory allocation error.
1107        	return;
1108        }
1109        if (pfl != 0) {
1110            // if we got a successful match, update the parse position
1111            // and strip the prefix off of "text"
1112            pp.setIndex(pp.getIndex() + pfl);
1113            text.remove(0, pfl);
1114        }
1115    }
1116}
1117
1118/**
1119* Used by parse() to match a substitution and any following text.
1120* "text" is searched for instances of "delimiter".  For each instance
1121* of delimiter, the intervening text is tested to see whether it
1122* matches the substitution.  The longest match wins.
1123* @param text The string being parsed
1124* @param startPos The position in "text" where we should start looking
1125* for "delimiter".
1126* @param baseValue A partial parse result (often the rule's base value),
1127* which is combined with the result from matching the substitution
1128* @param delimiter The string to search "text" for.
1129* @param pp Ignored and presumed to be 0 on entry.  If there's a match,
1130* on exit this will point to the first unmatched character.
1131* @param sub If we find "delimiter" in "text", this substitution is used
1132* to match the text between the beginning of the string and the
1133* position of "delimiter."  (If "delimiter" is the empty string, then
1134* this function just matches against this substitution and updates
1135* everything accordingly.)
1136* @param upperBound When matching the substitution, it will only
1137* consider rules with base values lower than this value.
1138* @return If there's a match, this is the result of composing
1139* baseValue with the result of matching the substitution.  Otherwise,
1140* this is new Long(0).  It's never null.  If the result is an integer,
1141* this will be an instance of Long; otherwise, it's an instance of
1142* Double.
1143*
1144* !!! note {dlf} in point of fact, in the java code the caller always converts
1145* the result to a double, so we might as well return one.
1146*/
1147double
1148NFRule::matchToDelimiter(const UnicodeString& text,
1149                         int32_t startPos,
1150                         double _baseValue,
1151                         const UnicodeString& delimiter,
1152                         ParsePosition& pp,
1153                         const NFSubstitution* sub,
1154                         double upperBound) const
1155{
1156	UErrorCode status = U_ZERO_ERROR;
1157    // if "delimiter" contains real (i.e., non-ignorable) text, search
1158    // it for "delimiter" beginning at "start".  If that succeeds, then
1159    // use "sub"'s doParse() method to match the text before the
1160    // instance of "delimiter" we just found.
1161    if (!allIgnorable(delimiter, status)) {
1162    	if (U_FAILURE(status)) { //Memory allocation error.
1163    		return 0;
1164    	}
1165        ParsePosition tempPP;
1166        Formattable result;
1167
1168        // use findText() to search for "delimiter".  It returns a two-
1169        // element array: element 0 is the position of the match, and
1170        // element 1 is the number of characters that matched
1171        // "delimiter".
1172        int32_t dLen;
1173        int32_t dPos = findText(text, delimiter, startPos, &dLen);
1174
1175        // if findText() succeeded, isolate the text preceding the
1176        // match, and use "sub" to match that text
1177        while (dPos >= 0) {
1178            UnicodeString subText;
1179            subText.setTo(text, 0, dPos);
1180            if (subText.length() > 0) {
1181                UBool success = sub->doParse(subText, tempPP, _baseValue, upperBound,
1182#if UCONFIG_NO_COLLATION
1183                    FALSE,
1184#else
1185                    formatter->isLenient(),
1186#endif
1187                    result);
1188
1189                // if the substitution could match all the text up to
1190                // where we found "delimiter", then this function has
1191                // a successful match.  Bump the caller's parse position
1192                // to point to the first character after the text
1193                // that matches "delimiter", and return the result
1194                // we got from parsing the substitution.
