DAGCombiner.cpp revision 23e202dee012011a25b3b309d3c05d1915767773
1//===-- DAGCombiner.cpp - Implement a DAG node combiner -------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass combines dag nodes to form fewer, simpler DAG nodes.  It can be run
11// both before and after the DAG is legalized.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "dagcombine"
16#include "llvm/CodeGen/SelectionDAG.h"
17#include "llvm/Analysis/AliasAnalysis.h"
18#include "llvm/Target/TargetData.h"
19#include "llvm/Target/TargetLowering.h"
20#include "llvm/Target/TargetMachine.h"
21#include "llvm/Target/TargetOptions.h"
22#include "llvm/ADT/SmallPtrSet.h"
23#include "llvm/ADT/Statistic.h"
24#include "llvm/Support/Compiler.h"
25#include "llvm/Support/CommandLine.h"
26#include "llvm/Support/Debug.h"
27#include "llvm/Support/MathExtras.h"
28#include <algorithm>
29using namespace llvm;
30
31STATISTIC(NodesCombined   , "Number of dag nodes combined");
32STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created");
33STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created");
34
35namespace {
36#ifndef NDEBUG
37  static cl::opt<bool>
38    ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
39                    cl::desc("Pop up a window to show dags before the first "
40                             "dag combine pass"));
41  static cl::opt<bool>
42    ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
43                    cl::desc("Pop up a window to show dags before the second "
44                             "dag combine pass"));
45#else
46  static const bool ViewDAGCombine1 = false;
47  static const bool ViewDAGCombine2 = false;
48#endif
49
50  static cl::opt<bool>
51    CombinerAA("combiner-alias-analysis", cl::Hidden,
52               cl::desc("Turn on alias analysis during testing"));
53
54  static cl::opt<bool>
55    CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden,
56               cl::desc("Include global information in alias analysis"));
57
58//------------------------------ DAGCombiner ---------------------------------//
59
60  class VISIBILITY_HIDDEN DAGCombiner {
61    SelectionDAG &DAG;
62    TargetLowering &TLI;
63    bool AfterLegalize;
64
65    // Worklist of all of the nodes that need to be simplified.
66    std::vector<SDNode*> WorkList;
67
68    // AA - Used for DAG load/store alias analysis.
69    AliasAnalysis &AA;
70
71    /// AddUsersToWorkList - When an instruction is simplified, add all users of
72    /// the instruction to the work lists because they might get more simplified
73    /// now.
74    ///
75    void AddUsersToWorkList(SDNode *N) {
76      for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
77           UI != UE; ++UI)
78        AddToWorkList(*UI);
79    }
80
81    /// removeFromWorkList - remove all instances of N from the worklist.
82    ///
83    void removeFromWorkList(SDNode *N) {
84      WorkList.erase(std::remove(WorkList.begin(), WorkList.end(), N),
85                     WorkList.end());
86    }
87
88    /// visit - call the node-specific routine that knows how to fold each
89    /// particular type of node.
90    SDOperand visit(SDNode *N);
91
92  public:
93    /// AddToWorkList - Add to the work list making sure it's instance is at the
94    /// the back (next to be processed.)
95    void AddToWorkList(SDNode *N) {
96      removeFromWorkList(N);
97      WorkList.push_back(N);
98    }
99
100    SDOperand CombineTo(SDNode *N, const SDOperand *To, unsigned NumTo,
101                        bool AddTo = true) {
102      assert(N->getNumValues() == NumTo && "Broken CombineTo call!");
103      ++NodesCombined;
104      DOUT << "\nReplacing.1 "; DEBUG(N->dump(&DAG));
105      DOUT << "\nWith: "; DEBUG(To[0].Val->dump(&DAG));
106      DOUT << " and " << NumTo-1 << " other values\n";
107      std::vector<SDNode*> NowDead;
108      DAG.ReplaceAllUsesWith(N, To, &NowDead);
109
110      if (AddTo) {
111        // Push the new nodes and any users onto the worklist
112        for (unsigned i = 0, e = NumTo; i != e; ++i) {
113          AddToWorkList(To[i].Val);
114          AddUsersToWorkList(To[i].Val);
115        }
116      }
117
118      // Nodes can be reintroduced into the worklist.  Make sure we do not
119      // process a node that has been replaced.
120      removeFromWorkList(N);
121      for (unsigned i = 0, e = NowDead.size(); i != e; ++i)
122        removeFromWorkList(NowDead[i]);
123
124      // Finally, since the node is now dead, remove it from the graph.
125      DAG.DeleteNode(N);
126      return SDOperand(N, 0);
127    }
128
129    SDOperand CombineTo(SDNode *N, SDOperand Res, bool AddTo = true) {
130      return CombineTo(N, &Res, 1, AddTo);
131    }
132
133    SDOperand CombineTo(SDNode *N, SDOperand Res0, SDOperand Res1,
134                        bool AddTo = true) {
135      SDOperand To[] = { Res0, Res1 };
136      return CombineTo(N, To, 2, AddTo);
137    }
138
139  private:
140
141    /// SimplifyDemandedBits - Check the specified integer node value to see if
142    /// it can be simplified or if things it uses can be simplified by bit
143    /// propagation.  If so, return true.
144    bool SimplifyDemandedBits(SDOperand Op, uint64_t Demanded = ~0ULL) {
145      TargetLowering::TargetLoweringOpt TLO(DAG, AfterLegalize);
146      uint64_t KnownZero, KnownOne;
147      Demanded &= MVT::getIntVTBitMask(Op.getValueType());
148      if (!TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO))
149        return false;
150
151      // Revisit the node.
152      AddToWorkList(Op.Val);
153
154      // Replace the old value with the new one.
155      ++NodesCombined;
156      DOUT << "\nReplacing.2 "; DEBUG(TLO.Old.Val->dump(&DAG));
157      DOUT << "\nWith: "; DEBUG(TLO.New.Val->dump(&DAG));
158      DOUT << '\n';
159
160      std::vector<SDNode*> NowDead;
161      DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New, &NowDead);
162
163      // Push the new node and any (possibly new) users onto the worklist.
164      AddToWorkList(TLO.New.Val);
165      AddUsersToWorkList(TLO.New.Val);
166
167      // Nodes can end up on the worklist more than once.  Make sure we do
168      // not process a node that has been replaced.
169      for (unsigned i = 0, e = NowDead.size(); i != e; ++i)
170        removeFromWorkList(NowDead[i]);
171
172      // Finally, if the node is now dead, remove it from the graph.  The node
173      // may not be dead if the replacement process recursively simplified to
174      // something else needing this node.
175      if (TLO.Old.Val->use_empty()) {
176        removeFromWorkList(TLO.Old.Val);
177
178        // If the operands of this node are only used by the node, they will now
179        // be dead.  Make sure to visit them first to delete dead nodes early.
180        for (unsigned i = 0, e = TLO.Old.Val->getNumOperands(); i != e; ++i)
181          if (TLO.Old.Val->getOperand(i).Val->hasOneUse())
182            AddToWorkList(TLO.Old.Val->getOperand(i).Val);
183
184        DAG.DeleteNode(TLO.Old.Val);
185      }
186      return true;
187    }
188
189    bool CombineToPreIndexedLoadStore(SDNode *N);
190    bool CombineToPostIndexedLoadStore(SDNode *N);
191
192
193    /// combine - call the node-specific routine that knows how to fold each
194    /// particular type of node. If that doesn't do anything, try the
195    /// target-specific DAG combines.
196    SDOperand combine(SDNode *N);
197
198    // Visitation implementation - Implement dag node combining for different
199    // node types.  The semantics are as follows:
200    // Return Value:
201    //   SDOperand.Val == 0   - No change was made
202    //   SDOperand.Val == N   - N was replaced, is dead, and is already handled.
203    //   otherwise            - N should be replaced by the returned Operand.
204    //
205    SDOperand visitTokenFactor(SDNode *N);
206    SDOperand visitADD(SDNode *N);
207    SDOperand visitSUB(SDNode *N);
208    SDOperand visitADDC(SDNode *N);
209    SDOperand visitADDE(SDNode *N);
210    SDOperand visitMUL(SDNode *N);
211    SDOperand visitSDIV(SDNode *N);
212    SDOperand visitUDIV(SDNode *N);
213    SDOperand visitSREM(SDNode *N);
214    SDOperand visitUREM(SDNode *N);
215    SDOperand visitMULHU(SDNode *N);
216    SDOperand visitMULHS(SDNode *N);
217    SDOperand visitSMUL_LOHI(SDNode *N);
218    SDOperand visitUMUL_LOHI(SDNode *N);
219    SDOperand visitSDIVREM(SDNode *N);
220    SDOperand visitUDIVREM(SDNode *N);
221    SDOperand visitAND(SDNode *N);
222    SDOperand visitOR(SDNode *N);
223    SDOperand visitXOR(SDNode *N);
224    SDOperand SimplifyVBinOp(SDNode *N);
225    SDOperand visitSHL(SDNode *N);
226    SDOperand visitSRA(SDNode *N);
227    SDOperand visitSRL(SDNode *N);
228    SDOperand visitCTLZ(SDNode *N);
229    SDOperand visitCTTZ(SDNode *N);
230    SDOperand visitCTPOP(SDNode *N);
231    SDOperand visitSELECT(SDNode *N);
232    SDOperand visitSELECT_CC(SDNode *N);
233    SDOperand visitSETCC(SDNode *N);
234    SDOperand visitSIGN_EXTEND(SDNode *N);
235    SDOperand visitZERO_EXTEND(SDNode *N);
236    SDOperand visitANY_EXTEND(SDNode *N);
237    SDOperand visitSIGN_EXTEND_INREG(SDNode *N);
238    SDOperand visitTRUNCATE(SDNode *N);
239    SDOperand visitBIT_CONVERT(SDNode *N);
240    SDOperand visitFADD(SDNode *N);
241    SDOperand visitFSUB(SDNode *N);
242    SDOperand visitFMUL(SDNode *N);
243    SDOperand visitFDIV(SDNode *N);
244    SDOperand visitFREM(SDNode *N);
245    SDOperand visitFCOPYSIGN(SDNode *N);
246    SDOperand visitSINT_TO_FP(SDNode *N);
247    SDOperand visitUINT_TO_FP(SDNode *N);
248    SDOperand visitFP_TO_SINT(SDNode *N);
249    SDOperand visitFP_TO_UINT(SDNode *N);
250    SDOperand visitFP_ROUND(SDNode *N);
251    SDOperand visitFP_ROUND_INREG(SDNode *N);
252    SDOperand visitFP_EXTEND(SDNode *N);
253    SDOperand visitFNEG(SDNode *N);
254    SDOperand visitFABS(SDNode *N);
255    SDOperand visitBRCOND(SDNode *N);
256    SDOperand visitBR_CC(SDNode *N);
257    SDOperand visitLOAD(SDNode *N);
258    SDOperand visitSTORE(SDNode *N);
259    SDOperand visitINSERT_VECTOR_ELT(SDNode *N);
260    SDOperand visitEXTRACT_VECTOR_ELT(SDNode *N);
261    SDOperand visitBUILD_VECTOR(SDNode *N);
262    SDOperand visitCONCAT_VECTORS(SDNode *N);
263    SDOperand visitVECTOR_SHUFFLE(SDNode *N);
264
265    SDOperand XformToShuffleWithZero(SDNode *N);
266    SDOperand ReassociateOps(unsigned Opc, SDOperand LHS, SDOperand RHS);
267
268    SDOperand visitShiftByConstant(SDNode *N, unsigned Amt);
269
270    bool SimplifySelectOps(SDNode *SELECT, SDOperand LHS, SDOperand RHS);
271    SDOperand SimplifyBinOpWithSameOpcodeHands(SDNode *N);
272    SDOperand SimplifySelect(SDOperand N0, SDOperand N1, SDOperand N2);
273    SDOperand SimplifySelectCC(SDOperand N0, SDOperand N1, SDOperand N2,
274                               SDOperand N3, ISD::CondCode CC,
275                               bool NotExtCompare = false);
276    SDOperand SimplifySetCC(MVT::ValueType VT, SDOperand N0, SDOperand N1,
277                            ISD::CondCode Cond, bool foldBooleans = true);
278    bool SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp, unsigned HiOp);
279    SDOperand ConstantFoldBIT_CONVERTofBUILD_VECTOR(SDNode *, MVT::ValueType);
280    SDOperand BuildSDIV(SDNode *N);
281    SDOperand BuildUDIV(SDNode *N);
282    SDNode *MatchRotate(SDOperand LHS, SDOperand RHS);
283    SDOperand ReduceLoadWidth(SDNode *N);
284
285    SDOperand GetDemandedBits(SDOperand V, uint64_t Mask);
286
287    /// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
288    /// looking for aliasing nodes and adding them to the Aliases vector.
289    void GatherAllAliases(SDNode *N, SDOperand OriginalChain,
290                          SmallVector<SDOperand, 8> &Aliases);
291
292    /// isAlias - Return true if there is any possibility that the two addresses
293    /// overlap.
294    bool isAlias(SDOperand Ptr1, int64_t Size1,
295                 const Value *SrcValue1, int SrcValueOffset1,
296                 SDOperand Ptr2, int64_t Size2,
297                 const Value *SrcValue2, int SrcValueOffset2);
298
299    /// FindAliasInfo - Extracts the relevant alias information from the memory
300    /// node.  Returns true if the operand was a load.
301    bool FindAliasInfo(SDNode *N,
302                       SDOperand &Ptr, int64_t &Size,
303                       const Value *&SrcValue, int &SrcValueOffset);
304
305    /// FindBetterChain - Walk up chain skipping non-aliasing memory nodes,
306    /// looking for a better chain (aliasing node.)
307    SDOperand FindBetterChain(SDNode *N, SDOperand Chain);
308
309public:
310    DAGCombiner(SelectionDAG &D, AliasAnalysis &A)
311      : DAG(D),
312        TLI(D.getTargetLoweringInfo()),
313        AfterLegalize(false),
314        AA(A) {}
315
316    /// Run - runs the dag combiner on all nodes in the work list
317    void Run(bool RunningAfterLegalize);
318  };
319}
320
321//===----------------------------------------------------------------------===//
322//  TargetLowering::DAGCombinerInfo implementation
323//===----------------------------------------------------------------------===//
324
325void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) {
326  ((DAGCombiner*)DC)->AddToWorkList(N);
327}
328
329SDOperand TargetLowering::DAGCombinerInfo::
330CombineTo(SDNode *N, const std::vector<SDOperand> &To) {
331  return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size());
332}
333
334SDOperand TargetLowering::DAGCombinerInfo::
335CombineTo(SDNode *N, SDOperand Res) {
336  return ((DAGCombiner*)DC)->CombineTo(N, Res);
337}
338
339
340SDOperand TargetLowering::DAGCombinerInfo::
341CombineTo(SDNode *N, SDOperand Res0, SDOperand Res1) {
342  return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1);
343}
344
345
346//===----------------------------------------------------------------------===//
347// Helper Functions
348//===----------------------------------------------------------------------===//
349
350/// isNegatibleForFree - Return 1 if we can compute the negated form of the
351/// specified expression for the same cost as the expression itself, or 2 if we
352/// can compute the negated form more cheaply than the expression itself.
353static char isNegatibleForFree(SDOperand Op, unsigned Depth = 0) {
354  // No compile time optimizations on this type.
355  if (Op.getValueType() == MVT::ppcf128)
356    return 0;
357
358  // fneg is removable even if it has multiple uses.
359  if (Op.getOpcode() == ISD::FNEG) return 2;
360
361  // Don't allow anything with multiple uses.
362  if (!Op.hasOneUse()) return 0;
363
364  // Don't recurse exponentially.
365  if (Depth > 6) return 0;
366
367  switch (Op.getOpcode()) {
368  default: return false;
369  case ISD::ConstantFP:
370    return 1;
371  case ISD::FADD:
372    // FIXME: determine better conditions for this xform.
373    if (!UnsafeFPMath) return 0;
374
375    // -(A+B) -> -A - B
376    if (char V = isNegatibleForFree(Op.getOperand(0), Depth+1))
377      return V;
378    // -(A+B) -> -B - A
379    return isNegatibleForFree(Op.getOperand(1), Depth+1);
380  case ISD::FSUB:
381    // We can't turn -(A-B) into B-A when we honor signed zeros.
382    if (!UnsafeFPMath) return 0;
383
384    // -(A-B) -> B-A
385    return 1;
386
387  case ISD::FMUL:
388  case ISD::FDIV:
389    if (HonorSignDependentRoundingFPMath()) return 0;
390
391    // -(X*Y) -> (-X * Y) or (X*-Y)
392    if (char V = isNegatibleForFree(Op.getOperand(0), Depth+1))
393      return V;
394
395    return isNegatibleForFree(Op.getOperand(1), Depth+1);
396
397  case ISD::FP_EXTEND:
398  case ISD::FP_ROUND:
399  case ISD::FSIN:
400    return isNegatibleForFree(Op.getOperand(0), Depth+1);
401  }
402}
403
404/// GetNegatedExpression - If isNegatibleForFree returns true, this function
405/// returns the newly negated expression.
406static SDOperand GetNegatedExpression(SDOperand Op, SelectionDAG &DAG,
407                                      unsigned Depth = 0) {
408  // fneg is removable even if it has multiple uses.
409  if (Op.getOpcode() == ISD::FNEG) return Op.getOperand(0);
410
411  // Don't allow anything with multiple uses.
412  assert(Op.hasOneUse() && "Unknown reuse!");
413
414  assert(Depth <= 6 && "GetNegatedExpression doesn't match isNegatibleForFree");
415  switch (Op.getOpcode()) {
416  default: assert(0 && "Unknown code");
417  case ISD::ConstantFP: {
418    APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
419    V.changeSign();
420    return DAG.getConstantFP(V, Op.getValueType());
421  }
422  case ISD::FADD:
423    // FIXME: determine better conditions for this xform.
424    assert(UnsafeFPMath);
425
426    // -(A+B) -> -A - B
427    if (isNegatibleForFree(Op.getOperand(0), Depth+1))
428      return DAG.getNode(ISD::FSUB, Op.getValueType(),
429                         GetNegatedExpression(Op.getOperand(0), DAG, Depth+1),
430                         Op.getOperand(1));
431    // -(A+B) -> -B - A
432    return DAG.getNode(ISD::FSUB, Op.getValueType(),
433                       GetNegatedExpression(Op.getOperand(1), DAG, Depth+1),
434                       Op.getOperand(0));
435  case ISD::FSUB:
436    // We can't turn -(A-B) into B-A when we honor signed zeros.
437    assert(UnsafeFPMath);
438
439    // -(0-B) -> B
440    if (ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(Op.getOperand(0)))
441      if (N0CFP->getValueAPF().isZero())
442        return Op.getOperand(1);
443
444    // -(A-B) -> B-A
445    return DAG.getNode(ISD::FSUB, Op.getValueType(), Op.getOperand(1),
446                       Op.getOperand(0));
447
448  case ISD::FMUL:
449  case ISD::FDIV:
450    assert(!HonorSignDependentRoundingFPMath());
451
452    // -(X*Y) -> -X * Y
453    if (isNegatibleForFree(Op.getOperand(0), Depth+1))
454      return DAG.getNode(Op.getOpcode(), Op.getValueType(),
455                         GetNegatedExpression(Op.getOperand(0), DAG, Depth+1),
456                         Op.getOperand(1));
457
458    // -(X*Y) -> X * -Y
459    return DAG.getNode(Op.getOpcode(), Op.getValueType(),
460                       Op.getOperand(0),
461                       GetNegatedExpression(Op.getOperand(1), DAG, Depth+1));
462
463  case ISD::FP_EXTEND:
464  case ISD::FSIN:
465    return DAG.getNode(Op.getOpcode(), Op.getValueType(),
466                       GetNegatedExpression(Op.getOperand(0), DAG, Depth+1));
467  case ISD::FP_ROUND:
468      return DAG.getNode(ISD::FP_ROUND, Op.getValueType(),
469                         GetNegatedExpression(Op.getOperand(0), DAG, Depth+1),
470                         Op.getOperand(1));
471  }
472}
473
474
475// isSetCCEquivalent - Return true if this node is a setcc, or is a select_cc
476// that selects between the values 1 and 0, making it equivalent to a setcc.
477// Also, set the incoming LHS, RHS, and CC references to the appropriate
478// nodes based on the type of node we are checking.  This simplifies life a
479// bit for the callers.
480static bool isSetCCEquivalent(SDOperand N, SDOperand &LHS, SDOperand &RHS,
481                              SDOperand &CC) {
482  if (N.getOpcode() == ISD::SETCC) {
483    LHS = N.getOperand(0);
484    RHS = N.getOperand(1);
485    CC  = N.getOperand(2);
486    return true;
487  }
488  if (N.getOpcode() == ISD::SELECT_CC &&
489      N.getOperand(2).getOpcode() == ISD::Constant &&
490      N.getOperand(3).getOpcode() == ISD::Constant &&
491      cast<ConstantSDNode>(N.getOperand(2))->getValue() == 1 &&
492      cast<ConstantSDNode>(N.getOperand(3))->isNullValue()) {
493    LHS = N.getOperand(0);
494    RHS = N.getOperand(1);
495    CC  = N.getOperand(4);
496    return true;
497  }
498  return false;
499}
500
501// isOneUseSetCC - Return true if this is a SetCC-equivalent operation with only
502// one use.  If this is true, it allows the users to invert the operation for
503// free when it is profitable to do so.
504static bool isOneUseSetCC(SDOperand N) {
505  SDOperand N0, N1, N2;
506  if (isSetCCEquivalent(N, N0, N1, N2) && N.Val->hasOneUse())
507    return true;
508  return false;
509}
510
511SDOperand DAGCombiner::ReassociateOps(unsigned Opc, SDOperand N0, SDOperand N1){
512  MVT::ValueType VT = N0.getValueType();
513  // reassoc. (op (op x, c1), y) -> (op (op x, y), c1) iff x+c1 has one use
514  // reassoc. (op (op x, c1), c2) -> (op x, (op c1, c2))
515  if (N0.getOpcode() == Opc && isa<ConstantSDNode>(N0.getOperand(1))) {
516    if (isa<ConstantSDNode>(N1)) {
517      SDOperand OpNode = DAG.getNode(Opc, VT, N0.getOperand(1), N1);
518      AddToWorkList(OpNode.Val);
519      return DAG.getNode(Opc, VT, OpNode, N0.getOperand(0));
520    } else if (N0.hasOneUse()) {
521      SDOperand OpNode = DAG.getNode(Opc, VT, N0.getOperand(0), N1);
522      AddToWorkList(OpNode.Val);
523      return DAG.getNode(Opc, VT, OpNode, N0.getOperand(1));
524    }
525  }
526  // reassoc. (op y, (op x, c1)) -> (op (op x, y), c1) iff x+c1 has one use
527  // reassoc. (op c2, (op x, c1)) -> (op x, (op c1, c2))
528  if (N1.getOpcode() == Opc && isa<ConstantSDNode>(N1.getOperand(1))) {
529    if (isa<ConstantSDNode>(N0)) {
530      SDOperand OpNode = DAG.getNode(Opc, VT, N1.getOperand(1), N0);
531      AddToWorkList(OpNode.Val);
532      return DAG.getNode(Opc, VT, OpNode, N1.getOperand(0));
533    } else if (N1.hasOneUse()) {
534      SDOperand OpNode = DAG.getNode(Opc, VT, N1.getOperand(0), N0);
535      AddToWorkList(OpNode.Val);
536      return DAG.getNode(Opc, VT, OpNode, N1.getOperand(1));
537    }
538  }
539  return SDOperand();
540}
541
542//===----------------------------------------------------------------------===//
543//  Main DAG Combiner implementation
544//===----------------------------------------------------------------------===//
545
546void DAGCombiner::Run(bool RunningAfterLegalize) {
547  // set the instance variable, so that the various visit routines may use it.
548  AfterLegalize = RunningAfterLegalize;
549
550  // Add all the dag nodes to the worklist.
551  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
552       E = DAG.allnodes_end(); I != E; ++I)
553    WorkList.push_back(I);
554
555  // Create a dummy node (which is not added to allnodes), that adds a reference
556  // to the root node, preventing it from being deleted, and tracking any
557  // changes of the root.
558  HandleSDNode Dummy(DAG.getRoot());
559
560  // The root of the dag may dangle to deleted nodes until the dag combiner is
561  // done.  Set it to null to avoid confusion.
562  DAG.setRoot(SDOperand());
563
564  // while the worklist isn't empty, inspect the node on the end of it and
565  // try and combine it.
566  while (!WorkList.empty()) {
567    SDNode *N = WorkList.back();
568    WorkList.pop_back();
569
570    // If N has no uses, it is dead.  Make sure to revisit all N's operands once
571    // N is deleted from the DAG, since they too may now be dead or may have a
572    // reduced number of uses, allowing other xforms.
573    if (N->use_empty() && N != &Dummy) {
574      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
575        AddToWorkList(N->getOperand(i).Val);
576
577      DAG.DeleteNode(N);
578      continue;
579    }
580
581    SDOperand RV = combine(N);
582
583    if (RV.Val) {
584      ++NodesCombined;
585      // If we get back the same node we passed in, rather than a new node or
586      // zero, we know that the node must have defined multiple values and
587      // CombineTo was used.  Since CombineTo takes care of the worklist
588      // mechanics for us, we have no work to do in this case.
589      if (RV.Val != N) {
590        assert(N->getOpcode() != ISD::DELETED_NODE &&
591               RV.Val->getOpcode() != ISD::DELETED_NODE &&
592               "Node was deleted but visit returned new node!");
593
594        DOUT << "\nReplacing.3 "; DEBUG(N->dump(&DAG));
595        DOUT << "\nWith: "; DEBUG(RV.Val->dump(&DAG));
596        DOUT << '\n';
597        std::vector<SDNode*> NowDead;
598        if (N->getNumValues() == RV.Val->getNumValues())
599          DAG.ReplaceAllUsesWith(N, RV.Val, &NowDead);
600        else {
601          assert(N->getValueType(0) == RV.getValueType() && "Type mismatch");
602          SDOperand OpV = RV;
603          DAG.ReplaceAllUsesWith(N, &OpV, &NowDead);
604        }
605
606        // Push the new node and any users onto the worklist
607        AddToWorkList(RV.Val);
608        AddUsersToWorkList(RV.Val);
609
610        // Add any uses of the old node to the worklist in case this node is the
611        // last one that uses them.  They may become dead after this node is
612        // deleted.
613        for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
614          AddToWorkList(N->getOperand(i).Val);
615
616        // Nodes can be reintroduced into the worklist.  Make sure we do not
617        // process a node that has been replaced.
618        removeFromWorkList(N);
619        for (unsigned i = 0, e = NowDead.size(); i != e; ++i)
620          removeFromWorkList(NowDead[i]);
621
622        // Finally, since the node is now dead, remove it from the graph.
623        DAG.DeleteNode(N);
624      }
625    }
626  }
627
628  // If the root changed (e.g. it was a dead load, update the root).
629  DAG.setRoot(Dummy.getValue());
630}
631
632SDOperand DAGCombiner::visit(SDNode *N) {
633  switch(N->getOpcode()) {
634  default: break;
635  case ISD::TokenFactor:        return visitTokenFactor(N);
636  case ISD::ADD:                return visitADD(N);
637  case ISD::SUB:                return visitSUB(N);
638  case ISD::ADDC:               return visitADDC(N);
639  case ISD::ADDE:               return visitADDE(N);
640  case ISD::MUL:                return visitMUL(N);
641  case ISD::SDIV:               return visitSDIV(N);
642  case ISD::UDIV:               return visitUDIV(N);
643  case ISD::SREM:               return visitSREM(N);
644  case ISD::UREM:               return visitUREM(N);
645  case ISD::MULHU:              return visitMULHU(N);
646  case ISD::MULHS:              return visitMULHS(N);
647  case ISD::SMUL_LOHI:          return visitSMUL_LOHI(N);
648  case ISD::UMUL_LOHI:          return visitUMUL_LOHI(N);
649  case ISD::SDIVREM:            return visitSDIVREM(N);
650  case ISD::UDIVREM:            return visitUDIVREM(N);
651  case ISD::AND:                return visitAND(N);
652  case ISD::OR:                 return visitOR(N);
653  case ISD::XOR:                return visitXOR(N);
654  case ISD::SHL:                return visitSHL(N);
655  case ISD::SRA:                return visitSRA(N);
656  case ISD::SRL:                return visitSRL(N);
657  case ISD::CTLZ:               return visitCTLZ(N);
658  case ISD::CTTZ:               return visitCTTZ(N);
659  case ISD::CTPOP:              return visitCTPOP(N);
660  case ISD::SELECT:             return visitSELECT(N);
661  case ISD::SELECT_CC:          return visitSELECT_CC(N);
662  case ISD::SETCC:              return visitSETCC(N);
663  case ISD::SIGN_EXTEND:        return visitSIGN_EXTEND(N);
664  case ISD::ZERO_EXTEND:        return visitZERO_EXTEND(N);
665  case ISD::ANY_EXTEND:         return visitANY_EXTEND(N);
666  case ISD::SIGN_EXTEND_INREG:  return visitSIGN_EXTEND_INREG(N);
667  case ISD::TRUNCATE:           return visitTRUNCATE(N);
668  case ISD::BIT_CONVERT:        return visitBIT_CONVERT(N);
669  case ISD::FADD:               return visitFADD(N);
670  case ISD::FSUB:               return visitFSUB(N);
671  case ISD::FMUL:               return visitFMUL(N);
672  case ISD::FDIV:               return visitFDIV(N);
673  case ISD::FREM:               return visitFREM(N);
674  case ISD::FCOPYSIGN:          return visitFCOPYSIGN(N);
675  case ISD::SINT_TO_FP:         return visitSINT_TO_FP(N);
676  case ISD::UINT_TO_FP:         return visitUINT_TO_FP(N);
677  case ISD::FP_TO_SINT:         return visitFP_TO_SINT(N);
678  case ISD::FP_TO_UINT:         return visitFP_TO_UINT(N);
679  case ISD::FP_ROUND:           return visitFP_ROUND(N);
680  case ISD::FP_ROUND_INREG:     return visitFP_ROUND_INREG(N);
681  case ISD::FP_EXTEND:          return visitFP_EXTEND(N);
682  case ISD::FNEG:               return visitFNEG(N);
683  case ISD::FABS:               return visitFABS(N);
684  case ISD::BRCOND:             return visitBRCOND(N);
685  case ISD::BR_CC:              return visitBR_CC(N);
686  case ISD::LOAD:               return visitLOAD(N);
687  case ISD::STORE:              return visitSTORE(N);
688  case ISD::INSERT_VECTOR_ELT:  return visitINSERT_VECTOR_ELT(N);
689  case ISD::EXTRACT_VECTOR_ELT: return visitEXTRACT_VECTOR_ELT(N);
690  case ISD::BUILD_VECTOR:       return visitBUILD_VECTOR(N);
691  case ISD::CONCAT_VECTORS:     return visitCONCAT_VECTORS(N);
692  case ISD::VECTOR_SHUFFLE:     return visitVECTOR_SHUFFLE(N);
693  }
694  return SDOperand();
695}
696
697SDOperand DAGCombiner::combine(SDNode *N) {
698
699  SDOperand RV = visit(N);
700
701  // If nothing happened, try a target-specific DAG combine.
