MachineRegisterInfo.h revision e27e1ca3c90b69e78242c98a669337f84ccded7f
1//===-- llvm/CodeGen/MachineRegisterInfo.h ----------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the MachineRegisterInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CODEGEN_MACHINEREGISTERINFO_H
15#define LLVM_CODEGEN_MACHINEREGISTERINFO_H
16
17#include "llvm/Target/TargetRegisterInfo.h"
18#include "llvm/ADT/BitVector.h"
19#include "llvm/ADT/IndexedMap.h"
20#include <vector>
21
22namespace llvm {
23
24/// MachineRegisterInfo - Keep track of information for virtual and physical
25/// registers, including vreg register classes, use/def chains for registers,
26/// etc.
27class MachineRegisterInfo {
28  const TargetRegisterInfo *const TRI;
29
30  /// IsSSA - True when the machine function is in SSA form and virtual
31  /// registers have a single def.
32  bool IsSSA;
33
34  /// VRegInfo - Information we keep for each virtual register.
35  ///
36  /// Each element in this list contains the register class of the vreg and the
37  /// start of the use/def list for the register.
38  IndexedMap<std::pair<const TargetRegisterClass*, MachineOperand*>,
39             VirtReg2IndexFunctor> VRegInfo;
40
41  /// RegAllocHints - This vector records register allocation hints for virtual
42  /// registers. For each virtual register, it keeps a register and hint type
43  /// pair making up the allocation hint. Hint type is target specific except
44  /// for the value 0 which means the second value of the pair is the preferred
45  /// register for allocation. For example, if the hint is <0, 1024>, it means
46  /// the allocator should prefer the physical register allocated to the virtual
47  /// register of the hint.
48  IndexedMap<std::pair<unsigned, unsigned>, VirtReg2IndexFunctor> RegAllocHints;
49
50  /// PhysRegUseDefLists - This is an array of the head of the use/def list for
51  /// physical registers.
52  MachineOperand **PhysRegUseDefLists;
53
54  /// UsedPhysRegs - This is a bit vector that is computed and set by the
55  /// register allocator, and must be kept up to date by passes that run after
56  /// register allocation (though most don't modify this).  This is used
57  /// so that the code generator knows which callee save registers to save and
58  /// for other target specific uses.
59  BitVector UsedPhysRegs;
60
61  /// LiveIns/LiveOuts - Keep track of the physical registers that are
62  /// livein/liveout of the function.  Live in values are typically arguments in
63  /// registers, live out values are typically return values in registers.
64  /// LiveIn values are allowed to have virtual registers associated with them,
65  /// stored in the second element.
66  std::vector<std::pair<unsigned, unsigned> > LiveIns;
67  std::vector<unsigned> LiveOuts;
68
69  MachineRegisterInfo(const MachineRegisterInfo&); // DO NOT IMPLEMENT
70  void operator=(const MachineRegisterInfo&);      // DO NOT IMPLEMENT
71public:
72  explicit MachineRegisterInfo(const TargetRegisterInfo &TRI);
73  ~MachineRegisterInfo();
74
75  //===--------------------------------------------------------------------===//
76  // Function State
77  //===--------------------------------------------------------------------===//
78
79  // isSSA - Returns true when the machine function is in SSA form. Early
80  // passes require the machine function to be in SSA form where every virtual
81  // register has a single defining instruction.
82  //
83  // The TwoAddressInstructionPass and PHIElimination passes take the machine
84  // function out of SSA form when they introduce multiple defs per virtual
85  // register.
86  bool isSSA() const { return IsSSA; }
87
88  // leaveSSA - Indicates that the machine function is no longer in SSA form.
89  void leaveSSA() { IsSSA = false; }
90
91  //===--------------------------------------------------------------------===//
92  // Register Info
93  //===--------------------------------------------------------------------===//
94
95  /// reg_begin/reg_end - Provide iteration support to walk over all definitions
96  /// and uses of a register within the MachineFunction that corresponds to this
97  /// MachineRegisterInfo object.
98  template<bool Uses, bool Defs, bool SkipDebug>
99  class defusechain_iterator;
100
101  /// reg_iterator/reg_begin/reg_end - Walk all defs and uses of the specified
102  /// register.
103  typedef defusechain_iterator<true,true,false> reg_iterator;
104  reg_iterator reg_begin(unsigned RegNo) const {
105    return reg_iterator(getRegUseDefListHead(RegNo));
106  }
107  static reg_iterator reg_end() { return reg_iterator(0); }
108
109  /// reg_empty - Return true if there are no instructions using or defining the
110  /// specified register (it may be live-in).
111  bool reg_empty(unsigned RegNo) const { return reg_begin(RegNo) == reg_end(); }
112
113  /// reg_nodbg_iterator/reg_nodbg_begin/reg_nodbg_end - Walk all defs and uses
114  /// of the specified register, skipping those marked as Debug.
