PHIElimination.cpp revision 44b94c2185f4c1b826ec6003d25370cf2efac219
1//===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass eliminates machine instruction PHI nodes by inserting copy
11// instructions.  This destroys SSA information, but is the desired input for
12// some register allocators.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/CodeGen/LiveVariables.h"
17#include "llvm/CodeGen/Passes.h"
18#include "llvm/CodeGen/MachineFunctionPass.h"
19#include "llvm/CodeGen/MachineInstr.h"
20#include "llvm/CodeGen/SSARegMap.h"
21#include "llvm/Target/TargetInstrInfo.h"
22#include "llvm/Target/TargetMachine.h"
23#include "llvm/ADT/DenseMap.h"
24#include "llvm/ADT/STLExtras.h"
25using namespace llvm;
26
27namespace {
28  struct PNE : public MachineFunctionPass {
29    bool runOnMachineFunction(MachineFunction &Fn) {
30      bool Changed = false;
31
32      // Eliminate PHI instructions by inserting copies into predecessor blocks.
33      for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
34        Changed |= EliminatePHINodes(Fn, *I);
35
36      return Changed;
37    }
38
39    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
40      AU.addPreserved<LiveVariables>();
41      MachineFunctionPass::getAnalysisUsage(AU);
42    }
43
44  private:
45    /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
46    /// in predecessor basic blocks.
47    ///
48    bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB);
49  };
50
51  RegisterPass<PNE> X("phi-node-elimination",
52                      "Eliminate PHI nodes for register allocation");
53}
54
55
56const PassInfo *llvm::PHIEliminationID = X.getPassInfo();
57
58/// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
59/// predecessor basic blocks.
60///
61bool PNE::EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB) {
62  if (MBB.empty() || MBB.front().getOpcode() != TargetInstrInfo::PHI)
63    return false;   // Quick exit for normal case...
64
65  LiveVariables *LV = getAnalysisToUpdate<LiveVariables>();
66  const TargetInstrInfo &MII = *MF.getTarget().getInstrInfo();
67  const MRegisterInfo *RegInfo = MF.getTarget().getRegisterInfo();
68
69  // VRegPHIUseCount - Keep track of the number of times each virtual register
70  // is used by PHI nodes in successors of this block.
71  DenseMap<unsigned, VirtReg2IndexFunctor> VRegPHIUseCount;
72  VRegPHIUseCount.grow(MF.getSSARegMap()->getLastVirtReg());
73
74  unsigned BBIsSuccOfPreds = 0;  // Number of times MBB is a succ of preds
75  for (MachineBasicBlock::pred_iterator PI = MBB.pred_begin(),
76         E = MBB.pred_end(); PI != E; ++PI)
77    for (MachineBasicBlock::succ_iterator SI = (*PI)->succ_begin(),
78           E = (*PI)->succ_end(); SI != E; ++SI) {
79    BBIsSuccOfPreds += *SI == &MBB;
80    for (MachineBasicBlock::iterator BBI = (*SI)->begin(); BBI !=(*SI)->end() &&
81           BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI)
82      for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
83        VRegPHIUseCount[BBI->getOperand(i).getReg()]++;
84  }
85
86  // Get an iterator to the first instruction after the last PHI node (this may
87  // also be the end of the basic block).  While we are scanning the PHIs,
88  // populate the VRegPHIUseCount map.
89  MachineBasicBlock::iterator AfterPHIsIt = MBB.begin();
90  while (AfterPHIsIt != MBB.end() &&
91         AfterPHIsIt->getOpcode() == TargetInstrInfo::PHI)
92    ++AfterPHIsIt;    // Skip over all of the PHI nodes...
93
94  while (MBB.front().getOpcode() == TargetInstrInfo::PHI) {
95    // Unlink the PHI node from the basic block, but don't delete the PHI yet.
96    MachineInstr *MPhi = MBB.remove(MBB.begin());
97
98    assert(MRegisterInfo::isVirtualRegister(MPhi->getOperand(0).getReg()) &&
99           "PHI node doesn't write virt reg?");
100
101    unsigned DestReg = MPhi->getOperand(0).getReg();
102
103    // Create a new register for the incoming PHI arguments
104    const TargetRegisterClass *RC = MF.getSSARegMap()->getRegClass(DestReg);
105    unsigned IncomingReg = MF.getSSARegMap()->createVirtualRegister(RC);
106
107    // Insert a register to register copy in the top of the current block (but
108    // after any remaining phi nodes) which copies the new incoming register
109    // into the phi node destination.
110    //
111    RegInfo->copyRegToReg(MBB, AfterPHIsIt, DestReg, IncomingReg, RC);
112
113    // Update live variable information if there is any...
114    if (LV) {
115      MachineInstr *PHICopy = prior(AfterPHIsIt);
116
117      // Add information to LiveVariables to know that the incoming value is
118      // killed.  Note that because the value is defined in several places (once
119      // each for each incoming block), the "def" block and instruction fields
120      // for the VarInfo is not filled in.
121      //
122      LV->addVirtualRegisterKilled(IncomingReg, PHICopy);
123
124      // Since we are going to be deleting the PHI node, if it is the last use
125      // of any registers, or if the value itself is dead, we need to move this
126      // information over to the new copy we just inserted.
