1/*
2 *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
3 *
4 *  Use of this source code is governed by a BSD-style license
5 *  that can be found in the LICENSE file in the root of the source
6 *  tree. An additional intellectual property rights grant can be found
7 *  in the file PATENTS.  All contributing project authors may
8 *  be found in the AUTHORS file in the root of the source tree.
9 */
10
11#include <assert.h>
12#include <stdlib.h>  // qsort()
13
14#include "./vp9_rtcd.h"
15#include "./vpx_dsp_rtcd.h"
16#include "./vpx_scale_rtcd.h"
17
18#include "vpx_dsp/bitreader_buffer.h"
19#include "vpx_dsp/bitreader.h"
20#include "vpx_dsp/vpx_dsp_common.h"
21#include "vpx_mem/vpx_mem.h"
22#include "vpx_ports/mem.h"
23#include "vpx_ports/mem_ops.h"
24#include "vpx_scale/vpx_scale.h"
25#include "vpx_util/vpx_thread.h"
26
27#include "vp9/common/vp9_alloccommon.h"
28#include "vp9/common/vp9_common.h"
29#include "vp9/common/vp9_entropy.h"
30#include "vp9/common/vp9_entropymode.h"
31#include "vp9/common/vp9_idct.h"
32#include "vp9/common/vp9_thread_common.h"
33#include "vp9/common/vp9_pred_common.h"
34#include "vp9/common/vp9_quant_common.h"
35#include "vp9/common/vp9_reconintra.h"
36#include "vp9/common/vp9_reconinter.h"
37#include "vp9/common/vp9_seg_common.h"
38#include "vp9/common/vp9_tile_common.h"
39
40#include "vp9/decoder/vp9_decodeframe.h"
41#include "vp9/decoder/vp9_detokenize.h"
42#include "vp9/decoder/vp9_decodemv.h"
43#include "vp9/decoder/vp9_decoder.h"
44#include "vp9/decoder/vp9_dsubexp.h"
45
46#define MAX_VP9_HEADER_SIZE 80
47
48static int is_compound_reference_allowed(const VP9_COMMON *cm) {
49  int i;
50  for (i = 1; i < REFS_PER_FRAME; ++i)
51    if (cm->ref_frame_sign_bias[i + 1] != cm->ref_frame_sign_bias[1]) return 1;
52
53  return 0;
54}
55
56static void setup_compound_reference_mode(VP9_COMMON *cm) {
57  if (cm->ref_frame_sign_bias[LAST_FRAME] ==
58      cm->ref_frame_sign_bias[GOLDEN_FRAME]) {
59    cm->comp_fixed_ref = ALTREF_FRAME;
60    cm->comp_var_ref[0] = LAST_FRAME;
61    cm->comp_var_ref[1] = GOLDEN_FRAME;
62  } else if (cm->ref_frame_sign_bias[LAST_FRAME] ==
63             cm->ref_frame_sign_bias[ALTREF_FRAME]) {
64    cm->comp_fixed_ref = GOLDEN_FRAME;
65    cm->comp_var_ref[0] = LAST_FRAME;
66    cm->comp_var_ref[1] = ALTREF_FRAME;
67  } else {
68    cm->comp_fixed_ref = LAST_FRAME;
69    cm->comp_var_ref[0] = GOLDEN_FRAME;
70    cm->comp_var_ref[1] = ALTREF_FRAME;
71  }
72}
73
74static int read_is_valid(const uint8_t *start, size_t len, const uint8_t *end) {
75  return len != 0 && len <= (size_t)(end - start);
76}
77
78static int decode_unsigned_max(struct vpx_read_bit_buffer *rb, int max) {
79  const int data = vpx_rb_read_literal(rb, get_unsigned_bits(max));
80  return data > max ? max : data;
81}
82
83static TX_MODE read_tx_mode(vpx_reader *r) {
84  TX_MODE tx_mode = vpx_read_literal(r, 2);
85  if (tx_mode == ALLOW_32X32) tx_mode += vpx_read_bit(r);
86  return tx_mode;
87}
88
89static void read_tx_mode_probs(struct tx_probs *tx_probs, vpx_reader *r) {
90  int i, j;
91
92  for (i = 0; i < TX_SIZE_CONTEXTS; ++i)
93    for (j = 0; j < TX_SIZES - 3; ++j)
94      vp9_diff_update_prob(r, &tx_probs->p8x8[i][j]);
95
96  for (i = 0; i < TX_SIZE_CONTEXTS; ++i)
97    for (j = 0; j < TX_SIZES - 2; ++j)
98      vp9_diff_update_prob(r, &tx_probs->p16x16[i][j]);
99
100  for (i = 0; i < TX_SIZE_CONTEXTS; ++i)
101    for (j = 0; j < TX_SIZES - 1; ++j)
102      vp9_diff_update_prob(r, &tx_probs->p32x32[i][j]);
103}
104
105static void read_switchable_interp_probs(FRAME_CONTEXT *fc, vpx_reader *r) {
106  int i, j;
107  for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j)
108    for (i = 0; i < SWITCHABLE_FILTERS - 1; ++i)
109      vp9_diff_update_prob(r, &fc->switchable_interp_prob[j][i]);
110}
111
112static void read_inter_mode_probs(FRAME_CONTEXT *fc, vpx_reader *r) {
113  int i, j;
114  for (i = 0; i < INTER_MODE_CONTEXTS; ++i)
115    for (j = 0; j < INTER_MODES - 1; ++j)
116      vp9_diff_update_prob(r, &fc->inter_mode_probs[i][j]);
117}
118
119static REFERENCE_MODE read_frame_reference_mode(const VP9_COMMON *cm,
120                                                vpx_reader *r) {
121  if (is_compound_reference_allowed(cm)) {
122    return vpx_read_bit(r)
123               ? (vpx_read_bit(r) ? REFERENCE_MODE_SELECT : COMPOUND_REFERENCE)
124               : SINGLE_REFERENCE;
125  } else {
126    return SINGLE_REFERENCE;
127  }
128}
129
130static void read_frame_reference_mode_probs(VP9_COMMON *cm, vpx_reader *r) {
131  FRAME_CONTEXT *const fc = cm->fc;
132  int i;
133
134  if (cm->reference_mode == REFERENCE_MODE_SELECT)
135    for (i = 0; i < COMP_INTER_CONTEXTS; ++i)
136      vp9_diff_update_prob(r, &fc->comp_inter_prob[i]);
137
138  if (cm->reference_mode != COMPOUND_REFERENCE)
139    for (i = 0; i < REF_CONTEXTS; ++i) {
140      vp9_diff_update_prob(r, &fc->single_ref_prob[i][0]);
141      vp9_diff_update_prob(r, &fc->single_ref_prob[i][1]);
142    }
143
144  if (cm->reference_mode != SINGLE_REFERENCE)
145    for (i = 0; i < REF_CONTEXTS; ++i)
146      vp9_diff_update_prob(r, &fc->comp_ref_prob[i]);
147}
148
149static void update_mv_probs(vpx_prob *p, int n, vpx_reader *r) {
150  int i;
151  for (i = 0; i < n; ++i)
152    if (vpx_read(r, MV_UPDATE_PROB)) p[i] = (vpx_read_literal(r, 7) << 1) | 1;
153}
154
155static void read_mv_probs(nmv_context *ctx, int allow_hp, vpx_reader *r) {
156  int i, j;
157
158  update_mv_probs(ctx->joints, MV_JOINTS - 1, r);
159
160  for (i = 0; i < 2; ++i) {
161    nmv_component *const comp_ctx = &ctx->comps[i];
162    update_mv_probs(&comp_ctx->sign, 1, r);
163    update_mv_probs(comp_ctx->classes, MV_CLASSES - 1, r);
164    update_mv_probs(comp_ctx->class0, CLASS0_SIZE - 1, r);
165    update_mv_probs(comp_ctx->bits, MV_OFFSET_BITS, r);
166  }
167
168  for (i = 0; i < 2; ++i) {
169    nmv_component *const comp_ctx = &ctx->comps[i];
170    for (j = 0; j < CLASS0_SIZE; ++j)
171      update_mv_probs(comp_ctx->class0_fp[j], MV_FP_SIZE - 1, r);
172    update_mv_probs(comp_ctx->fp, 3, r);
173  }
174
175  if (allow_hp) {
176    for (i = 0; i < 2; ++i) {
177      nmv_component *const comp_ctx = &ctx->comps[i];
178      update_mv_probs(&comp_ctx->class0_hp, 1, r);
179      update_mv_probs(&comp_ctx->hp, 1, r);
180    }
181  }
182}
183
184static void inverse_transform_block_inter(MACROBLOCKD *xd, int plane,
185                                          const TX_SIZE tx_size, uint8_t *dst,
186                                          int stride, int eob) {
187  struct macroblockd_plane *const pd = &xd->plane[plane];
188  tran_low_t *const dqcoeff = pd->dqcoeff;
189  assert(eob > 0);
190#if CONFIG_VP9_HIGHBITDEPTH
191  if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
192    uint16_t *const dst16 = CONVERT_TO_SHORTPTR(dst);
193    if (xd->lossless) {
194      vp9_highbd_iwht4x4_add(dqcoeff, dst16, stride, eob, xd->bd);
195    } else {
196      switch (tx_size) {
197        case TX_4X4:
198          vp9_highbd_idct4x4_add(dqcoeff, dst16, stride, eob, xd->bd);
199          break;
200        case TX_8X8:
201          vp9_highbd_idct8x8_add(dqcoeff, dst16, stride, eob, xd->bd);
202          break;
203        case TX_16X16:
204          vp9_highbd_idct16x16_add(dqcoeff, dst16, stride, eob, xd->bd);
205          break;
206        case TX_32X32:
207          vp9_highbd_idct32x32_add(dqcoeff, dst16, stride, eob, xd->bd);
208          break;
209        default: assert(0 && "Invalid transform size");
210      }
211    }
212  } else {
213    if (xd->lossless) {
214      vp9_iwht4x4_add(dqcoeff, dst, stride, eob);
215    } else {
216      switch (tx_size) {
217        case TX_4X4: vp9_idct4x4_add(dqcoeff, dst, stride, eob); break;
218        case TX_8X8: vp9_idct8x8_add(dqcoeff, dst, stride, eob); break;
219        case TX_16X16: vp9_idct16x16_add(dqcoeff, dst, stride, eob); break;
220        case TX_32X32: vp9_idct32x32_add(dqcoeff, dst, stride, eob); break;
221        default: assert(0 && "Invalid transform size"); return;
222      }
223    }
224  }
225#else
226  if (xd->lossless) {
227    vp9_iwht4x4_add(dqcoeff, dst, stride, eob);
228  } else {
229    switch (tx_size) {
230      case TX_4X4: vp9_idct4x4_add(dqcoeff, dst, stride, eob); break;
231      case TX_8X8: vp9_idct8x8_add(dqcoeff, dst, stride, eob); break;
232      case TX_16X16: vp9_idct16x16_add(dqcoeff, dst, stride, eob); break;
233      case TX_32X32: vp9_idct32x32_add(dqcoeff, dst, stride, eob); break;
234      default: assert(0 && "Invalid transform size"); return;
235    }
236  }
237#endif  // CONFIG_VP9_HIGHBITDEPTH
238
239  if (eob == 1) {
240    dqcoeff[0] = 0;
241  } else {
242    if (tx_size <= TX_16X16 && eob <= 10)
243      memset(dqcoeff, 0, 4 * (4 << tx_size) * sizeof(dqcoeff[0]));
244    else if (tx_size == TX_32X32 && eob <= 34)
245      memset(dqcoeff, 0, 256 * sizeof(dqcoeff[0]));
246    else
247      memset(dqcoeff, 0, (16 << (tx_size << 1)) * sizeof(dqcoeff[0]));
248  }
249}
250
251static void inverse_transform_block_intra(MACROBLOCKD *xd, int plane,
252                                          const TX_TYPE tx_type,
253                                          const TX_SIZE tx_size, uint8_t *dst,
254                                          int stride, int eob) {
255  struct macroblockd_plane *const pd = &xd->plane[plane];
256  tran_low_t *const dqcoeff = pd->dqcoeff;
257  assert(eob > 0);
258#if CONFIG_VP9_HIGHBITDEPTH
259  if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
260    uint16_t *const dst16 = CONVERT_TO_SHORTPTR(dst);
261    if (xd->lossless) {
262      vp9_highbd_iwht4x4_add(dqcoeff, dst16, stride, eob, xd->bd);
263    } else {
264      switch (tx_size) {
265        case TX_4X4:
266          vp9_highbd_iht4x4_add(tx_type, dqcoeff, dst16, stride, eob, xd->bd);
267          break;
268        case TX_8X8:
269          vp9_highbd_iht8x8_add(tx_type, dqcoeff, dst16, stride, eob, xd->bd);
270          break;
271        case TX_16X16:
272          vp9_highbd_iht16x16_add(tx_type, dqcoeff, dst16, stride, eob, xd->bd);
273          break;
274        case TX_32X32:
275          vp9_highbd_idct32x32_add(dqcoeff, dst16, stride, eob, xd->bd);
276          break;
277        default: assert(0 && "Invalid transform size");
278      }
279    }
280  } else {
281    if (xd->lossless) {
282      vp9_iwht4x4_add(dqcoeff, dst, stride, eob);
283    } else {
284      switch (tx_size) {
285        case TX_4X4: vp9_iht4x4_add(tx_type, dqcoeff, dst, stride, eob); break;
286        case TX_8X8: vp9_iht8x8_add(tx_type, dqcoeff, dst, stride, eob); break;
287        case TX_16X16:
288          vp9_iht16x16_add(tx_type, dqcoeff, dst, stride, eob);
289          break;
290        case TX_32X32: vp9_idct32x32_add(dqcoeff, dst, stride, eob); break;
