linux_list.h revision 8ba9c0c5d4425ee8c2b0e363aa55d5877371cd1d
1#ifndef _LINUX_LIST_H
2#define _LINUX_LIST_H
3
4#include <stddef.h>
5
6#undef offsetof
7#define offsetof(TYPE, MEMBER) ((size_t) &((TYPE *)0)->MEMBER)
8
9/**
10 * container_of - cast a member of a structure out to the containing structure
11 *
12 * @ptr:	the pointer to the member.
13 * @type:	the type of the container struct this is embedded in.
14 * @member:	the name of the member within the struct.
15 *
16 */
17#define container_of(ptr, type, member) ({			\
18        typeof( ((type *)0)->member ) *__mptr = (ptr);	\
19        (type *)( (char *)__mptr - offsetof(type,member) );})
20
21/*
22 * Check at compile time that something is of a particular type.
23 * Always evaluates to 1 so you may use it easily in comparisons.
24 */
25#define typecheck(type,x) \
26({	type __dummy; \
27	typeof(x) __dummy2; \
28	(void)(&__dummy == &__dummy2); \
29	1; \
30})
31
32#define prefetch(x)		1
33
34/* empty define to make this work in userspace -HW */
35#ifndef smp_wmb
36#define smp_wmb()
37#endif
38
39/*
40 * These are non-NULL pointers that will result in page faults
41 * under normal circumstances, used to verify that nobody uses
42 * non-initialized list entries.
43 */
44#define LIST_POISON1  ((void *) 0x00100100)
45#define LIST_POISON2  ((void *) 0x00200200)
46
47/*
48 * Simple doubly linked list implementation.
49 *
50 * Some of the internal functions ("__xxx") are useful when
51 * manipulating whole lists rather than single entries, as
52 * sometimes we already know the next/prev entries and we can
53 * generate better code by using them directly rather than
54 * using the generic single-entry routines.
55 */
56
57struct list_head {
58	struct list_head *next, *prev;
59};
60
61#define LIST_HEAD_INIT(name) { &(name), &(name) }
62
63#define LIST_HEAD(name) \
64	struct list_head name = LIST_HEAD_INIT(name)
65
66#define INIT_LIST_HEAD(ptr) do { \
67	(ptr)->next = (ptr); (ptr)->prev = (ptr); \
68} while (0)
69
70/*
71 * Insert a new entry between two known consecutive entries.
72 *
73 * This is only for internal list manipulation where we know
74 * the prev/next entries already!
75 */
76static inline void __list_add(struct list_head *new,
77			      struct list_head *prev,
78			      struct list_head *next)
79{
80	next->prev = new;
81	new->next = next;
82	new->prev = prev;
83	prev->next = new;
84}
85
86/**
87 * list_add - add a new entry
88 * @new: new entry to be added
89 * @head: list head to add it after
90 *
91 * Insert a new entry after the specified head.
92 * This is good for implementing stacks.
93 */
94static inline void list_add(struct list_head *new, struct list_head *head)
95{
96	__list_add(new, head, head->next);
97}
98
99/**
100 * list_add_tail - add a new entry
101 * @new: new entry to be added
102 * @head: list head to add it before
103 *
104 * Insert a new entry before the specified head.
105 * This is useful for implementing queues.
106 */
107static inline void list_add_tail(struct list_head *new, struct list_head *head)
108{
109	__list_add(new, head->prev, head);
110}
111
112/*
113 * Insert a new entry between two known consecutive entries.
114 *
115 * This is only for internal list manipulation where we know
116 * the prev/next entries already!
117 */
118static inline void __list_add_rcu(struct list_head * new,
119		struct list_head * prev, struct list_head * next)
120{
121	new->next = next;
122	new->prev = prev;
123	smp_wmb();
124	next->prev = new;
125	prev->next = new;
126}
127
128/**
129 * list_add_rcu - add a new entry to rcu-protected list
130 * @new: new entry to be added
131 * @head: list head to add it after
132 *
133 * Insert a new entry after the specified head.
134 * This is good for implementing stacks.
135 *
136 * The caller must take whatever precautions are necessary
137 * (such as holding appropriate locks) to avoid racing
138 * with another list-mutation primitive, such as list_add_rcu()
139 * or list_del_rcu(), running on this same list.
