1/*
2 * jquant1.c
3 *
4 * This file was part of the Independent JPEG Group's software:
5 * Copyright (C) 1991-1996, Thomas G. Lane.
6 * libjpeg-turbo Modifications:
7 * Copyright (C) 2009, 2015, D. R. Commander.
8 * For conditions of distribution and use, see the accompanying README.ijg
9 * file.
10 *
11 * This file contains 1-pass color quantization (color mapping) routines.
12 * These routines provide mapping to a fixed color map using equally spaced
13 * color values.  Optional Floyd-Steinberg or ordered dithering is available.
14 */
15
16#define JPEG_INTERNALS
17#include "jinclude.h"
18#include "jpeglib.h"
19
20#ifdef QUANT_1PASS_SUPPORTED
21
22
23/*
24 * The main purpose of 1-pass quantization is to provide a fast, if not very
25 * high quality, colormapped output capability.  A 2-pass quantizer usually
26 * gives better visual quality; however, for quantized grayscale output this
27 * quantizer is perfectly adequate.  Dithering is highly recommended with this
28 * quantizer, though you can turn it off if you really want to.
29 *
30 * In 1-pass quantization the colormap must be chosen in advance of seeing the
31 * image.  We use a map consisting of all combinations of Ncolors[i] color
32 * values for the i'th component.  The Ncolors[] values are chosen so that
33 * their product, the total number of colors, is no more than that requested.
34 * (In most cases, the product will be somewhat less.)
35 *
36 * Since the colormap is orthogonal, the representative value for each color
37 * component can be determined without considering the other components;
38 * then these indexes can be combined into a colormap index by a standard
39 * N-dimensional-array-subscript calculation.  Most of the arithmetic involved
40 * can be precalculated and stored in the lookup table colorindex[].
41 * colorindex[i][j] maps pixel value j in component i to the nearest
42 * representative value (grid plane) for that component; this index is
43 * multiplied by the array stride for component i, so that the
44 * index of the colormap entry closest to a given pixel value is just
45 *    sum( colorindex[component-number][pixel-component-value] )
46 * Aside from being fast, this scheme allows for variable spacing between
47 * representative values with no additional lookup cost.
48 *
49 * If gamma correction has been applied in color conversion, it might be wise
50 * to adjust the color grid spacing so that the representative colors are
51 * equidistant in linear space.  At this writing, gamma correction is not
52 * implemented by jdcolor, so nothing is done here.
53 */
54
55
56/* Declarations for ordered dithering.
57 *
58 * We use a standard 16x16 ordered dither array.  The basic concept of ordered
59 * dithering is described in many references, for instance Dale Schumacher's
60 * chapter II.2 of Graphics Gems II (James Arvo, ed. Academic Press, 1991).
61 * In place of Schumacher's comparisons against a "threshold" value, we add a
62 * "dither" value to the input pixel and then round the result to the nearest
63 * output value.  The dither value is equivalent to (0.5 - threshold) times
64 * the distance between output values.  For ordered dithering, we assume that
65 * the output colors are equally spaced; if not, results will probably be
66 * worse, since the dither may be too much or too little at a given point.
67 *
68 * The normal calculation would be to form pixel value + dither, range-limit
69 * this to 0..MAXJSAMPLE, and then index into the colorindex table as usual.
70 * We can skip the separate range-limiting step by extending the colorindex
71 * table in both directions.
72 */
73
74#define ODITHER_SIZE  16        /* dimension of dither matrix */
75/* NB: if ODITHER_SIZE is not a power of 2, ODITHER_MASK uses will break */
76#define ODITHER_CELLS (ODITHER_SIZE*ODITHER_SIZE)       /* # cells in matrix */
77#define ODITHER_MASK  (ODITHER_SIZE-1) /* mask for wrapping around counters */
78
79typedef int ODITHER_MATRIX[ODITHER_SIZE][ODITHER_SIZE];
80typedef int (*ODITHER_MATRIX_PTR)[ODITHER_SIZE];
81
82static const UINT8 base_dither_matrix[ODITHER_SIZE][ODITHER_SIZE] = {
83  /* Bayer's order-4 dither array.  Generated by the code given in
84   * Stephen Hawley's article "Ordered Dithering" in Graphics Gems I.
85   * The values in this array must range from 0 to ODITHER_CELLS-1.