702  if (RV.Val == 0) {
703    assert(N->getOpcode() != ISD::DELETED_NODE &&
704           "Node was deleted but visit returned NULL!");
705
706    if (N->getOpcode() >= ISD::BUILTIN_OP_END ||
707        TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) {
708
709      // Expose the DAG combiner to the target combiner impls.
710      TargetLowering::DAGCombinerInfo
711        DagCombineInfo(DAG, !AfterLegalize, false, this);
712
713      RV = TLI.PerformDAGCombine(N, DagCombineInfo);
714    }
715  }
716
717  return RV;
718}
719
720/// getInputChainForNode - Given a node, return its input chain if it has one,
721/// otherwise return a null sd operand.
722static SDOperand getInputChainForNode(SDNode *N) {
723  if (unsigned NumOps = N->getNumOperands()) {
724    if (N->getOperand(0).getValueType() == MVT::Other)
725      return N->getOperand(0);
726    else if (N->getOperand(NumOps-1).getValueType() == MVT::Other)
727      return N->getOperand(NumOps-1);
728    for (unsigned i = 1; i < NumOps-1; ++i)
729      if (N->getOperand(i).getValueType() == MVT::Other)
730        return N->getOperand(i);
731  }
732  return SDOperand(0, 0);
733}
734
735SDOperand DAGCombiner::visitTokenFactor(SDNode *N) {
736  // If N has two operands, where one has an input chain equal to the other,
737  // the 'other' chain is redundant.
738  if (N->getNumOperands() == 2) {
739    if (getInputChainForNode(N->getOperand(0).Val) == N->getOperand(1))
740      return N->getOperand(0);
741    if (getInputChainForNode(N->getOperand(1).Val) == N->getOperand(0))
742      return N->getOperand(1);
743  }
744
745  SmallVector<SDNode *, 8> TFs;     // List of token factors to visit.
746  SmallVector<SDOperand, 8> Ops;    // Ops for replacing token factor.
747  SmallPtrSet<SDNode*, 16> SeenOps;
748  bool Changed = false;             // If we should replace this token factor.
749
750  // Start out with this token factor.
751  TFs.push_back(N);
752
753  // Iterate through token factors.  The TFs grows when new token factors are
754  // encountered.
755  for (unsigned i = 0; i < TFs.size(); ++i) {
756    SDNode *TF = TFs[i];
757
758    // Check each of the operands.
759    for (unsigned i = 0, ie = TF->getNumOperands(); i != ie; ++i) {
760      SDOperand Op = TF->getOperand(i);
761
762      switch (Op.getOpcode()) {
763      case ISD::EntryToken:
764        // Entry tokens don't need to be added to the list. They are
765        // rededundant.
766        Changed = true;
767        break;
768
769      case ISD::TokenFactor:
770        if ((CombinerAA || Op.hasOneUse()) &&
771            std::find(TFs.begin(), TFs.end(), Op.Val) == TFs.end()) {
772          // Queue up for processing.
773          TFs.push_back(Op.Val);
774          // Clean up in case the token factor is removed.
775          AddToWorkList(Op.Val);
776          Changed = true;
777          break;
778        }
779        // Fall thru
780
781      default:
782        // Only add if it isn't already in the list.
783        if (SeenOps.insert(Op.Val))
784          Ops.push_back(Op);
785        else
786          Changed = true;
787        break;
788      }
789    }
790  }
791
792  SDOperand Result;
793
794  // If we've change things around then replace token factor.
795  if (Changed) {
796    if (Ops.size() == 0) {
797      // The entry token is the only possible outcome.
798      Result = DAG.getEntryNode();
799    } else {
800      // New and improved token factor.
801      Result = DAG.getNode(ISD::TokenFactor, MVT::Other, &Ops[0], Ops.size());
802    }
803
804    // Don't add users to work list.
805    return CombineTo(N, Result, false);
806  }
807
808  return Result;
809}
810
811static
812SDOperand combineShlAddConstant(SDOperand N0, SDOperand N1, SelectionDAG &DAG) {
813  MVT::ValueType VT = N0.getValueType();
814  SDOperand N00 = N0.getOperand(0);
815  SDOperand N01 = N0.getOperand(1);
816  ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N01);
817  if (N01C && N00.getOpcode() == ISD::ADD && N00.Val->hasOneUse() &&
818      isa<ConstantSDNode>(N00.getOperand(1))) {
819    N0 = DAG.getNode(ISD::ADD, VT,
820                     DAG.getNode(ISD::SHL, VT, N00.getOperand(0), N01),
821                     DAG.getNode(ISD::SHL, VT, N00.getOperand(1), N01));
822    return DAG.getNode(ISD::ADD, VT, N0, N1);
823  }
824  return SDOperand();
825}
826
827static
828SDOperand combineSelectAndUse(SDNode *N, SDOperand Slct, SDOperand OtherOp,
829                              SelectionDAG &DAG) {
830  MVT::ValueType VT = N->getValueType(0);
831  unsigned Opc = N->getOpcode();
832  bool isSlctCC = Slct.getOpcode() == ISD::SELECT_CC;
833  SDOperand LHS = isSlctCC ? Slct.getOperand(2) : Slct.getOperand(1);
834  SDOperand RHS = isSlctCC ? Slct.getOperand(3) : Slct.getOperand(2);
835  ISD::CondCode CC = ISD::SETCC_INVALID;
836  if (isSlctCC)
837    CC = cast<CondCodeSDNode>(Slct.getOperand(4))->get();
838  else {
839    SDOperand CCOp = Slct.getOperand(0);
840    if (CCOp.getOpcode() == ISD::SETCC)
841      CC = cast<CondCodeSDNode>(CCOp.getOperand(2))->get();
842  }
843
844  bool DoXform = false;
845  bool InvCC = false;
846  assert ((Opc == ISD::ADD || (Opc == ISD::SUB && Slct == N->getOperand(1))) &&
847          "Bad input!");
848  if (LHS.getOpcode() == ISD::Constant &&
849      cast<ConstantSDNode>(LHS)->isNullValue())
850    DoXform = true;
851  else if (CC != ISD::SETCC_INVALID &&
852           RHS.getOpcode() == ISD::Constant &&
853           cast<ConstantSDNode>(RHS)->isNullValue()) {
854    std::swap(LHS, RHS);
855    SDOperand Op0 = Slct.getOperand(0);
856    bool isInt = MVT::isInteger(isSlctCC ? Op0.getValueType()
857                                : Op0.getOperand(0).getValueType());
858    CC = ISD::getSetCCInverse(CC, isInt);
859    DoXform = true;
860    InvCC = true;
861  }
862
863  if (DoXform) {
864    SDOperand Result = DAG.getNode(Opc, VT, OtherOp, RHS);
865    if (isSlctCC)
866      return DAG.getSelectCC(OtherOp, Result,
867                             Slct.getOperand(0), Slct.getOperand(1), CC);
868    SDOperand CCOp = Slct.getOperand(0);
869    if (InvCC)
870      CCOp = DAG.getSetCC(CCOp.getValueType(), CCOp.getOperand(0),
871                          CCOp.getOperand(1), CC);
872    return DAG.getNode(ISD::SELECT, VT, CCOp, OtherOp, Result);
873  }
874  return SDOperand();
875}
876
877SDOperand DAGCombiner::visitADD(SDNode *N) {
878  SDOperand N0 = N->getOperand(0);
879  SDOperand N1 = N->getOperand(1);
880  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
881  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
882  MVT::ValueType VT = N0.getValueType();
883
884  // fold vector ops
885  if (MVT::isVector(VT)) {
886    SDOperand FoldedVOp = SimplifyVBinOp(N);
887    if (FoldedVOp.Val) return FoldedVOp;
888  }
889
890  // fold (add x, undef) -> undef
891  if (N0.getOpcode() == ISD::UNDEF)
892    return N0;
893  if (N1.getOpcode() == ISD::UNDEF)
894    return N1;
895  // fold (add c1, c2) -> c1+c2
896  if (N0C && N1C)
897    return DAG.getNode(ISD::ADD, VT, N0, N1);
898  // canonicalize constant to RHS
899  if (N0C && !N1C)
900    return DAG.getNode(ISD::ADD, VT, N1, N0);
901  // fold (add x, 0) -> x
902  if (N1C && N1C->isNullValue())
903    return N0;
904  // fold ((c1-A)+c2) -> (c1+c2)-A
905  if (N1C && N0.getOpcode() == ISD::SUB)
906    if (ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getOperand(0)))
907      return DAG.getNode(ISD::SUB, VT,
908                         DAG.getConstant(N1C->getValue()+N0C->getValue(), VT),
909                         N0.getOperand(1));
910  // reassociate add
911  SDOperand RADD = ReassociateOps(ISD::ADD, N0, N1);
912  if (RADD.Val != 0)
913    return RADD;
914  // fold ((0-A) + B) -> B-A
915  if (N0.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N0.getOperand(0)) &&
916      cast<ConstantSDNode>(N0.getOperand(0))->isNullValue())
917    return DAG.getNode(ISD::SUB, VT, N1, N0.getOperand(1));
918  // fold (A + (0-B)) -> A-B
919  if (N1.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N1.getOperand(0)) &&
920      cast<ConstantSDNode>(N1.getOperand(0))->isNullValue())
921    return DAG.getNode(ISD::SUB, VT, N0, N1.getOperand(1));
922  // fold (A+(B-A)) -> B
923  if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1))
924    return N1.getOperand(0);
925
926  if (!MVT::isVector(VT) && SimplifyDemandedBits(SDOperand(N, 0)))
927    return SDOperand(N, 0);
928
929  // fold (a+b) -> (a|b) iff a and b share no bits.
930  if (MVT::isInteger(VT) && !MVT::isVector(VT)) {
931    uint64_t LHSZero, LHSOne;
932    uint64_t RHSZero, RHSOne;
933    uint64_t Mask = MVT::getIntVTBitMask(VT);
934    DAG.ComputeMaskedBits(N0, Mask, LHSZero, LHSOne);
935    if (LHSZero) {
936      DAG.ComputeMaskedBits(N1, Mask, RHSZero, RHSOne);
937
938      // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
939      // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
940      if ((RHSZero & (~LHSZero & Mask)) == (~LHSZero & Mask) ||
941          (LHSZero & (~RHSZero & Mask)) == (~RHSZero & Mask))
942        return DAG.getNode(ISD::OR, VT, N0, N1);
943    }
944  }
945
946  // fold (add (shl (add x, c1), c2), ) -> (add (add (shl x, c2), c1<<c2), )
947  if (N0.getOpcode() == ISD::SHL && N0.Val->hasOneUse()) {
948    SDOperand Result = combineShlAddConstant(N0, N1, DAG);
949    if (Result.Val) return Result;
950  }
951  if (N1.getOpcode() == ISD::SHL && N1.Val->hasOneUse()) {
952    SDOperand Result = combineShlAddConstant(N1, N0, DAG);
953    if (Result.Val) return Result;
954  }
955
956  // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
957  if (N0.getOpcode() == ISD::SELECT && N0.Val->hasOneUse()) {
958    SDOperand Result = combineSelectAndUse(N, N0, N1, DAG);
959    if (Result.Val) return Result;
960  }
961  if (N1.getOpcode() == ISD::SELECT && N1.Val->hasOneUse()) {
962    SDOperand Result = combineSelectAndUse(N, N1, N0, DAG);
963    if (Result.Val) return Result;
964  }
965
966  return SDOperand();
967}
968
969SDOperand DAGCombiner::visitADDC(SDNode *N) {
970  SDOperand N0 = N->getOperand(0);
971  SDOperand N1 = N->getOperand(1);
972  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
973  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
974  MVT::ValueType VT = N0.getValueType();
975
976  // If the flag result is dead, turn this into an ADD.
977  if (N->hasNUsesOfValue(0, 1))
978    return CombineTo(N, DAG.getNode(ISD::ADD, VT, N1, N0),
979                     DAG.getNode(ISD::CARRY_FALSE, MVT::Flag));
980
981  // canonicalize constant to RHS.
982  if (N0C && !N1C) {
983    SDOperand Ops[] = { N1, N0 };
984    return DAG.getNode(ISD::ADDC, N->getVTList(), Ops, 2);
985  }
986
987  // fold (addc x, 0) -> x + no carry out
988  if (N1C && N1C->isNullValue())
989    return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, MVT::Flag));
990
991  // fold (addc a, b) -> (or a, b), CARRY_FALSE iff a and b share no bits.
992  uint64_t LHSZero, LHSOne;
993  uint64_t RHSZero, RHSOne;
994  uint64_t Mask = MVT::getIntVTBitMask(VT);
995  DAG.ComputeMaskedBits(N0, Mask, LHSZero, LHSOne);
996  if (LHSZero) {
997    DAG.ComputeMaskedBits(N1, Mask, RHSZero, RHSOne);
998
999    // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
1000    // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
1001    if ((RHSZero & (~LHSZero & Mask)) == (~LHSZero & Mask) ||
1002        (LHSZero & (~RHSZero & Mask)) == (~RHSZero & Mask))
1003      return CombineTo(N, DAG.getNode(ISD::OR, VT, N0, N1),
1004                       DAG.getNode(ISD::CARRY_FALSE, MVT::Flag));
1005  }
1006
1007  return SDOperand();
1008}
1009
1010SDOperand DAGCombiner::visitADDE(SDNode *N) {
1011  SDOperand N0 = N->getOperand(0);
1012  SDOperand N1 = N->getOperand(1);
1013  SDOperand CarryIn = N->getOperand(2);
1014  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1015  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1016  //MVT::ValueType VT = N0.getValueType();
1017
1018  // canonicalize constant to RHS
1019  if (N0C && !N1C) {
1020    SDOperand Ops[] = { N1, N0, CarryIn };
1021    return DAG.getNode(ISD::ADDE, N->getVTList(), Ops, 3);
1022  }
1023
1024  // fold (adde x, y, false) -> (addc x, y)
1025  if (CarryIn.getOpcode() == ISD::CARRY_FALSE) {
1026    SDOperand Ops[] = { N1, N0 };
1027    return DAG.getNode(ISD::ADDC, N->getVTList(), Ops, 2);
1028  }
1029
1030  return SDOperand();
1031}
1032
1033
1034
1035SDOperand DAGCombiner::visitSUB(SDNode *N) {
1036  SDOperand N0 = N->getOperand(0);
1037  SDOperand N1 = N->getOperand(1);
1038  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.Val);
1039  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1040  MVT::ValueType VT = N0.getValueType();
1041
1042  // fold vector ops
1043  if (MVT::isVector(VT)) {
1044    SDOperand FoldedVOp = SimplifyVBinOp(N);
1045    if (FoldedVOp.Val) return FoldedVOp;
1046  }
1047
1048  // fold (sub x, x) -> 0
1049  if (N0 == N1)
1050    return DAG.getConstant(0, N->getValueType(0));
1051  // fold (sub c1, c2) -> c1-c2
1052  if (N0C && N1C)
1053    return DAG.getNode(ISD::SUB, VT, N0, N1);
1054  // fold (sub x, c) -> (add x, -c)
1055  if (N1C)
1056    return DAG.getNode(ISD::ADD, VT, N0, DAG.getConstant(-N1C->getValue(), VT));
1057  // fold (A+B)-A -> B
1058  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1)
1059    return N0.getOperand(1);
1060  // fold (A+B)-B -> A
1061  if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1)
1062    return N0.getOperand(0);
1063  // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
1064  if (N1.getOpcode() == ISD::SELECT && N1.Val->hasOneUse()) {
1065    SDOperand Result = combineSelectAndUse(N, N1, N0, DAG);
1066    if (Result.Val) return Result;
1067  }
1068  // If either operand of a sub is undef, the result is undef
1069  if (N0.getOpcode() == ISD::UNDEF)
1070    return N0;
1071  if (N1.getOpcode() == ISD::UNDEF)
1072    return N1;
1073
1074  return SDOperand();
1075}
1076
1077SDOperand DAGCombiner::visitMUL(SDNode *N) {
1078  SDOperand N0 = N->getOperand(0);
1079  SDOperand N1 = N->getOperand(1);
1080  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1081  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1082  MVT::ValueType VT = N0.getValueType();
1083
1084  // fold vector ops
1085  if (MVT::isVector(VT)) {
1086    SDOperand FoldedVOp = SimplifyVBinOp(N);
1087    if (FoldedVOp.Val) return FoldedVOp;
1088  }
1089
1090  // fold (mul x, undef) -> 0
1091  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1092    return DAG.getConstant(0, VT);
1093  // fold (mul c1, c2) -> c1*c2
1094  if (N0C && N1C)
1095    return DAG.getNode(ISD::MUL, VT, N0, N1);
1096  // canonicalize constant to RHS
1097  if (N0C && !N1C)
1098    return DAG.getNode(ISD::MUL, VT, N1, N0);
1099  // fold (mul x, 0) -> 0
1100  if (N1C && N1C->isNullValue())
1101    return N1;
1102  // fold (mul x, -1) -> 0-x
1103  if (N1C && N1C->isAllOnesValue())
1104    return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT), N0);
1105  // fold (mul x, (1 << c)) -> x << c
1106  if (N1C && isPowerOf2_64(N1C->getValue()))
1107    return DAG.getNode(ISD::SHL, VT, N0,
1108                       DAG.getConstant(Log2_64(N1C->getValue()),
1109                                       TLI.getShiftAmountTy()));
1110  // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c
1111  if (N1C && isPowerOf2_64(-N1C->getSignExtended())) {
1112    // FIXME: If the input is something that is easily negated (e.g. a
1113    // single-use add), we should put the negate there.
1114    return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT),
1115                       DAG.getNode(ISD::SHL, VT, N0,
1116                            DAG.getConstant(Log2_64(-N1C->getSignExtended()),
1117                                            TLI.getShiftAmountTy())));
1118  }
1119
1120  // (mul (shl X, c1), c2) -> (mul X, c2 << c1)
1121  if (N1C && N0.getOpcode() == ISD::SHL &&
1122      isa<ConstantSDNode>(N0.getOperand(1))) {
1123    SDOperand C3 = DAG.getNode(ISD::SHL, VT, N1, N0.getOperand(1));
1124    AddToWorkList(C3.Val);
1125    return DAG.getNode(ISD::MUL, VT, N0.getOperand(0), C3);
1126  }
1127
1128  // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one
1129  // use.
1130  {
1131    SDOperand Sh(0,0), Y(0,0);
1132    // Check for both (mul (shl X, C), Y)  and  (mul Y, (shl X, C)).
1133    if (N0.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N0.getOperand(1)) &&
1134        N0.Val->hasOneUse()) {
1135      Sh = N0; Y = N1;
1136    } else if (N1.getOpcode() == ISD::SHL &&
1137               isa<ConstantSDNode>(N1.getOperand(1)) && N1.Val->hasOneUse()) {
1138      Sh = N1; Y = N0;
1139    }
1140    if (Sh.Val) {
1141      SDOperand Mul = DAG.getNode(ISD::MUL, VT, Sh.getOperand(0), Y);
1142      return DAG.getNode(ISD::SHL, VT, Mul, Sh.getOperand(1));
1143    }
1144  }
1145  // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2)
1146  if (N1C && N0.getOpcode() == ISD::ADD && N0.Val->hasOneUse() &&
1147      isa<ConstantSDNode>(N0.getOperand(1))) {
1148    return DAG.getNode(ISD::ADD, VT,
1149                       DAG.getNode(ISD::MUL, VT, N0.getOperand(0), N1),
1150                       DAG.getNode(ISD::MUL, VT, N0.getOperand(1), N1));
1151  }
1152
1153  // reassociate mul
1154  SDOperand RMUL = ReassociateOps(ISD::MUL, N0, N1);
1155  if (RMUL.Val != 0)
1156    return RMUL;
1157
1158  return SDOperand();
1159}
1160
1161SDOperand DAGCombiner::visitSDIV(SDNode *N) {
1162  SDOperand N0 = N->getOperand(0);
1163  SDOperand N1 = N->getOperand(1);
1164  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.Val);
1165  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1166  MVT::ValueType VT = N->getValueType(0);
1167
1168  // fold vector ops
1169  if (MVT::isVector(VT)) {
1170    SDOperand FoldedVOp = SimplifyVBinOp(N);
1171    if (FoldedVOp.Val) return FoldedVOp;
1172  }
1173
1174  // fold (sdiv c1, c2) -> c1/c2
1175  if (N0C && N1C && !N1C->isNullValue())
1176    return DAG.getNode(ISD::SDIV, VT, N0, N1);
1177  // fold (sdiv X, 1) -> X
1178  if (N1C && N1C->getSignExtended() == 1LL)
1179    return N0;
1180  // fold (sdiv X, -1) -> 0-X
1181  if (N1C && N1C->isAllOnesValue())
1182    return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT), N0);
1183  // If we know the sign bits of both operands are zero, strength reduce to a
1184  // udiv instead.  Handles (X&15) /s 4 -> X&15 >> 2
1185  uint64_t SignBit = 1ULL << (MVT::getSizeInBits(VT)-1);
1186  if (DAG.MaskedValueIsZero(N1, SignBit) &&
1187      DAG.MaskedValueIsZero(N0, SignBit))
1188    return DAG.getNode(ISD::UDIV, N1.getValueType(), N0, N1);
1189  // fold (sdiv X, pow2) -> simple ops after legalize
1190  if (N1C && N1C->getValue() && !TLI.isIntDivCheap() &&
1191      (isPowerOf2_64(N1C->getSignExtended()) ||
1192       isPowerOf2_64(-N1C->getSignExtended()))) {
1193    // If dividing by powers of two is cheap, then don't perform the following
1194    // fold.
1195    if (TLI.isPow2DivCheap())
1196      return SDOperand();
1197    int64_t pow2 = N1C->getSignExtended();
1198    int64_t abs2 = pow2 > 0 ? pow2 : -pow2;
1199    unsigned lg2 = Log2_64(abs2);
1200    // Splat the sign bit into the register
1201    SDOperand SGN = DAG.getNode(ISD::SRA, VT, N0,
1202                                DAG.getConstant(MVT::getSizeInBits(VT)-1,
1203                                                TLI.getShiftAmountTy()));
1204    AddToWorkList(SGN.Val);
1205    // Add (N0 < 0) ? abs2 - 1 : 0;
1206    SDOperand SRL = DAG.getNode(ISD::SRL, VT, SGN,
1207                                DAG.getConstant(MVT::getSizeInBits(VT)-lg2,
1208                                                TLI.getShiftAmountTy()));
1209    SDOperand ADD = DAG.getNode(ISD::ADD, VT, N0, SRL);
1210    AddToWorkList(SRL.Val);
1211    AddToWorkList(ADD.Val);    // Divide by pow2
1212    SDOperand SRA = DAG.getNode(ISD::SRA, VT, ADD,
1213                                DAG.getConstant(lg2, TLI.getShiftAmountTy()));
1214    // If we're dividing by a positive value, we're done.  Otherwise, we must
1215    // negate the result.
1216    if (pow2 > 0)
1217      return SRA;
1218    AddToWorkList(SRA.Val);
1219    return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT), SRA);
1220  }
1221  // if integer divide is expensive and we satisfy the requirements, emit an
1222  // alternate sequence.
1223  if (N1C && (N1C->getSignExtended() < -1 || N1C->getSignExtended() > 1) &&
1224      !TLI.isIntDivCheap()) {
1225    SDOperand Op = BuildSDIV(N);
1226    if (Op.Val) return Op;
1227  }
1228
1229  // undef / X -> 0
1230  if (N0.getOpcode() == ISD::UNDEF)
1231    return DAG.getConstant(0, VT);
1232  // X / undef -> undef
1233  if (N1.getOpcode() == ISD::UNDEF)
1234    return N1;
1235
1236  return SDOperand();
1237}
1238
1239SDOperand DAGCombiner::visitUDIV(SDNode *N) {
1240  SDOperand N0 = N->getOperand(0);
1241  SDOperand N1 = N->getOperand(1);
1242  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.Val);
1243  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1244  MVT::ValueType VT = N->getValueType(0);
1245
1246  // fold vector ops
1247  if (MVT::isVector(VT)) {
1248    SDOperand FoldedVOp = SimplifyVBinOp(N);
1249    if (FoldedVOp.Val) return FoldedVOp;
1250  }
1251
1252  // fold (udiv c1, c2) -> c1/c2
1253  if (N0C && N1C && !N1C->isNullValue())
1254    return DAG.getNode(ISD::UDIV, VT, N0, N1);
1255  // fold (udiv x, (1 << c)) -> x >>u c
1256  if (N1C && isPowerOf2_64(N1C->getValue()))
1257    return DAG.getNode(ISD::SRL, VT, N0,
1258                       DAG.getConstant(Log2_64(N1C->getValue()),
1259                                       TLI.getShiftAmountTy()));
1260  // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
1261  if (N1.getOpcode() == ISD::SHL) {
1262    if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
1263      if (isPowerOf2_64(SHC->getValue())) {
1264        MVT::ValueType ADDVT = N1.getOperand(1).getValueType();
1265        SDOperand Add = DAG.getNode(ISD::ADD, ADDVT, N1.getOperand(1),
1266                                    DAG.getConstant(Log2_64(SHC->getValue()),
1267                                                    ADDVT));
1268        AddToWorkList(Add.Val);
1269        return DAG.getNode(ISD::SRL, VT, N0, Add);
1270      }
1271    }
1272  }
1273  // fold (udiv x, c) -> alternate
1274  if (N1C && N1C->getValue() && !TLI.isIntDivCheap()) {
1275    SDOperand Op = BuildUDIV(N);
1276    if (Op.Val) return Op;
1277  }
1278
1279  // undef / X -> 0
1280  if (N0.getOpcode() == ISD::UNDEF)
1281    return DAG.getConstant(0, VT);
1282  // X / undef -> undef
1283  if (N1.getOpcode() == ISD::UNDEF)
1284    return N1;
1285
1286  return SDOperand();
1287}
1288
1289SDOperand DAGCombiner::visitSREM(SDNode *N) {
1290  SDOperand N0 = N->getOperand(0);
1291  SDOperand N1 = N->getOperand(1);
1292  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1293  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1294  MVT::ValueType VT = N->getValueType(0);
1295
1296  // fold (srem c1, c2) -> c1%c2
1297  if (N0C && N1C && !N1C->isNullValue())
1298    return DAG.getNode(ISD::SREM, VT, N0, N1);
1299  // If we know the sign bits of both operands are zero, strength reduce to a
1300  // urem instead.  Handles (X & 0x0FFFFFFF) %s 16 -> X&15
1301  uint64_t SignBit = 1ULL << (MVT::getSizeInBits(VT)-1);
1302  if (DAG.MaskedValueIsZero(N1, SignBit) &&
1303      DAG.MaskedValueIsZero(N0, SignBit))
1304    return DAG.getNode(ISD::UREM, VT, N0, N1);
1305
1306  // If X/C can be simplified by the division-by-constant logic, lower
1307  // X%C to the equivalent of X-X/C*C.
1308  if (N1C && !N1C->isNullValue()) {
1309    SDOperand Div = DAG.getNode(ISD::SDIV, VT, N0, N1);
1310    SDOperand OptimizedDiv = combine(Div.Val);
1311    if (OptimizedDiv.Val && OptimizedDiv.Val != Div.Val) {
1312      SDOperand Mul = DAG.getNode(ISD::MUL, VT, OptimizedDiv, N1);
1313      SDOperand Sub = DAG.getNode(ISD::SUB, VT, N0, Mul);
1314      AddToWorkList(Mul.Val);
1315      return Sub;
1316    }
1317  }
1318
1319  // undef % X -> 0
1320  if (N0.getOpcode() == ISD::UNDEF)
1321    return DAG.getConstant(0, VT);
1322  // X % undef -> undef
1323  if (N1.getOpcode() == ISD::UNDEF)
1324    return N1;
1325
1326  return SDOperand();
1327}
1328
1329SDOperand DAGCombiner::visitUREM(SDNode *N) {
1330  SDOperand N0 = N->getOperand(0);
1331  SDOperand N1 = N->getOperand(1);
1332  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1333  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1334  MVT::ValueType VT = N->getValueType(0);
1335
1336  // fold (urem c1, c2) -> c1%c2
1337  if (N0C && N1C && !N1C->isNullValue())
1338    return DAG.getNode(ISD::UREM, VT, N0, N1);
1339  // fold (urem x, pow2) -> (and x, pow2-1)
1340  if (N1C && !N1C->isNullValue() && isPowerOf2_64(N1C->getValue()))
1341    return DAG.getNode(ISD::AND, VT, N0, DAG.getConstant(N1C->getValue()-1,VT));
1342  // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1))
1343  if (N1.getOpcode() == ISD::SHL) {
1344    if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
1345      if (isPowerOf2_64(SHC->getValue())) {
1346        SDOperand Add = DAG.getNode(ISD::ADD, VT, N1,DAG.getConstant(~0ULL,VT));
1347        AddToWorkList(Add.Val);
1348        return DAG.getNode(ISD::AND, VT, N0, Add);
1349      }
1350    }
1351  }
1352
1353  // If X/C can be simplified by the division-by-constant logic, lower
1354  // X%C to the equivalent of X-X/C*C.
