DAGCombiner.cpp revision 1c49fda408ae5ba90fdaf1b274edd1119aea58b7
1//===-- DAGCombiner.cpp - Implement a DAG node combiner -------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass combines dag nodes to form fewer, simpler DAG nodes.  It can be run
11// both before and after the DAG is legalized.
12//
13// This pass is not a substitute for the LLVM IR instcombine pass. This pass is
14// primarily intended to handle simplification opportunities that are implicit
15// in the LLVM IR and exposed by the various codegen lowering phases.
16//
17//===----------------------------------------------------------------------===//
18
19#define DEBUG_TYPE "dagcombine"
20#include "llvm/CodeGen/SelectionDAG.h"
21#include "llvm/ADT/SmallPtrSet.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/Analysis/AliasAnalysis.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineFunction.h"
26#include "llvm/DataLayout.h"
27#include "llvm/DerivedTypes.h"
28#include "llvm/LLVMContext.h"
29#include "llvm/Support/CommandLine.h"
30#include "llvm/Support/Debug.h"
31#include "llvm/Support/ErrorHandling.h"
32#include "llvm/Support/MathExtras.h"
33#include "llvm/Support/raw_ostream.h"
34#include "llvm/Target/TargetLowering.h"
35#include "llvm/Target/TargetMachine.h"
36#include "llvm/Target/TargetOptions.h"
37#include <algorithm>
38using namespace llvm;
39
40STATISTIC(NodesCombined   , "Number of dag nodes combined");
41STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created");
42STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created");
43STATISTIC(OpsNarrowed     , "Number of load/op/store narrowed");
44STATISTIC(LdStFP2Int      , "Number of fp load/store pairs transformed to int");
45
46namespace {
47  static cl::opt<bool>
48    CombinerAA("combiner-alias-analysis", cl::Hidden,
49               cl::desc("Turn on alias analysis during testing"));
50
51  static cl::opt<bool>
52    CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden,
53               cl::desc("Include global information in alias analysis"));
54
55//------------------------------ DAGCombiner ---------------------------------//
56
57  class DAGCombiner {
58    SelectionDAG &DAG;
59    const TargetLowering &TLI;
60    CombineLevel Level;
61    CodeGenOpt::Level OptLevel;
62    bool LegalOperations;
63    bool LegalTypes;
64
65    // Worklist of all of the nodes that need to be simplified.
66    //
67    // This has the semantics that when adding to the worklist,
68    // the item added must be next to be processed. It should
69    // also only appear once. The naive approach to this takes
70    // linear time.
71    //
72    // To reduce the insert/remove time to logarithmic, we use
73    // a set and a vector to maintain our worklist.
74    //
75    // The set contains the items on the worklist, but does not
76    // maintain the order they should be visited.
77    //
78    // The vector maintains the order nodes should be visited, but may
79    // contain duplicate or removed nodes. When choosing a node to
80    // visit, we pop off the order stack until we find an item that is
81    // also in the contents set. All operations are O(log N).
82    SmallPtrSet<SDNode*, 64> WorkListContents;
83    SmallVector<SDNode*, 64> WorkListOrder;
84
85    // AA - Used for DAG load/store alias analysis.
86    AliasAnalysis &AA;
87
88    /// AddUsersToWorkList - When an instruction is simplified, add all users of
89    /// the instruction to the work lists because they might get more simplified
90    /// now.
91    ///
92    void AddUsersToWorkList(SDNode *N) {
93      for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
94           UI != UE; ++UI)
95        AddToWorkList(*UI);
96    }
97
98    /// visit - call the node-specific routine that knows how to fold each
99    /// particular type of node.
100    SDValue visit(SDNode *N);
101
102  public:
103    /// AddToWorkList - Add to the work list making sure its instance is at the
104    /// back (next to be processed.)
105    void AddToWorkList(SDNode *N) {
106      WorkListContents.insert(N);
107      WorkListOrder.push_back(N);
108    }
109
110    /// removeFromWorkList - remove all instances of N from the worklist.
111    ///
112    void removeFromWorkList(SDNode *N) {
113      WorkListContents.erase(N);
114    }
115
116    SDValue CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
117                      bool AddTo = true);
118
119    SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true) {
120      return CombineTo(N, &Res, 1, AddTo);
121    }
122
123    SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1,
124                      bool AddTo = true) {
125      SDValue To[] = { Res0, Res1 };
126      return CombineTo(N, To, 2, AddTo);
127    }
128
129    void CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO);
130
131  private:
132
133    /// SimplifyDemandedBits - Check the specified integer node value to see if
134    /// it can be simplified or if things it uses can be simplified by bit
135    /// propagation.  If so, return true.
136    bool SimplifyDemandedBits(SDValue Op) {
137      unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
138      APInt Demanded = APInt::getAllOnesValue(BitWidth);
139      return SimplifyDemandedBits(Op, Demanded);
140    }
141
142    bool SimplifyDemandedBits(SDValue Op, const APInt &Demanded);
143
144    bool CombineToPreIndexedLoadStore(SDNode *N);
145    bool CombineToPostIndexedLoadStore(SDNode *N);
146
147    void ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad);
148    SDValue PromoteOperand(SDValue Op, EVT PVT, bool &Replace);
149    SDValue SExtPromoteOperand(SDValue Op, EVT PVT);
150    SDValue ZExtPromoteOperand(SDValue Op, EVT PVT);
151    SDValue PromoteIntBinOp(SDValue Op);
152    SDValue PromoteIntShiftOp(SDValue Op);
153    SDValue PromoteExtend(SDValue Op);
154    bool PromoteLoad(SDValue Op);
155
156    void ExtendSetCCUses(SmallVector<SDNode*, 4> SetCCs,
157                         SDValue Trunc, SDValue ExtLoad, DebugLoc DL,
158                         ISD::NodeType ExtType);
159
160    /// combine - call the node-specific routine that knows how to fold each
161    /// particular type of node. If that doesn't do anything, try the
162    /// target-specific DAG combines.
163    SDValue combine(SDNode *N);
164
165    // Visitation implementation - Implement dag node combining for different
166    // node types.  The semantics are as follows:
167    // Return Value:
168    //   SDValue.getNode() == 0 - No change was made
169    //   SDValue.getNode() == N - N was replaced, is dead and has been handled.
170    //   otherwise              - N should be replaced by the returned Operand.
171    //
172    SDValue visitTokenFactor(SDNode *N);
173    SDValue visitMERGE_VALUES(SDNode *N);
174    SDValue visitADD(SDNode *N);
175    SDValue visitSUB(SDNode *N);
176    SDValue visitADDC(SDNode *N);
177    SDValue visitSUBC(SDNode *N);
178    SDValue visitADDE(SDNode *N);
179    SDValue visitSUBE(SDNode *N);
180    SDValue visitMUL(SDNode *N);
181    SDValue visitSDIV(SDNode *N);
182    SDValue visitUDIV(SDNode *N);
183    SDValue visitSREM(SDNode *N);
184    SDValue visitUREM(SDNode *N);
185    SDValue visitMULHU(SDNode *N);
186    SDValue visitMULHS(SDNode *N);
187    SDValue visitSMUL_LOHI(SDNode *N);
188    SDValue visitUMUL_LOHI(SDNode *N);
189    SDValue visitSMULO(SDNode *N);
190    SDValue visitUMULO(SDNode *N);
191    SDValue visitSDIVREM(SDNode *N);
192    SDValue visitUDIVREM(SDNode *N);
193    SDValue visitAND(SDNode *N);
194    SDValue visitOR(SDNode *N);
195    SDValue visitXOR(SDNode *N);
196    SDValue SimplifyVBinOp(SDNode *N);
197    SDValue SimplifyVUnaryOp(SDNode *N);
198    SDValue visitSHL(SDNode *N);
199    SDValue visitSRA(SDNode *N);
200    SDValue visitSRL(SDNode *N);
201    SDValue visitCTLZ(SDNode *N);
202    SDValue visitCTLZ_ZERO_UNDEF(SDNode *N);
203    SDValue visitCTTZ(SDNode *N);
204    SDValue visitCTTZ_ZERO_UNDEF(SDNode *N);
205    SDValue visitCTPOP(SDNode *N);
206    SDValue visitSELECT(SDNode *N);
207    SDValue visitSELECT_CC(SDNode *N);
208    SDValue visitSETCC(SDNode *N);
209    SDValue visitSIGN_EXTEND(SDNode *N);
210    SDValue visitZERO_EXTEND(SDNode *N);
211    SDValue visitANY_EXTEND(SDNode *N);
212    SDValue visitSIGN_EXTEND_INREG(SDNode *N);
213    SDValue visitTRUNCATE(SDNode *N);
214    SDValue visitBITCAST(SDNode *N);
215    SDValue visitBUILD_PAIR(SDNode *N);
216    SDValue visitFADD(SDNode *N);
217    SDValue visitFSUB(SDNode *N);
218    SDValue visitFMUL(SDNode *N);
219    SDValue visitFMA(SDNode *N);
220    SDValue visitFDIV(SDNode *N);
221    SDValue visitFREM(SDNode *N);
222    SDValue visitFCOPYSIGN(SDNode *N);
223    SDValue visitSINT_TO_FP(SDNode *N);
224    SDValue visitUINT_TO_FP(SDNode *N);
225    SDValue visitFP_TO_SINT(SDNode *N);
226    SDValue visitFP_TO_UINT(SDNode *N);
227    SDValue visitFP_ROUND(SDNode *N);
228    SDValue visitFP_ROUND_INREG(SDNode *N);
229    SDValue visitFP_EXTEND(SDNode *N);
230    SDValue visitFNEG(SDNode *N);
231    SDValue visitFABS(SDNode *N);
232    SDValue visitFCEIL(SDNode *N);
233    SDValue visitFTRUNC(SDNode *N);
234    SDValue visitFFLOOR(SDNode *N);
235    SDValue visitBRCOND(SDNode *N);
236    SDValue visitBR_CC(SDNode *N);
237    SDValue visitLOAD(SDNode *N);
238    SDValue visitSTORE(SDNode *N);
239    SDValue visitINSERT_VECTOR_ELT(SDNode *N);
240    SDValue visitEXTRACT_VECTOR_ELT(SDNode *N);
241    SDValue visitBUILD_VECTOR(SDNode *N);
242    SDValue visitCONCAT_VECTORS(SDNode *N);
243    SDValue visitEXTRACT_SUBVECTOR(SDNode *N);
244    SDValue visitVECTOR_SHUFFLE(SDNode *N);
245    SDValue visitMEMBARRIER(SDNode *N);
246
247    SDValue XformToShuffleWithZero(SDNode *N);
248    SDValue ReassociateOps(unsigned Opc, DebugLoc DL, SDValue LHS, SDValue RHS);
249
250    SDValue visitShiftByConstant(SDNode *N, unsigned Amt);
251
252    bool SimplifySelectOps(SDNode *SELECT, SDValue LHS, SDValue RHS);
253    SDValue SimplifyBinOpWithSameOpcodeHands(SDNode *N);
254    SDValue SimplifySelect(DebugLoc DL, SDValue N0, SDValue N1, SDValue N2);
255    SDValue SimplifySelectCC(DebugLoc DL, SDValue N0, SDValue N1, SDValue N2,
256                             SDValue N3, ISD::CondCode CC,
257                             bool NotExtCompare = false);
258    SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
259                          DebugLoc DL, bool foldBooleans = true);
260    SDValue SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
261                                         unsigned HiOp);
262    SDValue CombineConsecutiveLoads(SDNode *N, EVT VT);
263    SDValue ConstantFoldBITCASTofBUILD_VECTOR(SDNode *, EVT);
264    SDValue BuildSDIV(SDNode *N);
265    SDValue BuildUDIV(SDNode *N);
266    SDValue MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1,
267                               bool DemandHighBits = true);
268    SDValue MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1);
269    SDNode *MatchRotate(SDValue LHS, SDValue RHS, DebugLoc DL);
270    SDValue ReduceLoadWidth(SDNode *N);
271    SDValue ReduceLoadOpStoreWidth(SDNode *N);
272    SDValue TransformFPLoadStorePair(SDNode *N);
273    SDValue reduceBuildVecExtToExtBuildVec(SDNode *N);
274    SDValue reduceBuildVecConvertToConvertBuildVec(SDNode *N);
275
276    SDValue GetDemandedBits(SDValue V, const APInt &Mask);
277
278    /// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
279    /// looking for aliasing nodes and adding them to the Aliases vector.
280    void GatherAllAliases(SDNode *N, SDValue OriginalChain,
281                          SmallVector<SDValue, 8> &Aliases);
282
283    /// isAlias - Return true if there is any possibility that the two addresses
284    /// overlap.
285    bool isAlias(SDValue Ptr1, int64_t Size1,
286                 const Value *SrcValue1, int SrcValueOffset1,
287                 unsigned SrcValueAlign1,
288                 const MDNode *TBAAInfo1,
289                 SDValue Ptr2, int64_t Size2,
290                 const Value *SrcValue2, int SrcValueOffset2,
291                 unsigned SrcValueAlign2,
292                 const MDNode *TBAAInfo2) const;
293
294    /// isAlias - Return true if there is any possibility that the two addresses
295    /// overlap.
296    bool isAlias(LSBaseSDNode *Op0, LSBaseSDNode *Op1);
297
298    /// FindAliasInfo - Extracts the relevant alias information from the memory
299    /// node.  Returns true if the operand was a load.
300    bool FindAliasInfo(SDNode *N,
301                       SDValue &Ptr, int64_t &Size,
302                       const Value *&SrcValue, int &SrcValueOffset,
303                       unsigned &SrcValueAlignment,
304                       const MDNode *&TBAAInfo) const;
305
306    /// FindBetterChain - Walk up chain skipping non-aliasing memory nodes,
307    /// looking for a better chain (aliasing node.)
308    SDValue FindBetterChain(SDNode *N, SDValue Chain);
309
310    /// Merge consecutive store operations into a wide store.
311    /// This optimization uses wide integers or vectors when possible.
312    /// \return True if some memory operations were changed.
313    bool MergeConsecutiveStores(StoreSDNode *N);
314
315  public:
316    DAGCombiner(SelectionDAG &D, AliasAnalysis &A, CodeGenOpt::Level OL)
317      : DAG(D), TLI(D.getTargetLoweringInfo()), Level(BeforeLegalizeTypes),
318        OptLevel(OL), LegalOperations(false), LegalTypes(false), AA(A) {}
319
320    /// Run - runs the dag combiner on all nodes in the work list
321    void Run(CombineLevel AtLevel);
322
323    SelectionDAG &getDAG() const { return DAG; }
324
325    /// getShiftAmountTy - Returns a type large enough to hold any valid
326    /// shift amount - before type legalization these can be huge.
327    EVT getShiftAmountTy(EVT LHSTy) {
328      return LegalTypes ? TLI.getShiftAmountTy(LHSTy) : TLI.getPointerTy();
329    }
330
331    /// isTypeLegal - This method returns true if we are running before type
332    /// legalization or if the specified VT is legal.
333    bool isTypeLegal(const EVT &VT) {
334      if (!LegalTypes) return true;
335      return TLI.isTypeLegal(VT);
336    }
337  };
338}
339
340
341namespace {
342/// WorkListRemover - This class is a DAGUpdateListener that removes any deleted
343/// nodes from the worklist.
344class WorkListRemover : public SelectionDAG::DAGUpdateListener {
345  DAGCombiner &DC;
346public:
347  explicit WorkListRemover(DAGCombiner &dc)
348    : SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {}
349
350  virtual void NodeDeleted(SDNode *N, SDNode *E) {
351    DC.removeFromWorkList(N);
352  }
353};
354}
355
356//===----------------------------------------------------------------------===//
357//  TargetLowering::DAGCombinerInfo implementation
358//===----------------------------------------------------------------------===//
359
360void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) {
361  ((DAGCombiner*)DC)->AddToWorkList(N);
362}
363
364void TargetLowering::DAGCombinerInfo::RemoveFromWorklist(SDNode *N) {
365  ((DAGCombiner*)DC)->removeFromWorkList(N);
366}
367
368SDValue TargetLowering::DAGCombinerInfo::
369CombineTo(SDNode *N, const std::vector<SDValue> &To, bool AddTo) {
370  return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size(), AddTo);
371}
372
373SDValue TargetLowering::DAGCombinerInfo::
374CombineTo(SDNode *N, SDValue Res, bool AddTo) {
375  return ((DAGCombiner*)DC)->CombineTo(N, Res, AddTo);
376}
377
378
379SDValue TargetLowering::DAGCombinerInfo::
380CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo) {
381  return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1, AddTo);
382}
383
384void TargetLowering::DAGCombinerInfo::
385CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) {
386  return ((DAGCombiner*)DC)->CommitTargetLoweringOpt(TLO);
387}
388
389//===----------------------------------------------------------------------===//
390// Helper Functions
391//===----------------------------------------------------------------------===//
392
393/// isNegatibleForFree - Return 1 if we can compute the negated form of the
394/// specified expression for the same cost as the expression itself, or 2 if we
395/// can compute the negated form more cheaply than the expression itself.
396static char isNegatibleForFree(SDValue Op, bool LegalOperations,
397                               const TargetLowering &TLI,
398                               const TargetOptions *Options,
399                               unsigned Depth = 0) {
400  // fneg is removable even if it has multiple uses.
401  if (Op.getOpcode() == ISD::FNEG) return 2;
402
403  // Don't allow anything with multiple uses.
404  if (!Op.hasOneUse()) return 0;
405
406  // Don't recurse exponentially.
407  if (Depth > 6) return 0;
408
409  switch (Op.getOpcode()) {
410  default: return false;
411  case ISD::ConstantFP:
412    // Don't invert constant FP values after legalize.  The negated constant
413    // isn't necessarily legal.
414    return LegalOperations ? 0 : 1;
415  case ISD::FADD:
416    // FIXME: determine better conditions for this xform.
417    if (!Options->UnsafeFPMath) return 0;
418
419    // After operation legalization, it might not be legal to create new FSUBs.
420    if (LegalOperations &&
421        !TLI.isOperationLegalOrCustom(ISD::FSUB,  Op.getValueType()))
422      return 0;
423
424    // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
425    if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI,
426                                    Options, Depth + 1))
427      return V;
428    // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
429    return isNegatibleForFree(Op.getOperand(1), LegalOperations, TLI, Options,
430                              Depth + 1);
431  case ISD::FSUB:
432    // We can't turn -(A-B) into B-A when we honor signed zeros.
433    if (!Options->UnsafeFPMath) return 0;
434
435    // fold (fneg (fsub A, B)) -> (fsub B, A)
436    return 1;
437
438  case ISD::FMUL:
439  case ISD::FDIV:
440    if (Options->HonorSignDependentRoundingFPMath()) return 0;
441
442    // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y))
443    if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI,
444                                    Options, Depth + 1))
445      return V;
446
447    return isNegatibleForFree(Op.getOperand(1), LegalOperations, TLI, Options,
448                              Depth + 1);
449
450  case ISD::FP_EXTEND:
451  case ISD::FP_ROUND:
452  case ISD::FSIN:
453    return isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI, Options,
454                              Depth + 1);
455  }
456}
457
458/// GetNegatedExpression - If isNegatibleForFree returns true, this function
459/// returns the newly negated expression.
460static SDValue GetNegatedExpression(SDValue Op, SelectionDAG &DAG,
461                                    bool LegalOperations, unsigned Depth = 0) {
462  // fneg is removable even if it has multiple uses.
463  if (Op.getOpcode() == ISD::FNEG) return Op.getOperand(0);
464
465  // Don't allow anything with multiple uses.
466  assert(Op.hasOneUse() && "Unknown reuse!");
467
468  assert(Depth <= 6 && "GetNegatedExpression doesn't match isNegatibleForFree");
469  switch (Op.getOpcode()) {
470  default: llvm_unreachable("Unknown code");
471  case ISD::ConstantFP: {
472    APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
473    V.changeSign();
474    return DAG.getConstantFP(V, Op.getValueType());
475  }
476  case ISD::FADD:
477    // FIXME: determine better conditions for this xform.
478    assert(DAG.getTarget().Options.UnsafeFPMath);
479
480    // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
481    if (isNegatibleForFree(Op.getOperand(0), LegalOperations,
482                           DAG.getTargetLoweringInfo(),
483                           &DAG.getTarget().Options, Depth+1))
484      return DAG.getNode(ISD::FSUB, Op.getDebugLoc(), Op.getValueType(),
485                         GetNegatedExpression(Op.getOperand(0), DAG,
486                                              LegalOperations, Depth+1),
487                         Op.getOperand(1));
488    // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
489    return DAG.getNode(ISD::FSUB, Op.getDebugLoc(), Op.getValueType(),
490                       GetNegatedExpression(Op.getOperand(1), DAG,
491                                            LegalOperations, Depth+1),
492                       Op.getOperand(0));
493  case ISD::FSUB:
494    // We can't turn -(A-B) into B-A when we honor signed zeros.
495    assert(DAG.getTarget().Options.UnsafeFPMath);
496
497    // fold (fneg (fsub 0, B)) -> B
498    if (ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(Op.getOperand(0)))
499      if (N0CFP->getValueAPF().isZero())
500        return Op.getOperand(1);
501
502    // fold (fneg (fsub A, B)) -> (fsub B, A)
503    return DAG.getNode(ISD::FSUB, Op.getDebugLoc(), Op.getValueType(),
504                       Op.getOperand(1), Op.getOperand(0));
505
506  case ISD::FMUL:
507  case ISD::FDIV:
508    assert(!DAG.getTarget().Options.HonorSignDependentRoundingFPMath());
509
510    // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
511    if (isNegatibleForFree(Op.getOperand(0), LegalOperations,
512                           DAG.getTargetLoweringInfo(),
513                           &DAG.getTarget().Options, Depth+1))
514      return DAG.getNode(Op.getOpcode(), Op.getDebugLoc(), Op.getValueType(),
515                         GetNegatedExpression(Op.getOperand(0), DAG,
516                                              LegalOperations, Depth+1),
517                         Op.getOperand(1));
518
519    // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
520    return DAG.getNode(Op.getOpcode(), Op.getDebugLoc(), Op.getValueType(),
521                       Op.getOperand(0),
522                       GetNegatedExpression(Op.getOperand(1), DAG,
523                                            LegalOperations, Depth+1));
524
525  case ISD::FP_EXTEND:
526  case ISD::FSIN:
527    return DAG.getNode(Op.getOpcode(), Op.getDebugLoc(), Op.getValueType(),
528                       GetNegatedExpression(Op.getOperand(0), DAG,
529                                            LegalOperations, Depth+1));
530  case ISD::FP_ROUND:
531      return DAG.getNode(ISD::FP_ROUND, Op.getDebugLoc(), Op.getValueType(),
532                         GetNegatedExpression(Op.getOperand(0), DAG,
533                                              LegalOperations, Depth+1),
534                         Op.getOperand(1));
535  }
536}
537
538
539// isSetCCEquivalent - Return true if this node is a setcc, or is a select_cc
540// that selects between the values 1 and 0, making it equivalent to a setcc.
541// Also, set the incoming LHS, RHS, and CC references to the appropriate
542// nodes based on the type of node we are checking.  This simplifies life a
543// bit for the callers.
544static bool isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS,
545                              SDValue &CC) {
546  if (N.getOpcode() == ISD::SETCC) {
547    LHS = N.getOperand(0);
548    RHS = N.getOperand(1);
549    CC  = N.getOperand(2);
550    return true;
551  }
552  if (N.getOpcode() == ISD::SELECT_CC &&
553      N.getOperand(2).getOpcode() == ISD::Constant &&
554      N.getOperand(3).getOpcode() == ISD::Constant &&
555      cast<ConstantSDNode>(N.getOperand(2))->getAPIntValue() == 1 &&
556      cast<ConstantSDNode>(N.getOperand(3))->isNullValue()) {
557    LHS = N.getOperand(0);
558    RHS = N.getOperand(1);
559    CC  = N.getOperand(4);
560    return true;
561  }
562  return false;
563}
564
565// isOneUseSetCC - Return true if this is a SetCC-equivalent operation with only
566// one use.  If this is true, it allows the users to invert the operation for
567// free when it is profitable to do so.
568static bool isOneUseSetCC(SDValue N) {
569  SDValue N0, N1, N2;
570  if (isSetCCEquivalent(N, N0, N1, N2) && N.getNode()->hasOneUse())
571    return true;
572  return false;
573}
574
575SDValue DAGCombiner::ReassociateOps(unsigned Opc, DebugLoc DL,
576                                    SDValue N0, SDValue N1) {
577  EVT VT = N0.getValueType();
578  if (N0.getOpcode() == Opc && isa<ConstantSDNode>(N0.getOperand(1))) {
579    if (isa<ConstantSDNode>(N1)) {
580      // reassoc. (op (op x, c1), c2) -> (op x, (op c1, c2))
581      SDValue OpNode =
582        DAG.FoldConstantArithmetic(Opc, VT,
583                                   cast<ConstantSDNode>(N0.getOperand(1)),
584                                   cast<ConstantSDNode>(N1));
585      return DAG.getNode(Opc, DL, VT, N0.getOperand(0), OpNode);
586    }
587    if (N0.hasOneUse()) {
588      // reassoc. (op (op x, c1), y) -> (op (op x, y), c1) iff x+c1 has one use
589      SDValue OpNode = DAG.getNode(Opc, N0.getDebugLoc(), VT,
590                                   N0.getOperand(0), N1);
591      AddToWorkList(OpNode.getNode());
592      return DAG.getNode(Opc, DL, VT, OpNode, N0.getOperand(1));
593    }
594  }
595
596  if (N1.getOpcode() == Opc && isa<ConstantSDNode>(N1.getOperand(1))) {
597    if (isa<ConstantSDNode>(N0)) {
598      // reassoc. (op c2, (op x, c1)) -> (op x, (op c1, c2))
599      SDValue OpNode =
600        DAG.FoldConstantArithmetic(Opc, VT,
601                                   cast<ConstantSDNode>(N1.getOperand(1)),
602                                   cast<ConstantSDNode>(N0));
603      return DAG.getNode(Opc, DL, VT, N1.getOperand(0), OpNode);
604    }
605    if (N1.hasOneUse()) {
606      // reassoc. (op y, (op x, c1)) -> (op (op x, y), c1) iff x+c1 has one use
607      SDValue OpNode = DAG.getNode(Opc, N0.getDebugLoc(), VT,
608                                   N1.getOperand(0), N0);
609      AddToWorkList(OpNode.getNode());
610      return DAG.getNode(Opc, DL, VT, OpNode, N1.getOperand(1));
611    }
612  }
613
614  return SDValue();
615}
616
617SDValue DAGCombiner::CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
618                               bool AddTo) {
619  assert(N->getNumValues() == NumTo && "Broken CombineTo call!");
620  ++NodesCombined;
621  DEBUG(dbgs() << "\nReplacing.1 ";
622        N->dump(&DAG);
623        dbgs() << "\nWith: ";
624        To[0].getNode()->dump(&DAG);
625        dbgs() << " and " << NumTo-1 << " other values\n";
626        for (unsigned i = 0, e = NumTo; i != e; ++i)
627          assert((!To[i].getNode() ||
628                  N->getValueType(i) == To[i].getValueType()) &&
629                 "Cannot combine value to value of different type!"));
630  WorkListRemover DeadNodes(*this);
631  DAG.ReplaceAllUsesWith(N, To);
632  if (AddTo) {
633    // Push the new nodes and any users onto the worklist
634    for (unsigned i = 0, e = NumTo; i != e; ++i) {
635      if (To[i].getNode()) {
636        AddToWorkList(To[i].getNode());
637        AddUsersToWorkList(To[i].getNode());
638      }
639    }
640  }
641
642  // Finally, if the node is now dead, remove it from the graph.  The node
643  // may not be dead if the replacement process recursively simplified to
644  // something else needing this node.
645  if (N->use_empty()) {
646    // Nodes can be reintroduced into the worklist.  Make sure we do not
647    // process a node that has been replaced.
648    removeFromWorkList(N);
649
650    // Finally, since the node is now dead, remove it from the graph.
651    DAG.DeleteNode(N);
652  }
653  return SDValue(N, 0);
654}
655
656void DAGCombiner::
657CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) {
658  // Replace all uses.  If any nodes become isomorphic to other nodes and
659  // are deleted, make sure to remove them from our worklist.
660  WorkListRemover DeadNodes(*this);
661  DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New);
662
663  // Push the new node and any (possibly new) users onto the worklist.
664  AddToWorkList(TLO.New.getNode());
665  AddUsersToWorkList(TLO.New.getNode());
666
667  // Finally, if the node is now dead, remove it from the graph.  The node
668  // may not be dead if the replacement process recursively simplified to
669  // something else needing this node.
670  if (TLO.Old.getNode()->use_empty()) {
671    removeFromWorkList(TLO.Old.getNode());
672
673    // If the operands of this node are only used by the node, they will now
674    // be dead.  Make sure to visit them first to delete dead nodes early.
675    for (unsigned i = 0, e = TLO.Old.getNode()->getNumOperands(); i != e; ++i)
676      if (TLO.Old.getNode()->getOperand(i).getNode()->hasOneUse())
677        AddToWorkList(TLO.Old.getNode()->getOperand(i).getNode());
678
679    DAG.DeleteNode(TLO.Old.getNode());
680  }
681}
682
683/// SimplifyDemandedBits - Check the specified integer node value to see if
684/// it can be simplified or if things it uses can be simplified by bit
685/// propagation.  If so, return true.
686bool DAGCombiner::SimplifyDemandedBits(SDValue Op, const APInt &Demanded) {
687  TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations);
688  APInt KnownZero, KnownOne;
689  if (!TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO))
690    return false;
691
692  // Revisit the node.
693  AddToWorkList(Op.getNode());
694
695  // Replace the old value with the new one.
696  ++NodesCombined;
697  DEBUG(dbgs() << "\nReplacing.2 ";
698        TLO.Old.getNode()->dump(&DAG);
699        dbgs() << "\nWith: ";
700        TLO.New.getNode()->dump(&DAG);
701        dbgs() << '\n');
702
703  CommitTargetLoweringOpt(TLO);
704  return true;
705}
706
707void DAGCombiner::ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad) {
708  DebugLoc dl = Load->getDebugLoc();
709  EVT VT = Load->getValueType(0);
710  SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, VT, SDValue(ExtLoad, 0));
711
712  DEBUG(dbgs() << "\nReplacing.9 ";
713        Load->dump(&DAG);
714        dbgs() << "\nWith: ";
715        Trunc.getNode()->dump(&DAG);
716        dbgs() << '\n');
717  WorkListRemover DeadNodes(*this);
718  DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), Trunc);
719  DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), SDValue(ExtLoad, 1));
720  removeFromWorkList(Load);
721  DAG.DeleteNode(Load);
722  AddToWorkList(Trunc.getNode());
723}
724
725SDValue DAGCombiner::PromoteOperand(SDValue Op, EVT PVT, bool &Replace) {
726  Replace = false;
727  DebugLoc dl = Op.getDebugLoc();
728  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
729    EVT MemVT = LD->getMemoryVT();
730    ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD)
731      ? (TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT) ? ISD::ZEXTLOAD
732                                                  : ISD::EXTLOAD)
733      : LD->getExtensionType();
734    Replace = true;
735    return DAG.getExtLoad(ExtType, dl, PVT,
736                          LD->getChain(), LD->getBasePtr(),
737                          LD->getPointerInfo(),
738                          MemVT, LD->isVolatile(),
739                          LD->isNonTemporal(), LD->getAlignment());
740  }
741
742  unsigned Opc = Op.getOpcode();
743  switch (Opc) {
744  default: break;
745  case ISD::AssertSext:
746    return DAG.getNode(ISD::AssertSext, dl, PVT,
747                       SExtPromoteOperand(Op.getOperand(0), PVT),
748                       Op.getOperand(1));
749  case ISD::AssertZext:
750    return DAG.getNode(ISD::AssertZext, dl, PVT,
751                       ZExtPromoteOperand(Op.getOperand(0), PVT),
752                       Op.getOperand(1));
753  case ISD::Constant: {
754    unsigned ExtOpc =
755      Op.getValueType().isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
756    return DAG.getNode(ExtOpc, dl, PVT, Op);
757  }
758  }
759
760  if (!TLI.isOperationLegal(ISD::ANY_EXTEND, PVT))
761    return SDValue();
762  return DAG.getNode(ISD::ANY_EXTEND, dl, PVT, Op);
763}
764
765SDValue DAGCombiner::SExtPromoteOperand(SDValue Op, EVT PVT) {
766  if (!TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, PVT))
767    return SDValue();
768  EVT OldVT = Op.getValueType();
769  DebugLoc dl = Op.getDebugLoc();
770  bool Replace = false;
771  SDValue NewOp = PromoteOperand(Op, PVT, Replace);
772  if (NewOp.getNode() == 0)
773    return SDValue();
774  AddToWorkList(NewOp.getNode());
775
776  if (Replace)
777    ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode());
778  return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NewOp.getValueType(), NewOp,
779                     DAG.getValueType(OldVT));
780}
781
782SDValue DAGCombiner::ZExtPromoteOperand(SDValue Op, EVT PVT) {
783  EVT OldVT = Op.getValueType();
784  DebugLoc dl = Op.getDebugLoc();
785  bool Replace = false;
786  SDValue NewOp = PromoteOperand(Op, PVT, Replace);
787  if (NewOp.getNode() == 0)
788    return SDValue();
789  AddToWorkList(NewOp.getNode());
790
791  if (Replace)
792    ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode());
793  return DAG.getZeroExtendInReg(NewOp, dl, OldVT);
794}
795
796/// PromoteIntBinOp - Promote the specified integer binary operation if the
797/// target indicates it is beneficial. e.g. On x86, it's usually better to
798/// promote i16 operations to i32 since i16 instructions are longer.
799SDValue DAGCombiner::PromoteIntBinOp(SDValue Op) {
800  if (!LegalOperations)
801    return SDValue();
802
803  EVT VT = Op.getValueType();
804  if (VT.isVector() || !VT.isInteger())
805    return SDValue();
806
807  // If operation type is 'undesirable', e.g. i16 on x86, consider
808  // promoting it.
809  unsigned Opc = Op.getOpcode();
810  if (TLI.isTypeDesirableForOp(Opc, VT))
811    return SDValue();
812
813  EVT PVT = VT;
814  // Consult target whether it is a good idea to promote this operation and
815  // what's the right type to promote it to.
816  if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
817    assert(PVT != VT && "Don't know what type to promote to!");
818
819    bool Replace0 = false;
820    SDValue N0 = Op.getOperand(0);
821    SDValue NN0 = PromoteOperand(N0, PVT, Replace0);
822    if (NN0.getNode() == 0)
823      return SDValue();
824
825    bool Replace1 = false;
826    SDValue N1 = Op.getOperand(1);
827    SDValue NN1;
828    if (N0 == N1)
829      NN1 = NN0;
830    else {
831      NN1 = PromoteOperand(N1, PVT, Replace1);
832      if (NN1.getNode() == 0)
833        return SDValue();
834    }
835
836    AddToWorkList(NN0.getNode());
837    if (NN1.getNode())
838      AddToWorkList(NN1.getNode());
839
840    if (Replace0)
841      ReplaceLoadWithPromotedLoad(N0.getNode(), NN0.getNode());
842    if (Replace1)
843      ReplaceLoadWithPromotedLoad(N1.getNode(), NN1.getNode());
844
845    DEBUG(dbgs() << "\nPromoting ";
846          Op.getNode()->dump(&DAG));
847    DebugLoc dl = Op.getDebugLoc();
848    return DAG.getNode(ISD::TRUNCATE, dl, VT,
849                       DAG.getNode(Opc, dl, PVT, NN0, NN1));
850  }
851  return SDValue();
852}
853
854/// PromoteIntShiftOp - Promote the specified integer shift operation if the
855/// target indicates it is beneficial. e.g. On x86, it's usually better to
856/// promote i16 operations to i32 since i16 instructions are longer.
857SDValue DAGCombiner::PromoteIntShiftOp(SDValue Op) {
858  if (!LegalOperations)
859    return SDValue();
860
861  EVT VT = Op.getValueType();
862  if (VT.isVector() || !VT.isInteger())
863    return SDValue();
864
865  // If operation type is 'undesirable', e.g. i16 on x86, consider
866  // promoting it.
867  unsigned Opc = Op.getOpcode();
868  if (TLI.isTypeDesirableForOp(Opc, VT))
869    return SDValue();
870
871  EVT PVT = VT;
872  // Consult target whether it is a good idea to promote this operation and
873  // what's the right type to promote it to.
874  if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
875    assert(PVT != VT && "Don't know what type to promote to!");
876
877    bool Replace = false;
878    SDValue N0 = Op.getOperand(0);
879    if (Opc == ISD::SRA)
880      N0 = SExtPromoteOperand(Op.getOperand(0), PVT);
881    else if (Opc == ISD::SRL)
882      N0 = ZExtPromoteOperand(Op.getOperand(0), PVT);
883    else
884      N0 = PromoteOperand(N0, PVT, Replace);
885    if (N0.getNode() == 0)
886      return SDValue();
887
888    AddToWorkList(N0.getNode());
889    if (Replace)
890      ReplaceLoadWithPromotedLoad(Op.getOperand(0).getNode(), N0.getNode());
891
892    DEBUG(dbgs() << "\nPromoting ";
893          Op.getNode()->dump(&DAG));
894    DebugLoc dl = Op.getDebugLoc();
895    return DAG.getNode(ISD::TRUNCATE, dl, VT,
896                       DAG.getNode(Opc, dl, PVT, N0, Op.getOperand(1)));
897  }
898  return SDValue();
899}
900
901SDValue DAGCombiner::PromoteExtend(SDValue Op) {
902  if (!LegalOperations)
903    return SDValue();
904
905  EVT VT = Op.getValueType();
906  if (VT.isVector() || !VT.isInteger())
907    return SDValue();
908
909  // If operation type is 'undesirable', e.g. i16 on x86, consider
910  // promoting it.
911  unsigned Opc = Op.getOpcode();
912  if (TLI.isTypeDesirableForOp(Opc, VT))
913    return SDValue();
914
915  EVT PVT = VT;
916  // Consult target whether it is a good idea to promote this operation and
917  // what's the right type to promote it to.
918  if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
919    assert(PVT != VT && "Don't know what type to promote to!");
920    // fold (aext (aext x)) -> (aext x)
921    // fold (aext (zext x)) -> (zext x)
922    // fold (aext (sext x)) -> (sext x)
923    DEBUG(dbgs() << "\nPromoting ";
924          Op.getNode()->dump(&DAG));
925    return DAG.getNode(Op.getOpcode(), Op.getDebugLoc(), VT, Op.getOperand(0));
926  }
927  return SDValue();
928}
929
930bool DAGCombiner::PromoteLoad(SDValue Op) {
931  if (!LegalOperations)
932    return false;
933
934  EVT VT = Op.getValueType();
935  if (VT.isVector() || !VT.isInteger())
936    return false;
937
938  // If operation type is 'undesirable', e.g. i16 on x86, consider
939  // promoting it.
940  unsigned Opc = Op.getOpcode();
941  if (TLI.isTypeDesirableForOp(Opc, VT))
942    return false;
943
944  EVT PVT = VT;
945  // Consult target whether it is a good idea to promote this operation and
946  // what's the right type to promote it to.
947  if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
948    assert(PVT != VT && "Don't know what type to promote to!");
949
950    DebugLoc dl = Op.getDebugLoc();
951    SDNode *N = Op.getNode();
952    LoadSDNode *LD = cast<LoadSDNode>(N);
953    EVT MemVT = LD->getMemoryVT();
954    ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD)
955      ? (TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT) ? ISD::ZEXTLOAD
956                                                  : ISD::EXTLOAD)
957      : LD->getExtensionType();
958    SDValue NewLD = DAG.getExtLoad(ExtType, dl, PVT,
959                                   LD->getChain(), LD->getBasePtr(),
960                                   LD->getPointerInfo(),
961                                   MemVT, LD->isVolatile(),
962                                   LD->isNonTemporal(), LD->getAlignment());
963    SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, VT, NewLD);
964
965    DEBUG(dbgs() << "\nPromoting ";
966          N->dump(&DAG);
967          dbgs() << "\nTo: ";
968          Result.getNode()->dump(&DAG);
969          dbgs() << '\n');
970    WorkListRemover DeadNodes(*this);
971    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
972    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), NewLD.getValue(1));
973    removeFromWorkList(N);
974    DAG.DeleteNode(N);
975    AddToWorkList(Result.getNode());
976    return true;
977  }
978  return false;
979}
980
981
982//===----------------------------------------------------------------------===//
983//  Main DAG Combiner implementation
984//===----------------------------------------------------------------------===//
985
986void DAGCombiner::Run(CombineLevel AtLevel) {
987  // set the instance variables, so that the various visit routines may use it.
988  Level = AtLevel;
989  LegalOperations = Level >= AfterLegalizeVectorOps;
990  LegalTypes = Level >= AfterLegalizeTypes;
991
992  // Add all the dag nodes to the worklist.
993  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
994       E = DAG.allnodes_end(); I != E; ++I)
995    AddToWorkList(I);
996
997  // Create a dummy node (which is not added to allnodes), that adds a reference
998  // to the root node, preventing it from being deleted, and tracking any
999  // changes of the root.
1000  HandleSDNode Dummy(DAG.getRoot());
1001
1002  // The root of the dag may dangle to deleted nodes until the dag combiner is
1003  // done.  Set it to null to avoid confusion.
1004  DAG.setRoot(SDValue());
1005
1006  // while the worklist isn't empty, find a node and
1007  // try and combine it.
1008  while (!WorkListContents.empty()) {
1009    SDNode *N;
1010    // The WorkListOrder holds the SDNodes in order, but it may contain duplicates.
1011    // In order to avoid a linear scan, we use a set (O(log N)) to hold what the
1012    // worklist *should* contain, and check the node we want to visit is should
1013    // actually be visited.
1014    do {
1015      N = WorkListOrder.pop_back_val();
1016    } while (!WorkListContents.erase(N));
1017
1018    // If N has no uses, it is dead.  Make sure to revisit all N's operands once
1019    // N is deleted from the DAG, since they too may now be dead or may have a
1020    // reduced number of uses, allowing other xforms.
1021    if (N->use_empty() && N != &Dummy) {
1022      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1023        AddToWorkList(N->getOperand(i).getNode());
1024
1025      DAG.DeleteNode(N);
1026      continue;
1027    }
1028
1029    SDValue RV = combine(N);
1030
1031    if (RV.getNode() == 0)
1032      continue;
1033
1034    ++NodesCombined;
1035
1036    // If we get back the same node we passed in, rather than a new node or
1037    // zero, we know that the node must have defined multiple values and
1038    // CombineTo was used.  Since CombineTo takes care of the worklist
1039    // mechanics for us, we have no work to do in this case.
1040    if (RV.getNode() == N)
1041      continue;
1042
1043    assert(N->getOpcode() != ISD::DELETED_NODE &&
1044           RV.getNode()->getOpcode() != ISD::DELETED_NODE &&
1045           "Node was deleted but visit returned new node!");
1046
1047    DEBUG(dbgs() << "\nReplacing.3 ";
1048          N->dump(&DAG);
1049          dbgs() << "\nWith: ";
1050          RV.getNode()->dump(&DAG);
1051          dbgs() << '\n');
1052
1053    // Transfer debug value.
1054    DAG.TransferDbgValues(SDValue(N, 0), RV);
1055    WorkListRemover DeadNodes(*this);
1056    if (N->getNumValues() == RV.getNode()->getNumValues())
1057      DAG.ReplaceAllUsesWith(N, RV.getNode());
1058    else {
1059      assert(N->getValueType(0) == RV.getValueType() &&
1060             N->getNumValues() == 1 && "Type mismatch");
1061      SDValue OpV = RV;
1062      DAG.ReplaceAllUsesWith(N, &OpV);
1063    }
1064
1065    // Push the new node and any users onto the worklist
1066    AddToWorkList(RV.getNode());
1067    AddUsersToWorkList(RV.getNode());
1068
1069    // Add any uses of the old node to the worklist in case this node is the
1070    // last one that uses them.  They may become dead after this node is
1071    // deleted.
1072    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1073      AddToWorkList(N->getOperand(i).getNode());
1074
1075    // Finally, if the node is now dead, remove it from the graph.  The node
1076    // may not be dead if the replacement process recursively simplified to
1077    // something else needing this node.
1078    if (N->use_empty()) {
1079      // Nodes can be reintroduced into the worklist.  Make sure we do not
1080      // process a node that has been replaced.
1081      removeFromWorkList(N);
1082
1083      // Finally, since the node is now dead, remove it from the graph.
1084      DAG.DeleteNode(N);
1085    }
1086  }
1087
1088  // If the root changed (e.g. it was a dead load, update the root).
1089  DAG.setRoot(Dummy.getValue());
1090  DAG.RemoveDeadNodes();
1091}
1092
1093SDValue DAGCombiner::visit(SDNode *N) {
1094  switch (N->getOpcode()) {
1095  default: break;
1096  case ISD::TokenFactor:        return visitTokenFactor(N);
1097  case ISD::MERGE_VALUES:       return visitMERGE_VALUES(N);
1098  case ISD::ADD:                return visitADD(N);
1099  case ISD::SUB:                return visitSUB(N);
1100  case ISD::ADDC:               return visitADDC(N);
1101  case ISD::SUBC:               return visitSUBC(N);
1102  case ISD::ADDE:               return visitADDE(N);
1103  case ISD::SUBE:               return visitSUBE(N);
1104  case ISD::MUL:                return visitMUL(N);
1105  case ISD::SDIV:               return visitSDIV(N);
1106  case ISD::UDIV:               return visitUDIV(N);
1107  case ISD::SREM:               return visitSREM(N);
1108  case ISD::UREM:               return visitUREM(N);
1109  case ISD::MULHU:              return visitMULHU(N);
1110  case ISD::MULHS:              return visitMULHS(N);
1111  case ISD::SMUL_LOHI:          return visitSMUL_LOHI(N);
1112  case ISD::UMUL_LOHI:          return visitUMUL_LOHI(N);
1113  case ISD::SMULO:              return visitSMULO(N);
1114  case ISD::UMULO:              return visitUMULO(N);
1115  case ISD::SDIVREM:            return visitSDIVREM(N);
1116  case ISD::UDIVREM:            return visitUDIVREM(N);
1117  case ISD::AND:                return visitAND(N);
1118  case ISD::OR:                 return visitOR(N);
1119  case ISD::XOR:                return visitXOR(N);
1120  case ISD::SHL:                return visitSHL(N);
1121  case ISD::SRA:                return visitSRA(N);
1122  case ISD::SRL:                return visitSRL(N);
1123  case ISD::CTLZ:               return visitCTLZ(N);
1124  case ISD::CTLZ_ZERO_UNDEF:    return visitCTLZ_ZERO_UNDEF(N);
1125  case ISD::CTTZ:               return visitCTTZ(N);
1126  case ISD::CTTZ_ZERO_UNDEF:    return visitCTTZ_ZERO_UNDEF(N);
1127  case ISD::CTPOP:              return visitCTPOP(N);
1128  case ISD::SELECT:             return visitSELECT(N);
1129  case ISD::SELECT_CC:          return visitSELECT_CC(N);
1130  case ISD::SETCC:              return visitSETCC(N);
1131  case ISD::SIGN_EXTEND:        return visitSIGN_EXTEND(N);
1132  case ISD::ZERO_EXTEND:        return visitZERO_EXTEND(N);
1133  case ISD::ANY_EXTEND:         return visitANY_EXTEND(N);
1134  case ISD::SIGN_EXTEND_INREG:  return visitSIGN_EXTEND_INREG(N);
1135  case ISD::TRUNCATE:           return visitTRUNCATE(N);
1136  case ISD::BITCAST:            return visitBITCAST(N);
1137  case ISD::BUILD_PAIR:         return visitBUILD_PAIR(N);
1138  case ISD::FADD:               return visitFADD(N);
1139  case ISD::FSUB:               return visitFSUB(N);
1140  case ISD::FMUL:               return visitFMUL(N);
1141  case ISD::FMA:                return visitFMA(N);
1142  case ISD::FDIV:               return visitFDIV(N);
1143  case ISD::FREM:               return visitFREM(N);
1144  case ISD::FCOPYSIGN:          return visitFCOPYSIGN(N);
1145  case ISD::SINT_TO_FP:         return visitSINT_TO_FP(N);
1146  case ISD::UINT_TO_FP:         return visitUINT_TO_FP(N);
1147  case ISD::FP_TO_SINT:         return visitFP_TO_SINT(N);
1148  case ISD::FP_TO_UINT:         return visitFP_TO_UINT(N);
1149  case ISD::FP_ROUND:           return visitFP_ROUND(N);
1150  case ISD::FP_ROUND_INREG:     return visitFP_ROUND_INREG(N);
1151  case ISD::FP_EXTEND:          return visitFP_EXTEND(N);
1152  case ISD::FNEG:               return visitFNEG(N);
1153  case ISD::FABS:               return visitFABS(N);
1154  case ISD::FFLOOR:             return visitFFLOOR(N);
1155  case ISD::FCEIL:              return visitFCEIL(N);
1156  case ISD::FTRUNC:             return visitFTRUNC(N);
1157  case ISD::BRCOND:             return visitBRCOND(N);
1158  case ISD::BR_CC:              return visitBR_CC(N);
1159  case ISD::LOAD:               return visitLOAD(N);
1160  case ISD::STORE:              return visitSTORE(N);
1161  case ISD::INSERT_VECTOR_ELT:  return visitINSERT_VECTOR_ELT(N);
1162  case ISD::EXTRACT_VECTOR_ELT: return visitEXTRACT_VECTOR_ELT(N);
1163  case ISD::BUILD_VECTOR:       return visitBUILD_VECTOR(N);
1164  case ISD::CONCAT_VECTORS:     return visitCONCAT_VECTORS(N);
1165  case ISD::EXTRACT_SUBVECTOR:  return visitEXTRACT_SUBVECTOR(N);
1166  case ISD::VECTOR_SHUFFLE:     return visitVECTOR_SHUFFLE(N);
1167  case ISD::MEMBARRIER:         return visitMEMBARRIER(N);
1168  }
1169  return SDValue();
1170}
1171
1172SDValue DAGCombiner::combine(SDNode *N) {
1173  SDValue RV = visit(N);
1174
1175  // If nothing happened, try a target-specific DAG combine.
1176  if (RV.getNode() == 0) {
1177    assert(N->getOpcode() != ISD::DELETED_NODE &&
1178           "Node was deleted but visit returned NULL!");
1179
1180    if (N->getOpcode() >= ISD::BUILTIN_OP_END ||
1181        TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) {
1182
1183      // Expose the DAG combiner to the target combiner impls.
1184      TargetLowering::DAGCombinerInfo
1185        DagCombineInfo(DAG, !LegalTypes, !LegalOperations, false, this);
1186
1187      RV = TLI.PerformDAGCombine(N, DagCombineInfo);
1188    }
1189  }
1190
1191  // If nothing happened still, try promoting the operation.
1192  if (RV.getNode() == 0) {
1193    switch (N->getOpcode()) {
1194    default: break;
1195    case ISD::ADD:
1196    case ISD::SUB:
1197    case ISD::MUL:
1198    case ISD::AND:
1199    case ISD::OR:
1200    case ISD::XOR:
1201      RV = PromoteIntBinOp(SDValue(N, 0));
1202      break;
1203    case ISD::SHL:
1204    case ISD::SRA:
1205    case ISD::SRL:
1206      RV = PromoteIntShiftOp(SDValue(N, 0));
1207      break;
1208    case ISD::SIGN_EXTEND:
1209    case ISD::ZERO_EXTEND:
1210    case ISD::ANY_EXTEND:
1211      RV = PromoteExtend(SDValue(N, 0));
1212      break;
1213    case ISD::LOAD:
1214      if (PromoteLoad(SDValue(N, 0)))
1215        RV = SDValue(N, 0);
1216      break;
1217    }
1218  }
1219
1220  // If N is a commutative binary node, try commuting it to enable more
1221  // sdisel CSE.
1222  if (RV.getNode() == 0 &&
1223      SelectionDAG::isCommutativeBinOp(N->getOpcode()) &&
1224      N->getNumValues() == 1) {
1225    SDValue N0 = N->getOperand(0);
1226    SDValue N1 = N->getOperand(1);
1227
1228    // Constant operands are canonicalized to RHS.
1229    if (isa<ConstantSDNode>(N0) || !isa<ConstantSDNode>(N1)) {
1230      SDValue Ops[] = { N1, N0 };
1231      SDNode *CSENode = DAG.getNodeIfExists(N->getOpcode(), N->getVTList(),
1232                                            Ops, 2);
1233      if (CSENode)
1234        return SDValue(CSENode, 0);
1235    }
1236  }
1237
1238  return RV;
1239}
1240
1241/// getInputChainForNode - Given a node, return its input chain if it has one,
1242/// otherwise return a null sd operand.
1243static SDValue getInputChainForNode(SDNode *N) {
1244  if (unsigned NumOps = N->getNumOperands()) {
1245    if (N->getOperand(0).getValueType() == MVT::Other)
1246      return N->getOperand(0);
1247    else if (N->getOperand(NumOps-1).getValueType() == MVT::Other)
1248      return N->getOperand(NumOps-1);
1249    for (unsigned i = 1; i < NumOps-1; ++i)
1250      if (N->getOperand(i).getValueType() == MVT::Other)
1251        return N->getOperand(i);
1252  }
1253  return SDValue();
1254}
1255
1256SDValue DAGCombiner::visitTokenFactor(SDNode *N) {
1257  // If N has two operands, where one has an input chain equal to the other,
1258  // the 'other' chain is redundant.
1259  if (N->getNumOperands() == 2) {
1260    if (getInputChainForNode(N->getOperand(0).getNode()) == N->getOperand(1))
1261      return N->getOperand(0);
1262    if (getInputChainForNode(N->getOperand(1).getNode()) == N->getOperand(0))
1263      return N->getOperand(1);
1264  }
1265
1266  SmallVector<SDNode *, 8> TFs;     // List of token factors to visit.
1267  SmallVector<SDValue, 8> Ops;    // Ops for replacing token factor.
1268  SmallPtrSet<SDNode*, 16> SeenOps;
1269  bool Changed = false;             // If we should replace this token factor.
1270
1271  // Start out with this token factor.
1272  TFs.push_back(N);
1273
1274  // Iterate through token factors.  The TFs grows when new token factors are
1275  // encountered.
1276  for (unsigned i = 0; i < TFs.size(); ++i) {
1277    SDNode *TF = TFs[i];
1278
1279    // Check each of the operands.
1280    for (unsigned i = 0, ie = TF->getNumOperands(); i != ie; ++i) {
1281      SDValue Op = TF->getOperand(i);
1282
1283      switch (Op.getOpcode()) {
1284      case ISD::EntryToken:
1285        // Entry tokens don't need to be added to the list. They are
1286        // rededundant.
1287        Changed = true;
1288        break;
1289
1290      case ISD::TokenFactor:
1291        if (Op.hasOneUse() &&
1292            std::find(TFs.begin(), TFs.end(), Op.getNode()) == TFs.end()) {
1293          // Queue up for processing.
1294          TFs.push_back(Op.getNode());
1295          // Clean up in case the token factor is removed.
1296          AddToWorkList(Op.getNode());
1297          Changed = true;
1298          break;
1299        }
1300        // Fall thru
1301
1302      default:
1303        // Only add if it isn't already in the list.
1304        if (SeenOps.insert(Op.getNode()))
1305          Ops.push_back(Op);
1306        else
1307          Changed = true;
1308        break;
1309      }
1310    }
1311  }
1312
1313  SDValue Result;
1314
1315  // If we've change things around then replace token factor.
1316  if (Changed) {
1317    if (Ops.empty()) {
1318      // The entry token is the only possible outcome.
1319      Result = DAG.getEntryNode();
1320    } else {
1321      // New and improved token factor.
1322      Result = DAG.getNode(ISD::TokenFactor, N->getDebugLoc(),
1323                           MVT::Other, &Ops[0], Ops.size());
1324    }
1325
1326    // Don't add users to work list.
1327    return CombineTo(N, Result, false);
1328  }
1329
1330  return Result;
1331}
1332
1333/// MERGE_VALUES can always be eliminated.
1334SDValue DAGCombiner::visitMERGE_VALUES(SDNode *N) {
1335  WorkListRemover DeadNodes(*this);
1336  // Replacing results may cause a different MERGE_VALUES to suddenly
1337  // be CSE'd with N, and carry its uses with it. Iterate until no
1338  // uses remain, to ensure that the node can be safely deleted.
1339  // First add the users of this node to the work list so that they
1340  // can be tried again once they have new operands.