86   */
87  {   0,192, 48,240, 12,204, 60,252,  3,195, 51,243, 15,207, 63,255 },
88  { 128, 64,176,112,140, 76,188,124,131, 67,179,115,143, 79,191,127 },
89  {  32,224, 16,208, 44,236, 28,220, 35,227, 19,211, 47,239, 31,223 },
90  { 160, 96,144, 80,172,108,156, 92,163, 99,147, 83,175,111,159, 95 },
91  {   8,200, 56,248,  4,196, 52,244, 11,203, 59,251,  7,199, 55,247 },
92  { 136, 72,184,120,132, 68,180,116,139, 75,187,123,135, 71,183,119 },
93  {  40,232, 24,216, 36,228, 20,212, 43,235, 27,219, 39,231, 23,215 },
94  { 168,104,152, 88,164,100,148, 84,171,107,155, 91,167,103,151, 87 },
95  {   2,194, 50,242, 14,206, 62,254,  1,193, 49,241, 13,205, 61,253 },
96  { 130, 66,178,114,142, 78,190,126,129, 65,177,113,141, 77,189,125 },
97  {  34,226, 18,210, 46,238, 30,222, 33,225, 17,209, 45,237, 29,221 },
98  { 162, 98,146, 82,174,110,158, 94,161, 97,145, 81,173,109,157, 93 },
99  {  10,202, 58,250,  6,198, 54,246,  9,201, 57,249,  5,197, 53,245 },
100  { 138, 74,186,122,134, 70,182,118,137, 73,185,121,133, 69,181,117 },
101  {  42,234, 26,218, 38,230, 22,214, 41,233, 25,217, 37,229, 21,213 },
102  { 170,106,154, 90,166,102,150, 86,169,105,153, 89,165,101,149, 85 }
103};
104
105
106/* Declarations for Floyd-Steinberg dithering.
107 *
108 * Errors are accumulated into the array fserrors[], at a resolution of
109 * 1/16th of a pixel count.  The error at a given pixel is propagated
110 * to its not-yet-processed neighbors using the standard F-S fractions,
111 *              ...     (here)  7/16
112 *              3/16    5/16    1/16
113 * We work left-to-right on even rows, right-to-left on odd rows.
114 *
115 * We can get away with a single array (holding one row's worth of errors)
116 * by using it to store the current row's errors at pixel columns not yet
117 * processed, but the next row's errors at columns already processed.  We
118 * need only a few extra variables to hold the errors immediately around the
119 * current column.  (If we are lucky, those variables are in registers, but
120 * even if not, they're probably cheaper to access than array elements are.)
121 *
122 * The fserrors[] array is indexed [component#][position].
123 * We provide (#columns + 2) entries per component; the extra entry at each
124 * end saves us from special-casing the first and last pixels.
125 */
126
127#if BITS_IN_JSAMPLE == 8
128typedef INT16 FSERROR;          /* 16 bits should be enough */
129typedef int LOCFSERROR;         /* use 'int' for calculation temps */
130#else
131typedef JLONG FSERROR;          /* may need more than 16 bits */
132typedef JLONG LOCFSERROR;       /* be sure calculation temps are big enough */
133#endif
134
135typedef FSERROR *FSERRPTR;  /* pointer to error array */
136
137
138/* Private subobject */
139
140#define MAX_Q_COMPS 4           /* max components I can handle */
141
142typedef struct {
143  struct jpeg_color_quantizer pub; /* public fields */
144
145  /* Initially allocated colormap is saved here */
146  JSAMPARRAY sv_colormap;       /* The color map as a 2-D pixel array */
147  int sv_actual;                /* number of entries in use */
148
149  JSAMPARRAY colorindex;        /* Precomputed mapping for speed */
150  /* colorindex[i][j] = index of color closest to pixel value j in component i,
151   * premultiplied as described above.  Since colormap indexes must fit into
152   * JSAMPLEs, the entries of this array will too.
153   */
154  boolean is_padded;            /* is the colorindex padded for odither? */
155
156  int Ncolors[MAX_Q_COMPS];     /* # of values alloced to each component */
157
158  /* Variables for ordered dithering */
159  int row_index;                /* cur row's vertical index in dither matrix */
160  ODITHER_MATRIX_PTR odither[MAX_Q_COMPS]; /* one dither array per component */
161
162  /* Variables for Floyd-Steinberg dithering */
163  FSERRPTR fserrors[MAX_Q_COMPS]; /* accumulated errors */
164  boolean on_odd_row;           /* flag to remember which row we are on */
165} my_cquantizer;
166
167typedef my_cquantizer *my_cquantize_ptr;
168
169
170/*
171 * Policy-making subroutines for create_colormap and create_colorindex.