1195                if (success && tempPP.getIndex() == dPos) {
1196                    pp.setIndex(dPos + dLen);
1197                    return result.getDouble();
1198                }
1199                else {
1200                    // commented out because ParsePosition doesn't have error index in 1.1.x
1201                    // restored for ICU4C port
1202                    if (tempPP.getErrorIndex() > 0) {
1203                        pp.setErrorIndex(tempPP.getErrorIndex());
1204                    } else {
1205                        pp.setErrorIndex(tempPP.getIndex());
1206                    }
1207                }
1208            }
1209
1210            // if we didn't match the substitution, search for another
1211            // copy of "delimiter" in "text" and repeat the loop if
1212            // we find it
1213            tempPP.setIndex(0);
1214            dPos = findText(text, delimiter, dPos + dLen, &dLen);
1215        }
1216        // if we make it here, this was an unsuccessful match, and we
1217        // leave pp unchanged and return 0
1218        pp.setIndex(0);
1219        return 0;
1220
1221        // if "delimiter" is empty, or consists only of ignorable characters
1222        // (i.e., is semantically empty), thwe we obviously can't search
1223        // for "delimiter".  Instead, just use "sub" to parse as much of
1224        // "text" as possible.
1225    }
1226    else if (sub == NULL) {
1227        return _baseValue;
1228    }
1229    else {
1230        ParsePosition tempPP;
1231        Formattable result;
1232
1233        // try to match the whole string against the substitution
1234        UBool success = sub->doParse(text, tempPP, _baseValue, upperBound,
1235#if UCONFIG_NO_COLLATION
1236            FALSE,
1237#else
1238            formatter->isLenient(),
1239#endif
1240            result);
1241        if (success && (tempPP.getIndex() != 0)) {
1242            // if there's a successful match (or it's a null
1243            // substitution), update pp to point to the first
1244            // character we didn't match, and pass the result from
1245            // sub.doParse() on through to the caller
1246            pp.setIndex(tempPP.getIndex());
1247            return result.getDouble();
1248        }
1249        else {
1250            // commented out because ParsePosition doesn't have error index in 1.1.x
1251            // restored for ICU4C port
1252            pp.setErrorIndex(tempPP.getErrorIndex());
1253        }
1254
1255        // and if we get to here, then nothing matched, so we return
1256        // 0 and leave pp alone
1257        return 0;
1258    }
1259}
1260
1261/**
1262* Used by stripPrefix() to match characters.  If lenient parse mode
1263* is off, this just calls startsWith().  If lenient parse mode is on,
1264* this function uses CollationElementIterators to match characters in
1265* the strings (only primary-order differences are significant in
1266* determining whether there's a match).
1267* @param str The string being tested
1268* @param prefix The text we're hoping to see at the beginning
1269* of "str"
1270* @return If "prefix" is found at the beginning of "str", this
1271* is the number of characters in "str" that were matched (this
1272* isn't necessarily the same as the length of "prefix" when matching
1273* text with a collator).  If there's no match, this is 0.
1274*/
1275int32_t
1276NFRule::prefixLength(const UnicodeString& str, const UnicodeString& prefix, UErrorCode& status) const
1277{
1278    // if we're looking for an empty prefix, it obviously matches
1279    // zero characters.  Just go ahead and return 0.
1280    if (prefix.length() == 0) {
1281        return 0;
1282    }
1283
1284#if !UCONFIG_NO_COLLATION
1285    // go through all this grief if we're in lenient-parse mode
1286    if (formatter->isLenient()) {
1287        // get the formatter's collator and use it to create two
1288        // collation element iterators, one over the target string
1289        // and another over the prefix (right now, we'll throw an
1290        // exception if the collator we get back from the formatter
1291        // isn't a RuleBasedCollator, because RuleBasedCollator defines
1292        // the CollationElementIterator protocol.  Hopefully, this
1293        // will change someday.)
1294        const RuleBasedCollator* collator = formatter->getCollator();
1295        if (collator == NULL) {
1296            status = U_MEMORY_ALLOCATION_ERROR;
1297            return 0;
1298        }
1299        LocalPointer<CollationElementIterator> strIter(collator->createCollationElementIterator(str));
1300        LocalPointer<CollationElementIterator> prefixIter(collator->createCollationElementIterator(prefix));
1301        // Check for memory allocation error.