1341  AddUsersToWorkList(N);
1342  do {
1343    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1344      DAG.ReplaceAllUsesOfValueWith(SDValue(N, i), N->getOperand(i));
1345  } while (!N->use_empty());
1346  removeFromWorkList(N);
1347  DAG.DeleteNode(N);
1348  return SDValue(N, 0);   // Return N so it doesn't get rechecked!
1349}
1350
1351static
1352SDValue combineShlAddConstant(DebugLoc DL, SDValue N0, SDValue N1,
1353                              SelectionDAG &DAG) {
1354  EVT VT = N0.getValueType();
1355  SDValue N00 = N0.getOperand(0);
1356  SDValue N01 = N0.getOperand(1);
1357  ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N01);
1358
1359  if (N01C && N00.getOpcode() == ISD::ADD && N00.getNode()->hasOneUse() &&
1360      isa<ConstantSDNode>(N00.getOperand(1))) {
1361    // fold (add (shl (add x, c1), c2), ) -> (add (add (shl x, c2), c1<<c2), )
1362    N0 = DAG.getNode(ISD::ADD, N0.getDebugLoc(), VT,
1363                     DAG.getNode(ISD::SHL, N00.getDebugLoc(), VT,
1364                                 N00.getOperand(0), N01),
1365                     DAG.getNode(ISD::SHL, N01.getDebugLoc(), VT,
1366                                 N00.getOperand(1), N01));
1367    return DAG.getNode(ISD::ADD, DL, VT, N0, N1);
1368  }
1369
1370  return SDValue();
1371}
1372
1373SDValue DAGCombiner::visitADD(SDNode *N) {
1374  SDValue N0 = N->getOperand(0);
1375  SDValue N1 = N->getOperand(1);
1376  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1377  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1378  EVT VT = N0.getValueType();
1379
1380  // fold vector ops
1381  if (VT.isVector()) {
1382    SDValue FoldedVOp = SimplifyVBinOp(N);
1383    if (FoldedVOp.getNode()) return FoldedVOp;
1384
1385    // fold (add x, 0) -> x, vector edition
1386    if (ISD::isBuildVectorAllZeros(N1.getNode()))
1387      return N0;
1388    if (ISD::isBuildVectorAllZeros(N0.getNode()))
1389      return N1;
1390  }
1391
1392  // fold (add x, undef) -> undef
1393  if (N0.getOpcode() == ISD::UNDEF)
1394    return N0;
1395  if (N1.getOpcode() == ISD::UNDEF)
1396    return N1;
1397  // fold (add c1, c2) -> c1+c2
1398  if (N0C && N1C)
1399    return DAG.FoldConstantArithmetic(ISD::ADD, VT, N0C, N1C);
1400  // canonicalize constant to RHS
1401  if (N0C && !N1C)
1402    return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N1, N0);
1403  // fold (add x, 0) -> x
1404  if (N1C && N1C->isNullValue())
1405    return N0;
1406  // fold (add Sym, c) -> Sym+c
1407  if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0))
1408    if (!LegalOperations && TLI.isOffsetFoldingLegal(GA) && N1C &&
1409        GA->getOpcode() == ISD::GlobalAddress)
1410      return DAG.getGlobalAddress(GA->getGlobal(), N1C->getDebugLoc(), VT,
1411                                  GA->getOffset() +
1412                                    (uint64_t)N1C->getSExtValue());
1413  // fold ((c1-A)+c2) -> (c1+c2)-A
1414  if (N1C && N0.getOpcode() == ISD::SUB)
1415    if (ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getOperand(0)))
1416      return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
1417                         DAG.getConstant(N1C->getAPIntValue()+
1418                                         N0C->getAPIntValue(), VT),
1419                         N0.getOperand(1));
1420  // reassociate add
1421  SDValue RADD = ReassociateOps(ISD::ADD, N->getDebugLoc(), N0, N1);
1422  if (RADD.getNode() != 0)
1423    return RADD;
1424  // fold ((0-A) + B) -> B-A
1425  if (N0.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N0.getOperand(0)) &&
1426      cast<ConstantSDNode>(N0.getOperand(0))->isNullValue())
1427    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N1, N0.getOperand(1));
1428  // fold (A + (0-B)) -> A-B
1429  if (N1.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N1.getOperand(0)) &&
1430      cast<ConstantSDNode>(N1.getOperand(0))->isNullValue())
1431    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N0, N1.getOperand(1));
1432  // fold (A+(B-A)) -> B
1433  if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1))
1434    return N1.getOperand(0);
1435  // fold ((B-A)+A) -> B
1436  if (N0.getOpcode() == ISD::SUB && N1 == N0.getOperand(1))
1437    return N0.getOperand(0);
1438  // fold (A+(B-(A+C))) to (B-C)
1439  if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD &&
1440      N0 == N1.getOperand(1).getOperand(0))
1441    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N1.getOperand(0),
1442                       N1.getOperand(1).getOperand(1));
1443  // fold (A+(B-(C+A))) to (B-C)
1444  if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD &&
1445      N0 == N1.getOperand(1).getOperand(1))
1446    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N1.getOperand(0),
1447                       N1.getOperand(1).getOperand(0));
1448  // fold (A+((B-A)+or-C)) to (B+or-C)
1449  if ((N1.getOpcode() == ISD::SUB || N1.getOpcode() == ISD::ADD) &&
1450      N1.getOperand(0).getOpcode() == ISD::SUB &&
1451      N0 == N1.getOperand(0).getOperand(1))
1452    return DAG.getNode(N1.getOpcode(), N->getDebugLoc(), VT,
1453                       N1.getOperand(0).getOperand(0), N1.getOperand(1));
1454
1455  // fold (A-B)+(C-D) to (A+C)-(B+D) when A or C is constant
1456  if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB) {
1457    SDValue N00 = N0.getOperand(0);
1458    SDValue N01 = N0.getOperand(1);
1459    SDValue N10 = N1.getOperand(0);
1460    SDValue N11 = N1.getOperand(1);
1461
1462    if (isa<ConstantSDNode>(N00) || isa<ConstantSDNode>(N10))
1463      return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
1464                         DAG.getNode(ISD::ADD, N0.getDebugLoc(), VT, N00, N10),
1465                         DAG.getNode(ISD::ADD, N1.getDebugLoc(), VT, N01, N11));
1466  }
1467
1468  if (!VT.isVector() && SimplifyDemandedBits(SDValue(N, 0)))
1469    return SDValue(N, 0);
1470
1471  // fold (a+b) -> (a|b) iff a and b share no bits.
1472  if (VT.isInteger() && !VT.isVector()) {
1473    APInt LHSZero, LHSOne;
1474    APInt RHSZero, RHSOne;
1475    DAG.ComputeMaskedBits(N0, LHSZero, LHSOne);
1476
1477    if (LHSZero.getBoolValue()) {
1478      DAG.ComputeMaskedBits(N1, RHSZero, RHSOne);
1479
1480      // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
1481      // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
1482      if ((RHSZero & ~LHSZero) == ~LHSZero || (LHSZero & ~RHSZero) == ~RHSZero)
1483        return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, N0, N1);
1484    }
1485  }
1486
1487  // fold (add (shl (add x, c1), c2), ) -> (add (add (shl x, c2), c1<<c2), )
1488  if (N0.getOpcode() == ISD::SHL && N0.getNode()->hasOneUse()) {
1489    SDValue Result = combineShlAddConstant(N->getDebugLoc(), N0, N1, DAG);
1490    if (Result.getNode()) return Result;
1491  }
1492  if (N1.getOpcode() == ISD::SHL && N1.getNode()->hasOneUse()) {
1493    SDValue Result = combineShlAddConstant(N->getDebugLoc(), N1, N0, DAG);
1494    if (Result.getNode()) return Result;
1495  }
1496
1497  // fold (add x, shl(0 - y, n)) -> sub(x, shl(y, n))
1498  if (N1.getOpcode() == ISD::SHL &&
1499      N1.getOperand(0).getOpcode() == ISD::SUB)
1500    if (ConstantSDNode *C =
1501          dyn_cast<ConstantSDNode>(N1.getOperand(0).getOperand(0)))
1502      if (C->getAPIntValue() == 0)
1503        return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N0,
1504                           DAG.getNode(ISD::SHL, N->getDebugLoc(), VT,
1505                                       N1.getOperand(0).getOperand(1),
1506                                       N1.getOperand(1)));
1507  if (N0.getOpcode() == ISD::SHL &&
1508      N0.getOperand(0).getOpcode() == ISD::SUB)
1509    if (ConstantSDNode *C =
1510          dyn_cast<ConstantSDNode>(N0.getOperand(0).getOperand(0)))
1511      if (C->getAPIntValue() == 0)
1512        return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N1,
1513                           DAG.getNode(ISD::SHL, N->getDebugLoc(), VT,
1514                                       N0.getOperand(0).getOperand(1),
1515                                       N0.getOperand(1)));
1516
1517  if (N1.getOpcode() == ISD::AND) {
1518    SDValue AndOp0 = N1.getOperand(0);
1519    ConstantSDNode *AndOp1 = dyn_cast<ConstantSDNode>(N1->getOperand(1));
1520    unsigned NumSignBits = DAG.ComputeNumSignBits(AndOp0);
1521    unsigned DestBits = VT.getScalarType().getSizeInBits();
1522
1523    // (add z, (and (sbbl x, x), 1)) -> (sub z, (sbbl x, x))
1524    // and similar xforms where the inner op is either ~0 or 0.
1525    if (NumSignBits == DestBits && AndOp1 && AndOp1->isOne()) {
1526      DebugLoc DL = N->getDebugLoc();
1527      return DAG.getNode(ISD::SUB, DL, VT, N->getOperand(0), AndOp0);
1528    }
1529  }
1530
1531  // add (sext i1), X -> sub X, (zext i1)
1532  if (N0.getOpcode() == ISD::SIGN_EXTEND &&
1533      N0.getOperand(0).getValueType() == MVT::i1 &&
1534      !TLI.isOperationLegal(ISD::SIGN_EXTEND, MVT::i1)) {
1535    DebugLoc DL = N->getDebugLoc();
1536    SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0));
1537    return DAG.getNode(ISD::SUB, DL, VT, N1, ZExt);
1538  }
1539
1540  return SDValue();
1541}
1542
1543SDValue DAGCombiner::visitADDC(SDNode *N) {
1544  SDValue N0 = N->getOperand(0);
1545  SDValue N1 = N->getOperand(1);
1546  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1547  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1548  EVT VT = N0.getValueType();
1549
1550  // If the flag result is dead, turn this into an ADD.
1551  if (!N->hasAnyUseOfValue(1))
1552    return CombineTo(N, DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0, N1),
1553                     DAG.getNode(ISD::CARRY_FALSE,
1554                                 N->getDebugLoc(), MVT::Glue));
1555
1556  // canonicalize constant to RHS.
1557  if (N0C && !N1C)
1558    return DAG.getNode(ISD::ADDC, N->getDebugLoc(), N->getVTList(), N1, N0);
1559
1560  // fold (addc x, 0) -> x + no carry out
1561  if (N1C && N1C->isNullValue())
1562    return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE,
1563                                        N->getDebugLoc(), MVT::Glue));
1564
1565  // fold (addc a, b) -> (or a, b), CARRY_FALSE iff a and b share no bits.
1566  APInt LHSZero, LHSOne;
1567  APInt RHSZero, RHSOne;
1568  DAG.ComputeMaskedBits(N0, LHSZero, LHSOne);
1569
1570  if (LHSZero.getBoolValue()) {
1571    DAG.ComputeMaskedBits(N1, RHSZero, RHSOne);
1572
1573    // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
1574    // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
1575    if ((RHSZero & ~LHSZero) == ~LHSZero || (LHSZero & ~RHSZero) == ~RHSZero)
1576      return CombineTo(N, DAG.getNode(ISD::OR, N->getDebugLoc(), VT, N0, N1),
1577                       DAG.getNode(ISD::CARRY_FALSE,
1578                                   N->getDebugLoc(), MVT::Glue));
1579  }
1580
1581  return SDValue();
1582}
1583
1584SDValue DAGCombiner::visitADDE(SDNode *N) {
1585  SDValue N0 = N->getOperand(0);
1586  SDValue N1 = N->getOperand(1);
1587  SDValue CarryIn = N->getOperand(2);
1588  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1589  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1590
1591  // canonicalize constant to RHS
1592  if (N0C && !N1C)
1593    return DAG.getNode(ISD::ADDE, N->getDebugLoc(), N->getVTList(),
1594                       N1, N0, CarryIn);
1595
1596  // fold (adde x, y, false) -> (addc x, y)
1597  if (CarryIn.getOpcode() == ISD::CARRY_FALSE)
1598    return DAG.getNode(ISD::ADDC, N->getDebugLoc(), N->getVTList(), N0, N1);
1599
1600  return SDValue();
1601}
1602
1603// Since it may not be valid to emit a fold to zero for vector initializers
1604// check if we can before folding.
1605static SDValue tryFoldToZero(DebugLoc DL, const TargetLowering &TLI, EVT VT,
1606                             SelectionDAG &DAG, bool LegalOperations) {
1607  if (!VT.isVector()) {
1608    return DAG.getConstant(0, VT);
1609  }
1610  if (!LegalOperations || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) {
1611    // Produce a vector of zeros.
1612    SDValue El = DAG.getConstant(0, VT.getVectorElementType());
1613    std::vector<SDValue> Ops(VT.getVectorNumElements(), El);
1614    return DAG.getNode(ISD::BUILD_VECTOR, DL, VT,
1615      &Ops[0], Ops.size());
1616  }
1617  return SDValue();
1618}
1619
1620SDValue DAGCombiner::visitSUB(SDNode *N) {
1621  SDValue N0 = N->getOperand(0);
1622  SDValue N1 = N->getOperand(1);
1623  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getNode());
1624  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
1625  ConstantSDNode *N1C1 = N1.getOpcode() != ISD::ADD ? 0 :
1626    dyn_cast<ConstantSDNode>(N1.getOperand(1).getNode());
1627  EVT VT = N0.getValueType();
1628
1629  // fold vector ops
1630  if (VT.isVector()) {
1631    SDValue FoldedVOp = SimplifyVBinOp(N);
1632    if (FoldedVOp.getNode()) return FoldedVOp;
1633
1634    // fold (sub x, 0) -> x, vector edition
1635    if (ISD::isBuildVectorAllZeros(N1.getNode()))
1636      return N0;
1637  }
1638
1639  // fold (sub x, x) -> 0
1640  // FIXME: Refactor this and xor and other similar operations together.
1641  if (N0 == N1)
1642    return tryFoldToZero(N->getDebugLoc(), TLI, VT, DAG, LegalOperations);
1643  // fold (sub c1, c2) -> c1-c2
1644  if (N0C && N1C)
1645    return DAG.FoldConstantArithmetic(ISD::SUB, VT, N0C, N1C);
1646  // fold (sub x, c) -> (add x, -c)
1647  if (N1C)
1648    return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0,
1649                       DAG.getConstant(-N1C->getAPIntValue(), VT));
1650  // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1)
1651  if (N0C && N0C->isAllOnesValue())
1652    return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT, N1, N0);
1653  // fold A-(A-B) -> B
1654  if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(0))
1655    return N1.getOperand(1);
1656  // fold (A+B)-A -> B
1657  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1)
1658    return N0.getOperand(1);
1659  // fold (A+B)-B -> A
1660  if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1)
1661    return N0.getOperand(0);
1662  // fold C2-(A+C1) -> (C2-C1)-A
1663  if (N1.getOpcode() == ISD::ADD && N0C && N1C1) {
1664    SDValue NewC = DAG.getConstant(N0C->getAPIntValue() - N1C1->getAPIntValue(),
1665                                   VT);
1666    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, NewC,
1667                       N1.getOperand(0));
1668  }
1669  // fold ((A+(B+or-C))-B) -> A+or-C
1670  if (N0.getOpcode() == ISD::ADD &&
1671      (N0.getOperand(1).getOpcode() == ISD::SUB ||
1672       N0.getOperand(1).getOpcode() == ISD::ADD) &&
1673      N0.getOperand(1).getOperand(0) == N1)
1674    return DAG.getNode(N0.getOperand(1).getOpcode(), N->getDebugLoc(), VT,
1675                       N0.getOperand(0), N0.getOperand(1).getOperand(1));
1676  // fold ((A+(C+B))-B) -> A+C
1677  if (N0.getOpcode() == ISD::ADD &&
1678      N0.getOperand(1).getOpcode() == ISD::ADD &&
1679      N0.getOperand(1).getOperand(1) == N1)
1680    return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT,
1681                       N0.getOperand(0), N0.getOperand(1).getOperand(0));
1682  // fold ((A-(B-C))-C) -> A-B
1683  if (N0.getOpcode() == ISD::SUB &&
1684      N0.getOperand(1).getOpcode() == ISD::SUB &&
1685      N0.getOperand(1).getOperand(1) == N1)
1686    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
1687                       N0.getOperand(0), N0.getOperand(1).getOperand(0));
1688
1689  // If either operand of a sub is undef, the result is undef
1690  if (N0.getOpcode() == ISD::UNDEF)
1691    return N0;
1692  if (N1.getOpcode() == ISD::UNDEF)
1693    return N1;
1694
1695  // If the relocation model supports it, consider symbol offsets.
1696  if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0))
1697    if (!LegalOperations && TLI.isOffsetFoldingLegal(GA)) {
1698      // fold (sub Sym, c) -> Sym-c
1699      if (N1C && GA->getOpcode() == ISD::GlobalAddress)
1700        return DAG.getGlobalAddress(GA->getGlobal(), N1C->getDebugLoc(), VT,
1701                                    GA->getOffset() -
1702                                      (uint64_t)N1C->getSExtValue());
1703      // fold (sub Sym+c1, Sym+c2) -> c1-c2
1704      if (GlobalAddressSDNode *GB = dyn_cast<GlobalAddressSDNode>(N1))
1705        if (GA->getGlobal() == GB->getGlobal())
1706          return DAG.getConstant((uint64_t)GA->getOffset() - GB->getOffset(),
1707                                 VT);
1708    }
1709
1710  return SDValue();
1711}
1712
1713SDValue DAGCombiner::visitSUBC(SDNode *N) {
1714  SDValue N0 = N->getOperand(0);
1715  SDValue N1 = N->getOperand(1);
1716  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1717  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1718  EVT VT = N0.getValueType();
1719
1720  // If the flag result is dead, turn this into an SUB.
1721  if (!N->hasAnyUseOfValue(1))
1722    return CombineTo(N, DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N0, N1),
1723                     DAG.getNode(ISD::CARRY_FALSE, N->getDebugLoc(),
1724                                 MVT::Glue));
1725
1726  // fold (subc x, x) -> 0 + no borrow
1727  if (N0 == N1)
1728    return CombineTo(N, DAG.getConstant(0, VT),
1729                     DAG.getNode(ISD::CARRY_FALSE, N->getDebugLoc(),
1730                                 MVT::Glue));
1731
1732  // fold (subc x, 0) -> x + no borrow
1733  if (N1C && N1C->isNullValue())
1734    return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, N->getDebugLoc(),
1735                                        MVT::Glue));
1736
1737  // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) + no borrow
1738  if (N0C && N0C->isAllOnesValue())
1739    return CombineTo(N, DAG.getNode(ISD::XOR, N->getDebugLoc(), VT, N1, N0),
1740                     DAG.getNode(ISD::CARRY_FALSE, N->getDebugLoc(),
1741                                 MVT::Glue));
1742
1743  return SDValue();
1744}
1745
1746SDValue DAGCombiner::visitSUBE(SDNode *N) {
1747  SDValue N0 = N->getOperand(0);
1748  SDValue N1 = N->getOperand(1);
1749  SDValue CarryIn = N->getOperand(2);
1750
1751  // fold (sube x, y, false) -> (subc x, y)
1752  if (CarryIn.getOpcode() == ISD::CARRY_FALSE)
1753    return DAG.getNode(ISD::SUBC, N->getDebugLoc(), N->getVTList(), N0, N1);
1754
1755  return SDValue();
1756}
1757
1758SDValue DAGCombiner::visitMUL(SDNode *N) {
1759  SDValue N0 = N->getOperand(0);
1760  SDValue N1 = N->getOperand(1);
1761  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1762  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1763  EVT VT = N0.getValueType();
1764
1765  // fold vector ops
1766  if (VT.isVector()) {
1767    SDValue FoldedVOp = SimplifyVBinOp(N);
1768    if (FoldedVOp.getNode()) return FoldedVOp;
1769  }
1770
1771  // fold (mul x, undef) -> 0
1772  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1773    return DAG.getConstant(0, VT);
1774  // fold (mul c1, c2) -> c1*c2
1775  if (N0C && N1C)
1776    return DAG.FoldConstantArithmetic(ISD::MUL, VT, N0C, N1C);
1777  // canonicalize constant to RHS
1778  if (N0C && !N1C)
1779    return DAG.getNode(ISD::MUL, N->getDebugLoc(), VT, N1, N0);
1780  // fold (mul x, 0) -> 0
1781  if (N1C && N1C->isNullValue())
1782    return N1;
1783  // fold (mul x, -1) -> 0-x
1784  if (N1C && N1C->isAllOnesValue())
1785    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
1786                       DAG.getConstant(0, VT), N0);
1787  // fold (mul x, (1 << c)) -> x << c
1788  if (N1C && N1C->getAPIntValue().isPowerOf2())
1789    return DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, N0,
1790                       DAG.getConstant(N1C->getAPIntValue().logBase2(),
1791                                       getShiftAmountTy(N0.getValueType())));
1792  // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c
1793  if (N1C && (-N1C->getAPIntValue()).isPowerOf2()) {
1794    unsigned Log2Val = (-N1C->getAPIntValue()).logBase2();
1795    // FIXME: If the input is something that is easily negated (e.g. a
1796    // single-use add), we should put the negate there.
1797    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
1798                       DAG.getConstant(0, VT),
1799                       DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, N0,
1800                            DAG.getConstant(Log2Val,
1801                                      getShiftAmountTy(N0.getValueType()))));
1802  }
1803  // (mul (shl X, c1), c2) -> (mul X, c2 << c1)
1804  if (N1C && N0.getOpcode() == ISD::SHL &&
1805      isa<ConstantSDNode>(N0.getOperand(1))) {
1806    SDValue C3 = DAG.getNode(ISD::SHL, N->getDebugLoc(), VT,
1807                             N1, N0.getOperand(1));
1808    AddToWorkList(C3.getNode());
1809    return DAG.getNode(ISD::MUL, N->getDebugLoc(), VT,
1810                       N0.getOperand(0), C3);
1811  }
1812
1813  // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one
1814  // use.
1815  {
1816    SDValue Sh(0,0), Y(0,0);
1817    // Check for both (mul (shl X, C), Y)  and  (mul Y, (shl X, C)).
1818    if (N0.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N0.getOperand(1)) &&
1819        N0.getNode()->hasOneUse()) {
1820      Sh = N0; Y = N1;
1821    } else if (N1.getOpcode() == ISD::SHL &&
1822               isa<ConstantSDNode>(N1.getOperand(1)) &&
1823               N1.getNode()->hasOneUse()) {
1824      Sh = N1; Y = N0;
1825    }
1826
1827    if (Sh.getNode()) {
1828      SDValue Mul = DAG.getNode(ISD::MUL, N->getDebugLoc(), VT,
1829                                Sh.getOperand(0), Y);
1830      return DAG.getNode(ISD::SHL, N->getDebugLoc(), VT,
1831                         Mul, Sh.getOperand(1));
1832    }
1833  }
1834
1835  // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2)
1836  if (N1C && N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse() &&
1837      isa<ConstantSDNode>(N0.getOperand(1)))
1838    return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT,
1839                       DAG.getNode(ISD::MUL, N0.getDebugLoc(), VT,
1840                                   N0.getOperand(0), N1),
1841                       DAG.getNode(ISD::MUL, N1.getDebugLoc(), VT,
1842                                   N0.getOperand(1), N1));
1843
1844  // reassociate mul
1845  SDValue RMUL = ReassociateOps(ISD::MUL, N->getDebugLoc(), N0, N1);
1846  if (RMUL.getNode() != 0)
1847    return RMUL;
1848
1849  return SDValue();
1850}
1851
1852SDValue DAGCombiner::visitSDIV(SDNode *N) {
1853  SDValue N0 = N->getOperand(0);
1854  SDValue N1 = N->getOperand(1);
1855  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getNode());
1856  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
1857  EVT VT = N->getValueType(0);
1858
1859  // fold vector ops
1860  if (VT.isVector()) {
1861    SDValue FoldedVOp = SimplifyVBinOp(N);
1862    if (FoldedVOp.getNode()) return FoldedVOp;
1863  }
1864
1865  // fold (sdiv c1, c2) -> c1/c2
1866  if (N0C && N1C && !N1C->isNullValue())
1867    return DAG.FoldConstantArithmetic(ISD::SDIV, VT, N0C, N1C);
1868  // fold (sdiv X, 1) -> X
1869  if (N1C && N1C->getAPIntValue() == 1LL)
1870    return N0;
1871  // fold (sdiv X, -1) -> 0-X
1872  if (N1C && N1C->isAllOnesValue())
1873    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
1874                       DAG.getConstant(0, VT), N0);
1875  // If we know the sign bits of both operands are zero, strength reduce to a
1876  // udiv instead.  Handles (X&15) /s 4 -> X&15 >> 2
1877  if (!VT.isVector()) {
1878    if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
1879      return DAG.getNode(ISD::UDIV, N->getDebugLoc(), N1.getValueType(),
1880                         N0, N1);
1881  }
1882  // fold (sdiv X, pow2) -> simple ops after legalize
1883  if (N1C && !N1C->isNullValue() &&
1884      (N1C->getAPIntValue().isPowerOf2() ||
1885       (-N1C->getAPIntValue()).isPowerOf2())) {
1886    // If dividing by powers of two is cheap, then don't perform the following
1887    // fold.
1888    if (TLI.isPow2DivCheap())
1889      return SDValue();
1890
1891    unsigned lg2 = N1C->getAPIntValue().countTrailingZeros();
1892
1893    // Splat the sign bit into the register
1894    SDValue SGN = DAG.getNode(ISD::SRA, N->getDebugLoc(), VT, N0,
1895                              DAG.getConstant(VT.getSizeInBits()-1,
1896                                       getShiftAmountTy(N0.getValueType())));
1897    AddToWorkList(SGN.getNode());
1898
1899    // Add (N0 < 0) ? abs2 - 1 : 0;
1900    SDValue SRL = DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, SGN,
1901                              DAG.getConstant(VT.getSizeInBits() - lg2,
1902                                       getShiftAmountTy(SGN.getValueType())));
1903    SDValue ADD = DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0, SRL);
1904    AddToWorkList(SRL.getNode());
1905    AddToWorkList(ADD.getNode());    // Divide by pow2
1906    SDValue SRA = DAG.getNode(ISD::SRA, N->getDebugLoc(), VT, ADD,
1907                  DAG.getConstant(lg2, getShiftAmountTy(ADD.getValueType())));
1908
1909    // If we're dividing by a positive value, we're done.  Otherwise, we must
1910    // negate the result.
1911    if (N1C->getAPIntValue().isNonNegative())
1912      return SRA;
1913
1914    AddToWorkList(SRA.getNode());
1915    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
1916                       DAG.getConstant(0, VT), SRA);
1917  }
1918
1919  // if integer divide is expensive and we satisfy the requirements, emit an
1920  // alternate sequence.
1921  if (N1C && !N1C->isNullValue() && !TLI.isIntDivCheap()) {
1922    SDValue Op = BuildSDIV(N);
1923    if (Op.getNode()) return Op;
1924  }
1925
1926  // undef / X -> 0
1927  if (N0.getOpcode() == ISD::UNDEF)
1928    return DAG.getConstant(0, VT);
1929  // X / undef -> undef
1930  if (N1.getOpcode() == ISD::UNDEF)
1931    return N1;
1932
1933  return SDValue();
1934}
1935
1936SDValue DAGCombiner::visitUDIV(SDNode *N) {
1937  SDValue N0 = N->getOperand(0);
1938  SDValue N1 = N->getOperand(1);
1939  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getNode());
1940  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
1941  EVT VT = N->getValueType(0);
1942
1943  // fold vector ops
1944  if (VT.isVector()) {
1945    SDValue FoldedVOp = SimplifyVBinOp(N);
1946    if (FoldedVOp.getNode()) return FoldedVOp;
1947  }
1948
1949  // fold (udiv c1, c2) -> c1/c2
1950  if (N0C && N1C && !N1C->isNullValue())
1951    return DAG.FoldConstantArithmetic(ISD::UDIV, VT, N0C, N1C);
1952  // fold (udiv x, (1 << c)) -> x >>u c
1953  if (N1C && N1C->getAPIntValue().isPowerOf2())
1954    return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0,
1955                       DAG.getConstant(N1C->getAPIntValue().logBase2(),
1956                                       getShiftAmountTy(N0.getValueType())));
1957  // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
1958  if (N1.getOpcode() == ISD::SHL) {
1959    if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
1960      if (SHC->getAPIntValue().isPowerOf2()) {
1961        EVT ADDVT = N1.getOperand(1).getValueType();
1962        SDValue Add = DAG.getNode(ISD::ADD, N->getDebugLoc(), ADDVT,
1963                                  N1.getOperand(1),
1964                                  DAG.getConstant(SHC->getAPIntValue()
1965                                                                  .logBase2(),
1966                                                  ADDVT));
1967        AddToWorkList(Add.getNode());
1968        return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0, Add);
1969      }
1970    }
1971  }
1972  // fold (udiv x, c) -> alternate
1973  if (N1C && !N1C->isNullValue() && !TLI.isIntDivCheap()) {
1974    SDValue Op = BuildUDIV(N);
1975    if (Op.getNode()) return Op;
1976  }
1977
1978  // undef / X -> 0
1979  if (N0.getOpcode() == ISD::UNDEF)
1980    return DAG.getConstant(0, VT);
1981  // X / undef -> undef
1982  if (N1.getOpcode() == ISD::UNDEF)
1983    return N1;
1984
1985  return SDValue();
1986}
1987
1988SDValue DAGCombiner::visitSREM(SDNode *N) {
1989  SDValue N0 = N->getOperand(0);
1990  SDValue N1 = N->getOperand(1);
1991  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1992  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1993  EVT VT = N->getValueType(0);
1994
1995  // fold (srem c1, c2) -> c1%c2
1996  if (N0C && N1C && !N1C->isNullValue())
1997    return DAG.FoldConstantArithmetic(ISD::SREM, VT, N0C, N1C);
1998  // If we know the sign bits of both operands are zero, strength reduce to a
1999  // urem instead.  Handles (X & 0x0FFFFFFF) %s 16 -> X&15
2000  if (!VT.isVector()) {
2001    if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
2002      return DAG.getNode(ISD::UREM, N->getDebugLoc(), VT, N0, N1);
2003  }
2004
2005  // If X/C can be simplified by the division-by-constant logic, lower
2006  // X%C to the equivalent of X-X/C*C.
2007  if (N1C && !N1C->isNullValue()) {
2008    SDValue Div = DAG.getNode(ISD::SDIV, N->getDebugLoc(), VT, N0, N1);
2009    AddToWorkList(Div.getNode());
2010    SDValue OptimizedDiv = combine(Div.getNode());
2011    if (OptimizedDiv.getNode() && OptimizedDiv.getNode() != Div.getNode()) {
2012      SDValue Mul = DAG.getNode(ISD::MUL, N->getDebugLoc(), VT,
2013                                OptimizedDiv, N1);
2014      SDValue Sub = DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N0, Mul);
2015      AddToWorkList(Mul.getNode());
2016      return Sub;
2017    }
2018  }
2019
2020  // undef % X -> 0
2021  if (N0.getOpcode() == ISD::UNDEF)
2022    return DAG.getConstant(0, VT);
2023  // X % undef -> undef
2024  if (N1.getOpcode() == ISD::UNDEF)
2025    return N1;
2026
2027  return SDValue();
2028}
2029
2030SDValue DAGCombiner::visitUREM(SDNode *N) {
2031  SDValue N0 = N->getOperand(0);
2032  SDValue N1 = N->getOperand(1);
2033  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2034  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2035  EVT VT = N->getValueType(0);
2036
2037  // fold (urem c1, c2) -> c1%c2
2038  if (N0C && N1C && !N1C->isNullValue())
2039    return DAG.FoldConstantArithmetic(ISD::UREM, VT, N0C, N1C);
2040  // fold (urem x, pow2) -> (and x, pow2-1)
2041  if (N1C && !N1C->isNullValue() && N1C->getAPIntValue().isPowerOf2())
2042    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0,
2043                       DAG.getConstant(N1C->getAPIntValue()-1,VT));
2044  // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1))
2045  if (N1.getOpcode() == ISD::SHL) {
2046    if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
2047      if (SHC->getAPIntValue().isPowerOf2()) {
2048        SDValue Add =
2049          DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N1,
2050                 DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()),
2051                                 VT));
2052        AddToWorkList(Add.getNode());
2053        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0, Add);
2054      }
2055    }
2056  }
2057
2058  // If X/C can be simplified by the division-by-constant logic, lower
2059  // X%C to the equivalent of X-X/C*C.
2060  if (N1C && !N1C->isNullValue()) {
2061    SDValue Div = DAG.getNode(ISD::UDIV, N->getDebugLoc(), VT, N0, N1);
2062    AddToWorkList(Div.getNode());
2063    SDValue OptimizedDiv = combine(Div.getNode());
2064    if (OptimizedDiv.getNode() && OptimizedDiv.getNode() != Div.getNode()) {
2065      SDValue Mul = DAG.getNode(ISD::MUL, N->getDebugLoc(), VT,
2066                                OptimizedDiv, N1);
2067      SDValue Sub = DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N0, Mul);
2068      AddToWorkList(Mul.getNode());
2069      return Sub;
2070    }
2071  }
2072
2073  // undef % X -> 0
2074  if (N0.getOpcode() == ISD::UNDEF)
2075    return DAG.getConstant(0, VT);
2076  // X % undef -> undef
2077  if (N1.getOpcode() == ISD::UNDEF)
2078    return N1;
2079
2080  return SDValue();
2081}
2082
2083SDValue DAGCombiner::visitMULHS(SDNode *N) {
2084  SDValue N0 = N->getOperand(0);
2085  SDValue N1 = N->getOperand(1);
2086  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2087  EVT VT = N->getValueType(0);
2088  DebugLoc DL = N->getDebugLoc();
2089
2090  // fold (mulhs x, 0) -> 0
2091  if (N1C && N1C->isNullValue())
2092    return N1;
2093  // fold (mulhs x, 1) -> (sra x, size(x)-1)
2094  if (N1C && N1C->getAPIntValue() == 1)
2095    return DAG.getNode(ISD::SRA, N->getDebugLoc(), N0.getValueType(), N0,
2096                       DAG.getConstant(N0.getValueType().getSizeInBits() - 1,
2097                                       getShiftAmountTy(N0.getValueType())));
2098  // fold (mulhs x, undef) -> 0
2099  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
2100    return DAG.getConstant(0, VT);
2101
2102  // If the type twice as wide is legal, transform the mulhs to a wider multiply
2103  // plus a shift.
2104  if (VT.isSimple() && !VT.isVector()) {
2105    MVT Simple = VT.getSimpleVT();
2106    unsigned SimpleSize = Simple.getSizeInBits();
2107    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2108    if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2109      N0 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N0);
2110      N1 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N1);
2111      N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1);
2112      N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1,
2113            DAG.getConstant(SimpleSize, getShiftAmountTy(N1.getValueType())));
2114      return DAG.getNode(ISD::TRUNCATE, DL, VT, N1);
2115    }
2116  }
2117
2118  return SDValue();
2119}
2120
2121SDValue DAGCombiner::visitMULHU(SDNode *N) {
2122  SDValue N0 = N->getOperand(0);
2123  SDValue N1 = N->getOperand(1);
2124  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2125  EVT VT = N->getValueType(0);
2126  DebugLoc DL = N->getDebugLoc();
2127
2128  // fold (mulhu x, 0) -> 0
2129  if (N1C && N1C->isNullValue())
2130    return N1;
2131  // fold (mulhu x, 1) -> 0
2132  if (N1C && N1C->getAPIntValue() == 1)
2133    return DAG.getConstant(0, N0.getValueType());
2134  // fold (mulhu x, undef) -> 0
2135  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
2136    return DAG.getConstant(0, VT);
2137
2138  // If the type twice as wide is legal, transform the mulhu to a wider multiply
2139  // plus a shift.
2140  if (VT.isSimple() && !VT.isVector()) {
2141    MVT Simple = VT.getSimpleVT();
2142    unsigned SimpleSize = Simple.getSizeInBits();
2143    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2144    if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2145      N0 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N0);
2146      N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N1);
2147      N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1);
2148      N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1,
2149            DAG.getConstant(SimpleSize, getShiftAmountTy(N1.getValueType())));
2150      return DAG.getNode(ISD::TRUNCATE, DL, VT, N1);
2151    }
2152  }
2153
2154  return SDValue();
2155}
2156
2157/// SimplifyNodeWithTwoResults - Perform optimizations common to nodes that
2158/// compute two values. LoOp and HiOp give the opcodes for the two computations
2159/// that are being performed. Return true if a simplification was made.
2160///
2161SDValue DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
2162                                                unsigned HiOp) {
2163  // If the high half is not needed, just compute the low half.
2164  bool HiExists = N->hasAnyUseOfValue(1);
2165  if (!HiExists &&
2166      (!LegalOperations ||
2167       TLI.isOperationLegal(LoOp, N->getValueType(0)))) {
2168    SDValue Res = DAG.getNode(LoOp, N->getDebugLoc(), N->getValueType(0),
2169                              N->op_begin(), N->getNumOperands());
2170    return CombineTo(N, Res, Res);
2171  }
2172
2173  // If the low half is not needed, just compute the high half.
2174  bool LoExists = N->hasAnyUseOfValue(0);
2175  if (!LoExists &&
2176      (!LegalOperations ||
2177       TLI.isOperationLegal(HiOp, N->getValueType(1)))) {
2178    SDValue Res = DAG.getNode(HiOp, N->getDebugLoc(), N->getValueType(1),
2179                              N->op_begin(), N->getNumOperands());
2180    return CombineTo(N, Res, Res);
2181  }
2182
2183  // If both halves are used, return as it is.
2184  if (LoExists && HiExists)
2185    return SDValue();
2186
2187  // If the two computed results can be simplified separately, separate them.
2188  if (LoExists) {
2189    SDValue Lo = DAG.getNode(LoOp, N->getDebugLoc(), N->getValueType(0),
2190                             N->op_begin(), N->getNumOperands());
2191    AddToWorkList(Lo.getNode());
2192    SDValue LoOpt = combine(Lo.getNode());
2193    if (LoOpt.getNode() && LoOpt.getNode() != Lo.getNode() &&
2194        (!LegalOperations ||
2195         TLI.isOperationLegal(LoOpt.getOpcode(), LoOpt.getValueType())))
2196      return CombineTo(N, LoOpt, LoOpt);
2197  }
2198
2199  if (HiExists) {
2200    SDValue Hi = DAG.getNode(HiOp, N->getDebugLoc(), N->getValueType(1),
2201                             N->op_begin(), N->getNumOperands());
2202    AddToWorkList(Hi.getNode());
2203    SDValue HiOpt = combine(Hi.getNode());
2204    if (HiOpt.getNode() && HiOpt != Hi &&
2205        (!LegalOperations ||
2206         TLI.isOperationLegal(HiOpt.getOpcode(), HiOpt.getValueType())))
2207      return CombineTo(N, HiOpt, HiOpt);
2208  }
2209
2210  return SDValue();
2211}
2212
2213SDValue DAGCombiner::visitSMUL_LOHI(SDNode *N) {
2214  SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHS);
2215  if (Res.getNode()) return Res;
2216
2217  EVT VT = N->getValueType(0);
2218  DebugLoc DL = N->getDebugLoc();
2219
2220  // If the type twice as wide is legal, transform the mulhu to a wider multiply
2221  // plus a shift.
2222  if (VT.isSimple() && !VT.isVector()) {
2223    MVT Simple = VT.getSimpleVT();
2224    unsigned SimpleSize = Simple.getSizeInBits();
2225    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2226    if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2227      SDValue Lo = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(0));
2228      SDValue Hi = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(1));
2229      Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi);
2230      // Compute the high part as N1.
2231      Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo,
2232            DAG.getConstant(SimpleSize, getShiftAmountTy(Lo.getValueType())));
2233      Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi);
2234      // Compute the low part as N0.
2235      Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo);
2236      return CombineTo(N, Lo, Hi);
2237    }
2238  }
2239
2240  return SDValue();
2241}
2242
2243SDValue DAGCombiner::visitUMUL_LOHI(SDNode *N) {
2244  SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHU);
2245  if (Res.getNode()) return Res;
2246
2247  EVT VT = N->getValueType(0);
2248  DebugLoc DL = N->getDebugLoc();
2249
2250  // If the type twice as wide is legal, transform the mulhu to a wider multiply
2251  // plus a shift.
2252  if (VT.isSimple() && !VT.isVector()) {
2253    MVT Simple = VT.getSimpleVT();
2254    unsigned SimpleSize = Simple.getSizeInBits();
2255    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2256    if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2257      SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(0));
2258      SDValue Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(1));
2259      Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi);
2260      // Compute the high part as N1.
2261      Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo,
2262            DAG.getConstant(SimpleSize, getShiftAmountTy(Lo.getValueType())));
2263      Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi);
2264      // Compute the low part as N0.
2265      Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo);
2266      return CombineTo(N, Lo, Hi);
2267    }
2268  }
2269
2270  return SDValue();
2271}
2272
2273SDValue DAGCombiner::visitSMULO(SDNode *N) {
2274  // (smulo x, 2) -> (saddo x, x)
2275  if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)))
2276    if (C2->getAPIntValue() == 2)
2277      return DAG.getNode(ISD::SADDO, N->getDebugLoc(), N->getVTList(),
2278                         N->getOperand(0), N->getOperand(0));
2279
2280  return SDValue();
2281}
2282
2283SDValue DAGCombiner::visitUMULO(SDNode *N) {
2284  // (umulo x, 2) -> (uaddo x, x)
2285  if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)))
2286    if (C2->getAPIntValue() == 2)
2287      return DAG.getNode(ISD::UADDO, N->getDebugLoc(), N->getVTList(),
2288                         N->getOperand(0), N->getOperand(0));
2289
2290  return SDValue();
2291}
2292
2293SDValue DAGCombiner::visitSDIVREM(SDNode *N) {
2294  SDValue Res = SimplifyNodeWithTwoResults(N, ISD::SDIV, ISD::SREM);
2295  if (Res.getNode()) return Res;
2296
2297  return SDValue();
2298}
2299
2300SDValue DAGCombiner::visitUDIVREM(SDNode *N) {
2301  SDValue Res = SimplifyNodeWithTwoResults(N, ISD::UDIV, ISD::UREM);
2302  if (Res.getNode()) return Res;
2303
2304  return SDValue();
2305}
2306
2307/// SimplifyBinOpWithSameOpcodeHands - If this is a binary operator with
2308/// two operands of the same opcode, try to simplify it.
2309SDValue DAGCombiner::SimplifyBinOpWithSameOpcodeHands(SDNode *N) {
2310  SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
2311  EVT VT = N0.getValueType();
2312  assert(N0.getOpcode() == N1.getOpcode() && "Bad input!");
2313
2314  // Bail early if none of these transforms apply.
2315  if (N0.getNode()->getNumOperands() == 0) return SDValue();
2316
2317  // For each of OP in AND/OR/XOR:
2318  // fold (OP (zext x), (zext y)) -> (zext (OP x, y))
2319  // fold (OP (sext x), (sext y)) -> (sext (OP x, y))
2320  // fold (OP (aext x), (aext y)) -> (aext (OP x, y))
2321  // fold (OP (trunc x), (trunc y)) -> (trunc (OP x, y)) (if trunc isn't free)
2322  //
2323  // do not sink logical op inside of a vector extend, since it may combine
2324  // into a vsetcc.
2325  EVT Op0VT = N0.getOperand(0).getValueType();
2326  if ((N0.getOpcode() == ISD::ZERO_EXTEND ||
2327       N0.getOpcode() == ISD::SIGN_EXTEND ||
2328       // Avoid infinite looping with PromoteIntBinOp.
2329       (N0.getOpcode() == ISD::ANY_EXTEND &&
2330        (!LegalTypes || TLI.isTypeDesirableForOp(N->getOpcode(), Op0VT))) ||
2331       (N0.getOpcode() == ISD::TRUNCATE &&
2332        (!TLI.isZExtFree(VT, Op0VT) ||
2333         !TLI.isTruncateFree(Op0VT, VT)) &&
2334        TLI.isTypeLegal(Op0VT))) &&
2335      !VT.isVector() &&
2336      Op0VT == N1.getOperand(0).getValueType() &&
2337      (!LegalOperations || TLI.isOperationLegal(N->getOpcode(), Op0VT))) {
2338    SDValue ORNode = DAG.getNode(N->getOpcode(), N0.getDebugLoc(),
2339                                 N0.getOperand(0).getValueType(),
2340                                 N0.getOperand(0), N1.getOperand(0));
2341    AddToWorkList(ORNode.getNode());
2342    return DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT, ORNode);
2343  }
2344
2345  // For each of OP in SHL/SRL/SRA/AND...
2346  //   fold (and (OP x, z), (OP y, z)) -> (OP (and x, y), z)
2347  //   fold (or  (OP x, z), (OP y, z)) -> (OP (or  x, y), z)
2348  //   fold (xor (OP x, z), (OP y, z)) -> (OP (xor x, y), z)
2349  if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL ||
2350       N0.getOpcode() == ISD::SRA || N0.getOpcode() == ISD::AND) &&
2351      N0.getOperand(1) == N1.getOperand(1)) {
2352    SDValue ORNode = DAG.getNode(N->getOpcode(), N0.getDebugLoc(),
2353                                 N0.getOperand(0).getValueType(),
2354                                 N0.getOperand(0), N1.getOperand(0));
2355    AddToWorkList(ORNode.getNode());
2356    return DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT,
2357                       ORNode, N0.getOperand(1));
2358  }
2359
2360  // Simplify xor/and/or (bitcast(A), bitcast(B)) -> bitcast(op (A,B))
2361  // Only perform this optimization after type legalization and before
2362  // LegalizeVectorOprs. LegalizeVectorOprs promotes vector operations by
2363  // adding bitcasts. For example (xor v4i32) is promoted to (v2i64), and
2364  // we don't want to undo this promotion.
2365  // We also handle SCALAR_TO_VECTOR because xor/or/and operations are cheaper
2366  // on scalars.
2367  if ((N0.getOpcode() == ISD::BITCAST ||
2368       N0.getOpcode() == ISD::SCALAR_TO_VECTOR) &&
2369      Level == AfterLegalizeTypes) {
2370    SDValue In0 = N0.getOperand(0);
2371    SDValue In1 = N1.getOperand(0);
2372    EVT In0Ty = In0.getValueType();
2373    EVT In1Ty = In1.getValueType();
2374    DebugLoc DL = N->getDebugLoc();
2375    // If both incoming values are integers, and the original types are the
2376    // same.
2377    if (In0Ty.isInteger() && In1Ty.isInteger() && In0Ty == In1Ty) {
2378      SDValue Op = DAG.getNode(N->getOpcode(), DL, In0Ty, In0, In1);
2379      SDValue BC = DAG.getNode(N0.getOpcode(), DL, VT, Op);
2380      AddToWorkList(Op.getNode());
2381      return BC;
2382    }
2383  }
2384
2385  // Xor/and/or are indifferent to the swizzle operation (shuffle of one value).
2386  // Simplify xor/and/or (shuff(A), shuff(B)) -> shuff(op (A,B))
2387  // If both shuffles use the same mask, and both shuffle within a single
2388  // vector, then it is worthwhile to move the swizzle after the operation.
2389  // The type-legalizer generates this pattern when loading illegal
2390  // vector types from memory. In many cases this allows additional shuffle
2391  // optimizations.
2392  if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG &&
2393      N0.getOperand(1).getOpcode() == ISD::UNDEF &&
2394      N1.getOperand(1).getOpcode() == ISD::UNDEF) {
2395    ShuffleVectorSDNode *SVN0 = cast<ShuffleVectorSDNode>(N0);
2396    ShuffleVectorSDNode *SVN1 = cast<ShuffleVectorSDNode>(N1);
2397
2398    assert(N0.getOperand(0).getValueType() == N1.getOperand(1).getValueType() &&
2399           "Inputs to shuffles are not the same type");
2400
2401    unsigned NumElts = VT.getVectorNumElements();
2402
2403    // Check that both shuffles use the same mask. The masks are known to be of
2404    // the same length because the result vector type is the same.
2405    bool SameMask = true;
2406    for (unsigned i = 0; i != NumElts; ++i) {
2407      int Idx0 = SVN0->getMaskElt(i);
2408      int Idx1 = SVN1->getMaskElt(i);
2409      if (Idx0 != Idx1) {
2410        SameMask = false;
2411        break;
2412      }
2413    }
2414
2415    if (SameMask) {
2416      SDValue Op = DAG.getNode(N->getOpcode(), N->getDebugLoc(), VT,
2417                               N0.getOperand(0), N1.getOperand(0));
2418      AddToWorkList(Op.getNode());
2419      return DAG.getVectorShuffle(VT, N->getDebugLoc(), Op,
2420                                  DAG.getUNDEF(VT), &SVN0->getMask()[0]);
2421    }
2422  }
2423
2424  return SDValue();
2425}
2426
2427SDValue DAGCombiner::visitAND(SDNode *N) {
2428  SDValue N0 = N->getOperand(0);
2429  SDValue N1 = N->getOperand(1);
2430  SDValue LL, LR, RL, RR, CC0, CC1;
2431  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2432  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2433  EVT VT = N1.getValueType();
2434  unsigned BitWidth = VT.getScalarType().getSizeInBits();
2435
2436  // fold vector ops
2437  if (VT.isVector()) {
2438    SDValue FoldedVOp = SimplifyVBinOp(N);
2439    if (FoldedVOp.getNode()) return FoldedVOp;
2440
2441    // fold (and x, 0) -> 0, vector edition
2442    if (ISD::isBuildVectorAllZeros(N0.getNode()))
2443      return N0;
2444    if (ISD::isBuildVectorAllZeros(N1.getNode()))
2445      return N1;
2446
2447    // fold (and x, -1) -> x, vector edition
2448    if (ISD::isBuildVectorAllOnes(N0.getNode()))
2449      return N1;
2450    if (ISD::isBuildVectorAllOnes(N1.getNode()))
2451      return N0;
2452  }
2453
2454  // fold (and x, undef) -> 0
2455  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
2456    return DAG.getConstant(0, VT);
2457  // fold (and c1, c2) -> c1&c2
2458  if (N0C && N1C)
2459    return DAG.FoldConstantArithmetic(ISD::AND, VT, N0C, N1C);
2460  // canonicalize constant to RHS
2461  if (N0C && !N1C)
2462    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N1, N0);
2463  // fold (and x, -1) -> x
2464  if (N1C && N1C->isAllOnesValue())
2465    return N0;
2466  // if (and x, c) is known to be zero, return 0
2467  if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0),
2468                                   APInt::getAllOnesValue(BitWidth)))
2469    return DAG.getConstant(0, VT);
2470  // reassociate and
2471  SDValue RAND = ReassociateOps(ISD::AND, N->getDebugLoc(), N0, N1);
2472  if (RAND.getNode() != 0)
2473    return RAND;
2474  // fold (and (or x, C), D) -> D if (C & D) == D
2475  if (N1C && N0.getOpcode() == ISD::OR)
2476    if (ConstantSDNode *ORI = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
2477      if ((ORI->getAPIntValue() & N1C->getAPIntValue()) == N1C->getAPIntValue())
2478        return N1;
2479  // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits.
2480  if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
2481    SDValue N0Op0 = N0.getOperand(0);
2482    APInt Mask = ~N1C->getAPIntValue();
2483    Mask = Mask.trunc(N0Op0.getValueSizeInBits());
2484    if (DAG.MaskedValueIsZero(N0Op0, Mask)) {
2485      SDValue Zext = DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(),
2486                                 N0.getValueType(), N0Op0);
2487
2488      // Replace uses of the AND with uses of the Zero extend node.
2489      CombineTo(N, Zext);
2490
2491      // We actually want to replace all uses of the any_extend with the
2492      // zero_extend, to avoid duplicating things.  This will later cause this
2493      // AND to be folded.
2494      CombineTo(N0.getNode(), Zext);
2495      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
2496    }
2497  }
2498  // similarly fold (and (X (load ([non_ext|any_ext|zero_ext] V))), c) ->
2499  // (X (load ([non_ext|zero_ext] V))) if 'and' only clears top bits which must
2500  // already be zero by virtue of the width of the base type of the load.
2501  //
2502  // the 'X' node here can either be nothing or an extract_vector_elt to catch
2503  // more cases.
2504  if ((N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
2505       N0.getOperand(0).getOpcode() == ISD::LOAD) ||
2506      N0.getOpcode() == ISD::LOAD) {
2507    LoadSDNode *Load = cast<LoadSDNode>( (N0.getOpcode() == ISD::LOAD) ?
2508                                         N0 : N0.getOperand(0) );
2509
2510    // Get the constant (if applicable) the zero'th operand is being ANDed with.
2511    // This can be a pure constant or a vector splat, in which case we treat the
2512    // vector as a scalar and use the splat value.
2513    APInt Constant = APInt::getNullValue(1);
2514    if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2515      Constant = C->getAPIntValue();
2516    } else if (BuildVectorSDNode *Vector = dyn_cast<BuildVectorSDNode>(N1)) {
2517      APInt SplatValue, SplatUndef;
2518      unsigned SplatBitSize;
2519      bool HasAnyUndefs;
2520      bool IsSplat = Vector->isConstantSplat(SplatValue, SplatUndef,
2521                                             SplatBitSize, HasAnyUndefs);
2522      if (IsSplat) {
2523        // Undef bits can contribute to a possible optimisation if set, so
2524        // set them.
2525        SplatValue |= SplatUndef;
2526
2527        // The splat value may be something like "0x00FFFFFF", which means 0 for
2528        // the first vector value and FF for the rest, repeating. We need a mask
2529        // that will apply equally to all members of the vector, so AND all the
2530        // lanes of the constant together.
2531        EVT VT = Vector->getValueType(0);
2532        unsigned BitWidth = VT.getVectorElementType().getSizeInBits();
2533
2534        // If the splat value has been compressed to a bitlength lower
2535        // than the size of the vector lane, we need to re-expand it to
2536        // the lane size.
2537        if (BitWidth > SplatBitSize)
2538          for (SplatValue = SplatValue.zextOrTrunc(BitWidth);
2539               SplatBitSize < BitWidth;
2540               SplatBitSize = SplatBitSize * 2)
2541            SplatValue |= SplatValue.shl(SplatBitSize);
2542
2543        Constant = APInt::getAllOnesValue(BitWidth);
2544        for (unsigned i = 0, n = SplatBitSize/BitWidth; i < n; ++i)
2545          Constant &= SplatValue.lshr(i*BitWidth).zextOrTrunc(BitWidth);
2546      }
2547    }
2548
2549    // If we want to change an EXTLOAD to a ZEXTLOAD, ensure a ZEXTLOAD is
2550    // actually legal and isn't going to get expanded, else this is a false
2551    // optimisation.
2552    bool CanZextLoadProfitably = TLI.isLoadExtLegal(ISD::ZEXTLOAD,
2553                                                    Load->getMemoryVT());
2554
2555    // Resize the constant to the same size as the original memory access before
2556    // extension. If it is still the AllOnesValue then this AND is completely
2557    // unneeded.
2558    Constant =
2559      Constant.zextOrTrunc(Load->getMemoryVT().getScalarType().getSizeInBits());
2560
2561    bool B;
2562    switch (Load->getExtensionType()) {
2563    default: B = false; break;
2564    case ISD::EXTLOAD: B = CanZextLoadProfitably; break;
2565    case ISD::ZEXTLOAD:
2566    case ISD::NON_EXTLOAD: B = true; break;
2567    }
2568
2569    if (B && Constant.isAllOnesValue()) {
2570      // If the load type was an EXTLOAD, convert to ZEXTLOAD in order to
2571      // preserve semantics once we get rid of the AND.
2572      SDValue NewLoad(Load, 0);
2573      if (Load->getExtensionType() == ISD::EXTLOAD) {
2574        NewLoad = DAG.getLoad(Load->getAddressingMode(), ISD::ZEXTLOAD,
2575                              Load->getValueType(0), Load->getDebugLoc(),
2576                              Load->getChain(), Load->getBasePtr(),
2577                              Load->getOffset(), Load->getMemoryVT(),
2578                              Load->getMemOperand());
2579        // Replace uses of the EXTLOAD with the new ZEXTLOAD.
2580        if (Load->getNumValues() == 3) {
2581          // PRE/POST_INC loads have 3 values.
