DAGCombiner.cpp revision 51a0280d296405cb1fdb268e5387867e0db2e46e
1//===-- DAGCombiner.cpp - Implement a DAG node combiner -------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass combines dag nodes to form fewer, simpler DAG nodes.  It can be run
11// both before and after the DAG is legalized.
12//
13// This pass is not a substitute for the LLVM IR instcombine pass. This pass is
14// primarily intended to handle simplification opportunities that are implicit
15// in the LLVM IR and exposed by the various codegen lowering phases.
16//
17//===----------------------------------------------------------------------===//
18
19#define DEBUG_TYPE "dagcombine"
20#include "llvm/CodeGen/SelectionDAG.h"
21#include "llvm/ADT/SmallPtrSet.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/Analysis/AliasAnalysis.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineFunction.h"
26#include "llvm/IR/DataLayout.h"
27#include "llvm/IR/DerivedTypes.h"
28#include "llvm/IR/Function.h"
29#include "llvm/IR/LLVMContext.h"
30#include "llvm/Support/CommandLine.h"
31#include "llvm/Support/Debug.h"
32#include "llvm/Support/ErrorHandling.h"
33#include "llvm/Support/MathExtras.h"
34#include "llvm/Support/raw_ostream.h"
35#include "llvm/Target/TargetLowering.h"
36#include "llvm/Target/TargetMachine.h"
37#include "llvm/Target/TargetOptions.h"
38#include <algorithm>
39using namespace llvm;
40
41STATISTIC(NodesCombined   , "Number of dag nodes combined");
42STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created");
43STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created");
44STATISTIC(OpsNarrowed     , "Number of load/op/store narrowed");
45STATISTIC(LdStFP2Int      , "Number of fp load/store pairs transformed to int");
46
47namespace {
48  static cl::opt<bool>
49    CombinerAA("combiner-alias-analysis", cl::Hidden,
50               cl::desc("Turn on alias analysis during testing"));
51
52  static cl::opt<bool>
53    CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden,
54               cl::desc("Include global information in alias analysis"));
55
56//------------------------------ DAGCombiner ---------------------------------//
57
58  class DAGCombiner {
59    SelectionDAG &DAG;
60    const TargetLowering &TLI;
61    CombineLevel Level;
62    CodeGenOpt::Level OptLevel;
63    bool LegalOperations;
64    bool LegalTypes;
65
66    // Worklist of all of the nodes that need to be simplified.
67    //
68    // This has the semantics that when adding to the worklist,
69    // the item added must be next to be processed. It should
70    // also only appear once. The naive approach to this takes
71    // linear time.
72    //
73    // To reduce the insert/remove time to logarithmic, we use
74    // a set and a vector to maintain our worklist.
75    //
76    // The set contains the items on the worklist, but does not
77    // maintain the order they should be visited.
78    //
79    // The vector maintains the order nodes should be visited, but may
80    // contain duplicate or removed nodes. When choosing a node to
81    // visit, we pop off the order stack until we find an item that is
82    // also in the contents set. All operations are O(log N).
83    SmallPtrSet<SDNode*, 64> WorkListContents;
84    SmallVector<SDNode*, 64> WorkListOrder;
85
86    // AA - Used for DAG load/store alias analysis.
87    AliasAnalysis &AA;
88
89    /// AddUsersToWorkList - When an instruction is simplified, add all users of
90    /// the instruction to the work lists because they might get more simplified
91    /// now.
92    ///
93    void AddUsersToWorkList(SDNode *N) {
94      for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
95           UI != UE; ++UI)
96        AddToWorkList(*UI);
97    }
98
99    /// visit - call the node-specific routine that knows how to fold each
100    /// particular type of node.
101    SDValue visit(SDNode *N);
102
103  public:
104    /// AddToWorkList - Add to the work list making sure its instance is at the
105    /// back (next to be processed.)
106    void AddToWorkList(SDNode *N) {
107      WorkListContents.insert(N);
108      WorkListOrder.push_back(N);
109    }
110
111    /// removeFromWorkList - remove all instances of N from the worklist.
112    ///
113    void removeFromWorkList(SDNode *N) {
114      WorkListContents.erase(N);
115    }
116
117    SDValue CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
118                      bool AddTo = true);
119
120    SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true) {
121      return CombineTo(N, &Res, 1, AddTo);
122    }
123
124    SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1,
125                      bool AddTo = true) {
126      SDValue To[] = { Res0, Res1 };
127      return CombineTo(N, To, 2, AddTo);
128    }
129
130    void CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO);
131
132  private:
133
134    /// SimplifyDemandedBits - Check the specified integer node value to see if
135    /// it can be simplified or if things it uses can be simplified by bit
136    /// propagation.  If so, return true.
137    bool SimplifyDemandedBits(SDValue Op) {
138      unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
139      APInt Demanded = APInt::getAllOnesValue(BitWidth);
140      return SimplifyDemandedBits(Op, Demanded);
141    }
142
143    bool SimplifyDemandedBits(SDValue Op, const APInt &Demanded);
144
145    bool CombineToPreIndexedLoadStore(SDNode *N);
146    bool CombineToPostIndexedLoadStore(SDNode *N);
147
148    void ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad);
149    SDValue PromoteOperand(SDValue Op, EVT PVT, bool &Replace);
150    SDValue SExtPromoteOperand(SDValue Op, EVT PVT);
151    SDValue ZExtPromoteOperand(SDValue Op, EVT PVT);
152    SDValue PromoteIntBinOp(SDValue Op);
153    SDValue PromoteIntShiftOp(SDValue Op);
154    SDValue PromoteExtend(SDValue Op);
155    bool PromoteLoad(SDValue Op);
156
157    void ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs,
158                         SDValue Trunc, SDValue ExtLoad, SDLoc DL,
159                         ISD::NodeType ExtType);
160
161    /// combine - call the node-specific routine that knows how to fold each
162    /// particular type of node. If that doesn't do anything, try the
163    /// target-specific DAG combines.
164    SDValue combine(SDNode *N);
165
166    // Visitation implementation - Implement dag node combining for different
167    // node types.  The semantics are as follows:
168    // Return Value:
169    //   SDValue.getNode() == 0 - No change was made
170    //   SDValue.getNode() == N - N was replaced, is dead and has been handled.
171    //   otherwise              - N should be replaced by the returned Operand.
172    //
173    SDValue visitTokenFactor(SDNode *N);
174    SDValue visitMERGE_VALUES(SDNode *N);
175    SDValue visitADD(SDNode *N);
176    SDValue visitSUB(SDNode *N);
177    SDValue visitADDC(SDNode *N);
178    SDValue visitSUBC(SDNode *N);
179    SDValue visitADDE(SDNode *N);
180    SDValue visitSUBE(SDNode *N);
181    SDValue visitMUL(SDNode *N);
182    SDValue visitSDIV(SDNode *N);
183    SDValue visitUDIV(SDNode *N);
184    SDValue visitSREM(SDNode *N);
185    SDValue visitUREM(SDNode *N);
186    SDValue visitMULHU(SDNode *N);
187    SDValue visitMULHS(SDNode *N);
188    SDValue visitSMUL_LOHI(SDNode *N);
189    SDValue visitUMUL_LOHI(SDNode *N);
190    SDValue visitSMULO(SDNode *N);
191    SDValue visitUMULO(SDNode *N);
192    SDValue visitSDIVREM(SDNode *N);
193    SDValue visitUDIVREM(SDNode *N);
194    SDValue visitAND(SDNode *N);
195    SDValue visitOR(SDNode *N);
196    SDValue visitXOR(SDNode *N);
197    SDValue SimplifyVBinOp(SDNode *N);
198    SDValue SimplifyVUnaryOp(SDNode *N);
199    SDValue visitSHL(SDNode *N);
200    SDValue visitSRA(SDNode *N);
201    SDValue visitSRL(SDNode *N);
202    SDValue visitCTLZ(SDNode *N);
203    SDValue visitCTLZ_ZERO_UNDEF(SDNode *N);
204    SDValue visitCTTZ(SDNode *N);
205    SDValue visitCTTZ_ZERO_UNDEF(SDNode *N);
206    SDValue visitCTPOP(SDNode *N);
207    SDValue visitSELECT(SDNode *N);
208    SDValue visitVSELECT(SDNode *N);
209    SDValue visitSELECT_CC(SDNode *N);
210    SDValue visitSETCC(SDNode *N);
211    SDValue visitSIGN_EXTEND(SDNode *N);
212    SDValue visitZERO_EXTEND(SDNode *N);
213    SDValue visitANY_EXTEND(SDNode *N);
214    SDValue visitSIGN_EXTEND_INREG(SDNode *N);
215    SDValue visitTRUNCATE(SDNode *N);
216    SDValue visitBITCAST(SDNode *N);
217    SDValue visitBUILD_PAIR(SDNode *N);
218    SDValue visitFADD(SDNode *N);
219    SDValue visitFSUB(SDNode *N);
220    SDValue visitFMUL(SDNode *N);
221    SDValue visitFMA(SDNode *N);
222    SDValue visitFDIV(SDNode *N);
223    SDValue visitFREM(SDNode *N);
224    SDValue visitFCOPYSIGN(SDNode *N);
225    SDValue visitSINT_TO_FP(SDNode *N);
226    SDValue visitUINT_TO_FP(SDNode *N);
227    SDValue visitFP_TO_SINT(SDNode *N);
228    SDValue visitFP_TO_UINT(SDNode *N);
229    SDValue visitFP_ROUND(SDNode *N);
230    SDValue visitFP_ROUND_INREG(SDNode *N);
231    SDValue visitFP_EXTEND(SDNode *N);
232    SDValue visitFNEG(SDNode *N);
233    SDValue visitFABS(SDNode *N);
234    SDValue visitFCEIL(SDNode *N);
235    SDValue visitFTRUNC(SDNode *N);
236    SDValue visitFFLOOR(SDNode *N);
237    SDValue visitBRCOND(SDNode *N);
238    SDValue visitBR_CC(SDNode *N);
239    SDValue visitLOAD(SDNode *N);
240    SDValue visitSTORE(SDNode *N);
241    SDValue visitINSERT_VECTOR_ELT(SDNode *N);
242    SDValue visitEXTRACT_VECTOR_ELT(SDNode *N);
243    SDValue visitBUILD_VECTOR(SDNode *N);
244    SDValue visitCONCAT_VECTORS(SDNode *N);
245    SDValue visitEXTRACT_SUBVECTOR(SDNode *N);
246    SDValue visitVECTOR_SHUFFLE(SDNode *N);
247
248    SDValue XformToShuffleWithZero(SDNode *N);
249    SDValue ReassociateOps(unsigned Opc, SDLoc DL, SDValue LHS, SDValue RHS);
250
251    SDValue visitShiftByConstant(SDNode *N, unsigned Amt);
252
253    bool SimplifySelectOps(SDNode *SELECT, SDValue LHS, SDValue RHS);
254    SDValue SimplifyBinOpWithSameOpcodeHands(SDNode *N);
255    SDValue SimplifySelect(SDLoc DL, SDValue N0, SDValue N1, SDValue N2);
256    SDValue SimplifySelectCC(SDLoc DL, SDValue N0, SDValue N1, SDValue N2,
257                             SDValue N3, ISD::CondCode CC,
258                             bool NotExtCompare = false);
259    SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
260                          SDLoc DL, bool foldBooleans = true);
261    SDValue SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
262                                         unsigned HiOp);
263    SDValue CombineConsecutiveLoads(SDNode *N, EVT VT);
264    SDValue ConstantFoldBITCASTofBUILD_VECTOR(SDNode *, EVT);
265    SDValue BuildSDIV(SDNode *N);
266    SDValue BuildUDIV(SDNode *N);
267    SDValue MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1,
268                               bool DemandHighBits = true);
269    SDValue MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1);
270    SDNode *MatchRotate(SDValue LHS, SDValue RHS, SDLoc DL);
271    SDValue ReduceLoadWidth(SDNode *N);
272    SDValue ReduceLoadOpStoreWidth(SDNode *N);
273    SDValue TransformFPLoadStorePair(SDNode *N);
274    SDValue reduceBuildVecExtToExtBuildVec(SDNode *N);
275    SDValue reduceBuildVecConvertToConvertBuildVec(SDNode *N);
276
277    SDValue GetDemandedBits(SDValue V, const APInt &Mask);
278
279    /// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
280    /// looking for aliasing nodes and adding them to the Aliases vector.
281    void GatherAllAliases(SDNode *N, SDValue OriginalChain,
282                          SmallVectorImpl<SDValue> &Aliases);
283
284    /// isAlias - Return true if there is any possibility that the two addresses
285    /// overlap.
286    bool isAlias(SDValue Ptr1, int64_t Size1,
287                 const Value *SrcValue1, int SrcValueOffset1,
288                 unsigned SrcValueAlign1,
289                 const MDNode *TBAAInfo1,
290                 SDValue Ptr2, int64_t Size2,
291                 const Value *SrcValue2, int SrcValueOffset2,
292                 unsigned SrcValueAlign2,
293                 const MDNode *TBAAInfo2) const;
294
295    /// isAlias - Return true if there is any possibility that the two addresses
296    /// overlap.
297    bool isAlias(LSBaseSDNode *Op0, LSBaseSDNode *Op1);
298
299    /// FindAliasInfo - Extracts the relevant alias information from the memory
300    /// node.  Returns true if the operand was a load.
301    bool FindAliasInfo(SDNode *N,
302                       SDValue &Ptr, int64_t &Size,
303                       const Value *&SrcValue, int &SrcValueOffset,
304                       unsigned &SrcValueAlignment,
305                       const MDNode *&TBAAInfo) const;
306
307    /// FindBetterChain - Walk up chain skipping non-aliasing memory nodes,
308    /// looking for a better chain (aliasing node.)
309    SDValue FindBetterChain(SDNode *N, SDValue Chain);
310
311    /// Merge consecutive store operations into a wide store.
312    /// This optimization uses wide integers or vectors when possible.
313    /// \return True if some memory operations were changed.
314    bool MergeConsecutiveStores(StoreSDNode *N);
315
316  public:
317    DAGCombiner(SelectionDAG &D, AliasAnalysis &A, CodeGenOpt::Level OL)
318      : DAG(D), TLI(D.getTargetLoweringInfo()), Level(BeforeLegalizeTypes),
319        OptLevel(OL), LegalOperations(false), LegalTypes(false), AA(A) {}
320
321    /// Run - runs the dag combiner on all nodes in the work list
322    void Run(CombineLevel AtLevel);
323
324    SelectionDAG &getDAG() const { return DAG; }
325
326    /// getShiftAmountTy - Returns a type large enough to hold any valid
327    /// shift amount - before type legalization these can be huge.
328    EVT getShiftAmountTy(EVT LHSTy) {
329      assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
330      if (LHSTy.isVector())
331        return LHSTy;
332      return LegalTypes ? TLI.getScalarShiftAmountTy(LHSTy) : TLI.getPointerTy();
333    }
334
335    /// isTypeLegal - This method returns true if we are running before type
336    /// legalization or if the specified VT is legal.
337    bool isTypeLegal(const EVT &VT) {
338      if (!LegalTypes) return true;
339      return TLI.isTypeLegal(VT);
340    }
341
342    /// getSetCCResultType - Convenience wrapper around
343    /// TargetLowering::getSetCCResultType
344    EVT getSetCCResultType(EVT VT) const {
345      return TLI.getSetCCResultType(*DAG.getContext(), VT);
346    }
347  };
348}
349
350
351namespace {
352/// WorkListRemover - This class is a DAGUpdateListener that removes any deleted
353/// nodes from the worklist.
354class WorkListRemover : public SelectionDAG::DAGUpdateListener {
355  DAGCombiner &DC;
356public:
357  explicit WorkListRemover(DAGCombiner &dc)
358    : SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {}
359
360  virtual void NodeDeleted(SDNode *N, SDNode *E) {
361    DC.removeFromWorkList(N);
362  }
363};
364}
365
366//===----------------------------------------------------------------------===//
367//  TargetLowering::DAGCombinerInfo implementation
368//===----------------------------------------------------------------------===//
369
370void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) {
371  ((DAGCombiner*)DC)->AddToWorkList(N);
372}
373
374void TargetLowering::DAGCombinerInfo::RemoveFromWorklist(SDNode *N) {
375  ((DAGCombiner*)DC)->removeFromWorkList(N);
376}
377
378SDValue TargetLowering::DAGCombinerInfo::
379CombineTo(SDNode *N, const std::vector<SDValue> &To, bool AddTo) {
380  return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size(), AddTo);
381}
382
383SDValue TargetLowering::DAGCombinerInfo::
384CombineTo(SDNode *N, SDValue Res, bool AddTo) {
385  return ((DAGCombiner*)DC)->CombineTo(N, Res, AddTo);
386}
387
388
389SDValue TargetLowering::DAGCombinerInfo::
390CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo) {
391  return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1, AddTo);
392}
393
394void TargetLowering::DAGCombinerInfo::
395CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) {
396  return ((DAGCombiner*)DC)->CommitTargetLoweringOpt(TLO);
397}
398
399//===----------------------------------------------------------------------===//
400// Helper Functions
401//===----------------------------------------------------------------------===//
402
403/// isNegatibleForFree - Return 1 if we can compute the negated form of the
404/// specified expression for the same cost as the expression itself, or 2 if we
405/// can compute the negated form more cheaply than the expression itself.
406static char isNegatibleForFree(SDValue Op, bool LegalOperations,
407                               const TargetLowering &TLI,
408                               const TargetOptions *Options,
409                               unsigned Depth = 0) {
410  // fneg is removable even if it has multiple uses.
411  if (Op.getOpcode() == ISD::FNEG) return 2;
412
413  // Don't allow anything with multiple uses.
414  if (!Op.hasOneUse()) return 0;
415
416  // Don't recurse exponentially.
417  if (Depth > 6) return 0;
418
419  switch (Op.getOpcode()) {
420  default: return false;
421  case ISD::ConstantFP:
422    // Don't invert constant FP values after legalize.  The negated constant
423    // isn't necessarily legal.
424    return LegalOperations ? 0 : 1;
425  case ISD::FADD:
426    // FIXME: determine better conditions for this xform.
427    if (!Options->UnsafeFPMath) return 0;
428
429    // After operation legalization, it might not be legal to create new FSUBs.
430    if (LegalOperations &&
431        !TLI.isOperationLegalOrCustom(ISD::FSUB,  Op.getValueType()))
432      return 0;
433
434    // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
435    if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI,
436                                    Options, Depth + 1))
437      return V;
438    // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
439    return isNegatibleForFree(Op.getOperand(1), LegalOperations, TLI, Options,
440                              Depth + 1);
441  case ISD::FSUB:
442    // We can't turn -(A-B) into B-A when we honor signed zeros.
443    if (!Options->UnsafeFPMath) return 0;
444
445    // fold (fneg (fsub A, B)) -> (fsub B, A)
446    return 1;
447
448  case ISD::FMUL:
449  case ISD::FDIV:
450    if (Options->HonorSignDependentRoundingFPMath()) return 0;
451
452    // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y))
453    if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI,
454                                    Options, Depth + 1))
455      return V;
456
457    return isNegatibleForFree(Op.getOperand(1), LegalOperations, TLI, Options,
458                              Depth + 1);
459
460  case ISD::FP_EXTEND:
461  case ISD::FP_ROUND:
462  case ISD::FSIN:
463    return isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI, Options,
464                              Depth + 1);
465  }
466}
467
468/// GetNegatedExpression - If isNegatibleForFree returns true, this function
469/// returns the newly negated expression.
470static SDValue GetNegatedExpression(SDValue Op, SelectionDAG &DAG,
471                                    bool LegalOperations, unsigned Depth = 0) {
472  // fneg is removable even if it has multiple uses.
473  if (Op.getOpcode() == ISD::FNEG) return Op.getOperand(0);
474
475  // Don't allow anything with multiple uses.
476  assert(Op.hasOneUse() && "Unknown reuse!");
477
478  assert(Depth <= 6 && "GetNegatedExpression doesn't match isNegatibleForFree");
479  switch (Op.getOpcode()) {
480  default: llvm_unreachable("Unknown code");
481  case ISD::ConstantFP: {
482    APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
483    V.changeSign();
484    return DAG.getConstantFP(V, Op.getValueType());
485  }
486  case ISD::FADD:
487    // FIXME: determine better conditions for this xform.
488    assert(DAG.getTarget().Options.UnsafeFPMath);
489
490    // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
491    if (isNegatibleForFree(Op.getOperand(0), LegalOperations,
492                           DAG.getTargetLoweringInfo(),
493                           &DAG.getTarget().Options, Depth+1))
494      return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
495                         GetNegatedExpression(Op.getOperand(0), DAG,
496                                              LegalOperations, Depth+1),
497                         Op.getOperand(1));
498    // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
499    return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
500                       GetNegatedExpression(Op.getOperand(1), DAG,
501                                            LegalOperations, Depth+1),
502                       Op.getOperand(0));
503  case ISD::FSUB:
504    // We can't turn -(A-B) into B-A when we honor signed zeros.
505    assert(DAG.getTarget().Options.UnsafeFPMath);
506
507    // fold (fneg (fsub 0, B)) -> B
508    if (ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(Op.getOperand(0)))
509      if (N0CFP->getValueAPF().isZero())
510        return Op.getOperand(1);
511
512    // fold (fneg (fsub A, B)) -> (fsub B, A)
513    return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
514                       Op.getOperand(1), Op.getOperand(0));
515
516  case ISD::FMUL:
517  case ISD::FDIV:
518    assert(!DAG.getTarget().Options.HonorSignDependentRoundingFPMath());
519
520    // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
521    if (isNegatibleForFree(Op.getOperand(0), LegalOperations,
522                           DAG.getTargetLoweringInfo(),
523                           &DAG.getTarget().Options, Depth+1))
524      return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
525                         GetNegatedExpression(Op.getOperand(0), DAG,
526                                              LegalOperations, Depth+1),
527                         Op.getOperand(1));
528
529    // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
530    return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
531                       Op.getOperand(0),
532                       GetNegatedExpression(Op.getOperand(1), DAG,
533                                            LegalOperations, Depth+1));
534
535  case ISD::FP_EXTEND:
536  case ISD::FSIN:
537    return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
538                       GetNegatedExpression(Op.getOperand(0), DAG,
539                                            LegalOperations, Depth+1));
540  case ISD::FP_ROUND:
541      return DAG.getNode(ISD::FP_ROUND, SDLoc(Op), Op.getValueType(),
542                         GetNegatedExpression(Op.getOperand(0), DAG,
543                                              LegalOperations, Depth+1),
544                         Op.getOperand(1));
545  }
546}
547
548
549// isSetCCEquivalent - Return true if this node is a setcc, or is a select_cc
550// that selects between the values 1 and 0, making it equivalent to a setcc.
551// Also, set the incoming LHS, RHS, and CC references to the appropriate
552// nodes based on the type of node we are checking.  This simplifies life a
553// bit for the callers.
554static bool isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS,
555                              SDValue &CC) {
556  if (N.getOpcode() == ISD::SETCC) {
557    LHS = N.getOperand(0);
558    RHS = N.getOperand(1);
559    CC  = N.getOperand(2);
560    return true;
561  }
562  if (N.getOpcode() == ISD::SELECT_CC &&
563      N.getOperand(2).getOpcode() == ISD::Constant &&
564      N.getOperand(3).getOpcode() == ISD::Constant &&
565      cast<ConstantSDNode>(N.getOperand(2))->getAPIntValue() == 1 &&
566      cast<ConstantSDNode>(N.getOperand(3))->isNullValue()) {
567    LHS = N.getOperand(0);
568    RHS = N.getOperand(1);
569    CC  = N.getOperand(4);
570    return true;
571  }
572  return false;
573}
574
575// isOneUseSetCC - Return true if this is a SetCC-equivalent operation with only
576// one use.  If this is true, it allows the users to invert the operation for
577// free when it is profitable to do so.
578static bool isOneUseSetCC(SDValue N) {
579  SDValue N0, N1, N2;
580  if (isSetCCEquivalent(N, N0, N1, N2) && N.getNode()->hasOneUse())
581    return true;
582  return false;
583}
584
585SDValue DAGCombiner::ReassociateOps(unsigned Opc, SDLoc DL,
586                                    SDValue N0, SDValue N1) {
587  EVT VT = N0.getValueType();
588  if (N0.getOpcode() == Opc && isa<ConstantSDNode>(N0.getOperand(1))) {
589    if (isa<ConstantSDNode>(N1)) {
590      // reassoc. (op (op x, c1), c2) -> (op x, (op c1, c2))
591      SDValue OpNode =
592        DAG.FoldConstantArithmetic(Opc, VT,
593                                   cast<ConstantSDNode>(N0.getOperand(1)),
594                                   cast<ConstantSDNode>(N1));
595      return DAG.getNode(Opc, DL, VT, N0.getOperand(0), OpNode);
596    }
597    if (N0.hasOneUse()) {
598      // reassoc. (op (op x, c1), y) -> (op (op x, y), c1) iff x+c1 has one use
599      SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT,
600                                   N0.getOperand(0), N1);
601      AddToWorkList(OpNode.getNode());
602      return DAG.getNode(Opc, DL, VT, OpNode, N0.getOperand(1));
603    }
604  }
605
606  if (N1.getOpcode() == Opc && isa<ConstantSDNode>(N1.getOperand(1))) {
607    if (isa<ConstantSDNode>(N0)) {
608      // reassoc. (op c2, (op x, c1)) -> (op x, (op c1, c2))
609      SDValue OpNode =
610        DAG.FoldConstantArithmetic(Opc, VT,
611                                   cast<ConstantSDNode>(N1.getOperand(1)),
612                                   cast<ConstantSDNode>(N0));
613      return DAG.getNode(Opc, DL, VT, N1.getOperand(0), OpNode);
614    }
615    if (N1.hasOneUse()) {
616      // reassoc. (op y, (op x, c1)) -> (op (op x, y), c1) iff x+c1 has one use
617      SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT,
618                                   N1.getOperand(0), N0);
619      AddToWorkList(OpNode.getNode());
620      return DAG.getNode(Opc, DL, VT, OpNode, N1.getOperand(1));
621    }
622  }
623
624  return SDValue();
625}
626
627SDValue DAGCombiner::CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
628                               bool AddTo) {
629  assert(N->getNumValues() == NumTo && "Broken CombineTo call!");
630  ++NodesCombined;
631  DEBUG(dbgs() << "\nReplacing.1 ";
632        N->dump(&DAG);
633        dbgs() << "\nWith: ";
634        To[0].getNode()->dump(&DAG);
635        dbgs() << " and " << NumTo-1 << " other values\n";
636        for (unsigned i = 0, e = NumTo; i != e; ++i)
637          assert((!To[i].getNode() ||
638                  N->getValueType(i) == To[i].getValueType()) &&
639                 "Cannot combine value to value of different type!"));
640  WorkListRemover DeadNodes(*this);
641  DAG.ReplaceAllUsesWith(N, To);
642  if (AddTo) {
643    // Push the new nodes and any users onto the worklist
644    for (unsigned i = 0, e = NumTo; i != e; ++i) {
645      if (To[i].getNode()) {
646        AddToWorkList(To[i].getNode());
647        AddUsersToWorkList(To[i].getNode());
648      }
649    }
650  }
651
652  // Finally, if the node is now dead, remove it from the graph.  The node
653  // may not be dead if the replacement process recursively simplified to
654  // something else needing this node.
655  if (N->use_empty()) {
656    // Nodes can be reintroduced into the worklist.  Make sure we do not
657    // process a node that has been replaced.
658    removeFromWorkList(N);
659
660    // Finally, since the node is now dead, remove it from the graph.
661    DAG.DeleteNode(N);
662  }
663  return SDValue(N, 0);
664}
665
666void DAGCombiner::
667CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) {
668  // Replace all uses.  If any nodes become isomorphic to other nodes and
669  // are deleted, make sure to remove them from our worklist.
670  WorkListRemover DeadNodes(*this);
671  DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New);
672
673  // Push the new node and any (possibly new) users onto the worklist.
674  AddToWorkList(TLO.New.getNode());
675  AddUsersToWorkList(TLO.New.getNode());
676
677  // Finally, if the node is now dead, remove it from the graph.  The node
678  // may not be dead if the replacement process recursively simplified to
679  // something else needing this node.
680  if (TLO.Old.getNode()->use_empty()) {
681    removeFromWorkList(TLO.Old.getNode());
682
683    // If the operands of this node are only used by the node, they will now
684    // be dead.  Make sure to visit them first to delete dead nodes early.
685    for (unsigned i = 0, e = TLO.Old.getNode()->getNumOperands(); i != e; ++i)
686      if (TLO.Old.getNode()->getOperand(i).getNode()->hasOneUse())
687        AddToWorkList(TLO.Old.getNode()->getOperand(i).getNode());
688
689    DAG.DeleteNode(TLO.Old.getNode());
690  }
691}
692
693/// SimplifyDemandedBits - Check the specified integer node value to see if
694/// it can be simplified or if things it uses can be simplified by bit
695/// propagation.  If so, return true.
696bool DAGCombiner::SimplifyDemandedBits(SDValue Op, const APInt &Demanded) {
697  TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations);
698  APInt KnownZero, KnownOne;
699  if (!TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO))
700    return false;
701
702  // Revisit the node.
703  AddToWorkList(Op.getNode());
704
705  // Replace the old value with the new one.
706  ++NodesCombined;
707  DEBUG(dbgs() << "\nReplacing.2 ";
708        TLO.Old.getNode()->dump(&DAG);
709        dbgs() << "\nWith: ";
710        TLO.New.getNode()->dump(&DAG);
711        dbgs() << '\n');
712
713  CommitTargetLoweringOpt(TLO);
714  return true;
715}
716
717void DAGCombiner::ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad) {
718  SDLoc dl(Load);
719  EVT VT = Load->getValueType(0);
720  SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, VT, SDValue(ExtLoad, 0));
721
722  DEBUG(dbgs() << "\nReplacing.9 ";
723        Load->dump(&DAG);
724        dbgs() << "\nWith: ";
725        Trunc.getNode()->dump(&DAG);
726        dbgs() << '\n');
727  WorkListRemover DeadNodes(*this);
728  DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), Trunc);
729  DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), SDValue(ExtLoad, 1));
730  removeFromWorkList(Load);
731  DAG.DeleteNode(Load);
732  AddToWorkList(Trunc.getNode());
733}
734
735SDValue DAGCombiner::PromoteOperand(SDValue Op, EVT PVT, bool &Replace) {
736  Replace = false;
737  SDLoc dl(Op);
738  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
739    EVT MemVT = LD->getMemoryVT();
740    ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD)
741      ? (TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT) ? ISD::ZEXTLOAD
742                                                  : ISD::EXTLOAD)
743      : LD->getExtensionType();
744    Replace = true;
745    return DAG.getExtLoad(ExtType, dl, PVT,
746                          LD->getChain(), LD->getBasePtr(),
747                          LD->getPointerInfo(),
748                          MemVT, LD->isVolatile(),
749                          LD->isNonTemporal(), LD->getAlignment());
750  }
751
752  unsigned Opc = Op.getOpcode();
753  switch (Opc) {
754  default: break;
755  case ISD::AssertSext:
756    return DAG.getNode(ISD::AssertSext, dl, PVT,
757                       SExtPromoteOperand(Op.getOperand(0), PVT),
758                       Op.getOperand(1));
759  case ISD::AssertZext:
760    return DAG.getNode(ISD::AssertZext, dl, PVT,
761                       ZExtPromoteOperand(Op.getOperand(0), PVT),
762                       Op.getOperand(1));
763  case ISD::Constant: {
764    unsigned ExtOpc =
765      Op.getValueType().isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
766    return DAG.getNode(ExtOpc, dl, PVT, Op);
767  }
768  }
769
770  if (!TLI.isOperationLegal(ISD::ANY_EXTEND, PVT))
771    return SDValue();
772  return DAG.getNode(ISD::ANY_EXTEND, dl, PVT, Op);
773}
774
775SDValue DAGCombiner::SExtPromoteOperand(SDValue Op, EVT PVT) {
776  if (!TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, PVT))
777    return SDValue();
778  EVT OldVT = Op.getValueType();
779  SDLoc dl(Op);
780  bool Replace = false;
781  SDValue NewOp = PromoteOperand(Op, PVT, Replace);
782  if (NewOp.getNode() == 0)
783    return SDValue();
784  AddToWorkList(NewOp.getNode());
785
786  if (Replace)
787    ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode());
788  return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NewOp.getValueType(), NewOp,
789                     DAG.getValueType(OldVT));
790}
791
792SDValue DAGCombiner::ZExtPromoteOperand(SDValue Op, EVT PVT) {
793  EVT OldVT = Op.getValueType();
794  SDLoc dl(Op);
795  bool Replace = false;
796  SDValue NewOp = PromoteOperand(Op, PVT, Replace);
797  if (NewOp.getNode() == 0)
798    return SDValue();
799  AddToWorkList(NewOp.getNode());
800
801  if (Replace)
802    ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode());
803  return DAG.getZeroExtendInReg(NewOp, dl, OldVT);
804}
805
806/// PromoteIntBinOp - Promote the specified integer binary operation if the
807/// target indicates it is beneficial. e.g. On x86, it's usually better to
808/// promote i16 operations to i32 since i16 instructions are longer.
809SDValue DAGCombiner::PromoteIntBinOp(SDValue Op) {
810  if (!LegalOperations)
811    return SDValue();
812
813  EVT VT = Op.getValueType();
814  if (VT.isVector() || !VT.isInteger())
815    return SDValue();
816
817  // If operation type is 'undesirable', e.g. i16 on x86, consider
818  // promoting it.
819  unsigned Opc = Op.getOpcode();
820  if (TLI.isTypeDesirableForOp(Opc, VT))
821    return SDValue();
822
823  EVT PVT = VT;
824  // Consult target whether it is a good idea to promote this operation and
825  // what's the right type to promote it to.
826  if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
827    assert(PVT != VT && "Don't know what type to promote to!");
828
829    bool Replace0 = false;
830    SDValue N0 = Op.getOperand(0);
831    SDValue NN0 = PromoteOperand(N0, PVT, Replace0);
832    if (NN0.getNode() == 0)
833      return SDValue();
834
835    bool Replace1 = false;
836    SDValue N1 = Op.getOperand(1);
837    SDValue NN1;
838    if (N0 == N1)
839      NN1 = NN0;
840    else {
841      NN1 = PromoteOperand(N1, PVT, Replace1);
842      if (NN1.getNode() == 0)
843        return SDValue();
844    }
845
846    AddToWorkList(NN0.getNode());
847    if (NN1.getNode())
848      AddToWorkList(NN1.getNode());
849
850    if (Replace0)
851      ReplaceLoadWithPromotedLoad(N0.getNode(), NN0.getNode());
852    if (Replace1)
853      ReplaceLoadWithPromotedLoad(N1.getNode(), NN1.getNode());
854
855    DEBUG(dbgs() << "\nPromoting ";
856          Op.getNode()->dump(&DAG));
857    SDLoc dl(Op);
858    return DAG.getNode(ISD::TRUNCATE, dl, VT,
859                       DAG.getNode(Opc, dl, PVT, NN0, NN1));
860  }
861  return SDValue();
862}
863
864/// PromoteIntShiftOp - Promote the specified integer shift operation if the
865/// target indicates it is beneficial. e.g. On x86, it's usually better to
866/// promote i16 operations to i32 since i16 instructions are longer.
867SDValue DAGCombiner::PromoteIntShiftOp(SDValue Op) {
868  if (!LegalOperations)
869    return SDValue();
870
871  EVT VT = Op.getValueType();
872  if (VT.isVector() || !VT.isInteger())
873    return SDValue();
874
875  // If operation type is 'undesirable', e.g. i16 on x86, consider
876  // promoting it.
877  unsigned Opc = Op.getOpcode();
878  if (TLI.isTypeDesirableForOp(Opc, VT))
879    return SDValue();
880
881  EVT PVT = VT;
882  // Consult target whether it is a good idea to promote this operation and
883  // what's the right type to promote it to.
884  if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
885    assert(PVT != VT && "Don't know what type to promote to!");
886
887    bool Replace = false;
888    SDValue N0 = Op.getOperand(0);
889    if (Opc == ISD::SRA)
890      N0 = SExtPromoteOperand(Op.getOperand(0), PVT);
891    else if (Opc == ISD::SRL)
892      N0 = ZExtPromoteOperand(Op.getOperand(0), PVT);
893    else
894      N0 = PromoteOperand(N0, PVT, Replace);
895    if (N0.getNode() == 0)
896      return SDValue();
897
898    AddToWorkList(N0.getNode());
899    if (Replace)
900      ReplaceLoadWithPromotedLoad(Op.getOperand(0).getNode(), N0.getNode());
901
902    DEBUG(dbgs() << "\nPromoting ";
903          Op.getNode()->dump(&DAG));
904    SDLoc dl(Op);
905    return DAG.getNode(ISD::TRUNCATE, dl, VT,
906                       DAG.getNode(Opc, dl, PVT, N0, Op.getOperand(1)));
907  }
908  return SDValue();
909}
910
911SDValue DAGCombiner::PromoteExtend(SDValue Op) {
912  if (!LegalOperations)
913    return SDValue();
914
915  EVT VT = Op.getValueType();
916  if (VT.isVector() || !VT.isInteger())
917    return SDValue();
918
919  // If operation type is 'undesirable', e.g. i16 on x86, consider
920  // promoting it.
921  unsigned Opc = Op.getOpcode();
922  if (TLI.isTypeDesirableForOp(Opc, VT))
923    return SDValue();
924
925  EVT PVT = VT;
926  // Consult target whether it is a good idea to promote this operation and
927  // what's the right type to promote it to.
928  if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
929    assert(PVT != VT && "Don't know what type to promote to!");
930    // fold (aext (aext x)) -> (aext x)
931    // fold (aext (zext x)) -> (zext x)
932    // fold (aext (sext x)) -> (sext x)
933    DEBUG(dbgs() << "\nPromoting ";
934          Op.getNode()->dump(&DAG));
935    return DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, Op.getOperand(0));
936  }
937  return SDValue();
938}
939
940bool DAGCombiner::PromoteLoad(SDValue Op) {
941  if (!LegalOperations)
942    return false;
943
944  EVT VT = Op.getValueType();
945  if (VT.isVector() || !VT.isInteger())
946    return false;
947
948  // If operation type is 'undesirable', e.g. i16 on x86, consider
949  // promoting it.
950  unsigned Opc = Op.getOpcode();
951  if (TLI.isTypeDesirableForOp(Opc, VT))
952    return false;
953
954  EVT PVT = VT;
955  // Consult target whether it is a good idea to promote this operation and
956  // what's the right type to promote it to.
957  if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
958    assert(PVT != VT && "Don't know what type to promote to!");
959
960    SDLoc dl(Op);
961    SDNode *N = Op.getNode();
962    LoadSDNode *LD = cast<LoadSDNode>(N);
963    EVT MemVT = LD->getMemoryVT();
964    ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD)
965      ? (TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT) ? ISD::ZEXTLOAD
966                                                  : ISD::EXTLOAD)
967      : LD->getExtensionType();
968    SDValue NewLD = DAG.getExtLoad(ExtType, dl, PVT,
969                                   LD->getChain(), LD->getBasePtr(),
970                                   LD->getPointerInfo(),
971                                   MemVT, LD->isVolatile(),
972                                   LD->isNonTemporal(), LD->getAlignment());
973    SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, VT, NewLD);
974
975    DEBUG(dbgs() << "\nPromoting ";
976          N->dump(&DAG);
977          dbgs() << "\nTo: ";
978          Result.getNode()->dump(&DAG);
979          dbgs() << '\n');
980    WorkListRemover DeadNodes(*this);
981    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
982    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), NewLD.getValue(1));
983    removeFromWorkList(N);
984    DAG.DeleteNode(N);
985    AddToWorkList(Result.getNode());
986    return true;
987  }
988  return false;
989}
990
991
992//===----------------------------------------------------------------------===//
993//  Main DAG Combiner implementation
994//===----------------------------------------------------------------------===//
995
996void DAGCombiner::Run(CombineLevel AtLevel) {
997  // set the instance variables, so that the various visit routines may use it.
998  Level = AtLevel;
999  LegalOperations = Level >= AfterLegalizeVectorOps;
1000  LegalTypes = Level >= AfterLegalizeTypes;
1001
1002  // Add all the dag nodes to the worklist.
1003  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
1004       E = DAG.allnodes_end(); I != E; ++I)
1005    AddToWorkList(I);
1006
1007  // Create a dummy node (which is not added to allnodes), that adds a reference
1008  // to the root node, preventing it from being deleted, and tracking any
1009  // changes of the root.
1010  HandleSDNode Dummy(DAG.getRoot());
1011
1012  // The root of the dag may dangle to deleted nodes until the dag combiner is
1013  // done.  Set it to null to avoid confusion.
1014  DAG.setRoot(SDValue());
1015
1016  // while the worklist isn't empty, find a node and
1017  // try and combine it.
1018  while (!WorkListContents.empty()) {
1019    SDNode *N;
1020    // The WorkListOrder holds the SDNodes in order, but it may contain duplicates.
1021    // In order to avoid a linear scan, we use a set (O(log N)) to hold what the
1022    // worklist *should* contain, and check the node we want to visit is should
1023    // actually be visited.
1024    do {
1025      N = WorkListOrder.pop_back_val();
1026    } while (!WorkListContents.erase(N));
1027
1028    // If N has no uses, it is dead.  Make sure to revisit all N's operands once
1029    // N is deleted from the DAG, since they too may now be dead or may have a
1030    // reduced number of uses, allowing other xforms.
1031    if (N->use_empty() && N != &Dummy) {
1032      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1033        AddToWorkList(N->getOperand(i).getNode());
1034
1035      DAG.DeleteNode(N);
1036      continue;
1037    }
1038
1039    SDValue RV = combine(N);
1040
1041    if (RV.getNode() == 0)
1042      continue;
1043
1044    ++NodesCombined;
1045
1046    // If we get back the same node we passed in, rather than a new node or
1047    // zero, we know that the node must have defined multiple values and
1048    // CombineTo was used.  Since CombineTo takes care of the worklist
1049    // mechanics for us, we have no work to do in this case.
1050    if (RV.getNode() == N)
1051      continue;
1052
1053    assert(N->getOpcode() != ISD::DELETED_NODE &&
1054           RV.getNode()->getOpcode() != ISD::DELETED_NODE &&
1055           "Node was deleted but visit returned new node!");
1056
1057    DEBUG(dbgs() << "\nReplacing.3 ";
1058          N->dump(&DAG);
1059          dbgs() << "\nWith: ";
1060          RV.getNode()->dump(&DAG);
1061          dbgs() << '\n');
1062
1063    // Transfer debug value.
1064    DAG.TransferDbgValues(SDValue(N, 0), RV);
1065    WorkListRemover DeadNodes(*this);
1066    if (N->getNumValues() == RV.getNode()->getNumValues())
1067      DAG.ReplaceAllUsesWith(N, RV.getNode());
1068    else {
1069      assert(N->getValueType(0) == RV.getValueType() &&
1070             N->getNumValues() == 1 && "Type mismatch");
1071      SDValue OpV = RV;
1072      DAG.ReplaceAllUsesWith(N, &OpV);
1073    }
1074
1075    // Push the new node and any users onto the worklist
1076    AddToWorkList(RV.getNode());
1077    AddUsersToWorkList(RV.getNode());
1078
1079    // Add any uses of the old node to the worklist in case this node is the
1080    // last one that uses them.  They may become dead after this node is
1081    // deleted.
1082    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1083      AddToWorkList(N->getOperand(i).getNode());
1084
1085    // Finally, if the node is now dead, remove it from the graph.  The node
1086    // may not be dead if the replacement process recursively simplified to
1087    // something else needing this node.
1088    if (N->use_empty()) {
1089      // Nodes can be reintroduced into the worklist.  Make sure we do not
1090      // process a node that has been replaced.
1091      removeFromWorkList(N);
1092
1093      // Finally, since the node is now dead, remove it from the graph.
1094      DAG.DeleteNode(N);
1095    }
1096  }
1097
1098  // If the root changed (e.g. it was a dead load, update the root).
1099  DAG.setRoot(Dummy.getValue());
1100  DAG.RemoveDeadNodes();
1101}
1102
1103SDValue DAGCombiner::visit(SDNode *N) {
1104  switch (N->getOpcode()) {
1105  default: break;
1106  case ISD::TokenFactor:        return visitTokenFactor(N);
1107  case ISD::MERGE_VALUES:       return visitMERGE_VALUES(N);
1108  case ISD::ADD:                return visitADD(N);
1109  case ISD::SUB:                return visitSUB(N);
1110  case ISD::ADDC:               return visitADDC(N);
1111  case ISD::SUBC:               return visitSUBC(N);
1112  case ISD::ADDE:               return visitADDE(N);
1113  case ISD::SUBE:               return visitSUBE(N);
1114  case ISD::MUL:                return visitMUL(N);
1115  case ISD::SDIV:               return visitSDIV(N);
1116  case ISD::UDIV:               return visitUDIV(N);
1117  case ISD::SREM:               return visitSREM(N);
1118  case ISD::UREM:               return visitUREM(N);
1119  case ISD::MULHU:              return visitMULHU(N);
1120  case ISD::MULHS:              return visitMULHS(N);
1121  case ISD::SMUL_LOHI:          return visitSMUL_LOHI(N);
1122  case ISD::UMUL_LOHI:          return visitUMUL_LOHI(N);
1123  case ISD::SMULO:              return visitSMULO(N);
1124  case ISD::UMULO:              return visitUMULO(N);
1125  case ISD::SDIVREM:            return visitSDIVREM(N);
1126  case ISD::UDIVREM:            return visitUDIVREM(N);
1127  case ISD::AND:                return visitAND(N);
1128  case ISD::OR:                 return visitOR(N);
1129  case ISD::XOR:                return visitXOR(N);
1130  case ISD::SHL:                return visitSHL(N);
1131  case ISD::SRA:                return visitSRA(N);
1132  case ISD::SRL:                return visitSRL(N);
1133  case ISD::CTLZ:               return visitCTLZ(N);
1134  case ISD::CTLZ_ZERO_UNDEF:    return visitCTLZ_ZERO_UNDEF(N);
1135  case ISD::CTTZ:               return visitCTTZ(N);
1136  case ISD::CTTZ_ZERO_UNDEF:    return visitCTTZ_ZERO_UNDEF(N);
1137  case ISD::CTPOP:              return visitCTPOP(N);
1138  case ISD::SELECT:             return visitSELECT(N);
1139  case ISD::VSELECT:            return visitVSELECT(N);
1140  case ISD::SELECT_CC:          return visitSELECT_CC(N);
1141  case ISD::SETCC:              return visitSETCC(N);
1142  case ISD::SIGN_EXTEND:        return visitSIGN_EXTEND(N);
1143  case ISD::ZERO_EXTEND:        return visitZERO_EXTEND(N);
1144  case ISD::ANY_EXTEND:         return visitANY_EXTEND(N);
1145  case ISD::SIGN_EXTEND_INREG:  return visitSIGN_EXTEND_INREG(N);
1146  case ISD::TRUNCATE:           return visitTRUNCATE(N);
1147  case ISD::BITCAST:            return visitBITCAST(N);
1148  case ISD::BUILD_PAIR:         return visitBUILD_PAIR(N);
1149  case ISD::FADD:               return visitFADD(N);
1150  case ISD::FSUB:               return visitFSUB(N);
1151  case ISD::FMUL:               return visitFMUL(N);
1152  case ISD::FMA:                return visitFMA(N);
1153  case ISD::FDIV:               return visitFDIV(N);
1154  case ISD::FREM:               return visitFREM(N);
1155  case ISD::FCOPYSIGN:          return visitFCOPYSIGN(N);
1156  case ISD::SINT_TO_FP:         return visitSINT_TO_FP(N);
1157  case ISD::UINT_TO_FP:         return visitUINT_TO_FP(N);
1158  case ISD::FP_TO_SINT:         return visitFP_TO_SINT(N);
1159  case ISD::FP_TO_UINT:         return visitFP_TO_UINT(N);
1160  case ISD::FP_ROUND:           return visitFP_ROUND(N);
1161  case ISD::FP_ROUND_INREG:     return visitFP_ROUND_INREG(N);
1162  case ISD::FP_EXTEND:          return visitFP_EXTEND(N);
1163  case ISD::FNEG:               return visitFNEG(N);
1164  case ISD::FABS:               return visitFABS(N);
1165  case ISD::FFLOOR:             return visitFFLOOR(N);
1166  case ISD::FCEIL:              return visitFCEIL(N);
1167  case ISD::FTRUNC:             return visitFTRUNC(N);
1168  case ISD::BRCOND:             return visitBRCOND(N);
1169  case ISD::BR_CC:              return visitBR_CC(N);
1170  case ISD::LOAD:               return visitLOAD(N);
1171  case ISD::STORE:              return visitSTORE(N);
1172  case ISD::INSERT_VECTOR_ELT:  return visitINSERT_VECTOR_ELT(N);
1173  case ISD::EXTRACT_VECTOR_ELT: return visitEXTRACT_VECTOR_ELT(N);
1174  case ISD::BUILD_VECTOR:       return visitBUILD_VECTOR(N);
1175  case ISD::CONCAT_VECTORS:     return visitCONCAT_VECTORS(N);
1176  case ISD::EXTRACT_SUBVECTOR:  return visitEXTRACT_SUBVECTOR(N);
1177  case ISD::VECTOR_SHUFFLE:     return visitVECTOR_SHUFFLE(N);
1178  }
1179  return SDValue();
1180}
1181
1182SDValue DAGCombiner::combine(SDNode *N) {
1183  SDValue RV = visit(N);
1184
1185  // If nothing happened, try a target-specific DAG combine.
1186  if (RV.getNode() == 0) {
1187    assert(N->getOpcode() != ISD::DELETED_NODE &&
1188           "Node was deleted but visit returned NULL!");
1189
1190    if (N->getOpcode() >= ISD::BUILTIN_OP_END ||
1191        TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) {
1192
1193      // Expose the DAG combiner to the target combiner impls.
1194      TargetLowering::DAGCombinerInfo
1195        DagCombineInfo(DAG, Level, false, this);
1196
1197      RV = TLI.PerformDAGCombine(N, DagCombineInfo);
1198    }
1199  }
1200
1201  // If nothing happened still, try promoting the operation.
1202  if (RV.getNode() == 0) {
1203    switch (N->getOpcode()) {
1204    default: break;
1205    case ISD::ADD:
1206    case ISD::SUB:
1207    case ISD::MUL:
1208    case ISD::AND:
1209    case ISD::OR:
1210    case ISD::XOR:
1211      RV = PromoteIntBinOp(SDValue(N, 0));
1212      break;
1213    case ISD::SHL:
1214    case ISD::SRA:
1215    case ISD::SRL:
1216      RV = PromoteIntShiftOp(SDValue(N, 0));
1217      break;
1218    case ISD::SIGN_EXTEND:
1219    case ISD::ZERO_EXTEND:
1220    case ISD::ANY_EXTEND:
1221      RV = PromoteExtend(SDValue(N, 0));
1222      break;
1223    case ISD::LOAD:
1224      if (PromoteLoad(SDValue(N, 0)))
1225        RV = SDValue(N, 0);
1226      break;
1227    }
1228  }
1229
1230  // If N is a commutative binary node, try commuting it to enable more
1231  // sdisel CSE.
