PHIElimination.cpp revision bf4af353edd2da1d7f2ed0b22238a8d2c038f5cf
1//===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass eliminates machine instruction PHI nodes by inserting copy
11// instructions.  This destroys SSA information, but is the desired input for
12// some register allocators.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "phielim"
17#include "PHIElimination.h"
18#include "llvm/BasicBlock.h"
19#include "llvm/Instructions.h"
20#include "llvm/CodeGen/LiveVariables.h"
21#include "llvm/CodeGen/Passes.h"
22#include "llvm/CodeGen/MachineFunctionPass.h"
23#include "llvm/CodeGen/MachineInstr.h"
24#include "llvm/CodeGen/MachineInstrBuilder.h"
25#include "llvm/CodeGen/MachineRegisterInfo.h"
26#include "llvm/Function.h"
27#include "llvm/Target/TargetMachine.h"
28#include "llvm/ADT/SmallPtrSet.h"
29#include "llvm/ADT/STLExtras.h"
30#include "llvm/ADT/Statistic.h"
31#include "llvm/Support/CommandLine.h"
32#include "llvm/Support/Compiler.h"
33#include "llvm/Support/Debug.h"
34#include <algorithm>
35#include <map>
36using namespace llvm;
37
38STATISTIC(NumAtomic, "Number of atomic phis lowered");
39STATISTIC(NumSplits, "Number of critical edges split on demand");
40
41static cl::opt<bool>
42SplitEdges("split-phi-edges",
43           cl::desc("Split critical edges during phi elimination"),
44           cl::init(false), cl::Hidden);
45
46char PHIElimination::ID = 0;
47static RegisterPass<PHIElimination>
48X("phi-node-elimination", "Eliminate PHI nodes for register allocation");
49
50const PassInfo *const llvm::PHIEliminationID = &X;
51
52void llvm::PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const {
53  AU.addPreserved<LiveVariables>();
54  if (SplitEdges) {
55    AU.addRequired<LiveVariables>();
56  } else {
57    AU.setPreservesCFG();
58    AU.addPreservedID(MachineLoopInfoID);
59    AU.addPreservedID(MachineDominatorsID);
60  }
61  MachineFunctionPass::getAnalysisUsage(AU);
62}
63
64bool llvm::PHIElimination::runOnMachineFunction(MachineFunction &Fn) {
65  MRI = &Fn.getRegInfo();
66
67  PHIDefs.clear();
68  PHIKills.clear();
69
70  bool Changed = false;
71
72  // Split critical edges to help the coalescer
73  if (SplitEdges)
74    for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
75      Changed |= SplitPHIEdges(Fn, *I);
76
77  // Populate VRegPHIUseCount
78  analyzePHINodes(Fn);
79
80  // Eliminate PHI instructions by inserting copies into predecessor blocks.
81  for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
82    Changed |= EliminatePHINodes(Fn, *I);
83
84  // Remove dead IMPLICIT_DEF instructions.
85  for (SmallPtrSet<MachineInstr*,4>::iterator I = ImpDefs.begin(),
86         E = ImpDefs.end(); I != E; ++I) {
87    MachineInstr *DefMI = *I;
88    unsigned DefReg = DefMI->getOperand(0).getReg();
89    if (MRI->use_empty(DefReg))
90      DefMI->eraseFromParent();
91  }
92
93  ImpDefs.clear();
94  VRegPHIUseCount.clear();
95  return Changed;
96}
97
98/// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
99/// predecessor basic blocks.
100///
101bool llvm::PHIElimination::EliminatePHINodes(MachineFunction &MF,
102                                             MachineBasicBlock &MBB) {
103  if (MBB.empty() || MBB.front().getOpcode() != TargetInstrInfo::PHI)
104    return false;   // Quick exit for basic blocks without PHIs.
105
106  // Get an iterator to the first instruction after the last PHI node (this may
107  // also be the end of the basic block).