2582          SDValue To[] = { NewLoad.getValue(0), NewLoad.getValue(1),
2583                           NewLoad.getValue(2) };
2584          CombineTo(Load, To, 3, true);
2585        } else {
2586          CombineTo(Load, NewLoad.getValue(0), NewLoad.getValue(1));
2587        }
2588      }
2589
2590      // Fold the AND away, taking care not to fold to the old load node if we
2591      // replaced it.
2592      CombineTo(N, (N0.getNode() == Load) ? NewLoad : N0);
2593
2594      return SDValue(N, 0); // Return N so it doesn't get rechecked!
2595    }
2596  }
2597  // fold (and (setcc x), (setcc y)) -> (setcc (and x, y))
2598  if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
2599    ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
2600    ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
2601
2602    if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
2603        LL.getValueType().isInteger()) {
2604      // fold (and (seteq X, 0), (seteq Y, 0)) -> (seteq (or X, Y), 0)
2605      if (cast<ConstantSDNode>(LR)->isNullValue() && Op1 == ISD::SETEQ) {
2606        SDValue ORNode = DAG.getNode(ISD::OR, N0.getDebugLoc(),
2607                                     LR.getValueType(), LL, RL);
2608        AddToWorkList(ORNode.getNode());
2609        return DAG.getSetCC(N->getDebugLoc(), VT, ORNode, LR, Op1);
2610      }
2611      // fold (and (seteq X, -1), (seteq Y, -1)) -> (seteq (and X, Y), -1)
2612      if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETEQ) {
2613        SDValue ANDNode = DAG.getNode(ISD::AND, N0.getDebugLoc(),
2614                                      LR.getValueType(), LL, RL);
2615        AddToWorkList(ANDNode.getNode());
2616        return DAG.getSetCC(N->getDebugLoc(), VT, ANDNode, LR, Op1);
2617      }
2618      // fold (and (setgt X,  -1), (setgt Y,  -1)) -> (setgt (or X, Y), -1)
2619      if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETGT) {
2620        SDValue ORNode = DAG.getNode(ISD::OR, N0.getDebugLoc(),
2621                                     LR.getValueType(), LL, RL);
2622        AddToWorkList(ORNode.getNode());
2623        return DAG.getSetCC(N->getDebugLoc(), VT, ORNode, LR, Op1);
2624      }
2625    }
2626    // canonicalize equivalent to ll == rl
2627    if (LL == RR && LR == RL) {
2628      Op1 = ISD::getSetCCSwappedOperands(Op1);
2629      std::swap(RL, RR);
2630    }
2631    if (LL == RL && LR == RR) {
2632      bool isInteger = LL.getValueType().isInteger();
2633      ISD::CondCode Result = ISD::getSetCCAndOperation(Op0, Op1, isInteger);
2634      if (Result != ISD::SETCC_INVALID &&
2635          (!LegalOperations || TLI.isCondCodeLegal(Result, LL.getValueType())))
2636        return DAG.getSetCC(N->getDebugLoc(), N0.getValueType(),
2637                            LL, LR, Result);
2638    }
2639  }
2640
2641  // Simplify: (and (op x...), (op y...))  -> (op (and x, y))
2642  if (N0.getOpcode() == N1.getOpcode()) {
2643    SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N);
2644    if (Tmp.getNode()) return Tmp;
2645  }
2646
2647  // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1)
2648  // fold (and (sra)) -> (and (srl)) when possible.
2649  if (!VT.isVector() &&
2650      SimplifyDemandedBits(SDValue(N, 0)))
2651    return SDValue(N, 0);
2652
2653  // fold (zext_inreg (extload x)) -> (zextload x)
2654  if (ISD::isEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode())) {
2655    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2656    EVT MemVT = LN0->getMemoryVT();
2657    // If we zero all the possible extended bits, then we can turn this into
2658    // a zextload if we are running before legalize or the operation is legal.
2659    unsigned BitWidth = N1.getValueType().getScalarType().getSizeInBits();
2660    if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth,
2661                           BitWidth - MemVT.getScalarType().getSizeInBits())) &&
2662        ((!LegalOperations && !LN0->isVolatile()) ||
2663         TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT))) {
2664      SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, N0.getDebugLoc(), VT,
2665                                       LN0->getChain(), LN0->getBasePtr(),
2666                                       LN0->getPointerInfo(), MemVT,
2667                                       LN0->isVolatile(), LN0->isNonTemporal(),
2668                                       LN0->getAlignment());
2669      AddToWorkList(N);
2670      CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
2671      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
2672    }
2673  }
2674  // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use
2675  if (ISD::isSEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
2676      N0.hasOneUse()) {
2677    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2678    EVT MemVT = LN0->getMemoryVT();
2679    // If we zero all the possible extended bits, then we can turn this into
2680    // a zextload if we are running before legalize or the operation is legal.
2681    unsigned BitWidth = N1.getValueType().getScalarType().getSizeInBits();
2682    if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth,
2683                           BitWidth - MemVT.getScalarType().getSizeInBits())) &&
2684        ((!LegalOperations && !LN0->isVolatile()) ||
2685         TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT))) {
2686      SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, N0.getDebugLoc(), VT,
2687                                       LN0->getChain(),
2688                                       LN0->getBasePtr(), LN0->getPointerInfo(),
2689                                       MemVT,
2690                                       LN0->isVolatile(), LN0->isNonTemporal(),
2691                                       LN0->getAlignment());
2692      AddToWorkList(N);
2693      CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
2694      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
2695    }
2696  }
2697
2698  // fold (and (load x), 255) -> (zextload x, i8)
2699  // fold (and (extload x, i16), 255) -> (zextload x, i8)
2700  // fold (and (any_ext (extload x, i16)), 255) -> (zextload x, i8)
2701  if (N1C && (N0.getOpcode() == ISD::LOAD ||
2702              (N0.getOpcode() == ISD::ANY_EXTEND &&
2703               N0.getOperand(0).getOpcode() == ISD::LOAD))) {
2704    bool HasAnyExt = N0.getOpcode() == ISD::ANY_EXTEND;
2705    LoadSDNode *LN0 = HasAnyExt
2706      ? cast<LoadSDNode>(N0.getOperand(0))
2707      : cast<LoadSDNode>(N0);
2708    if (LN0->getExtensionType() != ISD::SEXTLOAD &&
2709        LN0->isUnindexed() && N0.hasOneUse() && LN0->hasOneUse()) {
2710      uint32_t ActiveBits = N1C->getAPIntValue().getActiveBits();
2711      if (ActiveBits > 0 && APIntOps::isMask(ActiveBits, N1C->getAPIntValue())){
2712        EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits);
2713        EVT LoadedVT = LN0->getMemoryVT();
2714
2715        if (ExtVT == LoadedVT &&
2716            (!LegalOperations || TLI.isLoadExtLegal(ISD::ZEXTLOAD, ExtVT))) {
2717          EVT LoadResultTy = HasAnyExt ? LN0->getValueType(0) : VT;
2718
2719          SDValue NewLoad =
2720            DAG.getExtLoad(ISD::ZEXTLOAD, LN0->getDebugLoc(), LoadResultTy,
2721                           LN0->getChain(), LN0->getBasePtr(),
2722                           LN0->getPointerInfo(),
2723                           ExtVT, LN0->isVolatile(), LN0->isNonTemporal(),
2724                           LN0->getAlignment());
2725          AddToWorkList(N);
2726          CombineTo(LN0, NewLoad, NewLoad.getValue(1));
2727          return SDValue(N, 0);   // Return N so it doesn't get rechecked!
2728        }
2729
2730        // Do not change the width of a volatile load.
2731        // Do not generate loads of non-round integer types since these can
2732        // be expensive (and would be wrong if the type is not byte sized).
2733        if (!LN0->isVolatile() && LoadedVT.bitsGT(ExtVT) && ExtVT.isRound() &&
2734            (!LegalOperations || TLI.isLoadExtLegal(ISD::ZEXTLOAD, ExtVT))) {
2735          EVT PtrType = LN0->getOperand(1).getValueType();
2736
2737          unsigned Alignment = LN0->getAlignment();
2738          SDValue NewPtr = LN0->getBasePtr();
2739
2740          // For big endian targets, we need to add an offset to the pointer
2741          // to load the correct bytes.  For little endian systems, we merely
2742          // need to read fewer bytes from the same pointer.
2743          if (TLI.isBigEndian()) {
2744            unsigned LVTStoreBytes = LoadedVT.getStoreSize();
2745            unsigned EVTStoreBytes = ExtVT.getStoreSize();
2746            unsigned PtrOff = LVTStoreBytes - EVTStoreBytes;
2747            NewPtr = DAG.getNode(ISD::ADD, LN0->getDebugLoc(), PtrType,
2748                                 NewPtr, DAG.getConstant(PtrOff, PtrType));
2749            Alignment = MinAlign(Alignment, PtrOff);
2750          }
2751
2752          AddToWorkList(NewPtr.getNode());
2753
2754          EVT LoadResultTy = HasAnyExt ? LN0->getValueType(0) : VT;
2755          SDValue Load =
2756            DAG.getExtLoad(ISD::ZEXTLOAD, LN0->getDebugLoc(), LoadResultTy,
2757                           LN0->getChain(), NewPtr,
2758                           LN0->getPointerInfo(),
2759                           ExtVT, LN0->isVolatile(), LN0->isNonTemporal(),
2760                           Alignment);
2761          AddToWorkList(N);
2762          CombineTo(LN0, Load, Load.getValue(1));
2763          return SDValue(N, 0);   // Return N so it doesn't get rechecked!
2764        }
2765      }
2766    }
2767  }
2768
2769  if (N0.getOpcode() == ISD::ADD && N1.getOpcode() == ISD::SRL &&
2770      VT.getSizeInBits() <= 64) {
2771    if (ConstantSDNode *ADDI = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2772      APInt ADDC = ADDI->getAPIntValue();
2773      if (!TLI.isLegalAddImmediate(ADDC.getSExtValue())) {
2774        // Look for (and (add x, c1), (lshr y, c2)). If C1 wasn't a legal
2775        // immediate for an add, but it is legal if its top c2 bits are set,
2776        // transform the ADD so the immediate doesn't need to be materialized
2777        // in a register.
2778        if (ConstantSDNode *SRLI = dyn_cast<ConstantSDNode>(N1.getOperand(1))) {
2779          APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
2780                                             SRLI->getZExtValue());
2781          if (DAG.MaskedValueIsZero(N0.getOperand(1), Mask)) {
2782            ADDC |= Mask;
2783            if (TLI.isLegalAddImmediate(ADDC.getSExtValue())) {
2784              SDValue NewAdd =
2785                DAG.getNode(ISD::ADD, N0.getDebugLoc(), VT,
2786                            N0.getOperand(0), DAG.getConstant(ADDC, VT));
2787              CombineTo(N0.getNode(), NewAdd);
2788              return SDValue(N, 0); // Return N so it doesn't get rechecked!
2789            }
2790          }
2791        }
2792      }
2793    }
2794  }
2795
2796  return SDValue();
2797}
2798
2799/// MatchBSwapHWord - Match (a >> 8) | (a << 8) as (bswap a) >> 16
2800///
2801SDValue DAGCombiner::MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1,
2802                                        bool DemandHighBits) {
2803  if (!LegalOperations)
2804    return SDValue();
2805
2806  EVT VT = N->getValueType(0);
2807  if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16)
2808    return SDValue();
2809  if (!TLI.isOperationLegal(ISD::BSWAP, VT))
2810    return SDValue();
2811
2812  // Recognize (and (shl a, 8), 0xff), (and (srl a, 8), 0xff00)
2813  bool LookPassAnd0 = false;
2814  bool LookPassAnd1 = false;
2815  if (N0.getOpcode() == ISD::AND && N0.getOperand(0).getOpcode() == ISD::SRL)
2816      std::swap(N0, N1);
2817  if (N1.getOpcode() == ISD::AND && N1.getOperand(0).getOpcode() == ISD::SHL)
2818      std::swap(N0, N1);
2819  if (N0.getOpcode() == ISD::AND) {
2820    if (!N0.getNode()->hasOneUse())
2821      return SDValue();
2822    ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
2823    if (!N01C || N01C->getZExtValue() != 0xFF00)
2824      return SDValue();
2825    N0 = N0.getOperand(0);
2826    LookPassAnd0 = true;
2827  }
2828
2829  if (N1.getOpcode() == ISD::AND) {
2830    if (!N1.getNode()->hasOneUse())
2831      return SDValue();
2832    ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
2833    if (!N11C || N11C->getZExtValue() != 0xFF)
2834      return SDValue();
2835    N1 = N1.getOperand(0);
2836    LookPassAnd1 = true;
2837  }
2838
2839  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
2840    std::swap(N0, N1);
2841  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
2842    return SDValue();
2843  if (!N0.getNode()->hasOneUse() ||
2844      !N1.getNode()->hasOneUse())
2845    return SDValue();
2846
2847  ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
2848  ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
2849  if (!N01C || !N11C)
2850    return SDValue();
2851  if (N01C->getZExtValue() != 8 || N11C->getZExtValue() != 8)
2852    return SDValue();
2853
2854  // Look for (shl (and a, 0xff), 8), (srl (and a, 0xff00), 8)
2855  SDValue N00 = N0->getOperand(0);
2856  if (!LookPassAnd0 && N00.getOpcode() == ISD::AND) {
2857    if (!N00.getNode()->hasOneUse())
2858      return SDValue();
2859    ConstantSDNode *N001C = dyn_cast<ConstantSDNode>(N00.getOperand(1));
2860    if (!N001C || N001C->getZExtValue() != 0xFF)
2861      return SDValue();
2862    N00 = N00.getOperand(0);
2863    LookPassAnd0 = true;
2864  }
2865
2866  SDValue N10 = N1->getOperand(0);
2867  if (!LookPassAnd1 && N10.getOpcode() == ISD::AND) {
2868    if (!N10.getNode()->hasOneUse())
2869      return SDValue();
2870    ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N10.getOperand(1));
2871    if (!N101C || N101C->getZExtValue() != 0xFF00)
2872      return SDValue();
2873    N10 = N10.getOperand(0);
2874    LookPassAnd1 = true;
2875  }
2876
2877  if (N00 != N10)
2878    return SDValue();
2879
2880  // Make sure everything beyond the low halfword is zero since the SRL 16
2881  // will clear the top bits.
2882  unsigned OpSizeInBits = VT.getSizeInBits();
2883  if (DemandHighBits && OpSizeInBits > 16 &&
2884      (!LookPassAnd0 || !LookPassAnd1) &&
2885      !DAG.MaskedValueIsZero(N10, APInt::getHighBitsSet(OpSizeInBits, 16)))
2886    return SDValue();
2887
2888  SDValue Res = DAG.getNode(ISD::BSWAP, N->getDebugLoc(), VT, N00);
2889  if (OpSizeInBits > 16)
2890    Res = DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, Res,
2891                      DAG.getConstant(OpSizeInBits-16, getShiftAmountTy(VT)));
2892  return Res;
2893}
2894
2895/// isBSwapHWordElement - Return true if the specified node is an element
2896/// that makes up a 32-bit packed halfword byteswap. i.e.
2897/// ((x&0xff)<<8)|((x&0xff00)>>8)|((x&0x00ff0000)<<8)|((x&0xff000000)>>8)
2898static bool isBSwapHWordElement(SDValue N, SmallVector<SDNode*,4> &Parts) {
2899  if (!N.getNode()->hasOneUse())
2900    return false;
2901
2902  unsigned Opc = N.getOpcode();
2903  if (Opc != ISD::AND && Opc != ISD::SHL && Opc != ISD::SRL)
2904    return false;
2905
2906  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N.getOperand(1));
2907  if (!N1C)
2908    return false;
2909
2910  unsigned Num;
2911  switch (N1C->getZExtValue()) {
2912  default:
2913    return false;
2914  case 0xFF:       Num = 0; break;
2915  case 0xFF00:     Num = 1; break;
2916  case 0xFF0000:   Num = 2; break;
2917  case 0xFF000000: Num = 3; break;
2918  }
2919
2920  // Look for (x & 0xff) << 8 as well as ((x << 8) & 0xff00).
2921  SDValue N0 = N.getOperand(0);
2922  if (Opc == ISD::AND) {
2923    if (Num == 0 || Num == 2) {
2924      // (x >> 8) & 0xff
2925      // (x >> 8) & 0xff0000
2926      if (N0.getOpcode() != ISD::SRL)
2927        return false;
2928      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
2929      if (!C || C->getZExtValue() != 8)
2930        return false;
2931    } else {
2932      // (x << 8) & 0xff00
2933      // (x << 8) & 0xff000000
2934      if (N0.getOpcode() != ISD::SHL)
2935        return false;
2936      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
2937      if (!C || C->getZExtValue() != 8)
2938        return false;
2939    }
2940  } else if (Opc == ISD::SHL) {
2941    // (x & 0xff) << 8
2942    // (x & 0xff0000) << 8
2943    if (Num != 0 && Num != 2)
2944      return false;
2945    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1));
2946    if (!C || C->getZExtValue() != 8)
2947      return false;
2948  } else { // Opc == ISD::SRL
2949    // (x & 0xff00) >> 8
2950    // (x & 0xff000000) >> 8
2951    if (Num != 1 && Num != 3)
2952      return false;
2953    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1));
2954    if (!C || C->getZExtValue() != 8)
2955      return false;
2956  }
2957
2958  if (Parts[Num])
2959    return false;
2960
2961  Parts[Num] = N0.getOperand(0).getNode();
2962  return true;
2963}
2964
2965/// MatchBSwapHWord - Match a 32-bit packed halfword bswap. That is
2966/// ((x&0xff)<<8)|((x&0xff00)>>8)|((x&0x00ff0000)<<8)|((x&0xff000000)>>8)
2967/// => (rotl (bswap x), 16)
2968SDValue DAGCombiner::MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1) {
2969  if (!LegalOperations)
2970    return SDValue();
2971
2972  EVT VT = N->getValueType(0);
2973  if (VT != MVT::i32)
2974    return SDValue();
2975  if (!TLI.isOperationLegal(ISD::BSWAP, VT))
2976    return SDValue();
2977
2978  SmallVector<SDNode*,4> Parts(4, (SDNode*)0);
2979  // Look for either
2980  // (or (or (and), (and)), (or (and), (and)))
2981  // (or (or (or (and), (and)), (and)), (and))
2982  if (N0.getOpcode() != ISD::OR)
2983    return SDValue();
2984  SDValue N00 = N0.getOperand(0);
2985  SDValue N01 = N0.getOperand(1);
2986
2987  if (N1.getOpcode() == ISD::OR) {
2988    // (or (or (and), (and)), (or (and), (and)))
2989    SDValue N000 = N00.getOperand(0);
2990    if (!isBSwapHWordElement(N000, Parts))
2991      return SDValue();
2992
2993    SDValue N001 = N00.getOperand(1);
2994    if (!isBSwapHWordElement(N001, Parts))
2995      return SDValue();
2996    SDValue N010 = N01.getOperand(0);
2997    if (!isBSwapHWordElement(N010, Parts))
2998      return SDValue();
2999    SDValue N011 = N01.getOperand(1);
3000    if (!isBSwapHWordElement(N011, Parts))
3001      return SDValue();
3002  } else {
3003    // (or (or (or (and), (and)), (and)), (and))
3004    if (!isBSwapHWordElement(N1, Parts))
3005      return SDValue();
3006    if (!isBSwapHWordElement(N01, Parts))
3007      return SDValue();
3008    if (N00.getOpcode() != ISD::OR)
3009      return SDValue();
3010    SDValue N000 = N00.getOperand(0);
3011    if (!isBSwapHWordElement(N000, Parts))
3012      return SDValue();
3013    SDValue N001 = N00.getOperand(1);
3014    if (!isBSwapHWordElement(N001, Parts))
3015      return SDValue();
3016  }
3017
3018  // Make sure the parts are all coming from the same node.
3019  if (Parts[0] != Parts[1] || Parts[0] != Parts[2] || Parts[0] != Parts[3])
3020    return SDValue();
3021
3022  SDValue BSwap = DAG.getNode(ISD::BSWAP, N->getDebugLoc(), VT,
3023                              SDValue(Parts[0],0));
3024
3025  // Result of the bswap should be rotated by 16. If it's not legal, than
3026  // do  (x << 16) | (x >> 16).
3027  SDValue ShAmt = DAG.getConstant(16, getShiftAmountTy(VT));
3028  if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT))
3029    return DAG.getNode(ISD::ROTL, N->getDebugLoc(), VT, BSwap, ShAmt);
3030  if (TLI.isOperationLegalOrCustom(ISD::ROTR, VT))
3031    return DAG.getNode(ISD::ROTR, N->getDebugLoc(), VT, BSwap, ShAmt);
3032  return DAG.getNode(ISD::OR, N->getDebugLoc(), VT,
3033                     DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, BSwap, ShAmt),
3034                     DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, BSwap, ShAmt));
3035}
3036
3037SDValue DAGCombiner::visitOR(SDNode *N) {
3038  SDValue N0 = N->getOperand(0);
3039  SDValue N1 = N->getOperand(1);
3040  SDValue LL, LR, RL, RR, CC0, CC1;
3041  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3042  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3043  EVT VT = N1.getValueType();
3044
3045  // fold vector ops
3046  if (VT.isVector()) {
3047    SDValue FoldedVOp = SimplifyVBinOp(N);
3048    if (FoldedVOp.getNode()) return FoldedVOp;
3049
3050    // fold (or x, 0) -> x, vector edition
3051    if (ISD::isBuildVectorAllZeros(N0.getNode()))
3052      return N1;
3053    if (ISD::isBuildVectorAllZeros(N1.getNode()))
3054      return N0;
3055
3056    // fold (or x, -1) -> -1, vector edition
3057    if (ISD::isBuildVectorAllOnes(N0.getNode()))
3058      return N0;
3059    if (ISD::isBuildVectorAllOnes(N1.getNode()))
3060      return N1;
3061  }
3062
3063  // fold (or x, undef) -> -1
3064  if (!LegalOperations &&
3065      (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)) {
3066    EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
3067    return DAG.getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
3068  }
3069  // fold (or c1, c2) -> c1|c2
3070  if (N0C && N1C)
3071    return DAG.FoldConstantArithmetic(ISD::OR, VT, N0C, N1C);
3072  // canonicalize constant to RHS
3073  if (N0C && !N1C)
3074    return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, N1, N0);
3075  // fold (or x, 0) -> x
3076  if (N1C && N1C->isNullValue())
3077    return N0;
3078  // fold (or x, -1) -> -1
3079  if (N1C && N1C->isAllOnesValue())
3080    return N1;
3081  // fold (or x, c) -> c iff (x & ~c) == 0
3082  if (N1C && DAG.MaskedValueIsZero(N0, ~N1C->getAPIntValue()))
3083    return N1;
3084
3085  // Recognize halfword bswaps as (bswap + rotl 16) or (bswap + shl 16)
3086  SDValue BSwap = MatchBSwapHWord(N, N0, N1);
3087  if (BSwap.getNode() != 0)
3088    return BSwap;
3089  BSwap = MatchBSwapHWordLow(N, N0, N1);
3090  if (BSwap.getNode() != 0)
3091    return BSwap;
3092
3093  // reassociate or
3094  SDValue ROR = ReassociateOps(ISD::OR, N->getDebugLoc(), N0, N1);
3095  if (ROR.getNode() != 0)
3096    return ROR;
3097  // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2)
3098  // iff (c1 & c2) == 0.
3099  if (N1C && N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() &&
3100             isa<ConstantSDNode>(N0.getOperand(1))) {
3101    ConstantSDNode *C1 = cast<ConstantSDNode>(N0.getOperand(1));
3102    if ((C1->getAPIntValue() & N1C->getAPIntValue()) != 0)
3103      return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
3104                         DAG.getNode(ISD::OR, N0.getDebugLoc(), VT,
3105                                     N0.getOperand(0), N1),
3106                         DAG.FoldConstantArithmetic(ISD::OR, VT, N1C, C1));
3107  }
3108  // fold (or (setcc x), (setcc y)) -> (setcc (or x, y))
3109  if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
3110    ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
3111    ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
3112
3113    if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
3114        LL.getValueType().isInteger()) {
3115      // fold (or (setne X, 0), (setne Y, 0)) -> (setne (or X, Y), 0)
3116      // fold (or (setlt X, 0), (setlt Y, 0)) -> (setne (or X, Y), 0)
3117      if (cast<ConstantSDNode>(LR)->isNullValue() &&
3118          (Op1 == ISD::SETNE || Op1 == ISD::SETLT)) {
3119        SDValue ORNode = DAG.getNode(ISD::OR, LR.getDebugLoc(),
3120                                     LR.getValueType(), LL, RL);
3121        AddToWorkList(ORNode.getNode());
3122        return DAG.getSetCC(N->getDebugLoc(), VT, ORNode, LR, Op1);
3123      }
3124      // fold (or (setne X, -1), (setne Y, -1)) -> (setne (and X, Y), -1)
3125      // fold (or (setgt X, -1), (setgt Y  -1)) -> (setgt (and X, Y), -1)
3126      if (cast<ConstantSDNode>(LR)->isAllOnesValue() &&
3127          (Op1 == ISD::SETNE || Op1 == ISD::SETGT)) {
3128        SDValue ANDNode = DAG.getNode(ISD::AND, LR.getDebugLoc(),
3129                                      LR.getValueType(), LL, RL);
3130        AddToWorkList(ANDNode.getNode());
3131        return DAG.getSetCC(N->getDebugLoc(), VT, ANDNode, LR, Op1);
3132      }
3133    }
3134    // canonicalize equivalent to ll == rl
3135    if (LL == RR && LR == RL) {
3136      Op1 = ISD::getSetCCSwappedOperands(Op1);
3137      std::swap(RL, RR);
3138    }
3139    if (LL == RL && LR == RR) {
3140      bool isInteger = LL.getValueType().isInteger();
3141      ISD::CondCode Result = ISD::getSetCCOrOperation(Op0, Op1, isInteger);
3142      if (Result != ISD::SETCC_INVALID &&
3143          (!LegalOperations || TLI.isCondCodeLegal(Result, LL.getValueType())))
3144        return DAG.getSetCC(N->getDebugLoc(), N0.getValueType(),
3145                            LL, LR, Result);
3146    }
3147  }
3148
3149  // Simplify: (or (op x...), (op y...))  -> (op (or x, y))
3150  if (N0.getOpcode() == N1.getOpcode()) {
3151    SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N);
3152    if (Tmp.getNode()) return Tmp;
3153  }
3154
3155  // (or (and X, C1), (and Y, C2))  -> (and (or X, Y), C3) if possible.
3156  if (N0.getOpcode() == ISD::AND &&
3157      N1.getOpcode() == ISD::AND &&
3158      N0.getOperand(1).getOpcode() == ISD::Constant &&
3159      N1.getOperand(1).getOpcode() == ISD::Constant &&
3160      // Don't increase # computations.
3161      (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) {
3162    // We can only do this xform if we know that bits from X that are set in C2
3163    // but not in C1 are already zero.  Likewise for Y.
3164    const APInt &LHSMask =
3165      cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
3166    const APInt &RHSMask =
3167      cast<ConstantSDNode>(N1.getOperand(1))->getAPIntValue();
3168
3169    if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) &&
3170        DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) {
3171      SDValue X = DAG.getNode(ISD::OR, N0.getDebugLoc(), VT,
3172                              N0.getOperand(0), N1.getOperand(0));
3173      return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, X,
3174                         DAG.getConstant(LHSMask | RHSMask, VT));
3175    }
3176  }
3177
3178  // See if this is some rotate idiom.
3179  if (SDNode *Rot = MatchRotate(N0, N1, N->getDebugLoc()))
3180    return SDValue(Rot, 0);
3181
3182  // Simplify the operands using demanded-bits information.
3183  if (!VT.isVector() &&
3184      SimplifyDemandedBits(SDValue(N, 0)))
3185    return SDValue(N, 0);
3186
3187  return SDValue();
3188}
3189
3190/// MatchRotateHalf - Match "(X shl/srl V1) & V2" where V2 may not be present.
3191static bool MatchRotateHalf(SDValue Op, SDValue &Shift, SDValue &Mask) {
3192  if (Op.getOpcode() == ISD::AND) {
3193    if (isa<ConstantSDNode>(Op.getOperand(1))) {
3194      Mask = Op.getOperand(1);
3195      Op = Op.getOperand(0);
3196    } else {
3197      return false;
3198    }
3199  }
3200
3201  if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) {
3202    Shift = Op;
3203    return true;
3204  }
3205
3206  return false;
3207}
3208
3209// MatchRotate - Handle an 'or' of two operands.  If this is one of the many
3210// idioms for rotate, and if the target supports rotation instructions, generate
3211// a rot[lr].
3212SDNode *DAGCombiner::MatchRotate(SDValue LHS, SDValue RHS, DebugLoc DL) {
3213  // Must be a legal type.  Expanded 'n promoted things won't work with rotates.
3214  EVT VT = LHS.getValueType();
3215  if (!TLI.isTypeLegal(VT)) return 0;
3216
3217  // The target must have at least one rotate flavor.
3218  bool HasROTL = TLI.isOperationLegalOrCustom(ISD::ROTL, VT);
3219  bool HasROTR = TLI.isOperationLegalOrCustom(ISD::ROTR, VT);
3220  if (!HasROTL && !HasROTR) return 0;
3221
3222  // Match "(X shl/srl V1) & V2" where V2 may not be present.
3223  SDValue LHSShift;   // The shift.
3224  SDValue LHSMask;    // AND value if any.
3225  if (!MatchRotateHalf(LHS, LHSShift, LHSMask))
3226    return 0; // Not part of a rotate.
3227
3228  SDValue RHSShift;   // The shift.
3229  SDValue RHSMask;    // AND value if any.
3230  if (!MatchRotateHalf(RHS, RHSShift, RHSMask))
3231    return 0; // Not part of a rotate.
3232
3233  if (LHSShift.getOperand(0) != RHSShift.getOperand(0))
3234    return 0;   // Not shifting the same value.
3235
3236  if (LHSShift.getOpcode() == RHSShift.getOpcode())
3237    return 0;   // Shifts must disagree.
3238
3239  // Canonicalize shl to left side in a shl/srl pair.
3240  if (RHSShift.getOpcode() == ISD::SHL) {
3241    std::swap(LHS, RHS);
3242    std::swap(LHSShift, RHSShift);
3243    std::swap(LHSMask , RHSMask );
3244  }
3245
3246  unsigned OpSizeInBits = VT.getSizeInBits();
3247  SDValue LHSShiftArg = LHSShift.getOperand(0);
3248  SDValue LHSShiftAmt = LHSShift.getOperand(1);
3249  SDValue RHSShiftAmt = RHSShift.getOperand(1);
3250
3251  // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1)
3252  // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2)
3253  if (LHSShiftAmt.getOpcode() == ISD::Constant &&
3254      RHSShiftAmt.getOpcode() == ISD::Constant) {
3255    uint64_t LShVal = cast<ConstantSDNode>(LHSShiftAmt)->getZExtValue();
3256    uint64_t RShVal = cast<ConstantSDNode>(RHSShiftAmt)->getZExtValue();
3257    if ((LShVal + RShVal) != OpSizeInBits)
3258      return 0;
3259
3260    SDValue Rot = DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT,
3261                              LHSShiftArg, HasROTL ? LHSShiftAmt : RHSShiftAmt);
3262
3263    // If there is an AND of either shifted operand, apply it to the result.
3264    if (LHSMask.getNode() || RHSMask.getNode()) {
3265      APInt Mask = APInt::getAllOnesValue(OpSizeInBits);
3266
3267      if (LHSMask.getNode()) {
3268        APInt RHSBits = APInt::getLowBitsSet(OpSizeInBits, LShVal);
3269        Mask &= cast<ConstantSDNode>(LHSMask)->getAPIntValue() | RHSBits;
3270      }
3271      if (RHSMask.getNode()) {
3272        APInt LHSBits = APInt::getHighBitsSet(OpSizeInBits, RShVal);
3273        Mask &= cast<ConstantSDNode>(RHSMask)->getAPIntValue() | LHSBits;
3274      }
3275
3276      Rot = DAG.getNode(ISD::AND, DL, VT, Rot, DAG.getConstant(Mask, VT));
3277    }
3278
3279    return Rot.getNode();
3280  }
3281
3282  // If there is a mask here, and we have a variable shift, we can't be sure
3283  // that we're masking out the right stuff.
3284  if (LHSMask.getNode() || RHSMask.getNode())
3285    return 0;
3286
3287  // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotl x, y)
3288  // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotr x, (sub 32, y))
3289  if (RHSShiftAmt.getOpcode() == ISD::SUB &&
3290      LHSShiftAmt == RHSShiftAmt.getOperand(1)) {
3291    if (ConstantSDNode *SUBC =
3292          dyn_cast<ConstantSDNode>(RHSShiftAmt.getOperand(0))) {
3293      if (SUBC->getAPIntValue() == OpSizeInBits) {
3294        return DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT, LHSShiftArg,
3295                           HasROTL ? LHSShiftAmt : RHSShiftAmt).getNode();
3296      }
3297    }
3298  }
3299
3300  // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotr x, y)
3301  // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotl x, (sub 32, y))
3302  if (LHSShiftAmt.getOpcode() == ISD::SUB &&
3303      RHSShiftAmt == LHSShiftAmt.getOperand(1)) {
3304    if (ConstantSDNode *SUBC =
3305          dyn_cast<ConstantSDNode>(LHSShiftAmt.getOperand(0))) {
3306      if (SUBC->getAPIntValue() == OpSizeInBits) {
3307        return DAG.getNode(HasROTR ? ISD::ROTR : ISD::ROTL, DL, VT, LHSShiftArg,
3308                           HasROTR ? RHSShiftAmt : LHSShiftAmt).getNode();
3309      }
3310    }
3311  }
3312
3313  // Look for sign/zext/any-extended or truncate cases:
3314  if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND ||
3315       LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND ||
3316       LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND ||
3317       LHSShiftAmt.getOpcode() == ISD::TRUNCATE) &&
3318      (RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND ||
3319       RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND ||
3320       RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND ||
3321       RHSShiftAmt.getOpcode() == ISD::TRUNCATE)) {
3322    SDValue LExtOp0 = LHSShiftAmt.getOperand(0);
3323    SDValue RExtOp0 = RHSShiftAmt.getOperand(0);
3324    if (RExtOp0.getOpcode() == ISD::SUB &&
3325        RExtOp0.getOperand(1) == LExtOp0) {
3326      // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
3327      //   (rotl x, y)
3328      // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
3329      //   (rotr x, (sub 32, y))
3330      if (ConstantSDNode *SUBC =
3331            dyn_cast<ConstantSDNode>(RExtOp0.getOperand(0))) {
3332        if (SUBC->getAPIntValue() == OpSizeInBits) {
3333          return DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT,
3334                             LHSShiftArg,
3335                             HasROTL ? LHSShiftAmt : RHSShiftAmt).getNode();
3336        }
3337      }
3338    } else if (LExtOp0.getOpcode() == ISD::SUB &&
3339               RExtOp0 == LExtOp0.getOperand(1)) {
3340      // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext y))) ->
3341      //   (rotr x, y)
3342      // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext y))) ->
3343      //   (rotl x, (sub 32, y))
3344      if (ConstantSDNode *SUBC =
3345            dyn_cast<ConstantSDNode>(LExtOp0.getOperand(0))) {
3346        if (SUBC->getAPIntValue() == OpSizeInBits) {
3347          return DAG.getNode(HasROTR ? ISD::ROTR : ISD::ROTL, DL, VT,
3348                             LHSShiftArg,
3349                             HasROTR ? RHSShiftAmt : LHSShiftAmt).getNode();
3350        }
3351      }
3352    }
3353  }
3354
3355  return 0;
3356}
3357
3358SDValue DAGCombiner::visitXOR(SDNode *N) {
3359  SDValue N0 = N->getOperand(0);
3360  SDValue N1 = N->getOperand(1);
3361  SDValue LHS, RHS, CC;
3362  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3363  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3364  EVT VT = N0.getValueType();
3365
3366  // fold vector ops
3367  if (VT.isVector()) {
3368    SDValue FoldedVOp = SimplifyVBinOp(N);
3369    if (FoldedVOp.getNode()) return FoldedVOp;
3370
3371    // fold (xor x, 0) -> x, vector edition
3372    if (ISD::isBuildVectorAllZeros(N0.getNode()))
3373      return N1;
3374    if (ISD::isBuildVectorAllZeros(N1.getNode()))
3375      return N0;
3376  }
3377
3378  // fold (xor undef, undef) -> 0. This is a common idiom (misuse).
3379  if (N0.getOpcode() == ISD::UNDEF && N1.getOpcode() == ISD::UNDEF)
3380    return DAG.getConstant(0, VT);
3381  // fold (xor x, undef) -> undef
3382  if (N0.getOpcode() == ISD::UNDEF)
3383    return N0;
3384  if (N1.getOpcode() == ISD::UNDEF)
3385    return N1;
3386  // fold (xor c1, c2) -> c1^c2
3387  if (N0C && N1C)
3388    return DAG.FoldConstantArithmetic(ISD::XOR, VT, N0C, N1C);
3389  // canonicalize constant to RHS
3390  if (N0C && !N1C)
3391    return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT, N1, N0);
3392  // fold (xor x, 0) -> x
3393  if (N1C && N1C->isNullValue())
3394    return N0;
3395  // reassociate xor
3396  SDValue RXOR = ReassociateOps(ISD::XOR, N->getDebugLoc(), N0, N1);
3397  if (RXOR.getNode() != 0)
3398    return RXOR;
3399
3400  // fold !(x cc y) -> (x !cc y)
3401  if (N1C && N1C->getAPIntValue() == 1 && isSetCCEquivalent(N0, LHS, RHS, CC)) {
3402    bool isInt = LHS.getValueType().isInteger();
3403    ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
3404                                               isInt);
3405
3406    if (!LegalOperations || TLI.isCondCodeLegal(NotCC, LHS.getValueType())) {
3407      switch (N0.getOpcode()) {
3408      default:
3409        llvm_unreachable("Unhandled SetCC Equivalent!");
3410      case ISD::SETCC:
3411        return DAG.getSetCC(N->getDebugLoc(), VT, LHS, RHS, NotCC);
3412      case ISD::SELECT_CC:
3413        return DAG.getSelectCC(N->getDebugLoc(), LHS, RHS, N0.getOperand(2),
3414                               N0.getOperand(3), NotCC);
3415      }
3416    }
3417  }
3418
3419  // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y)))
3420  if (N1C && N1C->getAPIntValue() == 1 && N0.getOpcode() == ISD::ZERO_EXTEND &&
3421      N0.getNode()->hasOneUse() &&
3422      isSetCCEquivalent(N0.getOperand(0), LHS, RHS, CC)){
3423    SDValue V = N0.getOperand(0);
3424    V = DAG.getNode(ISD::XOR, N0.getDebugLoc(), V.getValueType(), V,
3425                    DAG.getConstant(1, V.getValueType()));
3426    AddToWorkList(V.getNode());
3427    return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT, V);
3428  }
3429
3430  // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are setcc
3431  if (N1C && N1C->getAPIntValue() == 1 && VT == MVT::i1 &&
3432      (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
3433    SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
3434    if (isOneUseSetCC(RHS) || isOneUseSetCC(LHS)) {
3435      unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
3436      LHS = DAG.getNode(ISD::XOR, LHS.getDebugLoc(), VT, LHS, N1); // LHS = ~LHS
3437      RHS = DAG.getNode(ISD::XOR, RHS.getDebugLoc(), VT, RHS, N1); // RHS = ~RHS
3438      AddToWorkList(LHS.getNode()); AddToWorkList(RHS.getNode());
3439      return DAG.getNode(NewOpcode, N->getDebugLoc(), VT, LHS, RHS);
3440    }
3441  }
3442  // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are constants
3443  if (N1C && N1C->isAllOnesValue() &&
3444      (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
3445    SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
3446    if (isa<ConstantSDNode>(RHS) || isa<ConstantSDNode>(LHS)) {
3447      unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
3448      LHS = DAG.getNode(ISD::XOR, LHS.getDebugLoc(), VT, LHS, N1); // LHS = ~LHS
3449      RHS = DAG.getNode(ISD::XOR, RHS.getDebugLoc(), VT, RHS, N1); // RHS = ~RHS
3450      AddToWorkList(LHS.getNode()); AddToWorkList(RHS.getNode());
3451      return DAG.getNode(NewOpcode, N->getDebugLoc(), VT, LHS, RHS);
3452    }
3453  }
3454  // fold (xor (xor x, c1), c2) -> (xor x, (xor c1, c2))
3455  if (N1C && N0.getOpcode() == ISD::XOR) {
3456    ConstantSDNode *N00C = dyn_cast<ConstantSDNode>(N0.getOperand(0));
3457    ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
3458    if (N00C)
3459      return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT, N0.getOperand(1),
3460                         DAG.getConstant(N1C->getAPIntValue() ^
3461                                         N00C->getAPIntValue(), VT));
3462    if (N01C)
3463      return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT, N0.getOperand(0),
3464                         DAG.getConstant(N1C->getAPIntValue() ^
3465                                         N01C->getAPIntValue(), VT));
3466  }
3467  // fold (xor x, x) -> 0
3468  if (N0 == N1)
3469    return tryFoldToZero(N->getDebugLoc(), TLI, VT, DAG, LegalOperations);
3470
3471  // Simplify: xor (op x...), (op y...)  -> (op (xor x, y))
3472  if (N0.getOpcode() == N1.getOpcode()) {
3473    SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N);
3474    if (Tmp.getNode()) return Tmp;
3475  }
3476
3477  // Simplify the expression using non-local knowledge.
3478  if (!VT.isVector() &&
3479      SimplifyDemandedBits(SDValue(N, 0)))
3480    return SDValue(N, 0);
3481
3482  return SDValue();
3483}
3484
3485/// visitShiftByConstant - Handle transforms common to the three shifts, when
3486/// the shift amount is a constant.
3487SDValue DAGCombiner::visitShiftByConstant(SDNode *N, unsigned Amt) {
3488  SDNode *LHS = N->getOperand(0).getNode();
3489  if (!LHS->hasOneUse()) return SDValue();
3490
3491  // We want to pull some binops through shifts, so that we have (and (shift))
3492  // instead of (shift (and)), likewise for add, or, xor, etc.  This sort of
3493  // thing happens with address calculations, so it's important to canonicalize
3494  // it.
3495  bool HighBitSet = false;  // Can we transform this if the high bit is set?
3496
3497  switch (LHS->getOpcode()) {
3498  default: return SDValue();
3499  case ISD::OR:
3500  case ISD::XOR:
3501    HighBitSet = false; // We can only transform sra if the high bit is clear.
3502    break;
3503  case ISD::AND:
3504    HighBitSet = true;  // We can only transform sra if the high bit is set.
3505    break;
3506  case ISD::ADD:
3507    if (N->getOpcode() != ISD::SHL)
3508      return SDValue(); // only shl(add) not sr[al](add).
3509    HighBitSet = false; // We can only transform sra if the high bit is clear.
3510    break;
3511  }
3512
3513  // We require the RHS of the binop to be a constant as well.
3514  ConstantSDNode *BinOpCst = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
3515  if (!BinOpCst) return SDValue();
3516
3517  // FIXME: disable this unless the input to the binop is a shift by a constant.
3518  // If it is not a shift, it pessimizes some common cases like:
3519  //
3520  //    void foo(int *X, int i) { X[i & 1235] = 1; }
3521  //    int bar(int *X, int i) { return X[i & 255]; }
3522  SDNode *BinOpLHSVal = LHS->getOperand(0).getNode();
3523  if ((BinOpLHSVal->getOpcode() != ISD::SHL &&
3524       BinOpLHSVal->getOpcode() != ISD::SRA &&
3525       BinOpLHSVal->getOpcode() != ISD::SRL) ||
3526      !isa<ConstantSDNode>(BinOpLHSVal->getOperand(1)))
3527    return SDValue();
3528
3529  EVT VT = N->getValueType(0);
3530
3531  // If this is a signed shift right, and the high bit is modified by the
3532  // logical operation, do not perform the transformation. The highBitSet
3533  // boolean indicates the value of the high bit of the constant which would
3534  // cause it to be modified for this operation.
3535  if (N->getOpcode() == ISD::SRA) {
3536    bool BinOpRHSSignSet = BinOpCst->getAPIntValue().isNegative();
3537    if (BinOpRHSSignSet != HighBitSet)
3538      return SDValue();
3539  }
3540
3541  // Fold the constants, shifting the binop RHS by the shift amount.
3542  SDValue NewRHS = DAG.getNode(N->getOpcode(), LHS->getOperand(1).getDebugLoc(),
3543                               N->getValueType(0),
3544                               LHS->getOperand(1), N->getOperand(1));
3545
3546  // Create the new shift.
3547  SDValue NewShift = DAG.getNode(N->getOpcode(),
3548                                 LHS->getOperand(0).getDebugLoc(),
3549                                 VT, LHS->getOperand(0), N->getOperand(1));
3550
3551  // Create the new binop.
3552  return DAG.getNode(LHS->getOpcode(), N->getDebugLoc(), VT, NewShift, NewRHS);
3553}
3554
3555SDValue DAGCombiner::visitSHL(SDNode *N) {
3556  SDValue N0 = N->getOperand(0);
3557  SDValue N1 = N->getOperand(1);
3558  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3559  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3560  EVT VT = N0.getValueType();
3561  unsigned OpSizeInBits = VT.getScalarType().getSizeInBits();
3562
3563  // fold (shl c1, c2) -> c1<<c2
3564  if (N0C && N1C)
3565    return DAG.FoldConstantArithmetic(ISD::SHL, VT, N0C, N1C);
3566  // fold (shl 0, x) -> 0
3567  if (N0C && N0C->isNullValue())
3568    return N0;
3569  // fold (shl x, c >= size(x)) -> undef
3570  if (N1C && N1C->getZExtValue() >= OpSizeInBits)
3571    return DAG.getUNDEF(VT);
3572  // fold (shl x, 0) -> x
3573  if (N1C && N1C->isNullValue())
3574    return N0;
3575  // fold (shl undef, x) -> 0
3576  if (N0.getOpcode() == ISD::UNDEF)
3577    return DAG.getConstant(0, VT);
3578  // if (shl x, c) is known to be zero, return 0
3579  if (DAG.MaskedValueIsZero(SDValue(N, 0),
3580                            APInt::getAllOnesValue(OpSizeInBits)))
3581    return DAG.getConstant(0, VT);
3582  // fold (shl x, (trunc (and y, c))) -> (shl x, (and (trunc y), (trunc c))).
3583  if (N1.getOpcode() == ISD::TRUNCATE &&
3584      N1.getOperand(0).getOpcode() == ISD::AND &&
3585      N1.hasOneUse() && N1.getOperand(0).hasOneUse()) {
3586    SDValue N101 = N1.getOperand(0).getOperand(1);
3587    if (ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N101)) {
3588      EVT TruncVT = N1.getValueType();
3589      SDValue N100 = N1.getOperand(0).getOperand(0);
3590      APInt TruncC = N101C->getAPIntValue();
3591      TruncC = TruncC.trunc(TruncVT.getSizeInBits());
3592      return DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, N0,
3593                         DAG.getNode(ISD::AND, N->getDebugLoc(), TruncVT,
3594                                     DAG.getNode(ISD::TRUNCATE,
3595                                                 N->getDebugLoc(),
3596                                                 TruncVT, N100),
3597                                     DAG.getConstant(TruncC, TruncVT)));
3598    }
3599  }
3600
3601  if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
3602    return SDValue(N, 0);
3603
3604  // fold (shl (shl x, c1), c2) -> 0 or (shl x, (add c1, c2))
3605  if (N1C && N0.getOpcode() == ISD::SHL &&
3606      N0.getOperand(1).getOpcode() == ISD::Constant) {
3607    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
3608    uint64_t c2 = N1C->getZExtValue();
3609    if (c1 + c2 >= OpSizeInBits)
3610      return DAG.getConstant(0, VT);
3611    return DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, N0.getOperand(0),
3612                       DAG.getConstant(c1 + c2, N1.getValueType()));
3613  }
3614
3615  // fold (shl (ext (shl x, c1)), c2) -> (ext (shl x, (add c1, c2)))
3616  // For this to be valid, the second form must not preserve any of the bits
3617  // that are shifted out by the inner shift in the first form.  This means
3618  // the outer shift size must be >= the number of bits added by the ext.
3619  // As a corollary, we don't care what kind of ext it is.
3620  if (N1C && (N0.getOpcode() == ISD::ZERO_EXTEND ||
3621              N0.getOpcode() == ISD::ANY_EXTEND ||
3622              N0.getOpcode() == ISD::SIGN_EXTEND) &&
3623      N0.getOperand(0).getOpcode() == ISD::SHL &&
3624      isa<ConstantSDNode>(N0.getOperand(0)->getOperand(1))) {
3625    uint64_t c1 =
3626      cast<ConstantSDNode>(N0.getOperand(0)->getOperand(1))->getZExtValue();
3627    uint64_t c2 = N1C->getZExtValue();
3628    EVT InnerShiftVT = N0.getOperand(0).getValueType();
3629    uint64_t InnerShiftSize = InnerShiftVT.getScalarType().getSizeInBits();
3630    if (c2 >= OpSizeInBits - InnerShiftSize) {
3631      if (c1 + c2 >= OpSizeInBits)
3632        return DAG.getConstant(0, VT);
3633      return DAG.getNode(ISD::SHL, N0->getDebugLoc(), VT,
3634                         DAG.getNode(N0.getOpcode(), N0->getDebugLoc(), VT,
3635                                     N0.getOperand(0)->getOperand(0)),
3636                         DAG.getConstant(c1 + c2, N1.getValueType()));
3637    }
3638  }
3639
3640  // fold (shl (srl x, c1), c2) -> (and (shl x, (sub c2, c1), MASK) or
3641  //                               (and (srl x, (sub c1, c2), MASK)
3642  // Only fold this if the inner shift has no other uses -- if it does, folding
3643  // this will increase the total number of instructions.
3644  if (N1C && N0.getOpcode() == ISD::SRL && N0.hasOneUse() &&
3645      N0.getOperand(1).getOpcode() == ISD::Constant) {
3646    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
3647    if (c1 < VT.getSizeInBits()) {
3648      uint64_t c2 = N1C->getZExtValue();
3649      APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
3650                                         VT.getSizeInBits() - c1);
3651      SDValue Shift;
3652      if (c2 > c1) {
3653        Mask = Mask.shl(c2-c1);
3654        Shift = DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, N0.getOperand(0),
3655                            DAG.getConstant(c2-c1, N1.getValueType()));
3656      } else {
3657        Mask = Mask.lshr(c1-c2);
3658        Shift = DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0.getOperand(0),
3659                            DAG.getConstant(c1-c2, N1.getValueType()));
3660      }
3661      return DAG.getNode(ISD::AND, N0.getDebugLoc(), VT, Shift,
3662                         DAG.getConstant(Mask, VT));
3663    }
3664  }
3665  // fold (shl (sra x, c1), c1) -> (and x, (shl -1, c1))
3666  if (N1C && N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1)) {
3667    SDValue HiBitsMask =
3668      DAG.getConstant(APInt::getHighBitsSet(VT.getSizeInBits(),
3669                                            VT.getSizeInBits() -
3670                                              N1C->getZExtValue()),
3671                      VT);
3672    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0.getOperand(0),
3673                       HiBitsMask);
3674  }
3675
3676  if (N1C) {
3677    SDValue NewSHL = visitShiftByConstant(N, N1C->getZExtValue());
3678    if (NewSHL.getNode())
3679      return NewSHL;
3680  }
3681
3682  return SDValue();
3683}
3684
3685SDValue DAGCombiner::visitSRA(SDNode *N) {
3686  SDValue N0 = N->getOperand(0);
3687  SDValue N1 = N->getOperand(1);
3688  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3689  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3690  EVT VT = N0.getValueType();
3691  unsigned OpSizeInBits = VT.getScalarType().getSizeInBits();
3692
3693  // fold (sra c1, c2) -> (sra c1, c2)
3694  if (N0C && N1C)
3695    return DAG.FoldConstantArithmetic(ISD::SRA, VT, N0C, N1C);
3696  // fold (sra 0, x) -> 0
3697  if (N0C && N0C->isNullValue())
3698    return N0;
3699  // fold (sra -1, x) -> -1
3700  if (N0C && N0C->isAllOnesValue())
3701    return N0;
3702  // fold (sra x, (setge c, size(x))) -> undef
3703  if (N1C && N1C->getZExtValue() >= OpSizeInBits)
3704    return DAG.getUNDEF(VT);
3705  // fold (sra x, 0) -> x
3706  if (N1C && N1C->isNullValue())
3707    return N0;
3708  // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports
3709  // sext_inreg.
3710  if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) {
3711    unsigned LowBits = OpSizeInBits - (unsigned)N1C->getZExtValue();
3712    EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), LowBits);
3713    if (VT.isVector())
3714      ExtVT = EVT::getVectorVT(*DAG.getContext(),
3715                               ExtVT, VT.getVectorNumElements());
3716    if ((!LegalOperations ||
3717         TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, ExtVT)))
3718      return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(), VT,
3719                         N0.getOperand(0), DAG.getValueType(ExtVT));
3720  }
3721
3722  // fold (sra (sra x, c1), c2) -> (sra x, (add c1, c2))
3723  if (N1C && N0.getOpcode() == ISD::SRA) {
3724    if (ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3725      unsigned Sum = N1C->getZExtValue() + C1->getZExtValue();
3726      if (Sum >= OpSizeInBits) Sum = OpSizeInBits-1;
3727      return DAG.getNode(ISD::SRA, N->getDebugLoc(), VT, N0.getOperand(0),
3728                         DAG.getConstant(Sum, N1C->getValueType(0)));
3729    }
3730  }
3731
3732  // fold (sra (shl X, m), (sub result_size, n))
3733  // -> (sign_extend (trunc (shl X, (sub (sub result_size, n), m)))) for
3734  // result_size - n != m.
3735  // If truncate is free for the target sext(shl) is likely to result in better
3736  // code.
3737  if (N0.getOpcode() == ISD::SHL) {
3738    // Get the two constanst of the shifts, CN0 = m, CN = n.
3739    const ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
3740    if (N01C && N1C) {
3741      // Determine what the truncate's result bitsize and type would be.
3742      EVT TruncVT =
3743        EVT::getIntegerVT(*DAG.getContext(),
3744                          OpSizeInBits - N1C->getZExtValue());
3745      // Determine the residual right-shift amount.
3746      signed ShiftAmt = N1C->getZExtValue() - N01C->getZExtValue();
3747
3748      // If the shift is not a no-op (in which case this should be just a sign
3749      // extend already), the truncated to type is legal, sign_extend is legal
3750      // on that type, and the truncate to that type is both legal and free,
3751      // perform the transform.
3752      if ((ShiftAmt > 0) &&
3753          TLI.isOperationLegalOrCustom(ISD::SIGN_EXTEND, TruncVT) &&
3754          TLI.isOperationLegalOrCustom(ISD::TRUNCATE, VT) &&
3755          TLI.isTruncateFree(VT, TruncVT)) {
3756
3757          SDValue Amt = DAG.getConstant(ShiftAmt,
3758              getShiftAmountTy(N0.getOperand(0).getValueType()));
3759          SDValue Shift = DAG.getNode(ISD::SRL, N0.getDebugLoc(), VT,
3760                                      N0.getOperand(0), Amt);
3761          SDValue Trunc = DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(), TruncVT,
3762                                      Shift);
3763          return DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(),
3764                             N->getValueType(0), Trunc);
3765      }
3766    }
3767  }
3768
3769  // fold (sra x, (trunc (and y, c))) -> (sra x, (and (trunc y), (trunc c))).