291        default: assert(0 && "Invalid transform size"); return;
292      }
293    }
294  }
295#else
296  if (xd->lossless) {
297    vp9_iwht4x4_add(dqcoeff, dst, stride, eob);
298  } else {
299    switch (tx_size) {
300      case TX_4X4: vp9_iht4x4_add(tx_type, dqcoeff, dst, stride, eob); break;
301      case TX_8X8: vp9_iht8x8_add(tx_type, dqcoeff, dst, stride, eob); break;
302      case TX_16X16:
303        vp9_iht16x16_add(tx_type, dqcoeff, dst, stride, eob);
304        break;
305      case TX_32X32: vp9_idct32x32_add(dqcoeff, dst, stride, eob); break;
306      default: assert(0 && "Invalid transform size"); return;
307    }
308  }
309#endif  // CONFIG_VP9_HIGHBITDEPTH
310
311  if (eob == 1) {
312    dqcoeff[0] = 0;
313  } else {
314    if (tx_type == DCT_DCT && tx_size <= TX_16X16 && eob <= 10)
315      memset(dqcoeff, 0, 4 * (4 << tx_size) * sizeof(dqcoeff[0]));
316    else if (tx_size == TX_32X32 && eob <= 34)
317      memset(dqcoeff, 0, 256 * sizeof(dqcoeff[0]));
318    else
319      memset(dqcoeff, 0, (16 << (tx_size << 1)) * sizeof(dqcoeff[0]));
320  }
321}
322
323static void predict_and_reconstruct_intra_block(TileWorkerData *twd,
324                                                MODE_INFO *const mi, int plane,
325                                                int row, int col,
326                                                TX_SIZE tx_size) {
327  MACROBLOCKD *const xd = &twd->xd;
328  struct macroblockd_plane *const pd = &xd->plane[plane];
329  PREDICTION_MODE mode = (plane == 0) ? mi->mode : mi->uv_mode;
330  uint8_t *dst;
331  dst = &pd->dst.buf[4 * row * pd->dst.stride + 4 * col];
332
333  if (mi->sb_type < BLOCK_8X8)
334    if (plane == 0) mode = xd->mi[0]->bmi[(row << 1) + col].as_mode;
335
336  vp9_predict_intra_block(xd, pd->n4_wl, tx_size, mode, dst, pd->dst.stride,
337                          dst, pd->dst.stride, col, row, plane);
338
339  if (!mi->skip) {
340    const TX_TYPE tx_type =
341        (plane || xd->lossless) ? DCT_DCT : intra_mode_to_tx_type_lookup[mode];
342    const scan_order *sc = (plane || xd->lossless)
343                               ? &vp9_default_scan_orders[tx_size]
344                               : &vp9_scan_orders[tx_size][tx_type];
345    const int eob = vp9_decode_block_tokens(twd, plane, sc, col, row, tx_size,
346                                            mi->segment_id);
347    if (eob > 0) {
348      inverse_transform_block_intra(xd, plane, tx_type, tx_size, dst,
349                                    pd->dst.stride, eob);
350    }
351  }
352}
353
354static int reconstruct_inter_block(TileWorkerData *twd, MODE_INFO *const mi,
355                                   int plane, int row, int col,
356                                   TX_SIZE tx_size) {
357  MACROBLOCKD *const xd = &twd->xd;
358  struct macroblockd_plane *const pd = &xd->plane[plane];
359  const scan_order *sc = &vp9_default_scan_orders[tx_size];
360  const int eob = vp9_decode_block_tokens(twd, plane, sc, col, row, tx_size,
361                                          mi->segment_id);
362
363  if (eob > 0) {
364    inverse_transform_block_inter(
365        xd, plane, tx_size, &pd->dst.buf[4 * row * pd->dst.stride + 4 * col],
366        pd->dst.stride, eob);
367  }
368  return eob;
369}
370
371static void build_mc_border(const uint8_t *src, int src_stride, uint8_t *dst,
372                            int dst_stride, int x, int y, int b_w, int b_h,
373                            int w, int h) {
374  // Get a pointer to the start of the real data for this row.
375  const uint8_t *ref_row = src - x - y * src_stride;
376
377  if (y >= h)
378    ref_row += (h - 1) * src_stride;
379  else if (y > 0)
380    ref_row += y * src_stride;
381
382  do {
383    int right = 0, copy;
384    int left = x < 0 ? -x : 0;
385
386    if (left > b_w) left = b_w;
387
388    if (x + b_w > w) right = x + b_w - w;
389
390    if (right > b_w) right = b_w;
391
392    copy = b_w - left - right;
393
394    if (left) memset(dst, ref_row[0], left);
395
396    if (copy) memcpy(dst + left, ref_row + x + left, copy);
397
398    if (right) memset(dst + left + copy, ref_row[w - 1], right);
399
400    dst += dst_stride;
401    ++y;
402
403    if (y > 0 && y < h) ref_row += src_stride;
404  } while (--b_h);
405}
406
407#if CONFIG_VP9_HIGHBITDEPTH
408static void high_build_mc_border(const uint8_t *src8, int src_stride,
409                                 uint16_t *dst, int dst_stride, int x, int y,
410                                 int b_w, int b_h, int w, int h) {
411  // Get a pointer to the start of the real data for this row.
412  const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
413  const uint16_t *ref_row = src - x - y * src_stride;
414
415  if (y >= h)
416    ref_row += (h - 1) * src_stride;
417  else if (y > 0)
418    ref_row += y * src_stride;
419
420  do {
421    int right = 0, copy;
422    int left = x < 0 ? -x : 0;
423
424    if (left > b_w) left = b_w;
425
426    if (x + b_w > w) right = x + b_w - w;
427
428    if (right > b_w) right = b_w;
429
430    copy = b_w - left - right;
431
432    if (left) vpx_memset16(dst, ref_row[0], left);
433
434    if (copy) memcpy(dst + left, ref_row + x + left, copy * sizeof(uint16_t));
435
436    if (right) vpx_memset16(dst + left + copy, ref_row[w - 1], right);
437
438    dst += dst_stride;
439    ++y;
440
441    if (y > 0 && y < h) ref_row += src_stride;
442  } while (--b_h);
443}
444#endif  // CONFIG_VP9_HIGHBITDEPTH
445
446#if CONFIG_VP9_HIGHBITDEPTH
447static void extend_and_predict(const uint8_t *buf_ptr1, int pre_buf_stride,
448                               int x0, int y0, int b_w, int b_h,
449                               int frame_width, int frame_height,
450                               int border_offset, uint8_t *const dst,
451                               int dst_buf_stride, int subpel_x, int subpel_y,
452                               const InterpKernel *kernel,
453                               const struct scale_factors *sf, MACROBLOCKD *xd,
454                               int w, int h, int ref, int xs, int ys) {
455  DECLARE_ALIGNED(16, uint16_t, mc_buf_high[80 * 2 * 80 * 2]);
456
457  if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
458    high_build_mc_border(buf_ptr1, pre_buf_stride, mc_buf_high, b_w, x0, y0,
459                         b_w, b_h, frame_width, frame_height);
460    highbd_inter_predictor(mc_buf_high + border_offset, b_w,
461                           CONVERT_TO_SHORTPTR(dst), dst_buf_stride, subpel_x,
462                           subpel_y, sf, w, h, ref, kernel, xs, ys, xd->bd);
463  } else {
464    build_mc_border(buf_ptr1, pre_buf_stride, (uint8_t *)mc_buf_high, b_w, x0,
465                    y0, b_w, b_h, frame_width, frame_height);
466    inter_predictor(((uint8_t *)mc_buf_high) + border_offset, b_w, dst,
467                    dst_buf_stride, subpel_x, subpel_y, sf, w, h, ref, kernel,
468                    xs, ys);
469  }
470}
471#else
472static void extend_and_predict(const uint8_t *buf_ptr1, int pre_buf_stride,
473                               int x0, int y0, int b_w, int b_h,
474                               int frame_width, int frame_height,
475                               int border_offset, uint8_t *const dst,
476                               int dst_buf_stride, int subpel_x, int subpel_y,
477                               const InterpKernel *kernel,
478                               const struct scale_factors *sf, int w, int h,
479                               int ref, int xs, int ys) {
480  DECLARE_ALIGNED(16, uint8_t, mc_buf[80 * 2 * 80 * 2]);
481  const uint8_t *buf_ptr;
482
483  build_mc_border(buf_ptr1, pre_buf_stride, mc_buf, b_w, x0, y0, b_w, b_h,
484                  frame_width, frame_height);
485  buf_ptr = mc_buf + border_offset;
486
487  inter_predictor(buf_ptr, b_w, dst, dst_buf_stride, subpel_x, subpel_y, sf, w,
488                  h, ref, kernel, xs, ys);
489}
490#endif  // CONFIG_VP9_HIGHBITDEPTH
491
492static void dec_build_inter_predictors(
493    VPxWorker *const worker, MACROBLOCKD *xd, int plane, int bw, int bh, int x,
494    int y, int w, int h, int mi_x, int mi_y, const InterpKernel *kernel,
495    const struct scale_factors *sf, struct buf_2d *pre_buf,
496    struct buf_2d *dst_buf, const MV *mv, RefCntBuffer *ref_frame_buf,
497    int is_scaled, int ref) {
498  struct macroblockd_plane *const pd = &xd->plane[plane];
499  uint8_t *const dst = dst_buf->buf + dst_buf->stride * y + x;
500  MV32 scaled_mv;
501  int xs, ys, x0, y0, x0_16, y0_16, frame_width, frame_height, buf_stride,
502      subpel_x, subpel_y;
503  uint8_t *ref_frame, *buf_ptr;
504
505  // Get reference frame pointer, width and height.
506  if (plane == 0) {
507    frame_width = ref_frame_buf->buf.y_crop_width;
508    frame_height = ref_frame_buf->buf.y_crop_height;
509    ref_frame = ref_frame_buf->buf.y_buffer;
510  } else {
511    frame_width = ref_frame_buf->buf.uv_crop_width;
512    frame_height = ref_frame_buf->buf.uv_crop_height;
513    ref_frame =
514        plane == 1 ? ref_frame_buf->buf.u_buffer : ref_frame_buf->buf.v_buffer;
515  }
516
517  if (is_scaled) {
518    const MV mv_q4 = clamp_mv_to_umv_border_sb(
519        xd, mv, bw, bh, pd->subsampling_x, pd->subsampling_y);
520    // Co-ordinate of containing block to pixel precision.
521    int x_start = (-xd->mb_to_left_edge >> (3 + pd->subsampling_x));
522    int y_start = (-xd->mb_to_top_edge >> (3 + pd->subsampling_y));
523#if 0  // CONFIG_BETTER_HW_COMPATIBILITY
524    assert(xd->mi[0]->sb_type != BLOCK_4X8 &&
525           xd->mi[0]->sb_type != BLOCK_8X4);
526    assert(mv_q4.row == mv->row * (1 << (1 - pd->subsampling_y)) &&
527           mv_q4.col == mv->col * (1 << (1 - pd->subsampling_x)));
528#endif
529    // Co-ordinate of the block to 1/16th pixel precision.
530    x0_16 = (x_start + x) << SUBPEL_BITS;
531    y0_16 = (y_start + y) << SUBPEL_BITS;
532
533    // Co-ordinate of current block in reference frame
534    // to 1/16th pixel precision.
535    x0_16 = sf->scale_value_x(x0_16, sf);
536    y0_16 = sf->scale_value_y(y0_16, sf);
537
538    // Map the top left corner of the block into the reference frame.
539    x0 = sf->scale_value_x(x_start + x, sf);
540    y0 = sf->scale_value_y(y_start + y, sf);
541
542    // Scale the MV and incorporate the sub-pixel offset of the block
543    // in the reference frame.
544    scaled_mv = vp9_scale_mv(&mv_q4, mi_x + x, mi_y + y, sf);
545    xs = sf->x_step_q4;
546    ys = sf->y_step_q4;
547  } else {
548    // Co-ordinate of containing block to pixel precision.
549    x0 = (-xd->mb_to_left_edge >> (3 + pd->subsampling_x)) + x;
550    y0 = (-xd->mb_to_top_edge >> (3 + pd->subsampling_y)) + y;
551
552    // Co-ordinate of the block to 1/16th pixel precision.
