PHIElimination.cpp revision 1dd35b4c35ef149a48c511283331f49c04351cae
1//===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass eliminates machine instruction PHI nodes by inserting copy
11// instructions.  This destroys SSA information, but is the desired input for
12// some register allocators.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "phielim"
17#include "llvm/BasicBlock.h"
18#include "llvm/Instructions.h"
19#include "llvm/CodeGen/LiveVariables.h"
20#include "llvm/CodeGen/Passes.h"
21#include "llvm/CodeGen/MachineFunctionPass.h"
22#include "llvm/CodeGen/MachineInstr.h"
23#include "llvm/CodeGen/MachineInstrBuilder.h"
24#include "llvm/CodeGen/MachineRegisterInfo.h"
25#include "llvm/Target/TargetInstrInfo.h"
26#include "llvm/Target/TargetMachine.h"
27#include "llvm/ADT/SmallPtrSet.h"
28#include "llvm/ADT/STLExtras.h"
29#include "llvm/ADT/Statistic.h"
30#include "llvm/Support/Compiler.h"
31#include <algorithm>
32#include <map>
33using namespace llvm;
34
35STATISTIC(NumAtomic, "Number of atomic phis lowered");
36
37namespace {
38  class VISIBILITY_HIDDEN PNE : public MachineFunctionPass {
39    MachineRegisterInfo  *MRI; // Machine register information
40
41  public:
42    static char ID; // Pass identification, replacement for typeid
43    PNE() : MachineFunctionPass(&ID) {}
44
45    virtual bool runOnMachineFunction(MachineFunction &Fn);
46
47    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
48      AU.addPreserved<LiveVariables>();
49      AU.addPreservedID(MachineLoopInfoID);
50      AU.addPreservedID(MachineDominatorsID);
51      MachineFunctionPass::getAnalysisUsage(AU);
52    }
53
54  private:
55    /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
56    /// in predecessor basic blocks.
57    ///
58    bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB);
59    void LowerAtomicPHINode(MachineBasicBlock &MBB,
60                            MachineBasicBlock::iterator AfterPHIsIt);
61
62    /// analyzePHINodes - Gather information about the PHI nodes in
63    /// here. In particular, we want to map the number of uses of a virtual
64    /// register which is used in a PHI node. We map that to the BB the
65    /// vreg is coming from. This is used later to determine when the vreg
66    /// is killed in the BB.
67    ///
68    void analyzePHINodes(const MachineFunction& Fn);
69
70    // FindCopyInsertPoint - Find a safe place in MBB to insert a copy from
71    // SrcReg.  This needs to be after any def or uses of SrcReg, but before
72    // any subsequent point where control flow might jump out of the basic
73    // block.
74    MachineBasicBlock::iterator FindCopyInsertPoint(MachineBasicBlock &MBB,
75                                                    unsigned SrcReg);
76
77    // SkipPHIsAndLabels - Copies need to be inserted after phi nodes and
78    // also after any exception handling labels: in landing pads execution
79    // starts at the label, so any copies placed before it won't be executed!
80    MachineBasicBlock::iterator SkipPHIsAndLabels(MachineBasicBlock &MBB,
81                                                MachineBasicBlock::iterator I) {
82      // Rather than assuming that EH labels come before other kinds of labels,
83      // just skip all labels.
84      while (I != MBB.end() &&
85             (I->getOpcode() == TargetInstrInfo::PHI || I->isLabel()))
86        ++I;
87      return I;
88    }
89
90    typedef std::pair<const MachineBasicBlock*, unsigned> BBVRegPair;
91    typedef std::map<BBVRegPair, unsigned> VRegPHIUse;
92
93    VRegPHIUse VRegPHIUseCount;
94
95    // Defs of PHI sources which are implicit_def.
96    SmallPtrSet<MachineInstr*, 4> ImpDefs;
97  };
98}
99
100char PNE::ID = 0;
101static RegisterPass<PNE>
102X("phi-node-elimination", "Eliminate PHI nodes for register allocation");
103
104const PassInfo *const llvm::PHIEliminationID = &X;
105
106bool PNE::runOnMachineFunction(MachineFunction &Fn) {
107  MRI = &Fn.getRegInfo();
108
109  analyzePHINodes(Fn);
110
111  bool Changed = false;
112
113  // Eliminate PHI instructions by inserting copies into predecessor blocks.
114  for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
115    Changed |= EliminatePHINodes(Fn, *I);
116
117  // Remove dead IMPLICIT_DEF instructions.