3770  if (N1.getOpcode() == ISD::TRUNCATE &&
3771      N1.getOperand(0).getOpcode() == ISD::AND &&
3772      N1.hasOneUse() && N1.getOperand(0).hasOneUse()) {
3773    SDValue N101 = N1.getOperand(0).getOperand(1);
3774    if (ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N101)) {
3775      EVT TruncVT = N1.getValueType();
3776      SDValue N100 = N1.getOperand(0).getOperand(0);
3777      APInt TruncC = N101C->getAPIntValue();
3778      TruncC = TruncC.trunc(TruncVT.getScalarType().getSizeInBits());
3779      return DAG.getNode(ISD::SRA, N->getDebugLoc(), VT, N0,
3780                         DAG.getNode(ISD::AND, N->getDebugLoc(),
3781                                     TruncVT,
3782                                     DAG.getNode(ISD::TRUNCATE,
3783                                                 N->getDebugLoc(),
3784                                                 TruncVT, N100),
3785                                     DAG.getConstant(TruncC, TruncVT)));
3786    }
3787  }
3788
3789  // fold (sra (trunc (sr x, c1)), c2) -> (trunc (sra x, c1+c2))
3790  //      if c1 is equal to the number of bits the trunc removes
3791  if (N0.getOpcode() == ISD::TRUNCATE &&
3792      (N0.getOperand(0).getOpcode() == ISD::SRL ||
3793       N0.getOperand(0).getOpcode() == ISD::SRA) &&
3794      N0.getOperand(0).hasOneUse() &&
3795      N0.getOperand(0).getOperand(1).hasOneUse() &&
3796      N1C && isa<ConstantSDNode>(N0.getOperand(0).getOperand(1))) {
3797    EVT LargeVT = N0.getOperand(0).getValueType();
3798    ConstantSDNode *LargeShiftAmt =
3799      cast<ConstantSDNode>(N0.getOperand(0).getOperand(1));
3800
3801    if (LargeVT.getScalarType().getSizeInBits() - OpSizeInBits ==
3802        LargeShiftAmt->getZExtValue()) {
3803      SDValue Amt =
3804        DAG.getConstant(LargeShiftAmt->getZExtValue() + N1C->getZExtValue(),
3805              getShiftAmountTy(N0.getOperand(0).getOperand(0).getValueType()));
3806      SDValue SRA = DAG.getNode(ISD::SRA, N->getDebugLoc(), LargeVT,
3807                                N0.getOperand(0).getOperand(0), Amt);
3808      return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, SRA);
3809    }
3810  }
3811
3812  // Simplify, based on bits shifted out of the LHS.
3813  if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
3814    return SDValue(N, 0);
3815
3816
3817  // If the sign bit is known to be zero, switch this to a SRL.
3818  if (DAG.SignBitIsZero(N0))
3819    return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0, N1);
3820
3821  if (N1C) {
3822    SDValue NewSRA = visitShiftByConstant(N, N1C->getZExtValue());
3823    if (NewSRA.getNode())
3824      return NewSRA;
3825  }
3826
3827  return SDValue();
3828}
3829
3830SDValue DAGCombiner::visitSRL(SDNode *N) {
3831  SDValue N0 = N->getOperand(0);
3832  SDValue N1 = N->getOperand(1);
3833  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3834  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3835  EVT VT = N0.getValueType();
3836  unsigned OpSizeInBits = VT.getScalarType().getSizeInBits();
3837
3838  // fold (srl c1, c2) -> c1 >>u c2
3839  if (N0C && N1C)
3840    return DAG.FoldConstantArithmetic(ISD::SRL, VT, N0C, N1C);
3841  // fold (srl 0, x) -> 0
3842  if (N0C && N0C->isNullValue())
3843    return N0;
3844  // fold (srl x, c >= size(x)) -> undef
3845  if (N1C && N1C->getZExtValue() >= OpSizeInBits)
3846    return DAG.getUNDEF(VT);
3847  // fold (srl x, 0) -> x
3848  if (N1C && N1C->isNullValue())
3849    return N0;
3850  // if (srl x, c) is known to be zero, return 0
3851  if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0),
3852                                   APInt::getAllOnesValue(OpSizeInBits)))
3853    return DAG.getConstant(0, VT);
3854
3855  // fold (srl (srl x, c1), c2) -> 0 or (srl x, (add c1, c2))
3856  if (N1C && N0.getOpcode() == ISD::SRL &&
3857      N0.getOperand(1).getOpcode() == ISD::Constant) {
3858    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
3859    uint64_t c2 = N1C->getZExtValue();
3860    if (c1 + c2 >= OpSizeInBits)
3861      return DAG.getConstant(0, VT);
3862    return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0.getOperand(0),
3863                       DAG.getConstant(c1 + c2, N1.getValueType()));
3864  }
3865
3866  // fold (srl (trunc (srl x, c1)), c2) -> 0 or (trunc (srl x, (add c1, c2)))
3867  if (N1C && N0.getOpcode() == ISD::TRUNCATE &&
3868      N0.getOperand(0).getOpcode() == ISD::SRL &&
3869      isa<ConstantSDNode>(N0.getOperand(0)->getOperand(1))) {
3870    uint64_t c1 =
3871      cast<ConstantSDNode>(N0.getOperand(0)->getOperand(1))->getZExtValue();
3872    uint64_t c2 = N1C->getZExtValue();
3873    EVT InnerShiftVT = N0.getOperand(0).getValueType();
3874    EVT ShiftCountVT = N0.getOperand(0)->getOperand(1).getValueType();
3875    uint64_t InnerShiftSize = InnerShiftVT.getScalarType().getSizeInBits();
3876    // This is only valid if the OpSizeInBits + c1 = size of inner shift.
3877    if (c1 + OpSizeInBits == InnerShiftSize) {
3878      if (c1 + c2 >= InnerShiftSize)
3879        return DAG.getConstant(0, VT);
3880      return DAG.getNode(ISD::TRUNCATE, N0->getDebugLoc(), VT,
3881                         DAG.getNode(ISD::SRL, N0->getDebugLoc(), InnerShiftVT,
3882                                     N0.getOperand(0)->getOperand(0),
3883                                     DAG.getConstant(c1 + c2, ShiftCountVT)));
3884    }
3885  }
3886
3887  // fold (srl (shl x, c), c) -> (and x, cst2)
3888  if (N1C && N0.getOpcode() == ISD::SHL && N0.getOperand(1) == N1 &&
3889      N0.getValueSizeInBits() <= 64) {
3890    uint64_t ShAmt = N1C->getZExtValue()+64-N0.getValueSizeInBits();
3891    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0.getOperand(0),
3892                       DAG.getConstant(~0ULL >> ShAmt, VT));
3893  }
3894
3895
3896  // fold (srl (anyextend x), c) -> (anyextend (srl x, c))
3897  if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
3898    // Shifting in all undef bits?
3899    EVT SmallVT = N0.getOperand(0).getValueType();
3900    if (N1C->getZExtValue() >= SmallVT.getSizeInBits())
3901      return DAG.getUNDEF(VT);
3902
3903    if (!LegalTypes || TLI.isTypeDesirableForOp(ISD::SRL, SmallVT)) {
3904      uint64_t ShiftAmt = N1C->getZExtValue();
3905      SDValue SmallShift = DAG.getNode(ISD::SRL, N0.getDebugLoc(), SmallVT,
3906                                       N0.getOperand(0),
3907                          DAG.getConstant(ShiftAmt, getShiftAmountTy(SmallVT)));
3908      AddToWorkList(SmallShift.getNode());
3909      return DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, SmallShift);
3910    }
3911  }
3912
3913  // fold (srl (sra X, Y), 31) -> (srl X, 31).  This srl only looks at the sign
3914  // bit, which is unmodified by sra.
3915  if (N1C && N1C->getZExtValue() + 1 == VT.getSizeInBits()) {
3916    if (N0.getOpcode() == ISD::SRA)
3917      return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0.getOperand(0), N1);
3918  }
3919
3920  // fold (srl (ctlz x), "5") -> x  iff x has one bit set (the low bit).
3921  if (N1C && N0.getOpcode() == ISD::CTLZ &&
3922      N1C->getAPIntValue() == Log2_32(VT.getSizeInBits())) {
3923    APInt KnownZero, KnownOne;
3924    DAG.ComputeMaskedBits(N0.getOperand(0), KnownZero, KnownOne);
3925
3926    // If any of the input bits are KnownOne, then the input couldn't be all
3927    // zeros, thus the result of the srl will always be zero.
3928    if (KnownOne.getBoolValue()) return DAG.getConstant(0, VT);
3929
3930    // If all of the bits input the to ctlz node are known to be zero, then
3931    // the result of the ctlz is "32" and the result of the shift is one.
3932    APInt UnknownBits = ~KnownZero;
3933    if (UnknownBits == 0) return DAG.getConstant(1, VT);
3934
3935    // Otherwise, check to see if there is exactly one bit input to the ctlz.
3936    if ((UnknownBits & (UnknownBits - 1)) == 0) {
3937      // Okay, we know that only that the single bit specified by UnknownBits
3938      // could be set on input to the CTLZ node. If this bit is set, the SRL
3939      // will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair
3940      // to an SRL/XOR pair, which is likely to simplify more.
3941      unsigned ShAmt = UnknownBits.countTrailingZeros();
3942      SDValue Op = N0.getOperand(0);
3943
3944      if (ShAmt) {
3945        Op = DAG.getNode(ISD::SRL, N0.getDebugLoc(), VT, Op,
3946                  DAG.getConstant(ShAmt, getShiftAmountTy(Op.getValueType())));
3947        AddToWorkList(Op.getNode());
3948      }
3949
3950      return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT,
3951                         Op, DAG.getConstant(1, VT));
3952    }
3953  }
3954
3955  // fold (srl x, (trunc (and y, c))) -> (srl x, (and (trunc y), (trunc c))).
3956  if (N1.getOpcode() == ISD::TRUNCATE &&
3957      N1.getOperand(0).getOpcode() == ISD::AND &&
3958      N1.hasOneUse() && N1.getOperand(0).hasOneUse()) {
3959    SDValue N101 = N1.getOperand(0).getOperand(1);
3960    if (ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N101)) {
3961      EVT TruncVT = N1.getValueType();
3962      SDValue N100 = N1.getOperand(0).getOperand(0);
3963      APInt TruncC = N101C->getAPIntValue();
3964      TruncC = TruncC.trunc(TruncVT.getSizeInBits());
3965      return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0,
3966                         DAG.getNode(ISD::AND, N->getDebugLoc(),
3967                                     TruncVT,
3968                                     DAG.getNode(ISD::TRUNCATE,
3969                                                 N->getDebugLoc(),
3970                                                 TruncVT, N100),
3971                                     DAG.getConstant(TruncC, TruncVT)));
3972    }
3973  }
3974
3975  // fold operands of srl based on knowledge that the low bits are not
3976  // demanded.
3977  if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
3978    return SDValue(N, 0);
3979
3980  if (N1C) {
3981    SDValue NewSRL = visitShiftByConstant(N, N1C->getZExtValue());
3982    if (NewSRL.getNode())
3983      return NewSRL;
3984  }
3985
3986  // Attempt to convert a srl of a load into a narrower zero-extending load.
3987  SDValue NarrowLoad = ReduceLoadWidth(N);
3988  if (NarrowLoad.getNode())
3989    return NarrowLoad;
3990
3991  // Here is a common situation. We want to optimize:
3992  //
3993  //   %a = ...
3994  //   %b = and i32 %a, 2
3995  //   %c = srl i32 %b, 1
3996  //   brcond i32 %c ...
3997  //
3998  // into
3999  //
4000  //   %a = ...
4001  //   %b = and %a, 2
4002  //   %c = setcc eq %b, 0
4003  //   brcond %c ...
4004  //
4005  // However when after the source operand of SRL is optimized into AND, the SRL
4006  // itself may not be optimized further. Look for it and add the BRCOND into
4007  // the worklist.
4008  if (N->hasOneUse()) {
4009    SDNode *Use = *N->use_begin();
4010    if (Use->getOpcode() == ISD::BRCOND)
4011      AddToWorkList(Use);
4012    else if (Use->getOpcode() == ISD::TRUNCATE && Use->hasOneUse()) {
4013      // Also look pass the truncate.
4014      Use = *Use->use_begin();
4015      if (Use->getOpcode() == ISD::BRCOND)
4016        AddToWorkList(Use);
4017    }
4018  }
4019
4020  return SDValue();
4021}
4022
4023SDValue DAGCombiner::visitCTLZ(SDNode *N) {
4024  SDValue N0 = N->getOperand(0);
4025  EVT VT = N->getValueType(0);
4026
4027  // fold (ctlz c1) -> c2
4028  if (isa<ConstantSDNode>(N0))
4029    return DAG.getNode(ISD::CTLZ, N->getDebugLoc(), VT, N0);
4030  return SDValue();
4031}
4032
4033SDValue DAGCombiner::visitCTLZ_ZERO_UNDEF(SDNode *N) {
4034  SDValue N0 = N->getOperand(0);
4035  EVT VT = N->getValueType(0);
4036
4037  // fold (ctlz_zero_undef c1) -> c2
4038  if (isa<ConstantSDNode>(N0))
4039    return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, N->getDebugLoc(), VT, N0);
4040  return SDValue();
4041}
4042
4043SDValue DAGCombiner::visitCTTZ(SDNode *N) {
4044  SDValue N0 = N->getOperand(0);
4045  EVT VT = N->getValueType(0);
4046
4047  // fold (cttz c1) -> c2
4048  if (isa<ConstantSDNode>(N0))
4049    return DAG.getNode(ISD::CTTZ, N->getDebugLoc(), VT, N0);
4050  return SDValue();
4051}
4052
4053SDValue DAGCombiner::visitCTTZ_ZERO_UNDEF(SDNode *N) {
4054  SDValue N0 = N->getOperand(0);
4055  EVT VT = N->getValueType(0);
4056
4057  // fold (cttz_zero_undef c1) -> c2
4058  if (isa<ConstantSDNode>(N0))
4059    return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, N->getDebugLoc(), VT, N0);
4060  return SDValue();
4061}
4062
4063SDValue DAGCombiner::visitCTPOP(SDNode *N) {
4064  SDValue N0 = N->getOperand(0);
4065  EVT VT = N->getValueType(0);
4066
4067  // fold (ctpop c1) -> c2
4068  if (isa<ConstantSDNode>(N0))
4069    return DAG.getNode(ISD::CTPOP, N->getDebugLoc(), VT, N0);
4070  return SDValue();
4071}
4072
4073SDValue DAGCombiner::visitSELECT(SDNode *N) {
4074  SDValue N0 = N->getOperand(0);
4075  SDValue N1 = N->getOperand(1);
4076  SDValue N2 = N->getOperand(2);
4077  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
4078  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
4079  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
4080  EVT VT = N->getValueType(0);
4081  EVT VT0 = N0.getValueType();
4082
4083  // fold (select C, X, X) -> X
4084  if (N1 == N2)
4085    return N1;
4086  // fold (select true, X, Y) -> X
4087  if (N0C && !N0C->isNullValue())
4088    return N1;
4089  // fold (select false, X, Y) -> Y
4090  if (N0C && N0C->isNullValue())
4091    return N2;
4092  // fold (select C, 1, X) -> (or C, X)
4093  if (VT == MVT::i1 && N1C && N1C->getAPIntValue() == 1)
4094    return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, N0, N2);
4095  // fold (select C, 0, 1) -> (xor C, 1)
4096  if (VT.isInteger() &&
4097      (VT0 == MVT::i1 ||
4098       (VT0.isInteger() &&
4099        TLI.getBooleanContents(false) ==
4100        TargetLowering::ZeroOrOneBooleanContent)) &&
4101      N1C && N2C && N1C->isNullValue() && N2C->getAPIntValue() == 1) {
4102    SDValue XORNode;
4103    if (VT == VT0)
4104      return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT0,
4105                         N0, DAG.getConstant(1, VT0));
4106    XORNode = DAG.getNode(ISD::XOR, N0.getDebugLoc(), VT0,
4107                          N0, DAG.getConstant(1, VT0));
4108    AddToWorkList(XORNode.getNode());
4109    if (VT.bitsGT(VT0))
4110      return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT, XORNode);
4111    return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, XORNode);
4112  }
4113  // fold (select C, 0, X) -> (and (not C), X)
4114  if (VT == VT0 && VT == MVT::i1 && N1C && N1C->isNullValue()) {
4115    SDValue NOTNode = DAG.getNOT(N0.getDebugLoc(), N0, VT);
4116    AddToWorkList(NOTNode.getNode());
4117    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, NOTNode, N2);
4118  }
4119  // fold (select C, X, 1) -> (or (not C), X)
4120  if (VT == VT0 && VT == MVT::i1 && N2C && N2C->getAPIntValue() == 1) {
4121    SDValue NOTNode = DAG.getNOT(N0.getDebugLoc(), N0, VT);
4122    AddToWorkList(NOTNode.getNode());
4123    return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, NOTNode, N1);
4124  }
4125  // fold (select C, X, 0) -> (and C, X)
4126  if (VT == MVT::i1 && N2C && N2C->isNullValue())
4127    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0, N1);
4128  // fold (select X, X, Y) -> (or X, Y)
4129  // fold (select X, 1, Y) -> (or X, Y)
4130  if (VT == MVT::i1 && (N0 == N1 || (N1C && N1C->getAPIntValue() == 1)))
4131    return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, N0, N2);
4132  // fold (select X, Y, X) -> (and X, Y)
4133  // fold (select X, Y, 0) -> (and X, Y)
4134  if (VT == MVT::i1 && (N0 == N2 || (N2C && N2C->getAPIntValue() == 0)))
4135    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0, N1);
4136
4137  // If we can fold this based on the true/false value, do so.
4138  if (SimplifySelectOps(N, N1, N2))
4139    return SDValue(N, 0);  // Don't revisit N.
4140
4141  // fold selects based on a setcc into other things, such as min/max/abs
4142  if (N0.getOpcode() == ISD::SETCC) {
4143    // FIXME:
4144    // Check against MVT::Other for SELECT_CC, which is a workaround for targets
4145    // having to say they don't support SELECT_CC on every type the DAG knows
4146    // about, since there is no way to mark an opcode illegal at all value types
4147    if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, MVT::Other) &&
4148        TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT))
4149      return DAG.getNode(ISD::SELECT_CC, N->getDebugLoc(), VT,
4150                         N0.getOperand(0), N0.getOperand(1),
4151                         N1, N2, N0.getOperand(2));
4152    return SimplifySelect(N->getDebugLoc(), N0, N1, N2);
4153  }
4154
4155  return SDValue();
4156}
4157
4158SDValue DAGCombiner::visitSELECT_CC(SDNode *N) {
4159  SDValue N0 = N->getOperand(0);
4160  SDValue N1 = N->getOperand(1);
4161  SDValue N2 = N->getOperand(2);
4162  SDValue N3 = N->getOperand(3);
4163  SDValue N4 = N->getOperand(4);
4164  ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get();
4165
4166  // fold select_cc lhs, rhs, x, x, cc -> x
4167  if (N2 == N3)
4168    return N2;
4169
4170  // Determine if the condition we're dealing with is constant
4171  SDValue SCC = SimplifySetCC(TLI.getSetCCResultType(N0.getValueType()),
4172                              N0, N1, CC, N->getDebugLoc(), false);
4173  if (SCC.getNode()) AddToWorkList(SCC.getNode());
4174
4175  if (ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.getNode())) {
4176    if (!SCCC->isNullValue())
4177      return N2;    // cond always true -> true val
4178    else
4179      return N3;    // cond always false -> false val
4180  }
4181
4182  // Fold to a simpler select_cc
4183  if (SCC.getNode() && SCC.getOpcode() == ISD::SETCC)
4184    return DAG.getNode(ISD::SELECT_CC, N->getDebugLoc(), N2.getValueType(),
4185                       SCC.getOperand(0), SCC.getOperand(1), N2, N3,
4186                       SCC.getOperand(2));
4187
4188  // If we can fold this based on the true/false value, do so.
4189  if (SimplifySelectOps(N, N2, N3))
4190    return SDValue(N, 0);  // Don't revisit N.
4191
4192  // fold select_cc into other things, such as min/max/abs
4193  return SimplifySelectCC(N->getDebugLoc(), N0, N1, N2, N3, CC);
4194}
4195
4196SDValue DAGCombiner::visitSETCC(SDNode *N) {
4197  return SimplifySetCC(N->getValueType(0), N->getOperand(0), N->getOperand(1),
4198                       cast<CondCodeSDNode>(N->getOperand(2))->get(),
4199                       N->getDebugLoc());
4200}
4201
4202// ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this:
4203// "fold ({s|z|a}ext (load x)) -> ({s|z|a}ext (truncate ({s|z|a}extload x)))"
4204// transformation. Returns true if extension are possible and the above
4205// mentioned transformation is profitable.
4206static bool ExtendUsesToFormExtLoad(SDNode *N, SDValue N0,
4207                                    unsigned ExtOpc,
4208                                    SmallVector<SDNode*, 4> &ExtendNodes,
4209                                    const TargetLowering &TLI) {
4210  bool HasCopyToRegUses = false;
4211  bool isTruncFree = TLI.isTruncateFree(N->getValueType(0), N0.getValueType());
4212  for (SDNode::use_iterator UI = N0.getNode()->use_begin(),
4213                            UE = N0.getNode()->use_end();
4214       UI != UE; ++UI) {
4215    SDNode *User = *UI;
4216    if (User == N)
4217      continue;
4218    if (UI.getUse().getResNo() != N0.getResNo())
4219      continue;
4220    // FIXME: Only extend SETCC N, N and SETCC N, c for now.
4221    if (ExtOpc != ISD::ANY_EXTEND && User->getOpcode() == ISD::SETCC) {
4222      ISD::CondCode CC = cast<CondCodeSDNode>(User->getOperand(2))->get();
4223      if (ExtOpc == ISD::ZERO_EXTEND && ISD::isSignedIntSetCC(CC))
4224        // Sign bits will be lost after a zext.
4225        return false;
4226      bool Add = false;
4227      for (unsigned i = 0; i != 2; ++i) {
4228        SDValue UseOp = User->getOperand(i);
4229        if (UseOp == N0)
4230          continue;
4231        if (!isa<ConstantSDNode>(UseOp))
4232          return false;
4233        Add = true;
4234      }
4235      if (Add)
4236        ExtendNodes.push_back(User);
4237      continue;
4238    }
4239    // If truncates aren't free and there are users we can't
4240    // extend, it isn't worthwhile.
4241    if (!isTruncFree)
4242      return false;
4243    // Remember if this value is live-out.
4244    if (User->getOpcode() == ISD::CopyToReg)
4245      HasCopyToRegUses = true;
4246  }
4247
4248  if (HasCopyToRegUses) {
4249    bool BothLiveOut = false;
4250    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
4251         UI != UE; ++UI) {
4252      SDUse &Use = UI.getUse();
4253      if (Use.getResNo() == 0 && Use.getUser()->getOpcode() == ISD::CopyToReg) {
4254        BothLiveOut = true;
4255        break;
4256      }
4257    }
4258    if (BothLiveOut)
4259      // Both unextended and extended values are live out. There had better be
4260      // a good reason for the transformation.
4261      return ExtendNodes.size();
4262  }
4263  return true;
4264}
4265
4266void DAGCombiner::ExtendSetCCUses(SmallVector<SDNode*, 4> SetCCs,
4267                                  SDValue Trunc, SDValue ExtLoad, DebugLoc DL,
4268                                  ISD::NodeType ExtType) {
4269  // Extend SetCC uses if necessary.
4270  for (unsigned i = 0, e = SetCCs.size(); i != e; ++i) {
4271    SDNode *SetCC = SetCCs[i];
4272    SmallVector<SDValue, 4> Ops;
4273
4274    for (unsigned j = 0; j != 2; ++j) {
4275      SDValue SOp = SetCC->getOperand(j);
4276      if (SOp == Trunc)
4277        Ops.push_back(ExtLoad);
4278      else
4279        Ops.push_back(DAG.getNode(ExtType, DL, ExtLoad->getValueType(0), SOp));
4280    }
4281
4282    Ops.push_back(SetCC->getOperand(2));
4283    CombineTo(SetCC, DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0),
4284                                 &Ops[0], Ops.size()));
4285  }
4286}
4287
4288SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) {
4289  SDValue N0 = N->getOperand(0);
4290  EVT VT = N->getValueType(0);
4291
4292  // fold (sext c1) -> c1
4293  if (isa<ConstantSDNode>(N0))
4294    return DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), VT, N0);
4295
4296  // fold (sext (sext x)) -> (sext x)
4297  // fold (sext (aext x)) -> (sext x)
4298  if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
4299    return DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), VT,
4300                       N0.getOperand(0));
4301
4302  if (N0.getOpcode() == ISD::TRUNCATE) {
4303    // fold (sext (truncate (load x))) -> (sext (smaller load x))
4304    // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n)))
4305    SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
4306    if (NarrowLoad.getNode()) {
4307      SDNode* oye = N0.getNode()->getOperand(0).getNode();
4308      if (NarrowLoad.getNode() != N0.getNode()) {
4309        CombineTo(N0.getNode(), NarrowLoad);
4310        // CombineTo deleted the truncate, if needed, but not what's under it.
4311        AddToWorkList(oye);
4312      }
4313      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4314    }
4315
4316    // See if the value being truncated is already sign extended.  If so, just
4317    // eliminate the trunc/sext pair.
4318    SDValue Op = N0.getOperand(0);
4319    unsigned OpBits   = Op.getValueType().getScalarType().getSizeInBits();
4320    unsigned MidBits  = N0.getValueType().getScalarType().getSizeInBits();
4321    unsigned DestBits = VT.getScalarType().getSizeInBits();
4322    unsigned NumSignBits = DAG.ComputeNumSignBits(Op);
4323
4324    if (OpBits == DestBits) {
4325      // Op is i32, Mid is i8, and Dest is i32.  If Op has more than 24 sign
4326      // bits, it is already ready.
4327      if (NumSignBits > DestBits-MidBits)
4328        return Op;
4329    } else if (OpBits < DestBits) {
4330      // Op is i32, Mid is i8, and Dest is i64.  If Op has more than 24 sign
4331      // bits, just sext from i32.
4332      if (NumSignBits > OpBits-MidBits)
4333        return DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), VT, Op);
4334    } else {
4335      // Op is i64, Mid is i8, and Dest is i32.  If Op has more than 56 sign
4336      // bits, just truncate to i32.
4337      if (NumSignBits > OpBits-MidBits)
4338        return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, Op);
4339    }
4340
4341    // fold (sext (truncate x)) -> (sextinreg x).
4342    if (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG,
4343                                                 N0.getValueType())) {
4344      if (OpBits < DestBits)
4345        Op = DAG.getNode(ISD::ANY_EXTEND, N0.getDebugLoc(), VT, Op);
4346      else if (OpBits > DestBits)
4347        Op = DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(), VT, Op);
4348      return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(), VT, Op,
4349                         DAG.getValueType(N0.getValueType()));
4350    }
4351  }
4352
4353  // fold (sext (load x)) -> (sext (truncate (sextload x)))
4354  // None of the supported targets knows how to perform load and sign extend
4355  // on vectors in one instruction.  We only perform this transformation on
4356  // scalars.
4357  if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() &&
4358      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
4359       TLI.isLoadExtLegal(ISD::SEXTLOAD, N0.getValueType()))) {
4360    bool DoXform = true;
4361    SmallVector<SDNode*, 4> SetCCs;
4362    if (!N0.hasOneUse())
4363      DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::SIGN_EXTEND, SetCCs, TLI);
4364    if (DoXform) {
4365      LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4366      SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, N->getDebugLoc(), VT,
4367                                       LN0->getChain(),
4368                                       LN0->getBasePtr(), LN0->getPointerInfo(),
4369                                       N0.getValueType(),
4370                                       LN0->isVolatile(), LN0->isNonTemporal(),
4371                                       LN0->getAlignment());
4372      CombineTo(N, ExtLoad);
4373      SDValue Trunc = DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(),
4374                                  N0.getValueType(), ExtLoad);
4375      CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1));
4376      ExtendSetCCUses(SetCCs, Trunc, ExtLoad, N->getDebugLoc(),
4377                      ISD::SIGN_EXTEND);
4378      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4379    }
4380  }
4381
4382  // fold (sext (sextload x)) -> (sext (truncate (sextload x)))
4383  // fold (sext ( extload x)) -> (sext (truncate (sextload x)))
4384  if ((ISD::isSEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) &&
4385      ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) {
4386    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4387    EVT MemVT = LN0->getMemoryVT();
4388    if ((!LegalOperations && !LN0->isVolatile()) ||
4389        TLI.isLoadExtLegal(ISD::SEXTLOAD, MemVT)) {
4390      SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, N->getDebugLoc(), VT,
4391                                       LN0->getChain(),
4392                                       LN0->getBasePtr(), LN0->getPointerInfo(),
4393                                       MemVT,
4394                                       LN0->isVolatile(), LN0->isNonTemporal(),
4395                                       LN0->getAlignment());
4396      CombineTo(N, ExtLoad);
4397      CombineTo(N0.getNode(),
4398                DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(),
4399                            N0.getValueType(), ExtLoad),
4400                ExtLoad.getValue(1));
4401      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4402    }
4403  }
4404
4405  // fold (sext (and/or/xor (load x), cst)) ->
4406  //      (and/or/xor (sextload x), (sext cst))
4407  if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR ||
4408       N0.getOpcode() == ISD::XOR) &&
4409      isa<LoadSDNode>(N0.getOperand(0)) &&
4410      N0.getOperand(1).getOpcode() == ISD::Constant &&
4411      TLI.isLoadExtLegal(ISD::SEXTLOAD, N0.getValueType()) &&
4412      (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) {
4413    LoadSDNode *LN0 = cast<LoadSDNode>(N0.getOperand(0));
4414    if (LN0->getExtensionType() != ISD::ZEXTLOAD) {
4415      bool DoXform = true;
4416      SmallVector<SDNode*, 4> SetCCs;
4417      if (!N0.hasOneUse())
4418        DoXform = ExtendUsesToFormExtLoad(N, N0.getOperand(0), ISD::SIGN_EXTEND,
4419                                          SetCCs, TLI);
4420      if (DoXform) {
4421        SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, LN0->getDebugLoc(), VT,
4422                                         LN0->getChain(), LN0->getBasePtr(),
4423                                         LN0->getPointerInfo(),
4424                                         LN0->getMemoryVT(),
4425                                         LN0->isVolatile(),
4426                                         LN0->isNonTemporal(),
4427                                         LN0->getAlignment());
4428        APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
4429        Mask = Mask.sext(VT.getSizeInBits());
4430        SDValue And = DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT,
4431                                  ExtLoad, DAG.getConstant(Mask, VT));
4432        SDValue Trunc = DAG.getNode(ISD::TRUNCATE,
4433                                    N0.getOperand(0).getDebugLoc(),
4434                                    N0.getOperand(0).getValueType(), ExtLoad);
4435        CombineTo(N, And);
4436        CombineTo(N0.getOperand(0).getNode(), Trunc, ExtLoad.getValue(1));
4437        ExtendSetCCUses(SetCCs, Trunc, ExtLoad, N->getDebugLoc(),
4438                        ISD::SIGN_EXTEND);
4439        return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4440      }
4441    }
4442  }
4443
4444  if (N0.getOpcode() == ISD::SETCC) {
4445    // sext(setcc) -> sext_in_reg(vsetcc) for vectors.
4446    // Only do this before legalize for now.
4447    if (VT.isVector() && !LegalOperations) {
4448      EVT N0VT = N0.getOperand(0).getValueType();
4449      // On some architectures (such as SSE/NEON/etc) the SETCC result type is
4450      // of the same size as the compared operands. Only optimize sext(setcc())
4451      // if this is the case.
4452      EVT SVT = TLI.getSetCCResultType(N0VT);
4453
4454      // We know that the # elements of the results is the same as the
4455      // # elements of the compare (and the # elements of the compare result
4456      // for that matter).  Check to see that they are the same size.  If so,
4457      // we know that the element size of the sext'd result matches the
4458      // element size of the compare operands.
4459      if (VT.getSizeInBits() == SVT.getSizeInBits())
4460        return DAG.getSetCC(N->getDebugLoc(), VT, N0.getOperand(0),
4461                             N0.getOperand(1),
4462                             cast<CondCodeSDNode>(N0.getOperand(2))->get());
4463      // If the desired elements are smaller or larger than the source
4464      // elements we can use a matching integer vector type and then
4465      // truncate/sign extend
4466      EVT MatchingElementType =
4467        EVT::getIntegerVT(*DAG.getContext(),
4468                          N0VT.getScalarType().getSizeInBits());
4469      EVT MatchingVectorType =
4470        EVT::getVectorVT(*DAG.getContext(), MatchingElementType,
4471                         N0VT.getVectorNumElements());
4472
4473      if (SVT == MatchingVectorType) {
4474        SDValue VsetCC = DAG.getSetCC(N->getDebugLoc(), MatchingVectorType,
4475                               N0.getOperand(0), N0.getOperand(1),
4476                               cast<CondCodeSDNode>(N0.getOperand(2))->get());
4477        return DAG.getSExtOrTrunc(VsetCC, N->getDebugLoc(), VT);
4478      }
4479    }
4480
4481    // sext(setcc x, y, cc) -> (select_cc x, y, -1, 0, cc)
4482    unsigned ElementWidth = VT.getScalarType().getSizeInBits();
4483    SDValue NegOne =
4484      DAG.getConstant(APInt::getAllOnesValue(ElementWidth), VT);
4485    SDValue SCC =
4486      SimplifySelectCC(N->getDebugLoc(), N0.getOperand(0), N0.getOperand(1),
4487                       NegOne, DAG.getConstant(0, VT),
4488                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
4489    if (SCC.getNode()) return SCC;
4490    if (!LegalOperations ||
4491        TLI.isOperationLegal(ISD::SETCC, TLI.getSetCCResultType(VT)))
4492      return DAG.getNode(ISD::SELECT, N->getDebugLoc(), VT,
4493                         DAG.getSetCC(N->getDebugLoc(),
4494                                      TLI.getSetCCResultType(VT),
4495                                      N0.getOperand(0), N0.getOperand(1),
4496                                 cast<CondCodeSDNode>(N0.getOperand(2))->get()),
4497                         NegOne, DAG.getConstant(0, VT));
4498  }
4499
4500  // fold (sext x) -> (zext x) if the sign bit is known zero.
4501  if ((!LegalOperations || TLI.isOperationLegal(ISD::ZERO_EXTEND, VT)) &&
4502      DAG.SignBitIsZero(N0))
4503    return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT, N0);
4504
4505  return SDValue();
4506}
4507
4508// isTruncateOf - If N is a truncate of some other value, return true, record
4509// the value being truncated in Op and which of Op's bits are zero in KnownZero.
4510// This function computes KnownZero to avoid a duplicated call to
4511// ComputeMaskedBits in the caller.
4512static bool isTruncateOf(SelectionDAG &DAG, SDValue N, SDValue &Op,
4513                         APInt &KnownZero) {
4514  APInt KnownOne;
4515  if (N->getOpcode() == ISD::TRUNCATE) {
4516    Op = N->getOperand(0);
4517    DAG.ComputeMaskedBits(Op, KnownZero, KnownOne);
4518    return true;
4519  }
4520
4521  if (N->getOpcode() != ISD::SETCC || N->getValueType(0) != MVT::i1 ||
4522      cast<CondCodeSDNode>(N->getOperand(2))->get() != ISD::SETNE)
4523    return false;
4524
4525  SDValue Op0 = N->getOperand(0);
4526  SDValue Op1 = N->getOperand(1);
4527  assert(Op0.getValueType() == Op1.getValueType());
4528
4529  ConstantSDNode *COp0 = dyn_cast<ConstantSDNode>(Op0);
4530  ConstantSDNode *COp1 = dyn_cast<ConstantSDNode>(Op1);
4531  if (COp0 && COp0->isNullValue())
4532    Op = Op1;
4533  else if (COp1 && COp1->isNullValue())
4534    Op = Op0;
4535  else
4536    return false;
4537
4538  DAG.ComputeMaskedBits(Op, KnownZero, KnownOne);
4539
4540  if (!(KnownZero | APInt(Op.getValueSizeInBits(), 1)).isAllOnesValue())
4541    return false;
4542
4543  return true;
4544}
4545
4546SDValue DAGCombiner::visitZERO_EXTEND(SDNode *N) {
4547  SDValue N0 = N->getOperand(0);
4548  EVT VT = N->getValueType(0);
4549
4550  // fold (zext c1) -> c1
4551  if (isa<ConstantSDNode>(N0))
4552    return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT, N0);
4553  // fold (zext (zext x)) -> (zext x)
4554  // fold (zext (aext x)) -> (zext x)
4555  if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
4556    return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT,
4557                       N0.getOperand(0));
4558
4559  // fold (zext (truncate x)) -> (zext x) or
4560  //      (zext (truncate x)) -> (truncate x)
4561  // This is valid when the truncated bits of x are already zero.
4562  // FIXME: We should extend this to work for vectors too.
4563  SDValue Op;
4564  APInt KnownZero;
4565  if (!VT.isVector() && isTruncateOf(DAG, N0, Op, KnownZero)) {
4566    APInt TruncatedBits =
4567      (Op.getValueSizeInBits() == N0.getValueSizeInBits()) ?
4568      APInt(Op.getValueSizeInBits(), 0) :
4569      APInt::getBitsSet(Op.getValueSizeInBits(),
4570                        N0.getValueSizeInBits(),
4571                        std::min(Op.getValueSizeInBits(),
4572                                 VT.getSizeInBits()));
4573    if (TruncatedBits == (KnownZero & TruncatedBits)) {
4574      if (VT.bitsGT(Op.getValueType()))
4575        return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT, Op);
4576      if (VT.bitsLT(Op.getValueType()))
4577        return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, Op);
4578
4579      return Op;
4580    }
4581  }
4582
4583  // fold (zext (truncate (load x))) -> (zext (smaller load x))
4584  // fold (zext (truncate (srl (load x), c))) -> (zext (small load (x+c/n)))
4585  if (N0.getOpcode() == ISD::TRUNCATE) {
4586    SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
4587    if (NarrowLoad.getNode()) {
4588      SDNode* oye = N0.getNode()->getOperand(0).getNode();
4589      if (NarrowLoad.getNode() != N0.getNode()) {
4590        CombineTo(N0.getNode(), NarrowLoad);
4591        // CombineTo deleted the truncate, if needed, but not what's under it.
4592        AddToWorkList(oye);
4593      }
4594      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4595    }
4596  }
4597
4598  // fold (zext (truncate x)) -> (and x, mask)
4599  if (N0.getOpcode() == ISD::TRUNCATE &&
4600      (!LegalOperations || TLI.isOperationLegal(ISD::AND, VT))) {
4601
4602    // fold (zext (truncate (load x))) -> (zext (smaller load x))
4603    // fold (zext (truncate (srl (load x), c))) -> (zext (smaller load (x+c/n)))
4604    SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
4605    if (NarrowLoad.getNode()) {
4606      SDNode* oye = N0.getNode()->getOperand(0).getNode();
4607      if (NarrowLoad.getNode() != N0.getNode()) {
4608        CombineTo(N0.getNode(), NarrowLoad);
4609        // CombineTo deleted the truncate, if needed, but not what's under it.
4610        AddToWorkList(oye);
4611      }
4612      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4613    }
4614
4615    SDValue Op = N0.getOperand(0);
4616    if (Op.getValueType().bitsLT(VT)) {
4617      Op = DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, Op);
4618      AddToWorkList(Op.getNode());
4619    } else if (Op.getValueType().bitsGT(VT)) {
4620      Op = DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, Op);
4621      AddToWorkList(Op.getNode());
4622    }
4623    return DAG.getZeroExtendInReg(Op, N->getDebugLoc(),
4624                                  N0.getValueType().getScalarType());
4625  }
4626
4627  // Fold (zext (and (trunc x), cst)) -> (and x, cst),
4628  // if either of the casts is not free.
4629  if (N0.getOpcode() == ISD::AND &&
4630      N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
4631      N0.getOperand(1).getOpcode() == ISD::Constant &&
4632      (!TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(),
4633                           N0.getValueType()) ||
4634       !TLI.isZExtFree(N0.getValueType(), VT))) {
4635    SDValue X = N0.getOperand(0).getOperand(0);
4636    if (X.getValueType().bitsLT(VT)) {
4637      X = DAG.getNode(ISD::ANY_EXTEND, X.getDebugLoc(), VT, X);
4638    } else if (X.getValueType().bitsGT(VT)) {
4639      X = DAG.getNode(ISD::TRUNCATE, X.getDebugLoc(), VT, X);
4640    }
4641    APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
4642    Mask = Mask.zext(VT.getSizeInBits());
4643    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
4644                       X, DAG.getConstant(Mask, VT));
4645  }
4646
4647  // fold (zext (load x)) -> (zext (truncate (zextload x)))
4648  // None of the supported targets knows how to perform load and vector_zext
4649  // on vectors in one instruction.  We only perform this transformation on
4650  // scalars.
4651  if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() &&
4652      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
4653       TLI.isLoadExtLegal(ISD::ZEXTLOAD, N0.getValueType()))) {
4654    bool DoXform = true;
4655    SmallVector<SDNode*, 4> SetCCs;
4656    if (!N0.hasOneUse())
4657      DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ZERO_EXTEND, SetCCs, TLI);
4658    if (DoXform) {
4659      LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4660      SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, N->getDebugLoc(), VT,
4661                                       LN0->getChain(),
4662                                       LN0->getBasePtr(), LN0->getPointerInfo(),
4663                                       N0.getValueType(),
4664                                       LN0->isVolatile(), LN0->isNonTemporal(),
4665                                       LN0->getAlignment());
4666      CombineTo(N, ExtLoad);
4667      SDValue Trunc = DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(),
4668                                  N0.getValueType(), ExtLoad);
4669      CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1));
4670
4671      ExtendSetCCUses(SetCCs, Trunc, ExtLoad, N->getDebugLoc(),
4672                      ISD::ZERO_EXTEND);
4673      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4674    }
4675  }
4676
4677  // fold (zext (and/or/xor (load x), cst)) ->
4678  //      (and/or/xor (zextload x), (zext cst))
4679  if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR ||
4680       N0.getOpcode() == ISD::XOR) &&
4681      isa<LoadSDNode>(N0.getOperand(0)) &&
4682      N0.getOperand(1).getOpcode() == ISD::Constant &&
4683      TLI.isLoadExtLegal(ISD::ZEXTLOAD, N0.getValueType()) &&
4684      (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) {
4685    LoadSDNode *LN0 = cast<LoadSDNode>(N0.getOperand(0));
4686    if (LN0->getExtensionType() != ISD::SEXTLOAD) {
4687      bool DoXform = true;
4688      SmallVector<SDNode*, 4> SetCCs;
4689      if (!N0.hasOneUse())
4690        DoXform = ExtendUsesToFormExtLoad(N, N0.getOperand(0), ISD::ZERO_EXTEND,
4691                                          SetCCs, TLI);
4692      if (DoXform) {
4693        SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, LN0->getDebugLoc(), VT,
4694                                         LN0->getChain(), LN0->getBasePtr(),
4695                                         LN0->getPointerInfo(),
4696                                         LN0->getMemoryVT(),
4697                                         LN0->isVolatile(),
4698                                         LN0->isNonTemporal(),
4699                                         LN0->getAlignment());
4700        APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
4701        Mask = Mask.zext(VT.getSizeInBits());
4702        SDValue And = DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT,
4703                                  ExtLoad, DAG.getConstant(Mask, VT));
4704        SDValue Trunc = DAG.getNode(ISD::TRUNCATE,
4705                                    N0.getOperand(0).getDebugLoc(),
4706                                    N0.getOperand(0).getValueType(), ExtLoad);
4707        CombineTo(N, And);
4708        CombineTo(N0.getOperand(0).getNode(), Trunc, ExtLoad.getValue(1));
4709        ExtendSetCCUses(SetCCs, Trunc, ExtLoad, N->getDebugLoc(),
4710                        ISD::ZERO_EXTEND);
4711        return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4712      }
4713    }
4714  }
4715
4716  // fold (zext (zextload x)) -> (zext (truncate (zextload x)))
4717  // fold (zext ( extload x)) -> (zext (truncate (zextload x)))
4718  if ((ISD::isZEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) &&
4719      ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) {
4720    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4721    EVT MemVT = LN0->getMemoryVT();
4722    if ((!LegalOperations && !LN0->isVolatile()) ||
4723        TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT)) {
4724      SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, N->getDebugLoc(), VT,
4725                                       LN0->getChain(),
4726                                       LN0->getBasePtr(), LN0->getPointerInfo(),
4727                                       MemVT,
4728                                       LN0->isVolatile(), LN0->isNonTemporal(),
4729                                       LN0->getAlignment());
4730      CombineTo(N, ExtLoad);
4731      CombineTo(N0.getNode(),
4732                DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(), N0.getValueType(),
4733                            ExtLoad),
4734                ExtLoad.getValue(1));
4735      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4736    }
4737  }
4738
4739  if (N0.getOpcode() == ISD::SETCC) {
4740    if (!LegalOperations && VT.isVector()) {
4741      // zext(setcc) -> (and (vsetcc), (1, 1, ...) for vectors.
4742      // Only do this before legalize for now.
4743      EVT N0VT = N0.getOperand(0).getValueType();
4744      EVT EltVT = VT.getVectorElementType();
4745      SmallVector<SDValue,8> OneOps(VT.getVectorNumElements(),
4746                                    DAG.getConstant(1, EltVT));
4747      if (VT.getSizeInBits() == N0VT.getSizeInBits())
4748        // We know that the # elements of the results is the same as the
4749        // # elements of the compare (and the # elements of the compare result
4750        // for that matter).  Check to see that they are the same size.  If so,
4751        // we know that the element size of the sext'd result matches the
4752        // element size of the compare operands.
4753        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
4754                           DAG.getSetCC(N->getDebugLoc(), VT, N0.getOperand(0),
4755                                         N0.getOperand(1),
4756                                 cast<CondCodeSDNode>(N0.getOperand(2))->get()),
4757                           DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), VT,
4758                                       &OneOps[0], OneOps.size()));
4759
4760      // If the desired elements are smaller or larger than the source
4761      // elements we can use a matching integer vector type and then
4762      // truncate/sign extend
4763      EVT MatchingElementType =
4764        EVT::getIntegerVT(*DAG.getContext(),
4765                          N0VT.getScalarType().getSizeInBits());
4766      EVT MatchingVectorType =
4767        EVT::getVectorVT(*DAG.getContext(), MatchingElementType,
4768                         N0VT.getVectorNumElements());
4769      SDValue VsetCC =
4770        DAG.getSetCC(N->getDebugLoc(), MatchingVectorType, N0.getOperand(0),
4771                      N0.getOperand(1),
4772                      cast<CondCodeSDNode>(N0.getOperand(2))->get());
4773      return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
4774                         DAG.getSExtOrTrunc(VsetCC, N->getDebugLoc(), VT),
4775                         DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), VT,
4776                                     &OneOps[0], OneOps.size()));
4777    }
4778
4779    // zext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
4780    SDValue SCC =
4781      SimplifySelectCC(N->getDebugLoc(), N0.getOperand(0), N0.getOperand(1),
4782                       DAG.getConstant(1, VT), DAG.getConstant(0, VT),
4783                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
4784    if (SCC.getNode()) return SCC;
4785  }
4786
4787  // (zext (shl (zext x), cst)) -> (shl (zext x), cst)
4788  if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL) &&
4789      isa<ConstantSDNode>(N0.getOperand(1)) &&
4790      N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND &&
4791      N0.hasOneUse()) {
4792    SDValue ShAmt = N0.getOperand(1);
4793    unsigned ShAmtVal = cast<ConstantSDNode>(ShAmt)->getZExtValue();
4794    if (N0.getOpcode() == ISD::SHL) {
4795      SDValue InnerZExt = N0.getOperand(0);
4796      // If the original shl may be shifting out bits, do not perform this
4797      // transformation.
4798      unsigned KnownZeroBits = InnerZExt.getValueType().getSizeInBits() -
4799        InnerZExt.getOperand(0).getValueType().getSizeInBits();
4800      if (ShAmtVal > KnownZeroBits)
4801        return SDValue();
4802    }
4803
4804    DebugLoc DL = N->getDebugLoc();
4805
4806    // Ensure that the shift amount is wide enough for the shifted value.
4807    if (VT.getSizeInBits() >= 256)
4808      ShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, ShAmt);
4809
4810    return DAG.getNode(N0.getOpcode(), DL, VT,
4811                       DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)),
4812                       ShAmt);
4813  }
4814
4815  return SDValue();
4816}
4817
4818SDValue DAGCombiner::visitANY_EXTEND(SDNode *N) {
4819  SDValue N0 = N->getOperand(0);
4820  EVT VT = N->getValueType(0);
4821
4822  // fold (aext c1) -> c1
4823  if (isa<ConstantSDNode>(N0))
4824    return DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, N0);
4825  // fold (aext (aext x)) -> (aext x)
4826  // fold (aext (zext x)) -> (zext x)
4827  // fold (aext (sext x)) -> (sext x)
4828  if (N0.getOpcode() == ISD::ANY_EXTEND  ||
4829      N0.getOpcode() == ISD::ZERO_EXTEND ||
4830      N0.getOpcode() == ISD::SIGN_EXTEND)
4831    return DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT, N0.getOperand(0));
4832
4833  // fold (aext (truncate (load x))) -> (aext (smaller load x))
4834  // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n)))
4835  if (N0.getOpcode() == ISD::TRUNCATE) {
4836    SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
4837    if (NarrowLoad.getNode()) {
4838      SDNode* oye = N0.getNode()->getOperand(0).getNode();
4839      if (NarrowLoad.getNode() != N0.getNode()) {
4840        CombineTo(N0.getNode(), NarrowLoad);
4841        // CombineTo deleted the truncate, if needed, but not what's under it.
4842        AddToWorkList(oye);
4843      }
4844      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4845    }
4846  }
4847
4848  // fold (aext (truncate x))
4849  if (N0.getOpcode() == ISD::TRUNCATE) {
4850    SDValue TruncOp = N0.getOperand(0);
4851    if (TruncOp.getValueType() == VT)
4852      return TruncOp; // x iff x size == zext size.
4853    if (TruncOp.getValueType().bitsGT(VT))
4854      return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, TruncOp);
4855    return DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, TruncOp);
4856  }
4857
4858  // Fold (aext (and (trunc x), cst)) -> (and x, cst)
4859  // if the trunc is not free.
4860  if (N0.getOpcode() == ISD::AND &&
4861      N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
4862      N0.getOperand(1).getOpcode() == ISD::Constant &&
4863      !TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(),
4864                          N0.getValueType())) {
4865    SDValue X = N0.getOperand(0).getOperand(0);
4866    if (X.getValueType().bitsLT(VT)) {
4867      X = DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, X);
4868    } else if (X.getValueType().bitsGT(VT)) {
4869      X = DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, X);
4870    }
4871    APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
4872    Mask = Mask.zext(VT.getSizeInBits());
4873    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
4874                       X, DAG.getConstant(Mask, VT));
4875  }
4876
4877  // fold (aext (load x)) -> (aext (truncate (extload x)))
4878  // None of the supported targets knows how to perform load and any_ext
4879  // on vectors in one instruction.  We only perform this transformation on
4880  // scalars.
4881  if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() &&
4882      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
4883       TLI.isLoadExtLegal(ISD::EXTLOAD, N0.getValueType()))) {
4884    bool DoXform = true;
4885    SmallVector<SDNode*, 4> SetCCs;
4886    if (!N0.hasOneUse())
4887      DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ANY_EXTEND, SetCCs, TLI);
4888    if (DoXform) {
4889      LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4890      SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, N->getDebugLoc(), VT,
4891                                       LN0->getChain(),
4892                                       LN0->getBasePtr(), LN0->getPointerInfo(),
4893                                       N0.getValueType(),
4894                                       LN0->isVolatile(), LN0->isNonTemporal(),
4895                                       LN0->getAlignment());
4896      CombineTo(N, ExtLoad);
4897      SDValue Trunc = DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(),
4898                                  N0.getValueType(), ExtLoad);
4899      CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1));
4900      ExtendSetCCUses(SetCCs, Trunc, ExtLoad, N->getDebugLoc(),
4901                      ISD::ANY_EXTEND);
4902      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4903    }
4904  }
4905
4906  // fold (aext (zextload x)) -> (aext (truncate (zextload x)))
4907  // fold (aext (sextload x)) -> (aext (truncate (sextload x)))
4908  // fold (aext ( extload x)) -> (aext (truncate (extload  x)))
4909  if (N0.getOpcode() == ISD::LOAD &&
4910      !ISD::isNON_EXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
4911      N0.hasOneUse()) {
4912    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4913    EVT MemVT = LN0->getMemoryVT();
4914    SDValue ExtLoad = DAG.getExtLoad(LN0->getExtensionType(), N->getDebugLoc(),
4915                                     VT, LN0->getChain(), LN0->getBasePtr(),
4916                                     LN0->getPointerInfo(), MemVT,
4917                                     LN0->isVolatile(), LN0->isNonTemporal(),
4918                                     LN0->getAlignment());
4919    CombineTo(N, ExtLoad);
4920    CombineTo(N0.getNode(),
4921              DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(),
4922                          N0.getValueType(), ExtLoad),
4923              ExtLoad.getValue(1));
4924    return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4925  }
4926
4927  if (N0.getOpcode() == ISD::SETCC) {
4928    // aext(setcc) -> sext_in_reg(vsetcc) for vectors.
4929    // Only do this before legalize for now.
4930    if (VT.isVector() && !LegalOperations) {
4931      EVT N0VT = N0.getOperand(0).getValueType();
4932        // We know that the # elements of the results is the same as the
4933        // # elements of the compare (and the # elements of the compare result
4934        // for that matter).  Check to see that they are the same size.  If so,
4935        // we know that the element size of the sext'd result matches the
4936        // element size of the compare operands.
4937      if (VT.getSizeInBits() == N0VT.getSizeInBits())
4938        return DAG.getSetCC(N->getDebugLoc(), VT, N0.getOperand(0),
4939                             N0.getOperand(1),
4940                             cast<CondCodeSDNode>(N0.getOperand(2))->get());
4941      // If the desired elements are smaller or larger than the source
4942      // elements we can use a matching integer vector type and then
4943      // truncate/sign extend
4944      else {
4945        EVT MatchingElementType =
4946          EVT::getIntegerVT(*DAG.getContext(),
4947                            N0VT.getScalarType().getSizeInBits());
4948        EVT MatchingVectorType =
4949          EVT::getVectorVT(*DAG.getContext(), MatchingElementType,
4950                           N0VT.getVectorNumElements());
4951        SDValue VsetCC =
4952          DAG.getSetCC(N->getDebugLoc(), MatchingVectorType, N0.getOperand(0),
4953                        N0.getOperand(1),
4954                        cast<CondCodeSDNode>(N0.getOperand(2))->get());
4955        return DAG.getSExtOrTrunc(VsetCC, N->getDebugLoc(), VT);
4956      }
4957    }
4958
4959    // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
4960    SDValue SCC =
4961      SimplifySelectCC(N->getDebugLoc(), N0.getOperand(0), N0.getOperand(1),
4962                       DAG.getConstant(1, VT), DAG.getConstant(0, VT),
4963                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
4964    if (SCC.getNode())
4965      return SCC;
4966  }
4967
4968  return SDValue();
4969}
4970
4971/// GetDemandedBits - See if the specified operand can be simplified with the
4972/// knowledge that only the bits specified by Mask are used.  If so, return the
4973/// simpler operand, otherwise return a null SDValue.
4974SDValue DAGCombiner::GetDemandedBits(SDValue V, const APInt &Mask) {
4975  switch (V.getOpcode()) {
4976  default: break;
4977  case ISD::Constant: {
4978    const ConstantSDNode *CV = cast<ConstantSDNode>(V.getNode());
4979    assert(CV != 0 && "Const value should be ConstSDNode.");
4980    const APInt &CVal = CV->getAPIntValue();
4981    APInt NewVal = CVal & Mask;
4982    if (NewVal != CVal) {
4983      return DAG.getConstant(NewVal, V.getValueType());
4984    }
4985    break;
4986  }
4987  case ISD::OR:
4988  case ISD::XOR:
4989    // If the LHS or RHS don't contribute bits to the or, drop them.
4990    if (DAG.MaskedValueIsZero(V.getOperand(0), Mask))
4991      return V.getOperand(1);
4992    if (DAG.MaskedValueIsZero(V.getOperand(1), Mask))
4993      return V.getOperand(0);
4994    break;
4995  case ISD::SRL:
4996    // Only look at single-use SRLs.
4997    if (!V.getNode()->hasOneUse())
4998      break;
4999    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
5000      // See if we can recursively simplify the LHS.
5001      unsigned Amt = RHSC->getZExtValue();
5002
5003      // Watch out for shift count overflow though.
5004      if (Amt >= Mask.getBitWidth()) break;
5005      APInt NewMask = Mask << Amt;
5006      SDValue SimplifyLHS = GetDemandedBits(V.getOperand(0), NewMask);
5007      if (SimplifyLHS.getNode())
5008        return DAG.getNode(ISD::SRL, V.getDebugLoc(), V.getValueType(),
5009                           SimplifyLHS, V.getOperand(1));
5010    }
5011  }
5012  return SDValue();
5013}
5014
5015/// ReduceLoadWidth - If the result of a wider load is shifted to right of N
5016/// bits and then truncated to a narrower type and where N is a multiple
5017/// of number of bits of the narrower type, transform it to a narrower load
5018/// from address + N / num of bits of new type. If the result is to be
5019/// extended, also fold the extension to form a extending load.