1232  if (RV.getNode() == 0 &&
1233      SelectionDAG::isCommutativeBinOp(N->getOpcode()) &&
1234      N->getNumValues() == 1) {
1235    SDValue N0 = N->getOperand(0);
1236    SDValue N1 = N->getOperand(1);
1237
1238    // Constant operands are canonicalized to RHS.
1239    if (isa<ConstantSDNode>(N0) || !isa<ConstantSDNode>(N1)) {
1240      SDValue Ops[] = { N1, N0 };
1241      SDNode *CSENode = DAG.getNodeIfExists(N->getOpcode(), N->getVTList(),
1242                                            Ops, 2);
1243      if (CSENode)
1244        return SDValue(CSENode, 0);
1245    }
1246  }
1247
1248  return RV;
1249}
1250
1251/// getInputChainForNode - Given a node, return its input chain if it has one,
1252/// otherwise return a null sd operand.
1253static SDValue getInputChainForNode(SDNode *N) {
1254  if (unsigned NumOps = N->getNumOperands()) {
1255    if (N->getOperand(0).getValueType() == MVT::Other)
1256      return N->getOperand(0);
1257    if (N->getOperand(NumOps-1).getValueType() == MVT::Other)
1258      return N->getOperand(NumOps-1);
1259    for (unsigned i = 1; i < NumOps-1; ++i)
1260      if (N->getOperand(i).getValueType() == MVT::Other)
1261        return N->getOperand(i);
1262  }
1263  return SDValue();
1264}
1265
1266SDValue DAGCombiner::visitTokenFactor(SDNode *N) {
1267  // If N has two operands, where one has an input chain equal to the other,
1268  // the 'other' chain is redundant.
1269  if (N->getNumOperands() == 2) {
1270    if (getInputChainForNode(N->getOperand(0).getNode()) == N->getOperand(1))
1271      return N->getOperand(0);
1272    if (getInputChainForNode(N->getOperand(1).getNode()) == N->getOperand(0))
1273      return N->getOperand(1);
1274  }
1275
1276  SmallVector<SDNode *, 8> TFs;     // List of token factors to visit.
1277  SmallVector<SDValue, 8> Ops;    // Ops for replacing token factor.
1278  SmallPtrSet<SDNode*, 16> SeenOps;
1279  bool Changed = false;             // If we should replace this token factor.
1280
1281  // Start out with this token factor.
1282  TFs.push_back(N);
1283
1284  // Iterate through token factors.  The TFs grows when new token factors are
1285  // encountered.
1286  for (unsigned i = 0; i < TFs.size(); ++i) {
1287    SDNode *TF = TFs[i];
1288
1289    // Check each of the operands.
1290    for (unsigned i = 0, ie = TF->getNumOperands(); i != ie; ++i) {
1291      SDValue Op = TF->getOperand(i);
1292
1293      switch (Op.getOpcode()) {
1294      case ISD::EntryToken:
1295        // Entry tokens don't need to be added to the list. They are
1296        // rededundant.
1297        Changed = true;
1298        break;
1299
1300      case ISD::TokenFactor:
1301        if (Op.hasOneUse() &&
1302            std::find(TFs.begin(), TFs.end(), Op.getNode()) == TFs.end()) {
1303          // Queue up for processing.
1304          TFs.push_back(Op.getNode());
1305          // Clean up in case the token factor is removed.
1306          AddToWorkList(Op.getNode());
1307          Changed = true;
1308          break;
1309        }
1310        // Fall thru
1311
1312      default:
1313        // Only add if it isn't already in the list.
1314        if (SeenOps.insert(Op.getNode()))
1315          Ops.push_back(Op);
1316        else
1317          Changed = true;
1318        break;
1319      }
1320    }
1321  }
1322
1323  SDValue Result;
1324
1325  // If we've change things around then replace token factor.
1326  if (Changed) {
1327    if (Ops.empty()) {
1328      // The entry token is the only possible outcome.
1329      Result = DAG.getEntryNode();
1330    } else {
1331      // New and improved token factor.
1332      Result = DAG.getNode(ISD::TokenFactor, SDLoc(N),
1333                           MVT::Other, &Ops[0], Ops.size());
1334    }
1335
1336    // Don't add users to work list.
1337    return CombineTo(N, Result, false);
1338  }
1339
1340  return Result;
1341}
1342
1343/// MERGE_VALUES can always be eliminated.
1344SDValue DAGCombiner::visitMERGE_VALUES(SDNode *N) {
1345  WorkListRemover DeadNodes(*this);
1346  // Replacing results may cause a different MERGE_VALUES to suddenly
1347  // be CSE'd with N, and carry its uses with it. Iterate until no
1348  // uses remain, to ensure that the node can be safely deleted.
1349  // First add the users of this node to the work list so that they
1350  // can be tried again once they have new operands.
1351  AddUsersToWorkList(N);
1352  do {
1353    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1354      DAG.ReplaceAllUsesOfValueWith(SDValue(N, i), N->getOperand(i));
1355  } while (!N->use_empty());
1356  removeFromWorkList(N);
1357  DAG.DeleteNode(N);
1358  return SDValue(N, 0);   // Return N so it doesn't get rechecked!
1359}
1360
1361static
1362SDValue combineShlAddConstant(SDLoc DL, SDValue N0, SDValue N1,
1363                              SelectionDAG &DAG) {
1364  EVT VT = N0.getValueType();
1365  SDValue N00 = N0.getOperand(0);
1366  SDValue N01 = N0.getOperand(1);
1367  ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N01);
1368
1369  if (N01C && N00.getOpcode() == ISD::ADD && N00.getNode()->hasOneUse() &&
1370      isa<ConstantSDNode>(N00.getOperand(1))) {
1371    // fold (add (shl (add x, c1), c2), ) -> (add (add (shl x, c2), c1<<c2), )
1372    N0 = DAG.getNode(ISD::ADD, SDLoc(N0), VT,
1373                     DAG.getNode(ISD::SHL, SDLoc(N00), VT,
1374                                 N00.getOperand(0), N01),
1375                     DAG.getNode(ISD::SHL, SDLoc(N01), VT,
1376                                 N00.getOperand(1), N01));
1377    return DAG.getNode(ISD::ADD, DL, VT, N0, N1);
1378  }
1379
1380  return SDValue();
1381}
1382
1383SDValue DAGCombiner::visitADD(SDNode *N) {
1384  SDValue N0 = N->getOperand(0);
1385  SDValue N1 = N->getOperand(1);
1386  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1387  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1388  EVT VT = N0.getValueType();
1389
1390  // fold vector ops
1391  if (VT.isVector()) {
1392    SDValue FoldedVOp = SimplifyVBinOp(N);
1393    if (FoldedVOp.getNode()) return FoldedVOp;
1394
1395    // fold (add x, 0) -> x, vector edition
1396    if (ISD::isBuildVectorAllZeros(N1.getNode()))
1397      return N0;
1398    if (ISD::isBuildVectorAllZeros(N0.getNode()))
1399      return N1;
1400  }
1401
1402  // fold (add x, undef) -> undef
1403  if (N0.getOpcode() == ISD::UNDEF)
1404    return N0;
1405  if (N1.getOpcode() == ISD::UNDEF)
1406    return N1;
1407  // fold (add c1, c2) -> c1+c2
1408  if (N0C && N1C)
1409    return DAG.FoldConstantArithmetic(ISD::ADD, VT, N0C, N1C);
1410  // canonicalize constant to RHS
1411  if (N0C && !N1C)
1412    return DAG.getNode(ISD::ADD, SDLoc(N), VT, N1, N0);
1413  // fold (add x, 0) -> x
1414  if (N1C && N1C->isNullValue())
1415    return N0;
1416  // fold (add Sym, c) -> Sym+c
1417  if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0))
1418    if (!LegalOperations && TLI.isOffsetFoldingLegal(GA) && N1C &&
1419        GA->getOpcode() == ISD::GlobalAddress)
1420      return DAG.getGlobalAddress(GA->getGlobal(), SDLoc(N1C), VT,
1421                                  GA->getOffset() +
1422                                    (uint64_t)N1C->getSExtValue());
1423  // fold ((c1-A)+c2) -> (c1+c2)-A
1424  if (N1C && N0.getOpcode() == ISD::SUB)
1425    if (ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getOperand(0)))
1426      return DAG.getNode(ISD::SUB, SDLoc(N), VT,
1427                         DAG.getConstant(N1C->getAPIntValue()+
1428                                         N0C->getAPIntValue(), VT),
1429                         N0.getOperand(1));
1430  // reassociate add
1431  SDValue RADD = ReassociateOps(ISD::ADD, SDLoc(N), N0, N1);
1432  if (RADD.getNode() != 0)
1433    return RADD;
1434  // fold ((0-A) + B) -> B-A
1435  if (N0.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N0.getOperand(0)) &&
1436      cast<ConstantSDNode>(N0.getOperand(0))->isNullValue())
1437    return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1, N0.getOperand(1));
1438  // fold (A + (0-B)) -> A-B
1439  if (N1.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N1.getOperand(0)) &&
1440      cast<ConstantSDNode>(N1.getOperand(0))->isNullValue())
1441    return DAG.getNode(ISD::SUB, SDLoc(N), VT, N0, N1.getOperand(1));
1442  // fold (A+(B-A)) -> B
1443  if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1))
1444    return N1.getOperand(0);
1445  // fold ((B-A)+A) -> B
1446  if (N0.getOpcode() == ISD::SUB && N1 == N0.getOperand(1))
1447    return N0.getOperand(0);
1448  // fold (A+(B-(A+C))) to (B-C)
1449  if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD &&
1450      N0 == N1.getOperand(1).getOperand(0))
1451    return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1.getOperand(0),
1452                       N1.getOperand(1).getOperand(1));
1453  // fold (A+(B-(C+A))) to (B-C)
1454  if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD &&
1455      N0 == N1.getOperand(1).getOperand(1))
1456    return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1.getOperand(0),
1457                       N1.getOperand(1).getOperand(0));
1458  // fold (A+((B-A)+or-C)) to (B+or-C)
1459  if ((N1.getOpcode() == ISD::SUB || N1.getOpcode() == ISD::ADD) &&
1460      N1.getOperand(0).getOpcode() == ISD::SUB &&
1461      N0 == N1.getOperand(0).getOperand(1))
1462    return DAG.getNode(N1.getOpcode(), SDLoc(N), VT,
1463                       N1.getOperand(0).getOperand(0), N1.getOperand(1));
1464
1465  // fold (A-B)+(C-D) to (A+C)-(B+D) when A or C is constant
1466  if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB) {
1467    SDValue N00 = N0.getOperand(0);
1468    SDValue N01 = N0.getOperand(1);
1469    SDValue N10 = N1.getOperand(0);
1470    SDValue N11 = N1.getOperand(1);
1471
1472    if (isa<ConstantSDNode>(N00) || isa<ConstantSDNode>(N10))
1473      return DAG.getNode(ISD::SUB, SDLoc(N), VT,
1474                         DAG.getNode(ISD::ADD, SDLoc(N0), VT, N00, N10),
1475                         DAG.getNode(ISD::ADD, SDLoc(N1), VT, N01, N11));
1476  }
1477
1478  if (!VT.isVector() && SimplifyDemandedBits(SDValue(N, 0)))
1479    return SDValue(N, 0);
1480
1481  // fold (a+b) -> (a|b) iff a and b share no bits.
1482  if (VT.isInteger() && !VT.isVector()) {
1483    APInt LHSZero, LHSOne;
1484    APInt RHSZero, RHSOne;
1485    DAG.ComputeMaskedBits(N0, LHSZero, LHSOne);
1486
1487    if (LHSZero.getBoolValue()) {
1488      DAG.ComputeMaskedBits(N1, RHSZero, RHSOne);
1489
1490      // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
1491      // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
1492      if ((RHSZero & ~LHSZero) == ~LHSZero || (LHSZero & ~RHSZero) == ~RHSZero)
1493        return DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N1);
1494    }
1495  }
1496
1497  // fold (add (shl (add x, c1), c2), ) -> (add (add (shl x, c2), c1<<c2), )
1498  if (N0.getOpcode() == ISD::SHL && N0.getNode()->hasOneUse()) {
1499    SDValue Result = combineShlAddConstant(SDLoc(N), N0, N1, DAG);
1500    if (Result.getNode()) return Result;
1501  }
1502  if (N1.getOpcode() == ISD::SHL && N1.getNode()->hasOneUse()) {
1503    SDValue Result = combineShlAddConstant(SDLoc(N), N1, N0, DAG);
1504    if (Result.getNode()) return Result;
1505  }
1506
1507  // fold (add x, shl(0 - y, n)) -> sub(x, shl(y, n))
1508  if (N1.getOpcode() == ISD::SHL &&
1509      N1.getOperand(0).getOpcode() == ISD::SUB)
1510    if (ConstantSDNode *C =
1511          dyn_cast<ConstantSDNode>(N1.getOperand(0).getOperand(0)))
1512      if (C->getAPIntValue() == 0)
1513        return DAG.getNode(ISD::SUB, SDLoc(N), VT, N0,
1514                           DAG.getNode(ISD::SHL, SDLoc(N), VT,
1515                                       N1.getOperand(0).getOperand(1),
1516                                       N1.getOperand(1)));
1517  if (N0.getOpcode() == ISD::SHL &&
1518      N0.getOperand(0).getOpcode() == ISD::SUB)
1519    if (ConstantSDNode *C =
1520          dyn_cast<ConstantSDNode>(N0.getOperand(0).getOperand(0)))
1521      if (C->getAPIntValue() == 0)
1522        return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1,
1523                           DAG.getNode(ISD::SHL, SDLoc(N), VT,
1524                                       N0.getOperand(0).getOperand(1),
1525                                       N0.getOperand(1)));
1526
1527  if (N1.getOpcode() == ISD::AND) {
1528    SDValue AndOp0 = N1.getOperand(0);
1529    ConstantSDNode *AndOp1 = dyn_cast<ConstantSDNode>(N1->getOperand(1));
1530    unsigned NumSignBits = DAG.ComputeNumSignBits(AndOp0);
1531    unsigned DestBits = VT.getScalarType().getSizeInBits();
1532
1533    // (add z, (and (sbbl x, x), 1)) -> (sub z, (sbbl x, x))
1534    // and similar xforms where the inner op is either ~0 or 0.
1535    if (NumSignBits == DestBits && AndOp1 && AndOp1->isOne()) {
1536      SDLoc DL(N);
1537      return DAG.getNode(ISD::SUB, DL, VT, N->getOperand(0), AndOp0);
1538    }
1539  }
1540
1541  // add (sext i1), X -> sub X, (zext i1)
1542  if (N0.getOpcode() == ISD::SIGN_EXTEND &&
1543      N0.getOperand(0).getValueType() == MVT::i1 &&
1544      !TLI.isOperationLegal(ISD::SIGN_EXTEND, MVT::i1)) {
1545    SDLoc DL(N);
1546    SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0));
1547    return DAG.getNode(ISD::SUB, DL, VT, N1, ZExt);
1548  }
1549
1550  return SDValue();
1551}
1552
1553SDValue DAGCombiner::visitADDC(SDNode *N) {
1554  SDValue N0 = N->getOperand(0);
1555  SDValue N1 = N->getOperand(1);
1556  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1557  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1558  EVT VT = N0.getValueType();
1559
1560  // If the flag result is dead, turn this into an ADD.
1561  if (!N->hasAnyUseOfValue(1))
1562    return CombineTo(N, DAG.getNode(ISD::ADD, SDLoc(N), VT, N0, N1),
1563                     DAG.getNode(ISD::CARRY_FALSE,
1564                                 SDLoc(N), MVT::Glue));
1565
1566  // canonicalize constant to RHS.
1567  if (N0C && !N1C)
1568    return DAG.getNode(ISD::ADDC, SDLoc(N), N->getVTList(), N1, N0);
1569
1570  // fold (addc x, 0) -> x + no carry out
1571  if (N1C && N1C->isNullValue())
1572    return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE,
1573                                        SDLoc(N), MVT::Glue));
1574
1575  // fold (addc a, b) -> (or a, b), CARRY_FALSE iff a and b share no bits.
1576  APInt LHSZero, LHSOne;
1577  APInt RHSZero, RHSOne;
1578  DAG.ComputeMaskedBits(N0, LHSZero, LHSOne);
1579
1580  if (LHSZero.getBoolValue()) {
1581    DAG.ComputeMaskedBits(N1, RHSZero, RHSOne);
1582
1583    // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
1584    // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
1585    if ((RHSZero & ~LHSZero) == ~LHSZero || (LHSZero & ~RHSZero) == ~RHSZero)
1586      return CombineTo(N, DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N1),
1587                       DAG.getNode(ISD::CARRY_FALSE,
1588                                   SDLoc(N), MVT::Glue));
1589  }
1590
1591  return SDValue();
1592}
1593
1594SDValue DAGCombiner::visitADDE(SDNode *N) {
1595  SDValue N0 = N->getOperand(0);
1596  SDValue N1 = N->getOperand(1);
1597  SDValue CarryIn = N->getOperand(2);
1598  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1599  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1600
1601  // canonicalize constant to RHS
1602  if (N0C && !N1C)
1603    return DAG.getNode(ISD::ADDE, SDLoc(N), N->getVTList(),
1604                       N1, N0, CarryIn);
1605
1606  // fold (adde x, y, false) -> (addc x, y)
1607  if (CarryIn.getOpcode() == ISD::CARRY_FALSE)
1608    return DAG.getNode(ISD::ADDC, SDLoc(N), N->getVTList(), N0, N1);
1609
1610  return SDValue();
1611}
1612
1613// Since it may not be valid to emit a fold to zero for vector initializers
1614// check if we can before folding.
1615static SDValue tryFoldToZero(SDLoc DL, const TargetLowering &TLI, EVT VT,
1616                             SelectionDAG &DAG,
1617                             bool LegalOperations, bool LegalTypes) {
1618  if (!VT.isVector())
1619    return DAG.getConstant(0, VT);
1620  if (!LegalOperations || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) {
1621    // Produce a vector of zeros.
1622    EVT ElemTy = VT.getVectorElementType();
1623    if (LegalTypes && TLI.getTypeAction(*DAG.getContext(), ElemTy) ==
1624                      TargetLowering::TypePromoteInteger)
1625      ElemTy = TLI.getTypeToTransformTo(*DAG.getContext(), ElemTy);
1626    assert((!LegalTypes || TLI.isTypeLegal(ElemTy)) &&
1627           "Type for zero vector elements is not legal");
1628    SDValue El = DAG.getConstant(0, ElemTy);
1629    std::vector<SDValue> Ops(VT.getVectorNumElements(), El);
1630    return DAG.getNode(ISD::BUILD_VECTOR, DL, VT,
1631      &Ops[0], Ops.size());
1632  }
1633  return SDValue();
1634}
1635
1636SDValue DAGCombiner::visitSUB(SDNode *N) {
1637  SDValue N0 = N->getOperand(0);
1638  SDValue N1 = N->getOperand(1);
1639  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getNode());
1640  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
1641  ConstantSDNode *N1C1 = N1.getOpcode() != ISD::ADD ? 0 :
1642    dyn_cast<ConstantSDNode>(N1.getOperand(1).getNode());
1643  EVT VT = N0.getValueType();
1644
1645  // fold vector ops
1646  if (VT.isVector()) {
1647    SDValue FoldedVOp = SimplifyVBinOp(N);
1648    if (FoldedVOp.getNode()) return FoldedVOp;
1649
1650    // fold (sub x, 0) -> x, vector edition
1651    if (ISD::isBuildVectorAllZeros(N1.getNode()))
1652      return N0;
1653  }
1654
1655  // fold (sub x, x) -> 0
1656  // FIXME: Refactor this and xor and other similar operations together.
1657  if (N0 == N1)
1658    return tryFoldToZero(SDLoc(N), TLI, VT, DAG, LegalOperations, LegalTypes);
1659  // fold (sub c1, c2) -> c1-c2
1660  if (N0C && N1C)
1661    return DAG.FoldConstantArithmetic(ISD::SUB, VT, N0C, N1C);
1662  // fold (sub x, c) -> (add x, -c)
1663  if (N1C)
1664    return DAG.getNode(ISD::ADD, SDLoc(N), VT, N0,
1665                       DAG.getConstant(-N1C->getAPIntValue(), VT));
1666  // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1)
1667  if (N0C && N0C->isAllOnesValue())
1668    return DAG.getNode(ISD::XOR, SDLoc(N), VT, N1, N0);
1669  // fold A-(A-B) -> B
1670  if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(0))
1671    return N1.getOperand(1);
1672  // fold (A+B)-A -> B
1673  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1)
1674    return N0.getOperand(1);
1675  // fold (A+B)-B -> A
1676  if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1)
1677    return N0.getOperand(0);
1678  // fold C2-(A+C1) -> (C2-C1)-A
1679  if (N1.getOpcode() == ISD::ADD && N0C && N1C1) {
1680    SDValue NewC = DAG.getConstant(N0C->getAPIntValue() - N1C1->getAPIntValue(),
1681                                   VT);
1682    return DAG.getNode(ISD::SUB, SDLoc(N), VT, NewC,
1683                       N1.getOperand(0));
1684  }
1685  // fold ((A+(B+or-C))-B) -> A+or-C
1686  if (N0.getOpcode() == ISD::ADD &&
1687      (N0.getOperand(1).getOpcode() == ISD::SUB ||
1688       N0.getOperand(1).getOpcode() == ISD::ADD) &&
1689      N0.getOperand(1).getOperand(0) == N1)
1690    return DAG.getNode(N0.getOperand(1).getOpcode(), SDLoc(N), VT,
1691                       N0.getOperand(0), N0.getOperand(1).getOperand(1));
1692  // fold ((A+(C+B))-B) -> A+C
1693  if (N0.getOpcode() == ISD::ADD &&
1694      N0.getOperand(1).getOpcode() == ISD::ADD &&
1695      N0.getOperand(1).getOperand(1) == N1)
1696    return DAG.getNode(ISD::ADD, SDLoc(N), VT,
1697                       N0.getOperand(0), N0.getOperand(1).getOperand(0));
1698  // fold ((A-(B-C))-C) -> A-B
1699  if (N0.getOpcode() == ISD::SUB &&
1700      N0.getOperand(1).getOpcode() == ISD::SUB &&
1701      N0.getOperand(1).getOperand(1) == N1)
1702    return DAG.getNode(ISD::SUB, SDLoc(N), VT,
1703                       N0.getOperand(0), N0.getOperand(1).getOperand(0));
1704
1705  // If either operand of a sub is undef, the result is undef
1706  if (N0.getOpcode() == ISD::UNDEF)
1707    return N0;
1708  if (N1.getOpcode() == ISD::UNDEF)
1709    return N1;
1710
1711  // If the relocation model supports it, consider symbol offsets.
1712  if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0))
1713    if (!LegalOperations && TLI.isOffsetFoldingLegal(GA)) {
1714      // fold (sub Sym, c) -> Sym-c
1715      if (N1C && GA->getOpcode() == ISD::GlobalAddress)
1716        return DAG.getGlobalAddress(GA->getGlobal(), SDLoc(N1C), VT,
1717                                    GA->getOffset() -
1718                                      (uint64_t)N1C->getSExtValue());
1719      // fold (sub Sym+c1, Sym+c2) -> c1-c2
1720      if (GlobalAddressSDNode *GB = dyn_cast<GlobalAddressSDNode>(N1))
1721        if (GA->getGlobal() == GB->getGlobal())
1722          return DAG.getConstant((uint64_t)GA->getOffset() - GB->getOffset(),
1723                                 VT);
1724    }
1725
1726  return SDValue();
1727}
1728
1729SDValue DAGCombiner::visitSUBC(SDNode *N) {
1730  SDValue N0 = N->getOperand(0);
1731  SDValue N1 = N->getOperand(1);
1732  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1733  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1734  EVT VT = N0.getValueType();
1735
1736  // If the flag result is dead, turn this into an SUB.
1737  if (!N->hasAnyUseOfValue(1))
1738    return CombineTo(N, DAG.getNode(ISD::SUB, SDLoc(N), VT, N0, N1),
1739                     DAG.getNode(ISD::CARRY_FALSE, SDLoc(N),
1740                                 MVT::Glue));
1741
1742  // fold (subc x, x) -> 0 + no borrow
1743  if (N0 == N1)
1744    return CombineTo(N, DAG.getConstant(0, VT),
1745                     DAG.getNode(ISD::CARRY_FALSE, SDLoc(N),
1746                                 MVT::Glue));
1747
1748  // fold (subc x, 0) -> x + no borrow
1749  if (N1C && N1C->isNullValue())
1750    return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, SDLoc(N),
1751                                        MVT::Glue));
1752
1753  // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) + no borrow
1754  if (N0C && N0C->isAllOnesValue())
1755    return CombineTo(N, DAG.getNode(ISD::XOR, SDLoc(N), VT, N1, N0),
1756                     DAG.getNode(ISD::CARRY_FALSE, SDLoc(N),
1757                                 MVT::Glue));
1758
1759  return SDValue();
1760}
1761
1762SDValue DAGCombiner::visitSUBE(SDNode *N) {
1763  SDValue N0 = N->getOperand(0);
1764  SDValue N1 = N->getOperand(1);
1765  SDValue CarryIn = N->getOperand(2);
1766
1767  // fold (sube x, y, false) -> (subc x, y)
1768  if (CarryIn.getOpcode() == ISD::CARRY_FALSE)
1769    return DAG.getNode(ISD::SUBC, SDLoc(N), N->getVTList(), N0, N1);
1770
1771  return SDValue();
1772}
1773
1774/// isConstantSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
1775/// all the same constant or undefined.
1776static bool isConstantSplatVector(SDNode *N, APInt& SplatValue) {
1777  BuildVectorSDNode *C = dyn_cast<BuildVectorSDNode>(N);
1778  if (!C)
1779    return false;
1780
1781  APInt SplatUndef;
1782  unsigned SplatBitSize;
1783  bool HasAnyUndefs;
1784  EVT EltVT = N->getValueType(0).getVectorElementType();
1785  return (C->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
1786                             HasAnyUndefs) &&
1787          EltVT.getSizeInBits() >= SplatBitSize);
1788}
1789
1790SDValue DAGCombiner::visitMUL(SDNode *N) {
1791  SDValue N0 = N->getOperand(0);
1792  SDValue N1 = N->getOperand(1);
1793  EVT VT = N0.getValueType();
1794
1795  // fold (mul x, undef) -> 0
1796  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1797    return DAG.getConstant(0, VT);
1798
1799  bool N0IsConst = false;
1800  bool N1IsConst = false;
1801  APInt ConstValue0, ConstValue1;
1802  // fold vector ops
1803  if (VT.isVector()) {
1804    SDValue FoldedVOp = SimplifyVBinOp(N);
1805    if (FoldedVOp.getNode()) return FoldedVOp;
1806
1807    N0IsConst = isConstantSplatVector(N0.getNode(), ConstValue0);
1808    N1IsConst = isConstantSplatVector(N1.getNode(), ConstValue1);
1809  } else {
1810    N0IsConst = dyn_cast<ConstantSDNode>(N0) != 0;
1811    ConstValue0 = N0IsConst? (dyn_cast<ConstantSDNode>(N0))->getAPIntValue() : APInt();
1812    N1IsConst = dyn_cast<ConstantSDNode>(N1) != 0;
1813    ConstValue1 = N1IsConst? (dyn_cast<ConstantSDNode>(N1))->getAPIntValue() : APInt();
1814  }
1815
1816  // fold (mul c1, c2) -> c1*c2
1817  if (N0IsConst && N1IsConst)
1818    return DAG.FoldConstantArithmetic(ISD::MUL, VT, N0.getNode(), N1.getNode());
1819
1820  // canonicalize constant to RHS
1821  if (N0IsConst && !N1IsConst)
1822    return DAG.getNode(ISD::MUL, SDLoc(N), VT, N1, N0);
1823  // fold (mul x, 0) -> 0
1824  if (N1IsConst && ConstValue1 == 0)
1825    return N1;
1826  // fold (mul x, 1) -> x
1827  if (N1IsConst && ConstValue1 == 1)
1828    return N0;
1829  // fold (mul x, -1) -> 0-x
1830  if (N1IsConst && ConstValue1.isAllOnesValue())
1831    return DAG.getNode(ISD::SUB, SDLoc(N), VT,
1832                       DAG.getConstant(0, VT), N0);
1833  // fold (mul x, (1 << c)) -> x << c
1834  if (N1IsConst && ConstValue1.isPowerOf2())
1835    return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0,
1836                       DAG.getConstant(ConstValue1.logBase2(),
1837                                       getShiftAmountTy(N0.getValueType())));
1838  // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c
1839  if (N1IsConst && (-ConstValue1).isPowerOf2()) {
1840    unsigned Log2Val = (-ConstValue1).logBase2();
1841    // FIXME: If the input is something that is easily negated (e.g. a
1842    // single-use add), we should put the negate there.
1843    return DAG.getNode(ISD::SUB, SDLoc(N), VT,
1844                       DAG.getConstant(0, VT),
1845                       DAG.getNode(ISD::SHL, SDLoc(N), VT, N0,
1846                            DAG.getConstant(Log2Val,
1847                                      getShiftAmountTy(N0.getValueType()))));
1848  }
1849
1850  APInt Val;
1851  // (mul (shl X, c1), c2) -> (mul X, c2 << c1)
1852  if (N1IsConst && N0.getOpcode() == ISD::SHL &&
1853      (isConstantSplatVector(N0.getOperand(1).getNode(), Val) ||
1854                     isa<ConstantSDNode>(N0.getOperand(1)))) {
1855    SDValue C3 = DAG.getNode(ISD::SHL, SDLoc(N), VT,
1856                             N1, N0.getOperand(1));
1857    AddToWorkList(C3.getNode());
1858    return DAG.getNode(ISD::MUL, SDLoc(N), VT,
1859                       N0.getOperand(0), C3);
1860  }
1861
1862  // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one
1863  // use.
1864  {
1865    SDValue Sh(0,0), Y(0,0);
1866    // Check for both (mul (shl X, C), Y)  and  (mul Y, (shl X, C)).
1867    if (N0.getOpcode() == ISD::SHL &&
1868        (isConstantSplatVector(N0.getOperand(1).getNode(), Val) ||
1869                       isa<ConstantSDNode>(N0.getOperand(1))) &&
1870        N0.getNode()->hasOneUse()) {
1871      Sh = N0; Y = N1;
1872    } else if (N1.getOpcode() == ISD::SHL &&
1873               isa<ConstantSDNode>(N1.getOperand(1)) &&
1874               N1.getNode()->hasOneUse()) {
1875      Sh = N1; Y = N0;
1876    }
1877
1878    if (Sh.getNode()) {
1879      SDValue Mul = DAG.getNode(ISD::MUL, SDLoc(N), VT,
1880                                Sh.getOperand(0), Y);
1881      return DAG.getNode(ISD::SHL, SDLoc(N), VT,
1882                         Mul, Sh.getOperand(1));
1883    }
1884  }
1885
1886  // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2)
1887  if (N1IsConst && N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse() &&
1888      (isConstantSplatVector(N0.getOperand(1).getNode(), Val) ||
1889                     isa<ConstantSDNode>(N0.getOperand(1))))
1890    return DAG.getNode(ISD::ADD, SDLoc(N), VT,
1891                       DAG.getNode(ISD::MUL, SDLoc(N0), VT,
1892                                   N0.getOperand(0), N1),
1893                       DAG.getNode(ISD::MUL, SDLoc(N1), VT,
1894                                   N0.getOperand(1), N1));
1895
1896  // reassociate mul
1897  SDValue RMUL = ReassociateOps(ISD::MUL, SDLoc(N), N0, N1);
1898  if (RMUL.getNode() != 0)
1899    return RMUL;
1900
1901  return SDValue();
1902}
1903
1904SDValue DAGCombiner::visitSDIV(SDNode *N) {
1905  SDValue N0 = N->getOperand(0);
1906  SDValue N1 = N->getOperand(1);
1907  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getNode());
1908  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
1909  EVT VT = N->getValueType(0);
1910
1911  // fold vector ops
1912  if (VT.isVector()) {
1913    SDValue FoldedVOp = SimplifyVBinOp(N);
1914    if (FoldedVOp.getNode()) return FoldedVOp;
1915  }
1916
1917  // fold (sdiv c1, c2) -> c1/c2
1918  if (N0C && N1C && !N1C->isNullValue())
1919    return DAG.FoldConstantArithmetic(ISD::SDIV, VT, N0C, N1C);
1920  // fold (sdiv X, 1) -> X
1921  if (N1C && N1C->getAPIntValue() == 1LL)
1922    return N0;
1923  // fold (sdiv X, -1) -> 0-X
1924  if (N1C && N1C->isAllOnesValue())
1925    return DAG.getNode(ISD::SUB, SDLoc(N), VT,
1926                       DAG.getConstant(0, VT), N0);
1927  // If we know the sign bits of both operands are zero, strength reduce to a
1928  // udiv instead.  Handles (X&15) /s 4 -> X&15 >> 2
1929  if (!VT.isVector()) {
1930    if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
1931      return DAG.getNode(ISD::UDIV, SDLoc(N), N1.getValueType(),
1932                         N0, N1);
1933  }
1934  // fold (sdiv X, pow2) -> simple ops after legalize
1935  if (N1C && !N1C->isNullValue() &&
1936      (N1C->getAPIntValue().isPowerOf2() ||
1937       (-N1C->getAPIntValue()).isPowerOf2())) {
1938    // If dividing by powers of two is cheap, then don't perform the following
1939    // fold.
1940    if (TLI.isPow2DivCheap())
1941      return SDValue();
1942
1943    unsigned lg2 = N1C->getAPIntValue().countTrailingZeros();
1944
1945    // Splat the sign bit into the register
1946    SDValue SGN = DAG.getNode(ISD::SRA, SDLoc(N), VT, N0,
1947                              DAG.getConstant(VT.getSizeInBits()-1,
1948                                       getShiftAmountTy(N0.getValueType())));
1949    AddToWorkList(SGN.getNode());
1950
1951    // Add (N0 < 0) ? abs2 - 1 : 0;
1952    SDValue SRL = DAG.getNode(ISD::SRL, SDLoc(N), VT, SGN,
1953                              DAG.getConstant(VT.getSizeInBits() - lg2,
1954                                       getShiftAmountTy(SGN.getValueType())));
1955    SDValue ADD = DAG.getNode(ISD::ADD, SDLoc(N), VT, N0, SRL);
1956    AddToWorkList(SRL.getNode());
1957    AddToWorkList(ADD.getNode());    // Divide by pow2
1958    SDValue SRA = DAG.getNode(ISD::SRA, SDLoc(N), VT, ADD,
1959                  DAG.getConstant(lg2, getShiftAmountTy(ADD.getValueType())));
1960
1961    // If we're dividing by a positive value, we're done.  Otherwise, we must
1962    // negate the result.
1963    if (N1C->getAPIntValue().isNonNegative())
1964      return SRA;
1965
1966    AddToWorkList(SRA.getNode());
1967    return DAG.getNode(ISD::SUB, SDLoc(N), VT,
1968                       DAG.getConstant(0, VT), SRA);
1969  }
1970
1971  // if integer divide is expensive and we satisfy the requirements, emit an
1972  // alternate sequence.
1973  if (N1C && !N1C->isNullValue() && !TLI.isIntDivCheap()) {
1974    SDValue Op = BuildSDIV(N);
1975    if (Op.getNode()) return Op;
1976  }
1977
1978  // undef / X -> 0
1979  if (N0.getOpcode() == ISD::UNDEF)
1980    return DAG.getConstant(0, VT);
1981  // X / undef -> undef
1982  if (N1.getOpcode() == ISD::UNDEF)
1983    return N1;
1984
1985  return SDValue();
1986}
1987
1988SDValue DAGCombiner::visitUDIV(SDNode *N) {
1989  SDValue N0 = N->getOperand(0);
1990  SDValue N1 = N->getOperand(1);
1991  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getNode());
1992  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
1993  EVT VT = N->getValueType(0);
1994
1995  // fold vector ops
1996  if (VT.isVector()) {
1997    SDValue FoldedVOp = SimplifyVBinOp(N);
1998    if (FoldedVOp.getNode()) return FoldedVOp;
1999  }
2000
2001  // fold (udiv c1, c2) -> c1/c2
2002  if (N0C && N1C && !N1C->isNullValue())
2003    return DAG.FoldConstantArithmetic(ISD::UDIV, VT, N0C, N1C);
2004  // fold (udiv x, (1 << c)) -> x >>u c
2005  if (N1C && N1C->getAPIntValue().isPowerOf2())
2006    return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0,
2007                       DAG.getConstant(N1C->getAPIntValue().logBase2(),
2008                                       getShiftAmountTy(N0.getValueType())));
2009  // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
2010  if (N1.getOpcode() == ISD::SHL) {
2011    if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
2012      if (SHC->getAPIntValue().isPowerOf2()) {
2013        EVT ADDVT = N1.getOperand(1).getValueType();
2014        SDValue Add = DAG.getNode(ISD::ADD, SDLoc(N), ADDVT,
2015                                  N1.getOperand(1),
2016                                  DAG.getConstant(SHC->getAPIntValue()
2017                                                                  .logBase2(),
2018                                                  ADDVT));
2019        AddToWorkList(Add.getNode());
2020        return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, Add);
2021      }
2022    }
2023  }
2024  // fold (udiv x, c) -> alternate
2025  if (N1C && !N1C->isNullValue() && !TLI.isIntDivCheap()) {
2026    SDValue Op = BuildUDIV(N);
2027    if (Op.getNode()) return Op;
2028  }
2029
2030  // undef / X -> 0
2031  if (N0.getOpcode() == ISD::UNDEF)
2032    return DAG.getConstant(0, VT);
2033  // X / undef -> undef
2034  if (N1.getOpcode() == ISD::UNDEF)
2035    return N1;
2036
2037  return SDValue();
2038}
2039
2040SDValue DAGCombiner::visitSREM(SDNode *N) {
2041  SDValue N0 = N->getOperand(0);
2042  SDValue N1 = N->getOperand(1);
2043  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2044  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2045  EVT VT = N->getValueType(0);
2046
2047  // fold (srem c1, c2) -> c1%c2
2048  if (N0C && N1C && !N1C->isNullValue())
2049    return DAG.FoldConstantArithmetic(ISD::SREM, VT, N0C, N1C);
2050  // If we know the sign bits of both operands are zero, strength reduce to a
2051  // urem instead.  Handles (X & 0x0FFFFFFF) %s 16 -> X&15
2052  if (!VT.isVector()) {
2053    if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
2054      return DAG.getNode(ISD::UREM, SDLoc(N), VT, N0, N1);
2055  }
2056
2057  // If X/C can be simplified by the division-by-constant logic, lower
2058  // X%C to the equivalent of X-X/C*C.
2059  if (N1C && !N1C->isNullValue()) {
2060    SDValue Div = DAG.getNode(ISD::SDIV, SDLoc(N), VT, N0, N1);
2061    AddToWorkList(Div.getNode());
2062    SDValue OptimizedDiv = combine(Div.getNode());
2063    if (OptimizedDiv.getNode() && OptimizedDiv.getNode() != Div.getNode()) {
2064      SDValue Mul = DAG.getNode(ISD::MUL, SDLoc(N), VT,
2065                                OptimizedDiv, N1);
2066      SDValue Sub = DAG.getNode(ISD::SUB, SDLoc(N), VT, N0, Mul);
2067      AddToWorkList(Mul.getNode());
2068      return Sub;
2069    }
2070  }
2071
2072  // undef % X -> 0
2073  if (N0.getOpcode() == ISD::UNDEF)
2074    return DAG.getConstant(0, VT);
2075  // X % undef -> undef
2076  if (N1.getOpcode() == ISD::UNDEF)
2077    return N1;
2078
2079  return SDValue();
2080}
2081
2082SDValue DAGCombiner::visitUREM(SDNode *N) {
2083  SDValue N0 = N->getOperand(0);
2084  SDValue N1 = N->getOperand(1);
2085  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2086  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2087  EVT VT = N->getValueType(0);
2088
2089  // fold (urem c1, c2) -> c1%c2
2090  if (N0C && N1C && !N1C->isNullValue())
2091    return DAG.FoldConstantArithmetic(ISD::UREM, VT, N0C, N1C);
2092  // fold (urem x, pow2) -> (and x, pow2-1)
2093  if (N1C && !N1C->isNullValue() && N1C->getAPIntValue().isPowerOf2())
2094    return DAG.getNode(ISD::AND, SDLoc(N), VT, N0,
2095                       DAG.getConstant(N1C->getAPIntValue()-1,VT));
2096  // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1))
2097  if (N1.getOpcode() == ISD::SHL) {
2098    if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
2099      if (SHC->getAPIntValue().isPowerOf2()) {
2100        SDValue Add =
2101          DAG.getNode(ISD::ADD, SDLoc(N), VT, N1,
2102                 DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()),
2103                                 VT));
2104        AddToWorkList(Add.getNode());
2105        return DAG.getNode(ISD::AND, SDLoc(N), VT, N0, Add);
2106      }
2107    }
2108  }
2109
2110  // If X/C can be simplified by the division-by-constant logic, lower
2111  // X%C to the equivalent of X-X/C*C.
2112  if (N1C && !N1C->isNullValue()) {
2113    SDValue Div = DAG.getNode(ISD::UDIV, SDLoc(N), VT, N0, N1);
2114    AddToWorkList(Div.getNode());
2115    SDValue OptimizedDiv = combine(Div.getNode());
2116    if (OptimizedDiv.getNode() && OptimizedDiv.getNode() != Div.getNode()) {
2117      SDValue Mul = DAG.getNode(ISD::MUL, SDLoc(N), VT,
2118                                OptimizedDiv, N1);
2119      SDValue Sub = DAG.getNode(ISD::SUB, SDLoc(N), VT, N0, Mul);
2120      AddToWorkList(Mul.getNode());
2121      return Sub;
2122    }
2123  }
2124
2125  // undef % X -> 0
2126  if (N0.getOpcode() == ISD::UNDEF)
2127    return DAG.getConstant(0, VT);
2128  // X % undef -> undef
2129  if (N1.getOpcode() == ISD::UNDEF)
2130    return N1;
2131
2132  return SDValue();
2133}
2134
2135SDValue DAGCombiner::visitMULHS(SDNode *N) {
2136  SDValue N0 = N->getOperand(0);
2137  SDValue N1 = N->getOperand(1);
2138  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2139  EVT VT = N->getValueType(0);
2140  SDLoc DL(N);
2141
2142  // fold (mulhs x, 0) -> 0
2143  if (N1C && N1C->isNullValue())
2144    return N1;
2145  // fold (mulhs x, 1) -> (sra x, size(x)-1)
2146  if (N1C && N1C->getAPIntValue() == 1)
2147    return DAG.getNode(ISD::SRA, SDLoc(N), N0.getValueType(), N0,
2148                       DAG.getConstant(N0.getValueType().getSizeInBits() - 1,
2149                                       getShiftAmountTy(N0.getValueType())));
2150  // fold (mulhs x, undef) -> 0
2151  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
2152    return DAG.getConstant(0, VT);
2153
2154  // If the type twice as wide is legal, transform the mulhs to a wider multiply
2155  // plus a shift.
2156  if (VT.isSimple() && !VT.isVector()) {
2157    MVT Simple = VT.getSimpleVT();
2158    unsigned SimpleSize = Simple.getSizeInBits();
2159    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2160    if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2161      N0 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N0);
2162      N1 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N1);
2163      N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1);
2164      N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1,
2165            DAG.getConstant(SimpleSize, getShiftAmountTy(N1.getValueType())));
2166      return DAG.getNode(ISD::TRUNCATE, DL, VT, N1);
2167    }
2168  }
2169
2170  return SDValue();
2171}
2172
2173SDValue DAGCombiner::visitMULHU(SDNode *N) {
2174  SDValue N0 = N->getOperand(0);
2175  SDValue N1 = N->getOperand(1);
2176  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2177  EVT VT = N->getValueType(0);
2178  SDLoc DL(N);
2179
2180  // fold (mulhu x, 0) -> 0
2181  if (N1C && N1C->isNullValue())
2182    return N1;
2183  // fold (mulhu x, 1) -> 0
2184  if (N1C && N1C->getAPIntValue() == 1)
2185    return DAG.getConstant(0, N0.getValueType());
2186  // fold (mulhu x, undef) -> 0
2187  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
2188    return DAG.getConstant(0, VT);
2189
2190  // If the type twice as wide is legal, transform the mulhu to a wider multiply
2191  // plus a shift.
2192  if (VT.isSimple() && !VT.isVector()) {
2193    MVT Simple = VT.getSimpleVT();
2194    unsigned SimpleSize = Simple.getSizeInBits();
2195    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2196    if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2197      N0 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N0);
2198      N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N1);
2199      N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1);
2200      N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1,
2201            DAG.getConstant(SimpleSize, getShiftAmountTy(N1.getValueType())));
2202      return DAG.getNode(ISD::TRUNCATE, DL, VT, N1);
2203    }
2204  }
2205
2206  return SDValue();
2207}
2208
2209/// SimplifyNodeWithTwoResults - Perform optimizations common to nodes that
2210/// compute two values. LoOp and HiOp give the opcodes for the two computations
2211/// that are being performed. Return true if a simplification was made.
2212///
2213SDValue DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
2214                                                unsigned HiOp) {
2215  // If the high half is not needed, just compute the low half.
2216  bool HiExists = N->hasAnyUseOfValue(1);
2217  if (!HiExists &&
2218      (!LegalOperations ||
2219       TLI.isOperationLegal(LoOp, N->getValueType(0)))) {
2220    SDValue Res = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0),
2221                              N->op_begin(), N->getNumOperands());
2222    return CombineTo(N, Res, Res);
2223  }
2224
2225  // If the low half is not needed, just compute the high half.
2226  bool LoExists = N->hasAnyUseOfValue(0);
2227  if (!LoExists &&
2228      (!LegalOperations ||
2229       TLI.isOperationLegal(HiOp, N->getValueType(1)))) {
2230    SDValue Res = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1),
2231                              N->op_begin(), N->getNumOperands());
2232    return CombineTo(N, Res, Res);
2233  }
2234
2235  // If both halves are used, return as it is.
2236  if (LoExists && HiExists)
2237    return SDValue();
2238
2239  // If the two computed results can be simplified separately, separate them.
2240  if (LoExists) {
2241    SDValue Lo = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0),
2242                             N->op_begin(), N->getNumOperands());
2243    AddToWorkList(Lo.getNode());
2244    SDValue LoOpt = combine(Lo.getNode());
2245    if (LoOpt.getNode() && LoOpt.getNode() != Lo.getNode() &&
2246        (!LegalOperations ||
2247         TLI.isOperationLegal(LoOpt.getOpcode(), LoOpt.getValueType())))
2248      return CombineTo(N, LoOpt, LoOpt);
2249  }
2250
2251  if (HiExists) {
2252    SDValue Hi = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1),
2253                             N->op_begin(), N->getNumOperands());
2254    AddToWorkList(Hi.getNode());
2255    SDValue HiOpt = combine(Hi.getNode());
2256    if (HiOpt.getNode() && HiOpt != Hi &&
2257        (!LegalOperations ||
2258         TLI.isOperationLegal(HiOpt.getOpcode(), HiOpt.getValueType())))
2259      return CombineTo(N, HiOpt, HiOpt);
2260  }
2261
2262  return SDValue();
2263}
2264
2265SDValue DAGCombiner::visitSMUL_LOHI(SDNode *N) {
2266  SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHS);
2267  if (Res.getNode()) return Res;
2268
2269  EVT VT = N->getValueType(0);
2270  SDLoc DL(N);
2271
2272  // If the type twice as wide is legal, transform the mulhu to a wider multiply
2273  // plus a shift.
2274  if (VT.isSimple() && !VT.isVector()) {
2275    MVT Simple = VT.getSimpleVT();
2276    unsigned SimpleSize = Simple.getSizeInBits();
2277    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2278    if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2279      SDValue Lo = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(0));
2280      SDValue Hi = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(1));
2281      Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi);
2282      // Compute the high part as N1.
2283      Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo,
2284            DAG.getConstant(SimpleSize, getShiftAmountTy(Lo.getValueType())));
2285      Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi);
2286      // Compute the low part as N0.
2287      Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo);
2288      return CombineTo(N, Lo, Hi);
2289    }
2290  }
2291
2292  return SDValue();
2293}
2294
2295SDValue DAGCombiner::visitUMUL_LOHI(SDNode *N) {
2296  SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHU);
2297  if (Res.getNode()) return Res;
2298
2299  EVT VT = N->getValueType(0);
2300  SDLoc DL(N);
2301
2302  // If the type twice as wide is legal, transform the mulhu to a wider multiply
2303  // plus a shift.
2304  if (VT.isSimple() && !VT.isVector()) {
2305    MVT Simple = VT.getSimpleVT();
2306    unsigned SimpleSize = Simple.getSizeInBits();
2307    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2308    if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2309      SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(0));
2310      SDValue Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(1));
2311      Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi);
2312      // Compute the high part as N1.
2313      Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo,
2314            DAG.getConstant(SimpleSize, getShiftAmountTy(Lo.getValueType())));
2315      Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi);
2316      // Compute the low part as N0.
2317      Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo);
2318      return CombineTo(N, Lo, Hi);
2319    }
2320  }
2321
2322  return SDValue();
2323}
2324
2325SDValue DAGCombiner::visitSMULO(SDNode *N) {
2326  // (smulo x, 2) -> (saddo x, x)
2327  if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)))
2328    if (C2->getAPIntValue() == 2)
2329      return DAG.getNode(ISD::SADDO, SDLoc(N), N->getVTList(),
2330                         N->getOperand(0), N->getOperand(0));
2331
2332  return SDValue();
2333}
2334
2335SDValue DAGCombiner::visitUMULO(SDNode *N) {
2336  // (umulo x, 2) -> (uaddo x, x)
2337  if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)))
2338    if (C2->getAPIntValue() == 2)
2339      return DAG.getNode(ISD::UADDO, SDLoc(N), N->getVTList(),
2340                         N->getOperand(0), N->getOperand(0));
2341
2342  return SDValue();
2343}
2344
2345SDValue DAGCombiner::visitSDIVREM(SDNode *N) {
2346  SDValue Res = SimplifyNodeWithTwoResults(N, ISD::SDIV, ISD::SREM);
2347  if (Res.getNode()) return Res;
2348
2349  return SDValue();
2350}
2351
2352SDValue DAGCombiner::visitUDIVREM(SDNode *N) {
2353  SDValue Res = SimplifyNodeWithTwoResults(N, ISD::UDIV, ISD::UREM);
2354  if (Res.getNode()) return Res;
2355
2356  return SDValue();
2357}
2358
2359/// SimplifyBinOpWithSameOpcodeHands - If this is a binary operator with
2360/// two operands of the same opcode, try to simplify it.