172 * These routines determine the colormap to be used.  The rest of the module
173 * only assumes that the colormap is orthogonal.
174 *
175 *  * select_ncolors decides how to divvy up the available colors
176 *    among the components.
177 *  * output_value defines the set of representative values for a component.
178 *  * largest_input_value defines the mapping from input values to
179 *    representative values for a component.
180 * Note that the latter two routines may impose different policies for
181 * different components, though this is not currently done.
182 */
183
184
185LOCAL(int)
186select_ncolors (j_decompress_ptr cinfo, int Ncolors[])
187/* Determine allocation of desired colors to components, */
188/* and fill in Ncolors[] array to indicate choice. */
189/* Return value is total number of colors (product of Ncolors[] values). */
190{
191  int nc = cinfo->out_color_components; /* number of color components */
192  int max_colors = cinfo->desired_number_of_colors;
193  int total_colors, iroot, i, j;
194  boolean changed;
195  long temp;
196  int RGB_order[3] = { RGB_GREEN, RGB_RED, RGB_BLUE };
197  RGB_order[0] = rgb_green[cinfo->out_color_space];
198  RGB_order[1] = rgb_red[cinfo->out_color_space];
199  RGB_order[2] = rgb_blue[cinfo->out_color_space];
200
201  /* We can allocate at least the nc'th root of max_colors per component. */
202  /* Compute floor(nc'th root of max_colors). */
203  iroot = 1;
204  do {
205    iroot++;
206    temp = iroot;               /* set temp = iroot ** nc */
207    for (i = 1; i < nc; i++)
208      temp *= iroot;
209  } while (temp <= (long) max_colors); /* repeat till iroot exceeds root */
210  iroot--;                      /* now iroot = floor(root) */
211
212  /* Must have at least 2 color values per component */
213  if (iroot < 2)
214    ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, (int) temp);
215
216  /* Initialize to iroot color values for each component */
217  total_colors = 1;
218  for (i = 0; i < nc; i++) {
219    Ncolors[i] = iroot;
220    total_colors *= iroot;
221  }
222  /* We may be able to increment the count for one or more components without
223   * exceeding max_colors, though we know not all can be incremented.
224   * Sometimes, the first component can be incremented more than once!
225   * (Example: for 16 colors, we start at 2*2*2, go to 3*2*2, then 4*2*2.)
226   * In RGB colorspace, try to increment G first, then R, then B.
227   */
228  do {
229    changed = FALSE;
230    for (i = 0; i < nc; i++) {
231      j = (cinfo->out_color_space == JCS_RGB ? RGB_order[i] : i);
232      /* calculate new total_colors if Ncolors[j] is incremented */
233      temp = total_colors / Ncolors[j];
234      temp *= Ncolors[j]+1;     /* done in long arith to avoid oflo */
235      if (temp > (long) max_colors)
236        break;                  /* won't fit, done with this pass */
237      Ncolors[j]++;             /* OK, apply the increment */
238      total_colors = (int) temp;
239      changed = TRUE;
240    }
241  } while (changed);
242
243  return total_colors;
244}
245
246
247LOCAL(int)
248output_value (j_decompress_ptr cinfo, int ci, int j, int maxj)
249/* Return j'th output value, where j will range from 0 to maxj */
250/* The output values must fall in 0..MAXJSAMPLE in increasing order */
251{
252  /* We always provide values 0 and MAXJSAMPLE for each component;
253   * any additional values are equally spaced between these limits.
254   * (Forcing the upper and lower values to the limits ensures that
255   * dithering can't produce a color outside the selected gamut.)
256   */
257  return (int) (((JLONG) j * MAXJSAMPLE + maxj/2) / maxj);
258}
259
260
261LOCAL(int)
262largest_input_value (j_decompress_ptr cinfo, int ci, int j, int maxj)
263/* Return largest input value that should map to j'th output value */
264/* Must have largest(j=0) >= 0, and largest(j=maxj) >= MAXJSAMPLE */
265{
266  /* Breakpoints are halfway between values returned by output_value */
267  return (int) (((JLONG) (2*j + 1) * MAXJSAMPLE + maxj) / (2*maxj));
268}
269
270
271/*
272 * Create the colormap.