1355  if (N1C && !N1C->isNullValue()) {
1356    SDOperand Div = DAG.getNode(ISD::UDIV, VT, N0, N1);
1357    SDOperand OptimizedDiv = combine(Div.Val);
1358    if (OptimizedDiv.Val && OptimizedDiv.Val != Div.Val) {
1359      SDOperand Mul = DAG.getNode(ISD::MUL, VT, OptimizedDiv, N1);
1360      SDOperand Sub = DAG.getNode(ISD::SUB, VT, N0, Mul);
1361      AddToWorkList(Mul.Val);
1362      return Sub;
1363    }
1364  }
1365
1366  // undef % X -> 0
1367  if (N0.getOpcode() == ISD::UNDEF)
1368    return DAG.getConstant(0, VT);
1369  // X % undef -> undef
1370  if (N1.getOpcode() == ISD::UNDEF)
1371    return N1;
1372
1373  return SDOperand();
1374}
1375
1376SDOperand DAGCombiner::visitMULHS(SDNode *N) {
1377  SDOperand N0 = N->getOperand(0);
1378  SDOperand N1 = N->getOperand(1);
1379  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1380  MVT::ValueType VT = N->getValueType(0);
1381
1382  // fold (mulhs x, 0) -> 0
1383  if (N1C && N1C->isNullValue())
1384    return N1;
1385  // fold (mulhs x, 1) -> (sra x, size(x)-1)
1386  if (N1C && N1C->getValue() == 1)
1387    return DAG.getNode(ISD::SRA, N0.getValueType(), N0,
1388                       DAG.getConstant(MVT::getSizeInBits(N0.getValueType())-1,
1389                                       TLI.getShiftAmountTy()));
1390  // fold (mulhs x, undef) -> 0
1391  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1392    return DAG.getConstant(0, VT);
1393
1394  return SDOperand();
1395}
1396
1397SDOperand DAGCombiner::visitMULHU(SDNode *N) {
1398  SDOperand N0 = N->getOperand(0);
1399  SDOperand N1 = N->getOperand(1);
1400  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1401  MVT::ValueType VT = N->getValueType(0);
1402
1403  // fold (mulhu x, 0) -> 0
1404  if (N1C && N1C->isNullValue())
1405    return N1;
1406  // fold (mulhu x, 1) -> 0
1407  if (N1C && N1C->getValue() == 1)
1408    return DAG.getConstant(0, N0.getValueType());
1409  // fold (mulhu x, undef) -> 0
1410  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1411    return DAG.getConstant(0, VT);
1412
1413  return SDOperand();
1414}
1415
1416/// SimplifyNodeWithTwoResults - Perform optimizations common to nodes that
1417/// compute two values. LoOp and HiOp give the opcodes for the two computations
1418/// that are being performed. Return true if a simplification was made.
1419///
1420bool DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N,
1421                                             unsigned LoOp, unsigned HiOp) {
1422  // If the high half is not needed, just compute the low half.
1423  bool HiExists = N->hasAnyUseOfValue(1);
1424  if (!HiExists &&
1425      (!AfterLegalize ||
1426       TLI.isOperationLegal(LoOp, N->getValueType(0)))) {
1427    DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0),
1428                                  DAG.getNode(LoOp, N->getValueType(0),
1429                                              N->op_begin(),
1430                                              N->getNumOperands()));
1431    return true;
1432  }
1433
1434  // If the low half is not needed, just compute the high half.
1435  bool LoExists = N->hasAnyUseOfValue(0);
1436  if (!LoExists &&
1437      (!AfterLegalize ||
1438       TLI.isOperationLegal(HiOp, N->getValueType(1)))) {
1439    DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 1),
1440                                  DAG.getNode(HiOp, N->getValueType(1),
1441                                              N->op_begin(),
1442                                              N->getNumOperands()));
1443    return true;
1444  }
1445
1446  // If both halves are used, return as it is.
1447  if (LoExists && HiExists)
1448    return false;
1449
1450  // If the two computed results can be simplified separately, separate them.
1451  bool RetVal = false;
1452  if (LoExists) {
1453    SDOperand Lo = DAG.getNode(LoOp, N->getValueType(0),
1454                               N->op_begin(), N->getNumOperands());
1455    SDOperand LoOpt = combine(Lo.Val);
1456    if (LoOpt.Val && LoOpt != Lo &&
1457        TLI.isOperationLegal(LoOpt.getOpcode(), LoOpt.getValueType())) {
1458      RetVal = true;
1459      DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0), LoOpt);
1460    } else
1461      DAG.DeleteNode(Lo.Val);
1462  }
1463
1464  if (HiExists) {
1465    SDOperand Hi = DAG.getNode(HiOp, N->getValueType(1),
1466                               N->op_begin(), N->getNumOperands());
1467    SDOperand HiOpt = combine(Hi.Val);
1468    if (HiOpt.Val && HiOpt != Hi &&
1469        TLI.isOperationLegal(HiOpt.getOpcode(), HiOpt.getValueType())) {
1470      RetVal = true;
1471      DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 1), HiOpt);
1472    } else
1473      DAG.DeleteNode(Hi.Val);
1474  }
1475
1476  return RetVal;
1477}
1478
1479SDOperand DAGCombiner::visitSMUL_LOHI(SDNode *N) {
1480
1481  if (SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHS))
1482    return SDOperand();
1483
1484  return SDOperand();
1485}
1486
1487SDOperand DAGCombiner::visitUMUL_LOHI(SDNode *N) {
1488
1489  if (SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHU))
1490    return SDOperand();
1491
1492  return SDOperand();
1493}
1494
1495SDOperand DAGCombiner::visitSDIVREM(SDNode *N) {
1496
1497  if (SimplifyNodeWithTwoResults(N, ISD::SDIV, ISD::SREM))
1498    return SDOperand();
1499
1500  return SDOperand();
1501}
1502
1503SDOperand DAGCombiner::visitUDIVREM(SDNode *N) {
1504
1505  if (SimplifyNodeWithTwoResults(N, ISD::UDIV, ISD::UREM))
1506    return SDOperand();
1507
1508  return SDOperand();
1509}
1510
1511/// SimplifyBinOpWithSameOpcodeHands - If this is a binary operator with
1512/// two operands of the same opcode, try to simplify it.
1513SDOperand DAGCombiner::SimplifyBinOpWithSameOpcodeHands(SDNode *N) {
1514  SDOperand N0 = N->getOperand(0), N1 = N->getOperand(1);
1515  MVT::ValueType VT = N0.getValueType();
1516  assert(N0.getOpcode() == N1.getOpcode() && "Bad input!");
1517
1518  // For each of OP in AND/OR/XOR:
1519  // fold (OP (zext x), (zext y)) -> (zext (OP x, y))
1520  // fold (OP (sext x), (sext y)) -> (sext (OP x, y))
1521  // fold (OP (aext x), (aext y)) -> (aext (OP x, y))
1522  // fold (OP (trunc x), (trunc y)) -> (trunc (OP x, y))
1523  if ((N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND||
1524       N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::TRUNCATE) &&
1525      N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()) {
1526    SDOperand ORNode = DAG.getNode(N->getOpcode(),
1527                                   N0.getOperand(0).getValueType(),
1528                                   N0.getOperand(0), N1.getOperand(0));
1529    AddToWorkList(ORNode.Val);
1530    return DAG.getNode(N0.getOpcode(), VT, ORNode);
1531  }
1532
1533  // For each of OP in SHL/SRL/SRA/AND...
1534  //   fold (and (OP x, z), (OP y, z)) -> (OP (and x, y), z)
1535  //   fold (or  (OP x, z), (OP y, z)) -> (OP (or  x, y), z)
1536  //   fold (xor (OP x, z), (OP y, z)) -> (OP (xor x, y), z)
1537  if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL ||
1538       N0.getOpcode() == ISD::SRA || N0.getOpcode() == ISD::AND) &&
1539      N0.getOperand(1) == N1.getOperand(1)) {
1540    SDOperand ORNode = DAG.getNode(N->getOpcode(),
1541                                   N0.getOperand(0).getValueType(),
1542                                   N0.getOperand(0), N1.getOperand(0));
1543    AddToWorkList(ORNode.Val);
1544    return DAG.getNode(N0.getOpcode(), VT, ORNode, N0.getOperand(1));
1545  }
1546
1547  return SDOperand();
1548}
1549
1550SDOperand DAGCombiner::visitAND(SDNode *N) {
1551  SDOperand N0 = N->getOperand(0);
1552  SDOperand N1 = N->getOperand(1);
1553  SDOperand LL, LR, RL, RR, CC0, CC1;
1554  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1555  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1556  MVT::ValueType VT = N1.getValueType();
1557
1558  // fold vector ops
1559  if (MVT::isVector(VT)) {
1560    SDOperand FoldedVOp = SimplifyVBinOp(N);
1561    if (FoldedVOp.Val) return FoldedVOp;
1562  }
1563
1564  // fold (and x, undef) -> 0
1565  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1566    return DAG.getConstant(0, VT);
1567  // fold (and c1, c2) -> c1&c2
1568  if (N0C && N1C)
1569    return DAG.getNode(ISD::AND, VT, N0, N1);
1570  // canonicalize constant to RHS
1571  if (N0C && !N1C)
1572    return DAG.getNode(ISD::AND, VT, N1, N0);
1573  // fold (and x, -1) -> x
1574  if (N1C && N1C->isAllOnesValue())
1575    return N0;
1576  // if (and x, c) is known to be zero, return 0
1577  if (N1C && DAG.MaskedValueIsZero(SDOperand(N, 0), MVT::getIntVTBitMask(VT)))
1578    return DAG.getConstant(0, VT);
1579  // reassociate and
1580  SDOperand RAND = ReassociateOps(ISD::AND, N0, N1);
1581  if (RAND.Val != 0)
1582    return RAND;
1583  // fold (and (or x, 0xFFFF), 0xFF) -> 0xFF
1584  if (N1C && N0.getOpcode() == ISD::OR)
1585    if (ConstantSDNode *ORI = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
1586      if ((ORI->getValue() & N1C->getValue()) == N1C->getValue())
1587        return N1;
1588  // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits.
1589  if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
1590    unsigned InMask = MVT::getIntVTBitMask(N0.getOperand(0).getValueType());
1591    if (DAG.MaskedValueIsZero(N0.getOperand(0),
1592                              ~N1C->getValue() & InMask)) {
1593      SDOperand Zext = DAG.getNode(ISD::ZERO_EXTEND, N0.getValueType(),
1594                                   N0.getOperand(0));
1595
1596      // Replace uses of the AND with uses of the Zero extend node.
1597      CombineTo(N, Zext);
1598
1599      // We actually want to replace all uses of the any_extend with the
1600      // zero_extend, to avoid duplicating things.  This will later cause this
1601      // AND to be folded.
1602      CombineTo(N0.Val, Zext);
1603      return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
1604    }
1605  }
1606  // fold (and (setcc x), (setcc y)) -> (setcc (and x, y))
1607  if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
1608    ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
1609    ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
1610
1611    if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
1612        MVT::isInteger(LL.getValueType())) {
1613      // fold (X == 0) & (Y == 0) -> (X|Y == 0)
1614      if (cast<ConstantSDNode>(LR)->getValue() == 0 && Op1 == ISD::SETEQ) {
1615        SDOperand ORNode = DAG.getNode(ISD::OR, LR.getValueType(), LL, RL);
1616        AddToWorkList(ORNode.Val);
1617        return DAG.getSetCC(VT, ORNode, LR, Op1);
1618      }
1619      // fold (X == -1) & (Y == -1) -> (X&Y == -1)
1620      if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETEQ) {
1621        SDOperand ANDNode = DAG.getNode(ISD::AND, LR.getValueType(), LL, RL);
1622        AddToWorkList(ANDNode.Val);
1623        return DAG.getSetCC(VT, ANDNode, LR, Op1);
1624      }
1625      // fold (X >  -1) & (Y >  -1) -> (X|Y > -1)
1626      if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETGT) {
1627        SDOperand ORNode = DAG.getNode(ISD::OR, LR.getValueType(), LL, RL);
1628        AddToWorkList(ORNode.Val);
1629        return DAG.getSetCC(VT, ORNode, LR, Op1);
1630      }
1631    }
1632    // canonicalize equivalent to ll == rl
1633    if (LL == RR && LR == RL) {
1634      Op1 = ISD::getSetCCSwappedOperands(Op1);
1635      std::swap(RL, RR);
1636    }
1637    if (LL == RL && LR == RR) {
1638      bool isInteger = MVT::isInteger(LL.getValueType());
1639      ISD::CondCode Result = ISD::getSetCCAndOperation(Op0, Op1, isInteger);
1640      if (Result != ISD::SETCC_INVALID)
1641        return DAG.getSetCC(N0.getValueType(), LL, LR, Result);
1642    }
1643  }
1644
1645  // Simplify: and (op x...), (op y...)  -> (op (and x, y))
1646  if (N0.getOpcode() == N1.getOpcode()) {
1647    SDOperand Tmp = SimplifyBinOpWithSameOpcodeHands(N);
1648    if (Tmp.Val) return Tmp;
1649  }
1650
1651  // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1)
1652  // fold (and (sra)) -> (and (srl)) when possible.
1653  if (!MVT::isVector(VT) &&
1654      SimplifyDemandedBits(SDOperand(N, 0)))
1655    return SDOperand(N, 0);
1656  // fold (zext_inreg (extload x)) -> (zextload x)
1657  if (ISD::isEXTLoad(N0.Val) && ISD::isUNINDEXEDLoad(N0.Val)) {
1658    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
1659    MVT::ValueType EVT = LN0->getLoadedVT();
1660    // If we zero all the possible extended bits, then we can turn this into
1661    // a zextload if we are running before legalize or the operation is legal.
1662    if (DAG.MaskedValueIsZero(N1, ~0ULL << MVT::getSizeInBits(EVT)) &&
1663        (!AfterLegalize || TLI.isLoadXLegal(ISD::ZEXTLOAD, EVT))) {
1664      SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(),
1665                                         LN0->getBasePtr(), LN0->getSrcValue(),
1666                                         LN0->getSrcValueOffset(), EVT,
1667                                         LN0->isVolatile(),
1668                                         LN0->getAlignment());
1669      AddToWorkList(N);
1670      CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1));
1671      return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
1672    }
1673  }
1674  // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use
1675  if (ISD::isSEXTLoad(N0.Val) && ISD::isUNINDEXEDLoad(N0.Val) &&
1676      N0.hasOneUse()) {
1677    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
1678    MVT::ValueType EVT = LN0->getLoadedVT();
1679    // If we zero all the possible extended bits, then we can turn this into
1680    // a zextload if we are running before legalize or the operation is legal.
1681    if (DAG.MaskedValueIsZero(N1, ~0ULL << MVT::getSizeInBits(EVT)) &&
1682        (!AfterLegalize || TLI.isLoadXLegal(ISD::ZEXTLOAD, EVT))) {
1683      SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(),
1684                                         LN0->getBasePtr(), LN0->getSrcValue(),
1685                                         LN0->getSrcValueOffset(), EVT,
1686                                         LN0->isVolatile(),
1687                                         LN0->getAlignment());
1688      AddToWorkList(N);
1689      CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1));
1690      return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
1691    }
1692  }
1693
1694  // fold (and (load x), 255) -> (zextload x, i8)
1695  // fold (and (extload x, i16), 255) -> (zextload x, i8)
1696  if (N1C && N0.getOpcode() == ISD::LOAD) {
1697    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
1698    if (LN0->getExtensionType() != ISD::SEXTLOAD &&
1699        LN0->isUnindexed() && N0.hasOneUse()) {
1700      MVT::ValueType EVT, LoadedVT;
1701      if (N1C->getValue() == 255)
1702        EVT = MVT::i8;
1703      else if (N1C->getValue() == 65535)
1704        EVT = MVT::i16;
1705      else if (N1C->getValue() == ~0U)
1706        EVT = MVT::i32;
1707      else
1708        EVT = MVT::Other;
1709
1710      LoadedVT = LN0->getLoadedVT();
1711      if (EVT != MVT::Other && LoadedVT > EVT &&
1712          (!AfterLegalize || TLI.isLoadXLegal(ISD::ZEXTLOAD, EVT))) {
1713        MVT::ValueType PtrType = N0.getOperand(1).getValueType();
1714        // For big endian targets, we need to add an offset to the pointer to
1715        // load the correct bytes.  For little endian systems, we merely need to
1716        // read fewer bytes from the same pointer.
1717        unsigned LVTStoreBytes = MVT::getStoreSizeInBits(LoadedVT)/8;
1718        unsigned EVTStoreBytes = MVT::getStoreSizeInBits(EVT)/8;
1719        unsigned PtrOff = LVTStoreBytes - EVTStoreBytes;
1720        unsigned Alignment = LN0->getAlignment();
1721        SDOperand NewPtr = LN0->getBasePtr();
1722        if (!TLI.isLittleEndian()) {
1723          NewPtr = DAG.getNode(ISD::ADD, PtrType, NewPtr,
1724                               DAG.getConstant(PtrOff, PtrType));
1725          Alignment = MinAlign(Alignment, PtrOff);
1726        }
1727        AddToWorkList(NewPtr.Val);
1728        SDOperand Load =
1729          DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(), NewPtr,
1730                         LN0->getSrcValue(), LN0->getSrcValueOffset(), EVT,
1731                         LN0->isVolatile(), Alignment);
1732        AddToWorkList(N);
1733        CombineTo(N0.Val, Load, Load.getValue(1));
1734        return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
1735      }
1736    }
1737  }
1738
1739  return SDOperand();
1740}
1741
1742SDOperand DAGCombiner::visitOR(SDNode *N) {
1743  SDOperand N0 = N->getOperand(0);
1744  SDOperand N1 = N->getOperand(1);
1745  SDOperand LL, LR, RL, RR, CC0, CC1;
1746  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1747  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1748  MVT::ValueType VT = N1.getValueType();
1749  unsigned OpSizeInBits = MVT::getSizeInBits(VT);
1750
1751  // fold vector ops
1752  if (MVT::isVector(VT)) {
1753    SDOperand FoldedVOp = SimplifyVBinOp(N);
1754    if (FoldedVOp.Val) return FoldedVOp;
1755  }
1756
1757  // fold (or x, undef) -> -1
1758  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1759    return DAG.getConstant(~0ULL, VT);
1760  // fold (or c1, c2) -> c1|c2
1761  if (N0C && N1C)
1762    return DAG.getNode(ISD::OR, VT, N0, N1);
1763  // canonicalize constant to RHS
1764  if (N0C && !N1C)
1765    return DAG.getNode(ISD::OR, VT, N1, N0);
1766  // fold (or x, 0) -> x
1767  if (N1C && N1C->isNullValue())
1768    return N0;
1769  // fold (or x, -1) -> -1
1770  if (N1C && N1C->isAllOnesValue())
1771    return N1;
1772  // fold (or x, c) -> c iff (x & ~c) == 0
1773  if (N1C &&
1774      DAG.MaskedValueIsZero(N0,~N1C->getValue() & (~0ULL>>(64-OpSizeInBits))))
1775    return N1;
1776  // reassociate or
1777  SDOperand ROR = ReassociateOps(ISD::OR, N0, N1);
1778  if (ROR.Val != 0)
1779    return ROR;
1780  // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2)
1781  if (N1C && N0.getOpcode() == ISD::AND && N0.Val->hasOneUse() &&
1782             isa<ConstantSDNode>(N0.getOperand(1))) {
1783    ConstantSDNode *C1 = cast<ConstantSDNode>(N0.getOperand(1));
1784    return DAG.getNode(ISD::AND, VT, DAG.getNode(ISD::OR, VT, N0.getOperand(0),
1785                                                 N1),
1786                       DAG.getConstant(N1C->getValue() | C1->getValue(), VT));
1787  }
1788  // fold (or (setcc x), (setcc y)) -> (setcc (or x, y))
1789  if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
1790    ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
1791    ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
1792
1793    if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
1794        MVT::isInteger(LL.getValueType())) {
1795      // fold (X != 0) | (Y != 0) -> (X|Y != 0)
1796      // fold (X <  0) | (Y <  0) -> (X|Y < 0)
1797      if (cast<ConstantSDNode>(LR)->getValue() == 0 &&
1798          (Op1 == ISD::SETNE || Op1 == ISD::SETLT)) {
1799        SDOperand ORNode = DAG.getNode(ISD::OR, LR.getValueType(), LL, RL);
1800        AddToWorkList(ORNode.Val);
1801        return DAG.getSetCC(VT, ORNode, LR, Op1);
1802      }
1803      // fold (X != -1) | (Y != -1) -> (X&Y != -1)
1804      // fold (X >  -1) | (Y >  -1) -> (X&Y >  -1)
1805      if (cast<ConstantSDNode>(LR)->isAllOnesValue() &&
1806          (Op1 == ISD::SETNE || Op1 == ISD::SETGT)) {
1807        SDOperand ANDNode = DAG.getNode(ISD::AND, LR.getValueType(), LL, RL);
1808        AddToWorkList(ANDNode.Val);
1809        return DAG.getSetCC(VT, ANDNode, LR, Op1);
1810      }
1811    }
1812    // canonicalize equivalent to ll == rl
1813    if (LL == RR && LR == RL) {
1814      Op1 = ISD::getSetCCSwappedOperands(Op1);
1815      std::swap(RL, RR);
1816    }
1817    if (LL == RL && LR == RR) {
1818      bool isInteger = MVT::isInteger(LL.getValueType());
1819      ISD::CondCode Result = ISD::getSetCCOrOperation(Op0, Op1, isInteger);
1820      if (Result != ISD::SETCC_INVALID)
1821        return DAG.getSetCC(N0.getValueType(), LL, LR, Result);
1822    }
1823  }
1824
1825  // Simplify: or (op x...), (op y...)  -> (op (or x, y))
1826  if (N0.getOpcode() == N1.getOpcode()) {
1827    SDOperand Tmp = SimplifyBinOpWithSameOpcodeHands(N);
1828    if (Tmp.Val) return Tmp;
1829  }
1830
1831  // (X & C1) | (Y & C2)  -> (X|Y) & C3  if possible.
1832  if (N0.getOpcode() == ISD::AND &&
1833      N1.getOpcode() == ISD::AND &&
1834      N0.getOperand(1).getOpcode() == ISD::Constant &&
1835      N1.getOperand(1).getOpcode() == ISD::Constant &&
1836      // Don't increase # computations.
1837      (N0.Val->hasOneUse() || N1.Val->hasOneUse())) {
1838    // We can only do this xform if we know that bits from X that are set in C2
1839    // but not in C1 are already zero.  Likewise for Y.
1840    uint64_t LHSMask = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
1841    uint64_t RHSMask = cast<ConstantSDNode>(N1.getOperand(1))->getValue();
1842
1843    if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) &&
1844        DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) {
1845      SDOperand X =DAG.getNode(ISD::OR, VT, N0.getOperand(0), N1.getOperand(0));
1846      return DAG.getNode(ISD::AND, VT, X, DAG.getConstant(LHSMask|RHSMask, VT));
1847    }
1848  }
1849
1850
1851  // See if this is some rotate idiom.
1852  if (SDNode *Rot = MatchRotate(N0, N1))
1853    return SDOperand(Rot, 0);
1854
1855  return SDOperand();
1856}
1857
1858
1859/// MatchRotateHalf - Match "(X shl/srl V1) & V2" where V2 may not be present.
1860static bool MatchRotateHalf(SDOperand Op, SDOperand &Shift, SDOperand &Mask) {
1861  if (Op.getOpcode() == ISD::AND) {
1862    if (isa<ConstantSDNode>(Op.getOperand(1))) {
1863      Mask = Op.getOperand(1);
1864      Op = Op.getOperand(0);
1865    } else {
1866      return false;
1867    }
1868  }
1869
1870  if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) {
1871    Shift = Op;
1872    return true;
1873  }
1874  return false;
1875}
1876
1877
1878// MatchRotate - Handle an 'or' of two operands.  If this is one of the many
1879// idioms for rotate, and if the target supports rotation instructions, generate
1880// a rot[lr].
1881SDNode *DAGCombiner::MatchRotate(SDOperand LHS, SDOperand RHS) {
1882  // Must be a legal type.  Expanded an promoted things won't work with rotates.
1883  MVT::ValueType VT = LHS.getValueType();
1884  if (!TLI.isTypeLegal(VT)) return 0;
1885
1886  // The target must have at least one rotate flavor.
1887  bool HasROTL = TLI.isOperationLegal(ISD::ROTL, VT);
1888  bool HasROTR = TLI.isOperationLegal(ISD::ROTR, VT);
1889  if (!HasROTL && !HasROTR) return 0;
1890
1891  // Match "(X shl/srl V1) & V2" where V2 may not be present.
1892  SDOperand LHSShift;   // The shift.
1893  SDOperand LHSMask;    // AND value if any.
1894  if (!MatchRotateHalf(LHS, LHSShift, LHSMask))
1895    return 0; // Not part of a rotate.
1896
1897  SDOperand RHSShift;   // The shift.
1898  SDOperand RHSMask;    // AND value if any.
1899  if (!MatchRotateHalf(RHS, RHSShift, RHSMask))
1900    return 0; // Not part of a rotate.
1901
1902  if (LHSShift.getOperand(0) != RHSShift.getOperand(0))
1903    return 0;   // Not shifting the same value.
1904
1905  if (LHSShift.getOpcode() == RHSShift.getOpcode())
1906    return 0;   // Shifts must disagree.
1907
1908  // Canonicalize shl to left side in a shl/srl pair.
1909  if (RHSShift.getOpcode() == ISD::SHL) {
1910    std::swap(LHS, RHS);
1911    std::swap(LHSShift, RHSShift);
1912    std::swap(LHSMask , RHSMask );
1913  }
1914
1915  unsigned OpSizeInBits = MVT::getSizeInBits(VT);
1916  SDOperand LHSShiftArg = LHSShift.getOperand(0);
1917  SDOperand LHSShiftAmt = LHSShift.getOperand(1);
1918  SDOperand RHSShiftAmt = RHSShift.getOperand(1);
1919
1920  // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1)
1921  // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2)
1922  if (LHSShiftAmt.getOpcode() == ISD::Constant &&
1923      RHSShiftAmt.getOpcode() == ISD::Constant) {
1924    uint64_t LShVal = cast<ConstantSDNode>(LHSShiftAmt)->getValue();
1925    uint64_t RShVal = cast<ConstantSDNode>(RHSShiftAmt)->getValue();
1926    if ((LShVal + RShVal) != OpSizeInBits)
1927      return 0;
1928
1929    SDOperand Rot;
1930    if (HasROTL)
1931      Rot = DAG.getNode(ISD::ROTL, VT, LHSShiftArg, LHSShiftAmt);
1932    else
1933      Rot = DAG.getNode(ISD::ROTR, VT, LHSShiftArg, RHSShiftAmt);
1934
1935    // If there is an AND of either shifted operand, apply it to the result.
1936    if (LHSMask.Val || RHSMask.Val) {
1937      uint64_t Mask = MVT::getIntVTBitMask(VT);
1938
1939      if (LHSMask.Val) {
1940        uint64_t RHSBits = (1ULL << LShVal)-1;
1941        Mask &= cast<ConstantSDNode>(LHSMask)->getValue() | RHSBits;
1942      }
1943      if (RHSMask.Val) {
1944        uint64_t LHSBits = ~((1ULL << (OpSizeInBits-RShVal))-1);
1945        Mask &= cast<ConstantSDNode>(RHSMask)->getValue() | LHSBits;
1946      }
1947
1948      Rot = DAG.getNode(ISD::AND, VT, Rot, DAG.getConstant(Mask, VT));
1949    }
1950
1951    return Rot.Val;
1952  }
1953
1954  // If there is a mask here, and we have a variable shift, we can't be sure
1955  // that we're masking out the right stuff.