1302        if (strIter.isNull() || prefixIter.isNull()) {
1303            status = U_MEMORY_ALLOCATION_ERROR;
1304            return 0;
1305        }
1306
1307        UErrorCode err = U_ZERO_ERROR;
1308
1309        // The original code was problematic.  Consider this match:
1310        // prefix = "fifty-"
1311        // string = " fifty-7"
1312        // The intent is to match string up to the '7', by matching 'fifty-' at position 1
1313        // in the string.  Unfortunately, we were getting a match, and then computing where
1314        // the match terminated by rematching the string.  The rematch code was using as an
1315        // initial guess the substring of string between 0 and prefix.length.  Because of
1316        // the leading space and trailing hyphen (both ignorable) this was succeeding, leaving
1317        // the position before the hyphen in the string.  Recursing down, we then parsed the
1318        // remaining string '-7' as numeric.  The resulting number turned out as 43 (50 - 7).
1319        // This was not pretty, especially since the string "fifty-7" parsed just fine.
1320        //
1321        // We have newer APIs now, so we can use calls on the iterator to determine what we
1322        // matched up to.  If we terminate because we hit the last element in the string,
1323        // our match terminates at this length.  If we terminate because we hit the last element
1324        // in the target, our match terminates at one before the element iterator position.
1325
1326        // match collation elements between the strings
1327        int32_t oStr = strIter->next(err);
1328        int32_t oPrefix = prefixIter->next(err);
1329
1330        while (oPrefix != CollationElementIterator::NULLORDER) {
1331            // skip over ignorable characters in the target string
1332            while (CollationElementIterator::primaryOrder(oStr) == 0
1333                && oStr != CollationElementIterator::NULLORDER) {
1334                oStr = strIter->next(err);
1335            }
1336
1337            // skip over ignorable characters in the prefix
1338            while (CollationElementIterator::primaryOrder(oPrefix) == 0
1339                && oPrefix != CollationElementIterator::NULLORDER) {
1340                oPrefix = prefixIter->next(err);
1341            }
1342
1343            // dlf: move this above following test, if we consume the
1344            // entire target, aren't we ok even if the source was also
1345            // entirely consumed?
1346
1347            // if skipping over ignorables brought to the end of
1348            // the prefix, we DID match: drop out of the loop
1349            if (oPrefix == CollationElementIterator::NULLORDER) {
1350                break;
1351            }
1352
1353            // if skipping over ignorables brought us to the end
1354            // of the target string, we didn't match and return 0
1355            if (oStr == CollationElementIterator::NULLORDER) {
1356                return 0;
1357            }
1358
1359            // match collation elements from the two strings
1360            // (considering only primary differences).  If we
1361            // get a mismatch, dump out and return 0
1362            if (CollationElementIterator::primaryOrder(oStr)
1363                != CollationElementIterator::primaryOrder(oPrefix)) {
1364                return 0;
1365
1366                // otherwise, advance to the next character in each string
1367                // and loop (we drop out of the loop when we exhaust
1368                // collation elements in the prefix)
1369            } else {
1370                oStr = strIter->next(err);
1371                oPrefix = prefixIter->next(err);
1372            }
1373        }
1374
1375        int32_t result = strIter->getOffset();
1376        if (oStr != CollationElementIterator::NULLORDER) {
1377            --result; // back over character that we don't want to consume;
1378        }
1379
1380#ifdef RBNF_DEBUG
1381        fprintf(stderr, "prefix length: %d\n", result);
1382#endif
1383        return result;
1384#if 0
1385        //----------------------------------------------------------------
1386        // JDK 1.2-specific API call
1387        // return strIter.getOffset();
1388        //----------------------------------------------------------------
1389        // JDK 1.1 HACK (take out for 1.2-specific code)
1390
1391        // if we make it to here, we have a successful match.  Now we
1392        // have to find out HOW MANY characters from the target string
1393        // matched the prefix (there isn't necessarily a one-to-one
1394        // mapping between collation elements and characters).
1395        // In JDK 1.2, there's a simple getOffset() call we can use.