140 * However, it is perfectly legal to run concurrently with
141 * the _rcu list-traversal primitives, such as
142 * list_for_each_entry_rcu().
143 */
144static inline void list_add_rcu(struct list_head *new, struct list_head *head)
145{
146	__list_add_rcu(new, head, head->next);
147}
148
149/**
150 * list_add_tail_rcu - add a new entry to rcu-protected list
151 * @new: new entry to be added
152 * @head: list head to add it before
153 *
154 * Insert a new entry before the specified head.
155 * This is useful for implementing queues.
156 *
157 * The caller must take whatever precautions are necessary
158 * (such as holding appropriate locks) to avoid racing
159 * with another list-mutation primitive, such as list_add_tail_rcu()
160 * or list_del_rcu(), running on this same list.
161 * However, it is perfectly legal to run concurrently with
162 * the _rcu list-traversal primitives, such as
163 * list_for_each_entry_rcu().
164 */
165static inline void list_add_tail_rcu(struct list_head *new,
166					struct list_head *head)
167{
168	__list_add_rcu(new, head->prev, head);
169}
170
171/*
172 * Delete a list entry by making the prev/next entries
173 * point to each other.
174 *
175 * This is only for internal list manipulation where we know
176 * the prev/next entries already!
177 */
178static inline void __list_del(struct list_head * prev, struct list_head * next)
179{
180	next->prev = prev;
181	prev->next = next;
182}
183
184/**
185 * list_del - deletes entry from list.
186 * @entry: the element to delete from the list.
187 * Note: list_empty on entry does not return true after this, the entry is
188 * in an undefined state.
189 */
190static inline void list_del(struct list_head *entry)
191{
192	__list_del(entry->prev, entry->next);
193	entry->next = LIST_POISON1;
194	entry->prev = LIST_POISON2;
195}
196
197/**
198 * list_del_rcu - deletes entry from list without re-initialization
199 * @entry: the element to delete from the list.
200 *
201 * Note: list_empty on entry does not return true after this,
202 * the entry is in an undefined state. It is useful for RCU based
203 * lockfree traversal.
204 *
205 * In particular, it means that we can not poison the forward
206 * pointers that may still be used for walking the list.
207 *
208 * The caller must take whatever precautions are necessary
209 * (such as holding appropriate locks) to avoid racing
210 * with another list-mutation primitive, such as list_del_rcu()
211 * or list_add_rcu(), running on this same list.
212 * However, it is perfectly legal to run concurrently with
213 * the _rcu list-traversal primitives, such as
214 * list_for_each_entry_rcu().
215 *
216 * Note that the caller is not permitted to immediately free
217 * the newly deleted entry.  Instead, either synchronize_kernel()
218 * or call_rcu() must be used to defer freeing until an RCU
219 * grace period has elapsed.
220 */
221static inline void list_del_rcu(struct list_head *entry)
222{
223	__list_del(entry->prev, entry->next);
224	entry->prev = LIST_POISON2;
225}
226
227/**
228 * list_del_init - deletes entry from list and reinitialize it.
229 * @entry: the element to delete from the list.
230 */
231static inline void list_del_init(struct list_head *entry)
232{
233	__list_del(entry->prev, entry->next);
234	INIT_LIST_HEAD(entry);
235}
236
237/**
238 * list_move - delete from one list and add as another's head
239 * @list: the entry to move
240 * @head: the head that will precede our entry
241 */
242static inline void list_move(struct list_head *list, struct list_head *head)
243{
244        __list_del(list->prev, list->next);
245        list_add(list, head);
246}
247
248/**
249 * list_move_tail - delete from one list and add as another's tail
250 * @list: the entry to move
251 * @head: the head that will follow our entry
252 */
253static inline void list_move_tail(struct list_head *list,
254				  struct list_head *head)
255{
256        __list_del(list->prev, list->next);
257        list_add_tail(list, head);
258}
259
260/**
261 * list_empty - tests whether a list is empty
262 * @head: the list to test.
263 */
264static inline int list_empty(const struct list_head *head)
265{
266	return head->next == head;
267}
268
269/**
270 * list_empty_careful - tests whether a list is
271 * empty _and_ checks that no other CPU might be
272 * in the process of still modifying either member
273 *
274 * NOTE: using list_empty_careful() without synchronization
275 * can only be safe if the only activity that can happen
276 * to the list entry is list_del_init(). Eg. it cannot be used
277 * if another CPU could re-list_add() it.
