RegAllocGreedy.cpp revision 6d6132986d2ef14bbf9d76f5acbf2a0bace32d69
1//===-- RegAllocGreedy.cpp - greedy register allocator --------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the RAGreedy function pass for register allocation in
11// optimized builds.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "regalloc"
16#include "llvm/CodeGen/Passes.h"
17#include "AllocationOrder.h"
18#include "InterferenceCache.h"
19#include "LiveDebugVariables.h"
20#include "RegAllocBase.h"
21#include "SpillPlacement.h"
22#include "Spiller.h"
23#include "SplitKit.h"
24#include "llvm/ADT/Statistic.h"
25#include "llvm/Analysis/AliasAnalysis.h"
26#include "llvm/CodeGen/CalcSpillWeights.h"
27#include "llvm/CodeGen/EdgeBundles.h"
28#include "llvm/CodeGen/LiveIntervalAnalysis.h"
29#include "llvm/CodeGen/LiveRangeEdit.h"
30#include "llvm/CodeGen/LiveRegMatrix.h"
31#include "llvm/CodeGen/LiveStackAnalysis.h"
32#include "llvm/CodeGen/MachineDominators.h"
33#include "llvm/CodeGen/MachineFunctionPass.h"
34#include "llvm/CodeGen/MachineLoopInfo.h"
35#include "llvm/CodeGen/MachineRegisterInfo.h"
36#include "llvm/CodeGen/RegAllocRegistry.h"
37#include "llvm/CodeGen/VirtRegMap.h"
38#include "llvm/PassAnalysisSupport.h"
39#include "llvm/Support/CommandLine.h"
40#include "llvm/Support/Debug.h"
41#include "llvm/Support/ErrorHandling.h"
42#include "llvm/Support/Timer.h"
43#include "llvm/Support/raw_ostream.h"
44#include "llvm/Target/TargetOptions.h"
45#include <queue>
46
47using namespace llvm;
48
49STATISTIC(NumGlobalSplits, "Number of split global live ranges");
50STATISTIC(NumLocalSplits,  "Number of split local live ranges");
51STATISTIC(NumEvicted,      "Number of interferences evicted");
52
53static cl::opt<SplitEditor::ComplementSpillMode>
54SplitSpillMode("split-spill-mode", cl::Hidden,
55  cl::desc("Spill mode for splitting live ranges"),
56  cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"),
57             clEnumValN(SplitEditor::SM_Size,  "size",  "Optimize for size"),
58             clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed"),
59             clEnumValEnd),
60  cl::init(SplitEditor::SM_Partition));
61
62static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator",
63                                       createGreedyRegisterAllocator);
64
65namespace {
66class RAGreedy : public MachineFunctionPass,
67                 public RegAllocBase,
68                 private LiveRangeEdit::Delegate {
69
70  // context
71  MachineFunction *MF;
72
73  // analyses
74  SlotIndexes *Indexes;
75  MachineDominatorTree *DomTree;
76  MachineLoopInfo *Loops;
77  EdgeBundles *Bundles;
78  SpillPlacement *SpillPlacer;
79  LiveDebugVariables *DebugVars;
80
81  // state
82  std::auto_ptr<Spiller> SpillerInstance;
83  std::priority_queue<std::pair<unsigned, unsigned> > Queue;
84  unsigned NextCascade;
85
86  // Live ranges pass through a number of stages as we try to allocate them.
87  // Some of the stages may also create new live ranges:
88  //
89  // - Region splitting.
90  // - Per-block splitting.
91  // - Local splitting.
92  // - Spilling.
93  //
94  // Ranges produced by one of the stages skip the previous stages when they are
95  // dequeued. This improves performance because we can skip interference checks
96  // that are unlikely to give any results. It also guarantees that the live
97  // range splitting algorithm terminates, something that is otherwise hard to
98  // ensure.
99  enum LiveRangeStage {
100    /// Newly created live range that has never been queued.
101    RS_New,
102
103    /// Only attempt assignment and eviction. Then requeue as RS_Split.
104    RS_Assign,
105
106    /// Attempt live range splitting if assignment is impossible.
107    RS_Split,
108
109    /// Attempt more aggressive live range splitting that is guaranteed to make
110    /// progress.  This is used for split products that may not be making
111    /// progress.
112    RS_Split2,
113
114    /// Live range will be spilled.  No more splitting will be attempted.
115    RS_Spill,
116
117    /// There is nothing more we can do to this live range.  Abort compilation
118    /// if it can't be assigned.
119    RS_Done
120  };
121
122  static const char *const StageName[];
123
124  // RegInfo - Keep additional information about each live range.
125  struct RegInfo {
126    LiveRangeStage Stage;
127
128    // Cascade - Eviction loop prevention. See canEvictInterference().
129    unsigned Cascade;
130
131    RegInfo() : Stage(RS_New), Cascade(0) {}
132  };
133
134  IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo;
135
136  LiveRangeStage getStage(const LiveInterval &VirtReg) const {
137    return ExtraRegInfo[VirtReg.reg].Stage;
138  }
139
140  void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) {
141    ExtraRegInfo.resize(MRI->getNumVirtRegs());
142    ExtraRegInfo[VirtReg.reg].Stage = Stage;
143  }
144
145  template<typename Iterator>
146  void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) {
147    ExtraRegInfo.resize(MRI->getNumVirtRegs());
148    for (;Begin != End; ++Begin) {
149      unsigned Reg = (*Begin)->reg;
150      if (ExtraRegInfo[Reg].Stage == RS_New)
151        ExtraRegInfo[Reg].Stage = NewStage;
152    }
153  }
154
155  /// Cost of evicting interference.
156  struct EvictionCost {
157    unsigned BrokenHints; ///< Total number of broken hints.
158    float MaxWeight;      ///< Maximum spill weight evicted.
159
160    EvictionCost(unsigned B = 0) : BrokenHints(B), MaxWeight(0) {}
161
162    bool operator<(const EvictionCost &O) const {
163      if (BrokenHints != O.BrokenHints)
164        return BrokenHints < O.BrokenHints;
165      return MaxWeight < O.MaxWeight;
166    }
167  };
168
169  // splitting state.
170  std::auto_ptr<SplitAnalysis> SA;
171  std::auto_ptr<SplitEditor> SE;
172
173  /// Cached per-block interference maps
174  InterferenceCache IntfCache;
175
176  /// All basic blocks where the current register has uses.
177  SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints;
178
179  /// Global live range splitting candidate info.
180  struct GlobalSplitCandidate {
181    // Register intended for assignment, or 0.
182    unsigned PhysReg;
183
184    // SplitKit interval index for this candidate.
185    unsigned IntvIdx;
186
187    // Interference for PhysReg.
188    InterferenceCache::Cursor Intf;
189
190    // Bundles where this candidate should be live.
191    BitVector LiveBundles;
192    SmallVector<unsigned, 8> ActiveBlocks;
193
194    void reset(InterferenceCache &Cache, unsigned Reg) {
195      PhysReg = Reg;
196      IntvIdx = 0;
197      Intf.setPhysReg(Cache, Reg);
198      LiveBundles.clear();
199      ActiveBlocks.clear();
200    }
201
202    // Set B[i] = C for every live bundle where B[i] was NoCand.
203    unsigned getBundles(SmallVectorImpl<unsigned> &B, unsigned C) {
204      unsigned Count = 0;
205      for (int i = LiveBundles.find_first(); i >= 0;
206           i = LiveBundles.find_next(i))
207        if (B[i] == NoCand) {
208          B[i] = C;
209          Count++;
210        }
211      return Count;
212    }
213  };
214
215  /// Candidate info for for each PhysReg in AllocationOrder.
216  /// This vector never shrinks, but grows to the size of the largest register
217  /// class.
218  SmallVector<GlobalSplitCandidate, 32> GlobalCand;
219
220  enum { NoCand = ~0u };
221
222  /// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to
223  /// NoCand which indicates the stack interval.
224  SmallVector<unsigned, 32> BundleCand;
225
226public:
227  RAGreedy();
228
229  /// Return the pass name.
230  virtual const char* getPassName() const {
231    return "Greedy Register Allocator";
232  }
233
234  /// RAGreedy analysis usage.
235  virtual void getAnalysisUsage(AnalysisUsage &AU) const;
236  virtual void releaseMemory();
237  virtual Spiller &spiller() { return *SpillerInstance; }
238  virtual void enqueue(LiveInterval *LI);
239  virtual LiveInterval *dequeue();
240  virtual unsigned selectOrSplit(LiveInterval&,
241                                 SmallVectorImpl<LiveInterval*>&);
242
243  /// Perform register allocation.