5020SDValue DAGCombiner::ReduceLoadWidth(SDNode *N) {
5021  unsigned Opc = N->getOpcode();
5022
5023  ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
5024  SDValue N0 = N->getOperand(0);
5025  EVT VT = N->getValueType(0);
5026  EVT ExtVT = VT;
5027
5028  // This transformation isn't valid for vector loads.
5029  if (VT.isVector())
5030    return SDValue();
5031
5032  // Special case: SIGN_EXTEND_INREG is basically truncating to ExtVT then
5033  // extended to VT.
5034  if (Opc == ISD::SIGN_EXTEND_INREG) {
5035    ExtType = ISD::SEXTLOAD;
5036    ExtVT = cast<VTSDNode>(N->getOperand(1))->getVT();
5037  } else if (Opc == ISD::SRL) {
5038    // Another special-case: SRL is basically zero-extending a narrower value.
5039    ExtType = ISD::ZEXTLOAD;
5040    N0 = SDValue(N, 0);
5041    ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5042    if (!N01) return SDValue();
5043    ExtVT = EVT::getIntegerVT(*DAG.getContext(),
5044                              VT.getSizeInBits() - N01->getZExtValue());
5045  }
5046  if (LegalOperations && !TLI.isLoadExtLegal(ExtType, ExtVT))
5047    return SDValue();
5048
5049  unsigned EVTBits = ExtVT.getSizeInBits();
5050
5051  // Do not generate loads of non-round integer types since these can
5052  // be expensive (and would be wrong if the type is not byte sized).
5053  if (!ExtVT.isRound())
5054    return SDValue();
5055
5056  unsigned ShAmt = 0;
5057  if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) {
5058    if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
5059      ShAmt = N01->getZExtValue();
5060      // Is the shift amount a multiple of size of VT?
5061      if ((ShAmt & (EVTBits-1)) == 0) {
5062        N0 = N0.getOperand(0);
5063        // Is the load width a multiple of size of VT?
5064        if ((N0.getValueType().getSizeInBits() & (EVTBits-1)) != 0)
5065          return SDValue();
5066      }
5067
5068      // At this point, we must have a load or else we can't do the transform.
5069      if (!isa<LoadSDNode>(N0)) return SDValue();
5070
5071      // Because a SRL must be assumed to *need* to zero-extend the high bits
5072      // (as opposed to anyext the high bits), we can't combine the zextload
5073      // lowering of SRL and an sextload.
5074      if (cast<LoadSDNode>(N0)->getExtensionType() == ISD::SEXTLOAD)
5075        return SDValue();
5076
5077      // If the shift amount is larger than the input type then we're not
5078      // accessing any of the loaded bytes.  If the load was a zextload/extload
5079      // then the result of the shift+trunc is zero/undef (handled elsewhere).
5080      if (ShAmt >= cast<LoadSDNode>(N0)->getMemoryVT().getSizeInBits())
5081        return SDValue();
5082    }
5083  }
5084
5085  // If the load is shifted left (and the result isn't shifted back right),
5086  // we can fold the truncate through the shift.
5087  unsigned ShLeftAmt = 0;
5088  if (ShAmt == 0 && N0.getOpcode() == ISD::SHL && N0.hasOneUse() &&
5089      ExtVT == VT && TLI.isNarrowingProfitable(N0.getValueType(), VT)) {
5090    if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
5091      ShLeftAmt = N01->getZExtValue();
5092      N0 = N0.getOperand(0);
5093    }
5094  }
5095
5096  // If we haven't found a load, we can't narrow it.  Don't transform one with
5097  // multiple uses, this would require adding a new load.
5098  if (!isa<LoadSDNode>(N0) || !N0.hasOneUse() ||
5099      // Don't change the width of a volatile load.
5100      cast<LoadSDNode>(N0)->isVolatile())
5101    return SDValue();
5102
5103  // Verify that we are actually reducing a load width here.
5104  if (cast<LoadSDNode>(N0)->getMemoryVT().getSizeInBits() < EVTBits)
5105    return SDValue();
5106
5107  LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5108  EVT PtrType = N0.getOperand(1).getValueType();
5109
5110  if (PtrType == MVT::Untyped || PtrType.isExtended())
5111    // It's not possible to generate a constant of extended or untyped type.
5112    return SDValue();
5113
5114  // For big endian targets, we need to adjust the offset to the pointer to
5115  // load the correct bytes.
5116  if (TLI.isBigEndian()) {
5117    unsigned LVTStoreBits = LN0->getMemoryVT().getStoreSizeInBits();
5118    unsigned EVTStoreBits = ExtVT.getStoreSizeInBits();
5119    ShAmt = LVTStoreBits - EVTStoreBits - ShAmt;
5120  }
5121
5122  uint64_t PtrOff = ShAmt / 8;
5123  unsigned NewAlign = MinAlign(LN0->getAlignment(), PtrOff);
5124  SDValue NewPtr = DAG.getNode(ISD::ADD, LN0->getDebugLoc(),
5125                               PtrType, LN0->getBasePtr(),
5126                               DAG.getConstant(PtrOff, PtrType));
5127  AddToWorkList(NewPtr.getNode());
5128
5129  SDValue Load;
5130  if (ExtType == ISD::NON_EXTLOAD)
5131    Load =  DAG.getLoad(VT, N0.getDebugLoc(), LN0->getChain(), NewPtr,
5132                        LN0->getPointerInfo().getWithOffset(PtrOff),
5133                        LN0->isVolatile(), LN0->isNonTemporal(),
5134                        LN0->isInvariant(), NewAlign);
5135  else
5136    Load = DAG.getExtLoad(ExtType, N0.getDebugLoc(), VT, LN0->getChain(),NewPtr,
5137                          LN0->getPointerInfo().getWithOffset(PtrOff),
5138                          ExtVT, LN0->isVolatile(), LN0->isNonTemporal(),
5139                          NewAlign);
5140
5141  // Replace the old load's chain with the new load's chain.
5142  WorkListRemover DeadNodes(*this);
5143  DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1));
5144
5145  // Shift the result left, if we've swallowed a left shift.
5146  SDValue Result = Load;
5147  if (ShLeftAmt != 0) {
5148    EVT ShImmTy = getShiftAmountTy(Result.getValueType());
5149    if (!isUIntN(ShImmTy.getSizeInBits(), ShLeftAmt))
5150      ShImmTy = VT;
5151    Result = DAG.getNode(ISD::SHL, N0.getDebugLoc(), VT,
5152                         Result, DAG.getConstant(ShLeftAmt, ShImmTy));
5153  }
5154
5155  // Return the new loaded value.
5156  return Result;
5157}
5158
5159SDValue DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) {
5160  SDValue N0 = N->getOperand(0);
5161  SDValue N1 = N->getOperand(1);
5162  EVT VT = N->getValueType(0);
5163  EVT EVT = cast<VTSDNode>(N1)->getVT();
5164  unsigned VTBits = VT.getScalarType().getSizeInBits();
5165  unsigned EVTBits = EVT.getScalarType().getSizeInBits();
5166
5167  // fold (sext_in_reg c1) -> c1
5168  if (isa<ConstantSDNode>(N0) || N0.getOpcode() == ISD::UNDEF)
5169    return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(), VT, N0, N1);
5170
5171  // If the input is already sign extended, just drop the extension.
5172  if (DAG.ComputeNumSignBits(N0) >= VTBits-EVTBits+1)
5173    return N0;
5174
5175  // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2
5176  if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
5177      EVT.bitsLT(cast<VTSDNode>(N0.getOperand(1))->getVT())) {
5178    return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(), VT,
5179                       N0.getOperand(0), N1);
5180  }
5181
5182  // fold (sext_in_reg (sext x)) -> (sext x)
5183  // fold (sext_in_reg (aext x)) -> (sext x)
5184  // if x is small enough.
5185  if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) {
5186    SDValue N00 = N0.getOperand(0);
5187    if (N00.getValueType().getScalarType().getSizeInBits() <= EVTBits &&
5188        (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT)))
5189      return DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), VT, N00, N1);
5190  }
5191
5192  // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero.
5193  if (DAG.MaskedValueIsZero(N0, APInt::getBitsSet(VTBits, EVTBits-1, EVTBits)))
5194    return DAG.getZeroExtendInReg(N0, N->getDebugLoc(), EVT);
5195
5196  // fold operands of sext_in_reg based on knowledge that the top bits are not
5197  // demanded.
5198  if (SimplifyDemandedBits(SDValue(N, 0)))
5199    return SDValue(N, 0);
5200
5201  // fold (sext_in_reg (load x)) -> (smaller sextload x)
5202  // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits))
5203  SDValue NarrowLoad = ReduceLoadWidth(N);
5204  if (NarrowLoad.getNode())
5205    return NarrowLoad;
5206
5207  // fold (sext_in_reg (srl X, 24), i8) -> (sra X, 24)
5208  // fold (sext_in_reg (srl X, 23), i8) -> (sra X, 23) iff possible.
5209  // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above.
5210  if (N0.getOpcode() == ISD::SRL) {
5211    if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
5212      if (ShAmt->getZExtValue()+EVTBits <= VTBits) {
5213        // We can turn this into an SRA iff the input to the SRL is already sign
5214        // extended enough.
5215        unsigned InSignBits = DAG.ComputeNumSignBits(N0.getOperand(0));
5216        if (VTBits-(ShAmt->getZExtValue()+EVTBits) < InSignBits)
5217          return DAG.getNode(ISD::SRA, N->getDebugLoc(), VT,
5218                             N0.getOperand(0), N0.getOperand(1));
5219      }
5220  }
5221
5222  // fold (sext_inreg (extload x)) -> (sextload x)
5223  if (ISD::isEXTLoad(N0.getNode()) &&
5224      ISD::isUNINDEXEDLoad(N0.getNode()) &&
5225      EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
5226      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
5227       TLI.isLoadExtLegal(ISD::SEXTLOAD, EVT))) {
5228    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5229    SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, N->getDebugLoc(), VT,
5230                                     LN0->getChain(),
5231                                     LN0->getBasePtr(), LN0->getPointerInfo(),
5232                                     EVT,
5233                                     LN0->isVolatile(), LN0->isNonTemporal(),
5234                                     LN0->getAlignment());
5235    CombineTo(N, ExtLoad);
5236    CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
5237    return SDValue(N, 0);   // Return N so it doesn't get rechecked!
5238  }
5239  // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use
5240  if (ISD::isZEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
5241      N0.hasOneUse() &&
5242      EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
5243      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
5244       TLI.isLoadExtLegal(ISD::SEXTLOAD, EVT))) {
5245    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5246    SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, N->getDebugLoc(), VT,
5247                                     LN0->getChain(),
5248                                     LN0->getBasePtr(), LN0->getPointerInfo(),
5249                                     EVT,
5250                                     LN0->isVolatile(), LN0->isNonTemporal(),
5251                                     LN0->getAlignment());
5252    CombineTo(N, ExtLoad);
5253    CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
5254    return SDValue(N, 0);   // Return N so it doesn't get rechecked!
5255  }
5256
5257  // Form (sext_inreg (bswap >> 16)) or (sext_inreg (rotl (bswap) 16))
5258  if (EVTBits <= 16 && N0.getOpcode() == ISD::OR) {
5259    SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0),
5260                                       N0.getOperand(1), false);
5261    if (BSwap.getNode() != 0)
5262      return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(), VT,
5263                         BSwap, N1);
5264  }
5265
5266  return SDValue();
5267}
5268
5269SDValue DAGCombiner::visitTRUNCATE(SDNode *N) {
5270  SDValue N0 = N->getOperand(0);
5271  EVT VT = N->getValueType(0);
5272  bool isLE = TLI.isLittleEndian();
5273
5274  // noop truncate
5275  if (N0.getValueType() == N->getValueType(0))
5276    return N0;
5277  // fold (truncate c1) -> c1
5278  if (isa<ConstantSDNode>(N0))
5279    return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, N0);
5280  // fold (truncate (truncate x)) -> (truncate x)
5281  if (N0.getOpcode() == ISD::TRUNCATE)
5282    return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, N0.getOperand(0));
5283  // fold (truncate (ext x)) -> (ext x) or (truncate x) or x
5284  if (N0.getOpcode() == ISD::ZERO_EXTEND ||
5285      N0.getOpcode() == ISD::SIGN_EXTEND ||
5286      N0.getOpcode() == ISD::ANY_EXTEND) {
5287    if (N0.getOperand(0).getValueType().bitsLT(VT))
5288      // if the source is smaller than the dest, we still need an extend
5289      return DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT,
5290                         N0.getOperand(0));
5291    if (N0.getOperand(0).getValueType().bitsGT(VT))
5292      // if the source is larger than the dest, than we just need the truncate
5293      return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, N0.getOperand(0));
5294    // if the source and dest are the same type, we can drop both the extend
5295    // and the truncate.
5296    return N0.getOperand(0);
5297  }
5298
5299  // Fold extract-and-trunc into a narrow extract. For example:
5300  //   i64 x = EXTRACT_VECTOR_ELT(v2i64 val, i32 1)
5301  //   i32 y = TRUNCATE(i64 x)
5302  //        -- becomes --
5303  //   v16i8 b = BITCAST (v2i64 val)
5304  //   i8 x = EXTRACT_VECTOR_ELT(v16i8 b, i32 8)
5305  //
5306  // Note: We only run this optimization after type legalization (which often
5307  // creates this pattern) and before operation legalization after which
5308  // we need to be more careful about the vector instructions that we generate.
5309  if (N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5310      LegalTypes && !LegalOperations && N0->hasOneUse()) {
5311
5312    EVT VecTy = N0.getOperand(0).getValueType();
5313    EVT ExTy = N0.getValueType();
5314    EVT TrTy = N->getValueType(0);
5315
5316    unsigned NumElem = VecTy.getVectorNumElements();
5317    unsigned SizeRatio = ExTy.getSizeInBits()/TrTy.getSizeInBits();
5318
5319    EVT NVT = EVT::getVectorVT(*DAG.getContext(), TrTy, SizeRatio * NumElem);
5320    assert(NVT.getSizeInBits() == VecTy.getSizeInBits() && "Invalid Size");
5321
5322    SDValue EltNo = N0->getOperand(1);
5323    if (isa<ConstantSDNode>(EltNo) && isTypeLegal(NVT)) {
5324      int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
5325      EVT IndexTy = N0->getOperand(1).getValueType();
5326      int Index = isLE ? (Elt*SizeRatio) : (Elt*SizeRatio + (SizeRatio-1));
5327
5328      SDValue V = DAG.getNode(ISD::BITCAST, N->getDebugLoc(),
5329                              NVT, N0.getOperand(0));
5330
5331      return DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
5332                         N->getDebugLoc(), TrTy, V,
5333                         DAG.getConstant(Index, IndexTy));
5334    }
5335  }
5336
5337  // See if we can simplify the input to this truncate through knowledge that
5338  // only the low bits are being used.
5339  // For example "trunc (or (shl x, 8), y)" // -> trunc y
5340  // Currently we only perform this optimization on scalars because vectors
5341  // may have different active low bits.
5342  if (!VT.isVector()) {
5343    SDValue Shorter =
5344      GetDemandedBits(N0, APInt::getLowBitsSet(N0.getValueSizeInBits(),
5345                                               VT.getSizeInBits()));
5346    if (Shorter.getNode())
5347      return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, Shorter);
5348  }
5349  // fold (truncate (load x)) -> (smaller load x)
5350  // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits))
5351  if (!LegalTypes || TLI.isTypeDesirableForOp(N0.getOpcode(), VT)) {
5352    SDValue Reduced = ReduceLoadWidth(N);
5353    if (Reduced.getNode())
5354      return Reduced;
5355  }
5356  // fold (trunc (concat ... x ...)) -> (concat ..., (trunc x), ...)),
5357  // where ... are all 'undef'.
5358  if (N0.getOpcode() == ISD::CONCAT_VECTORS && !LegalTypes) {
5359    SmallVector<EVT, 8> VTs;
5360    SDValue V;
5361    unsigned Idx = 0;
5362    unsigned NumDefs = 0;
5363
5364    for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i) {
5365      SDValue X = N0.getOperand(i);
5366      if (X.getOpcode() != ISD::UNDEF) {
5367        V = X;
5368        Idx = i;
5369        NumDefs++;
5370      }
5371      // Stop if more than one members are non-undef.
5372      if (NumDefs > 1)
5373        break;
5374      VTs.push_back(EVT::getVectorVT(*DAG.getContext(),
5375                                     VT.getVectorElementType(),
5376                                     X.getValueType().getVectorNumElements()));
5377    }
5378
5379    if (NumDefs == 0)
5380      return DAG.getUNDEF(VT);
5381
5382    if (NumDefs == 1) {
5383      assert(V.getNode() && "The single defined operand is empty!");
5384      SmallVector<SDValue, 8> Opnds;
5385      for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
5386        if (i != Idx) {
5387          Opnds.push_back(DAG.getUNDEF(VTs[i]));
5388          continue;
5389        }
5390        SDValue NV = DAG.getNode(ISD::TRUNCATE, V.getDebugLoc(), VTs[i], V);
5391        AddToWorkList(NV.getNode());
5392        Opnds.push_back(NV);
5393      }
5394      return DAG.getNode(ISD::CONCAT_VECTORS, N->getDebugLoc(), VT,
5395                         &Opnds[0], Opnds.size());
5396    }
5397  }
5398
5399  // Simplify the operands using demanded-bits information.
5400  if (!VT.isVector() &&
5401      SimplifyDemandedBits(SDValue(N, 0)))
5402    return SDValue(N, 0);
5403
5404  return SDValue();
5405}
5406
5407static SDNode *getBuildPairElt(SDNode *N, unsigned i) {
5408  SDValue Elt = N->getOperand(i);
5409  if (Elt.getOpcode() != ISD::MERGE_VALUES)
5410    return Elt.getNode();
5411  return Elt.getOperand(Elt.getResNo()).getNode();
5412}
5413
5414/// CombineConsecutiveLoads - build_pair (load, load) -> load
5415/// if load locations are consecutive.
5416SDValue DAGCombiner::CombineConsecutiveLoads(SDNode *N, EVT VT) {
5417  assert(N->getOpcode() == ISD::BUILD_PAIR);
5418
5419  LoadSDNode *LD1 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 0));
5420  LoadSDNode *LD2 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 1));
5421  if (!LD1 || !LD2 || !ISD::isNON_EXTLoad(LD1) || !LD1->hasOneUse() ||
5422      LD1->getPointerInfo().getAddrSpace() !=
5423         LD2->getPointerInfo().getAddrSpace())
5424    return SDValue();
5425  EVT LD1VT = LD1->getValueType(0);
5426
5427  if (ISD::isNON_EXTLoad(LD2) &&
5428      LD2->hasOneUse() &&
5429      // If both are volatile this would reduce the number of volatile loads.
5430      // If one is volatile it might be ok, but play conservative and bail out.
5431      !LD1->isVolatile() &&
5432      !LD2->isVolatile() &&
5433      DAG.isConsecutiveLoad(LD2, LD1, LD1VT.getSizeInBits()/8, 1)) {
5434    unsigned Align = LD1->getAlignment();
5435    unsigned NewAlign = TLI.getDataLayout()->
5436      getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
5437
5438    if (NewAlign <= Align &&
5439        (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT)))
5440      return DAG.getLoad(VT, N->getDebugLoc(), LD1->getChain(),
5441                         LD1->getBasePtr(), LD1->getPointerInfo(),
5442                         false, false, false, Align);
5443  }
5444
5445  return SDValue();
5446}
5447
5448SDValue DAGCombiner::visitBITCAST(SDNode *N) {
5449  SDValue N0 = N->getOperand(0);
5450  EVT VT = N->getValueType(0);
5451
5452  // If the input is a BUILD_VECTOR with all constant elements, fold this now.
5453  // Only do this before legalize, since afterward the target may be depending
5454  // on the bitconvert.
5455  // First check to see if this is all constant.
5456  if (!LegalTypes &&
5457      N0.getOpcode() == ISD::BUILD_VECTOR && N0.getNode()->hasOneUse() &&
5458      VT.isVector()) {
5459    bool isSimple = true;
5460    for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i)
5461      if (N0.getOperand(i).getOpcode() != ISD::UNDEF &&
5462          N0.getOperand(i).getOpcode() != ISD::Constant &&
5463          N0.getOperand(i).getOpcode() != ISD::ConstantFP) {
5464        isSimple = false;
5465        break;
5466      }
5467
5468    EVT DestEltVT = N->getValueType(0).getVectorElementType();
5469    assert(!DestEltVT.isVector() &&
5470           "Element type of vector ValueType must not be vector!");
5471    if (isSimple)
5472      return ConstantFoldBITCASTofBUILD_VECTOR(N0.getNode(), DestEltVT);
5473  }
5474
5475  // If the input is a constant, let getNode fold it.
5476  if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0)) {
5477    SDValue Res = DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, N0);
5478    if (Res.getNode() != N) {
5479      if (!LegalOperations ||
5480          TLI.isOperationLegal(Res.getNode()->getOpcode(), VT))
5481        return Res;
5482
5483      // Folding it resulted in an illegal node, and it's too late to
5484      // do that. Clean up the old node and forego the transformation.
5485      // Ideally this won't happen very often, because instcombine
5486      // and the earlier dagcombine runs (where illegal nodes are
5487      // permitted) should have folded most of them already.
5488      DAG.DeleteNode(Res.getNode());
5489    }
5490  }
5491
5492  // (conv (conv x, t1), t2) -> (conv x, t2)
5493  if (N0.getOpcode() == ISD::BITCAST)
5494    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT,
5495                       N0.getOperand(0));
5496
5497  // fold (conv (load x)) -> (load (conv*)x)
5498  // If the resultant load doesn't need a higher alignment than the original!
5499  if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
5500      // Do not change the width of a volatile load.
5501      !cast<LoadSDNode>(N0)->isVolatile() &&
5502      (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT))) {
5503    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5504    unsigned Align = TLI.getDataLayout()->
5505      getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
5506    unsigned OrigAlign = LN0->getAlignment();
5507
5508    if (Align <= OrigAlign) {
5509      SDValue Load = DAG.getLoad(VT, N->getDebugLoc(), LN0->getChain(),
5510                                 LN0->getBasePtr(), LN0->getPointerInfo(),
5511                                 LN0->isVolatile(), LN0->isNonTemporal(),
5512                                 LN0->isInvariant(), OrigAlign);
5513      AddToWorkList(N);
5514      CombineTo(N0.getNode(),
5515                DAG.getNode(ISD::BITCAST, N0.getDebugLoc(),
5516                            N0.getValueType(), Load),
5517                Load.getValue(1));
5518      return Load;
5519    }
5520  }
5521
5522  // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
5523  // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
5524  // This often reduces constant pool loads.
5525  if (((N0.getOpcode() == ISD::FNEG && !TLI.isFNegFree(VT)) ||
5526       (N0.getOpcode() == ISD::FABS && !TLI.isFAbsFree(VT))) &&
5527      N0.getNode()->hasOneUse() && VT.isInteger() &&
5528      !VT.isVector() && !N0.getValueType().isVector()) {
5529    SDValue NewConv = DAG.getNode(ISD::BITCAST, N0.getDebugLoc(), VT,
5530                                  N0.getOperand(0));
5531    AddToWorkList(NewConv.getNode());
5532
5533    APInt SignBit = APInt::getSignBit(VT.getSizeInBits());
5534    if (N0.getOpcode() == ISD::FNEG)
5535      return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT,
5536                         NewConv, DAG.getConstant(SignBit, VT));
5537    assert(N0.getOpcode() == ISD::FABS);
5538    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
5539                       NewConv, DAG.getConstant(~SignBit, VT));
5540  }
5541
5542  // fold (bitconvert (fcopysign cst, x)) ->
5543  //         (or (and (bitconvert x), sign), (and cst, (not sign)))
5544  // Note that we don't handle (copysign x, cst) because this can always be
5545  // folded to an fneg or fabs.
5546  if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse() &&
5547      isa<ConstantFPSDNode>(N0.getOperand(0)) &&
5548      VT.isInteger() && !VT.isVector()) {
5549    unsigned OrigXWidth = N0.getOperand(1).getValueType().getSizeInBits();
5550    EVT IntXVT = EVT::getIntegerVT(*DAG.getContext(), OrigXWidth);
5551    if (isTypeLegal(IntXVT)) {
5552      SDValue X = DAG.getNode(ISD::BITCAST, N0.getDebugLoc(),
5553                              IntXVT, N0.getOperand(1));
5554      AddToWorkList(X.getNode());
5555
5556      // If X has a different width than the result/lhs, sext it or truncate it.
5557      unsigned VTWidth = VT.getSizeInBits();
5558      if (OrigXWidth < VTWidth) {
5559        X = DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), VT, X);
5560        AddToWorkList(X.getNode());
5561      } else if (OrigXWidth > VTWidth) {
5562        // To get the sign bit in the right place, we have to shift it right
5563        // before truncating.
5564        X = DAG.getNode(ISD::SRL, X.getDebugLoc(),
5565                        X.getValueType(), X,
5566                        DAG.getConstant(OrigXWidth-VTWidth, X.getValueType()));
5567        AddToWorkList(X.getNode());
5568        X = DAG.getNode(ISD::TRUNCATE, X.getDebugLoc(), VT, X);
5569        AddToWorkList(X.getNode());
5570      }
5571
5572      APInt SignBit = APInt::getSignBit(VT.getSizeInBits());
5573      X = DAG.getNode(ISD::AND, X.getDebugLoc(), VT,
5574                      X, DAG.getConstant(SignBit, VT));
5575      AddToWorkList(X.getNode());
5576
5577      SDValue Cst = DAG.getNode(ISD::BITCAST, N0.getDebugLoc(),
5578                                VT, N0.getOperand(0));
5579      Cst = DAG.getNode(ISD::AND, Cst.getDebugLoc(), VT,
5580                        Cst, DAG.getConstant(~SignBit, VT));
5581      AddToWorkList(Cst.getNode());
5582
5583      return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, X, Cst);
5584    }
5585  }
5586
5587  // bitconvert(build_pair(ld, ld)) -> ld iff load locations are consecutive.
5588  if (N0.getOpcode() == ISD::BUILD_PAIR) {
5589    SDValue CombineLD = CombineConsecutiveLoads(N0.getNode(), VT);
5590    if (CombineLD.getNode())
5591      return CombineLD;
5592  }
5593
5594  return SDValue();
5595}
5596
5597SDValue DAGCombiner::visitBUILD_PAIR(SDNode *N) {
5598  EVT VT = N->getValueType(0);
5599  return CombineConsecutiveLoads(N, VT);
5600}
5601
5602/// ConstantFoldBITCASTofBUILD_VECTOR - We know that BV is a build_vector
5603/// node with Constant, ConstantFP or Undef operands.  DstEltVT indicates the
5604/// destination element value type.
5605SDValue DAGCombiner::
5606ConstantFoldBITCASTofBUILD_VECTOR(SDNode *BV, EVT DstEltVT) {
5607  EVT SrcEltVT = BV->getValueType(0).getVectorElementType();
5608
5609  // If this is already the right type, we're done.
5610  if (SrcEltVT == DstEltVT) return SDValue(BV, 0);
5611
5612  unsigned SrcBitSize = SrcEltVT.getSizeInBits();
5613  unsigned DstBitSize = DstEltVT.getSizeInBits();
5614
5615  // If this is a conversion of N elements of one type to N elements of another
5616  // type, convert each element.  This handles FP<->INT cases.
5617  if (SrcBitSize == DstBitSize) {
5618    EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT,
5619                              BV->getValueType(0).getVectorNumElements());
5620
5621    // Due to the FP element handling below calling this routine recursively,
5622    // we can end up with a scalar-to-vector node here.
5623    if (BV->getOpcode() == ISD::SCALAR_TO_VECTOR)
5624      return DAG.getNode(ISD::SCALAR_TO_VECTOR, BV->getDebugLoc(), VT,
5625                         DAG.getNode(ISD::BITCAST, BV->getDebugLoc(),
5626                                     DstEltVT, BV->getOperand(0)));
5627
5628    SmallVector<SDValue, 8> Ops;
5629    for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
5630      SDValue Op = BV->getOperand(i);
5631      // If the vector element type is not legal, the BUILD_VECTOR operands
5632      // are promoted and implicitly truncated.  Make that explicit here.
5633      if (Op.getValueType() != SrcEltVT)
5634        Op = DAG.getNode(ISD::TRUNCATE, BV->getDebugLoc(), SrcEltVT, Op);
5635      Ops.push_back(DAG.getNode(ISD::BITCAST, BV->getDebugLoc(),
5636                                DstEltVT, Op));
5637      AddToWorkList(Ops.back().getNode());
5638    }
5639    return DAG.getNode(ISD::BUILD_VECTOR, BV->getDebugLoc(), VT,
5640                       &Ops[0], Ops.size());
5641  }
5642
5643  // Otherwise, we're growing or shrinking the elements.  To avoid having to
5644  // handle annoying details of growing/shrinking FP values, we convert them to
5645  // int first.
5646  if (SrcEltVT.isFloatingPoint()) {
5647    // Convert the input float vector to a int vector where the elements are the
5648    // same sizes.
5649    assert((SrcEltVT == MVT::f32 || SrcEltVT == MVT::f64) && "Unknown FP VT!");
5650    EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), SrcEltVT.getSizeInBits());
5651    BV = ConstantFoldBITCASTofBUILD_VECTOR(BV, IntVT).getNode();
5652    SrcEltVT = IntVT;
5653  }
5654
5655  // Now we know the input is an integer vector.  If the output is a FP type,
5656  // convert to integer first, then to FP of the right size.
5657  if (DstEltVT.isFloatingPoint()) {
5658    assert((DstEltVT == MVT::f32 || DstEltVT == MVT::f64) && "Unknown FP VT!");
5659    EVT TmpVT = EVT::getIntegerVT(*DAG.getContext(), DstEltVT.getSizeInBits());
5660    SDNode *Tmp = ConstantFoldBITCASTofBUILD_VECTOR(BV, TmpVT).getNode();
5661
5662    // Next, convert to FP elements of the same size.
5663    return ConstantFoldBITCASTofBUILD_VECTOR(Tmp, DstEltVT);
5664  }
5665
5666  // Okay, we know the src/dst types are both integers of differing types.
5667  // Handling growing first.
5668  assert(SrcEltVT.isInteger() && DstEltVT.isInteger());
5669  if (SrcBitSize < DstBitSize) {
5670    unsigned NumInputsPerOutput = DstBitSize/SrcBitSize;
5671
5672    SmallVector<SDValue, 8> Ops;
5673    for (unsigned i = 0, e = BV->getNumOperands(); i != e;
5674         i += NumInputsPerOutput) {
5675      bool isLE = TLI.isLittleEndian();
5676      APInt NewBits = APInt(DstBitSize, 0);
5677      bool EltIsUndef = true;
5678      for (unsigned j = 0; j != NumInputsPerOutput; ++j) {
5679        // Shift the previously computed bits over.
5680        NewBits <<= SrcBitSize;
5681        SDValue Op = BV->getOperand(i+ (isLE ? (NumInputsPerOutput-j-1) : j));
5682        if (Op.getOpcode() == ISD::UNDEF) continue;
5683        EltIsUndef = false;
5684
5685        NewBits |= cast<ConstantSDNode>(Op)->getAPIntValue().
5686                   zextOrTrunc(SrcBitSize).zext(DstBitSize);
5687      }
5688
5689      if (EltIsUndef)
5690        Ops.push_back(DAG.getUNDEF(DstEltVT));
5691      else
5692        Ops.push_back(DAG.getConstant(NewBits, DstEltVT));
5693    }
5694
5695    EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, Ops.size());
5696    return DAG.getNode(ISD::BUILD_VECTOR, BV->getDebugLoc(), VT,
5697                       &Ops[0], Ops.size());
5698  }
5699
5700  // Finally, this must be the case where we are shrinking elements: each input
5701  // turns into multiple outputs.
5702  bool isS2V = ISD::isScalarToVector(BV);
5703  unsigned NumOutputsPerInput = SrcBitSize/DstBitSize;
5704  EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT,
5705                            NumOutputsPerInput*BV->getNumOperands());
5706  SmallVector<SDValue, 8> Ops;
5707
5708  for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
5709    if (BV->getOperand(i).getOpcode() == ISD::UNDEF) {
5710      for (unsigned j = 0; j != NumOutputsPerInput; ++j)
5711        Ops.push_back(DAG.getUNDEF(DstEltVT));
5712      continue;
5713    }
5714
5715    APInt OpVal = cast<ConstantSDNode>(BV->getOperand(i))->
5716                  getAPIntValue().zextOrTrunc(SrcBitSize);
5717
5718    for (unsigned j = 0; j != NumOutputsPerInput; ++j) {
5719      APInt ThisVal = OpVal.trunc(DstBitSize);
5720      Ops.push_back(DAG.getConstant(ThisVal, DstEltVT));
5721      if (isS2V && i == 0 && j == 0 && ThisVal.zext(SrcBitSize) == OpVal)
5722        // Simply turn this into a SCALAR_TO_VECTOR of the new type.
5723        return DAG.getNode(ISD::SCALAR_TO_VECTOR, BV->getDebugLoc(), VT,
5724                           Ops[0]);
5725      OpVal = OpVal.lshr(DstBitSize);
5726    }
5727
5728    // For big endian targets, swap the order of the pieces of each element.
5729    if (TLI.isBigEndian())
5730      std::reverse(Ops.end()-NumOutputsPerInput, Ops.end());
5731  }
5732
5733  return DAG.getNode(ISD::BUILD_VECTOR, BV->getDebugLoc(), VT,
5734                     &Ops[0], Ops.size());
5735}
5736
5737SDValue DAGCombiner::visitFADD(SDNode *N) {
5738  SDValue N0 = N->getOperand(0);
5739  SDValue N1 = N->getOperand(1);
5740  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
5741  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5742  EVT VT = N->getValueType(0);
5743
5744  // fold vector ops
5745  if (VT.isVector()) {
5746    SDValue FoldedVOp = SimplifyVBinOp(N);
5747    if (FoldedVOp.getNode()) return FoldedVOp;
5748  }
5749
5750  // fold (fadd c1, c2) -> c1 + c2
5751  if (N0CFP && N1CFP)
5752    return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N0, N1);
5753  // canonicalize constant to RHS
5754  if (N0CFP && !N1CFP)
5755    return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N1, N0);
5756  // fold (fadd A, 0) -> A
5757  if (DAG.getTarget().Options.UnsafeFPMath && N1CFP &&
5758      N1CFP->getValueAPF().isZero())
5759    return N0;
5760  // fold (fadd A, (fneg B)) -> (fsub A, B)
5761  if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) &&
5762    isNegatibleForFree(N1, LegalOperations, TLI, &DAG.getTarget().Options) == 2)
5763    return DAG.getNode(ISD::FSUB, N->getDebugLoc(), VT, N0,
5764                       GetNegatedExpression(N1, DAG, LegalOperations));
5765  // fold (fadd (fneg A), B) -> (fsub B, A)
5766  if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) &&
5767    isNegatibleForFree(N0, LegalOperations, TLI, &DAG.getTarget().Options) == 2)
5768    return DAG.getNode(ISD::FSUB, N->getDebugLoc(), VT, N1,
5769                       GetNegatedExpression(N0, DAG, LegalOperations));
5770
5771  // If allowed, fold (fadd (fadd x, c1), c2) -> (fadd x, (fadd c1, c2))
5772  if (DAG.getTarget().Options.UnsafeFPMath && N1CFP &&
5773      N0.getOpcode() == ISD::FADD && N0.getNode()->hasOneUse() &&
5774      isa<ConstantFPSDNode>(N0.getOperand(1)))
5775    return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N0.getOperand(0),
5776                       DAG.getNode(ISD::FADD, N->getDebugLoc(), VT,
5777                                   N0.getOperand(1), N1));
5778
5779  // If allow, fold (fadd (fneg x), x) -> 0.0
5780  if (DAG.getTarget().Options.UnsafeFPMath &&
5781      N0.getOpcode() == ISD::FNEG && N0.getOperand(0) == N1) {
5782    return DAG.getConstantFP(0.0, VT);
5783  }
5784
5785    // If allow, fold (fadd x, (fneg x)) -> 0.0
5786  if (DAG.getTarget().Options.UnsafeFPMath &&
5787      N1.getOpcode() == ISD::FNEG && N1.getOperand(0) == N0) {
5788    return DAG.getConstantFP(0.0, VT);
5789  }
5790
5791  // In unsafe math mode, we can fold chains of FADD's of the same value
5792  // into multiplications.  This transform is not safe in general because
5793  // we are reducing the number of rounding steps.
5794  if (DAG.getTarget().Options.UnsafeFPMath &&
5795      TLI.isOperationLegalOrCustom(ISD::FMUL, VT) &&
5796      !N0CFP && !N1CFP) {
5797    if (N0.getOpcode() == ISD::FMUL) {
5798      ConstantFPSDNode *CFP00 = dyn_cast<ConstantFPSDNode>(N0.getOperand(0));
5799      ConstantFPSDNode *CFP01 = dyn_cast<ConstantFPSDNode>(N0.getOperand(1));
5800
5801      // (fadd (fmul c, x), x) -> (fmul c+1, x)
5802      if (CFP00 && !CFP01 && N0.getOperand(1) == N1) {
5803        SDValue NewCFP = DAG.getNode(ISD::FADD, N->getDebugLoc(), VT,
5804                                     SDValue(CFP00, 0),
5805                                     DAG.getConstantFP(1.0, VT));
5806        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
5807                           N1, NewCFP);
5808      }
5809
5810      // (fadd (fmul x, c), x) -> (fmul c+1, x)
5811      if (CFP01 && !CFP00 && N0.getOperand(0) == N1) {
5812        SDValue NewCFP = DAG.getNode(ISD::FADD, N->getDebugLoc(), VT,
5813                                     SDValue(CFP01, 0),
5814                                     DAG.getConstantFP(1.0, VT));
5815        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
5816                           N1, NewCFP);
5817      }
5818
5819      // (fadd (fadd x, x), x) -> (fmul 3.0, x)
5820      if (!CFP00 && !CFP01 && N0.getOperand(0) == N0.getOperand(1) &&
5821          N0.getOperand(0) == N1) {
5822        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
5823                           N1, DAG.getConstantFP(3.0, VT));
5824      }
5825
5826      // (fadd (fmul c, x), (fadd x, x)) -> (fmul c+2, x)
5827      if (CFP00 && !CFP01 && N1.getOpcode() == ISD::FADD &&
5828          N1.getOperand(0) == N1.getOperand(1) &&
5829          N0.getOperand(1) == N1.getOperand(0)) {
5830        SDValue NewCFP = DAG.getNode(ISD::FADD, N->getDebugLoc(), VT,
5831                                     SDValue(CFP00, 0),
5832                                     DAG.getConstantFP(2.0, VT));
5833        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
5834                           N0.getOperand(1), NewCFP);
5835      }
5836
5837      // (fadd (fmul x, c), (fadd x, x)) -> (fmul c+2, x)
5838      if (CFP01 && !CFP00 && N1.getOpcode() == ISD::FADD &&
5839          N1.getOperand(0) == N1.getOperand(1) &&
5840          N0.getOperand(0) == N1.getOperand(0)) {
5841        SDValue NewCFP = DAG.getNode(ISD::FADD, N->getDebugLoc(), VT,
5842                                     SDValue(CFP01, 0),
5843                                     DAG.getConstantFP(2.0, VT));
5844        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
5845                           N0.getOperand(0), NewCFP);
5846      }
5847    }
5848
5849    if (N1.getOpcode() == ISD::FMUL) {
5850      ConstantFPSDNode *CFP10 = dyn_cast<ConstantFPSDNode>(N1.getOperand(0));
5851      ConstantFPSDNode *CFP11 = dyn_cast<ConstantFPSDNode>(N1.getOperand(1));
5852
5853      // (fadd x, (fmul c, x)) -> (fmul c+1, x)
5854      if (CFP10 && !CFP11 && N1.getOperand(1) == N0) {
5855        SDValue NewCFP = DAG.getNode(ISD::FADD, N->getDebugLoc(), VT,
5856                                     SDValue(CFP10, 0),
5857                                     DAG.getConstantFP(1.0, VT));
5858        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
5859                           N0, NewCFP);
5860      }
5861
5862      // (fadd x, (fmul x, c)) -> (fmul c+1, x)
5863      if (CFP11 && !CFP10 && N1.getOperand(0) == N0) {
5864        SDValue NewCFP = DAG.getNode(ISD::FADD, N->getDebugLoc(), VT,
5865                                     SDValue(CFP11, 0),
5866                                     DAG.getConstantFP(1.0, VT));
5867        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
5868                           N0, NewCFP);
5869      }
5870
5871      // (fadd x, (fadd x, x)) -> (fmul 3.0, x)
5872      if (!CFP10 && !CFP11 && N1.getOperand(0) == N1.getOperand(1) &&
5873          N1.getOperand(0) == N0) {
5874        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
5875                           N0, DAG.getConstantFP(3.0, VT));
5876      }
5877
5878      // (fadd (fadd x, x), (fmul c, x)) -> (fmul c+2, x)
5879      if (CFP10 && !CFP11 && N1.getOpcode() == ISD::FADD &&
5880          N1.getOperand(0) == N1.getOperand(1) &&
5881          N0.getOperand(1) == N1.getOperand(0)) {
5882        SDValue NewCFP = DAG.getNode(ISD::FADD, N->getDebugLoc(), VT,
5883                                     SDValue(CFP10, 0),
5884                                     DAG.getConstantFP(2.0, VT));
5885        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
5886                           N0.getOperand(1), NewCFP);
5887      }
5888
5889      // (fadd (fadd x, x), (fmul x, c)) -> (fmul c+2, x)
5890      if (CFP11 && !CFP10 && N1.getOpcode() == ISD::FADD &&
5891          N1.getOperand(0) == N1.getOperand(1) &&
5892          N0.getOperand(0) == N1.getOperand(0)) {
5893        SDValue NewCFP = DAG.getNode(ISD::FADD, N->getDebugLoc(), VT,
5894                                     SDValue(CFP11, 0),
5895                                     DAG.getConstantFP(2.0, VT));
5896        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
5897                           N0.getOperand(0), NewCFP);
5898      }
5899    }
5900
5901    // (fadd (fadd x, x), (fadd x, x)) -> (fmul 4.0, x)
5902    if (N0.getOpcode() == ISD::FADD && N1.getOpcode() == ISD::FADD &&
5903        N0.getOperand(0) == N0.getOperand(1) &&
5904        N1.getOperand(0) == N1.getOperand(1) &&
5905        N0.getOperand(0) == N1.getOperand(0)) {
5906      return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
5907                         N0.getOperand(0),
5908                         DAG.getConstantFP(4.0, VT));
5909    }
5910  }
5911
5912  // FADD -> FMA combines:
5913  if ((DAG.getTarget().Options.AllowFPOpFusion == FPOpFusion::Fast ||
5914       DAG.getTarget().Options.UnsafeFPMath) &&
5915      DAG.getTarget().getTargetLowering()->isFMAFasterThanMulAndAdd(VT) &&
5916      TLI.isOperationLegalOrCustom(ISD::FMA, VT)) {
5917
5918    // fold (fadd (fmul x, y), z) -> (fma x, y, z)
5919    if (N0.getOpcode() == ISD::FMUL && N0->hasOneUse()) {
5920      return DAG.getNode(ISD::FMA, N->getDebugLoc(), VT,
5921                         N0.getOperand(0), N0.getOperand(1), N1);
5922    }
5923
5924    // fold (fadd x, (fmul y, z)) -> (fma y, z, x)
5925    // Note: Commutes FADD operands.
5926    if (N1.getOpcode() == ISD::FMUL && N1->hasOneUse()) {
5927      return DAG.getNode(ISD::FMA, N->getDebugLoc(), VT,
5928                         N1.getOperand(0), N1.getOperand(1), N0);
5929    }
5930  }
5931
5932  return SDValue();
5933}
5934
5935SDValue DAGCombiner::visitFSUB(SDNode *N) {
5936  SDValue N0 = N->getOperand(0);
5937  SDValue N1 = N->getOperand(1);
5938  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
5939  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5940  EVT VT = N->getValueType(0);
5941  DebugLoc dl = N->getDebugLoc();
5942
5943  // fold vector ops
5944  if (VT.isVector()) {
5945    SDValue FoldedVOp = SimplifyVBinOp(N);
5946    if (FoldedVOp.getNode()) return FoldedVOp;
5947  }
5948
5949  // fold (fsub c1, c2) -> c1-c2
5950  if (N0CFP && N1CFP)
5951    return DAG.getNode(ISD::FSUB, N->getDebugLoc(), VT, N0, N1);
5952  // fold (fsub A, 0) -> A
5953  if (DAG.getTarget().Options.UnsafeFPMath &&
5954      N1CFP && N1CFP->getValueAPF().isZero())
5955    return N0;
5956  // fold (fsub 0, B) -> -B
5957  if (DAG.getTarget().Options.UnsafeFPMath &&
5958      N0CFP && N0CFP->getValueAPF().isZero()) {
5959    if (isNegatibleForFree(N1, LegalOperations, TLI, &DAG.getTarget().Options))
5960      return GetNegatedExpression(N1, DAG, LegalOperations);
5961    if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
5962      return DAG.getNode(ISD::FNEG, dl, VT, N1);
5963  }
5964  // fold (fsub A, (fneg B)) -> (fadd A, B)
5965  if (isNegatibleForFree(N1, LegalOperations, TLI, &DAG.getTarget().Options))
5966    return DAG.getNode(ISD::FADD, dl, VT, N0,
5967                       GetNegatedExpression(N1, DAG, LegalOperations));
5968
5969  // If 'unsafe math' is enabled, fold
5970  //    (fsub x, x) -> 0.0 &
5971  //    (fsub x, (fadd x, y)) -> (fneg y) &
5972  //    (fsub x, (fadd y, x)) -> (fneg y)
5973  if (DAG.getTarget().Options.UnsafeFPMath) {
5974    if (N0 == N1)
5975      return DAG.getConstantFP(0.0f, VT);
5976
5977    if (N1.getOpcode() == ISD::FADD) {
5978      SDValue N10 = N1->getOperand(0);
5979      SDValue N11 = N1->getOperand(1);
5980
5981      if (N10 == N0 && isNegatibleForFree(N11, LegalOperations, TLI,
5982                                          &DAG.getTarget().Options))
5983        return GetNegatedExpression(N11, DAG, LegalOperations);
5984      else if (N11 == N0 && isNegatibleForFree(N10, LegalOperations, TLI,
5985                                               &DAG.getTarget().Options))
5986        return GetNegatedExpression(N10, DAG, LegalOperations);
5987    }
5988  }
5989
5990  // FSUB -> FMA combines:
5991  if ((DAG.getTarget().Options.AllowFPOpFusion == FPOpFusion::Fast ||
5992       DAG.getTarget().Options.UnsafeFPMath) &&
5993      DAG.getTarget().getTargetLowering()->isFMAFasterThanMulAndAdd(VT) &&
5994      TLI.isOperationLegalOrCustom(ISD::FMA, VT)) {
5995
5996    // fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z))
5997    if (N0.getOpcode() == ISD::FMUL && N0->hasOneUse()) {
5998      return DAG.getNode(ISD::FMA, dl, VT,
5999                         N0.getOperand(0), N0.getOperand(1),
6000                         DAG.getNode(ISD::FNEG, dl, VT, N1));
6001    }
6002
6003    // fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x)
6004    // Note: Commutes FSUB operands.
6005    if (N1.getOpcode() == ISD::FMUL && N1->hasOneUse()) {
6006      return DAG.getNode(ISD::FMA, dl, VT,
6007                         DAG.getNode(ISD::FNEG, dl, VT,
6008                         N1.getOperand(0)),
6009                         N1.getOperand(1), N0);
6010    }
6011
6012    // fold (fsub (-(fmul, x, y)), z) -> (fma (fneg x), y, (fneg z))
6013    if (N0.getOpcode() == ISD::FNEG &&
6014        N0.getOperand(0).getOpcode() == ISD::FMUL &&
6015        N0->hasOneUse() && N0.getOperand(0).hasOneUse()) {
6016      SDValue N00 = N0.getOperand(0).getOperand(0);
6017      SDValue N01 = N0.getOperand(0).getOperand(1);
6018      return DAG.getNode(ISD::FMA, dl, VT,
6019                         DAG.getNode(ISD::FNEG, dl, VT, N00), N01,
6020                         DAG.getNode(ISD::FNEG, dl, VT, N1));
6021    }
6022  }
6023
6024  return SDValue();
6025}
6026
6027SDValue DAGCombiner::visitFMUL(SDNode *N) {
6028  SDValue N0 = N->getOperand(0);
6029  SDValue N1 = N->getOperand(1);
6030  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6031  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6032  EVT VT = N->getValueType(0);
6033  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6034
6035  // fold vector ops
6036  if (VT.isVector()) {
6037    SDValue FoldedVOp = SimplifyVBinOp(N);
6038    if (FoldedVOp.getNode()) return FoldedVOp;
6039  }
6040
6041  // fold (fmul c1, c2) -> c1*c2
6042  if (N0CFP && N1CFP)
6043    return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT, N0, N1);
6044  // canonicalize constant to RHS
6045  if (N0CFP && !N1CFP)
6046    return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT, N1, N0);
6047  // fold (fmul A, 0) -> 0
6048  if (DAG.getTarget().Options.UnsafeFPMath &&
6049      N1CFP && N1CFP->getValueAPF().isZero())
6050    return N1;
6051  // fold (fmul A, 0) -> 0, vector edition.
6052  if (DAG.getTarget().Options.UnsafeFPMath &&
6053      ISD::isBuildVectorAllZeros(N1.getNode()))
6054    return N1;
6055  // fold (fmul A, 1.0) -> A
6056  if (N1CFP && N1CFP->isExactlyValue(1.0))
6057    return N0;
6058  // fold (fmul X, 2.0) -> (fadd X, X)
6059  if (N1CFP && N1CFP->isExactlyValue(+2.0))
6060    return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N0, N0);
6061  // fold (fmul X, -1.0) -> (fneg X)
6062  if (N1CFP && N1CFP->isExactlyValue(-1.0))
6063    if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
6064      return DAG.getNode(ISD::FNEG, N->getDebugLoc(), VT, N0);
6065
6066  // fold (fmul (fneg X), (fneg Y)) -> (fmul X, Y)
6067  if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, TLI,
6068                                       &DAG.getTarget().Options)) {
6069    if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, TLI,
6070                                         &DAG.getTarget().Options)) {
6071      // Both can be negated for free, check to see if at least one is cheaper
6072      // negated.
6073      if (LHSNeg == 2 || RHSNeg == 2)
6074        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
6075                           GetNegatedExpression(N0, DAG, LegalOperations),
6076                           GetNegatedExpression(N1, DAG, LegalOperations));
6077    }
6078  }
6079
6080  // If allowed, fold (fmul (fmul x, c1), c2) -> (fmul x, (fmul c1, c2))
6081  if (DAG.getTarget().Options.UnsafeFPMath &&
6082      N1CFP && N0.getOpcode() == ISD::FMUL &&
6083      N0.getNode()->hasOneUse() && isa<ConstantFPSDNode>(N0.getOperand(1)))
6084    return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT, N0.getOperand(0),
6085                       DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
6086                                   N0.getOperand(1), N1));
6087
6088  return SDValue();
6089}
6090
6091SDValue DAGCombiner::visitFMA(SDNode *N) {
6092  SDValue N0 = N->getOperand(0);
6093  SDValue N1 = N->getOperand(1);
6094  SDValue N2 = N->getOperand(2);
6095  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6096  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6097  EVT VT = N->getValueType(0);
6098  DebugLoc dl = N->getDebugLoc();
6099
6100  if (DAG.getTarget().Options.UnsafeFPMath) {
6101    if (N0CFP && N0CFP->isZero())
6102      return N2;
6103    if (N1CFP && N1CFP->isZero())
6104      return N2;
6105  }
6106  if (N0CFP && N0CFP->isExactlyValue(1.0))
6107    return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N1, N2);
6108  if (N1CFP && N1CFP->isExactlyValue(1.0))
6109    return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N0, N2);
6110
6111  // Canonicalize (fma c, x, y) -> (fma x, c, y)
6112  if (N0CFP && !N1CFP)
6113    return DAG.getNode(ISD::FMA, N->getDebugLoc(), VT, N1, N0, N2);
6114
6115  // (fma x, c1, (fmul x, c2)) -> (fmul x, c1+c2)
6116  if (DAG.getTarget().Options.UnsafeFPMath && N1CFP &&
6117      N2.getOpcode() == ISD::FMUL &&
6118      N0 == N2.getOperand(0) &&
6119      N2.getOperand(1).getOpcode() == ISD::ConstantFP) {
6120    return DAG.getNode(ISD::FMUL, dl, VT, N0,
6121                       DAG.getNode(ISD::FADD, dl, VT, N1, N2.getOperand(1)));
6122  }
6123
6124
6125  // (fma (fmul x, c1), c2, y) -> (fma x, c1*c2, y)
6126  if (DAG.getTarget().Options.UnsafeFPMath &&
6127      N0.getOpcode() == ISD::FMUL && N1CFP &&
6128      N0.getOperand(1).getOpcode() == ISD::ConstantFP) {
6129    return DAG.getNode(ISD::FMA, dl, VT,
6130                       N0.getOperand(0),
6131                       DAG.getNode(ISD::FMUL, dl, VT, N1, N0.getOperand(1)),
6132                       N2);
6133  }
6134
6135  // (fma x, 1, y) -> (fadd x, y)
6136  // (fma x, -1, y) -> (fadd (fneg x), y)
6137  if (N1CFP) {
6138    if (N1CFP->isExactlyValue(1.0))
6139      return DAG.getNode(ISD::FADD, dl, VT, N0, N2);
6140
6141    if (N1CFP->isExactlyValue(-1.0) &&
6142        (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))) {
6143      SDValue RHSNeg = DAG.getNode(ISD::FNEG, dl, VT, N0);
6144      AddToWorkList(RHSNeg.getNode());
6145      return DAG.getNode(ISD::FADD, dl, VT, N2, RHSNeg);
6146    }
6147  }
6148
6149  // (fma x, c, x) -> (fmul x, (c+1))
6150  if (DAG.getTarget().Options.UnsafeFPMath && N1CFP && N0 == N2) {
6151    return DAG.getNode(ISD::FMUL, dl, VT,
6152                       N0,
6153                       DAG.getNode(ISD::FADD, dl, VT,
6154                                   N1, DAG.getConstantFP(1.0, VT)));
6155  }
6156
6157  // (fma x, c, (fneg x)) -> (fmul x, (c-1))
6158  if (DAG.getTarget().Options.UnsafeFPMath && N1CFP &&
6159      N2.getOpcode() == ISD::FNEG && N2.getOperand(0) == N0) {
6160    return DAG.getNode(ISD::FMUL, dl, VT,
6161                       N0,
6162                       DAG.getNode(ISD::FADD, dl, VT,
6163                                   N1, DAG.getConstantFP(-1.0, VT)));
6164  }
6165
6166
6167  return SDValue();
6168}
6169
6170SDValue DAGCombiner::visitFDIV(SDNode *N) {
6171  SDValue N0 = N->getOperand(0);
6172  SDValue N1 = N->getOperand(1);
6173  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6174  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6175  EVT VT = N->getValueType(0);
6176  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6177
6178  // fold vector ops
6179  if (VT.isVector()) {
6180    SDValue FoldedVOp = SimplifyVBinOp(N);
6181    if (FoldedVOp.getNode()) return FoldedVOp;
6182  }
6183
6184  // fold (fdiv c1, c2) -> c1/c2
6185  if (N0CFP && N1CFP)
6186    return DAG.getNode(ISD::FDIV, N->getDebugLoc(), VT, N0, N1);
6187
6188  // fold (fdiv X, c2) -> fmul X, 1/c2 if losing precision is acceptable.
6189  if (N1CFP && DAG.getTarget().Options.UnsafeFPMath) {
6190    // Compute the reciprocal 1.0 / c2.
6191    APFloat N1APF = N1CFP->getValueAPF();
6192    APFloat Recip(N1APF.getSemantics(), 1); // 1.0
6193    APFloat::opStatus st = Recip.divide(N1APF, APFloat::rmNearestTiesToEven);
6194    // Only do the transform if the reciprocal is a legal fp immediate that
6195    // isn't too nasty (eg NaN, denormal, ...).
6196    if ((st == APFloat::opOK || st == APFloat::opInexact) && // Not too nasty
6197        (!LegalOperations ||
6198         // FIXME: custom lowering of ConstantFP might fail (see e.g. ARM
6199         // backend)... we should handle this gracefully after Legalize.
