vp9_bitstream.c revision ba6c59e9d7d7013b3906b6f4230b663422681848
1/*
2 *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
3 *
4 *  Use of this source code is governed by a BSD-style license
5 *  that can be found in the LICENSE file in the root of the source
6 *  tree. An additional intellectual property rights grant can be found
7 *  in the file PATENTS.  All contributing project authors may
8 *  be found in the AUTHORS file in the root of the source tree.
9 */
10
11#include <assert.h>
12#include <stdio.h>
13#include <limits.h>
14
15#include "vpx/vpx_encoder.h"
16#include "vpx_mem/vpx_mem.h"
17#include "vpx_ports/mem_ops.h"
18
19#include "vp9/common/vp9_entropy.h"
20#include "vp9/common/vp9_entropymode.h"
21#include "vp9/common/vp9_entropymv.h"
22#include "vp9/common/vp9_mvref_common.h"
23#include "vp9/common/vp9_pred_common.h"
24#include "vp9/common/vp9_seg_common.h"
25#include "vp9/common/vp9_systemdependent.h"
26#include "vp9/common/vp9_tile_common.h"
27
28#include "vp9/encoder/vp9_cost.h"
29#include "vp9/encoder/vp9_bitstream.h"
30#include "vp9/encoder/vp9_encodemv.h"
31#include "vp9/encoder/vp9_mcomp.h"
32#include "vp9/encoder/vp9_segmentation.h"
33#include "vp9/encoder/vp9_subexp.h"
34#include "vp9/encoder/vp9_tokenize.h"
35#include "vp9/encoder/vp9_write_bit_buffer.h"
36
37static struct vp9_token intra_mode_encodings[INTRA_MODES];
38static struct vp9_token switchable_interp_encodings[SWITCHABLE_FILTERS];
39static struct vp9_token partition_encodings[PARTITION_TYPES];
40static struct vp9_token inter_mode_encodings[INTER_MODES];
41
42void vp9_entropy_mode_init() {
43  vp9_tokens_from_tree(intra_mode_encodings, vp9_intra_mode_tree);
44  vp9_tokens_from_tree(switchable_interp_encodings, vp9_switchable_interp_tree);
45  vp9_tokens_from_tree(partition_encodings, vp9_partition_tree);
46  vp9_tokens_from_tree(inter_mode_encodings, vp9_inter_mode_tree);
47}
48
49static void write_intra_mode(vp9_writer *w, PREDICTION_MODE mode,
50                             const vp9_prob *probs) {
51  vp9_write_token(w, vp9_intra_mode_tree, probs, &intra_mode_encodings[mode]);
52}
53
54static void write_inter_mode(vp9_writer *w, PREDICTION_MODE mode,
55                             const vp9_prob *probs) {
56  assert(is_inter_mode(mode));
57  vp9_write_token(w, vp9_inter_mode_tree, probs,
58                  &inter_mode_encodings[INTER_OFFSET(mode)]);
59}
60
61static void encode_unsigned_max(struct vp9_write_bit_buffer *wb,
62                                int data, int max) {
63  vp9_wb_write_literal(wb, data, get_unsigned_bits(max));
64}
65
66static void prob_diff_update(const vp9_tree_index *tree,
67                             vp9_prob probs[/*n - 1*/],
68                             const unsigned int counts[/*n - 1*/],
69                             int n, vp9_writer *w) {
70  int i;
71  unsigned int branch_ct[32][2];
72
73  // Assuming max number of probabilities <= 32
74  assert(n <= 32);
75
76  vp9_tree_probs_from_distribution(tree, branch_ct, counts);
77  for (i = 0; i < n - 1; ++i)
78    vp9_cond_prob_diff_update(w, &probs[i], branch_ct[i]);
79}
80
81static void write_selected_tx_size(const VP9_COMMON *cm,
82                                   const MACROBLOCKD *xd,
83                                   TX_SIZE tx_size, BLOCK_SIZE bsize,
84                                   vp9_writer *w) {
85  const TX_SIZE max_tx_size = max_txsize_lookup[bsize];
86  const vp9_prob *const tx_probs = get_tx_probs2(max_tx_size, xd,
87                                                 &cm->fc.tx_probs);
88  vp9_write(w, tx_size != TX_4X4, tx_probs[0]);
89  if (tx_size != TX_4X4 && max_tx_size >= TX_16X16) {
90    vp9_write(w, tx_size != TX_8X8, tx_probs[1]);
91    if (tx_size != TX_8X8 && max_tx_size >= TX_32X32)
92      vp9_write(w, tx_size != TX_16X16, tx_probs[2]);
93  }
94}
95
96static int write_skip(const VP9_COMMON *cm, const MACROBLOCKD *xd,
97                      int segment_id, const MODE_INFO *mi, vp9_writer *w) {
98  if (vp9_segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) {
99    return 1;
100  } else {
101    const int skip = mi->mbmi.skip;
102    vp9_write(w, skip, vp9_get_skip_prob(cm, xd));
103    return skip;
104  }
105}
106
107static void update_skip_probs(VP9_COMMON *cm, vp9_writer *w) {
108  int k;
109
110  for (k = 0; k < SKIP_CONTEXTS; ++k)
111    vp9_cond_prob_diff_update(w, &cm->fc.skip_probs[k], cm->counts.skip[k]);
112}
113
114static void update_switchable_interp_probs(VP9_COMMON *cm, vp9_writer *w) {
115  int j;
116  for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j)
117    prob_diff_update(vp9_switchable_interp_tree,
118                     cm->fc.switchable_interp_prob[j],
119                     cm->counts.switchable_interp[j], SWITCHABLE_FILTERS, w);
120}
121
122static void pack_mb_tokens(vp9_writer *w,
123                           TOKENEXTRA **tp, const TOKENEXTRA *const stop) {
124  TOKENEXTRA *p = *tp;
125
126  while (p < stop && p->token != EOSB_TOKEN) {
127    const int t = p->token;
128    const struct vp9_token *const a = &vp9_coef_encodings[t];
129    const vp9_extra_bit *const b = &vp9_extra_bits[t];
130    int i = 0;
131    int v = a->value;
132    int n = a->len;
133
134    /* skip one or two nodes */
135    if (p->skip_eob_node) {
136      n -= p->skip_eob_node;
137      i = 2 * p->skip_eob_node;
138    }
139
140    // TODO(jbb): expanding this can lead to big gains.  It allows
141    // much better branch prediction and would enable us to avoid numerous
142    // lookups and compares.
143
144    // If we have a token that's in the constrained set, the coefficient tree
145    // is split into two treed writes.  The first treed write takes care of the
146    // unconstrained nodes.  The second treed write takes care of the
147    // constrained nodes.