118  for (SmallPtrSet<MachineInstr*,4>::iterator I = ImpDefs.begin(),
119         E = ImpDefs.end(); I != E; ++I) {
120    MachineInstr *DefMI = *I;
121    unsigned DefReg = DefMI->getOperand(0).getReg();
122    if (MRI->use_empty(DefReg))
123      DefMI->eraseFromParent();
124  }
125
126  ImpDefs.clear();
127  VRegPHIUseCount.clear();
128  return Changed;
129}
130
131
132/// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
133/// predecessor basic blocks.
134///
135bool PNE::EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB) {
136  if (MBB.empty() || MBB.front().getOpcode() != TargetInstrInfo::PHI)
137    return false;   // Quick exit for basic blocks without PHIs.
138
139  // Get an iterator to the first instruction after the last PHI node (this may
140  // also be the end of the basic block).
141  MachineBasicBlock::iterator AfterPHIsIt = SkipPHIsAndLabels(MBB, MBB.begin());
142
143  while (MBB.front().getOpcode() == TargetInstrInfo::PHI)
144    LowerAtomicPHINode(MBB, AfterPHIsIt);
145
146  return true;
147}
148
149/// isSourceDefinedByImplicitDef - Return true if all sources of the phi node
150/// are implicit_def's.
151static bool isSourceDefinedByImplicitDef(const MachineInstr *MPhi,
152                                         const MachineRegisterInfo *MRI) {
153  for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) {
154    unsigned SrcReg = MPhi->getOperand(i).getReg();
155    const MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
156    if (!DefMI || DefMI->getOpcode() != TargetInstrInfo::IMPLICIT_DEF)
157      return false;
158  }
159  return true;
160}
161
162// FindCopyInsertPoint - Find a safe place in MBB to insert a copy from SrcReg.
163// This needs to be after any def or uses of SrcReg, but before any subsequent
164// point where control flow might jump out of the basic block.
165MachineBasicBlock::iterator PNE::FindCopyInsertPoint(MachineBasicBlock &MBB,
166                                                     unsigned SrcReg) {
167  // Handle the trivial case trivially.
168  if (MBB.empty())
169    return MBB.begin();
170
171  // If this basic block does not contain an invoke, then control flow always
172  // reaches the end of it, so place the copy there.
173  // If the terminator is a branch depending upon the side effects of a
174  // previous cmp; a copy can not be inserted here if the copy insn also
175  // side effects. We don't have access to the attributes of copy insn here;
176  // so just play safe by finding a safe locations for branch terminators.
177  //
178  // The logic below works in this case too, but is more expensive.
179  const TerminatorInst *TermInst = MBB.getBasicBlock()->getTerminator();
180  if (!(isa<InvokeInst>(TermInst) || isa<BranchInst>(TermInst)))
181    return MBB.getFirstTerminator();
182
183  // Discover any definition/uses in this basic block.
184  SmallPtrSet<MachineInstr*, 8> DefUsesInMBB;
185  for (MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(SrcReg),
186       RE = MRI->reg_end(); RI != RE; ++RI) {
187    MachineInstr *DefUseMI = &*RI;
188    if (DefUseMI->getParent() == &MBB)
189      DefUsesInMBB.insert(DefUseMI);
190  }
191
192  MachineBasicBlock::iterator InsertPoint;
193  if (DefUsesInMBB.empty()) {
194    // No def/uses.  Insert the copy at the start of the basic block.
195    InsertPoint = MBB.begin();
196  } else if (DefUsesInMBB.size() == 1) {
197    // Insert the copy immediately after the definition/use.
198    InsertPoint = *DefUsesInMBB.begin();
199    ++InsertPoint;
200  } else {
201    // Insert the copy immediately after the last definition/use.
202    InsertPoint = MBB.end();
203    while (!DefUsesInMBB.count(&*--InsertPoint)) {}
204    ++InsertPoint;
205  }
206
207  // Make sure the copy goes after any phi nodes however.
208  return SkipPHIsAndLabels(MBB, InsertPoint);
209}
210
211/// LowerAtomicPHINode - Lower the PHI node at the top of the specified block,
212/// under the assuption that it needs to be lowered in a way that supports
213/// atomic execution of PHIs.  This lowering method is always correct all of the
214/// time.
215///
216void PNE::LowerAtomicPHINode(MachineBasicBlock &MBB,
217                             MachineBasicBlock::iterator AfterPHIsIt) {
218  // Unlink the PHI node from the basic block, but don't delete the PHI yet.
219  MachineInstr *MPhi = MBB.remove(MBB.begin());
220
221  unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2;
222  unsigned DestReg = MPhi->getOperand(0).getReg();
223  bool isDead = MPhi->getOperand(0).isDead();
224
225  // Create a new register for the incoming PHI arguments.