6200         // TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT) ||
6201         TLI.isOperationLegal(llvm::ISD::ConstantFP, VT) ||
6202         TLI.isFPImmLegal(Recip, VT)))
6203      return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT, N0,
6204                         DAG.getConstantFP(Recip, VT));
6205  }
6206
6207  // (fdiv (fneg X), (fneg Y)) -> (fdiv X, Y)
6208  if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, TLI,
6209                                       &DAG.getTarget().Options)) {
6210    if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, TLI,
6211                                         &DAG.getTarget().Options)) {
6212      // Both can be negated for free, check to see if at least one is cheaper
6213      // negated.
6214      if (LHSNeg == 2 || RHSNeg == 2)
6215        return DAG.getNode(ISD::FDIV, N->getDebugLoc(), VT,
6216                           GetNegatedExpression(N0, DAG, LegalOperations),
6217                           GetNegatedExpression(N1, DAG, LegalOperations));
6218    }
6219  }
6220
6221  return SDValue();
6222}
6223
6224SDValue DAGCombiner::visitFREM(SDNode *N) {
6225  SDValue N0 = N->getOperand(0);
6226  SDValue N1 = N->getOperand(1);
6227  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6228  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6229  EVT VT = N->getValueType(0);
6230
6231  // fold (frem c1, c2) -> fmod(c1,c2)
6232  if (N0CFP && N1CFP)
6233    return DAG.getNode(ISD::FREM, N->getDebugLoc(), VT, N0, N1);
6234
6235  return SDValue();
6236}
6237
6238SDValue DAGCombiner::visitFCOPYSIGN(SDNode *N) {
6239  SDValue N0 = N->getOperand(0);
6240  SDValue N1 = N->getOperand(1);
6241  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6242  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6243  EVT VT = N->getValueType(0);
6244
6245  if (N0CFP && N1CFP)  // Constant fold
6246    return DAG.getNode(ISD::FCOPYSIGN, N->getDebugLoc(), VT, N0, N1);
6247
6248  if (N1CFP) {
6249    const APFloat& V = N1CFP->getValueAPF();
6250    // copysign(x, c1) -> fabs(x)       iff ispos(c1)
6251    // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1)
6252    if (!V.isNegative()) {
6253      if (!LegalOperations || TLI.isOperationLegal(ISD::FABS, VT))
6254        return DAG.getNode(ISD::FABS, N->getDebugLoc(), VT, N0);
6255    } else {
6256      if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
6257        return DAG.getNode(ISD::FNEG, N->getDebugLoc(), VT,
6258                           DAG.getNode(ISD::FABS, N0.getDebugLoc(), VT, N0));
6259    }
6260  }
6261
6262  // copysign(fabs(x), y) -> copysign(x, y)
6263  // copysign(fneg(x), y) -> copysign(x, y)
6264  // copysign(copysign(x,z), y) -> copysign(x, y)
6265  if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG ||
6266      N0.getOpcode() == ISD::FCOPYSIGN)
6267    return DAG.getNode(ISD::FCOPYSIGN, N->getDebugLoc(), VT,
6268                       N0.getOperand(0), N1);
6269
6270  // copysign(x, abs(y)) -> abs(x)
6271  if (N1.getOpcode() == ISD::FABS)
6272    return DAG.getNode(ISD::FABS, N->getDebugLoc(), VT, N0);
6273
6274  // copysign(x, copysign(y,z)) -> copysign(x, z)
6275  if (N1.getOpcode() == ISD::FCOPYSIGN)
6276    return DAG.getNode(ISD::FCOPYSIGN, N->getDebugLoc(), VT,
6277                       N0, N1.getOperand(1));
6278
6279  // copysign(x, fp_extend(y)) -> copysign(x, y)
6280  // copysign(x, fp_round(y)) -> copysign(x, y)
6281  if (N1.getOpcode() == ISD::FP_EXTEND || N1.getOpcode() == ISD::FP_ROUND)
6282    return DAG.getNode(ISD::FCOPYSIGN, N->getDebugLoc(), VT,
6283                       N0, N1.getOperand(0));
6284
6285  return SDValue();
6286}
6287
6288SDValue DAGCombiner::visitSINT_TO_FP(SDNode *N) {
6289  SDValue N0 = N->getOperand(0);
6290  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
6291  EVT VT = N->getValueType(0);
6292  EVT OpVT = N0.getValueType();
6293
6294  // fold (sint_to_fp c1) -> c1fp
6295  if (N0C &&
6296      // ...but only if the target supports immediate floating-point values
6297      (!LegalOperations ||
6298       TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT)))
6299    return DAG.getNode(ISD::SINT_TO_FP, N->getDebugLoc(), VT, N0);
6300
6301  // If the input is a legal type, and SINT_TO_FP is not legal on this target,
6302  // but UINT_TO_FP is legal on this target, try to convert.
6303  if (!TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, OpVT) &&
6304      TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, OpVT)) {
6305    // If the sign bit is known to be zero, we can change this to UINT_TO_FP.
6306    if (DAG.SignBitIsZero(N0))
6307      return DAG.getNode(ISD::UINT_TO_FP, N->getDebugLoc(), VT, N0);
6308  }
6309
6310  // The next optimizations are desireable only if SELECT_CC can be lowered.
6311  // Check against MVT::Other for SELECT_CC, which is a workaround for targets
6312  // having to say they don't support SELECT_CC on every type the DAG knows
6313  // about, since there is no way to mark an opcode illegal at all value types
6314  // (See also visitSELECT)
6315  if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, MVT::Other)) {
6316    // fold (sint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc)
6317    if (N0.getOpcode() == ISD::SETCC && N0.getValueType() == MVT::i1 &&
6318        !VT.isVector() &&
6319        (!LegalOperations ||
6320         TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) {
6321      SDValue Ops[] =
6322        { N0.getOperand(0), N0.getOperand(1),
6323          DAG.getConstantFP(-1.0, VT) , DAG.getConstantFP(0.0, VT),
6324          N0.getOperand(2) };
6325      return DAG.getNode(ISD::SELECT_CC, N->getDebugLoc(), VT, Ops, 5);
6326    }
6327
6328    // fold (sint_to_fp (zext (setcc x, y, cc))) ->
6329    //      (select_cc x, y, 1.0, 0.0,, cc)
6330    if (N0.getOpcode() == ISD::ZERO_EXTEND &&
6331        N0.getOperand(0).getOpcode() == ISD::SETCC &&!VT.isVector() &&
6332        (!LegalOperations ||
6333         TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) {
6334      SDValue Ops[] =
6335        { N0.getOperand(0).getOperand(0), N0.getOperand(0).getOperand(1),
6336          DAG.getConstantFP(1.0, VT) , DAG.getConstantFP(0.0, VT),
6337          N0.getOperand(0).getOperand(2) };
6338      return DAG.getNode(ISD::SELECT_CC, N->getDebugLoc(), VT, Ops, 5);
6339    }
6340  }
6341
6342  return SDValue();
6343}
6344
6345SDValue DAGCombiner::visitUINT_TO_FP(SDNode *N) {
6346  SDValue N0 = N->getOperand(0);
6347  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
6348  EVT VT = N->getValueType(0);
6349  EVT OpVT = N0.getValueType();
6350
6351  // fold (uint_to_fp c1) -> c1fp
6352  if (N0C &&
6353      // ...but only if the target supports immediate floating-point values
6354      (!LegalOperations ||
6355       TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT)))
6356    return DAG.getNode(ISD::UINT_TO_FP, N->getDebugLoc(), VT, N0);
6357
6358  // If the input is a legal type, and UINT_TO_FP is not legal on this target,
6359  // but SINT_TO_FP is legal on this target, try to convert.
6360  if (!TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, OpVT) &&
6361      TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, OpVT)) {
6362    // If the sign bit is known to be zero, we can change this to SINT_TO_FP.
6363    if (DAG.SignBitIsZero(N0))
6364      return DAG.getNode(ISD::SINT_TO_FP, N->getDebugLoc(), VT, N0);
6365  }
6366
6367  // The next optimizations are desireable only if SELECT_CC can be lowered.
6368  // Check against MVT::Other for SELECT_CC, which is a workaround for targets
6369  // having to say they don't support SELECT_CC on every type the DAG knows
6370  // about, since there is no way to mark an opcode illegal at all value types
6371  // (See also visitSELECT)
6372  if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, MVT::Other)) {
6373    // fold (uint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc)
6374
6375    if (N0.getOpcode() == ISD::SETCC && !VT.isVector() &&
6376        (!LegalOperations ||
6377         TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) {
6378      SDValue Ops[] =
6379        { N0.getOperand(0), N0.getOperand(1),
6380          DAG.getConstantFP(1.0, VT),  DAG.getConstantFP(0.0, VT),
6381          N0.getOperand(2) };
6382      return DAG.getNode(ISD::SELECT_CC, N->getDebugLoc(), VT, Ops, 5);
6383    }
6384  }
6385
6386  return SDValue();
6387}
6388
6389SDValue DAGCombiner::visitFP_TO_SINT(SDNode *N) {
6390  SDValue N0 = N->getOperand(0);
6391  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6392  EVT VT = N->getValueType(0);
6393
6394  // fold (fp_to_sint c1fp) -> c1
6395  if (N0CFP)
6396    return DAG.getNode(ISD::FP_TO_SINT, N->getDebugLoc(), VT, N0);
6397
6398  return SDValue();
6399}
6400
6401SDValue DAGCombiner::visitFP_TO_UINT(SDNode *N) {
6402  SDValue N0 = N->getOperand(0);
6403  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6404  EVT VT = N->getValueType(0);
6405
6406  // fold (fp_to_uint c1fp) -> c1
6407  if (N0CFP)
6408    return DAG.getNode(ISD::FP_TO_UINT, N->getDebugLoc(), VT, N0);
6409
6410  return SDValue();
6411}
6412
6413SDValue DAGCombiner::visitFP_ROUND(SDNode *N) {
6414  SDValue N0 = N->getOperand(0);
6415  SDValue N1 = N->getOperand(1);
6416  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6417  EVT VT = N->getValueType(0);
6418
6419  // fold (fp_round c1fp) -> c1fp
6420  if (N0CFP)
6421    return DAG.getNode(ISD::FP_ROUND, N->getDebugLoc(), VT, N0, N1);
6422
6423  // fold (fp_round (fp_extend x)) -> x
6424  if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType())
6425    return N0.getOperand(0);
6426
6427  // fold (fp_round (fp_round x)) -> (fp_round x)
6428  if (N0.getOpcode() == ISD::FP_ROUND) {
6429    // This is a value preserving truncation if both round's are.
6430    bool IsTrunc = N->getConstantOperandVal(1) == 1 &&
6431                   N0.getNode()->getConstantOperandVal(1) == 1;
6432    return DAG.getNode(ISD::FP_ROUND, N->getDebugLoc(), VT, N0.getOperand(0),
6433                       DAG.getIntPtrConstant(IsTrunc));
6434  }
6435
6436  // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y)
6437  if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse()) {
6438    SDValue Tmp = DAG.getNode(ISD::FP_ROUND, N0.getDebugLoc(), VT,
6439                              N0.getOperand(0), N1);
6440    AddToWorkList(Tmp.getNode());
6441    return DAG.getNode(ISD::FCOPYSIGN, N->getDebugLoc(), VT,
6442                       Tmp, N0.getOperand(1));
6443  }
6444
6445  return SDValue();
6446}
6447
6448SDValue DAGCombiner::visitFP_ROUND_INREG(SDNode *N) {
6449  SDValue N0 = N->getOperand(0);
6450  EVT VT = N->getValueType(0);
6451  EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
6452  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6453
6454  // fold (fp_round_inreg c1fp) -> c1fp
6455  if (N0CFP && isTypeLegal(EVT)) {
6456    SDValue Round = DAG.getConstantFP(*N0CFP->getConstantFPValue(), EVT);
6457    return DAG.getNode(ISD::FP_EXTEND, N->getDebugLoc(), VT, Round);
6458  }
6459
6460  return SDValue();
6461}
6462
6463SDValue DAGCombiner::visitFP_EXTEND(SDNode *N) {
6464  SDValue N0 = N->getOperand(0);
6465  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6466  EVT VT = N->getValueType(0);
6467
6468  // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded.
6469  if (N->hasOneUse() &&
6470      N->use_begin()->getOpcode() == ISD::FP_ROUND)
6471    return SDValue();
6472
6473  // fold (fp_extend c1fp) -> c1fp
6474  if (N0CFP)
6475    return DAG.getNode(ISD::FP_EXTEND, N->getDebugLoc(), VT, N0);
6476
6477  // Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the
6478  // value of X.
6479  if (N0.getOpcode() == ISD::FP_ROUND
6480      && N0.getNode()->getConstantOperandVal(1) == 1) {
6481    SDValue In = N0.getOperand(0);
6482    if (In.getValueType() == VT) return In;
6483    if (VT.bitsLT(In.getValueType()))
6484      return DAG.getNode(ISD::FP_ROUND, N->getDebugLoc(), VT,
6485                         In, N0.getOperand(1));
6486    return DAG.getNode(ISD::FP_EXTEND, N->getDebugLoc(), VT, In);
6487  }
6488
6489  // fold (fpext (load x)) -> (fpext (fptrunc (extload x)))
6490  if (ISD::isNON_EXTLoad(N0.getNode()) && N0.hasOneUse() &&
6491      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
6492       TLI.isLoadExtLegal(ISD::EXTLOAD, N0.getValueType()))) {
6493    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
6494    SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, N->getDebugLoc(), VT,
6495                                     LN0->getChain(),
6496                                     LN0->getBasePtr(), LN0->getPointerInfo(),
6497                                     N0.getValueType(),
6498                                     LN0->isVolatile(), LN0->isNonTemporal(),
6499                                     LN0->getAlignment());
6500    CombineTo(N, ExtLoad);
6501    CombineTo(N0.getNode(),
6502              DAG.getNode(ISD::FP_ROUND, N0.getDebugLoc(),
6503                          N0.getValueType(), ExtLoad, DAG.getIntPtrConstant(1)),
6504              ExtLoad.getValue(1));
6505    return SDValue(N, 0);   // Return N so it doesn't get rechecked!
6506  }
6507
6508  return SDValue();
6509}
6510
6511SDValue DAGCombiner::visitFNEG(SDNode *N) {
6512  SDValue N0 = N->getOperand(0);
6513  EVT VT = N->getValueType(0);
6514
6515  if (VT.isVector()) {
6516    SDValue FoldedVOp = SimplifyVUnaryOp(N);
6517    if (FoldedVOp.getNode()) return FoldedVOp;
6518  }
6519
6520  if (isNegatibleForFree(N0, LegalOperations, DAG.getTargetLoweringInfo(),
6521                         &DAG.getTarget().Options))
6522    return GetNegatedExpression(N0, DAG, LegalOperations);
6523
6524  // Transform fneg(bitconvert(x)) -> bitconvert(x^sign) to avoid loading
6525  // constant pool values.
6526  if (!TLI.isFNegFree(VT) && N0.getOpcode() == ISD::BITCAST &&
6527      !VT.isVector() &&
6528      N0.getNode()->hasOneUse() &&
6529      N0.getOperand(0).getValueType().isInteger()) {
6530    SDValue Int = N0.getOperand(0);
6531    EVT IntVT = Int.getValueType();
6532    if (IntVT.isInteger() && !IntVT.isVector()) {
6533      Int = DAG.getNode(ISD::XOR, N0.getDebugLoc(), IntVT, Int,
6534              DAG.getConstant(APInt::getSignBit(IntVT.getSizeInBits()), IntVT));
6535      AddToWorkList(Int.getNode());
6536      return DAG.getNode(ISD::BITCAST, N->getDebugLoc(),
6537                         VT, Int);
6538    }
6539  }
6540
6541  // (fneg (fmul c, x)) -> (fmul -c, x)
6542  if (N0.getOpcode() == ISD::FMUL) {
6543    ConstantFPSDNode *CFP1 = dyn_cast<ConstantFPSDNode>(N0.getOperand(1));
6544    if (CFP1) {
6545      return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
6546                         N0.getOperand(0),
6547                         DAG.getNode(ISD::FNEG, N->getDebugLoc(), VT,
6548                                     N0.getOperand(1)));
6549    }
6550  }
6551
6552  return SDValue();
6553}
6554
6555SDValue DAGCombiner::visitFCEIL(SDNode *N) {
6556  SDValue N0 = N->getOperand(0);
6557  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6558  EVT VT = N->getValueType(0);
6559
6560  // fold (fceil c1) -> fceil(c1)
6561  if (N0CFP)
6562    return DAG.getNode(ISD::FCEIL, N->getDebugLoc(), VT, N0);
6563
6564  return SDValue();
6565}
6566
6567SDValue DAGCombiner::visitFTRUNC(SDNode *N) {
6568  SDValue N0 = N->getOperand(0);
6569  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6570  EVT VT = N->getValueType(0);
6571
6572  // fold (ftrunc c1) -> ftrunc(c1)
6573  if (N0CFP)
6574    return DAG.getNode(ISD::FTRUNC, N->getDebugLoc(), VT, N0);
6575
6576  return SDValue();
6577}
6578
6579SDValue DAGCombiner::visitFFLOOR(SDNode *N) {
6580  SDValue N0 = N->getOperand(0);
6581  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6582  EVT VT = N->getValueType(0);
6583
6584  // fold (ffloor c1) -> ffloor(c1)
6585  if (N0CFP)
6586    return DAG.getNode(ISD::FFLOOR, N->getDebugLoc(), VT, N0);
6587
6588  return SDValue();
6589}
6590
6591SDValue DAGCombiner::visitFABS(SDNode *N) {
6592  SDValue N0 = N->getOperand(0);
6593  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6594  EVT VT = N->getValueType(0);
6595
6596  if (VT.isVector()) {
6597    SDValue FoldedVOp = SimplifyVUnaryOp(N);
6598    if (FoldedVOp.getNode()) return FoldedVOp;
6599  }
6600
6601  // fold (fabs c1) -> fabs(c1)
6602  if (N0CFP)
6603    return DAG.getNode(ISD::FABS, N->getDebugLoc(), VT, N0);
6604  // fold (fabs (fabs x)) -> (fabs x)
6605  if (N0.getOpcode() == ISD::FABS)
6606    return N->getOperand(0);
6607  // fold (fabs (fneg x)) -> (fabs x)
6608  // fold (fabs (fcopysign x, y)) -> (fabs x)
6609  if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN)
6610    return DAG.getNode(ISD::FABS, N->getDebugLoc(), VT, N0.getOperand(0));
6611
6612  // Transform fabs(bitconvert(x)) -> bitconvert(x&~sign) to avoid loading
6613  // constant pool values.
6614  if (!TLI.isFAbsFree(VT) &&
6615      N0.getOpcode() == ISD::BITCAST && N0.getNode()->hasOneUse() &&
6616      N0.getOperand(0).getValueType().isInteger() &&
6617      !N0.getOperand(0).getValueType().isVector()) {
6618    SDValue Int = N0.getOperand(0);
6619    EVT IntVT = Int.getValueType();
6620    if (IntVT.isInteger() && !IntVT.isVector()) {
6621      Int = DAG.getNode(ISD::AND, N0.getDebugLoc(), IntVT, Int,
6622             DAG.getConstant(~APInt::getSignBit(IntVT.getSizeInBits()), IntVT));
6623      AddToWorkList(Int.getNode());
6624      return DAG.getNode(ISD::BITCAST, N->getDebugLoc(),
6625                         N->getValueType(0), Int);
6626    }
6627  }
6628
6629  return SDValue();
6630}
6631
6632SDValue DAGCombiner::visitBRCOND(SDNode *N) {
6633  SDValue Chain = N->getOperand(0);
6634  SDValue N1 = N->getOperand(1);
6635  SDValue N2 = N->getOperand(2);
6636
6637  // If N is a constant we could fold this into a fallthrough or unconditional
6638  // branch. However that doesn't happen very often in normal code, because
6639  // Instcombine/SimplifyCFG should have handled the available opportunities.
6640  // If we did this folding here, it would be necessary to update the
6641  // MachineBasicBlock CFG, which is awkward.
6642
6643  // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal
6644  // on the target.
6645  if (N1.getOpcode() == ISD::SETCC &&
6646      TLI.isOperationLegalOrCustom(ISD::BR_CC, MVT::Other)) {
6647    return DAG.getNode(ISD::BR_CC, N->getDebugLoc(), MVT::Other,
6648                       Chain, N1.getOperand(2),
6649                       N1.getOperand(0), N1.getOperand(1), N2);
6650  }
6651
6652  if ((N1.hasOneUse() && N1.getOpcode() == ISD::SRL) ||
6653      ((N1.getOpcode() == ISD::TRUNCATE && N1.hasOneUse()) &&
6654       (N1.getOperand(0).hasOneUse() &&
6655        N1.getOperand(0).getOpcode() == ISD::SRL))) {
6656    SDNode *Trunc = 0;
6657    if (N1.getOpcode() == ISD::TRUNCATE) {
6658      // Look pass the truncate.
6659      Trunc = N1.getNode();
6660      N1 = N1.getOperand(0);
6661    }
6662
6663    // Match this pattern so that we can generate simpler code:
6664    //
6665    //   %a = ...
6666    //   %b = and i32 %a, 2
6667    //   %c = srl i32 %b, 1
6668    //   brcond i32 %c ...
6669    //
6670    // into
6671    //
6672    //   %a = ...
6673    //   %b = and i32 %a, 2
6674    //   %c = setcc eq %b, 0
6675    //   brcond %c ...
6676    //
6677    // This applies only when the AND constant value has one bit set and the
6678    // SRL constant is equal to the log2 of the AND constant. The back-end is
6679    // smart enough to convert the result into a TEST/JMP sequence.
6680    SDValue Op0 = N1.getOperand(0);
6681    SDValue Op1 = N1.getOperand(1);
6682
6683    if (Op0.getOpcode() == ISD::AND &&
6684        Op1.getOpcode() == ISD::Constant) {
6685      SDValue AndOp1 = Op0.getOperand(1);
6686
6687      if (AndOp1.getOpcode() == ISD::Constant) {
6688        const APInt &AndConst = cast<ConstantSDNode>(AndOp1)->getAPIntValue();
6689
6690        if (AndConst.isPowerOf2() &&
6691            cast<ConstantSDNode>(Op1)->getAPIntValue()==AndConst.logBase2()) {
6692          SDValue SetCC =
6693            DAG.getSetCC(N->getDebugLoc(),
6694                         TLI.getSetCCResultType(Op0.getValueType()),
6695                         Op0, DAG.getConstant(0, Op0.getValueType()),
6696                         ISD::SETNE);
6697
6698          SDValue NewBRCond = DAG.getNode(ISD::BRCOND, N->getDebugLoc(),
6699                                          MVT::Other, Chain, SetCC, N2);
6700          // Don't add the new BRCond into the worklist or else SimplifySelectCC
6701          // will convert it back to (X & C1) >> C2.
6702          CombineTo(N, NewBRCond, false);
6703          // Truncate is dead.
6704          if (Trunc) {
6705            removeFromWorkList(Trunc);
6706            DAG.DeleteNode(Trunc);
6707          }
6708          // Replace the uses of SRL with SETCC
6709          WorkListRemover DeadNodes(*this);
6710          DAG.ReplaceAllUsesOfValueWith(N1, SetCC);
6711          removeFromWorkList(N1.getNode());
6712          DAG.DeleteNode(N1.getNode());
6713          return SDValue(N, 0);   // Return N so it doesn't get rechecked!
6714        }
6715      }
6716    }
6717
6718    if (Trunc)
6719      // Restore N1 if the above transformation doesn't match.
6720      N1 = N->getOperand(1);
6721  }
6722
6723  // Transform br(xor(x, y)) -> br(x != y)
6724  // Transform br(xor(xor(x,y), 1)) -> br (x == y)
6725  if (N1.hasOneUse() && N1.getOpcode() == ISD::XOR) {
6726    SDNode *TheXor = N1.getNode();
6727    SDValue Op0 = TheXor->getOperand(0);
6728    SDValue Op1 = TheXor->getOperand(1);
6729    if (Op0.getOpcode() == Op1.getOpcode()) {
6730      // Avoid missing important xor optimizations.
6731      SDValue Tmp = visitXOR(TheXor);
6732      if (Tmp.getNode() && Tmp.getNode() != TheXor) {
6733        DEBUG(dbgs() << "\nReplacing.8 ";
6734              TheXor->dump(&DAG);
6735              dbgs() << "\nWith: ";
6736              Tmp.getNode()->dump(&DAG);
6737              dbgs() << '\n');
6738        WorkListRemover DeadNodes(*this);
6739        DAG.ReplaceAllUsesOfValueWith(N1, Tmp);
6740        removeFromWorkList(TheXor);
6741        DAG.DeleteNode(TheXor);
6742        return DAG.getNode(ISD::BRCOND, N->getDebugLoc(),
6743                           MVT::Other, Chain, Tmp, N2);
6744      }
6745    }
6746
6747    if (Op0.getOpcode() != ISD::SETCC && Op1.getOpcode() != ISD::SETCC) {
6748      bool Equal = false;
6749      if (ConstantSDNode *RHSCI = dyn_cast<ConstantSDNode>(Op0))
6750        if (RHSCI->getAPIntValue() == 1 && Op0.hasOneUse() &&
6751            Op0.getOpcode() == ISD::XOR) {
6752          TheXor = Op0.getNode();
6753          Equal = true;
6754        }
6755
6756      EVT SetCCVT = N1.getValueType();
6757      if (LegalTypes)
6758        SetCCVT = TLI.getSetCCResultType(SetCCVT);
6759      SDValue SetCC = DAG.getSetCC(TheXor->getDebugLoc(),
6760                                   SetCCVT,
6761                                   Op0, Op1,
6762                                   Equal ? ISD::SETEQ : ISD::SETNE);
6763      // Replace the uses of XOR with SETCC
6764      WorkListRemover DeadNodes(*this);
6765      DAG.ReplaceAllUsesOfValueWith(N1, SetCC);
6766      removeFromWorkList(N1.getNode());
6767      DAG.DeleteNode(N1.getNode());
6768      return DAG.getNode(ISD::BRCOND, N->getDebugLoc(),
6769                         MVT::Other, Chain, SetCC, N2);
6770    }
6771  }
6772
6773  return SDValue();
6774}
6775
6776// Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB.
6777//
6778SDValue DAGCombiner::visitBR_CC(SDNode *N) {
6779  CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1));
6780  SDValue CondLHS = N->getOperand(2), CondRHS = N->getOperand(3);
6781
6782  // If N is a constant we could fold this into a fallthrough or unconditional
6783  // branch. However that doesn't happen very often in normal code, because
6784  // Instcombine/SimplifyCFG should have handled the available opportunities.
6785  // If we did this folding here, it would be necessary to update the
6786  // MachineBasicBlock CFG, which is awkward.
6787
6788  // Use SimplifySetCC to simplify SETCC's.
6789  SDValue Simp = SimplifySetCC(TLI.getSetCCResultType(CondLHS.getValueType()),
6790                               CondLHS, CondRHS, CC->get(), N->getDebugLoc(),
6791                               false);
6792  if (Simp.getNode()) AddToWorkList(Simp.getNode());
6793
6794  // fold to a simpler setcc
6795  if (Simp.getNode() && Simp.getOpcode() == ISD::SETCC)
6796    return DAG.getNode(ISD::BR_CC, N->getDebugLoc(), MVT::Other,
6797                       N->getOperand(0), Simp.getOperand(2),
6798                       Simp.getOperand(0), Simp.getOperand(1),
6799                       N->getOperand(4));
6800
6801  return SDValue();
6802}
6803
6804/// canFoldInAddressingMode - Return true if 'Use' is a load or a store that
6805/// uses N as its base pointer and that N may be folded in the load / store
6806/// addressing mode.
6807static bool canFoldInAddressingMode(SDNode *N, SDNode *Use,
6808                                    SelectionDAG &DAG,
6809                                    const TargetLowering &TLI) {
6810  EVT VT;
6811  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(Use)) {
6812    if (LD->isIndexed() || LD->getBasePtr().getNode() != N)
6813      return false;
6814    VT = Use->getValueType(0);
6815  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(Use)) {
6816    if (ST->isIndexed() || ST->getBasePtr().getNode() != N)
6817      return false;
6818    VT = ST->getValue().getValueType();
6819  } else
6820    return false;
6821
6822  AddrMode AM;
6823  if (N->getOpcode() == ISD::ADD) {
6824    ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
6825    if (Offset)
6826      // [reg +/- imm]
6827      AM.BaseOffs = Offset->getSExtValue();
6828    else
6829      // [reg +/- reg]
6830      AM.Scale = 1;
6831  } else if (N->getOpcode() == ISD::SUB) {
6832    ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
6833    if (Offset)
6834      // [reg +/- imm]
6835      AM.BaseOffs = -Offset->getSExtValue();
6836    else
6837      // [reg +/- reg]
6838      AM.Scale = 1;
6839  } else
6840    return false;
6841
6842  return TLI.isLegalAddressingMode(AM, VT.getTypeForEVT(*DAG.getContext()));
6843}
6844
6845/// CombineToPreIndexedLoadStore - Try turning a load / store into a
6846/// pre-indexed load / store when the base pointer is an add or subtract
6847/// and it has other uses besides the load / store. After the
6848/// transformation, the new indexed load / store has effectively folded
6849/// the add / subtract in and all of its other uses are redirected to the
6850/// new load / store.
6851bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) {
6852  if (Level < AfterLegalizeDAG)
6853    return false;
6854
6855  bool isLoad = true;
6856  SDValue Ptr;
6857  EVT VT;
6858  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(N)) {
6859    if (LD->isIndexed())
6860      return false;
6861    VT = LD->getMemoryVT();
6862    if (!TLI.isIndexedLoadLegal(ISD::PRE_INC, VT) &&
6863        !TLI.isIndexedLoadLegal(ISD::PRE_DEC, VT))
6864      return false;
6865    Ptr = LD->getBasePtr();
6866  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(N)) {
6867    if (ST->isIndexed())
6868      return false;
6869    VT = ST->getMemoryVT();
6870    if (!TLI.isIndexedStoreLegal(ISD::PRE_INC, VT) &&
6871        !TLI.isIndexedStoreLegal(ISD::PRE_DEC, VT))
6872      return false;
6873    Ptr = ST->getBasePtr();
6874    isLoad = false;
6875  } else {
6876    return false;
6877  }
6878
6879  // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail
6880  // out.  There is no reason to make this a preinc/predec.
6881  if ((Ptr.getOpcode() != ISD::ADD && Ptr.getOpcode() != ISD::SUB) ||
6882      Ptr.getNode()->hasOneUse())
6883    return false;
6884
6885  // Ask the target to do addressing mode selection.
6886  SDValue BasePtr;
6887  SDValue Offset;
6888  ISD::MemIndexedMode AM = ISD::UNINDEXED;
6889  if (!TLI.getPreIndexedAddressParts(N, BasePtr, Offset, AM, DAG))
6890    return false;
6891  // Don't create a indexed load / store with zero offset.
6892  if (isa<ConstantSDNode>(Offset) &&
6893      cast<ConstantSDNode>(Offset)->isNullValue())
6894    return false;
6895
6896  // Try turning it into a pre-indexed load / store except when:
6897  // 1) The new base ptr is a frame index.
6898  // 2) If N is a store and the new base ptr is either the same as or is a
6899  //    predecessor of the value being stored.
6900  // 3) Another use of old base ptr is a predecessor of N. If ptr is folded
6901  //    that would create a cycle.
6902  // 4) All uses are load / store ops that use it as old base ptr.
6903
6904  // Check #1.  Preinc'ing a frame index would require copying the stack pointer
6905  // (plus the implicit offset) to a register to preinc anyway.
6906  if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr))
6907    return false;
6908
6909  // Check #2.
6910  if (!isLoad) {
6911    SDValue Val = cast<StoreSDNode>(N)->getValue();
6912    if (Val == BasePtr || BasePtr.getNode()->isPredecessorOf(Val.getNode()))
6913      return false;
6914  }
6915
6916  // Now check for #3 and #4.
6917  bool RealUse = false;
6918
6919  // Caches for hasPredecessorHelper
6920  SmallPtrSet<const SDNode *, 32> Visited;
6921  SmallVector<const SDNode *, 16> Worklist;
6922
6923  for (SDNode::use_iterator I = Ptr.getNode()->use_begin(),
6924         E = Ptr.getNode()->use_end(); I != E; ++I) {
6925    SDNode *Use = *I;
6926    if (Use == N)
6927      continue;
6928    if (N->hasPredecessorHelper(Use, Visited, Worklist))
6929      return false;
6930
6931    // If Ptr may be folded in addressing mode of other use, then it's
6932    // not profitable to do this transformation.
6933    if (!canFoldInAddressingMode(Ptr.getNode(), Use, DAG, TLI))
6934      RealUse = true;
6935  }
6936
6937  if (!RealUse)
6938    return false;
6939
6940  SDValue Result;
6941  if (isLoad)
6942    Result = DAG.getIndexedLoad(SDValue(N,0), N->getDebugLoc(),
6943                                BasePtr, Offset, AM);
6944  else
6945    Result = DAG.getIndexedStore(SDValue(N,0), N->getDebugLoc(),
6946                                 BasePtr, Offset, AM);
6947  ++PreIndexedNodes;
6948  ++NodesCombined;
6949  DEBUG(dbgs() << "\nReplacing.4 ";
6950        N->dump(&DAG);
6951        dbgs() << "\nWith: ";
6952        Result.getNode()->dump(&DAG);
6953        dbgs() << '\n');
6954  WorkListRemover DeadNodes(*this);
6955  if (isLoad) {
6956    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0));
6957    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2));
6958  } else {
6959    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1));
6960  }
6961
6962  // Finally, since the node is now dead, remove it from the graph.
6963  DAG.DeleteNode(N);
6964
6965  // Replace the uses of Ptr with uses of the updated base value.
6966  DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(isLoad ? 1 : 0));
6967  removeFromWorkList(Ptr.getNode());
6968  DAG.DeleteNode(Ptr.getNode());
6969
6970  return true;
6971}
6972
6973/// CombineToPostIndexedLoadStore - Try to combine a load / store with a
6974/// add / sub of the base pointer node into a post-indexed load / store.
6975/// The transformation folded the add / subtract into the new indexed
6976/// load / store effectively and all of its uses are redirected to the
6977/// new load / store.
6978bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) {
6979  if (Level < AfterLegalizeDAG)
6980    return false;
6981
6982  bool isLoad = true;
6983  SDValue Ptr;
6984  EVT VT;
6985  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(N)) {
6986    if (LD->isIndexed())
6987      return false;
6988    VT = LD->getMemoryVT();
6989    if (!TLI.isIndexedLoadLegal(ISD::POST_INC, VT) &&
6990        !TLI.isIndexedLoadLegal(ISD::POST_DEC, VT))
6991      return false;
6992    Ptr = LD->getBasePtr();
6993  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(N)) {
6994    if (ST->isIndexed())
6995      return false;
6996    VT = ST->getMemoryVT();
6997    if (!TLI.isIndexedStoreLegal(ISD::POST_INC, VT) &&
6998        !TLI.isIndexedStoreLegal(ISD::POST_DEC, VT))
6999      return false;
7000    Ptr = ST->getBasePtr();
7001    isLoad = false;
7002  } else {
7003    return false;
7004  }
7005
7006  if (Ptr.getNode()->hasOneUse())
7007    return false;
7008
7009  for (SDNode::use_iterator I = Ptr.getNode()->use_begin(),
7010         E = Ptr.getNode()->use_end(); I != E; ++I) {
7011    SDNode *Op = *I;
7012    if (Op == N ||
7013        (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB))
7014      continue;
7015
7016    SDValue BasePtr;
7017    SDValue Offset;
7018    ISD::MemIndexedMode AM = ISD::UNINDEXED;
7019    if (TLI.getPostIndexedAddressParts(N, Op, BasePtr, Offset, AM, DAG)) {
7020      // Don't create a indexed load / store with zero offset.
7021      if (isa<ConstantSDNode>(Offset) &&
7022          cast<ConstantSDNode>(Offset)->isNullValue())
7023        continue;
7024
7025      // Try turning it into a post-indexed load / store except when
7026      // 1) All uses are load / store ops that use it as base ptr (and
7027      //    it may be folded as addressing mmode).
7028      // 2) Op must be independent of N, i.e. Op is neither a predecessor
7029      //    nor a successor of N. Otherwise, if Op is folded that would
7030      //    create a cycle.
7031
7032      if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr))
7033        continue;
7034
7035      // Check for #1.
7036      bool TryNext = false;
7037      for (SDNode::use_iterator II = BasePtr.getNode()->use_begin(),
7038             EE = BasePtr.getNode()->use_end(); II != EE; ++II) {
7039        SDNode *Use = *II;
7040        if (Use == Ptr.getNode())
7041          continue;
7042
7043        // If all the uses are load / store addresses, then don't do the
7044        // transformation.
7045        if (Use->getOpcode() == ISD::ADD || Use->getOpcode() == ISD::SUB){
7046          bool RealUse = false;
7047          for (SDNode::use_iterator III = Use->use_begin(),
7048                 EEE = Use->use_end(); III != EEE; ++III) {
7049            SDNode *UseUse = *III;
7050            if (!canFoldInAddressingMode(Use, UseUse, DAG, TLI))
7051              RealUse = true;
7052          }
7053
7054          if (!RealUse) {
7055            TryNext = true;
7056            break;
7057          }
7058        }
7059      }
7060
7061      if (TryNext)
7062        continue;
7063
7064      // Check for #2
7065      if (!Op->isPredecessorOf(N) && !N->isPredecessorOf(Op)) {
7066        SDValue Result = isLoad
7067          ? DAG.getIndexedLoad(SDValue(N,0), N->getDebugLoc(),
7068                               BasePtr, Offset, AM)
7069          : DAG.getIndexedStore(SDValue(N,0), N->getDebugLoc(),
7070                                BasePtr, Offset, AM);
7071        ++PostIndexedNodes;
7072        ++NodesCombined;
7073        DEBUG(dbgs() << "\nReplacing.5 ";
7074              N->dump(&DAG);
7075              dbgs() << "\nWith: ";
7076              Result.getNode()->dump(&DAG);
7077              dbgs() << '\n');
7078        WorkListRemover DeadNodes(*this);
7079        if (isLoad) {
7080          DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0));
7081          DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2));
7082        } else {
7083          DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1));
7084        }
7085
7086        // Finally, since the node is now dead, remove it from the graph.
7087        DAG.DeleteNode(N);
7088
7089        // Replace the uses of Use with uses of the updated base value.
7090        DAG.ReplaceAllUsesOfValueWith(SDValue(Op, 0),
7091                                      Result.getValue(isLoad ? 1 : 0));
7092        removeFromWorkList(Op);
7093        DAG.DeleteNode(Op);
7094        return true;
7095      }
7096    }
7097  }
7098
7099  return false;
7100}
7101
7102SDValue DAGCombiner::visitLOAD(SDNode *N) {
7103  LoadSDNode *LD  = cast<LoadSDNode>(N);
7104  SDValue Chain = LD->getChain();
7105  SDValue Ptr   = LD->getBasePtr();
7106
7107  // If load is not volatile and there are no uses of the loaded value (and
7108  // the updated indexed value in case of indexed loads), change uses of the
7109  // chain value into uses of the chain input (i.e. delete the dead load).
7110  if (!LD->isVolatile()) {
7111    if (N->getValueType(1) == MVT::Other) {
7112      // Unindexed loads.
7113      if (!N->hasAnyUseOfValue(0)) {
7114        // It's not safe to use the two value CombineTo variant here. e.g.
7115        // v1, chain2 = load chain1, loc
7116        // v2, chain3 = load chain2, loc
7117        // v3         = add v2, c
7118        // Now we replace use of chain2 with chain1.  This makes the second load
7119        // isomorphic to the one we are deleting, and thus makes this load live.
7120        DEBUG(dbgs() << "\nReplacing.6 ";
7121              N->dump(&DAG);
7122              dbgs() << "\nWith chain: ";
7123              Chain.getNode()->dump(&DAG);
7124              dbgs() << "\n");
7125        WorkListRemover DeadNodes(*this);
7126        DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain);
7127
7128        if (N->use_empty()) {
7129          removeFromWorkList(N);
7130          DAG.DeleteNode(N);
7131        }
7132
7133        return SDValue(N, 0);   // Return N so it doesn't get rechecked!
7134      }
7135    } else {
7136      // Indexed loads.
7137      assert(N->getValueType(2) == MVT::Other && "Malformed indexed loads?");
7138      if (!N->hasAnyUseOfValue(0) && !N->hasAnyUseOfValue(1)) {
7139        SDValue Undef = DAG.getUNDEF(N->getValueType(0));
7140        DEBUG(dbgs() << "\nReplacing.7 ";
7141              N->dump(&DAG);
7142              dbgs() << "\nWith: ";
7143              Undef.getNode()->dump(&DAG);
7144              dbgs() << " and 2 other values\n");
7145        WorkListRemover DeadNodes(*this);
7146        DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Undef);
7147        DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1),
7148                                      DAG.getUNDEF(N->getValueType(1)));
7149        DAG.ReplaceAllUsesOfValueWith(SDValue(N, 2), Chain);
7150        removeFromWorkList(N);
7151        DAG.DeleteNode(N);
7152        return SDValue(N, 0);   // Return N so it doesn't get rechecked!
7153      }
7154    }
7155  }
7156
7157  // If this load is directly stored, replace the load value with the stored
7158  // value.
7159  // TODO: Handle store large -> read small portion.
7160  // TODO: Handle TRUNCSTORE/LOADEXT
7161  if (ISD::isNormalLoad(N) && !LD->isVolatile()) {
7162    if (ISD::isNON_TRUNCStore(Chain.getNode())) {
7163      StoreSDNode *PrevST = cast<StoreSDNode>(Chain);
7164      if (PrevST->getBasePtr() == Ptr &&
7165          PrevST->getValue().getValueType() == N->getValueType(0))
7166      return CombineTo(N, Chain.getOperand(1), Chain);
7167    }
7168  }
7169
7170  // Try to infer better alignment information than the load already has.
7171  if (OptLevel != CodeGenOpt::None && LD->isUnindexed()) {
7172    if (unsigned Align = DAG.InferPtrAlignment(Ptr)) {
7173      if (Align > LD->getAlignment())
7174        return DAG.getExtLoad(LD->getExtensionType(), N->getDebugLoc(),
7175                              LD->getValueType(0),
7176                              Chain, Ptr, LD->getPointerInfo(),
7177                              LD->getMemoryVT(),
7178                              LD->isVolatile(), LD->isNonTemporal(), Align);
7179    }
7180  }
7181
7182  if (CombinerAA) {
7183    // Walk up chain skipping non-aliasing memory nodes.
7184    SDValue BetterChain = FindBetterChain(N, Chain);
7185
7186    // If there is a better chain.
7187    if (Chain != BetterChain) {
7188      SDValue ReplLoad;
7189
7190      // Replace the chain to void dependency.
7191      if (LD->getExtensionType() == ISD::NON_EXTLOAD) {
7192        ReplLoad = DAG.getLoad(N->getValueType(0), LD->getDebugLoc(),
7193                               BetterChain, Ptr, LD->getPointerInfo(),
7194                               LD->isVolatile(), LD->isNonTemporal(),
7195                               LD->isInvariant(), LD->getAlignment());
7196      } else {
7197        ReplLoad = DAG.getExtLoad(LD->getExtensionType(), LD->getDebugLoc(),
7198                                  LD->getValueType(0),
7199                                  BetterChain, Ptr, LD->getPointerInfo(),
7200                                  LD->getMemoryVT(),
7201                                  LD->isVolatile(),
7202                                  LD->isNonTemporal(),
7203                                  LD->getAlignment());
7204      }
7205
7206      // Create token factor to keep old chain connected.
7207      SDValue Token = DAG.getNode(ISD::TokenFactor, N->getDebugLoc(),
7208                                  MVT::Other, Chain, ReplLoad.getValue(1));
7209
7210      // Make sure the new and old chains are cleaned up.
7211      AddToWorkList(Token.getNode());
7212
7213      // Replace uses with load result and token factor. Don't add users
7214      // to work list.
7215      return CombineTo(N, ReplLoad.getValue(0), Token, false);
7216    }
7217  }
7218
7219  // Try transforming N to an indexed load.
7220  if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
7221    return SDValue(N, 0);
7222
7223  return SDValue();
7224}
7225
7226/// CheckForMaskedLoad - Check to see if V is (and load (ptr), imm), where the
7227/// load is having specific bytes cleared out.  If so, return the byte size
7228/// being masked out and the shift amount.
7229static std::pair<unsigned, unsigned>
7230CheckForMaskedLoad(SDValue V, SDValue Ptr, SDValue Chain) {
7231  std::pair<unsigned, unsigned> Result(0, 0);
7232
7233  // Check for the structure we're looking for.
7234  if (V->getOpcode() != ISD::AND ||
7235      !isa<ConstantSDNode>(V->getOperand(1)) ||
7236      !ISD::isNormalLoad(V->getOperand(0).getNode()))
7237    return Result;
7238
7239  // Check the chain and pointer.
7240  LoadSDNode *LD = cast<LoadSDNode>(V->getOperand(0));
7241  if (LD->getBasePtr() != Ptr) return Result;  // Not from same pointer.
7242
7243  // The store should be chained directly to the load or be an operand of a
7244  // tokenfactor.
7245  if (LD == Chain.getNode())
7246    ; // ok.
7247  else if (Chain->getOpcode() != ISD::TokenFactor)
7248    return Result; // Fail.
7249  else {
7250    bool isOk = false;
7251    for (unsigned i = 0, e = Chain->getNumOperands(); i != e; ++i)
7252      if (Chain->getOperand(i).getNode() == LD) {
7253        isOk = true;
7254        break;
7255      }
7256    if (!isOk) return Result;
7257  }
7258
7259  // This only handles simple types.
7260  if (V.getValueType() != MVT::i16 &&
7261      V.getValueType() != MVT::i32 &&
7262      V.getValueType() != MVT::i64)
7263    return Result;
7264
7265  // Check the constant mask.  Invert it so that the bits being masked out are
7266  // 0 and the bits being kept are 1.  Use getSExtValue so that leading bits
7267  // follow the sign bit for uniformity.
7268  uint64_t NotMask = ~cast<ConstantSDNode>(V->getOperand(1))->getSExtValue();
7269  unsigned NotMaskLZ = CountLeadingZeros_64(NotMask);
7270  if (NotMaskLZ & 7) return Result;  // Must be multiple of a byte.
7271  unsigned NotMaskTZ = CountTrailingZeros_64(NotMask);
7272  if (NotMaskTZ & 7) return Result;  // Must be multiple of a byte.
7273  if (NotMaskLZ == 64) return Result;  // All zero mask.
7274
7275  // See if we have a continuous run of bits.  If so, we have 0*1+0*
7276  if (CountTrailingOnes_64(NotMask >> NotMaskTZ)+NotMaskTZ+NotMaskLZ != 64)
7277    return Result;
7278
7279  // Adjust NotMaskLZ down to be from the actual size of the int instead of i64.
7280  if (V.getValueType() != MVT::i64 && NotMaskLZ)
7281    NotMaskLZ -= 64-V.getValueSizeInBits();
7282
7283  unsigned MaskedBytes = (V.getValueSizeInBits()-NotMaskLZ-NotMaskTZ)/8;
7284  switch (MaskedBytes) {
7285  case 1:
7286  case 2:
7287  case 4: break;
7288  default: return Result; // All one mask, or 5-byte mask.
7289  }
7290
7291  // Verify that the first bit starts at a multiple of mask so that the access
7292  // is aligned the same as the access width.
7293  if (NotMaskTZ && NotMaskTZ/8 % MaskedBytes) return Result;
7294
7295  Result.first = MaskedBytes;
7296  Result.second = NotMaskTZ/8;
7297  return Result;
7298}
7299
7300
7301/// ShrinkLoadReplaceStoreWithStore - Check to see if IVal is something that
7302/// provides a value as specified by MaskInfo.  If so, replace the specified
7303/// store with a narrower store of truncated IVal.
7304static SDNode *
7305ShrinkLoadReplaceStoreWithStore(const std::pair<unsigned, unsigned> &MaskInfo,
7306                                SDValue IVal, StoreSDNode *St,
7307                                DAGCombiner *DC) {
7308  unsigned NumBytes = MaskInfo.first;
7309  unsigned ByteShift = MaskInfo.second;
7310  SelectionDAG &DAG = DC->getDAG();
7311
7312  // Check to see if IVal is all zeros in the part being masked in by the 'or'
7313  // that uses this.  If not, this is not a replacement.
7314  APInt Mask = ~APInt::getBitsSet(IVal.getValueSizeInBits(),
7315                                  ByteShift*8, (ByteShift+NumBytes)*8);
7316  if (!DAG.MaskedValueIsZero(IVal, Mask)) return 0;
7317
7318  // Check that it is legal on the target to do this.  It is legal if the new
7319  // VT we're shrinking to (i8/i16/i32) is legal or we're still before type
7320  // legalization.
7321  MVT VT = MVT::getIntegerVT(NumBytes*8);
7322  if (!DC->isTypeLegal(VT))
7323    return 0;
7324
7325  // Okay, we can do this!  Replace the 'St' store with a store of IVal that is
7326  // shifted by ByteShift and truncated down to NumBytes.
7327  if (ByteShift)
7328    IVal = DAG.getNode(ISD::SRL, IVal->getDebugLoc(), IVal.getValueType(), IVal,
7329                       DAG.getConstant(ByteShift*8,
7330                                    DC->getShiftAmountTy(IVal.getValueType())));
7331
7332  // Figure out the offset for the store and the alignment of the access.
7333  unsigned StOffset;
7334  unsigned NewAlign = St->getAlignment();
7335
7336  if (DAG.getTargetLoweringInfo().isLittleEndian())
7337    StOffset = ByteShift;
7338  else
7339    StOffset = IVal.getValueType().getStoreSize() - ByteShift - NumBytes;
7340
7341  SDValue Ptr = St->getBasePtr();
7342  if (StOffset) {
7343    Ptr = DAG.getNode(ISD::ADD, IVal->getDebugLoc(), Ptr.getValueType(),
7344                      Ptr, DAG.getConstant(StOffset, Ptr.getValueType()));
7345    NewAlign = MinAlign(NewAlign, StOffset);
7346  }
7347
7348  // Truncate down to the new size.
7349  IVal = DAG.getNode(ISD::TRUNCATE, IVal->getDebugLoc(), VT, IVal);
7350
7351  ++OpsNarrowed;
7352  return DAG.getStore(St->getChain(), St->getDebugLoc(), IVal, Ptr,
7353                      St->getPointerInfo().getWithOffset(StOffset),
7354                      false, false, NewAlign).getNode();
7355}
7356
7357
7358/// ReduceLoadOpStoreWidth - Look for sequence of load / op / store where op is
7359/// one of 'or', 'xor', and 'and' of immediates. If 'op' is only touching some
7360/// of the loaded bits, try narrowing the load and store if it would end up
7361/// being a win for performance or code size.
7362SDValue DAGCombiner::ReduceLoadOpStoreWidth(SDNode *N) {
7363  StoreSDNode *ST  = cast<StoreSDNode>(N);
7364  if (ST->isVolatile())
7365    return SDValue();
7366
7367  SDValue Chain = ST->getChain();
7368  SDValue Value = ST->getValue();
7369  SDValue Ptr   = ST->getBasePtr();
7370  EVT VT = Value.getValueType();
7371
7372  if (ST->isTruncatingStore() || VT.isVector() || !Value.hasOneUse())
7373    return SDValue();
7374
7375  unsigned Opc = Value.getOpcode();
7376
7377  // If this is "store (or X, Y), P" and X is "(and (load P), cst)", where cst
7378  // is a byte mask indicating a consecutive number of bytes, check to see if
7379  // Y is known to provide just those bytes.  If so, we try to replace the
7380  // load + replace + store sequence with a single (narrower) store, which makes
7381  // the load dead.
7382  if (Opc == ISD::OR) {
7383    std::pair<unsigned, unsigned> MaskedLoad;
7384    MaskedLoad = CheckForMaskedLoad(Value.getOperand(0), Ptr, Chain);
7385    if (MaskedLoad.first)
7386      if (SDNode *NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad,
7387                                                  Value.getOperand(1), ST,this))
7388        return SDValue(NewST, 0);
7389
7390    // Or is commutative, so try swapping X and Y.
7391    MaskedLoad = CheckForMaskedLoad(Value.getOperand(1), Ptr, Chain);
7392    if (MaskedLoad.first)
7393      if (SDNode *NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad,
7394                                                  Value.getOperand(0), ST,this))
7395        return SDValue(NewST, 0);
7396  }
7397
7398  if ((Opc != ISD::OR && Opc != ISD::XOR && Opc != ISD::AND) ||
7399      Value.getOperand(1).getOpcode() != ISD::Constant)
7400    return SDValue();
7401
7402  SDValue N0 = Value.getOperand(0);
7403  if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
7404      Chain == SDValue(N0.getNode(), 1)) {
7405    LoadSDNode *LD = cast<LoadSDNode>(N0);
7406    if (LD->getBasePtr() != Ptr ||
7407        LD->getPointerInfo().getAddrSpace() !=
7408        ST->getPointerInfo().getAddrSpace())
7409      return SDValue();
7410
7411    // Find the type to narrow it the load / op / store to.
7412    SDValue N1 = Value.getOperand(1);
7413    unsigned BitWidth = N1.getValueSizeInBits();
7414    APInt Imm = cast<ConstantSDNode>(N1)->getAPIntValue();
7415    if (Opc == ISD::AND)
7416      Imm ^= APInt::getAllOnesValue(BitWidth);
7417    if (Imm == 0 || Imm.isAllOnesValue())
7418      return SDValue();
7419    unsigned ShAmt = Imm.countTrailingZeros();
7420    unsigned MSB = BitWidth - Imm.countLeadingZeros() - 1;
7421    unsigned NewBW = NextPowerOf2(MSB - ShAmt);
7422    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW);
7423    while (NewBW < BitWidth &&
7424           !(TLI.isOperationLegalOrCustom(Opc, NewVT) &&
7425             TLI.isNarrowingProfitable(VT, NewVT))) {
7426      NewBW = NextPowerOf2(NewBW);
7427      NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW);
7428    }
7429    if (NewBW >= BitWidth)
7430      return SDValue();
7431
7432    // If the lsb changed does not start at the type bitwidth boundary,
7433    // start at the previous one.
7434    if (ShAmt % NewBW)
7435      ShAmt = (((ShAmt + NewBW - 1) / NewBW) * NewBW) - NewBW;
7436    APInt Mask = APInt::getBitsSet(BitWidth, ShAmt, ShAmt + NewBW);
7437    if ((Imm & Mask) == Imm) {
7438      APInt NewImm = (Imm & Mask).lshr(ShAmt).trunc(NewBW);
7439      if (Opc == ISD::AND)
7440        NewImm ^= APInt::getAllOnesValue(NewBW);
7441      uint64_t PtrOff = ShAmt / 8;
7442      // For big endian targets, we need to adjust the offset to the pointer to
7443      // load the correct bytes.
7444      if (TLI.isBigEndian())
7445        PtrOff = (BitWidth + 7 - NewBW) / 8 - PtrOff;
7446
7447      unsigned NewAlign = MinAlign(LD->getAlignment(), PtrOff);
7448      Type *NewVTTy = NewVT.getTypeForEVT(*DAG.getContext());
7449      if (NewAlign < TLI.getDataLayout()->getABITypeAlignment(NewVTTy))
7450        return SDValue();
7451
7452      SDValue NewPtr = DAG.getNode(ISD::ADD, LD->getDebugLoc(),
7453                                   Ptr.getValueType(), Ptr,
7454                                   DAG.getConstant(PtrOff, Ptr.getValueType()));
7455      SDValue NewLD = DAG.getLoad(NewVT, N0.getDebugLoc(),
7456                                  LD->getChain(), NewPtr,
7457                                  LD->getPointerInfo().getWithOffset(PtrOff),
7458                                  LD->isVolatile(), LD->isNonTemporal(),
7459                                  LD->isInvariant(), NewAlign);
7460      SDValue NewVal = DAG.getNode(Opc, Value.getDebugLoc(), NewVT, NewLD,
7461                                   DAG.getConstant(NewImm, NewVT));
7462      SDValue NewST = DAG.getStore(Chain, N->getDebugLoc(),
7463                                   NewVal, NewPtr,
7464                                   ST->getPointerInfo().getWithOffset(PtrOff),
7465                                   false, false, NewAlign);
7466
7467      AddToWorkList(NewPtr.getNode());
7468      AddToWorkList(NewLD.getNode());
7469      AddToWorkList(NewVal.getNode());
7470      WorkListRemover DeadNodes(*this);
7471      DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLD.getValue(1));
7472      ++OpsNarrowed;
7473      return NewST;
7474    }
7475  }
7476
7477  return SDValue();
7478}
7479
7480/// TransformFPLoadStorePair - For a given floating point load / store pair,
7481/// if the load value isn't used by any other operations, then consider
7482/// transforming the pair to integer load / store operations if the target
7483/// deems the transformation profitable.