1956  if (LHSMask.Val || RHSMask.Val)
1957    return 0;
1958
1959  // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotl x, y)
1960  // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotr x, (sub 32, y))
1961  if (RHSShiftAmt.getOpcode() == ISD::SUB &&
1962      LHSShiftAmt == RHSShiftAmt.getOperand(1)) {
1963    if (ConstantSDNode *SUBC =
1964          dyn_cast<ConstantSDNode>(RHSShiftAmt.getOperand(0))) {
1965      if (SUBC->getValue() == OpSizeInBits)
1966        if (HasROTL)
1967          return DAG.getNode(ISD::ROTL, VT, LHSShiftArg, LHSShiftAmt).Val;
1968        else
1969          return DAG.getNode(ISD::ROTR, VT, LHSShiftArg, RHSShiftAmt).Val;
1970    }
1971  }
1972
1973  // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotr x, y)
1974  // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotl x, (sub 32, y))
1975  if (LHSShiftAmt.getOpcode() == ISD::SUB &&
1976      RHSShiftAmt == LHSShiftAmt.getOperand(1)) {
1977    if (ConstantSDNode *SUBC =
1978          dyn_cast<ConstantSDNode>(LHSShiftAmt.getOperand(0))) {
1979      if (SUBC->getValue() == OpSizeInBits)
1980        if (HasROTL)
1981          return DAG.getNode(ISD::ROTL, VT, LHSShiftArg, LHSShiftAmt).Val;
1982        else
1983          return DAG.getNode(ISD::ROTR, VT, LHSShiftArg, RHSShiftAmt).Val;
1984    }
1985  }
1986
1987  // Look for sign/zext/any-extended cases:
1988  if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND
1989       || LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND
1990       || LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND) &&
1991      (RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND
1992       || RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND
1993       || RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND)) {
1994    SDOperand LExtOp0 = LHSShiftAmt.getOperand(0);
1995    SDOperand RExtOp0 = RHSShiftAmt.getOperand(0);
1996    if (RExtOp0.getOpcode() == ISD::SUB &&
1997        RExtOp0.getOperand(1) == LExtOp0) {
1998      // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
1999      //   (rotr x, y)
2000      // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
2001      //   (rotl x, (sub 32, y))
2002      if (ConstantSDNode *SUBC = cast<ConstantSDNode>(RExtOp0.getOperand(0))) {
2003        if (SUBC->getValue() == OpSizeInBits) {
2004          if (HasROTL)
2005            return DAG.getNode(ISD::ROTL, VT, LHSShiftArg, LHSShiftAmt).Val;
2006          else
2007            return DAG.getNode(ISD::ROTR, VT, LHSShiftArg, RHSShiftAmt).Val;
2008        }
2009      }
2010    } else if (LExtOp0.getOpcode() == ISD::SUB &&
2011               RExtOp0 == LExtOp0.getOperand(1)) {
2012      // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext r))) ->
2013      //   (rotl x, y)
2014      // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext r))) ->
2015      //   (rotr x, (sub 32, y))
2016      if (ConstantSDNode *SUBC = cast<ConstantSDNode>(LExtOp0.getOperand(0))) {
2017        if (SUBC->getValue() == OpSizeInBits) {
2018          if (HasROTL)
2019            return DAG.getNode(ISD::ROTL, VT, LHSShiftArg, RHSShiftAmt).Val;
2020          else
2021            return DAG.getNode(ISD::ROTL, VT, LHSShiftArg, LHSShiftAmt).Val;
2022        }
2023      }
2024    }
2025  }
2026
2027  return 0;
2028}
2029
2030
2031SDOperand DAGCombiner::visitXOR(SDNode *N) {
2032  SDOperand N0 = N->getOperand(0);
2033  SDOperand N1 = N->getOperand(1);
2034  SDOperand LHS, RHS, CC;
2035  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2036  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2037  MVT::ValueType VT = N0.getValueType();
2038
2039  // fold vector ops
2040  if (MVT::isVector(VT)) {
2041    SDOperand FoldedVOp = SimplifyVBinOp(N);
2042    if (FoldedVOp.Val) return FoldedVOp;
2043  }
2044
2045  // fold (xor x, undef) -> undef
2046  if (N0.getOpcode() == ISD::UNDEF)
2047    return N0;
2048  if (N1.getOpcode() == ISD::UNDEF)
2049    return N1;
2050  // fold (xor c1, c2) -> c1^c2
2051  if (N0C && N1C)
2052    return DAG.getNode(ISD::XOR, VT, N0, N1);
2053  // canonicalize constant to RHS
2054  if (N0C && !N1C)
2055    return DAG.getNode(ISD::XOR, VT, N1, N0);
2056  // fold (xor x, 0) -> x
2057  if (N1C && N1C->isNullValue())
2058    return N0;
2059  // reassociate xor
2060  SDOperand RXOR = ReassociateOps(ISD::XOR, N0, N1);
2061  if (RXOR.Val != 0)
2062    return RXOR;
2063  // fold !(x cc y) -> (x !cc y)
2064  if (N1C && N1C->getValue() == 1 && isSetCCEquivalent(N0, LHS, RHS, CC)) {
2065    bool isInt = MVT::isInteger(LHS.getValueType());
2066    ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
2067                                               isInt);
2068    if (N0.getOpcode() == ISD::SETCC)
2069      return DAG.getSetCC(VT, LHS, RHS, NotCC);
2070    if (N0.getOpcode() == ISD::SELECT_CC)
2071      return DAG.getSelectCC(LHS, RHS, N0.getOperand(2),N0.getOperand(3),NotCC);
2072    assert(0 && "Unhandled SetCC Equivalent!");
2073    abort();
2074  }
2075  // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y)))
2076  if (N1C && N1C->getValue() == 1 && N0.getOpcode() == ISD::ZERO_EXTEND &&
2077      N0.Val->hasOneUse() && isSetCCEquivalent(N0.getOperand(0), LHS, RHS, CC)){
2078    SDOperand V = N0.getOperand(0);
2079    V = DAG.getNode(ISD::XOR, V.getValueType(), V,
2080                    DAG.getConstant(1, V.getValueType()));
2081    AddToWorkList(V.Val);
2082    return DAG.getNode(ISD::ZERO_EXTEND, VT, V);
2083  }
2084
2085  // fold !(x or y) -> (!x and !y) iff x or y are setcc
2086  if (N1C && N1C->getValue() == 1 && VT == MVT::i1 &&
2087      (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
2088    SDOperand LHS = N0.getOperand(0), RHS = N0.getOperand(1);
2089    if (isOneUseSetCC(RHS) || isOneUseSetCC(LHS)) {
2090      unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
2091      LHS = DAG.getNode(ISD::XOR, VT, LHS, N1);  // RHS = ~LHS
2092      RHS = DAG.getNode(ISD::XOR, VT, RHS, N1);  // RHS = ~RHS
2093      AddToWorkList(LHS.Val); AddToWorkList(RHS.Val);
2094      return DAG.getNode(NewOpcode, VT, LHS, RHS);
2095    }
2096  }
2097  // fold !(x or y) -> (!x and !y) iff x or y are constants
2098  if (N1C && N1C->isAllOnesValue() &&
2099      (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
2100    SDOperand LHS = N0.getOperand(0), RHS = N0.getOperand(1);
2101    if (isa<ConstantSDNode>(RHS) || isa<ConstantSDNode>(LHS)) {
2102      unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
2103      LHS = DAG.getNode(ISD::XOR, VT, LHS, N1);  // RHS = ~LHS
2104      RHS = DAG.getNode(ISD::XOR, VT, RHS, N1);  // RHS = ~RHS
2105      AddToWorkList(LHS.Val); AddToWorkList(RHS.Val);
2106      return DAG.getNode(NewOpcode, VT, LHS, RHS);
2107    }
2108  }
2109  // fold (xor (xor x, c1), c2) -> (xor x, c1^c2)
2110  if (N1C && N0.getOpcode() == ISD::XOR) {
2111    ConstantSDNode *N00C = dyn_cast<ConstantSDNode>(N0.getOperand(0));
2112    ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
2113    if (N00C)
2114      return DAG.getNode(ISD::XOR, VT, N0.getOperand(1),
2115                         DAG.getConstant(N1C->getValue()^N00C->getValue(), VT));
2116    if (N01C)
2117      return DAG.getNode(ISD::XOR, VT, N0.getOperand(0),
2118                         DAG.getConstant(N1C->getValue()^N01C->getValue(), VT));
2119  }
2120  // fold (xor x, x) -> 0
2121  if (N0 == N1) {
2122    if (!MVT::isVector(VT)) {
2123      return DAG.getConstant(0, VT);
2124    } else if (!AfterLegalize || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) {
2125      // Produce a vector of zeros.
2126      SDOperand El = DAG.getConstant(0, MVT::getVectorElementType(VT));
2127      std::vector<SDOperand> Ops(MVT::getVectorNumElements(VT), El);
2128      return DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
2129    }
2130  }
2131
2132  // Simplify: xor (op x...), (op y...)  -> (op (xor x, y))
2133  if (N0.getOpcode() == N1.getOpcode()) {
2134    SDOperand Tmp = SimplifyBinOpWithSameOpcodeHands(N);
2135    if (Tmp.Val) return Tmp;
2136  }
2137
2138  // Simplify the expression using non-local knowledge.
2139  if (!MVT::isVector(VT) &&
2140      SimplifyDemandedBits(SDOperand(N, 0)))
2141    return SDOperand(N, 0);
2142
2143  return SDOperand();
2144}
2145
2146/// visitShiftByConstant - Handle transforms common to the three shifts, when
2147/// the shift amount is a constant.
2148SDOperand DAGCombiner::visitShiftByConstant(SDNode *N, unsigned Amt) {
2149  SDNode *LHS = N->getOperand(0).Val;
2150  if (!LHS->hasOneUse()) return SDOperand();
2151
2152  // We want to pull some binops through shifts, so that we have (and (shift))
2153  // instead of (shift (and)), likewise for add, or, xor, etc.  This sort of
2154  // thing happens with address calculations, so it's important to canonicalize
2155  // it.
2156  bool HighBitSet = false;  // Can we transform this if the high bit is set?
2157
2158  switch (LHS->getOpcode()) {
2159  default: return SDOperand();
2160  case ISD::OR:
2161  case ISD::XOR:
2162    HighBitSet = false; // We can only transform sra if the high bit is clear.
2163    break;
2164  case ISD::AND:
2165    HighBitSet = true;  // We can only transform sra if the high bit is set.
2166    break;
2167  case ISD::ADD:
2168    if (N->getOpcode() != ISD::SHL)
2169      return SDOperand(); // only shl(add) not sr[al](add).
2170    HighBitSet = false; // We can only transform sra if the high bit is clear.
2171    break;
2172  }
2173
2174  // We require the RHS of the binop to be a constant as well.
2175  ConstantSDNode *BinOpCst = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
2176  if (!BinOpCst) return SDOperand();
2177
2178
2179  // FIXME: disable this for unless the input to the binop is a shift by a
2180  // constant.  If it is not a shift, it pessimizes some common cases like:
2181  //
2182  //void foo(int *X, int i) { X[i & 1235] = 1; }
2183  //int bar(int *X, int i) { return X[i & 255]; }
2184  SDNode *BinOpLHSVal = LHS->getOperand(0).Val;
2185  if ((BinOpLHSVal->getOpcode() != ISD::SHL &&
2186       BinOpLHSVal->getOpcode() != ISD::SRA &&
2187       BinOpLHSVal->getOpcode() != ISD::SRL) ||
2188      !isa<ConstantSDNode>(BinOpLHSVal->getOperand(1)))
2189    return SDOperand();
2190
2191  MVT::ValueType VT = N->getValueType(0);
2192
2193  // If this is a signed shift right, and the high bit is modified
2194  // by the logical operation, do not perform the transformation.
2195  // The highBitSet boolean indicates the value of the high bit of
2196  // the constant which would cause it to be modified for this
2197  // operation.
2198  if (N->getOpcode() == ISD::SRA) {
2199    uint64_t BinOpRHSSign = BinOpCst->getValue() >> MVT::getSizeInBits(VT)-1;
2200    if ((bool)BinOpRHSSign != HighBitSet)
2201      return SDOperand();
2202  }
2203
2204  // Fold the constants, shifting the binop RHS by the shift amount.
2205  SDOperand NewRHS = DAG.getNode(N->getOpcode(), N->getValueType(0),
2206                                 LHS->getOperand(1), N->getOperand(1));
2207
2208  // Create the new shift.
2209  SDOperand NewShift = DAG.getNode(N->getOpcode(), VT, LHS->getOperand(0),
2210                                   N->getOperand(1));
2211
2212  // Create the new binop.
2213  return DAG.getNode(LHS->getOpcode(), VT, NewShift, NewRHS);
2214}
2215
2216
2217SDOperand DAGCombiner::visitSHL(SDNode *N) {
2218  SDOperand N0 = N->getOperand(0);
2219  SDOperand N1 = N->getOperand(1);
2220  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2221  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2222  MVT::ValueType VT = N0.getValueType();
2223  unsigned OpSizeInBits = MVT::getSizeInBits(VT);
2224
2225  // fold (shl c1, c2) -> c1<<c2
2226  if (N0C && N1C)
2227    return DAG.getNode(ISD::SHL, VT, N0, N1);
2228  // fold (shl 0, x) -> 0
2229  if (N0C && N0C->isNullValue())
2230    return N0;
2231  // fold (shl x, c >= size(x)) -> undef
2232  if (N1C && N1C->getValue() >= OpSizeInBits)
2233    return DAG.getNode(ISD::UNDEF, VT);
2234  // fold (shl x, 0) -> x
2235  if (N1C && N1C->isNullValue())
2236    return N0;
2237  // if (shl x, c) is known to be zero, return 0
2238  if (DAG.MaskedValueIsZero(SDOperand(N, 0), MVT::getIntVTBitMask(VT)))
2239    return DAG.getConstant(0, VT);
2240  if (N1C && SimplifyDemandedBits(SDOperand(N, 0)))
2241    return SDOperand(N, 0);
2242  // fold (shl (shl x, c1), c2) -> 0 or (shl x, c1+c2)
2243  if (N1C && N0.getOpcode() == ISD::SHL &&
2244      N0.getOperand(1).getOpcode() == ISD::Constant) {
2245    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
2246    uint64_t c2 = N1C->getValue();
2247    if (c1 + c2 > OpSizeInBits)
2248      return DAG.getConstant(0, VT);
2249    return DAG.getNode(ISD::SHL, VT, N0.getOperand(0),
2250                       DAG.getConstant(c1 + c2, N1.getValueType()));
2251  }
2252  // fold (shl (srl x, c1), c2) -> (shl (and x, -1 << c1), c2-c1) or
2253  //                               (srl (and x, -1 << c1), c1-c2)
2254  if (N1C && N0.getOpcode() == ISD::SRL &&
2255      N0.getOperand(1).getOpcode() == ISD::Constant) {
2256    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
2257    uint64_t c2 = N1C->getValue();
2258    SDOperand Mask = DAG.getNode(ISD::AND, VT, N0.getOperand(0),
2259                                 DAG.getConstant(~0ULL << c1, VT));
2260    if (c2 > c1)
2261      return DAG.getNode(ISD::SHL, VT, Mask,
2262                         DAG.getConstant(c2-c1, N1.getValueType()));
2263    else
2264      return DAG.getNode(ISD::SRL, VT, Mask,
2265                         DAG.getConstant(c1-c2, N1.getValueType()));
2266  }
2267  // fold (shl (sra x, c1), c1) -> (and x, -1 << c1)
2268  if (N1C && N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1))
2269    return DAG.getNode(ISD::AND, VT, N0.getOperand(0),
2270                       DAG.getConstant(~0ULL << N1C->getValue(), VT));
2271
2272  return N1C ? visitShiftByConstant(N, N1C->getValue()) : SDOperand();
2273}
2274
2275SDOperand DAGCombiner::visitSRA(SDNode *N) {
2276  SDOperand N0 = N->getOperand(0);
2277  SDOperand N1 = N->getOperand(1);
2278  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2279  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2280  MVT::ValueType VT = N0.getValueType();
2281
2282  // fold (sra c1, c2) -> c1>>c2
2283  if (N0C && N1C)
2284    return DAG.getNode(ISD::SRA, VT, N0, N1);
2285  // fold (sra 0, x) -> 0
2286  if (N0C && N0C->isNullValue())
2287    return N0;
2288  // fold (sra -1, x) -> -1
2289  if (N0C && N0C->isAllOnesValue())
2290    return N0;
2291  // fold (sra x, c >= size(x)) -> undef
2292  if (N1C && N1C->getValue() >= MVT::getSizeInBits(VT))
2293    return DAG.getNode(ISD::UNDEF, VT);
2294  // fold (sra x, 0) -> x
2295  if (N1C && N1C->isNullValue())
2296    return N0;
2297  // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports
2298  // sext_inreg.
2299  if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) {
2300    unsigned LowBits = MVT::getSizeInBits(VT) - (unsigned)N1C->getValue();
2301    MVT::ValueType EVT;
2302    switch (LowBits) {
2303    default: EVT = MVT::Other; break;
2304    case  1: EVT = MVT::i1;    break;
2305    case  8: EVT = MVT::i8;    break;
2306    case 16: EVT = MVT::i16;   break;
2307    case 32: EVT = MVT::i32;   break;
2308    }
2309    if (EVT > MVT::Other && TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, EVT))
2310      return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, N0.getOperand(0),
2311                         DAG.getValueType(EVT));
2312  }
2313
2314  // fold (sra (sra x, c1), c2) -> (sra x, c1+c2)
2315  if (N1C && N0.getOpcode() == ISD::SRA) {
2316    if (ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2317      unsigned Sum = N1C->getValue() + C1->getValue();
2318      if (Sum >= MVT::getSizeInBits(VT)) Sum = MVT::getSizeInBits(VT)-1;
2319      return DAG.getNode(ISD::SRA, VT, N0.getOperand(0),
2320                         DAG.getConstant(Sum, N1C->getValueType(0)));
2321    }
2322  }
2323
2324  // Simplify, based on bits shifted out of the LHS.
2325  if (N1C && SimplifyDemandedBits(SDOperand(N, 0)))
2326    return SDOperand(N, 0);
2327
2328
2329  // If the sign bit is known to be zero, switch this to a SRL.
2330  if (DAG.MaskedValueIsZero(N0, MVT::getIntVTSignBit(VT)))
2331    return DAG.getNode(ISD::SRL, VT, N0, N1);
2332
2333  return N1C ? visitShiftByConstant(N, N1C->getValue()) : SDOperand();
2334}
2335
2336SDOperand DAGCombiner::visitSRL(SDNode *N) {
2337  SDOperand N0 = N->getOperand(0);
2338  SDOperand N1 = N->getOperand(1);
2339  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2340  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2341  MVT::ValueType VT = N0.getValueType();
2342  unsigned OpSizeInBits = MVT::getSizeInBits(VT);
2343
2344  // fold (srl c1, c2) -> c1 >>u c2
2345  if (N0C && N1C)
2346    return DAG.getNode(ISD::SRL, VT, N0, N1);
2347  // fold (srl 0, x) -> 0
2348  if (N0C && N0C->isNullValue())
2349    return N0;
2350  // fold (srl x, c >= size(x)) -> undef
2351  if (N1C && N1C->getValue() >= OpSizeInBits)
2352    return DAG.getNode(ISD::UNDEF, VT);
2353  // fold (srl x, 0) -> x
2354  if (N1C && N1C->isNullValue())
2355    return N0;
2356  // if (srl x, c) is known to be zero, return 0
2357  if (N1C && DAG.MaskedValueIsZero(SDOperand(N, 0), ~0ULL >> (64-OpSizeInBits)))
2358    return DAG.getConstant(0, VT);
2359
2360  // fold (srl (srl x, c1), c2) -> 0 or (srl x, c1+c2)
2361  if (N1C && N0.getOpcode() == ISD::SRL &&
2362      N0.getOperand(1).getOpcode() == ISD::Constant) {
2363    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
2364    uint64_t c2 = N1C->getValue();
2365    if (c1 + c2 > OpSizeInBits)
2366      return DAG.getConstant(0, VT);
2367    return DAG.getNode(ISD::SRL, VT, N0.getOperand(0),
2368                       DAG.getConstant(c1 + c2, N1.getValueType()));
2369  }
2370
2371  // fold (srl (anyextend x), c) -> (anyextend (srl x, c))
2372  if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
2373    // Shifting in all undef bits?
2374    MVT::ValueType SmallVT = N0.getOperand(0).getValueType();
2375    if (N1C->getValue() >= MVT::getSizeInBits(SmallVT))
2376      return DAG.getNode(ISD::UNDEF, VT);
2377
2378    SDOperand SmallShift = DAG.getNode(ISD::SRL, SmallVT, N0.getOperand(0), N1);
2379    AddToWorkList(SmallShift.Val);
2380    return DAG.getNode(ISD::ANY_EXTEND, VT, SmallShift);
2381  }
2382
2383  // fold (srl (sra X, Y), 31) -> (srl X, 31).  This srl only looks at the sign
2384  // bit, which is unmodified by sra.
2385  if (N1C && N1C->getValue()+1 == MVT::getSizeInBits(VT)) {
2386    if (N0.getOpcode() == ISD::SRA)
2387      return DAG.getNode(ISD::SRL, VT, N0.getOperand(0), N1);
2388  }
2389
2390  // fold (srl (ctlz x), "5") -> x  iff x has one bit set (the low bit).
2391  if (N1C && N0.getOpcode() == ISD::CTLZ &&
2392      N1C->getValue() == Log2_32(MVT::getSizeInBits(VT))) {
2393    uint64_t KnownZero, KnownOne, Mask = MVT::getIntVTBitMask(VT);
2394    DAG.ComputeMaskedBits(N0.getOperand(0), Mask, KnownZero, KnownOne);
2395
2396    // If any of the input bits are KnownOne, then the input couldn't be all
2397    // zeros, thus the result of the srl will always be zero.
2398    if (KnownOne) return DAG.getConstant(0, VT);
2399
2400    // If all of the bits input the to ctlz node are known to be zero, then
2401    // the result of the ctlz is "32" and the result of the shift is one.
2402    uint64_t UnknownBits = ~KnownZero & Mask;
2403    if (UnknownBits == 0) return DAG.getConstant(1, VT);
2404
2405    // Otherwise, check to see if there is exactly one bit input to the ctlz.
2406    if ((UnknownBits & (UnknownBits-1)) == 0) {
2407      // Okay, we know that only that the single bit specified by UnknownBits
2408      // could be set on input to the CTLZ node.  If this bit is set, the SRL
2409      // will return 0, if it is clear, it returns 1.  Change the CTLZ/SRL pair
2410      // to an SRL,XOR pair, which is likely to simplify more.
2411      unsigned ShAmt = CountTrailingZeros_64(UnknownBits);
2412      SDOperand Op = N0.getOperand(0);
2413      if (ShAmt) {
2414        Op = DAG.getNode(ISD::SRL, VT, Op,
2415                         DAG.getConstant(ShAmt, TLI.getShiftAmountTy()));
2416        AddToWorkList(Op.Val);
2417      }
2418      return DAG.getNode(ISD::XOR, VT, Op, DAG.getConstant(1, VT));
2419    }
2420  }
2421
2422  // fold operands of srl based on knowledge that the low bits are not
2423  // demanded.
2424  if (N1C && SimplifyDemandedBits(SDOperand(N, 0)))
2425    return SDOperand(N, 0);
2426
2427  return N1C ? visitShiftByConstant(N, N1C->getValue()) : SDOperand();
2428}
2429
2430SDOperand DAGCombiner::visitCTLZ(SDNode *N) {
2431  SDOperand N0 = N->getOperand(0);
2432  MVT::ValueType VT = N->getValueType(0);
2433
2434  // fold (ctlz c1) -> c2
2435  if (isa<ConstantSDNode>(N0))
2436    return DAG.getNode(ISD::CTLZ, VT, N0);
2437  return SDOperand();
2438}
2439
2440SDOperand DAGCombiner::visitCTTZ(SDNode *N) {
2441  SDOperand N0 = N->getOperand(0);
2442  MVT::ValueType VT = N->getValueType(0);
2443
2444  // fold (cttz c1) -> c2
2445  if (isa<ConstantSDNode>(N0))
2446    return DAG.getNode(ISD::CTTZ, VT, N0);
2447  return SDOperand();
2448}
2449
2450SDOperand DAGCombiner::visitCTPOP(SDNode *N) {
2451  SDOperand N0 = N->getOperand(0);
2452  MVT::ValueType VT = N->getValueType(0);
2453
2454  // fold (ctpop c1) -> c2
2455  if (isa<ConstantSDNode>(N0))
2456    return DAG.getNode(ISD::CTPOP, VT, N0);
2457  return SDOperand();
2458}
2459
2460SDOperand DAGCombiner::visitSELECT(SDNode *N) {
2461  SDOperand N0 = N->getOperand(0);
2462  SDOperand N1 = N->getOperand(1);
2463  SDOperand N2 = N->getOperand(2);
2464  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2465  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2466  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
2467  MVT::ValueType VT = N->getValueType(0);
2468  MVT::ValueType VT0 = N0.getValueType();
2469
2470  // fold select C, X, X -> X
2471  if (N1 == N2)
2472    return N1;
2473  // fold select true, X, Y -> X
2474  if (N0C && !N0C->isNullValue())
2475    return N1;
2476  // fold select false, X, Y -> Y
2477  if (N0C && N0C->isNullValue())
2478    return N2;
2479  // fold select C, 1, X -> C | X
2480  if (MVT::i1 == VT && N1C && N1C->getValue() == 1)
2481    return DAG.getNode(ISD::OR, VT, N0, N2);
2482  // fold select C, 0, 1 -> ~C
2483  if (MVT::isInteger(VT) && MVT::isInteger(VT0) &&
2484      N1C && N2C && N1C->isNullValue() && N2C->getValue() == 1) {
2485    SDOperand XORNode = DAG.getNode(ISD::XOR, VT0, N0, DAG.getConstant(1, VT0));
2486    if (VT == VT0)
2487      return XORNode;
2488    AddToWorkList(XORNode.Val);
2489    if (MVT::getSizeInBits(VT) > MVT::getSizeInBits(VT0))
2490      return DAG.getNode(ISD::ZERO_EXTEND, VT, XORNode);
2491    return DAG.getNode(ISD::TRUNCATE, VT, XORNode);
2492  }
2493  // fold select C, 0, X -> ~C & X
2494  if (VT == VT0 && VT == MVT::i1 && N1C && N1C->isNullValue()) {
2495    SDOperand XORNode = DAG.getNode(ISD::XOR, VT, N0, DAG.getConstant(1, VT));
2496    AddToWorkList(XORNode.Val);
2497    return DAG.getNode(ISD::AND, VT, XORNode, N2);
2498  }
2499  // fold select C, X, 1 -> ~C | X
2500  if (VT == VT0 && VT == MVT::i1 && N2C && N2C->getValue() == 1) {
2501    SDOperand XORNode = DAG.getNode(ISD::XOR, VT, N0, DAG.getConstant(1, VT));
2502    AddToWorkList(XORNode.Val);
2503    return DAG.getNode(ISD::OR, VT, XORNode, N1);
2504  }
2505  // fold select C, X, 0 -> C & X
2506  // FIXME: this should check for C type == X type, not i1?
2507  if (MVT::i1 == VT && N2C && N2C->isNullValue())
2508    return DAG.getNode(ISD::AND, VT, N0, N1);
2509  // fold  X ? X : Y --> X ? 1 : Y --> X | Y
2510  if (MVT::i1 == VT && N0 == N1)
2511    return DAG.getNode(ISD::OR, VT, N0, N2);
2512  // fold X ? Y : X --> X ? Y : 0 --> X & Y
2513  if (MVT::i1 == VT && N0 == N2)
2514    return DAG.getNode(ISD::AND, VT, N0, N1);
2515
2516  // If we can fold this based on the true/false value, do so.
2517  if (SimplifySelectOps(N, N1, N2))
2518    return SDOperand(N, 0);  // Don't revisit N.
2519
2520  // fold selects based on a setcc into other things, such as min/max/abs
2521  if (N0.getOpcode() == ISD::SETCC)
2522    // FIXME:
2523    // Check against MVT::Other for SELECT_CC, which is a workaround for targets
2524    // having to say they don't support SELECT_CC on every type the DAG knows
2525    // about, since there is no way to mark an opcode illegal at all value types
2526    if (TLI.isOperationLegal(ISD::SELECT_CC, MVT::Other))
2527      return DAG.getNode(ISD::SELECT_CC, VT, N0.getOperand(0), N0.getOperand(1),
2528                         N1, N2, N0.getOperand(2));
2529    else
2530      return SimplifySelect(N0, N1, N2);
2531  return SDOperand();
2532}
2533
2534SDOperand DAGCombiner::visitSELECT_CC(SDNode *N) {
2535  SDOperand N0 = N->getOperand(0);
2536  SDOperand N1 = N->getOperand(1);
2537  SDOperand N2 = N->getOperand(2);
2538  SDOperand N3 = N->getOperand(3);
2539  SDOperand N4 = N->getOperand(4);
2540  ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get();
2541
2542  // fold select_cc lhs, rhs, x, x, cc -> x
2543  if (N2 == N3)
2544    return N2;
2545
2546  // Determine if the condition we're dealing with is constant
2547  SDOperand SCC = SimplifySetCC(TLI.getSetCCResultTy(), N0, N1, CC, false);
2548  if (SCC.Val) AddToWorkList(SCC.Val);
2549
2550  if (ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.Val)) {
2551    if (SCCC->getValue())
2552      return N2;    // cond always true -> true val
2553    else
2554      return N3;    // cond always false -> false val
2555  }
2556
2557  // Fold to a simpler select_cc
2558  if (SCC.Val && SCC.getOpcode() == ISD::SETCC)
2559    return DAG.getNode(ISD::SELECT_CC, N2.getValueType(),
2560                       SCC.getOperand(0), SCC.getOperand(1), N2, N3,
2561                       SCC.getOperand(2));
2562
2563  // If we can fold this based on the true/false value, do so.
2564  if (SimplifySelectOps(N, N2, N3))
2565    return SDOperand(N, 0);  // Don't revisit N.
2566
2567  // fold select_cc into other things, such as min/max/abs
2568  return SimplifySelectCC(N0, N1, N2, N3, CC);
2569}
2570
2571SDOperand DAGCombiner::visitSETCC(SDNode *N) {
2572  return SimplifySetCC(N->getValueType(0), N->getOperand(0), N->getOperand(1),
2573                       cast<CondCodeSDNode>(N->getOperand(2))->get());
2574}
2575
2576// ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this:
2577// "fold ({s|z}ext (load x)) -> ({s|z}ext (truncate ({s|z}extload x)))"
2578// transformation. Returns true if extension are possible and the above
2579// mentioned transformation is profitable.
2580static bool ExtendUsesToFormExtLoad(SDNode *N, SDOperand N0,
2581                                    unsigned ExtOpc,
2582                                    SmallVector<SDNode*, 4> &ExtendNodes,
2583                                    TargetLowering &TLI) {
2584  bool HasCopyToRegUses = false;
2585  bool isTruncFree = TLI.isTruncateFree(N->getValueType(0), N0.getValueType());
2586  for (SDNode::use_iterator UI = N0.Val->use_begin(), UE = N0.Val->use_end();
2587       UI != UE; ++UI) {
2588    SDNode *User = *UI;
2589    if (User == N)
2590      continue;
2591    // FIXME: Only extend SETCC N, N and SETCC N, c for now.
2592    if (User->getOpcode() == ISD::SETCC) {
2593      ISD::CondCode CC = cast<CondCodeSDNode>(User->getOperand(2))->get();
2594      if (ExtOpc == ISD::ZERO_EXTEND && ISD::isSignedIntSetCC(CC))
2595        // Sign bits will be lost after a zext.
2596        return false;
2597      bool Add = false;
2598      for (unsigned i = 0; i != 2; ++i) {
2599        SDOperand UseOp = User->getOperand(i);
2600        if (UseOp == N0)
2601          continue;
2602        if (!isa<ConstantSDNode>(UseOp))
2603          return false;
2604        Add = true;
2605      }
2606      if (Add)
2607        ExtendNodes.push_back(User);
2608    } else {
2609      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
2610        SDOperand UseOp = User->getOperand(i);
2611        if (UseOp == N0) {
2612          // If truncate from extended type to original load type is free
2613          // on this target, then it's ok to extend a CopyToReg.
2614          if (isTruncFree && User->getOpcode() == ISD::CopyToReg)
2615            HasCopyToRegUses = true;
2616          else
2617            return false;
2618        }
2619      }
2620    }
2621  }
2622
2623  if (HasCopyToRegUses) {
2624    bool BothLiveOut = false;
2625    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
2626         UI != UE; ++UI) {
2627      SDNode *User = *UI;
2628      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
2629        SDOperand UseOp = User->getOperand(i);
2630        if (UseOp.Val == N && UseOp.ResNo == 0) {
2631          BothLiveOut = true;
2632          break;
2633        }
2634      }
2635    }
2636    if (BothLiveOut)
2637      // Both unextended and extended values are live out. There had better be
2638      // good a reason for the transformation.
2639      return ExtendNodes.size();
2640  }
2641  return true;
2642}
2643
2644SDOperand DAGCombiner::visitSIGN_EXTEND(SDNode *N) {
2645  SDOperand N0 = N->getOperand(0);
2646  MVT::ValueType VT = N->getValueType(0);
2647
2648  // fold (sext c1) -> c1
2649  if (isa<ConstantSDNode>(N0))
2650    return DAG.getNode(ISD::SIGN_EXTEND, VT, N0);
2651
2652  // fold (sext (sext x)) -> (sext x)
2653  // fold (sext (aext x)) -> (sext x)
2654  if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
2655    return DAG.getNode(ISD::SIGN_EXTEND, VT, N0.getOperand(0));
2656
2657  // fold (sext (truncate (load x))) -> (sext (smaller load x))
2658  // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n)))
2659  if (N0.getOpcode() == ISD::TRUNCATE) {
2660    SDOperand NarrowLoad = ReduceLoadWidth(N0.Val);
2661    if (NarrowLoad.Val) {
2662      if (NarrowLoad.Val != N0.Val)
2663        CombineTo(N0.Val, NarrowLoad);
2664      return DAG.getNode(ISD::SIGN_EXTEND, VT, NarrowLoad);
2665    }
2666  }
2667
2668  // See if the value being truncated is already sign extended.  If so, just
2669  // eliminate the trunc/sext pair.