108  MachineBasicBlock::iterator AfterPHIsIt = SkipPHIsAndLabels(MBB, MBB.begin());
109
110  while (MBB.front().getOpcode() == TargetInstrInfo::PHI)
111    LowerAtomicPHINode(MBB, AfterPHIsIt);
112
113  return true;
114}
115
116/// isSourceDefinedByImplicitDef - Return true if all sources of the phi node
117/// are implicit_def's.
118static bool isSourceDefinedByImplicitDef(const MachineInstr *MPhi,
119                                         const MachineRegisterInfo *MRI) {
120  for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) {
121    unsigned SrcReg = MPhi->getOperand(i).getReg();
122    const MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
123    if (!DefMI || DefMI->getOpcode() != TargetInstrInfo::IMPLICIT_DEF)
124      return false;
125  }
126  return true;
127}
128
129// FindCopyInsertPoint - Find a safe place in MBB to insert a copy from SrcReg.
130// This needs to be after any def or uses of SrcReg, but before any subsequent
131// point where control flow might jump out of the basic block.
132MachineBasicBlock::iterator
133llvm::PHIElimination::FindCopyInsertPoint(MachineBasicBlock &MBB,
134                                          unsigned SrcReg) {
135  // Handle the trivial case trivially.
136  if (MBB.empty())
137    return MBB.begin();
138
139  // If this basic block does not contain an invoke, then control flow always
140  // reaches the end of it, so place the copy there.  The logic below works in
141  // this case too, but is more expensive.
142  if (!isa<InvokeInst>(MBB.getBasicBlock()->getTerminator()))
143    return MBB.getFirstTerminator();
144
145  // Discover any definition/uses in this basic block.
146  SmallPtrSet<MachineInstr*, 8> DefUsesInMBB;
147  for (MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(SrcReg),
148       RE = MRI->reg_end(); RI != RE; ++RI) {
149    MachineInstr *DefUseMI = &*RI;
150    if (DefUseMI->getParent() == &MBB)
151      DefUsesInMBB.insert(DefUseMI);
152  }
153
154  MachineBasicBlock::iterator InsertPoint;
155  if (DefUsesInMBB.empty()) {
156    // No def/uses.  Insert the copy at the start of the basic block.
157    InsertPoint = MBB.begin();
158  } else if (DefUsesInMBB.size() == 1) {
159    // Insert the copy immediately after the definition/use.
160    InsertPoint = *DefUsesInMBB.begin();
161    ++InsertPoint;
162  } else {
163    // Insert the copy immediately after the last definition/use.
164    InsertPoint = MBB.end();
165    while (!DefUsesInMBB.count(&*--InsertPoint)) {}
166    ++InsertPoint;
167  }
168
169  // Make sure the copy goes after any phi nodes however.
170  return SkipPHIsAndLabels(MBB, InsertPoint);
171}
172
173/// LowerAtomicPHINode - Lower the PHI node at the top of the specified block,
174/// under the assuption that it needs to be lowered in a way that supports
175/// atomic execution of PHIs.  This lowering method is always correct all of the
176/// time.
177///
178void llvm::PHIElimination::LowerAtomicPHINode(
179                                      MachineBasicBlock &MBB,
180                                      MachineBasicBlock::iterator AfterPHIsIt) {
181  // Unlink the PHI node from the basic block, but don't delete the PHI yet.
182  MachineInstr *MPhi = MBB.remove(MBB.begin());
183
184  unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2;
185  unsigned DestReg = MPhi->getOperand(0).getReg();
186  bool isDead = MPhi->getOperand(0).isDead();
187
188  // Create a new register for the incoming PHI arguments.
189  MachineFunction &MF = *MBB.getParent();
190  const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
191  unsigned IncomingReg = 0;
192
193  // Insert a register to register copy at the top of the current block (but
194  // after any remaining phi nodes) which copies the new incoming register
195  // into the phi node destination.
196  const TargetInstrInfo *TII = MF.getTarget().getInstrInfo();
197  if (isSourceDefinedByImplicitDef(MPhi, MRI))
198    // If all sources of a PHI node are implicit_def, just emit an
199    // implicit_def instead of a copy.
