PHIElimination.cpp revision 0416d2a70aea644c3e0c06301c29f3b81ec1e42d
1//===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===//
2//
3// This pass eliminates machine instruction PHI nodes by inserting copy
4// instructions.  This destroys SSA information, but is the desired input for
5// some register allocators.
6//
7//===----------------------------------------------------------------------===//
8
9#include "llvm/CodeGen/MachineFunctionPass.h"
10#include "llvm/CodeGen/MachineInstr.h"
11#include "llvm/CodeGen/SSARegMap.h"
12#include "llvm/CodeGen/LiveVariables.h"
13#include "llvm/Target/TargetInstrInfo.h"
14#include "llvm/Target/TargetMachine.h"
15
16namespace {
17  struct PNE : public MachineFunctionPass {
18    bool runOnMachineFunction(MachineFunction &Fn) {
19      bool Changed = false;
20
21      // Eliminate PHI instructions by inserting copies into predecessor blocks.
22      //
23      for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
24	Changed |= EliminatePHINodes(Fn, *I);
25
26      //std::cerr << "AFTER PHI NODE ELIM:\n";
27      //Fn.dump();
28      return Changed;
29    }
30
31    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
32      AU.addPreserved<LiveVariables>();
33      MachineFunctionPass::getAnalysisUsage(AU);
34    }
35
36  private:
37    /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
38    /// in predecessor basic blocks.
39    ///
40    bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB);
41  };
42
43  RegisterPass<PNE> X("phi-node-elimination",
44		      "Eliminate PHI nodes for register allocation");
45}
46
47const PassInfo *PHIEliminationID = X.getPassInfo();
48
49/// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
50/// predecessor basic blocks.
51///
52bool PNE::EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB) {
53  if (MBB.empty() || MBB.front()->getOpcode() != TargetInstrInfo::PHI)
54    return false;   // Quick exit for normal case...
55
56  LiveVariables *LV = getAnalysisToUpdate<LiveVariables>();
57  const TargetInstrInfo &MII = MF.getTarget().getInstrInfo();
58  const MRegisterInfo *RegInfo = MF.getTarget().getRegisterInfo();
59
60  while (MBB.front()->getOpcode() == TargetInstrInfo::PHI) {
61    MachineInstr *MI = MBB.front();
62    // Unlink the PHI node from the basic block... but don't delete the PHI yet
63    MBB.erase(MBB.begin());
64
65    assert(MI->getOperand(0).isVirtualRegister() &&
66           "PHI node doesn't write virt reg?");
67
68    unsigned DestReg = MI->getOperand(0).getAllocatedRegNum();
69
70    // Create a new register for the incoming PHI arguments
71    const TargetRegisterClass *RC = MF.getSSARegMap()->getRegClass(DestReg);
72    unsigned IncomingReg = MF.getSSARegMap()->createVirtualRegister(RC);
73
74    // Insert a register to register copy in the top of the current block (by
75    // after any remaining phi nodes) which copies the new incoming register
76    // into the phi node destination.
77    //
78    MachineBasicBlock::iterator AfterPHIsIt = MBB.begin();
79    if (AfterPHIsIt != MBB.end())
80      while ((*AfterPHIsIt)->getOpcode() == TargetInstrInfo::PHI) ++AfterPHIsIt;
81    RegInfo->copyRegToReg(MBB, AfterPHIsIt, DestReg, IncomingReg, RC);
82
83    // Add information to LiveVariables to know that the incoming value is dead
84    if (LV) LV->addVirtualRegisterKill(IncomingReg, *(AfterPHIsIt-1));
85
86    // Now loop over all of the incoming arguments turning them into copies into
87    // the IncomingReg register in the corresponding predecessor basic block.
88    //
89    for (int i = MI->getNumOperands() - 1; i >= 2; i-=2) {
90      MachineOperand &opVal = MI->getOperand(i-1);
91
92      // Get the MachineBasicBlock equivalent of the BasicBlock that is the
93      // source path the phi
94      MachineBasicBlock &opBlock = *MI->getOperand(i).getMachineBasicBlock();
95
96      // Check to make sure we haven't already emitted the copy for this block.
97      // This can happen because PHI nodes may have multiple entries for the
98      // same basic block.  It doesn't matter which entry we use though, because
99      // all incoming values are guaranteed to be the same for a particular bb.
100      //
101      // Note that this is N^2 in the number of phi node entries, but since the
102      // # of entries is tiny, this is not a problem.
103      //
104      bool HaveNotEmitted = true;
105      for (int op = MI->getNumOperands() - 1; op != i; op -= 2)
106        if (&opBlock == MI->getOperand(op).getMachineBasicBlock()) {
107          HaveNotEmitted = false;
108          break;
109        }
110
111      if (HaveNotEmitted) {
112        MachineBasicBlock::iterator I = opBlock.end();
113        if (I != opBlock.begin()) {  // Handle empty blocks
114          --I;
115          // must backtrack over ALL the branches in the previous block
116          while (MII.isTerminatorInstr((*I)->getOpcode()) &&
117                 I != opBlock.begin())
118            --I;
119
120          // move back to the first branch instruction so new instructions
121          // are inserted right in front of it and not in front of a non-branch
122          if (!MII.isTerminatorInstr((*I)->getOpcode()))
123            ++I;
124        }
125
126	assert(opVal.isVirtualRegister() &&
127	       "Machine PHI Operands must all be virtual registers!");
128	RegInfo->copyRegToReg(opBlock, I, IncomingReg, opVal.getReg(), RC);
129      }
130    }
131
132    // really delete the PHI instruction now!
133    delete MI;
134  }
135
136  return true;
137}
138