2361SDValue DAGCombiner::SimplifyBinOpWithSameOpcodeHands(SDNode *N) {
2362  SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
2363  EVT VT = N0.getValueType();
2364  assert(N0.getOpcode() == N1.getOpcode() && "Bad input!");
2365
2366  // Bail early if none of these transforms apply.
2367  if (N0.getNode()->getNumOperands() == 0) return SDValue();
2368
2369  // For each of OP in AND/OR/XOR:
2370  // fold (OP (zext x), (zext y)) -> (zext (OP x, y))
2371  // fold (OP (sext x), (sext y)) -> (sext (OP x, y))
2372  // fold (OP (aext x), (aext y)) -> (aext (OP x, y))
2373  // fold (OP (trunc x), (trunc y)) -> (trunc (OP x, y)) (if trunc isn't free)
2374  //
2375  // do not sink logical op inside of a vector extend, since it may combine
2376  // into a vsetcc.
2377  EVT Op0VT = N0.getOperand(0).getValueType();
2378  if ((N0.getOpcode() == ISD::ZERO_EXTEND ||
2379       N0.getOpcode() == ISD::SIGN_EXTEND ||
2380       // Avoid infinite looping with PromoteIntBinOp.
2381       (N0.getOpcode() == ISD::ANY_EXTEND &&
2382        (!LegalTypes || TLI.isTypeDesirableForOp(N->getOpcode(), Op0VT))) ||
2383       (N0.getOpcode() == ISD::TRUNCATE &&
2384        (!TLI.isZExtFree(VT, Op0VT) ||
2385         !TLI.isTruncateFree(Op0VT, VT)) &&
2386        TLI.isTypeLegal(Op0VT))) &&
2387      !VT.isVector() &&
2388      Op0VT == N1.getOperand(0).getValueType() &&
2389      (!LegalOperations || TLI.isOperationLegal(N->getOpcode(), Op0VT))) {
2390    SDValue ORNode = DAG.getNode(N->getOpcode(), SDLoc(N0),
2391                                 N0.getOperand(0).getValueType(),
2392                                 N0.getOperand(0), N1.getOperand(0));
2393    AddToWorkList(ORNode.getNode());
2394    return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, ORNode);
2395  }
2396
2397  // For each of OP in SHL/SRL/SRA/AND...
2398  //   fold (and (OP x, z), (OP y, z)) -> (OP (and x, y), z)
2399  //   fold (or  (OP x, z), (OP y, z)) -> (OP (or  x, y), z)
2400  //   fold (xor (OP x, z), (OP y, z)) -> (OP (xor x, y), z)
2401  if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL ||
2402       N0.getOpcode() == ISD::SRA || N0.getOpcode() == ISD::AND) &&
2403      N0.getOperand(1) == N1.getOperand(1)) {
2404    SDValue ORNode = DAG.getNode(N->getOpcode(), SDLoc(N0),
2405                                 N0.getOperand(0).getValueType(),
2406                                 N0.getOperand(0), N1.getOperand(0));
2407    AddToWorkList(ORNode.getNode());
2408    return DAG.getNode(N0.getOpcode(), SDLoc(N), VT,
2409                       ORNode, N0.getOperand(1));
2410  }
2411
2412  // Simplify xor/and/or (bitcast(A), bitcast(B)) -> bitcast(op (A,B))
2413  // Only perform this optimization after type legalization and before
2414  // LegalizeVectorOprs. LegalizeVectorOprs promotes vector operations by
2415  // adding bitcasts. For example (xor v4i32) is promoted to (v2i64), and
2416  // we don't want to undo this promotion.
2417  // We also handle SCALAR_TO_VECTOR because xor/or/and operations are cheaper
2418  // on scalars.
2419  if ((N0.getOpcode() == ISD::BITCAST ||
2420       N0.getOpcode() == ISD::SCALAR_TO_VECTOR) &&
2421      Level == AfterLegalizeTypes) {
2422    SDValue In0 = N0.getOperand(0);
2423    SDValue In1 = N1.getOperand(0);
2424    EVT In0Ty = In0.getValueType();
2425    EVT In1Ty = In1.getValueType();
2426    SDLoc DL(N);
2427    // If both incoming values are integers, and the original types are the
2428    // same.
2429    if (In0Ty.isInteger() && In1Ty.isInteger() && In0Ty == In1Ty) {
2430      SDValue Op = DAG.getNode(N->getOpcode(), DL, In0Ty, In0, In1);
2431      SDValue BC = DAG.getNode(N0.getOpcode(), DL, VT, Op);
2432      AddToWorkList(Op.getNode());
2433      return BC;
2434    }
2435  }
2436
2437  // Xor/and/or are indifferent to the swizzle operation (shuffle of one value).
2438  // Simplify xor/and/or (shuff(A), shuff(B)) -> shuff(op (A,B))
2439  // If both shuffles use the same mask, and both shuffle within a single
2440  // vector, then it is worthwhile to move the swizzle after the operation.
2441  // The type-legalizer generates this pattern when loading illegal
2442  // vector types from memory. In many cases this allows additional shuffle
2443  // optimizations.
2444  if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG &&
2445      N0.getOperand(1).getOpcode() == ISD::UNDEF &&
2446      N1.getOperand(1).getOpcode() == ISD::UNDEF) {
2447    ShuffleVectorSDNode *SVN0 = cast<ShuffleVectorSDNode>(N0);
2448    ShuffleVectorSDNode *SVN1 = cast<ShuffleVectorSDNode>(N1);
2449
2450    assert(N0.getOperand(0).getValueType() == N1.getOperand(1).getValueType() &&
2451           "Inputs to shuffles are not the same type");
2452
2453    unsigned NumElts = VT.getVectorNumElements();
2454
2455    // Check that both shuffles use the same mask. The masks are known to be of
2456    // the same length because the result vector type is the same.
2457    bool SameMask = true;
2458    for (unsigned i = 0; i != NumElts; ++i) {
2459      int Idx0 = SVN0->getMaskElt(i);
2460      int Idx1 = SVN1->getMaskElt(i);
2461      if (Idx0 != Idx1) {
2462        SameMask = false;
2463        break;
2464      }
2465    }
2466
2467    if (SameMask) {
2468      SDValue Op = DAG.getNode(N->getOpcode(), SDLoc(N), VT,
2469                               N0.getOperand(0), N1.getOperand(0));
2470      AddToWorkList(Op.getNode());
2471      return DAG.getVectorShuffle(VT, SDLoc(N), Op,
2472                                  DAG.getUNDEF(VT), &SVN0->getMask()[0]);
2473    }
2474  }
2475
2476  return SDValue();
2477}
2478
2479SDValue DAGCombiner::visitAND(SDNode *N) {
2480  SDValue N0 = N->getOperand(0);
2481  SDValue N1 = N->getOperand(1);
2482  SDValue LL, LR, RL, RR, CC0, CC1;
2483  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2484  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2485  EVT VT = N1.getValueType();
2486  unsigned BitWidth = VT.getScalarType().getSizeInBits();
2487
2488  // fold vector ops
2489  if (VT.isVector()) {
2490    SDValue FoldedVOp = SimplifyVBinOp(N);
2491    if (FoldedVOp.getNode()) return FoldedVOp;
2492
2493    // fold (and x, 0) -> 0, vector edition
2494    if (ISD::isBuildVectorAllZeros(N0.getNode()))
2495      return N0;
2496    if (ISD::isBuildVectorAllZeros(N1.getNode()))
2497      return N1;
2498
2499    // fold (and x, -1) -> x, vector edition
2500    if (ISD::isBuildVectorAllOnes(N0.getNode()))
2501      return N1;
2502    if (ISD::isBuildVectorAllOnes(N1.getNode()))
2503      return N0;
2504  }
2505
2506  // fold (and x, undef) -> 0
2507  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
2508    return DAG.getConstant(0, VT);
2509  // fold (and c1, c2) -> c1&c2
2510  if (N0C && N1C)
2511    return DAG.FoldConstantArithmetic(ISD::AND, VT, N0C, N1C);
2512  // canonicalize constant to RHS
2513  if (N0C && !N1C)
2514    return DAG.getNode(ISD::AND, SDLoc(N), VT, N1, N0);
2515  // fold (and x, -1) -> x
2516  if (N1C && N1C->isAllOnesValue())
2517    return N0;
2518  // if (and x, c) is known to be zero, return 0
2519  if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0),
2520                                   APInt::getAllOnesValue(BitWidth)))
2521    return DAG.getConstant(0, VT);
2522  // reassociate and
2523  SDValue RAND = ReassociateOps(ISD::AND, SDLoc(N), N0, N1);
2524  if (RAND.getNode() != 0)
2525    return RAND;
2526  // fold (and (or x, C), D) -> D if (C & D) == D
2527  if (N1C && N0.getOpcode() == ISD::OR)
2528    if (ConstantSDNode *ORI = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
2529      if ((ORI->getAPIntValue() & N1C->getAPIntValue()) == N1C->getAPIntValue())
2530        return N1;
2531  // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits.
2532  if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
2533    SDValue N0Op0 = N0.getOperand(0);
2534    APInt Mask = ~N1C->getAPIntValue();
2535    Mask = Mask.trunc(N0Op0.getValueSizeInBits());
2536    if (DAG.MaskedValueIsZero(N0Op0, Mask)) {
2537      SDValue Zext = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N),
2538                                 N0.getValueType(), N0Op0);
2539
2540      // Replace uses of the AND with uses of the Zero extend node.
2541      CombineTo(N, Zext);
2542
2543      // We actually want to replace all uses of the any_extend with the
2544      // zero_extend, to avoid duplicating things.  This will later cause this
2545      // AND to be folded.
2546      CombineTo(N0.getNode(), Zext);
2547      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
2548    }
2549  }
2550  // similarly fold (and (X (load ([non_ext|any_ext|zero_ext] V))), c) ->
2551  // (X (load ([non_ext|zero_ext] V))) if 'and' only clears top bits which must
2552  // already be zero by virtue of the width of the base type of the load.
2553  //
2554  // the 'X' node here can either be nothing or an extract_vector_elt to catch
2555  // more cases.
2556  if ((N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
2557       N0.getOperand(0).getOpcode() == ISD::LOAD) ||
2558      N0.getOpcode() == ISD::LOAD) {
2559    LoadSDNode *Load = cast<LoadSDNode>( (N0.getOpcode() == ISD::LOAD) ?
2560                                         N0 : N0.getOperand(0) );
2561
2562    // Get the constant (if applicable) the zero'th operand is being ANDed with.
2563    // This can be a pure constant or a vector splat, in which case we treat the
2564    // vector as a scalar and use the splat value.
2565    APInt Constant = APInt::getNullValue(1);
2566    if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2567      Constant = C->getAPIntValue();
2568    } else if (BuildVectorSDNode *Vector = dyn_cast<BuildVectorSDNode>(N1)) {
2569      APInt SplatValue, SplatUndef;
2570      unsigned SplatBitSize;
2571      bool HasAnyUndefs;
2572      bool IsSplat = Vector->isConstantSplat(SplatValue, SplatUndef,
2573                                             SplatBitSize, HasAnyUndefs);
2574      if (IsSplat) {
2575        // Undef bits can contribute to a possible optimisation if set, so
2576        // set them.
2577        SplatValue |= SplatUndef;
2578
2579        // The splat value may be something like "0x00FFFFFF", which means 0 for
2580        // the first vector value and FF for the rest, repeating. We need a mask
2581        // that will apply equally to all members of the vector, so AND all the
2582        // lanes of the constant together.
2583        EVT VT = Vector->getValueType(0);
2584        unsigned BitWidth = VT.getVectorElementType().getSizeInBits();
2585
2586        // If the splat value has been compressed to a bitlength lower
2587        // than the size of the vector lane, we need to re-expand it to
2588        // the lane size.
2589        if (BitWidth > SplatBitSize)
2590          for (SplatValue = SplatValue.zextOrTrunc(BitWidth);
2591               SplatBitSize < BitWidth;
2592               SplatBitSize = SplatBitSize * 2)
2593            SplatValue |= SplatValue.shl(SplatBitSize);
2594
2595        Constant = APInt::getAllOnesValue(BitWidth);
2596        for (unsigned i = 0, n = SplatBitSize/BitWidth; i < n; ++i)
2597          Constant &= SplatValue.lshr(i*BitWidth).zextOrTrunc(BitWidth);
2598      }
2599    }
2600
2601    // If we want to change an EXTLOAD to a ZEXTLOAD, ensure a ZEXTLOAD is
2602    // actually legal and isn't going to get expanded, else this is a false
2603    // optimisation.
2604    bool CanZextLoadProfitably = TLI.isLoadExtLegal(ISD::ZEXTLOAD,
2605                                                    Load->getMemoryVT());
2606
2607    // Resize the constant to the same size as the original memory access before
2608    // extension. If it is still the AllOnesValue then this AND is completely
2609    // unneeded.
2610    Constant =
2611      Constant.zextOrTrunc(Load->getMemoryVT().getScalarType().getSizeInBits());
2612
2613    bool B;
2614    switch (Load->getExtensionType()) {
2615    default: B = false; break;
2616    case ISD::EXTLOAD: B = CanZextLoadProfitably; break;
2617    case ISD::ZEXTLOAD:
2618    case ISD::NON_EXTLOAD: B = true; break;
2619    }
2620
2621    if (B && Constant.isAllOnesValue()) {
2622      // If the load type was an EXTLOAD, convert to ZEXTLOAD in order to
2623      // preserve semantics once we get rid of the AND.
2624      SDValue NewLoad(Load, 0);
2625      if (Load->getExtensionType() == ISD::EXTLOAD) {
2626        NewLoad = DAG.getLoad(Load->getAddressingMode(), ISD::ZEXTLOAD,
2627                              Load->getValueType(0), SDLoc(Load),
2628                              Load->getChain(), Load->getBasePtr(),
2629                              Load->getOffset(), Load->getMemoryVT(),
2630                              Load->getMemOperand());
2631        // Replace uses of the EXTLOAD with the new ZEXTLOAD.
2632        if (Load->getNumValues() == 3) {
2633          // PRE/POST_INC loads have 3 values.
2634          SDValue To[] = { NewLoad.getValue(0), NewLoad.getValue(1),
2635                           NewLoad.getValue(2) };
2636          CombineTo(Load, To, 3, true);
2637        } else {
2638          CombineTo(Load, NewLoad.getValue(0), NewLoad.getValue(1));
2639        }
2640      }
2641
2642      // Fold the AND away, taking care not to fold to the old load node if we
2643      // replaced it.
2644      CombineTo(N, (N0.getNode() == Load) ? NewLoad : N0);
2645
2646      return SDValue(N, 0); // Return N so it doesn't get rechecked!
2647    }
2648  }
2649  // fold (and (setcc x), (setcc y)) -> (setcc (and x, y))
2650  if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
2651    ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
2652    ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
2653
2654    if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
2655        LL.getValueType().isInteger()) {
2656      // fold (and (seteq X, 0), (seteq Y, 0)) -> (seteq (or X, Y), 0)
2657      if (cast<ConstantSDNode>(LR)->isNullValue() && Op1 == ISD::SETEQ) {
2658        SDValue ORNode = DAG.getNode(ISD::OR, SDLoc(N0),
2659                                     LR.getValueType(), LL, RL);
2660        AddToWorkList(ORNode.getNode());
2661        return DAG.getSetCC(SDLoc(N), VT, ORNode, LR, Op1);
2662      }
2663      // fold (and (seteq X, -1), (seteq Y, -1)) -> (seteq (and X, Y), -1)
2664      if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETEQ) {
2665        SDValue ANDNode = DAG.getNode(ISD::AND, SDLoc(N0),
2666                                      LR.getValueType(), LL, RL);
2667        AddToWorkList(ANDNode.getNode());
2668        return DAG.getSetCC(SDLoc(N), VT, ANDNode, LR, Op1);
2669      }
2670      // fold (and (setgt X,  -1), (setgt Y,  -1)) -> (setgt (or X, Y), -1)
2671      if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETGT) {
2672        SDValue ORNode = DAG.getNode(ISD::OR, SDLoc(N0),
2673                                     LR.getValueType(), LL, RL);
2674        AddToWorkList(ORNode.getNode());
2675        return DAG.getSetCC(SDLoc(N), VT, ORNode, LR, Op1);
2676      }
2677    }
2678    // Simplify (and (setne X, 0), (setne X, -1)) -> (setuge (add X, 1), 2)
2679    if (LL == RL && isa<ConstantSDNode>(LR) && isa<ConstantSDNode>(RR) &&
2680        Op0 == Op1 && LL.getValueType().isInteger() &&
2681      Op0 == ISD::SETNE && ((cast<ConstantSDNode>(LR)->isNullValue() &&
2682                                 cast<ConstantSDNode>(RR)->isAllOnesValue()) ||
2683                                (cast<ConstantSDNode>(LR)->isAllOnesValue() &&
2684                                 cast<ConstantSDNode>(RR)->isNullValue()))) {
2685      SDValue ADDNode = DAG.getNode(ISD::ADD, SDLoc(N0), LL.getValueType(),
2686                                    LL, DAG.getConstant(1, LL.getValueType()));
2687      AddToWorkList(ADDNode.getNode());
2688      return DAG.getSetCC(SDLoc(N), VT, ADDNode,
2689                          DAG.getConstant(2, LL.getValueType()), ISD::SETUGE);
2690    }
2691    // canonicalize equivalent to ll == rl
2692    if (LL == RR && LR == RL) {
2693      Op1 = ISD::getSetCCSwappedOperands(Op1);
2694      std::swap(RL, RR);
2695    }
2696    if (LL == RL && LR == RR) {
2697      bool isInteger = LL.getValueType().isInteger();
2698      ISD::CondCode Result = ISD::getSetCCAndOperation(Op0, Op1, isInteger);
2699      if (Result != ISD::SETCC_INVALID &&
2700          (!LegalOperations ||
2701           (TLI.isCondCodeLegal(Result, LL.getSimpleValueType()) &&
2702            TLI.isOperationLegal(ISD::SETCC,
2703                            getSetCCResultType(N0.getSimpleValueType())))))
2704        return DAG.getSetCC(SDLoc(N), N0.getValueType(),
2705                            LL, LR, Result);
2706    }
2707  }
2708
2709  // Simplify: (and (op x...), (op y...))  -> (op (and x, y))
2710  if (N0.getOpcode() == N1.getOpcode()) {
2711    SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N);
2712    if (Tmp.getNode()) return Tmp;
2713  }
2714
2715  // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1)
2716  // fold (and (sra)) -> (and (srl)) when possible.
2717  if (!VT.isVector() &&
2718      SimplifyDemandedBits(SDValue(N, 0)))
2719    return SDValue(N, 0);
2720
2721  // fold (zext_inreg (extload x)) -> (zextload x)
2722  if (ISD::isEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode())) {
2723    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2724    EVT MemVT = LN0->getMemoryVT();
2725    // If we zero all the possible extended bits, then we can turn this into
2726    // a zextload if we are running before legalize or the operation is legal.
2727    unsigned BitWidth = N1.getValueType().getScalarType().getSizeInBits();
2728    if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth,
2729                           BitWidth - MemVT.getScalarType().getSizeInBits())) &&
2730        ((!LegalOperations && !LN0->isVolatile()) ||
2731         TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT))) {
2732      SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT,
2733                                       LN0->getChain(), LN0->getBasePtr(),
2734                                       LN0->getPointerInfo(), MemVT,
2735                                       LN0->isVolatile(), LN0->isNonTemporal(),
2736                                       LN0->getAlignment());
2737      AddToWorkList(N);
2738      CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
2739      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
2740    }
2741  }
2742  // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use
2743  if (ISD::isSEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
2744      N0.hasOneUse()) {
2745    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2746    EVT MemVT = LN0->getMemoryVT();
2747    // If we zero all the possible extended bits, then we can turn this into
2748    // a zextload if we are running before legalize or the operation is legal.
2749    unsigned BitWidth = N1.getValueType().getScalarType().getSizeInBits();
2750    if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth,
2751                           BitWidth - MemVT.getScalarType().getSizeInBits())) &&
2752        ((!LegalOperations && !LN0->isVolatile()) ||
2753         TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT))) {
2754      SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT,
2755                                       LN0->getChain(),
2756                                       LN0->getBasePtr(), LN0->getPointerInfo(),
2757                                       MemVT,
2758                                       LN0->isVolatile(), LN0->isNonTemporal(),
2759                                       LN0->getAlignment());
2760      AddToWorkList(N);
2761      CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
2762      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
2763    }
2764  }
2765
2766  // fold (and (load x), 255) -> (zextload x, i8)
2767  // fold (and (extload x, i16), 255) -> (zextload x, i8)
2768  // fold (and (any_ext (extload x, i16)), 255) -> (zextload x, i8)
2769  if (N1C && (N0.getOpcode() == ISD::LOAD ||
2770              (N0.getOpcode() == ISD::ANY_EXTEND &&
2771               N0.getOperand(0).getOpcode() == ISD::LOAD))) {
2772    bool HasAnyExt = N0.getOpcode() == ISD::ANY_EXTEND;
2773    LoadSDNode *LN0 = HasAnyExt
2774      ? cast<LoadSDNode>(N0.getOperand(0))
2775      : cast<LoadSDNode>(N0);
2776    if (LN0->getExtensionType() != ISD::SEXTLOAD &&
2777        LN0->isUnindexed() && N0.hasOneUse() && SDValue(LN0, 0).hasOneUse()) {
2778      uint32_t ActiveBits = N1C->getAPIntValue().getActiveBits();
2779      if (ActiveBits > 0 && APIntOps::isMask(ActiveBits, N1C->getAPIntValue())){
2780        EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits);
2781        EVT LoadedVT = LN0->getMemoryVT();
2782
2783        if (ExtVT == LoadedVT &&
2784            (!LegalOperations || TLI.isLoadExtLegal(ISD::ZEXTLOAD, ExtVT))) {
2785          EVT LoadResultTy = HasAnyExt ? LN0->getValueType(0) : VT;
2786
2787          SDValue NewLoad =
2788            DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN0), LoadResultTy,
2789                           LN0->getChain(), LN0->getBasePtr(),
2790                           LN0->getPointerInfo(),
2791                           ExtVT, LN0->isVolatile(), LN0->isNonTemporal(),
2792                           LN0->getAlignment());
2793          AddToWorkList(N);
2794          CombineTo(LN0, NewLoad, NewLoad.getValue(1));
2795          return SDValue(N, 0);   // Return N so it doesn't get rechecked!
2796        }
2797
2798        // Do not change the width of a volatile load.
2799        // Do not generate loads of non-round integer types since these can
2800        // be expensive (and would be wrong if the type is not byte sized).
2801        if (!LN0->isVolatile() && LoadedVT.bitsGT(ExtVT) && ExtVT.isRound() &&
2802            (!LegalOperations || TLI.isLoadExtLegal(ISD::ZEXTLOAD, ExtVT))) {
2803          EVT PtrType = LN0->getOperand(1).getValueType();
2804
2805          unsigned Alignment = LN0->getAlignment();
2806          SDValue NewPtr = LN0->getBasePtr();
2807
2808          // For big endian targets, we need to add an offset to the pointer
2809          // to load the correct bytes.  For little endian systems, we merely
2810          // need to read fewer bytes from the same pointer.
2811          if (TLI.isBigEndian()) {
2812            unsigned LVTStoreBytes = LoadedVT.getStoreSize();
2813            unsigned EVTStoreBytes = ExtVT.getStoreSize();
2814            unsigned PtrOff = LVTStoreBytes - EVTStoreBytes;
2815            NewPtr = DAG.getNode(ISD::ADD, SDLoc(LN0), PtrType,
2816                                 NewPtr, DAG.getConstant(PtrOff, PtrType));
2817            Alignment = MinAlign(Alignment, PtrOff);
2818          }
2819
2820          AddToWorkList(NewPtr.getNode());
2821
2822          EVT LoadResultTy = HasAnyExt ? LN0->getValueType(0) : VT;
2823          SDValue Load =
2824            DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN0), LoadResultTy,
2825                           LN0->getChain(), NewPtr,
2826                           LN0->getPointerInfo(),
2827                           ExtVT, LN0->isVolatile(), LN0->isNonTemporal(),
2828                           Alignment);
2829          AddToWorkList(N);
2830          CombineTo(LN0, Load, Load.getValue(1));
2831          return SDValue(N, 0);   // Return N so it doesn't get rechecked!
2832        }
2833      }
2834    }
2835  }
2836
2837  if (N0.getOpcode() == ISD::ADD && N1.getOpcode() == ISD::SRL &&
2838      VT.getSizeInBits() <= 64) {
2839    if (ConstantSDNode *ADDI = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2840      APInt ADDC = ADDI->getAPIntValue();
2841      if (!TLI.isLegalAddImmediate(ADDC.getSExtValue())) {
2842        // Look for (and (add x, c1), (lshr y, c2)). If C1 wasn't a legal
2843        // immediate for an add, but it is legal if its top c2 bits are set,
2844        // transform the ADD so the immediate doesn't need to be materialized
2845        // in a register.
2846        if (ConstantSDNode *SRLI = dyn_cast<ConstantSDNode>(N1.getOperand(1))) {
2847          APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
2848                                             SRLI->getZExtValue());
2849          if (DAG.MaskedValueIsZero(N0.getOperand(1), Mask)) {
2850            ADDC |= Mask;
2851            if (TLI.isLegalAddImmediate(ADDC.getSExtValue())) {
2852              SDValue NewAdd =
2853                DAG.getNode(ISD::ADD, SDLoc(N0), VT,
2854                            N0.getOperand(0), DAG.getConstant(ADDC, VT));
2855              CombineTo(N0.getNode(), NewAdd);
2856              return SDValue(N, 0); // Return N so it doesn't get rechecked!
2857            }
2858          }
2859        }
2860      }
2861    }
2862  }
2863
2864  return SDValue();
2865}
2866
2867/// MatchBSwapHWord - Match (a >> 8) | (a << 8) as (bswap a) >> 16
2868///
2869SDValue DAGCombiner::MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1,
2870                                        bool DemandHighBits) {
2871  if (!LegalOperations)
2872    return SDValue();
2873
2874  EVT VT = N->getValueType(0);
2875  if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16)
2876    return SDValue();
2877  if (!TLI.isOperationLegal(ISD::BSWAP, VT))
2878    return SDValue();
2879
2880  // Recognize (and (shl a, 8), 0xff), (and (srl a, 8), 0xff00)
2881  bool LookPassAnd0 = false;
2882  bool LookPassAnd1 = false;
2883  if (N0.getOpcode() == ISD::AND && N0.getOperand(0).getOpcode() == ISD::SRL)
2884      std::swap(N0, N1);
2885  if (N1.getOpcode() == ISD::AND && N1.getOperand(0).getOpcode() == ISD::SHL)
2886      std::swap(N0, N1);
2887  if (N0.getOpcode() == ISD::AND) {
2888    if (!N0.getNode()->hasOneUse())
2889      return SDValue();
2890    ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
2891    if (!N01C || N01C->getZExtValue() != 0xFF00)
2892      return SDValue();
2893    N0 = N0.getOperand(0);
2894    LookPassAnd0 = true;
2895  }
2896
2897  if (N1.getOpcode() == ISD::AND) {
2898    if (!N1.getNode()->hasOneUse())
2899      return SDValue();
2900    ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
2901    if (!N11C || N11C->getZExtValue() != 0xFF)
2902      return SDValue();
2903    N1 = N1.getOperand(0);
2904    LookPassAnd1 = true;
2905  }
2906
2907  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
2908    std::swap(N0, N1);
2909  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
2910    return SDValue();
2911  if (!N0.getNode()->hasOneUse() ||
2912      !N1.getNode()->hasOneUse())
2913    return SDValue();
2914
2915  ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
2916  ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
2917  if (!N01C || !N11C)
2918    return SDValue();
2919  if (N01C->getZExtValue() != 8 || N11C->getZExtValue() != 8)
2920    return SDValue();
2921
2922  // Look for (shl (and a, 0xff), 8), (srl (and a, 0xff00), 8)
2923  SDValue N00 = N0->getOperand(0);
2924  if (!LookPassAnd0 && N00.getOpcode() == ISD::AND) {
2925    if (!N00.getNode()->hasOneUse())
2926      return SDValue();
2927    ConstantSDNode *N001C = dyn_cast<ConstantSDNode>(N00.getOperand(1));
2928    if (!N001C || N001C->getZExtValue() != 0xFF)
2929      return SDValue();
2930    N00 = N00.getOperand(0);
2931    LookPassAnd0 = true;
2932  }
2933
2934  SDValue N10 = N1->getOperand(0);
2935  if (!LookPassAnd1 && N10.getOpcode() == ISD::AND) {
2936    if (!N10.getNode()->hasOneUse())
2937      return SDValue();
2938    ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N10.getOperand(1));
2939    if (!N101C || N101C->getZExtValue() != 0xFF00)
2940      return SDValue();
2941    N10 = N10.getOperand(0);
2942    LookPassAnd1 = true;
2943  }
2944
2945  if (N00 != N10)
2946    return SDValue();
2947
2948  // Make sure everything beyond the low halfword is zero since the SRL 16
2949  // will clear the top bits.
2950  unsigned OpSizeInBits = VT.getSizeInBits();
2951  if (DemandHighBits && OpSizeInBits > 16 &&
2952      (!LookPassAnd0 || !LookPassAnd1) &&
2953      !DAG.MaskedValueIsZero(N10, APInt::getHighBitsSet(OpSizeInBits, 16)))
2954    return SDValue();
2955
2956  SDValue Res = DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N00);
2957  if (OpSizeInBits > 16)
2958    Res = DAG.getNode(ISD::SRL, SDLoc(N), VT, Res,
2959                      DAG.getConstant(OpSizeInBits-16, getShiftAmountTy(VT)));
2960  return Res;
2961}
2962
2963/// isBSwapHWordElement - Return true if the specified node is an element
2964/// that makes up a 32-bit packed halfword byteswap. i.e.
2965/// ((x&0xff)<<8)|((x&0xff00)>>8)|((x&0x00ff0000)<<8)|((x&0xff000000)>>8)
2966static bool isBSwapHWordElement(SDValue N, SmallVectorImpl<SDNode *> &Parts) {
2967  if (!N.getNode()->hasOneUse())
2968    return false;
2969
2970  unsigned Opc = N.getOpcode();
2971  if (Opc != ISD::AND && Opc != ISD::SHL && Opc != ISD::SRL)
2972    return false;
2973
2974  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N.getOperand(1));
2975  if (!N1C)
2976    return false;
2977
2978  unsigned Num;
2979  switch (N1C->getZExtValue()) {
2980  default:
2981    return false;
2982  case 0xFF:       Num = 0; break;
2983  case 0xFF00:     Num = 1; break;
2984  case 0xFF0000:   Num = 2; break;
2985  case 0xFF000000: Num = 3; break;
2986  }
2987
2988  // Look for (x & 0xff) << 8 as well as ((x << 8) & 0xff00).
2989  SDValue N0 = N.getOperand(0);
2990  if (Opc == ISD::AND) {
2991    if (Num == 0 || Num == 2) {
2992      // (x >> 8) & 0xff
2993      // (x >> 8) & 0xff0000
2994      if (N0.getOpcode() != ISD::SRL)
2995        return false;
2996      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
2997      if (!C || C->getZExtValue() != 8)
2998        return false;
2999    } else {
3000      // (x << 8) & 0xff00
3001      // (x << 8) & 0xff000000
3002      if (N0.getOpcode() != ISD::SHL)
3003        return false;
3004      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
3005      if (!C || C->getZExtValue() != 8)
3006        return false;
3007    }
3008  } else if (Opc == ISD::SHL) {
3009    // (x & 0xff) << 8
3010    // (x & 0xff0000) << 8
3011    if (Num != 0 && Num != 2)
3012      return false;
3013    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1));
3014    if (!C || C->getZExtValue() != 8)
3015      return false;
3016  } else { // Opc == ISD::SRL
3017    // (x & 0xff00) >> 8
3018    // (x & 0xff000000) >> 8
3019    if (Num != 1 && Num != 3)
3020      return false;
3021    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1));
3022    if (!C || C->getZExtValue() != 8)
3023      return false;
3024  }
3025
3026  if (Parts[Num])
3027    return false;
3028
3029  Parts[Num] = N0.getOperand(0).getNode();
3030  return true;
3031}
3032
3033/// MatchBSwapHWord - Match a 32-bit packed halfword bswap. That is
3034/// ((x&0xff)<<8)|((x&0xff00)>>8)|((x&0x00ff0000)<<8)|((x&0xff000000)>>8)
3035/// => (rotl (bswap x), 16)
3036SDValue DAGCombiner::MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1) {
3037  if (!LegalOperations)
3038    return SDValue();
3039
3040  EVT VT = N->getValueType(0);
3041  if (VT != MVT::i32)
3042    return SDValue();
3043  if (!TLI.isOperationLegal(ISD::BSWAP, VT))
3044    return SDValue();
3045
3046  SmallVector<SDNode*,4> Parts(4, (SDNode*)0);
3047  // Look for either
3048  // (or (or (and), (and)), (or (and), (and)))
3049  // (or (or (or (and), (and)), (and)), (and))
3050  if (N0.getOpcode() != ISD::OR)
3051    return SDValue();
3052  SDValue N00 = N0.getOperand(0);
3053  SDValue N01 = N0.getOperand(1);
3054
3055  if (N1.getOpcode() == ISD::OR &&
3056      N00.getNumOperands() == 2 && N01.getNumOperands() == 2) {
3057    // (or (or (and), (and)), (or (and), (and)))
3058    SDValue N000 = N00.getOperand(0);
3059    if (!isBSwapHWordElement(N000, Parts))
3060      return SDValue();
3061
3062    SDValue N001 = N00.getOperand(1);
3063    if (!isBSwapHWordElement(N001, Parts))
3064      return SDValue();
3065    SDValue N010 = N01.getOperand(0);
3066    if (!isBSwapHWordElement(N010, Parts))
3067      return SDValue();
3068    SDValue N011 = N01.getOperand(1);
3069    if (!isBSwapHWordElement(N011, Parts))
3070      return SDValue();
3071  } else {
3072    // (or (or (or (and), (and)), (and)), (and))
3073    if (!isBSwapHWordElement(N1, Parts))
3074      return SDValue();
3075    if (!isBSwapHWordElement(N01, Parts))
3076      return SDValue();
3077    if (N00.getOpcode() != ISD::OR)
3078      return SDValue();
3079    SDValue N000 = N00.getOperand(0);
3080    if (!isBSwapHWordElement(N000, Parts))
3081      return SDValue();
3082    SDValue N001 = N00.getOperand(1);
3083    if (!isBSwapHWordElement(N001, Parts))
3084      return SDValue();
3085  }
3086
3087  // Make sure the parts are all coming from the same node.
3088  if (Parts[0] != Parts[1] || Parts[0] != Parts[2] || Parts[0] != Parts[3])
3089    return SDValue();
3090
3091  SDValue BSwap = DAG.getNode(ISD::BSWAP, SDLoc(N), VT,
3092                              SDValue(Parts[0],0));
3093
3094  // Result of the bswap should be rotated by 16. If it's not legal, than
3095  // do  (x << 16) | (x >> 16).
3096  SDValue ShAmt = DAG.getConstant(16, getShiftAmountTy(VT));
3097  if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT))
3098    return DAG.getNode(ISD::ROTL, SDLoc(N), VT, BSwap, ShAmt);
3099  if (TLI.isOperationLegalOrCustom(ISD::ROTR, VT))
3100    return DAG.getNode(ISD::ROTR, SDLoc(N), VT, BSwap, ShAmt);
3101  return DAG.getNode(ISD::OR, SDLoc(N), VT,
3102                     DAG.getNode(ISD::SHL, SDLoc(N), VT, BSwap, ShAmt),
3103                     DAG.getNode(ISD::SRL, SDLoc(N), VT, BSwap, ShAmt));
3104}
3105
3106SDValue DAGCombiner::visitOR(SDNode *N) {
3107  SDValue N0 = N->getOperand(0);
3108  SDValue N1 = N->getOperand(1);
3109  SDValue LL, LR, RL, RR, CC0, CC1;
3110  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3111  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3112  EVT VT = N1.getValueType();
3113
3114  // fold vector ops
3115  if (VT.isVector()) {
3116    SDValue FoldedVOp = SimplifyVBinOp(N);
3117    if (FoldedVOp.getNode()) return FoldedVOp;
3118
3119    // fold (or x, 0) -> x, vector edition
3120    if (ISD::isBuildVectorAllZeros(N0.getNode()))
3121      return N1;
3122    if (ISD::isBuildVectorAllZeros(N1.getNode()))
3123      return N0;
3124
3125    // fold (or x, -1) -> -1, vector edition
3126    if (ISD::isBuildVectorAllOnes(N0.getNode()))
3127      return N0;
3128    if (ISD::isBuildVectorAllOnes(N1.getNode()))
3129      return N1;
3130  }
3131
3132  // fold (or x, undef) -> -1
3133  if (!LegalOperations &&
3134      (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)) {
3135    EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
3136    return DAG.getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
3137  }
3138  // fold (or c1, c2) -> c1|c2
3139  if (N0C && N1C)
3140    return DAG.FoldConstantArithmetic(ISD::OR, VT, N0C, N1C);
3141  // canonicalize constant to RHS
3142  if (N0C && !N1C)
3143    return DAG.getNode(ISD::OR, SDLoc(N), VT, N1, N0);
3144  // fold (or x, 0) -> x
3145  if (N1C && N1C->isNullValue())
3146    return N0;
3147  // fold (or x, -1) -> -1
3148  if (N1C && N1C->isAllOnesValue())
3149    return N1;
3150  // fold (or x, c) -> c iff (x & ~c) == 0
3151  if (N1C && DAG.MaskedValueIsZero(N0, ~N1C->getAPIntValue()))
3152    return N1;
3153
3154  // Recognize halfword bswaps as (bswap + rotl 16) or (bswap + shl 16)
3155  SDValue BSwap = MatchBSwapHWord(N, N0, N1);
3156  if (BSwap.getNode() != 0)
3157    return BSwap;
3158  BSwap = MatchBSwapHWordLow(N, N0, N1);
3159  if (BSwap.getNode() != 0)
3160    return BSwap;
3161
3162  // reassociate or
3163  SDValue ROR = ReassociateOps(ISD::OR, SDLoc(N), N0, N1);
3164  if (ROR.getNode() != 0)
3165    return ROR;
3166  // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2)
3167  // iff (c1 & c2) == 0.
3168  if (N1C && N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() &&
3169             isa<ConstantSDNode>(N0.getOperand(1))) {
3170    ConstantSDNode *C1 = cast<ConstantSDNode>(N0.getOperand(1));
3171    if ((C1->getAPIntValue() & N1C->getAPIntValue()) != 0)
3172      return DAG.getNode(ISD::AND, SDLoc(N), VT,
3173                         DAG.getNode(ISD::OR, SDLoc(N0), VT,
3174                                     N0.getOperand(0), N1),
3175                         DAG.FoldConstantArithmetic(ISD::OR, VT, N1C, C1));
3176  }
3177  // fold (or (setcc x), (setcc y)) -> (setcc (or x, y))
3178  if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
3179    ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
3180    ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
3181
3182    if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
3183        LL.getValueType().isInteger()) {
3184      // fold (or (setne X, 0), (setne Y, 0)) -> (setne (or X, Y), 0)
3185      // fold (or (setlt X, 0), (setlt Y, 0)) -> (setne (or X, Y), 0)
3186      if (cast<ConstantSDNode>(LR)->isNullValue() &&
3187          (Op1 == ISD::SETNE || Op1 == ISD::SETLT)) {
3188        SDValue ORNode = DAG.getNode(ISD::OR, SDLoc(LR),
3189                                     LR.getValueType(), LL, RL);
3190        AddToWorkList(ORNode.getNode());
3191        return DAG.getSetCC(SDLoc(N), VT, ORNode, LR, Op1);
3192      }
3193      // fold (or (setne X, -1), (setne Y, -1)) -> (setne (and X, Y), -1)
3194      // fold (or (setgt X, -1), (setgt Y  -1)) -> (setgt (and X, Y), -1)
3195      if (cast<ConstantSDNode>(LR)->isAllOnesValue() &&
3196          (Op1 == ISD::SETNE || Op1 == ISD::SETGT)) {
3197        SDValue ANDNode = DAG.getNode(ISD::AND, SDLoc(LR),
3198                                      LR.getValueType(), LL, RL);
3199        AddToWorkList(ANDNode.getNode());
3200        return DAG.getSetCC(SDLoc(N), VT, ANDNode, LR, Op1);
3201      }
3202    }
3203    // canonicalize equivalent to ll == rl
3204    if (LL == RR && LR == RL) {
3205      Op1 = ISD::getSetCCSwappedOperands(Op1);
3206      std::swap(RL, RR);
3207    }
3208    if (LL == RL && LR == RR) {
3209      bool isInteger = LL.getValueType().isInteger();
3210      ISD::CondCode Result = ISD::getSetCCOrOperation(Op0, Op1, isInteger);
3211      if (Result != ISD::SETCC_INVALID &&
3212          (!LegalOperations ||
3213           (TLI.isCondCodeLegal(Result, LL.getSimpleValueType()) &&
3214            TLI.isOperationLegal(ISD::SETCC,
3215              getSetCCResultType(N0.getValueType())))))
3216        return DAG.getSetCC(SDLoc(N), N0.getValueType(),
3217                            LL, LR, Result);
3218    }
3219  }
3220
3221  // Simplify: (or (op x...), (op y...))  -> (op (or x, y))
3222  if (N0.getOpcode() == N1.getOpcode()) {
3223    SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N);
3224    if (Tmp.getNode()) return Tmp;
3225  }
3226
3227  // (or (and X, C1), (and Y, C2))  -> (and (or X, Y), C3) if possible.
3228  if (N0.getOpcode() == ISD::AND &&
3229      N1.getOpcode() == ISD::AND &&
3230      N0.getOperand(1).getOpcode() == ISD::Constant &&
3231      N1.getOperand(1).getOpcode() == ISD::Constant &&
3232      // Don't increase # computations.
3233      (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) {
3234    // We can only do this xform if we know that bits from X that are set in C2
3235    // but not in C1 are already zero.  Likewise for Y.
3236    const APInt &LHSMask =
3237      cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
3238    const APInt &RHSMask =
3239      cast<ConstantSDNode>(N1.getOperand(1))->getAPIntValue();
3240
3241    if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) &&
3242        DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) {
3243      SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT,
3244                              N0.getOperand(0), N1.getOperand(0));
3245      return DAG.getNode(ISD::AND, SDLoc(N), VT, X,
3246                         DAG.getConstant(LHSMask | RHSMask, VT));
3247    }
3248  }
3249
3250  // See if this is some rotate idiom.
3251  if (SDNode *Rot = MatchRotate(N0, N1, SDLoc(N)))
3252    return SDValue(Rot, 0);
3253
3254  // Simplify the operands using demanded-bits information.
3255  if (!VT.isVector() &&
3256      SimplifyDemandedBits(SDValue(N, 0)))
3257    return SDValue(N, 0);
3258
3259  return SDValue();
3260}
3261
3262/// MatchRotateHalf - Match "(X shl/srl V1) & V2" where V2 may not be present.
3263static bool MatchRotateHalf(SDValue Op, SDValue &Shift, SDValue &Mask) {
3264  if (Op.getOpcode() == ISD::AND) {
3265    if (isa<ConstantSDNode>(Op.getOperand(1))) {
3266      Mask = Op.getOperand(1);
3267      Op = Op.getOperand(0);
3268    } else {
3269      return false;
3270    }
3271  }
3272
3273  if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) {
3274    Shift = Op;
3275    return true;
3276  }
3277
3278  return false;
3279}
3280
3281// MatchRotate - Handle an 'or' of two operands.  If this is one of the many
3282// idioms for rotate, and if the target supports rotation instructions, generate
3283// a rot[lr].
3284SDNode *DAGCombiner::MatchRotate(SDValue LHS, SDValue RHS, SDLoc DL) {
3285  // Must be a legal type.  Expanded 'n promoted things won't work with rotates.
3286  EVT VT = LHS.getValueType();
3287  if (!TLI.isTypeLegal(VT)) return 0;
3288
3289  // The target must have at least one rotate flavor.
3290  bool HasROTL = TLI.isOperationLegalOrCustom(ISD::ROTL, VT);
3291  bool HasROTR = TLI.isOperationLegalOrCustom(ISD::ROTR, VT);
3292  if (!HasROTL && !HasROTR) return 0;
3293
3294  // Match "(X shl/srl V1) & V2" where V2 may not be present.
3295  SDValue LHSShift;   // The shift.
3296  SDValue LHSMask;    // AND value if any.
3297  if (!MatchRotateHalf(LHS, LHSShift, LHSMask))
3298    return 0; // Not part of a rotate.
3299
3300  SDValue RHSShift;   // The shift.
3301  SDValue RHSMask;    // AND value if any.
3302  if (!MatchRotateHalf(RHS, RHSShift, RHSMask))
3303    return 0; // Not part of a rotate.
3304
3305  if (LHSShift.getOperand(0) != RHSShift.getOperand(0))
3306    return 0;   // Not shifting the same value.
3307
3308  if (LHSShift.getOpcode() == RHSShift.getOpcode())
3309    return 0;   // Shifts must disagree.
3310
3311  // Canonicalize shl to left side in a shl/srl pair.
3312  if (RHSShift.getOpcode() == ISD::SHL) {
3313    std::swap(LHS, RHS);
3314    std::swap(LHSShift, RHSShift);
3315    std::swap(LHSMask , RHSMask );
3316  }
3317
3318  unsigned OpSizeInBits = VT.getSizeInBits();
3319  SDValue LHSShiftArg = LHSShift.getOperand(0);
3320  SDValue LHSShiftAmt = LHSShift.getOperand(1);
3321  SDValue RHSShiftAmt = RHSShift.getOperand(1);
3322
3323  // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1)
3324  // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2)
3325  if (LHSShiftAmt.getOpcode() == ISD::Constant &&
3326      RHSShiftAmt.getOpcode() == ISD::Constant) {
3327    uint64_t LShVal = cast<ConstantSDNode>(LHSShiftAmt)->getZExtValue();
3328    uint64_t RShVal = cast<ConstantSDNode>(RHSShiftAmt)->getZExtValue();
3329    if ((LShVal + RShVal) != OpSizeInBits)
3330      return 0;
3331
3332    SDValue Rot = DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT,
3333                              LHSShiftArg, HasROTL ? LHSShiftAmt : RHSShiftAmt);
3334
3335    // If there is an AND of either shifted operand, apply it to the result.
3336    if (LHSMask.getNode() || RHSMask.getNode()) {
3337      APInt Mask = APInt::getAllOnesValue(OpSizeInBits);
3338
3339      if (LHSMask.getNode()) {
3340        APInt RHSBits = APInt::getLowBitsSet(OpSizeInBits, LShVal);
3341        Mask &= cast<ConstantSDNode>(LHSMask)->getAPIntValue() | RHSBits;
3342      }
3343      if (RHSMask.getNode()) {
3344        APInt LHSBits = APInt::getHighBitsSet(OpSizeInBits, RShVal);
3345        Mask &= cast<ConstantSDNode>(RHSMask)->getAPIntValue() | LHSBits;
3346      }
3347
3348      Rot = DAG.getNode(ISD::AND, DL, VT, Rot, DAG.getConstant(Mask, VT));
3349    }
3350
3351    return Rot.getNode();
3352  }
3353
3354  // If there is a mask here, and we have a variable shift, we can't be sure
3355  // that we're masking out the right stuff.
3356  if (LHSMask.getNode() || RHSMask.getNode())
3357    return 0;
3358
3359  // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotl x, y)
3360  // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotr x, (sub 32, y))
3361  if (RHSShiftAmt.getOpcode() == ISD::SUB &&
3362      LHSShiftAmt == RHSShiftAmt.getOperand(1)) {
3363    if (ConstantSDNode *SUBC =
3364          dyn_cast<ConstantSDNode>(RHSShiftAmt.getOperand(0))) {
3365      if (SUBC->getAPIntValue() == OpSizeInBits)
3366        return DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT, LHSShiftArg,
3367                           HasROTL ? LHSShiftAmt : RHSShiftAmt).getNode();
3368    }
3369  }
3370
3371  // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotr x, y)
3372  // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotl x, (sub 32, y))
3373  if (LHSShiftAmt.getOpcode() == ISD::SUB &&
3374      RHSShiftAmt == LHSShiftAmt.getOperand(1))
3375    if (ConstantSDNode *SUBC =
3376          dyn_cast<ConstantSDNode>(LHSShiftAmt.getOperand(0)))
3377      if (SUBC->getAPIntValue() == OpSizeInBits)
3378        return DAG.getNode(HasROTR ? ISD::ROTR : ISD::ROTL, DL, VT, LHSShiftArg,
3379                           HasROTR ? RHSShiftAmt : LHSShiftAmt).getNode();
3380
3381  // Look for sign/zext/any-extended or truncate cases:
3382  if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND ||
3383       LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND ||
3384       LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND ||
3385       LHSShiftAmt.getOpcode() == ISD::TRUNCATE) &&
3386      (RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND ||
3387       RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND ||
3388       RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND ||
3389       RHSShiftAmt.getOpcode() == ISD::TRUNCATE)) {
3390    SDValue LExtOp0 = LHSShiftAmt.getOperand(0);
3391    SDValue RExtOp0 = RHSShiftAmt.getOperand(0);
3392    if (RExtOp0.getOpcode() == ISD::SUB &&
3393        RExtOp0.getOperand(1) == LExtOp0) {
3394      // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
3395      //   (rotl x, y)
3396      // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
3397      //   (rotr x, (sub 32, y))
3398      if (ConstantSDNode *SUBC =
3399            dyn_cast<ConstantSDNode>(RExtOp0.getOperand(0)))
3400        if (SUBC->getAPIntValue() == OpSizeInBits)
3401          return DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT,
3402                             LHSShiftArg,
3403                             HasROTL ? LHSShiftAmt : RHSShiftAmt).getNode();
3404    } else if (LExtOp0.getOpcode() == ISD::SUB &&
3405               RExtOp0 == LExtOp0.getOperand(1)) {
3406      // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext y))) ->
3407      //   (rotr x, y)
3408      // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext y))) ->
3409      //   (rotl x, (sub 32, y))
3410      if (ConstantSDNode *SUBC =
3411            dyn_cast<ConstantSDNode>(LExtOp0.getOperand(0)))
3412        if (SUBC->getAPIntValue() == OpSizeInBits)
3413          return DAG.getNode(HasROTR ? ISD::ROTR : ISD::ROTL, DL, VT,
3414                             LHSShiftArg,
3415                             HasROTR ? RHSShiftAmt : LHSShiftAmt).getNode();
3416    }
3417  }
3418
3419  return 0;
3420}
3421
3422SDValue DAGCombiner::visitXOR(SDNode *N) {
3423  SDValue N0 = N->getOperand(0);
3424  SDValue N1 = N->getOperand(1);
3425  SDValue LHS, RHS, CC;
3426  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3427  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3428  EVT VT = N0.getValueType();
3429
3430  // fold vector ops
3431  if (VT.isVector()) {
3432    SDValue FoldedVOp = SimplifyVBinOp(N);
3433    if (FoldedVOp.getNode()) return FoldedVOp;
3434
3435    // fold (xor x, 0) -> x, vector edition
3436    if (ISD::isBuildVectorAllZeros(N0.getNode()))
3437      return N1;
3438    if (ISD::isBuildVectorAllZeros(N1.getNode()))
3439      return N0;
3440  }
3441
3442  // fold (xor undef, undef) -> 0. This is a common idiom (misuse).