148    if (t >= TWO_TOKEN && t < EOB_TOKEN) {
149      int len = UNCONSTRAINED_NODES - p->skip_eob_node;
150      int bits = v >> (n - len);
151      vp9_write_tree(w, vp9_coef_tree, p->context_tree, bits, len, i);
152      vp9_write_tree(w, vp9_coef_con_tree,
153                     vp9_pareto8_full[p->context_tree[PIVOT_NODE] - 1],
154                     v, n - len, 0);
155    } else {
156      vp9_write_tree(w, vp9_coef_tree, p->context_tree, v, n, i);
157    }
158
159    if (b->base_val) {
160      const int e = p->extra, l = b->len;
161
162      if (l) {
163        const unsigned char *pb = b->prob;
164        int v = e >> 1;
165        int n = l;              /* number of bits in v, assumed nonzero */
166        int i = 0;
167
168        do {
169          const int bb = (v >> --n) & 1;
170          vp9_write(w, bb, pb[i >> 1]);
171          i = b->tree[i + bb];
172        } while (n);
173      }
174
175      vp9_write_bit(w, e & 1);
176    }
177    ++p;
178  }
179
180  *tp = p + (p->token == EOSB_TOKEN);
181}
182
183static void write_segment_id(vp9_writer *w, const struct segmentation *seg,
184                             int segment_id) {
185  if (seg->enabled && seg->update_map)
186    vp9_write_tree(w, vp9_segment_tree, seg->tree_probs, segment_id, 3, 0);
187}
188
189// This function encodes the reference frame
190static void write_ref_frames(const VP9_COMMON *cm, const MACROBLOCKD *xd,
191                             vp9_writer *w) {
192  const MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
193  const int is_compound = has_second_ref(mbmi);
194  const int segment_id = mbmi->segment_id;
195
196  // If segment level coding of this signal is disabled...
197  // or the segment allows multiple reference frame options
198  if (vp9_segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) {
199    assert(!is_compound);
200    assert(mbmi->ref_frame[0] ==
201               vp9_get_segdata(&cm->seg, segment_id, SEG_LVL_REF_FRAME));
202  } else {
203    // does the feature use compound prediction or not
204    // (if not specified at the frame/segment level)
205    if (cm->reference_mode == REFERENCE_MODE_SELECT) {
206      vp9_write(w, is_compound, vp9_get_reference_mode_prob(cm, xd));
207    } else {
208      assert(!is_compound == (cm->reference_mode == SINGLE_REFERENCE));
209    }
210
211    if (is_compound) {
212      vp9_write(w, mbmi->ref_frame[0] == GOLDEN_FRAME,
213                vp9_get_pred_prob_comp_ref_p(cm, xd));
214    } else {
215      const int bit0 = mbmi->ref_frame[0] != LAST_FRAME;
216      vp9_write(w, bit0, vp9_get_pred_prob_single_ref_p1(cm, xd));
217      if (bit0) {
218        const int bit1 = mbmi->ref_frame[0] != GOLDEN_FRAME;
219        vp9_write(w, bit1, vp9_get_pred_prob_single_ref_p2(cm, xd));
220      }
221    }
222  }
223}
224
225static void pack_inter_mode_mvs(VP9_COMP *cpi, const MODE_INFO *mi,
226                                vp9_writer *w) {
227  VP9_COMMON *const cm = &cpi->common;
228  const nmv_context *nmvc = &cm->fc.nmvc;
229  const MACROBLOCK *const x = &cpi->mb;
230  const MACROBLOCKD *const xd = &x->e_mbd;
231  const struct segmentation *const seg = &cm->seg;
232  const MB_MODE_INFO *const mbmi = &mi->mbmi;
233  const PREDICTION_MODE mode = mbmi->mode;
234  const int segment_id = mbmi->segment_id;
235  const BLOCK_SIZE bsize = mbmi->sb_type;
236  const int allow_hp = cm->allow_high_precision_mv;
237  const int is_inter = is_inter_block(mbmi);
238  const int is_compound = has_second_ref(mbmi);
239  int skip, ref;
240
241  if (seg->update_map) {
242    if (seg->temporal_update) {
243      const int pred_flag = mbmi->seg_id_predicted;
244      vp9_prob pred_prob = vp9_get_pred_prob_seg_id(seg, xd);
245      vp9_write(w, pred_flag, pred_prob);
246      if (!pred_flag)
247        write_segment_id(w, seg, segment_id);
248    } else {
249      write_segment_id(w, seg, segment_id);
250    }
251  }
252
253  skip = write_skip(cm, xd, segment_id, mi, w);
254
255  if (!vp9_segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME))
256    vp9_write(w, is_inter, vp9_get_intra_inter_prob(cm, xd));
257
258  if (bsize >= BLOCK_8X8 && cm->tx_mode == TX_MODE_SELECT &&
259      !(is_inter &&
260        (skip || vp9_segfeature_active(seg, segment_id, SEG_LVL_SKIP)))) {
261    write_selected_tx_size(cm, xd, mbmi->tx_size, bsize, w);
262  }
263
264  if (!is_inter) {
265    if (bsize >= BLOCK_8X8) {
266      write_intra_mode(w, mode, cm->fc.y_mode_prob[size_group_lookup[bsize]]);
267    } else {
268      int idx, idy;
269      const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
270      const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
271      for (idy = 0; idy < 2; idy += num_4x4_h) {
272        for (idx = 0; idx < 2; idx += num_4x4_w) {
273          const PREDICTION_MODE b_mode = mi->bmi[idy * 2 + idx].as_mode;
274          write_intra_mode(w, b_mode, cm->fc.y_mode_prob[0]);
275        }
276      }
277    }
278    write_intra_mode(w, mbmi->uv_mode, cm->fc.uv_mode_prob[mode]);
279  } else {
280    const int mode_ctx = mbmi->mode_context[mbmi->ref_frame[0]];
281    const vp9_prob *const inter_probs = cm->fc.inter_mode_probs[mode_ctx];
282    write_ref_frames(cm, xd, w);
283
284    // If segment skip is not enabled code the mode.