244  virtual bool runOnMachineFunction(MachineFunction &mf);
245
246  static char ID;
247
248private:
249  bool LRE_CanEraseVirtReg(unsigned);
250  void LRE_WillShrinkVirtReg(unsigned);
251  void LRE_DidCloneVirtReg(unsigned, unsigned);
252
253  float calcSpillCost();
254  bool addSplitConstraints(InterferenceCache::Cursor, float&);
255  void addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>);
256  void growRegion(GlobalSplitCandidate &Cand);
257  float calcGlobalSplitCost(GlobalSplitCandidate&);
258  bool calcCompactRegion(GlobalSplitCandidate&);
259  void splitAroundRegion(LiveRangeEdit&, ArrayRef<unsigned>);
260  void calcGapWeights(unsigned, SmallVectorImpl<float>&);
261  bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool);
262  bool canEvictInterference(LiveInterval&, unsigned, bool, EvictionCost&);
263  void evictInterference(LiveInterval&, unsigned,
264                         SmallVectorImpl<LiveInterval*>&);
265
266  unsigned tryAssign(LiveInterval&, AllocationOrder&,
267                     SmallVectorImpl<LiveInterval*>&);
268  unsigned tryEvict(LiveInterval&, AllocationOrder&,
269                    SmallVectorImpl<LiveInterval*>&, unsigned = ~0u);
270  unsigned tryRegionSplit(LiveInterval&, AllocationOrder&,
271                          SmallVectorImpl<LiveInterval*>&);
272  unsigned tryBlockSplit(LiveInterval&, AllocationOrder&,
273                         SmallVectorImpl<LiveInterval*>&);
274  unsigned tryInstructionSplit(LiveInterval&, AllocationOrder&,
275                               SmallVectorImpl<LiveInterval*>&);
276  unsigned tryLocalSplit(LiveInterval&, AllocationOrder&,
277    SmallVectorImpl<LiveInterval*>&);
278  unsigned trySplit(LiveInterval&, AllocationOrder&,
279                    SmallVectorImpl<LiveInterval*>&);
280};
281} // end anonymous namespace
282
283char RAGreedy::ID = 0;
284
285#ifndef NDEBUG
286const char *const RAGreedy::StageName[] = {
287    "RS_New",
288    "RS_Assign",
289    "RS_Split",
290    "RS_Split2",
291    "RS_Spill",
292    "RS_Done"
293};
294#endif
295
296// Hysteresis to use when comparing floats.
297// This helps stabilize decisions based on float comparisons.
298const float Hysteresis = 0.98f;
299
300
301FunctionPass* llvm::createGreedyRegisterAllocator() {
302  return new RAGreedy();
303}
304
305RAGreedy::RAGreedy(): MachineFunctionPass(ID) {
306  initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
307  initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
308  initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
309  initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
310  initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
311  initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
312  initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry());
313  initializeLiveStacksPass(*PassRegistry::getPassRegistry());
314  initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
315  initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
316  initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
317  initializeLiveRegMatrixPass(*PassRegistry::getPassRegistry());
318  initializeEdgeBundlesPass(*PassRegistry::getPassRegistry());
319  initializeSpillPlacementPass(*PassRegistry::getPassRegistry());
320}
321
322void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
323  AU.setPreservesCFG();
324  AU.addRequired<AliasAnalysis>();
325  AU.addPreserved<AliasAnalysis>();
326  AU.addRequired<LiveIntervals>();
327  AU.addPreserved<LiveIntervals>();
328  AU.addRequired<SlotIndexes>();
329  AU.addPreserved<SlotIndexes>();
330  AU.addRequired<LiveDebugVariables>();
331  AU.addPreserved<LiveDebugVariables>();
332  AU.addRequired<LiveStacks>();
333  AU.addPreserved<LiveStacks>();
334  AU.addRequired<CalculateSpillWeights>();
335  AU.addRequired<MachineDominatorTree>();
336  AU.addPreserved<MachineDominatorTree>();
337  AU.addRequired<MachineLoopInfo>();
338  AU.addPreserved<MachineLoopInfo>();
339  AU.addRequired<VirtRegMap>();
340  AU.addPreserved<VirtRegMap>();
341  AU.addRequired<LiveRegMatrix>();
342  AU.addPreserved<LiveRegMatrix>();
343  AU.addRequired<EdgeBundles>();
344  AU.addRequired<SpillPlacement>();
345  MachineFunctionPass::getAnalysisUsage(AU);
346}
347
348
349//===----------------------------------------------------------------------===//
350//                     LiveRangeEdit delegate methods
351//===----------------------------------------------------------------------===//
352
353bool RAGreedy::LRE_CanEraseVirtReg(unsigned VirtReg) {
354  if (VRM->hasPhys(VirtReg)) {
355    Matrix->unassign(LIS->getInterval(VirtReg));
356    return true;
357  }
358  // Unassigned virtreg is probably in the priority queue.
359  // RegAllocBase will erase it after dequeueing.
360  return false;
361}
362
363void RAGreedy::LRE_WillShrinkVirtReg(unsigned VirtReg) {
364  if (!VRM->hasPhys(VirtReg))
365    return;
366
367  // Register is assigned, put it back on the queue for reassignment.
368  LiveInterval &LI = LIS->getInterval(VirtReg);
369  Matrix->unassign(LI);
370  enqueue(&LI);
371}
372
373void RAGreedy::LRE_DidCloneVirtReg(unsigned New, unsigned Old) {
374  // Cloning a register we haven't even heard about yet?  Just ignore it.
375  if (!ExtraRegInfo.inBounds(Old))
376    return;
377
378  // LRE may clone a virtual register because dead code elimination causes it to
379  // be split into connected components. The new components are much smaller
380  // than the original, so they should get a new chance at being assigned.
381  // same stage as the parent.
382  ExtraRegInfo[Old].Stage = RS_Assign;
383  ExtraRegInfo.grow(New);
384  ExtraRegInfo[New] = ExtraRegInfo[Old];
385}
386
387void RAGreedy::releaseMemory() {
388  SpillerInstance.reset(0);
389  ExtraRegInfo.clear();
390  GlobalCand.clear();
391}
392
393void RAGreedy::enqueue(LiveInterval *LI) {
394  // Prioritize live ranges by size, assigning larger ranges first.
395  // The queue holds (size, reg) pairs.
396  const unsigned Size = LI->getSize();
397  const unsigned Reg = LI->reg;
398  assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
399         "Can only enqueue virtual registers");
400  unsigned Prio;
401
402  ExtraRegInfo.grow(Reg);
403  if (ExtraRegInfo[Reg].Stage == RS_New)
404    ExtraRegInfo[Reg].Stage = RS_Assign;
405
406  if (ExtraRegInfo[Reg].Stage == RS_Split) {
407    // Unsplit ranges that couldn't be allocated immediately are deferred until
408    // everything else has been allocated.
409    Prio = Size;
410  } else {
411    // Everything is allocated in long->short order. Long ranges that don't fit
412    // should be spilled (or split) ASAP so they don't create interference.
413    Prio = (1u << 31) + Size;
414
415    // Boost ranges that have a physical register hint.
416    if (VRM->hasKnownPreference(Reg))
417      Prio |= (1u << 30);
418  }
419
420  Queue.push(std::make_pair(Prio, ~Reg));
421}
422
423LiveInterval *RAGreedy::dequeue() {
424  if (Queue.empty())
425    return 0;
426  LiveInterval *LI = &LIS->getInterval(~Queue.top().second);
427  Queue.pop();
428  return LI;
429}
430
431
432//===----------------------------------------------------------------------===//
433//                            Direct Assignment
434//===----------------------------------------------------------------------===//
435
436/// tryAssign - Try to assign VirtReg to an available register.
437unsigned RAGreedy::tryAssign(LiveInterval &VirtReg,
438                             AllocationOrder &Order,
439                             SmallVectorImpl<LiveInterval*> &NewVRegs) {
440  Order.rewind();
441  unsigned PhysReg;
442  while ((PhysReg = Order.next()))
443    if (!Matrix->checkInterference(VirtReg, PhysReg))
444      break;
445  if (!PhysReg || Order.isHint())
446    return PhysReg;
447
448  // PhysReg is available, but there may be a better choice.
449
450  // If we missed a simple hint, try to cheaply evict interference from the
451  // preferred register.
452  if (unsigned Hint = MRI->getSimpleHint(VirtReg.reg))
453    if (Order.isHint(Hint)) {
454      DEBUG(dbgs() << "missed hint " << PrintReg(Hint, TRI) << '\n');
455      EvictionCost MaxCost(1);
456      if (canEvictInterference(VirtReg, Hint, true, MaxCost)) {
457        evictInterference(VirtReg, Hint, NewVRegs);
458        return Hint;
459      }
460    }
461
462  // Try to evict interference from a cheaper alternative.
463  unsigned Cost = TRI->getCostPerUse(PhysReg);
464
465  // Most registers have 0 additional cost.