273 */
274
275LOCAL(void)
276create_colormap (j_decompress_ptr cinfo)
277{
278  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
279  JSAMPARRAY colormap;          /* Created colormap */
280  int total_colors;             /* Number of distinct output colors */
281  int i,j,k, nci, blksize, blkdist, ptr, val;
282
283  /* Select number of colors for each component */
284  total_colors = select_ncolors(cinfo, cquantize->Ncolors);
285
286  /* Report selected color counts */
287  if (cinfo->out_color_components == 3)
288    TRACEMS4(cinfo, 1, JTRC_QUANT_3_NCOLORS,
289             total_colors, cquantize->Ncolors[0],
290             cquantize->Ncolors[1], cquantize->Ncolors[2]);
291  else
292    TRACEMS1(cinfo, 1, JTRC_QUANT_NCOLORS, total_colors);
293
294  /* Allocate and fill in the colormap. */
295  /* The colors are ordered in the map in standard row-major order, */
296  /* i.e. rightmost (highest-indexed) color changes most rapidly. */
297
298  colormap = (*cinfo->mem->alloc_sarray)
299    ((j_common_ptr) cinfo, JPOOL_IMAGE,
300     (JDIMENSION) total_colors, (JDIMENSION) cinfo->out_color_components);
301
302  /* blksize is number of adjacent repeated entries for a component */
303  /* blkdist is distance between groups of identical entries for a component */
304  blkdist = total_colors;
305
306  for (i = 0; i < cinfo->out_color_components; i++) {
307    /* fill in colormap entries for i'th color component */
308    nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
309    blksize = blkdist / nci;
310    for (j = 0; j < nci; j++) {
311      /* Compute j'th output value (out of nci) for component */
312      val = output_value(cinfo, i, j, nci-1);
313      /* Fill in all colormap entries that have this value of this component */
314      for (ptr = j * blksize; ptr < total_colors; ptr += blkdist) {
315        /* fill in blksize entries beginning at ptr */
316        for (k = 0; k < blksize; k++)
317          colormap[i][ptr+k] = (JSAMPLE) val;
318      }
319    }
320    blkdist = blksize;          /* blksize of this color is blkdist of next */
321  }
322
323  /* Save the colormap in private storage,
324   * where it will survive color quantization mode changes.
325   */
326  cquantize->sv_colormap = colormap;
327  cquantize->sv_actual = total_colors;
328}
329
330
331/*
332 * Create the color index table.
333 */
334
335LOCAL(void)
336create_colorindex (j_decompress_ptr cinfo)
337{
338  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
339  JSAMPROW indexptr;
340  int i,j,k, nci, blksize, val, pad;
341
342  /* For ordered dither, we pad the color index tables by MAXJSAMPLE in
343   * each direction (input index values can be -MAXJSAMPLE .. 2*MAXJSAMPLE).
344   * This is not necessary in the other dithering modes.  However, we
345   * flag whether it was done in case user changes dithering mode.
346   */
347  if (cinfo->dither_mode == JDITHER_ORDERED) {
348    pad = MAXJSAMPLE*2;
349    cquantize->is_padded = TRUE;
350  } else {
351    pad = 0;
352    cquantize->is_padded = FALSE;
353  }
354
355  cquantize->colorindex = (*cinfo->mem->alloc_sarray)
356    ((j_common_ptr) cinfo, JPOOL_IMAGE,
357     (JDIMENSION) (MAXJSAMPLE+1 + pad),
358     (JDIMENSION) cinfo->out_color_components);
359
360  /* blksize is number of adjacent repeated entries for a component */
361  blksize = cquantize->sv_actual;
362
363  for (i = 0; i < cinfo->out_color_components; i++) {
364    /* fill in colorindex entries for i'th color component */
365    nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
366    blksize = blksize / nci;
367
368    /* adjust colorindex pointers to provide padding at negative indexes. */
369    if (pad)
370      cquantize->colorindex[i] += MAXJSAMPLE;
371
372    /* in loop, val = index of current output value, */
373    /* and k = largest j that maps to current val */
374    indexptr = cquantize->colorindex[i];
375    val = 0;
376    k = largest_input_value(cinfo, i, 0, nci-1);
377    for (j = 0; j <= MAXJSAMPLE; j++) {
378      while (j > k)             /* advance val if past boundary */
379        k = largest_input_value(cinfo, i, ++val, nci-1);
380      /* premultiply so that no multiplication needed in main processing */
381      indexptr[j] = (JSAMPLE) (val * blksize);
382    }
383    /* Pad at both ends if necessary */
384    if (pad)
385      for (j = 1; j <= MAXJSAMPLE; j++) {
386        indexptr[-j] = indexptr[0];
387        indexptr[MAXJSAMPLE+j] = indexptr[MAXJSAMPLE];
388      }
389  }
390}
391
392
393/*
394 * Create an ordered-dither array for a component having ncolors
395 * distinct output values.