200    BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
201            TII->get(TargetInstrInfo::IMPLICIT_DEF), DestReg);
202  else {
203    IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
204    TII->copyRegToReg(MBB, AfterPHIsIt, DestReg, IncomingReg, RC, RC);
205  }
206
207  // Record PHI def.
208  assert(!hasPHIDef(DestReg) && "Vreg has multiple phi-defs?");
209  PHIDefs[DestReg] = &MBB;
210
211  // Update live variable information if there is any.
212  LiveVariables *LV = getAnalysisIfAvailable<LiveVariables>();
213  if (LV) {
214    MachineInstr *PHICopy = prior(AfterPHIsIt);
215
216    if (IncomingReg) {
217      // Increment use count of the newly created virtual register.
218      LV->getVarInfo(IncomingReg).NumUses++;
219
220      // Add information to LiveVariables to know that the incoming value is
221      // killed.  Note that because the value is defined in several places (once
222      // each for each incoming block), the "def" block and instruction fields
223      // for the VarInfo is not filled in.
224      LV->addVirtualRegisterKilled(IncomingReg, PHICopy);
225    }
226
227    // Since we are going to be deleting the PHI node, if it is the last use of
228    // any registers, or if the value itself is dead, we need to move this
229    // information over to the new copy we just inserted.
230    LV->removeVirtualRegistersKilled(MPhi);
231
232    // If the result is dead, update LV.
233    if (isDead) {
234      LV->addVirtualRegisterDead(DestReg, PHICopy);
235      LV->removeVirtualRegisterDead(DestReg, MPhi);
236    }
237  }
238
239  // Adjust the VRegPHIUseCount map to account for the removal of this PHI node.
240  for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
241    --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i + 1).getMBB(),
242                                 MPhi->getOperand(i).getReg())];
243
244  // Now loop over all of the incoming arguments, changing them to copy into the
245  // IncomingReg register in the corresponding predecessor basic block.
246  SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto;
247  for (int i = NumSrcs - 1; i >= 0; --i) {
248    unsigned SrcReg = MPhi->getOperand(i*2+1).getReg();
249    assert(TargetRegisterInfo::isVirtualRegister(SrcReg) &&
250           "Machine PHI Operands must all be virtual registers!");
251
252    // Get the MachineBasicBlock equivalent of the BasicBlock that is the source
253    // path the PHI.
254    MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB();
255
256    // Record the kill.
257    PHIKills[SrcReg].insert(&opBlock);
258
259    // If source is defined by an implicit def, there is no need to insert a
260    // copy.
261    MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
262    if (DefMI->getOpcode() == TargetInstrInfo::IMPLICIT_DEF) {
263      ImpDefs.insert(DefMI);
264      continue;
265    }
266
267    // Check to make sure we haven't already emitted the copy for this block.
268    // This can happen because PHI nodes may have multiple entries for the same
269    // basic block.
270    if (!MBBsInsertedInto.insert(&opBlock))
271      continue;  // If the copy has already been emitted, we're done.
272
273    // Find a safe location to insert the copy, this may be the first terminator
274    // in the block (or end()).
275    MachineBasicBlock::iterator InsertPos = FindCopyInsertPoint(opBlock, SrcReg);
276
277    // Insert the copy.
278    TII->copyRegToReg(opBlock, InsertPos, IncomingReg, SrcReg, RC, RC);
279
280    // Now update live variable information if we have it.  Otherwise we're done
281    if (!LV) continue;
282
283    // We want to be able to insert a kill of the register if this PHI (aka, the
284    // copy we just inserted) is the last use of the source value.  Live
285    // variable analysis conservatively handles this by saying that the value is
286    // live until the end of the block the PHI entry lives in.  If the value
287    // really is dead at the PHI copy, there will be no successor blocks which
288    // have the value live-in.
289
290    // Also check to see if this register is in use by another PHI node which
291    // has not yet been eliminated.  If so, it will be killed at an appropriate
292    // point later.
293
294    // Is it used by any PHI instructions in this block?