466  if (!Cost)
467    return PhysReg;
468
469  DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is available at cost " << Cost
470               << '\n');
471  unsigned CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost);
472  return CheapReg ? CheapReg : PhysReg;
473}
474
475
476//===----------------------------------------------------------------------===//
477//                         Interference eviction
478//===----------------------------------------------------------------------===//
479
480/// shouldEvict - determine if A should evict the assigned live range B. The
481/// eviction policy defined by this function together with the allocation order
482/// defined by enqueue() decides which registers ultimately end up being split
483/// and spilled.
484///
485/// Cascade numbers are used to prevent infinite loops if this function is a
486/// cyclic relation.
487///
488/// @param A          The live range to be assigned.
489/// @param IsHint     True when A is about to be assigned to its preferred
490///                   register.
491/// @param B          The live range to be evicted.
492/// @param BreaksHint True when B is already assigned to its preferred register.
493bool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint,
494                           LiveInterval &B, bool BreaksHint) {
495  bool CanSplit = getStage(B) < RS_Spill;
496
497  // Be fairly aggressive about following hints as long as the evictee can be
498  // split.
499  if (CanSplit && IsHint && !BreaksHint)
500    return true;
501
502  return A.weight > B.weight;
503}
504
505/// canEvictInterference - Return true if all interferences between VirtReg and
506/// PhysReg can be evicted.  When OnlyCheap is set, don't do anything
507///
508/// @param VirtReg Live range that is about to be assigned.
509/// @param PhysReg Desired register for assignment.
510/// @param IsHint  True when PhysReg is VirtReg's preferred register.
511/// @param MaxCost Only look for cheaper candidates and update with new cost
512///                when returning true.
513/// @returns True when interference can be evicted cheaper than MaxCost.
514bool RAGreedy::canEvictInterference(LiveInterval &VirtReg, unsigned PhysReg,
515                                    bool IsHint, EvictionCost &MaxCost) {
516  // It is only possible to evict virtual register interference.
517  if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg)
518    return false;
519
520  // Find VirtReg's cascade number. This will be unassigned if VirtReg was never
521  // involved in an eviction before. If a cascade number was assigned, deny
522  // evicting anything with the same or a newer cascade number. This prevents
523  // infinite eviction loops.
524  //
525  // This works out so a register without a cascade number is allowed to evict
526  // anything, and it can be evicted by anything.
527  unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade;
528  if (!Cascade)
529    Cascade = NextCascade;
530
531  EvictionCost Cost;
532  for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
533    LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
534    // If there is 10 or more interferences, chances are one is heavier.
535    if (Q.collectInterferingVRegs(10) >= 10)
536      return false;
537
538    // Check if any interfering live range is heavier than MaxWeight.
539    for (unsigned i = Q.interferingVRegs().size(); i; --i) {
540      LiveInterval *Intf = Q.interferingVRegs()[i - 1];
541      assert(TargetRegisterInfo::isVirtualRegister(Intf->reg) &&
542             "Only expecting virtual register interference from query");
543      // Never evict spill products. They cannot split or spill.
544      if (getStage(*Intf) == RS_Done)
545        return false;
546      // Once a live range becomes small enough, it is urgent that we find a
547      // register for it. This is indicated by an infinite spill weight. These
548      // urgent live ranges get to evict almost anything.
549      //
550      // Also allow urgent evictions of unspillable ranges from a strictly
551      // larger allocation order.
552      bool Urgent = !VirtReg.isSpillable() &&
553        (Intf->isSpillable() ||
554         RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg)) <
555         RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(Intf->reg)));
556      // Only evict older cascades or live ranges without a cascade.
557      unsigned IntfCascade = ExtraRegInfo[Intf->reg].Cascade;
558      if (Cascade <= IntfCascade) {
559        if (!Urgent)
560          return false;
561        // We permit breaking cascades for urgent evictions. It should be the
562        // last resort, though, so make it really expensive.
563        Cost.BrokenHints += 10;
564      }
565      // Would this break a satisfied hint?
566      bool BreaksHint = VRM->hasPreferredPhys(Intf->reg);
567      // Update eviction cost.
568      Cost.BrokenHints += BreaksHint;
569      Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight);
570      // Abort if this would be too expensive.
571      if (!(Cost < MaxCost))
572        return false;
573      // Finally, apply the eviction policy for non-urgent evictions.
574      if (!Urgent && !shouldEvict(VirtReg, IsHint, *Intf, BreaksHint))
575        return false;
576    }
577  }
578  MaxCost = Cost;
579  return true;
580}
581
582/// evictInterference - Evict any interferring registers that prevent VirtReg
583/// from being assigned to Physreg. This assumes that canEvictInterference
584/// returned true.
585void RAGreedy::evictInterference(LiveInterval &VirtReg, unsigned PhysReg,
586                                 SmallVectorImpl<LiveInterval*> &NewVRegs) {
587  // Make sure that VirtReg has a cascade number, and assign that cascade
588  // number to every evicted register. These live ranges than then only be
589  // evicted by a newer cascade, preventing infinite loops.
590  unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade;
591  if (!Cascade)
592    Cascade = ExtraRegInfo[VirtReg.reg].Cascade = NextCascade++;
593
594  DEBUG(dbgs() << "evicting " << PrintReg(PhysReg, TRI)
595               << " interference: Cascade " << Cascade << '\n');
596
597  // Collect all interfering virtregs first.
598  SmallVector<LiveInterval*, 8> Intfs;
599  for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
600    LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
601    assert(Q.seenAllInterferences() && "Didn't check all interfererences.");
602    ArrayRef<LiveInterval*> IVR = Q.interferingVRegs();
603    Intfs.append(IVR.begin(), IVR.end());
604  }
605
606  // Evict them second. This will invalidate the queries.
607  for (unsigned i = 0, e = Intfs.size(); i != e; ++i) {
608    LiveInterval *Intf = Intfs[i];
609    // The same VirtReg may be present in multiple RegUnits. Skip duplicates.
610    if (!VRM->hasPhys(Intf->reg))
611      continue;
612    Matrix->unassign(*Intf);
613    assert((ExtraRegInfo[Intf->reg].Cascade < Cascade ||
614            VirtReg.isSpillable() < Intf->isSpillable()) &&
615           "Cannot decrease cascade number, illegal eviction");
616    ExtraRegInfo[Intf->reg].Cascade = Cascade;
617    ++NumEvicted;
618    NewVRegs.push_back(Intf);
619  }
620}
621
622/// tryEvict - Try to evict all interferences for a physreg.
623/// @param  VirtReg Currently unassigned virtual register.
624/// @param  Order   Physregs to try.
625/// @return         Physreg to assign VirtReg, or 0.
626unsigned RAGreedy::tryEvict(LiveInterval &VirtReg,
627                            AllocationOrder &Order,
628                            SmallVectorImpl<LiveInterval*> &NewVRegs,
629                            unsigned CostPerUseLimit) {
630  NamedRegionTimer T("Evict", TimerGroupName, TimePassesIsEnabled);
631
632  // Keep track of the cheapest interference seen so far.
633  EvictionCost BestCost(~0u);
634  unsigned BestPhys = 0;
635  unsigned OrderLimit = Order.getOrder().size();
636
637  // When we are just looking for a reduced cost per use, don't break any
638  // hints, and only evict smaller spill weights.
639  if (CostPerUseLimit < ~0u) {
640    BestCost.BrokenHints = 0;
641    BestCost.MaxWeight = VirtReg.weight;
642
643    // Check of any registers in RC are below CostPerUseLimit.
644    const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg);
645    unsigned MinCost = RegClassInfo.getMinCost(RC);
646    if (MinCost >= CostPerUseLimit) {
647      DEBUG(dbgs() << RC->getName() << " minimum cost = " << MinCost
648                   << ", no cheaper registers to be found.\n");
649      return 0;
650    }
651
652    // It is normal for register classes to have a long tail of registers with
653    // the same cost. We don't need to look at them if they're too expensive.
654    if (TRI->getCostPerUse(Order.getOrder().back()) >= CostPerUseLimit) {
655      OrderLimit = RegClassInfo.getLastCostChange(RC);
656      DEBUG(dbgs() << "Only trying the first " << OrderLimit << " regs.\n");
657    }
658  }
659
660  Order.rewind();
661  while (unsigned PhysReg = Order.nextWithDups(OrderLimit)) {
662    if (TRI->getCostPerUse(PhysReg) >= CostPerUseLimit)
663      continue;
664    // The first use of a callee-saved register in a function has cost 1.
665    // Don't start using a CSR when the CostPerUseLimit is low.
666    if (CostPerUseLimit == 1)
667     if (unsigned CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg))
668       if (!MRI->isPhysRegUsed(CSR)) {
669         DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " would clobber CSR "
670                      << PrintReg(CSR, TRI) << '\n');
671         continue;
672       }
673
674    if (!canEvictInterference(VirtReg, PhysReg, false, BestCost))
675      continue;
676
677    // Best so far.