396 */
397
398LOCAL(ODITHER_MATRIX_PTR)
399make_odither_array (j_decompress_ptr cinfo, int ncolors)
400{
401  ODITHER_MATRIX_PTR odither;
402  int j,k;
403  JLONG num,den;
404
405  odither = (ODITHER_MATRIX_PTR)
406    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
407                                sizeof(ODITHER_MATRIX));
408  /* The inter-value distance for this color is MAXJSAMPLE/(ncolors-1).
409   * Hence the dither value for the matrix cell with fill order f
410   * (f=0..N-1) should be (N-1-2*f)/(2*N) * MAXJSAMPLE/(ncolors-1).
411   * On 16-bit-int machine, be careful to avoid overflow.
412   */
413  den = 2 * ODITHER_CELLS * ((JLONG) (ncolors - 1));
414  for (j = 0; j < ODITHER_SIZE; j++) {
415    for (k = 0; k < ODITHER_SIZE; k++) {
416      num = ((JLONG) (ODITHER_CELLS-1 - 2*((int)base_dither_matrix[j][k])))
417            * MAXJSAMPLE;
418      /* Ensure round towards zero despite C's lack of consistency
419       * about rounding negative values in integer division...
420       */
421      odither[j][k] = (int) (num<0 ? -((-num)/den) : num/den);
422    }
423  }
424  return odither;
425}
426
427
428/*
429 * Create the ordered-dither tables.
430 * Components having the same number of representative colors may
431 * share a dither table.
432 */
433
434LOCAL(void)
435create_odither_tables (j_decompress_ptr cinfo)
436{
437  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
438  ODITHER_MATRIX_PTR odither;
439  int i, j, nci;
440
441  for (i = 0; i < cinfo->out_color_components; i++) {
442    nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
443    odither = NULL;             /* search for matching prior component */
444    for (j = 0; j < i; j++) {
445      if (nci == cquantize->Ncolors[j]) {
446        odither = cquantize->odither[j];
447        break;
448      }
449    }
450    if (odither == NULL)        /* need a new table? */
451      odither = make_odither_array(cinfo, nci);
452    cquantize->odither[i] = odither;
453  }
454}
455
456
457/*
458 * Map some rows of pixels to the output colormapped representation.
459 */
460
461METHODDEF(void)
462color_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
463                JSAMPARRAY output_buf, int num_rows)
464/* General case, no dithering */
465{
466  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
467  JSAMPARRAY colorindex = cquantize->colorindex;
468  register int pixcode, ci;
469  register JSAMPROW ptrin, ptrout;
470  int row;
471  JDIMENSION col;
472  JDIMENSION width = cinfo->output_width;
473  register int nc = cinfo->out_color_components;
474
475  for (row = 0; row < num_rows; row++) {
476    ptrin = input_buf[row];
477    ptrout = output_buf[row];
478    for (col = width; col > 0; col--) {
479      pixcode = 0;
480      for (ci = 0; ci < nc; ci++) {
481        pixcode += GETJSAMPLE(colorindex[ci][GETJSAMPLE(*ptrin++)]);
482      }
483      *ptrout++ = (JSAMPLE) pixcode;
484    }
485  }
486}
487
488
489METHODDEF(void)
490color_quantize3 (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
491                 JSAMPARRAY output_buf, int num_rows)
492/* Fast path for out_color_components==3, no dithering */
493{
494  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
495  register int pixcode;
496  register JSAMPROW ptrin, ptrout;
497  JSAMPROW colorindex0 = cquantize->colorindex[0];
498  JSAMPROW colorindex1 = cquantize->colorindex[1];
499  JSAMPROW colorindex2 = cquantize->colorindex[2];
500  int row;
501  JDIMENSION col;
502  JDIMENSION width = cinfo->output_width;
503
504  for (row = 0; row < num_rows; row++) {
505    ptrin = input_buf[row];
506    ptrout = output_buf[row];
507    for (col = width; col > 0; col--) {
508      pixcode  = GETJSAMPLE(colorindex0[GETJSAMPLE(*ptrin++)]);
509      pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*ptrin++)]);
510      pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*ptrin++)]);
511      *ptrout++ = (JSAMPLE) pixcode;
512    }
513  }
514}
515
516
517METHODDEF(void)
518quantize_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
519                     JSAMPARRAY output_buf, int num_rows)
520/* General case, with ordered dithering */
521{
522  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
523  register JSAMPROW input_ptr;
524  register JSAMPROW output_ptr;
525  JSAMPROW colorindex_ci;
526  int *dither;                  /* points to active row of dither matrix */
527  int row_index, col_index;     /* current indexes into dither matrix */
528  int nc = cinfo->out_color_components;
529  int ci;
530  int row;
531  JDIMENSION col;
532  JDIMENSION width = cinfo->output_width;
533
534  for (row = 0; row < num_rows; row++) {
535    /* Initialize output values to 0 so can process components separately */
536    jzero_far((void *) output_buf[row], (size_t) (width * sizeof(JSAMPLE)));
537    row_index = cquantize->row_index;
538    for (ci = 0; ci < nc; ci++) {
539      input_ptr = input_buf[row] + ci;
540      output_ptr = output_buf[row];
541      colorindex_ci = cquantize->colorindex[ci];
542      dither = cquantize->odither[ci][row_index];
543      col_index = 0;
544
545      for (col = width; col > 0; col--) {
546        /* Form pixel value + dither, range-limit to 0..MAXJSAMPLE,
547         * select output value, accumulate into output code for this pixel.