553    x0_16 = x0 << SUBPEL_BITS;
554    y0_16 = y0 << SUBPEL_BITS;
555
556    scaled_mv.row = mv->row * (1 << (1 - pd->subsampling_y));
557    scaled_mv.col = mv->col * (1 << (1 - pd->subsampling_x));
558    xs = ys = 16;
559  }
560  subpel_x = scaled_mv.col & SUBPEL_MASK;
561  subpel_y = scaled_mv.row & SUBPEL_MASK;
562
563  // Calculate the top left corner of the best matching block in the
564  // reference frame.
565  x0 += scaled_mv.col >> SUBPEL_BITS;
566  y0 += scaled_mv.row >> SUBPEL_BITS;
567  x0_16 += scaled_mv.col;
568  y0_16 += scaled_mv.row;
569
570  // Get reference block pointer.
571  buf_ptr = ref_frame + y0 * pre_buf->stride + x0;
572  buf_stride = pre_buf->stride;
573
574  // Do border extension if there is motion or the
575  // width/height is not a multiple of 8 pixels.
576  if (is_scaled || scaled_mv.col || scaled_mv.row || (frame_width & 0x7) ||
577      (frame_height & 0x7)) {
578    int y1 = ((y0_16 + (h - 1) * ys) >> SUBPEL_BITS) + 1;
579
580    // Get reference block bottom right horizontal coordinate.
581    int x1 = ((x0_16 + (w - 1) * xs) >> SUBPEL_BITS) + 1;
582    int x_pad = 0, y_pad = 0;
583
584    if (subpel_x || (sf->x_step_q4 != SUBPEL_SHIFTS)) {
585      x0 -= VP9_INTERP_EXTEND - 1;
586      x1 += VP9_INTERP_EXTEND;
587      x_pad = 1;
588    }
589
590    if (subpel_y || (sf->y_step_q4 != SUBPEL_SHIFTS)) {
591      y0 -= VP9_INTERP_EXTEND - 1;
592      y1 += VP9_INTERP_EXTEND;
593      y_pad = 1;
594    }
595
596    // Wait until reference block is ready. Pad 7 more pixels as last 7
597    // pixels of each superblock row can be changed by next superblock row.
598    if (worker != NULL)
599      vp9_frameworker_wait(worker, ref_frame_buf, VPXMAX(0, (y1 + 7))
600                                                      << (plane == 0 ? 0 : 1));
601
602    // Skip border extension if block is inside the frame.
603    if (x0 < 0 || x0 > frame_width - 1 || x1 < 0 || x1 > frame_width - 1 ||
604        y0 < 0 || y0 > frame_height - 1 || y1 < 0 || y1 > frame_height - 1) {
605      // Extend the border.
606      const uint8_t *const buf_ptr1 = ref_frame + y0 * buf_stride + x0;
607      const int b_w = x1 - x0 + 1;
608      const int b_h = y1 - y0 + 1;
609      const int border_offset = y_pad * 3 * b_w + x_pad * 3;
610
611      extend_and_predict(buf_ptr1, buf_stride, x0, y0, b_w, b_h, frame_width,
612                         frame_height, border_offset, dst, dst_buf->stride,
613                         subpel_x, subpel_y, kernel, sf,
614#if CONFIG_VP9_HIGHBITDEPTH
615                         xd,
616#endif
617                         w, h, ref, xs, ys);
618      return;
619    }
620  } else {
621    // Wait until reference block is ready. Pad 7 more pixels as last 7
622    // pixels of each superblock row can be changed by next superblock row.
623    if (worker != NULL) {
624      const int y1 = (y0_16 + (h - 1) * ys) >> SUBPEL_BITS;
625      vp9_frameworker_wait(worker, ref_frame_buf, VPXMAX(0, (y1 + 7))
626                                                      << (plane == 0 ? 0 : 1));
627    }
628  }
629#if CONFIG_VP9_HIGHBITDEPTH
630  if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
631    highbd_inter_predictor(CONVERT_TO_SHORTPTR(buf_ptr), buf_stride,
632                           CONVERT_TO_SHORTPTR(dst), dst_buf->stride, subpel_x,
633                           subpel_y, sf, w, h, ref, kernel, xs, ys, xd->bd);
634  } else {
635    inter_predictor(buf_ptr, buf_stride, dst, dst_buf->stride, subpel_x,
636                    subpel_y, sf, w, h, ref, kernel, xs, ys);
637  }
638#else
639  inter_predictor(buf_ptr, buf_stride, dst, dst_buf->stride, subpel_x, subpel_y,
640                  sf, w, h, ref, kernel, xs, ys);
641#endif  // CONFIG_VP9_HIGHBITDEPTH
642}
643
644static void dec_build_inter_predictors_sb(VP9Decoder *const pbi,
645                                          MACROBLOCKD *xd, int mi_row,
646                                          int mi_col) {
647  int plane;
648  const int mi_x = mi_col * MI_SIZE;
649  const int mi_y = mi_row * MI_SIZE;
650  const MODE_INFO *mi = xd->mi[0];
651  const InterpKernel *kernel = vp9_filter_kernels[mi->interp_filter];
652  const BLOCK_SIZE sb_type = mi->sb_type;
653  const int is_compound = has_second_ref(mi);
654  int ref;
655  int is_scaled;
656  VPxWorker *const fwo =
657      pbi->frame_parallel_decode ? pbi->frame_worker_owner : NULL;
658
659  for (ref = 0; ref < 1 + is_compound; ++ref) {
660    const MV_REFERENCE_FRAME frame = mi->ref_frame[ref];
661    RefBuffer *ref_buf = &pbi->common.frame_refs[frame - LAST_FRAME];
662    const struct scale_factors *const sf = &ref_buf->sf;
663    const int idx = ref_buf->idx;
664    BufferPool *const pool = pbi->common.buffer_pool;
665    RefCntBuffer *const ref_frame_buf = &pool->frame_bufs[idx];
666
667    if (!vp9_is_valid_scale(sf))
668      vpx_internal_error(xd->error_info, VPX_CODEC_UNSUP_BITSTREAM,
669                         "Reference frame has invalid dimensions");
670
671    is_scaled = vp9_is_scaled(sf);
672    vp9_setup_pre_planes(xd, ref, ref_buf->buf, mi_row, mi_col,
673                         is_scaled ? sf : NULL);
674    xd->block_refs[ref] = ref_buf;
675
676    if (sb_type < BLOCK_8X8) {
677      for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
678        struct macroblockd_plane *const pd = &xd->plane[plane];
679        struct buf_2d *const dst_buf = &pd->dst;
680        const int num_4x4_w = pd->n4_w;
681        const int num_4x4_h = pd->n4_h;
682        const int n4w_x4 = 4 * num_4x4_w;
683        const int n4h_x4 = 4 * num_4x4_h;
684        struct buf_2d *const pre_buf = &pd->pre[ref];
685        int i = 0, x, y;
686        for (y = 0; y < num_4x4_h; ++y) {
687          for (x = 0; x < num_4x4_w; ++x) {
688            const MV mv = average_split_mvs(pd, mi, ref, i++);
689            dec_build_inter_predictors(fwo, xd, plane, n4w_x4, n4h_x4, 4 * x,
690                                       4 * y, 4, 4, mi_x, mi_y, kernel, sf,
691                                       pre_buf, dst_buf, &mv, ref_frame_buf,
692                                       is_scaled, ref);
693          }
694        }
695      }
696    } else {
697      const MV mv = mi->mv[ref].as_mv;
698      for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
699        struct macroblockd_plane *const pd = &xd->plane[plane];
700        struct buf_2d *const dst_buf = &pd->dst;
701        const int num_4x4_w = pd->n4_w;
702        const int num_4x4_h = pd->n4_h;
703        const int n4w_x4 = 4 * num_4x4_w;
704        const int n4h_x4 = 4 * num_4x4_h;
705        struct buf_2d *const pre_buf = &pd->pre[ref];
706        dec_build_inter_predictors(fwo, xd, plane, n4w_x4, n4h_x4, 0, 0, n4w_x4,
707                                   n4h_x4, mi_x, mi_y, kernel, sf, pre_buf,
708                                   dst_buf, &mv, ref_frame_buf, is_scaled, ref);
709      }
710    }
711  }
712}
713
714static INLINE void dec_reset_skip_context(MACROBLOCKD *xd) {
715  int i;
716  for (i = 0; i < MAX_MB_PLANE; i++) {
717    struct macroblockd_plane *const pd = &xd->plane[i];
718    memset(pd->above_context, 0, sizeof(ENTROPY_CONTEXT) * pd->n4_w);
719    memset(pd->left_context, 0, sizeof(ENTROPY_CONTEXT) * pd->n4_h);
720  }
721}
722
723static void set_plane_n4(MACROBLOCKD *const xd, int bw, int bh, int bwl,
724                         int bhl) {
725  int i;
726  for (i = 0; i < MAX_MB_PLANE; i++) {
727    xd->plane[i].n4_w = (bw << 1) >> xd->plane[i].subsampling_x;
728    xd->plane[i].n4_h = (bh << 1) >> xd->plane[i].subsampling_y;
729    xd->plane[i].n4_wl = bwl - xd->plane[i].subsampling_x;
730    xd->plane[i].n4_hl = bhl - xd->plane[i].subsampling_y;
731  }
732}
733
734static MODE_INFO *set_offsets(VP9_COMMON *const cm, MACROBLOCKD *const xd,
735                              BLOCK_SIZE bsize, int mi_row, int mi_col, int bw,
736                              int bh, int x_mis, int y_mis, int bwl, int bhl) {
737  const int offset = mi_row * cm->mi_stride + mi_col;
738  int x, y;
739  const TileInfo *const tile = &xd->tile;
740
741  xd->mi = cm->mi_grid_visible + offset;
742  xd->mi[0] = &cm->mi[offset];
743  // TODO(slavarnway): Generate sb_type based on bwl and bhl, instead of
744  // passing bsize from decode_partition().