278 *
279 * @head: the list to test.
280 */
281static inline int list_empty_careful(const struct list_head *head)
282{
283	struct list_head *next = head->next;
284	return (next == head) && (next == head->prev);
285}
286
287static inline void __list_splice(struct list_head *list,
288				 struct list_head *head)
289{
290	struct list_head *first = list->next;
291	struct list_head *last = list->prev;
292	struct list_head *at = head->next;
293
294	first->prev = head;
295	head->next = first;
296
297	last->next = at;
298	at->prev = last;
299}
300
301/**
302 * list_splice - join two lists
303 * @list: the new list to add.
304 * @head: the place to add it in the first list.
305 */
306static inline void list_splice(struct list_head *list, struct list_head *head)
307{
308	if (!list_empty(list))
309		__list_splice(list, head);
310}
311
312/**
313 * list_splice_init - join two lists and reinitialise the emptied list.
314 * @list: the new list to add.
315 * @head: the place to add it in the first list.
316 *
317 * The list at @list is reinitialised
318 */
319static inline void list_splice_init(struct list_head *list,
320				    struct list_head *head)
321{
322	if (!list_empty(list)) {
323		__list_splice(list, head);
324		INIT_LIST_HEAD(list);
325	}
326}
327
328/**
329 * list_entry - get the struct for this entry
330 * @ptr:	the &struct list_head pointer.
331 * @type:	the type of the struct this is embedded in.
332 * @member:	the name of the list_struct within the struct.
333 */
334#define list_entry(ptr, type, member) \
335	container_of(ptr, type, member)
336
337/**
338 * list_for_each	-	iterate over a list
339 * @pos:	the &struct list_head to use as a loop counter.
340 * @head:	the head for your list.
341 */
342#define list_for_each(pos, head) \
343	for (pos = (head)->next, prefetch(pos->next); pos != (head); \
344        	pos = pos->next, prefetch(pos->next))
345
346/**
347 * __list_for_each	-	iterate over a list
348 * @pos:	the &struct list_head to use as a loop counter.
349 * @head:	the head for your list.
350 *
351 * This variant differs from list_for_each() in that it's the
352 * simplest possible list iteration code, no prefetching is done.
353 * Use this for code that knows the list to be very short (empty
354 * or 1 entry) most of the time.
355 */
356#define __list_for_each(pos, head) \
357	for (pos = (head)->next; pos != (head); pos = pos->next)
358
359/**
360 * list_for_each_prev	-	iterate over a list backwards
361 * @pos:	the &struct list_head to use as a loop counter.
362 * @head:	the head for your list.
363 */
364#define list_for_each_prev(pos, head) \
365	for (pos = (head)->prev, prefetch(pos->prev); pos != (head); \
366        	pos = pos->prev, prefetch(pos->prev))
367
368/**
369 * list_for_each_safe	-	iterate over a list safe against removal of list entry
370 * @pos:	the &struct list_head to use as a loop counter.
371 * @n:		another &struct list_head to use as temporary storage
372 * @head:	the head for your list.
373 */
374#define list_for_each_safe(pos, n, head) \
375	for (pos = (head)->next, n = pos->next; pos != (head); \
376		pos = n, n = pos->next)
377
378/**
379 * list_for_each_entry	-	iterate over list of given type
380 * @pos:	the type * to use as a loop counter.
381 * @head:	the head for your list.
382 * @member:	the name of the list_struct within the struct.
383 */
384#define list_for_each_entry(pos, head, member)				\
385	for (pos = list_entry((head)->next, typeof(*pos), member),	\
386		     prefetch(pos->member.next);			\
387	     &pos->member != (head); 					\
388	     pos = list_entry(pos->member.next, typeof(*pos), member),	\
389		     prefetch(pos->member.next))
390
391/**
392 * list_for_each_entry_reverse - iterate backwards over list of given type.
393 * @pos:	the type * to use as a loop counter.
394 * @head:	the head for your list.
395 * @member:	the name of the list_struct within the struct.