1396        // In JDK 1.1, on the other hand, we have to go through some
1397        // ugly contortions.  First, use the collator to compare the
1398        // same number of characters from the prefix and target string.
1399        // If they're equal, we're done.
1400        collator->setStrength(Collator::PRIMARY);
1401        if (str.length() >= prefix.length()) {
1402            UnicodeString temp;
1403            temp.setTo(str, 0, prefix.length());
1404            if (collator->equals(temp, prefix)) {
1405#ifdef RBNF_DEBUG
1406                fprintf(stderr, "returning: %d\n", prefix.length());
1407#endif
1408                return prefix.length();
1409            }
1410        }
1411
1412        // if they're not equal, then we have to compare successively
1413        // larger and larger substrings of the target string until we
1414        // get to one that matches the prefix.  At that point, we know
1415        // how many characters matched the prefix, and we can return.
1416        int32_t p = 1;
1417        while (p <= str.length()) {
1418            UnicodeString temp;
1419            temp.setTo(str, 0, p);
1420            if (collator->equals(temp, prefix)) {
1421                return p;
1422            } else {
1423                ++p;
1424            }
1425        }
1426
1427        // SHOULD NEVER GET HERE!!!
1428        return 0;
1429        //----------------------------------------------------------------
1430#endif
1431
1432        // If lenient parsing is turned off, forget all that crap above.
1433        // Just use String.startsWith() and be done with it.
1434  } else
1435#endif
1436  {
1437      if (str.startsWith(prefix)) {
1438          return prefix.length();
1439      } else {
1440          return 0;
1441      }
1442  }
1443}
1444
1445/**
1446* Searches a string for another string.  If lenient parsing is off,
1447* this just calls indexOf().  If lenient parsing is on, this function
1448* uses CollationElementIterator to match characters, and only
1449* primary-order differences are significant in determining whether
1450* there's a match.
1451* @param str The string to search
1452* @param key The string to search "str" for
1453* @param startingAt The index into "str" where the search is to
1454* begin
1455* @return A two-element array of ints.  Element 0 is the position
1456* of the match, or -1 if there was no match.  Element 1 is the
1457* number of characters in "str" that matched (which isn't necessarily
1458* the same as the length of "key")
1459*/
1460int32_t
1461NFRule::findText(const UnicodeString& str,
1462                 const UnicodeString& key,
1463                 int32_t startingAt,
1464                 int32_t* length) const
1465{
1466    if (rulePatternFormat) {
1467        Formattable result;
1468        FieldPosition position(UNUM_INTEGER_FIELD);
1469        position.setBeginIndex(startingAt);
1470        rulePatternFormat->parseType(str, this, result, position);
1471        int start = position.getBeginIndex();
1472        if (start >= 0) {
1473            int32_t pluralRuleStart = ruleText.indexOf(gDollarOpenParenthesis, -1, 0);
1474            int32_t pluralRuleSuffix = ruleText.indexOf(gClosedParenthesisDollar, -1, pluralRuleStart) + 2;
1475            int32_t matchLen = position.getEndIndex() - start;
1476            UnicodeString prefix(ruleText.tempSubString(0, pluralRuleStart));
1477            UnicodeString suffix(ruleText.tempSubString(pluralRuleSuffix));
1478            if (str.compare(start - prefix.length(), prefix.length(), prefix, 0, prefix.length()) == 0
1479                    && str.compare(start + matchLen, suffix.length(), suffix, 0, suffix.length()) == 0)
1480            {
1481                *length = matchLen + prefix.length() + suffix.length();
1482                return start - prefix.length();
1483            }
1484        }
1485        *length = 0;
1486        return -1;
1487    }
1488    if (!formatter->isLenient()) {
1489        // if lenient parsing is turned off, this is easy: just call
1490        // String.indexOf() and we're done
1491        *length = key.length();
1492        return str.indexOf(key, startingAt);
1493    }
1494    else {
1495        // but if lenient parsing is turned ON, we've got some work
1496        // ahead of us
1497        return findTextLenient(str, key, startingAt, length);
1498    }
1499}
1500
1501int32_t
1502NFRule::findTextLenient(const UnicodeString& str,
1503                 const UnicodeString& key,
1504                 int32_t startingAt,
1505                 int32_t* length) const
1506{
1507    //----------------------------------------------------------------
1508    // JDK 1.1 HACK (take out of 1.2-specific code)
1509
1510    // in JDK 1.2, CollationElementIterator provides us with an
1511    // API to map between character offsets and collation elements
1512    // and we can do this by marching through the string comparing
1513    // collation elements.  We can't do that in JDK 1.1.  Insted,
1514    // we have to go through this horrible slow mess:
1515    int32_t p = startingAt;
1516    int32_t keyLen = 0;
1517
1518    // basically just isolate smaller and smaller substrings of
1519    // the target string (each running to the end of the string,
1520    // and with the first one running from startingAt to the end)
1521    // and then use prefixLength() to see if the search key is at
1522    // the beginning of each substring.  This is excruciatingly
1523    // slow, but it will locate the key and tell use how long the
1524    // matching text was.