295    bool ValueIsUsed = VRegPHIUseCount[BBVRegPair(&opBlock, SrcReg)] != 0;
296
297    // Okay, if we now know that the value is not live out of the block, we can
298    // add a kill marker in this block saying that it kills the incoming value!
299    // When SplitEdges is enabled, the value is never live out.
300    if (!ValueIsUsed && !isLiveOut(SrcReg, opBlock, *LV)) {
301      // In our final twist, we have to decide which instruction kills the
302      // register.  In most cases this is the copy, however, the first
303      // terminator instruction at the end of the block may also use the value.
304      // In this case, we should mark *it* as being the killing block, not the
305      // copy.
306      MachineBasicBlock::iterator KillInst = prior(InsertPos);
307      MachineBasicBlock::iterator Term = opBlock.getFirstTerminator();
308      if (Term != opBlock.end()) {
309        if (Term->readsRegister(SrcReg))
310          KillInst = Term;
311
312        // Check that no other terminators use values.
313#ifndef NDEBUG
314        for (MachineBasicBlock::iterator TI = next(Term); TI != opBlock.end();
315             ++TI) {
316          assert(!TI->readsRegister(SrcReg) &&
317                 "Terminator instructions cannot use virtual registers unless"
318                 "they are the first terminator in a block!");
319        }
320#endif
321      }
322
323      // Finally, mark it killed.
324      LV->addVirtualRegisterKilled(SrcReg, KillInst);
325
326      // This vreg no longer lives all of the way through opBlock.
327      unsigned opBlockNum = opBlock.getNumber();
328      LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum);
329    }
330  }
331
332  // Really delete the PHI instruction now!
333  MF.DeleteMachineInstr(MPhi);
334  ++NumAtomic;
335}
336
337/// analyzePHINodes - Gather information about the PHI nodes in here. In
338/// particular, we want to map the number of uses of a virtual register which is
339/// used in a PHI node. We map that to the BB the vreg is coming from. This is
340/// used later to determine when the vreg is killed in the BB.
341///
342void llvm::PHIElimination::analyzePHINodes(const MachineFunction& Fn) {
343  for (MachineFunction::const_iterator I = Fn.begin(), E = Fn.end();
344       I != E; ++I)
345    for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end();
346         BBI != BBE && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI)
347      for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
348        ++VRegPHIUseCount[BBVRegPair(BBI->getOperand(i + 1).getMBB(),
349                                     BBI->getOperand(i).getReg())];
350}
351
352bool llvm::PHIElimination::SplitPHIEdges(MachineFunction &MF,
353                                         MachineBasicBlock &MBB) {
354  if (MBB.empty() || MBB.front().getOpcode() != TargetInstrInfo::PHI)
355    return false;   // Quick exit for basic blocks without PHIs.
356  LiveVariables &LV = getAnalysis<LiveVariables>();
357  for (MachineBasicBlock::const_iterator BBI = MBB.begin(), BBE = MBB.end();
358       BBI != BBE && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI) {
359    for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
360      unsigned Reg = BBI->getOperand(i).getReg();
361      MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB();
362      // We break edges when registers are live out from the predecessor block
363      // (not considering PHI nodes). If the register is live in to this block
364      // anyway, we would gain nothing from splitting.
365      if (isLiveOut(Reg, *PreMBB, LV) && !isLiveIn(Reg, MBB, LV))
366        SplitCriticalEdge(PreMBB, &MBB);
367    }
368  }
369  return true;
370}
371
372bool llvm::PHIElimination::isLiveOut(unsigned Reg, const MachineBasicBlock &MBB,
373                                     LiveVariables &LV) {
374  LiveVariables::VarInfo &VI = LV.getVarInfo(Reg);
375
376  // Loop over all of the successors of the basic block, checking to see if
377  // the value is either live in the block, or if it is killed in the block.
378  std::vector<MachineBasicBlock*> OpSuccBlocks;
379  for (MachineBasicBlock::const_succ_iterator SI = MBB.succ_begin(),
380         E = MBB.succ_end(); SI != E; ++SI) {
381    MachineBasicBlock *SuccMBB = *SI;
382
383    // Is it alive in this successor?