115  typedef defusechain_iterator<true,true,true> reg_nodbg_iterator;
116  reg_nodbg_iterator reg_nodbg_begin(unsigned RegNo) const {
117    return reg_nodbg_iterator(getRegUseDefListHead(RegNo));
118  }
119  static reg_nodbg_iterator reg_nodbg_end() { return reg_nodbg_iterator(0); }
120
121  /// reg_nodbg_empty - Return true if the only instructions using or defining
122  /// Reg are Debug instructions.
123  bool reg_nodbg_empty(unsigned RegNo) const {
124    return reg_nodbg_begin(RegNo) == reg_nodbg_end();
125  }
126
127  /// def_iterator/def_begin/def_end - Walk all defs of the specified register.
128  typedef defusechain_iterator<false,true,false> def_iterator;
129  def_iterator def_begin(unsigned RegNo) const {
130    return def_iterator(getRegUseDefListHead(RegNo));
131  }
132  static def_iterator def_end() { return def_iterator(0); }
133
134  /// def_empty - Return true if there are no instructions defining the
135  /// specified register (it may be live-in).
136  bool def_empty(unsigned RegNo) const { return def_begin(RegNo) == def_end(); }
137
138  /// use_iterator/use_begin/use_end - Walk all uses of the specified register.
139  typedef defusechain_iterator<true,false,false> use_iterator;
140  use_iterator use_begin(unsigned RegNo) const {
141    return use_iterator(getRegUseDefListHead(RegNo));
142  }
143  static use_iterator use_end() { return use_iterator(0); }
144
145  /// use_empty - Return true if there are no instructions using the specified
146  /// register.
147  bool use_empty(unsigned RegNo) const { return use_begin(RegNo) == use_end(); }
148
149  /// hasOneUse - Return true if there is exactly one instruction using the
150  /// specified register.
151  bool hasOneUse(unsigned RegNo) const;
152
153  /// use_nodbg_iterator/use_nodbg_begin/use_nodbg_end - Walk all uses of the
154  /// specified register, skipping those marked as Debug.
155  typedef defusechain_iterator<true,false,true> use_nodbg_iterator;
156  use_nodbg_iterator use_nodbg_begin(unsigned RegNo) const {
157    return use_nodbg_iterator(getRegUseDefListHead(RegNo));
158  }
159  static use_nodbg_iterator use_nodbg_end() { return use_nodbg_iterator(0); }
160
161  /// use_nodbg_empty - Return true if there are no non-Debug instructions
162  /// using the specified register.
163  bool use_nodbg_empty(unsigned RegNo) const {
164    return use_nodbg_begin(RegNo) == use_nodbg_end();
165  }
166
167  /// hasOneNonDBGUse - Return true if there is exactly one non-Debug
168  /// instruction using the specified register.
169  bool hasOneNonDBGUse(unsigned RegNo) const;
170
171  /// replaceRegWith - Replace all instances of FromReg with ToReg in the
172  /// machine function.  This is like llvm-level X->replaceAllUsesWith(Y),
173  /// except that it also changes any definitions of the register as well.
174  void replaceRegWith(unsigned FromReg, unsigned ToReg);
175
176  /// getRegUseDefListHead - Return the head pointer for the register use/def
177  /// list for the specified virtual or physical register.
178  MachineOperand *&getRegUseDefListHead(unsigned RegNo) {
179    if (TargetRegisterInfo::isVirtualRegister(RegNo))
180      return VRegInfo[RegNo].second;
181    return PhysRegUseDefLists[RegNo];
182  }
183
184  MachineOperand *getRegUseDefListHead(unsigned RegNo) const {
185    if (TargetRegisterInfo::isVirtualRegister(RegNo))
186      return VRegInfo[RegNo].second;
187    return PhysRegUseDefLists[RegNo];
188  }
189
190  /// getVRegDef - Return the machine instr that defines the specified virtual
191  /// register or null if none is found.  This assumes that the code is in SSA
192  /// form, so there should only be one definition.
193  MachineInstr *getVRegDef(unsigned Reg) const;
194
195  /// clearKillFlags - Iterate over all the uses of the given register and
196  /// clear the kill flag from the MachineOperand. This function is used by
197  /// optimization passes which extend register lifetimes and need only
198  /// preserve conservative kill flag information.
199  void clearKillFlags(unsigned Reg) const;
200
201#ifndef NDEBUG
202  void dumpUses(unsigned RegNo) const;
203#endif
204
205  //===--------------------------------------------------------------------===//
206  // Virtual Register Info
207  //===--------------------------------------------------------------------===//
208
209  /// getRegClass - Return the register class of the specified virtual register.