3443  if (N0.getOpcode() == ISD::UNDEF && N1.getOpcode() == ISD::UNDEF)
3444    return DAG.getConstant(0, VT);
3445  // fold (xor x, undef) -> undef
3446  if (N0.getOpcode() == ISD::UNDEF)
3447    return N0;
3448  if (N1.getOpcode() == ISD::UNDEF)
3449    return N1;
3450  // fold (xor c1, c2) -> c1^c2
3451  if (N0C && N1C)
3452    return DAG.FoldConstantArithmetic(ISD::XOR, VT, N0C, N1C);
3453  // canonicalize constant to RHS
3454  if (N0C && !N1C)
3455    return DAG.getNode(ISD::XOR, SDLoc(N), VT, N1, N0);
3456  // fold (xor x, 0) -> x
3457  if (N1C && N1C->isNullValue())
3458    return N0;
3459  // reassociate xor
3460  SDValue RXOR = ReassociateOps(ISD::XOR, SDLoc(N), N0, N1);
3461  if (RXOR.getNode() != 0)
3462    return RXOR;
3463
3464  // fold !(x cc y) -> (x !cc y)
3465  if (N1C && N1C->getAPIntValue() == 1 && isSetCCEquivalent(N0, LHS, RHS, CC)) {
3466    bool isInt = LHS.getValueType().isInteger();
3467    ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
3468                                               isInt);
3469
3470    if (!LegalOperations ||
3471        TLI.isCondCodeLegal(NotCC, LHS.getSimpleValueType())) {
3472      switch (N0.getOpcode()) {
3473      default:
3474        llvm_unreachable("Unhandled SetCC Equivalent!");
3475      case ISD::SETCC:
3476        return DAG.getSetCC(SDLoc(N), VT, LHS, RHS, NotCC);
3477      case ISD::SELECT_CC:
3478        return DAG.getSelectCC(SDLoc(N), LHS, RHS, N0.getOperand(2),
3479                               N0.getOperand(3), NotCC);
3480      }
3481    }
3482  }
3483
3484  // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y)))
3485  if (N1C && N1C->getAPIntValue() == 1 && N0.getOpcode() == ISD::ZERO_EXTEND &&
3486      N0.getNode()->hasOneUse() &&
3487      isSetCCEquivalent(N0.getOperand(0), LHS, RHS, CC)){
3488    SDValue V = N0.getOperand(0);
3489    V = DAG.getNode(ISD::XOR, SDLoc(N0), V.getValueType(), V,
3490                    DAG.getConstant(1, V.getValueType()));
3491    AddToWorkList(V.getNode());
3492    return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, V);
3493  }
3494
3495  // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are setcc
3496  if (N1C && N1C->getAPIntValue() == 1 && VT == MVT::i1 &&
3497      (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
3498    SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
3499    if (isOneUseSetCC(RHS) || isOneUseSetCC(LHS)) {
3500      unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
3501      LHS = DAG.getNode(ISD::XOR, SDLoc(LHS), VT, LHS, N1); // LHS = ~LHS
3502      RHS = DAG.getNode(ISD::XOR, SDLoc(RHS), VT, RHS, N1); // RHS = ~RHS
3503      AddToWorkList(LHS.getNode()); AddToWorkList(RHS.getNode());
3504      return DAG.getNode(NewOpcode, SDLoc(N), VT, LHS, RHS);
3505    }
3506  }
3507  // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are constants
3508  if (N1C && N1C->isAllOnesValue() &&
3509      (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
3510    SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
3511    if (isa<ConstantSDNode>(RHS) || isa<ConstantSDNode>(LHS)) {
3512      unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
3513      LHS = DAG.getNode(ISD::XOR, SDLoc(LHS), VT, LHS, N1); // LHS = ~LHS
3514      RHS = DAG.getNode(ISD::XOR, SDLoc(RHS), VT, RHS, N1); // RHS = ~RHS
3515      AddToWorkList(LHS.getNode()); AddToWorkList(RHS.getNode());
3516      return DAG.getNode(NewOpcode, SDLoc(N), VT, LHS, RHS);
3517    }
3518  }
3519  // fold (xor (and x, y), y) -> (and (not x), y)
3520  if (N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() &&
3521      N0->getOperand(1) == N1) {
3522    SDValue X = N0->getOperand(0);
3523    SDValue NotX = DAG.getNOT(SDLoc(X), X, VT);
3524    AddToWorkList(NotX.getNode());
3525    return DAG.getNode(ISD::AND, SDLoc(N), VT, NotX, N1);
3526  }
3527  // fold (xor (xor x, c1), c2) -> (xor x, (xor c1, c2))
3528  if (N1C && N0.getOpcode() == ISD::XOR) {
3529    ConstantSDNode *N00C = dyn_cast<ConstantSDNode>(N0.getOperand(0));
3530    ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
3531    if (N00C)
3532      return DAG.getNode(ISD::XOR, SDLoc(N), VT, N0.getOperand(1),
3533                         DAG.getConstant(N1C->getAPIntValue() ^
3534                                         N00C->getAPIntValue(), VT));
3535    if (N01C)
3536      return DAG.getNode(ISD::XOR, SDLoc(N), VT, N0.getOperand(0),
3537                         DAG.getConstant(N1C->getAPIntValue() ^
3538                                         N01C->getAPIntValue(), VT));
3539  }
3540  // fold (xor x, x) -> 0
3541  if (N0 == N1)
3542    return tryFoldToZero(SDLoc(N), TLI, VT, DAG, LegalOperations, LegalTypes);
3543
3544  // Simplify: xor (op x...), (op y...)  -> (op (xor x, y))
3545  if (N0.getOpcode() == N1.getOpcode()) {
3546    SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N);
3547    if (Tmp.getNode()) return Tmp;
3548  }
3549
3550  // Simplify the expression using non-local knowledge.
3551  if (!VT.isVector() &&
3552      SimplifyDemandedBits(SDValue(N, 0)))
3553    return SDValue(N, 0);
3554
3555  return SDValue();
3556}
3557
3558/// visitShiftByConstant - Handle transforms common to the three shifts, when
3559/// the shift amount is a constant.
3560SDValue DAGCombiner::visitShiftByConstant(SDNode *N, unsigned Amt) {
3561  SDNode *LHS = N->getOperand(0).getNode();
3562  if (!LHS->hasOneUse()) return SDValue();
3563
3564  // We want to pull some binops through shifts, so that we have (and (shift))
3565  // instead of (shift (and)), likewise for add, or, xor, etc.  This sort of
3566  // thing happens with address calculations, so it's important to canonicalize
3567  // it.
3568  bool HighBitSet = false;  // Can we transform this if the high bit is set?
3569
3570  switch (LHS->getOpcode()) {
3571  default: return SDValue();
3572  case ISD::OR:
3573  case ISD::XOR:
3574    HighBitSet = false; // We can only transform sra if the high bit is clear.
3575    break;
3576  case ISD::AND:
3577    HighBitSet = true;  // We can only transform sra if the high bit is set.
3578    break;
3579  case ISD::ADD:
3580    if (N->getOpcode() != ISD::SHL)
3581      return SDValue(); // only shl(add) not sr[al](add).
3582    HighBitSet = false; // We can only transform sra if the high bit is clear.
3583    break;
3584  }
3585
3586  // We require the RHS of the binop to be a constant as well.
3587  ConstantSDNode *BinOpCst = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
3588  if (!BinOpCst) return SDValue();
3589
3590  // FIXME: disable this unless the input to the binop is a shift by a constant.
3591  // If it is not a shift, it pessimizes some common cases like:
3592  //
3593  //    void foo(int *X, int i) { X[i & 1235] = 1; }
3594  //    int bar(int *X, int i) { return X[i & 255]; }
3595  SDNode *BinOpLHSVal = LHS->getOperand(0).getNode();
3596  if ((BinOpLHSVal->getOpcode() != ISD::SHL &&
3597       BinOpLHSVal->getOpcode() != ISD::SRA &&
3598       BinOpLHSVal->getOpcode() != ISD::SRL) ||
3599      !isa<ConstantSDNode>(BinOpLHSVal->getOperand(1)))
3600    return SDValue();
3601
3602  EVT VT = N->getValueType(0);
3603
3604  // If this is a signed shift right, and the high bit is modified by the
3605  // logical operation, do not perform the transformation. The highBitSet
3606  // boolean indicates the value of the high bit of the constant which would
3607  // cause it to be modified for this operation.
3608  if (N->getOpcode() == ISD::SRA) {
3609    bool BinOpRHSSignSet = BinOpCst->getAPIntValue().isNegative();
3610    if (BinOpRHSSignSet != HighBitSet)
3611      return SDValue();
3612  }
3613
3614  // Fold the constants, shifting the binop RHS by the shift amount.
3615  SDValue NewRHS = DAG.getNode(N->getOpcode(), SDLoc(LHS->getOperand(1)),
3616                               N->getValueType(0),
3617                               LHS->getOperand(1), N->getOperand(1));
3618
3619  // Create the new shift.
3620  SDValue NewShift = DAG.getNode(N->getOpcode(),
3621                                 SDLoc(LHS->getOperand(0)),
3622                                 VT, LHS->getOperand(0), N->getOperand(1));
3623
3624  // Create the new binop.
3625  return DAG.getNode(LHS->getOpcode(), SDLoc(N), VT, NewShift, NewRHS);
3626}
3627
3628SDValue DAGCombiner::visitSHL(SDNode *N) {
3629  SDValue N0 = N->getOperand(0);
3630  SDValue N1 = N->getOperand(1);
3631  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3632  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3633  EVT VT = N0.getValueType();
3634  unsigned OpSizeInBits = VT.getScalarType().getSizeInBits();
3635
3636  // fold (shl c1, c2) -> c1<<c2
3637  if (N0C && N1C)
3638    return DAG.FoldConstantArithmetic(ISD::SHL, VT, N0C, N1C);
3639  // fold (shl 0, x) -> 0
3640  if (N0C && N0C->isNullValue())
3641    return N0;
3642  // fold (shl x, c >= size(x)) -> undef
3643  if (N1C && N1C->getZExtValue() >= OpSizeInBits)
3644    return DAG.getUNDEF(VT);
3645  // fold (shl x, 0) -> x
3646  if (N1C && N1C->isNullValue())
3647    return N0;
3648  // fold (shl undef, x) -> 0
3649  if (N0.getOpcode() == ISD::UNDEF)
3650    return DAG.getConstant(0, VT);
3651  // if (shl x, c) is known to be zero, return 0
3652  if (DAG.MaskedValueIsZero(SDValue(N, 0),
3653                            APInt::getAllOnesValue(OpSizeInBits)))
3654    return DAG.getConstant(0, VT);
3655  // fold (shl x, (trunc (and y, c))) -> (shl x, (and (trunc y), (trunc c))).
3656  if (N1.getOpcode() == ISD::TRUNCATE &&
3657      N1.getOperand(0).getOpcode() == ISD::AND &&
3658      N1.hasOneUse() && N1.getOperand(0).hasOneUse()) {
3659    SDValue N101 = N1.getOperand(0).getOperand(1);
3660    if (ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N101)) {
3661      EVT TruncVT = N1.getValueType();
3662      SDValue N100 = N1.getOperand(0).getOperand(0);
3663      APInt TruncC = N101C->getAPIntValue();
3664      TruncC = TruncC.trunc(TruncVT.getSizeInBits());
3665      return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0,
3666                         DAG.getNode(ISD::AND, SDLoc(N), TruncVT,
3667                                     DAG.getNode(ISD::TRUNCATE,
3668                                                 SDLoc(N),
3669                                                 TruncVT, N100),
3670                                     DAG.getConstant(TruncC, TruncVT)));
3671    }
3672  }
3673
3674  if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
3675    return SDValue(N, 0);
3676
3677  // fold (shl (shl x, c1), c2) -> 0 or (shl x, (add c1, c2))
3678  if (N1C && N0.getOpcode() == ISD::SHL &&
3679      N0.getOperand(1).getOpcode() == ISD::Constant) {
3680    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
3681    uint64_t c2 = N1C->getZExtValue();
3682    if (c1 + c2 >= OpSizeInBits)
3683      return DAG.getConstant(0, VT);
3684    return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0.getOperand(0),
3685                       DAG.getConstant(c1 + c2, N1.getValueType()));
3686  }
3687
3688  // fold (shl (ext (shl x, c1)), c2) -> (ext (shl x, (add c1, c2)))
3689  // For this to be valid, the second form must not preserve any of the bits
3690  // that are shifted out by the inner shift in the first form.  This means
3691  // the outer shift size must be >= the number of bits added by the ext.
3692  // As a corollary, we don't care what kind of ext it is.
3693  if (N1C && (N0.getOpcode() == ISD::ZERO_EXTEND ||
3694              N0.getOpcode() == ISD::ANY_EXTEND ||
3695              N0.getOpcode() == ISD::SIGN_EXTEND) &&
3696      N0.getOperand(0).getOpcode() == ISD::SHL &&
3697      isa<ConstantSDNode>(N0.getOperand(0)->getOperand(1))) {
3698    uint64_t c1 =
3699      cast<ConstantSDNode>(N0.getOperand(0)->getOperand(1))->getZExtValue();
3700    uint64_t c2 = N1C->getZExtValue();
3701    EVT InnerShiftVT = N0.getOperand(0).getValueType();
3702    uint64_t InnerShiftSize = InnerShiftVT.getScalarType().getSizeInBits();
3703    if (c2 >= OpSizeInBits - InnerShiftSize) {
3704      if (c1 + c2 >= OpSizeInBits)
3705        return DAG.getConstant(0, VT);
3706      return DAG.getNode(ISD::SHL, SDLoc(N0), VT,
3707                         DAG.getNode(N0.getOpcode(), SDLoc(N0), VT,
3708                                     N0.getOperand(0)->getOperand(0)),
3709                         DAG.getConstant(c1 + c2, N1.getValueType()));
3710    }
3711  }
3712
3713  // fold (shl (srl x, c1), c2) -> (and (shl x, (sub c2, c1), MASK) or
3714  //                               (and (srl x, (sub c1, c2), MASK)
3715  // Only fold this if the inner shift has no other uses -- if it does, folding
3716  // this will increase the total number of instructions.
3717  if (N1C && N0.getOpcode() == ISD::SRL && N0.hasOneUse() &&
3718      N0.getOperand(1).getOpcode() == ISD::Constant) {
3719    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
3720    if (c1 < VT.getSizeInBits()) {
3721      uint64_t c2 = N1C->getZExtValue();
3722      APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
3723                                         VT.getSizeInBits() - c1);
3724      SDValue Shift;
3725      if (c2 > c1) {
3726        Mask = Mask.shl(c2-c1);
3727        Shift = DAG.getNode(ISD::SHL, SDLoc(N), VT, N0.getOperand(0),
3728                            DAG.getConstant(c2-c1, N1.getValueType()));
3729      } else {
3730        Mask = Mask.lshr(c1-c2);
3731        Shift = DAG.getNode(ISD::SRL, SDLoc(N), VT, N0.getOperand(0),
3732                            DAG.getConstant(c1-c2, N1.getValueType()));
3733      }
3734      return DAG.getNode(ISD::AND, SDLoc(N0), VT, Shift,
3735                         DAG.getConstant(Mask, VT));
3736    }
3737  }
3738  // fold (shl (sra x, c1), c1) -> (and x, (shl -1, c1))
3739  if (N1C && N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1)) {
3740    SDValue HiBitsMask =
3741      DAG.getConstant(APInt::getHighBitsSet(VT.getSizeInBits(),
3742                                            VT.getSizeInBits() -
3743                                              N1C->getZExtValue()),
3744                      VT);
3745    return DAG.getNode(ISD::AND, SDLoc(N), VT, N0.getOperand(0),
3746                       HiBitsMask);
3747  }
3748
3749  if (N1C) {
3750    SDValue NewSHL = visitShiftByConstant(N, N1C->getZExtValue());
3751    if (NewSHL.getNode())
3752      return NewSHL;
3753  }
3754
3755  return SDValue();
3756}
3757
3758SDValue DAGCombiner::visitSRA(SDNode *N) {
3759  SDValue N0 = N->getOperand(0);
3760  SDValue N1 = N->getOperand(1);
3761  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3762  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3763  EVT VT = N0.getValueType();
3764  unsigned OpSizeInBits = VT.getScalarType().getSizeInBits();
3765
3766  // fold (sra c1, c2) -> (sra c1, c2)
3767  if (N0C && N1C)
3768    return DAG.FoldConstantArithmetic(ISD::SRA, VT, N0C, N1C);
3769  // fold (sra 0, x) -> 0
3770  if (N0C && N0C->isNullValue())
3771    return N0;
3772  // fold (sra -1, x) -> -1
3773  if (N0C && N0C->isAllOnesValue())
3774    return N0;
3775  // fold (sra x, (setge c, size(x))) -> undef
3776  if (N1C && N1C->getZExtValue() >= OpSizeInBits)
3777    return DAG.getUNDEF(VT);
3778  // fold (sra x, 0) -> x
3779  if (N1C && N1C->isNullValue())
3780    return N0;
3781  // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports
3782  // sext_inreg.
3783  if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) {
3784    unsigned LowBits = OpSizeInBits - (unsigned)N1C->getZExtValue();
3785    EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), LowBits);
3786    if (VT.isVector())
3787      ExtVT = EVT::getVectorVT(*DAG.getContext(),
3788                               ExtVT, VT.getVectorNumElements());
3789    if ((!LegalOperations ||
3790         TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, ExtVT)))
3791      return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT,
3792                         N0.getOperand(0), DAG.getValueType(ExtVT));
3793  }
3794
3795  // fold (sra (sra x, c1), c2) -> (sra x, (add c1, c2))
3796  if (N1C && N0.getOpcode() == ISD::SRA) {
3797    if (ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3798      unsigned Sum = N1C->getZExtValue() + C1->getZExtValue();
3799      if (Sum >= OpSizeInBits) Sum = OpSizeInBits-1;
3800      return DAG.getNode(ISD::SRA, SDLoc(N), VT, N0.getOperand(0),
3801                         DAG.getConstant(Sum, N1C->getValueType(0)));
3802    }
3803  }
3804
3805  // fold (sra (shl X, m), (sub result_size, n))
3806  // -> (sign_extend (trunc (shl X, (sub (sub result_size, n), m)))) for
3807  // result_size - n != m.
3808  // If truncate is free for the target sext(shl) is likely to result in better
3809  // code.
3810  if (N0.getOpcode() == ISD::SHL) {
3811    // Get the two constanst of the shifts, CN0 = m, CN = n.
3812    const ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
3813    if (N01C && N1C) {
3814      // Determine what the truncate's result bitsize and type would be.
3815      EVT TruncVT =
3816        EVT::getIntegerVT(*DAG.getContext(),
3817                          OpSizeInBits - N1C->getZExtValue());
3818      // Determine the residual right-shift amount.
3819      signed ShiftAmt = N1C->getZExtValue() - N01C->getZExtValue();
3820
3821      // If the shift is not a no-op (in which case this should be just a sign
3822      // extend already), the truncated to type is legal, sign_extend is legal
3823      // on that type, and the truncate to that type is both legal and free,
3824      // perform the transform.
3825      if ((ShiftAmt > 0) &&
3826          TLI.isOperationLegalOrCustom(ISD::SIGN_EXTEND, TruncVT) &&
3827          TLI.isOperationLegalOrCustom(ISD::TRUNCATE, VT) &&
3828          TLI.isTruncateFree(VT, TruncVT)) {
3829
3830          SDValue Amt = DAG.getConstant(ShiftAmt,
3831              getShiftAmountTy(N0.getOperand(0).getValueType()));
3832          SDValue Shift = DAG.getNode(ISD::SRL, SDLoc(N0), VT,
3833                                      N0.getOperand(0), Amt);
3834          SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), TruncVT,
3835                                      Shift);
3836          return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N),
3837                             N->getValueType(0), Trunc);
3838      }
3839    }
3840  }
3841
3842  // fold (sra x, (trunc (and y, c))) -> (sra x, (and (trunc y), (trunc c))).
3843  if (N1.getOpcode() == ISD::TRUNCATE &&
3844      N1.getOperand(0).getOpcode() == ISD::AND &&
3845      N1.hasOneUse() && N1.getOperand(0).hasOneUse()) {
3846    SDValue N101 = N1.getOperand(0).getOperand(1);
3847    if (ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N101)) {
3848      EVT TruncVT = N1.getValueType();
3849      SDValue N100 = N1.getOperand(0).getOperand(0);
3850      APInt TruncC = N101C->getAPIntValue();
3851      TruncC = TruncC.trunc(TruncVT.getScalarType().getSizeInBits());
3852      return DAG.getNode(ISD::SRA, SDLoc(N), VT, N0,
3853                         DAG.getNode(ISD::AND, SDLoc(N),
3854                                     TruncVT,
3855                                     DAG.getNode(ISD::TRUNCATE,
3856                                                 SDLoc(N),
3857                                                 TruncVT, N100),
3858                                     DAG.getConstant(TruncC, TruncVT)));
3859    }
3860  }
3861
3862  // fold (sra (trunc (sr x, c1)), c2) -> (trunc (sra x, c1+c2))
3863  //      if c1 is equal to the number of bits the trunc removes
3864  if (N0.getOpcode() == ISD::TRUNCATE &&
3865      (N0.getOperand(0).getOpcode() == ISD::SRL ||
3866       N0.getOperand(0).getOpcode() == ISD::SRA) &&
3867      N0.getOperand(0).hasOneUse() &&
3868      N0.getOperand(0).getOperand(1).hasOneUse() &&
3869      N1C && isa<ConstantSDNode>(N0.getOperand(0).getOperand(1))) {
3870    EVT LargeVT = N0.getOperand(0).getValueType();
3871    ConstantSDNode *LargeShiftAmt =
3872      cast<ConstantSDNode>(N0.getOperand(0).getOperand(1));
3873
3874    if (LargeVT.getScalarType().getSizeInBits() - OpSizeInBits ==
3875        LargeShiftAmt->getZExtValue()) {
3876      SDValue Amt =
3877        DAG.getConstant(LargeShiftAmt->getZExtValue() + N1C->getZExtValue(),
3878              getShiftAmountTy(N0.getOperand(0).getOperand(0).getValueType()));
3879      SDValue SRA = DAG.getNode(ISD::SRA, SDLoc(N), LargeVT,
3880                                N0.getOperand(0).getOperand(0), Amt);
3881      return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, SRA);
3882    }
3883  }
3884
3885  // Simplify, based on bits shifted out of the LHS.
3886  if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
3887    return SDValue(N, 0);
3888
3889
3890  // If the sign bit is known to be zero, switch this to a SRL.
3891  if (DAG.SignBitIsZero(N0))
3892    return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, N1);
3893
3894  if (N1C) {
3895    SDValue NewSRA = visitShiftByConstant(N, N1C->getZExtValue());
3896    if (NewSRA.getNode())
3897      return NewSRA;
3898  }
3899
3900  return SDValue();
3901}
3902
3903SDValue DAGCombiner::visitSRL(SDNode *N) {
3904  SDValue N0 = N->getOperand(0);
3905  SDValue N1 = N->getOperand(1);
3906  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3907  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3908  EVT VT = N0.getValueType();
3909  unsigned OpSizeInBits = VT.getScalarType().getSizeInBits();
3910
3911  // fold (srl c1, c2) -> c1 >>u c2
3912  if (N0C && N1C)
3913    return DAG.FoldConstantArithmetic(ISD::SRL, VT, N0C, N1C);
3914  // fold (srl 0, x) -> 0
3915  if (N0C && N0C->isNullValue())
3916    return N0;
3917  // fold (srl x, c >= size(x)) -> undef
3918  if (N1C && N1C->getZExtValue() >= OpSizeInBits)
3919    return DAG.getUNDEF(VT);
3920  // fold (srl x, 0) -> x
3921  if (N1C && N1C->isNullValue())
3922    return N0;
3923  // if (srl x, c) is known to be zero, return 0
3924  if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0),
3925                                   APInt::getAllOnesValue(OpSizeInBits)))
3926    return DAG.getConstant(0, VT);
3927
3928  // fold (srl (srl x, c1), c2) -> 0 or (srl x, (add c1, c2))
3929  if (N1C && N0.getOpcode() == ISD::SRL &&
3930      N0.getOperand(1).getOpcode() == ISD::Constant) {
3931    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
3932    uint64_t c2 = N1C->getZExtValue();
3933    if (c1 + c2 >= OpSizeInBits)
3934      return DAG.getConstant(0, VT);
3935    return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0.getOperand(0),
3936                       DAG.getConstant(c1 + c2, N1.getValueType()));
3937  }
3938
3939  // fold (srl (trunc (srl x, c1)), c2) -> 0 or (trunc (srl x, (add c1, c2)))
3940  if (N1C && N0.getOpcode() == ISD::TRUNCATE &&
3941      N0.getOperand(0).getOpcode() == ISD::SRL &&
3942      isa<ConstantSDNode>(N0.getOperand(0)->getOperand(1))) {
3943    uint64_t c1 =
3944      cast<ConstantSDNode>(N0.getOperand(0)->getOperand(1))->getZExtValue();
3945    uint64_t c2 = N1C->getZExtValue();
3946    EVT InnerShiftVT = N0.getOperand(0).getValueType();
3947    EVT ShiftCountVT = N0.getOperand(0)->getOperand(1).getValueType();
3948    uint64_t InnerShiftSize = InnerShiftVT.getScalarType().getSizeInBits();
3949    // This is only valid if the OpSizeInBits + c1 = size of inner shift.
3950    if (c1 + OpSizeInBits == InnerShiftSize) {
3951      if (c1 + c2 >= InnerShiftSize)
3952        return DAG.getConstant(0, VT);
3953      return DAG.getNode(ISD::TRUNCATE, SDLoc(N0), VT,
3954                         DAG.getNode(ISD::SRL, SDLoc(N0), InnerShiftVT,
3955                                     N0.getOperand(0)->getOperand(0),
3956                                     DAG.getConstant(c1 + c2, ShiftCountVT)));
3957    }
3958  }
3959
3960  // fold (srl (shl x, c), c) -> (and x, cst2)
3961  if (N1C && N0.getOpcode() == ISD::SHL && N0.getOperand(1) == N1 &&
3962      N0.getValueSizeInBits() <= 64) {
3963    uint64_t ShAmt = N1C->getZExtValue()+64-N0.getValueSizeInBits();
3964    return DAG.getNode(ISD::AND, SDLoc(N), VT, N0.getOperand(0),
3965                       DAG.getConstant(~0ULL >> ShAmt, VT));
3966  }
3967
3968  // fold (srl (anyextend x), c) -> (and (anyextend (srl x, c)), mask)
3969  if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
3970    // Shifting in all undef bits?
3971    EVT SmallVT = N0.getOperand(0).getValueType();
3972    if (N1C->getZExtValue() >= SmallVT.getSizeInBits())
3973      return DAG.getUNDEF(VT);
3974
3975    if (!LegalTypes || TLI.isTypeDesirableForOp(ISD::SRL, SmallVT)) {
3976      uint64_t ShiftAmt = N1C->getZExtValue();
3977      SDValue SmallShift = DAG.getNode(ISD::SRL, SDLoc(N0), SmallVT,
3978                                       N0.getOperand(0),
3979                          DAG.getConstant(ShiftAmt, getShiftAmountTy(SmallVT)));
3980      AddToWorkList(SmallShift.getNode());
3981      APInt Mask = APInt::getAllOnesValue(VT.getSizeInBits()).lshr(ShiftAmt);
3982      return DAG.getNode(ISD::AND, SDLoc(N), VT,
3983                         DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, SmallShift),
3984                         DAG.getConstant(Mask, VT));
3985    }
3986  }
3987
3988  // fold (srl (sra X, Y), 31) -> (srl X, 31).  This srl only looks at the sign
3989  // bit, which is unmodified by sra.
3990  if (N1C && N1C->getZExtValue() + 1 == VT.getSizeInBits()) {
3991    if (N0.getOpcode() == ISD::SRA)
3992      return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0.getOperand(0), N1);
3993  }
3994
3995  // fold (srl (ctlz x), "5") -> x  iff x has one bit set (the low bit).
3996  if (N1C && N0.getOpcode() == ISD::CTLZ &&
3997      N1C->getAPIntValue() == Log2_32(VT.getSizeInBits())) {
3998    APInt KnownZero, KnownOne;
3999    DAG.ComputeMaskedBits(N0.getOperand(0), KnownZero, KnownOne);
4000
4001    // If any of the input bits are KnownOne, then the input couldn't be all
4002    // zeros, thus the result of the srl will always be zero.
4003    if (KnownOne.getBoolValue()) return DAG.getConstant(0, VT);
4004
4005    // If all of the bits input the to ctlz node are known to be zero, then
4006    // the result of the ctlz is "32" and the result of the shift is one.
4007    APInt UnknownBits = ~KnownZero;
4008    if (UnknownBits == 0) return DAG.getConstant(1, VT);
4009
4010    // Otherwise, check to see if there is exactly one bit input to the ctlz.
4011    if ((UnknownBits & (UnknownBits - 1)) == 0) {
4012      // Okay, we know that only that the single bit specified by UnknownBits
4013      // could be set on input to the CTLZ node. If this bit is set, the SRL
4014      // will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair
4015      // to an SRL/XOR pair, which is likely to simplify more.
4016      unsigned ShAmt = UnknownBits.countTrailingZeros();
4017      SDValue Op = N0.getOperand(0);
4018
4019      if (ShAmt) {
4020        Op = DAG.getNode(ISD::SRL, SDLoc(N0), VT, Op,
4021                  DAG.getConstant(ShAmt, getShiftAmountTy(Op.getValueType())));
4022        AddToWorkList(Op.getNode());
4023      }
4024
4025      return DAG.getNode(ISD::XOR, SDLoc(N), VT,
4026                         Op, DAG.getConstant(1, VT));
4027    }
4028  }
4029
4030  // fold (srl x, (trunc (and y, c))) -> (srl x, (and (trunc y), (trunc c))).
4031  if (N1.getOpcode() == ISD::TRUNCATE &&
4032      N1.getOperand(0).getOpcode() == ISD::AND &&
4033      N1.hasOneUse() && N1.getOperand(0).hasOneUse()) {
4034    SDValue N101 = N1.getOperand(0).getOperand(1);
4035    if (ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N101)) {
4036      EVT TruncVT = N1.getValueType();
4037      SDValue N100 = N1.getOperand(0).getOperand(0);
4038      APInt TruncC = N101C->getAPIntValue();
4039      TruncC = TruncC.trunc(TruncVT.getSizeInBits());
4040      return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0,
4041                         DAG.getNode(ISD::AND, SDLoc(N),
4042                                     TruncVT,
4043                                     DAG.getNode(ISD::TRUNCATE,
4044                                                 SDLoc(N),
4045                                                 TruncVT, N100),
4046                                     DAG.getConstant(TruncC, TruncVT)));
4047    }
4048  }
4049
4050  // fold operands of srl based on knowledge that the low bits are not
4051  // demanded.
4052  if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
4053    return SDValue(N, 0);
4054
4055  if (N1C) {
4056    SDValue NewSRL = visitShiftByConstant(N, N1C->getZExtValue());
4057    if (NewSRL.getNode())
4058      return NewSRL;
4059  }
4060
4061  // Attempt to convert a srl of a load into a narrower zero-extending load.
4062  SDValue NarrowLoad = ReduceLoadWidth(N);
4063  if (NarrowLoad.getNode())
4064    return NarrowLoad;
4065
4066  // Here is a common situation. We want to optimize:
4067  //
4068  //   %a = ...
4069  //   %b = and i32 %a, 2
4070  //   %c = srl i32 %b, 1
4071  //   brcond i32 %c ...
4072  //
4073  // into
4074  //
4075  //   %a = ...
4076  //   %b = and %a, 2
4077  //   %c = setcc eq %b, 0
4078  //   brcond %c ...
4079  //
4080  // However when after the source operand of SRL is optimized into AND, the SRL
4081  // itself may not be optimized further. Look for it and add the BRCOND into
4082  // the worklist.
4083  if (N->hasOneUse()) {
4084    SDNode *Use = *N->use_begin();
4085    if (Use->getOpcode() == ISD::BRCOND)
4086      AddToWorkList(Use);
4087    else if (Use->getOpcode() == ISD::TRUNCATE && Use->hasOneUse()) {
4088      // Also look pass the truncate.
4089      Use = *Use->use_begin();
4090      if (Use->getOpcode() == ISD::BRCOND)
4091        AddToWorkList(Use);
4092    }
4093  }
4094
4095  return SDValue();
4096}
4097
4098SDValue DAGCombiner::visitCTLZ(SDNode *N) {
4099  SDValue N0 = N->getOperand(0);
4100  EVT VT = N->getValueType(0);
4101
4102  // fold (ctlz c1) -> c2
4103  if (isa<ConstantSDNode>(N0))
4104    return DAG.getNode(ISD::CTLZ, SDLoc(N), VT, N0);
4105  return SDValue();
4106}
4107
4108SDValue DAGCombiner::visitCTLZ_ZERO_UNDEF(SDNode *N) {
4109  SDValue N0 = N->getOperand(0);
4110  EVT VT = N->getValueType(0);
4111
4112  // fold (ctlz_zero_undef c1) -> c2
4113  if (isa<ConstantSDNode>(N0))
4114    return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SDLoc(N), VT, N0);
4115  return SDValue();
4116}
4117
4118SDValue DAGCombiner::visitCTTZ(SDNode *N) {
4119  SDValue N0 = N->getOperand(0);
4120  EVT VT = N->getValueType(0);
4121
4122  // fold (cttz c1) -> c2
4123  if (isa<ConstantSDNode>(N0))
4124    return DAG.getNode(ISD::CTTZ, SDLoc(N), VT, N0);
4125  return SDValue();
4126}
4127
4128SDValue DAGCombiner::visitCTTZ_ZERO_UNDEF(SDNode *N) {
4129  SDValue N0 = N->getOperand(0);
4130  EVT VT = N->getValueType(0);
4131
4132  // fold (cttz_zero_undef c1) -> c2
4133  if (isa<ConstantSDNode>(N0))
4134    return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, SDLoc(N), VT, N0);
4135  return SDValue();
4136}
4137
4138SDValue DAGCombiner::visitCTPOP(SDNode *N) {
4139  SDValue N0 = N->getOperand(0);
4140  EVT VT = N->getValueType(0);
4141
4142  // fold (ctpop c1) -> c2
4143  if (isa<ConstantSDNode>(N0))
4144    return DAG.getNode(ISD::CTPOP, SDLoc(N), VT, N0);
4145  return SDValue();
4146}
4147
4148SDValue DAGCombiner::visitSELECT(SDNode *N) {
4149  SDValue N0 = N->getOperand(0);
4150  SDValue N1 = N->getOperand(1);
4151  SDValue N2 = N->getOperand(2);
4152  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
4153  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
4154  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
4155  EVT VT = N->getValueType(0);
4156  EVT VT0 = N0.getValueType();
4157
4158  // fold (select C, X, X) -> X
4159  if (N1 == N2)
4160    return N1;
4161  // fold (select true, X, Y) -> X
4162  if (N0C && !N0C->isNullValue())
4163    return N1;
4164  // fold (select false, X, Y) -> Y
4165  if (N0C && N0C->isNullValue())
4166    return N2;
4167  // fold (select C, 1, X) -> (or C, X)
4168  if (VT == MVT::i1 && N1C && N1C->getAPIntValue() == 1)
4169    return DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N2);
4170  // fold (select C, 0, 1) -> (xor C, 1)
4171  if (VT.isInteger() &&
4172      (VT0 == MVT::i1 ||
4173       (VT0.isInteger() &&
4174        TLI.getBooleanContents(false) ==
4175        TargetLowering::ZeroOrOneBooleanContent)) &&
4176      N1C && N2C && N1C->isNullValue() && N2C->getAPIntValue() == 1) {
4177    SDValue XORNode;
4178    if (VT == VT0)
4179      return DAG.getNode(ISD::XOR, SDLoc(N), VT0,
4180                         N0, DAG.getConstant(1, VT0));
4181    XORNode = DAG.getNode(ISD::XOR, SDLoc(N0), VT0,
4182                          N0, DAG.getConstant(1, VT0));
4183    AddToWorkList(XORNode.getNode());
4184    if (VT.bitsGT(VT0))
4185      return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, XORNode);
4186    return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, XORNode);
4187  }
4188  // fold (select C, 0, X) -> (and (not C), X)
4189  if (VT == VT0 && VT == MVT::i1 && N1C && N1C->isNullValue()) {
4190    SDValue NOTNode = DAG.getNOT(SDLoc(N0), N0, VT);
4191    AddToWorkList(NOTNode.getNode());
4192    return DAG.getNode(ISD::AND, SDLoc(N), VT, NOTNode, N2);
4193  }
4194  // fold (select C, X, 1) -> (or (not C), X)
4195  if (VT == VT0 && VT == MVT::i1 && N2C && N2C->getAPIntValue() == 1) {
4196    SDValue NOTNode = DAG.getNOT(SDLoc(N0), N0, VT);
4197    AddToWorkList(NOTNode.getNode());
4198    return DAG.getNode(ISD::OR, SDLoc(N), VT, NOTNode, N1);
4199  }
4200  // fold (select C, X, 0) -> (and C, X)
4201  if (VT == MVT::i1 && N2C && N2C->isNullValue())
4202    return DAG.getNode(ISD::AND, SDLoc(N), VT, N0, N1);
4203  // fold (select X, X, Y) -> (or X, Y)
4204  // fold (select X, 1, Y) -> (or X, Y)
4205  if (VT == MVT::i1 && (N0 == N1 || (N1C && N1C->getAPIntValue() == 1)))
4206    return DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N2);
4207  // fold (select X, Y, X) -> (and X, Y)
4208  // fold (select X, Y, 0) -> (and X, Y)
4209  if (VT == MVT::i1 && (N0 == N2 || (N2C && N2C->getAPIntValue() == 0)))
4210    return DAG.getNode(ISD::AND, SDLoc(N), VT, N0, N1);
4211
4212  // If we can fold this based on the true/false value, do so.
4213  if (SimplifySelectOps(N, N1, N2))
4214    return SDValue(N, 0);  // Don't revisit N.
4215
4216  // fold selects based on a setcc into other things, such as min/max/abs
4217  if (N0.getOpcode() == ISD::SETCC) {
4218    // FIXME:
4219    // Check against MVT::Other for SELECT_CC, which is a workaround for targets
4220    // having to say they don't support SELECT_CC on every type the DAG knows
4221    // about, since there is no way to mark an opcode illegal at all value types
4222    if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, MVT::Other) &&
4223        TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT))
4224      return DAG.getNode(ISD::SELECT_CC, SDLoc(N), VT,
4225                         N0.getOperand(0), N0.getOperand(1),
4226                         N1, N2, N0.getOperand(2));
4227    return SimplifySelect(SDLoc(N), N0, N1, N2);
4228  }
4229
4230  return SDValue();
4231}
4232
4233SDValue DAGCombiner::visitVSELECT(SDNode *N) {
4234  SDValue N0 = N->getOperand(0);
4235  SDValue N1 = N->getOperand(1);
4236  SDValue N2 = N->getOperand(2);
4237  SDLoc DL(N);
4238
4239  // Canonicalize integer abs.
4240  // vselect (setg[te] X,  0),  X, -X ->
4241  // vselect (setgt    X, -1),  X, -X ->
4242  // vselect (setl[te] X,  0), -X,  X ->
4243  // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
4244  if (N0.getOpcode() == ISD::SETCC) {
4245    SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
4246    ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
4247    bool isAbs = false;
4248    bool RHSIsAllZeros = ISD::isBuildVectorAllZeros(RHS.getNode());
4249
4250    if (((RHSIsAllZeros && (CC == ISD::SETGT || CC == ISD::SETGE)) ||
4251         (ISD::isBuildVectorAllOnes(RHS.getNode()) && CC == ISD::SETGT)) &&
4252        N1 == LHS && N2.getOpcode() == ISD::SUB && N1 == N2.getOperand(1))
4253      isAbs = ISD::isBuildVectorAllZeros(N2.getOperand(0).getNode());
4254    else if ((RHSIsAllZeros && (CC == ISD::SETLT || CC == ISD::SETLE)) &&
4255             N2 == LHS && N1.getOpcode() == ISD::SUB && N2 == N1.getOperand(1))
4256      isAbs = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode());
4257
4258    if (isAbs) {
4259      EVT VT = LHS.getValueType();
4260      SDValue Shift = DAG.getNode(
4261          ISD::SRA, DL, VT, LHS,
4262          DAG.getConstant(VT.getScalarType().getSizeInBits() - 1, VT));
4263      SDValue Add = DAG.getNode(ISD::ADD, DL, VT, LHS, Shift);
4264      AddToWorkList(Shift.getNode());
4265      AddToWorkList(Add.getNode());
4266      return DAG.getNode(ISD::XOR, DL, VT, Add, Shift);
4267    }
4268  }
4269
4270  return SDValue();
4271}
4272
4273SDValue DAGCombiner::visitSELECT_CC(SDNode *N) {
4274  SDValue N0 = N->getOperand(0);
4275  SDValue N1 = N->getOperand(1);
4276  SDValue N2 = N->getOperand(2);
4277  SDValue N3 = N->getOperand(3);
4278  SDValue N4 = N->getOperand(4);
4279  ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get();
4280
4281  // fold select_cc lhs, rhs, x, x, cc -> x
4282  if (N2 == N3)
4283    return N2;
4284
4285  // Determine if the condition we're dealing with is constant
4286  SDValue SCC = SimplifySetCC(getSetCCResultType(N0.getValueType()),
4287                              N0, N1, CC, SDLoc(N), false);
4288  if (SCC.getNode()) {
4289    AddToWorkList(SCC.getNode());
4290
4291    if (ConstantSDNode *SCCC = dyn_cast<ConstantSDNode>(SCC.getNode())) {
4292      if (!SCCC->isNullValue())
4293        return N2;    // cond always true -> true val
4294      else
4295        return N3;    // cond always false -> false val
4296    }
4297
4298    // Fold to a simpler select_cc
4299    if (SCC.getOpcode() == ISD::SETCC)
4300      return DAG.getNode(ISD::SELECT_CC, SDLoc(N), N2.getValueType(),
4301                         SCC.getOperand(0), SCC.getOperand(1), N2, N3,
4302                         SCC.getOperand(2));
4303  }
4304
4305  // If we can fold this based on the true/false value, do so.
4306  if (SimplifySelectOps(N, N2, N3))
4307    return SDValue(N, 0);  // Don't revisit N.
4308
4309  // fold select_cc into other things, such as min/max/abs
4310  return SimplifySelectCC(SDLoc(N), N0, N1, N2, N3, CC);
4311}
4312
4313SDValue DAGCombiner::visitSETCC(SDNode *N) {
4314  return SimplifySetCC(N->getValueType(0), N->getOperand(0), N->getOperand(1),
4315                       cast<CondCodeSDNode>(N->getOperand(2))->get(),
4316                       SDLoc(N));
4317}
4318
4319// ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this:
4320// "fold ({s|z|a}ext (load x)) -> ({s|z|a}ext (truncate ({s|z|a}extload x)))"
4321// transformation. Returns true if extension are possible and the above
4322// mentioned transformation is profitable.
4323static bool ExtendUsesToFormExtLoad(SDNode *N, SDValue N0,
4324                                    unsigned ExtOpc,
4325                                    SmallVectorImpl<SDNode *> &ExtendNodes,
4326                                    const TargetLowering &TLI) {
4327  bool HasCopyToRegUses = false;
4328  bool isTruncFree = TLI.isTruncateFree(N->getValueType(0), N0.getValueType());
4329  for (SDNode::use_iterator UI = N0.getNode()->use_begin(),
4330                            UE = N0.getNode()->use_end();
4331       UI != UE; ++UI) {
4332    SDNode *User = *UI;
4333    if (User == N)
4334      continue;
4335    if (UI.getUse().getResNo() != N0.getResNo())
4336      continue;
4337    // FIXME: Only extend SETCC N, N and SETCC N, c for now.
4338    if (ExtOpc != ISD::ANY_EXTEND && User->getOpcode() == ISD::SETCC) {
4339      ISD::CondCode CC = cast<CondCodeSDNode>(User->getOperand(2))->get();
4340      if (ExtOpc == ISD::ZERO_EXTEND && ISD::isSignedIntSetCC(CC))
4341        // Sign bits will be lost after a zext.
4342        return false;
4343      bool Add = false;
4344      for (unsigned i = 0; i != 2; ++i) {
4345        SDValue UseOp = User->getOperand(i);
4346        if (UseOp == N0)
4347          continue;
4348        if (!isa<ConstantSDNode>(UseOp))
4349          return false;
4350        Add = true;
4351      }
4352      if (Add)
4353        ExtendNodes.push_back(User);
4354      continue;
4355    }
4356    // If truncates aren't free and there are users we can't
4357    // extend, it isn't worthwhile.
4358    if (!isTruncFree)
4359      return false;
4360    // Remember if this value is live-out.
4361    if (User->getOpcode() == ISD::CopyToReg)
4362      HasCopyToRegUses = true;
4363  }
4364
4365  if (HasCopyToRegUses) {
4366    bool BothLiveOut = false;
4367    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
4368         UI != UE; ++UI) {
4369      SDUse &Use = UI.getUse();
4370      if (Use.getResNo() == 0 && Use.getUser()->getOpcode() == ISD::CopyToReg) {
4371        BothLiveOut = true;
4372        break;
4373      }
4374    }
4375    if (BothLiveOut)
4376      // Both unextended and extended values are live out. There had better be
4377      // a good reason for the transformation.
4378      return ExtendNodes.size();
4379  }
4380  return true;
4381}
4382
4383void DAGCombiner::ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs,
4384                                  SDValue Trunc, SDValue ExtLoad, SDLoc DL,
4385                                  ISD::NodeType ExtType) {
4386  // Extend SetCC uses if necessary.
4387  for (unsigned i = 0, e = SetCCs.size(); i != e; ++i) {
4388    SDNode *SetCC = SetCCs[i];
4389    SmallVector<SDValue, 4> Ops;
4390
4391    for (unsigned j = 0; j != 2; ++j) {
4392      SDValue SOp = SetCC->getOperand(j);
4393      if (SOp == Trunc)
4394        Ops.push_back(ExtLoad);
4395      else
4396        Ops.push_back(DAG.getNode(ExtType, DL, ExtLoad->getValueType(0), SOp));
4397    }
4398
4399    Ops.push_back(SetCC->getOperand(2));
4400    CombineTo(SetCC, DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0),
4401                                 &Ops[0], Ops.size()));
4402  }
4403}
4404
4405SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) {
4406  SDValue N0 = N->getOperand(0);
4407  EVT VT = N->getValueType(0);
4408
4409  // fold (sext c1) -> c1
4410  if (isa<ConstantSDNode>(N0))
4411    return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N0);
4412
4413  // fold (sext (sext x)) -> (sext x)
4414  // fold (sext (aext x)) -> (sext x)
4415  if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
4416    return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT,
4417                       N0.getOperand(0));
4418
4419  if (N0.getOpcode() == ISD::TRUNCATE) {
4420    // fold (sext (truncate (load x))) -> (sext (smaller load x))
4421    // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n)))
4422    SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
4423    if (NarrowLoad.getNode()) {
4424      SDNode* oye = N0.getNode()->getOperand(0).getNode();
4425      if (NarrowLoad.getNode() != N0.getNode()) {
4426        CombineTo(N0.getNode(), NarrowLoad);
4427        // CombineTo deleted the truncate, if needed, but not what's under it.
4428        AddToWorkList(oye);
4429      }
4430      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4431    }
4432
4433    // See if the value being truncated is already sign extended.  If so, just
4434    // eliminate the trunc/sext pair.
4435    SDValue Op = N0.getOperand(0);
4436    unsigned OpBits   = Op.getValueType().getScalarType().getSizeInBits();
4437    unsigned MidBits  = N0.getValueType().getScalarType().getSizeInBits();
4438    unsigned DestBits = VT.getScalarType().getSizeInBits();
4439    unsigned NumSignBits = DAG.ComputeNumSignBits(Op);
4440
4441    if (OpBits == DestBits) {
4442      // Op is i32, Mid is i8, and Dest is i32.  If Op has more than 24 sign
4443      // bits, it is already ready.
4444      if (NumSignBits > DestBits-MidBits)
4445        return Op;
4446    } else if (OpBits < DestBits) {
4447      // Op is i32, Mid is i8, and Dest is i64.  If Op has more than 24 sign
4448      // bits, just sext from i32.
4449      if (NumSignBits > OpBits-MidBits)
4450        return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, Op);
4451    } else {
4452      // Op is i64, Mid is i8, and Dest is i32.  If Op has more than 56 sign
4453      // bits, just truncate to i32.
4454      if (NumSignBits > OpBits-MidBits)
4455        return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Op);
4456    }
4457
4458    // fold (sext (truncate x)) -> (sextinreg x).
4459    if (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG,
4460                                                 N0.getValueType())) {
4461      if (OpBits < DestBits)
4462        Op = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N0), VT, Op);
4463      else if (OpBits > DestBits)
4464        Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), VT, Op);
4465      return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, Op,
4466                         DAG.getValueType(N0.getValueType()));
4467    }
4468  }
4469
4470  // fold (sext (load x)) -> (sext (truncate (sextload x)))
4471  // None of the supported targets knows how to perform load and sign extend
4472  // on vectors in one instruction.  We only perform this transformation on
4473  // scalars.
