PHIElimination.cpp revision 4888d5e98c7ae1fed28e41d75a65ddf70b25b03d
1//===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass eliminates machine instruction PHI nodes by inserting copy
11// instructions.  This destroys SSA information, but is the desired input for
12// some register allocators.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "phielim"
17#include "PHIEliminationUtils.h"
18#include "llvm/CodeGen/LiveVariables.h"
19#include "llvm/CodeGen/Passes.h"
20#include "llvm/CodeGen/MachineDominators.h"
21#include "llvm/CodeGen/MachineInstr.h"
22#include "llvm/CodeGen/MachineInstrBuilder.h"
23#include "llvm/CodeGen/MachineLoopInfo.h"
24#include "llvm/CodeGen/MachineRegisterInfo.h"
25#include "llvm/Target/TargetInstrInfo.h"
26#include "llvm/Function.h"
27#include "llvm/Target/TargetMachine.h"
28#include "llvm/ADT/SmallPtrSet.h"
29#include "llvm/ADT/STLExtras.h"
30#include "llvm/ADT/Statistic.h"
31#include "llvm/Support/CommandLine.h"
32#include "llvm/Support/Compiler.h"
33#include "llvm/Support/Debug.h"
34#include <algorithm>
35using namespace llvm;
36
37static cl::opt<bool>
38DisableEdgeSplitting("disable-phi-elim-edge-splitting", cl::init(false),
39                     cl::Hidden, cl::desc("Disable critical edge splitting "
40                                          "during PHI elimination"));
41
42namespace {
43  class PHIElimination : public MachineFunctionPass {
44    MachineRegisterInfo *MRI; // Machine register information
45
46  public:
47    static char ID; // Pass identification, replacement for typeid
48    PHIElimination() : MachineFunctionPass(ID) {
49      initializePHIEliminationPass(*PassRegistry::getPassRegistry());
50    }
51
52    virtual bool runOnMachineFunction(MachineFunction &Fn);
53    virtual void getAnalysisUsage(AnalysisUsage &AU) const;
54
55  private:
56    /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
57    /// in predecessor basic blocks.
58    ///
59    bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB);
60    void LowerAtomicPHINode(MachineBasicBlock &MBB,
61                            MachineBasicBlock::iterator AfterPHIsIt);
62
63    /// analyzePHINodes - Gather information about the PHI nodes in
64    /// here. In particular, we want to map the number of uses of a virtual
65    /// register which is used in a PHI node. We map that to the BB the
66    /// vreg is coming from. This is used later to determine when the vreg
67    /// is killed in the BB.
68    ///
69    void analyzePHINodes(const MachineFunction& Fn);
70
71    /// Split critical edges where necessary for good coalescer performance.
72    bool SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB,
73                       LiveVariables &LV, MachineLoopInfo *MLI);
74
75    typedef std::pair<unsigned, unsigned> BBVRegPair;
76    typedef DenseMap<BBVRegPair, unsigned> VRegPHIUse;
77
78    VRegPHIUse VRegPHIUseCount;
79
80    // Defs of PHI sources which are implicit_def.
81    SmallPtrSet<MachineInstr*, 4> ImpDefs;
82
83    // Map reusable lowered PHI node -> incoming join register.
84    typedef DenseMap<MachineInstr*, unsigned,
85                     MachineInstrExpressionTrait> LoweredPHIMap;
86    LoweredPHIMap LoweredPHIs;
87  };
88}
89
90STATISTIC(NumAtomic, "Number of atomic phis lowered");
91STATISTIC(NumCriticalEdgesSplit, "Number of critical edges split");
92STATISTIC(NumReused, "Number of reused lowered phis");
93
94char PHIElimination::ID = 0;
95INITIALIZE_PASS(PHIElimination, "phi-node-elimination",
96                "Eliminate PHI nodes for register allocation", false, false)
97
98char& llvm::PHIEliminationID = PHIElimination::ID;
99
100void PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const {
101  AU.addPreserved<LiveVariables>();
102  AU.addPreserved<MachineDominatorTree>();
103  AU.addPreserved<MachineLoopInfo>();
104  MachineFunctionPass::getAnalysisUsage(AU);
105}
106
107bool PHIElimination::runOnMachineFunction(MachineFunction &MF) {
108  MRI = &MF.getRegInfo();
109
110  bool Changed = false;
111
112  // This pass takes the function out of SSA form.