210  ///
211  const TargetRegisterClass *getRegClass(unsigned Reg) const {
212    return VRegInfo[Reg].first;
213  }
214
215  /// setRegClass - Set the register class of the specified virtual register.
216  ///
217  void setRegClass(unsigned Reg, const TargetRegisterClass *RC);
218
219  /// constrainRegClass - Constrain the register class of the specified virtual
220  /// register to be a common subclass of RC and the current register class,
221  /// but only if the new class has at least MinNumRegs registers.  Return the
222  /// new register class, or NULL if no such class exists.
223  /// This should only be used when the constraint is known to be trivial, like
224  /// GR32 -> GR32_NOSP. Beware of increasing register pressure.
225  ///
226  const TargetRegisterClass *constrainRegClass(unsigned Reg,
227                                               const TargetRegisterClass *RC,
228                                               unsigned MinNumRegs = 0);
229
230  /// recomputeRegClass - Try to find a legal super-class of Reg's register
231  /// class that still satisfies the constraints from the instructions using
232  /// Reg.  Returns true if Reg was upgraded.
233  ///
234  /// This method can be used after constraints have been removed from a
235  /// virtual register, for example after removing instructions or splitting
236  /// the live range.
237  ///
238  bool recomputeRegClass(unsigned Reg, const TargetMachine&);
239
240  /// createVirtualRegister - Create and return a new virtual register in the
241  /// function with the specified register class.
242  ///
243  unsigned createVirtualRegister(const TargetRegisterClass *RegClass);
244
245  /// getNumVirtRegs - Return the number of virtual registers created.
246  ///
247  unsigned getNumVirtRegs() const { return VRegInfo.size(); }
248
249  /// setRegAllocationHint - Specify a register allocation hint for the
250  /// specified virtual register.
251  void setRegAllocationHint(unsigned Reg, unsigned Type, unsigned PrefReg) {
252    RegAllocHints[Reg].first  = Type;
253    RegAllocHints[Reg].second = PrefReg;
254  }
255
256  /// getRegAllocationHint - Return the register allocation hint for the
257  /// specified virtual register.
258  std::pair<unsigned, unsigned>
259  getRegAllocationHint(unsigned Reg) const {
260    return RegAllocHints[Reg];
261  }
262
263  /// getSimpleHint - Return the preferred register allocation hint, or 0 if a
264  /// standard simple hint (Type == 0) is not set.
265  unsigned getSimpleHint(unsigned Reg) const {
266    std::pair<unsigned, unsigned> Hint = getRegAllocationHint(Reg);
267    return Hint.first ? 0 : Hint.second;
268  }
269
270
271  //===--------------------------------------------------------------------===//
272  // Physical Register Use Info
273  //===--------------------------------------------------------------------===//
274
275  /// isPhysRegUsed - Return true if the specified register is used in this
276  /// function.  This only works after register allocation.
277  bool isPhysRegUsed(unsigned Reg) const { return UsedPhysRegs[Reg]; }
278
279  /// setPhysRegUsed - Mark the specified register used in this function.
280  /// This should only be called during and after register allocation.
281  void setPhysRegUsed(unsigned Reg) { UsedPhysRegs[Reg] = true; }
282
283  /// addPhysRegsUsed - Mark the specified registers used in this function.
284  /// This should only be called during and after register allocation.
285  void addPhysRegsUsed(const BitVector &Regs) { UsedPhysRegs |= Regs; }
286
287  /// setPhysRegUnused - Mark the specified register unused in this function.
288  /// This should only be called during and after register allocation.
289  void setPhysRegUnused(unsigned Reg) { UsedPhysRegs[Reg] = false; }
290
291  /// closePhysRegsUsed - Expand UsedPhysRegs to its transitive closure over
292  /// subregisters. That means that if R is used, so are all subregisters.
293  void closePhysRegsUsed(const TargetRegisterInfo&);
294
295  //===--------------------------------------------------------------------===//
296  // LiveIn/LiveOut Management
297  //===--------------------------------------------------------------------===//
298
299  /// addLiveIn/Out - Add the specified register as a live in/out.  Note that it
300  /// is an error to add the same register to the same set more than once.
301  void addLiveIn(unsigned Reg, unsigned vreg = 0) {
302    LiveIns.push_back(std::make_pair(Reg, vreg));
303  }
304  void addLiveOut(unsigned Reg) { LiveOuts.push_back(Reg); }
305
306  // Iteration support for live in/out sets.  These sets are kept in sorted
307  // order by their register number.