396 */
397#define list_for_each_entry_reverse(pos, head, member)			\
398	for (pos = list_entry((head)->prev, typeof(*pos), member),	\
399		     prefetch(pos->member.prev);			\
400	     &pos->member != (head); 					\
401	     pos = list_entry(pos->member.prev, typeof(*pos), member),	\
402		     prefetch(pos->member.prev))
403
404/**
405 * list_prepare_entry - prepare a pos entry for use as a start point in
406 *			list_for_each_entry_continue
407 * @pos:	the type * to use as a start point
408 * @head:	the head of the list
409 * @member:	the name of the list_struct within the struct.
410 */
411#define list_prepare_entry(pos, head, member) \
412	((pos) ? : list_entry(head, typeof(*pos), member))
413
414/**
415 * list_for_each_entry_continue -	iterate over list of given type
416 *			continuing after existing point
417 * @pos:	the type * to use as a loop counter.
418 * @head:	the head for your list.
419 * @member:	the name of the list_struct within the struct.
420 */
421#define list_for_each_entry_continue(pos, head, member) 		\
422	for (pos = list_entry(pos->member.next, typeof(*pos), member),	\
423		     prefetch(pos->member.next);			\
424	     &pos->member != (head);					\
425	     pos = list_entry(pos->member.next, typeof(*pos), member),	\
426		     prefetch(pos->member.next))
427
428/**
429 * list_for_each_entry_safe - iterate over list of given type safe against removal of list entry
430 * @pos:	the type * to use as a loop counter.
431 * @n:		another type * to use as temporary storage
432 * @head:	the head for your list.
433 * @member:	the name of the list_struct within the struct.
434 */
435#define list_for_each_entry_safe(pos, n, head, member)			\
436	for (pos = list_entry((head)->next, typeof(*pos), member),	\
437		n = list_entry(pos->member.next, typeof(*pos), member);	\
438	     &pos->member != (head); 					\
439	     pos = n, n = list_entry(n->member.next, typeof(*n), member))
440
441/**
442 * list_for_each_rcu	-	iterate over an rcu-protected list
443 * @pos:	the &struct list_head to use as a loop counter.
444 * @head:	the head for your list.
445 *
446 * This list-traversal primitive may safely run concurrently with
447 * the _rcu list-mutation primitives such as list_add_rcu()
448 * as long as the traversal is guarded by rcu_read_lock().
449 */
450#define list_for_each_rcu(pos, head) \
451	for (pos = (head)->next, prefetch(pos->next); pos != (head); \
452        	pos = pos->next, ({ smp_read_barrier_depends(); 0;}), prefetch(pos->next))
453
454#define __list_for_each_rcu(pos, head) \
455	for (pos = (head)->next; pos != (head); \
456        	pos = pos->next, ({ smp_read_barrier_depends(); 0;}))
457
458/**
459 * list_for_each_safe_rcu	-	iterate over an rcu-protected list safe
460 *					against removal of list entry
461 * @pos:	the &struct list_head to use as a loop counter.
462 * @n:		another &struct list_head to use as temporary storage
463 * @head:	the head for your list.
464 *
465 * This list-traversal primitive may safely run concurrently with
466 * the _rcu list-mutation primitives such as list_add_rcu()
467 * as long as the traversal is guarded by rcu_read_lock().
468 */
469#define list_for_each_safe_rcu(pos, n, head) \
470	for (pos = (head)->next, n = pos->next; pos != (head); \
471		pos = n, ({ smp_read_barrier_depends(); 0;}), n = pos->next)
472
473/**
474 * list_for_each_entry_rcu	-	iterate over rcu list of given type
475 * @pos:	the type * to use as a loop counter.
476 * @head:	the head for your list.
477 * @member:	the name of the list_struct within the struct.
478 *
479 * This list-traversal primitive may safely run concurrently with
480 * the _rcu list-mutation primitives such as list_add_rcu()
481 * as long as the traversal is guarded by rcu_read_lock().
482 */
483#define list_for_each_entry_rcu(pos, head, member)			\
484	for (pos = list_entry((head)->next, typeof(*pos), member),	\
485		     prefetch(pos->member.next);			\
486	     &pos->member != (head); 					\
487	     pos = list_entry(pos->member.next, typeof(*pos), member),	\
488		     ({ smp_read_barrier_depends(); 0;}),		\
489		     prefetch(pos->member.next))
490
491
492/**
493 * list_for_each_continue_rcu	-	iterate over an rcu-protected list
494 *			continuing after existing point.