113  MRI->leaveSSA();
114
115  // Split critical edges to help the coalescer
116  if (!DisableEdgeSplitting) {
117    if (LiveVariables *LV = getAnalysisIfAvailable<LiveVariables>()) {
118      MachineLoopInfo *MLI = getAnalysisIfAvailable<MachineLoopInfo>();
119      for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
120        Changed |= SplitPHIEdges(MF, *I, *LV, MLI);
121    }
122  }
123
124  // Populate VRegPHIUseCount
125  analyzePHINodes(MF);
126
127  // Eliminate PHI instructions by inserting copies into predecessor blocks.
128  for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
129    Changed |= EliminatePHINodes(MF, *I);
130
131  // Remove dead IMPLICIT_DEF instructions.
132  for (SmallPtrSet<MachineInstr*, 4>::iterator I = ImpDefs.begin(),
133         E = ImpDefs.end(); I != E; ++I) {
134    MachineInstr *DefMI = *I;
135    unsigned DefReg = DefMI->getOperand(0).getReg();
136    if (MRI->use_nodbg_empty(DefReg))
137      DefMI->eraseFromParent();
138  }
139
140  // Clean up the lowered PHI instructions.
141  for (LoweredPHIMap::iterator I = LoweredPHIs.begin(), E = LoweredPHIs.end();
142       I != E; ++I)
143    MF.DeleteMachineInstr(I->first);
144
145  LoweredPHIs.clear();
146  ImpDefs.clear();
147  VRegPHIUseCount.clear();
148
149  return Changed;
150}
151
152/// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
153/// predecessor basic blocks.
154///
155bool PHIElimination::EliminatePHINodes(MachineFunction &MF,
156                                             MachineBasicBlock &MBB) {
157  if (MBB.empty() || !MBB.front().isPHI())
158    return false;   // Quick exit for basic blocks without PHIs.
159
160  // Get an iterator to the first instruction after the last PHI node (this may
161  // also be the end of the basic block).
162  MachineBasicBlock::iterator AfterPHIsIt = MBB.SkipPHIsAndLabels(MBB.begin());
163
164  while (MBB.front().isPHI())
165    LowerAtomicPHINode(MBB, AfterPHIsIt);
166
167  return true;
168}
169
170/// isSourceDefinedByImplicitDef - Return true if all sources of the phi node
171/// are implicit_def's.
172static bool isSourceDefinedByImplicitDef(const MachineInstr *MPhi,
173                                         const MachineRegisterInfo *MRI) {
174  for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) {
175    unsigned SrcReg = MPhi->getOperand(i).getReg();
176    const MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
177    if (!DefMI || !DefMI->isImplicitDef())
178      return false;
179  }
180  return true;
181}
182
183
184
185/// LowerAtomicPHINode - Lower the PHI node at the top of the specified block,
186/// under the assuption that it needs to be lowered in a way that supports
187/// atomic execution of PHIs.  This lowering method is always correct all of the
188/// time.
189///
190void PHIElimination::LowerAtomicPHINode(
191                                      MachineBasicBlock &MBB,
192                                      MachineBasicBlock::iterator AfterPHIsIt) {
193  ++NumAtomic;
194  // Unlink the PHI node from the basic block, but don't delete the PHI yet.
195  MachineInstr *MPhi = MBB.remove(MBB.begin());
196
197  unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2;
198  unsigned DestReg = MPhi->getOperand(0).getReg();
199  assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs");
200  bool isDead = MPhi->getOperand(0).isDead();
201
202  // Create a new register for the incoming PHI arguments.
203  MachineFunction &MF = *MBB.getParent();
204  unsigned IncomingReg = 0;
205  bool reusedIncoming = false;  // Is IncomingReg reused from an earlier PHI?
206
207  // Insert a register to register copy at the top of the current block (but
208  // after any remaining phi nodes) which copies the new incoming register
209  // into the phi node destination.
210  const TargetInstrInfo *TII = MF.getTarget().getInstrInfo();
211  if (isSourceDefinedByImplicitDef(MPhi, MRI))
212    // If all sources of a PHI node are implicit_def, just emit an
213    // implicit_def instead of a copy.
214    BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
215            TII->get(TargetOpcode::IMPLICIT_DEF), DestReg);
216  else {
217    // Can we reuse an earlier PHI node? This only happens for critical edges,
218    // typically those created by tail duplication.
219    unsigned &entry = LoweredPHIs[MPhi];
220    if (entry) {
221      // An identical PHI node was already lowered. Reuse the incoming register.