127      //
128      LV->removeVirtualRegistersKilled(MPhi);
129
130      std::pair<LiveVariables::killed_iterator, LiveVariables::killed_iterator>
131        RKs = LV->dead_range(MPhi);
132      if (RKs.first != RKs.second) {
133        for (LiveVariables::killed_iterator I = RKs.first; I != RKs.second; ++I)
134          LV->addVirtualRegisterDead(*I, PHICopy);
135        LV->removeVirtualRegistersDead(MPhi);
136      }
137    }
138
139    // Adjust the VRegPHIUseCount map to account for the removal of this PHI
140    // node.
141    for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
142      VRegPHIUseCount[MPhi->getOperand(i).getReg()] -= BBIsSuccOfPreds;
143
144    // Now loop over all of the incoming arguments, changing them to copy into
145    // the IncomingReg register in the corresponding predecessor basic block.
146    //
147    for (int i = MPhi->getNumOperands() - 1; i >= 2; i-=2) {
148      MachineOperand &opVal = MPhi->getOperand(i-1);
149
150      // Get the MachineBasicBlock equivalent of the BasicBlock that is the
151      // source path the PHI.
152      MachineBasicBlock &opBlock = *MPhi->getOperand(i).getMachineBasicBlock();
153
154      MachineBasicBlock::iterator I = opBlock.getFirstTerminator();
155
156      // Check to make sure we haven't already emitted the copy for this block.
157      // This can happen because PHI nodes may have multiple entries for the
158      // same basic block.  It doesn't matter which entry we use though, because
159      // all incoming values are guaranteed to be the same for a particular bb.
160      //
161      // If we emitted a copy for this basic block already, it will be right
162      // where we want to insert one now.  Just check for a definition of the
163      // register we are interested in!
164      //
165      bool HaveNotEmitted = true;
166
167      if (I != opBlock.begin()) {
168        MachineBasicBlock::iterator PrevInst = prior(I);
169        for (unsigned i = 0, e = PrevInst->getNumOperands(); i != e; ++i) {
170          MachineOperand &MO = PrevInst->getOperand(i);
171          if (MO.isRegister() && MO.getReg() == IncomingReg)
172            if (MO.isDef()) {
173              HaveNotEmitted = false;
174              break;
175            }
176        }
177      }
178
179      if (HaveNotEmitted) { // If the copy has not already been emitted, do it.
180        assert(MRegisterInfo::isVirtualRegister(opVal.getReg()) &&
181               "Machine PHI Operands must all be virtual registers!");
182        unsigned SrcReg = opVal.getReg();
183        RegInfo->copyRegToReg(opBlock, I, IncomingReg, SrcReg, RC);
184
185        // Now update live variable information if we have it.
186        if (LV) {
187          // We want to be able to insert a kill of the register if this PHI
188          // (aka, the copy we just inserted) is the last use of the source
189          // value.  Live variable analysis conservatively handles this by
190          // saying that the value is live until the end of the block the PHI
191          // entry lives in.  If the value really is dead at the PHI copy, there
192          // will be no successor blocks which have the value live-in.
193          //
194          // Check to see if the copy is the last use, and if so, update the
195          // live variables information so that it knows the copy source
196          // instruction kills the incoming value.
197          //
198          LiveVariables::VarInfo &InRegVI = LV->getVarInfo(SrcReg);
199
200          // Loop over all of the successors of the basic block, checking to see
201          // if the value is either live in the block, or if it is killed in the
202          // block.  Also check to see if this register is in use by another PHI
203          // node which has not yet been eliminated.  If so, it will be killed
204          // at an appropriate point later.
205          //
206          bool ValueIsLive = false;
207          for (MachineBasicBlock::succ_iterator SI = opBlock.succ_begin(),
208                 E = opBlock.succ_end(); SI != E && !ValueIsLive; ++SI) {
209            MachineBasicBlock *SuccMBB = *SI;
210
211            // Is it alive in this successor?
212            unsigned SuccIdx = SuccMBB->getNumber();
213            if (SuccIdx < InRegVI.AliveBlocks.size() &&
214                InRegVI.AliveBlocks[SuccIdx]) {
215              ValueIsLive = true;
216              break;
217            }
218
219            // Is it killed in this successor?
220            for (unsigned i = 0, e = InRegVI.Kills.size(); i != e; ++i)
221              if (InRegVI.Kills[i]->getParent() == SuccMBB) {
222                ValueIsLive = true;
223                break;
224              }
225
226            // Is it used by any PHI instructions in this block?
227            if (!ValueIsLive)
228              ValueIsLive = VRegPHIUseCount[SrcReg] != 0;
229          }
230
231          // Okay, if we now know that the value is not live out of the block,
232          // we can add a kill marker to the copy we inserted saying that it
233          // kills the incoming value!
234          //
235          if (!ValueIsLive) {
236            MachineBasicBlock::iterator Prev = prior(I);
237            LV->addVirtualRegisterKilled(SrcReg, Prev);
238
239            // This vreg no longer lives all of the way through opBlock.
240            unsigned opBlockNum = opBlock.getNumber();
241            if (opBlockNum < InRegVI.AliveBlocks.size())
242              InRegVI.AliveBlocks[opBlockNum] = false;
243          }
244        }
245      }
246    }
247
248    // Really delete the PHI instruction now!
249    delete MPhi;
250  }
251  return true;
252}
253