745  xd->mi[0]->sb_type = bsize;
746  for (y = 0; y < y_mis; ++y)
747    for (x = !y; x < x_mis; ++x) {
748      xd->mi[y * cm->mi_stride + x] = xd->mi[0];
749    }
750
751  set_plane_n4(xd, bw, bh, bwl, bhl);
752
753  set_skip_context(xd, mi_row, mi_col);
754
755  // Distance of Mb to the various image edges. These are specified to 8th pel
756  // as they are always compared to values that are in 1/8th pel units
757  set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, cm->mi_rows, cm->mi_cols);
758
759  vp9_setup_dst_planes(xd->plane, get_frame_new_buffer(cm), mi_row, mi_col);
760  return xd->mi[0];
761}
762
763static void decode_block(TileWorkerData *twd, VP9Decoder *const pbi, int mi_row,
764                         int mi_col, BLOCK_SIZE bsize, int bwl, int bhl) {
765  VP9_COMMON *const cm = &pbi->common;
766  const int less8x8 = bsize < BLOCK_8X8;
767  const int bw = 1 << (bwl - 1);
768  const int bh = 1 << (bhl - 1);
769  const int x_mis = VPXMIN(bw, cm->mi_cols - mi_col);
770  const int y_mis = VPXMIN(bh, cm->mi_rows - mi_row);
771  vpx_reader *r = &twd->bit_reader;
772  MACROBLOCKD *const xd = &twd->xd;
773
774  MODE_INFO *mi = set_offsets(cm, xd, bsize, mi_row, mi_col, bw, bh, x_mis,
775                              y_mis, bwl, bhl);
776
777  if (bsize >= BLOCK_8X8 && (cm->subsampling_x || cm->subsampling_y)) {
778    const BLOCK_SIZE uv_subsize =
779        ss_size_lookup[bsize][cm->subsampling_x][cm->subsampling_y];
780    if (uv_subsize == BLOCK_INVALID)
781      vpx_internal_error(xd->error_info, VPX_CODEC_CORRUPT_FRAME,
782                         "Invalid block size.");
783  }
784
785  vp9_read_mode_info(twd, pbi, mi_row, mi_col, x_mis, y_mis);
786
787  if (mi->skip) {
788    dec_reset_skip_context(xd);
789  }
790
791  if (!is_inter_block(mi)) {
792    int plane;
793    for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
794      const struct macroblockd_plane *const pd = &xd->plane[plane];
795      const TX_SIZE tx_size = plane ? get_uv_tx_size(mi, pd) : mi->tx_size;
796      const int num_4x4_w = pd->n4_w;
797      const int num_4x4_h = pd->n4_h;
798      const int step = (1 << tx_size);
799      int row, col;
800      const int max_blocks_wide =
801          num_4x4_w + (xd->mb_to_right_edge >= 0
802                           ? 0
803                           : xd->mb_to_right_edge >> (5 + pd->subsampling_x));
804      const int max_blocks_high =
805          num_4x4_h + (xd->mb_to_bottom_edge >= 0
806                           ? 0
807                           : xd->mb_to_bottom_edge >> (5 + pd->subsampling_y));
808
809      xd->max_blocks_wide = xd->mb_to_right_edge >= 0 ? 0 : max_blocks_wide;
810      xd->max_blocks_high = xd->mb_to_bottom_edge >= 0 ? 0 : max_blocks_high;
811
812      for (row = 0; row < max_blocks_high; row += step)
813        for (col = 0; col < max_blocks_wide; col += step)
814          predict_and_reconstruct_intra_block(twd, mi, plane, row, col,
815                                              tx_size);
816    }
817  } else {
818    // Prediction
819    dec_build_inter_predictors_sb(pbi, xd, mi_row, mi_col);
820
821    // Reconstruction
822    if (!mi->skip) {
823      int eobtotal = 0;
824      int plane;
825
826      for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
827        const struct macroblockd_plane *const pd = &xd->plane[plane];
828        const TX_SIZE tx_size = plane ? get_uv_tx_size(mi, pd) : mi->tx_size;
829        const int num_4x4_w = pd->n4_w;
830        const int num_4x4_h = pd->n4_h;
831        const int step = (1 << tx_size);
832        int row, col;
833        const int max_blocks_wide =
834            num_4x4_w + (xd->mb_to_right_edge >= 0
835                             ? 0
836                             : xd->mb_to_right_edge >> (5 + pd->subsampling_x));
837        const int max_blocks_high =
838            num_4x4_h +
839            (xd->mb_to_bottom_edge >= 0
840                 ? 0
841                 : xd->mb_to_bottom_edge >> (5 + pd->subsampling_y));
842
843        xd->max_blocks_wide = xd->mb_to_right_edge >= 0 ? 0 : max_blocks_wide;
844        xd->max_blocks_high = xd->mb_to_bottom_edge >= 0 ? 0 : max_blocks_high;
845
846        for (row = 0; row < max_blocks_high; row += step)
847          for (col = 0; col < max_blocks_wide; col += step)
848            eobtotal +=
849                reconstruct_inter_block(twd, mi, plane, row, col, tx_size);
850      }
851
852      if (!less8x8 && eobtotal == 0) mi->skip = 1;  // skip loopfilter
853    }
854  }
855
856  xd->corrupted |= vpx_reader_has_error(r);
857
858  if (cm->lf.filter_level) {
859    vp9_build_mask(cm, mi, mi_row, mi_col, bw, bh);
860  }
861}
862
863static INLINE int dec_partition_plane_context(TileWorkerData *twd, int mi_row,
864                                              int mi_col, int bsl) {
865  const PARTITION_CONTEXT *above_ctx = twd->xd.above_seg_context + mi_col;
866  const PARTITION_CONTEXT *left_ctx =
867      twd->xd.left_seg_context + (mi_row & MI_MASK);
868  int above = (*above_ctx >> bsl) & 1, left = (*left_ctx >> bsl) & 1;
869
870  //  assert(bsl >= 0);
871
872  return (left * 2 + above) + bsl * PARTITION_PLOFFSET;
873}
874
875static INLINE void dec_update_partition_context(TileWorkerData *twd, int mi_row,
876                                                int mi_col, BLOCK_SIZE subsize,
877                                                int bw) {
878  PARTITION_CONTEXT *const above_ctx = twd->xd.above_seg_context + mi_col;
879  PARTITION_CONTEXT *const left_ctx =
880      twd->xd.left_seg_context + (mi_row & MI_MASK);
881
882  // update the partition context at the end notes. set partition bits
883  // of block sizes larger than the current one to be one, and partition
884  // bits of smaller block sizes to be zero.
885  memset(above_ctx, partition_context_lookup[subsize].above, bw);
886  memset(left_ctx, partition_context_lookup[subsize].left, bw);
887}
888
889static PARTITION_TYPE read_partition(TileWorkerData *twd, int mi_row,
890                                     int mi_col, int has_rows, int has_cols,
891                                     int bsl) {
892  const int ctx = dec_partition_plane_context(twd, mi_row, mi_col, bsl);
893  const vpx_prob *const probs = twd->xd.partition_probs[ctx];
894  FRAME_COUNTS *counts = twd->xd.counts;
895  PARTITION_TYPE p;
896  vpx_reader *r = &twd->bit_reader;
897
898  if (has_rows && has_cols)
899    p = (PARTITION_TYPE)vpx_read_tree(r, vp9_partition_tree, probs);
900  else if (!has_rows && has_cols)
901    p = vpx_read(r, probs[1]) ? PARTITION_SPLIT : PARTITION_HORZ;
902  else if (has_rows && !has_cols)
903    p = vpx_read(r, probs[2]) ? PARTITION_SPLIT : PARTITION_VERT;
904  else
905    p = PARTITION_SPLIT;
906
907  if (counts) ++counts->partition[ctx][p];
908
909  return p;
910}
911
912// TODO(slavarnway): eliminate bsize and subsize in future commits
913static void decode_partition(TileWorkerData *twd, VP9Decoder *const pbi,
914                             int mi_row, int mi_col, BLOCK_SIZE bsize,
915                             int n4x4_l2) {
916  VP9_COMMON *const cm = &pbi->common;
917  const int n8x8_l2 = n4x4_l2 - 1;
918  const int num_8x8_wh = 1 << n8x8_l2;
919  const int hbs = num_8x8_wh >> 1;
920  PARTITION_TYPE partition;
921  BLOCK_SIZE subsize;
922  const int has_rows = (mi_row + hbs) < cm->mi_rows;
923  const int has_cols = (mi_col + hbs) < cm->mi_cols;
924  MACROBLOCKD *const xd = &twd->xd;
925
926  if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
927
928  partition = read_partition(twd, mi_row, mi_col, has_rows, has_cols, n8x8_l2);
929  subsize = subsize_lookup[partition][bsize];  // get_subsize(bsize, partition);
930  if (!hbs) {
931    // calculate bmode block dimensions (log 2)
932    xd->bmode_blocks_wl = 1 >> !!(partition & PARTITION_VERT);
933    xd->bmode_blocks_hl = 1 >> !!(partition & PARTITION_HORZ);
934    decode_block(twd, pbi, mi_row, mi_col, subsize, 1, 1);
935  } else {
936    switch (partition) {
937      case PARTITION_NONE:
938        decode_block(twd, pbi, mi_row, mi_col, subsize, n4x4_l2, n4x4_l2);
939        break;
940      case PARTITION_HORZ:
941        decode_block(twd, pbi, mi_row, mi_col, subsize, n4x4_l2, n8x8_l2);
942        if (has_rows)
943          decode_block(twd, pbi, mi_row + hbs, mi_col, subsize, n4x4_l2,
944                       n8x8_l2);
945        break;
946      case PARTITION_VERT:
947        decode_block(twd, pbi, mi_row, mi_col, subsize, n8x8_l2, n4x4_l2);
948        if (has_cols)
949          decode_block(twd, pbi, mi_row, mi_col + hbs, subsize, n8x8_l2,
950                       n4x4_l2);
951        break;
952      case PARTITION_SPLIT:
953        decode_partition(twd, pbi, mi_row, mi_col, subsize, n8x8_l2);
954        decode_partition(twd, pbi, mi_row, mi_col + hbs, subsize, n8x8_l2);
955        decode_partition(twd, pbi, mi_row + hbs, mi_col, subsize, n8x8_l2);
956        decode_partition(twd, pbi, mi_row + hbs, mi_col + hbs, subsize,
957                         n8x8_l2);
958        break;
959      default: assert(0 && "Invalid partition type");
960    }
961  }
962
963  // update partition context
964  if (bsize >= BLOCK_8X8 &&
965      (bsize == BLOCK_8X8 || partition != PARTITION_SPLIT))
966    dec_update_partition_context(twd, mi_row, mi_col, subsize, num_8x8_wh);
967}
968
969static void setup_token_decoder(const uint8_t *data, const uint8_t *data_end,
970                                size_t read_size,
971                                struct vpx_internal_error_info *error_info,
972                                vpx_reader *r, vpx_decrypt_cb decrypt_cb,
973                                void *decrypt_state) {
974  // Validate the calculated partition length. If the buffer
975  // described by the partition can't be fully read, then restrict
976  // it to the portion that can be (for EC mode) or throw an error.
977  if (!read_is_valid(data, read_size, data_end))
978    vpx_internal_error(error_info, VPX_CODEC_CORRUPT_FRAME,
979                       "Truncated packet or corrupt tile length");
980
981  if (vpx_reader_init(r, data, read_size, decrypt_cb, decrypt_state))
982    vpx_internal_error(error_info, VPX_CODEC_MEM_ERROR,
983                       "Failed to allocate bool decoder %d", 1);
984}
985
986static void read_coef_probs_common(vp9_coeff_probs_model *coef_probs,
987                                   vpx_reader *r) {
988  int i, j, k, l, m;
989
990  if (vpx_read_bit(r))
991    for (i = 0; i < PLANE_TYPES; ++i)
992      for (j = 0; j < REF_TYPES; ++j)
993        for (k = 0; k < COEF_BANDS; ++k)
994          for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l)
995            for (m = 0; m < UNCONSTRAINED_NODES; ++m)
996              vp9_diff_update_prob(r, &coef_probs[i][j][k][l][m]);
997}
998
999static void read_coef_probs(FRAME_CONTEXT *fc, TX_MODE tx_mode, vpx_reader *r) {
1000  const TX_SIZE max_tx_size = tx_mode_to_biggest_tx_size[tx_mode];
1001  TX_SIZE tx_size;
1002  for (tx_size = TX_4X4; tx_size <= max_tx_size; ++tx_size)
1003    read_coef_probs_common(fc->coef_probs[tx_size], r);
1004}
1005
1006static void setup_segmentation(struct segmentation *seg,
1007                               struct vpx_read_bit_buffer *rb) {
1008  int i, j;
1009
1010  seg->update_map = 0;
1011  seg->update_data = 0;
1012
1013  seg->enabled = vpx_rb_read_bit(rb);
1014  if (!seg->enabled) return;
1015
1016  // Segmentation map update
1017  seg->update_map = vpx_rb_read_bit(rb);
1018  if (seg->update_map) {
1019    for (i = 0; i < SEG_TREE_PROBS; i++)
1020      seg->tree_probs[i] =
1021          vpx_rb_read_bit(rb) ? vpx_rb_read_literal(rb, 8) : MAX_PROB;
1022
1023    seg->temporal_update = vpx_rb_read_bit(rb);
1024    if (seg->temporal_update) {
1025      for (i = 0; i < PREDICTION_PROBS; i++)
1026        seg->pred_probs[i] =
1027            vpx_rb_read_bit(rb) ? vpx_rb_read_literal(rb, 8) : MAX_PROB;
1028    } else {
1029      for (i = 0; i < PREDICTION_PROBS; i++) seg->pred_probs[i] = MAX_PROB;
1030    }
1031  }
1032
1033  // Segmentation data update
1034  seg->update_data = vpx_rb_read_bit(rb);
1035  if (seg->update_data) {
1036    seg->abs_delta = vpx_rb_read_bit(rb);
1037
1038    vp9_clearall_segfeatures(seg);
1039
1040    for (i = 0; i < MAX_SEGMENTS; i++) {
1041      for (j = 0; j < SEG_LVL_MAX; j++) {
1042        int data = 0;
1043        const int feature_enabled = vpx_rb_read_bit(rb);
1044        if (feature_enabled) {
1045          vp9_enable_segfeature(seg, i, j);
1046          data = decode_unsigned_max(rb, vp9_seg_feature_data_max(j));
1047          if (vp9_is_segfeature_signed(j))
1048            data = vpx_rb_read_bit(rb) ? -data : data;
1049        }
1050        vp9_set_segdata(seg, i, j, data);
1051      }
1052    }
1053  }
1054}
1055
1056static void setup_loopfilter(struct loopfilter *lf,
1057                             struct vpx_read_bit_buffer *rb) {
1058  lf->filter_level = vpx_rb_read_literal(rb, 6);
1059  lf->sharpness_level = vpx_rb_read_literal(rb, 3);
1060
1061  // Read in loop filter deltas applied at the MB level based on mode or ref
1062  // frame.
1063  lf->mode_ref_delta_update = 0;
1064
1065  lf->mode_ref_delta_enabled = vpx_rb_read_bit(rb);
1066  if (lf->mode_ref_delta_enabled) {
1067    lf->mode_ref_delta_update = vpx_rb_read_bit(rb);
1068    if (lf->mode_ref_delta_update) {
1069      int i;
1070
1071      for (i = 0; i < MAX_REF_LF_DELTAS; i++)
1072        if (vpx_rb_read_bit(rb))
1073          lf->ref_deltas[i] = vpx_rb_read_signed_literal(rb, 6);
1074
1075      for (i = 0; i < MAX_MODE_LF_DELTAS; i++)
1076        if (vpx_rb_read_bit(rb))
1077          lf->mode_deltas[i] = vpx_rb_read_signed_literal(rb, 6);
1078    }
1079  }
1080}
1081
1082static INLINE int read_delta_q(struct vpx_read_bit_buffer *rb) {
1083  return vpx_rb_read_bit(rb) ? vpx_rb_read_signed_literal(rb, 4) : 0;
1084}
1085
1086static void setup_quantization(VP9_COMMON *const cm, MACROBLOCKD *const xd,
1087                               struct vpx_read_bit_buffer *rb) {
1088  cm->base_qindex = vpx_rb_read_literal(rb, QINDEX_BITS);
1089  cm->y_dc_delta_q = read_delta_q(rb);
1090  cm->uv_dc_delta_q = read_delta_q(rb);
1091  cm->uv_ac_delta_q = read_delta_q(rb);
1092  cm->dequant_bit_depth = cm->bit_depth;
1093  xd->lossless = cm->base_qindex == 0 && cm->y_dc_delta_q == 0 &&
1094                 cm->uv_dc_delta_q == 0 && cm->uv_ac_delta_q == 0;
1095
1096#if CONFIG_VP9_HIGHBITDEPTH
1097  xd->bd = (int)cm->bit_depth;
1098#endif
1099}
1100
1101static void setup_segmentation_dequant(VP9_COMMON *const cm) {
1102  // Build y/uv dequant values based on segmentation.