678    BestPhys = PhysReg;
679
680    // Stop if the hint can be used.
681    if (Order.isHint())
682      break;
683  }
684
685  if (!BestPhys)
686    return 0;
687
688  evictInterference(VirtReg, BestPhys, NewVRegs);
689  return BestPhys;
690}
691
692
693//===----------------------------------------------------------------------===//
694//                              Region Splitting
695//===----------------------------------------------------------------------===//
696
697/// addSplitConstraints - Fill out the SplitConstraints vector based on the
698/// interference pattern in Physreg and its aliases. Add the constraints to
699/// SpillPlacement and return the static cost of this split in Cost, assuming
700/// that all preferences in SplitConstraints are met.
701/// Return false if there are no bundles with positive bias.
702bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf,
703                                   float &Cost) {
704  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
705
706  // Reset interference dependent info.
707  SplitConstraints.resize(UseBlocks.size());
708  float StaticCost = 0;
709  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
710    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
711    SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
712
713    BC.Number = BI.MBB->getNumber();
714    Intf.moveToBlock(BC.Number);
715    BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
716    BC.Exit = BI.LiveOut ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
717    BC.ChangesValue = BI.FirstDef;
718
719    if (!Intf.hasInterference())
720      continue;
721
722    // Number of spill code instructions to insert.
723    unsigned Ins = 0;
724
725    // Interference for the live-in value.
726    if (BI.LiveIn) {
727      if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number))
728        BC.Entry = SpillPlacement::MustSpill, ++Ins;
729      else if (Intf.first() < BI.FirstInstr)
730        BC.Entry = SpillPlacement::PrefSpill, ++Ins;
731      else if (Intf.first() < BI.LastInstr)
732        ++Ins;
733    }
734
735    // Interference for the live-out value.
736    if (BI.LiveOut) {
737      if (Intf.last() >= SA->getLastSplitPoint(BC.Number))
738        BC.Exit = SpillPlacement::MustSpill, ++Ins;
739      else if (Intf.last() > BI.LastInstr)
740        BC.Exit = SpillPlacement::PrefSpill, ++Ins;
741      else if (Intf.last() > BI.FirstInstr)
742        ++Ins;
743    }
744
745    // Accumulate the total frequency of inserted spill code.
746    if (Ins)
747      StaticCost += Ins * SpillPlacer->getBlockFrequency(BC.Number);
748  }
749  Cost = StaticCost;
750
751  // Add constraints for use-blocks. Note that these are the only constraints
752  // that may add a positive bias, it is downhill from here.
753  SpillPlacer->addConstraints(SplitConstraints);
754  return SpillPlacer->scanActiveBundles();
755}
756
757
758/// addThroughConstraints - Add constraints and links to SpillPlacer from the
759/// live-through blocks in Blocks.
760void RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf,
761                                     ArrayRef<unsigned> Blocks) {
762  const unsigned GroupSize = 8;
763  SpillPlacement::BlockConstraint BCS[GroupSize];
764  unsigned TBS[GroupSize];
765  unsigned B = 0, T = 0;
766
767  for (unsigned i = 0; i != Blocks.size(); ++i) {
768    unsigned Number = Blocks[i];
769    Intf.moveToBlock(Number);
770
771    if (!Intf.hasInterference()) {
772      assert(T < GroupSize && "Array overflow");
773      TBS[T] = Number;
774      if (++T == GroupSize) {
775        SpillPlacer->addLinks(makeArrayRef(TBS, T));
776        T = 0;
777      }
778      continue;
779    }
780
781    assert(B < GroupSize && "Array overflow");
782    BCS[B].Number = Number;
783
784    // Interference for the live-in value.
785    if (Intf.first() <= Indexes->getMBBStartIdx(Number))
786      BCS[B].Entry = SpillPlacement::MustSpill;
787    else
788      BCS[B].Entry = SpillPlacement::PrefSpill;
789
790    // Interference for the live-out value.
791    if (Intf.last() >= SA->getLastSplitPoint(Number))
792      BCS[B].Exit = SpillPlacement::MustSpill;
793    else
794      BCS[B].Exit = SpillPlacement::PrefSpill;
795
796    if (++B == GroupSize) {
797      ArrayRef<SpillPlacement::BlockConstraint> Array(BCS, B);
798      SpillPlacer->addConstraints(Array);
799      B = 0;
800    }
801  }
802
803  ArrayRef<SpillPlacement::BlockConstraint> Array(BCS, B);
804  SpillPlacer->addConstraints(Array);
805  SpillPlacer->addLinks(makeArrayRef(TBS, T));
806}
807
808void RAGreedy::growRegion(GlobalSplitCandidate &Cand) {
809  // Keep track of through blocks that have not been added to SpillPlacer.
810  BitVector Todo = SA->getThroughBlocks();
811  SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks;
812  unsigned AddedTo = 0;
813#ifndef NDEBUG
814  unsigned Visited = 0;
815#endif
816
817  for (;;) {
818    ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive();
819    // Find new through blocks in the periphery of PrefRegBundles.
820    for (int i = 0, e = NewBundles.size(); i != e; ++i) {
821      unsigned Bundle = NewBundles[i];
822      // Look at all blocks connected to Bundle in the full graph.
823      ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle);
824      for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end();
825           I != E; ++I) {
826        unsigned Block = *I;
827        if (!Todo.test(Block))
828          continue;
829        Todo.reset(Block);
830        // This is a new through block. Add it to SpillPlacer later.
831        ActiveBlocks.push_back(Block);
832#ifndef NDEBUG
833        ++Visited;
834#endif
835      }
836    }
837    // Any new blocks to add?
838    if (ActiveBlocks.size() == AddedTo)
839      break;
840
841    // Compute through constraints from the interference, or assume that all
842    // through blocks prefer spilling when forming compact regions.
843    ArrayRef<unsigned> NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo);
844    if (Cand.PhysReg)
845      addThroughConstraints(Cand.Intf, NewBlocks);
846    else
847      // Provide a strong negative bias on through blocks to prevent unwanted
848      // liveness on loop backedges.
849      SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true);
850    AddedTo = ActiveBlocks.size();
851
852    // Perhaps iterating can enable more bundles?
853    SpillPlacer->iterate();
854  }
855  DEBUG(dbgs() << ", v=" << Visited);
856}
857
858/// calcCompactRegion - Compute the set of edge bundles that should be live
859/// when splitting the current live range into compact regions.  Compact
860/// regions can be computed without looking at interference.  They are the
861/// regions formed by removing all the live-through blocks from the live range.
862///
863/// Returns false if the current live range is already compact, or if the
864/// compact regions would form single block regions anyway.
865bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) {
866  // Without any through blocks, the live range is already compact.
867  if (!SA->getNumThroughBlocks())
868    return false;
869
870  // Compact regions don't correspond to any physreg.
871  Cand.reset(IntfCache, 0);
872
873  DEBUG(dbgs() << "Compact region bundles");
874
875  // Use the spill placer to determine the live bundles. GrowRegion pretends
876  // that all the through blocks have interference when PhysReg is unset.
877  SpillPlacer->prepare(Cand.LiveBundles);
878
879  // The static split cost will be zero since Cand.Intf reports no interference.
880  float Cost;
881  if (!addSplitConstraints(Cand.Intf, Cost)) {
882    DEBUG(dbgs() << ", none.\n");
883    return false;
884  }
885
886  growRegion(Cand);
887  SpillPlacer->finish();
888
889  if (!Cand.LiveBundles.any()) {
890    DEBUG(dbgs() << ", none.\n");
891    return false;
892  }
893
894  DEBUG({
895    for (int i = Cand.LiveBundles.find_first(); i>=0;
896         i = Cand.LiveBundles.find_next(i))
897    dbgs() << " EB#" << i;
898    dbgs() << ".\n";
899  });
900  return true;
901}
902
903/// calcSpillCost - Compute how expensive it would be to split the live range in
904/// SA around all use blocks instead of forming bundle regions.
905float RAGreedy::calcSpillCost() {
906  float Cost = 0;
907  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
908  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
909    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
910    unsigned Number = BI.MBB->getNumber();
911    // We normally only need one spill instruction - a load or a store.
912    Cost += SpillPlacer->getBlockFrequency(Number);
913
914    // Unless the value is redefined in the block.
915    if (BI.LiveIn && BI.LiveOut && BI.FirstDef)
916      Cost += SpillPlacer->getBlockFrequency(Number);
917  }
918  return Cost;
919}
920
921/// calcGlobalSplitCost - Return the global split cost of following the split
922/// pattern in LiveBundles. This cost should be added to the local cost of the
923/// interference pattern in SplitConstraints.