2670  if (N0.getOpcode() == ISD::TRUNCATE) {
2671    SDOperand Op = N0.getOperand(0);
2672    unsigned OpBits   = MVT::getSizeInBits(Op.getValueType());
2673    unsigned MidBits  = MVT::getSizeInBits(N0.getValueType());
2674    unsigned DestBits = MVT::getSizeInBits(VT);
2675    unsigned NumSignBits = DAG.ComputeNumSignBits(Op);
2676
2677    if (OpBits == DestBits) {
2678      // Op is i32, Mid is i8, and Dest is i32.  If Op has more than 24 sign
2679      // bits, it is already ready.
2680      if (NumSignBits > DestBits-MidBits)
2681        return Op;
2682    } else if (OpBits < DestBits) {
2683      // Op is i32, Mid is i8, and Dest is i64.  If Op has more than 24 sign
2684      // bits, just sext from i32.
2685      if (NumSignBits > OpBits-MidBits)
2686        return DAG.getNode(ISD::SIGN_EXTEND, VT, Op);
2687    } else {
2688      // Op is i64, Mid is i8, and Dest is i32.  If Op has more than 56 sign
2689      // bits, just truncate to i32.
2690      if (NumSignBits > OpBits-MidBits)
2691        return DAG.getNode(ISD::TRUNCATE, VT, Op);
2692    }
2693
2694    // fold (sext (truncate x)) -> (sextinreg x).
2695    if (!AfterLegalize || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG,
2696                                               N0.getValueType())) {
2697      if (Op.getValueType() < VT)
2698        Op = DAG.getNode(ISD::ANY_EXTEND, VT, Op);
2699      else if (Op.getValueType() > VT)
2700        Op = DAG.getNode(ISD::TRUNCATE, VT, Op);
2701      return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, Op,
2702                         DAG.getValueType(N0.getValueType()));
2703    }
2704  }
2705
2706  // fold (sext (load x)) -> (sext (truncate (sextload x)))
2707  if (ISD::isNON_EXTLoad(N0.Val) &&
2708      (!AfterLegalize||TLI.isLoadXLegal(ISD::SEXTLOAD, N0.getValueType()))){
2709    bool DoXform = true;
2710    SmallVector<SDNode*, 4> SetCCs;
2711    if (!N0.hasOneUse())
2712      DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::SIGN_EXTEND, SetCCs, TLI);
2713    if (DoXform) {
2714      LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2715      SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, LN0->getChain(),
2716                                         LN0->getBasePtr(), LN0->getSrcValue(),
2717                                         LN0->getSrcValueOffset(),
2718                                         N0.getValueType(),
2719                                         LN0->isVolatile(),
2720                                         LN0->getAlignment());
2721      CombineTo(N, ExtLoad);
2722      SDOperand Trunc = DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad);
2723      CombineTo(N0.Val, Trunc, ExtLoad.getValue(1));
2724      // Extend SetCC uses if necessary.
2725      for (unsigned i = 0, e = SetCCs.size(); i != e; ++i) {
2726        SDNode *SetCC = SetCCs[i];
2727        SmallVector<SDOperand, 4> Ops;
2728        for (unsigned j = 0; j != 2; ++j) {
2729          SDOperand SOp = SetCC->getOperand(j);
2730          if (SOp == Trunc)
2731            Ops.push_back(ExtLoad);
2732          else
2733            Ops.push_back(DAG.getNode(ISD::SIGN_EXTEND, VT, SOp));
2734          }
2735        Ops.push_back(SetCC->getOperand(2));
2736        CombineTo(SetCC, DAG.getNode(ISD::SETCC, SetCC->getValueType(0),
2737                                     &Ops[0], Ops.size()));
2738      }
2739      return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
2740    }
2741  }
2742
2743  // fold (sext (sextload x)) -> (sext (truncate (sextload x)))
2744  // fold (sext ( extload x)) -> (sext (truncate (sextload x)))
2745  if ((ISD::isSEXTLoad(N0.Val) || ISD::isEXTLoad(N0.Val)) &&
2746      ISD::isUNINDEXEDLoad(N0.Val) && N0.hasOneUse()) {
2747    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2748    MVT::ValueType EVT = LN0->getLoadedVT();
2749    if (!AfterLegalize || TLI.isLoadXLegal(ISD::SEXTLOAD, EVT)) {
2750      SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, LN0->getChain(),
2751                                         LN0->getBasePtr(), LN0->getSrcValue(),
2752                                         LN0->getSrcValueOffset(), EVT,
2753                                         LN0->isVolatile(),
2754                                         LN0->getAlignment());
2755      CombineTo(N, ExtLoad);
2756      CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
2757                ExtLoad.getValue(1));
2758      return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
2759    }
2760  }
2761
2762  // sext(setcc x,y,cc) -> select_cc x, y, -1, 0, cc
2763  if (N0.getOpcode() == ISD::SETCC) {
2764    SDOperand SCC =
2765      SimplifySelectCC(N0.getOperand(0), N0.getOperand(1),
2766                       DAG.getConstant(~0ULL, VT), DAG.getConstant(0, VT),
2767                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
2768    if (SCC.Val) return SCC;
2769  }
2770
2771  return SDOperand();
2772}
2773
2774SDOperand DAGCombiner::visitZERO_EXTEND(SDNode *N) {
2775  SDOperand N0 = N->getOperand(0);
2776  MVT::ValueType VT = N->getValueType(0);
2777
2778  // fold (zext c1) -> c1
2779  if (isa<ConstantSDNode>(N0))
2780    return DAG.getNode(ISD::ZERO_EXTEND, VT, N0);
2781  // fold (zext (zext x)) -> (zext x)
2782  // fold (zext (aext x)) -> (zext x)
2783  if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
2784    return DAG.getNode(ISD::ZERO_EXTEND, VT, N0.getOperand(0));
2785
2786  // fold (zext (truncate (load x))) -> (zext (smaller load x))
2787  // fold (zext (truncate (srl (load x), c))) -> (zext (small load (x+c/n)))
2788  if (N0.getOpcode() == ISD::TRUNCATE) {
2789    SDOperand NarrowLoad = ReduceLoadWidth(N0.Val);
2790    if (NarrowLoad.Val) {
2791      if (NarrowLoad.Val != N0.Val)
2792        CombineTo(N0.Val, NarrowLoad);
2793      return DAG.getNode(ISD::ZERO_EXTEND, VT, NarrowLoad);
2794    }
2795  }
2796
2797  // fold (zext (truncate x)) -> (and x, mask)
2798  if (N0.getOpcode() == ISD::TRUNCATE &&
2799      (!AfterLegalize || TLI.isOperationLegal(ISD::AND, VT))) {
2800    SDOperand Op = N0.getOperand(0);
2801    if (Op.getValueType() < VT) {
2802      Op = DAG.getNode(ISD::ANY_EXTEND, VT, Op);
2803    } else if (Op.getValueType() > VT) {
2804      Op = DAG.getNode(ISD::TRUNCATE, VT, Op);
2805    }
2806    return DAG.getZeroExtendInReg(Op, N0.getValueType());
2807  }
2808
2809  // fold (zext (and (trunc x), cst)) -> (and x, cst).
2810  if (N0.getOpcode() == ISD::AND &&
2811      N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
2812      N0.getOperand(1).getOpcode() == ISD::Constant) {
2813    SDOperand X = N0.getOperand(0).getOperand(0);
2814    if (X.getValueType() < VT) {
2815      X = DAG.getNode(ISD::ANY_EXTEND, VT, X);
2816    } else if (X.getValueType() > VT) {
2817      X = DAG.getNode(ISD::TRUNCATE, VT, X);
2818    }
2819    uint64_t Mask = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
2820    return DAG.getNode(ISD::AND, VT, X, DAG.getConstant(Mask, VT));
2821  }
2822
2823  // fold (zext (load x)) -> (zext (truncate (zextload x)))
2824  if (ISD::isNON_EXTLoad(N0.Val) &&
2825      (!AfterLegalize||TLI.isLoadXLegal(ISD::ZEXTLOAD, N0.getValueType()))) {
2826    bool DoXform = true;
2827    SmallVector<SDNode*, 4> SetCCs;
2828    if (!N0.hasOneUse())
2829      DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ZERO_EXTEND, SetCCs, TLI);
2830    if (DoXform) {
2831      LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2832      SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(),
2833                                         LN0->getBasePtr(), LN0->getSrcValue(),
2834                                         LN0->getSrcValueOffset(),
2835                                         N0.getValueType(),
2836                                         LN0->isVolatile(),
2837                                         LN0->getAlignment());
2838      CombineTo(N, ExtLoad);
2839      SDOperand Trunc = DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad);
2840      CombineTo(N0.Val, Trunc, ExtLoad.getValue(1));
2841      // Extend SetCC uses if necessary.
2842      for (unsigned i = 0, e = SetCCs.size(); i != e; ++i) {
2843        SDNode *SetCC = SetCCs[i];
2844        SmallVector<SDOperand, 4> Ops;
2845        for (unsigned j = 0; j != 2; ++j) {
2846          SDOperand SOp = SetCC->getOperand(j);
2847          if (SOp == Trunc)
2848            Ops.push_back(ExtLoad);
2849          else
2850            Ops.push_back(DAG.getNode(ISD::ZERO_EXTEND, VT, SOp));
2851          }
2852        Ops.push_back(SetCC->getOperand(2));
2853        CombineTo(SetCC, DAG.getNode(ISD::SETCC, SetCC->getValueType(0),
2854                                     &Ops[0], Ops.size()));
2855      }
2856      return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
2857    }
2858  }
2859
2860  // fold (zext (zextload x)) -> (zext (truncate (zextload x)))
2861  // fold (zext ( extload x)) -> (zext (truncate (zextload x)))
2862  if ((ISD::isZEXTLoad(N0.Val) || ISD::isEXTLoad(N0.Val)) &&
2863      ISD::isUNINDEXEDLoad(N0.Val) && N0.hasOneUse()) {
2864    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2865    MVT::ValueType EVT = LN0->getLoadedVT();
2866    SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(),
2867                                       LN0->getBasePtr(), LN0->getSrcValue(),
2868                                       LN0->getSrcValueOffset(), EVT,
2869                                       LN0->isVolatile(),
2870                                       LN0->getAlignment());
2871    CombineTo(N, ExtLoad);
2872    CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
2873              ExtLoad.getValue(1));
2874    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
2875  }
2876
2877  // zext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
2878  if (N0.getOpcode() == ISD::SETCC) {
2879    SDOperand SCC =
2880      SimplifySelectCC(N0.getOperand(0), N0.getOperand(1),
2881                       DAG.getConstant(1, VT), DAG.getConstant(0, VT),
2882                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
2883    if (SCC.Val) return SCC;
2884  }
2885
2886  return SDOperand();
2887}
2888
2889SDOperand DAGCombiner::visitANY_EXTEND(SDNode *N) {
2890  SDOperand N0 = N->getOperand(0);
2891  MVT::ValueType VT = N->getValueType(0);
2892
2893  // fold (aext c1) -> c1
2894  if (isa<ConstantSDNode>(N0))
2895    return DAG.getNode(ISD::ANY_EXTEND, VT, N0);
2896  // fold (aext (aext x)) -> (aext x)
2897  // fold (aext (zext x)) -> (zext x)
2898  // fold (aext (sext x)) -> (sext x)
2899  if (N0.getOpcode() == ISD::ANY_EXTEND  ||
2900      N0.getOpcode() == ISD::ZERO_EXTEND ||
2901      N0.getOpcode() == ISD::SIGN_EXTEND)
2902    return DAG.getNode(N0.getOpcode(), VT, N0.getOperand(0));
2903
2904  // fold (aext (truncate (load x))) -> (aext (smaller load x))
2905  // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n)))
2906  if (N0.getOpcode() == ISD::TRUNCATE) {
2907    SDOperand NarrowLoad = ReduceLoadWidth(N0.Val);
2908    if (NarrowLoad.Val) {
2909      if (NarrowLoad.Val != N0.Val)
2910        CombineTo(N0.Val, NarrowLoad);
2911      return DAG.getNode(ISD::ANY_EXTEND, VT, NarrowLoad);
2912    }
2913  }
2914
2915  // fold (aext (truncate x))
2916  if (N0.getOpcode() == ISD::TRUNCATE) {
2917    SDOperand TruncOp = N0.getOperand(0);
2918    if (TruncOp.getValueType() == VT)
2919      return TruncOp; // x iff x size == zext size.
2920    if (TruncOp.getValueType() > VT)
2921      return DAG.getNode(ISD::TRUNCATE, VT, TruncOp);
2922    return DAG.getNode(ISD::ANY_EXTEND, VT, TruncOp);
2923  }
2924
2925  // fold (aext (and (trunc x), cst)) -> (and x, cst).
2926  if (N0.getOpcode() == ISD::AND &&
2927      N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
2928      N0.getOperand(1).getOpcode() == ISD::Constant) {
2929    SDOperand X = N0.getOperand(0).getOperand(0);
2930    if (X.getValueType() < VT) {
2931      X = DAG.getNode(ISD::ANY_EXTEND, VT, X);
2932    } else if (X.getValueType() > VT) {
2933      X = DAG.getNode(ISD::TRUNCATE, VT, X);
2934    }
2935    uint64_t Mask = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
2936    return DAG.getNode(ISD::AND, VT, X, DAG.getConstant(Mask, VT));
2937  }
2938
2939  // fold (aext (load x)) -> (aext (truncate (extload x)))
2940  if (ISD::isNON_EXTLoad(N0.Val) && N0.hasOneUse() &&
2941      (!AfterLegalize||TLI.isLoadXLegal(ISD::EXTLOAD, N0.getValueType()))) {
2942    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2943    SDOperand ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, VT, LN0->getChain(),
2944                                       LN0->getBasePtr(), LN0->getSrcValue(),
2945                                       LN0->getSrcValueOffset(),
2946                                       N0.getValueType(),
2947                                       LN0->isVolatile(),
2948                                       LN0->getAlignment());
2949    CombineTo(N, ExtLoad);
2950    CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
2951              ExtLoad.getValue(1));
2952    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
2953  }
2954
2955  // fold (aext (zextload x)) -> (aext (truncate (zextload x)))
2956  // fold (aext (sextload x)) -> (aext (truncate (sextload x)))
2957  // fold (aext ( extload x)) -> (aext (truncate (extload  x)))
2958  if (N0.getOpcode() == ISD::LOAD &&
2959      !ISD::isNON_EXTLoad(N0.Val) && ISD::isUNINDEXEDLoad(N0.Val) &&
2960      N0.hasOneUse()) {
2961    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2962    MVT::ValueType EVT = LN0->getLoadedVT();
2963    SDOperand ExtLoad = DAG.getExtLoad(LN0->getExtensionType(), VT,
2964                                       LN0->getChain(), LN0->getBasePtr(),
2965                                       LN0->getSrcValue(),
2966                                       LN0->getSrcValueOffset(), EVT,
2967                                       LN0->isVolatile(),
2968                                       LN0->getAlignment());
2969    CombineTo(N, ExtLoad);
2970    CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
2971              ExtLoad.getValue(1));
2972    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
2973  }
2974
2975  // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
2976  if (N0.getOpcode() == ISD::SETCC) {
2977    SDOperand SCC =
2978      SimplifySelectCC(N0.getOperand(0), N0.getOperand(1),
2979                       DAG.getConstant(1, VT), DAG.getConstant(0, VT),
2980                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
2981    if (SCC.Val)
2982      return SCC;
2983  }
2984
2985  return SDOperand();
2986}
2987
2988/// GetDemandedBits - See if the specified operand can be simplified with the
2989/// knowledge that only the bits specified by Mask are used.  If so, return the
2990/// simpler operand, otherwise return a null SDOperand.
2991SDOperand DAGCombiner::GetDemandedBits(SDOperand V, uint64_t Mask) {
2992  switch (V.getOpcode()) {
2993  default: break;
2994  case ISD::OR:
2995  case ISD::XOR:
2996    // If the LHS or RHS don't contribute bits to the or, drop them.
2997    if (DAG.MaskedValueIsZero(V.getOperand(0), Mask))
2998      return V.getOperand(1);
2999    if (DAG.MaskedValueIsZero(V.getOperand(1), Mask))
3000      return V.getOperand(0);
3001    break;
3002  case ISD::SRL:
3003    // Only look at single-use SRLs.
3004    if (!V.Val->hasOneUse())
3005      break;
3006    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
3007      // See if we can recursively simplify the LHS.
3008      unsigned Amt = RHSC->getValue();
3009      Mask = (Mask << Amt) & MVT::getIntVTBitMask(V.getValueType());
3010      SDOperand SimplifyLHS = GetDemandedBits(V.getOperand(0), Mask);
3011      if (SimplifyLHS.Val) {
3012        return DAG.getNode(ISD::SRL, V.getValueType(),
3013                           SimplifyLHS, V.getOperand(1));
3014      }
3015    }
3016  }
3017  return SDOperand();
3018}
3019
3020/// ReduceLoadWidth - If the result of a wider load is shifted to right of N
3021/// bits and then truncated to a narrower type and where N is a multiple
3022/// of number of bits of the narrower type, transform it to a narrower load
3023/// from address + N / num of bits of new type. If the result is to be
3024/// extended, also fold the extension to form a extending load.
3025SDOperand DAGCombiner::ReduceLoadWidth(SDNode *N) {
3026  unsigned Opc = N->getOpcode();
3027  ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
3028  SDOperand N0 = N->getOperand(0);
3029  MVT::ValueType VT = N->getValueType(0);
3030  MVT::ValueType EVT = N->getValueType(0);
3031
3032  // Special case: SIGN_EXTEND_INREG is basically truncating to EVT then
3033  // extended to VT.
3034  if (Opc == ISD::SIGN_EXTEND_INREG) {
3035    ExtType = ISD::SEXTLOAD;
3036    EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
3037    if (AfterLegalize && !TLI.isLoadXLegal(ISD::SEXTLOAD, EVT))
3038      return SDOperand();
3039  }
3040
3041  unsigned EVTBits = MVT::getSizeInBits(EVT);
3042  unsigned ShAmt = 0;
3043  bool CombineSRL =  false;
3044  if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) {
3045    if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3046      ShAmt = N01->getValue();
3047      // Is the shift amount a multiple of size of VT?
3048      if ((ShAmt & (EVTBits-1)) == 0) {
3049        N0 = N0.getOperand(0);
3050        if (MVT::getSizeInBits(N0.getValueType()) <= EVTBits)
3051          return SDOperand();
3052        CombineSRL = true;
3053      }
3054    }
3055  }
3056
3057  if (ISD::isNON_EXTLoad(N0.Val) && N0.hasOneUse() &&
3058      // Do not allow folding to i1 here.  i1 is implicitly stored in memory in
3059      // zero extended form: by shrinking the load, we lose track of the fact
3060      // that it is already zero extended.
3061      // FIXME: This should be reevaluated.
3062      VT != MVT::i1) {
3063    assert(MVT::getSizeInBits(N0.getValueType()) > EVTBits &&
3064           "Cannot truncate to larger type!");
3065    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3066    MVT::ValueType PtrType = N0.getOperand(1).getValueType();
3067    // For big endian targets, we need to adjust the offset to the pointer to
3068    // load the correct bytes.
3069    if (!TLI.isLittleEndian()) {
3070      unsigned LVTStoreBits = MVT::getStoreSizeInBits(N0.getValueType());
3071      unsigned EVTStoreBits = MVT::getStoreSizeInBits(EVT);
3072      ShAmt = LVTStoreBits - EVTStoreBits - ShAmt;
3073    }
3074    uint64_t PtrOff =  ShAmt / 8;
3075    unsigned NewAlign = MinAlign(LN0->getAlignment(), PtrOff);
3076    SDOperand NewPtr = DAG.getNode(ISD::ADD, PtrType, LN0->getBasePtr(),
3077                                   DAG.getConstant(PtrOff, PtrType));
3078    AddToWorkList(NewPtr.Val);
3079    SDOperand Load = (ExtType == ISD::NON_EXTLOAD)
3080      ? DAG.getLoad(VT, LN0->getChain(), NewPtr,
3081                    LN0->getSrcValue(), LN0->getSrcValueOffset(),
3082                    LN0->isVolatile(), NewAlign)
3083      : DAG.getExtLoad(ExtType, VT, LN0->getChain(), NewPtr,
3084                       LN0->getSrcValue(), LN0->getSrcValueOffset(), EVT,
3085                       LN0->isVolatile(), NewAlign);
3086    AddToWorkList(N);
3087    if (CombineSRL) {
3088      DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1));
3089      CombineTo(N->getOperand(0).Val, Load);
3090    } else
3091      CombineTo(N0.Val, Load, Load.getValue(1));
3092    if (ShAmt) {
3093      if (Opc == ISD::SIGN_EXTEND_INREG)
3094        return DAG.getNode(Opc, VT, Load, N->getOperand(1));
3095      else
3096        return DAG.getNode(Opc, VT, Load);
3097    }
3098    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
3099  }
3100
3101  return SDOperand();
3102}
3103
3104
3105SDOperand DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) {
3106  SDOperand N0 = N->getOperand(0);
3107  SDOperand N1 = N->getOperand(1);
3108  MVT::ValueType VT = N->getValueType(0);
3109  MVT::ValueType EVT = cast<VTSDNode>(N1)->getVT();
3110  unsigned EVTBits = MVT::getSizeInBits(EVT);
3111
3112  // fold (sext_in_reg c1) -> c1
3113  if (isa<ConstantSDNode>(N0) || N0.getOpcode() == ISD::UNDEF)
3114    return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, N0, N1);
3115
3116  // If the input is already sign extended, just drop the extension.
3117  if (DAG.ComputeNumSignBits(N0) >= MVT::getSizeInBits(VT)-EVTBits+1)
3118    return N0;
3119
3120  // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2
3121  if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3122      EVT < cast<VTSDNode>(N0.getOperand(1))->getVT()) {
3123    return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, N0.getOperand(0), N1);
3124  }
3125
3126  // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero.
3127  if (DAG.MaskedValueIsZero(N0, 1ULL << (EVTBits-1)))
3128    return DAG.getZeroExtendInReg(N0, EVT);
3129
3130  // fold operands of sext_in_reg based on knowledge that the top bits are not
3131  // demanded.
3132  if (SimplifyDemandedBits(SDOperand(N, 0)))
3133    return SDOperand(N, 0);
3134
3135  // fold (sext_in_reg (load x)) -> (smaller sextload x)
3136  // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits))
3137  SDOperand NarrowLoad = ReduceLoadWidth(N);
3138  if (NarrowLoad.Val)
3139    return NarrowLoad;
3140
3141  // fold (sext_in_reg (srl X, 24), i8) -> sra X, 24
3142  // fold (sext_in_reg (srl X, 23), i8) -> sra X, 23 iff possible.
3143  // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above.
3144  if (N0.getOpcode() == ISD::SRL) {
3145    if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
3146      if (ShAmt->getValue()+EVTBits <= MVT::getSizeInBits(VT)) {
3147        // We can turn this into an SRA iff the input to the SRL is already sign
3148        // extended enough.
3149        unsigned InSignBits = DAG.ComputeNumSignBits(N0.getOperand(0));
3150        if (MVT::getSizeInBits(VT)-(ShAmt->getValue()+EVTBits) < InSignBits)
3151          return DAG.getNode(ISD::SRA, VT, N0.getOperand(0), N0.getOperand(1));
3152      }
3153  }
3154
3155  // fold (sext_inreg (extload x)) -> (sextload x)
3156  if (ISD::isEXTLoad(N0.Val) &&
3157      ISD::isUNINDEXEDLoad(N0.Val) &&
3158      EVT == cast<LoadSDNode>(N0)->getLoadedVT() &&
3159      (!AfterLegalize || TLI.isLoadXLegal(ISD::SEXTLOAD, EVT))) {
3160    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3161    SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, LN0->getChain(),
3162                                       LN0->getBasePtr(), LN0->getSrcValue(),
3163                                       LN0->getSrcValueOffset(), EVT,
3164                                       LN0->isVolatile(),
3165                                       LN0->getAlignment());
3166    CombineTo(N, ExtLoad);
3167    CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1));
3168    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
3169  }
3170  // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use
3171  if (ISD::isZEXTLoad(N0.Val) && ISD::isUNINDEXEDLoad(N0.Val) &&
3172      N0.hasOneUse() &&
3173      EVT == cast<LoadSDNode>(N0)->getLoadedVT() &&
3174      (!AfterLegalize || TLI.isLoadXLegal(ISD::SEXTLOAD, EVT))) {
3175    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3176    SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, LN0->getChain(),
3177                                       LN0->getBasePtr(), LN0->getSrcValue(),
3178                                       LN0->getSrcValueOffset(), EVT,
3179                                       LN0->isVolatile(),
3180                                       LN0->getAlignment());
3181    CombineTo(N, ExtLoad);
3182    CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1));
3183    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
3184  }
3185  return SDOperand();
3186}
3187
3188SDOperand DAGCombiner::visitTRUNCATE(SDNode *N) {
3189  SDOperand N0 = N->getOperand(0);
3190  MVT::ValueType VT = N->getValueType(0);
3191
3192  // noop truncate
3193  if (N0.getValueType() == N->getValueType(0))
3194    return N0;
3195  // fold (truncate c1) -> c1
3196  if (isa<ConstantSDNode>(N0))
3197    return DAG.getNode(ISD::TRUNCATE, VT, N0);
3198  // fold (truncate (truncate x)) -> (truncate x)
3199  if (N0.getOpcode() == ISD::TRUNCATE)
3200    return DAG.getNode(ISD::TRUNCATE, VT, N0.getOperand(0));
3201  // fold (truncate (ext x)) -> (ext x) or (truncate x) or x
3202  if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::SIGN_EXTEND||
3203      N0.getOpcode() == ISD::ANY_EXTEND) {
3204    if (N0.getOperand(0).getValueType() < VT)
3205      // if the source is smaller than the dest, we still need an extend
3206      return DAG.getNode(N0.getOpcode(), VT, N0.getOperand(0));
3207    else if (N0.getOperand(0).getValueType() > VT)
3208      // if the source is larger than the dest, than we just need the truncate
3209      return DAG.getNode(ISD::TRUNCATE, VT, N0.getOperand(0));
3210    else
3211      // if the source and dest are the same type, we can drop both the extend
3212      // and the truncate
3213      return N0.getOperand(0);
3214  }
3215
3216  // See if we can simplify the input to this truncate through knowledge that
3217  // only the low bits are being used.  For example "trunc (or (shl x, 8), y)"
3218  // -> trunc y
3219  SDOperand Shorter = GetDemandedBits(N0, MVT::getIntVTBitMask(VT));
3220  if (Shorter.Val)
3221    return DAG.getNode(ISD::TRUNCATE, VT, Shorter);
3222
3223  // fold (truncate (load x)) -> (smaller load x)
3224  // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits))
3225  return ReduceLoadWidth(N);
3226}
3227
3228SDOperand DAGCombiner::visitBIT_CONVERT(SDNode *N) {
3229  SDOperand N0 = N->getOperand(0);
3230  MVT::ValueType VT = N->getValueType(0);
3231
3232  // If the input is a BUILD_VECTOR with all constant elements, fold this now.
3233  // Only do this before legalize, since afterward the target may be depending
3234  // on the bitconvert.
3235  // First check to see if this is all constant.
3236  if (!AfterLegalize &&
3237      N0.getOpcode() == ISD::BUILD_VECTOR && N0.Val->hasOneUse() &&
3238      MVT::isVector(VT)) {
3239    bool isSimple = true;
3240    for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i)
3241      if (N0.getOperand(i).getOpcode() != ISD::UNDEF &&
3242          N0.getOperand(i).getOpcode() != ISD::Constant &&
3243          N0.getOperand(i).getOpcode() != ISD::ConstantFP) {
3244        isSimple = false;
3245        break;
3246      }
3247
3248    MVT::ValueType DestEltVT = MVT::getVectorElementType(N->getValueType(0));
3249    assert(!MVT::isVector(DestEltVT) &&
3250           "Element type of vector ValueType must not be vector!");
3251    if (isSimple) {
3252      return ConstantFoldBIT_CONVERTofBUILD_VECTOR(N0.Val, DestEltVT);
3253    }
3254  }
3255
3256  // If the input is a constant, let getNode() fold it.
3257  if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0)) {
3258    SDOperand Res = DAG.getNode(ISD::BIT_CONVERT, VT, N0);
3259    if (Res.Val != N) return Res;
3260  }
3261
3262  if (N0.getOpcode() == ISD::BIT_CONVERT)  // conv(conv(x,t1),t2) -> conv(x,t2)
3263    return DAG.getNode(ISD::BIT_CONVERT, VT, N0.getOperand(0));
3264
3265  // fold (conv (load x)) -> (load (conv*)x)
3266  // If the resultant load doesn't need a higher alignment than the original!
3267  if (ISD::isNormalLoad(N0.Val) && N0.hasOneUse() &&
3268      TLI.isOperationLegal(ISD::LOAD, VT)) {
3269    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3270    unsigned Align = TLI.getTargetMachine().getTargetData()->
3271      getABITypeAlignment(MVT::getTypeForValueType(VT));
3272    unsigned OrigAlign = LN0->getAlignment();
3273    if (Align <= OrigAlign) {
3274      SDOperand Load = DAG.getLoad(VT, LN0->getChain(), LN0->getBasePtr(),
3275                                   LN0->getSrcValue(), LN0->getSrcValueOffset(),
3276                                   LN0->isVolatile(), Align);
3277      AddToWorkList(N);
3278      CombineTo(N0.Val, DAG.getNode(ISD::BIT_CONVERT, N0.getValueType(), Load),
3279                Load.getValue(1));
3280      return Load;
3281    }
3282  }
3283
3284  return SDOperand();
3285}
3286
3287/// ConstantFoldBIT_CONVERTofBUILD_VECTOR - We know that BV is a build_vector
3288/// node with Constant, ConstantFP or Undef operands.  DstEltVT indicates the
3289/// destination element value type.
3290SDOperand DAGCombiner::
3291ConstantFoldBIT_CONVERTofBUILD_VECTOR(SDNode *BV, MVT::ValueType DstEltVT) {
3292  MVT::ValueType SrcEltVT = BV->getOperand(0).getValueType();
3293
3294  // If this is already the right type, we're done.