285    if (!vp9_segfeature_active(seg, segment_id, SEG_LVL_SKIP)) {
286      if (bsize >= BLOCK_8X8) {
287        write_inter_mode(w, mode, inter_probs);
288        ++cm->counts.inter_mode[mode_ctx][INTER_OFFSET(mode)];
289      }
290    }
291
292    if (cm->interp_filter == SWITCHABLE) {
293      const int ctx = vp9_get_pred_context_switchable_interp(xd);
294      vp9_write_token(w, vp9_switchable_interp_tree,
295                      cm->fc.switchable_interp_prob[ctx],
296                      &switchable_interp_encodings[mbmi->interp_filter]);
297    } else {
298      assert(mbmi->interp_filter == cm->interp_filter);
299    }
300
301    if (bsize < BLOCK_8X8) {
302      const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
303      const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
304      int idx, idy;
305      for (idy = 0; idy < 2; idy += num_4x4_h) {
306        for (idx = 0; idx < 2; idx += num_4x4_w) {
307          const int j = idy * 2 + idx;
308          const PREDICTION_MODE b_mode = mi->bmi[j].as_mode;
309          write_inter_mode(w, b_mode, inter_probs);
310          ++cm->counts.inter_mode[mode_ctx][INTER_OFFSET(b_mode)];
311          if (b_mode == NEWMV) {
312            for (ref = 0; ref < 1 + is_compound; ++ref)
313              vp9_encode_mv(cpi, w, &mi->bmi[j].as_mv[ref].as_mv,
314                            &mbmi->ref_mvs[mbmi->ref_frame[ref]][0].as_mv,
315                            nmvc, allow_hp);
316          }
317        }
318      }
319    } else {
320      if (mode == NEWMV) {
321        for (ref = 0; ref < 1 + is_compound; ++ref)
322          vp9_encode_mv(cpi, w, &mbmi->mv[ref].as_mv,
323                        &mbmi->ref_mvs[mbmi->ref_frame[ref]][0].as_mv, nmvc,
324                        allow_hp);
325      }
326    }
327  }
328}
329
330static void write_mb_modes_kf(const VP9_COMMON *cm, const MACROBLOCKD *xd,
331                              MODE_INFO **mi_8x8, vp9_writer *w) {
332  const struct segmentation *const seg = &cm->seg;
333  const MODE_INFO *const mi = mi_8x8[0];
334  const MODE_INFO *const above_mi = mi_8x8[-xd->mi_stride];
335  const MODE_INFO *const left_mi = xd->left_available ? mi_8x8[-1] : NULL;
336  const MB_MODE_INFO *const mbmi = &mi->mbmi;
337  const BLOCK_SIZE bsize = mbmi->sb_type;
338
339  if (seg->update_map)
340    write_segment_id(w, seg, mbmi->segment_id);
341
342  write_skip(cm, xd, mbmi->segment_id, mi, w);
343
344  if (bsize >= BLOCK_8X8 && cm->tx_mode == TX_MODE_SELECT)
345    write_selected_tx_size(cm, xd, mbmi->tx_size, bsize, w);
346
347  if (bsize >= BLOCK_8X8) {
348    write_intra_mode(w, mbmi->mode, get_y_mode_probs(mi, above_mi, left_mi, 0));
349  } else {
350    const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
351    const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
352    int idx, idy;
353
354    for (idy = 0; idy < 2; idy += num_4x4_h) {
355      for (idx = 0; idx < 2; idx += num_4x4_w) {
356        const int block = idy * 2 + idx;
357        write_intra_mode(w, mi->bmi[block].as_mode,
358                         get_y_mode_probs(mi, above_mi, left_mi, block));
359      }
360    }
361  }
362
363  write_intra_mode(w, mbmi->uv_mode, vp9_kf_uv_mode_prob[mbmi->mode]);
364}
365
366static void write_modes_b(VP9_COMP *cpi, const TileInfo *const tile,
367                          vp9_writer *w, TOKENEXTRA **tok,
368                          const TOKENEXTRA *const tok_end,
369                          int mi_row, int mi_col) {
370  const VP9_COMMON *const cm = &cpi->common;
371  MACROBLOCKD *const xd = &cpi->mb.e_mbd;
372  MODE_INFO *m;
373
374  xd->mi = cm->mi_grid_visible + (mi_row * cm->mi_stride + mi_col);
375  m = xd->mi[0];
376
377  set_mi_row_col(xd, tile,
378                 mi_row, num_8x8_blocks_high_lookup[m->mbmi.sb_type],
379                 mi_col, num_8x8_blocks_wide_lookup[m->mbmi.sb_type],
380                 cm->mi_rows, cm->mi_cols);
381  if (frame_is_intra_only(cm)) {
382    write_mb_modes_kf(cm, xd, xd->mi, w);
383  } else {
384    pack_inter_mode_mvs(cpi, m, w);
385  }
386
387  assert(*tok < tok_end);
388  pack_mb_tokens(w, tok, tok_end);
389}
390
391static void write_partition(const VP9_COMMON *const cm,
392                            const MACROBLOCKD *const xd,
393                            int hbs, int mi_row, int mi_col,
394                            PARTITION_TYPE p, BLOCK_SIZE bsize, vp9_writer *w) {
395  const int ctx = partition_plane_context(xd, mi_row, mi_col, bsize);
396  const vp9_prob *const probs = get_partition_probs(cm, ctx);
397  const int has_rows = (mi_row + hbs) < cm->mi_rows;
398  const int has_cols = (mi_col + hbs) < cm->mi_cols;
399
400  if (has_rows && has_cols) {
401    vp9_write_token(w, vp9_partition_tree, probs, &partition_encodings[p]);
402  } else if (!has_rows && has_cols) {
403    assert(p == PARTITION_SPLIT || p == PARTITION_HORZ);
404    vp9_write(w, p == PARTITION_SPLIT, probs[1]);
405  } else if (has_rows && !has_cols) {
406    assert(p == PARTITION_SPLIT || p == PARTITION_VERT);
407    vp9_write(w, p == PARTITION_SPLIT, probs[2]);
408  } else {
409    assert(p == PARTITION_SPLIT);
410  }
411}
412
413static void write_modes_sb(VP9_COMP *cpi,
414                           const TileInfo *const tile, vp9_writer *w,
415                           TOKENEXTRA **tok, const TOKENEXTRA *const tok_end,
416                           int mi_row, int mi_col, BLOCK_SIZE bsize) {
417  const VP9_COMMON *const cm = &cpi->common;
418  MACROBLOCKD *const xd = &cpi->mb.e_mbd;
419
420  const int bsl = b_width_log2(bsize);
421  const int bs = (1 << bsl) / 4;
422  PARTITION_TYPE partition;
423  BLOCK_SIZE subsize;
424  const MODE_INFO *m = cm->mi_grid_visible[mi_row * cm->mi_stride + mi_col];
425
426  if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
427    return;
428
429  partition = partition_lookup[bsl][m->mbmi.sb_type];
430  write_partition(cm, xd, bs, mi_row, mi_col, partition, bsize, w);
431  subsize = get_subsize(bsize, partition);
432  if (subsize < BLOCK_8X8) {
433    write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
434  } else {
435    switch (partition) {
436      case PARTITION_NONE:
437        write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
438        break;
439      case PARTITION_HORZ:
440        write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
441        if (mi_row + bs < cm->mi_rows)
442          write_modes_b(cpi, tile, w, tok, tok_end, mi_row + bs, mi_col);
443        break;
444      case PARTITION_VERT:
445        write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
446        if (mi_col + bs < cm->mi_cols)