1103  if (cm->seg.enabled) {
1104    int i;
1105    for (i = 0; i < MAX_SEGMENTS; ++i) {
1106      const int qindex = vp9_get_qindex(&cm->seg, i, cm->base_qindex);
1107      cm->y_dequant[i][0] =
1108          vp9_dc_quant(qindex, cm->y_dc_delta_q, cm->bit_depth);
1109      cm->y_dequant[i][1] = vp9_ac_quant(qindex, 0, cm->bit_depth);
1110      cm->uv_dequant[i][0] =
1111          vp9_dc_quant(qindex, cm->uv_dc_delta_q, cm->bit_depth);
1112      cm->uv_dequant[i][1] =
1113          vp9_ac_quant(qindex, cm->uv_ac_delta_q, cm->bit_depth);
1114    }
1115  } else {
1116    const int qindex = cm->base_qindex;
1117    // When segmentation is disabled, only the first value is used.  The
1118    // remaining are don't cares.
1119    cm->y_dequant[0][0] = vp9_dc_quant(qindex, cm->y_dc_delta_q, cm->bit_depth);
1120    cm->y_dequant[0][1] = vp9_ac_quant(qindex, 0, cm->bit_depth);
1121    cm->uv_dequant[0][0] =
1122        vp9_dc_quant(qindex, cm->uv_dc_delta_q, cm->bit_depth);
1123    cm->uv_dequant[0][1] =
1124        vp9_ac_quant(qindex, cm->uv_ac_delta_q, cm->bit_depth);
1125  }
1126}
1127
1128static INTERP_FILTER read_interp_filter(struct vpx_read_bit_buffer *rb) {
1129  const INTERP_FILTER literal_to_filter[] = { EIGHTTAP_SMOOTH, EIGHTTAP,
1130                                              EIGHTTAP_SHARP, BILINEAR };
1131  return vpx_rb_read_bit(rb) ? SWITCHABLE
1132                             : literal_to_filter[vpx_rb_read_literal(rb, 2)];
1133}
1134
1135static void setup_render_size(VP9_COMMON *cm, struct vpx_read_bit_buffer *rb) {
1136  cm->render_width = cm->width;
1137  cm->render_height = cm->height;
1138  if (vpx_rb_read_bit(rb))
1139    vp9_read_frame_size(rb, &cm->render_width, &cm->render_height);
1140}
1141
1142static void resize_mv_buffer(VP9_COMMON *cm) {
1143  vpx_free(cm->cur_frame->mvs);
1144  cm->cur_frame->mi_rows = cm->mi_rows;
1145  cm->cur_frame->mi_cols = cm->mi_cols;
1146  CHECK_MEM_ERROR(cm, cm->cur_frame->mvs,
1147                  (MV_REF *)vpx_calloc(cm->mi_rows * cm->mi_cols,
1148                                       sizeof(*cm->cur_frame->mvs)));
1149}
1150
1151static void resize_context_buffers(VP9_COMMON *cm, int width, int height) {
1152#if CONFIG_SIZE_LIMIT
1153  if (width > DECODE_WIDTH_LIMIT || height > DECODE_HEIGHT_LIMIT)
1154    vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
1155                       "Dimensions of %dx%d beyond allowed size of %dx%d.",
1156                       width, height, DECODE_WIDTH_LIMIT, DECODE_HEIGHT_LIMIT);
1157#endif
1158  if (cm->width != width || cm->height != height) {
1159    const int new_mi_rows =
1160        ALIGN_POWER_OF_TWO(height, MI_SIZE_LOG2) >> MI_SIZE_LOG2;
1161    const int new_mi_cols =
1162        ALIGN_POWER_OF_TWO(width, MI_SIZE_LOG2) >> MI_SIZE_LOG2;
1163
1164    // Allocations in vp9_alloc_context_buffers() depend on individual
1165    // dimensions as well as the overall size.
1166    if (new_mi_cols > cm->mi_cols || new_mi_rows > cm->mi_rows) {
1167      if (vp9_alloc_context_buffers(cm, width, height))
1168        vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
1169                           "Failed to allocate context buffers");
1170    } else {
1171      vp9_set_mb_mi(cm, width, height);
1172    }
1173    vp9_init_context_buffers(cm);
1174    cm->width = width;
1175    cm->height = height;
1176  }
1177  if (cm->cur_frame->mvs == NULL || cm->mi_rows > cm->cur_frame->mi_rows ||
1178      cm->mi_cols > cm->cur_frame->mi_cols) {
1179    resize_mv_buffer(cm);
1180  }
1181}
1182
1183static void setup_frame_size(VP9_COMMON *cm, struct vpx_read_bit_buffer *rb) {
1184  int width, height;
1185  BufferPool *const pool = cm->buffer_pool;
1186  vp9_read_frame_size(rb, &width, &height);
1187  resize_context_buffers(cm, width, height);
1188  setup_render_size(cm, rb);
1189
1190  lock_buffer_pool(pool);
1191  if (vpx_realloc_frame_buffer(
1192          get_frame_new_buffer(cm), cm->width, cm->height, cm->subsampling_x,
1193          cm->subsampling_y,
1194#if CONFIG_VP9_HIGHBITDEPTH
1195          cm->use_highbitdepth,
1196#endif
1197          VP9_DEC_BORDER_IN_PIXELS, cm->byte_alignment,
1198          &pool->frame_bufs[cm->new_fb_idx].raw_frame_buffer, pool->get_fb_cb,
1199          pool->cb_priv)) {
1200    unlock_buffer_pool(pool);
1201    vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
1202                       "Failed to allocate frame buffer");
1203  }
1204  unlock_buffer_pool(pool);
1205
1206  pool->frame_bufs[cm->new_fb_idx].buf.subsampling_x = cm->subsampling_x;
1207  pool->frame_bufs[cm->new_fb_idx].buf.subsampling_y = cm->subsampling_y;
1208  pool->frame_bufs[cm->new_fb_idx].buf.bit_depth = (unsigned int)cm->bit_depth;
1209  pool->frame_bufs[cm->new_fb_idx].buf.color_space = cm->color_space;
1210  pool->frame_bufs[cm->new_fb_idx].buf.color_range = cm->color_range;
1211  pool->frame_bufs[cm->new_fb_idx].buf.render_width = cm->render_width;
1212  pool->frame_bufs[cm->new_fb_idx].buf.render_height = cm->render_height;
1213}
1214
1215static INLINE int valid_ref_frame_img_fmt(vpx_bit_depth_t ref_bit_depth,
1216                                          int ref_xss, int ref_yss,
1217                                          vpx_bit_depth_t this_bit_depth,
1218                                          int this_xss, int this_yss) {
1219  return ref_bit_depth == this_bit_depth && ref_xss == this_xss &&
1220         ref_yss == this_yss;
1221}
1222
1223static void setup_frame_size_with_refs(VP9_COMMON *cm,
1224                                       struct vpx_read_bit_buffer *rb) {
1225  int width, height;
1226  int found = 0, i;
1227  int has_valid_ref_frame = 0;
1228  BufferPool *const pool = cm->buffer_pool;
1229  for (i = 0; i < REFS_PER_FRAME; ++i) {
1230    if (vpx_rb_read_bit(rb)) {
1231      if (cm->frame_refs[i].idx != INVALID_IDX) {
1232        YV12_BUFFER_CONFIG *const buf = cm->frame_refs[i].buf;
1233        width = buf->y_crop_width;
1234        height = buf->y_crop_height;
1235        found = 1;
1236        break;
1237      } else {
1238        vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
1239                           "Failed to decode frame size");
1240      }
1241    }
1242  }
1243
1244  if (!found) vp9_read_frame_size(rb, &width, &height);
1245
1246  if (width <= 0 || height <= 0)
1247    vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
1248                       "Invalid frame size");
1249
1250  // Check to make sure at least one of frames that this frame references
1251  // has valid dimensions.
1252  for (i = 0; i < REFS_PER_FRAME; ++i) {
1253    RefBuffer *const ref_frame = &cm->frame_refs[i];
1254    has_valid_ref_frame |=
1255        (ref_frame->idx != INVALID_IDX &&
1256         valid_ref_frame_size(ref_frame->buf->y_crop_width,
1257                              ref_frame->buf->y_crop_height, width, height));
1258  }
1259  if (!has_valid_ref_frame)
1260    vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
1261                       "Referenced frame has invalid size");
1262  for (i = 0; i < REFS_PER_FRAME; ++i) {
1263    RefBuffer *const ref_frame = &cm->frame_refs[i];
1264    if (ref_frame->idx == INVALID_IDX ||
1265        !valid_ref_frame_img_fmt(ref_frame->buf->bit_depth,
1266                                 ref_frame->buf->subsampling_x,
1267                                 ref_frame->buf->subsampling_y, cm->bit_depth,
1268                                 cm->subsampling_x, cm->subsampling_y))
1269      vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
1270                         "Referenced frame has incompatible color format");
1271  }
1272
1273  resize_context_buffers(cm, width, height);
1274  setup_render_size(cm, rb);
1275
1276  lock_buffer_pool(pool);
1277  if (vpx_realloc_frame_buffer(
1278          get_frame_new_buffer(cm), cm->width, cm->height, cm->subsampling_x,
1279          cm->subsampling_y,
1280#if CONFIG_VP9_HIGHBITDEPTH
1281          cm->use_highbitdepth,
1282#endif
1283          VP9_DEC_BORDER_IN_PIXELS, cm->byte_alignment,
1284          &pool->frame_bufs[cm->new_fb_idx].raw_frame_buffer, pool->get_fb_cb,
1285          pool->cb_priv)) {
1286    unlock_buffer_pool(pool);
1287    vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
1288                       "Failed to allocate frame buffer");
1289  }
1290  unlock_buffer_pool(pool);
1291
1292  pool->frame_bufs[cm->new_fb_idx].buf.subsampling_x = cm->subsampling_x;
1293  pool->frame_bufs[cm->new_fb_idx].buf.subsampling_y = cm->subsampling_y;
1294  pool->frame_bufs[cm->new_fb_idx].buf.bit_depth = (unsigned int)cm->bit_depth;
1295  pool->frame_bufs[cm->new_fb_idx].buf.color_space = cm->color_space;
1296  pool->frame_bufs[cm->new_fb_idx].buf.color_range = cm->color_range;
1297  pool->frame_bufs[cm->new_fb_idx].buf.render_width = cm->render_width;
1298  pool->frame_bufs[cm->new_fb_idx].buf.render_height = cm->render_height;
1299}
1300
1301static void setup_tile_info(VP9_COMMON *cm, struct vpx_read_bit_buffer *rb) {
1302  int min_log2_tile_cols, max_log2_tile_cols, max_ones;
1303  vp9_get_tile_n_bits(cm->mi_cols, &min_log2_tile_cols, &max_log2_tile_cols);
1304
1305  // columns
1306  max_ones = max_log2_tile_cols - min_log2_tile_cols;
1307  cm->log2_tile_cols = min_log2_tile_cols;
1308  while (max_ones-- && vpx_rb_read_bit(rb)) cm->log2_tile_cols++;
1309
1310  if (cm->log2_tile_cols > 6)
1311    vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
1312                       "Invalid number of tile columns");
1313
1314  // rows
1315  cm->log2_tile_rows = vpx_rb_read_bit(rb);
1316  if (cm->log2_tile_rows) cm->log2_tile_rows += vpx_rb_read_bit(rb);
1317}
1318
1319// Reads the next tile returning its size and adjusting '*data' accordingly
1320// based on 'is_last'.