1525    UnicodeString temp;
1526    UErrorCode status = U_ZERO_ERROR;
1527    while (p < str.length() && keyLen == 0) {
1528        temp.setTo(str, p, str.length() - p);
1529        keyLen = prefixLength(temp, key, status);
1530        if (U_FAILURE(status)) {
1531            break;
1532        }
1533        if (keyLen != 0) {
1534            *length = keyLen;
1535            return p;
1536        }
1537        ++p;
1538    }
1539    // if we make it to here, we didn't find it.  Return -1 for the
1540    // location.  The length should be ignored, but set it to 0,
1541    // which should be "safe"
1542    *length = 0;
1543    return -1;
1544}
1545
1546/**
1547* Checks to see whether a string consists entirely of ignorable
1548* characters.
1549* @param str The string to test.
1550* @return true if the string is empty of consists entirely of
1551* characters that the number formatter's collator says are
1552* ignorable at the primary-order level.  false otherwise.
1553*/
1554UBool
1555NFRule::allIgnorable(const UnicodeString& str, UErrorCode& status) const
1556{
1557    // if the string is empty, we can just return true
1558    if (str.length() == 0) {
1559        return TRUE;
1560    }
1561
1562#if !UCONFIG_NO_COLLATION
1563    // if lenient parsing is turned on, walk through the string with
1564    // a collation element iterator and make sure each collation
1565    // element is 0 (ignorable) at the primary level
1566    if (formatter->isLenient()) {
1567        const RuleBasedCollator* collator = formatter->getCollator();
1568        if (collator == NULL) {
1569            status = U_MEMORY_ALLOCATION_ERROR;
1570            return FALSE;
1571        }
1572        LocalPointer<CollationElementIterator> iter(collator->createCollationElementIterator(str));
1573
1574        // Memory allocation error check.
1575        if (iter.isNull()) {
1576            status = U_MEMORY_ALLOCATION_ERROR;
1577            return FALSE;
1578        }
1579
1580        UErrorCode err = U_ZERO_ERROR;
1581        int32_t o = iter->next(err);
1582        while (o != CollationElementIterator::NULLORDER
1583            && CollationElementIterator::primaryOrder(o) == 0) {
1584            o = iter->next(err);
1585        }
1586
1587        return o == CollationElementIterator::NULLORDER;
1588    }
1589#endif
1590
1591    // if lenient parsing is turned off, there is no such thing as
1592    // an ignorable character: return true only if the string is empty
1593    return FALSE;
1594}
1595
1596void
1597NFRule::setDecimalFormatSymbols(const DecimalFormatSymbols& newSymbols, UErrorCode& status) {
1598    if (sub1 != NULL) {
1599        sub1->setDecimalFormatSymbols(newSymbols, status);
1600    }
1601    if (sub2 != NULL) {
1602        sub2->setDecimalFormatSymbols(newSymbols, status);
1603    }
1604}
1605
1606U_NAMESPACE_END
1607
1608/* U_HAVE_RBNF */
1609#endif
1610