447          write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col + bs);
448        break;
449      case PARTITION_SPLIT:
450        write_modes_sb(cpi, tile, w, tok, tok_end, mi_row, mi_col, subsize);
451        write_modes_sb(cpi, tile, w, tok, tok_end, mi_row, mi_col + bs,
452                       subsize);
453        write_modes_sb(cpi, tile, w, tok, tok_end, mi_row + bs, mi_col,
454                       subsize);
455        write_modes_sb(cpi, tile, w, tok, tok_end, mi_row + bs, mi_col + bs,
456                       subsize);
457        break;
458      default:
459        assert(0);
460    }
461  }
462
463  // update partition context
464  if (bsize >= BLOCK_8X8 &&
465      (bsize == BLOCK_8X8 || partition != PARTITION_SPLIT))
466    update_partition_context(xd, mi_row, mi_col, subsize, bsize);
467}
468
469static void write_modes(VP9_COMP *cpi,
470                        const TileInfo *const tile, vp9_writer *w,
471                        TOKENEXTRA **tok, const TOKENEXTRA *const tok_end) {
472  int mi_row, mi_col;
473
474  for (mi_row = tile->mi_row_start; mi_row < tile->mi_row_end;
475       mi_row += MI_BLOCK_SIZE) {
476    vp9_zero(cpi->mb.e_mbd.left_seg_context);
477    for (mi_col = tile->mi_col_start; mi_col < tile->mi_col_end;
478         mi_col += MI_BLOCK_SIZE)
479      write_modes_sb(cpi, tile, w, tok, tok_end, mi_row, mi_col,
480                     BLOCK_64X64);
481  }
482}
483
484static void build_tree_distribution(VP9_COMP *cpi, TX_SIZE tx_size,
485                                    vp9_coeff_stats *coef_branch_ct,
486                                    vp9_coeff_probs_model *coef_probs) {
487  vp9_coeff_count *coef_counts = cpi->coef_counts[tx_size];
488  unsigned int (*eob_branch_ct)[REF_TYPES][COEF_BANDS][COEFF_CONTEXTS] =
489      cpi->common.counts.eob_branch[tx_size];
490  int i, j, k, l, m;
491
492  for (i = 0; i < PLANE_TYPES; ++i) {
493    for (j = 0; j < REF_TYPES; ++j) {
494      for (k = 0; k < COEF_BANDS; ++k) {
495        for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
496          vp9_tree_probs_from_distribution(vp9_coef_tree,
497                                           coef_branch_ct[i][j][k][l],
498                                           coef_counts[i][j][k][l]);
499          coef_branch_ct[i][j][k][l][0][1] = eob_branch_ct[i][j][k][l] -
500                                             coef_branch_ct[i][j][k][l][0][0];
501          for (m = 0; m < UNCONSTRAINED_NODES; ++m)
502            coef_probs[i][j][k][l][m] = get_binary_prob(
503                                            coef_branch_ct[i][j][k][l][m][0],
504                                            coef_branch_ct[i][j][k][l][m][1]);
505        }
506      }
507    }
508  }
509}
510
511static void update_coef_probs_common(vp9_writer* const bc, VP9_COMP *cpi,
512                                     TX_SIZE tx_size,
513                                     vp9_coeff_stats *frame_branch_ct,
514                                     vp9_coeff_probs_model *new_coef_probs) {
515  vp9_coeff_probs_model *old_coef_probs = cpi->common.fc.coef_probs[tx_size];
516  const vp9_prob upd = DIFF_UPDATE_PROB;
517  const int entropy_nodes_update = UNCONSTRAINED_NODES;
518  int i, j, k, l, t;
519  switch (cpi->sf.use_fast_coef_updates) {
520    case TWO_LOOP: {
521      /* dry run to see if there is any update at all needed */
522      int savings = 0;
523      int update[2] = {0, 0};
524      for (i = 0; i < PLANE_TYPES; ++i) {
525        for (j = 0; j < REF_TYPES; ++j) {
526          for (k = 0; k < COEF_BANDS; ++k) {
527            for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
528              for (t = 0; t < entropy_nodes_update; ++t) {
529                vp9_prob newp = new_coef_probs[i][j][k][l][t];
530                const vp9_prob oldp = old_coef_probs[i][j][k][l][t];
531                int s;
532                int u = 0;
533                if (t == PIVOT_NODE)
534                  s = vp9_prob_diff_update_savings_search_model(
535                      frame_branch_ct[i][j][k][l][0],
536                      old_coef_probs[i][j][k][l], &newp, upd);
537                else
538                  s = vp9_prob_diff_update_savings_search(
539                      frame_branch_ct[i][j][k][l][t], oldp, &newp, upd);
540                if (s > 0 && newp != oldp)
541                  u = 1;
542                if (u)
543                  savings += s - (int)(vp9_cost_zero(upd));
544                else
545                  savings -= (int)(vp9_cost_zero(upd));
546                update[u]++;
547              }
548            }
549          }
550        }
551      }
552
553      // printf("Update %d %d, savings %d\n", update[0], update[1], savings);
554      /* Is coef updated at all */
555      if (update[1] == 0 || savings < 0) {
556        vp9_write_bit(bc, 0);
557        return;
558      }
559      vp9_write_bit(bc, 1);
560      for (i = 0; i < PLANE_TYPES; ++i) {
561        for (j = 0; j < REF_TYPES; ++j) {
562          for (k = 0; k < COEF_BANDS; ++k) {
563            for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
564              // calc probs and branch cts for this frame only
565              for (t = 0; t < entropy_nodes_update; ++t) {
566                vp9_prob newp = new_coef_probs[i][j][k][l][t];
567                vp9_prob *oldp = old_coef_probs[i][j][k][l] + t;
568                const vp9_prob upd = DIFF_UPDATE_PROB;
569                int s;
570                int u = 0;
571                if (t == PIVOT_NODE)
572                  s = vp9_prob_diff_update_savings_search_model(
573                      frame_branch_ct[i][j][k][l][0],
574                      old_coef_probs[i][j][k][l], &newp, upd);
575                else
576                  s = vp9_prob_diff_update_savings_search(
577                      frame_branch_ct[i][j][k][l][t],
578                      *oldp, &newp, upd);
579                if (s > 0 && newp != *oldp)
580                  u = 1;
581                vp9_write(bc, u, upd);
582                if (u) {
583                  /* send/use new probability */
584                  vp9_write_prob_diff_update(bc, newp, *oldp);
585                  *oldp = newp;
586                }
587              }
588            }
589          }
590        }
591      }
592      return;
593    }
594
595    case ONE_LOOP:
596    case ONE_LOOP_REDUCED: {
597      const int prev_coef_contexts_to_update =
598          cpi->sf.use_fast_coef_updates == ONE_LOOP_REDUCED ?
599              COEFF_CONTEXTS >> 1 : COEFF_CONTEXTS;
600      const int coef_band_to_update =
601          cpi->sf.use_fast_coef_updates == ONE_LOOP_REDUCED ?