1321static void get_tile_buffer(const uint8_t *const data_end, int is_last,
1322                            struct vpx_internal_error_info *error_info,
1323                            const uint8_t **data, vpx_decrypt_cb decrypt_cb,
1324                            void *decrypt_state, TileBuffer *buf) {
1325  size_t size;
1326
1327  if (!is_last) {
1328    if (!read_is_valid(*data, 4, data_end))
1329      vpx_internal_error(error_info, VPX_CODEC_CORRUPT_FRAME,
1330                         "Truncated packet or corrupt tile length");
1331
1332    if (decrypt_cb) {
1333      uint8_t be_data[4];
1334      decrypt_cb(decrypt_state, *data, be_data, 4);
1335      size = mem_get_be32(be_data);
1336    } else {
1337      size = mem_get_be32(*data);
1338    }
1339    *data += 4;
1340
1341    if (size > (size_t)(data_end - *data))
1342      vpx_internal_error(error_info, VPX_CODEC_CORRUPT_FRAME,
1343                         "Truncated packet or corrupt tile size");
1344  } else {
1345    size = data_end - *data;
1346  }
1347
1348  buf->data = *data;
1349  buf->size = size;
1350
1351  *data += size;
1352}
1353
1354static void get_tile_buffers(VP9Decoder *pbi, const uint8_t *data,
1355                             const uint8_t *data_end, int tile_cols,
1356                             int tile_rows,
1357                             TileBuffer (*tile_buffers)[1 << 6]) {
1358  int r, c;
1359
1360  for (r = 0; r < tile_rows; ++r) {
1361    for (c = 0; c < tile_cols; ++c) {
1362      const int is_last = (r == tile_rows - 1) && (c == tile_cols - 1);
1363      TileBuffer *const buf = &tile_buffers[r][c];
1364      buf->col = c;
1365      get_tile_buffer(data_end, is_last, &pbi->common.error, &data,
1366                      pbi->decrypt_cb, pbi->decrypt_state, buf);
1367    }
1368  }
1369}
1370
1371static const uint8_t *decode_tiles(VP9Decoder *pbi, const uint8_t *data,
1372                                   const uint8_t *data_end) {
1373  VP9_COMMON *const cm = &pbi->common;
1374  const VPxWorkerInterface *const winterface = vpx_get_worker_interface();
1375  const int aligned_cols = mi_cols_aligned_to_sb(cm->mi_cols);
1376  const int tile_cols = 1 << cm->log2_tile_cols;
1377  const int tile_rows = 1 << cm->log2_tile_rows;
1378  TileBuffer tile_buffers[4][1 << 6];
1379  int tile_row, tile_col;
1380  int mi_row, mi_col;
1381  TileWorkerData *tile_data = NULL;
1382
1383  if (cm->lf.filter_level && !cm->skip_loop_filter &&
1384      pbi->lf_worker.data1 == NULL) {
1385    CHECK_MEM_ERROR(cm, pbi->lf_worker.data1,
1386                    vpx_memalign(32, sizeof(LFWorkerData)));
1387    pbi->lf_worker.hook = (VPxWorkerHook)vp9_loop_filter_worker;
1388    if (pbi->max_threads > 1 && !winterface->reset(&pbi->lf_worker)) {
1389      vpx_internal_error(&cm->error, VPX_CODEC_ERROR,
1390                         "Loop filter thread creation failed");
1391    }
1392  }
1393
1394  if (cm->lf.filter_level && !cm->skip_loop_filter) {
1395    LFWorkerData *const lf_data = (LFWorkerData *)pbi->lf_worker.data1;
1396    // Be sure to sync as we might be resuming after a failed frame decode.
1397    winterface->sync(&pbi->lf_worker);
1398    vp9_loop_filter_data_reset(lf_data, get_frame_new_buffer(cm), cm,
1399                               pbi->mb.plane);
1400  }
1401
1402  assert(tile_rows <= 4);
1403  assert(tile_cols <= (1 << 6));
1404
1405  // Note: this memset assumes above_context[0], [1] and [2]
1406  // are allocated as part of the same buffer.
1407  memset(cm->above_context, 0,
1408         sizeof(*cm->above_context) * MAX_MB_PLANE * 2 * aligned_cols);
1409
1410  memset(cm->above_seg_context, 0,
1411         sizeof(*cm->above_seg_context) * aligned_cols);
1412
1413  vp9_reset_lfm(cm);
1414
1415  get_tile_buffers(pbi, data, data_end, tile_cols, tile_rows, tile_buffers);
1416
1417  // Load all tile information into tile_data.
1418  for (tile_row = 0; tile_row < tile_rows; ++tile_row) {
1419    for (tile_col = 0; tile_col < tile_cols; ++tile_col) {
1420      const TileBuffer *const buf = &tile_buffers[tile_row][tile_col];
1421      tile_data = pbi->tile_worker_data + tile_cols * tile_row + tile_col;
1422      tile_data->xd = pbi->mb;
1423      tile_data->xd.corrupted = 0;
1424      tile_data->xd.counts =
1425          cm->frame_parallel_decoding_mode ? NULL : &cm->counts;
1426      vp9_zero(tile_data->dqcoeff);
1427      vp9_tile_init(&tile_data->xd.tile, cm, tile_row, tile_col);
1428      setup_token_decoder(buf->data, data_end, buf->size, &cm->error,
1429                          &tile_data->bit_reader, pbi->decrypt_cb,
1430                          pbi->decrypt_state);
1431      vp9_init_macroblockd(cm, &tile_data->xd, tile_data->dqcoeff);
1432    }
1433  }
1434
1435  for (tile_row = 0; tile_row < tile_rows; ++tile_row) {
1436    TileInfo tile;
1437    vp9_tile_set_row(&tile, cm, tile_row);
1438    for (mi_row = tile.mi_row_start; mi_row < tile.mi_row_end;
1439         mi_row += MI_BLOCK_SIZE) {
1440      for (tile_col = 0; tile_col < tile_cols; ++tile_col) {
1441        const int col =
1442            pbi->inv_tile_order ? tile_cols - tile_col - 1 : tile_col;
1443        tile_data = pbi->tile_worker_data + tile_cols * tile_row + col;
1444        vp9_tile_set_col(&tile, cm, col);
1445        vp9_zero(tile_data->xd.left_context);
1446        vp9_zero(tile_data->xd.left_seg_context);
1447        for (mi_col = tile.mi_col_start; mi_col < tile.mi_col_end;
1448             mi_col += MI_BLOCK_SIZE) {
1449          decode_partition(tile_data, pbi, mi_row, mi_col, BLOCK_64X64, 4);
1450        }
1451        pbi->mb.corrupted |= tile_data->xd.corrupted;
1452        if (pbi->mb.corrupted)
1453          vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
1454                             "Failed to decode tile data");
1455      }
1456      // Loopfilter one row.
1457      if (cm->lf.filter_level && !cm->skip_loop_filter) {
1458        const int lf_start = mi_row - MI_BLOCK_SIZE;
1459        LFWorkerData *const lf_data = (LFWorkerData *)pbi->lf_worker.data1;
1460
1461        // delay the loopfilter by 1 macroblock row.
1462        if (lf_start < 0) continue;
1463
1464        // decoding has completed: finish up the loop filter in this thread.
1465        if (mi_row + MI_BLOCK_SIZE >= cm->mi_rows) continue;
1466
1467        winterface->sync(&pbi->lf_worker);
1468        lf_data->start = lf_start;
1469        lf_data->stop = mi_row;
1470        if (pbi->max_threads > 1) {
1471          winterface->launch(&pbi->lf_worker);
1472        } else {
1473          winterface->execute(&pbi->lf_worker);
1474        }
1475      }
1476      // After loopfiltering, the last 7 row pixels in each superblock row may
1477      // still be changed by the longest loopfilter of the next superblock
1478      // row.
1479      if (pbi->frame_parallel_decode)
1480        vp9_frameworker_broadcast(pbi->cur_buf, mi_row << MI_BLOCK_SIZE_LOG2);
1481    }
1482  }
1483
1484  // Loopfilter remaining rows in the frame.
1485  if (cm->lf.filter_level && !cm->skip_loop_filter) {
1486    LFWorkerData *const lf_data = (LFWorkerData *)pbi->lf_worker.data1;
1487    winterface->sync(&pbi->lf_worker);
1488    lf_data->start = lf_data->stop;
1489    lf_data->stop = cm->mi_rows;
1490    winterface->execute(&pbi->lf_worker);
1491  }
1492
1493  // Get last tile data.
1494  tile_data = pbi->tile_worker_data + tile_cols * tile_rows - 1;
1495
1496  if (pbi->frame_parallel_decode)
1497    vp9_frameworker_broadcast(pbi->cur_buf, INT_MAX);
1498  return vpx_reader_find_end(&tile_data->bit_reader);
1499}
1500
1501// On entry 'tile_data->data_end' points to the end of the input frame, on exit
1502// it is updated to reflect the bitreader position of the final tile column if
1503// present in the tile buffer group or NULL otherwise.
1504static int tile_worker_hook(TileWorkerData *const tile_data,
1505                            VP9Decoder *const pbi) {
1506  TileInfo *volatile tile = &tile_data->xd.tile;
1507  const int final_col = (1 << pbi->common.log2_tile_cols) - 1;
1508  const uint8_t *volatile bit_reader_end = NULL;
1509  volatile int n = tile_data->buf_start;
1510  tile_data->error_info.setjmp = 1;
1511
1512  if (setjmp(tile_data->error_info.jmp)) {
1513    tile_data->error_info.setjmp = 0;
1514    tile_data->xd.corrupted = 1;
1515    tile_data->data_end = NULL;
1516    return 0;
1517  }
1518
1519  tile_data->xd.corrupted = 0;
1520
1521  do {
1522    int mi_row, mi_col;
1523    const TileBuffer *const buf = pbi->tile_buffers + n;
1524    vp9_zero(tile_data->dqcoeff);
1525    vp9_tile_init(tile, &pbi->common, 0, buf->col);
1526    setup_token_decoder(buf->data, tile_data->data_end, buf->size,
1527                        &tile_data->error_info, &tile_data->bit_reader,
1528                        pbi->decrypt_cb, pbi->decrypt_state);
1529    vp9_init_macroblockd(&pbi->common, &tile_data->xd, tile_data->dqcoeff);
1530    // init resets xd.error_info
1531    tile_data->xd.error_info = &tile_data->error_info;
1532
1533    for (mi_row = tile->mi_row_start; mi_row < tile->mi_row_end;
1534         mi_row += MI_BLOCK_SIZE) {
1535      vp9_zero(tile_data->xd.left_context);
1536      vp9_zero(tile_data->xd.left_seg_context);
1537      for (mi_col = tile->mi_col_start; mi_col < tile->mi_col_end;
1538           mi_col += MI_BLOCK_SIZE) {
1539        decode_partition(tile_data, pbi, mi_row, mi_col, BLOCK_64X64, 4);
1540      }
1541    }
1542
1543    if (buf->col == final_col) {
1544      bit_reader_end = vpx_reader_find_end(&tile_data->bit_reader);
1545    }
1546  } while (!tile_data->xd.corrupted && ++n <= tile_data->buf_end);
1547
1548  tile_data->data_end = bit_reader_end;
1549  return !tile_data->xd.corrupted;
1550}
1551
1552// sorts in descending order
1553static int compare_tile_buffers(const void *a, const void *b) {
1554  const TileBuffer *const buf1 = (const TileBuffer *)a;
1555  const TileBuffer *const buf2 = (const TileBuffer *)b;
1556  return (int)(buf2->size - buf1->size);
1557}
1558
1559static const uint8_t *decode_tiles_mt(VP9Decoder *pbi, const uint8_t *data,
1560                                      const uint8_t *data_end) {
1561  VP9_COMMON *const cm = &pbi->common;
1562  const VPxWorkerInterface *const winterface = vpx_get_worker_interface();
1563  const uint8_t *bit_reader_end = NULL;
1564  const int aligned_mi_cols = mi_cols_aligned_to_sb(cm->mi_cols);
1565  const int tile_cols = 1 << cm->log2_tile_cols;
1566  const int tile_rows = 1 << cm->log2_tile_rows;
1567  const int num_workers = VPXMIN(pbi->max_threads, tile_cols);
1568  int n;
1569
1570  assert(tile_cols <= (1 << 6));
1571  assert(tile_rows == 1);
1572  (void)tile_rows;
1573
1574  if (pbi->num_tile_workers == 0) {
1575    const int num_threads = pbi->max_threads;
1576    CHECK_MEM_ERROR(cm, pbi->tile_workers,
1577                    vpx_malloc(num_threads * sizeof(*pbi->tile_workers)));
1578    for (n = 0; n < num_threads; ++n) {
1579      VPxWorker *const worker = &pbi->tile_workers[n];
1580      ++pbi->num_tile_workers;
1581
1582      winterface->init(worker);
1583      if (n < num_threads - 1 && !winterface->reset(worker)) {
1584        vpx_internal_error(&cm->error, VPX_CODEC_ERROR,
1585                           "Tile decoder thread creation failed");
1586      }
1587    }
1588  }
1589
1590  // Reset tile decoding hook
1591  for (n = 0; n < num_workers; ++n) {
1592    VPxWorker *const worker = &pbi->tile_workers[n];
1593    TileWorkerData *const tile_data =
1594        &pbi->tile_worker_data[n + pbi->total_tiles];
1595    winterface->sync(worker);
1596    tile_data->xd = pbi->mb;
1597    tile_data->xd.counts =
1598        cm->frame_parallel_decoding_mode ? NULL : &tile_data->counts;
1599    worker->hook = (VPxWorkerHook)tile_worker_hook;
1600    worker->data1 = tile_data;
1601    worker->data2 = pbi;
1602  }
1603
1604  // Note: this memset assumes above_context[0], [1] and [2]
1605  // are allocated as part of the same buffer.