222      IncomingReg = entry;
223      reusedIncoming = true;
224      ++NumReused;
225      DEBUG(dbgs() << "Reusing " << PrintReg(IncomingReg) << " for " << *MPhi);
226    } else {
227      const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
228      entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
229    }
230    BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
231            TII->get(TargetOpcode::COPY), DestReg)
232      .addReg(IncomingReg);
233  }
234
235  // Update live variable information if there is any.
236  LiveVariables *LV = getAnalysisIfAvailable<LiveVariables>();
237  if (LV) {
238    MachineInstr *PHICopy = prior(AfterPHIsIt);
239
240    if (IncomingReg) {
241      LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg);
242
243      // Increment use count of the newly created virtual register.
244      LV->setPHIJoin(IncomingReg);
245
246      // When we are reusing the incoming register, it may already have been
247      // killed in this block. The old kill will also have been inserted at
248      // AfterPHIsIt, so it appears before the current PHICopy.
249      if (reusedIncoming)
250        if (MachineInstr *OldKill = VI.findKill(&MBB)) {
251          DEBUG(dbgs() << "Remove old kill from " << *OldKill);
252          LV->removeVirtualRegisterKilled(IncomingReg, OldKill);
253          DEBUG(MBB.dump());
254        }
255
256      // Add information to LiveVariables to know that the incoming value is
257      // killed.  Note that because the value is defined in several places (once
258      // each for each incoming block), the "def" block and instruction fields
259      // for the VarInfo is not filled in.
260      LV->addVirtualRegisterKilled(IncomingReg, PHICopy);
261    }
262
263    // Since we are going to be deleting the PHI node, if it is the last use of
264    // any registers, or if the value itself is dead, we need to move this
265    // information over to the new copy we just inserted.
266    LV->removeVirtualRegistersKilled(MPhi);
267
268    // If the result is dead, update LV.
269    if (isDead) {
270      LV->addVirtualRegisterDead(DestReg, PHICopy);
271      LV->removeVirtualRegisterDead(DestReg, MPhi);
272    }
273  }
274
275  // Adjust the VRegPHIUseCount map to account for the removal of this PHI node.
276  for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
277    --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i+1).getMBB()->getNumber(),
278                                 MPhi->getOperand(i).getReg())];
279
280  // Now loop over all of the incoming arguments, changing them to copy into the
281  // IncomingReg register in the corresponding predecessor basic block.
282  SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto;
283  for (int i = NumSrcs - 1; i >= 0; --i) {
284    unsigned SrcReg = MPhi->getOperand(i*2+1).getReg();
285    unsigned SrcSubReg = MPhi->getOperand(i*2+1).getSubReg();
286
287    assert(TargetRegisterInfo::isVirtualRegister(SrcReg) &&
288           "Machine PHI Operands must all be virtual registers!");
289
290    // Get the MachineBasicBlock equivalent of the BasicBlock that is the source
291    // path the PHI.
292    MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB();
293
294    // If source is defined by an implicit def, there is no need to insert a
295    // copy.
296    MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
297    if (DefMI->isImplicitDef()) {
298      ImpDefs.insert(DefMI);
299      continue;
300    }
301
302    // Check to make sure we haven't already emitted the copy for this block.
303    // This can happen because PHI nodes may have multiple entries for the same
304    // basic block.
305    if (!MBBsInsertedInto.insert(&opBlock))
306      continue;  // If the copy has already been emitted, we're done.
307
308    // Find a safe location to insert the copy, this may be the first terminator
309    // in the block (or end()).
310    MachineBasicBlock::iterator InsertPos =
311      findPHICopyInsertPoint(&opBlock, &MBB, SrcReg);
312
313    // Insert the copy.
314    if (!reusedIncoming && IncomingReg)
315      BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(),
316              TII->get(TargetOpcode::COPY), IncomingReg).addReg(SrcReg, 0, SrcSubReg);
317
318    // Now update live variable information if we have it.  Otherwise we're done
319    if (!LV) continue;
320
321    // We want to be able to insert a kill of the register if this PHI (aka, the
322    // copy we just inserted) is the last use of the source value.  Live
323    // variable analysis conservatively handles this by saying that the value is
324    // live until the end of the block the PHI entry lives in.  If the value
325    // really is dead at the PHI copy, there will be no successor blocks which
326    // have the value live-in.
327
328    // Also check to see if this register is in use by another PHI node which
329    // has not yet been eliminated.  If so, it will be killed at an appropriate
330    // point later.
331
332    // Is it used by any PHI instructions in this block?