495 * @pos:	the &struct list_head to use as a loop counter.
496 * @head:	the head for your list.
497 *
498 * This list-traversal primitive may safely run concurrently with
499 * the _rcu list-mutation primitives such as list_add_rcu()
500 * as long as the traversal is guarded by rcu_read_lock().
501 */
502#define list_for_each_continue_rcu(pos, head) \
503	for ((pos) = (pos)->next, prefetch((pos)->next); (pos) != (head); \
504        	(pos) = (pos)->next, ({ smp_read_barrier_depends(); 0;}), prefetch((pos)->next))
505
506/*
507 * Double linked lists with a single pointer list head.
508 * Mostly useful for hash tables where the two pointer list head is
509 * too wasteful.
510 * You lose the ability to access the tail in O(1).
511 */
512
513struct hlist_head {
514	struct hlist_node *first;
515};
516
517struct hlist_node {
518	struct hlist_node *next, **pprev;
519};
520
521#define HLIST_HEAD_INIT { .first = NULL }
522#define HLIST_HEAD(name) struct hlist_head name = {  .first = NULL }
523#define INIT_HLIST_HEAD(ptr) ((ptr)->first = NULL)
524#define INIT_HLIST_NODE(ptr) ((ptr)->next = NULL, (ptr)->pprev = NULL)
525
526static inline int hlist_unhashed(const struct hlist_node *h)
527{
528	return !h->pprev;
529}
530
531static inline int hlist_empty(const struct hlist_head *h)
532{
533	return !h->first;
534}
535
536static inline void __hlist_del(struct hlist_node *n)
537{
538	struct hlist_node *next = n->next;
539	struct hlist_node **pprev = n->pprev;
540	*pprev = next;
541	if (next)
542		next->pprev = pprev;
543}
544
545static inline void hlist_del(struct hlist_node *n)
546{
547	__hlist_del(n);
548	n->next = LIST_POISON1;
549	n->pprev = LIST_POISON2;
550}
551
552/**
553 * hlist_del_rcu - deletes entry from hash list without re-initialization
554 * @n: the element to delete from the hash list.
555 *
556 * Note: list_unhashed() on entry does not return true after this,
557 * the entry is in an undefined state. It is useful for RCU based
558 * lockfree traversal.
559 *
560 * In particular, it means that we can not poison the forward
561 * pointers that may still be used for walking the hash list.
562 *
563 * The caller must take whatever precautions are necessary
564 * (such as holding appropriate locks) to avoid racing
565 * with another list-mutation primitive, such as hlist_add_head_rcu()
566 * or hlist_del_rcu(), running on this same list.
567 * However, it is perfectly legal to run concurrently with
568 * the _rcu list-traversal primitives, such as
569 * hlist_for_each_entry().
570 */
571static inline void hlist_del_rcu(struct hlist_node *n)
572{
573	__hlist_del(n);
574	n->pprev = LIST_POISON2;
575}
576
577static inline void hlist_del_init(struct hlist_node *n)
578{
579	if (n->pprev)  {
580		__hlist_del(n);
581		INIT_HLIST_NODE(n);
582	}
583}
584
585#define hlist_del_rcu_init hlist_del_init
586
587static inline void hlist_add_head(struct hlist_node *n, struct hlist_head *h)
588{
589	struct hlist_node *first = h->first;
590	n->next = first;
591	if (first)
592		first->pprev = &n->next;
593	h->first = n;
594	n->pprev = &h->first;
595}
596
597
598/**
599 * hlist_add_head_rcu - adds the specified element to the specified hlist,
600 * while permitting racing traversals.
601 * @n: the element to add to the hash list.
602 * @h: the list to add to.
603 *
604 * The caller must take whatever precautions are necessary
605 * (such as holding appropriate locks) to avoid racing
606 * with another list-mutation primitive, such as hlist_add_head_rcu()
607 * or hlist_del_rcu(), running on this same list.
608 * However, it is perfectly legal to run concurrently with
609 * the _rcu list-traversal primitives, such as
610 * hlist_for_each_entry(), but only if smp_read_barrier_depends()
611 * is used to prevent memory-consistency problems on Alpha CPUs.
612 * Regardless of the type of CPU, the list-traversal primitive
613 * must be guarded by rcu_read_lock().
614 *
615 * OK, so why don't we have an hlist_for_each_entry_rcu()???