602              COEF_BANDS >> 1 : COEF_BANDS;
603      int updates = 0;
604      int noupdates_before_first = 0;
605      for (i = 0; i < PLANE_TYPES; ++i) {
606        for (j = 0; j < REF_TYPES; ++j) {
607          for (k = 0; k < COEF_BANDS; ++k) {
608            for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
609              // calc probs and branch cts for this frame only
610              for (t = 0; t < entropy_nodes_update; ++t) {
611                vp9_prob newp = new_coef_probs[i][j][k][l][t];
612                vp9_prob *oldp = old_coef_probs[i][j][k][l] + t;
613                int s;
614                int u = 0;
615                if (l >= prev_coef_contexts_to_update ||
616                    k >= coef_band_to_update) {
617                  u = 0;
618                } else {
619                  if (t == PIVOT_NODE)
620                    s = vp9_prob_diff_update_savings_search_model(
621                        frame_branch_ct[i][j][k][l][0],
622                        old_coef_probs[i][j][k][l], &newp, upd);
623                  else
624                    s = vp9_prob_diff_update_savings_search(
625                        frame_branch_ct[i][j][k][l][t],
626                        *oldp, &newp, upd);
627                  if (s > 0 && newp != *oldp)
628                    u = 1;
629                }
630                updates += u;
631                if (u == 0 && updates == 0) {
632                  noupdates_before_first++;
633                  continue;
634                }
635                if (u == 1 && updates == 1) {
636                  int v;
637                  // first update
638                  vp9_write_bit(bc, 1);
639                  for (v = 0; v < noupdates_before_first; ++v)
640                    vp9_write(bc, 0, upd);
641                }
642                vp9_write(bc, u, upd);
643                if (u) {
644                  /* send/use new probability */
645                  vp9_write_prob_diff_update(bc, newp, *oldp);
646                  *oldp = newp;
647                }
648              }
649            }
650          }
651        }
652      }
653      if (updates == 0) {
654        vp9_write_bit(bc, 0);  // no updates
655      }
656      return;
657    }
658
659    default:
660      assert(0);
661  }
662}
663
664static void update_coef_probs(VP9_COMP *cpi, vp9_writer* w) {
665  const TX_MODE tx_mode = cpi->common.tx_mode;
666  const TX_SIZE max_tx_size = tx_mode_to_biggest_tx_size[tx_mode];
667  TX_SIZE tx_size;
668  vp9_coeff_stats frame_branch_ct[TX_SIZES][PLANE_TYPES];
669  vp9_coeff_probs_model frame_coef_probs[TX_SIZES][PLANE_TYPES];
670
671  vp9_clear_system_state();
672
673  for (tx_size = TX_4X4; tx_size <= TX_32X32; ++tx_size)
674    build_tree_distribution(cpi, tx_size, frame_branch_ct[tx_size],
675                            frame_coef_probs[tx_size]);
676
677  for (tx_size = TX_4X4; tx_size <= max_tx_size; ++tx_size)
678    update_coef_probs_common(w, cpi, tx_size, frame_branch_ct[tx_size],
679                             frame_coef_probs[tx_size]);
680}
681
682static void encode_loopfilter(struct loopfilter *lf,
683                              struct vp9_write_bit_buffer *wb) {
684  int i;
685
686  // Encode the loop filter level and type
687  vp9_wb_write_literal(wb, lf->filter_level, 6);
688  vp9_wb_write_literal(wb, lf->sharpness_level, 3);
689
690  // Write out loop filter deltas applied at the MB level based on mode or
691  // ref frame (if they are enabled).
692  vp9_wb_write_bit(wb, lf->mode_ref_delta_enabled);
693
694  if (lf->mode_ref_delta_enabled) {
695    vp9_wb_write_bit(wb, lf->mode_ref_delta_update);
696    if (lf->mode_ref_delta_update) {
697      for (i = 0; i < MAX_REF_LF_DELTAS; i++) {
698        const int delta = lf->ref_deltas[i];
699        const int changed = delta != lf->last_ref_deltas[i];
700        vp9_wb_write_bit(wb, changed);
701        if (changed) {
702          lf->last_ref_deltas[i] = delta;
703          vp9_wb_write_literal(wb, abs(delta) & 0x3F, 6);
704          vp9_wb_write_bit(wb, delta < 0);
705        }
706      }
707
708      for (i = 0; i < MAX_MODE_LF_DELTAS; i++) {
709        const int delta = lf->mode_deltas[i];
710        const int changed = delta != lf->last_mode_deltas[i];
711        vp9_wb_write_bit(wb, changed);
712        if (changed) {
713          lf->last_mode_deltas[i] = delta;
714          vp9_wb_write_literal(wb, abs(delta) & 0x3F, 6);
715          vp9_wb_write_bit(wb, delta < 0);
716        }
717      }
718    }
719  }
720}
721
722static void write_delta_q(struct vp9_write_bit_buffer *wb, int delta_q) {
723  if (delta_q != 0) {
724    vp9_wb_write_bit(wb, 1);
725    vp9_wb_write_literal(wb, abs(delta_q), 4);
726    vp9_wb_write_bit(wb, delta_q < 0);
727  } else {
728    vp9_wb_write_bit(wb, 0);
729  }
730}
731
732static void encode_quantization(const VP9_COMMON *const cm,
733                                struct vp9_write_bit_buffer *wb) {
734  vp9_wb_write_literal(wb, cm->base_qindex, QINDEX_BITS);
735  write_delta_q(wb, cm->y_dc_delta_q);
736  write_delta_q(wb, cm->uv_dc_delta_q);
737  write_delta_q(wb, cm->uv_ac_delta_q);
738}
739
740static void encode_segmentation(VP9_COMMON *cm, MACROBLOCKD *xd,
741                                struct vp9_write_bit_buffer *wb) {
742  int i, j;
743
744  const struct segmentation *seg = &cm->seg;
745
746  vp9_wb_write_bit(wb, seg->enabled);
747  if (!seg->enabled)
748    return;
749
750  // Segmentation map
751  vp9_wb_write_bit(wb, seg->update_map);
752  if (seg->update_map) {
753    // Select the coding strategy (temporal or spatial)
754    vp9_choose_segmap_coding_method(cm, xd);
755    // Write out probabilities used to decode unpredicted  macro-block segments
756    for (i = 0; i < SEG_TREE_PROBS; i++) {
757      const int prob = seg->tree_probs[i];
758      const int update = prob != MAX_PROB;
759      vp9_wb_write_bit(wb, update);
760      if (update)
761        vp9_wb_write_literal(wb, prob, 8);
762    }
763
764    // Write out the chosen coding method.