333    bool ValueIsUsed = VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)];
334
335    // Okay, if we now know that the value is not live out of the block, we can
336    // add a kill marker in this block saying that it kills the incoming value!
337    if (!ValueIsUsed && !LV->isLiveOut(SrcReg, opBlock)) {
338      // In our final twist, we have to decide which instruction kills the
339      // register.  In most cases this is the copy, however, the first
340      // terminator instruction at the end of the block may also use the value.
341      // In this case, we should mark *it* as being the killing block, not the
342      // copy.
343      MachineBasicBlock::iterator KillInst;
344      MachineBasicBlock::iterator Term = opBlock.getFirstTerminator();
345      if (Term != opBlock.end() && Term->readsRegister(SrcReg)) {
346        KillInst = Term;
347
348        // Check that no other terminators use values.
349#ifndef NDEBUG
350        for (MachineBasicBlock::iterator TI = llvm::next(Term);
351             TI != opBlock.end(); ++TI) {
352          if (TI->isDebugValue())
353            continue;
354          assert(!TI->readsRegister(SrcReg) &&
355                 "Terminator instructions cannot use virtual registers unless"
356                 "they are the first terminator in a block!");
357        }
358#endif
359      } else if (reusedIncoming || !IncomingReg) {
360        // We may have to rewind a bit if we didn't insert a copy this time.
361        KillInst = Term;
362        while (KillInst != opBlock.begin()) {
363          --KillInst;
364          if (KillInst->isDebugValue())
365            continue;
366          if (KillInst->readsRegister(SrcReg))
367            break;
368        }
369      } else {
370        // We just inserted this copy.
371        KillInst = prior(InsertPos);
372      }
373      assert(KillInst->readsRegister(SrcReg) && "Cannot find kill instruction");
374
375      // Finally, mark it killed.
376      LV->addVirtualRegisterKilled(SrcReg, KillInst);
377
378      // This vreg no longer lives all of the way through opBlock.
379      unsigned opBlockNum = opBlock.getNumber();
380      LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum);
381    }
382  }
383
384  // Really delete the PHI instruction now, if it is not in the LoweredPHIs map.
385  if (reusedIncoming || !IncomingReg)
386    MF.DeleteMachineInstr(MPhi);
387}
388
389/// analyzePHINodes - Gather information about the PHI nodes in here. In
390/// particular, we want to map the number of uses of a virtual register which is
391/// used in a PHI node. We map that to the BB the vreg is coming from. This is
392/// used later to determine when the vreg is killed in the BB.
393///
394void PHIElimination::analyzePHINodes(const MachineFunction& MF) {
395  for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
396       I != E; ++I)
397    for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end();
398         BBI != BBE && BBI->isPHI(); ++BBI)
399      for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
400        ++VRegPHIUseCount[BBVRegPair(BBI->getOperand(i+1).getMBB()->getNumber(),
401                                     BBI->getOperand(i).getReg())];
402}
403
404bool PHIElimination::SplitPHIEdges(MachineFunction &MF,
405                                   MachineBasicBlock &MBB,
406                                   LiveVariables &LV,
407                                   MachineLoopInfo *MLI) {
408  if (MBB.empty() || !MBB.front().isPHI() || MBB.isLandingPad())
409    return false;   // Quick exit for basic blocks without PHIs.
410
411  bool Changed = false;
412  for (MachineBasicBlock::iterator BBI = MBB.begin(), BBE = MBB.end();
413       BBI != BBE && BBI->isPHI(); ++BBI) {
414    for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
415      unsigned Reg = BBI->getOperand(i).getReg();
416      MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB();
417      // We break edges when registers are live out from the predecessor block
418      // (not considering PHI nodes). If the register is live in to this block
419      // anyway, we would gain nothing from splitting.
420      // Avoid splitting backedges of loops. It would introduce small
421      // out-of-line blocks into the loop which is very bad for code placement.
422      if (PreMBB != &MBB &&
423          !LV.isLiveIn(Reg, MBB) && LV.isLiveOut(Reg, *PreMBB)) {
424        if (!MLI ||
425            !(MLI->getLoopFor(PreMBB) == MLI->getLoopFor(&MBB) &&
426              MLI->isLoopHeader(&MBB))) {
427          if (PreMBB->SplitCriticalEdge(&MBB, this)) {
428            Changed = true;
429            ++NumCriticalEdgesSplit;
430          }
431        }
432      }
433    }
434  }
435  return Changed;
436}
437