924///
925float RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand) {
926  float GlobalCost = 0;
927  const BitVector &LiveBundles = Cand.LiveBundles;
928  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
929  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
930    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
931    SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
932    bool RegIn  = LiveBundles[Bundles->getBundle(BC.Number, 0)];
933    bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, 1)];
934    unsigned Ins = 0;
935
936    if (BI.LiveIn)
937      Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg);
938    if (BI.LiveOut)
939      Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg);
940    if (Ins)
941      GlobalCost += Ins * SpillPlacer->getBlockFrequency(BC.Number);
942  }
943
944  for (unsigned i = 0, e = Cand.ActiveBlocks.size(); i != e; ++i) {
945    unsigned Number = Cand.ActiveBlocks[i];
946    bool RegIn  = LiveBundles[Bundles->getBundle(Number, 0)];
947    bool RegOut = LiveBundles[Bundles->getBundle(Number, 1)];
948    if (!RegIn && !RegOut)
949      continue;
950    if (RegIn && RegOut) {
951      // We need double spill code if this block has interference.
952      Cand.Intf.moveToBlock(Number);
953      if (Cand.Intf.hasInterference())
954        GlobalCost += 2*SpillPlacer->getBlockFrequency(Number);
955      continue;
956    }
957    // live-in / stack-out or stack-in live-out.
958    GlobalCost += SpillPlacer->getBlockFrequency(Number);
959  }
960  return GlobalCost;
961}
962
963/// splitAroundRegion - Split the current live range around the regions
964/// determined by BundleCand and GlobalCand.
965///
966/// Before calling this function, GlobalCand and BundleCand must be initialized
967/// so each bundle is assigned to a valid candidate, or NoCand for the
968/// stack-bound bundles.  The shared SA/SE SplitAnalysis and SplitEditor
969/// objects must be initialized for the current live range, and intervals
970/// created for the used candidates.
971///
972/// @param LREdit    The LiveRangeEdit object handling the current split.
973/// @param UsedCands List of used GlobalCand entries. Every BundleCand value
974///                  must appear in this list.
975void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit,
976                                 ArrayRef<unsigned> UsedCands) {
977  // These are the intervals created for new global ranges. We may create more
978  // intervals for local ranges.
979  const unsigned NumGlobalIntvs = LREdit.size();
980  DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs << " globals.\n");
981  assert(NumGlobalIntvs && "No global intervals configured");
982
983  // Isolate even single instructions when dealing with a proper sub-class.
984  // That guarantees register class inflation for the stack interval because it
985  // is all copies.
986  unsigned Reg = SA->getParent().reg;
987  bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
988
989  // First handle all the blocks with uses.
990  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
991  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
992    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
993    unsigned Number = BI.MBB->getNumber();
994    unsigned IntvIn = 0, IntvOut = 0;
995    SlotIndex IntfIn, IntfOut;
996    if (BI.LiveIn) {
997      unsigned CandIn = BundleCand[Bundles->getBundle(Number, 0)];
998      if (CandIn != NoCand) {
999        GlobalSplitCandidate &Cand = GlobalCand[CandIn];
1000        IntvIn = Cand.IntvIdx;
1001        Cand.Intf.moveToBlock(Number);
1002        IntfIn = Cand.Intf.first();
1003      }
1004    }
1005    if (BI.LiveOut) {
1006      unsigned CandOut = BundleCand[Bundles->getBundle(Number, 1)];
1007      if (CandOut != NoCand) {
1008        GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1009        IntvOut = Cand.IntvIdx;
1010        Cand.Intf.moveToBlock(Number);
1011        IntfOut = Cand.Intf.last();
1012      }
1013    }
1014
1015    // Create separate intervals for isolated blocks with multiple uses.
1016    if (!IntvIn && !IntvOut) {
1017      DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " isolated.\n");
1018      if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
1019        SE->splitSingleBlock(BI);
1020      continue;
1021    }
1022
1023    if (IntvIn && IntvOut)
1024      SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1025    else if (IntvIn)
1026      SE->splitRegInBlock(BI, IntvIn, IntfIn);
1027    else
1028      SE->splitRegOutBlock(BI, IntvOut, IntfOut);
1029  }
1030
1031  // Handle live-through blocks. The relevant live-through blocks are stored in
1032  // the ActiveBlocks list with each candidate. We need to filter out
1033  // duplicates.
1034  BitVector Todo = SA->getThroughBlocks();
1035  for (unsigned c = 0; c != UsedCands.size(); ++c) {
1036    ArrayRef<unsigned> Blocks = GlobalCand[UsedCands[c]].ActiveBlocks;
1037    for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
1038      unsigned Number = Blocks[i];
1039      if (!Todo.test(Number))
1040        continue;
1041      Todo.reset(Number);
1042
1043      unsigned IntvIn = 0, IntvOut = 0;
1044      SlotIndex IntfIn, IntfOut;
1045
1046      unsigned CandIn = BundleCand[Bundles->getBundle(Number, 0)];
1047      if (CandIn != NoCand) {
1048        GlobalSplitCandidate &Cand = GlobalCand[CandIn];
1049        IntvIn = Cand.IntvIdx;
1050        Cand.Intf.moveToBlock(Number);
1051        IntfIn = Cand.Intf.first();
1052      }
1053
1054      unsigned CandOut = BundleCand[Bundles->getBundle(Number, 1)];
1055      if (CandOut != NoCand) {
1056        GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1057        IntvOut = Cand.IntvIdx;
1058        Cand.Intf.moveToBlock(Number);
1059        IntfOut = Cand.Intf.last();
1060      }
1061      if (!IntvIn && !IntvOut)
1062        continue;
1063      SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1064    }
1065  }
1066
1067  ++NumGlobalSplits;
1068
1069  SmallVector<unsigned, 8> IntvMap;
1070  SE->finish(&IntvMap);
1071  DebugVars->splitRegister(Reg, LREdit.regs());
1072
1073  ExtraRegInfo.resize(MRI->getNumVirtRegs());
1074  unsigned OrigBlocks = SA->getNumLiveBlocks();
1075
1076  // Sort out the new intervals created by splitting. We get four kinds:
1077  // - Remainder intervals should not be split again.
1078  // - Candidate intervals can be assigned to Cand.PhysReg.
1079  // - Block-local splits are candidates for local splitting.
1080  // - DCE leftovers should go back on the queue.
1081  for (unsigned i = 0, e = LREdit.size(); i != e; ++i) {
1082    LiveInterval &Reg = *LREdit.get(i);
1083
1084    // Ignore old intervals from DCE.
1085    if (getStage(Reg) != RS_New)
1086      continue;
1087
1088    // Remainder interval. Don't try splitting again, spill if it doesn't
1089    // allocate.
1090    if (IntvMap[i] == 0) {
1091      setStage(Reg, RS_Spill);
1092      continue;
1093    }
1094
1095    // Global intervals. Allow repeated splitting as long as the number of live
1096    // blocks is strictly decreasing.
1097    if (IntvMap[i] < NumGlobalIntvs) {
1098      if (SA->countLiveBlocks(&Reg) >= OrigBlocks) {
1099        DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks
1100                     << " blocks as original.\n");
1101        // Don't allow repeated splitting as a safe guard against looping.
1102        setStage(Reg, RS_Split2);
1103      }
1104      continue;
1105    }
1106
1107    // Other intervals are treated as new. This includes local intervals created
1108    // for blocks with multiple uses, and anything created by DCE.
1109  }
1110
1111  if (VerifyEnabled)
1112    MF->verify(this, "After splitting live range around region");
1113}
1114
1115unsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1116                                  SmallVectorImpl<LiveInterval*> &NewVRegs) {
1117  unsigned NumCands = 0;
1118  unsigned BestCand = NoCand;
1119  float BestCost;
1120  SmallVector<unsigned, 8> UsedCands;
1121
1122  // Check if we can split this live range around a compact region.
1123  bool HasCompact = calcCompactRegion(GlobalCand.front());
1124  if (HasCompact) {
1125    // Yes, keep GlobalCand[0] as the compact region candidate.
1126    NumCands = 1;
1127    BestCost = HUGE_VALF;
1128  } else {
1129    // No benefit from the compact region, our fallback will be per-block
1130    // splitting. Make sure we find a solution that is cheaper than spilling.
1131    BestCost = Hysteresis * calcSpillCost();
1132    DEBUG(dbgs() << "Cost of isolating all blocks = " << BestCost << '\n');
1133  }
1134
1135  Order.rewind();
1136  while (unsigned PhysReg = Order.next()) {
1137    // Discard bad candidates before we run out of interference cache cursors.
1138    // This will only affect register classes with a lot of registers (>32).