384    unsigned SuccIdx = SuccMBB->getNumber();
385    if (VI.AliveBlocks.test(SuccIdx))
386      return true;
387    OpSuccBlocks.push_back(SuccMBB);
388  }
389
390  // Check to see if this value is live because there is a use in a successor
391  // that kills it.
392  switch (OpSuccBlocks.size()) {
393  case 1: {
394    MachineBasicBlock *SuccMBB = OpSuccBlocks[0];
395    for (unsigned i = 0, e = VI.Kills.size(); i != e; ++i)
396      if (VI.Kills[i]->getParent() == SuccMBB)
397        return true;
398    break;
399  }
400  case 2: {
401    MachineBasicBlock *SuccMBB1 = OpSuccBlocks[0], *SuccMBB2 = OpSuccBlocks[1];
402    for (unsigned i = 0, e = VI.Kills.size(); i != e; ++i)
403      if (VI.Kills[i]->getParent() == SuccMBB1 ||
404          VI.Kills[i]->getParent() == SuccMBB2)
405        return true;
406    break;
407  }
408  default:
409    std::sort(OpSuccBlocks.begin(), OpSuccBlocks.end());
410    for (unsigned i = 0, e = VI.Kills.size(); i != e; ++i)
411      if (std::binary_search(OpSuccBlocks.begin(), OpSuccBlocks.end(),
412                             VI.Kills[i]->getParent()))
413        return true;
414  }
415  return false;
416}
417
418bool llvm::PHIElimination::isLiveIn(unsigned Reg, const MachineBasicBlock &MBB,
419                                    LiveVariables &LV) {
420  LiveVariables::VarInfo &VI = LV.getVarInfo(Reg);
421
422  return VI.AliveBlocks.test(MBB.getNumber()) || VI.findKill(&MBB);
423}
424
425MachineBasicBlock *PHIElimination::SplitCriticalEdge(MachineBasicBlock *A,
426                                                     MachineBasicBlock *B) {
427  assert(A && B && "Missing MBB end point");
428  ++NumSplits;
429
430  BasicBlock *ABB = const_cast<BasicBlock*>(A->getBasicBlock());
431  BasicBlock *BBB = const_cast<BasicBlock*>(B->getBasicBlock());
432  assert(ABB && BBB && "End points must have a basic block");
433  BasicBlock *BB = BasicBlock::Create(BBB->getContext(),
434                                      ABB->getName() + "." + BBB->getName() +
435                                      "_phi_edge");
436  Function *F = ABB->getParent();
437  F->getBasicBlockList().insert(F->end(), BB);
438
439  BranchInst::Create(BBB, BB);
440  // We could do more here to produce correct IR, compare
441  // llvm::SplitCriticalEdge
442
443  MachineFunction *MF = A->getParent();
444  MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock(BB);
445  MF->push_back(NMBB);
446  DEBUG(errs() << "PHIElimination splitting critical edge:"
447        " BB#" << A->getNumber()
448        << " -- BB#" << NMBB->getNumber()
449        << " -- BB#" << B->getNumber() << '\n');
450
451  A->ReplaceUsesOfBlockWith(B, NMBB);
452  NMBB->addSuccessor(B);
453
454  // Insert unconditional "jump B" instruction in NMBB.
455  SmallVector<MachineOperand, 4> Cond;
456  MF->getTarget().getInstrInfo()->InsertBranch(*NMBB, B, NULL, Cond);
457
458  if (LiveVariables *LV = getAnalysisIfAvailable<LiveVariables>())
459    LV->addNewBlock(NMBB, A);
460
461  // Fix PHI nodes in B so they refer to NMBB instead of A
462  for (MachineBasicBlock::iterator i = B->begin(), e = B->end();
463       i != e && i->getOpcode() == TargetInstrInfo::PHI; ++i)
464    for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2)
465      if (i->getOperand(ni+1).getMBB() == A)
466        i->getOperand(ni+1).setMBB(NMBB);
467  return NMBB;
468}
469