3295  if (SrcEltVT == DstEltVT) return SDOperand(BV, 0);
3296
3297  unsigned SrcBitSize = MVT::getSizeInBits(SrcEltVT);
3298  unsigned DstBitSize = MVT::getSizeInBits(DstEltVT);
3299
3300  // If this is a conversion of N elements of one type to N elements of another
3301  // type, convert each element.  This handles FP<->INT cases.
3302  if (SrcBitSize == DstBitSize) {
3303    SmallVector<SDOperand, 8> Ops;
3304    for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
3305      Ops.push_back(DAG.getNode(ISD::BIT_CONVERT, DstEltVT, BV->getOperand(i)));
3306      AddToWorkList(Ops.back().Val);
3307    }
3308    MVT::ValueType VT =
3309      MVT::getVectorType(DstEltVT,
3310                         MVT::getVectorNumElements(BV->getValueType(0)));
3311    return DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
3312  }
3313
3314  // Otherwise, we're growing or shrinking the elements.  To avoid having to
3315  // handle annoying details of growing/shrinking FP values, we convert them to
3316  // int first.
3317  if (MVT::isFloatingPoint(SrcEltVT)) {
3318    // Convert the input float vector to a int vector where the elements are the
3319    // same sizes.
3320    assert((SrcEltVT == MVT::f32 || SrcEltVT == MVT::f64) && "Unknown FP VT!");
3321    MVT::ValueType IntVT = SrcEltVT == MVT::f32 ? MVT::i32 : MVT::i64;
3322    BV = ConstantFoldBIT_CONVERTofBUILD_VECTOR(BV, IntVT).Val;
3323    SrcEltVT = IntVT;
3324  }
3325
3326  // Now we know the input is an integer vector.  If the output is a FP type,
3327  // convert to integer first, then to FP of the right size.
3328  if (MVT::isFloatingPoint(DstEltVT)) {
3329    assert((DstEltVT == MVT::f32 || DstEltVT == MVT::f64) && "Unknown FP VT!");
3330    MVT::ValueType TmpVT = DstEltVT == MVT::f32 ? MVT::i32 : MVT::i64;
3331    SDNode *Tmp = ConstantFoldBIT_CONVERTofBUILD_VECTOR(BV, TmpVT).Val;
3332
3333    // Next, convert to FP elements of the same size.
3334    return ConstantFoldBIT_CONVERTofBUILD_VECTOR(Tmp, DstEltVT);
3335  }
3336
3337  // Okay, we know the src/dst types are both integers of differing types.
3338  // Handling growing first.
3339  assert(MVT::isInteger(SrcEltVT) && MVT::isInteger(DstEltVT));
3340  if (SrcBitSize < DstBitSize) {
3341    unsigned NumInputsPerOutput = DstBitSize/SrcBitSize;
3342
3343    SmallVector<SDOperand, 8> Ops;
3344    for (unsigned i = 0, e = BV->getNumOperands(); i != e;
3345         i += NumInputsPerOutput) {
3346      bool isLE = TLI.isLittleEndian();
3347      uint64_t NewBits = 0;
3348      bool EltIsUndef = true;
3349      for (unsigned j = 0; j != NumInputsPerOutput; ++j) {
3350        // Shift the previously computed bits over.
3351        NewBits <<= SrcBitSize;
3352        SDOperand Op = BV->getOperand(i+ (isLE ? (NumInputsPerOutput-j-1) : j));
3353        if (Op.getOpcode() == ISD::UNDEF) continue;
3354        EltIsUndef = false;
3355
3356        NewBits |= cast<ConstantSDNode>(Op)->getValue();
3357      }
3358
3359      if (EltIsUndef)
3360        Ops.push_back(DAG.getNode(ISD::UNDEF, DstEltVT));
3361      else
3362        Ops.push_back(DAG.getConstant(NewBits, DstEltVT));
3363    }
3364
3365    MVT::ValueType VT = MVT::getVectorType(DstEltVT,
3366                                           Ops.size());
3367    return DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
3368  }
3369
3370  // Finally, this must be the case where we are shrinking elements: each input
3371  // turns into multiple outputs.
3372  unsigned NumOutputsPerInput = SrcBitSize/DstBitSize;
3373  SmallVector<SDOperand, 8> Ops;
3374  for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
3375    if (BV->getOperand(i).getOpcode() == ISD::UNDEF) {
3376      for (unsigned j = 0; j != NumOutputsPerInput; ++j)
3377        Ops.push_back(DAG.getNode(ISD::UNDEF, DstEltVT));
3378      continue;
3379    }
3380    uint64_t OpVal = cast<ConstantSDNode>(BV->getOperand(i))->getValue();
3381
3382    for (unsigned j = 0; j != NumOutputsPerInput; ++j) {
3383      unsigned ThisVal = OpVal & ((1ULL << DstBitSize)-1);
3384      OpVal >>= DstBitSize;
3385      Ops.push_back(DAG.getConstant(ThisVal, DstEltVT));
3386    }
3387
3388    // For big endian targets, swap the order of the pieces of each element.
3389    if (!TLI.isLittleEndian())
3390      std::reverse(Ops.end()-NumOutputsPerInput, Ops.end());
3391  }
3392  MVT::ValueType VT = MVT::getVectorType(DstEltVT, Ops.size());
3393  return DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
3394}
3395
3396
3397
3398SDOperand DAGCombiner::visitFADD(SDNode *N) {
3399  SDOperand N0 = N->getOperand(0);
3400  SDOperand N1 = N->getOperand(1);
3401  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3402  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
3403  MVT::ValueType VT = N->getValueType(0);
3404
3405  // fold vector ops
3406  if (MVT::isVector(VT)) {
3407    SDOperand FoldedVOp = SimplifyVBinOp(N);
3408    if (FoldedVOp.Val) return FoldedVOp;
3409  }
3410
3411  // fold (fadd c1, c2) -> c1+c2
3412  if (N0CFP && N1CFP && VT != MVT::ppcf128)
3413    return DAG.getNode(ISD::FADD, VT, N0, N1);
3414  // canonicalize constant to RHS
3415  if (N0CFP && !N1CFP)
3416    return DAG.getNode(ISD::FADD, VT, N1, N0);
3417  // fold (A + (-B)) -> A-B
3418  if (isNegatibleForFree(N1) == 2)
3419    return DAG.getNode(ISD::FSUB, VT, N0, GetNegatedExpression(N1, DAG));
3420  // fold ((-A) + B) -> B-A
3421  if (isNegatibleForFree(N0) == 2)
3422    return DAG.getNode(ISD::FSUB, VT, N1, GetNegatedExpression(N0, DAG));
3423
3424  // If allowed, fold (fadd (fadd x, c1), c2) -> (fadd x, (fadd c1, c2))
3425  if (UnsafeFPMath && N1CFP && N0.getOpcode() == ISD::FADD &&
3426      N0.Val->hasOneUse() && isa<ConstantFPSDNode>(N0.getOperand(1)))
3427    return DAG.getNode(ISD::FADD, VT, N0.getOperand(0),
3428                       DAG.getNode(ISD::FADD, VT, N0.getOperand(1), N1));
3429
3430  return SDOperand();
3431}
3432
3433SDOperand DAGCombiner::visitFSUB(SDNode *N) {
3434  SDOperand N0 = N->getOperand(0);
3435  SDOperand N1 = N->getOperand(1);
3436  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3437  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
3438  MVT::ValueType VT = N->getValueType(0);
3439
3440  // fold vector ops
3441  if (MVT::isVector(VT)) {
3442    SDOperand FoldedVOp = SimplifyVBinOp(N);
3443    if (FoldedVOp.Val) return FoldedVOp;
3444  }
3445
3446  // fold (fsub c1, c2) -> c1-c2
3447  if (N0CFP && N1CFP && VT != MVT::ppcf128)
3448    return DAG.getNode(ISD::FSUB, VT, N0, N1);
3449  // fold (0-B) -> -B
3450  if (UnsafeFPMath && N0CFP && N0CFP->getValueAPF().isZero()) {
3451    if (isNegatibleForFree(N1))
3452      return GetNegatedExpression(N1, DAG);
3453    return DAG.getNode(ISD::FNEG, VT, N1);
3454  }
3455  // fold (A-(-B)) -> A+B
3456  if (isNegatibleForFree(N1))
3457    return DAG.getNode(ISD::FADD, VT, N0, GetNegatedExpression(N1, DAG));
3458
3459  return SDOperand();
3460}
3461
3462SDOperand DAGCombiner::visitFMUL(SDNode *N) {
3463  SDOperand N0 = N->getOperand(0);
3464  SDOperand N1 = N->getOperand(1);
3465  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3466  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
3467  MVT::ValueType VT = N->getValueType(0);
3468
3469  // fold vector ops
3470  if (MVT::isVector(VT)) {
3471    SDOperand FoldedVOp = SimplifyVBinOp(N);
3472    if (FoldedVOp.Val) return FoldedVOp;
3473  }
3474
3475  // fold (fmul c1, c2) -> c1*c2
3476  if (N0CFP && N1CFP && VT != MVT::ppcf128)
3477    return DAG.getNode(ISD::FMUL, VT, N0, N1);
3478  // canonicalize constant to RHS
3479  if (N0CFP && !N1CFP)
3480    return DAG.getNode(ISD::FMUL, VT, N1, N0);
3481  // fold (fmul X, 2.0) -> (fadd X, X)
3482  if (N1CFP && N1CFP->isExactlyValue(+2.0))
3483    return DAG.getNode(ISD::FADD, VT, N0, N0);
3484  // fold (fmul X, -1.0) -> (fneg X)
3485  if (N1CFP && N1CFP->isExactlyValue(-1.0))
3486    return DAG.getNode(ISD::FNEG, VT, N0);
3487
3488  // -X * -Y -> X*Y
3489  if (char LHSNeg = isNegatibleForFree(N0)) {
3490    if (char RHSNeg = isNegatibleForFree(N1)) {
3491      // Both can be negated for free, check to see if at least one is cheaper
3492      // negated.
3493      if (LHSNeg == 2 || RHSNeg == 2)
3494        return DAG.getNode(ISD::FMUL, VT, GetNegatedExpression(N0, DAG),
3495                           GetNegatedExpression(N1, DAG));
3496    }
3497  }
3498
3499  // If allowed, fold (fmul (fmul x, c1), c2) -> (fmul x, (fmul c1, c2))
3500  if (UnsafeFPMath && N1CFP && N0.getOpcode() == ISD::FMUL &&
3501      N0.Val->hasOneUse() && isa<ConstantFPSDNode>(N0.getOperand(1)))
3502    return DAG.getNode(ISD::FMUL, VT, N0.getOperand(0),
3503                       DAG.getNode(ISD::FMUL, VT, N0.getOperand(1), N1));
3504
3505  return SDOperand();
3506}
3507
3508SDOperand DAGCombiner::visitFDIV(SDNode *N) {
3509  SDOperand N0 = N->getOperand(0);
3510  SDOperand N1 = N->getOperand(1);
3511  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3512  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
3513  MVT::ValueType VT = N->getValueType(0);
3514
3515  // fold vector ops
3516  if (MVT::isVector(VT)) {
3517    SDOperand FoldedVOp = SimplifyVBinOp(N);
3518    if (FoldedVOp.Val) return FoldedVOp;
3519  }
3520
3521  // fold (fdiv c1, c2) -> c1/c2
3522  if (N0CFP && N1CFP && VT != MVT::ppcf128)
3523    return DAG.getNode(ISD::FDIV, VT, N0, N1);
3524
3525
3526  // -X / -Y -> X*Y
3527  if (char LHSNeg = isNegatibleForFree(N0)) {
3528    if (char RHSNeg = isNegatibleForFree(N1)) {
3529      // Both can be negated for free, check to see if at least one is cheaper
3530      // negated.
3531      if (LHSNeg == 2 || RHSNeg == 2)
3532        return DAG.getNode(ISD::FDIV, VT, GetNegatedExpression(N0, DAG),
3533                           GetNegatedExpression(N1, DAG));
3534    }
3535  }
3536
3537  return SDOperand();
3538}
3539
3540SDOperand DAGCombiner::visitFREM(SDNode *N) {
3541  SDOperand N0 = N->getOperand(0);
3542  SDOperand N1 = N->getOperand(1);
3543  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3544  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
3545  MVT::ValueType VT = N->getValueType(0);
3546
3547  // fold (frem c1, c2) -> fmod(c1,c2)
3548  if (N0CFP && N1CFP && VT != MVT::ppcf128)
3549    return DAG.getNode(ISD::FREM, VT, N0, N1);
3550
3551  return SDOperand();
3552}
3553
3554SDOperand DAGCombiner::visitFCOPYSIGN(SDNode *N) {
3555  SDOperand N0 = N->getOperand(0);
3556  SDOperand N1 = N->getOperand(1);
3557  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3558  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
3559  MVT::ValueType VT = N->getValueType(0);
3560
3561  if (N0CFP && N1CFP && VT != MVT::ppcf128)  // Constant fold
3562    return DAG.getNode(ISD::FCOPYSIGN, VT, N0, N1);
3563
3564  if (N1CFP) {
3565    const APFloat& V = N1CFP->getValueAPF();
3566    // copysign(x, c1) -> fabs(x)       iff ispos(c1)
3567    // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1)
3568    if (!V.isNegative())
3569      return DAG.getNode(ISD::FABS, VT, N0);
3570    else
3571      return DAG.getNode(ISD::FNEG, VT, DAG.getNode(ISD::FABS, VT, N0));
3572  }
3573
3574  // copysign(fabs(x), y) -> copysign(x, y)
3575  // copysign(fneg(x), y) -> copysign(x, y)
3576  // copysign(copysign(x,z), y) -> copysign(x, y)
3577  if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG ||
3578      N0.getOpcode() == ISD::FCOPYSIGN)
3579    return DAG.getNode(ISD::FCOPYSIGN, VT, N0.getOperand(0), N1);
3580
3581  // copysign(x, abs(y)) -> abs(x)
3582  if (N1.getOpcode() == ISD::FABS)
3583    return DAG.getNode(ISD::FABS, VT, N0);
3584
3585  // copysign(x, copysign(y,z)) -> copysign(x, z)
3586  if (N1.getOpcode() == ISD::FCOPYSIGN)
3587    return DAG.getNode(ISD::FCOPYSIGN, VT, N0, N1.getOperand(1));
3588
3589  // copysign(x, fp_extend(y)) -> copysign(x, y)
3590  // copysign(x, fp_round(y)) -> copysign(x, y)
3591  if (N1.getOpcode() == ISD::FP_EXTEND || N1.getOpcode() == ISD::FP_ROUND)
3592    return DAG.getNode(ISD::FCOPYSIGN, VT, N0, N1.getOperand(0));
3593
3594  return SDOperand();
3595}
3596
3597
3598
3599SDOperand DAGCombiner::visitSINT_TO_FP(SDNode *N) {
3600  SDOperand N0 = N->getOperand(0);
3601  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3602  MVT::ValueType VT = N->getValueType(0);
3603
3604  // fold (sint_to_fp c1) -> c1fp
3605  if (N0C && N0.getValueType() != MVT::ppcf128)
3606    return DAG.getNode(ISD::SINT_TO_FP, VT, N0);
3607  return SDOperand();
3608}
3609
3610SDOperand DAGCombiner::visitUINT_TO_FP(SDNode *N) {
3611  SDOperand N0 = N->getOperand(0);
3612  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3613  MVT::ValueType VT = N->getValueType(0);
3614
3615  // fold (uint_to_fp c1) -> c1fp
3616  if (N0C && N0.getValueType() != MVT::ppcf128)
3617    return DAG.getNode(ISD::UINT_TO_FP, VT, N0);
3618  return SDOperand();
3619}
3620
3621SDOperand DAGCombiner::visitFP_TO_SINT(SDNode *N) {
3622  SDOperand N0 = N->getOperand(0);
3623  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3624  MVT::ValueType VT = N->getValueType(0);
3625
3626  // fold (fp_to_sint c1fp) -> c1
3627  if (N0CFP)
3628    return DAG.getNode(ISD::FP_TO_SINT, VT, N0);
3629  return SDOperand();
3630}
3631
3632SDOperand DAGCombiner::visitFP_TO_UINT(SDNode *N) {
3633  SDOperand N0 = N->getOperand(0);
3634  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3635  MVT::ValueType VT = N->getValueType(0);
3636
3637  // fold (fp_to_uint c1fp) -> c1
3638  if (N0CFP && VT != MVT::ppcf128)
3639    return DAG.getNode(ISD::FP_TO_UINT, VT, N0);
3640  return SDOperand();
3641}
3642
3643SDOperand DAGCombiner::visitFP_ROUND(SDNode *N) {
3644  SDOperand N0 = N->getOperand(0);
3645  SDOperand N1 = N->getOperand(1);
3646  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3647  MVT::ValueType VT = N->getValueType(0);
3648
3649  // fold (fp_round c1fp) -> c1fp
3650  if (N0CFP && N0.getValueType() != MVT::ppcf128)
3651    return DAG.getNode(ISD::FP_ROUND, VT, N0, N1);
3652
3653  // fold (fp_round (fp_extend x)) -> x
3654  if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType())
3655    return N0.getOperand(0);
3656
3657  // fold (fp_round (fp_round x)) -> (fp_round x)
3658  if (N0.getOpcode() == ISD::FP_ROUND) {
3659    // This is a value preserving truncation if both round's are.
3660    bool IsTrunc = N->getConstantOperandVal(1) == 1 &&
3661                   N0.Val->getConstantOperandVal(1) == 1;
3662    return DAG.getNode(ISD::FP_ROUND, VT, N0.getOperand(0),
3663                       DAG.getIntPtrConstant(IsTrunc));
3664  }
3665
3666  // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y)
3667  if (N0.getOpcode() == ISD::FCOPYSIGN && N0.Val->hasOneUse()) {
3668    SDOperand Tmp = DAG.getNode(ISD::FP_ROUND, VT, N0.getOperand(0), N1);
3669    AddToWorkList(Tmp.Val);
3670    return DAG.getNode(ISD::FCOPYSIGN, VT, Tmp, N0.getOperand(1));
3671  }
3672
3673  return SDOperand();
3674}
3675
3676SDOperand DAGCombiner::visitFP_ROUND_INREG(SDNode *N) {
3677  SDOperand N0 = N->getOperand(0);
3678  MVT::ValueType VT = N->getValueType(0);
3679  MVT::ValueType EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
3680  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3681
3682  // fold (fp_round_inreg c1fp) -> c1fp
3683  if (N0CFP) {
3684    SDOperand Round = DAG.getConstantFP(N0CFP->getValueAPF(), EVT);
3685    return DAG.getNode(ISD::FP_EXTEND, VT, Round);
3686  }
3687  return SDOperand();
3688}
3689
3690SDOperand DAGCombiner::visitFP_EXTEND(SDNode *N) {
3691  SDOperand N0 = N->getOperand(0);
3692  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3693  MVT::ValueType VT = N->getValueType(0);
3694
3695  // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded.
3696  if (N->hasOneUse() && (*N->use_begin())->getOpcode() == ISD::FP_ROUND)
3697    return SDOperand();
3698
3699  // fold (fp_extend c1fp) -> c1fp
3700  if (N0CFP && VT != MVT::ppcf128)
3701    return DAG.getNode(ISD::FP_EXTEND, VT, N0);
3702
3703  // Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the
3704  // value of X.
3705  if (N0.getOpcode() == ISD::FP_ROUND && N0.Val->getConstantOperandVal(1) == 1){
3706    SDOperand In = N0.getOperand(0);
3707    if (In.getValueType() == VT) return In;
3708    if (VT < In.getValueType())
3709      return DAG.getNode(ISD::FP_ROUND, VT, In, N0.getOperand(1));
3710    return DAG.getNode(ISD::FP_EXTEND, VT, In);
3711  }
3712
3713  // fold (fpext (load x)) -> (fpext (fptrunc (extload x)))
3714  if (ISD::isNON_EXTLoad(N0.Val) && N0.hasOneUse() &&
3715      (!AfterLegalize||TLI.isLoadXLegal(ISD::EXTLOAD, N0.getValueType()))) {
3716    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3717    SDOperand ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, VT, LN0->getChain(),
3718                                       LN0->getBasePtr(), LN0->getSrcValue(),
3719                                       LN0->getSrcValueOffset(),
3720                                       N0.getValueType(),
3721                                       LN0->isVolatile(),
3722                                       LN0->getAlignment());
3723    CombineTo(N, ExtLoad);
3724    CombineTo(N0.Val, DAG.getNode(ISD::FP_ROUND, N0.getValueType(), ExtLoad,
3725                                  DAG.getIntPtrConstant(1)),
3726              ExtLoad.getValue(1));
3727    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
3728  }
3729
3730
3731  return SDOperand();
3732}
3733
3734SDOperand DAGCombiner::visitFNEG(SDNode *N) {
3735  SDOperand N0 = N->getOperand(0);
3736
3737  if (isNegatibleForFree(N0))
3738    return GetNegatedExpression(N0, DAG);
3739
3740  return SDOperand();
3741}
3742
3743SDOperand DAGCombiner::visitFABS(SDNode *N) {
3744  SDOperand N0 = N->getOperand(0);
3745  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3746  MVT::ValueType VT = N->getValueType(0);
3747
3748  // fold (fabs c1) -> fabs(c1)
3749  if (N0CFP && VT != MVT::ppcf128)
3750    return DAG.getNode(ISD::FABS, VT, N0);
3751  // fold (fabs (fabs x)) -> (fabs x)
3752  if (N0.getOpcode() == ISD::FABS)
3753    return N->getOperand(0);
3754  // fold (fabs (fneg x)) -> (fabs x)
3755  // fold (fabs (fcopysign x, y)) -> (fabs x)
3756  if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN)
3757    return DAG.getNode(ISD::FABS, VT, N0.getOperand(0));
3758
3759  return SDOperand();
3760}
3761
3762SDOperand DAGCombiner::visitBRCOND(SDNode *N) {
3763  SDOperand Chain = N->getOperand(0);
3764  SDOperand N1 = N->getOperand(1);
3765  SDOperand N2 = N->getOperand(2);
3766  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3767
3768  // never taken branch, fold to chain
3769  if (N1C && N1C->isNullValue())
3770    return Chain;
3771  // unconditional branch
3772  if (N1C && N1C->getValue() == 1)
3773    return DAG.getNode(ISD::BR, MVT::Other, Chain, N2);
3774  // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal
3775  // on the target.
3776  if (N1.getOpcode() == ISD::SETCC &&
3777      TLI.isOperationLegal(ISD::BR_CC, MVT::Other)) {
3778    return DAG.getNode(ISD::BR_CC, MVT::Other, Chain, N1.getOperand(2),
3779                       N1.getOperand(0), N1.getOperand(1), N2);
3780  }
3781  return SDOperand();
3782}
3783
3784// Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB.
3785//
3786SDOperand DAGCombiner::visitBR_CC(SDNode *N) {
3787  CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1));
3788  SDOperand CondLHS = N->getOperand(2), CondRHS = N->getOperand(3);
3789
3790  // Use SimplifySetCC  to simplify SETCC's.
3791  SDOperand Simp = SimplifySetCC(MVT::i1, CondLHS, CondRHS, CC->get(), false);
3792  if (Simp.Val) AddToWorkList(Simp.Val);
3793
3794  ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(Simp.Val);
3795
3796  // fold br_cc true, dest -> br dest (unconditional branch)
3797  if (SCCC && SCCC->getValue())
3798    return DAG.getNode(ISD::BR, MVT::Other, N->getOperand(0),
3799                       N->getOperand(4));
3800  // fold br_cc false, dest -> unconditional fall through
3801  if (SCCC && SCCC->isNullValue())
3802    return N->getOperand(0);
3803
3804  // fold to a simpler setcc
3805  if (Simp.Val && Simp.getOpcode() == ISD::SETCC)
3806    return DAG.getNode(ISD::BR_CC, MVT::Other, N->getOperand(0),
3807                       Simp.getOperand(2), Simp.getOperand(0),
3808                       Simp.getOperand(1), N->getOperand(4));
3809  return SDOperand();
3810}
3811
3812
3813/// CombineToPreIndexedLoadStore - Try turning a load / store and a
3814/// pre-indexed load / store when the base pointer is a add or subtract
3815/// and it has other uses besides the load / store. After the
3816/// transformation, the new indexed load / store has effectively folded
3817/// the add / subtract in and all of its other uses are redirected to the
3818/// new load / store.
3819bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) {
3820  if (!AfterLegalize)
3821    return false;
3822
3823  bool isLoad = true;
3824  SDOperand Ptr;
3825  MVT::ValueType VT;
3826  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(N)) {
3827    if (LD->isIndexed())
3828      return false;
3829    VT = LD->getLoadedVT();
3830    if (!TLI.isIndexedLoadLegal(ISD::PRE_INC, VT) &&
3831        !TLI.isIndexedLoadLegal(ISD::PRE_DEC, VT))
3832      return false;
3833    Ptr = LD->getBasePtr();
3834  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(N)) {
3835    if (ST->isIndexed())
3836      return false;
3837    VT = ST->getStoredVT();
3838    if (!TLI.isIndexedStoreLegal(ISD::PRE_INC, VT) &&
3839        !TLI.isIndexedStoreLegal(ISD::PRE_DEC, VT))
3840      return false;
3841    Ptr = ST->getBasePtr();
3842    isLoad = false;
3843  } else
3844    return false;
3845
3846  // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail
3847  // out.  There is no reason to make this a preinc/predec.
3848  if ((Ptr.getOpcode() != ISD::ADD && Ptr.getOpcode() != ISD::SUB) ||
3849      Ptr.Val->hasOneUse())
3850    return false;
3851
3852  // Ask the target to do addressing mode selection.
3853  SDOperand BasePtr;
3854  SDOperand Offset;
3855  ISD::MemIndexedMode AM = ISD::UNINDEXED;
3856  if (!TLI.getPreIndexedAddressParts(N, BasePtr, Offset, AM, DAG))
3857    return false;
3858  // Don't create a indexed load / store with zero offset.
3859  if (isa<ConstantSDNode>(Offset) &&
3860      cast<ConstantSDNode>(Offset)->getValue() == 0)
3861    return false;
3862
3863  // Try turning it into a pre-indexed load / store except when:
3864  // 1) The new base ptr is a frame index.
3865  // 2) If N is a store and the new base ptr is either the same as or is a
3866  //    predecessor of the value being stored.
3867  // 3) Another use of old base ptr is a predecessor of N. If ptr is folded
3868  //    that would create a cycle.
3869  // 4) All uses are load / store ops that use it as old base ptr.
3870
3871  // Check #1.  Preinc'ing a frame index would require copying the stack pointer
3872  // (plus the implicit offset) to a register to preinc anyway.
3873  if (isa<FrameIndexSDNode>(BasePtr))
3874    return false;
3875
3876  // Check #2.
3877  if (!isLoad) {
3878    SDOperand Val = cast<StoreSDNode>(N)->getValue();
3879    if (Val == BasePtr || BasePtr.Val->isPredecessor(Val.Val))
3880      return false;
3881  }
3882
3883  // Now check for #3 and #4.
3884  bool RealUse = false;
3885  for (SDNode::use_iterator I = Ptr.Val->use_begin(),
3886         E = Ptr.Val->use_end(); I != E; ++I) {
3887    SDNode *Use = *I;
3888    if (Use == N)
3889      continue;
3890    if (Use->isPredecessor(N))
3891      return false;
3892
3893    if (!((Use->getOpcode() == ISD::LOAD &&
3894           cast<LoadSDNode>(Use)->getBasePtr() == Ptr) ||
3895          (Use->getOpcode() == ISD::STORE) &&
3896          cast<StoreSDNode>(Use)->getBasePtr() == Ptr))
3897      RealUse = true;
3898  }
3899  if (!RealUse)
3900    return false;
3901
3902  SDOperand Result;
3903  if (isLoad)
3904    Result = DAG.getIndexedLoad(SDOperand(N,0), BasePtr, Offset, AM);
3905  else
3906    Result = DAG.getIndexedStore(SDOperand(N,0), BasePtr, Offset, AM);
3907  ++PreIndexedNodes;
3908  ++NodesCombined;
3909  DOUT << "\nReplacing.4 "; DEBUG(N->dump(&DAG));
3910  DOUT << "\nWith: "; DEBUG(Result.Val->dump(&DAG));
3911  DOUT << '\n';
3912  std::vector<SDNode*> NowDead;
3913  if (isLoad) {
3914    DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0), Result.getValue(0),
3915                                  &NowDead);
3916    DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 1), Result.getValue(2),
3917                                  &NowDead);
3918  } else {
3919    DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0), Result.getValue(1),
3920                                  &NowDead);
3921  }
3922
3923  // Nodes can end up on the worklist more than once.  Make sure we do
3924  // not process a node that has been replaced.
3925  for (unsigned i = 0, e = NowDead.size(); i != e; ++i)
3926    removeFromWorkList(NowDead[i]);
3927  // Finally, since the node is now dead, remove it from the graph.
3928  DAG.DeleteNode(N);
3929
3930  // Replace the uses of Ptr with uses of the updated base value.
3931  DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(isLoad ? 1 : 0),
3932                                &NowDead);
3933  removeFromWorkList(Ptr.Val);
3934  for (unsigned i = 0, e = NowDead.size(); i != e; ++i)
3935    removeFromWorkList(NowDead[i]);
3936  DAG.DeleteNode(Ptr.Val);
3937
3938  return true;
3939}
3940
3941/// CombineToPostIndexedLoadStore - Try combine a load / store with a
3942/// add / sub of the base pointer node into a post-indexed load / store.
3943/// The transformation folded the add / subtract into the new indexed
3944/// load / store effectively and all of its uses are redirected to the
3945/// new load / store.
3946bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) {
3947  if (!AfterLegalize)
3948    return false;
3949
3950  bool isLoad = true;
3951  SDOperand Ptr;
3952  MVT::ValueType VT;
3953  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(N)) {
3954    if (LD->isIndexed())
3955      return false;
3956    VT = LD->getLoadedVT();
3957    if (!TLI.isIndexedLoadLegal(ISD::POST_INC, VT) &&
3958        !TLI.isIndexedLoadLegal(ISD::POST_DEC, VT))
3959      return false;
3960    Ptr = LD->getBasePtr();
3961  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(N)) {
3962    if (ST->isIndexed())
3963      return false;
3964    VT = ST->getStoredVT();
3965    if (!TLI.isIndexedStoreLegal(ISD::POST_INC, VT) &&
3966        !TLI.isIndexedStoreLegal(ISD::POST_DEC, VT))
3967      return false;
3968    Ptr = ST->getBasePtr();
3969    isLoad = false;
3970  } else
3971    return false;
3972
3973  if (Ptr.Val->hasOneUse())
3974    return false;
3975
3976  for (SDNode::use_iterator I = Ptr.Val->use_begin(),
3977         E = Ptr.Val->use_end(); I != E; ++I) {
3978    SDNode *Op = *I;
3979    if (Op == N ||
3980        (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB))
3981      continue;
3982
3983    SDOperand BasePtr;
3984    SDOperand Offset;
3985    ISD::MemIndexedMode AM = ISD::UNINDEXED;
3986    if (TLI.getPostIndexedAddressParts(N, Op, BasePtr, Offset, AM, DAG)) {
3987      if (Ptr == Offset)
3988        std::swap(BasePtr, Offset);
3989      if (Ptr != BasePtr)
3990        continue;
3991      // Don't create a indexed load / store with zero offset.