1139    if (NumCands == IntfCache.getMaxCursors()) {
1140      unsigned WorstCount = ~0u;
1141      unsigned Worst = 0;
1142      for (unsigned i = 0; i != NumCands; ++i) {
1143        if (i == BestCand || !GlobalCand[i].PhysReg)
1144          continue;
1145        unsigned Count = GlobalCand[i].LiveBundles.count();
1146        if (Count < WorstCount)
1147          Worst = i, WorstCount = Count;
1148      }
1149      --NumCands;
1150      GlobalCand[Worst] = GlobalCand[NumCands];
1151      if (BestCand == NumCands)
1152        BestCand = Worst;
1153    }
1154
1155    if (GlobalCand.size() <= NumCands)
1156      GlobalCand.resize(NumCands+1);
1157    GlobalSplitCandidate &Cand = GlobalCand[NumCands];
1158    Cand.reset(IntfCache, PhysReg);
1159
1160    SpillPlacer->prepare(Cand.LiveBundles);
1161    float Cost;
1162    if (!addSplitConstraints(Cand.Intf, Cost)) {
1163      DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tno positive bundles\n");
1164      continue;
1165    }
1166    DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tstatic = " << Cost);
1167    if (Cost >= BestCost) {
1168      DEBUG({
1169        if (BestCand == NoCand)
1170          dbgs() << " worse than no bundles\n";
1171        else
1172          dbgs() << " worse than "
1173                 << PrintReg(GlobalCand[BestCand].PhysReg, TRI) << '\n';
1174      });
1175      continue;
1176    }
1177    growRegion(Cand);
1178
1179    SpillPlacer->finish();
1180
1181    // No live bundles, defer to splitSingleBlocks().
1182    if (!Cand.LiveBundles.any()) {
1183      DEBUG(dbgs() << " no bundles.\n");
1184      continue;
1185    }
1186
1187    Cost += calcGlobalSplitCost(Cand);
1188    DEBUG({
1189      dbgs() << ", total = " << Cost << " with bundles";
1190      for (int i = Cand.LiveBundles.find_first(); i>=0;
1191           i = Cand.LiveBundles.find_next(i))
1192        dbgs() << " EB#" << i;
1193      dbgs() << ".\n";
1194    });
1195    if (Cost < BestCost) {
1196      BestCand = NumCands;
1197      BestCost = Hysteresis * Cost; // Prevent rounding effects.
1198    }
1199    ++NumCands;
1200  }
1201
1202  // No solutions found, fall back to single block splitting.
1203  if (!HasCompact && BestCand == NoCand)
1204    return 0;
1205
1206  // Prepare split editor.
1207  LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this);
1208  SE->reset(LREdit, SplitSpillMode);
1209
1210  // Assign all edge bundles to the preferred candidate, or NoCand.
1211  BundleCand.assign(Bundles->getNumBundles(), NoCand);
1212
1213  // Assign bundles for the best candidate region.
1214  if (BestCand != NoCand) {
1215    GlobalSplitCandidate &Cand = GlobalCand[BestCand];
1216    if (unsigned B = Cand.getBundles(BundleCand, BestCand)) {
1217      UsedCands.push_back(BestCand);
1218      Cand.IntvIdx = SE->openIntv();
1219      DEBUG(dbgs() << "Split for " << PrintReg(Cand.PhysReg, TRI) << " in "
1220                   << B << " bundles, intv " << Cand.IntvIdx << ".\n");
1221      (void)B;
1222    }
1223  }
1224
1225  // Assign bundles for the compact region.
1226  if (HasCompact) {
1227    GlobalSplitCandidate &Cand = GlobalCand.front();
1228    assert(!Cand.PhysReg && "Compact region has no physreg");
1229    if (unsigned B = Cand.getBundles(BundleCand, 0)) {
1230      UsedCands.push_back(0);
1231      Cand.IntvIdx = SE->openIntv();
1232      DEBUG(dbgs() << "Split for compact region in " << B << " bundles, intv "
1233                   << Cand.IntvIdx << ".\n");
1234      (void)B;
1235    }
1236  }
1237
1238  splitAroundRegion(LREdit, UsedCands);
1239  return 0;
1240}
1241
1242
1243//===----------------------------------------------------------------------===//
1244//                            Per-Block Splitting
1245//===----------------------------------------------------------------------===//
1246
1247/// tryBlockSplit - Split a global live range around every block with uses. This
1248/// creates a lot of local live ranges, that will be split by tryLocalSplit if
1249/// they don't allocate.
1250unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1251                                 SmallVectorImpl<LiveInterval*> &NewVRegs) {
1252  assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed");
1253  unsigned Reg = VirtReg.reg;
1254  bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
1255  LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this);
1256  SE->reset(LREdit, SplitSpillMode);
1257  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1258  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
1259    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
1260    if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
1261      SE->splitSingleBlock(BI);
1262  }
1263  // No blocks were split.
1264  if (LREdit.empty())
1265    return 0;
1266
1267  // We did split for some blocks.
1268  SmallVector<unsigned, 8> IntvMap;
1269  SE->finish(&IntvMap);
1270
1271  // Tell LiveDebugVariables about the new ranges.
1272  DebugVars->splitRegister(Reg, LREdit.regs());
1273
1274  ExtraRegInfo.resize(MRI->getNumVirtRegs());
1275
1276  // Sort out the new intervals created by splitting. The remainder interval
1277  // goes straight to spilling, the new local ranges get to stay RS_New.
1278  for (unsigned i = 0, e = LREdit.size(); i != e; ++i) {
1279    LiveInterval &LI = *LREdit.get(i);
1280    if (getStage(LI) == RS_New && IntvMap[i] == 0)
1281      setStage(LI, RS_Spill);
1282  }
1283
1284  if (VerifyEnabled)
1285    MF->verify(this, "After splitting live range around basic blocks");
1286  return 0;
1287}
1288
1289
1290//===----------------------------------------------------------------------===//
1291//                         Per-Instruction Splitting
1292//===----------------------------------------------------------------------===//
1293
1294/// tryInstructionSplit - Split a live range around individual instructions.
1295/// This is normally not worthwhile since the spiller is doing essentially the
1296/// same thing. However, when the live range is in a constrained register
1297/// class, it may help to insert copies such that parts of the live range can
1298/// be moved to a larger register class.
1299///
1300/// This is similar to spilling to a larger register class.
1301unsigned
1302RAGreedy::tryInstructionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1303                              SmallVectorImpl<LiveInterval*> &NewVRegs) {
1304  // There is no point to this if there are no larger sub-classes.
1305  if (!RegClassInfo.isProperSubClass(MRI->getRegClass(VirtReg.reg)))
1306    return 0;
1307
1308  // Always enable split spill mode, since we're effectively spilling to a
1309  // register.
1310  LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this);
1311  SE->reset(LREdit, SplitEditor::SM_Size);
1312
1313  ArrayRef<SlotIndex> Uses = SA->getUseSlots();
1314  if (Uses.size() <= 1)
1315    return 0;
1316
1317  DEBUG(dbgs() << "Split around " << Uses.size() << " individual instrs.\n");
1318
1319  // Split around every non-copy instruction.
1320  for (unsigned i = 0; i != Uses.size(); ++i) {
1321    if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Uses[i]))
1322      if (MI->isFullCopy()) {
1323        DEBUG(dbgs() << "    skip:\t" << Uses[i] << '\t' << *MI);
1324        continue;
1325      }
1326    SE->openIntv();
1327    SlotIndex SegStart = SE->enterIntvBefore(Uses[i]);
1328    SlotIndex SegStop  = SE->leaveIntvAfter(Uses[i]);
1329    SE->useIntv(SegStart, SegStop);
1330  }
1331
1332  if (LREdit.empty()) {
1333    DEBUG(dbgs() << "All uses were copies.\n");
1334    return 0;
1335  }
1336
1337  SmallVector<unsigned, 8> IntvMap;
1338  SE->finish(&IntvMap);
1339  DebugVars->splitRegister(VirtReg.reg, LREdit.regs());
1340  ExtraRegInfo.resize(MRI->getNumVirtRegs());
1341
1342  // Assign all new registers to RS_Spill. This was the last chance.
1343  setStage(LREdit.begin(), LREdit.end(), RS_Spill);
1344  return 0;
1345}
1346
1347
1348//===----------------------------------------------------------------------===//
1349//                             Local Splitting
1350//===----------------------------------------------------------------------===//
1351
1352
1353/// calcGapWeights - Compute the maximum spill weight that needs to be evicted
1354/// in order to use PhysReg between two entries in SA->UseSlots.
1355///
1356/// GapWeight[i] represents the gap between UseSlots[i] and UseSlots[i+1].
1357///
1358void RAGreedy::calcGapWeights(unsigned PhysReg,
1359                              SmallVectorImpl<float> &GapWeight) {
1360  assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
1361  const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
1362  ArrayRef<SlotIndex> Uses = SA->getUseSlots();
1363  const unsigned NumGaps = Uses.size()-1;
1364
1365  // Start and end points for the interference check.
1366  SlotIndex StartIdx =
1367    BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr;
1368  SlotIndex StopIdx =
1369    BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr;
1370
1371  GapWeight.assign(NumGaps, 0.0f);
1372
1373  // Add interference from each overlapping register.