548         * Range-limiting need not be done explicitly, as we have extended
549         * the colorindex table to produce the right answers for out-of-range
550         * inputs.  The maximum dither is +- MAXJSAMPLE; this sets the
551         * required amount of padding.
552         */
553        *output_ptr += colorindex_ci[GETJSAMPLE(*input_ptr)+dither[col_index]];
554        input_ptr += nc;
555        output_ptr++;
556        col_index = (col_index + 1) & ODITHER_MASK;
557      }
558    }
559    /* Advance row index for next row */
560    row_index = (row_index + 1) & ODITHER_MASK;
561    cquantize->row_index = row_index;
562  }
563}
564
565
566METHODDEF(void)
567quantize3_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
568                      JSAMPARRAY output_buf, int num_rows)
569/* Fast path for out_color_components==3, with ordered dithering */
570{
571  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
572  register int pixcode;
573  register JSAMPROW input_ptr;
574  register JSAMPROW output_ptr;
575  JSAMPROW colorindex0 = cquantize->colorindex[0];
576  JSAMPROW colorindex1 = cquantize->colorindex[1];
577  JSAMPROW colorindex2 = cquantize->colorindex[2];
578  int *dither0;                 /* points to active row of dither matrix */
579  int *dither1;
580  int *dither2;
581  int row_index, col_index;     /* current indexes into dither matrix */
582  int row;
583  JDIMENSION col;
584  JDIMENSION width = cinfo->output_width;
585
586  for (row = 0; row < num_rows; row++) {
587    row_index = cquantize->row_index;
588    input_ptr = input_buf[row];
589    output_ptr = output_buf[row];
590    dither0 = cquantize->odither[0][row_index];
591    dither1 = cquantize->odither[1][row_index];
592    dither2 = cquantize->odither[2][row_index];
593    col_index = 0;
594
595    for (col = width; col > 0; col--) {
596      pixcode  = GETJSAMPLE(colorindex0[GETJSAMPLE(*input_ptr++) +
597                                        dither0[col_index]]);
598      pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*input_ptr++) +
599                                        dither1[col_index]]);
600      pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*input_ptr++) +
601                                        dither2[col_index]]);
602      *output_ptr++ = (JSAMPLE) pixcode;
603      col_index = (col_index + 1) & ODITHER_MASK;
604    }
605    row_index = (row_index + 1) & ODITHER_MASK;
606    cquantize->row_index = row_index;
607  }
608}
609
610
611METHODDEF(void)
612quantize_fs_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
613                    JSAMPARRAY output_buf, int num_rows)
614/* General case, with Floyd-Steinberg dithering */
615{
616  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
617  register LOCFSERROR cur;      /* current error or pixel value */
618  LOCFSERROR belowerr;          /* error for pixel below cur */
619  LOCFSERROR bpreverr;          /* error for below/prev col */
620  LOCFSERROR bnexterr;          /* error for below/next col */
621  LOCFSERROR delta;
622  register FSERRPTR errorptr;   /* => fserrors[] at column before current */
623  register JSAMPROW input_ptr;
624  register JSAMPROW output_ptr;
625  JSAMPROW colorindex_ci;
626  JSAMPROW colormap_ci;
627  int pixcode;
628  int nc = cinfo->out_color_components;
629  int dir;                      /* 1 for left-to-right, -1 for right-to-left */
630  int dirnc;                    /* dir * nc */
631  int ci;
632  int row;
633  JDIMENSION col;
634  JDIMENSION width = cinfo->output_width;
635  JSAMPLE *range_limit = cinfo->sample_range_limit;
636  SHIFT_TEMPS
637
638  for (row = 0; row < num_rows; row++) {
639    /* Initialize output values to 0 so can process components separately */
640    jzero_far((void *) output_buf[row], (size_t) (width * sizeof(JSAMPLE)));
641    for (ci = 0; ci < nc; ci++) {
642      input_ptr = input_buf[row] + ci;
643      output_ptr = output_buf[row];
644      if (cquantize->on_odd_row) {
645        /* work right to left in this row */
646        input_ptr += (width-1) * nc; /* so point to rightmost pixel */