1606  memset(cm->above_context, 0,
1607         sizeof(*cm->above_context) * MAX_MB_PLANE * 2 * aligned_mi_cols);
1608  memset(cm->above_seg_context, 0,
1609         sizeof(*cm->above_seg_context) * aligned_mi_cols);
1610
1611  vp9_reset_lfm(cm);
1612
1613  // Load tile data into tile_buffers
1614  get_tile_buffers(pbi, data, data_end, tile_cols, tile_rows,
1615                   &pbi->tile_buffers);
1616
1617  // Sort the buffers based on size in descending order.
1618  qsort(pbi->tile_buffers, tile_cols, sizeof(pbi->tile_buffers[0]),
1619        compare_tile_buffers);
1620
1621  if (num_workers == tile_cols) {
1622    // Rearrange the tile buffers such that the largest, and
1623    // presumably the most difficult, tile will be decoded in the main thread.
1624    // This should help minimize the number of instances where the main thread
1625    // is waiting for a worker to complete.
1626    const TileBuffer largest = pbi->tile_buffers[0];
1627    memmove(pbi->tile_buffers, pbi->tile_buffers + 1,
1628            (tile_cols - 1) * sizeof(pbi->tile_buffers[0]));
1629    pbi->tile_buffers[tile_cols - 1] = largest;
1630  } else {
1631    int start = 0, end = tile_cols - 2;
1632    TileBuffer tmp;
1633
1634    // Interleave the tiles to distribute the load between threads, assuming a
1635    // larger tile implies it is more difficult to decode.
1636    while (start < end) {
1637      tmp = pbi->tile_buffers[start];
1638      pbi->tile_buffers[start] = pbi->tile_buffers[end];
1639      pbi->tile_buffers[end] = tmp;
1640      start += 2;
1641      end -= 2;
1642    }
1643  }
1644
1645  // Initialize thread frame counts.
1646  if (!cm->frame_parallel_decoding_mode) {
1647    for (n = 0; n < num_workers; ++n) {
1648      TileWorkerData *const tile_data =
1649          (TileWorkerData *)pbi->tile_workers[n].data1;
1650      vp9_zero(tile_data->counts);
1651    }
1652  }
1653
1654  {
1655    const int base = tile_cols / num_workers;
1656    const int remain = tile_cols % num_workers;
1657    int buf_start = 0;
1658
1659    for (n = 0; n < num_workers; ++n) {
1660      const int count = base + (remain + n) / num_workers;
1661      VPxWorker *const worker = &pbi->tile_workers[n];
1662      TileWorkerData *const tile_data = (TileWorkerData *)worker->data1;
1663
1664      tile_data->buf_start = buf_start;
1665      tile_data->buf_end = buf_start + count - 1;
1666      tile_data->data_end = data_end;
1667      buf_start += count;
1668
1669      worker->had_error = 0;
1670      if (n == num_workers - 1) {
1671        assert(tile_data->buf_end == tile_cols - 1);
1672        winterface->execute(worker);
1673      } else {
1674        winterface->launch(worker);
1675      }
1676    }
1677
1678    for (; n > 0; --n) {
1679      VPxWorker *const worker = &pbi->tile_workers[n - 1];
1680      TileWorkerData *const tile_data = (TileWorkerData *)worker->data1;
1681      // TODO(jzern): The tile may have specific error data associated with
1682      // its vpx_internal_error_info which could be propagated to the main info
1683      // in cm. Additionally once the threads have been synced and an error is
1684      // detected, there's no point in continuing to decode tiles.
1685      pbi->mb.corrupted |= !winterface->sync(worker);
1686      if (!bit_reader_end) bit_reader_end = tile_data->data_end;
1687    }
1688  }
1689
1690  // Accumulate thread frame counts.
1691  if (!cm->frame_parallel_decoding_mode) {
1692    for (n = 0; n < num_workers; ++n) {
1693      TileWorkerData *const tile_data =
1694          (TileWorkerData *)pbi->tile_workers[n].data1;
1695      vp9_accumulate_frame_counts(&cm->counts, &tile_data->counts, 1);
1696    }
1697  }
1698
1699  assert(bit_reader_end || pbi->mb.corrupted);
1700  return bit_reader_end;
1701}
1702
1703static void error_handler(void *data) {
1704  VP9_COMMON *const cm = (VP9_COMMON *)data;
1705  vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, "Truncated packet");
1706}
1707
1708static void read_bitdepth_colorspace_sampling(VP9_COMMON *cm,
1709                                              struct vpx_read_bit_buffer *rb) {
1710  if (cm->profile >= PROFILE_2) {
1711    cm->bit_depth = vpx_rb_read_bit(rb) ? VPX_BITS_12 : VPX_BITS_10;
1712#if CONFIG_VP9_HIGHBITDEPTH
1713    cm->use_highbitdepth = 1;
1714#endif
1715  } else {
1716    cm->bit_depth = VPX_BITS_8;
1717#if CONFIG_VP9_HIGHBITDEPTH
1718    cm->use_highbitdepth = 0;
1719#endif
1720  }
1721  cm->color_space = vpx_rb_read_literal(rb, 3);
1722  if (cm->color_space != VPX_CS_SRGB) {
1723    cm->color_range = (vpx_color_range_t)vpx_rb_read_bit(rb);
1724    if (cm->profile == PROFILE_1 || cm->profile == PROFILE_3) {
1725      cm->subsampling_x = vpx_rb_read_bit(rb);
1726      cm->subsampling_y = vpx_rb_read_bit(rb);
1727      if (cm->subsampling_x == 1 && cm->subsampling_y == 1)
1728        vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
1729                           "4:2:0 color not supported in profile 1 or 3");
1730      if (vpx_rb_read_bit(rb))
1731        vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
1732                           "Reserved bit set");
1733    } else {
1734      cm->subsampling_y = cm->subsampling_x = 1;
1735    }
1736  } else {
1737    cm->color_range = VPX_CR_FULL_RANGE;
1738    if (cm->profile == PROFILE_1 || cm->profile == PROFILE_3) {
1739      // Note if colorspace is SRGB then 4:4:4 chroma sampling is assumed.
1740      // 4:2:2 or 4:4:0 chroma sampling is not allowed.
1741      cm->subsampling_y = cm->subsampling_x = 0;
1742      if (vpx_rb_read_bit(rb))
1743        vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
1744                           "Reserved bit set");
1745    } else {
1746      vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
1747                         "4:4:4 color not supported in profile 0 or 2");
1748    }
1749  }
1750}
1751
1752static size_t read_uncompressed_header(VP9Decoder *pbi,
1753                                       struct vpx_read_bit_buffer *rb) {
1754  VP9_COMMON *const cm = &pbi->common;
1755  BufferPool *const pool = cm->buffer_pool;
1756  RefCntBuffer *const frame_bufs = pool->frame_bufs;
1757  int i, mask, ref_index = 0;
1758  size_t sz;
1759
1760  cm->last_frame_type = cm->frame_type;
1761  cm->last_intra_only = cm->intra_only;
1762
1763  if (vpx_rb_read_literal(rb, 2) != VP9_FRAME_MARKER)
1764    vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
1765                       "Invalid frame marker");
1766
1767  cm->profile = vp9_read_profile(rb);
1768#if CONFIG_VP9_HIGHBITDEPTH
1769  if (cm->profile >= MAX_PROFILES)
1770    vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
1771                       "Unsupported bitstream profile");
1772#else
1773  if (cm->profile >= PROFILE_2)
1774    vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
1775                       "Unsupported bitstream profile");
1776#endif
1777
1778  cm->show_existing_frame = vpx_rb_read_bit(rb);
1779  if (cm->show_existing_frame) {
1780    // Show an existing frame directly.
1781    const int frame_to_show = cm->ref_frame_map[vpx_rb_read_literal(rb, 3)];
1782    lock_buffer_pool(pool);
1783    if (frame_to_show < 0 || frame_bufs[frame_to_show].ref_count < 1) {
1784      unlock_buffer_pool(pool);
1785      vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
1786                         "Buffer %d does not contain a decoded frame",
1787                         frame_to_show);
1788    }
1789
1790    ref_cnt_fb(frame_bufs, &cm->new_fb_idx, frame_to_show);
1791    unlock_buffer_pool(pool);
1792    pbi->refresh_frame_flags = 0;
1793    cm->lf.filter_level = 0;
1794    cm->show_frame = 1;
1795
1796    if (pbi->frame_parallel_decode) {
1797      for (i = 0; i < REF_FRAMES; ++i)
1798        cm->next_ref_frame_map[i] = cm->ref_frame_map[i];
1799    }
1800    return 0;
1801  }
1802
1803  cm->frame_type = (FRAME_TYPE)vpx_rb_read_bit(rb);
1804  cm->show_frame = vpx_rb_read_bit(rb);
1805  cm->error_resilient_mode = vpx_rb_read_bit(rb);
1806
1807  if (cm->frame_type == KEY_FRAME) {
1808    if (!vp9_read_sync_code(rb))
1809      vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
1810                         "Invalid frame sync code");
1811
1812    read_bitdepth_colorspace_sampling(cm, rb);
1813    pbi->refresh_frame_flags = (1 << REF_FRAMES) - 1;
1814
1815    for (i = 0; i < REFS_PER_FRAME; ++i) {
1816      cm->frame_refs[i].idx = INVALID_IDX;
1817      cm->frame_refs[i].buf = NULL;
1818    }
1819
1820    setup_frame_size(cm, rb);
1821    if (pbi->need_resync) {
1822      memset(&cm->ref_frame_map, -1, sizeof(cm->ref_frame_map));
1823      pbi->need_resync = 0;
1824    }
1825  } else {
1826    cm->intra_only = cm->show_frame ? 0 : vpx_rb_read_bit(rb);
1827
1828    cm->reset_frame_context =
1829        cm->error_resilient_mode ? 0 : vpx_rb_read_literal(rb, 2);
1830
1831    if (cm->intra_only) {
1832      if (!vp9_read_sync_code(rb))
1833        vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
1834                           "Invalid frame sync code");
1835      if (cm->profile > PROFILE_0) {
1836        read_bitdepth_colorspace_sampling(cm, rb);
1837      } else {
1838        // NOTE: The intra-only frame header does not include the specification
1839        // of either the color format or color sub-sampling in profile 0. VP9
1840        // specifies that the default color format should be YUV 4:2:0 in this
1841        // case (normative).
1842        cm->color_space = VPX_CS_BT_601;
1843        cm->color_range = VPX_CR_STUDIO_RANGE;
1844        cm->subsampling_y = cm->subsampling_x = 1;
1845        cm->bit_depth = VPX_BITS_8;
1846#if CONFIG_VP9_HIGHBITDEPTH
1847        cm->use_highbitdepth = 0;
1848#endif
1849      }
1850
1851      pbi->refresh_frame_flags = vpx_rb_read_literal(rb, REF_FRAMES);
1852      setup_frame_size(cm, rb);
1853      if (pbi->need_resync) {
1854        memset(&cm->ref_frame_map, -1, sizeof(cm->ref_frame_map));
1855        pbi->need_resync = 0;
1856      }
1857    } else if (pbi->need_resync != 1) { /* Skip if need resync */
1858      pbi->refresh_frame_flags = vpx_rb_read_literal(rb, REF_FRAMES);
1859      for (i = 0; i < REFS_PER_FRAME; ++i) {
1860        const int ref = vpx_rb_read_literal(rb, REF_FRAMES_LOG2);
1861        const int idx = cm->ref_frame_map[ref];
1862        RefBuffer *const ref_frame = &cm->frame_refs[i];
1863        ref_frame->idx = idx;
1864        ref_frame->buf = &frame_bufs[idx].buf;
1865        cm->ref_frame_sign_bias[LAST_FRAME + i] = vpx_rb_read_bit(rb);
1866      }
1867
1868      setup_frame_size_with_refs(cm, rb);
1869
1870      cm->allow_high_precision_mv = vpx_rb_read_bit(rb);
1871      cm->interp_filter = read_interp_filter(rb);
1872
1873      for (i = 0; i < REFS_PER_FRAME; ++i) {
1874        RefBuffer *const ref_buf = &cm->frame_refs[i];
1875#if CONFIG_VP9_HIGHBITDEPTH
1876        vp9_setup_scale_factors_for_frame(
1877            &ref_buf->sf, ref_buf->buf->y_crop_width,
1878            ref_buf->buf->y_crop_height, cm->width, cm->height,
1879            cm->use_highbitdepth);
1880#else
1881        vp9_setup_scale_factors_for_frame(
1882            &ref_buf->sf, ref_buf->buf->y_crop_width,
1883            ref_buf->buf->y_crop_height, cm->width, cm->height);
1884#endif
1885      }
1886    }
1887  }
1888#if CONFIG_VP9_HIGHBITDEPTH
1889  get_frame_new_buffer(cm)->bit_depth = cm->bit_depth;
1890#endif
1891  get_frame_new_buffer(cm)->color_space = cm->color_space;
1892  get_frame_new_buffer(cm)->color_range = cm->color_range;
1893  get_frame_new_buffer(cm)->render_width = cm->render_width;
1894  get_frame_new_buffer(cm)->render_height = cm->render_height;
1895
1896  if (pbi->need_resync) {
1897    vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
1898                       "Keyframe / intra-only frame required to reset decoder"
1899                       " state");
1900  }
1901
1902  if (!cm->error_resilient_mode) {
1903    cm->refresh_frame_context = vpx_rb_read_bit(rb);
1904    cm->frame_parallel_decoding_mode = vpx_rb_read_bit(rb);
1905    if (!cm->frame_parallel_decoding_mode) vp9_zero(cm->counts);
1906  } else {
1907    cm->refresh_frame_context = 0;
1908    cm->frame_parallel_decoding_mode = 1;
1909  }
1910
1911  // This flag will be overridden by the call to vp9_setup_past_independence
1912  // below, forcing the use of context 0 for those frame types.