765    vp9_wb_write_bit(wb, seg->temporal_update);
766    if (seg->temporal_update) {
767      for (i = 0; i < PREDICTION_PROBS; i++) {
768        const int prob = seg->pred_probs[i];
769        const int update = prob != MAX_PROB;
770        vp9_wb_write_bit(wb, update);
771        if (update)
772          vp9_wb_write_literal(wb, prob, 8);
773      }
774    }
775  }
776
777  // Segmentation data
778  vp9_wb_write_bit(wb, seg->update_data);
779  if (seg->update_data) {
780    vp9_wb_write_bit(wb, seg->abs_delta);
781
782    for (i = 0; i < MAX_SEGMENTS; i++) {
783      for (j = 0; j < SEG_LVL_MAX; j++) {
784        const int active = vp9_segfeature_active(seg, i, j);
785        vp9_wb_write_bit(wb, active);
786        if (active) {
787          const int data = vp9_get_segdata(seg, i, j);
788          const int data_max = vp9_seg_feature_data_max(j);
789
790          if (vp9_is_segfeature_signed(j)) {
791            encode_unsigned_max(wb, abs(data), data_max);
792            vp9_wb_write_bit(wb, data < 0);
793          } else {
794            encode_unsigned_max(wb, data, data_max);
795          }
796        }
797      }
798    }
799  }
800}
801
802static void encode_txfm_probs(VP9_COMMON *cm, vp9_writer *w) {
803  // Mode
804  vp9_write_literal(w, MIN(cm->tx_mode, ALLOW_32X32), 2);
805  if (cm->tx_mode >= ALLOW_32X32)
806    vp9_write_bit(w, cm->tx_mode == TX_MODE_SELECT);
807
808  // Probabilities
809  if (cm->tx_mode == TX_MODE_SELECT) {
810    int i, j;
811    unsigned int ct_8x8p[TX_SIZES - 3][2];
812    unsigned int ct_16x16p[TX_SIZES - 2][2];
813    unsigned int ct_32x32p[TX_SIZES - 1][2];
814
815
816    for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
817      tx_counts_to_branch_counts_8x8(cm->counts.tx.p8x8[i], ct_8x8p);
818      for (j = 0; j < TX_SIZES - 3; j++)
819        vp9_cond_prob_diff_update(w, &cm->fc.tx_probs.p8x8[i][j], ct_8x8p[j]);
820    }
821
822    for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
823      tx_counts_to_branch_counts_16x16(cm->counts.tx.p16x16[i], ct_16x16p);
824      for (j = 0; j < TX_SIZES - 2; j++)
825        vp9_cond_prob_diff_update(w, &cm->fc.tx_probs.p16x16[i][j],
826                                  ct_16x16p[j]);
827    }
828
829    for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
830      tx_counts_to_branch_counts_32x32(cm->counts.tx.p32x32[i], ct_32x32p);
831      for (j = 0; j < TX_SIZES - 1; j++)
832        vp9_cond_prob_diff_update(w, &cm->fc.tx_probs.p32x32[i][j],
833                                  ct_32x32p[j]);
834    }
835  }
836}
837
838static void write_interp_filter(INTERP_FILTER filter,
839                                struct vp9_write_bit_buffer *wb) {
840  const int filter_to_literal[] = { 1, 0, 2, 3 };
841
842  vp9_wb_write_bit(wb, filter == SWITCHABLE);
843  if (filter != SWITCHABLE)
844    vp9_wb_write_literal(wb, filter_to_literal[filter], 2);
845}
846
847static void fix_interp_filter(VP9_COMMON *cm) {
848  if (cm->interp_filter == SWITCHABLE) {
849    // Check to see if only one of the filters is actually used
850    int count[SWITCHABLE_FILTERS];
851    int i, j, c = 0;
852    for (i = 0; i < SWITCHABLE_FILTERS; ++i) {
853      count[i] = 0;
854      for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j)
855        count[i] += cm->counts.switchable_interp[j][i];
856      c += (count[i] > 0);
857    }
858    if (c == 1) {
859      // Only one filter is used. So set the filter at frame level
860      for (i = 0; i < SWITCHABLE_FILTERS; ++i) {
861        if (count[i]) {
862          cm->interp_filter = i;
863          break;
864        }
865      }
866    }
867  }
868}
869
870static void write_tile_info(const VP9_COMMON *const cm,
871                            struct vp9_write_bit_buffer *wb) {
872  int min_log2_tile_cols, max_log2_tile_cols, ones;
873  vp9_get_tile_n_bits(cm->mi_cols, &min_log2_tile_cols, &max_log2_tile_cols);
874
875  // columns
876  ones = cm->log2_tile_cols - min_log2_tile_cols;
877  while (ones--)
878    vp9_wb_write_bit(wb, 1);
879
880  if (cm->log2_tile_cols < max_log2_tile_cols)
881    vp9_wb_write_bit(wb, 0);
882
883  // rows
884  vp9_wb_write_bit(wb, cm->log2_tile_rows != 0);
885  if (cm->log2_tile_rows != 0)
886    vp9_wb_write_bit(wb, cm->log2_tile_rows != 1);
887}
888
889static int get_refresh_mask(VP9_COMP *cpi) {
890  if (vp9_preserve_existing_gf(cpi)) {
891    // We have decided to preserve the previously existing golden frame as our
892    // new ARF frame. However, in the short term we leave it in the GF slot and,
893    // if we're updating the GF with the current decoded frame, we save it
894    // instead to the ARF slot.
895    // Later, in the function vp9_encoder.c:vp9_update_reference_frames() we
896    // will swap gld_fb_idx and alt_fb_idx to achieve our objective. We do it
897    // there so that it can be done outside of the recode loop.
898    // Note: This is highly specific to the use of ARF as a forward reference,
899    // and this needs to be generalized as other uses are implemented
900    // (like RTC/temporal scalability).