226  MachineFunction &MF = *MBB.getParent();
227  const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
228  unsigned IncomingReg = 0;
229
230  // Insert a register to register copy at the top of the current block (but
231  // after any remaining phi nodes) which copies the new incoming register
232  // into the phi node destination.
233  const TargetInstrInfo *TII = MF.getTarget().getInstrInfo();
234  if (isSourceDefinedByImplicitDef(MPhi, MRI))
235    // If all sources of a PHI node are implicit_def, just emit an
236    // implicit_def instead of a copy.
237    BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
238            TII->get(TargetInstrInfo::IMPLICIT_DEF), DestReg);
239  else {
240    IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
241    TII->copyRegToReg(MBB, AfterPHIsIt, DestReg, IncomingReg, RC, RC);
242  }
243
244  // Update live variable information if there is any.
245  LiveVariables *LV = getAnalysisIfAvailable<LiveVariables>();
246  if (LV) {
247    MachineInstr *PHICopy = prior(AfterPHIsIt);
248
249    if (IncomingReg) {
250      // Increment use count of the newly created virtual register.
251      LV->getVarInfo(IncomingReg).NumUses++;
252
253      // Add information to LiveVariables to know that the incoming value is
254      // killed.  Note that because the value is defined in several places (once
255      // each for each incoming block), the "def" block and instruction fields
256      // for the VarInfo is not filled in.
257      LV->addVirtualRegisterKilled(IncomingReg, PHICopy);
258    }
259
260    // Since we are going to be deleting the PHI node, if it is the last use of
261    // any registers, or if the value itself is dead, we need to move this
262    // information over to the new copy we just inserted.
263    LV->removeVirtualRegistersKilled(MPhi);
264
265    // If the result is dead, update LV.
266    if (isDead) {
267      LV->addVirtualRegisterDead(DestReg, PHICopy);
268      LV->removeVirtualRegisterDead(DestReg, MPhi);
269    }
270  }
271
272  // Adjust the VRegPHIUseCount map to account for the removal of this PHI node.
273  for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
274    --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i + 1).getMBB(),
275                                 MPhi->getOperand(i).getReg())];
276
277  // Now loop over all of the incoming arguments, changing them to copy into the
278  // IncomingReg register in the corresponding predecessor basic block.
279  SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto;
280  for (int i = NumSrcs - 1; i >= 0; --i) {
281    unsigned SrcReg = MPhi->getOperand(i*2+1).getReg();
282    assert(TargetRegisterInfo::isVirtualRegister(SrcReg) &&
283           "Machine PHI Operands must all be virtual registers!");
284
285    // If source is defined by an implicit def, there is no need to insert a
286    // copy.
287    MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
288    if (DefMI->getOpcode() == TargetInstrInfo::IMPLICIT_DEF) {
289      ImpDefs.insert(DefMI);
290      continue;
291    }
292
293    // Get the MachineBasicBlock equivalent of the BasicBlock that is the source
294    // path the PHI.
295    MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB();
296
297    // Check to make sure we haven't already emitted the copy for this block.
298    // This can happen because PHI nodes may have multiple entries for the same
299    // basic block.
300    if (!MBBsInsertedInto.insert(&opBlock))
301      continue;  // If the copy has already been emitted, we're done.
302
303    // Find a safe location to insert the copy, this may be the first terminator
304    // in the block (or end()).
305    MachineBasicBlock::iterator InsertPos = FindCopyInsertPoint(opBlock, SrcReg);
306
307    // Insert the copy.
308    TII->copyRegToReg(opBlock, InsertPos, IncomingReg, SrcReg, RC, RC);
309
310    // Now update live variable information if we have it.  Otherwise we're done
311    if (!LV) continue;
312
313    // We want to be able to insert a kill of the register if this PHI (aka, the
314    // copy we just inserted) is the last use of the source value.  Live
315    // variable analysis conservatively handles this by saying that the value is
316    // live until the end of the block the PHI entry lives in.  If the value
317    // really is dead at the PHI copy, there will be no successor blocks which
318    // have the value live-in.
319    //
320    // Check to see if the copy is the last use, and if so, update the live
321    // variables information so that it knows the copy source instruction kills
322    // the incoming value.
323    LiveVariables::VarInfo &InRegVI = LV->getVarInfo(SrcReg);
324
325    // Loop over all of the successors of the basic block, checking to see if
326    // the value is either live in the block, or if it is killed in the block.
327    // Also check to see if this register is in use by another PHI node which
328    // has not yet been eliminated.  If so, it will be killed at an appropriate
329    // point later.