1374  for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
1375    if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units)
1376          .checkInterference())
1377      continue;
1378
1379    // We know that VirtReg is a continuous interval from FirstInstr to
1380    // LastInstr, so we don't need InterferenceQuery.
1381    //
1382    // Interference that overlaps an instruction is counted in both gaps
1383    // surrounding the instruction. The exception is interference before
1384    // StartIdx and after StopIdx.
1385    //
1386    LiveIntervalUnion::SegmentIter IntI =
1387      Matrix->getLiveUnions()[*Units] .find(StartIdx);
1388    for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) {
1389      // Skip the gaps before IntI.
1390      while (Uses[Gap+1].getBoundaryIndex() < IntI.start())
1391        if (++Gap == NumGaps)
1392          break;
1393      if (Gap == NumGaps)
1394        break;
1395
1396      // Update the gaps covered by IntI.
1397      const float weight = IntI.value()->weight;
1398      for (; Gap != NumGaps; ++Gap) {
1399        GapWeight[Gap] = std::max(GapWeight[Gap], weight);
1400        if (Uses[Gap+1].getBaseIndex() >= IntI.stop())
1401          break;
1402      }
1403      if (Gap == NumGaps)
1404        break;
1405    }
1406  }
1407
1408  // Add fixed interference.
1409  for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
1410    const LiveInterval &LI = LIS->getRegUnit(*Units);
1411    LiveInterval::const_iterator I = LI.find(StartIdx);
1412    LiveInterval::const_iterator E = LI.end();
1413
1414    // Same loop as above. Mark any overlapped gaps as HUGE_VALF.
1415    for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) {
1416      while (Uses[Gap+1].getBoundaryIndex() < I->start)
1417        if (++Gap == NumGaps)
1418          break;
1419      if (Gap == NumGaps)
1420        break;
1421
1422      for (; Gap != NumGaps; ++Gap) {
1423        GapWeight[Gap] = HUGE_VALF;
1424        if (Uses[Gap+1].getBaseIndex() >= I->end)
1425          break;
1426      }
1427      if (Gap == NumGaps)
1428        break;
1429    }
1430  }
1431}
1432
1433/// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only
1434/// basic block.
1435///
1436unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1437                                 SmallVectorImpl<LiveInterval*> &NewVRegs) {
1438  assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
1439  const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
1440
1441  // Note that it is possible to have an interval that is live-in or live-out
1442  // while only covering a single block - A phi-def can use undef values from
1443  // predecessors, and the block could be a single-block loop.
1444  // We don't bother doing anything clever about such a case, we simply assume
1445  // that the interval is continuous from FirstInstr to LastInstr. We should
1446  // make sure that we don't do anything illegal to such an interval, though.
1447
1448  ArrayRef<SlotIndex> Uses = SA->getUseSlots();
1449  if (Uses.size() <= 2)
1450    return 0;
1451  const unsigned NumGaps = Uses.size()-1;
1452
1453  DEBUG({
1454    dbgs() << "tryLocalSplit: ";
1455    for (unsigned i = 0, e = Uses.size(); i != e; ++i)
1456      dbgs() << ' ' << Uses[i];
1457    dbgs() << '\n';
1458  });
1459
1460  // If VirtReg is live across any register mask operands, compute a list of
1461  // gaps with register masks.
1462  SmallVector<unsigned, 8> RegMaskGaps;
1463  if (Matrix->checkRegMaskInterference(VirtReg)) {
1464    // Get regmask slots for the whole block.
1465    ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber());
1466    DEBUG(dbgs() << RMS.size() << " regmasks in block:");
1467    // Constrain to VirtReg's live range.
1468    unsigned ri = std::lower_bound(RMS.begin(), RMS.end(),
1469                                   Uses.front().getRegSlot()) - RMS.begin();
1470    unsigned re = RMS.size();
1471    for (unsigned i = 0; i != NumGaps && ri != re; ++i) {
1472      // Look for Uses[i] <= RMS <= Uses[i+1].
1473      assert(!SlotIndex::isEarlierInstr(RMS[ri], Uses[i]));
1474      if (SlotIndex::isEarlierInstr(Uses[i+1], RMS[ri]))
1475        continue;
1476      // Skip a regmask on the same instruction as the last use. It doesn't
1477      // overlap the live range.
1478      if (SlotIndex::isSameInstr(Uses[i+1], RMS[ri]) && i+1 == NumGaps)
1479        break;
1480      DEBUG(dbgs() << ' ' << RMS[ri] << ':' << Uses[i] << '-' << Uses[i+1]);
1481      RegMaskGaps.push_back(i);
1482      // Advance ri to the next gap. A regmask on one of the uses counts in
1483      // both gaps.
1484      while (ri != re && SlotIndex::isEarlierInstr(RMS[ri], Uses[i+1]))
1485        ++ri;
1486    }
1487    DEBUG(dbgs() << '\n');
1488  }
1489
1490  // Since we allow local split results to be split again, there is a risk of
1491  // creating infinite loops. It is tempting to require that the new live
1492  // ranges have less instructions than the original. That would guarantee
1493  // convergence, but it is too strict. A live range with 3 instructions can be
1494  // split 2+3 (including the COPY), and we want to allow that.
1495  //
1496  // Instead we use these rules:
1497  //
1498  // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the
1499  //    noop split, of course).
1500  // 2. Require progress be made for ranges with getStage() == RS_Split2. All
1501  //    the new ranges must have fewer instructions than before the split.
1502  // 3. New ranges with the same number of instructions are marked RS_Split2,
1503  //    smaller ranges are marked RS_New.
1504  //
1505  // These rules allow a 3 -> 2+3 split once, which we need. They also prevent
1506  // excessive splitting and infinite loops.
1507  //
1508  bool ProgressRequired = getStage(VirtReg) >= RS_Split2;
1509
1510  // Best split candidate.
1511  unsigned BestBefore = NumGaps;
1512  unsigned BestAfter = 0;
1513  float BestDiff = 0;
1514
1515  const float blockFreq = SpillPlacer->getBlockFrequency(BI.MBB->getNumber());
1516  SmallVector<float, 8> GapWeight;
1517
1518  Order.rewind();
1519  while (unsigned PhysReg = Order.next()) {
1520    // Keep track of the largest spill weight that would need to be evicted in
1521    // order to make use of PhysReg between UseSlots[i] and UseSlots[i+1].
1522    calcGapWeights(PhysReg, GapWeight);
1523
1524    // Remove any gaps with regmask clobbers.
1525    if (Matrix->checkRegMaskInterference(VirtReg, PhysReg))
1526      for (unsigned i = 0, e = RegMaskGaps.size(); i != e; ++i)
1527        GapWeight[RegMaskGaps[i]] = HUGE_VALF;
1528
1529    // Try to find the best sequence of gaps to close.
1530    // The new spill weight must be larger than any gap interference.
1531
1532    // We will split before Uses[SplitBefore] and after Uses[SplitAfter].
1533    unsigned SplitBefore = 0, SplitAfter = 1;
1534
1535    // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]).
1536    // It is the spill weight that needs to be evicted.
1537    float MaxGap = GapWeight[0];
1538
1539    for (;;) {
1540      // Live before/after split?
1541      const bool LiveBefore = SplitBefore != 0 || BI.LiveIn;
1542      const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut;
1543
1544      DEBUG(dbgs() << PrintReg(PhysReg, TRI) << ' '
1545                   << Uses[SplitBefore] << '-' << Uses[SplitAfter]
1546                   << " i=" << MaxGap);
1547
1548      // Stop before the interval gets so big we wouldn't be making progress.
1549      if (!LiveBefore && !LiveAfter) {
1550        DEBUG(dbgs() << " all\n");
1551        break;
1552      }
1553      // Should the interval be extended or shrunk?
1554      bool Shrink = true;
1555
1556      // How many gaps would the new range have?
1557      unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter;
1558
1559      // Legally, without causing looping?
1560      bool Legal = !ProgressRequired || NewGaps < NumGaps;
1561
1562      if (Legal && MaxGap < HUGE_VALF) {
1563        // Estimate the new spill weight. Each instruction reads or writes the
1564        // register. Conservatively assume there are no read-modify-write
1565        // instructions.
1566        //
1567        // Try to guess the size of the new interval.
1568        const float EstWeight = normalizeSpillWeight(blockFreq * (NewGaps + 1),
1569                                 Uses[SplitBefore].distance(Uses[SplitAfter]) +
1570                                 (LiveBefore + LiveAfter)*SlotIndex::InstrDist);
1571        // Would this split be possible to allocate?
1572        // Never allocate all gaps, we wouldn't be making progress.