4474  if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() &&
4475      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
4476       TLI.isLoadExtLegal(ISD::SEXTLOAD, N0.getValueType()))) {
4477    bool DoXform = true;
4478    SmallVector<SDNode*, 4> SetCCs;
4479    if (!N0.hasOneUse())
4480      DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::SIGN_EXTEND, SetCCs, TLI);
4481    if (DoXform) {
4482      LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4483      SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
4484                                       LN0->getChain(),
4485                                       LN0->getBasePtr(), LN0->getPointerInfo(),
4486                                       N0.getValueType(),
4487                                       LN0->isVolatile(), LN0->isNonTemporal(),
4488                                       LN0->getAlignment());
4489      CombineTo(N, ExtLoad);
4490      SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0),
4491                                  N0.getValueType(), ExtLoad);
4492      CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1));
4493      ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N),
4494                      ISD::SIGN_EXTEND);
4495      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4496    }
4497  }
4498
4499  // fold (sext (sextload x)) -> (sext (truncate (sextload x)))
4500  // fold (sext ( extload x)) -> (sext (truncate (sextload x)))
4501  if ((ISD::isSEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) &&
4502      ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) {
4503    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4504    EVT MemVT = LN0->getMemoryVT();
4505    if ((!LegalOperations && !LN0->isVolatile()) ||
4506        TLI.isLoadExtLegal(ISD::SEXTLOAD, MemVT)) {
4507      SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
4508                                       LN0->getChain(),
4509                                       LN0->getBasePtr(), LN0->getPointerInfo(),
4510                                       MemVT,
4511                                       LN0->isVolatile(), LN0->isNonTemporal(),
4512                                       LN0->getAlignment());
4513      CombineTo(N, ExtLoad);
4514      CombineTo(N0.getNode(),
4515                DAG.getNode(ISD::TRUNCATE, SDLoc(N0),
4516                            N0.getValueType(), ExtLoad),
4517                ExtLoad.getValue(1));
4518      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4519    }
4520  }
4521
4522  // fold (sext (and/or/xor (load x), cst)) ->
4523  //      (and/or/xor (sextload x), (sext cst))
4524  if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR ||
4525       N0.getOpcode() == ISD::XOR) &&
4526      isa<LoadSDNode>(N0.getOperand(0)) &&
4527      N0.getOperand(1).getOpcode() == ISD::Constant &&
4528      TLI.isLoadExtLegal(ISD::SEXTLOAD, N0.getValueType()) &&
4529      (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) {
4530    LoadSDNode *LN0 = cast<LoadSDNode>(N0.getOperand(0));
4531    if (LN0->getExtensionType() != ISD::ZEXTLOAD) {
4532      bool DoXform = true;
4533      SmallVector<SDNode*, 4> SetCCs;
4534      if (!N0.hasOneUse())
4535        DoXform = ExtendUsesToFormExtLoad(N, N0.getOperand(0), ISD::SIGN_EXTEND,
4536                                          SetCCs, TLI);
4537      if (DoXform) {
4538        SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(LN0), VT,
4539                                         LN0->getChain(), LN0->getBasePtr(),
4540                                         LN0->getPointerInfo(),
4541                                         LN0->getMemoryVT(),
4542                                         LN0->isVolatile(),
4543                                         LN0->isNonTemporal(),
4544                                         LN0->getAlignment());
4545        APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
4546        Mask = Mask.sext(VT.getSizeInBits());
4547        SDValue And = DAG.getNode(N0.getOpcode(), SDLoc(N), VT,
4548                                  ExtLoad, DAG.getConstant(Mask, VT));
4549        SDValue Trunc = DAG.getNode(ISD::TRUNCATE,
4550                                    SDLoc(N0.getOperand(0)),
4551                                    N0.getOperand(0).getValueType(), ExtLoad);
4552        CombineTo(N, And);
4553        CombineTo(N0.getOperand(0).getNode(), Trunc, ExtLoad.getValue(1));
4554        ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N),
4555                        ISD::SIGN_EXTEND);
4556        return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4557      }
4558    }
4559  }
4560
4561  if (N0.getOpcode() == ISD::SETCC) {
4562    // sext(setcc) -> sext_in_reg(vsetcc) for vectors.
4563    // Only do this before legalize for now.
4564    if (VT.isVector() && !LegalOperations &&
4565        TLI.getBooleanContents(true) ==
4566          TargetLowering::ZeroOrNegativeOneBooleanContent) {
4567      EVT N0VT = N0.getOperand(0).getValueType();
4568      // On some architectures (such as SSE/NEON/etc) the SETCC result type is
4569      // of the same size as the compared operands. Only optimize sext(setcc())
4570      // if this is the case.
4571      EVT SVT = getSetCCResultType(N0VT);
4572
4573      // We know that the # elements of the results is the same as the
4574      // # elements of the compare (and the # elements of the compare result
4575      // for that matter).  Check to see that they are the same size.  If so,
4576      // we know that the element size of the sext'd result matches the
4577      // element size of the compare operands.
4578      if (VT.getSizeInBits() == SVT.getSizeInBits())
4579        return DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0),
4580                             N0.getOperand(1),
4581                             cast<CondCodeSDNode>(N0.getOperand(2))->get());
4582
4583      // If the desired elements are smaller or larger than the source
4584      // elements we can use a matching integer vector type and then
4585      // truncate/sign extend
4586      EVT MatchingVectorType = N0VT.changeVectorElementTypeToInteger();
4587      if (SVT == MatchingVectorType) {
4588        SDValue VsetCC = DAG.getSetCC(SDLoc(N), MatchingVectorType,
4589                               N0.getOperand(0), N0.getOperand(1),
4590                               cast<CondCodeSDNode>(N0.getOperand(2))->get());
4591        return DAG.getSExtOrTrunc(VsetCC, SDLoc(N), VT);
4592      }
4593    }
4594
4595    // sext(setcc x, y, cc) -> (select_cc x, y, -1, 0, cc)
4596    unsigned ElementWidth = VT.getScalarType().getSizeInBits();
4597    SDValue NegOne =
4598      DAG.getConstant(APInt::getAllOnesValue(ElementWidth), VT);
4599    SDValue SCC =
4600      SimplifySelectCC(SDLoc(N), N0.getOperand(0), N0.getOperand(1),
4601                       NegOne, DAG.getConstant(0, VT),
4602                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
4603    if (SCC.getNode()) return SCC;
4604    if (!VT.isVector() &&
4605        (!LegalOperations ||
4606         TLI.isOperationLegal(ISD::SETCC, getSetCCResultType(VT)))) {
4607      return DAG.getSelect(SDLoc(N), VT,
4608                           DAG.getSetCC(SDLoc(N),
4609                                        getSetCCResultType(VT),
4610                                        N0.getOperand(0), N0.getOperand(1),
4611                                        cast<CondCodeSDNode>(N0.getOperand(2))->get()),
4612                           NegOne, DAG.getConstant(0, VT));
4613    }
4614  }
4615
4616  // fold (sext x) -> (zext x) if the sign bit is known zero.
4617  if ((!LegalOperations || TLI.isOperationLegal(ISD::ZERO_EXTEND, VT)) &&
4618      DAG.SignBitIsZero(N0))
4619    return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, N0);
4620
4621  return SDValue();
4622}
4623
4624// isTruncateOf - If N is a truncate of some other value, return true, record
4625// the value being truncated in Op and which of Op's bits are zero in KnownZero.
4626// This function computes KnownZero to avoid a duplicated call to
4627// ComputeMaskedBits in the caller.
4628static bool isTruncateOf(SelectionDAG &DAG, SDValue N, SDValue &Op,
4629                         APInt &KnownZero) {
4630  APInt KnownOne;
4631  if (N->getOpcode() == ISD::TRUNCATE) {
4632    Op = N->getOperand(0);
4633    DAG.ComputeMaskedBits(Op, KnownZero, KnownOne);
4634    return true;
4635  }
4636
4637  if (N->getOpcode() != ISD::SETCC || N->getValueType(0) != MVT::i1 ||
4638      cast<CondCodeSDNode>(N->getOperand(2))->get() != ISD::SETNE)
4639    return false;
4640
4641  SDValue Op0 = N->getOperand(0);
4642  SDValue Op1 = N->getOperand(1);
4643  assert(Op0.getValueType() == Op1.getValueType());
4644
4645  ConstantSDNode *COp0 = dyn_cast<ConstantSDNode>(Op0);
4646  ConstantSDNode *COp1 = dyn_cast<ConstantSDNode>(Op1);
4647  if (COp0 && COp0->isNullValue())
4648    Op = Op1;
4649  else if (COp1 && COp1->isNullValue())
4650    Op = Op0;
4651  else
4652    return false;
4653
4654  DAG.ComputeMaskedBits(Op, KnownZero, KnownOne);
4655
4656  if (!(KnownZero | APInt(Op.getValueSizeInBits(), 1)).isAllOnesValue())
4657    return false;
4658
4659  return true;
4660}
4661
4662SDValue DAGCombiner::visitZERO_EXTEND(SDNode *N) {
4663  SDValue N0 = N->getOperand(0);
4664  EVT VT = N->getValueType(0);
4665
4666  // fold (zext c1) -> c1
4667  if (isa<ConstantSDNode>(N0))
4668    return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, N0);
4669  // fold (zext (zext x)) -> (zext x)
4670  // fold (zext (aext x)) -> (zext x)
4671  if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
4672    return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT,
4673                       N0.getOperand(0));
4674
4675  // fold (zext (truncate x)) -> (zext x) or
4676  //      (zext (truncate x)) -> (truncate x)
4677  // This is valid when the truncated bits of x are already zero.
4678  // FIXME: We should extend this to work for vectors too.
4679  SDValue Op;
4680  APInt KnownZero;
4681  if (!VT.isVector() && isTruncateOf(DAG, N0, Op, KnownZero)) {
4682    APInt TruncatedBits =
4683      (Op.getValueSizeInBits() == N0.getValueSizeInBits()) ?
4684      APInt(Op.getValueSizeInBits(), 0) :
4685      APInt::getBitsSet(Op.getValueSizeInBits(),
4686                        N0.getValueSizeInBits(),
4687                        std::min(Op.getValueSizeInBits(),
4688                                 VT.getSizeInBits()));
4689    if (TruncatedBits == (KnownZero & TruncatedBits)) {
4690      if (VT.bitsGT(Op.getValueType()))
4691        return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, Op);
4692      if (VT.bitsLT(Op.getValueType()))
4693        return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Op);
4694
4695      return Op;
4696    }
4697  }
4698
4699  // fold (zext (truncate (load x))) -> (zext (smaller load x))
4700  // fold (zext (truncate (srl (load x), c))) -> (zext (small load (x+c/n)))
4701  if (N0.getOpcode() == ISD::TRUNCATE) {
4702    SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
4703    if (NarrowLoad.getNode()) {
4704      SDNode* oye = N0.getNode()->getOperand(0).getNode();
4705      if (NarrowLoad.getNode() != N0.getNode()) {
4706        CombineTo(N0.getNode(), NarrowLoad);
4707        // CombineTo deleted the truncate, if needed, but not what's under it.
4708        AddToWorkList(oye);
4709      }
4710      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4711    }
4712  }
4713
4714  // fold (zext (truncate x)) -> (and x, mask)
4715  if (N0.getOpcode() == ISD::TRUNCATE &&
4716      (!LegalOperations || TLI.isOperationLegal(ISD::AND, VT))) {
4717
4718    // fold (zext (truncate (load x))) -> (zext (smaller load x))
4719    // fold (zext (truncate (srl (load x), c))) -> (zext (smaller load (x+c/n)))
4720    SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
4721    if (NarrowLoad.getNode()) {
4722      SDNode* oye = N0.getNode()->getOperand(0).getNode();
4723      if (NarrowLoad.getNode() != N0.getNode()) {
4724        CombineTo(N0.getNode(), NarrowLoad);
4725        // CombineTo deleted the truncate, if needed, but not what's under it.
4726        AddToWorkList(oye);
4727      }
4728      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4729    }
4730
4731    SDValue Op = N0.getOperand(0);
4732    if (Op.getValueType().bitsLT(VT)) {
4733      Op = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, Op);
4734      AddToWorkList(Op.getNode());
4735    } else if (Op.getValueType().bitsGT(VT)) {
4736      Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Op);
4737      AddToWorkList(Op.getNode());
4738    }
4739    return DAG.getZeroExtendInReg(Op, SDLoc(N),
4740                                  N0.getValueType().getScalarType());
4741  }
4742
4743  // Fold (zext (and (trunc x), cst)) -> (and x, cst),
4744  // if either of the casts is not free.
4745  if (N0.getOpcode() == ISD::AND &&
4746      N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
4747      N0.getOperand(1).getOpcode() == ISD::Constant &&
4748      (!TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(),
4749                           N0.getValueType()) ||
4750       !TLI.isZExtFree(N0.getValueType(), VT))) {
4751    SDValue X = N0.getOperand(0).getOperand(0);
4752    if (X.getValueType().bitsLT(VT)) {
4753      X = DAG.getNode(ISD::ANY_EXTEND, SDLoc(X), VT, X);
4754    } else if (X.getValueType().bitsGT(VT)) {
4755      X = DAG.getNode(ISD::TRUNCATE, SDLoc(X), VT, X);
4756    }
4757    APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
4758    Mask = Mask.zext(VT.getSizeInBits());
4759    return DAG.getNode(ISD::AND, SDLoc(N), VT,
4760                       X, DAG.getConstant(Mask, VT));
4761  }
4762
4763  // fold (zext (load x)) -> (zext (truncate (zextload x)))
4764  // None of the supported targets knows how to perform load and vector_zext
4765  // on vectors in one instruction.  We only perform this transformation on
4766  // scalars.
4767  if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() &&
4768      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
4769       TLI.isLoadExtLegal(ISD::ZEXTLOAD, N0.getValueType()))) {
4770    bool DoXform = true;
4771    SmallVector<SDNode*, 4> SetCCs;
4772    if (!N0.hasOneUse())
4773      DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ZERO_EXTEND, SetCCs, TLI);
4774    if (DoXform) {
4775      LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4776      SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N), VT,
4777                                       LN0->getChain(),
4778                                       LN0->getBasePtr(), LN0->getPointerInfo(),
4779                                       N0.getValueType(),
4780                                       LN0->isVolatile(), LN0->isNonTemporal(),
4781                                       LN0->getAlignment());
4782      CombineTo(N, ExtLoad);
4783      SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0),
4784                                  N0.getValueType(), ExtLoad);
4785      CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1));
4786
4787      ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N),
4788                      ISD::ZERO_EXTEND);
4789      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4790    }
4791  }
4792
4793  // fold (zext (and/or/xor (load x), cst)) ->
4794  //      (and/or/xor (zextload x), (zext cst))
4795  if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR ||
4796       N0.getOpcode() == ISD::XOR) &&
4797      isa<LoadSDNode>(N0.getOperand(0)) &&
4798      N0.getOperand(1).getOpcode() == ISD::Constant &&
4799      TLI.isLoadExtLegal(ISD::ZEXTLOAD, N0.getValueType()) &&
4800      (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) {
4801    LoadSDNode *LN0 = cast<LoadSDNode>(N0.getOperand(0));
4802    if (LN0->getExtensionType() != ISD::SEXTLOAD) {
4803      bool DoXform = true;
4804      SmallVector<SDNode*, 4> SetCCs;
4805      if (!N0.hasOneUse())
4806        DoXform = ExtendUsesToFormExtLoad(N, N0.getOperand(0), ISD::ZERO_EXTEND,
4807                                          SetCCs, TLI);
4808      if (DoXform) {
4809        SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN0), VT,
4810                                         LN0->getChain(), LN0->getBasePtr(),
4811                                         LN0->getPointerInfo(),
4812                                         LN0->getMemoryVT(),
4813                                         LN0->isVolatile(),
4814                                         LN0->isNonTemporal(),
4815                                         LN0->getAlignment());
4816        APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
4817        Mask = Mask.zext(VT.getSizeInBits());
4818        SDValue And = DAG.getNode(N0.getOpcode(), SDLoc(N), VT,
4819                                  ExtLoad, DAG.getConstant(Mask, VT));
4820        SDValue Trunc = DAG.getNode(ISD::TRUNCATE,
4821                                    SDLoc(N0.getOperand(0)),
4822                                    N0.getOperand(0).getValueType(), ExtLoad);
4823        CombineTo(N, And);
4824        CombineTo(N0.getOperand(0).getNode(), Trunc, ExtLoad.getValue(1));
4825        ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N),
4826                        ISD::ZERO_EXTEND);
4827        return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4828      }
4829    }
4830  }
4831
4832  // fold (zext (zextload x)) -> (zext (truncate (zextload x)))
4833  // fold (zext ( extload x)) -> (zext (truncate (zextload x)))
4834  if ((ISD::isZEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) &&
4835      ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) {
4836    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4837    EVT MemVT = LN0->getMemoryVT();
4838    if ((!LegalOperations && !LN0->isVolatile()) ||
4839        TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT)) {
4840      SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N), VT,
4841                                       LN0->getChain(),
4842                                       LN0->getBasePtr(), LN0->getPointerInfo(),
4843                                       MemVT,
4844                                       LN0->isVolatile(), LN0->isNonTemporal(),
4845                                       LN0->getAlignment());
4846      CombineTo(N, ExtLoad);
4847      CombineTo(N0.getNode(),
4848                DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(),
4849                            ExtLoad),
4850                ExtLoad.getValue(1));
4851      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4852    }
4853  }
4854
4855  if (N0.getOpcode() == ISD::SETCC) {
4856    if (!LegalOperations && VT.isVector()) {
4857      // zext(setcc) -> (and (vsetcc), (1, 1, ...) for vectors.
4858      // Only do this before legalize for now.
4859      EVT N0VT = N0.getOperand(0).getValueType();
4860      EVT EltVT = VT.getVectorElementType();
4861      SmallVector<SDValue,8> OneOps(VT.getVectorNumElements(),
4862                                    DAG.getConstant(1, EltVT));
4863      if (VT.getSizeInBits() == N0VT.getSizeInBits())
4864        // We know that the # elements of the results is the same as the
4865        // # elements of the compare (and the # elements of the compare result
4866        // for that matter).  Check to see that they are the same size.  If so,
4867        // we know that the element size of the sext'd result matches the
4868        // element size of the compare operands.
4869        return DAG.getNode(ISD::AND, SDLoc(N), VT,
4870                           DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0),
4871                                         N0.getOperand(1),
4872                                 cast<CondCodeSDNode>(N0.getOperand(2))->get()),
4873                           DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), VT,
4874                                       &OneOps[0], OneOps.size()));
4875
4876      // If the desired elements are smaller or larger than the source
4877      // elements we can use a matching integer vector type and then
4878      // truncate/sign extend
4879      EVT MatchingElementType =
4880        EVT::getIntegerVT(*DAG.getContext(),
4881                          N0VT.getScalarType().getSizeInBits());
4882      EVT MatchingVectorType =
4883        EVT::getVectorVT(*DAG.getContext(), MatchingElementType,
4884                         N0VT.getVectorNumElements());
4885      SDValue VsetCC =
4886        DAG.getSetCC(SDLoc(N), MatchingVectorType, N0.getOperand(0),
4887                      N0.getOperand(1),
4888                      cast<CondCodeSDNode>(N0.getOperand(2))->get());
4889      return DAG.getNode(ISD::AND, SDLoc(N), VT,
4890                         DAG.getSExtOrTrunc(VsetCC, SDLoc(N), VT),
4891                         DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), VT,
4892                                     &OneOps[0], OneOps.size()));
4893    }
4894
4895    // zext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
4896    SDValue SCC =
4897      SimplifySelectCC(SDLoc(N), N0.getOperand(0), N0.getOperand(1),
4898                       DAG.getConstant(1, VT), DAG.getConstant(0, VT),
4899                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
4900    if (SCC.getNode()) return SCC;
4901  }
4902
4903  // (zext (shl (zext x), cst)) -> (shl (zext x), cst)
4904  if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL) &&
4905      isa<ConstantSDNode>(N0.getOperand(1)) &&
4906      N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND &&
4907      N0.hasOneUse()) {
4908    SDValue ShAmt = N0.getOperand(1);
4909    unsigned ShAmtVal = cast<ConstantSDNode>(ShAmt)->getZExtValue();
4910    if (N0.getOpcode() == ISD::SHL) {
4911      SDValue InnerZExt = N0.getOperand(0);
4912      // If the original shl may be shifting out bits, do not perform this
4913      // transformation.
4914      unsigned KnownZeroBits = InnerZExt.getValueType().getSizeInBits() -
4915        InnerZExt.getOperand(0).getValueType().getSizeInBits();
4916      if (ShAmtVal > KnownZeroBits)
4917        return SDValue();
4918    }
4919
4920    SDLoc DL(N);
4921
4922    // Ensure that the shift amount is wide enough for the shifted value.
4923    if (VT.getSizeInBits() >= 256)
4924      ShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, ShAmt);
4925
4926    return DAG.getNode(N0.getOpcode(), DL, VT,
4927                       DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)),
4928                       ShAmt);
4929  }
4930
4931  return SDValue();
4932}
4933
4934SDValue DAGCombiner::visitANY_EXTEND(SDNode *N) {
4935  SDValue N0 = N->getOperand(0);
4936  EVT VT = N->getValueType(0);
4937
4938  // fold (aext c1) -> c1
4939  if (isa<ConstantSDNode>(N0))
4940    return DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, N0);
4941  // fold (aext (aext x)) -> (aext x)
4942  // fold (aext (zext x)) -> (zext x)
4943  // fold (aext (sext x)) -> (sext x)
4944  if (N0.getOpcode() == ISD::ANY_EXTEND  ||
4945      N0.getOpcode() == ISD::ZERO_EXTEND ||
4946      N0.getOpcode() == ISD::SIGN_EXTEND)
4947    return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, N0.getOperand(0));
4948
4949  // fold (aext (truncate (load x))) -> (aext (smaller load x))
4950  // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n)))
4951  if (N0.getOpcode() == ISD::TRUNCATE) {
4952    SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
4953    if (NarrowLoad.getNode()) {
4954      SDNode* oye = N0.getNode()->getOperand(0).getNode();
4955      if (NarrowLoad.getNode() != N0.getNode()) {
4956        CombineTo(N0.getNode(), NarrowLoad);
4957        // CombineTo deleted the truncate, if needed, but not what's under it.
4958        AddToWorkList(oye);
4959      }
4960      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4961    }
4962  }
4963
4964  // fold (aext (truncate x))
4965  if (N0.getOpcode() == ISD::TRUNCATE) {
4966    SDValue TruncOp = N0.getOperand(0);
4967    if (TruncOp.getValueType() == VT)
4968      return TruncOp; // x iff x size == zext size.
4969    if (TruncOp.getValueType().bitsGT(VT))
4970      return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, TruncOp);
4971    return DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, TruncOp);
4972  }
4973
4974  // Fold (aext (and (trunc x), cst)) -> (and x, cst)
4975  // if the trunc is not free.
4976  if (N0.getOpcode() == ISD::AND &&
4977      N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
4978      N0.getOperand(1).getOpcode() == ISD::Constant &&
4979      !TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(),
4980                          N0.getValueType())) {
4981    SDValue X = N0.getOperand(0).getOperand(0);
4982    if (X.getValueType().bitsLT(VT)) {
4983      X = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, X);
4984    } else if (X.getValueType().bitsGT(VT)) {
4985      X = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, X);
4986    }
4987    APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
4988    Mask = Mask.zext(VT.getSizeInBits());
4989    return DAG.getNode(ISD::AND, SDLoc(N), VT,
4990                       X, DAG.getConstant(Mask, VT));
4991  }
4992
4993  // fold (aext (load x)) -> (aext (truncate (extload x)))
4994  // None of the supported targets knows how to perform load and any_ext
4995  // on vectors in one instruction.  We only perform this transformation on
4996  // scalars.
4997  if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() &&
4998      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
4999       TLI.isLoadExtLegal(ISD::EXTLOAD, N0.getValueType()))) {
5000    bool DoXform = true;
5001    SmallVector<SDNode*, 4> SetCCs;
5002    if (!N0.hasOneUse())
5003      DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ANY_EXTEND, SetCCs, TLI);
5004    if (DoXform) {
5005      LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5006      SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT,
5007                                       LN0->getChain(),
5008                                       LN0->getBasePtr(), LN0->getPointerInfo(),
5009                                       N0.getValueType(),
5010                                       LN0->isVolatile(), LN0->isNonTemporal(),
5011                                       LN0->getAlignment());
5012      CombineTo(N, ExtLoad);
5013      SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0),
5014                                  N0.getValueType(), ExtLoad);
5015      CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1));
5016      ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N),
5017                      ISD::ANY_EXTEND);
5018      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
5019    }
5020  }
5021
5022  // fold (aext (zextload x)) -> (aext (truncate (zextload x)))
5023  // fold (aext (sextload x)) -> (aext (truncate (sextload x)))
5024  // fold (aext ( extload x)) -> (aext (truncate (extload  x)))
5025  if (N0.getOpcode() == ISD::LOAD &&
5026      !ISD::isNON_EXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
5027      N0.hasOneUse()) {
5028    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5029    EVT MemVT = LN0->getMemoryVT();
5030    SDValue ExtLoad = DAG.getExtLoad(LN0->getExtensionType(), SDLoc(N),
5031                                     VT, LN0->getChain(), LN0->getBasePtr(),
5032                                     LN0->getPointerInfo(), MemVT,
5033                                     LN0->isVolatile(), LN0->isNonTemporal(),
5034                                     LN0->getAlignment());
5035    CombineTo(N, ExtLoad);
5036    CombineTo(N0.getNode(),
5037              DAG.getNode(ISD::TRUNCATE, SDLoc(N0),
5038                          N0.getValueType(), ExtLoad),
5039              ExtLoad.getValue(1));
5040    return SDValue(N, 0);   // Return N so it doesn't get rechecked!
5041  }
5042
5043  if (N0.getOpcode() == ISD::SETCC) {
5044    // aext(setcc) -> sext_in_reg(vsetcc) for vectors.
5045    // Only do this before legalize for now.
5046    if (VT.isVector() && !LegalOperations) {
5047      EVT N0VT = N0.getOperand(0).getValueType();
5048        // We know that the # elements of the results is the same as the
5049        // # elements of the compare (and the # elements of the compare result
5050        // for that matter).  Check to see that they are the same size.  If so,
5051        // we know that the element size of the sext'd result matches the
5052        // element size of the compare operands.
5053      if (VT.getSizeInBits() == N0VT.getSizeInBits())
5054        return DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0),
5055                             N0.getOperand(1),
5056                             cast<CondCodeSDNode>(N0.getOperand(2))->get());
5057      // If the desired elements are smaller or larger than the source
5058      // elements we can use a matching integer vector type and then
5059      // truncate/sign extend
5060      else {
5061        EVT MatchingElementType =
5062          EVT::getIntegerVT(*DAG.getContext(),
5063                            N0VT.getScalarType().getSizeInBits());
5064        EVT MatchingVectorType =
5065          EVT::getVectorVT(*DAG.getContext(), MatchingElementType,
5066                           N0VT.getVectorNumElements());
5067        SDValue VsetCC =
5068          DAG.getSetCC(SDLoc(N), MatchingVectorType, N0.getOperand(0),
5069                        N0.getOperand(1),
5070                        cast<CondCodeSDNode>(N0.getOperand(2))->get());
5071        return DAG.getSExtOrTrunc(VsetCC, SDLoc(N), VT);
5072      }
5073    }
5074
5075    // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
5076    SDValue SCC =
5077      SimplifySelectCC(SDLoc(N), N0.getOperand(0), N0.getOperand(1),
5078                       DAG.getConstant(1, VT), DAG.getConstant(0, VT),
5079                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
5080    if (SCC.getNode())
5081      return SCC;
5082  }
5083
5084  return SDValue();
5085}
5086
5087/// GetDemandedBits - See if the specified operand can be simplified with the
5088/// knowledge that only the bits specified by Mask are used.  If so, return the
5089/// simpler operand, otherwise return a null SDValue.
5090SDValue DAGCombiner::GetDemandedBits(SDValue V, const APInt &Mask) {
5091  switch (V.getOpcode()) {
5092  default: break;
5093  case ISD::Constant: {
5094    const ConstantSDNode *CV = cast<ConstantSDNode>(V.getNode());
5095    assert(CV != 0 && "Const value should be ConstSDNode.");
5096    const APInt &CVal = CV->getAPIntValue();
5097    APInt NewVal = CVal & Mask;
5098    if (NewVal != CVal)
5099      return DAG.getConstant(NewVal, V.getValueType());
5100    break;
5101  }
5102  case ISD::OR:
5103  case ISD::XOR:
5104    // If the LHS or RHS don't contribute bits to the or, drop them.
5105    if (DAG.MaskedValueIsZero(V.getOperand(0), Mask))
5106      return V.getOperand(1);
5107    if (DAG.MaskedValueIsZero(V.getOperand(1), Mask))
5108      return V.getOperand(0);
5109    break;
5110  case ISD::SRL:
5111    // Only look at single-use SRLs.
5112    if (!V.getNode()->hasOneUse())
5113      break;
5114    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
5115      // See if we can recursively simplify the LHS.
5116      unsigned Amt = RHSC->getZExtValue();
5117
5118      // Watch out for shift count overflow though.
5119      if (Amt >= Mask.getBitWidth()) break;
5120      APInt NewMask = Mask << Amt;
5121      SDValue SimplifyLHS = GetDemandedBits(V.getOperand(0), NewMask);
5122      if (SimplifyLHS.getNode())
5123        return DAG.getNode(ISD::SRL, SDLoc(V), V.getValueType(),
5124                           SimplifyLHS, V.getOperand(1));
5125    }
5126  }
5127  return SDValue();
5128}
5129
5130/// ReduceLoadWidth - If the result of a wider load is shifted to right of N
5131/// bits and then truncated to a narrower type and where N is a multiple
5132/// of number of bits of the narrower type, transform it to a narrower load
5133/// from address + N / num of bits of new type. If the result is to be
5134/// extended, also fold the extension to form a extending load.
5135SDValue DAGCombiner::ReduceLoadWidth(SDNode *N) {
5136  unsigned Opc = N->getOpcode();
5137
5138  ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
5139  SDValue N0 = N->getOperand(0);
5140  EVT VT = N->getValueType(0);
5141  EVT ExtVT = VT;
5142
5143  // This transformation isn't valid for vector loads.
5144  if (VT.isVector())
5145    return SDValue();
5146
5147  // Special case: SIGN_EXTEND_INREG is basically truncating to ExtVT then
5148  // extended to VT.
5149  if (Opc == ISD::SIGN_EXTEND_INREG) {
5150    ExtType = ISD::SEXTLOAD;
5151    ExtVT = cast<VTSDNode>(N->getOperand(1))->getVT();
5152  } else if (Opc == ISD::SRL) {
5153    // Another special-case: SRL is basically zero-extending a narrower value.
5154    ExtType = ISD::ZEXTLOAD;
5155    N0 = SDValue(N, 0);
5156    ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5157    if (!N01) return SDValue();
5158    ExtVT = EVT::getIntegerVT(*DAG.getContext(),
5159                              VT.getSizeInBits() - N01->getZExtValue());
5160  }
5161  if (LegalOperations && !TLI.isLoadExtLegal(ExtType, ExtVT))
5162    return SDValue();
5163
5164  unsigned EVTBits = ExtVT.getSizeInBits();
5165
5166  // Do not generate loads of non-round integer types since these can
5167  // be expensive (and would be wrong if the type is not byte sized).
5168  if (!ExtVT.isRound())
5169    return SDValue();
5170
5171  unsigned ShAmt = 0;
5172  if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) {
5173    if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
5174      ShAmt = N01->getZExtValue();
5175      // Is the shift amount a multiple of size of VT?
5176      if ((ShAmt & (EVTBits-1)) == 0) {
5177        N0 = N0.getOperand(0);
5178        // Is the load width a multiple of size of VT?
5179        if ((N0.getValueType().getSizeInBits() & (EVTBits-1)) != 0)
5180          return SDValue();
5181      }
5182
5183      // At this point, we must have a load or else we can't do the transform.
5184      if (!isa<LoadSDNode>(N0)) return SDValue();
5185
5186      // Because a SRL must be assumed to *need* to zero-extend the high bits
5187      // (as opposed to anyext the high bits), we can't combine the zextload
5188      // lowering of SRL and an sextload.
5189      if (cast<LoadSDNode>(N0)->getExtensionType() == ISD::SEXTLOAD)
5190        return SDValue();
5191
5192      // If the shift amount is larger than the input type then we're not
5193      // accessing any of the loaded bytes.  If the load was a zextload/extload
5194      // then the result of the shift+trunc is zero/undef (handled elsewhere).
5195      if (ShAmt >= cast<LoadSDNode>(N0)->getMemoryVT().getSizeInBits())
5196        return SDValue();
5197    }
5198  }
5199
5200  // If the load is shifted left (and the result isn't shifted back right),
5201  // we can fold the truncate through the shift.
5202  unsigned ShLeftAmt = 0;
5203  if (ShAmt == 0 && N0.getOpcode() == ISD::SHL && N0.hasOneUse() &&
5204      ExtVT == VT && TLI.isNarrowingProfitable(N0.getValueType(), VT)) {
5205    if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
5206      ShLeftAmt = N01->getZExtValue();
5207      N0 = N0.getOperand(0);
5208    }
5209  }
5210
5211  // If we haven't found a load, we can't narrow it.  Don't transform one with
5212  // multiple uses, this would require adding a new load.
5213  if (!isa<LoadSDNode>(N0) || !N0.hasOneUse())
5214    return SDValue();
5215
5216  // Don't change the width of a volatile load.
5217  LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5218  if (LN0->isVolatile())
5219    return SDValue();
5220
5221  // Verify that we are actually reducing a load width here.
5222  if (LN0->getMemoryVT().getSizeInBits() < EVTBits)
5223    return SDValue();
5224
5225  // For the transform to be legal, the load must produce only two values
5226  // (the value loaded and the chain).  Don't transform a pre-increment
5227  // load, for example, which produces an extra value.  Otherwise the
5228  // transformation is not equivalent, and the downstream logic to replace
5229  // uses gets things wrong.
5230  if (LN0->getNumValues() > 2)
5231    return SDValue();
5232
5233  // If the load that we're shrinking is an extload and we're not just
5234  // discarding the extension we can't simply shrink the load. Bail.
5235  // TODO: It would be possible to merge the extensions in some cases.
5236  if (LN0->getExtensionType() != ISD::NON_EXTLOAD &&
5237      LN0->getMemoryVT().getSizeInBits() < ExtVT.getSizeInBits() + ShAmt)
5238    return SDValue();
5239
5240  EVT PtrType = N0.getOperand(1).getValueType();
5241
5242  if (PtrType == MVT::Untyped || PtrType.isExtended())
5243    // It's not possible to generate a constant of extended or untyped type.
5244    return SDValue();
5245
5246  // For big endian targets, we need to adjust the offset to the pointer to
5247  // load the correct bytes.
5248  if (TLI.isBigEndian()) {
5249    unsigned LVTStoreBits = LN0->getMemoryVT().getStoreSizeInBits();
5250    unsigned EVTStoreBits = ExtVT.getStoreSizeInBits();
5251    ShAmt = LVTStoreBits - EVTStoreBits - ShAmt;
5252  }
5253
5254  uint64_t PtrOff = ShAmt / 8;
5255  unsigned NewAlign = MinAlign(LN0->getAlignment(), PtrOff);
5256  SDValue NewPtr = DAG.getNode(ISD::ADD, SDLoc(LN0),
5257                               PtrType, LN0->getBasePtr(),
5258                               DAG.getConstant(PtrOff, PtrType));
5259  AddToWorkList(NewPtr.getNode());
5260
5261  SDValue Load;
5262  if (ExtType == ISD::NON_EXTLOAD)
5263    Load =  DAG.getLoad(VT, SDLoc(N0), LN0->getChain(), NewPtr,
5264                        LN0->getPointerInfo().getWithOffset(PtrOff),
5265                        LN0->isVolatile(), LN0->isNonTemporal(),
5266                        LN0->isInvariant(), NewAlign);
5267  else
5268    Load = DAG.getExtLoad(ExtType, SDLoc(N0), VT, LN0->getChain(),NewPtr,
5269                          LN0->getPointerInfo().getWithOffset(PtrOff),
5270                          ExtVT, LN0->isVolatile(), LN0->isNonTemporal(),
5271                          NewAlign);
5272
5273  // Replace the old load's chain with the new load's chain.
5274  WorkListRemover DeadNodes(*this);
5275  DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1));
5276
5277  // Shift the result left, if we've swallowed a left shift.
5278  SDValue Result = Load;
5279  if (ShLeftAmt != 0) {
5280    EVT ShImmTy = getShiftAmountTy(Result.getValueType());
5281    if (!isUIntN(ShImmTy.getSizeInBits(), ShLeftAmt))
5282      ShImmTy = VT;
5283    // If the shift amount is as large as the result size (but, presumably,
5284    // no larger than the source) then the useful bits of the result are
5285    // zero; we can't simply return the shortened shift, because the result
5286    // of that operation is undefined.
5287    if (ShLeftAmt >= VT.getSizeInBits())
5288      Result = DAG.getConstant(0, VT);
5289    else
5290      Result = DAG.getNode(ISD::SHL, SDLoc(N0), VT,
5291                          Result, DAG.getConstant(ShLeftAmt, ShImmTy));
5292  }
5293
5294  // Return the new loaded value.
5295  return Result;
5296}
5297
5298SDValue DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) {
5299  SDValue N0 = N->getOperand(0);
5300  SDValue N1 = N->getOperand(1);
5301  EVT VT = N->getValueType(0);
5302  EVT EVT = cast<VTSDNode>(N1)->getVT();
5303  unsigned VTBits = VT.getScalarType().getSizeInBits();
5304  unsigned EVTBits = EVT.getScalarType().getSizeInBits();
5305
5306  // fold (sext_in_reg c1) -> c1
5307  if (isa<ConstantSDNode>(N0) || N0.getOpcode() == ISD::UNDEF)
5308    return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, N0, N1);
5309
5310  // If the input is already sign extended, just drop the extension.
5311  if (DAG.ComputeNumSignBits(N0) >= VTBits-EVTBits+1)
5312    return N0;
5313
5314  // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2
5315  if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
5316      EVT.bitsLT(cast<VTSDNode>(N0.getOperand(1))->getVT()))
5317    return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT,
5318                       N0.getOperand(0), N1);
5319
5320  // fold (sext_in_reg (sext x)) -> (sext x)
5321  // fold (sext_in_reg (aext x)) -> (sext x)
5322  // if x is small enough.
5323  if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) {
5324    SDValue N00 = N0.getOperand(0);
5325    if (N00.getValueType().getScalarType().getSizeInBits() <= EVTBits &&
5326        (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT)))
5327      return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N00, N1);
5328  }
5329
5330  // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero.
5331  if (DAG.MaskedValueIsZero(N0, APInt::getBitsSet(VTBits, EVTBits-1, EVTBits)))
5332    return DAG.getZeroExtendInReg(N0, SDLoc(N), EVT);
5333
5334  // fold operands of sext_in_reg based on knowledge that the top bits are not
5335  // demanded.
5336  if (SimplifyDemandedBits(SDValue(N, 0)))
5337    return SDValue(N, 0);
5338
5339  // fold (sext_in_reg (load x)) -> (smaller sextload x)
5340  // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits))
5341  SDValue NarrowLoad = ReduceLoadWidth(N);
5342  if (NarrowLoad.getNode())
5343    return NarrowLoad;
5344
5345  // fold (sext_in_reg (srl X, 24), i8) -> (sra X, 24)
5346  // fold (sext_in_reg (srl X, 23), i8) -> (sra X, 23) iff possible.
5347  // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above.
5348  if (N0.getOpcode() == ISD::SRL) {
5349    if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
5350      if (ShAmt->getZExtValue()+EVTBits <= VTBits) {
5351        // We can turn this into an SRA iff the input to the SRL is already sign
5352        // extended enough.
5353        unsigned InSignBits = DAG.ComputeNumSignBits(N0.getOperand(0));
5354        if (VTBits-(ShAmt->getZExtValue()+EVTBits) < InSignBits)
5355          return DAG.getNode(ISD::SRA, SDLoc(N), VT,
5356                             N0.getOperand(0), N0.getOperand(1));
5357      }
5358  }
5359
5360  // fold (sext_inreg (extload x)) -> (sextload x)
5361  if (ISD::isEXTLoad(N0.getNode()) &&
5362      ISD::isUNINDEXEDLoad(N0.getNode()) &&
5363      EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
5364      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
5365       TLI.isLoadExtLegal(ISD::SEXTLOAD, EVT))) {
5366    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5367    SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
5368                                     LN0->getChain(),
5369                                     LN0->getBasePtr(), LN0->getPointerInfo(),
5370                                     EVT,
5371                                     LN0->isVolatile(), LN0->isNonTemporal(),
5372                                     LN0->getAlignment());
5373    CombineTo(N, ExtLoad);
5374    CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
5375    AddToWorkList(ExtLoad.getNode());
5376    return SDValue(N, 0);   // Return N so it doesn't get rechecked!
5377  }
5378  // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use
5379  if (ISD::isZEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
5380      N0.hasOneUse() &&
5381      EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
5382      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
5383       TLI.isLoadExtLegal(ISD::SEXTLOAD, EVT))) {
5384    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5385    SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
5386                                     LN0->getChain(),
5387                                     LN0->getBasePtr(), LN0->getPointerInfo(),
5388                                     EVT,
5389                                     LN0->isVolatile(), LN0->isNonTemporal(),
5390                                     LN0->getAlignment());
5391    CombineTo(N, ExtLoad);
5392    CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
5393    return SDValue(N, 0);   // Return N so it doesn't get rechecked!
5394  }
5395
5396  // Form (sext_inreg (bswap >> 16)) or (sext_inreg (rotl (bswap) 16))
5397  if (EVTBits <= 16 && N0.getOpcode() == ISD::OR) {
5398    SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0),
5399                                       N0.getOperand(1), false);
5400    if (BSwap.getNode() != 0)
5401      return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT,
5402                         BSwap, N1);
5403  }
5404
5405  return SDValue();
5406}
5407
5408SDValue DAGCombiner::visitTRUNCATE(SDNode *N) {
5409  SDValue N0 = N->getOperand(0);
5410  EVT VT = N->getValueType(0);
5411  bool isLE = TLI.isLittleEndian();
5412
5413  // noop truncate
5414  if (N0.getValueType() == N->getValueType(0))
5415    return N0;
5416  // fold (truncate c1) -> c1
5417  if (isa<ConstantSDNode>(N0))
5418    return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0);
5419  // fold (truncate (truncate x)) -> (truncate x)
5420  if (N0.getOpcode() == ISD::TRUNCATE)
5421    return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0));
5422  // fold (truncate (ext x)) -> (ext x) or (truncate x) or x
5423  if (N0.getOpcode() == ISD::ZERO_EXTEND ||
5424      N0.getOpcode() == ISD::SIGN_EXTEND ||
5425      N0.getOpcode() == ISD::ANY_EXTEND) {
5426    if (N0.getOperand(0).getValueType().bitsLT(VT))
5427      // if the source is smaller than the dest, we still need an extend
5428      return DAG.getNode(N0.getOpcode(), SDLoc(N), VT,
5429                         N0.getOperand(0));
5430    if (N0.getOperand(0).getValueType().bitsGT(VT))
5431      // if the source is larger than the dest, than we just need the truncate
5432      return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0));
5433    // if the source and dest are the same type, we can drop both the extend
5434    // and the truncate.
5435    return N0.getOperand(0);
5436  }
5437
5438  // Fold extract-and-trunc into a narrow extract. For example:
5439  //   i64 x = EXTRACT_VECTOR_ELT(v2i64 val, i32 1)
5440  //   i32 y = TRUNCATE(i64 x)
5441  //        -- becomes --
5442  //   v16i8 b = BITCAST (v2i64 val)
5443  //   i8 x = EXTRACT_VECTOR_ELT(v16i8 b, i32 8)
5444  //
5445  // Note: We only run this optimization after type legalization (which often
5446  // creates this pattern) and before operation legalization after which
5447  // we need to be more careful about the vector instructions that we generate.
5448  if (N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5449      LegalTypes && !LegalOperations && N0->hasOneUse()) {
5450
5451    EVT VecTy = N0.getOperand(0).getValueType();
5452    EVT ExTy = N0.getValueType();
5453    EVT TrTy = N->getValueType(0);
5454
5455    unsigned NumElem = VecTy.getVectorNumElements();
5456    unsigned SizeRatio = ExTy.getSizeInBits()/TrTy.getSizeInBits();
5457
5458    EVT NVT = EVT::getVectorVT(*DAG.getContext(), TrTy, SizeRatio * NumElem);
5459    assert(NVT.getSizeInBits() == VecTy.getSizeInBits() && "Invalid Size");
5460
5461    SDValue EltNo = N0->getOperand(1);
5462    if (isa<ConstantSDNode>(EltNo) && isTypeLegal(NVT)) {
5463      int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
5464      EVT IndexTy = TLI.getVectorIdxTy();
5465      int Index = isLE ? (Elt*SizeRatio) : (Elt*SizeRatio + (SizeRatio-1));
5466
5467      SDValue V = DAG.getNode(ISD::BITCAST, SDLoc(N),
5468                              NVT, N0.getOperand(0));
5469
5470      return DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
5471                         SDLoc(N), TrTy, V,
5472                         DAG.getConstant(Index, IndexTy));
5473    }
5474  }
5475
5476  // Fold a series of buildvector, bitcast, and truncate if possible.
5477  // For example fold
5478  //   (2xi32 trunc (bitcast ((4xi32)buildvector x, x, y, y) 2xi64)) to
5479  //   (2xi32 (buildvector x, y)).
5480  if (Level == AfterLegalizeVectorOps && VT.isVector() &&
5481      N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() &&
5482      N0.getOperand(0).getOpcode() == ISD::BUILD_VECTOR &&
5483      N0.getOperand(0).hasOneUse()) {
5484
5485    SDValue BuildVect = N0.getOperand(0);
5486    EVT BuildVectEltTy = BuildVect.getValueType().getVectorElementType();
5487    EVT TruncVecEltTy = VT.getVectorElementType();
5488
5489    // Check that the element types match.
5490    if (BuildVectEltTy == TruncVecEltTy) {
5491      // Now we only need to compute the offset of the truncated elements.
5492      unsigned BuildVecNumElts =  BuildVect.getNumOperands();
5493      unsigned TruncVecNumElts = VT.getVectorNumElements();
5494      unsigned TruncEltOffset = BuildVecNumElts / TruncVecNumElts;
5495
5496      assert((BuildVecNumElts % TruncVecNumElts) == 0 &&
5497             "Invalid number of elements");
5498
5499      SmallVector<SDValue, 8> Opnds;
5500      for (unsigned i = 0, e = BuildVecNumElts; i != e; i += TruncEltOffset)
5501        Opnds.push_back(BuildVect.getOperand(i));
5502
5503      return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), VT, &Opnds[0],
5504                         Opnds.size());
5505    }
5506  }
5507
5508  // See if we can simplify the input to this truncate through knowledge that
5509  // only the low bits are being used.
5510  // For example "trunc (or (shl x, 8), y)" // -> trunc y
5511  // Currently we only perform this optimization on scalars because vectors
5512  // may have different active low bits.
5513  if (!VT.isVector()) {
5514    SDValue Shorter =
5515      GetDemandedBits(N0, APInt::getLowBitsSet(N0.getValueSizeInBits(),
5516                                               VT.getSizeInBits()));
5517    if (Shorter.getNode())
5518      return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Shorter);
5519  }
5520  // fold (truncate (load x)) -> (smaller load x)
5521  // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits))
5522  if (!LegalTypes || TLI.isTypeDesirableForOp(N0.getOpcode(), VT)) {
5523    SDValue Reduced = ReduceLoadWidth(N);
5524    if (Reduced.getNode())
5525      return Reduced;
5526  }
5527  // fold (trunc (concat ... x ...)) -> (concat ..., (trunc x), ...)),
5528  // where ... are all 'undef'.
5529  if (N0.getOpcode() == ISD::CONCAT_VECTORS && !LegalTypes) {
5530    SmallVector<EVT, 8> VTs;
5531    SDValue V;
5532    unsigned Idx = 0;
5533    unsigned NumDefs = 0;
5534
5535    for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i) {
5536      SDValue X = N0.getOperand(i);
5537      if (X.getOpcode() != ISD::UNDEF) {
5538        V = X;
5539        Idx = i;
5540        NumDefs++;
5541      }
5542      // Stop if more than one members are non-undef.
5543      if (NumDefs > 1)
5544        break;
5545      VTs.push_back(EVT::getVectorVT(*DAG.getContext(),
5546                                     VT.getVectorElementType(),
5547                                     X.getValueType().getVectorNumElements()));
5548    }
5549
5550    if (NumDefs == 0)
5551      return DAG.getUNDEF(VT);
5552
5553    if (NumDefs == 1) {
5554      assert(V.getNode() && "The single defined operand is empty!");
5555      SmallVector<SDValue, 8> Opnds;
5556      for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
5557        if (i != Idx) {
5558          Opnds.push_back(DAG.getUNDEF(VTs[i]));
5559          continue;
5560        }
5561        SDValue NV = DAG.getNode(ISD::TRUNCATE, SDLoc(V), VTs[i], V);
5562        AddToWorkList(NV.getNode());
5563        Opnds.push_back(NV);
5564      }
5565      return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT,
5566                         &Opnds[0], Opnds.size());
5567    }
5568  }
5569
5570  // Simplify the operands using demanded-bits information.
5571  if (!VT.isVector() &&
5572      SimplifyDemandedBits(SDValue(N, 0)))
5573    return SDValue(N, 0);
5574
5575  return SDValue();
5576}
5577
5578static SDNode *getBuildPairElt(SDNode *N, unsigned i) {
5579  SDValue Elt = N->getOperand(i);
5580  if (Elt.getOpcode() != ISD::MERGE_VALUES)
5581    return Elt.getNode();
5582  return Elt.getOperand(Elt.getResNo()).getNode();
5583}
5584
5585/// CombineConsecutiveLoads - build_pair (load, load) -> load
5586/// if load locations are consecutive.
5587SDValue DAGCombiner::CombineConsecutiveLoads(SDNode *N, EVT VT) {
5588  assert(N->getOpcode() == ISD::BUILD_PAIR);
5589
5590  LoadSDNode *LD1 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 0));
5591  LoadSDNode *LD2 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 1));
5592  if (!LD1 || !LD2 || !ISD::isNON_EXTLoad(LD1) || !LD1->hasOneUse() ||
5593      LD1->getPointerInfo().getAddrSpace() !=
5594         LD2->getPointerInfo().getAddrSpace())
5595    return SDValue();
5596  EVT LD1VT = LD1->getValueType(0);
5597
5598  if (ISD::isNON_EXTLoad(LD2) &&
5599      LD2->hasOneUse() &&
5600      // If both are volatile this would reduce the number of volatile loads.
5601      // If one is volatile it might be ok, but play conservative and bail out.
5602      !LD1->isVolatile() &&
5603      !LD2->isVolatile() &&
5604      DAG.isConsecutiveLoad(LD2, LD1, LD1VT.getSizeInBits()/8, 1)) {
5605    unsigned Align = LD1->getAlignment();
5606    unsigned NewAlign = TLI.getDataLayout()->
5607      getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
5608
5609    if (NewAlign <= Align &&
5610        (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT)))
5611      return DAG.getLoad(VT, SDLoc(N), LD1->getChain(),
5612                         LD1->getBasePtr(), LD1->getPointerInfo(),
5613                         false, false, false, Align);
5614  }
5615
5616  return SDValue();
5617}
5618
5619SDValue DAGCombiner::visitBITCAST(SDNode *N) {
5620  SDValue N0 = N->getOperand(0);
5621  EVT VT = N->getValueType(0);
5622
5623  // If the input is a BUILD_VECTOR with all constant elements, fold this now.