7484SDValue DAGCombiner::TransformFPLoadStorePair(SDNode *N) {
7485  StoreSDNode *ST  = cast<StoreSDNode>(N);
7486  SDValue Chain = ST->getChain();
7487  SDValue Value = ST->getValue();
7488  if (ISD::isNormalStore(ST) && ISD::isNormalLoad(Value.getNode()) &&
7489      Value.hasOneUse() &&
7490      Chain == SDValue(Value.getNode(), 1)) {
7491    LoadSDNode *LD = cast<LoadSDNode>(Value);
7492    EVT VT = LD->getMemoryVT();
7493    if (!VT.isFloatingPoint() ||
7494        VT != ST->getMemoryVT() ||
7495        LD->isNonTemporal() ||
7496        ST->isNonTemporal() ||
7497        LD->getPointerInfo().getAddrSpace() != 0 ||
7498        ST->getPointerInfo().getAddrSpace() != 0)
7499      return SDValue();
7500
7501    EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
7502    if (!TLI.isOperationLegal(ISD::LOAD, IntVT) ||
7503        !TLI.isOperationLegal(ISD::STORE, IntVT) ||
7504        !TLI.isDesirableToTransformToIntegerOp(ISD::LOAD, VT) ||
7505        !TLI.isDesirableToTransformToIntegerOp(ISD::STORE, VT))
7506      return SDValue();
7507
7508    unsigned LDAlign = LD->getAlignment();
7509    unsigned STAlign = ST->getAlignment();
7510    Type *IntVTTy = IntVT.getTypeForEVT(*DAG.getContext());
7511    unsigned ABIAlign = TLI.getDataLayout()->getABITypeAlignment(IntVTTy);
7512    if (LDAlign < ABIAlign || STAlign < ABIAlign)
7513      return SDValue();
7514
7515    SDValue NewLD = DAG.getLoad(IntVT, Value.getDebugLoc(),
7516                                LD->getChain(), LD->getBasePtr(),
7517                                LD->getPointerInfo(),
7518                                false, false, false, LDAlign);
7519
7520    SDValue NewST = DAG.getStore(NewLD.getValue(1), N->getDebugLoc(),
7521                                 NewLD, ST->getBasePtr(),
7522                                 ST->getPointerInfo(),
7523                                 false, false, STAlign);
7524
7525    AddToWorkList(NewLD.getNode());
7526    AddToWorkList(NewST.getNode());
7527    WorkListRemover DeadNodes(*this);
7528    DAG.ReplaceAllUsesOfValueWith(Value.getValue(1), NewLD.getValue(1));
7529    ++LdStFP2Int;
7530    return NewST;
7531  }
7532
7533  return SDValue();
7534}
7535
7536/// Returns the base pointer and an integer offset from that object.
7537static std::pair<SDValue, int64_t> GetPointerBaseAndOffset(SDValue Ptr) {
7538  if (Ptr->getOpcode() == ISD::ADD && isa<ConstantSDNode>(Ptr->getOperand(1))) {
7539    int64_t Offset = cast<ConstantSDNode>(Ptr->getOperand(1))->getSExtValue();
7540    SDValue Base = Ptr->getOperand(0);
7541    return std::make_pair(Base, Offset);
7542  }
7543
7544  return std::make_pair(Ptr, 0);
7545}
7546
7547/// Holds a pointer to an LSBaseSDNode as well as information on where it
7548/// is located in a sequence of memory operations connected by a chain.
7549struct MemOpLink {
7550  MemOpLink (LSBaseSDNode *N, int64_t Offset, unsigned Seq):
7551    MemNode(N), OffsetFromBase(Offset), SequenceNum(Seq) { }
7552  // Ptr to the mem node.
7553  LSBaseSDNode *MemNode;
7554  // Offset from the base ptr.
7555  int64_t OffsetFromBase;
7556  // What is the sequence number of this mem node.
7557  // Lowest mem operand in the DAG starts at zero.
7558  unsigned SequenceNum;
7559};
7560
7561/// Sorts store nodes in a link according to their offset from a shared
7562// base ptr.
7563struct ConsecutiveMemoryChainSorter {
7564  bool operator()(MemOpLink LHS, MemOpLink RHS) {
7565    return LHS.OffsetFromBase < RHS.OffsetFromBase;
7566  }
7567};
7568
7569bool DAGCombiner::MergeConsecutiveStores(StoreSDNode* St) {
7570  EVT MemVT = St->getMemoryVT();
7571  int64_t ElementSizeBytes = MemVT.getSizeInBits()/8;
7572
7573  // Don't merge vectors into wider inputs.
7574  if (MemVT.isVector() || !MemVT.isSimple())
7575    return false;
7576
7577  // Perform an early exit check. Do not bother looking at stored values that
7578  // are not constants or loads.
7579  SDValue StoredVal = St->getValue();
7580  bool IsLoadSrc = isa<LoadSDNode>(StoredVal);
7581  if (!isa<ConstantSDNode>(StoredVal) && !isa<ConstantFPSDNode>(StoredVal) &&
7582      !IsLoadSrc)
7583    return false;
7584
7585  // Only look at ends of store sequences.
7586  SDValue Chain = SDValue(St, 1);
7587  if (Chain->hasOneUse() && Chain->use_begin()->getOpcode() == ISD::STORE)
7588    return false;
7589
7590  // This holds the base pointer and the offset in bytes from the base pointer.
7591  std::pair<SDValue, int64_t> BasePtr =
7592      GetPointerBaseAndOffset(St->getBasePtr());
7593
7594  // We must have a base and an offset.
7595  if (!BasePtr.first.getNode())
7596    return false;
7597
7598  // Do not handle stores to undef base pointers.
7599  if (BasePtr.first.getOpcode() == ISD::UNDEF)
7600    return false;
7601
7602  // Save the LoadSDNodes that we find in the chain.
7603  // We need to make sure that these nodes do not interfere with
7604  // any of the store nodes.
7605  SmallVector<LSBaseSDNode*, 8> AliasLoadNodes;
7606
7607  // Save the StoreSDNodes that we find in the chain.
7608  SmallVector<MemOpLink, 8> StoreNodes;
7609
7610  // Walk up the chain and look for nodes with offsets from the same
7611  // base pointer. Stop when reaching an instruction with a different kind
7612  // or instruction which has a different base pointer.
7613  unsigned Seq = 0;
7614  StoreSDNode *Index = St;
7615  while (Index) {
7616    // If the chain has more than one use, then we can't reorder the mem ops.
7617    if (Index != St && !SDValue(Index, 1)->hasOneUse())
7618      break;
7619
7620    // Find the base pointer and offset for this memory node.
7621    std::pair<SDValue, int64_t> Ptr =
7622      GetPointerBaseAndOffset(Index->getBasePtr());
7623
7624    // Check that the base pointer is the same as the original one.
7625    if (Ptr.first.getNode() != BasePtr.first.getNode())
7626      break;
7627
7628    // Check that the alignment is the same.
7629    if (Index->getAlignment() != St->getAlignment())
7630      break;
7631
7632    // The memory operands must not be volatile.
7633    if (Index->isVolatile() || Index->isIndexed())
7634      break;
7635
7636    // No truncation.
7637    if (StoreSDNode *St = dyn_cast<StoreSDNode>(Index))
7638      if (St->isTruncatingStore())
7639        break;
7640
7641    // The stored memory type must be the same.
7642    if (Index->getMemoryVT() != MemVT)
7643      break;
7644
7645    // We do not allow unaligned stores because we want to prevent overriding
7646    // stores.
7647    if (Index->getAlignment()*8 != MemVT.getSizeInBits())
7648      break;
7649
7650    // We found a potential memory operand to merge.
7651    StoreNodes.push_back(MemOpLink(Index, Ptr.second, Seq++));
7652
7653    // Find the next memory operand in the chain. If the next operand in the
7654    // chain is a store then move up and continue the scan with the next
7655    // memory operand. If the next operand is a load save it and use alias
7656    // information to check if it interferes with anything.
7657    SDNode *NextInChain = Index->getChain().getNode();
7658    while (1) {
7659      if (StoreSDNode *STn = dyn_cast<StoreSDNode>(NextInChain)) {
7660        // We found a store node. Use it for the next iteration.
7661        Index = STn;
7662        break;
7663      } else if (LoadSDNode *Ldn = dyn_cast<LoadSDNode>(NextInChain)) {
7664        // Save the load node for later. Continue the scan.
7665        AliasLoadNodes.push_back(Ldn);
7666        NextInChain = Ldn->getChain().getNode();
7667        continue;
7668      } else {
7669        Index = NULL;
7670        break;
7671      }
7672    }
7673  }
7674
7675  // Check if there is anything to merge.
7676  if (StoreNodes.size() < 2)
7677    return false;
7678
7679  // Sort the memory operands according to their distance from the base pointer.
7680  std::sort(StoreNodes.begin(), StoreNodes.end(),
7681            ConsecutiveMemoryChainSorter());
7682
7683  // Scan the memory operations on the chain and find the first non-consecutive
7684  // store memory address.
7685  unsigned LastConsecutiveStore = 0;
7686  int64_t StartAddress = StoreNodes[0].OffsetFromBase;
7687  for (unsigned i = 0, e = StoreNodes.size(); i < e; ++i) {
7688
7689    // Check that the addresses are consecutive starting from the second
7690    // element in the list of stores.
7691    if (i > 0) {
7692      int64_t CurrAddress = StoreNodes[i].OffsetFromBase;
7693      if (CurrAddress - StartAddress != (ElementSizeBytes * i))
7694        break;
7695    }
7696
7697    bool Alias = false;
7698    // Check if this store interferes with any of the loads that we found.
7699    for (unsigned ld = 0, lde = AliasLoadNodes.size(); ld < lde; ++ld)
7700      if (isAlias(AliasLoadNodes[ld], StoreNodes[i].MemNode)) {
7701        Alias = true;
7702        break;
7703      }
7704    // We found a load that alias with this store. Stop the sequence.
7705    if (Alias)
7706      break;
7707
7708    // Mark this node as useful.
7709    LastConsecutiveStore = i;
7710  }
7711
7712  // The node with the lowest store address.
7713  LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode;
7714
7715  // Store the constants into memory as one consecutive store.
7716  if (!IsLoadSrc) {
7717    unsigned LastLegalType = 0;
7718    unsigned LastLegalVectorType = 0;
7719    bool NonZero = false;
7720    for (unsigned i=0; i<LastConsecutiveStore+1; ++i) {
7721      StoreSDNode *St  = cast<StoreSDNode>(StoreNodes[i].MemNode);
7722      SDValue StoredVal = St->getValue();
7723
7724      if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(StoredVal)) {
7725        NonZero |= !C->isNullValue();
7726      } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(StoredVal)) {
7727        NonZero |= !C->getConstantFPValue()->isNullValue();
7728      } else {
7729        // Non constant.
7730        break;
7731      }
7732
7733      // Find a legal type for the constant store.
7734      unsigned StoreBW = (i+1) * ElementSizeBytes * 8;
7735      EVT StoreTy = EVT::getIntegerVT(*DAG.getContext(), StoreBW);
7736      if (TLI.isTypeLegal(StoreTy))
7737        LastLegalType = i+1;
7738
7739      // Find a legal type for the vector store.
7740      EVT Ty = EVT::getVectorVT(*DAG.getContext(), MemVT, i+1);
7741      if (TLI.isTypeLegal(Ty))
7742        LastLegalVectorType = i + 1;
7743    }
7744
7745    // We only use vectors if the constant is known to be zero.
7746    if (NonZero)
7747      LastLegalVectorType = 0;
7748
7749    // Check if we found a legal integer type to store.
7750    if (LastLegalType == 0 && LastLegalVectorType == 0)
7751      return false;
7752
7753    bool UseVector = LastLegalVectorType > LastLegalType;
7754    unsigned NumElem = UseVector ? LastLegalVectorType : LastLegalType;
7755
7756    // Make sure we have something to merge.
7757    if (NumElem < 2)
7758      return false;
7759
7760    unsigned EarliestNodeUsed = 0;
7761    for (unsigned i=0; i < NumElem; ++i) {
7762      // Find a chain for the new wide-store operand. Notice that some
7763      // of the store nodes that we found may not be selected for inclusion
7764      // in the wide store. The chain we use needs to be the chain of the
7765      // earliest store node which is *used* and replaced by the wide store.
7766      if (StoreNodes[i].SequenceNum > StoreNodes[EarliestNodeUsed].SequenceNum)
7767        EarliestNodeUsed = i;
7768    }
7769
7770    // The earliest Node in the DAG.
7771    LSBaseSDNode *EarliestOp = StoreNodes[EarliestNodeUsed].MemNode;
7772    DebugLoc DL = StoreNodes[0].MemNode->getDebugLoc();
7773
7774    SDValue StoredVal;
7775    if (UseVector) {
7776      // Find a legal type for the vector store.
7777      EVT Ty = EVT::getVectorVT(*DAG.getContext(), MemVT, NumElem);
7778      assert(TLI.isTypeLegal(Ty) && "Illegal vector store");
7779      StoredVal = DAG.getConstant(0, Ty);
7780    } else {
7781      unsigned StoreBW = NumElem * ElementSizeBytes * 8;
7782      APInt StoreInt(StoreBW, 0);
7783
7784      // Construct a single integer constant which is made of the smaller
7785      // constant inputs.
7786      bool IsLE = TLI.isLittleEndian();
7787      for (unsigned i = 0; i < NumElem ; ++i) {
7788        unsigned Idx = IsLE ?(NumElem - 1 - i) : i;
7789        StoreSDNode *St  = cast<StoreSDNode>(StoreNodes[Idx].MemNode);
7790        SDValue Val = St->getValue();
7791        StoreInt<<=ElementSizeBytes*8;
7792        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) {
7793          StoreInt|=C->getAPIntValue().zext(StoreBW);
7794        } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Val)) {
7795          StoreInt|= C->getValueAPF().bitcastToAPInt().zext(StoreBW);
7796        } else {
7797          assert(false && "Invalid constant element type");
7798        }
7799      }
7800
7801      // Create the new Load and Store operations.
7802      EVT StoreTy = EVT::getIntegerVT(*DAG.getContext(), StoreBW);
7803      StoredVal = DAG.getConstant(StoreInt, StoreTy);
7804    }
7805
7806    SDValue NewStore = DAG.getStore(EarliestOp->getChain(), DL, StoredVal,
7807                                    FirstInChain->getBasePtr(),
7808                                    FirstInChain->getPointerInfo(),
7809                                    false, false,
7810                                    FirstInChain->getAlignment());
7811
7812    // Replace the first store with the new store
7813    CombineTo(EarliestOp, NewStore);
7814    // Erase all other stores.
7815    for (unsigned i = 0; i < NumElem ; ++i) {
7816      if (StoreNodes[i].MemNode == EarliestOp)
7817        continue;
7818      StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode);
7819      // ReplaceAllUsesWith will replace all uses that existed when it was
7820      // called, but graph optimizations may cause new ones to appear. For
7821      // example, the case in pr14333 looks like
7822      //
7823      //  St's chain -> St -> another store -> X
7824      //
7825      // And the only difference from St to the other store is the chain.
7826      // When we change it's chain to be St's chain they become identical,
7827      // get CSEed and the net result is that X is now a use of St.
7828      // Since we know that St is redundant, just iterate.
7829      while (!St->use_empty())
7830        DAG.ReplaceAllUsesWith(SDValue(St, 0), St->getChain());
7831      removeFromWorkList(St);
7832      DAG.DeleteNode(St);
7833    }
7834
7835    return true;
7836  }
7837
7838  // Below we handle the case of multiple consecutive stores that
7839  // come from multiple consecutive loads. We merge them into a single
7840  // wide load and a single wide store.
7841
7842  // Look for load nodes which are used by the stored values.
7843  SmallVector<MemOpLink, 8> LoadNodes;
7844
7845  // Find acceptable loads. Loads need to have the same chain (token factor),
7846  // must not be zext, volatile, indexed, and they must be consecutive.
7847  SDValue LdBasePtr;
7848  for (unsigned i=0; i<LastConsecutiveStore+1; ++i) {
7849    StoreSDNode *St  = cast<StoreSDNode>(StoreNodes[i].MemNode);
7850    LoadSDNode *Ld = dyn_cast<LoadSDNode>(St->getValue());
7851    if (!Ld) break;
7852
7853    // Loads must only have one use.
7854    if (!Ld->hasNUsesOfValue(1, 0))
7855      break;
7856
7857    // Check that the alignment is the same as the stores.
7858    if (Ld->getAlignment() != St->getAlignment())
7859      break;
7860
7861    // The memory operands must not be volatile.
7862    if (Ld->isVolatile() || Ld->isIndexed())
7863      break;
7864
7865    // We do not accept ext loads.
7866    if (Ld->getExtensionType() != ISD::NON_EXTLOAD)
7867      break;
7868
7869    // The stored memory type must be the same.
7870    if (Ld->getMemoryVT() != MemVT)
7871      break;
7872
7873    std::pair<SDValue, int64_t> LdPtr =
7874    GetPointerBaseAndOffset(Ld->getBasePtr());
7875
7876    // If this is not the first ptr that we check.
7877    if (LdBasePtr.getNode()) {
7878      // The base ptr must be the same.
7879      if (LdPtr.first != LdBasePtr)
7880        break;
7881    } else {
7882      // Check that all other base pointers are the same as this one.
7883      LdBasePtr = LdPtr.first;
7884    }
7885
7886    // We found a potential memory operand to merge.
7887    LoadNodes.push_back(MemOpLink(Ld, LdPtr.second, 0));
7888  }
7889
7890  if (LoadNodes.size() < 2)
7891    return false;
7892
7893  // Scan the memory operations on the chain and find the first non-consecutive
7894  // load memory address. These variables hold the index in the store node
7895  // array.
7896  unsigned LastConsecutiveLoad = 0;
7897  // This variable refers to the size and not index in the array.
7898  unsigned LastLegalVectorType = 0;
7899  unsigned LastLegalIntegerType = 0;
7900  StartAddress = LoadNodes[0].OffsetFromBase;
7901  SDValue FirstChain = LoadNodes[0].MemNode->getChain();
7902  for (unsigned i = 1; i < LoadNodes.size(); ++i) {
7903    // All loads much share the same chain.
7904    if (LoadNodes[i].MemNode->getChain() != FirstChain)
7905      break;
7906
7907    int64_t CurrAddress = LoadNodes[i].OffsetFromBase;
7908    if (CurrAddress - StartAddress != (ElementSizeBytes * i))
7909      break;
7910    LastConsecutiveLoad = i;
7911
7912    // Find a legal type for the vector store.
7913    EVT StoreTy = EVT::getVectorVT(*DAG.getContext(), MemVT, i+1);
7914    if (TLI.isTypeLegal(StoreTy))
7915      LastLegalVectorType = i + 1;
7916
7917    // Find a legal type for the integer store.
7918    unsigned StoreBW = (i+1) * ElementSizeBytes * 8;
7919    StoreTy = EVT::getIntegerVT(*DAG.getContext(), StoreBW);
7920    if (TLI.isTypeLegal(StoreTy))
7921      LastLegalIntegerType = i + 1;
7922  }
7923
7924  // Only use vector types if the vector type is larger than the integer type.
7925  // If they are the same, use integers.
7926  bool UseVectorTy = LastLegalVectorType > LastLegalIntegerType;
7927  unsigned LastLegalType = std::max(LastLegalVectorType, LastLegalIntegerType);
7928
7929  // We add +1 here because the LastXXX variables refer to location while
7930  // the NumElem refers to array/index size.
7931  unsigned NumElem = std::min(LastConsecutiveStore, LastConsecutiveLoad) + 1;
7932  NumElem = std::min(LastLegalType, NumElem);
7933
7934  if (NumElem < 2)
7935    return false;
7936
7937  // The earliest Node in the DAG.
7938  unsigned EarliestNodeUsed = 0;
7939  LSBaseSDNode *EarliestOp = StoreNodes[EarliestNodeUsed].MemNode;
7940  for (unsigned i=1; i<NumElem; ++i) {
7941    // Find a chain for the new wide-store operand. Notice that some
7942    // of the store nodes that we found may not be selected for inclusion
7943    // in the wide store. The chain we use needs to be the chain of the
7944    // earliest store node which is *used* and replaced by the wide store.
7945    if (StoreNodes[i].SequenceNum > StoreNodes[EarliestNodeUsed].SequenceNum)
7946      EarliestNodeUsed = i;
7947  }
7948
7949  // Find if it is better to use vectors or integers to load and store
7950  // to memory.
7951  EVT JointMemOpVT;
7952  if (UseVectorTy) {
7953    JointMemOpVT = EVT::getVectorVT(*DAG.getContext(), MemVT, NumElem);
7954  } else {
7955    unsigned StoreBW = NumElem * ElementSizeBytes * 8;
7956    JointMemOpVT = EVT::getIntegerVT(*DAG.getContext(), StoreBW);
7957  }
7958
7959  DebugLoc LoadDL = LoadNodes[0].MemNode->getDebugLoc();
7960  DebugLoc StoreDL = StoreNodes[0].MemNode->getDebugLoc();
7961
7962  LoadSDNode *FirstLoad = cast<LoadSDNode>(LoadNodes[0].MemNode);
7963  SDValue NewLoad = DAG.getLoad(JointMemOpVT, LoadDL,
7964                                FirstLoad->getChain(),
7965                                FirstLoad->getBasePtr(),
7966                                FirstLoad->getPointerInfo(),
7967                                false, false, false,
7968                                FirstLoad->getAlignment());
7969
7970  SDValue NewStore = DAG.getStore(EarliestOp->getChain(), StoreDL, NewLoad,
7971                                  FirstInChain->getBasePtr(),
7972                                  FirstInChain->getPointerInfo(), false, false,
7973                                  FirstInChain->getAlignment());
7974
7975  // Replace one of the loads with the new load.
7976  LoadSDNode *Ld = cast<LoadSDNode>(LoadNodes[0].MemNode);
7977  DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1),
7978                                SDValue(NewLoad.getNode(), 1));
7979
7980  // Remove the rest of the load chains.
7981  for (unsigned i = 1; i < NumElem ; ++i) {
7982    // Replace all chain users of the old load nodes with the chain of the new
7983    // load node.
7984    LoadSDNode *Ld = cast<LoadSDNode>(LoadNodes[i].MemNode);
7985    DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), Ld->getChain());
7986  }
7987
7988  // Replace the first store with the new store.
7989  CombineTo(EarliestOp, NewStore);
7990  // Erase all other stores.
7991  for (unsigned i = 0; i < NumElem ; ++i) {
7992    // Remove all Store nodes.
7993    if (StoreNodes[i].MemNode == EarliestOp)
7994      continue;
7995    StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode);
7996    DAG.ReplaceAllUsesOfValueWith(SDValue(St, 0), St->getChain());
7997    removeFromWorkList(St);
7998    DAG.DeleteNode(St);
7999  }
8000
8001  return true;
8002}
8003
8004SDValue DAGCombiner::visitSTORE(SDNode *N) {
8005  StoreSDNode *ST  = cast<StoreSDNode>(N);
8006  SDValue Chain = ST->getChain();
8007  SDValue Value = ST->getValue();
8008  SDValue Ptr   = ST->getBasePtr();
8009
8010  // If this is a store of a bit convert, store the input value if the
8011  // resultant store does not need a higher alignment than the original.
8012  if (Value.getOpcode() == ISD::BITCAST && !ST->isTruncatingStore() &&
8013      ST->isUnindexed()) {
8014    unsigned OrigAlign = ST->getAlignment();
8015    EVT SVT = Value.getOperand(0).getValueType();
8016    unsigned Align = TLI.getDataLayout()->
8017      getABITypeAlignment(SVT.getTypeForEVT(*DAG.getContext()));
8018    if (Align <= OrigAlign &&
8019        ((!LegalOperations && !ST->isVolatile()) ||
8020         TLI.isOperationLegalOrCustom(ISD::STORE, SVT)))
8021      return DAG.getStore(Chain, N->getDebugLoc(), Value.getOperand(0),
8022                          Ptr, ST->getPointerInfo(), ST->isVolatile(),
8023                          ST->isNonTemporal(), OrigAlign);
8024  }
8025
8026  // Turn 'store undef, Ptr' -> nothing.
8027  if (Value.getOpcode() == ISD::UNDEF && ST->isUnindexed())
8028    return Chain;
8029
8030  // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
8031  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Value)) {
8032    // NOTE: If the original store is volatile, this transform must not increase
8033    // the number of stores.  For example, on x86-32 an f64 can be stored in one
8034    // processor operation but an i64 (which is not legal) requires two.  So the
8035    // transform should not be done in this case.
8036    if (Value.getOpcode() != ISD::TargetConstantFP) {
8037      SDValue Tmp;
8038      switch (CFP->getValueType(0).getSimpleVT().SimpleTy) {
8039      default: llvm_unreachable("Unknown FP type");
8040      case MVT::f16:    // We don't do this for these yet.
8041      case MVT::f80:
8042      case MVT::f128:
8043      case MVT::ppcf128:
8044        break;
8045      case MVT::f32:
8046        if ((isTypeLegal(MVT::i32) && !LegalOperations && !ST->isVolatile()) ||
8047            TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) {
8048          Tmp = DAG.getConstant((uint32_t)CFP->getValueAPF().
8049                              bitcastToAPInt().getZExtValue(), MVT::i32);
8050          return DAG.getStore(Chain, N->getDebugLoc(), Tmp,
8051                              Ptr, ST->getPointerInfo(), ST->isVolatile(),
8052                              ST->isNonTemporal(), ST->getAlignment());
8053        }
8054        break;
8055      case MVT::f64:
8056        if ((TLI.isTypeLegal(MVT::i64) && !LegalOperations &&
8057             !ST->isVolatile()) ||
8058            TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i64)) {
8059          Tmp = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
8060                                getZExtValue(), MVT::i64);
8061          return DAG.getStore(Chain, N->getDebugLoc(), Tmp,
8062                              Ptr, ST->getPointerInfo(), ST->isVolatile(),
8063                              ST->isNonTemporal(), ST->getAlignment());
8064        }
8065
8066        if (!ST->isVolatile() &&
8067            TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) {
8068          // Many FP stores are not made apparent until after legalize, e.g. for
8069          // argument passing.  Since this is so common, custom legalize the
8070          // 64-bit integer store into two 32-bit stores.
8071          uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
8072          SDValue Lo = DAG.getConstant(Val & 0xFFFFFFFF, MVT::i32);
8073          SDValue Hi = DAG.getConstant(Val >> 32, MVT::i32);
8074          if (TLI.isBigEndian()) std::swap(Lo, Hi);
8075
8076          unsigned Alignment = ST->getAlignment();
8077          bool isVolatile = ST->isVolatile();
8078          bool isNonTemporal = ST->isNonTemporal();
8079
8080          SDValue St0 = DAG.getStore(Chain, ST->getDebugLoc(), Lo,
8081                                     Ptr, ST->getPointerInfo(),
8082                                     isVolatile, isNonTemporal,
8083                                     ST->getAlignment());
8084          Ptr = DAG.getNode(ISD::ADD, N->getDebugLoc(), Ptr.getValueType(), Ptr,
8085                            DAG.getConstant(4, Ptr.getValueType()));
8086          Alignment = MinAlign(Alignment, 4U);
8087          SDValue St1 = DAG.getStore(Chain, ST->getDebugLoc(), Hi,
8088                                     Ptr, ST->getPointerInfo().getWithOffset(4),
8089                                     isVolatile, isNonTemporal,
8090                                     Alignment);
8091          return DAG.getNode(ISD::TokenFactor, N->getDebugLoc(), MVT::Other,
8092                             St0, St1);
8093        }
8094
8095        break;
8096      }
8097    }
8098  }
8099
8100  // Try to infer better alignment information than the store already has.
8101  if (OptLevel != CodeGenOpt::None && ST->isUnindexed()) {
8102    if (unsigned Align = DAG.InferPtrAlignment(Ptr)) {
8103      if (Align > ST->getAlignment())
8104        return DAG.getTruncStore(Chain, N->getDebugLoc(), Value,
8105                                 Ptr, ST->getPointerInfo(), ST->getMemoryVT(),
8106                                 ST->isVolatile(), ST->isNonTemporal(), Align);
8107    }
8108  }
8109
8110  // Try transforming a pair floating point load / store ops to integer
8111  // load / store ops.
8112  SDValue NewST = TransformFPLoadStorePair(N);
8113  if (NewST.getNode())
8114    return NewST;
8115
8116  if (CombinerAA) {
8117    // Walk up chain skipping non-aliasing memory nodes.
8118    SDValue BetterChain = FindBetterChain(N, Chain);
8119
8120    // If there is a better chain.
8121    if (Chain != BetterChain) {
8122      SDValue ReplStore;
8123
8124      // Replace the chain to avoid dependency.
8125      if (ST->isTruncatingStore()) {
8126        ReplStore = DAG.getTruncStore(BetterChain, N->getDebugLoc(), Value, Ptr,
8127                                      ST->getPointerInfo(),
8128                                      ST->getMemoryVT(), ST->isVolatile(),
8129                                      ST->isNonTemporal(), ST->getAlignment());
8130      } else {
8131        ReplStore = DAG.getStore(BetterChain, N->getDebugLoc(), Value, Ptr,
8132                                 ST->getPointerInfo(),
8133                                 ST->isVolatile(), ST->isNonTemporal(),
8134                                 ST->getAlignment());
8135      }
8136
8137      // Create token to keep both nodes around.
8138      SDValue Token = DAG.getNode(ISD::TokenFactor, N->getDebugLoc(),
8139                                  MVT::Other, Chain, ReplStore);
8140
8141      // Make sure the new and old chains are cleaned up.
8142      AddToWorkList(Token.getNode());
8143
8144      // Don't add users to work list.
8145      return CombineTo(N, Token, false);
8146    }
8147  }
8148
8149  // Try transforming N to an indexed store.
8150  if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
8151    return SDValue(N, 0);
8152
8153  // FIXME: is there such a thing as a truncating indexed store?
8154  if (ST->isTruncatingStore() && ST->isUnindexed() &&
8155      Value.getValueType().isInteger()) {
8156    // See if we can simplify the input to this truncstore with knowledge that
8157    // only the low bits are being used.  For example:
8158    // "truncstore (or (shl x, 8), y), i8"  -> "truncstore y, i8"
8159    SDValue Shorter =
8160      GetDemandedBits(Value,
8161                      APInt::getLowBitsSet(
8162                        Value.getValueType().getScalarType().getSizeInBits(),
8163                        ST->getMemoryVT().getScalarType().getSizeInBits()));
8164    AddToWorkList(Value.getNode());
8165    if (Shorter.getNode())
8166      return DAG.getTruncStore(Chain, N->getDebugLoc(), Shorter,
8167                               Ptr, ST->getPointerInfo(), ST->getMemoryVT(),
8168                               ST->isVolatile(), ST->isNonTemporal(),
8169                               ST->getAlignment());
8170
8171    // Otherwise, see if we can simplify the operation with
8172    // SimplifyDemandedBits, which only works if the value has a single use.
8173    if (SimplifyDemandedBits(Value,
8174                        APInt::getLowBitsSet(
8175                          Value.getValueType().getScalarType().getSizeInBits(),
8176                          ST->getMemoryVT().getScalarType().getSizeInBits())))
8177      return SDValue(N, 0);
8178  }
8179
8180  // If this is a load followed by a store to the same location, then the store
8181  // is dead/noop.
8182  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Value)) {
8183    if (Ld->getBasePtr() == Ptr && ST->getMemoryVT() == Ld->getMemoryVT() &&
8184        ST->isUnindexed() && !ST->isVolatile() &&
8185        // There can't be any side effects between the load and store, such as
8186        // a call or store.
8187        Chain.reachesChainWithoutSideEffects(SDValue(Ld, 1))) {
8188      // The store is dead, remove it.
8189      return Chain;
8190    }
8191  }
8192
8193  // If this is an FP_ROUND or TRUNC followed by a store, fold this into a
8194  // truncating store.  We can do this even if this is already a truncstore.
8195  if ((Value.getOpcode() == ISD::FP_ROUND || Value.getOpcode() == ISD::TRUNCATE)
8196      && Value.getNode()->hasOneUse() && ST->isUnindexed() &&
8197      TLI.isTruncStoreLegal(Value.getOperand(0).getValueType(),
8198                            ST->getMemoryVT())) {
8199    return DAG.getTruncStore(Chain, N->getDebugLoc(), Value.getOperand(0),
8200                             Ptr, ST->getPointerInfo(), ST->getMemoryVT(),
8201                             ST->isVolatile(), ST->isNonTemporal(),
8202                             ST->getAlignment());
8203  }
8204
8205  // Only perform this optimization before the types are legal, because we
8206  // don't want to perform this optimization on every DAGCombine invocation.
8207  if (!LegalTypes) {
8208    bool EverChanged = false;
8209
8210    do {
8211      // There can be multiple store sequences on the same chain.
8212      // Keep trying to merge store sequences until we are unable to do so
8213      // or until we merge the last store on the chain.
8214      bool Changed = MergeConsecutiveStores(ST);
8215      EverChanged |= Changed;
8216      if (!Changed) break;
8217    } while (ST->getOpcode() != ISD::DELETED_NODE);
8218
8219    if (EverChanged)
8220      return SDValue(N, 0);
8221  }
8222
8223  return ReduceLoadOpStoreWidth(N);
8224}
8225
8226SDValue DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) {
8227  SDValue InVec = N->getOperand(0);
8228  SDValue InVal = N->getOperand(1);
8229  SDValue EltNo = N->getOperand(2);
8230  DebugLoc dl = N->getDebugLoc();
8231
8232  // If the inserted element is an UNDEF, just use the input vector.
8233  if (InVal.getOpcode() == ISD::UNDEF)
8234    return InVec;
8235
8236  EVT VT = InVec.getValueType();
8237
8238  // If we can't generate a legal BUILD_VECTOR, exit
8239  if (LegalOperations && !TLI.isOperationLegal(ISD::BUILD_VECTOR, VT))
8240    return SDValue();
8241
8242  // Check that we know which element is being inserted
8243  if (!isa<ConstantSDNode>(EltNo))
8244    return SDValue();
8245  unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
8246
8247  // Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially
8248  // be converted to a BUILD_VECTOR).  Fill in the Ops vector with the
8249  // vector elements.
8250  SmallVector<SDValue, 8> Ops;
8251  if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
8252    Ops.append(InVec.getNode()->op_begin(),
8253               InVec.getNode()->op_end());
8254  } else if (InVec.getOpcode() == ISD::UNDEF) {
8255    unsigned NElts = VT.getVectorNumElements();
8256    Ops.append(NElts, DAG.getUNDEF(InVal.getValueType()));
8257  } else {
8258    return SDValue();
8259  }
8260
8261  // Insert the element
8262  if (Elt < Ops.size()) {
8263    // All the operands of BUILD_VECTOR must have the same type;
8264    // we enforce that here.
8265    EVT OpVT = Ops[0].getValueType();
8266    if (InVal.getValueType() != OpVT)
8267      InVal = OpVT.bitsGT(InVal.getValueType()) ?
8268                DAG.getNode(ISD::ANY_EXTEND, dl, OpVT, InVal) :
8269                DAG.getNode(ISD::TRUNCATE, dl, OpVT, InVal);
8270    Ops[Elt] = InVal;
8271  }
8272
8273  // Return the new vector
8274  return DAG.getNode(ISD::BUILD_VECTOR, dl,
8275                     VT, &Ops[0], Ops.size());
8276}
8277
8278SDValue DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) {
8279  // (vextract (scalar_to_vector val, 0) -> val
8280  SDValue InVec = N->getOperand(0);
8281  EVT VT = InVec.getValueType();
8282  EVT NVT = N->getValueType(0);
8283
8284  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
8285    // Check if the result type doesn't match the inserted element type. A
8286    // SCALAR_TO_VECTOR may truncate the inserted element and the
8287    // EXTRACT_VECTOR_ELT may widen the extracted vector.
8288    SDValue InOp = InVec.getOperand(0);
8289    if (InOp.getValueType() != NVT) {
8290      assert(InOp.getValueType().isInteger() && NVT.isInteger());
8291      return DAG.getSExtOrTrunc(InOp, InVec.getDebugLoc(), NVT);
8292    }
8293    return InOp;
8294  }
8295
8296  SDValue EltNo = N->getOperand(1);
8297  bool ConstEltNo = isa<ConstantSDNode>(EltNo);
8298
8299  // Transform: (EXTRACT_VECTOR_ELT( VECTOR_SHUFFLE )) -> EXTRACT_VECTOR_ELT.
8300  // We only perform this optimization before the op legalization phase because
8301  // we may introduce new vector instructions which are not backed by TD
8302  // patterns. For example on AVX, extracting elements from a wide vector
8303  // without using extract_subvector.
8304  if (InVec.getOpcode() == ISD::VECTOR_SHUFFLE
8305      && ConstEltNo && !LegalOperations) {
8306    int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
8307    int NumElem = VT.getVectorNumElements();
8308    ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(InVec);
8309    // Find the new index to extract from.
8310    int OrigElt = SVOp->getMaskElt(Elt);
8311
8312    // Extracting an undef index is undef.
8313    if (OrigElt == -1)
8314      return DAG.getUNDEF(NVT);
8315
8316    // Select the right vector half to extract from.
8317    if (OrigElt < NumElem) {
8318      InVec = InVec->getOperand(0);
8319    } else {
8320      InVec = InVec->getOperand(1);
8321      OrigElt -= NumElem;
8322    }
8323
8324    EVT IndexTy = N->getOperand(1).getValueType();
8325    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, N->getDebugLoc(), NVT,
8326                       InVec, DAG.getConstant(OrigElt, IndexTy));
8327  }
8328
8329  // Perform only after legalization to ensure build_vector / vector_shuffle
8330  // optimizations have already been done.
8331  if (!LegalOperations) return SDValue();
8332
8333  // (vextract (v4f32 load $addr), c) -> (f32 load $addr+c*size)
8334  // (vextract (v4f32 s2v (f32 load $addr)), c) -> (f32 load $addr+c*size)
8335  // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), 0) -> (f32 load $addr)
8336
8337  if (ConstEltNo) {
8338    int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
8339    bool NewLoad = false;
8340    bool BCNumEltsChanged = false;
8341    EVT ExtVT = VT.getVectorElementType();
8342    EVT LVT = ExtVT;
8343
8344    // If the result of load has to be truncated, then it's not necessarily
8345    // profitable.
8346    if (NVT.bitsLT(LVT) && !TLI.isTruncateFree(LVT, NVT))
8347      return SDValue();
8348
8349    if (InVec.getOpcode() == ISD::BITCAST) {
8350      // Don't duplicate a load with other uses.
8351      if (!InVec.hasOneUse())
8352        return SDValue();
8353
8354      EVT BCVT = InVec.getOperand(0).getValueType();
8355      if (!BCVT.isVector() || ExtVT.bitsGT(BCVT.getVectorElementType()))
8356        return SDValue();
8357      if (VT.getVectorNumElements() != BCVT.getVectorNumElements())
8358        BCNumEltsChanged = true;
8359      InVec = InVec.getOperand(0);
8360      ExtVT = BCVT.getVectorElementType();
8361      NewLoad = true;
8362    }
8363
8364    LoadSDNode *LN0 = NULL;
8365    const ShuffleVectorSDNode *SVN = NULL;
8366    if (ISD::isNormalLoad(InVec.getNode())) {
8367      LN0 = cast<LoadSDNode>(InVec);
8368    } else if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR &&
8369               InVec.getOperand(0).getValueType() == ExtVT &&
8370               ISD::isNormalLoad(InVec.getOperand(0).getNode())) {
8371      // Don't duplicate a load with other uses.
8372      if (!InVec.hasOneUse())
8373        return SDValue();
8374
8375      LN0 = cast<LoadSDNode>(InVec.getOperand(0));
8376    } else if ((SVN = dyn_cast<ShuffleVectorSDNode>(InVec))) {
8377      // (vextract (vector_shuffle (load $addr), v2, <1, u, u, u>), 1)
8378      // =>
8379      // (load $addr+1*size)
8380
8381      // Don't duplicate a load with other uses.
8382      if (!InVec.hasOneUse())
8383        return SDValue();
8384
8385      // If the bit convert changed the number of elements, it is unsafe
8386      // to examine the mask.
8387      if (BCNumEltsChanged)
8388        return SDValue();
8389
8390      // Select the input vector, guarding against out of range extract vector.
8391      unsigned NumElems = VT.getVectorNumElements();
8392      int Idx = (Elt > (int)NumElems) ? -1 : SVN->getMaskElt(Elt);
8393      InVec = (Idx < (int)NumElems) ? InVec.getOperand(0) : InVec.getOperand(1);
8394
8395      if (InVec.getOpcode() == ISD::BITCAST) {
8396        // Don't duplicate a load with other uses.
8397        if (!InVec.hasOneUse())
8398          return SDValue();
8399
8400        InVec = InVec.getOperand(0);
8401      }
8402      if (ISD::isNormalLoad(InVec.getNode())) {
8403        LN0 = cast<LoadSDNode>(InVec);
8404        Elt = (Idx < (int)NumElems) ? Idx : Idx - (int)NumElems;
8405      }
8406    }
8407
8408    // Make sure we found a non-volatile load and the extractelement is
8409    // the only use.
8410    if (!LN0 || !LN0->hasNUsesOfValue(1,0) || LN0->isVolatile())
8411      return SDValue();
8412
8413    // If Idx was -1 above, Elt is going to be -1, so just return undef.
8414    if (Elt == -1)
8415      return DAG.getUNDEF(LVT);
8416
8417    unsigned Align = LN0->getAlignment();
8418    if (NewLoad) {
8419      // Check the resultant load doesn't need a higher alignment than the
8420      // original load.
8421      unsigned NewAlign =
8422        TLI.getDataLayout()
8423            ->getABITypeAlignment(LVT.getTypeForEVT(*DAG.getContext()));
8424
8425      if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, LVT))
8426        return SDValue();
8427
8428      Align = NewAlign;
8429    }
8430
8431    SDValue NewPtr = LN0->getBasePtr();
8432    unsigned PtrOff = 0;
8433
8434    if (Elt) {
8435      PtrOff = LVT.getSizeInBits() * Elt / 8;
8436      EVT PtrType = NewPtr.getValueType();
8437      if (TLI.isBigEndian())
8438        PtrOff = VT.getSizeInBits() / 8 - PtrOff;
8439      NewPtr = DAG.getNode(ISD::ADD, N->getDebugLoc(), PtrType, NewPtr,
8440                           DAG.getConstant(PtrOff, PtrType));
8441    }
8442
8443    // The replacement we need to do here is a little tricky: we need to
8444    // replace an extractelement of a load with a load.
8445    // Use ReplaceAllUsesOfValuesWith to do the replacement.
8446    // Note that this replacement assumes that the extractvalue is the only
8447    // use of the load; that's okay because we don't want to perform this
8448    // transformation in other cases anyway.
8449    SDValue Load;
8450    SDValue Chain;
8451    if (NVT.bitsGT(LVT)) {
8452      // If the result type of vextract is wider than the load, then issue an
8453      // extending load instead.
8454      ISD::LoadExtType ExtType = TLI.isLoadExtLegal(ISD::ZEXTLOAD, LVT)
8455        ? ISD::ZEXTLOAD : ISD::EXTLOAD;
8456      Load = DAG.getExtLoad(ExtType, N->getDebugLoc(), NVT, LN0->getChain(),
8457                            NewPtr, LN0->getPointerInfo().getWithOffset(PtrOff),
8458                            LVT, LN0->isVolatile(), LN0->isNonTemporal(),Align);
8459      Chain = Load.getValue(1);
8460    } else {
8461      Load = DAG.getLoad(LVT, N->getDebugLoc(), LN0->getChain(), NewPtr,
8462                         LN0->getPointerInfo().getWithOffset(PtrOff),
8463                         LN0->isVolatile(), LN0->isNonTemporal(),
8464                         LN0->isInvariant(), Align);
8465      Chain = Load.getValue(1);
8466      if (NVT.bitsLT(LVT))
8467        Load = DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), NVT, Load);
8468      else
8469        Load = DAG.getNode(ISD::BITCAST, N->getDebugLoc(), NVT, Load);
8470    }
8471    WorkListRemover DeadNodes(*this);
8472    SDValue From[] = { SDValue(N, 0), SDValue(LN0,1) };
8473    SDValue To[] = { Load, Chain };
8474    DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
8475    // Since we're explcitly calling ReplaceAllUses, add the new node to the
8476    // worklist explicitly as well.
8477    AddToWorkList(Load.getNode());
8478    AddUsersToWorkList(Load.getNode()); // Add users too
8479    // Make sure to revisit this node to clean it up; it will usually be dead.
8480    AddToWorkList(N);
8481    return SDValue(N, 0);
8482  }
8483
8484  return SDValue();
8485}
8486
8487// Simplify (build_vec (ext )) to (bitcast (build_vec ))
8488SDValue DAGCombiner::reduceBuildVecExtToExtBuildVec(SDNode *N) {
8489  // We perform this optimization post type-legalization because
8490  // the type-legalizer often scalarizes integer-promoted vectors.
8491  // Performing this optimization before may create bit-casts which
8492  // will be type-legalized to complex code sequences.
8493  // We perform this optimization only before the operation legalizer because we
8494  // may introduce illegal operations.
8495  if (Level != AfterLegalizeVectorOps && Level != AfterLegalizeTypes)
8496    return SDValue();
8497
8498  unsigned NumInScalars = N->getNumOperands();
8499  DebugLoc dl = N->getDebugLoc();
8500  EVT VT = N->getValueType(0);
8501
8502  // Check to see if this is a BUILD_VECTOR of a bunch of values
8503  // which come from any_extend or zero_extend nodes. If so, we can create
8504  // a new BUILD_VECTOR using bit-casts which may enable other BUILD_VECTOR
8505  // optimizations. We do not handle sign-extend because we can't fill the sign
8506  // using shuffles.
8507  EVT SourceType = MVT::Other;
8508  bool AllAnyExt = true;
8509
8510  for (unsigned i = 0; i != NumInScalars; ++i) {
8511    SDValue In = N->getOperand(i);
8512    // Ignore undef inputs.
8513    if (In.getOpcode() == ISD::UNDEF) continue;
8514
8515    bool AnyExt  = In.getOpcode() == ISD::ANY_EXTEND;
8516    bool ZeroExt = In.getOpcode() == ISD::ZERO_EXTEND;
8517
8518    // Abort if the element is not an extension.
8519    if (!ZeroExt && !AnyExt) {
8520      SourceType = MVT::Other;
8521      break;
8522    }
8523
8524    // The input is a ZeroExt or AnyExt. Check the original type.
8525    EVT InTy = In.getOperand(0).getValueType();
8526
8527    // Check that all of the widened source types are the same.
8528    if (SourceType == MVT::Other)
8529      // First time.
8530      SourceType = InTy;
8531    else if (InTy != SourceType) {
8532      // Multiple income types. Abort.
8533      SourceType = MVT::Other;
8534      break;
8535    }
8536
8537    // Check if all of the extends are ANY_EXTENDs.
8538    AllAnyExt &= AnyExt;
8539  }
8540
8541  // In order to have valid types, all of the inputs must be extended from the
8542  // same source type and all of the inputs must be any or zero extend.
8543  // Scalar sizes must be a power of two.
8544  EVT OutScalarTy = VT.getScalarType();
8545  bool ValidTypes = SourceType != MVT::Other &&
8546                 isPowerOf2_32(OutScalarTy.getSizeInBits()) &&
8547                 isPowerOf2_32(SourceType.getSizeInBits());
8548
8549  // Create a new simpler BUILD_VECTOR sequence which other optimizations can
8550  // turn into a single shuffle instruction.
8551  if (!ValidTypes)
8552    return SDValue();
8553
8554  bool isLE = TLI.isLittleEndian();
8555  unsigned ElemRatio = OutScalarTy.getSizeInBits()/SourceType.getSizeInBits();
8556  assert(ElemRatio > 1 && "Invalid element size ratio");
8557  SDValue Filler = AllAnyExt ? DAG.getUNDEF(SourceType):
8558                               DAG.getConstant(0, SourceType);
8559
8560  unsigned NewBVElems = ElemRatio * VT.getVectorNumElements();
8561  SmallVector<SDValue, 8> Ops(NewBVElems, Filler);
8562
8563  // Populate the new build_vector
8564  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
8565    SDValue Cast = N->getOperand(i);
8566    assert((Cast.getOpcode() == ISD::ANY_EXTEND ||
8567            Cast.getOpcode() == ISD::ZERO_EXTEND ||
8568            Cast.getOpcode() == ISD::UNDEF) && "Invalid cast opcode");
8569    SDValue In;
8570    if (Cast.getOpcode() == ISD::UNDEF)
8571      In = DAG.getUNDEF(SourceType);
8572    else
8573      In = Cast->getOperand(0);
8574    unsigned Index = isLE ? (i * ElemRatio) :
8575                            (i * ElemRatio + (ElemRatio - 1));
8576
8577    assert(Index < Ops.size() && "Invalid index");
8578    Ops[Index] = In;
8579  }
8580
8581  // The type of the new BUILD_VECTOR node.
8582  EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SourceType, NewBVElems);
8583  assert(VecVT.getSizeInBits() == VT.getSizeInBits() &&
8584         "Invalid vector size");
8585  // Check if the new vector type is legal.
8586  if (!isTypeLegal(VecVT)) return SDValue();
8587
8588  // Make the new BUILD_VECTOR.
8589  SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, &Ops[0], Ops.size());
8590
8591  // The new BUILD_VECTOR node has the potential to be further optimized.
8592  AddToWorkList(BV.getNode());
8593  // Bitcast to the desired type.
8594  return DAG.getNode(ISD::BITCAST, dl, VT, BV);
8595}
8596
8597SDValue DAGCombiner::reduceBuildVecConvertToConvertBuildVec(SDNode *N) {
8598  EVT VT = N->getValueType(0);
8599
8600  unsigned NumInScalars = N->getNumOperands();
8601  DebugLoc dl = N->getDebugLoc();
8602
8603  EVT SrcVT = MVT::Other;
8604  unsigned Opcode = ISD::DELETED_NODE;
8605  unsigned NumDefs = 0;
8606
8607  for (unsigned i = 0; i != NumInScalars; ++i) {
8608    SDValue In = N->getOperand(i);
8609    unsigned Opc = In.getOpcode();
8610
8611    if (Opc == ISD::UNDEF)
8612      continue;
8613
8614    // If all scalar values are floats and converted from integers.
8615    if (Opcode == ISD::DELETED_NODE &&
8616        (Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP)) {
8617      Opcode = Opc;
8618      // If not supported by target, bail out.
8619      if (TLI.getOperationAction(Opcode, VT) != TargetLowering::Legal &&
8620          TLI.getOperationAction(Opcode, VT) != TargetLowering::Custom)
8621        return SDValue();
8622    }
8623    if (Opc != Opcode)
8624      return SDValue();
8625
8626    EVT InVT = In.getOperand(0).getValueType();
8627
8628    // If all scalar values are typed differently, bail out. It's chosen to
8629    // simplify BUILD_VECTOR of integer types.
8630    if (SrcVT == MVT::Other)
8631      SrcVT = InVT;
8632    if (SrcVT != InVT)
8633      return SDValue();
8634    NumDefs++;
8635  }
8636
8637  // If the vector has just one element defined, it's not worth to fold it into
8638  // a vectorized one.
8639  if (NumDefs < 2)
8640    return SDValue();
8641
8642  assert((Opcode == ISD::UINT_TO_FP || Opcode == ISD::SINT_TO_FP)
8643         && "Should only handle conversion from integer to float.");
8644  assert(SrcVT != MVT::Other && "Cannot determine source type!");
8645
8646  EVT NVT = EVT::getVectorVT(*DAG.getContext(), SrcVT, NumInScalars);
8647  SmallVector<SDValue, 8> Opnds;
8648  for (unsigned i = 0; i != NumInScalars; ++i) {
8649    SDValue In = N->getOperand(i);
8650
8651    if (In.getOpcode() == ISD::UNDEF)
8652      Opnds.push_back(DAG.getUNDEF(SrcVT));
8653    else
8654      Opnds.push_back(In.getOperand(0));
8655  }
8656  SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, NVT,
8657                           &Opnds[0], Opnds.size());
8658  AddToWorkList(BV.getNode());
8659
8660  return DAG.getNode(Opcode, dl, VT, BV);
8661}
8662
8663SDValue DAGCombiner::visitBUILD_VECTOR(SDNode *N) {
8664  unsigned NumInScalars = N->getNumOperands();
8665  DebugLoc dl = N->getDebugLoc();
8666  EVT VT = N->getValueType(0);
8667
8668  // A vector built entirely of undefs is undef.
8669  if (ISD::allOperandsUndef(N))
8670    return DAG.getUNDEF(VT);
8671
8672  SDValue V = reduceBuildVecExtToExtBuildVec(N);
8673  if (V.getNode())
8674    return V;
8675
8676  V = reduceBuildVecConvertToConvertBuildVec(N);
8677  if (V.getNode())
8678    return V;
8679
8680  // Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT
8681  // operations.  If so, and if the EXTRACT_VECTOR_ELT vector inputs come from
8682  // at most two distinct vectors, turn this into a shuffle node.
8683
8684  // May only combine to shuffle after legalize if shuffle is legal.
8685  if (LegalOperations &&
8686      !TLI.isOperationLegalOrCustom(ISD::VECTOR_SHUFFLE, VT))
8687    return SDValue();
8688
8689  SDValue VecIn1, VecIn2;
8690  for (unsigned i = 0; i != NumInScalars; ++i) {
8691    // Ignore undef inputs.
8692    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
8693
8694    // If this input is something other than a EXTRACT_VECTOR_ELT with a
8695    // constant index, bail out.
8696    if (N->getOperand(i).getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
8697        !isa<ConstantSDNode>(N->getOperand(i).getOperand(1))) {
8698      VecIn1 = VecIn2 = SDValue(0, 0);
8699      break;
8700    }
8701
8702    // We allow up to two distinct input vectors.
8703    SDValue ExtractedFromVec = N->getOperand(i).getOperand(0);
8704    if (ExtractedFromVec == VecIn1 || ExtractedFromVec == VecIn2)
8705      continue;
8706
8707    if (VecIn1.getNode() == 0) {
8708      VecIn1 = ExtractedFromVec;
8709    } else if (VecIn2.getNode() == 0) {
8710      VecIn2 = ExtractedFromVec;
8711    } else {
8712      // Too many inputs.
8713      VecIn1 = VecIn2 = SDValue(0, 0);
8714      break;
8715    }
8716  }
8717
8718    // If everything is good, we can make a shuffle operation.
8719  if (VecIn1.getNode()) {
8720    SmallVector<int, 8> Mask;
8721    for (unsigned i = 0; i != NumInScalars; ++i) {
8722      if (N->getOperand(i).getOpcode() == ISD::UNDEF) {
8723        Mask.push_back(-1);
8724        continue;
8725      }
8726
8727      // If extracting from the first vector, just use the index directly.
8728      SDValue Extract = N->getOperand(i);
8729      SDValue ExtVal = Extract.getOperand(1);
8730      if (Extract.getOperand(0) == VecIn1) {
8731        unsigned ExtIndex = cast<ConstantSDNode>(ExtVal)->getZExtValue();
8732        if (ExtIndex > VT.getVectorNumElements())
8733          return SDValue();
8734
8735        Mask.push_back(ExtIndex);
8736        continue;
8737      }
8738
8739      // Otherwise, use InIdx + VecSize
8740      unsigned Idx = cast<ConstantSDNode>(ExtVal)->getZExtValue();
8741      Mask.push_back(Idx+NumInScalars);
8742    }
8743
8744    // We can't generate a shuffle node with mismatched input and output types.
8745    // Attempt to transform a single input vector to the correct type.
8746    if ((VT != VecIn1.getValueType())) {
8747      // We don't support shuffeling between TWO values of different types.
8748      if (VecIn2.getNode() != 0)
8749        return SDValue();
8750
8751      // We only support widening of vectors which are half the size of the
8752      // output registers. For example XMM->YMM widening on X86 with AVX.
8753      if (VecIn1.getValueType().getSizeInBits()*2 != VT.getSizeInBits())
8754        return SDValue();
8755
8756      // If the input vector type has a different base type to the output
8757      // vector type, bail out.
8758      if (VecIn1.getValueType().getVectorElementType() !=
8759          VT.getVectorElementType())
8760        return SDValue();
8761
8762      // Widen the input vector by adding undef values.
8763      VecIn1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
8764                           VecIn1, DAG.getUNDEF(VecIn1.getValueType()));
8765    }
8766
8767    // If VecIn2 is unused then change it to undef.