1573        DEBUG(dbgs() << " w=" << EstWeight);
1574        if (EstWeight * Hysteresis >= MaxGap) {
1575          Shrink = false;
1576          float Diff = EstWeight - MaxGap;
1577          if (Diff > BestDiff) {
1578            DEBUG(dbgs() << " (best)");
1579            BestDiff = Hysteresis * Diff;
1580            BestBefore = SplitBefore;
1581            BestAfter = SplitAfter;
1582          }
1583        }
1584      }
1585
1586      // Try to shrink.
1587      if (Shrink) {
1588        if (++SplitBefore < SplitAfter) {
1589          DEBUG(dbgs() << " shrink\n");
1590          // Recompute the max when necessary.
1591          if (GapWeight[SplitBefore - 1] >= MaxGap) {
1592            MaxGap = GapWeight[SplitBefore];
1593            for (unsigned i = SplitBefore + 1; i != SplitAfter; ++i)
1594              MaxGap = std::max(MaxGap, GapWeight[i]);
1595          }
1596          continue;
1597        }
1598        MaxGap = 0;
1599      }
1600
1601      // Try to extend the interval.
1602      if (SplitAfter >= NumGaps) {
1603        DEBUG(dbgs() << " end\n");
1604        break;
1605      }
1606
1607      DEBUG(dbgs() << " extend\n");
1608      MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]);
1609    }
1610  }
1611
1612  // Didn't find any candidates?
1613  if (BestBefore == NumGaps)
1614    return 0;
1615
1616  DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore]
1617               << '-' << Uses[BestAfter] << ", " << BestDiff
1618               << ", " << (BestAfter - BestBefore + 1) << " instrs\n");
1619
1620  LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this);
1621  SE->reset(LREdit);
1622
1623  SE->openIntv();
1624  SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]);
1625  SlotIndex SegStop  = SE->leaveIntvAfter(Uses[BestAfter]);
1626  SE->useIntv(SegStart, SegStop);
1627  SmallVector<unsigned, 8> IntvMap;
1628  SE->finish(&IntvMap);
1629  DebugVars->splitRegister(VirtReg.reg, LREdit.regs());
1630
1631  // If the new range has the same number of instructions as before, mark it as
1632  // RS_Split2 so the next split will be forced to make progress. Otherwise,
1633  // leave the new intervals as RS_New so they can compete.
1634  bool LiveBefore = BestBefore != 0 || BI.LiveIn;
1635  bool LiveAfter = BestAfter != NumGaps || BI.LiveOut;
1636  unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter;
1637  if (NewGaps >= NumGaps) {
1638    DEBUG(dbgs() << "Tagging non-progress ranges: ");
1639    assert(!ProgressRequired && "Didn't make progress when it was required.");
1640    for (unsigned i = 0, e = IntvMap.size(); i != e; ++i)
1641      if (IntvMap[i] == 1) {
1642        setStage(*LREdit.get(i), RS_Split2);
1643        DEBUG(dbgs() << PrintReg(LREdit.get(i)->reg));
1644      }
1645    DEBUG(dbgs() << '\n');
1646  }
1647  ++NumLocalSplits;
1648
1649  return 0;
1650}
1651
1652//===----------------------------------------------------------------------===//
1653//                          Live Range Splitting
1654//===----------------------------------------------------------------------===//
1655
1656/// trySplit - Try to split VirtReg or one of its interferences, making it
1657/// assignable.
1658/// @return Physreg when VirtReg may be assigned and/or new NewVRegs.
1659unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order,
1660                            SmallVectorImpl<LiveInterval*>&NewVRegs) {
1661  // Ranges must be Split2 or less.
1662  if (getStage(VirtReg) >= RS_Spill)
1663    return 0;
1664
1665  // Local intervals are handled separately.
1666  if (LIS->intervalIsInOneMBB(VirtReg)) {
1667    NamedRegionTimer T("Local Splitting", TimerGroupName, TimePassesIsEnabled);
1668    SA->analyze(&VirtReg);
1669    unsigned PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs);
1670    if (PhysReg || !NewVRegs.empty())
1671      return PhysReg;
1672    return tryInstructionSplit(VirtReg, Order, NewVRegs);
1673  }
1674
1675  NamedRegionTimer T("Global Splitting", TimerGroupName, TimePassesIsEnabled);
1676
1677  SA->analyze(&VirtReg);
1678
1679  // FIXME: SplitAnalysis may repair broken live ranges coming from the
1680  // coalescer. That may cause the range to become allocatable which means that
1681  // tryRegionSplit won't be making progress. This check should be replaced with
1682  // an assertion when the coalescer is fixed.
1683  if (SA->didRepairRange()) {
1684    // VirtReg has changed, so all cached queries are invalid.
1685    Matrix->invalidateVirtRegs();
1686    if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs))
1687      return PhysReg;
1688  }
1689
1690  // First try to split around a region spanning multiple blocks. RS_Split2
1691  // ranges already made dubious progress with region splitting, so they go
1692  // straight to single block splitting.
1693  if (getStage(VirtReg) < RS_Split2) {
1694    unsigned PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs);
1695    if (PhysReg || !NewVRegs.empty())
1696      return PhysReg;
1697  }
1698
1699  // Then isolate blocks.
1700  return tryBlockSplit(VirtReg, Order, NewVRegs);
1701}
1702
1703
1704//===----------------------------------------------------------------------===//
1705//                            Main Entry Point
1706//===----------------------------------------------------------------------===//
1707
1708unsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg,
1709                                 SmallVectorImpl<LiveInterval*> &NewVRegs) {
1710  // First try assigning a free register.
1711  AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo);
1712  if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs))
1713    return PhysReg;
1714
1715  LiveRangeStage Stage = getStage(VirtReg);
1716  DEBUG(dbgs() << StageName[Stage]
1717               << " Cascade " << ExtraRegInfo[VirtReg.reg].Cascade << '\n');
1718
1719  // Try to evict a less worthy live range, but only for ranges from the primary
1720  // queue. The RS_Split ranges already failed to do this, and they should not
1721  // get a second chance until they have been split.
1722  if (Stage != RS_Split)
1723    if (unsigned PhysReg = tryEvict(VirtReg, Order, NewVRegs))
1724      return PhysReg;
1725
1726  assert(NewVRegs.empty() && "Cannot append to existing NewVRegs");
1727
1728  // The first time we see a live range, don't try to split or spill.
1729  // Wait until the second time, when all smaller ranges have been allocated.
1730  // This gives a better picture of the interference to split around.
1731  if (Stage < RS_Split) {
1732    setStage(VirtReg, RS_Split);
1733    DEBUG(dbgs() << "wait for second round\n");
1734    NewVRegs.push_back(&VirtReg);
1735    return 0;
1736  }
1737
1738  // If we couldn't allocate a register from spilling, there is probably some
1739  // invalid inline assembly. The base class wil report it.
1740  if (Stage >= RS_Done || !VirtReg.isSpillable())
1741    return ~0u;
1742
1743  // Try splitting VirtReg or interferences.
1744  unsigned PhysReg = trySplit(VirtReg, Order, NewVRegs);
1745  if (PhysReg || !NewVRegs.empty())
1746    return PhysReg;
1747
1748  // Finally spill VirtReg itself.
1749  NamedRegionTimer T("Spiller", TimerGroupName, TimePassesIsEnabled);
1750  LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this);
1751  spiller().spill(LRE);
1752  setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done);
1753
1754  if (VerifyEnabled)
1755    MF->verify(this, "After spilling");
1756
1757  // The live virtual register requesting allocation was spilled, so tell
1758  // the caller not to allocate anything during this round.
1759  return 0;
1760}
1761
1762bool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
1763  DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
1764               << "********** Function: " << mf.getName() << '\n');
1765
1766  MF = &mf;
1767  if (VerifyEnabled)
1768    MF->verify(this, "Before greedy register allocator");
1769
1770  RegAllocBase::init(getAnalysis<VirtRegMap>(),
1771                     getAnalysis<LiveIntervals>(),
1772                     getAnalysis<LiveRegMatrix>());
1773  Indexes = &getAnalysis<SlotIndexes>();
1774  DomTree = &getAnalysis<MachineDominatorTree>();
1775  SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM));
1776  Loops = &getAnalysis<MachineLoopInfo>();
1777  Bundles = &getAnalysis<EdgeBundles>();
1778  SpillPlacer = &getAnalysis<SpillPlacement>();
1779  DebugVars = &getAnalysis<LiveDebugVariables>();
1780
1781  SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops));
1782  SE.reset(new SplitEditor(*SA, *LIS, *VRM, *DomTree));
1783  ExtraRegInfo.clear();
1784  ExtraRegInfo.resize(MRI->getNumVirtRegs());
1785  NextCascade = 1;
1786  IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI);
1787  GlobalCand.resize(32);  // This will grow as needed.
1788
1789  allocatePhysRegs();
1790  releaseMemory();
1791  return true;
1792}
1793