330
331    // Is it used by any PHI instructions in this block?
332    bool ValueIsLive = VRegPHIUseCount[BBVRegPair(&opBlock, SrcReg)] != 0;
333
334    std::vector<MachineBasicBlock*> OpSuccBlocks;
335
336    // Otherwise, scan successors, including the BB the PHI node lives in.
337    for (MachineBasicBlock::succ_iterator SI = opBlock.succ_begin(),
338           E = opBlock.succ_end(); SI != E && !ValueIsLive; ++SI) {
339      MachineBasicBlock *SuccMBB = *SI;
340
341      // Is it alive in this successor?
342      unsigned SuccIdx = SuccMBB->getNumber();
343      if (InRegVI.AliveBlocks.test(SuccIdx)) {
344        ValueIsLive = true;
345        break;
346      }
347
348      OpSuccBlocks.push_back(SuccMBB);
349    }
350
351    // Check to see if this value is live because there is a use in a successor
352    // that kills it.
353    if (!ValueIsLive) {
354      switch (OpSuccBlocks.size()) {
355      case 1: {
356        MachineBasicBlock *MBB = OpSuccBlocks[0];
357        for (unsigned i = 0, e = InRegVI.Kills.size(); i != e; ++i)
358          if (InRegVI.Kills[i]->getParent() == MBB) {
359            ValueIsLive = true;
360            break;
361          }
362        break;
363      }
364      case 2: {
365        MachineBasicBlock *MBB1 = OpSuccBlocks[0], *MBB2 = OpSuccBlocks[1];
366        for (unsigned i = 0, e = InRegVI.Kills.size(); i != e; ++i)
367          if (InRegVI.Kills[i]->getParent() == MBB1 ||
368              InRegVI.Kills[i]->getParent() == MBB2) {
369            ValueIsLive = true;
370            break;
371          }
372        break;
373      }
374      default:
375        std::sort(OpSuccBlocks.begin(), OpSuccBlocks.end());
376        for (unsigned i = 0, e = InRegVI.Kills.size(); i != e; ++i)
377          if (std::binary_search(OpSuccBlocks.begin(), OpSuccBlocks.end(),
378                                 InRegVI.Kills[i]->getParent())) {
379            ValueIsLive = true;
380            break;
381          }
382      }
383    }
384
385    // Okay, if we now know that the value is not live out of the block, we can
386    // add a kill marker in this block saying that it kills the incoming value!
387    if (!ValueIsLive) {
388      // In our final twist, we have to decide which instruction kills the
389      // register.  In most cases this is the copy, however, the first
390      // terminator instruction at the end of the block may also use the value.
391      // In this case, we should mark *it* as being the killing block, not the
392      // copy.
393      MachineBasicBlock::iterator KillInst = prior(InsertPos);
394      MachineBasicBlock::iterator Term = opBlock.getFirstTerminator();
395      if (Term != opBlock.end()) {
396        if (Term->readsRegister(SrcReg))
397          KillInst = Term;
398
399        // Check that no other terminators use values.
400#ifndef NDEBUG
401        for (MachineBasicBlock::iterator TI = next(Term); TI != opBlock.end();
402             ++TI) {
403          assert(!TI->readsRegister(SrcReg) &&
404                 "Terminator instructions cannot use virtual registers unless"
405                 "they are the first terminator in a block!");
406        }
407#endif
408      }
409
410      // Finally, mark it killed.
411      LV->addVirtualRegisterKilled(SrcReg, KillInst);
412
413      // This vreg no longer lives all of the way through opBlock.
414      unsigned opBlockNum = opBlock.getNumber();
415      InRegVI.AliveBlocks.reset(opBlockNum);
416    }
417  }
418
419  // Really delete the PHI instruction now!
420  MF.DeleteMachineInstr(MPhi);
421  ++NumAtomic;
422}
423
424/// analyzePHINodes - Gather information about the PHI nodes in here. In
425/// particular, we want to map the number of uses of a virtual register which is
426/// used in a PHI node. We map that to the BB the vreg is coming from. This is
427/// used later to determine when the vreg is killed in the BB.
428///
429void PNE::analyzePHINodes(const MachineFunction& Fn) {
430  for (MachineFunction::const_iterator I = Fn.begin(), E = Fn.end();
431       I != E; ++I)
432    for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end();
433         BBI != BBE && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI)
434      for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
435        ++VRegPHIUseCount[BBVRegPair(BBI->getOperand(i + 1).getMBB(),
436                                     BBI->getOperand(i).getReg())];
437}
438