901    return (cpi->refresh_last_frame << cpi->lst_fb_idx) |
902           (cpi->refresh_golden_frame << cpi->alt_fb_idx);
903  } else {
904    int arf_idx = cpi->alt_fb_idx;
905    if ((cpi->oxcf.pass == 2) && cpi->multi_arf_allowed) {
906      const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
907      arf_idx = gf_group->arf_update_idx[gf_group->index];
908    }
909    return (cpi->refresh_last_frame << cpi->lst_fb_idx) |
910           (cpi->refresh_golden_frame << cpi->gld_fb_idx) |
911           (cpi->refresh_alt_ref_frame << arf_idx);
912  }
913}
914
915static size_t encode_tiles(VP9_COMP *cpi, uint8_t *data_ptr) {
916  VP9_COMMON *const cm = &cpi->common;
917  vp9_writer residual_bc;
918
919  int tile_row, tile_col;
920  TOKENEXTRA *tok[4][1 << 6], *tok_end;
921  size_t total_size = 0;
922  const int tile_cols = 1 << cm->log2_tile_cols;
923  const int tile_rows = 1 << cm->log2_tile_rows;
924
925  vpx_memset(cm->above_seg_context, 0, sizeof(*cm->above_seg_context) *
926             mi_cols_aligned_to_sb(cm->mi_cols));
927
928  tok[0][0] = cpi->tok;
929  for (tile_row = 0; tile_row < tile_rows; tile_row++) {
930    if (tile_row)
931      tok[tile_row][0] = tok[tile_row - 1][tile_cols - 1] +
932                         cpi->tok_count[tile_row - 1][tile_cols - 1];
933
934    for (tile_col = 1; tile_col < tile_cols; tile_col++)
935      tok[tile_row][tile_col] = tok[tile_row][tile_col - 1] +
936                                cpi->tok_count[tile_row][tile_col - 1];
937  }
938
939  for (tile_row = 0; tile_row < tile_rows; tile_row++) {
940    for (tile_col = 0; tile_col < tile_cols; tile_col++) {
941      TileInfo tile;
942
943      vp9_tile_init(&tile, cm, tile_row, tile_col);
944      tok_end = tok[tile_row][tile_col] + cpi->tok_count[tile_row][tile_col];
945
946      if (tile_col < tile_cols - 1 || tile_row < tile_rows - 1)
947        vp9_start_encode(&residual_bc, data_ptr + total_size + 4);
948      else
949        vp9_start_encode(&residual_bc, data_ptr + total_size);
950
951      write_modes(cpi, &tile, &residual_bc, &tok[tile_row][tile_col], tok_end);
952      assert(tok[tile_row][tile_col] == tok_end);
953      vp9_stop_encode(&residual_bc);
954      if (tile_col < tile_cols - 1 || tile_row < tile_rows - 1) {
955        // size of this tile
956        mem_put_be32(data_ptr + total_size, residual_bc.pos);
957        total_size += 4;
958      }
959
960      total_size += residual_bc.pos;
961    }
962  }
963
964  return total_size;
965}
966
967static void write_display_size(const VP9_COMMON *cm,
968                               struct vp9_write_bit_buffer *wb) {
969  const int scaling_active = cm->width != cm->display_width ||
970                             cm->height != cm->display_height;
971  vp9_wb_write_bit(wb, scaling_active);
972  if (scaling_active) {
973    vp9_wb_write_literal(wb, cm->display_width - 1, 16);
974    vp9_wb_write_literal(wb, cm->display_height - 1, 16);
975  }
976}
977
978static void write_frame_size(const VP9_COMMON *cm,
979                             struct vp9_write_bit_buffer *wb) {
980  vp9_wb_write_literal(wb, cm->width - 1, 16);
981  vp9_wb_write_literal(wb, cm->height - 1, 16);
982
983  write_display_size(cm, wb);
984}
985
986static void write_frame_size_with_refs(VP9_COMP *cpi,
987                                       struct vp9_write_bit_buffer *wb) {
988  VP9_COMMON *const cm = &cpi->common;
989  int found = 0;
990
991  MV_REFERENCE_FRAME ref_frame;
992  for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
993    YV12_BUFFER_CONFIG *cfg = get_ref_frame_buffer(cpi, ref_frame);
994    found = cm->width == cfg->y_crop_width &&
995            cm->height == cfg->y_crop_height;
996
997    // Set "found" to 0 for temporal svc and for spatial svc key frame
998    if (cpi->use_svc &&
999        (cpi->svc.number_spatial_layers == 1 ||
1000         cpi->svc.layer_context[cpi->svc.spatial_layer_id].is_key_frame)) {
1001      found = 0;
1002    }
1003    vp9_wb_write_bit(wb, found);
1004    if (found) {
1005      break;
1006    }
1007  }
1008
1009  if (!found) {
1010    vp9_wb_write_literal(wb, cm->width - 1, 16);
1011    vp9_wb_write_literal(wb, cm->height - 1, 16);
1012  }
1013
1014  write_display_size(cm, wb);
1015}
1016
1017static void write_sync_code(struct vp9_write_bit_buffer *wb) {
1018  vp9_wb_write_literal(wb, VP9_SYNC_CODE_0, 8);
1019  vp9_wb_write_literal(wb, VP9_SYNC_CODE_1, 8);
1020  vp9_wb_write_literal(wb, VP9_SYNC_CODE_2, 8);
1021}
1022
1023static void write_profile(BITSTREAM_PROFILE profile,
1024                          struct vp9_write_bit_buffer *wb) {
1025  switch (profile) {
1026    case PROFILE_0:
1027      vp9_wb_write_literal(wb, 0, 2);
1028      break;
1029    case PROFILE_1:
1030      vp9_wb_write_literal(wb, 2, 2);
1031      break;
1032    case PROFILE_2:
1033      vp9_wb_write_literal(wb, 1, 2);
1034      break;
1035    case PROFILE_3:
1036      vp9_wb_write_literal(wb, 6, 3);
1037      break;
1038    default:
1039      assert(0);
1040  }
1041}
1042
1043static void write_bitdepth_colorspace_sampling(
1044    VP9_COMMON *const cm, struct vp9_write_bit_buffer *wb) {
1045  if (cm->profile >= PROFILE_2) {
1046    assert(cm->bit_depth > BITS_8);
1047    vp9_wb_write_bit(wb, cm->bit_depth - BITS_10);
1048  }
1049  vp9_wb_write_literal(wb, cm->color_space, 3);
1050  if (cm->color_space != SRGB) {
1051    vp9_wb_write_bit(wb, 0);  // 0: [16, 235] (i.e. xvYCC), 1: [0, 255]
1052    if (cm->profile == PROFILE_1 || cm->profile == PROFILE_3) {
1053      assert(cm->subsampling_x != 1 || cm->subsampling_y != 1);
1054      vp9_wb_write_bit(wb, cm->subsampling_x);
1055      vp9_wb_write_bit(wb, cm->subsampling_y);
1056      vp9_wb_write_bit(wb, 0);  // unused
1057    } else {
1058      assert(cm->subsampling_x == 1 && cm->subsampling_y == 1);
1059    }
1060  } else {
1061    assert(cm->profile == PROFILE_1 || cm->profile == PROFILE_3);
1062    vp9_wb_write_bit(wb, 0);  // unused
1063  }
1064}
1065
1066static void write_uncompressed_header(VP9_COMP *cpi,
1067                                      struct vp9_write_bit_buffer *wb) {
1068  VP9_COMMON *const cm = &cpi->common;
1069
1070  vp9_wb_write_literal(wb, VP9_FRAME_MARKER, 2);
1071
1072  write_profile(cm->profile, wb);
1073
1074  vp9_wb_write_bit(wb, 0);  // show_existing_frame
1075  vp9_wb_write_bit(wb, cm->frame_type);
1076  vp9_wb_write_bit(wb, cm->show_frame);
1077  vp9_wb_write_bit(wb, cm->error_resilient_mode);
1078
1079  if (cm->frame_type == KEY_FRAME) {
1080    write_sync_code(wb);
1081    write_bitdepth_colorspace_sampling(cm, wb);
1082    write_frame_size(cm, wb);
1083  } else {
1084    if (!cm->show_frame)
1085      vp9_wb_write_bit(wb, cm->intra_only);
1086
1087    if (!cm->error_resilient_mode)
1088      vp9_wb_write_literal(wb, cm->reset_frame_context, 2);
1089
1090    if (cm->intra_only) {
1091      write_sync_code(wb);
1092
1093      // Note for profile 0, 420 8bpp is assumed.