5624  // Only do this before legalize, since afterward the target may be depending
5625  // on the bitconvert.
5626  // First check to see if this is all constant.
5627  if (!LegalTypes &&
5628      N0.getOpcode() == ISD::BUILD_VECTOR && N0.getNode()->hasOneUse() &&
5629      VT.isVector()) {
5630    bool isSimple = true;
5631    for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i)
5632      if (N0.getOperand(i).getOpcode() != ISD::UNDEF &&
5633          N0.getOperand(i).getOpcode() != ISD::Constant &&
5634          N0.getOperand(i).getOpcode() != ISD::ConstantFP) {
5635        isSimple = false;
5636        break;
5637      }
5638
5639    EVT DestEltVT = N->getValueType(0).getVectorElementType();
5640    assert(!DestEltVT.isVector() &&
5641           "Element type of vector ValueType must not be vector!");
5642    if (isSimple)
5643      return ConstantFoldBITCASTofBUILD_VECTOR(N0.getNode(), DestEltVT);
5644  }
5645
5646  // If the input is a constant, let getNode fold it.
5647  if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0)) {
5648    SDValue Res = DAG.getNode(ISD::BITCAST, SDLoc(N), VT, N0);
5649    if (Res.getNode() != N) {
5650      if (!LegalOperations ||
5651          TLI.isOperationLegal(Res.getNode()->getOpcode(), VT))
5652        return Res;
5653
5654      // Folding it resulted in an illegal node, and it's too late to
5655      // do that. Clean up the old node and forego the transformation.
5656      // Ideally this won't happen very often, because instcombine
5657      // and the earlier dagcombine runs (where illegal nodes are
5658      // permitted) should have folded most of them already.
5659      DAG.DeleteNode(Res.getNode());
5660    }
5661  }
5662
5663  // (conv (conv x, t1), t2) -> (conv x, t2)
5664  if (N0.getOpcode() == ISD::BITCAST)
5665    return DAG.getNode(ISD::BITCAST, SDLoc(N), VT,
5666                       N0.getOperand(0));
5667
5668  // fold (conv (load x)) -> (load (conv*)x)
5669  // If the resultant load doesn't need a higher alignment than the original!
5670  if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
5671      // Do not change the width of a volatile load.
5672      !cast<LoadSDNode>(N0)->isVolatile() &&
5673      (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT))) {
5674    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5675    unsigned Align = TLI.getDataLayout()->
5676      getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
5677    unsigned OrigAlign = LN0->getAlignment();
5678
5679    if (Align <= OrigAlign) {
5680      SDValue Load = DAG.getLoad(VT, SDLoc(N), LN0->getChain(),
5681                                 LN0->getBasePtr(), LN0->getPointerInfo(),
5682                                 LN0->isVolatile(), LN0->isNonTemporal(),
5683                                 LN0->isInvariant(), OrigAlign);
5684      AddToWorkList(N);
5685      CombineTo(N0.getNode(),
5686                DAG.getNode(ISD::BITCAST, SDLoc(N0),
5687                            N0.getValueType(), Load),
5688                Load.getValue(1));
5689      return Load;
5690    }
5691  }
5692
5693  // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
5694  // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
5695  // This often reduces constant pool loads.
5696  if (((N0.getOpcode() == ISD::FNEG && !TLI.isFNegFree(N0.getValueType())) ||
5697       (N0.getOpcode() == ISD::FABS && !TLI.isFAbsFree(N0.getValueType()))) &&
5698      N0.getNode()->hasOneUse() && VT.isInteger() &&
5699      !VT.isVector() && !N0.getValueType().isVector()) {
5700    SDValue NewConv = DAG.getNode(ISD::BITCAST, SDLoc(N0), VT,
5701                                  N0.getOperand(0));
5702    AddToWorkList(NewConv.getNode());
5703
5704    APInt SignBit = APInt::getSignBit(VT.getSizeInBits());
5705    if (N0.getOpcode() == ISD::FNEG)
5706      return DAG.getNode(ISD::XOR, SDLoc(N), VT,
5707                         NewConv, DAG.getConstant(SignBit, VT));
5708    assert(N0.getOpcode() == ISD::FABS);
5709    return DAG.getNode(ISD::AND, SDLoc(N), VT,
5710                       NewConv, DAG.getConstant(~SignBit, VT));
5711  }
5712
5713  // fold (bitconvert (fcopysign cst, x)) ->
5714  //         (or (and (bitconvert x), sign), (and cst, (not sign)))
5715  // Note that we don't handle (copysign x, cst) because this can always be
5716  // folded to an fneg or fabs.
5717  if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse() &&
5718      isa<ConstantFPSDNode>(N0.getOperand(0)) &&
5719      VT.isInteger() && !VT.isVector()) {
5720    unsigned OrigXWidth = N0.getOperand(1).getValueType().getSizeInBits();
5721    EVT IntXVT = EVT::getIntegerVT(*DAG.getContext(), OrigXWidth);
5722    if (isTypeLegal(IntXVT)) {
5723      SDValue X = DAG.getNode(ISD::BITCAST, SDLoc(N0),
5724                              IntXVT, N0.getOperand(1));
5725      AddToWorkList(X.getNode());
5726
5727      // If X has a different width than the result/lhs, sext it or truncate it.
5728      unsigned VTWidth = VT.getSizeInBits();
5729      if (OrigXWidth < VTWidth) {
5730        X = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, X);
5731        AddToWorkList(X.getNode());
5732      } else if (OrigXWidth > VTWidth) {
5733        // To get the sign bit in the right place, we have to shift it right
5734        // before truncating.
5735        X = DAG.getNode(ISD::SRL, SDLoc(X),
5736                        X.getValueType(), X,
5737                        DAG.getConstant(OrigXWidth-VTWidth, X.getValueType()));
5738        AddToWorkList(X.getNode());
5739        X = DAG.getNode(ISD::TRUNCATE, SDLoc(X), VT, X);
5740        AddToWorkList(X.getNode());
5741      }
5742
5743      APInt SignBit = APInt::getSignBit(VT.getSizeInBits());
5744      X = DAG.getNode(ISD::AND, SDLoc(X), VT,
5745                      X, DAG.getConstant(SignBit, VT));
5746      AddToWorkList(X.getNode());
5747
5748      SDValue Cst = DAG.getNode(ISD::BITCAST, SDLoc(N0),
5749                                VT, N0.getOperand(0));
5750      Cst = DAG.getNode(ISD::AND, SDLoc(Cst), VT,
5751                        Cst, DAG.getConstant(~SignBit, VT));
5752      AddToWorkList(Cst.getNode());
5753
5754      return DAG.getNode(ISD::OR, SDLoc(N), VT, X, Cst);
5755    }
5756  }
5757
5758  // bitconvert(build_pair(ld, ld)) -> ld iff load locations are consecutive.
5759  if (N0.getOpcode() == ISD::BUILD_PAIR) {
5760    SDValue CombineLD = CombineConsecutiveLoads(N0.getNode(), VT);
5761    if (CombineLD.getNode())
5762      return CombineLD;
5763  }
5764
5765  return SDValue();
5766}
5767
5768SDValue DAGCombiner::visitBUILD_PAIR(SDNode *N) {
5769  EVT VT = N->getValueType(0);
5770  return CombineConsecutiveLoads(N, VT);
5771}
5772
5773/// ConstantFoldBITCASTofBUILD_VECTOR - We know that BV is a build_vector
5774/// node with Constant, ConstantFP or Undef operands.  DstEltVT indicates the
5775/// destination element value type.
5776SDValue DAGCombiner::
5777ConstantFoldBITCASTofBUILD_VECTOR(SDNode *BV, EVT DstEltVT) {
5778  EVT SrcEltVT = BV->getValueType(0).getVectorElementType();
5779
5780  // If this is already the right type, we're done.
5781  if (SrcEltVT == DstEltVT) return SDValue(BV, 0);
5782
5783  unsigned SrcBitSize = SrcEltVT.getSizeInBits();
5784  unsigned DstBitSize = DstEltVT.getSizeInBits();
5785
5786  // If this is a conversion of N elements of one type to N elements of another
5787  // type, convert each element.  This handles FP<->INT cases.
5788  if (SrcBitSize == DstBitSize) {
5789    EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT,
5790                              BV->getValueType(0).getVectorNumElements());
5791
5792    // Due to the FP element handling below calling this routine recursively,
5793    // we can end up with a scalar-to-vector node here.
5794    if (BV->getOpcode() == ISD::SCALAR_TO_VECTOR)
5795      return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(BV), VT,
5796                         DAG.getNode(ISD::BITCAST, SDLoc(BV),
5797                                     DstEltVT, BV->getOperand(0)));
5798
5799    SmallVector<SDValue, 8> Ops;
5800    for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
5801      SDValue Op = BV->getOperand(i);
5802      // If the vector element type is not legal, the BUILD_VECTOR operands
5803      // are promoted and implicitly truncated.  Make that explicit here.
5804      if (Op.getValueType() != SrcEltVT)
5805        Op = DAG.getNode(ISD::TRUNCATE, SDLoc(BV), SrcEltVT, Op);
5806      Ops.push_back(DAG.getNode(ISD::BITCAST, SDLoc(BV),
5807                                DstEltVT, Op));
5808      AddToWorkList(Ops.back().getNode());
5809    }
5810    return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(BV), VT,
5811                       &Ops[0], Ops.size());
5812  }
5813
5814  // Otherwise, we're growing or shrinking the elements.  To avoid having to
5815  // handle annoying details of growing/shrinking FP values, we convert them to
5816  // int first.
5817  if (SrcEltVT.isFloatingPoint()) {
5818    // Convert the input float vector to a int vector where the elements are the
5819    // same sizes.
5820    assert((SrcEltVT == MVT::f32 || SrcEltVT == MVT::f64) && "Unknown FP VT!");
5821    EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), SrcEltVT.getSizeInBits());
5822    BV = ConstantFoldBITCASTofBUILD_VECTOR(BV, IntVT).getNode();
5823    SrcEltVT = IntVT;
5824  }
5825
5826  // Now we know the input is an integer vector.  If the output is a FP type,
5827  // convert to integer first, then to FP of the right size.
5828  if (DstEltVT.isFloatingPoint()) {
5829    assert((DstEltVT == MVT::f32 || DstEltVT == MVT::f64) && "Unknown FP VT!");
5830    EVT TmpVT = EVT::getIntegerVT(*DAG.getContext(), DstEltVT.getSizeInBits());
5831    SDNode *Tmp = ConstantFoldBITCASTofBUILD_VECTOR(BV, TmpVT).getNode();
5832
5833    // Next, convert to FP elements of the same size.
5834    return ConstantFoldBITCASTofBUILD_VECTOR(Tmp, DstEltVT);
5835  }
5836
5837  // Okay, we know the src/dst types are both integers of differing types.
5838  // Handling growing first.
5839  assert(SrcEltVT.isInteger() && DstEltVT.isInteger());
5840  if (SrcBitSize < DstBitSize) {
5841    unsigned NumInputsPerOutput = DstBitSize/SrcBitSize;
5842
5843    SmallVector<SDValue, 8> Ops;
5844    for (unsigned i = 0, e = BV->getNumOperands(); i != e;
5845         i += NumInputsPerOutput) {
5846      bool isLE = TLI.isLittleEndian();
5847      APInt NewBits = APInt(DstBitSize, 0);
5848      bool EltIsUndef = true;
5849      for (unsigned j = 0; j != NumInputsPerOutput; ++j) {
5850        // Shift the previously computed bits over.
5851        NewBits <<= SrcBitSize;
5852        SDValue Op = BV->getOperand(i+ (isLE ? (NumInputsPerOutput-j-1) : j));
5853        if (Op.getOpcode() == ISD::UNDEF) continue;
5854        EltIsUndef = false;
5855
5856        NewBits |= cast<ConstantSDNode>(Op)->getAPIntValue().
5857                   zextOrTrunc(SrcBitSize).zext(DstBitSize);
5858      }
5859
5860      if (EltIsUndef)
5861        Ops.push_back(DAG.getUNDEF(DstEltVT));
5862      else
5863        Ops.push_back(DAG.getConstant(NewBits, DstEltVT));
5864    }
5865
5866    EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, Ops.size());
5867    return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(BV), VT,
5868                       &Ops[0], Ops.size());
5869  }
5870
5871  // Finally, this must be the case where we are shrinking elements: each input
5872  // turns into multiple outputs.
5873  bool isS2V = ISD::isScalarToVector(BV);
5874  unsigned NumOutputsPerInput = SrcBitSize/DstBitSize;
5875  EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT,
5876                            NumOutputsPerInput*BV->getNumOperands());
5877  SmallVector<SDValue, 8> Ops;
5878
5879  for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
5880    if (BV->getOperand(i).getOpcode() == ISD::UNDEF) {
5881      for (unsigned j = 0; j != NumOutputsPerInput; ++j)
5882        Ops.push_back(DAG.getUNDEF(DstEltVT));
5883      continue;
5884    }
5885
5886    APInt OpVal = cast<ConstantSDNode>(BV->getOperand(i))->
5887                  getAPIntValue().zextOrTrunc(SrcBitSize);
5888
5889    for (unsigned j = 0; j != NumOutputsPerInput; ++j) {
5890      APInt ThisVal = OpVal.trunc(DstBitSize);
5891      Ops.push_back(DAG.getConstant(ThisVal, DstEltVT));
5892      if (isS2V && i == 0 && j == 0 && ThisVal.zext(SrcBitSize) == OpVal)
5893        // Simply turn this into a SCALAR_TO_VECTOR of the new type.
5894        return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(BV), VT,
5895                           Ops[0]);
5896      OpVal = OpVal.lshr(DstBitSize);
5897    }
5898
5899    // For big endian targets, swap the order of the pieces of each element.
5900    if (TLI.isBigEndian())
5901      std::reverse(Ops.end()-NumOutputsPerInput, Ops.end());
5902  }
5903
5904  return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(BV), VT,
5905                     &Ops[0], Ops.size());
5906}
5907
5908SDValue DAGCombiner::visitFADD(SDNode *N) {
5909  SDValue N0 = N->getOperand(0);
5910  SDValue N1 = N->getOperand(1);
5911  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
5912  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5913  EVT VT = N->getValueType(0);
5914
5915  // fold vector ops
5916  if (VT.isVector()) {
5917    SDValue FoldedVOp = SimplifyVBinOp(N);
5918    if (FoldedVOp.getNode()) return FoldedVOp;
5919  }
5920
5921  // fold (fadd c1, c2) -> c1 + c2
5922  if (N0CFP && N1CFP)
5923    return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0, N1);
5924  // canonicalize constant to RHS
5925  if (N0CFP && !N1CFP)
5926    return DAG.getNode(ISD::FADD, SDLoc(N), VT, N1, N0);
5927  // fold (fadd A, 0) -> A
5928  if (DAG.getTarget().Options.UnsafeFPMath && N1CFP &&
5929      N1CFP->getValueAPF().isZero())
5930    return N0;
5931  // fold (fadd A, (fneg B)) -> (fsub A, B)
5932  if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) &&
5933    isNegatibleForFree(N1, LegalOperations, TLI, &DAG.getTarget().Options) == 2)
5934    return DAG.getNode(ISD::FSUB, SDLoc(N), VT, N0,
5935                       GetNegatedExpression(N1, DAG, LegalOperations));
5936  // fold (fadd (fneg A), B) -> (fsub B, A)
5937  if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) &&
5938    isNegatibleForFree(N0, LegalOperations, TLI, &DAG.getTarget().Options) == 2)
5939    return DAG.getNode(ISD::FSUB, SDLoc(N), VT, N1,
5940                       GetNegatedExpression(N0, DAG, LegalOperations));
5941
5942  // If allowed, fold (fadd (fadd x, c1), c2) -> (fadd x, (fadd c1, c2))
5943  if (DAG.getTarget().Options.UnsafeFPMath && N1CFP &&
5944      N0.getOpcode() == ISD::FADD && N0.getNode()->hasOneUse() &&
5945      isa<ConstantFPSDNode>(N0.getOperand(1)))
5946    return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0.getOperand(0),
5947                       DAG.getNode(ISD::FADD, SDLoc(N), VT,
5948                                   N0.getOperand(1), N1));
5949
5950  // No FP constant should be created after legalization as Instruction
5951  // Selection pass has hard time in dealing with FP constant.
5952  //
5953  // We don't need test this condition for transformation like following, as
5954  // the DAG being transformed implies it is legal to take FP constant as
5955  // operand.
5956  //
5957  //  (fadd (fmul c, x), x) -> (fmul c+1, x)
5958  //
5959  bool AllowNewFpConst = (Level < AfterLegalizeDAG);
5960
5961  // If allow, fold (fadd (fneg x), x) -> 0.0
5962  if (AllowNewFpConst && DAG.getTarget().Options.UnsafeFPMath &&
5963      N0.getOpcode() == ISD::FNEG && N0.getOperand(0) == N1)
5964    return DAG.getConstantFP(0.0, VT);
5965
5966    // If allow, fold (fadd x, (fneg x)) -> 0.0
5967  if (AllowNewFpConst && DAG.getTarget().Options.UnsafeFPMath &&
5968      N1.getOpcode() == ISD::FNEG && N1.getOperand(0) == N0)
5969    return DAG.getConstantFP(0.0, VT);
5970
5971  // In unsafe math mode, we can fold chains of FADD's of the same value
5972  // into multiplications.  This transform is not safe in general because
5973  // we are reducing the number of rounding steps.
5974  if (DAG.getTarget().Options.UnsafeFPMath &&
5975      TLI.isOperationLegalOrCustom(ISD::FMUL, VT) &&
5976      !N0CFP && !N1CFP) {
5977    if (N0.getOpcode() == ISD::FMUL) {
5978      ConstantFPSDNode *CFP00 = dyn_cast<ConstantFPSDNode>(N0.getOperand(0));
5979      ConstantFPSDNode *CFP01 = dyn_cast<ConstantFPSDNode>(N0.getOperand(1));
5980
5981      // (fadd (fmul c, x), x) -> (fmul x, c+1)
5982      if (CFP00 && !CFP01 && N0.getOperand(1) == N1) {
5983        SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
5984                                     SDValue(CFP00, 0),
5985                                     DAG.getConstantFP(1.0, VT));
5986        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
5987                           N1, NewCFP);
5988      }
5989
5990      // (fadd (fmul x, c), x) -> (fmul x, c+1)
5991      if (CFP01 && !CFP00 && N0.getOperand(0) == N1) {
5992        SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
5993                                     SDValue(CFP01, 0),
5994                                     DAG.getConstantFP(1.0, VT));
5995        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
5996                           N1, NewCFP);
5997      }
5998
5999      // (fadd (fmul c, x), (fadd x, x)) -> (fmul x, c+2)
6000      if (CFP00 && !CFP01 && N1.getOpcode() == ISD::FADD &&
6001          N1.getOperand(0) == N1.getOperand(1) &&
6002          N0.getOperand(1) == N1.getOperand(0)) {
6003        SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
6004                                     SDValue(CFP00, 0),
6005                                     DAG.getConstantFP(2.0, VT));
6006        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6007                           N0.getOperand(1), NewCFP);
6008      }
6009
6010      // (fadd (fmul x, c), (fadd x, x)) -> (fmul x, c+2)
6011      if (CFP01 && !CFP00 && N1.getOpcode() == ISD::FADD &&
6012          N1.getOperand(0) == N1.getOperand(1) &&
6013          N0.getOperand(0) == N1.getOperand(0)) {
6014        SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
6015                                     SDValue(CFP01, 0),
6016                                     DAG.getConstantFP(2.0, VT));
6017        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6018                           N0.getOperand(0), NewCFP);
6019      }
6020    }
6021
6022    if (N1.getOpcode() == ISD::FMUL) {
6023      ConstantFPSDNode *CFP10 = dyn_cast<ConstantFPSDNode>(N1.getOperand(0));
6024      ConstantFPSDNode *CFP11 = dyn_cast<ConstantFPSDNode>(N1.getOperand(1));
6025
6026      // (fadd x, (fmul c, x)) -> (fmul x, c+1)
6027      if (CFP10 && !CFP11 && N1.getOperand(1) == N0) {
6028        SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
6029                                     SDValue(CFP10, 0),
6030                                     DAG.getConstantFP(1.0, VT));
6031        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6032                           N0, NewCFP);
6033      }
6034
6035      // (fadd x, (fmul x, c)) -> (fmul x, c+1)
6036      if (CFP11 && !CFP10 && N1.getOperand(0) == N0) {
6037        SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
6038                                     SDValue(CFP11, 0),
6039                                     DAG.getConstantFP(1.0, VT));
6040        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6041                           N0, NewCFP);
6042      }
6043
6044
6045      // (fadd (fadd x, x), (fmul c, x)) -> (fmul x, c+2)
6046      if (CFP10 && !CFP11 && N0.getOpcode() == ISD::FADD &&
6047          N0.getOperand(0) == N0.getOperand(1) &&
6048          N1.getOperand(1) == N0.getOperand(0)) {
6049        SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
6050                                     SDValue(CFP10, 0),
6051                                     DAG.getConstantFP(2.0, VT));
6052        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6053                           N1.getOperand(1), NewCFP);
6054      }
6055
6056      // (fadd (fadd x, x), (fmul x, c)) -> (fmul x, c+2)
6057      if (CFP11 && !CFP10 && N0.getOpcode() == ISD::FADD &&
6058          N0.getOperand(0) == N0.getOperand(1) &&
6059          N1.getOperand(0) == N0.getOperand(0)) {
6060        SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
6061                                     SDValue(CFP11, 0),
6062                                     DAG.getConstantFP(2.0, VT));
6063        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6064                           N1.getOperand(0), NewCFP);
6065      }
6066    }
6067
6068    if (N0.getOpcode() == ISD::FADD && AllowNewFpConst) {
6069      ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N0.getOperand(0));
6070      // (fadd (fadd x, x), x) -> (fmul x, 3.0)
6071      if (!CFP && N0.getOperand(0) == N0.getOperand(1) &&
6072          (N0.getOperand(0) == N1))
6073        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6074                           N1, DAG.getConstantFP(3.0, VT));
6075    }
6076
6077    if (N1.getOpcode() == ISD::FADD && AllowNewFpConst) {
6078      ConstantFPSDNode *CFP10 = dyn_cast<ConstantFPSDNode>(N1.getOperand(0));
6079      // (fadd x, (fadd x, x)) -> (fmul x, 3.0)
6080      if (!CFP10 && N1.getOperand(0) == N1.getOperand(1) &&
6081          N1.getOperand(0) == N0)
6082        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6083                           N0, DAG.getConstantFP(3.0, VT));
6084    }
6085
6086    // (fadd (fadd x, x), (fadd x, x)) -> (fmul x, 4.0)
6087    if (AllowNewFpConst &&
6088        N0.getOpcode() == ISD::FADD && N1.getOpcode() == ISD::FADD &&
6089        N0.getOperand(0) == N0.getOperand(1) &&
6090        N1.getOperand(0) == N1.getOperand(1) &&
6091        N0.getOperand(0) == N1.getOperand(0))
6092      return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6093                         N0.getOperand(0),
6094                         DAG.getConstantFP(4.0, VT));
6095  }
6096
6097  // FADD -> FMA combines:
6098  if ((DAG.getTarget().Options.AllowFPOpFusion == FPOpFusion::Fast ||
6099       DAG.getTarget().Options.UnsafeFPMath) &&
6100      DAG.getTarget().getTargetLowering()->isFMAFasterThanFMulAndFAdd(VT) &&
6101      (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT))) {
6102
6103    // fold (fadd (fmul x, y), z) -> (fma x, y, z)
6104    if (N0.getOpcode() == ISD::FMUL && N0->hasOneUse())
6105      return DAG.getNode(ISD::FMA, SDLoc(N), VT,
6106                         N0.getOperand(0), N0.getOperand(1), N1);
6107
6108    // fold (fadd x, (fmul y, z)) -> (fma y, z, x)
6109    // Note: Commutes FADD operands.
6110    if (N1.getOpcode() == ISD::FMUL && N1->hasOneUse())
6111      return DAG.getNode(ISD::FMA, SDLoc(N), VT,
6112                         N1.getOperand(0), N1.getOperand(1), N0);
6113  }
6114
6115  return SDValue();
6116}
6117
6118SDValue DAGCombiner::visitFSUB(SDNode *N) {
6119  SDValue N0 = N->getOperand(0);
6120  SDValue N1 = N->getOperand(1);
6121  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6122  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6123  EVT VT = N->getValueType(0);
6124  SDLoc dl(N);
6125
6126  // fold vector ops
6127  if (VT.isVector()) {
6128    SDValue FoldedVOp = SimplifyVBinOp(N);
6129    if (FoldedVOp.getNode()) return FoldedVOp;
6130  }
6131
6132  // fold (fsub c1, c2) -> c1-c2
6133  if (N0CFP && N1CFP)
6134    return DAG.getNode(ISD::FSUB, SDLoc(N), VT, N0, N1);
6135  // fold (fsub A, 0) -> A
6136  if (DAG.getTarget().Options.UnsafeFPMath &&
6137      N1CFP && N1CFP->getValueAPF().isZero())
6138    return N0;
6139  // fold (fsub 0, B) -> -B
6140  if (DAG.getTarget().Options.UnsafeFPMath &&
6141      N0CFP && N0CFP->getValueAPF().isZero()) {
6142    if (isNegatibleForFree(N1, LegalOperations, TLI, &DAG.getTarget().Options))
6143      return GetNegatedExpression(N1, DAG, LegalOperations);
6144    if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
6145      return DAG.getNode(ISD::FNEG, dl, VT, N1);
6146  }
6147  // fold (fsub A, (fneg B)) -> (fadd A, B)
6148  if (isNegatibleForFree(N1, LegalOperations, TLI, &DAG.getTarget().Options))
6149    return DAG.getNode(ISD::FADD, dl, VT, N0,
6150                       GetNegatedExpression(N1, DAG, LegalOperations));
6151
6152  // If 'unsafe math' is enabled, fold
6153  //    (fsub x, x) -> 0.0 &
6154  //    (fsub x, (fadd x, y)) -> (fneg y) &
6155  //    (fsub x, (fadd y, x)) -> (fneg y)
6156  if (DAG.getTarget().Options.UnsafeFPMath) {
6157    if (N0 == N1)
6158      return DAG.getConstantFP(0.0f, VT);
6159
6160    if (N1.getOpcode() == ISD::FADD) {
6161      SDValue N10 = N1->getOperand(0);
6162      SDValue N11 = N1->getOperand(1);
6163
6164      if (N10 == N0 && isNegatibleForFree(N11, LegalOperations, TLI,
6165                                          &DAG.getTarget().Options))
6166        return GetNegatedExpression(N11, DAG, LegalOperations);
6167
6168      if (N11 == N0 && isNegatibleForFree(N10, LegalOperations, TLI,
6169                                          &DAG.getTarget().Options))
6170        return GetNegatedExpression(N10, DAG, LegalOperations);
6171    }
6172  }
6173
6174  // FSUB -> FMA combines:
6175  if ((DAG.getTarget().Options.AllowFPOpFusion == FPOpFusion::Fast ||
6176       DAG.getTarget().Options.UnsafeFPMath) &&
6177      DAG.getTarget().getTargetLowering()->isFMAFasterThanFMulAndFAdd(VT) &&
6178      (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT))) {
6179
6180    // fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z))
6181    if (N0.getOpcode() == ISD::FMUL && N0->hasOneUse())
6182      return DAG.getNode(ISD::FMA, dl, VT,
6183                         N0.getOperand(0), N0.getOperand(1),
6184                         DAG.getNode(ISD::FNEG, dl, VT, N1));
6185
6186    // fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x)
6187    // Note: Commutes FSUB operands.
6188    if (N1.getOpcode() == ISD::FMUL && N1->hasOneUse())
6189      return DAG.getNode(ISD::FMA, dl, VT,
6190                         DAG.getNode(ISD::FNEG, dl, VT,
6191                         N1.getOperand(0)),
6192                         N1.getOperand(1), N0);
6193
6194    // fold (fsub (fneg (fmul, x, y)), z) -> (fma (fneg x), y, (fneg z))
6195    if (N0.getOpcode() == ISD::FNEG &&
6196        N0.getOperand(0).getOpcode() == ISD::FMUL &&
6197        N0->hasOneUse() && N0.getOperand(0).hasOneUse()) {
6198      SDValue N00 = N0.getOperand(0).getOperand(0);
6199      SDValue N01 = N0.getOperand(0).getOperand(1);
6200      return DAG.getNode(ISD::FMA, dl, VT,
6201                         DAG.getNode(ISD::FNEG, dl, VT, N00), N01,
6202                         DAG.getNode(ISD::FNEG, dl, VT, N1));
6203    }
6204  }
6205
6206  return SDValue();
6207}
6208
6209SDValue DAGCombiner::visitFMUL(SDNode *N) {
6210  SDValue N0 = N->getOperand(0);
6211  SDValue N1 = N->getOperand(1);
6212  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6213  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6214  EVT VT = N->getValueType(0);
6215  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6216
6217  // fold vector ops
6218  if (VT.isVector()) {
6219    SDValue FoldedVOp = SimplifyVBinOp(N);
6220    if (FoldedVOp.getNode()) return FoldedVOp;
6221  }
6222
6223  // fold (fmul c1, c2) -> c1*c2
6224  if (N0CFP && N1CFP)
6225    return DAG.getNode(ISD::FMUL, SDLoc(N), VT, N0, N1);
6226  // canonicalize constant to RHS
6227  if (N0CFP && !N1CFP)
6228    return DAG.getNode(ISD::FMUL, SDLoc(N), VT, N1, N0);
6229  // fold (fmul A, 0) -> 0
6230  if (DAG.getTarget().Options.UnsafeFPMath &&
6231      N1CFP && N1CFP->getValueAPF().isZero())
6232    return N1;
6233  // fold (fmul A, 0) -> 0, vector edition.
6234  if (DAG.getTarget().Options.UnsafeFPMath &&
6235      ISD::isBuildVectorAllZeros(N1.getNode()))
6236    return N1;
6237  // fold (fmul A, 1.0) -> A
6238  if (N1CFP && N1CFP->isExactlyValue(1.0))
6239    return N0;
6240  // fold (fmul X, 2.0) -> (fadd X, X)
6241  if (N1CFP && N1CFP->isExactlyValue(+2.0))
6242    return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0, N0);
6243  // fold (fmul X, -1.0) -> (fneg X)
6244  if (N1CFP && N1CFP->isExactlyValue(-1.0))
6245    if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
6246      return DAG.getNode(ISD::FNEG, SDLoc(N), VT, N0);
6247
6248  // fold (fmul (fneg X), (fneg Y)) -> (fmul X, Y)
6249  if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, TLI,
6250                                       &DAG.getTarget().Options)) {
6251    if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, TLI,
6252                                         &DAG.getTarget().Options)) {
6253      // Both can be negated for free, check to see if at least one is cheaper
6254      // negated.
6255      if (LHSNeg == 2 || RHSNeg == 2)
6256        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6257                           GetNegatedExpression(N0, DAG, LegalOperations),
6258                           GetNegatedExpression(N1, DAG, LegalOperations));
6259    }
6260  }
6261
6262  // If allowed, fold (fmul (fmul x, c1), c2) -> (fmul x, (fmul c1, c2))
6263  if (DAG.getTarget().Options.UnsafeFPMath &&
6264      N1CFP && N0.getOpcode() == ISD::FMUL &&
6265      N0.getNode()->hasOneUse() && isa<ConstantFPSDNode>(N0.getOperand(1)))
6266    return DAG.getNode(ISD::FMUL, SDLoc(N), VT, N0.getOperand(0),
6267                       DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6268                                   N0.getOperand(1), N1));
6269
6270  return SDValue();
6271}
6272
6273SDValue DAGCombiner::visitFMA(SDNode *N) {
6274  SDValue N0 = N->getOperand(0);
6275  SDValue N1 = N->getOperand(1);
6276  SDValue N2 = N->getOperand(2);
6277  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6278  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6279  EVT VT = N->getValueType(0);
6280  SDLoc dl(N);
6281
6282  if (DAG.getTarget().Options.UnsafeFPMath) {
6283    if (N0CFP && N0CFP->isZero())
6284      return N2;
6285    if (N1CFP && N1CFP->isZero())
6286      return N2;
6287  }
6288  if (N0CFP && N0CFP->isExactlyValue(1.0))
6289    return DAG.getNode(ISD::FADD, SDLoc(N), VT, N1, N2);
6290  if (N1CFP && N1CFP->isExactlyValue(1.0))
6291    return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0, N2);
6292
6293  // Canonicalize (fma c, x, y) -> (fma x, c, y)
6294  if (N0CFP && !N1CFP)
6295    return DAG.getNode(ISD::FMA, SDLoc(N), VT, N1, N0, N2);
6296
6297  // (fma x, c1, (fmul x, c2)) -> (fmul x, c1+c2)
6298  if (DAG.getTarget().Options.UnsafeFPMath && N1CFP &&
6299      N2.getOpcode() == ISD::FMUL &&
6300      N0 == N2.getOperand(0) &&
6301      N2.getOperand(1).getOpcode() == ISD::ConstantFP) {
6302    return DAG.getNode(ISD::FMUL, dl, VT, N0,
6303                       DAG.getNode(ISD::FADD, dl, VT, N1, N2.getOperand(1)));
6304  }
6305
6306
6307  // (fma (fmul x, c1), c2, y) -> (fma x, c1*c2, y)
6308  if (DAG.getTarget().Options.UnsafeFPMath &&
6309      N0.getOpcode() == ISD::FMUL && N1CFP &&
6310      N0.getOperand(1).getOpcode() == ISD::ConstantFP) {
6311    return DAG.getNode(ISD::FMA, dl, VT,
6312                       N0.getOperand(0),
6313                       DAG.getNode(ISD::FMUL, dl, VT, N1, N0.getOperand(1)),
6314                       N2);
6315  }
6316
6317  // (fma x, 1, y) -> (fadd x, y)
6318  // (fma x, -1, y) -> (fadd (fneg x), y)
6319  if (N1CFP) {
6320    if (N1CFP->isExactlyValue(1.0))
6321      return DAG.getNode(ISD::FADD, dl, VT, N0, N2);
6322
6323    if (N1CFP->isExactlyValue(-1.0) &&
6324        (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))) {
6325      SDValue RHSNeg = DAG.getNode(ISD::FNEG, dl, VT, N0);
6326      AddToWorkList(RHSNeg.getNode());
6327      return DAG.getNode(ISD::FADD, dl, VT, N2, RHSNeg);
6328    }
6329  }
6330
6331  // (fma x, c, x) -> (fmul x, (c+1))
6332  if (DAG.getTarget().Options.UnsafeFPMath && N1CFP && N0 == N2)
6333    return DAG.getNode(ISD::FMUL, dl, VT, N0,
6334                       DAG.getNode(ISD::FADD, dl, VT,
6335                                   N1, DAG.getConstantFP(1.0, VT)));
6336
6337  // (fma x, c, (fneg x)) -> (fmul x, (c-1))
6338  if (DAG.getTarget().Options.UnsafeFPMath && N1CFP &&
6339      N2.getOpcode() == ISD::FNEG && N2.getOperand(0) == N0)
6340    return DAG.getNode(ISD::FMUL, dl, VT, N0,
6341                       DAG.getNode(ISD::FADD, dl, VT,
6342                                   N1, DAG.getConstantFP(-1.0, VT)));
6343
6344
6345  return SDValue();
6346}
6347
6348SDValue DAGCombiner::visitFDIV(SDNode *N) {
6349  SDValue N0 = N->getOperand(0);
6350  SDValue N1 = N->getOperand(1);
6351  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6352  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6353  EVT VT = N->getValueType(0);
6354  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6355
6356  // fold vector ops
6357  if (VT.isVector()) {
6358    SDValue FoldedVOp = SimplifyVBinOp(N);
6359    if (FoldedVOp.getNode()) return FoldedVOp;
6360  }
6361
6362  // fold (fdiv c1, c2) -> c1/c2
6363  if (N0CFP && N1CFP)
6364    return DAG.getNode(ISD::FDIV, SDLoc(N), VT, N0, N1);
6365
6366  // fold (fdiv X, c2) -> fmul X, 1/c2 if losing precision is acceptable.
6367  if (N1CFP && DAG.getTarget().Options.UnsafeFPMath) {
6368    // Compute the reciprocal 1.0 / c2.
6369    APFloat N1APF = N1CFP->getValueAPF();
6370    APFloat Recip(N1APF.getSemantics(), 1); // 1.0
6371    APFloat::opStatus st = Recip.divide(N1APF, APFloat::rmNearestTiesToEven);
6372    // Only do the transform if the reciprocal is a legal fp immediate that
6373    // isn't too nasty (eg NaN, denormal, ...).
6374    if ((st == APFloat::opOK || st == APFloat::opInexact) && // Not too nasty
6375        (!LegalOperations ||
6376         // FIXME: custom lowering of ConstantFP might fail (see e.g. ARM
6377         // backend)... we should handle this gracefully after Legalize.
6378         // TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT) ||
6379         TLI.isOperationLegal(llvm::ISD::ConstantFP, VT) ||
6380         TLI.isFPImmLegal(Recip, VT)))
6381      return DAG.getNode(ISD::FMUL, SDLoc(N), VT, N0,
6382                         DAG.getConstantFP(Recip, VT));
6383  }
6384
6385  // (fdiv (fneg X), (fneg Y)) -> (fdiv X, Y)
6386  if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, TLI,
6387                                       &DAG.getTarget().Options)) {
6388    if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, TLI,
6389                                         &DAG.getTarget().Options)) {
6390      // Both can be negated for free, check to see if at least one is cheaper
6391      // negated.
6392      if (LHSNeg == 2 || RHSNeg == 2)
6393        return DAG.getNode(ISD::FDIV, SDLoc(N), VT,
6394                           GetNegatedExpression(N0, DAG, LegalOperations),
6395                           GetNegatedExpression(N1, DAG, LegalOperations));
6396    }
6397  }
6398
6399  return SDValue();
6400}
6401
6402SDValue DAGCombiner::visitFREM(SDNode *N) {
6403  SDValue N0 = N->getOperand(0);
6404  SDValue N1 = N->getOperand(1);
6405  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6406  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6407  EVT VT = N->getValueType(0);
6408
6409  // fold (frem c1, c2) -> fmod(c1,c2)
6410  if (N0CFP && N1CFP)
6411    return DAG.getNode(ISD::FREM, SDLoc(N), VT, N0, N1);
6412
6413  return SDValue();
6414}
6415
6416SDValue DAGCombiner::visitFCOPYSIGN(SDNode *N) {
6417  SDValue N0 = N->getOperand(0);
6418  SDValue N1 = N->getOperand(1);
6419  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6420  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6421  EVT VT = N->getValueType(0);
6422
6423  if (N0CFP && N1CFP)  // Constant fold
6424    return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1);
6425
6426  if (N1CFP) {
6427    const APFloat& V = N1CFP->getValueAPF();
6428    // copysign(x, c1) -> fabs(x)       iff ispos(c1)
6429    // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1)
6430    if (!V.isNegative()) {
6431      if (!LegalOperations || TLI.isOperationLegal(ISD::FABS, VT))
6432        return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0);
6433    } else {
6434      if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
6435        return DAG.getNode(ISD::FNEG, SDLoc(N), VT,
6436                           DAG.getNode(ISD::FABS, SDLoc(N0), VT, N0));
6437    }
6438  }
6439
6440  // copysign(fabs(x), y) -> copysign(x, y)
6441  // copysign(fneg(x), y) -> copysign(x, y)
6442  // copysign(copysign(x,z), y) -> copysign(x, y)
6443  if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG ||
6444      N0.getOpcode() == ISD::FCOPYSIGN)
6445    return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT,
6446                       N0.getOperand(0), N1);
6447
6448  // copysign(x, abs(y)) -> abs(x)
6449  if (N1.getOpcode() == ISD::FABS)
6450    return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0);
6451
6452  // copysign(x, copysign(y,z)) -> copysign(x, z)
6453  if (N1.getOpcode() == ISD::FCOPYSIGN)
6454    return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT,
6455                       N0, N1.getOperand(1));
6456
6457  // copysign(x, fp_extend(y)) -> copysign(x, y)
6458  // copysign(x, fp_round(y)) -> copysign(x, y)
6459  if (N1.getOpcode() == ISD::FP_EXTEND || N1.getOpcode() == ISD::FP_ROUND)
6460    return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT,
6461                       N0, N1.getOperand(0));
6462
6463  return SDValue();
6464}
6465
6466SDValue DAGCombiner::visitSINT_TO_FP(SDNode *N) {
6467  SDValue N0 = N->getOperand(0);
6468  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
6469  EVT VT = N->getValueType(0);
6470  EVT OpVT = N0.getValueType();
6471
6472  // fold (sint_to_fp c1) -> c1fp
6473  if (N0C &&
6474      // ...but only if the target supports immediate floating-point values
6475      (!LegalOperations ||
6476       TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT)))
6477    return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0);
6478
6479  // If the input is a legal type, and SINT_TO_FP is not legal on this target,
6480  // but UINT_TO_FP is legal on this target, try to convert.
6481  if (!TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, OpVT) &&
6482      TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, OpVT)) {
6483    // If the sign bit is known to be zero, we can change this to UINT_TO_FP.
6484    if (DAG.SignBitIsZero(N0))
6485      return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0);
6486  }
6487
6488  // The next optimizations are desireable only if SELECT_CC can be lowered.
6489  // Check against MVT::Other for SELECT_CC, which is a workaround for targets
6490  // having to say they don't support SELECT_CC on every type the DAG knows
6491  // about, since there is no way to mark an opcode illegal at all value types
6492  // (See also visitSELECT)
6493  if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, MVT::Other)) {
6494    // fold (sint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc)
6495    if (N0.getOpcode() == ISD::SETCC && N0.getValueType() == MVT::i1 &&
6496        !VT.isVector() &&
6497        (!LegalOperations ||
6498         TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) {
6499      SDValue Ops[] =
6500        { N0.getOperand(0), N0.getOperand(1),
6501          DAG.getConstantFP(-1.0, VT) , DAG.getConstantFP(0.0, VT),
6502          N0.getOperand(2) };
6503      return DAG.getNode(ISD::SELECT_CC, SDLoc(N), VT, Ops, 5);
6504    }
6505
6506    // fold (sint_to_fp (zext (setcc x, y, cc))) ->
6507    //      (select_cc x, y, 1.0, 0.0,, cc)
6508    if (N0.getOpcode() == ISD::ZERO_EXTEND &&
6509        N0.getOperand(0).getOpcode() == ISD::SETCC &&!VT.isVector() &&
6510        (!LegalOperations ||
6511         TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) {
6512      SDValue Ops[] =
6513        { N0.getOperand(0).getOperand(0), N0.getOperand(0).getOperand(1),
6514          DAG.getConstantFP(1.0, VT) , DAG.getConstantFP(0.0, VT),
6515          N0.getOperand(0).getOperand(2) };
6516      return DAG.getNode(ISD::SELECT_CC, SDLoc(N), VT, Ops, 5);
6517    }
6518  }
6519
6520  return SDValue();
6521}
6522
6523SDValue DAGCombiner::visitUINT_TO_FP(SDNode *N) {
6524  SDValue N0 = N->getOperand(0);
6525  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
6526  EVT VT = N->getValueType(0);
6527  EVT OpVT = N0.getValueType();
6528
6529  // fold (uint_to_fp c1) -> c1fp
6530  if (N0C &&
6531      // ...but only if the target supports immediate floating-point values
6532      (!LegalOperations ||
6533       TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT)))
6534    return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0);
6535
6536  // If the input is a legal type, and UINT_TO_FP is not legal on this target,
6537  // but SINT_TO_FP is legal on this target, try to convert.
6538  if (!TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, OpVT) &&
6539      TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, OpVT)) {
6540    // If the sign bit is known to be zero, we can change this to SINT_TO_FP.
6541    if (DAG.SignBitIsZero(N0))
6542      return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0);
6543  }
6544
6545  // The next optimizations are desireable only if SELECT_CC can be lowered.
6546  // Check against MVT::Other for SELECT_CC, which is a workaround for targets
6547  // having to say they don't support SELECT_CC on every type the DAG knows
6548  // about, since there is no way to mark an opcode illegal at all value types
6549  // (See also visitSELECT)
6550  if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, MVT::Other)) {
6551    // fold (uint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc)
6552
6553    if (N0.getOpcode() == ISD::SETCC && !VT.isVector() &&
6554        (!LegalOperations ||
6555         TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) {
6556      SDValue Ops[] =
6557        { N0.getOperand(0), N0.getOperand(1),
6558          DAG.getConstantFP(1.0, VT),  DAG.getConstantFP(0.0, VT),
6559          N0.getOperand(2) };
6560      return DAG.getNode(ISD::SELECT_CC, SDLoc(N), VT, Ops, 5);
6561    }
6562  }
6563
6564  return SDValue();
6565}
6566
6567SDValue DAGCombiner::visitFP_TO_SINT(SDNode *N) {
6568  SDValue N0 = N->getOperand(0);
6569  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6570  EVT VT = N->getValueType(0);
6571
6572  // fold (fp_to_sint c1fp) -> c1
6573  if (N0CFP)
6574    return DAG.getNode(ISD::FP_TO_SINT, SDLoc(N), VT, N0);
6575
6576  return SDValue();
6577}
6578
6579SDValue DAGCombiner::visitFP_TO_UINT(SDNode *N) {
6580  SDValue N0 = N->getOperand(0);
6581  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6582  EVT VT = N->getValueType(0);
6583
6584  // fold (fp_to_uint c1fp) -> c1
6585  if (N0CFP)
6586    return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), VT, N0);
6587
6588  return SDValue();
6589}
6590
6591SDValue DAGCombiner::visitFP_ROUND(SDNode *N) {
6592  SDValue N0 = N->getOperand(0);
6593  SDValue N1 = N->getOperand(1);
6594  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6595  EVT VT = N->getValueType(0);
6596
6597  // fold (fp_round c1fp) -> c1fp
6598  if (N0CFP)
6599    return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT, N0, N1);
6600
6601  // fold (fp_round (fp_extend x)) -> x
6602  if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType())
6603    return N0.getOperand(0);
6604
6605  // fold (fp_round (fp_round x)) -> (fp_round x)
6606  if (N0.getOpcode() == ISD::FP_ROUND) {
6607    // This is a value preserving truncation if both round's are.
6608    bool IsTrunc = N->getConstantOperandVal(1) == 1 &&
6609                   N0.getNode()->getConstantOperandVal(1) == 1;
6610    return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT, N0.getOperand(0),
6611                       DAG.getIntPtrConstant(IsTrunc));
6612  }
6613
6614  // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y)
6615  if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse()) {
6616    SDValue Tmp = DAG.getNode(ISD::FP_ROUND, SDLoc(N0), VT,
6617                              N0.getOperand(0), N1);
6618    AddToWorkList(Tmp.getNode());
6619    return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT,
6620                       Tmp, N0.getOperand(1));
6621  }
6622
6623  return SDValue();
6624}
6625
6626SDValue DAGCombiner::visitFP_ROUND_INREG(SDNode *N) {
6627  SDValue N0 = N->getOperand(0);
6628  EVT VT = N->getValueType(0);
6629  EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
6630  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6631
6632  // fold (fp_round_inreg c1fp) -> c1fp
6633  if (N0CFP && isTypeLegal(EVT)) {
6634    SDValue Round = DAG.getConstantFP(*N0CFP->getConstantFPValue(), EVT);
6635    return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, Round);
6636  }
6637
6638  return SDValue();
6639}
6640
6641SDValue DAGCombiner::visitFP_EXTEND(SDNode *N) {
6642  SDValue N0 = N->getOperand(0);
6643  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6644  EVT VT = N->getValueType(0);
6645
6646  // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded.
6647  if (N->hasOneUse() &&
6648      N->use_begin()->getOpcode() == ISD::FP_ROUND)
6649    return SDValue();
6650
6651  // fold (fp_extend c1fp) -> c1fp
6652  if (N0CFP)
6653    return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, N0);
6654
6655  // Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the
6656  // value of X.
6657  if (N0.getOpcode() == ISD::FP_ROUND
6658      && N0.getNode()->getConstantOperandVal(1) == 1) {
6659    SDValue In = N0.getOperand(0);
6660    if (In.getValueType() == VT) return In;
6661    if (VT.bitsLT(In.getValueType()))
6662      return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT,
6663                         In, N0.getOperand(1));
6664    return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, In);
6665  }
6666
6667  // fold (fpext (load x)) -> (fpext (fptrunc (extload x)))
6668  if (ISD::isNON_EXTLoad(N0.getNode()) && N0.hasOneUse() &&
6669      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
6670       TLI.isLoadExtLegal(ISD::EXTLOAD, N0.getValueType()))) {
6671    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
6672    SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT,
6673                                     LN0->getChain(),
6674                                     LN0->getBasePtr(), LN0->getPointerInfo(),
6675                                     N0.getValueType(),
6676                                     LN0->isVolatile(), LN0->isNonTemporal(),
6677                                     LN0->getAlignment());
6678    CombineTo(N, ExtLoad);
6679    CombineTo(N0.getNode(),
6680              DAG.getNode(ISD::FP_ROUND, SDLoc(N0),
6681                          N0.getValueType(), ExtLoad, DAG.getIntPtrConstant(1)),
6682              ExtLoad.getValue(1));
6683    return SDValue(N, 0);   // Return N so it doesn't get rechecked!
6684  }
6685
6686  return SDValue();
6687}
6688
6689SDValue DAGCombiner::visitFNEG(SDNode *N) {
6690  SDValue N0 = N->getOperand(0);
6691  EVT VT = N->getValueType(0);
6692
6693  if (VT.isVector()) {
6694    SDValue FoldedVOp = SimplifyVUnaryOp(N);
6695    if (FoldedVOp.getNode()) return FoldedVOp;
6696  }
6697
6698  if (isNegatibleForFree(N0, LegalOperations, DAG.getTargetLoweringInfo(),
6699                         &DAG.getTarget().Options))
6700    return GetNegatedExpression(N0, DAG, LegalOperations);
6701
6702  // Transform fneg(bitconvert(x)) -> bitconvert(x^sign) to avoid loading
6703  // constant pool values.