3992      if (isa<ConstantSDNode>(Offset) &&
3993          cast<ConstantSDNode>(Offset)->getValue() == 0)
3994        continue;
3995
3996      // Try turning it into a post-indexed load / store except when
3997      // 1) All uses are load / store ops that use it as base ptr.
3998      // 2) Op must be independent of N, i.e. Op is neither a predecessor
3999      //    nor a successor of N. Otherwise, if Op is folded that would
4000      //    create a cycle.
4001
4002      // Check for #1.
4003      bool TryNext = false;
4004      for (SDNode::use_iterator II = BasePtr.Val->use_begin(),
4005             EE = BasePtr.Val->use_end(); II != EE; ++II) {
4006        SDNode *Use = *II;
4007        if (Use == Ptr.Val)
4008          continue;
4009
4010        // If all the uses are load / store addresses, then don't do the
4011        // transformation.
4012        if (Use->getOpcode() == ISD::ADD || Use->getOpcode() == ISD::SUB){
4013          bool RealUse = false;
4014          for (SDNode::use_iterator III = Use->use_begin(),
4015                 EEE = Use->use_end(); III != EEE; ++III) {
4016            SDNode *UseUse = *III;
4017            if (!((UseUse->getOpcode() == ISD::LOAD &&
4018                   cast<LoadSDNode>(UseUse)->getBasePtr().Val == Use) ||
4019                  (UseUse->getOpcode() == ISD::STORE) &&
4020                  cast<StoreSDNode>(UseUse)->getBasePtr().Val == Use))
4021              RealUse = true;
4022          }
4023
4024          if (!RealUse) {
4025            TryNext = true;
4026            break;
4027          }
4028        }
4029      }
4030      if (TryNext)
4031        continue;
4032
4033      // Check for #2
4034      if (!Op->isPredecessor(N) && !N->isPredecessor(Op)) {
4035        SDOperand Result = isLoad
4036          ? DAG.getIndexedLoad(SDOperand(N,0), BasePtr, Offset, AM)
4037          : DAG.getIndexedStore(SDOperand(N,0), BasePtr, Offset, AM);
4038        ++PostIndexedNodes;
4039        ++NodesCombined;
4040        DOUT << "\nReplacing.5 "; DEBUG(N->dump(&DAG));
4041        DOUT << "\nWith: "; DEBUG(Result.Val->dump(&DAG));
4042        DOUT << '\n';
4043        std::vector<SDNode*> NowDead;
4044        if (isLoad) {
4045          DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0), Result.getValue(0),
4046                                        &NowDead);
4047          DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 1), Result.getValue(2),
4048                                        &NowDead);
4049        } else {
4050          DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0), Result.getValue(1),
4051                                        &NowDead);
4052        }
4053
4054        // Nodes can end up on the worklist more than once.  Make sure we do
4055        // not process a node that has been replaced.
4056        for (unsigned i = 0, e = NowDead.size(); i != e; ++i)
4057          removeFromWorkList(NowDead[i]);
4058        // Finally, since the node is now dead, remove it from the graph.
4059        DAG.DeleteNode(N);
4060
4061        // Replace the uses of Use with uses of the updated base value.
4062        DAG.ReplaceAllUsesOfValueWith(SDOperand(Op, 0),
4063                                      Result.getValue(isLoad ? 1 : 0),
4064                                      &NowDead);
4065        removeFromWorkList(Op);
4066        for (unsigned i = 0, e = NowDead.size(); i != e; ++i)
4067          removeFromWorkList(NowDead[i]);
4068        DAG.DeleteNode(Op);
4069
4070        return true;
4071      }
4072    }
4073  }
4074  return false;
4075}
4076
4077
4078SDOperand DAGCombiner::visitLOAD(SDNode *N) {
4079  LoadSDNode *LD  = cast<LoadSDNode>(N);
4080  SDOperand Chain = LD->getChain();
4081  SDOperand Ptr   = LD->getBasePtr();
4082
4083  // If load is not volatile and there are no uses of the loaded value (and
4084  // the updated indexed value in case of indexed loads), change uses of the
4085  // chain value into uses of the chain input (i.e. delete the dead load).
4086  if (!LD->isVolatile()) {
4087    if (N->getValueType(1) == MVT::Other) {
4088      // Unindexed loads.
4089      if (N->hasNUsesOfValue(0, 0)) {
4090        // It's not safe to use the two value CombineTo variant here. e.g.
4091        // v1, chain2 = load chain1, loc
4092        // v2, chain3 = load chain2, loc
4093        // v3         = add v2, c
4094        // Now we replace use of chain2 with chain1.  This makes the second load
4095        // isomorphic to the one we are deleting, and thus makes this load live.
4096        std::vector<SDNode*> NowDead;
4097        DOUT << "\nReplacing.6 "; DEBUG(N->dump(&DAG));
4098        DOUT << "\nWith chain: "; DEBUG(Chain.Val->dump(&DAG));
4099        DOUT << "\n";
4100        DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 1), Chain, &NowDead);
4101        for (unsigned i = 0, e = NowDead.size(); i != e; ++i)
4102          removeFromWorkList(NowDead[i]);
4103        if (N->use_empty()) {
4104          removeFromWorkList(N);
4105          DAG.DeleteNode(N);
4106        }
4107        return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
4108      }
4109    } else {
4110      // Indexed loads.
4111      assert(N->getValueType(2) == MVT::Other && "Malformed indexed loads?");
4112      if (N->hasNUsesOfValue(0, 0) && N->hasNUsesOfValue(0, 1)) {
4113        std::vector<SDNode*> NowDead;
4114        SDOperand Undef = DAG.getNode(ISD::UNDEF, N->getValueType(0));
4115        DOUT << "\nReplacing.6 "; DEBUG(N->dump(&DAG));
4116        DOUT << "\nWith: "; DEBUG(Undef.Val->dump(&DAG));
4117        DOUT << " and 2 other values\n";
4118        DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0), Undef, &NowDead);
4119        DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 1),
4120                                    DAG.getNode(ISD::UNDEF, N->getValueType(1)),
4121                                      &NowDead);
4122        DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 2), Chain, &NowDead);
4123        removeFromWorkList(N);
4124        for (unsigned i = 0, e = NowDead.size(); i != e; ++i)
4125          removeFromWorkList(NowDead[i]);
4126        DAG.DeleteNode(N);
4127        return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
4128      }
4129    }
4130  }
4131
4132  // If this load is directly stored, replace the load value with the stored
4133  // value.
4134  // TODO: Handle store large -> read small portion.
4135  // TODO: Handle TRUNCSTORE/LOADEXT
4136  if (LD->getExtensionType() == ISD::NON_EXTLOAD) {
4137    if (ISD::isNON_TRUNCStore(Chain.Val)) {
4138      StoreSDNode *PrevST = cast<StoreSDNode>(Chain);
4139      if (PrevST->getBasePtr() == Ptr &&
4140          PrevST->getValue().getValueType() == N->getValueType(0))
4141      return CombineTo(N, Chain.getOperand(1), Chain);
4142    }
4143  }
4144
4145  if (CombinerAA) {
4146    // Walk up chain skipping non-aliasing memory nodes.
4147    SDOperand BetterChain = FindBetterChain(N, Chain);
4148
4149    // If there is a better chain.
4150    if (Chain != BetterChain) {
4151      SDOperand ReplLoad;
4152
4153      // Replace the chain to void dependency.
4154      if (LD->getExtensionType() == ISD::NON_EXTLOAD) {
4155        ReplLoad = DAG.getLoad(N->getValueType(0), BetterChain, Ptr,
4156                               LD->getSrcValue(), LD->getSrcValueOffset(),
4157                               LD->isVolatile(), LD->getAlignment());
4158      } else {
4159        ReplLoad = DAG.getExtLoad(LD->getExtensionType(),
4160                                  LD->getValueType(0),
4161                                  BetterChain, Ptr, LD->getSrcValue(),
4162                                  LD->getSrcValueOffset(),
4163                                  LD->getLoadedVT(),
4164                                  LD->isVolatile(),
4165                                  LD->getAlignment());
4166      }
4167
4168      // Create token factor to keep old chain connected.
4169      SDOperand Token = DAG.getNode(ISD::TokenFactor, MVT::Other,
4170                                    Chain, ReplLoad.getValue(1));
4171
4172      // Replace uses with load result and token factor. Don't add users
4173      // to work list.
4174      return CombineTo(N, ReplLoad.getValue(0), Token, false);
4175    }
4176  }
4177
4178  // Try transforming N to an indexed load.
4179  if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
4180    return SDOperand(N, 0);
4181
4182  return SDOperand();
4183}
4184
4185
4186SDOperand DAGCombiner::visitSTORE(SDNode *N) {
4187  StoreSDNode *ST  = cast<StoreSDNode>(N);
4188  SDOperand Chain = ST->getChain();
4189  SDOperand Value = ST->getValue();
4190  SDOperand Ptr   = ST->getBasePtr();
4191
4192  // If this is a store of a bit convert, store the input value if the
4193  // resultant store does not need a higher alignment than the original.
4194  if (Value.getOpcode() == ISD::BIT_CONVERT && !ST->isTruncatingStore() &&
4195      ST->isUnindexed()) {
4196    unsigned Align = ST->getAlignment();
4197    MVT::ValueType SVT = Value.getOperand(0).getValueType();
4198    unsigned OrigAlign = TLI.getTargetMachine().getTargetData()->
4199      getABITypeAlignment(MVT::getTypeForValueType(SVT));
4200    if (Align <= OrigAlign && TLI.isOperationLegal(ISD::STORE, SVT))
4201      return DAG.getStore(Chain, Value.getOperand(0), Ptr, ST->getSrcValue(),
4202                          ST->getSrcValueOffset(), ST->isVolatile(), Align);
4203  }
4204
4205  // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
4206  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Value)) {
4207    if (Value.getOpcode() != ISD::TargetConstantFP) {
4208      SDOperand Tmp;
4209      switch (CFP->getValueType(0)) {
4210      default: assert(0 && "Unknown FP type");
4211      case MVT::f80:    // We don't do this for these yet.
4212      case MVT::f128:
4213      case MVT::ppcf128:
4214        break;
4215      case MVT::f32:
4216        if (!AfterLegalize || TLI.isTypeLegal(MVT::i32)) {
4217          Tmp = DAG.getConstant((uint32_t)CFP->getValueAPF().
4218                              convertToAPInt().getZExtValue(), MVT::i32);
4219          return DAG.getStore(Chain, Tmp, Ptr, ST->getSrcValue(),
4220                              ST->getSrcValueOffset(), ST->isVolatile(),
4221                              ST->getAlignment());
4222        }
4223        break;
4224      case MVT::f64:
4225        if (!AfterLegalize || TLI.isTypeLegal(MVT::i64)) {
4226          Tmp = DAG.getConstant(CFP->getValueAPF().convertToAPInt().
4227                                  getZExtValue(), MVT::i64);
4228          return DAG.getStore(Chain, Tmp, Ptr, ST->getSrcValue(),
4229                              ST->getSrcValueOffset(), ST->isVolatile(),
4230                              ST->getAlignment());
4231        } else if (TLI.isTypeLegal(MVT::i32)) {
4232          // Many FP stores are not made apparent until after legalize, e.g. for
4233          // argument passing.  Since this is so common, custom legalize the
4234          // 64-bit integer store into two 32-bit stores.
4235          uint64_t Val = CFP->getValueAPF().convertToAPInt().getZExtValue();
4236          SDOperand Lo = DAG.getConstant(Val & 0xFFFFFFFF, MVT::i32);
4237          SDOperand Hi = DAG.getConstant(Val >> 32, MVT::i32);
4238          if (!TLI.isLittleEndian()) std::swap(Lo, Hi);
4239
4240          int SVOffset = ST->getSrcValueOffset();
4241          unsigned Alignment = ST->getAlignment();
4242          bool isVolatile = ST->isVolatile();
4243
4244          SDOperand St0 = DAG.getStore(Chain, Lo, Ptr, ST->getSrcValue(),
4245                                       ST->getSrcValueOffset(),
4246                                       isVolatile, ST->getAlignment());
4247          Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr,
4248                            DAG.getConstant(4, Ptr.getValueType()));
4249          SVOffset += 4;
4250          Alignment = MinAlign(Alignment, 4U);
4251          SDOperand St1 = DAG.getStore(Chain, Hi, Ptr, ST->getSrcValue(),
4252                                       SVOffset, isVolatile, Alignment);
4253          return DAG.getNode(ISD::TokenFactor, MVT::Other, St0, St1);
4254        }
4255        break;
4256      }
4257    }
4258  }
4259
4260  if (CombinerAA) {
4261    // Walk up chain skipping non-aliasing memory nodes.
4262    SDOperand BetterChain = FindBetterChain(N, Chain);
4263
4264    // If there is a better chain.
4265    if (Chain != BetterChain) {
4266      // Replace the chain to avoid dependency.
4267      SDOperand ReplStore;
4268      if (ST->isTruncatingStore()) {
4269        ReplStore = DAG.getTruncStore(BetterChain, Value, Ptr,
4270                                      ST->getSrcValue(),ST->getSrcValueOffset(),
4271                                      ST->getStoredVT(),
4272                                      ST->isVolatile(), ST->getAlignment());
4273      } else {
4274        ReplStore = DAG.getStore(BetterChain, Value, Ptr,
4275                                 ST->getSrcValue(), ST->getSrcValueOffset(),
4276                                 ST->isVolatile(), ST->getAlignment());
4277      }
4278
4279      // Create token to keep both nodes around.
4280      SDOperand Token =
4281        DAG.getNode(ISD::TokenFactor, MVT::Other, Chain, ReplStore);
4282
4283      // Don't add users to work list.
4284      return CombineTo(N, Token, false);
4285    }
4286  }
4287
4288  // Try transforming N to an indexed store.
4289  if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
4290    return SDOperand(N, 0);
4291
4292  // FIXME: is there such a thing as a truncating indexed store?
4293  if (ST->isTruncatingStore() && ST->isUnindexed() &&
4294      MVT::isInteger(Value.getValueType())) {
4295    // See if we can simplify the input to this truncstore with knowledge that
4296    // only the low bits are being used.  For example:
4297    // "truncstore (or (shl x, 8), y), i8"  -> "truncstore y, i8"
4298    SDOperand Shorter =
4299      GetDemandedBits(Value, MVT::getIntVTBitMask(ST->getStoredVT()));
4300    AddToWorkList(Value.Val);
4301    if (Shorter.Val)
4302      return DAG.getTruncStore(Chain, Shorter, Ptr, ST->getSrcValue(),
4303                               ST->getSrcValueOffset(), ST->getStoredVT(),
4304                               ST->isVolatile(), ST->getAlignment());
4305
4306    // Otherwise, see if we can simplify the operation with
4307    // SimplifyDemandedBits, which only works if the value has a single use.
4308    if (SimplifyDemandedBits(Value, MVT::getIntVTBitMask(ST->getStoredVT())))
4309      return SDOperand(N, 0);
4310  }
4311
4312  // If this is a load followed by a store to the same location, then the store
4313  // is dead/noop.
4314  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Value)) {
4315    if (Ld->getBasePtr() == Ptr && ST->getStoredVT() == Ld->getLoadedVT() &&
4316        ST->isUnindexed() && !ST->isVolatile() &&
4317        // There can't be any side effects between the load and store, such as
4318        // a call or store.
4319        Chain.reachesChainWithoutSideEffects(SDOperand(Ld, 1))) {
4320      // The store is dead, remove it.
4321      return Chain;
4322    }
4323  }
4324
4325  // If this is an FP_ROUND or TRUNC followed by a store, fold this into a
4326  // truncating store.  We can do this even if this is already a truncstore.
4327  if ((Value.getOpcode() == ISD::FP_ROUND || Value.getOpcode() == ISD::TRUNCATE)
4328      && TLI.isTypeLegal(Value.getOperand(0).getValueType()) &&
4329      Value.Val->hasOneUse() && ST->isUnindexed() &&
4330      TLI.isTruncStoreLegal(Value.getOperand(0).getValueType(),
4331                            ST->getStoredVT())) {
4332    return DAG.getTruncStore(Chain, Value.getOperand(0), Ptr, ST->getSrcValue(),
4333                             ST->getSrcValueOffset(), ST->getStoredVT(),
4334                             ST->isVolatile(), ST->getAlignment());
4335  }
4336
4337  return SDOperand();
4338}
4339
4340SDOperand DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) {
4341  SDOperand InVec = N->getOperand(0);
4342  SDOperand InVal = N->getOperand(1);
4343  SDOperand EltNo = N->getOperand(2);
4344
4345  // If the invec is a BUILD_VECTOR and if EltNo is a constant, build a new
4346  // vector with the inserted element.
4347  if (InVec.getOpcode() == ISD::BUILD_VECTOR && isa<ConstantSDNode>(EltNo)) {
4348    unsigned Elt = cast<ConstantSDNode>(EltNo)->getValue();
4349    SmallVector<SDOperand, 8> Ops(InVec.Val->op_begin(), InVec.Val->op_end());
4350    if (Elt < Ops.size())
4351      Ops[Elt] = InVal;
4352    return DAG.getNode(ISD::BUILD_VECTOR, InVec.getValueType(),
4353                       &Ops[0], Ops.size());
4354  }
4355
4356  return SDOperand();
4357}
4358
4359SDOperand DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) {
4360  SDOperand InVec = N->getOperand(0);
4361  SDOperand EltNo = N->getOperand(1);
4362
4363  // (vextract (v4f32 s2v (f32 load $addr)), 0) -> (f32 load $addr)
4364  // (vextract (v4i32 bc (v4f32 s2v (f32 load $addr))), 0) -> (i32 load $addr)
4365  if (isa<ConstantSDNode>(EltNo)) {
4366    unsigned Elt = cast<ConstantSDNode>(EltNo)->getValue();
4367    bool NewLoad = false;
4368    if (Elt == 0) {
4369      MVT::ValueType VT = InVec.getValueType();
4370      MVT::ValueType EVT = MVT::getVectorElementType(VT);
4371      MVT::ValueType LVT = EVT;
4372      unsigned NumElts = MVT::getVectorNumElements(VT);
4373      if (InVec.getOpcode() == ISD::BIT_CONVERT) {
4374        MVT::ValueType BCVT = InVec.getOperand(0).getValueType();
4375        if (!MVT::isVector(BCVT) ||
4376            NumElts != MVT::getVectorNumElements(BCVT))
4377          return SDOperand();
4378        InVec = InVec.getOperand(0);
4379        EVT = MVT::getVectorElementType(BCVT);
4380        NewLoad = true;
4381      }
4382      if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR &&
4383          InVec.getOperand(0).getValueType() == EVT &&
4384          ISD::isNormalLoad(InVec.getOperand(0).Val) &&
4385          InVec.getOperand(0).hasOneUse()) {
4386        LoadSDNode *LN0 = cast<LoadSDNode>(InVec.getOperand(0));
4387        unsigned Align = LN0->getAlignment();
4388        if (NewLoad) {
4389          // Check the resultant load doesn't need a higher alignment than the
4390          // original load.
4391          unsigned NewAlign = TLI.getTargetMachine().getTargetData()->
4392            getABITypeAlignment(MVT::getTypeForValueType(LVT));
4393          if (!TLI.isOperationLegal(ISD::LOAD, LVT) || NewAlign > Align)
4394            return SDOperand();
4395          Align = NewAlign;
4396        }
4397
4398        return DAG.getLoad(LVT, LN0->getChain(), LN0->getBasePtr(),
4399                           LN0->getSrcValue(), LN0->getSrcValueOffset(),
4400                           LN0->isVolatile(), Align);
4401      }
4402    }
4403  }
4404  return SDOperand();
4405}
4406
4407
4408SDOperand DAGCombiner::visitBUILD_VECTOR(SDNode *N) {
4409  unsigned NumInScalars = N->getNumOperands();
4410  MVT::ValueType VT = N->getValueType(0);
4411  unsigned NumElts = MVT::getVectorNumElements(VT);
4412  MVT::ValueType EltType = MVT::getVectorElementType(VT);
4413
4414  // Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT
4415  // operations.  If so, and if the EXTRACT_VECTOR_ELT vector inputs come from
4416  // at most two distinct vectors, turn this into a shuffle node.
4417  SDOperand VecIn1, VecIn2;
4418  for (unsigned i = 0; i != NumInScalars; ++i) {
4419    // Ignore undef inputs.
4420    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
4421
4422    // If this input is something other than a EXTRACT_VECTOR_ELT with a
4423    // constant index, bail out.
4424    if (N->getOperand(i).getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
4425        !isa<ConstantSDNode>(N->getOperand(i).getOperand(1))) {
4426      VecIn1 = VecIn2 = SDOperand(0, 0);
4427      break;
4428    }
4429
4430    // If the input vector type disagrees with the result of the build_vector,
4431    // we can't make a shuffle.
4432    SDOperand ExtractedFromVec = N->getOperand(i).getOperand(0);
4433    if (ExtractedFromVec.getValueType() != VT) {
4434      VecIn1 = VecIn2 = SDOperand(0, 0);
4435      break;
4436    }
4437
4438    // Otherwise, remember this.  We allow up to two distinct input vectors.
4439    if (ExtractedFromVec == VecIn1 || ExtractedFromVec == VecIn2)
4440      continue;
4441
4442    if (VecIn1.Val == 0) {
4443      VecIn1 = ExtractedFromVec;
4444    } else if (VecIn2.Val == 0) {
4445      VecIn2 = ExtractedFromVec;
4446    } else {
4447      // Too many inputs.
4448      VecIn1 = VecIn2 = SDOperand(0, 0);
4449      break;
4450    }
4451  }
4452
4453  // If everything is good, we can make a shuffle operation.
4454  if (VecIn1.Val) {
4455    SmallVector<SDOperand, 8> BuildVecIndices;
4456    for (unsigned i = 0; i != NumInScalars; ++i) {
4457      if (N->getOperand(i).getOpcode() == ISD::UNDEF) {
4458        BuildVecIndices.push_back(DAG.getNode(ISD::UNDEF, TLI.getPointerTy()));
4459        continue;
4460      }
4461
4462      SDOperand Extract = N->getOperand(i);
4463
4464      // If extracting from the first vector, just use the index directly.
4465      if (Extract.getOperand(0) == VecIn1) {
4466        BuildVecIndices.push_back(Extract.getOperand(1));
4467        continue;
4468      }
4469
4470      // Otherwise, use InIdx + VecSize
4471      unsigned Idx = cast<ConstantSDNode>(Extract.getOperand(1))->getValue();
4472      BuildVecIndices.push_back(DAG.getIntPtrConstant(Idx+NumInScalars));
4473    }
4474
4475    // Add count and size info.
4476    MVT::ValueType BuildVecVT = MVT::getVectorType(TLI.getPointerTy(), NumElts);
4477
4478    // Return the new VECTOR_SHUFFLE node.
4479    SDOperand Ops[5];
4480    Ops[0] = VecIn1;
4481    if (VecIn2.Val) {
4482      Ops[1] = VecIn2;
4483    } else {
4484      // Use an undef build_vector as input for the second operand.
4485      std::vector<SDOperand> UnOps(NumInScalars,
4486                                   DAG.getNode(ISD::UNDEF,
4487                                               EltType));
4488      Ops[1] = DAG.getNode(ISD::BUILD_VECTOR, VT,
4489                           &UnOps[0], UnOps.size());
4490      AddToWorkList(Ops[1].Val);
4491    }
4492    Ops[2] = DAG.getNode(ISD::BUILD_VECTOR, BuildVecVT,
4493                         &BuildVecIndices[0], BuildVecIndices.size());
4494    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, Ops, 3);
4495  }
4496
4497  return SDOperand();
4498}
4499
4500SDOperand DAGCombiner::visitCONCAT_VECTORS(SDNode *N) {
4501  // TODO: Check to see if this is a CONCAT_VECTORS of a bunch of
4502  // EXTRACT_SUBVECTOR operations.  If so, and if the EXTRACT_SUBVECTOR vector
4503  // inputs come from at most two distinct vectors, turn this into a shuffle
4504  // node.
4505
4506  // If we only have one input vector, we don't need to do any concatenation.
4507  if (N->getNumOperands() == 1) {
4508    return N->getOperand(0);
4509  }
4510
4511  return SDOperand();
4512}
4513
4514SDOperand DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) {
4515  SDOperand ShufMask = N->getOperand(2);
4516  unsigned NumElts = ShufMask.getNumOperands();
4517
4518  // If the shuffle mask is an identity operation on the LHS, return the LHS.
4519  bool isIdentity = true;
4520  for (unsigned i = 0; i != NumElts; ++i) {
4521    if (ShufMask.getOperand(i).getOpcode() != ISD::UNDEF &&
4522        cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() != i) {
4523      isIdentity = false;
4524      break;
4525    }
4526  }
4527  if (isIdentity) return N->getOperand(0);
4528
4529  // If the shuffle mask is an identity operation on the RHS, return the RHS.
4530  isIdentity = true;
4531  for (unsigned i = 0; i != NumElts; ++i) {
4532    if (ShufMask.getOperand(i).getOpcode() != ISD::UNDEF &&
4533        cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() != i+NumElts) {
4534      isIdentity = false;
4535      break;
4536    }
4537  }
4538  if (isIdentity) return N->getOperand(1);
4539
4540  // Check if the shuffle is a unary shuffle, i.e. one of the vectors is not
4541  // needed at all.
4542  bool isUnary = true;
4543  bool isSplat = true;
4544  int VecNum = -1;
4545  unsigned BaseIdx = 0;
4546  for (unsigned i = 0; i != NumElts; ++i)
4547    if (ShufMask.getOperand(i).getOpcode() != ISD::UNDEF) {
4548      unsigned Idx = cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue();
4549      int V = (Idx < NumElts) ? 0 : 1;
4550      if (VecNum == -1) {
4551        VecNum = V;
4552        BaseIdx = Idx;
4553      } else {
4554        if (BaseIdx != Idx)
4555          isSplat = false;
4556        if (VecNum != V) {
4557          isUnary = false;
4558          break;
4559        }
4560      }
4561    }
4562
4563  SDOperand N0 = N->getOperand(0);
4564  SDOperand N1 = N->getOperand(1);
4565  // Normalize unary shuffle so the RHS is undef.
4566  if (isUnary && VecNum == 1)
4567    std::swap(N0, N1);
4568
4569  // If it is a splat, check if the argument vector is a build_vector with
4570  // all scalar elements the same.
4571  if (isSplat) {
4572    SDNode *V = N0.Val;
4573
4574    // If this is a bit convert that changes the element type of the vector but
4575    // not the number of vector elements, look through it.  Be careful not to
4576    // look though conversions that change things like v4f32 to v2f64.
4577    if (V->getOpcode() == ISD::BIT_CONVERT) {
4578      SDOperand ConvInput = V->getOperand(0);
4579      if (MVT::getVectorNumElements(ConvInput.getValueType()) == NumElts)
4580        V = ConvInput.Val;
4581    }
4582
4583    if (V->getOpcode() == ISD::BUILD_VECTOR) {
4584      unsigned NumElems = V->getNumOperands();
4585      if (NumElems > BaseIdx) {
4586        SDOperand Base;
4587        bool AllSame = true;
4588        for (unsigned i = 0; i != NumElems; ++i) {
4589          if (V->getOperand(i).getOpcode() != ISD::UNDEF) {
4590            Base = V->getOperand(i);
4591            break;
4592          }
4593        }
4594        // Splat of <u, u, u, u>, return <u, u, u, u>
4595        if (!Base.Val)
4596          return N0;
4597        for (unsigned i = 0; i != NumElems; ++i) {
4598          if (V->getOperand(i) != Base) {
4599            AllSame = false;
4600            break;
4601          }
4602        }
4603        // Splat of <x, x, x, x>, return <x, x, x, x>
4604        if (AllSame)
4605          return N0;
4606      }
4607    }
4608  }
4609
4610  // If it is a unary or the LHS and the RHS are the same node, turn the RHS
4611  // into an undef.
4612  if (isUnary || N0 == N1) {
4613    // Check the SHUFFLE mask, mapping any inputs from the 2nd operand into the
4614    // first operand.
4615    SmallVector<SDOperand, 8> MappedOps;
4616    for (unsigned i = 0; i != NumElts; ++i) {
4617      if (ShufMask.getOperand(i).getOpcode() == ISD::UNDEF ||
4618          cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() < NumElts) {
4619        MappedOps.push_back(ShufMask.getOperand(i));
4620      } else {
4621        unsigned NewIdx =
4622          cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() - NumElts;
4623        MappedOps.push_back(DAG.getConstant(NewIdx, MVT::i32));
4624      }
4625    }
4626    ShufMask = DAG.getNode(ISD::BUILD_VECTOR, ShufMask.getValueType(),
4627                           &MappedOps[0], MappedOps.size());
4628    AddToWorkList(ShufMask.Val);
4629    return DAG.getNode(ISD::VECTOR_SHUFFLE, N->getValueType(0),
4630                       N0,
4631                       DAG.getNode(ISD::UNDEF, N->getValueType(0)),
4632                       ShufMask);
4633  }
4634
4635  return SDOperand();
4636}
4637
4638/// XformToShuffleWithZero - Returns a vector_shuffle if it able to transform
4639/// an AND to a vector_shuffle with the destination vector and a zero vector.