1094      if (cm->profile > PROFILE_0) {
1095        write_bitdepth_colorspace_sampling(cm, wb);
1096      }
1097
1098      vp9_wb_write_literal(wb, get_refresh_mask(cpi), REF_FRAMES);
1099      write_frame_size(cm, wb);
1100    } else {
1101      MV_REFERENCE_FRAME ref_frame;
1102      vp9_wb_write_literal(wb, get_refresh_mask(cpi), REF_FRAMES);
1103      for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
1104        vp9_wb_write_literal(wb, get_ref_frame_idx(cpi, ref_frame),
1105                             REF_FRAMES_LOG2);
1106        vp9_wb_write_bit(wb, cm->ref_frame_sign_bias[ref_frame]);
1107      }
1108
1109      write_frame_size_with_refs(cpi, wb);
1110
1111      vp9_wb_write_bit(wb, cm->allow_high_precision_mv);
1112
1113      fix_interp_filter(cm);
1114      write_interp_filter(cm->interp_filter, wb);
1115    }
1116  }
1117
1118  if (!cm->error_resilient_mode) {
1119    vp9_wb_write_bit(wb, cm->refresh_frame_context);
1120    vp9_wb_write_bit(wb, cm->frame_parallel_decoding_mode);
1121  }
1122
1123  vp9_wb_write_literal(wb, cm->frame_context_idx, FRAME_CONTEXTS_LOG2);
1124
1125  encode_loopfilter(&cm->lf, wb);
1126  encode_quantization(cm, wb);
1127  encode_segmentation(cm, &cpi->mb.e_mbd, wb);
1128
1129  write_tile_info(cm, wb);
1130}
1131
1132static size_t write_compressed_header(VP9_COMP *cpi, uint8_t *data) {
1133  VP9_COMMON *const cm = &cpi->common;
1134  MACROBLOCKD *const xd = &cpi->mb.e_mbd;
1135  FRAME_CONTEXT *const fc = &cm->fc;
1136  vp9_writer header_bc;
1137
1138  vp9_start_encode(&header_bc, data);
1139
1140  if (xd->lossless)
1141    cm->tx_mode = ONLY_4X4;
1142  else
1143    encode_txfm_probs(cm, &header_bc);
1144
1145  update_coef_probs(cpi, &header_bc);
1146  update_skip_probs(cm, &header_bc);
1147
1148  if (!frame_is_intra_only(cm)) {
1149    int i;
1150
1151    for (i = 0; i < INTER_MODE_CONTEXTS; ++i)
1152      prob_diff_update(vp9_inter_mode_tree, cm->fc.inter_mode_probs[i],
1153                       cm->counts.inter_mode[i], INTER_MODES, &header_bc);
1154
1155    vp9_zero(cm->counts.inter_mode);
1156
1157    if (cm->interp_filter == SWITCHABLE)
1158      update_switchable_interp_probs(cm, &header_bc);
1159
1160    for (i = 0; i < INTRA_INTER_CONTEXTS; i++)
1161      vp9_cond_prob_diff_update(&header_bc, &fc->intra_inter_prob[i],
1162                                cm->counts.intra_inter[i]);
1163
1164    if (cm->allow_comp_inter_inter) {
1165      const int use_compound_pred = cm->reference_mode != SINGLE_REFERENCE;
1166      const int use_hybrid_pred = cm->reference_mode == REFERENCE_MODE_SELECT;
1167
1168      vp9_write_bit(&header_bc, use_compound_pred);
1169      if (use_compound_pred) {
1170        vp9_write_bit(&header_bc, use_hybrid_pred);
1171        if (use_hybrid_pred)
1172          for (i = 0; i < COMP_INTER_CONTEXTS; i++)
1173            vp9_cond_prob_diff_update(&header_bc, &fc->comp_inter_prob[i],
1174                                      cm->counts.comp_inter[i]);
1175      }
1176    }
1177
1178    if (cm->reference_mode != COMPOUND_REFERENCE) {
1179      for (i = 0; i < REF_CONTEXTS; i++) {
1180        vp9_cond_prob_diff_update(&header_bc, &fc->single_ref_prob[i][0],
1181                                  cm->counts.single_ref[i][0]);
1182        vp9_cond_prob_diff_update(&header_bc, &fc->single_ref_prob[i][1],
1183                                  cm->counts.single_ref[i][1]);
1184      }
1185    }
1186
1187    if (cm->reference_mode != SINGLE_REFERENCE)
1188      for (i = 0; i < REF_CONTEXTS; i++)
1189        vp9_cond_prob_diff_update(&header_bc, &fc->comp_ref_prob[i],
1190                                  cm->counts.comp_ref[i]);
1191
1192    for (i = 0; i < BLOCK_SIZE_GROUPS; ++i)
1193      prob_diff_update(vp9_intra_mode_tree, cm->fc.y_mode_prob[i],
1194                       cm->counts.y_mode[i], INTRA_MODES, &header_bc);
1195
1196    for (i = 0; i < PARTITION_CONTEXTS; ++i)
1197      prob_diff_update(vp9_partition_tree, fc->partition_prob[i],
1198                       cm->counts.partition[i], PARTITION_TYPES, &header_bc);
1199
1200    vp9_write_nmv_probs(cm, cm->allow_high_precision_mv, &header_bc);
1201  }
1202
1203  vp9_stop_encode(&header_bc);
1204  assert(header_bc.pos <= 0xffff);
1205
1206  return header_bc.pos;
1207}
1208
1209void vp9_pack_bitstream(VP9_COMP *cpi, uint8_t *dest, size_t *size) {
1210  uint8_t *data = dest;
1211  size_t first_part_size, uncompressed_hdr_size;
1212  struct vp9_write_bit_buffer wb = {data, 0};
1213  struct vp9_write_bit_buffer saved_wb;
1214
1215  write_uncompressed_header(cpi, &wb);
1216  saved_wb = wb;
1217  vp9_wb_write_literal(&wb, 0, 16);  // don't know in advance first part. size
1218
1219  uncompressed_hdr_size = vp9_wb_bytes_written(&wb);
1220  data += uncompressed_hdr_size;
1221
1222  vp9_clear_system_state();
1223
1224  first_part_size = write_compressed_header(cpi, data);
1225  data += first_part_size;
1226  // TODO(jbb): Figure out what to do if first_part_size > 16 bits.
1227  vp9_wb_write_literal(&saved_wb, (int)first_part_size, 16);
1228
1229  data += encode_tiles(cpi, data);
1230
1231  *size = data - dest;
1232}
1233