6704  if (!TLI.isFNegFree(VT) && N0.getOpcode() == ISD::BITCAST &&
6705      !VT.isVector() &&
6706      N0.getNode()->hasOneUse() &&
6707      N0.getOperand(0).getValueType().isInteger()) {
6708    SDValue Int = N0.getOperand(0);
6709    EVT IntVT = Int.getValueType();
6710    if (IntVT.isInteger() && !IntVT.isVector()) {
6711      Int = DAG.getNode(ISD::XOR, SDLoc(N0), IntVT, Int,
6712              DAG.getConstant(APInt::getSignBit(IntVT.getSizeInBits()), IntVT));
6713      AddToWorkList(Int.getNode());
6714      return DAG.getNode(ISD::BITCAST, SDLoc(N),
6715                         VT, Int);
6716    }
6717  }
6718
6719  // (fneg (fmul c, x)) -> (fmul -c, x)
6720  if (N0.getOpcode() == ISD::FMUL) {
6721    ConstantFPSDNode *CFP1 = dyn_cast<ConstantFPSDNode>(N0.getOperand(1));
6722    if (CFP1)
6723      return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6724                         N0.getOperand(0),
6725                         DAG.getNode(ISD::FNEG, SDLoc(N), VT,
6726                                     N0.getOperand(1)));
6727  }
6728
6729  return SDValue();
6730}
6731
6732SDValue DAGCombiner::visitFCEIL(SDNode *N) {
6733  SDValue N0 = N->getOperand(0);
6734  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6735  EVT VT = N->getValueType(0);
6736
6737  // fold (fceil c1) -> fceil(c1)
6738  if (N0CFP)
6739    return DAG.getNode(ISD::FCEIL, SDLoc(N), VT, N0);
6740
6741  return SDValue();
6742}
6743
6744SDValue DAGCombiner::visitFTRUNC(SDNode *N) {
6745  SDValue N0 = N->getOperand(0);
6746  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6747  EVT VT = N->getValueType(0);
6748
6749  // fold (ftrunc c1) -> ftrunc(c1)
6750  if (N0CFP)
6751    return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0);
6752
6753  return SDValue();
6754}
6755
6756SDValue DAGCombiner::visitFFLOOR(SDNode *N) {
6757  SDValue N0 = N->getOperand(0);
6758  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6759  EVT VT = N->getValueType(0);
6760
6761  // fold (ffloor c1) -> ffloor(c1)
6762  if (N0CFP)
6763    return DAG.getNode(ISD::FFLOOR, SDLoc(N), VT, N0);
6764
6765  return SDValue();
6766}
6767
6768SDValue DAGCombiner::visitFABS(SDNode *N) {
6769  SDValue N0 = N->getOperand(0);
6770  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6771  EVT VT = N->getValueType(0);
6772
6773  if (VT.isVector()) {
6774    SDValue FoldedVOp = SimplifyVUnaryOp(N);
6775    if (FoldedVOp.getNode()) return FoldedVOp;
6776  }
6777
6778  // fold (fabs c1) -> fabs(c1)
6779  if (N0CFP)
6780    return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0);
6781  // fold (fabs (fabs x)) -> (fabs x)
6782  if (N0.getOpcode() == ISD::FABS)
6783    return N->getOperand(0);
6784  // fold (fabs (fneg x)) -> (fabs x)
6785  // fold (fabs (fcopysign x, y)) -> (fabs x)
6786  if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN)
6787    return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0.getOperand(0));
6788
6789  // Transform fabs(bitconvert(x)) -> bitconvert(x&~sign) to avoid loading
6790  // constant pool values.
6791  if (!TLI.isFAbsFree(VT) &&
6792      N0.getOpcode() == ISD::BITCAST && N0.getNode()->hasOneUse() &&
6793      N0.getOperand(0).getValueType().isInteger() &&
6794      !N0.getOperand(0).getValueType().isVector()) {
6795    SDValue Int = N0.getOperand(0);
6796    EVT IntVT = Int.getValueType();
6797    if (IntVT.isInteger() && !IntVT.isVector()) {
6798      Int = DAG.getNode(ISD::AND, SDLoc(N0), IntVT, Int,
6799             DAG.getConstant(~APInt::getSignBit(IntVT.getSizeInBits()), IntVT));
6800      AddToWorkList(Int.getNode());
6801      return DAG.getNode(ISD::BITCAST, SDLoc(N),
6802                         N->getValueType(0), Int);
6803    }
6804  }
6805
6806  return SDValue();
6807}
6808
6809SDValue DAGCombiner::visitBRCOND(SDNode *N) {
6810  SDValue Chain = N->getOperand(0);
6811  SDValue N1 = N->getOperand(1);
6812  SDValue N2 = N->getOperand(2);
6813
6814  // If N is a constant we could fold this into a fallthrough or unconditional
6815  // branch. However that doesn't happen very often in normal code, because
6816  // Instcombine/SimplifyCFG should have handled the available opportunities.
6817  // If we did this folding here, it would be necessary to update the
6818  // MachineBasicBlock CFG, which is awkward.
6819
6820  // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal
6821  // on the target.
6822  if (N1.getOpcode() == ISD::SETCC &&
6823      TLI.isOperationLegalOrCustom(ISD::BR_CC,
6824                                   N1.getOperand(0).getValueType())) {
6825    return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other,
6826                       Chain, N1.getOperand(2),
6827                       N1.getOperand(0), N1.getOperand(1), N2);
6828  }
6829
6830  if ((N1.hasOneUse() && N1.getOpcode() == ISD::SRL) ||
6831      ((N1.getOpcode() == ISD::TRUNCATE && N1.hasOneUse()) &&
6832       (N1.getOperand(0).hasOneUse() &&
6833        N1.getOperand(0).getOpcode() == ISD::SRL))) {
6834    SDNode *Trunc = 0;
6835    if (N1.getOpcode() == ISD::TRUNCATE) {
6836      // Look pass the truncate.
6837      Trunc = N1.getNode();
6838      N1 = N1.getOperand(0);
6839    }
6840
6841    // Match this pattern so that we can generate simpler code:
6842    //
6843    //   %a = ...
6844    //   %b = and i32 %a, 2
6845    //   %c = srl i32 %b, 1
6846    //   brcond i32 %c ...
6847    //
6848    // into
6849    //
6850    //   %a = ...
6851    //   %b = and i32 %a, 2
6852    //   %c = setcc eq %b, 0
6853    //   brcond %c ...
6854    //
6855    // This applies only when the AND constant value has one bit set and the
6856    // SRL constant is equal to the log2 of the AND constant. The back-end is
6857    // smart enough to convert the result into a TEST/JMP sequence.
6858    SDValue Op0 = N1.getOperand(0);
6859    SDValue Op1 = N1.getOperand(1);
6860
6861    if (Op0.getOpcode() == ISD::AND &&
6862        Op1.getOpcode() == ISD::Constant) {
6863      SDValue AndOp1 = Op0.getOperand(1);
6864
6865      if (AndOp1.getOpcode() == ISD::Constant) {
6866        const APInt &AndConst = cast<ConstantSDNode>(AndOp1)->getAPIntValue();
6867
6868        if (AndConst.isPowerOf2() &&
6869            cast<ConstantSDNode>(Op1)->getAPIntValue()==AndConst.logBase2()) {
6870          SDValue SetCC =
6871            DAG.getSetCC(SDLoc(N),
6872                         getSetCCResultType(Op0.getValueType()),
6873                         Op0, DAG.getConstant(0, Op0.getValueType()),
6874                         ISD::SETNE);
6875
6876          SDValue NewBRCond = DAG.getNode(ISD::BRCOND, SDLoc(N),
6877                                          MVT::Other, Chain, SetCC, N2);
6878          // Don't add the new BRCond into the worklist or else SimplifySelectCC
6879          // will convert it back to (X & C1) >> C2.
6880          CombineTo(N, NewBRCond, false);
6881          // Truncate is dead.
6882          if (Trunc) {
6883            removeFromWorkList(Trunc);
6884            DAG.DeleteNode(Trunc);
6885          }
6886          // Replace the uses of SRL with SETCC
6887          WorkListRemover DeadNodes(*this);
6888          DAG.ReplaceAllUsesOfValueWith(N1, SetCC);
6889          removeFromWorkList(N1.getNode());
6890          DAG.DeleteNode(N1.getNode());
6891          return SDValue(N, 0);   // Return N so it doesn't get rechecked!
6892        }
6893      }
6894    }
6895
6896    if (Trunc)
6897      // Restore N1 if the above transformation doesn't match.
6898      N1 = N->getOperand(1);
6899  }
6900
6901  // Transform br(xor(x, y)) -> br(x != y)
6902  // Transform br(xor(xor(x,y), 1)) -> br (x == y)
6903  if (N1.hasOneUse() && N1.getOpcode() == ISD::XOR) {
6904    SDNode *TheXor = N1.getNode();
6905    SDValue Op0 = TheXor->getOperand(0);
6906    SDValue Op1 = TheXor->getOperand(1);
6907    if (Op0.getOpcode() == Op1.getOpcode()) {
6908      // Avoid missing important xor optimizations.
6909      SDValue Tmp = visitXOR(TheXor);
6910      if (Tmp.getNode()) {
6911        if (Tmp.getNode() != TheXor) {
6912          DEBUG(dbgs() << "\nReplacing.8 ";
6913                TheXor->dump(&DAG);
6914                dbgs() << "\nWith: ";
6915                Tmp.getNode()->dump(&DAG);
6916                dbgs() << '\n');
6917          WorkListRemover DeadNodes(*this);
6918          DAG.ReplaceAllUsesOfValueWith(N1, Tmp);
6919          removeFromWorkList(TheXor);
6920          DAG.DeleteNode(TheXor);
6921          return DAG.getNode(ISD::BRCOND, SDLoc(N),
6922                             MVT::Other, Chain, Tmp, N2);
6923        }
6924
6925        // visitXOR has changed XOR's operands or replaced the XOR completely,
6926        // bail out.
6927        return SDValue(N, 0);
6928      }
6929    }
6930
6931    if (Op0.getOpcode() != ISD::SETCC && Op1.getOpcode() != ISD::SETCC) {
6932      bool Equal = false;
6933      if (ConstantSDNode *RHSCI = dyn_cast<ConstantSDNode>(Op0))
6934        if (RHSCI->getAPIntValue() == 1 && Op0.hasOneUse() &&
6935            Op0.getOpcode() == ISD::XOR) {
6936          TheXor = Op0.getNode();
6937          Equal = true;
6938        }
6939
6940      EVT SetCCVT = N1.getValueType();
6941      if (LegalTypes)
6942        SetCCVT = getSetCCResultType(SetCCVT);
6943      SDValue SetCC = DAG.getSetCC(SDLoc(TheXor),
6944                                   SetCCVT,
6945                                   Op0, Op1,
6946                                   Equal ? ISD::SETEQ : ISD::SETNE);
6947      // Replace the uses of XOR with SETCC
6948      WorkListRemover DeadNodes(*this);
6949      DAG.ReplaceAllUsesOfValueWith(N1, SetCC);
6950      removeFromWorkList(N1.getNode());
6951      DAG.DeleteNode(N1.getNode());
6952      return DAG.getNode(ISD::BRCOND, SDLoc(N),
6953                         MVT::Other, Chain, SetCC, N2);
6954    }
6955  }
6956
6957  return SDValue();
6958}
6959
6960// Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB.
6961//
6962SDValue DAGCombiner::visitBR_CC(SDNode *N) {
6963  CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1));
6964  SDValue CondLHS = N->getOperand(2), CondRHS = N->getOperand(3);
6965
6966  // If N is a constant we could fold this into a fallthrough or unconditional
6967  // branch. However that doesn't happen very often in normal code, because
6968  // Instcombine/SimplifyCFG should have handled the available opportunities.
6969  // If we did this folding here, it would be necessary to update the
6970  // MachineBasicBlock CFG, which is awkward.
6971
6972  // Use SimplifySetCC to simplify SETCC's.
6973  SDValue Simp = SimplifySetCC(getSetCCResultType(CondLHS.getValueType()),
6974                               CondLHS, CondRHS, CC->get(), SDLoc(N),
6975                               false);
6976  if (Simp.getNode()) AddToWorkList(Simp.getNode());
6977
6978  // fold to a simpler setcc
6979  if (Simp.getNode() && Simp.getOpcode() == ISD::SETCC)
6980    return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other,
6981                       N->getOperand(0), Simp.getOperand(2),
6982                       Simp.getOperand(0), Simp.getOperand(1),
6983                       N->getOperand(4));
6984
6985  return SDValue();
6986}
6987
6988/// canFoldInAddressingMode - Return true if 'Use' is a load or a store that
6989/// uses N as its base pointer and that N may be folded in the load / store
6990/// addressing mode.
6991static bool canFoldInAddressingMode(SDNode *N, SDNode *Use,
6992                                    SelectionDAG &DAG,
6993                                    const TargetLowering &TLI) {
6994  EVT VT;
6995  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(Use)) {
6996    if (LD->isIndexed() || LD->getBasePtr().getNode() != N)
6997      return false;
6998    VT = Use->getValueType(0);
6999  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(Use)) {
7000    if (ST->isIndexed() || ST->getBasePtr().getNode() != N)
7001      return false;
7002    VT = ST->getValue().getValueType();
7003  } else
7004    return false;
7005
7006  TargetLowering::AddrMode AM;
7007  if (N->getOpcode() == ISD::ADD) {
7008    ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
7009    if (Offset)
7010      // [reg +/- imm]
7011      AM.BaseOffs = Offset->getSExtValue();
7012    else
7013      // [reg +/- reg]
7014      AM.Scale = 1;
7015  } else if (N->getOpcode() == ISD::SUB) {
7016    ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
7017    if (Offset)
7018      // [reg +/- imm]
7019      AM.BaseOffs = -Offset->getSExtValue();
7020    else
7021      // [reg +/- reg]
7022      AM.Scale = 1;
7023  } else
7024    return false;
7025
7026  return TLI.isLegalAddressingMode(AM, VT.getTypeForEVT(*DAG.getContext()));
7027}
7028
7029/// CombineToPreIndexedLoadStore - Try turning a load / store into a
7030/// pre-indexed load / store when the base pointer is an add or subtract
7031/// and it has other uses besides the load / store. After the
7032/// transformation, the new indexed load / store has effectively folded
7033/// the add / subtract in and all of its other uses are redirected to the
7034/// new load / store.
7035bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) {
7036  if (Level < AfterLegalizeDAG)
7037    return false;
7038
7039  bool isLoad = true;
7040  SDValue Ptr;
7041  EVT VT;
7042  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(N)) {
7043    if (LD->isIndexed())
7044      return false;
7045    VT = LD->getMemoryVT();
7046    if (!TLI.isIndexedLoadLegal(ISD::PRE_INC, VT) &&
7047        !TLI.isIndexedLoadLegal(ISD::PRE_DEC, VT))
7048      return false;
7049    Ptr = LD->getBasePtr();
7050  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(N)) {
7051    if (ST->isIndexed())
7052      return false;
7053    VT = ST->getMemoryVT();
7054    if (!TLI.isIndexedStoreLegal(ISD::PRE_INC, VT) &&
7055        !TLI.isIndexedStoreLegal(ISD::PRE_DEC, VT))
7056      return false;
7057    Ptr = ST->getBasePtr();
7058    isLoad = false;
7059  } else {
7060    return false;
7061  }
7062
7063  // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail
7064  // out.  There is no reason to make this a preinc/predec.
7065  if ((Ptr.getOpcode() != ISD::ADD && Ptr.getOpcode() != ISD::SUB) ||
7066      Ptr.getNode()->hasOneUse())
7067    return false;
7068
7069  // Ask the target to do addressing mode selection.
7070  SDValue BasePtr;
7071  SDValue Offset;
7072  ISD::MemIndexedMode AM = ISD::UNINDEXED;
7073  if (!TLI.getPreIndexedAddressParts(N, BasePtr, Offset, AM, DAG))
7074    return false;
7075
7076  // Backends without true r+i pre-indexed forms may need to pass a
7077  // constant base with a variable offset so that constant coercion
7078  // will work with the patterns in canonical form.
7079  bool Swapped = false;
7080  if (isa<ConstantSDNode>(BasePtr)) {
7081    std::swap(BasePtr, Offset);
7082    Swapped = true;
7083  }
7084
7085  // Don't create a indexed load / store with zero offset.
7086  if (isa<ConstantSDNode>(Offset) &&
7087      cast<ConstantSDNode>(Offset)->isNullValue())
7088    return false;
7089
7090  // Try turning it into a pre-indexed load / store except when:
7091  // 1) The new base ptr is a frame index.
7092  // 2) If N is a store and the new base ptr is either the same as or is a
7093  //    predecessor of the value being stored.
7094  // 3) Another use of old base ptr is a predecessor of N. If ptr is folded
7095  //    that would create a cycle.
7096  // 4) All uses are load / store ops that use it as old base ptr.
7097
7098  // Check #1.  Preinc'ing a frame index would require copying the stack pointer
7099  // (plus the implicit offset) to a register to preinc anyway.
7100  if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr))
7101    return false;
7102
7103  // Check #2.
7104  if (!isLoad) {
7105    SDValue Val = cast<StoreSDNode>(N)->getValue();
7106    if (Val == BasePtr || BasePtr.getNode()->isPredecessorOf(Val.getNode()))
7107      return false;
7108  }
7109
7110  // If the offset is a constant, there may be other adds of constants that
7111  // can be folded with this one. We should do this to avoid having to keep
7112  // a copy of the original base pointer.
7113  SmallVector<SDNode *, 16> OtherUses;
7114  if (isa<ConstantSDNode>(Offset))
7115    for (SDNode::use_iterator I = BasePtr.getNode()->use_begin(),
7116         E = BasePtr.getNode()->use_end(); I != E; ++I) {
7117      SDNode *Use = *I;
7118      if (Use == Ptr.getNode())
7119        continue;
7120
7121      if (Use->isPredecessorOf(N))
7122        continue;
7123
7124      if (Use->getOpcode() != ISD::ADD && Use->getOpcode() != ISD::SUB) {
7125        OtherUses.clear();
7126        break;
7127      }
7128
7129      SDValue Op0 = Use->getOperand(0), Op1 = Use->getOperand(1);
7130      if (Op1.getNode() == BasePtr.getNode())
7131        std::swap(Op0, Op1);
7132      assert(Op0.getNode() == BasePtr.getNode() &&
7133             "Use of ADD/SUB but not an operand");
7134
7135      if (!isa<ConstantSDNode>(Op1)) {
7136        OtherUses.clear();
7137        break;
7138      }
7139
7140      // FIXME: In some cases, we can be smarter about this.
7141      if (Op1.getValueType() != Offset.getValueType()) {
7142        OtherUses.clear();
7143        break;
7144      }
7145
7146      OtherUses.push_back(Use);
7147    }
7148
7149  if (Swapped)
7150    std::swap(BasePtr, Offset);
7151
7152  // Now check for #3 and #4.
7153  bool RealUse = false;
7154
7155  // Caches for hasPredecessorHelper
7156  SmallPtrSet<const SDNode *, 32> Visited;
7157  SmallVector<const SDNode *, 16> Worklist;
7158
7159  for (SDNode::use_iterator I = Ptr.getNode()->use_begin(),
7160         E = Ptr.getNode()->use_end(); I != E; ++I) {
7161    SDNode *Use = *I;
7162    if (Use == N)
7163      continue;
7164    if (N->hasPredecessorHelper(Use, Visited, Worklist))
7165      return false;
7166
7167    // If Ptr may be folded in addressing mode of other use, then it's
7168    // not profitable to do this transformation.
7169    if (!canFoldInAddressingMode(Ptr.getNode(), Use, DAG, TLI))
7170      RealUse = true;
7171  }
7172
7173  if (!RealUse)
7174    return false;
7175
7176  SDValue Result;
7177  if (isLoad)
7178    Result = DAG.getIndexedLoad(SDValue(N,0), SDLoc(N),
7179                                BasePtr, Offset, AM);
7180  else
7181    Result = DAG.getIndexedStore(SDValue(N,0), SDLoc(N),
7182                                 BasePtr, Offset, AM);
7183  ++PreIndexedNodes;
7184  ++NodesCombined;
7185  DEBUG(dbgs() << "\nReplacing.4 ";
7186        N->dump(&DAG);
7187        dbgs() << "\nWith: ";
7188        Result.getNode()->dump(&DAG);
7189        dbgs() << '\n');
7190  WorkListRemover DeadNodes(*this);
7191  if (isLoad) {
7192    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0));
7193    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2));
7194  } else {
7195    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1));
7196  }
7197
7198  // Finally, since the node is now dead, remove it from the graph.
7199  DAG.DeleteNode(N);
7200
7201  if (Swapped)
7202    std::swap(BasePtr, Offset);
7203
7204  // Replace other uses of BasePtr that can be updated to use Ptr
7205  for (unsigned i = 0, e = OtherUses.size(); i != e; ++i) {
7206    unsigned OffsetIdx = 1;
7207    if (OtherUses[i]->getOperand(OffsetIdx).getNode() == BasePtr.getNode())
7208      OffsetIdx = 0;
7209    assert(OtherUses[i]->getOperand(!OffsetIdx).getNode() ==
7210           BasePtr.getNode() && "Expected BasePtr operand");
7211
7212    // We need to replace ptr0 in the following expression:
7213    //   x0 * offset0 + y0 * ptr0 = t0
7214    // knowing that
7215    //   x1 * offset1 + y1 * ptr0 = t1 (the indexed load/store)
7216    //
7217    // where x0, x1, y0 and y1 in {-1, 1} are given by the types of the
7218    // indexed load/store and the expresion that needs to be re-written.
7219    //
7220    // Therefore, we have:
7221    //   t0 = (x0 * offset0 - x1 * y0 * y1 *offset1) + (y0 * y1) * t1
7222
7223    ConstantSDNode *CN =
7224      cast<ConstantSDNode>(OtherUses[i]->getOperand(OffsetIdx));
7225    int X0, X1, Y0, Y1;
7226    APInt Offset0 = CN->getAPIntValue();
7227    APInt Offset1 = cast<ConstantSDNode>(Offset)->getAPIntValue();
7228
7229    X0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 1) ? -1 : 1;
7230    Y0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 0) ? -1 : 1;
7231    X1 = (AM == ISD::PRE_DEC && !Swapped) ? -1 : 1;
7232    Y1 = (AM == ISD::PRE_DEC && Swapped) ? -1 : 1;
7233
7234    unsigned Opcode = (Y0 * Y1 < 0) ? ISD::SUB : ISD::ADD;
7235
7236    APInt CNV = Offset0;
7237    if (X0 < 0) CNV = -CNV;
7238    if (X1 * Y0 * Y1 < 0) CNV = CNV + Offset1;
7239    else CNV = CNV - Offset1;
7240
7241    // We can now generate the new expression.
7242    SDValue NewOp1 = DAG.getConstant(CNV, CN->getValueType(0));
7243    SDValue NewOp2 = Result.getValue(isLoad ? 1 : 0);
7244
7245    SDValue NewUse = DAG.getNode(Opcode,
7246                                 SDLoc(OtherUses[i]),
7247                                 OtherUses[i]->getValueType(0), NewOp1, NewOp2);
7248    DAG.ReplaceAllUsesOfValueWith(SDValue(OtherUses[i], 0), NewUse);
7249    removeFromWorkList(OtherUses[i]);
7250    DAG.DeleteNode(OtherUses[i]);
7251  }
7252
7253  // Replace the uses of Ptr with uses of the updated base value.
7254  DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(isLoad ? 1 : 0));
7255  removeFromWorkList(Ptr.getNode());
7256  DAG.DeleteNode(Ptr.getNode());
7257
7258  return true;
7259}
7260
7261/// CombineToPostIndexedLoadStore - Try to combine a load / store with a
7262/// add / sub of the base pointer node into a post-indexed load / store.
7263/// The transformation folded the add / subtract into the new indexed
7264/// load / store effectively and all of its uses are redirected to the
7265/// new load / store.
7266bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) {
7267  if (Level < AfterLegalizeDAG)
7268    return false;
7269
7270  bool isLoad = true;
7271  SDValue Ptr;
7272  EVT VT;
7273  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(N)) {
7274    if (LD->isIndexed())
7275      return false;
7276    VT = LD->getMemoryVT();
7277    if (!TLI.isIndexedLoadLegal(ISD::POST_INC, VT) &&
7278        !TLI.isIndexedLoadLegal(ISD::POST_DEC, VT))
7279      return false;
7280    Ptr = LD->getBasePtr();
7281  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(N)) {
7282    if (ST->isIndexed())
7283      return false;
7284    VT = ST->getMemoryVT();
7285    if (!TLI.isIndexedStoreLegal(ISD::POST_INC, VT) &&
7286        !TLI.isIndexedStoreLegal(ISD::POST_DEC, VT))
7287      return false;
7288    Ptr = ST->getBasePtr();
7289    isLoad = false;
7290  } else {
7291    return false;
7292  }
7293
7294  if (Ptr.getNode()->hasOneUse())
7295    return false;
7296
7297  for (SDNode::use_iterator I = Ptr.getNode()->use_begin(),
7298         E = Ptr.getNode()->use_end(); I != E; ++I) {
7299    SDNode *Op = *I;
7300    if (Op == N ||
7301        (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB))
7302      continue;
7303
7304    SDValue BasePtr;
7305    SDValue Offset;
7306    ISD::MemIndexedMode AM = ISD::UNINDEXED;
7307    if (TLI.getPostIndexedAddressParts(N, Op, BasePtr, Offset, AM, DAG)) {
7308      // Don't create a indexed load / store with zero offset.
7309      if (isa<ConstantSDNode>(Offset) &&
7310          cast<ConstantSDNode>(Offset)->isNullValue())
7311        continue;
7312
7313      // Try turning it into a post-indexed load / store except when
7314      // 1) All uses are load / store ops that use it as base ptr (and
7315      //    it may be folded as addressing mmode).
7316      // 2) Op must be independent of N, i.e. Op is neither a predecessor
7317      //    nor a successor of N. Otherwise, if Op is folded that would
7318      //    create a cycle.
7319
7320      if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr))
7321        continue;
7322
7323      // Check for #1.
7324      bool TryNext = false;
7325      for (SDNode::use_iterator II = BasePtr.getNode()->use_begin(),
7326             EE = BasePtr.getNode()->use_end(); II != EE; ++II) {
7327        SDNode *Use = *II;
7328        if (Use == Ptr.getNode())
7329          continue;
7330
7331        // If all the uses are load / store addresses, then don't do the
7332        // transformation.
7333        if (Use->getOpcode() == ISD::ADD || Use->getOpcode() == ISD::SUB){
7334          bool RealUse = false;
7335          for (SDNode::use_iterator III = Use->use_begin(),
7336                 EEE = Use->use_end(); III != EEE; ++III) {
7337            SDNode *UseUse = *III;
7338            if (!canFoldInAddressingMode(Use, UseUse, DAG, TLI))
7339              RealUse = true;
7340          }
7341
7342          if (!RealUse) {
7343            TryNext = true;
7344            break;
7345          }
7346        }
7347      }
7348
7349      if (TryNext)
7350        continue;
7351
7352      // Check for #2
7353      if (!Op->isPredecessorOf(N) && !N->isPredecessorOf(Op)) {
7354        SDValue Result = isLoad
7355          ? DAG.getIndexedLoad(SDValue(N,0), SDLoc(N),
7356                               BasePtr, Offset, AM)
7357          : DAG.getIndexedStore(SDValue(N,0), SDLoc(N),
7358                                BasePtr, Offset, AM);
7359        ++PostIndexedNodes;
7360        ++NodesCombined;
7361        DEBUG(dbgs() << "\nReplacing.5 ";
7362              N->dump(&DAG);
7363              dbgs() << "\nWith: ";
7364              Result.getNode()->dump(&DAG);
7365              dbgs() << '\n');
7366        WorkListRemover DeadNodes(*this);
7367        if (isLoad) {
7368          DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0));
7369          DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2));
7370        } else {
7371          DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1));
7372        }
7373
7374        // Finally, since the node is now dead, remove it from the graph.
7375        DAG.DeleteNode(N);
7376
7377        // Replace the uses of Use with uses of the updated base value.
7378        DAG.ReplaceAllUsesOfValueWith(SDValue(Op, 0),
7379                                      Result.getValue(isLoad ? 1 : 0));
7380        removeFromWorkList(Op);
7381        DAG.DeleteNode(Op);
7382        return true;
7383      }
7384    }
7385  }
7386
7387  return false;
7388}
7389
7390SDValue DAGCombiner::visitLOAD(SDNode *N) {
7391  LoadSDNode *LD  = cast<LoadSDNode>(N);
7392  SDValue Chain = LD->getChain();
7393  SDValue Ptr   = LD->getBasePtr();
7394
7395  // If load is not volatile and there are no uses of the loaded value (and
7396  // the updated indexed value in case of indexed loads), change uses of the
7397  // chain value into uses of the chain input (i.e. delete the dead load).
7398  if (!LD->isVolatile()) {
7399    if (N->getValueType(1) == MVT::Other) {
7400      // Unindexed loads.
7401      if (!N->hasAnyUseOfValue(0)) {
7402        // It's not safe to use the two value CombineTo variant here. e.g.
7403        // v1, chain2 = load chain1, loc
7404        // v2, chain3 = load chain2, loc
7405        // v3         = add v2, c
7406        // Now we replace use of chain2 with chain1.  This makes the second load
7407        // isomorphic to the one we are deleting, and thus makes this load live.
7408        DEBUG(dbgs() << "\nReplacing.6 ";
7409              N->dump(&DAG);
7410              dbgs() << "\nWith chain: ";
7411              Chain.getNode()->dump(&DAG);
7412              dbgs() << "\n");
7413        WorkListRemover DeadNodes(*this);
7414        DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain);
7415
7416        if (N->use_empty()) {
7417          removeFromWorkList(N);
7418          DAG.DeleteNode(N);
7419        }
7420
7421        return SDValue(N, 0);   // Return N so it doesn't get rechecked!
7422      }
7423    } else {
7424      // Indexed loads.
7425      assert(N->getValueType(2) == MVT::Other && "Malformed indexed loads?");
7426      if (!N->hasAnyUseOfValue(0) && !N->hasAnyUseOfValue(1)) {
7427        SDValue Undef = DAG.getUNDEF(N->getValueType(0));
7428        DEBUG(dbgs() << "\nReplacing.7 ";
7429              N->dump(&DAG);
7430              dbgs() << "\nWith: ";
7431              Undef.getNode()->dump(&DAG);
7432              dbgs() << " and 2 other values\n");
7433        WorkListRemover DeadNodes(*this);
7434        DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Undef);
7435        DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1),
7436                                      DAG.getUNDEF(N->getValueType(1)));
7437        DAG.ReplaceAllUsesOfValueWith(SDValue(N, 2), Chain);
7438        removeFromWorkList(N);
7439        DAG.DeleteNode(N);
7440        return SDValue(N, 0);   // Return N so it doesn't get rechecked!
7441      }
7442    }
7443  }
7444
7445  // If this load is directly stored, replace the load value with the stored
7446  // value.
7447  // TODO: Handle store large -> read small portion.
7448  // TODO: Handle TRUNCSTORE/LOADEXT
7449  if (ISD::isNormalLoad(N) && !LD->isVolatile()) {
7450    if (ISD::isNON_TRUNCStore(Chain.getNode())) {
7451      StoreSDNode *PrevST = cast<StoreSDNode>(Chain);
7452      if (PrevST->getBasePtr() == Ptr &&
7453          PrevST->getValue().getValueType() == N->getValueType(0))
7454      return CombineTo(N, Chain.getOperand(1), Chain);
7455    }
7456  }
7457
7458  // Try to infer better alignment information than the load already has.
7459  if (OptLevel != CodeGenOpt::None && LD->isUnindexed()) {
7460    if (unsigned Align = DAG.InferPtrAlignment(Ptr)) {
7461      if (Align > LD->getMemOperand()->getBaseAlignment()) {
7462        SDValue NewLoad =
7463               DAG.getExtLoad(LD->getExtensionType(), SDLoc(N),
7464                              LD->getValueType(0),
7465                              Chain, Ptr, LD->getPointerInfo(),
7466                              LD->getMemoryVT(),
7467                              LD->isVolatile(), LD->isNonTemporal(), Align);
7468        return CombineTo(N, NewLoad, SDValue(NewLoad.getNode(), 1), true);
7469      }
7470    }
7471  }
7472
7473  if (CombinerAA) {
7474    // Walk up chain skipping non-aliasing memory nodes.
7475    SDValue BetterChain = FindBetterChain(N, Chain);
7476
7477    // If there is a better chain.
7478    if (Chain != BetterChain) {
7479      SDValue ReplLoad;
7480
7481      // Replace the chain to void dependency.
7482      if (LD->getExtensionType() == ISD::NON_EXTLOAD) {
7483        ReplLoad = DAG.getLoad(N->getValueType(0), SDLoc(LD),
7484                               BetterChain, Ptr, LD->getPointerInfo(),
7485                               LD->isVolatile(), LD->isNonTemporal(),
7486                               LD->isInvariant(), LD->getAlignment());
7487      } else {
7488        ReplLoad = DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD),
7489                                  LD->getValueType(0),
7490                                  BetterChain, Ptr, LD->getPointerInfo(),
7491                                  LD->getMemoryVT(),
7492                                  LD->isVolatile(),
7493                                  LD->isNonTemporal(),
7494                                  LD->getAlignment());
7495      }
7496
7497      // Create token factor to keep old chain connected.
7498      SDValue Token = DAG.getNode(ISD::TokenFactor, SDLoc(N),
7499                                  MVT::Other, Chain, ReplLoad.getValue(1));
7500
7501      // Make sure the new and old chains are cleaned up.
7502      AddToWorkList(Token.getNode());
7503
7504      // Replace uses with load result and token factor. Don't add users
7505      // to work list.
7506      return CombineTo(N, ReplLoad.getValue(0), Token, false);
7507    }
7508  }
7509
7510  // Try transforming N to an indexed load.
7511  if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
7512    return SDValue(N, 0);
7513
7514  return SDValue();
7515}
7516
7517/// CheckForMaskedLoad - Check to see if V is (and load (ptr), imm), where the
7518/// load is having specific bytes cleared out.  If so, return the byte size
7519/// being masked out and the shift amount.
7520static std::pair<unsigned, unsigned>
7521CheckForMaskedLoad(SDValue V, SDValue Ptr, SDValue Chain) {
7522  std::pair<unsigned, unsigned> Result(0, 0);
7523
7524  // Check for the structure we're looking for.
7525  if (V->getOpcode() != ISD::AND ||
7526      !isa<ConstantSDNode>(V->getOperand(1)) ||
7527      !ISD::isNormalLoad(V->getOperand(0).getNode()))
7528    return Result;
7529
7530  // Check the chain and pointer.
7531  LoadSDNode *LD = cast<LoadSDNode>(V->getOperand(0));
7532  if (LD->getBasePtr() != Ptr) return Result;  // Not from same pointer.
7533
7534  // The store should be chained directly to the load or be an operand of a
7535  // tokenfactor.
7536  if (LD == Chain.getNode())
7537    ; // ok.
7538  else if (Chain->getOpcode() != ISD::TokenFactor)
7539    return Result; // Fail.
7540  else {
7541    bool isOk = false;
7542    for (unsigned i = 0, e = Chain->getNumOperands(); i != e; ++i)
7543      if (Chain->getOperand(i).getNode() == LD) {
7544        isOk = true;
7545        break;
7546      }
7547    if (!isOk) return Result;
7548  }
7549
7550  // This only handles simple types.
7551  if (V.getValueType() != MVT::i16 &&
7552      V.getValueType() != MVT::i32 &&
7553      V.getValueType() != MVT::i64)
7554    return Result;
7555
7556  // Check the constant mask.  Invert it so that the bits being masked out are
7557  // 0 and the bits being kept are 1.  Use getSExtValue so that leading bits
7558  // follow the sign bit for uniformity.
7559  uint64_t NotMask = ~cast<ConstantSDNode>(V->getOperand(1))->getSExtValue();
7560  unsigned NotMaskLZ = countLeadingZeros(NotMask);
7561  if (NotMaskLZ & 7) return Result;  // Must be multiple of a byte.
7562  unsigned NotMaskTZ = countTrailingZeros(NotMask);
7563  if (NotMaskTZ & 7) return Result;  // Must be multiple of a byte.
7564  if (NotMaskLZ == 64) return Result;  // All zero mask.
7565
7566  // See if we have a continuous run of bits.  If so, we have 0*1+0*
7567  if (CountTrailingOnes_64(NotMask >> NotMaskTZ)+NotMaskTZ+NotMaskLZ != 64)
7568    return Result;
7569
7570  // Adjust NotMaskLZ down to be from the actual size of the int instead of i64.
7571  if (V.getValueType() != MVT::i64 && NotMaskLZ)
7572    NotMaskLZ -= 64-V.getValueSizeInBits();
7573
7574  unsigned MaskedBytes = (V.getValueSizeInBits()-NotMaskLZ-NotMaskTZ)/8;
7575  switch (MaskedBytes) {
7576  case 1:
7577  case 2:
7578  case 4: break;
7579  default: return Result; // All one mask, or 5-byte mask.
7580  }
7581
7582  // Verify that the first bit starts at a multiple of mask so that the access
7583  // is aligned the same as the access width.
7584  if (NotMaskTZ && NotMaskTZ/8 % MaskedBytes) return Result;
7585
7586  Result.first = MaskedBytes;
7587  Result.second = NotMaskTZ/8;
7588  return Result;
7589}
7590
7591
7592/// ShrinkLoadReplaceStoreWithStore - Check to see if IVal is something that
7593/// provides a value as specified by MaskInfo.  If so, replace the specified
7594/// store with a narrower store of truncated IVal.
7595static SDNode *
7596ShrinkLoadReplaceStoreWithStore(const std::pair<unsigned, unsigned> &MaskInfo,
7597                                SDValue IVal, StoreSDNode *St,
7598                                DAGCombiner *DC) {
7599  unsigned NumBytes = MaskInfo.first;
7600  unsigned ByteShift = MaskInfo.second;
7601  SelectionDAG &DAG = DC->getDAG();
7602
7603  // Check to see if IVal is all zeros in the part being masked in by the 'or'
7604  // that uses this.  If not, this is not a replacement.
7605  APInt Mask = ~APInt::getBitsSet(IVal.getValueSizeInBits(),
7606                                  ByteShift*8, (ByteShift+NumBytes)*8);
7607  if (!DAG.MaskedValueIsZero(IVal, Mask)) return 0;
7608
7609  // Check that it is legal on the target to do this.  It is legal if the new
7610  // VT we're shrinking to (i8/i16/i32) is legal or we're still before type
7611  // legalization.
7612  MVT VT = MVT::getIntegerVT(NumBytes*8);
7613  if (!DC->isTypeLegal(VT))
7614    return 0;
7615
7616  // Okay, we can do this!  Replace the 'St' store with a store of IVal that is
7617  // shifted by ByteShift and truncated down to NumBytes.
7618  if (ByteShift)
7619    IVal = DAG.getNode(ISD::SRL, SDLoc(IVal), IVal.getValueType(), IVal,
7620                       DAG.getConstant(ByteShift*8,
7621                                    DC->getShiftAmountTy(IVal.getValueType())));
7622
7623  // Figure out the offset for the store and the alignment of the access.
7624  unsigned StOffset;
7625  unsigned NewAlign = St->getAlignment();
7626
7627  if (DAG.getTargetLoweringInfo().isLittleEndian())
7628    StOffset = ByteShift;
7629  else
7630    StOffset = IVal.getValueType().getStoreSize() - ByteShift - NumBytes;
7631
7632  SDValue Ptr = St->getBasePtr();
7633  if (StOffset) {
7634    Ptr = DAG.getNode(ISD::ADD, SDLoc(IVal), Ptr.getValueType(),
7635                      Ptr, DAG.getConstant(StOffset, Ptr.getValueType()));
7636    NewAlign = MinAlign(NewAlign, StOffset);
7637  }
7638
7639  // Truncate down to the new size.
7640  IVal = DAG.getNode(ISD::TRUNCATE, SDLoc(IVal), VT, IVal);
7641
7642  ++OpsNarrowed;
7643  return DAG.getStore(St->getChain(), SDLoc(St), IVal, Ptr,
7644                      St->getPointerInfo().getWithOffset(StOffset),
7645                      false, false, NewAlign).getNode();
7646}
7647
7648
7649/// ReduceLoadOpStoreWidth - Look for sequence of load / op / store where op is
7650/// one of 'or', 'xor', and 'and' of immediates. If 'op' is only touching some
7651/// of the loaded bits, try narrowing the load and store if it would end up
7652/// being a win for performance or code size.
7653SDValue DAGCombiner::ReduceLoadOpStoreWidth(SDNode *N) {
7654  StoreSDNode *ST  = cast<StoreSDNode>(N);
7655  if (ST->isVolatile())
7656    return SDValue();
7657
7658  SDValue Chain = ST->getChain();
7659  SDValue Value = ST->getValue();
7660  SDValue Ptr   = ST->getBasePtr();
7661  EVT VT = Value.getValueType();
7662
7663  if (ST->isTruncatingStore() || VT.isVector() || !Value.hasOneUse())
7664    return SDValue();
7665
7666  unsigned Opc = Value.getOpcode();
7667
7668  // If this is "store (or X, Y), P" and X is "(and (load P), cst)", where cst
7669  // is a byte mask indicating a consecutive number of bytes, check to see if
7670  // Y is known to provide just those bytes.  If so, we try to replace the
7671  // load + replace + store sequence with a single (narrower) store, which makes
7672  // the load dead.
7673  if (Opc == ISD::OR) {
7674    std::pair<unsigned, unsigned> MaskedLoad;
7675    MaskedLoad = CheckForMaskedLoad(Value.getOperand(0), Ptr, Chain);
7676    if (MaskedLoad.first)
7677      if (SDNode *NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad,
7678                                                  Value.getOperand(1), ST,this))
7679        return SDValue(NewST, 0);
7680
7681    // Or is commutative, so try swapping X and Y.
7682    MaskedLoad = CheckForMaskedLoad(Value.getOperand(1), Ptr, Chain);
7683    if (MaskedLoad.first)
7684      if (SDNode *NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad,
7685                                                  Value.getOperand(0), ST,this))
7686        return SDValue(NewST, 0);
7687  }
7688
7689  if ((Opc != ISD::OR && Opc != ISD::XOR && Opc != ISD::AND) ||
7690      Value.getOperand(1).getOpcode() != ISD::Constant)
7691    return SDValue();
7692
7693  SDValue N0 = Value.getOperand(0);
7694  if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
7695      Chain == SDValue(N0.getNode(), 1)) {
7696    LoadSDNode *LD = cast<LoadSDNode>(N0);
7697    if (LD->getBasePtr() != Ptr ||
7698        LD->getPointerInfo().getAddrSpace() !=
7699        ST->getPointerInfo().getAddrSpace())
7700      return SDValue();
7701
7702    // Find the type to narrow it the load / op / store to.
7703    SDValue N1 = Value.getOperand(1);
7704    unsigned BitWidth = N1.getValueSizeInBits();
7705    APInt Imm = cast<ConstantSDNode>(N1)->getAPIntValue();
7706    if (Opc == ISD::AND)
7707      Imm ^= APInt::getAllOnesValue(BitWidth);
7708    if (Imm == 0 || Imm.isAllOnesValue())
7709      return SDValue();
7710    unsigned ShAmt = Imm.countTrailingZeros();
7711    unsigned MSB = BitWidth - Imm.countLeadingZeros() - 1;
7712    unsigned NewBW = NextPowerOf2(MSB - ShAmt);
7713    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW);
7714    while (NewBW < BitWidth &&
7715           !(TLI.isOperationLegalOrCustom(Opc, NewVT) &&
7716             TLI.isNarrowingProfitable(VT, NewVT))) {
7717      NewBW = NextPowerOf2(NewBW);
7718      NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW);
7719    }
7720    if (NewBW >= BitWidth)
7721      return SDValue();
7722
7723    // If the lsb changed does not start at the type bitwidth boundary,
7724    // start at the previous one.
7725    if (ShAmt % NewBW)
7726      ShAmt = (((ShAmt + NewBW - 1) / NewBW) * NewBW) - NewBW;
7727    APInt Mask = APInt::getBitsSet(BitWidth, ShAmt,
7728                                   std::min(BitWidth, ShAmt + NewBW));
7729    if ((Imm & Mask) == Imm) {
7730      APInt NewImm = (Imm & Mask).lshr(ShAmt).trunc(NewBW);
7731      if (Opc == ISD::AND)
7732        NewImm ^= APInt::getAllOnesValue(NewBW);
7733      uint64_t PtrOff = ShAmt / 8;
7734      // For big endian targets, we need to adjust the offset to the pointer to
7735      // load the correct bytes.
7736      if (TLI.isBigEndian())
7737        PtrOff = (BitWidth + 7 - NewBW) / 8 - PtrOff;
7738
7739      unsigned NewAlign = MinAlign(LD->getAlignment(), PtrOff);
7740      Type *NewVTTy = NewVT.getTypeForEVT(*DAG.getContext());
7741      if (NewAlign < TLI.getDataLayout()->getABITypeAlignment(NewVTTy))
7742        return SDValue();
7743
7744      SDValue NewPtr = DAG.getNode(ISD::ADD, SDLoc(LD),
7745                                   Ptr.getValueType(), Ptr,
7746                                   DAG.getConstant(PtrOff, Ptr.getValueType()));
7747      SDValue NewLD = DAG.getLoad(NewVT, SDLoc(N0),
7748                                  LD->getChain(), NewPtr,
7749                                  LD->getPointerInfo().getWithOffset(PtrOff),
7750                                  LD->isVolatile(), LD->isNonTemporal(),
7751                                  LD->isInvariant(), NewAlign);
7752      SDValue NewVal = DAG.getNode(Opc, SDLoc(Value), NewVT, NewLD,
7753                                   DAG.getConstant(NewImm, NewVT));
7754      SDValue NewST = DAG.getStore(Chain, SDLoc(N),
7755                                   NewVal, NewPtr,
7756                                   ST->getPointerInfo().getWithOffset(PtrOff),
7757                                   false, false, NewAlign);
7758
7759      AddToWorkList(NewPtr.getNode());
7760      AddToWorkList(NewLD.getNode());
7761      AddToWorkList(NewVal.getNode());
7762      WorkListRemover DeadNodes(*this);
7763      DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLD.getValue(1));
7764      ++OpsNarrowed;
7765      return NewST;
7766    }
7767  }
7768
7769  return SDValue();
7770}
7771
7772/// TransformFPLoadStorePair - For a given floating point load / store pair,
7773/// if the load value isn't used by any other operations, then consider
7774/// transforming the pair to integer load / store operations if the target
7775/// deems the transformation profitable.
7776SDValue DAGCombiner::TransformFPLoadStorePair(SDNode *N) {
7777  StoreSDNode *ST  = cast<StoreSDNode>(N);
7778  SDValue Chain = ST->getChain();
7779  SDValue Value = ST->getValue();
7780  if (ISD::isNormalStore(ST) && ISD::isNormalLoad(Value.getNode()) &&
7781      Value.hasOneUse() &&
7782      Chain == SDValue(Value.getNode(), 1)) {
7783    LoadSDNode *LD = cast<LoadSDNode>(Value);
7784    EVT VT = LD->getMemoryVT();
7785    if (!VT.isFloatingPoint() ||
7786        VT != ST->getMemoryVT() ||
7787        LD->isNonTemporal() ||
7788        ST->isNonTemporal() ||
7789        LD->getPointerInfo().getAddrSpace() != 0 ||
7790        ST->getPointerInfo().getAddrSpace() != 0)
7791      return SDValue();
7792
7793    EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
7794    if (!TLI.isOperationLegal(ISD::LOAD, IntVT) ||
7795        !TLI.isOperationLegal(ISD::STORE, IntVT) ||
7796        !TLI.isDesirableToTransformToIntegerOp(ISD::LOAD, VT) ||
7797        !TLI.isDesirableToTransformToIntegerOp(ISD::STORE, VT))
7798      return SDValue();
7799
7800    unsigned LDAlign = LD->getAlignment();
7801    unsigned STAlign = ST->getAlignment();
7802    Type *IntVTTy = IntVT.getTypeForEVT(*DAG.getContext());
7803    unsigned ABIAlign = TLI.getDataLayout()->getABITypeAlignment(IntVTTy);
7804    if (LDAlign < ABIAlign || STAlign < ABIAlign)
7805      return SDValue();
7806
7807    SDValue NewLD = DAG.getLoad(IntVT, SDLoc(Value),
7808                                LD->getChain(), LD->getBasePtr(),
7809                                LD->getPointerInfo(),
7810                                false, false, false, LDAlign);
7811
7812    SDValue NewST = DAG.getStore(NewLD.getValue(1), SDLoc(N),
7813                                 NewLD, ST->getBasePtr(),
7814                                 ST->getPointerInfo(),
7815                                 false, false, STAlign);
7816
7817    AddToWorkList(NewLD.getNode());
7818    AddToWorkList(NewST.getNode());
7819    WorkListRemover DeadNodes(*this);
7820    DAG.ReplaceAllUsesOfValueWith(Value.getValue(1), NewLD.getValue(1));
7821    ++LdStFP2Int;
7822    return NewST;
7823  }
7824
7825  return SDValue();
7826}
7827
7828/// Helper struct to parse and store a memory address as base + index + offset.
7829/// We ignore sign extensions when it is safe to do so.
7830/// The following two expressions are not equivalent. To differentiate we need
7831/// to store whether there was a sign extension involved in the index
7832/// computation.
7833///  (load (i64 add (i64 copyfromreg %c)
7834///                 (i64 signextend (add (i8 load %index)
7835///                                      (i8 1))))
7836/// vs
7837///
7838/// (load (i64 add (i64 copyfromreg %c)
7839///                (i64 signextend (i32 add (i32 signextend (i8 load %index))
7840///                                         (i32 1)))))
7841struct BaseIndexOffset {
7842  SDValue Base;
7843  SDValue Index;
7844  int64_t Offset;
7845  bool IsIndexSignExt;
7846
7847  BaseIndexOffset() : Offset(0), IsIndexSignExt(false) {}
7848
7849  BaseIndexOffset(SDValue Base, SDValue Index, int64_t Offset,
7850                  bool IsIndexSignExt) :
7851    Base(Base), Index(Index), Offset(Offset), IsIndexSignExt(IsIndexSignExt) {}
7852
7853  bool equalBaseIndex(const BaseIndexOffset &Other) {
7854    return Other.Base == Base && Other.Index == Index &&
7855      Other.IsIndexSignExt == IsIndexSignExt;
7856  }
7857
7858  /// Parses tree in Ptr for base, index, offset addresses.
7859  static BaseIndexOffset match(SDValue Ptr) {
7860    bool IsIndexSignExt = false;
7861
7862    // Just Base or possibly anything else.
7863    if (Ptr->getOpcode() != ISD::ADD)
7864      return BaseIndexOffset(Ptr, SDValue(), 0, IsIndexSignExt);
7865
7866    // Base + offset.
7867    if (isa<ConstantSDNode>(Ptr->getOperand(1))) {
7868      int64_t Offset = cast<ConstantSDNode>(Ptr->getOperand(1))->getSExtValue();
7869      return  BaseIndexOffset(Ptr->getOperand(0), SDValue(), Offset,
7870                              IsIndexSignExt);
7871    }
7872
7873    // Look at Base + Index + Offset cases.
7874    SDValue Base = Ptr->getOperand(0);
7875    SDValue IndexOffset = Ptr->getOperand(1);
7876
7877    // Skip signextends.
7878    if (IndexOffset->getOpcode() == ISD::SIGN_EXTEND) {
7879      IndexOffset = IndexOffset->getOperand(0);
7880      IsIndexSignExt = true;
7881    }
7882
7883    // Either the case of Base + Index (no offset) or something else.