308  typedef std::vector<std::pair<unsigned,unsigned> >::const_iterator
309  livein_iterator;
310  typedef std::vector<unsigned>::const_iterator liveout_iterator;
311  livein_iterator livein_begin() const { return LiveIns.begin(); }
312  livein_iterator livein_end()   const { return LiveIns.end(); }
313  bool            livein_empty() const { return LiveIns.empty(); }
314  liveout_iterator liveout_begin() const { return LiveOuts.begin(); }
315  liveout_iterator liveout_end()   const { return LiveOuts.end(); }
316  bool             liveout_empty() const { return LiveOuts.empty(); }
317
318  bool isLiveIn(unsigned Reg) const;
319  bool isLiveOut(unsigned Reg) const;
320
321  /// getLiveInPhysReg - If VReg is a live-in virtual register, return the
322  /// corresponding live-in physical register.
323  unsigned getLiveInPhysReg(unsigned VReg) const;
324
325  /// getLiveInVirtReg - If PReg is a live-in physical register, return the
326  /// corresponding live-in physical register.
327  unsigned getLiveInVirtReg(unsigned PReg) const;
328
329  /// EmitLiveInCopies - Emit copies to initialize livein virtual registers
330  /// into the given entry block.
331  void EmitLiveInCopies(MachineBasicBlock *EntryMBB,
332                        const TargetRegisterInfo &TRI,
333                        const TargetInstrInfo &TII);
334
335private:
336  void HandleVRegListReallocation();
337
338public:
339  /// defusechain_iterator - This class provides iterator support for machine
340  /// operands in the function that use or define a specific register.  If
341  /// ReturnUses is true it returns uses of registers, if ReturnDefs is true it
342  /// returns defs.  If neither are true then you are silly and it always
343  /// returns end().  If SkipDebug is true it skips uses marked Debug
344  /// when incrementing.
345  template<bool ReturnUses, bool ReturnDefs, bool SkipDebug>
346  class defusechain_iterator
347    : public std::iterator<std::forward_iterator_tag, MachineInstr, ptrdiff_t> {
348    MachineOperand *Op;
349    explicit defusechain_iterator(MachineOperand *op) : Op(op) {
350      // If the first node isn't one we're interested in, advance to one that
351      // we are interested in.
352      if (op) {
353        if ((!ReturnUses && op->isUse()) ||
354            (!ReturnDefs && op->isDef()) ||
355            (SkipDebug && op->isDebug()))
356          ++*this;
357      }
358    }
359    friend class MachineRegisterInfo;
360  public:
361    typedef std::iterator<std::forward_iterator_tag,
362                          MachineInstr, ptrdiff_t>::reference reference;
363    typedef std::iterator<std::forward_iterator_tag,
364                          MachineInstr, ptrdiff_t>::pointer pointer;
365
366    defusechain_iterator(const defusechain_iterator &I) : Op(I.Op) {}
367    defusechain_iterator() : Op(0) {}
368
369    bool operator==(const defusechain_iterator &x) const {
370      return Op == x.Op;
371    }
372    bool operator!=(const defusechain_iterator &x) const {
373      return !operator==(x);
374    }
375
376    /// atEnd - return true if this iterator is equal to reg_end() on the value.
377    bool atEnd() const { return Op == 0; }
378
379    // Iterator traversal: forward iteration only
380    defusechain_iterator &operator++() {          // Preincrement
381      assert(Op && "Cannot increment end iterator!");
382      Op = Op->getNextOperandForReg();
383
384      // If this is an operand we don't care about, skip it.
385      while (Op && ((!ReturnUses && Op->isUse()) ||
386                    (!ReturnDefs && Op->isDef()) ||
387                    (SkipDebug && Op->isDebug())))
388        Op = Op->getNextOperandForReg();
389
390      return *this;
391    }
392    defusechain_iterator operator++(int) {        // Postincrement
393      defusechain_iterator tmp = *this; ++*this; return tmp;
394    }
395
396    /// skipInstruction - move forward until reaching a different instruction.
397    /// Return the skipped instruction that is no longer pointed to, or NULL if
398    /// already pointing to end().
399    MachineInstr *skipInstruction() {
400      if (!Op) return 0;
401      MachineInstr *MI = Op->getParent();
402      do ++*this;
403      while (Op && Op->getParent() == MI);
404      return MI;
405    }
406
407    MachineOperand &getOperand() const {
408      assert(Op && "Cannot dereference end iterator!");
409      return *Op;
410    }
411
412    /// getOperandNo - Return the operand # of this MachineOperand in its
413    /// MachineInstr.
414    unsigned getOperandNo() const {
415      assert(Op && "Cannot dereference end iterator!");
416      return Op - &Op->getParent()->getOperand(0);
417    }
418
419    // Retrieve a reference to the current operand.
420    MachineInstr &operator*() const {
421      assert(Op && "Cannot dereference end iterator!");
422      return *Op->getParent();
423    }
424
425    MachineInstr *operator->() const {
426      assert(Op && "Cannot dereference end iterator!");
427      return Op->getParent();
428    }
429  };
430
431};
432
433} // End llvm namespace
434
435#endif
436