1913  cm->frame_context_idx = vpx_rb_read_literal(rb, FRAME_CONTEXTS_LOG2);
1914
1915  // Generate next_ref_frame_map.
1916  lock_buffer_pool(pool);
1917  for (mask = pbi->refresh_frame_flags; mask; mask >>= 1) {
1918    if (mask & 1) {
1919      cm->next_ref_frame_map[ref_index] = cm->new_fb_idx;
1920      ++frame_bufs[cm->new_fb_idx].ref_count;
1921    } else {
1922      cm->next_ref_frame_map[ref_index] = cm->ref_frame_map[ref_index];
1923    }
1924    // Current thread holds the reference frame.
1925    if (cm->ref_frame_map[ref_index] >= 0)
1926      ++frame_bufs[cm->ref_frame_map[ref_index]].ref_count;
1927    ++ref_index;
1928  }
1929
1930  for (; ref_index < REF_FRAMES; ++ref_index) {
1931    cm->next_ref_frame_map[ref_index] = cm->ref_frame_map[ref_index];
1932    // Current thread holds the reference frame.
1933    if (cm->ref_frame_map[ref_index] >= 0)
1934      ++frame_bufs[cm->ref_frame_map[ref_index]].ref_count;
1935  }
1936  unlock_buffer_pool(pool);
1937  pbi->hold_ref_buf = 1;
1938
1939  if (frame_is_intra_only(cm) || cm->error_resilient_mode)
1940    vp9_setup_past_independence(cm);
1941
1942  setup_loopfilter(&cm->lf, rb);
1943  setup_quantization(cm, &pbi->mb, rb);
1944  setup_segmentation(&cm->seg, rb);
1945  setup_segmentation_dequant(cm);
1946
1947  setup_tile_info(cm, rb);
1948  sz = vpx_rb_read_literal(rb, 16);
1949
1950  if (sz == 0)
1951    vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
1952                       "Invalid header size");
1953
1954  return sz;
1955}
1956
1957static int read_compressed_header(VP9Decoder *pbi, const uint8_t *data,
1958                                  size_t partition_size) {
1959  VP9_COMMON *const cm = &pbi->common;
1960  MACROBLOCKD *const xd = &pbi->mb;
1961  FRAME_CONTEXT *const fc = cm->fc;
1962  vpx_reader r;
1963  int k;
1964
1965  if (vpx_reader_init(&r, data, partition_size, pbi->decrypt_cb,
1966                      pbi->decrypt_state))
1967    vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
1968                       "Failed to allocate bool decoder 0");
1969
1970  cm->tx_mode = xd->lossless ? ONLY_4X4 : read_tx_mode(&r);
1971  if (cm->tx_mode == TX_MODE_SELECT) read_tx_mode_probs(&fc->tx_probs, &r);
1972  read_coef_probs(fc, cm->tx_mode, &r);
1973
1974  for (k = 0; k < SKIP_CONTEXTS; ++k)
1975    vp9_diff_update_prob(&r, &fc->skip_probs[k]);
1976
1977  if (!frame_is_intra_only(cm)) {
1978    nmv_context *const nmvc = &fc->nmvc;
1979    int i, j;
1980
1981    read_inter_mode_probs(fc, &r);
1982
1983    if (cm->interp_filter == SWITCHABLE) read_switchable_interp_probs(fc, &r);
1984
1985    for (i = 0; i < INTRA_INTER_CONTEXTS; i++)
1986      vp9_diff_update_prob(&r, &fc->intra_inter_prob[i]);
1987
1988    cm->reference_mode = read_frame_reference_mode(cm, &r);
1989    if (cm->reference_mode != SINGLE_REFERENCE)
1990      setup_compound_reference_mode(cm);
1991    read_frame_reference_mode_probs(cm, &r);
1992
1993    for (j = 0; j < BLOCK_SIZE_GROUPS; j++)
1994      for (i = 0; i < INTRA_MODES - 1; ++i)
1995        vp9_diff_update_prob(&r, &fc->y_mode_prob[j][i]);
1996
1997    for (j = 0; j < PARTITION_CONTEXTS; ++j)
1998      for (i = 0; i < PARTITION_TYPES - 1; ++i)
1999        vp9_diff_update_prob(&r, &fc->partition_prob[j][i]);
2000
2001    read_mv_probs(nmvc, cm->allow_high_precision_mv, &r);
2002  }
2003
2004  return vpx_reader_has_error(&r);
2005}
2006
2007static struct vpx_read_bit_buffer *init_read_bit_buffer(
2008    VP9Decoder *pbi, struct vpx_read_bit_buffer *rb, const uint8_t *data,
2009    const uint8_t *data_end, uint8_t clear_data[MAX_VP9_HEADER_SIZE]) {
2010  rb->bit_offset = 0;
2011  rb->error_handler = error_handler;
2012  rb->error_handler_data = &pbi->common;
2013  if (pbi->decrypt_cb) {
2014    const int n = (int)VPXMIN(MAX_VP9_HEADER_SIZE, data_end - data);
2015    pbi->decrypt_cb(pbi->decrypt_state, data, clear_data, n);
2016    rb->bit_buffer = clear_data;
2017    rb->bit_buffer_end = clear_data + n;
2018  } else {
2019    rb->bit_buffer = data;
2020    rb->bit_buffer_end = data_end;
2021  }
2022  return rb;
2023}
2024
2025//------------------------------------------------------------------------------
2026
2027int vp9_read_sync_code(struct vpx_read_bit_buffer *const rb) {
2028  return vpx_rb_read_literal(rb, 8) == VP9_SYNC_CODE_0 &&
2029         vpx_rb_read_literal(rb, 8) == VP9_SYNC_CODE_1 &&
2030         vpx_rb_read_literal(rb, 8) == VP9_SYNC_CODE_2;
2031}
2032
2033void vp9_read_frame_size(struct vpx_read_bit_buffer *rb, int *width,
2034                         int *height) {
2035  *width = vpx_rb_read_literal(rb, 16) + 1;
2036  *height = vpx_rb_read_literal(rb, 16) + 1;
2037}
2038
2039BITSTREAM_PROFILE vp9_read_profile(struct vpx_read_bit_buffer *rb) {
2040  int profile = vpx_rb_read_bit(rb);
2041  profile |= vpx_rb_read_bit(rb) << 1;
2042  if (profile > 2) profile += vpx_rb_read_bit(rb);
2043  return (BITSTREAM_PROFILE)profile;
2044}
2045
2046void vp9_decode_frame(VP9Decoder *pbi, const uint8_t *data,
2047                      const uint8_t *data_end, const uint8_t **p_data_end) {
2048  VP9_COMMON *const cm = &pbi->common;
2049  MACROBLOCKD *const xd = &pbi->mb;
2050  struct vpx_read_bit_buffer rb;
2051  int context_updated = 0;
2052  uint8_t clear_data[MAX_VP9_HEADER_SIZE];
2053  const size_t first_partition_size = read_uncompressed_header(
2054      pbi, init_read_bit_buffer(pbi, &rb, data, data_end, clear_data));
2055  const int tile_rows = 1 << cm->log2_tile_rows;
2056  const int tile_cols = 1 << cm->log2_tile_cols;
2057  YV12_BUFFER_CONFIG *const new_fb = get_frame_new_buffer(cm);
2058  xd->cur_buf = new_fb;
2059
2060  if (!first_partition_size) {
2061    // showing a frame directly
2062    *p_data_end = data + (cm->profile <= PROFILE_2 ? 1 : 2);
2063    return;
2064  }
2065
2066  data += vpx_rb_bytes_read(&rb);
2067  if (!read_is_valid(data, first_partition_size, data_end))
2068    vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
2069                       "Truncated packet or corrupt header length");
2070
2071  cm->use_prev_frame_mvs =
2072      !cm->error_resilient_mode && cm->width == cm->last_width &&
2073      cm->height == cm->last_height && !cm->last_intra_only &&
2074      cm->last_show_frame && (cm->last_frame_type != KEY_FRAME);
2075
2076  vp9_setup_block_planes(xd, cm->subsampling_x, cm->subsampling_y);
2077
2078  *cm->fc = cm->frame_contexts[cm->frame_context_idx];
2079  if (!cm->fc->initialized)
2080    vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
2081                       "Uninitialized entropy context.");
2082
2083  xd->corrupted = 0;
2084  new_fb->corrupted = read_compressed_header(pbi, data, first_partition_size);
2085  if (new_fb->corrupted)
2086    vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
2087                       "Decode failed. Frame data header is corrupted.");
2088
2089  if (cm->lf.filter_level && !cm->skip_loop_filter) {
2090    vp9_loop_filter_frame_init(cm, cm->lf.filter_level);
2091  }
2092
2093  // If encoded in frame parallel mode, frame context is ready after decoding
2094  // the frame header.
2095  if (pbi->frame_parallel_decode && cm->frame_parallel_decoding_mode) {
2096    VPxWorker *const worker = pbi->frame_worker_owner;
2097    FrameWorkerData *const frame_worker_data = worker->data1;
2098    if (cm->refresh_frame_context) {
2099      context_updated = 1;
2100      cm->frame_contexts[cm->frame_context_idx] = *cm->fc;
2101    }
2102    vp9_frameworker_lock_stats(worker);
2103    pbi->cur_buf->row = -1;
2104    pbi->cur_buf->col = -1;
2105    frame_worker_data->frame_context_ready = 1;
2106    // Signal the main thread that context is ready.
2107    vp9_frameworker_signal_stats(worker);
2108    vp9_frameworker_unlock_stats(worker);
2109  }
2110
2111  if (pbi->tile_worker_data == NULL ||
2112      (tile_cols * tile_rows) != pbi->total_tiles) {
2113    const int num_tile_workers =
2114        tile_cols * tile_rows + ((pbi->max_threads > 1) ? pbi->max_threads : 0);
2115    const size_t twd_size = num_tile_workers * sizeof(*pbi->tile_worker_data);
2116    // Ensure tile data offsets will be properly aligned. This may fail on
2117    // platforms without DECLARE_ALIGNED().
2118    assert((sizeof(*pbi->tile_worker_data) % 16) == 0);
2119    vpx_free(pbi->tile_worker_data);
2120    CHECK_MEM_ERROR(cm, pbi->tile_worker_data, vpx_memalign(32, twd_size));
2121    pbi->total_tiles = tile_rows * tile_cols;
2122  }
2123
2124  if (pbi->max_threads > 1 && tile_rows == 1 && tile_cols > 1) {
2125    // Multi-threaded tile decoder
2126    *p_data_end = decode_tiles_mt(pbi, data + first_partition_size, data_end);
2127    if (!xd->corrupted) {
2128      if (!cm->skip_loop_filter) {
2129        // If multiple threads are used to decode tiles, then we use those
2130        // threads to do parallel loopfiltering.
2131        vp9_loop_filter_frame_mt(new_fb, cm, pbi->mb.plane, cm->lf.filter_level,
2132                                 0, 0, pbi->tile_workers, pbi->num_tile_workers,
2133                                 &pbi->lf_row_sync);
2134      }
2135    } else {
2136      vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
2137                         "Decode failed. Frame data is corrupted.");
2138    }
2139  } else {
2140    *p_data_end = decode_tiles(pbi, data + first_partition_size, data_end);
2141  }
2142
2143  if (!xd->corrupted) {
2144    if (!cm->error_resilient_mode && !cm->frame_parallel_decoding_mode) {
2145      vp9_adapt_coef_probs(cm);
2146
2147      if (!frame_is_intra_only(cm)) {
2148        vp9_adapt_mode_probs(cm);
2149        vp9_adapt_mv_probs(cm, cm->allow_high_precision_mv);
2150      }
2151    }
2152  } else {
2153    vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
2154                       "Decode failed. Frame data is corrupted.");
2155  }
2156
2157  // Non frame parallel update frame context here.
2158  if (cm->refresh_frame_context && !context_updated)
2159    cm->frame_contexts[cm->frame_context_idx] = *cm->fc;
2160}
2161