616 */
617static inline void hlist_add_head_rcu(struct hlist_node *n,
618					struct hlist_head *h)
619{
620	struct hlist_node *first = h->first;
621	n->next = first;
622	n->pprev = &h->first;
623	smp_wmb();
624	if (first)
625		first->pprev = &n->next;
626	h->first = n;
627}
628
629/* next must be != NULL */
630static inline void hlist_add_before(struct hlist_node *n,
631					struct hlist_node *next)
632{
633	n->pprev = next->pprev;
634	n->next = next;
635	next->pprev = &n->next;
636	*(n->pprev) = n;
637}
638
639static inline void hlist_add_after(struct hlist_node *n,
640					struct hlist_node *next)
641{
642	next->next = n->next;
643	n->next = next;
644	next->pprev = &n->next;
645
646	if(next->next)
647		next->next->pprev  = &next->next;
648}
649
650#define hlist_entry(ptr, type, member) container_of(ptr,type,member)
651
652#define hlist_for_each(pos, head) \
653	for (pos = (head)->first; pos && ({ prefetch(pos->next); 1; }); \
654	     pos = pos->next)
655
656#define hlist_for_each_safe(pos, n, head) \
657	for (pos = (head)->first; pos && ({ n = pos->next; 1; }); \
658	     pos = n)
659
660/**
661 * hlist_for_each_entry	- iterate over list of given type
662 * @tpos:	the type * to use as a loop counter.
663 * @pos:	the &struct hlist_node to use as a loop counter.
664 * @head:	the head for your list.
665 * @member:	the name of the hlist_node within the struct.
666 */
667#define hlist_for_each_entry(tpos, pos, head, member)			 \
668	for (pos = (head)->first;					 \
669	     pos && ({ prefetch(pos->next); 1;}) &&			 \
670		({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
671	     pos = pos->next)
672
673/**
674 * hlist_for_each_entry_continue - iterate over a hlist continuing after existing point
675 * @tpos:	the type * to use as a loop counter.
676 * @pos:	the &struct hlist_node to use as a loop counter.
677 * @member:	the name of the hlist_node within the struct.
678 */
679#define hlist_for_each_entry_continue(tpos, pos, member)		 \
680	for (pos = (pos)->next;						 \
681	     pos && ({ prefetch(pos->next); 1;}) &&			 \
682		({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
683	     pos = pos->next)
684
685/**
686 * hlist_for_each_entry_from - iterate over a hlist continuing from existing point
687 * @tpos:	the type * to use as a loop counter.
688 * @pos:	the &struct hlist_node to use as a loop counter.
689 * @member:	the name of the hlist_node within the struct.
690 */
691#define hlist_for_each_entry_from(tpos, pos, member)			 \
692	for (; pos && ({ prefetch(pos->next); 1;}) &&			 \
693		({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
694	     pos = pos->next)
695
696/**
697 * hlist_for_each_entry_safe - iterate over list of given type safe against removal of list entry
698 * @tpos:	the type * to use as a loop counter.
699 * @pos:	the &struct hlist_node to use as a loop counter.
700 * @n:		another &struct hlist_node to use as temporary storage
701 * @head:	the head for your list.
702 * @member:	the name of the hlist_node within the struct.
703 */
704#define hlist_for_each_entry_safe(tpos, pos, n, head, member) 		 \
705	for (pos = (head)->first;					 \
706	     pos && ({ n = pos->next; 1; }) && 				 \
707		({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
708	     pos = n)
709
710/**
711 * hlist_for_each_entry_rcu - iterate over rcu list of given type
712 * @pos:	the type * to use as a loop counter.
713 * @pos:	the &struct hlist_node to use as a loop counter.
714 * @head:	the head for your list.
715 * @member:	the name of the hlist_node within the struct.
716 *
717 * This list-traversal primitive may safely run concurrently with
718 * the _rcu list-mutation primitives such as hlist_add_rcu()
719 * as long as the traversal is guarded by rcu_read_lock().
720 */
721#define hlist_for_each_entry_rcu(tpos, pos, head, member)		 \
722	for (pos = (head)->first;					 \
723	     pos && ({ prefetch(pos->next); 1;}) &&			 \
724		({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
725	     pos = pos->next, ({ smp_read_barrier_depends(); 0; }) )
726
727#endif
728