647        output_ptr += width-1;
648        dir = -1;
649        dirnc = -nc;
650        errorptr = cquantize->fserrors[ci] + (width+1); /* => entry after last column */
651      } else {
652        /* work left to right in this row */
653        dir = 1;
654        dirnc = nc;
655        errorptr = cquantize->fserrors[ci]; /* => entry before first column */
656      }
657      colorindex_ci = cquantize->colorindex[ci];
658      colormap_ci = cquantize->sv_colormap[ci];
659      /* Preset error values: no error propagated to first pixel from left */
660      cur = 0;
661      /* and no error propagated to row below yet */
662      belowerr = bpreverr = 0;
663
664      for (col = width; col > 0; col--) {
665        /* cur holds the error propagated from the previous pixel on the
666         * current line.  Add the error propagated from the previous line
667         * to form the complete error correction term for this pixel, and
668         * round the error term (which is expressed * 16) to an integer.
669         * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
670         * for either sign of the error value.
671         * Note: errorptr points to *previous* column's array entry.
672         */
673        cur = RIGHT_SHIFT(cur + errorptr[dir] + 8, 4);
674        /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
675         * The maximum error is +- MAXJSAMPLE; this sets the required size
676         * of the range_limit array.
677         */
678        cur += GETJSAMPLE(*input_ptr);
679        cur = GETJSAMPLE(range_limit[cur]);
680        /* Select output value, accumulate into output code for this pixel */
681        pixcode = GETJSAMPLE(colorindex_ci[cur]);
682        *output_ptr += (JSAMPLE) pixcode;
683        /* Compute actual representation error at this pixel */
684        /* Note: we can do this even though we don't have the final */
685        /* pixel code, because the colormap is orthogonal. */
686        cur -= GETJSAMPLE(colormap_ci[pixcode]);
687        /* Compute error fractions to be propagated to adjacent pixels.
688         * Add these into the running sums, and simultaneously shift the
689         * next-line error sums left by 1 column.
690         */
691        bnexterr = cur;
692        delta = cur * 2;
693        cur += delta;           /* form error * 3 */
694        errorptr[0] = (FSERROR) (bpreverr + cur);
695        cur += delta;           /* form error * 5 */
696        bpreverr = belowerr + cur;
697        belowerr = bnexterr;
698        cur += delta;           /* form error * 7 */
699        /* At this point cur contains the 7/16 error value to be propagated
700         * to the next pixel on the current line, and all the errors for the
701         * next line have been shifted over. We are therefore ready to move on.
702         */
703        input_ptr += dirnc;     /* advance input ptr to next column */
704        output_ptr += dir;      /* advance output ptr to next column */
705        errorptr += dir;        /* advance errorptr to current column */
706      }
707      /* Post-loop cleanup: we must unload the final error value into the
708       * final fserrors[] entry.  Note we need not unload belowerr because
709       * it is for the dummy column before or after the actual array.
710       */
711      errorptr[0] = (FSERROR) bpreverr; /* unload prev err into array */
712    }
713    cquantize->on_odd_row = (cquantize->on_odd_row ? FALSE : TRUE);
714  }
715}
716
717
718/*
719 * Allocate workspace for Floyd-Steinberg errors.
720 */
721
722LOCAL(void)
723alloc_fs_workspace (j_decompress_ptr cinfo)
724{
725  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
726  size_t arraysize;
727  int i;
728
729  arraysize = (size_t) ((cinfo->output_width + 2) * sizeof(FSERROR));
730  for (i = 0; i < cinfo->out_color_components; i++) {
731    cquantize->fserrors[i] = (FSERRPTR)
732      (*cinfo->mem->alloc_large)((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize);
733  }
734}
735
736
737/*
738 * Initialize for one-pass color quantization.