4640/// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==>
4641///      vector_shuffle V, Zero, <0, 4, 2, 4>
4642SDOperand DAGCombiner::XformToShuffleWithZero(SDNode *N) {
4643  SDOperand LHS = N->getOperand(0);
4644  SDOperand RHS = N->getOperand(1);
4645  if (N->getOpcode() == ISD::AND) {
4646    if (RHS.getOpcode() == ISD::BIT_CONVERT)
4647      RHS = RHS.getOperand(0);
4648    if (RHS.getOpcode() == ISD::BUILD_VECTOR) {
4649      std::vector<SDOperand> IdxOps;
4650      unsigned NumOps = RHS.getNumOperands();
4651      unsigned NumElts = NumOps;
4652      MVT::ValueType EVT = MVT::getVectorElementType(RHS.getValueType());
4653      for (unsigned i = 0; i != NumElts; ++i) {
4654        SDOperand Elt = RHS.getOperand(i);
4655        if (!isa<ConstantSDNode>(Elt))
4656          return SDOperand();
4657        else if (cast<ConstantSDNode>(Elt)->isAllOnesValue())
4658          IdxOps.push_back(DAG.getConstant(i, EVT));
4659        else if (cast<ConstantSDNode>(Elt)->isNullValue())
4660          IdxOps.push_back(DAG.getConstant(NumElts, EVT));
4661        else
4662          return SDOperand();
4663      }
4664
4665      // Let's see if the target supports this vector_shuffle.
4666      if (!TLI.isVectorClearMaskLegal(IdxOps, EVT, DAG))
4667        return SDOperand();
4668
4669      // Return the new VECTOR_SHUFFLE node.
4670      MVT::ValueType VT = MVT::getVectorType(EVT, NumElts);
4671      std::vector<SDOperand> Ops;
4672      LHS = DAG.getNode(ISD::BIT_CONVERT, VT, LHS);
4673      Ops.push_back(LHS);
4674      AddToWorkList(LHS.Val);
4675      std::vector<SDOperand> ZeroOps(NumElts, DAG.getConstant(0, EVT));
4676      Ops.push_back(DAG.getNode(ISD::BUILD_VECTOR, VT,
4677                                &ZeroOps[0], ZeroOps.size()));
4678      Ops.push_back(DAG.getNode(ISD::BUILD_VECTOR, VT,
4679                                &IdxOps[0], IdxOps.size()));
4680      SDOperand Result = DAG.getNode(ISD::VECTOR_SHUFFLE, VT,
4681                                     &Ops[0], Ops.size());
4682      if (VT != LHS.getValueType()) {
4683        Result = DAG.getNode(ISD::BIT_CONVERT, LHS.getValueType(), Result);
4684      }
4685      return Result;
4686    }
4687  }
4688  return SDOperand();
4689}
4690
4691/// SimplifyVBinOp - Visit a binary vector operation, like ADD.
4692SDOperand DAGCombiner::SimplifyVBinOp(SDNode *N) {
4693  // After legalize, the target may be depending on adds and other
4694  // binary ops to provide legal ways to construct constants or other
4695  // things. Simplifying them may result in a loss of legality.
4696  if (AfterLegalize) return SDOperand();
4697
4698  MVT::ValueType VT = N->getValueType(0);
4699  assert(MVT::isVector(VT) && "SimplifyVBinOp only works on vectors!");
4700
4701  MVT::ValueType EltType = MVT::getVectorElementType(VT);
4702  SDOperand LHS = N->getOperand(0);
4703  SDOperand RHS = N->getOperand(1);
4704  SDOperand Shuffle = XformToShuffleWithZero(N);
4705  if (Shuffle.Val) return Shuffle;
4706
4707  // If the LHS and RHS are BUILD_VECTOR nodes, see if we can constant fold
4708  // this operation.
4709  if (LHS.getOpcode() == ISD::BUILD_VECTOR &&
4710      RHS.getOpcode() == ISD::BUILD_VECTOR) {
4711    SmallVector<SDOperand, 8> Ops;
4712    for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
4713      SDOperand LHSOp = LHS.getOperand(i);
4714      SDOperand RHSOp = RHS.getOperand(i);
4715      // If these two elements can't be folded, bail out.
4716      if ((LHSOp.getOpcode() != ISD::UNDEF &&
4717           LHSOp.getOpcode() != ISD::Constant &&
4718           LHSOp.getOpcode() != ISD::ConstantFP) ||
4719          (RHSOp.getOpcode() != ISD::UNDEF &&
4720           RHSOp.getOpcode() != ISD::Constant &&
4721           RHSOp.getOpcode() != ISD::ConstantFP))
4722        break;
4723      // Can't fold divide by zero.
4724      if (N->getOpcode() == ISD::SDIV || N->getOpcode() == ISD::UDIV ||
4725          N->getOpcode() == ISD::FDIV) {
4726        if ((RHSOp.getOpcode() == ISD::Constant &&
4727             cast<ConstantSDNode>(RHSOp.Val)->isNullValue()) ||
4728            (RHSOp.getOpcode() == ISD::ConstantFP &&
4729             cast<ConstantFPSDNode>(RHSOp.Val)->getValueAPF().isZero()))
4730          break;
4731      }
4732      Ops.push_back(DAG.getNode(N->getOpcode(), EltType, LHSOp, RHSOp));
4733      AddToWorkList(Ops.back().Val);
4734      assert((Ops.back().getOpcode() == ISD::UNDEF ||
4735              Ops.back().getOpcode() == ISD::Constant ||
4736              Ops.back().getOpcode() == ISD::ConstantFP) &&
4737             "Scalar binop didn't fold!");
4738    }
4739
4740    if (Ops.size() == LHS.getNumOperands()) {
4741      MVT::ValueType VT = LHS.getValueType();
4742      return DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
4743    }
4744  }
4745
4746  return SDOperand();
4747}
4748
4749SDOperand DAGCombiner::SimplifySelect(SDOperand N0, SDOperand N1, SDOperand N2){
4750  assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!");
4751
4752  SDOperand SCC = SimplifySelectCC(N0.getOperand(0), N0.getOperand(1), N1, N2,
4753                                 cast<CondCodeSDNode>(N0.getOperand(2))->get());
4754  // If we got a simplified select_cc node back from SimplifySelectCC, then
4755  // break it down into a new SETCC node, and a new SELECT node, and then return
4756  // the SELECT node, since we were called with a SELECT node.
4757  if (SCC.Val) {
4758    // Check to see if we got a select_cc back (to turn into setcc/select).
4759    // Otherwise, just return whatever node we got back, like fabs.
4760    if (SCC.getOpcode() == ISD::SELECT_CC) {
4761      SDOperand SETCC = DAG.getNode(ISD::SETCC, N0.getValueType(),
4762                                    SCC.getOperand(0), SCC.getOperand(1),
4763                                    SCC.getOperand(4));
4764      AddToWorkList(SETCC.Val);
4765      return DAG.getNode(ISD::SELECT, SCC.getValueType(), SCC.getOperand(2),
4766                         SCC.getOperand(3), SETCC);
4767    }
4768    return SCC;
4769  }
4770  return SDOperand();
4771}
4772
4773/// SimplifySelectOps - Given a SELECT or a SELECT_CC node, where LHS and RHS
4774/// are the two values being selected between, see if we can simplify the
4775/// select.  Callers of this should assume that TheSelect is deleted if this
4776/// returns true.  As such, they should return the appropriate thing (e.g. the
4777/// node) back to the top-level of the DAG combiner loop to avoid it being
4778/// looked at.
4779///
4780bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDOperand LHS,
4781                                    SDOperand RHS) {
4782
4783  // If this is a select from two identical things, try to pull the operation
4784  // through the select.
4785  if (LHS.getOpcode() == RHS.getOpcode() && LHS.hasOneUse() && RHS.hasOneUse()){
4786    // If this is a load and the token chain is identical, replace the select
4787    // of two loads with a load through a select of the address to load from.
4788    // This triggers in things like "select bool X, 10.0, 123.0" after the FP
4789    // constants have been dropped into the constant pool.
4790    if (LHS.getOpcode() == ISD::LOAD &&
4791        // Token chains must be identical.
4792        LHS.getOperand(0) == RHS.getOperand(0)) {
4793      LoadSDNode *LLD = cast<LoadSDNode>(LHS);
4794      LoadSDNode *RLD = cast<LoadSDNode>(RHS);
4795
4796      // If this is an EXTLOAD, the VT's must match.
4797      if (LLD->getLoadedVT() == RLD->getLoadedVT()) {
4798        // FIXME: this conflates two src values, discarding one.  This is not
4799        // the right thing to do, but nothing uses srcvalues now.  When they do,
4800        // turn SrcValue into a list of locations.
4801        SDOperand Addr;
4802        if (TheSelect->getOpcode() == ISD::SELECT) {
4803          // Check that the condition doesn't reach either load.  If so, folding
4804          // this will induce a cycle into the DAG.
4805          if (!LLD->isPredecessor(TheSelect->getOperand(0).Val) &&
4806              !RLD->isPredecessor(TheSelect->getOperand(0).Val)) {
4807            Addr = DAG.getNode(ISD::SELECT, LLD->getBasePtr().getValueType(),
4808                               TheSelect->getOperand(0), LLD->getBasePtr(),
4809                               RLD->getBasePtr());
4810          }
4811        } else {
4812          // Check that the condition doesn't reach either load.  If so, folding
4813          // this will induce a cycle into the DAG.
4814          if (!LLD->isPredecessor(TheSelect->getOperand(0).Val) &&
4815              !RLD->isPredecessor(TheSelect->getOperand(0).Val) &&
4816              !LLD->isPredecessor(TheSelect->getOperand(1).Val) &&
4817              !RLD->isPredecessor(TheSelect->getOperand(1).Val)) {
4818            Addr = DAG.getNode(ISD::SELECT_CC, LLD->getBasePtr().getValueType(),
4819                             TheSelect->getOperand(0),
4820                             TheSelect->getOperand(1),
4821                             LLD->getBasePtr(), RLD->getBasePtr(),
4822                             TheSelect->getOperand(4));
4823          }
4824        }
4825
4826        if (Addr.Val) {
4827          SDOperand Load;
4828          if (LLD->getExtensionType() == ISD::NON_EXTLOAD)
4829            Load = DAG.getLoad(TheSelect->getValueType(0), LLD->getChain(),
4830                               Addr,LLD->getSrcValue(),
4831                               LLD->getSrcValueOffset(),
4832                               LLD->isVolatile(),
4833                               LLD->getAlignment());
4834          else {
4835            Load = DAG.getExtLoad(LLD->getExtensionType(),
4836                                  TheSelect->getValueType(0),
4837                                  LLD->getChain(), Addr, LLD->getSrcValue(),
4838                                  LLD->getSrcValueOffset(),
4839                                  LLD->getLoadedVT(),
4840                                  LLD->isVolatile(),
4841                                  LLD->getAlignment());
4842          }
4843          // Users of the select now use the result of the load.
4844          CombineTo(TheSelect, Load);
4845
4846          // Users of the old loads now use the new load's chain.  We know the
4847          // old-load value is dead now.
4848          CombineTo(LHS.Val, Load.getValue(0), Load.getValue(1));
4849          CombineTo(RHS.Val, Load.getValue(0), Load.getValue(1));
4850          return true;
4851        }
4852      }
4853    }
4854  }
4855
4856  return false;
4857}
4858
4859SDOperand DAGCombiner::SimplifySelectCC(SDOperand N0, SDOperand N1,
4860                                        SDOperand N2, SDOperand N3,
4861                                        ISD::CondCode CC, bool NotExtCompare) {
4862
4863  MVT::ValueType VT = N2.getValueType();
4864  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
4865  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
4866  ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.Val);
4867
4868  // Determine if the condition we're dealing with is constant
4869  SDOperand SCC = SimplifySetCC(TLI.getSetCCResultTy(), N0, N1, CC, false);
4870  if (SCC.Val) AddToWorkList(SCC.Val);
4871  ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.Val);
4872
4873  // fold select_cc true, x, y -> x
4874  if (SCCC && SCCC->getValue())
4875    return N2;
4876  // fold select_cc false, x, y -> y
4877  if (SCCC && SCCC->getValue() == 0)
4878    return N3;
4879
4880  // Check to see if we can simplify the select into an fabs node
4881  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1)) {
4882    // Allow either -0.0 or 0.0
4883    if (CFP->getValueAPF().isZero()) {
4884      // select (setg[te] X, +/-0.0), X, fneg(X) -> fabs
4885      if ((CC == ISD::SETGE || CC == ISD::SETGT) &&
4886          N0 == N2 && N3.getOpcode() == ISD::FNEG &&
4887          N2 == N3.getOperand(0))
4888        return DAG.getNode(ISD::FABS, VT, N0);
4889
4890      // select (setl[te] X, +/-0.0), fneg(X), X -> fabs
4891      if ((CC == ISD::SETLT || CC == ISD::SETLE) &&
4892          N0 == N3 && N2.getOpcode() == ISD::FNEG &&
4893          N2.getOperand(0) == N3)
4894        return DAG.getNode(ISD::FABS, VT, N3);
4895    }
4896  }
4897
4898  // Check to see if we can perform the "gzip trick", transforming
4899  // select_cc setlt X, 0, A, 0 -> and (sra X, size(X)-1), A
4900  if (N1C && N3C && N3C->isNullValue() && CC == ISD::SETLT &&
4901      MVT::isInteger(N0.getValueType()) &&
4902      MVT::isInteger(N2.getValueType()) &&
4903      (N1C->isNullValue() ||                    // (a < 0) ? b : 0
4904       (N1C->getValue() == 1 && N0 == N2))) {   // (a < 1) ? a : 0
4905    MVT::ValueType XType = N0.getValueType();
4906    MVT::ValueType AType = N2.getValueType();
4907    if (XType >= AType) {
4908      // and (sra X, size(X)-1, A) -> "and (srl X, C2), A" iff A is a
4909      // single-bit constant.
4910      if (N2C && ((N2C->getValue() & (N2C->getValue()-1)) == 0)) {
4911        unsigned ShCtV = Log2_64(N2C->getValue());
4912        ShCtV = MVT::getSizeInBits(XType)-ShCtV-1;
4913        SDOperand ShCt = DAG.getConstant(ShCtV, TLI.getShiftAmountTy());
4914        SDOperand Shift = DAG.getNode(ISD::SRL, XType, N0, ShCt);
4915        AddToWorkList(Shift.Val);
4916        if (XType > AType) {
4917          Shift = DAG.getNode(ISD::TRUNCATE, AType, Shift);
4918          AddToWorkList(Shift.Val);
4919        }
4920        return DAG.getNode(ISD::AND, AType, Shift, N2);
4921      }
4922      SDOperand Shift = DAG.getNode(ISD::SRA, XType, N0,
4923                                    DAG.getConstant(MVT::getSizeInBits(XType)-1,
4924                                                    TLI.getShiftAmountTy()));
4925      AddToWorkList(Shift.Val);
4926      if (XType > AType) {
4927        Shift = DAG.getNode(ISD::TRUNCATE, AType, Shift);
4928        AddToWorkList(Shift.Val);
4929      }
4930      return DAG.getNode(ISD::AND, AType, Shift, N2);
4931    }
4932  }
4933
4934  // fold select C, 16, 0 -> shl C, 4
4935  if (N2C && N3C && N3C->isNullValue() && isPowerOf2_64(N2C->getValue()) &&
4936      TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult) {
4937
4938    // If the caller doesn't want us to simplify this into a zext of a compare,
4939    // don't do it.
4940    if (NotExtCompare && N2C->getValue() == 1)
4941      return SDOperand();
4942
4943    // Get a SetCC of the condition
4944    // FIXME: Should probably make sure that setcc is legal if we ever have a
4945    // target where it isn't.
4946    SDOperand Temp, SCC;
4947    // cast from setcc result type to select result type
4948    if (AfterLegalize) {
4949      SCC  = DAG.getSetCC(TLI.getSetCCResultTy(), N0, N1, CC);
4950      if (N2.getValueType() < SCC.getValueType())
4951        Temp = DAG.getZeroExtendInReg(SCC, N2.getValueType());
4952      else
4953        Temp = DAG.getNode(ISD::ZERO_EXTEND, N2.getValueType(), SCC);
4954    } else {
4955      SCC  = DAG.getSetCC(MVT::i1, N0, N1, CC);
4956      Temp = DAG.getNode(ISD::ZERO_EXTEND, N2.getValueType(), SCC);
4957    }
4958    AddToWorkList(SCC.Val);
4959    AddToWorkList(Temp.Val);
4960
4961    if (N2C->getValue() == 1)
4962      return Temp;
4963    // shl setcc result by log2 n2c
4964    return DAG.getNode(ISD::SHL, N2.getValueType(), Temp,
4965                       DAG.getConstant(Log2_64(N2C->getValue()),
4966                                       TLI.getShiftAmountTy()));
4967  }
4968
4969  // Check to see if this is the equivalent of setcc
4970  // FIXME: Turn all of these into setcc if setcc if setcc is legal
4971  // otherwise, go ahead with the folds.
4972  if (0 && N3C && N3C->isNullValue() && N2C && (N2C->getValue() == 1ULL)) {
4973    MVT::ValueType XType = N0.getValueType();
4974    if (TLI.isOperationLegal(ISD::SETCC, TLI.getSetCCResultTy())) {
4975      SDOperand Res = DAG.getSetCC(TLI.getSetCCResultTy(), N0, N1, CC);
4976      if (Res.getValueType() != VT)
4977        Res = DAG.getNode(ISD::ZERO_EXTEND, VT, Res);
4978      return Res;
4979    }
4980
4981    // seteq X, 0 -> srl (ctlz X, log2(size(X)))
4982    if (N1C && N1C->isNullValue() && CC == ISD::SETEQ &&
4983        TLI.isOperationLegal(ISD::CTLZ, XType)) {
4984      SDOperand Ctlz = DAG.getNode(ISD::CTLZ, XType, N0);
4985      return DAG.getNode(ISD::SRL, XType, Ctlz,
4986                         DAG.getConstant(Log2_32(MVT::getSizeInBits(XType)),
4987                                         TLI.getShiftAmountTy()));
4988    }
4989    // setgt X, 0 -> srl (and (-X, ~X), size(X)-1)
4990    if (N1C && N1C->isNullValue() && CC == ISD::SETGT) {
4991      SDOperand NegN0 = DAG.getNode(ISD::SUB, XType, DAG.getConstant(0, XType),
4992                                    N0);
4993      SDOperand NotN0 = DAG.getNode(ISD::XOR, XType, N0,
4994                                    DAG.getConstant(~0ULL, XType));
4995      return DAG.getNode(ISD::SRL, XType,
4996                         DAG.getNode(ISD::AND, XType, NegN0, NotN0),
4997                         DAG.getConstant(MVT::getSizeInBits(XType)-1,
4998                                         TLI.getShiftAmountTy()));
4999    }
5000    // setgt X, -1 -> xor (srl (X, size(X)-1), 1)
5001    if (N1C && N1C->isAllOnesValue() && CC == ISD::SETGT) {
5002      SDOperand Sign = DAG.getNode(ISD::SRL, XType, N0,
5003                                   DAG.getConstant(MVT::getSizeInBits(XType)-1,
5004                                                   TLI.getShiftAmountTy()));
5005      return DAG.getNode(ISD::XOR, XType, Sign, DAG.getConstant(1, XType));
5006    }
5007  }
5008
5009  // Check to see if this is an integer abs. select_cc setl[te] X, 0, -X, X ->
5010  // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
5011  if (N1C && N1C->isNullValue() && (CC == ISD::SETLT || CC == ISD::SETLE) &&
5012      N0 == N3 && N2.getOpcode() == ISD::SUB && N0 == N2.getOperand(1) &&
5013      N2.getOperand(0) == N1 && MVT::isInteger(N0.getValueType())) {
5014    MVT::ValueType XType = N0.getValueType();
5015    SDOperand Shift = DAG.getNode(ISD::SRA, XType, N0,
5016                                  DAG.getConstant(MVT::getSizeInBits(XType)-1,
5017                                                  TLI.getShiftAmountTy()));
5018    SDOperand Add = DAG.getNode(ISD::ADD, XType, N0, Shift);
5019    AddToWorkList(Shift.Val);
5020    AddToWorkList(Add.Val);
5021    return DAG.getNode(ISD::XOR, XType, Add, Shift);
5022  }
5023  // Check to see if this is an integer abs. select_cc setgt X, -1, X, -X ->
5024  // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
5025  if (N1C && N1C->isAllOnesValue() && CC == ISD::SETGT &&
5026      N0 == N2 && N3.getOpcode() == ISD::SUB && N0 == N3.getOperand(1)) {
5027    if (ConstantSDNode *SubC = dyn_cast<ConstantSDNode>(N3.getOperand(0))) {
5028      MVT::ValueType XType = N0.getValueType();
5029      if (SubC->isNullValue() && MVT::isInteger(XType)) {
5030        SDOperand Shift = DAG.getNode(ISD::SRA, XType, N0,
5031                                    DAG.getConstant(MVT::getSizeInBits(XType)-1,
5032                                                      TLI.getShiftAmountTy()));
5033        SDOperand Add = DAG.getNode(ISD::ADD, XType, N0, Shift);
5034        AddToWorkList(Shift.Val);
5035        AddToWorkList(Add.Val);
5036        return DAG.getNode(ISD::XOR, XType, Add, Shift);
5037      }
5038    }
5039  }
5040
5041  return SDOperand();
5042}
5043
5044/// SimplifySetCC - This is a stub for TargetLowering::SimplifySetCC.
5045SDOperand DAGCombiner::SimplifySetCC(MVT::ValueType VT, SDOperand N0,
5046                                     SDOperand N1, ISD::CondCode Cond,
5047                                     bool foldBooleans) {
5048  TargetLowering::DAGCombinerInfo
5049    DagCombineInfo(DAG, !AfterLegalize, false, this);
5050  return TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo);
5051}
5052
5053/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
5054/// return a DAG expression to select that will generate the same value by
5055/// multiplying by a magic number.  See:
5056/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
5057SDOperand DAGCombiner::BuildSDIV(SDNode *N) {
5058  std::vector<SDNode*> Built;
5059  SDOperand S = TLI.BuildSDIV(N, DAG, &Built);
5060
5061  for (std::vector<SDNode*>::iterator ii = Built.begin(), ee = Built.end();
5062       ii != ee; ++ii)
5063    AddToWorkList(*ii);
5064  return S;
5065}
5066
5067/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
5068/// return a DAG expression to select that will generate the same value by
5069/// multiplying by a magic number.  See:
5070/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
5071SDOperand DAGCombiner::BuildUDIV(SDNode *N) {
5072  std::vector<SDNode*> Built;
5073  SDOperand S = TLI.BuildUDIV(N, DAG, &Built);
5074
5075  for (std::vector<SDNode*>::iterator ii = Built.begin(), ee = Built.end();
5076       ii != ee; ++ii)
5077    AddToWorkList(*ii);
5078  return S;
5079}
5080
5081/// FindBaseOffset - Return true if base is known not to alias with anything
5082/// but itself.  Provides base object and offset as results.
5083static bool FindBaseOffset(SDOperand Ptr, SDOperand &Base, int64_t &Offset) {
5084  // Assume it is a primitive operation.
5085  Base = Ptr; Offset = 0;
5086
5087  // If it's an adding a simple constant then integrate the offset.
5088  if (Base.getOpcode() == ISD::ADD) {
5089    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Base.getOperand(1))) {
5090      Base = Base.getOperand(0);
5091      Offset += C->getValue();
5092    }
5093  }
5094
5095  // If it's any of the following then it can't alias with anything but itself.
5096  return isa<FrameIndexSDNode>(Base) ||
5097         isa<ConstantPoolSDNode>(Base) ||
5098         isa<GlobalAddressSDNode>(Base);
5099}
5100
5101/// isAlias - Return true if there is any possibility that the two addresses
5102/// overlap.
5103bool DAGCombiner::isAlias(SDOperand Ptr1, int64_t Size1,
5104                          const Value *SrcValue1, int SrcValueOffset1,
5105                          SDOperand Ptr2, int64_t Size2,
5106                          const Value *SrcValue2, int SrcValueOffset2)
5107{
5108  // If they are the same then they must be aliases.
5109  if (Ptr1 == Ptr2) return true;
5110
5111  // Gather base node and offset information.
5112  SDOperand Base1, Base2;
5113  int64_t Offset1, Offset2;
5114  bool KnownBase1 = FindBaseOffset(Ptr1, Base1, Offset1);
5115  bool KnownBase2 = FindBaseOffset(Ptr2, Base2, Offset2);
5116
5117  // If they have a same base address then...
5118  if (Base1 == Base2) {
5119    // Check to see if the addresses overlap.
5120    return!((Offset1 + Size1) <= Offset2 || (Offset2 + Size2) <= Offset1);
5121  }
5122
5123  // If we know both bases then they can't alias.
5124  if (KnownBase1 && KnownBase2) return false;
5125
5126  if (CombinerGlobalAA) {
5127    // Use alias analysis information.
5128    int64_t MinOffset = std::min(SrcValueOffset1, SrcValueOffset2);
5129    int64_t Overlap1 = Size1 + SrcValueOffset1 - MinOffset;
5130    int64_t Overlap2 = Size2 + SrcValueOffset2 - MinOffset;
5131    AliasAnalysis::AliasResult AAResult =
5132                             AA.alias(SrcValue1, Overlap1, SrcValue2, Overlap2);
5133    if (AAResult == AliasAnalysis::NoAlias)
5134      return false;
5135  }
5136
5137  // Otherwise we have to assume they alias.
5138  return true;
5139}
5140
5141/// FindAliasInfo - Extracts the relevant alias information from the memory
5142/// node.  Returns true if the operand was a load.
5143bool DAGCombiner::FindAliasInfo(SDNode *N,
5144                        SDOperand &Ptr, int64_t &Size,
5145                        const Value *&SrcValue, int &SrcValueOffset) {
5146  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
5147    Ptr = LD->getBasePtr();
5148    Size = MVT::getSizeInBits(LD->getLoadedVT()) >> 3;
5149    SrcValue = LD->getSrcValue();
5150    SrcValueOffset = LD->getSrcValueOffset();
5151    return true;
5152  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
5153    Ptr = ST->getBasePtr();
5154    Size = MVT::getSizeInBits(ST->getStoredVT()) >> 3;
5155    SrcValue = ST->getSrcValue();
5156    SrcValueOffset = ST->getSrcValueOffset();
5157  } else {
5158    assert(0 && "FindAliasInfo expected a memory operand");
5159  }
5160
5161  return false;
5162}
5163
5164/// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
5165/// looking for aliasing nodes and adding them to the Aliases vector.
5166void DAGCombiner::GatherAllAliases(SDNode *N, SDOperand OriginalChain,
5167                                   SmallVector<SDOperand, 8> &Aliases) {
5168  SmallVector<SDOperand, 8> Chains;     // List of chains to visit.
5169  std::set<SDNode *> Visited;           // Visited node set.
5170
5171  // Get alias information for node.
5172  SDOperand Ptr;
5173  int64_t Size;
5174  const Value *SrcValue;
5175  int SrcValueOffset;
5176  bool IsLoad = FindAliasInfo(N, Ptr, Size, SrcValue, SrcValueOffset);
5177
5178  // Starting off.
5179  Chains.push_back(OriginalChain);
5180
5181  // Look at each chain and determine if it is an alias.  If so, add it to the
5182  // aliases list.  If not, then continue up the chain looking for the next
5183  // candidate.
5184  while (!Chains.empty()) {
5185    SDOperand Chain = Chains.back();
5186    Chains.pop_back();
5187
5188     // Don't bother if we've been before.
5189    if (Visited.find(Chain.Val) != Visited.end()) continue;
5190    Visited.insert(Chain.Val);
5191
5192    switch (Chain.getOpcode()) {
5193    case ISD::EntryToken:
5194      // Entry token is ideal chain operand, but handled in FindBetterChain.
5195      break;
5196
5197    case ISD::LOAD:
5198    case ISD::STORE: {
5199      // Get alias information for Chain.
5200      SDOperand OpPtr;
5201      int64_t OpSize;
5202      const Value *OpSrcValue;
5203      int OpSrcValueOffset;
5204      bool IsOpLoad = FindAliasInfo(Chain.Val, OpPtr, OpSize,
5205                                    OpSrcValue, OpSrcValueOffset);
5206
5207      // If chain is alias then stop here.
5208      if (!(IsLoad && IsOpLoad) &&
5209          isAlias(Ptr, Size, SrcValue, SrcValueOffset,
5210                  OpPtr, OpSize, OpSrcValue, OpSrcValueOffset)) {
5211        Aliases.push_back(Chain);
5212      } else {
5213        // Look further up the chain.
5214        Chains.push_back(Chain.getOperand(0));
5215        // Clean up old chain.
5216        AddToWorkList(Chain.Val);
5217      }
5218      break;
5219    }
5220
5221    case ISD::TokenFactor:
5222      // We have to check each of the operands of the token factor, so we queue
5223      // then up.  Adding the  operands to the queue (stack) in reverse order
5224      // maintains the original order and increases the likelihood that getNode
5225      // will find a matching token factor (CSE.)
5226      for (unsigned n = Chain.getNumOperands(); n;)
5227        Chains.push_back(Chain.getOperand(--n));
5228      // Eliminate the token factor if we can.
5229      AddToWorkList(Chain.Val);
5230      break;
5231
5232    default:
5233      // For all other instructions we will just have to take what we can get.
5234      Aliases.push_back(Chain);
5235      break;
5236    }
5237  }
5238}
5239
5240/// FindBetterChain - Walk up chain skipping non-aliasing memory nodes, looking
5241/// for a better chain (aliasing node.)
5242SDOperand DAGCombiner::FindBetterChain(SDNode *N, SDOperand OldChain) {
5243  SmallVector<SDOperand, 8> Aliases;  // Ops for replacing token factor.
5244
5245  // Accumulate all the aliases to this node.
5246  GatherAllAliases(N, OldChain, Aliases);
5247
5248  if (Aliases.size() == 0) {
5249    // If no operands then chain to entry token.
5250    return DAG.getEntryNode();
5251  } else if (Aliases.size() == 1) {
5252    // If a single operand then chain to it.  We don't need to revisit it.
5253    return Aliases[0];
5254  }
5255
5256  // Construct a custom tailored token factor.
5257  SDOperand NewChain = DAG.getNode(ISD::TokenFactor, MVT::Other,
5258                                   &Aliases[0], Aliases.size());
5259
5260  // Make sure the old chain gets cleaned up.
5261  if (NewChain != OldChain) AddToWorkList(OldChain.Val);
5262
5263  return NewChain;
5264}
5265
5266// SelectionDAG::Combine - This is the entry point for the file.
5267//
5268void SelectionDAG::Combine(bool RunningAfterLegalize, AliasAnalysis &AA) {
5269  if (!RunningAfterLegalize && ViewDAGCombine1)
5270    viewGraph();
5271  if (RunningAfterLegalize && ViewDAGCombine2)
5272    viewGraph();
5273  /// run - This is the main entry point to this class.
5274  ///
5275  DAGCombiner(*this, AA).Run(RunningAfterLegalize);
5276}
5277