8768    VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(VT);
8769
8770    // Check that we were able to transform all incoming values to the same
8771    // type.
8772    if (VecIn2.getValueType() != VecIn1.getValueType() ||
8773        VecIn1.getValueType() != VT)
8774          return SDValue();
8775
8776    // Only type-legal BUILD_VECTOR nodes are converted to shuffle nodes.
8777    if (!isTypeLegal(VT))
8778      return SDValue();
8779
8780    // Return the new VECTOR_SHUFFLE node.
8781    SDValue Ops[2];
8782    Ops[0] = VecIn1;
8783    Ops[1] = VecIn2;
8784    return DAG.getVectorShuffle(VT, dl, Ops[0], Ops[1], &Mask[0]);
8785  }
8786
8787  return SDValue();
8788}
8789
8790SDValue DAGCombiner::visitCONCAT_VECTORS(SDNode *N) {
8791  // TODO: Check to see if this is a CONCAT_VECTORS of a bunch of
8792  // EXTRACT_SUBVECTOR operations.  If so, and if the EXTRACT_SUBVECTOR vector
8793  // inputs come from at most two distinct vectors, turn this into a shuffle
8794  // node.
8795
8796  // If we only have one input vector, we don't need to do any concatenation.
8797  if (N->getNumOperands() == 1)
8798    return N->getOperand(0);
8799
8800  // Check if all of the operands are undefs.
8801  if (ISD::allOperandsUndef(N))
8802    return DAG.getUNDEF(N->getValueType(0));
8803
8804  return SDValue();
8805}
8806
8807SDValue DAGCombiner::visitEXTRACT_SUBVECTOR(SDNode* N) {
8808  EVT NVT = N->getValueType(0);
8809  SDValue V = N->getOperand(0);
8810
8811  if (V->getOpcode() == ISD::INSERT_SUBVECTOR) {
8812    // Handle only simple case where vector being inserted and vector
8813    // being extracted are of same type, and are half size of larger vectors.
8814    EVT BigVT = V->getOperand(0).getValueType();
8815    EVT SmallVT = V->getOperand(1).getValueType();
8816    if (NVT != SmallVT || NVT.getSizeInBits()*2 != BigVT.getSizeInBits())
8817      return SDValue();
8818
8819    // Only handle cases where both indexes are constants with the same type.
8820    ConstantSDNode *ExtIdx = dyn_cast<ConstantSDNode>(N->getOperand(1));
8821    ConstantSDNode *InsIdx = dyn_cast<ConstantSDNode>(V->getOperand(2));
8822
8823    if (InsIdx && ExtIdx &&
8824        InsIdx->getValueType(0).getSizeInBits() <= 64 &&
8825        ExtIdx->getValueType(0).getSizeInBits() <= 64) {
8826      // Combine:
8827      //    (extract_subvec (insert_subvec V1, V2, InsIdx), ExtIdx)
8828      // Into:
8829      //    indices are equal => V1
8830      //    otherwise => (extract_subvec V1, ExtIdx)
8831      if (InsIdx->getZExtValue() == ExtIdx->getZExtValue())
8832        return V->getOperand(1);
8833      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, N->getDebugLoc(), NVT,
8834                         V->getOperand(0), N->getOperand(1));
8835    }
8836  }
8837
8838  if (V->getOpcode() == ISD::CONCAT_VECTORS) {
8839    // Combine:
8840    //    (extract_subvec (concat V1, V2, ...), i)
8841    // Into:
8842    //    Vi if possible
8843    // Only operand 0 is checked as 'concat' assumes all inputs of the same type.
8844    if (V->getOperand(0).getValueType() != NVT)
8845      return SDValue();
8846    unsigned Idx = dyn_cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
8847    unsigned NumElems = NVT.getVectorNumElements();
8848    assert((Idx % NumElems) == 0 &&
8849           "IDX in concat is not a multiple of the result vector length.");
8850    return V->getOperand(Idx / NumElems);
8851  }
8852
8853  return SDValue();
8854}
8855
8856SDValue DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) {
8857  EVT VT = N->getValueType(0);
8858  unsigned NumElts = VT.getVectorNumElements();
8859
8860  SDValue N0 = N->getOperand(0);
8861  SDValue N1 = N->getOperand(1);
8862
8863  assert(N0.getValueType() == VT && "Vector shuffle must be normalized in DAG");
8864
8865  // Canonicalize shuffle undef, undef -> undef
8866  if (N0.getOpcode() == ISD::UNDEF && N1.getOpcode() == ISD::UNDEF)
8867    return DAG.getUNDEF(VT);
8868
8869  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
8870
8871  // Canonicalize shuffle v, v -> v, undef
8872  if (N0 == N1) {
8873    SmallVector<int, 8> NewMask;
8874    for (unsigned i = 0; i != NumElts; ++i) {
8875      int Idx = SVN->getMaskElt(i);
8876      if (Idx >= (int)NumElts) Idx -= NumElts;
8877      NewMask.push_back(Idx);
8878    }
8879    return DAG.getVectorShuffle(VT, N->getDebugLoc(), N0, DAG.getUNDEF(VT),
8880                                &NewMask[0]);
8881  }
8882
8883  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
8884  if (N0.getOpcode() == ISD::UNDEF) {
8885    SmallVector<int, 8> NewMask;
8886    for (unsigned i = 0; i != NumElts; ++i) {
8887      int Idx = SVN->getMaskElt(i);
8888      if (Idx >= 0) {
8889        if (Idx < (int)NumElts)
8890          Idx += NumElts;
8891        else
8892          Idx -= NumElts;
8893      }
8894      NewMask.push_back(Idx);
8895    }
8896    return DAG.getVectorShuffle(VT, N->getDebugLoc(), N1, DAG.getUNDEF(VT),
8897                                &NewMask[0]);
8898  }
8899
8900  // Remove references to rhs if it is undef
8901  if (N1.getOpcode() == ISD::UNDEF) {
8902    bool Changed = false;
8903    SmallVector<int, 8> NewMask;
8904    for (unsigned i = 0; i != NumElts; ++i) {
8905      int Idx = SVN->getMaskElt(i);
8906      if (Idx >= (int)NumElts) {
8907        Idx = -1;
8908        Changed = true;
8909      }
8910      NewMask.push_back(Idx);
8911    }
8912    if (Changed)
8913      return DAG.getVectorShuffle(VT, N->getDebugLoc(), N0, N1, &NewMask[0]);
8914  }
8915
8916  // If it is a splat, check if the argument vector is another splat or a
8917  // build_vector with all scalar elements the same.
8918  if (SVN->isSplat() && SVN->getSplatIndex() < (int)NumElts) {
8919    SDNode *V = N0.getNode();
8920
8921    // If this is a bit convert that changes the element type of the vector but
8922    // not the number of vector elements, look through it.  Be careful not to
8923    // look though conversions that change things like v4f32 to v2f64.
8924    if (V->getOpcode() == ISD::BITCAST) {
8925      SDValue ConvInput = V->getOperand(0);
8926      if (ConvInput.getValueType().isVector() &&
8927          ConvInput.getValueType().getVectorNumElements() == NumElts)
8928        V = ConvInput.getNode();
8929    }
8930
8931    if (V->getOpcode() == ISD::BUILD_VECTOR) {
8932      assert(V->getNumOperands() == NumElts &&
8933             "BUILD_VECTOR has wrong number of operands");
8934      SDValue Base;
8935      bool AllSame = true;
8936      for (unsigned i = 0; i != NumElts; ++i) {
8937        if (V->getOperand(i).getOpcode() != ISD::UNDEF) {
8938          Base = V->getOperand(i);
8939          break;
8940        }
8941      }
8942      // Splat of <u, u, u, u>, return <u, u, u, u>
8943      if (!Base.getNode())
8944        return N0;
8945      for (unsigned i = 0; i != NumElts; ++i) {
8946        if (V->getOperand(i) != Base) {
8947          AllSame = false;
8948          break;
8949        }
8950      }
8951      // Splat of <x, x, x, x>, return <x, x, x, x>
8952      if (AllSame)
8953        return N0;
8954    }
8955  }
8956
8957  // If this shuffle node is simply a swizzle of another shuffle node,
8958  // and it reverses the swizzle of the previous shuffle then we can
8959  // optimize shuffle(shuffle(x, undef), undef) -> x.
8960  if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG &&
8961      N1.getOpcode() == ISD::UNDEF) {
8962
8963    ShuffleVectorSDNode *OtherSV = cast<ShuffleVectorSDNode>(N0);
8964
8965    // Shuffle nodes can only reverse shuffles with a single non-undef value.
8966    if (N0.getOperand(1).getOpcode() != ISD::UNDEF)
8967      return SDValue();
8968
8969    // The incoming shuffle must be of the same type as the result of the
8970    // current shuffle.
8971    assert(OtherSV->getOperand(0).getValueType() == VT &&
8972           "Shuffle types don't match");
8973
8974    for (unsigned i = 0; i != NumElts; ++i) {
8975      int Idx = SVN->getMaskElt(i);
8976      assert(Idx < (int)NumElts && "Index references undef operand");
8977      // Next, this index comes from the first value, which is the incoming
8978      // shuffle. Adopt the incoming index.
8979      if (Idx >= 0)
8980        Idx = OtherSV->getMaskElt(Idx);
8981
8982      // The combined shuffle must map each index to itself.
8983      if (Idx >= 0 && (unsigned)Idx != i)
8984        return SDValue();
8985    }
8986
8987    return OtherSV->getOperand(0);
8988  }
8989
8990  return SDValue();
8991}
8992
8993SDValue DAGCombiner::visitMEMBARRIER(SDNode* N) {
8994  if (!TLI.getShouldFoldAtomicFences())
8995    return SDValue();
8996
8997  SDValue atomic = N->getOperand(0);
8998  switch (atomic.getOpcode()) {
8999    case ISD::ATOMIC_CMP_SWAP:
9000    case ISD::ATOMIC_SWAP:
9001    case ISD::ATOMIC_LOAD_ADD:
9002    case ISD::ATOMIC_LOAD_SUB:
9003    case ISD::ATOMIC_LOAD_AND:
9004    case ISD::ATOMIC_LOAD_OR:
9005    case ISD::ATOMIC_LOAD_XOR:
9006    case ISD::ATOMIC_LOAD_NAND:
9007    case ISD::ATOMIC_LOAD_MIN:
9008    case ISD::ATOMIC_LOAD_MAX:
9009    case ISD::ATOMIC_LOAD_UMIN:
9010    case ISD::ATOMIC_LOAD_UMAX:
9011      break;
9012    default:
9013      return SDValue();
9014  }
9015
9016  SDValue fence = atomic.getOperand(0);
9017  if (fence.getOpcode() != ISD::MEMBARRIER)
9018    return SDValue();
9019
9020  switch (atomic.getOpcode()) {
9021    case ISD::ATOMIC_CMP_SWAP:
9022      return SDValue(DAG.UpdateNodeOperands(atomic.getNode(),
9023                                    fence.getOperand(0),
9024                                    atomic.getOperand(1), atomic.getOperand(2),
9025                                    atomic.getOperand(3)), atomic.getResNo());
9026    case ISD::ATOMIC_SWAP:
9027    case ISD::ATOMIC_LOAD_ADD:
9028    case ISD::ATOMIC_LOAD_SUB:
9029    case ISD::ATOMIC_LOAD_AND:
9030    case ISD::ATOMIC_LOAD_OR:
9031    case ISD::ATOMIC_LOAD_XOR:
9032    case ISD::ATOMIC_LOAD_NAND:
9033    case ISD::ATOMIC_LOAD_MIN:
9034    case ISD::ATOMIC_LOAD_MAX:
9035    case ISD::ATOMIC_LOAD_UMIN:
9036    case ISD::ATOMIC_LOAD_UMAX:
9037      return SDValue(DAG.UpdateNodeOperands(atomic.getNode(),
9038                                    fence.getOperand(0),
9039                                    atomic.getOperand(1), atomic.getOperand(2)),
9040                     atomic.getResNo());
9041    default:
9042      return SDValue();
9043  }
9044}
9045
9046/// XformToShuffleWithZero - Returns a vector_shuffle if it able to transform
9047/// an AND to a vector_shuffle with the destination vector and a zero vector.
9048/// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==>
9049///      vector_shuffle V, Zero, <0, 4, 2, 4>
9050SDValue DAGCombiner::XformToShuffleWithZero(SDNode *N) {
9051  EVT VT = N->getValueType(0);
9052  DebugLoc dl = N->getDebugLoc();
9053  SDValue LHS = N->getOperand(0);
9054  SDValue RHS = N->getOperand(1);
9055  if (N->getOpcode() == ISD::AND) {
9056    if (RHS.getOpcode() == ISD::BITCAST)
9057      RHS = RHS.getOperand(0);
9058    if (RHS.getOpcode() == ISD::BUILD_VECTOR) {
9059      SmallVector<int, 8> Indices;
9060      unsigned NumElts = RHS.getNumOperands();
9061      for (unsigned i = 0; i != NumElts; ++i) {
9062        SDValue Elt = RHS.getOperand(i);
9063        if (!isa<ConstantSDNode>(Elt))
9064          return SDValue();
9065
9066        if (cast<ConstantSDNode>(Elt)->isAllOnesValue())
9067          Indices.push_back(i);
9068        else if (cast<ConstantSDNode>(Elt)->isNullValue())
9069          Indices.push_back(NumElts);
9070        else
9071          return SDValue();
9072      }
9073
9074      // Let's see if the target supports this vector_shuffle.
9075      EVT RVT = RHS.getValueType();
9076      if (!TLI.isVectorClearMaskLegal(Indices, RVT))
9077        return SDValue();
9078
9079      // Return the new VECTOR_SHUFFLE node.
9080      EVT EltVT = RVT.getVectorElementType();
9081      SmallVector<SDValue,8> ZeroOps(RVT.getVectorNumElements(),
9082                                     DAG.getConstant(0, EltVT));
9083      SDValue Zero = DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(),
9084                                 RVT, &ZeroOps[0], ZeroOps.size());
9085      LHS = DAG.getNode(ISD::BITCAST, dl, RVT, LHS);
9086      SDValue Shuf = DAG.getVectorShuffle(RVT, dl, LHS, Zero, &Indices[0]);
9087      return DAG.getNode(ISD::BITCAST, dl, VT, Shuf);
9088    }
9089  }
9090
9091  return SDValue();
9092}
9093
9094/// SimplifyVBinOp - Visit a binary vector operation, like ADD.
9095SDValue DAGCombiner::SimplifyVBinOp(SDNode *N) {
9096  // After legalize, the target may be depending on adds and other
9097  // binary ops to provide legal ways to construct constants or other
9098  // things. Simplifying them may result in a loss of legality.
9099  if (LegalOperations) return SDValue();
9100
9101  assert(N->getValueType(0).isVector() &&
9102         "SimplifyVBinOp only works on vectors!");
9103
9104  SDValue LHS = N->getOperand(0);
9105  SDValue RHS = N->getOperand(1);
9106  SDValue Shuffle = XformToShuffleWithZero(N);
9107  if (Shuffle.getNode()) return Shuffle;
9108
9109  // If the LHS and RHS are BUILD_VECTOR nodes, see if we can constant fold
9110  // this operation.
9111  if (LHS.getOpcode() == ISD::BUILD_VECTOR &&
9112      RHS.getOpcode() == ISD::BUILD_VECTOR) {
9113    SmallVector<SDValue, 8> Ops;
9114    for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
9115      SDValue LHSOp = LHS.getOperand(i);
9116      SDValue RHSOp = RHS.getOperand(i);
9117      // If these two elements can't be folded, bail out.
9118      if ((LHSOp.getOpcode() != ISD::UNDEF &&
9119           LHSOp.getOpcode() != ISD::Constant &&
9120           LHSOp.getOpcode() != ISD::ConstantFP) ||
9121          (RHSOp.getOpcode() != ISD::UNDEF &&
9122           RHSOp.getOpcode() != ISD::Constant &&
9123           RHSOp.getOpcode() != ISD::ConstantFP))
9124        break;
9125
9126      // Can't fold divide by zero.
9127      if (N->getOpcode() == ISD::SDIV || N->getOpcode() == ISD::UDIV ||
9128          N->getOpcode() == ISD::FDIV) {
9129        if ((RHSOp.getOpcode() == ISD::Constant &&
9130             cast<ConstantSDNode>(RHSOp.getNode())->isNullValue()) ||
9131            (RHSOp.getOpcode() == ISD::ConstantFP &&
9132             cast<ConstantFPSDNode>(RHSOp.getNode())->getValueAPF().isZero()))
9133          break;
9134      }
9135
9136      EVT VT = LHSOp.getValueType();
9137      EVT RVT = RHSOp.getValueType();
9138      if (RVT != VT) {
9139        // Integer BUILD_VECTOR operands may have types larger than the element
9140        // size (e.g., when the element type is not legal).  Prior to type
9141        // legalization, the types may not match between the two BUILD_VECTORS.
9142        // Truncate one of the operands to make them match.
9143        if (RVT.getSizeInBits() > VT.getSizeInBits()) {
9144          RHSOp = DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, RHSOp);
9145        } else {
9146          LHSOp = DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), RVT, LHSOp);
9147          VT = RVT;
9148        }
9149      }
9150      SDValue FoldOp = DAG.getNode(N->getOpcode(), LHS.getDebugLoc(), VT,
9151                                   LHSOp, RHSOp);
9152      if (FoldOp.getOpcode() != ISD::UNDEF &&
9153          FoldOp.getOpcode() != ISD::Constant &&
9154          FoldOp.getOpcode() != ISD::ConstantFP)
9155        break;
9156      Ops.push_back(FoldOp);
9157      AddToWorkList(FoldOp.getNode());
9158    }
9159
9160    if (Ops.size() == LHS.getNumOperands())
9161      return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(),
9162                         LHS.getValueType(), &Ops[0], Ops.size());
9163  }
9164
9165  return SDValue();
9166}
9167
9168/// SimplifyVUnaryOp - Visit a binary vector operation, like FABS/FNEG.
9169SDValue DAGCombiner::SimplifyVUnaryOp(SDNode *N) {
9170  // After legalize, the target may be depending on adds and other
9171  // binary ops to provide legal ways to construct constants or other
9172  // things. Simplifying them may result in a loss of legality.
9173  if (LegalOperations) return SDValue();
9174
9175  assert(N->getValueType(0).isVector() &&
9176         "SimplifyVUnaryOp only works on vectors!");
9177
9178  SDValue N0 = N->getOperand(0);
9179
9180  if (N0.getOpcode() != ISD::BUILD_VECTOR)
9181    return SDValue();
9182
9183  // Operand is a BUILD_VECTOR node, see if we can constant fold it.
9184  SmallVector<SDValue, 8> Ops;
9185  for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i) {
9186    SDValue Op = N0.getOperand(i);
9187    if (Op.getOpcode() != ISD::UNDEF &&
9188        Op.getOpcode() != ISD::ConstantFP)
9189      break;
9190    EVT EltVT = Op.getValueType();
9191    SDValue FoldOp = DAG.getNode(N->getOpcode(), N0.getDebugLoc(), EltVT, Op);
9192    if (FoldOp.getOpcode() != ISD::UNDEF &&
9193        FoldOp.getOpcode() != ISD::ConstantFP)
9194      break;
9195    Ops.push_back(FoldOp);
9196    AddToWorkList(FoldOp.getNode());
9197  }
9198
9199  if (Ops.size() != N0.getNumOperands())
9200    return SDValue();
9201
9202  return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(),
9203                     N0.getValueType(), &Ops[0], Ops.size());
9204}
9205
9206SDValue DAGCombiner::SimplifySelect(DebugLoc DL, SDValue N0,
9207                                    SDValue N1, SDValue N2){
9208  assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!");
9209
9210  SDValue SCC = SimplifySelectCC(DL, N0.getOperand(0), N0.getOperand(1), N1, N2,
9211                                 cast<CondCodeSDNode>(N0.getOperand(2))->get());
9212
9213  // If we got a simplified select_cc node back from SimplifySelectCC, then
9214  // break it down into a new SETCC node, and a new SELECT node, and then return
9215  // the SELECT node, since we were called with a SELECT node.
9216  if (SCC.getNode()) {
9217    // Check to see if we got a select_cc back (to turn into setcc/select).
9218    // Otherwise, just return whatever node we got back, like fabs.
9219    if (SCC.getOpcode() == ISD::SELECT_CC) {
9220      SDValue SETCC = DAG.getNode(ISD::SETCC, N0.getDebugLoc(),
9221                                  N0.getValueType(),
9222                                  SCC.getOperand(0), SCC.getOperand(1),
9223                                  SCC.getOperand(4));
9224      AddToWorkList(SETCC.getNode());
9225      return DAG.getNode(ISD::SELECT, SCC.getDebugLoc(), SCC.getValueType(),
9226                         SCC.getOperand(2), SCC.getOperand(3), SETCC);
9227    }
9228
9229    return SCC;
9230  }
9231  return SDValue();
9232}
9233
9234/// SimplifySelectOps - Given a SELECT or a SELECT_CC node, where LHS and RHS
9235/// are the two values being selected between, see if we can simplify the
9236/// select.  Callers of this should assume that TheSelect is deleted if this
9237/// returns true.  As such, they should return the appropriate thing (e.g. the
9238/// node) back to the top-level of the DAG combiner loop to avoid it being
9239/// looked at.
9240bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDValue LHS,
9241                                    SDValue RHS) {
9242
9243  // Cannot simplify select with vector condition
9244  if (TheSelect->getOperand(0).getValueType().isVector()) return false;
9245
9246  // If this is a select from two identical things, try to pull the operation
9247  // through the select.
9248  if (LHS.getOpcode() != RHS.getOpcode() ||
9249      !LHS.hasOneUse() || !RHS.hasOneUse())
9250    return false;
9251
9252  // If this is a load and the token chain is identical, replace the select
9253  // of two loads with a load through a select of the address to load from.
9254  // This triggers in things like "select bool X, 10.0, 123.0" after the FP
9255  // constants have been dropped into the constant pool.
9256  if (LHS.getOpcode() == ISD::LOAD) {
9257    LoadSDNode *LLD = cast<LoadSDNode>(LHS);
9258    LoadSDNode *RLD = cast<LoadSDNode>(RHS);
9259
9260    // Token chains must be identical.
9261    if (LHS.getOperand(0) != RHS.getOperand(0) ||
9262        // Do not let this transformation reduce the number of volatile loads.
9263        LLD->isVolatile() || RLD->isVolatile() ||
9264        // If this is an EXTLOAD, the VT's must match.
9265        LLD->getMemoryVT() != RLD->getMemoryVT() ||
9266        // If this is an EXTLOAD, the kind of extension must match.
9267        (LLD->getExtensionType() != RLD->getExtensionType() &&
9268         // The only exception is if one of the extensions is anyext.
9269         LLD->getExtensionType() != ISD::EXTLOAD &&
9270         RLD->getExtensionType() != ISD::EXTLOAD) ||
9271        // FIXME: this discards src value information.  This is
9272        // over-conservative. It would be beneficial to be able to remember
9273        // both potential memory locations.  Since we are discarding
9274        // src value info, don't do the transformation if the memory
9275        // locations are not in the default address space.
9276        LLD->getPointerInfo().getAddrSpace() != 0 ||
9277        RLD->getPointerInfo().getAddrSpace() != 0)
9278      return false;
9279
9280    // Check that the select condition doesn't reach either load.  If so,
9281    // folding this will induce a cycle into the DAG.  If not, this is safe to
9282    // xform, so create a select of the addresses.
9283    SDValue Addr;
9284    if (TheSelect->getOpcode() == ISD::SELECT) {
9285      SDNode *CondNode = TheSelect->getOperand(0).getNode();
9286      if ((LLD->hasAnyUseOfValue(1) && LLD->isPredecessorOf(CondNode)) ||
9287          (RLD->hasAnyUseOfValue(1) && RLD->isPredecessorOf(CondNode)))
9288        return false;
9289      // The loads must not depend on one another.
9290      if (LLD->isPredecessorOf(RLD) ||
9291          RLD->isPredecessorOf(LLD))
9292        return false;
9293      Addr = DAG.getNode(ISD::SELECT, TheSelect->getDebugLoc(),
9294                         LLD->getBasePtr().getValueType(),
9295                         TheSelect->getOperand(0), LLD->getBasePtr(),
9296                         RLD->getBasePtr());
9297    } else {  // Otherwise SELECT_CC
9298      SDNode *CondLHS = TheSelect->getOperand(0).getNode();
9299      SDNode *CondRHS = TheSelect->getOperand(1).getNode();
9300
9301      if ((LLD->hasAnyUseOfValue(1) &&
9302           (LLD->isPredecessorOf(CondLHS) || LLD->isPredecessorOf(CondRHS))) ||
9303          (RLD->hasAnyUseOfValue(1) &&
9304           (RLD->isPredecessorOf(CondLHS) || RLD->isPredecessorOf(CondRHS))))
9305        return false;
9306
9307      Addr = DAG.getNode(ISD::SELECT_CC, TheSelect->getDebugLoc(),
9308                         LLD->getBasePtr().getValueType(),
9309                         TheSelect->getOperand(0),
9310                         TheSelect->getOperand(1),
9311                         LLD->getBasePtr(), RLD->getBasePtr(),
9312                         TheSelect->getOperand(4));
9313    }
9314
9315    SDValue Load;
9316    if (LLD->getExtensionType() == ISD::NON_EXTLOAD) {
9317      Load = DAG.getLoad(TheSelect->getValueType(0),
9318                         TheSelect->getDebugLoc(),
9319                         // FIXME: Discards pointer info.
9320                         LLD->getChain(), Addr, MachinePointerInfo(),
9321                         LLD->isVolatile(), LLD->isNonTemporal(),
9322                         LLD->isInvariant(), LLD->getAlignment());
9323    } else {
9324      Load = DAG.getExtLoad(LLD->getExtensionType() == ISD::EXTLOAD ?
9325                            RLD->getExtensionType() : LLD->getExtensionType(),
9326                            TheSelect->getDebugLoc(),
9327                            TheSelect->getValueType(0),
9328                            // FIXME: Discards pointer info.
9329                            LLD->getChain(), Addr, MachinePointerInfo(),
9330                            LLD->getMemoryVT(), LLD->isVolatile(),
9331                            LLD->isNonTemporal(), LLD->getAlignment());
9332    }
9333
9334    // Users of the select now use the result of the load.
9335    CombineTo(TheSelect, Load);
9336
9337    // Users of the old loads now use the new load's chain.  We know the
9338    // old-load value is dead now.
9339    CombineTo(LHS.getNode(), Load.getValue(0), Load.getValue(1));
9340    CombineTo(RHS.getNode(), Load.getValue(0), Load.getValue(1));
9341    return true;
9342  }
9343
9344  return false;
9345}
9346
9347/// SimplifySelectCC - Simplify an expression of the form (N0 cond N1) ? N2 : N3
9348/// where 'cond' is the comparison specified by CC.
9349SDValue DAGCombiner::SimplifySelectCC(DebugLoc DL, SDValue N0, SDValue N1,
9350                                      SDValue N2, SDValue N3,
9351                                      ISD::CondCode CC, bool NotExtCompare) {
9352  // (x ? y : y) -> y.
9353  if (N2 == N3) return N2;
9354
9355  EVT VT = N2.getValueType();
9356  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
9357  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
9358  ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.getNode());
9359
9360  // Determine if the condition we're dealing with is constant
9361  SDValue SCC = SimplifySetCC(TLI.getSetCCResultType(N0.getValueType()),
9362                              N0, N1, CC, DL, false);
9363  if (SCC.getNode()) AddToWorkList(SCC.getNode());
9364  ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.getNode());
9365
9366  // fold select_cc true, x, y -> x
9367  if (SCCC && !SCCC->isNullValue())
9368    return N2;
9369  // fold select_cc false, x, y -> y
9370  if (SCCC && SCCC->isNullValue())
9371    return N3;
9372
9373  // Check to see if we can simplify the select into an fabs node
9374  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1)) {
9375    // Allow either -0.0 or 0.0
9376    if (CFP->getValueAPF().isZero()) {
9377      // select (setg[te] X, +/-0.0), X, fneg(X) -> fabs
9378      if ((CC == ISD::SETGE || CC == ISD::SETGT) &&
9379          N0 == N2 && N3.getOpcode() == ISD::FNEG &&
9380          N2 == N3.getOperand(0))
9381        return DAG.getNode(ISD::FABS, DL, VT, N0);
9382
9383      // select (setl[te] X, +/-0.0), fneg(X), X -> fabs
9384      if ((CC == ISD::SETLT || CC == ISD::SETLE) &&
9385          N0 == N3 && N2.getOpcode() == ISD::FNEG &&
9386          N2.getOperand(0) == N3)
9387        return DAG.getNode(ISD::FABS, DL, VT, N3);
9388    }
9389  }
9390
9391  // Turn "(a cond b) ? 1.0f : 2.0f" into "load (tmp + ((a cond b) ? 0 : 4)"
9392  // where "tmp" is a constant pool entry containing an array with 1.0 and 2.0
9393  // in it.  This is a win when the constant is not otherwise available because
9394  // it replaces two constant pool loads with one.  We only do this if the FP
9395  // type is known to be legal, because if it isn't, then we are before legalize
9396  // types an we want the other legalization to happen first (e.g. to avoid
9397  // messing with soft float) and if the ConstantFP is not legal, because if
9398  // it is legal, we may not need to store the FP constant in a constant pool.
9399  if (ConstantFPSDNode *TV = dyn_cast<ConstantFPSDNode>(N2))
9400    if (ConstantFPSDNode *FV = dyn_cast<ConstantFPSDNode>(N3)) {
9401      if (TLI.isTypeLegal(N2.getValueType()) &&
9402          (TLI.getOperationAction(ISD::ConstantFP, N2.getValueType()) !=
9403           TargetLowering::Legal) &&
9404          // If both constants have multiple uses, then we won't need to do an
9405          // extra load, they are likely around in registers for other users.
9406          (TV->hasOneUse() || FV->hasOneUse())) {
9407        Constant *Elts[] = {
9408          const_cast<ConstantFP*>(FV->getConstantFPValue()),
9409          const_cast<ConstantFP*>(TV->getConstantFPValue())
9410        };
9411        Type *FPTy = Elts[0]->getType();
9412        const DataLayout &TD = *TLI.getDataLayout();
9413
9414        // Create a ConstantArray of the two constants.
9415        Constant *CA = ConstantArray::get(ArrayType::get(FPTy, 2), Elts);
9416        SDValue CPIdx = DAG.getConstantPool(CA, TLI.getPointerTy(),
9417                                            TD.getPrefTypeAlignment(FPTy));
9418        unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
9419
9420        // Get the offsets to the 0 and 1 element of the array so that we can
9421        // select between them.
9422        SDValue Zero = DAG.getIntPtrConstant(0);
9423        unsigned EltSize = (unsigned)TD.getTypeAllocSize(Elts[0]->getType());
9424        SDValue One = DAG.getIntPtrConstant(EltSize);
9425
9426        SDValue Cond = DAG.getSetCC(DL,
9427                                    TLI.getSetCCResultType(N0.getValueType()),
9428                                    N0, N1, CC);
9429        AddToWorkList(Cond.getNode());
9430        SDValue CstOffset = DAG.getNode(ISD::SELECT, DL, Zero.getValueType(),
9431                                        Cond, One, Zero);
9432        AddToWorkList(CstOffset.getNode());
9433        CPIdx = DAG.getNode(ISD::ADD, DL, TLI.getPointerTy(), CPIdx,
9434                            CstOffset);
9435        AddToWorkList(CPIdx.getNode());
9436        return DAG.getLoad(TV->getValueType(0), DL, DAG.getEntryNode(), CPIdx,
9437                           MachinePointerInfo::getConstantPool(), false,
9438                           false, false, Alignment);
9439
9440      }
9441    }
9442
9443  // Check to see if we can perform the "gzip trick", transforming
9444  // (select_cc setlt X, 0, A, 0) -> (and (sra X, (sub size(X), 1), A)
9445  if (N1C && N3C && N3C->isNullValue() && CC == ISD::SETLT &&
9446      (N1C->isNullValue() ||                         // (a < 0) ? b : 0
9447       (N1C->getAPIntValue() == 1 && N0 == N2))) {   // (a < 1) ? a : 0
9448    EVT XType = N0.getValueType();
9449    EVT AType = N2.getValueType();
9450    if (XType.bitsGE(AType)) {
9451      // and (sra X, size(X)-1, A) -> "and (srl X, C2), A" iff A is a
9452      // single-bit constant.
9453      if (N2C && ((N2C->getAPIntValue() & (N2C->getAPIntValue()-1)) == 0)) {
9454        unsigned ShCtV = N2C->getAPIntValue().logBase2();
9455        ShCtV = XType.getSizeInBits()-ShCtV-1;
9456        SDValue ShCt = DAG.getConstant(ShCtV,
9457                                       getShiftAmountTy(N0.getValueType()));
9458        SDValue Shift = DAG.getNode(ISD::SRL, N0.getDebugLoc(),
9459                                    XType, N0, ShCt);
9460        AddToWorkList(Shift.getNode());
9461
9462        if (XType.bitsGT(AType)) {
9463          Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift);
9464          AddToWorkList(Shift.getNode());
9465        }
9466
9467        return DAG.getNode(ISD::AND, DL, AType, Shift, N2);
9468      }
9469
9470      SDValue Shift = DAG.getNode(ISD::SRA, N0.getDebugLoc(),
9471                                  XType, N0,
9472                                  DAG.getConstant(XType.getSizeInBits()-1,
9473                                         getShiftAmountTy(N0.getValueType())));
9474      AddToWorkList(Shift.getNode());
9475
9476      if (XType.bitsGT(AType)) {
9477        Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift);
9478        AddToWorkList(Shift.getNode());
9479      }
9480
9481      return DAG.getNode(ISD::AND, DL, AType, Shift, N2);
9482    }
9483  }
9484
9485  // fold (select_cc seteq (and x, y), 0, 0, A) -> (and (shr (shl x)) A)
9486  // where y is has a single bit set.
9487  // A plaintext description would be, we can turn the SELECT_CC into an AND
9488  // when the condition can be materialized as an all-ones register.  Any
9489  // single bit-test can be materialized as an all-ones register with
9490  // shift-left and shift-right-arith.
9491  if (CC == ISD::SETEQ && N0->getOpcode() == ISD::AND &&
9492      N0->getValueType(0) == VT &&
9493      N1C && N1C->isNullValue() &&
9494      N2C && N2C->isNullValue()) {
9495    SDValue AndLHS = N0->getOperand(0);
9496    ConstantSDNode *ConstAndRHS = dyn_cast<ConstantSDNode>(N0->getOperand(1));
9497    if (ConstAndRHS && ConstAndRHS->getAPIntValue().countPopulation() == 1) {
9498      // Shift the tested bit over the sign bit.
9499      APInt AndMask = ConstAndRHS->getAPIntValue();
9500      SDValue ShlAmt =
9501        DAG.getConstant(AndMask.countLeadingZeros(),
9502                        getShiftAmountTy(AndLHS.getValueType()));
9503      SDValue Shl = DAG.getNode(ISD::SHL, N0.getDebugLoc(), VT, AndLHS, ShlAmt);
9504
9505      // Now arithmetic right shift it all the way over, so the result is either
9506      // all-ones, or zero.
9507      SDValue ShrAmt =
9508        DAG.getConstant(AndMask.getBitWidth()-1,
9509                        getShiftAmountTy(Shl.getValueType()));
9510      SDValue Shr = DAG.getNode(ISD::SRA, N0.getDebugLoc(), VT, Shl, ShrAmt);
9511
9512      return DAG.getNode(ISD::AND, DL, VT, Shr, N3);
9513    }
9514  }
9515
9516  // fold select C, 16, 0 -> shl C, 4
9517  if (N2C && N3C && N3C->isNullValue() && N2C->getAPIntValue().isPowerOf2() &&
9518    TLI.getBooleanContents(N0.getValueType().isVector()) ==
9519      TargetLowering::ZeroOrOneBooleanContent) {
9520
9521    // If the caller doesn't want us to simplify this into a zext of a compare,
9522    // don't do it.
9523    if (NotExtCompare && N2C->getAPIntValue() == 1)
9524      return SDValue();
9525
9526    // Get a SetCC of the condition
9527    // NOTE: Don't create a SETCC if it's not legal on this target.
9528    if (!LegalOperations ||
9529        TLI.isOperationLegal(ISD::SETCC,
9530          LegalTypes ? TLI.getSetCCResultType(N0.getValueType()) : MVT::i1)) {
9531      SDValue Temp, SCC;
9532      // cast from setcc result type to select result type
9533      if (LegalTypes) {
9534        SCC  = DAG.getSetCC(DL, TLI.getSetCCResultType(N0.getValueType()),
9535                            N0, N1, CC);
9536        if (N2.getValueType().bitsLT(SCC.getValueType()))
9537          Temp = DAG.getZeroExtendInReg(SCC, N2.getDebugLoc(),
9538                                        N2.getValueType());
9539        else
9540          Temp = DAG.getNode(ISD::ZERO_EXTEND, N2.getDebugLoc(),
9541                             N2.getValueType(), SCC);
9542      } else {
9543        SCC  = DAG.getSetCC(N0.getDebugLoc(), MVT::i1, N0, N1, CC);
9544        Temp = DAG.getNode(ISD::ZERO_EXTEND, N2.getDebugLoc(),
9545                           N2.getValueType(), SCC);
9546      }
9547
9548      AddToWorkList(SCC.getNode());
9549      AddToWorkList(Temp.getNode());
9550
9551      if (N2C->getAPIntValue() == 1)
9552        return Temp;
9553
9554      // shl setcc result by log2 n2c
9555      return DAG.getNode(ISD::SHL, DL, N2.getValueType(), Temp,
9556                         DAG.getConstant(N2C->getAPIntValue().logBase2(),
9557                                         getShiftAmountTy(Temp.getValueType())));
9558    }
9559  }
9560
9561  // Check to see if this is the equivalent of setcc
9562  // FIXME: Turn all of these into setcc if setcc if setcc is legal
9563  // otherwise, go ahead with the folds.
9564  if (0 && N3C && N3C->isNullValue() && N2C && (N2C->getAPIntValue() == 1ULL)) {
9565    EVT XType = N0.getValueType();
9566    if (!LegalOperations ||
9567        TLI.isOperationLegal(ISD::SETCC, TLI.getSetCCResultType(XType))) {
9568      SDValue Res = DAG.getSetCC(DL, TLI.getSetCCResultType(XType), N0, N1, CC);
9569      if (Res.getValueType() != VT)
9570        Res = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Res);
9571      return Res;
9572    }
9573
9574    // fold (seteq X, 0) -> (srl (ctlz X, log2(size(X))))
9575    if (N1C && N1C->isNullValue() && CC == ISD::SETEQ &&
9576        (!LegalOperations ||
9577         TLI.isOperationLegal(ISD::CTLZ, XType))) {
9578      SDValue Ctlz = DAG.getNode(ISD::CTLZ, N0.getDebugLoc(), XType, N0);
9579      return DAG.getNode(ISD::SRL, DL, XType, Ctlz,
9580                         DAG.getConstant(Log2_32(XType.getSizeInBits()),
9581                                       getShiftAmountTy(Ctlz.getValueType())));
9582    }
9583    // fold (setgt X, 0) -> (srl (and (-X, ~X), size(X)-1))
9584    if (N1C && N1C->isNullValue() && CC == ISD::SETGT) {
9585      SDValue NegN0 = DAG.getNode(ISD::SUB, N0.getDebugLoc(),
9586                                  XType, DAG.getConstant(0, XType), N0);
9587      SDValue NotN0 = DAG.getNOT(N0.getDebugLoc(), N0, XType);
9588      return DAG.getNode(ISD::SRL, DL, XType,
9589                         DAG.getNode(ISD::AND, DL, XType, NegN0, NotN0),
9590                         DAG.getConstant(XType.getSizeInBits()-1,
9591                                         getShiftAmountTy(XType)));
9592    }
9593    // fold (setgt X, -1) -> (xor (srl (X, size(X)-1), 1))
9594    if (N1C && N1C->isAllOnesValue() && CC == ISD::SETGT) {
9595      SDValue Sign = DAG.getNode(ISD::SRL, N0.getDebugLoc(), XType, N0,
9596                                 DAG.getConstant(XType.getSizeInBits()-1,
9597                                         getShiftAmountTy(N0.getValueType())));
9598      return DAG.getNode(ISD::XOR, DL, XType, Sign, DAG.getConstant(1, XType));
9599    }
9600  }
9601
9602  // Check to see if this is an integer abs.
9603  // select_cc setg[te] X,  0,  X, -X ->
9604  // select_cc setgt    X, -1,  X, -X ->
9605  // select_cc setl[te] X,  0, -X,  X ->
9606  // select_cc setlt    X,  1, -X,  X ->
9607  // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
9608  if (N1C) {
9609    ConstantSDNode *SubC = NULL;
9610    if (((N1C->isNullValue() && (CC == ISD::SETGT || CC == ISD::SETGE)) ||
9611         (N1C->isAllOnesValue() && CC == ISD::SETGT)) &&
9612        N0 == N2 && N3.getOpcode() == ISD::SUB && N0 == N3.getOperand(1))
9613      SubC = dyn_cast<ConstantSDNode>(N3.getOperand(0));
9614    else if (((N1C->isNullValue() && (CC == ISD::SETLT || CC == ISD::SETLE)) ||
9615              (N1C->isOne() && CC == ISD::SETLT)) &&
9616             N0 == N3 && N2.getOpcode() == ISD::SUB && N0 == N2.getOperand(1))
9617      SubC = dyn_cast<ConstantSDNode>(N2.getOperand(0));
9618
9619    EVT XType = N0.getValueType();
9620    if (SubC && SubC->isNullValue() && XType.isInteger()) {
9621      SDValue Shift = DAG.getNode(ISD::SRA, N0.getDebugLoc(), XType,
9622                                  N0,
9623                                  DAG.getConstant(XType.getSizeInBits()-1,
9624                                         getShiftAmountTy(N0.getValueType())));
9625      SDValue Add = DAG.getNode(ISD::ADD, N0.getDebugLoc(),
9626                                XType, N0, Shift);
9627      AddToWorkList(Shift.getNode());
9628      AddToWorkList(Add.getNode());
9629      return DAG.getNode(ISD::XOR, DL, XType, Add, Shift);
9630    }
9631  }
9632
9633  return SDValue();
9634}
9635
9636/// SimplifySetCC - This is a stub for TargetLowering::SimplifySetCC.
9637SDValue DAGCombiner::SimplifySetCC(EVT VT, SDValue N0,
9638                                   SDValue N1, ISD::CondCode Cond,
9639                                   DebugLoc DL, bool foldBooleans) {
9640  TargetLowering::DAGCombinerInfo
9641    DagCombineInfo(DAG, !LegalTypes, !LegalOperations, false, this);
9642  return TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo, DL);
9643}
9644
9645/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
9646/// return a DAG expression to select that will generate the same value by
9647/// multiplying by a magic number.  See:
9648/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
9649SDValue DAGCombiner::BuildSDIV(SDNode *N) {
9650  std::vector<SDNode*> Built;
9651  SDValue S = TLI.BuildSDIV(N, DAG, LegalOperations, &Built);
9652
9653  for (std::vector<SDNode*>::iterator ii = Built.begin(), ee = Built.end();
9654       ii != ee; ++ii)
9655    AddToWorkList(*ii);
9656  return S;
9657}
9658
9659/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
9660/// return a DAG expression to select that will generate the same value by
9661/// multiplying by a magic number.  See:
9662/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
9663SDValue DAGCombiner::BuildUDIV(SDNode *N) {
9664  std::vector<SDNode*> Built;
9665  SDValue S = TLI.BuildUDIV(N, DAG, LegalOperations, &Built);
9666
9667  for (std::vector<SDNode*>::iterator ii = Built.begin(), ee = Built.end();
9668       ii != ee; ++ii)
9669    AddToWorkList(*ii);
9670  return S;
9671}
9672
9673/// FindBaseOffset - Return true if base is a frame index, which is known not
9674// to alias with anything but itself.  Provides base object and offset as
9675// results.
9676static bool FindBaseOffset(SDValue Ptr, SDValue &Base, int64_t &Offset,
9677                           const GlobalValue *&GV, const void *&CV) {
9678  // Assume it is a primitive operation.
9679  Base = Ptr; Offset = 0; GV = 0; CV = 0;
9680
9681  // If it's an adding a simple constant then integrate the offset.
9682  if (Base.getOpcode() == ISD::ADD) {
9683    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Base.getOperand(1))) {
9684      Base = Base.getOperand(0);
9685      Offset += C->getZExtValue();
9686    }
9687  }
9688
9689  // Return the underlying GlobalValue, and update the Offset.  Return false
9690  // for GlobalAddressSDNode since the same GlobalAddress may be represented
9691  // by multiple nodes with different offsets.
9692  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Base)) {
9693    GV = G->getGlobal();
9694    Offset += G->getOffset();
9695    return false;
9696  }
9697
9698  // Return the underlying Constant value, and update the Offset.  Return false
9699  // for ConstantSDNodes since the same constant pool entry may be represented
9700  // by multiple nodes with different offsets.
9701  if (ConstantPoolSDNode *C = dyn_cast<ConstantPoolSDNode>(Base)) {
9702    CV = C->isMachineConstantPoolEntry() ? (const void *)C->getMachineCPVal()
9703                                         : (const void *)C->getConstVal();
9704    Offset += C->getOffset();
9705    return false;
9706  }
9707  // If it's any of the following then it can't alias with anything but itself.
9708  return isa<FrameIndexSDNode>(Base);
9709}
9710
9711/// isAlias - Return true if there is any possibility that the two addresses
9712/// overlap.
9713bool DAGCombiner::isAlias(SDValue Ptr1, int64_t Size1,
9714                          const Value *SrcValue1, int SrcValueOffset1,
9715                          unsigned SrcValueAlign1,
9716                          const MDNode *TBAAInfo1,
9717                          SDValue Ptr2, int64_t Size2,
9718                          const Value *SrcValue2, int SrcValueOffset2,
9719                          unsigned SrcValueAlign2,
9720                          const MDNode *TBAAInfo2) const {
9721  // If they are the same then they must be aliases.
9722  if (Ptr1 == Ptr2) return true;
9723
9724  // Gather base node and offset information.
9725  SDValue Base1, Base2;
9726  int64_t Offset1, Offset2;
9727  const GlobalValue *GV1, *GV2;
9728  const void *CV1, *CV2;
9729  bool isFrameIndex1 = FindBaseOffset(Ptr1, Base1, Offset1, GV1, CV1);
9730  bool isFrameIndex2 = FindBaseOffset(Ptr2, Base2, Offset2, GV2, CV2);
9731
9732  // If they have a same base address then check to see if they overlap.
9733  if (Base1 == Base2 || (GV1 && (GV1 == GV2)) || (CV1 && (CV1 == CV2)))
9734    return !((Offset1 + Size1) <= Offset2 || (Offset2 + Size2) <= Offset1);
9735
9736  // It is possible for different frame indices to alias each other, mostly
9737  // when tail call optimization reuses return address slots for arguments.
9738  // To catch this case, look up the actual index of frame indices to compute
9739  // the real alias relationship.
9740  if (isFrameIndex1 && isFrameIndex2) {
9741    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9742    Offset1 += MFI->getObjectOffset(cast<FrameIndexSDNode>(Base1)->getIndex());
9743    Offset2 += MFI->getObjectOffset(cast<FrameIndexSDNode>(Base2)->getIndex());
9744    return !((Offset1 + Size1) <= Offset2 || (Offset2 + Size2) <= Offset1);
9745  }
9746
9747  // Otherwise, if we know what the bases are, and they aren't identical, then
9748  // we know they cannot alias.
9749  if ((isFrameIndex1 || CV1 || GV1) && (isFrameIndex2 || CV2 || GV2))
9750    return false;
9751
9752  // If we know required SrcValue1 and SrcValue2 have relatively large alignment
9753  // compared to the size and offset of the access, we may be able to prove they
9754  // do not alias.  This check is conservative for now to catch cases created by
9755  // splitting vector types.
9756  if ((SrcValueAlign1 == SrcValueAlign2) &&
9757      (SrcValueOffset1 != SrcValueOffset2) &&
9758      (Size1 == Size2) && (SrcValueAlign1 > Size1)) {
9759    int64_t OffAlign1 = SrcValueOffset1 % SrcValueAlign1;
9760    int64_t OffAlign2 = SrcValueOffset2 % SrcValueAlign1;
9761
9762    // There is no overlap between these relatively aligned accesses of similar
9763    // size, return no alias.
9764    if ((OffAlign1 + Size1) <= OffAlign2 || (OffAlign2 + Size2) <= OffAlign1)
9765      return false;
9766  }
9767
9768  if (CombinerGlobalAA) {
9769    // Use alias analysis information.
9770    int64_t MinOffset = std::min(SrcValueOffset1, SrcValueOffset2);
9771    int64_t Overlap1 = Size1 + SrcValueOffset1 - MinOffset;
9772    int64_t Overlap2 = Size2 + SrcValueOffset2 - MinOffset;
9773    AliasAnalysis::AliasResult AAResult =
9774      AA.alias(AliasAnalysis::Location(SrcValue1, Overlap1, TBAAInfo1),
9775               AliasAnalysis::Location(SrcValue2, Overlap2, TBAAInfo2));
9776    if (AAResult == AliasAnalysis::NoAlias)
9777      return false;
9778  }
9779
9780  // Otherwise we have to assume they alias.
9781  return true;
9782}
9783
9784bool DAGCombiner::isAlias(LSBaseSDNode *Op0, LSBaseSDNode *Op1) {
9785  SDValue Ptr0, Ptr1;
9786  int64_t Size0, Size1;
9787  const Value *SrcValue0, *SrcValue1;
9788  int SrcValueOffset0, SrcValueOffset1;
9789  unsigned SrcValueAlign0, SrcValueAlign1;
9790  const MDNode *SrcTBAAInfo0, *SrcTBAAInfo1;
9791  FindAliasInfo(Op0, Ptr0, Size0, SrcValue0, SrcValueOffset0,
9792                SrcValueAlign0, SrcTBAAInfo0);
9793  FindAliasInfo(Op1, Ptr1, Size1, SrcValue1, SrcValueOffset1,
9794                SrcValueAlign1, SrcTBAAInfo1);
9795  return isAlias(Ptr0, Size0, SrcValue0, SrcValueOffset0,
9796                 SrcValueAlign0, SrcTBAAInfo0,
9797                 Ptr1, Size1, SrcValue1, SrcValueOffset1,
9798                 SrcValueAlign1, SrcTBAAInfo1);
9799}
9800
9801/// FindAliasInfo - Extracts the relevant alias information from the memory
9802/// node.  Returns true if the operand was a load.
9803bool DAGCombiner::FindAliasInfo(SDNode *N,
9804                                SDValue &Ptr, int64_t &Size,
9805                                const Value *&SrcValue,
9806                                int &SrcValueOffset,
9807                                unsigned &SrcValueAlign,
9808                                const MDNode *&TBAAInfo) const {
9809  LSBaseSDNode *LS = cast<LSBaseSDNode>(N);
9810
9811  Ptr = LS->getBasePtr();
9812  Size = LS->getMemoryVT().getSizeInBits() >> 3;
9813  SrcValue = LS->getSrcValue();
9814  SrcValueOffset = LS->getSrcValueOffset();
9815  SrcValueAlign = LS->getOriginalAlignment();
9816  TBAAInfo = LS->getTBAAInfo();
9817  return isa<LoadSDNode>(LS);
9818}
9819
9820/// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
9821/// looking for aliasing nodes and adding them to the Aliases vector.
9822void DAGCombiner::GatherAllAliases(SDNode *N, SDValue OriginalChain,
9823                                   SmallVector<SDValue, 8> &Aliases) {
9824  SmallVector<SDValue, 8> Chains;     // List of chains to visit.
9825  SmallPtrSet<SDNode *, 16> Visited;  // Visited node set.
9826
9827  // Get alias information for node.
9828  SDValue Ptr;
9829  int64_t Size;
9830  const Value *SrcValue;
9831  int SrcValueOffset;
9832  unsigned SrcValueAlign;
9833  const MDNode *SrcTBAAInfo;
9834  bool IsLoad = FindAliasInfo(N, Ptr, Size, SrcValue, SrcValueOffset,
9835                              SrcValueAlign, SrcTBAAInfo);
9836
9837  // Starting off.
9838  Chains.push_back(OriginalChain);
9839  unsigned Depth = 0;
9840
9841  // Look at each chain and determine if it is an alias.  If so, add it to the
9842  // aliases list.  If not, then continue up the chain looking for the next
9843  // candidate.
9844  while (!Chains.empty()) {
9845    SDValue Chain = Chains.back();
9846    Chains.pop_back();
9847
9848    // For TokenFactor nodes, look at each operand and only continue up the
9849    // chain until we find two aliases.  If we've seen two aliases, assume we'll
9850    // find more and revert to original chain since the xform is unlikely to be
9851    // profitable.
9852    //
9853    // FIXME: The depth check could be made to return the last non-aliasing
9854    // chain we found before we hit a tokenfactor rather than the original
9855    // chain.
9856    if (Depth > 6 || Aliases.size() == 2) {
9857      Aliases.clear();
9858      Aliases.push_back(OriginalChain);
9859      break;
9860    }
9861
9862    // Don't bother if we've been before.
9863    if (!Visited.insert(Chain.getNode()))
9864      continue;
9865
9866    switch (Chain.getOpcode()) {
9867    case ISD::EntryToken:
9868      // Entry token is ideal chain operand, but handled in FindBetterChain.
9869      break;
9870
9871    case ISD::LOAD:
9872    case ISD::STORE: {
9873      // Get alias information for Chain.
9874      SDValue OpPtr;
9875      int64_t OpSize;
9876      const Value *OpSrcValue;
9877      int OpSrcValueOffset;
9878      unsigned OpSrcValueAlign;
9879      const MDNode *OpSrcTBAAInfo;
9880      bool IsOpLoad = FindAliasInfo(Chain.getNode(), OpPtr, OpSize,
9881                                    OpSrcValue, OpSrcValueOffset,
9882                                    OpSrcValueAlign,
9883                                    OpSrcTBAAInfo);
9884
9885      // If chain is alias then stop here.
9886      if (!(IsLoad && IsOpLoad) &&
9887          isAlias(Ptr, Size, SrcValue, SrcValueOffset, SrcValueAlign,
9888                  SrcTBAAInfo,
9889                  OpPtr, OpSize, OpSrcValue, OpSrcValueOffset,
9890                  OpSrcValueAlign, OpSrcTBAAInfo)) {
9891        Aliases.push_back(Chain);
9892      } else {
9893        // Look further up the chain.
9894        Chains.push_back(Chain.getOperand(0));
9895        ++Depth;
9896      }
9897      break;
9898    }
9899
9900    case ISD::TokenFactor:
9901      // We have to check each of the operands of the token factor for "small"
9902      // token factors, so we queue them up.  Adding the operands to the queue
9903      // (stack) in reverse order maintains the original order and increases the
9904      // likelihood that getNode will find a matching token factor (CSE.)
9905      if (Chain.getNumOperands() > 16) {
9906        Aliases.push_back(Chain);
9907        break;
9908      }
9909      for (unsigned n = Chain.getNumOperands(); n;)
9910        Chains.push_back(Chain.getOperand(--n));
9911      ++Depth;
9912      break;
9913
9914    default:
9915      // For all other instructions we will just have to take what we can get.
9916      Aliases.push_back(Chain);
9917      break;
9918    }
9919  }
9920}
9921
9922/// FindBetterChain - Walk up chain skipping non-aliasing memory nodes, looking
9923/// for a better chain (aliasing node.)
9924SDValue DAGCombiner::FindBetterChain(SDNode *N, SDValue OldChain) {
9925  SmallVector<SDValue, 8> Aliases;  // Ops for replacing token factor.
9926
9927  // Accumulate all the aliases to this node.
9928  GatherAllAliases(N, OldChain, Aliases);
9929
9930  // If no operands then chain to entry token.
9931  if (Aliases.size() == 0)
9932    return DAG.getEntryNode();
9933
9934  // If a single operand then chain to it.  We don't need to revisit it.
9935  if (Aliases.size() == 1)
9936    return Aliases[0];
9937
9938  // Construct a custom tailored token factor.
9939  return DAG.getNode(ISD::TokenFactor, N->getDebugLoc(), MVT::Other,
9940                     &Aliases[0], Aliases.size());
9941}
9942
9943// SelectionDAG::Combine - This is the entry point for the file.
9944//
9945void SelectionDAG::Combine(CombineLevel Level, AliasAnalysis &AA,
9946                           CodeGenOpt::Level OptLevel) {
9947  /// run - This is the main entry point to this class.
9948  ///
9949  DAGCombiner(*this, AA, OptLevel).Run(Level);
9950}
9951