739 */
740
741METHODDEF(void)
742start_pass_1_quant (j_decompress_ptr cinfo, boolean is_pre_scan)
743{
744  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
745  size_t arraysize;
746  int i;
747
748  /* Install my colormap. */
749  cinfo->colormap = cquantize->sv_colormap;
750  cinfo->actual_number_of_colors = cquantize->sv_actual;
751
752  /* Initialize for desired dithering mode. */
753  switch (cinfo->dither_mode) {
754  case JDITHER_NONE:
755    if (cinfo->out_color_components == 3)
756      cquantize->pub.color_quantize = color_quantize3;
757    else
758      cquantize->pub.color_quantize = color_quantize;
759    break;
760  case JDITHER_ORDERED:
761    if (cinfo->out_color_components == 3)
762      cquantize->pub.color_quantize = quantize3_ord_dither;
763    else
764      cquantize->pub.color_quantize = quantize_ord_dither;
765    cquantize->row_index = 0;   /* initialize state for ordered dither */
766    /* If user changed to ordered dither from another mode,
767     * we must recreate the color index table with padding.
768     * This will cost extra space, but probably isn't very likely.
769     */
770    if (! cquantize->is_padded)
771      create_colorindex(cinfo);
772    /* Create ordered-dither tables if we didn't already. */
773    if (cquantize->odither[0] == NULL)
774      create_odither_tables(cinfo);
775    break;
776  case JDITHER_FS:
777    cquantize->pub.color_quantize = quantize_fs_dither;
778    cquantize->on_odd_row = FALSE; /* initialize state for F-S dither */
779    /* Allocate Floyd-Steinberg workspace if didn't already. */
780    if (cquantize->fserrors[0] == NULL)
781      alloc_fs_workspace(cinfo);
782    /* Initialize the propagated errors to zero. */
783    arraysize = (size_t) ((cinfo->output_width + 2) * sizeof(FSERROR));
784    for (i = 0; i < cinfo->out_color_components; i++)
785      jzero_far((void *) cquantize->fserrors[i], arraysize);
786    break;
787  default:
788    ERREXIT(cinfo, JERR_NOT_COMPILED);
789    break;
790  }
791}
792
793
794/*
795 * Finish up at the end of the pass.
796 */
797
798METHODDEF(void)
799finish_pass_1_quant (j_decompress_ptr cinfo)
800{
801  /* no work in 1-pass case */
802}
803
804
805/*
806 * Switch to a new external colormap between output passes.
807 * Shouldn't get to this module!
808 */
809
810METHODDEF(void)
811new_color_map_1_quant (j_decompress_ptr cinfo)
812{
813  ERREXIT(cinfo, JERR_MODE_CHANGE);
814}
815
816
817/*
818 * Module initialization routine for 1-pass color quantization.
819 */
820
821GLOBAL(void)
822jinit_1pass_quantizer (j_decompress_ptr cinfo)
823{
824  my_cquantize_ptr cquantize;
825
826  cquantize = (my_cquantize_ptr)
827    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
828                                sizeof(my_cquantizer));
829  cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize;
830  cquantize->pub.start_pass = start_pass_1_quant;
831  cquantize->pub.finish_pass = finish_pass_1_quant;
832  cquantize->pub.new_color_map = new_color_map_1_quant;
833  cquantize->fserrors[0] = NULL; /* Flag FS workspace not allocated */
834  cquantize->odither[0] = NULL; /* Also flag odither arrays not allocated */
835
836  /* Make sure my internal arrays won't overflow */
837  if (cinfo->out_color_components > MAX_Q_COMPS)
838    ERREXIT1(cinfo, JERR_QUANT_COMPONENTS, MAX_Q_COMPS);
839  /* Make sure colormap indexes can be represented by JSAMPLEs */
840  if (cinfo->desired_number_of_colors > (MAXJSAMPLE+1))
841    ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXJSAMPLE+1);
842
843  /* Create the colormap and color index table. */
844  create_colormap(cinfo);
845  create_colorindex(cinfo);
846
847  /* Allocate Floyd-Steinberg workspace now if requested.
848   * We do this now since it may affect the memory manager's space
849   * calculations.  If the user changes to FS dither mode in a later pass, we
850   * will allocate the space then, and will possibly overrun the
851   * max_memory_to_use setting.
852   */
853  if (cinfo->dither_mode == JDITHER_FS)
854    alloc_fs_workspace(cinfo);
855}
856
857#endif /* QUANT_1PASS_SUPPORTED */
858