7884    if (IndexOffset->getOpcode() != ISD::ADD)
7885      return BaseIndexOffset(Base, IndexOffset, 0, IsIndexSignExt);
7886
7887    // Now we have the case of Base + Index + offset.
7888    SDValue Index = IndexOffset->getOperand(0);
7889    SDValue Offset = IndexOffset->getOperand(1);
7890
7891    if (!isa<ConstantSDNode>(Offset))
7892      return BaseIndexOffset(Ptr, SDValue(), 0, IsIndexSignExt);
7893
7894    // Ignore signextends.
7895    if (Index->getOpcode() == ISD::SIGN_EXTEND) {
7896      Index = Index->getOperand(0);
7897      IsIndexSignExt = true;
7898    } else IsIndexSignExt = false;
7899
7900    int64_t Off = cast<ConstantSDNode>(Offset)->getSExtValue();
7901    return BaseIndexOffset(Base, Index, Off, IsIndexSignExt);
7902  }
7903};
7904
7905/// Holds a pointer to an LSBaseSDNode as well as information on where it
7906/// is located in a sequence of memory operations connected by a chain.
7907struct MemOpLink {
7908  MemOpLink (LSBaseSDNode *N, int64_t Offset, unsigned Seq):
7909    MemNode(N), OffsetFromBase(Offset), SequenceNum(Seq) { }
7910  // Ptr to the mem node.
7911  LSBaseSDNode *MemNode;
7912  // Offset from the base ptr.
7913  int64_t OffsetFromBase;
7914  // What is the sequence number of this mem node.
7915  // Lowest mem operand in the DAG starts at zero.
7916  unsigned SequenceNum;
7917};
7918
7919/// Sorts store nodes in a link according to their offset from a shared
7920// base ptr.
7921struct ConsecutiveMemoryChainSorter {
7922  bool operator()(MemOpLink LHS, MemOpLink RHS) {
7923    return LHS.OffsetFromBase < RHS.OffsetFromBase;
7924  }
7925};
7926
7927bool DAGCombiner::MergeConsecutiveStores(StoreSDNode* St) {
7928  EVT MemVT = St->getMemoryVT();
7929  int64_t ElementSizeBytes = MemVT.getSizeInBits()/8;
7930  bool NoVectors = DAG.getMachineFunction().getFunction()->getAttributes().
7931    hasAttribute(AttributeSet::FunctionIndex, Attribute::NoImplicitFloat);
7932
7933  // Don't merge vectors into wider inputs.
7934  if (MemVT.isVector() || !MemVT.isSimple())
7935    return false;
7936
7937  // Perform an early exit check. Do not bother looking at stored values that
7938  // are not constants or loads.
7939  SDValue StoredVal = St->getValue();
7940  bool IsLoadSrc = isa<LoadSDNode>(StoredVal);
7941  if (!isa<ConstantSDNode>(StoredVal) && !isa<ConstantFPSDNode>(StoredVal) &&
7942      !IsLoadSrc)
7943    return false;
7944
7945  // Only look at ends of store sequences.
7946  SDValue Chain = SDValue(St, 1);
7947  if (Chain->hasOneUse() && Chain->use_begin()->getOpcode() == ISD::STORE)
7948    return false;
7949
7950  // This holds the base pointer, index, and the offset in bytes from the base
7951  // pointer.
7952  BaseIndexOffset BasePtr = BaseIndexOffset::match(St->getBasePtr());
7953
7954  // We must have a base and an offset.
7955  if (!BasePtr.Base.getNode())
7956    return false;
7957
7958  // Do not handle stores to undef base pointers.
7959  if (BasePtr.Base.getOpcode() == ISD::UNDEF)
7960    return false;
7961
7962  // Save the LoadSDNodes that we find in the chain.
7963  // We need to make sure that these nodes do not interfere with
7964  // any of the store nodes.
7965  SmallVector<LSBaseSDNode*, 8> AliasLoadNodes;
7966
7967  // Save the StoreSDNodes that we find in the chain.
7968  SmallVector<MemOpLink, 8> StoreNodes;
7969
7970  // Walk up the chain and look for nodes with offsets from the same
7971  // base pointer. Stop when reaching an instruction with a different kind
7972  // or instruction which has a different base pointer.
7973  unsigned Seq = 0;
7974  StoreSDNode *Index = St;
7975  while (Index) {
7976    // If the chain has more than one use, then we can't reorder the mem ops.
7977    if (Index != St && !SDValue(Index, 1)->hasOneUse())
7978      break;
7979
7980    // Find the base pointer and offset for this memory node.
7981    BaseIndexOffset Ptr = BaseIndexOffset::match(Index->getBasePtr());
7982
7983    // Check that the base pointer is the same as the original one.
7984    if (!Ptr.equalBaseIndex(BasePtr))
7985      break;
7986
7987    // Check that the alignment is the same.
7988    if (Index->getAlignment() != St->getAlignment())
7989      break;
7990
7991    // The memory operands must not be volatile.
7992    if (Index->isVolatile() || Index->isIndexed())
7993      break;
7994
7995    // No truncation.
7996    if (StoreSDNode *St = dyn_cast<StoreSDNode>(Index))
7997      if (St->isTruncatingStore())
7998        break;
7999
8000    // The stored memory type must be the same.
8001    if (Index->getMemoryVT() != MemVT)
8002      break;
8003
8004    // We do not allow unaligned stores because we want to prevent overriding
8005    // stores.
8006    if (Index->getAlignment()*8 != MemVT.getSizeInBits())
8007      break;
8008
8009    // We found a potential memory operand to merge.
8010    StoreNodes.push_back(MemOpLink(Index, Ptr.Offset, Seq++));
8011
8012    // Find the next memory operand in the chain. If the next operand in the
8013    // chain is a store then move up and continue the scan with the next
8014    // memory operand. If the next operand is a load save it and use alias
8015    // information to check if it interferes with anything.
8016    SDNode *NextInChain = Index->getChain().getNode();
8017    while (1) {
8018      if (StoreSDNode *STn = dyn_cast<StoreSDNode>(NextInChain)) {
8019        // We found a store node. Use it for the next iteration.
8020        Index = STn;
8021        break;
8022      } else if (LoadSDNode *Ldn = dyn_cast<LoadSDNode>(NextInChain)) {
8023        // Save the load node for later. Continue the scan.
8024        AliasLoadNodes.push_back(Ldn);
8025        NextInChain = Ldn->getChain().getNode();
8026        continue;
8027      } else {
8028        Index = NULL;
8029        break;
8030      }
8031    }
8032  }
8033
8034  // Check if there is anything to merge.
8035  if (StoreNodes.size() < 2)
8036    return false;
8037
8038  // Sort the memory operands according to their distance from the base pointer.
8039  std::sort(StoreNodes.begin(), StoreNodes.end(),
8040            ConsecutiveMemoryChainSorter());
8041
8042  // Scan the memory operations on the chain and find the first non-consecutive
8043  // store memory address.
8044  unsigned LastConsecutiveStore = 0;
8045  int64_t StartAddress = StoreNodes[0].OffsetFromBase;
8046  for (unsigned i = 0, e = StoreNodes.size(); i < e; ++i) {
8047
8048    // Check that the addresses are consecutive starting from the second
8049    // element in the list of stores.
8050    if (i > 0) {
8051      int64_t CurrAddress = StoreNodes[i].OffsetFromBase;
8052      if (CurrAddress - StartAddress != (ElementSizeBytes * i))
8053        break;
8054    }
8055
8056    bool Alias = false;
8057    // Check if this store interferes with any of the loads that we found.
8058    for (unsigned ld = 0, lde = AliasLoadNodes.size(); ld < lde; ++ld)
8059      if (isAlias(AliasLoadNodes[ld], StoreNodes[i].MemNode)) {
8060        Alias = true;
8061        break;
8062      }
8063    // We found a load that alias with this store. Stop the sequence.
8064    if (Alias)
8065      break;
8066
8067    // Mark this node as useful.
8068    LastConsecutiveStore = i;
8069  }
8070
8071  // The node with the lowest store address.
8072  LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode;
8073
8074  // Store the constants into memory as one consecutive store.
8075  if (!IsLoadSrc) {
8076    unsigned LastLegalType = 0;
8077    unsigned LastLegalVectorType = 0;
8078    bool NonZero = false;
8079    for (unsigned i=0; i<LastConsecutiveStore+1; ++i) {
8080      StoreSDNode *St  = cast<StoreSDNode>(StoreNodes[i].MemNode);
8081      SDValue StoredVal = St->getValue();
8082
8083      if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(StoredVal)) {
8084        NonZero |= !C->isNullValue();
8085      } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(StoredVal)) {
8086        NonZero |= !C->getConstantFPValue()->isNullValue();
8087      } else {
8088        // Non constant.
8089        break;
8090      }
8091
8092      // Find a legal type for the constant store.
8093      unsigned StoreBW = (i+1) * ElementSizeBytes * 8;
8094      EVT StoreTy = EVT::getIntegerVT(*DAG.getContext(), StoreBW);
8095      if (TLI.isTypeLegal(StoreTy))
8096        LastLegalType = i+1;
8097      // Or check whether a truncstore is legal.
8098      else if (TLI.getTypeAction(*DAG.getContext(), StoreTy) ==
8099               TargetLowering::TypePromoteInteger) {
8100        EVT LegalizedStoredValueTy =
8101          TLI.getTypeToTransformTo(*DAG.getContext(), StoredVal.getValueType());
8102        if (TLI.isTruncStoreLegal(LegalizedStoredValueTy, StoreTy))
8103          LastLegalType = i+1;
8104      }
8105
8106      // Find a legal type for the vector store.
8107      EVT Ty = EVT::getVectorVT(*DAG.getContext(), MemVT, i+1);
8108      if (TLI.isTypeLegal(Ty))
8109        LastLegalVectorType = i + 1;
8110    }
8111
8112    // We only use vectors if the constant is known to be zero and the
8113    // function is not marked with the noimplicitfloat attribute.
8114    if (NonZero || NoVectors)
8115      LastLegalVectorType = 0;
8116
8117    // Check if we found a legal integer type to store.
8118    if (LastLegalType == 0 && LastLegalVectorType == 0)
8119      return false;
8120
8121    bool UseVector = (LastLegalVectorType > LastLegalType) && !NoVectors;
8122    unsigned NumElem = UseVector ? LastLegalVectorType : LastLegalType;
8123
8124    // Make sure we have something to merge.
8125    if (NumElem < 2)
8126      return false;
8127
8128    unsigned EarliestNodeUsed = 0;
8129    for (unsigned i=0; i < NumElem; ++i) {
8130      // Find a chain for the new wide-store operand. Notice that some
8131      // of the store nodes that we found may not be selected for inclusion
8132      // in the wide store. The chain we use needs to be the chain of the
8133      // earliest store node which is *used* and replaced by the wide store.
8134      if (StoreNodes[i].SequenceNum > StoreNodes[EarliestNodeUsed].SequenceNum)
8135        EarliestNodeUsed = i;
8136    }
8137
8138    // The earliest Node in the DAG.
8139    LSBaseSDNode *EarliestOp = StoreNodes[EarliestNodeUsed].MemNode;
8140    SDLoc DL(StoreNodes[0].MemNode);
8141
8142    SDValue StoredVal;
8143    if (UseVector) {
8144      // Find a legal type for the vector store.
8145      EVT Ty = EVT::getVectorVT(*DAG.getContext(), MemVT, NumElem);
8146      assert(TLI.isTypeLegal(Ty) && "Illegal vector store");
8147      StoredVal = DAG.getConstant(0, Ty);
8148    } else {
8149      unsigned StoreBW = NumElem * ElementSizeBytes * 8;
8150      APInt StoreInt(StoreBW, 0);
8151
8152      // Construct a single integer constant which is made of the smaller
8153      // constant inputs.
8154      bool IsLE = TLI.isLittleEndian();
8155      for (unsigned i = 0; i < NumElem ; ++i) {
8156        unsigned Idx = IsLE ?(NumElem - 1 - i) : i;
8157        StoreSDNode *St  = cast<StoreSDNode>(StoreNodes[Idx].MemNode);
8158        SDValue Val = St->getValue();
8159        StoreInt<<=ElementSizeBytes*8;
8160        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) {
8161          StoreInt|=C->getAPIntValue().zext(StoreBW);
8162        } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Val)) {
8163          StoreInt|= C->getValueAPF().bitcastToAPInt().zext(StoreBW);
8164        } else {
8165          assert(false && "Invalid constant element type");
8166        }
8167      }
8168
8169      // Create the new Load and Store operations.
8170      EVT StoreTy = EVT::getIntegerVT(*DAG.getContext(), StoreBW);
8171      StoredVal = DAG.getConstant(StoreInt, StoreTy);
8172    }
8173
8174    SDValue NewStore = DAG.getStore(EarliestOp->getChain(), DL, StoredVal,
8175                                    FirstInChain->getBasePtr(),
8176                                    FirstInChain->getPointerInfo(),
8177                                    false, false,
8178                                    FirstInChain->getAlignment());
8179
8180    // Replace the first store with the new store
8181    CombineTo(EarliestOp, NewStore);
8182    // Erase all other stores.
8183    for (unsigned i = 0; i < NumElem ; ++i) {
8184      if (StoreNodes[i].MemNode == EarliestOp)
8185        continue;
8186      StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode);
8187      // ReplaceAllUsesWith will replace all uses that existed when it was
8188      // called, but graph optimizations may cause new ones to appear. For
8189      // example, the case in pr14333 looks like
8190      //
8191      //  St's chain -> St -> another store -> X
8192      //
8193      // And the only difference from St to the other store is the chain.
8194      // When we change it's chain to be St's chain they become identical,
8195      // get CSEed and the net result is that X is now a use of St.
8196      // Since we know that St is redundant, just iterate.
8197      while (!St->use_empty())
8198        DAG.ReplaceAllUsesWith(SDValue(St, 0), St->getChain());
8199      removeFromWorkList(St);
8200      DAG.DeleteNode(St);
8201    }
8202
8203    return true;
8204  }
8205
8206  // Below we handle the case of multiple consecutive stores that
8207  // come from multiple consecutive loads. We merge them into a single
8208  // wide load and a single wide store.
8209
8210  // Look for load nodes which are used by the stored values.
8211  SmallVector<MemOpLink, 8> LoadNodes;
8212
8213  // Find acceptable loads. Loads need to have the same chain (token factor),
8214  // must not be zext, volatile, indexed, and they must be consecutive.
8215  BaseIndexOffset LdBasePtr;
8216  for (unsigned i=0; i<LastConsecutiveStore+1; ++i) {
8217    StoreSDNode *St  = cast<StoreSDNode>(StoreNodes[i].MemNode);
8218    LoadSDNode *Ld = dyn_cast<LoadSDNode>(St->getValue());
8219    if (!Ld) break;
8220
8221    // Loads must only have one use.
8222    if (!Ld->hasNUsesOfValue(1, 0))
8223      break;
8224
8225    // Check that the alignment is the same as the stores.
8226    if (Ld->getAlignment() != St->getAlignment())
8227      break;
8228
8229    // The memory operands must not be volatile.
8230    if (Ld->isVolatile() || Ld->isIndexed())
8231      break;
8232
8233    // We do not accept ext loads.
8234    if (Ld->getExtensionType() != ISD::NON_EXTLOAD)
8235      break;
8236
8237    // The stored memory type must be the same.
8238    if (Ld->getMemoryVT() != MemVT)
8239      break;
8240
8241    BaseIndexOffset LdPtr = BaseIndexOffset::match(Ld->getBasePtr());
8242    // If this is not the first ptr that we check.
8243    if (LdBasePtr.Base.getNode()) {
8244      // The base ptr must be the same.
8245      if (!LdPtr.equalBaseIndex(LdBasePtr))
8246        break;
8247    } else {
8248      // Check that all other base pointers are the same as this one.
8249      LdBasePtr = LdPtr;
8250    }
8251
8252    // We found a potential memory operand to merge.
8253    LoadNodes.push_back(MemOpLink(Ld, LdPtr.Offset, 0));
8254  }
8255
8256  if (LoadNodes.size() < 2)
8257    return false;
8258
8259  // Scan the memory operations on the chain and find the first non-consecutive
8260  // load memory address. These variables hold the index in the store node
8261  // array.
8262  unsigned LastConsecutiveLoad = 0;
8263  // This variable refers to the size and not index in the array.
8264  unsigned LastLegalVectorType = 0;
8265  unsigned LastLegalIntegerType = 0;
8266  StartAddress = LoadNodes[0].OffsetFromBase;
8267  SDValue FirstChain = LoadNodes[0].MemNode->getChain();
8268  for (unsigned i = 1; i < LoadNodes.size(); ++i) {
8269    // All loads much share the same chain.
8270    if (LoadNodes[i].MemNode->getChain() != FirstChain)
8271      break;
8272
8273    int64_t CurrAddress = LoadNodes[i].OffsetFromBase;
8274    if (CurrAddress - StartAddress != (ElementSizeBytes * i))
8275      break;
8276    LastConsecutiveLoad = i;
8277
8278    // Find a legal type for the vector store.
8279    EVT StoreTy = EVT::getVectorVT(*DAG.getContext(), MemVT, i+1);
8280    if (TLI.isTypeLegal(StoreTy))
8281      LastLegalVectorType = i + 1;
8282
8283    // Find a legal type for the integer store.
8284    unsigned StoreBW = (i+1) * ElementSizeBytes * 8;
8285    StoreTy = EVT::getIntegerVT(*DAG.getContext(), StoreBW);
8286    if (TLI.isTypeLegal(StoreTy))
8287      LastLegalIntegerType = i + 1;
8288    // Or check whether a truncstore and extload is legal.
8289    else if (TLI.getTypeAction(*DAG.getContext(), StoreTy) ==
8290             TargetLowering::TypePromoteInteger) {
8291      EVT LegalizedStoredValueTy =
8292        TLI.getTypeToTransformTo(*DAG.getContext(), StoreTy);
8293      if (TLI.isTruncStoreLegal(LegalizedStoredValueTy, StoreTy) &&
8294          TLI.isLoadExtLegal(ISD::ZEXTLOAD, StoreTy) &&
8295          TLI.isLoadExtLegal(ISD::SEXTLOAD, StoreTy) &&
8296          TLI.isLoadExtLegal(ISD::EXTLOAD, StoreTy))
8297        LastLegalIntegerType = i+1;
8298    }
8299  }
8300
8301  // Only use vector types if the vector type is larger than the integer type.
8302  // If they are the same, use integers.
8303  bool UseVectorTy = LastLegalVectorType > LastLegalIntegerType && !NoVectors;
8304  unsigned LastLegalType = std::max(LastLegalVectorType, LastLegalIntegerType);
8305
8306  // We add +1 here because the LastXXX variables refer to location while
8307  // the NumElem refers to array/index size.
8308  unsigned NumElem = std::min(LastConsecutiveStore, LastConsecutiveLoad) + 1;
8309  NumElem = std::min(LastLegalType, NumElem);
8310
8311  if (NumElem < 2)
8312    return false;
8313
8314  // The earliest Node in the DAG.
8315  unsigned EarliestNodeUsed = 0;
8316  LSBaseSDNode *EarliestOp = StoreNodes[EarliestNodeUsed].MemNode;
8317  for (unsigned i=1; i<NumElem; ++i) {
8318    // Find a chain for the new wide-store operand. Notice that some
8319    // of the store nodes that we found may not be selected for inclusion
8320    // in the wide store. The chain we use needs to be the chain of the
8321    // earliest store node which is *used* and replaced by the wide store.
8322    if (StoreNodes[i].SequenceNum > StoreNodes[EarliestNodeUsed].SequenceNum)
8323      EarliestNodeUsed = i;
8324  }
8325
8326  // Find if it is better to use vectors or integers to load and store
8327  // to memory.
8328  EVT JointMemOpVT;
8329  if (UseVectorTy) {
8330    JointMemOpVT = EVT::getVectorVT(*DAG.getContext(), MemVT, NumElem);
8331  } else {
8332    unsigned StoreBW = NumElem * ElementSizeBytes * 8;
8333    JointMemOpVT = EVT::getIntegerVT(*DAG.getContext(), StoreBW);
8334  }
8335
8336  SDLoc LoadDL(LoadNodes[0].MemNode);
8337  SDLoc StoreDL(StoreNodes[0].MemNode);
8338
8339  LoadSDNode *FirstLoad = cast<LoadSDNode>(LoadNodes[0].MemNode);
8340  SDValue NewLoad = DAG.getLoad(JointMemOpVT, LoadDL,
8341                                FirstLoad->getChain(),
8342                                FirstLoad->getBasePtr(),
8343                                FirstLoad->getPointerInfo(),
8344                                false, false, false,
8345                                FirstLoad->getAlignment());
8346
8347  SDValue NewStore = DAG.getStore(EarliestOp->getChain(), StoreDL, NewLoad,
8348                                  FirstInChain->getBasePtr(),
8349                                  FirstInChain->getPointerInfo(), false, false,
8350                                  FirstInChain->getAlignment());
8351
8352  // Replace one of the loads with the new load.
8353  LoadSDNode *Ld = cast<LoadSDNode>(LoadNodes[0].MemNode);
8354  DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1),
8355                                SDValue(NewLoad.getNode(), 1));
8356
8357  // Remove the rest of the load chains.
8358  for (unsigned i = 1; i < NumElem ; ++i) {
8359    // Replace all chain users of the old load nodes with the chain of the new
8360    // load node.
8361    LoadSDNode *Ld = cast<LoadSDNode>(LoadNodes[i].MemNode);
8362    DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), Ld->getChain());
8363  }
8364
8365  // Replace the first store with the new store.
8366  CombineTo(EarliestOp, NewStore);
8367  // Erase all other stores.
8368  for (unsigned i = 0; i < NumElem ; ++i) {
8369    // Remove all Store nodes.
8370    if (StoreNodes[i].MemNode == EarliestOp)
8371      continue;
8372    StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode);
8373    DAG.ReplaceAllUsesOfValueWith(SDValue(St, 0), St->getChain());
8374    removeFromWorkList(St);
8375    DAG.DeleteNode(St);
8376  }
8377
8378  return true;
8379}
8380
8381SDValue DAGCombiner::visitSTORE(SDNode *N) {
8382  StoreSDNode *ST  = cast<StoreSDNode>(N);
8383  SDValue Chain = ST->getChain();
8384  SDValue Value = ST->getValue();
8385  SDValue Ptr   = ST->getBasePtr();
8386
8387  // If this is a store of a bit convert, store the input value if the
8388  // resultant store does not need a higher alignment than the original.
8389  if (Value.getOpcode() == ISD::BITCAST && !ST->isTruncatingStore() &&
8390      ST->isUnindexed()) {
8391    unsigned OrigAlign = ST->getAlignment();
8392    EVT SVT = Value.getOperand(0).getValueType();
8393    unsigned Align = TLI.getDataLayout()->
8394      getABITypeAlignment(SVT.getTypeForEVT(*DAG.getContext()));
8395    if (Align <= OrigAlign &&
8396        ((!LegalOperations && !ST->isVolatile()) ||
8397         TLI.isOperationLegalOrCustom(ISD::STORE, SVT)))
8398      return DAG.getStore(Chain, SDLoc(N), Value.getOperand(0),
8399                          Ptr, ST->getPointerInfo(), ST->isVolatile(),
8400                          ST->isNonTemporal(), OrigAlign);
8401  }
8402
8403  // Turn 'store undef, Ptr' -> nothing.
8404  if (Value.getOpcode() == ISD::UNDEF && ST->isUnindexed())
8405    return Chain;
8406
8407  // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
8408  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Value)) {
8409    // NOTE: If the original store is volatile, this transform must not increase
8410    // the number of stores.  For example, on x86-32 an f64 can be stored in one
8411    // processor operation but an i64 (which is not legal) requires two.  So the
8412    // transform should not be done in this case.
8413    if (Value.getOpcode() != ISD::TargetConstantFP) {
8414      SDValue Tmp;
8415      switch (CFP->getValueType(0).getSimpleVT().SimpleTy) {
8416      default: llvm_unreachable("Unknown FP type");
8417      case MVT::f16:    // We don't do this for these yet.
8418      case MVT::f80:
8419      case MVT::f128:
8420      case MVT::ppcf128:
8421        break;
8422      case MVT::f32:
8423        if ((isTypeLegal(MVT::i32) && !LegalOperations && !ST->isVolatile()) ||
8424            TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) {
8425          Tmp = DAG.getConstant((uint32_t)CFP->getValueAPF().
8426                              bitcastToAPInt().getZExtValue(), MVT::i32);
8427          return DAG.getStore(Chain, SDLoc(N), Tmp,
8428                              Ptr, ST->getPointerInfo(), ST->isVolatile(),
8429                              ST->isNonTemporal(), ST->getAlignment());
8430        }
8431        break;
8432      case MVT::f64:
8433        if ((TLI.isTypeLegal(MVT::i64) && !LegalOperations &&
8434             !ST->isVolatile()) ||
8435            TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i64)) {
8436          Tmp = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
8437                                getZExtValue(), MVT::i64);
8438          return DAG.getStore(Chain, SDLoc(N), Tmp,
8439                              Ptr, ST->getPointerInfo(), ST->isVolatile(),
8440                              ST->isNonTemporal(), ST->getAlignment());
8441        }
8442
8443        if (!ST->isVolatile() &&
8444            TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) {
8445          // Many FP stores are not made apparent until after legalize, e.g. for
8446          // argument passing.  Since this is so common, custom legalize the
8447          // 64-bit integer store into two 32-bit stores.
8448          uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
8449          SDValue Lo = DAG.getConstant(Val & 0xFFFFFFFF, MVT::i32);
8450          SDValue Hi = DAG.getConstant(Val >> 32, MVT::i32);
8451          if (TLI.isBigEndian()) std::swap(Lo, Hi);
8452
8453          unsigned Alignment = ST->getAlignment();
8454          bool isVolatile = ST->isVolatile();
8455          bool isNonTemporal = ST->isNonTemporal();
8456
8457          SDValue St0 = DAG.getStore(Chain, SDLoc(ST), Lo,
8458                                     Ptr, ST->getPointerInfo(),
8459                                     isVolatile, isNonTemporal,
8460                                     ST->getAlignment());
8461          Ptr = DAG.getNode(ISD::ADD, SDLoc(N), Ptr.getValueType(), Ptr,
8462                            DAG.getConstant(4, Ptr.getValueType()));
8463          Alignment = MinAlign(Alignment, 4U);
8464          SDValue St1 = DAG.getStore(Chain, SDLoc(ST), Hi,
8465                                     Ptr, ST->getPointerInfo().getWithOffset(4),
8466                                     isVolatile, isNonTemporal,
8467                                     Alignment);
8468          return DAG.getNode(ISD::TokenFactor, SDLoc(N), MVT::Other,
8469                             St0, St1);
8470        }
8471
8472        break;
8473      }
8474    }
8475  }
8476
8477  // Try to infer better alignment information than the store already has.
8478  if (OptLevel != CodeGenOpt::None && ST->isUnindexed()) {
8479    if (unsigned Align = DAG.InferPtrAlignment(Ptr)) {
8480      if (Align > ST->getAlignment())
8481        return DAG.getTruncStore(Chain, SDLoc(N), Value,
8482                                 Ptr, ST->getPointerInfo(), ST->getMemoryVT(),
8483                                 ST->isVolatile(), ST->isNonTemporal(), Align);
8484    }
8485  }
8486
8487  // Try transforming a pair floating point load / store ops to integer
8488  // load / store ops.
8489  SDValue NewST = TransformFPLoadStorePair(N);
8490  if (NewST.getNode())
8491    return NewST;
8492
8493  if (CombinerAA) {
8494    // Walk up chain skipping non-aliasing memory nodes.
8495    SDValue BetterChain = FindBetterChain(N, Chain);
8496
8497    // If there is a better chain.
8498    if (Chain != BetterChain) {
8499      SDValue ReplStore;
8500
8501      // Replace the chain to avoid dependency.
8502      if (ST->isTruncatingStore()) {
8503        ReplStore = DAG.getTruncStore(BetterChain, SDLoc(N), Value, Ptr,
8504                                      ST->getPointerInfo(),
8505                                      ST->getMemoryVT(), ST->isVolatile(),
8506                                      ST->isNonTemporal(), ST->getAlignment());
8507      } else {
8508        ReplStore = DAG.getStore(BetterChain, SDLoc(N), Value, Ptr,
8509                                 ST->getPointerInfo(),
8510                                 ST->isVolatile(), ST->isNonTemporal(),
8511                                 ST->getAlignment());
8512      }
8513
8514      // Create token to keep both nodes around.
8515      SDValue Token = DAG.getNode(ISD::TokenFactor, SDLoc(N),
8516                                  MVT::Other, Chain, ReplStore);
8517
8518      // Make sure the new and old chains are cleaned up.
8519      AddToWorkList(Token.getNode());
8520
8521      // Don't add users to work list.
8522      return CombineTo(N, Token, false);
8523    }
8524  }
8525
8526  // Try transforming N to an indexed store.
8527  if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
8528    return SDValue(N, 0);
8529
8530  // FIXME: is there such a thing as a truncating indexed store?
8531  if (ST->isTruncatingStore() && ST->isUnindexed() &&
8532      Value.getValueType().isInteger()) {
8533    // See if we can simplify the input to this truncstore with knowledge that
8534    // only the low bits are being used.  For example:
8535    // "truncstore (or (shl x, 8), y), i8"  -> "truncstore y, i8"
8536    SDValue Shorter =
8537      GetDemandedBits(Value,
8538                      APInt::getLowBitsSet(
8539                        Value.getValueType().getScalarType().getSizeInBits(),
8540                        ST->getMemoryVT().getScalarType().getSizeInBits()));
8541    AddToWorkList(Value.getNode());
8542    if (Shorter.getNode())
8543      return DAG.getTruncStore(Chain, SDLoc(N), Shorter,
8544                               Ptr, ST->getPointerInfo(), ST->getMemoryVT(),
8545                               ST->isVolatile(), ST->isNonTemporal(),
8546                               ST->getAlignment());
8547
8548    // Otherwise, see if we can simplify the operation with
8549    // SimplifyDemandedBits, which only works if the value has a single use.
8550    if (SimplifyDemandedBits(Value,
8551                        APInt::getLowBitsSet(
8552                          Value.getValueType().getScalarType().getSizeInBits(),
8553                          ST->getMemoryVT().getScalarType().getSizeInBits())))
8554      return SDValue(N, 0);
8555  }
8556
8557  // If this is a load followed by a store to the same location, then the store
8558  // is dead/noop.
8559  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Value)) {
8560    if (Ld->getBasePtr() == Ptr && ST->getMemoryVT() == Ld->getMemoryVT() &&
8561        ST->isUnindexed() && !ST->isVolatile() &&
8562        // There can't be any side effects between the load and store, such as
8563        // a call or store.
8564        Chain.reachesChainWithoutSideEffects(SDValue(Ld, 1))) {
8565      // The store is dead, remove it.
8566      return Chain;
8567    }
8568  }
8569
8570  // If this is an FP_ROUND or TRUNC followed by a store, fold this into a
8571  // truncating store.  We can do this even if this is already a truncstore.
8572  if ((Value.getOpcode() == ISD::FP_ROUND || Value.getOpcode() == ISD::TRUNCATE)
8573      && Value.getNode()->hasOneUse() && ST->isUnindexed() &&
8574      TLI.isTruncStoreLegal(Value.getOperand(0).getValueType(),
8575                            ST->getMemoryVT())) {
8576    return DAG.getTruncStore(Chain, SDLoc(N), Value.getOperand(0),
8577                             Ptr, ST->getPointerInfo(), ST->getMemoryVT(),
8578                             ST->isVolatile(), ST->isNonTemporal(),
8579                             ST->getAlignment());
8580  }
8581
8582  // Only perform this optimization before the types are legal, because we
8583  // don't want to perform this optimization on every DAGCombine invocation.
8584  if (!LegalTypes) {
8585    bool EverChanged = false;
8586
8587    do {
8588      // There can be multiple store sequences on the same chain.
8589      // Keep trying to merge store sequences until we are unable to do so
8590      // or until we merge the last store on the chain.
8591      bool Changed = MergeConsecutiveStores(ST);
8592      EverChanged |= Changed;
8593      if (!Changed) break;
8594    } while (ST->getOpcode() != ISD::DELETED_NODE);
8595
8596    if (EverChanged)
8597      return SDValue(N, 0);
8598  }
8599
8600  return ReduceLoadOpStoreWidth(N);
8601}
8602
8603SDValue DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) {
8604  SDValue InVec = N->getOperand(0);
8605  SDValue InVal = N->getOperand(1);
8606  SDValue EltNo = N->getOperand(2);
8607  SDLoc dl(N);
8608
8609  // If the inserted element is an UNDEF, just use the input vector.
8610  if (InVal.getOpcode() == ISD::UNDEF)
8611    return InVec;
8612
8613  EVT VT = InVec.getValueType();
8614
8615  // If we can't generate a legal BUILD_VECTOR, exit
8616  if (LegalOperations && !TLI.isOperationLegal(ISD::BUILD_VECTOR, VT))
8617    return SDValue();
8618
8619  // Check that we know which element is being inserted
8620  if (!isa<ConstantSDNode>(EltNo))
8621    return SDValue();
8622  unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
8623
8624  // Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially
8625  // be converted to a BUILD_VECTOR).  Fill in the Ops vector with the
8626  // vector elements.
8627  SmallVector<SDValue, 8> Ops;
8628  // Do not combine these two vectors if the output vector will not replace
8629  // the input vector.
8630  if (InVec.getOpcode() == ISD::BUILD_VECTOR && InVec.hasOneUse()) {
8631    Ops.append(InVec.getNode()->op_begin(),
8632               InVec.getNode()->op_end());
8633  } else if (InVec.getOpcode() == ISD::UNDEF) {
8634    unsigned NElts = VT.getVectorNumElements();
8635    Ops.append(NElts, DAG.getUNDEF(InVal.getValueType()));
8636  } else {
8637    return SDValue();
8638  }
8639
8640  // Insert the element
8641  if (Elt < Ops.size()) {
8642    // All the operands of BUILD_VECTOR must have the same type;
8643    // we enforce that here.
8644    EVT OpVT = Ops[0].getValueType();
8645    if (InVal.getValueType() != OpVT)
8646      InVal = OpVT.bitsGT(InVal.getValueType()) ?
8647                DAG.getNode(ISD::ANY_EXTEND, dl, OpVT, InVal) :
8648                DAG.getNode(ISD::TRUNCATE, dl, OpVT, InVal);
8649    Ops[Elt] = InVal;
8650  }
8651
8652  // Return the new vector
8653  return DAG.getNode(ISD::BUILD_VECTOR, dl,
8654                     VT, &Ops[0], Ops.size());
8655}
8656
8657SDValue DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) {
8658  // (vextract (scalar_to_vector val, 0) -> val
8659  SDValue InVec = N->getOperand(0);
8660  EVT VT = InVec.getValueType();
8661  EVT NVT = N->getValueType(0);
8662
8663  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
8664    // Check if the result type doesn't match the inserted element type. A
8665    // SCALAR_TO_VECTOR may truncate the inserted element and the
8666    // EXTRACT_VECTOR_ELT may widen the extracted vector.
8667    SDValue InOp = InVec.getOperand(0);
8668    if (InOp.getValueType() != NVT) {
8669      assert(InOp.getValueType().isInteger() && NVT.isInteger());
8670      return DAG.getSExtOrTrunc(InOp, SDLoc(InVec), NVT);
8671    }
8672    return InOp;
8673  }
8674
8675  SDValue EltNo = N->getOperand(1);
8676  bool ConstEltNo = isa<ConstantSDNode>(EltNo);
8677
8678  // Transform: (EXTRACT_VECTOR_ELT( VECTOR_SHUFFLE )) -> EXTRACT_VECTOR_ELT.
8679  // We only perform this optimization before the op legalization phase because
8680  // we may introduce new vector instructions which are not backed by TD
8681  // patterns. For example on AVX, extracting elements from a wide vector
8682  // without using extract_subvector.
8683  if (InVec.getOpcode() == ISD::VECTOR_SHUFFLE
8684      && ConstEltNo && !LegalOperations) {
8685    int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
8686    int NumElem = VT.getVectorNumElements();
8687    ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(InVec);
8688    // Find the new index to extract from.
8689    int OrigElt = SVOp->getMaskElt(Elt);
8690
8691    // Extracting an undef index is undef.
8692    if (OrigElt == -1)
8693      return DAG.getUNDEF(NVT);
8694
8695    // Select the right vector half to extract from.
8696    if (OrigElt < NumElem) {
8697      InVec = InVec->getOperand(0);
8698    } else {
8699      InVec = InVec->getOperand(1);
8700      OrigElt -= NumElem;
8701    }
8702
8703    EVT IndexTy = TLI.getVectorIdxTy();
8704    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), NVT,
8705                       InVec, DAG.getConstant(OrigElt, IndexTy));
8706  }
8707
8708  // Perform only after legalization to ensure build_vector / vector_shuffle
8709  // optimizations have already been done.
8710  if (!LegalOperations) return SDValue();
8711
8712  // (vextract (v4f32 load $addr), c) -> (f32 load $addr+c*size)
8713  // (vextract (v4f32 s2v (f32 load $addr)), c) -> (f32 load $addr+c*size)
8714  // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), 0) -> (f32 load $addr)
8715
8716  if (ConstEltNo) {
8717    int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
8718    bool NewLoad = false;
8719    bool BCNumEltsChanged = false;
8720    EVT ExtVT = VT.getVectorElementType();
8721    EVT LVT = ExtVT;
8722
8723    // If the result of load has to be truncated, then it's not necessarily
8724    // profitable.
8725    if (NVT.bitsLT(LVT) && !TLI.isTruncateFree(LVT, NVT))
8726      return SDValue();
8727
8728    if (InVec.getOpcode() == ISD::BITCAST) {
8729      // Don't duplicate a load with other uses.
8730      if (!InVec.hasOneUse())
8731        return SDValue();
8732
8733      EVT BCVT = InVec.getOperand(0).getValueType();
8734      if (!BCVT.isVector() || ExtVT.bitsGT(BCVT.getVectorElementType()))
8735        return SDValue();
8736      if (VT.getVectorNumElements() != BCVT.getVectorNumElements())
8737        BCNumEltsChanged = true;
8738      InVec = InVec.getOperand(0);
8739      ExtVT = BCVT.getVectorElementType();
8740      NewLoad = true;
8741    }
8742
8743    LoadSDNode *LN0 = NULL;
8744    const ShuffleVectorSDNode *SVN = NULL;
8745    if (ISD::isNormalLoad(InVec.getNode())) {
8746      LN0 = cast<LoadSDNode>(InVec);
8747    } else if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR &&
8748               InVec.getOperand(0).getValueType() == ExtVT &&
8749               ISD::isNormalLoad(InVec.getOperand(0).getNode())) {
8750      // Don't duplicate a load with other uses.
8751      if (!InVec.hasOneUse())
8752        return SDValue();
8753
8754      LN0 = cast<LoadSDNode>(InVec.getOperand(0));
8755    } else if ((SVN = dyn_cast<ShuffleVectorSDNode>(InVec))) {
8756      // (vextract (vector_shuffle (load $addr), v2, <1, u, u, u>), 1)
8757      // =>
8758      // (load $addr+1*size)
8759
8760      // Don't duplicate a load with other uses.
8761      if (!InVec.hasOneUse())
8762        return SDValue();
8763
8764      // If the bit convert changed the number of elements, it is unsafe
8765      // to examine the mask.
8766      if (BCNumEltsChanged)
8767        return SDValue();
8768
8769      // Select the input vector, guarding against out of range extract vector.
8770      unsigned NumElems = VT.getVectorNumElements();
8771      int Idx = (Elt > (int)NumElems) ? -1 : SVN->getMaskElt(Elt);
8772      InVec = (Idx < (int)NumElems) ? InVec.getOperand(0) : InVec.getOperand(1);
8773
8774      if (InVec.getOpcode() == ISD::BITCAST) {
8775        // Don't duplicate a load with other uses.
8776        if (!InVec.hasOneUse())
8777          return SDValue();
8778
8779        InVec = InVec.getOperand(0);
8780      }
8781      if (ISD::isNormalLoad(InVec.getNode())) {
8782        LN0 = cast<LoadSDNode>(InVec);
8783        Elt = (Idx < (int)NumElems) ? Idx : Idx - (int)NumElems;
8784      }
8785    }
8786
8787    // Make sure we found a non-volatile load and the extractelement is
8788    // the only use.
8789    if (!LN0 || !LN0->hasNUsesOfValue(1,0) || LN0->isVolatile())
8790      return SDValue();
8791
8792    // If Idx was -1 above, Elt is going to be -1, so just return undef.
8793    if (Elt == -1)
8794      return DAG.getUNDEF(LVT);
8795
8796    unsigned Align = LN0->getAlignment();
8797    if (NewLoad) {
8798      // Check the resultant load doesn't need a higher alignment than the
8799      // original load.
8800      unsigned NewAlign =
8801        TLI.getDataLayout()
8802            ->getABITypeAlignment(LVT.getTypeForEVT(*DAG.getContext()));
8803
8804      if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, LVT))
8805        return SDValue();
8806
8807      Align = NewAlign;
8808    }
8809
8810    SDValue NewPtr = LN0->getBasePtr();
8811    unsigned PtrOff = 0;
8812
8813    if (Elt) {
8814      PtrOff = LVT.getSizeInBits() * Elt / 8;
8815      EVT PtrType = NewPtr.getValueType();
8816      if (TLI.isBigEndian())
8817        PtrOff = VT.getSizeInBits() / 8 - PtrOff;
8818      NewPtr = DAG.getNode(ISD::ADD, SDLoc(N), PtrType, NewPtr,
8819                           DAG.getConstant(PtrOff, PtrType));
8820    }
8821
8822    // The replacement we need to do here is a little tricky: we need to
8823    // replace an extractelement of a load with a load.
8824    // Use ReplaceAllUsesOfValuesWith to do the replacement.
8825    // Note that this replacement assumes that the extractvalue is the only
8826    // use of the load; that's okay because we don't want to perform this
8827    // transformation in other cases anyway.
8828    SDValue Load;
8829    SDValue Chain;
8830    if (NVT.bitsGT(LVT)) {
8831      // If the result type of vextract is wider than the load, then issue an
8832      // extending load instead.
8833      ISD::LoadExtType ExtType = TLI.isLoadExtLegal(ISD::ZEXTLOAD, LVT)
8834        ? ISD::ZEXTLOAD : ISD::EXTLOAD;
8835      Load = DAG.getExtLoad(ExtType, SDLoc(N), NVT, LN0->getChain(),
8836                            NewPtr, LN0->getPointerInfo().getWithOffset(PtrOff),
8837                            LVT, LN0->isVolatile(), LN0->isNonTemporal(),Align);
8838      Chain = Load.getValue(1);
8839    } else {
8840      Load = DAG.getLoad(LVT, SDLoc(N), LN0->getChain(), NewPtr,
8841                         LN0->getPointerInfo().getWithOffset(PtrOff),
8842                         LN0->isVolatile(), LN0->isNonTemporal(),
8843                         LN0->isInvariant(), Align);
8844      Chain = Load.getValue(1);
8845      if (NVT.bitsLT(LVT))
8846        Load = DAG.getNode(ISD::TRUNCATE, SDLoc(N), NVT, Load);
8847      else
8848        Load = DAG.getNode(ISD::BITCAST, SDLoc(N), NVT, Load);
8849    }
8850    WorkListRemover DeadNodes(*this);
8851    SDValue From[] = { SDValue(N, 0), SDValue(LN0,1) };
8852    SDValue To[] = { Load, Chain };
8853    DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
8854    // Since we're explcitly calling ReplaceAllUses, add the new node to the
8855    // worklist explicitly as well.
8856    AddToWorkList(Load.getNode());
8857    AddUsersToWorkList(Load.getNode()); // Add users too
8858    // Make sure to revisit this node to clean it up; it will usually be dead.
8859    AddToWorkList(N);
8860    return SDValue(N, 0);
8861  }
8862
8863  return SDValue();
8864}
8865
8866// Simplify (build_vec (ext )) to (bitcast (build_vec ))
8867SDValue DAGCombiner::reduceBuildVecExtToExtBuildVec(SDNode *N) {
8868  // We perform this optimization post type-legalization because
8869  // the type-legalizer often scalarizes integer-promoted vectors.
8870  // Performing this optimization before may create bit-casts which
8871  // will be type-legalized to complex code sequences.
8872  // We perform this optimization only before the operation legalizer because we
8873  // may introduce illegal operations.
8874  if (Level != AfterLegalizeVectorOps && Level != AfterLegalizeTypes)
8875    return SDValue();
8876
8877  unsigned NumInScalars = N->getNumOperands();
8878  SDLoc dl(N);
8879  EVT VT = N->getValueType(0);
8880
8881  // Check to see if this is a BUILD_VECTOR of a bunch of values
8882  // which come from any_extend or zero_extend nodes. If so, we can create
8883  // a new BUILD_VECTOR using bit-casts which may enable other BUILD_VECTOR
8884  // optimizations. We do not handle sign-extend because we can't fill the sign
8885  // using shuffles.
8886  EVT SourceType = MVT::Other;
8887  bool AllAnyExt = true;
8888
8889  for (unsigned i = 0; i != NumInScalars; ++i) {
8890    SDValue In = N->getOperand(i);
8891    // Ignore undef inputs.
8892    if (In.getOpcode() == ISD::UNDEF) continue;
8893
8894    bool AnyExt  = In.getOpcode() == ISD::ANY_EXTEND;
8895    bool ZeroExt = In.getOpcode() == ISD::ZERO_EXTEND;
8896
8897    // Abort if the element is not an extension.
8898    if (!ZeroExt && !AnyExt) {
8899      SourceType = MVT::Other;
8900      break;
8901    }
8902
8903    // The input is a ZeroExt or AnyExt. Check the original type.
8904    EVT InTy = In.getOperand(0).getValueType();
8905
8906    // Check that all of the widened source types are the same.
8907    if (SourceType == MVT::Other)
8908      // First time.
8909      SourceType = InTy;
8910    else if (InTy != SourceType) {
8911      // Multiple income types. Abort.
8912      SourceType = MVT::Other;
8913      break;
8914    }
8915
8916    // Check if all of the extends are ANY_EXTENDs.
8917    AllAnyExt &= AnyExt;
8918  }
8919
8920  // In order to have valid types, all of the inputs must be extended from the
8921  // same source type and all of the inputs must be any or zero extend.
8922  // Scalar sizes must be a power of two.
8923  EVT OutScalarTy = VT.getScalarType();
8924  bool ValidTypes = SourceType != MVT::Other &&
8925                 isPowerOf2_32(OutScalarTy.getSizeInBits()) &&
8926                 isPowerOf2_32(SourceType.getSizeInBits());
8927
8928  // Create a new simpler BUILD_VECTOR sequence which other optimizations can
8929  // turn into a single shuffle instruction.
8930  if (!ValidTypes)
8931    return SDValue();
8932
8933  bool isLE = TLI.isLittleEndian();
8934  unsigned ElemRatio = OutScalarTy.getSizeInBits()/SourceType.getSizeInBits();
8935  assert(ElemRatio > 1 && "Invalid element size ratio");
8936  SDValue Filler = AllAnyExt ? DAG.getUNDEF(SourceType):
8937                               DAG.getConstant(0, SourceType);
8938
8939  unsigned NewBVElems = ElemRatio * VT.getVectorNumElements();
8940  SmallVector<SDValue, 8> Ops(NewBVElems, Filler);
8941
8942  // Populate the new build_vector
8943  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
8944    SDValue Cast = N->getOperand(i);
8945    assert((Cast.getOpcode() == ISD::ANY_EXTEND ||
8946            Cast.getOpcode() == ISD::ZERO_EXTEND ||
8947            Cast.getOpcode() == ISD::UNDEF) && "Invalid cast opcode");
8948    SDValue In;
8949    if (Cast.getOpcode() == ISD::UNDEF)
8950      In = DAG.getUNDEF(SourceType);
8951    else
8952      In = Cast->getOperand(0);
8953    unsigned Index = isLE ? (i * ElemRatio) :
8954                            (i * ElemRatio + (ElemRatio - 1));
8955
8956    assert(Index < Ops.size() && "Invalid index");
8957    Ops[Index] = In;
8958  }
8959
8960  // The type of the new BUILD_VECTOR node.
8961  EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SourceType, NewBVElems);
8962  assert(VecVT.getSizeInBits() == VT.getSizeInBits() &&
8963         "Invalid vector size");
8964  // Check if the new vector type is legal.
8965  if (!isTypeLegal(VecVT)) return SDValue();
8966
8967  // Make the new BUILD_VECTOR.
8968  SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, &Ops[0], Ops.size());
8969
8970  // The new BUILD_VECTOR node has the potential to be further optimized.
8971  AddToWorkList(BV.getNode());
8972  // Bitcast to the desired type.
8973  return DAG.getNode(ISD::BITCAST, dl, VT, BV);
8974}
8975
8976SDValue DAGCombiner::reduceBuildVecConvertToConvertBuildVec(SDNode *N) {
8977  EVT VT = N->getValueType(0);
8978
8979  unsigned NumInScalars = N->getNumOperands();
8980  SDLoc dl(N);
8981
8982  EVT SrcVT = MVT::Other;
8983  unsigned Opcode = ISD::DELETED_NODE;
8984  unsigned NumDefs = 0;
8985
8986  for (unsigned i = 0; i != NumInScalars; ++i) {
8987    SDValue In = N->getOperand(i);
8988    unsigned Opc = In.getOpcode();
8989
8990    if (Opc == ISD::UNDEF)
8991      continue;
8992
8993    // If all scalar values are floats and converted from integers.
8994    if (Opcode == ISD::DELETED_NODE &&
8995        (Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP)) {
8996      Opcode = Opc;
8997    }
8998
8999    if (Opc != Opcode)
9000      return SDValue();
9001
9002    EVT InVT = In.getOperand(0).getValueType();
9003
9004    // If all scalar values are typed differently, bail out. It's chosen to
9005    // simplify BUILD_VECTOR of integer types.
9006    if (SrcVT == MVT::Other)
9007      SrcVT = InVT;
9008    if (SrcVT != InVT)
9009      return SDValue();
9010    NumDefs++;
9011  }
9012
9013  // If the vector has just one element defined, it's not worth to fold it into
9014  // a vectorized one.
9015  if (NumDefs < 2)
9016    return SDValue();
9017
9018  assert((Opcode == ISD::UINT_TO_FP || Opcode == ISD::SINT_TO_FP)
9019         && "Should only handle conversion from integer to float.");
9020  assert(SrcVT != MVT::Other && "Cannot determine source type!");
9021
9022  EVT NVT = EVT::getVectorVT(*DAG.getContext(), SrcVT, NumInScalars);
9023
9024  if (!TLI.isOperationLegalOrCustom(Opcode, NVT))
9025    return SDValue();
9026
9027  SmallVector<SDValue, 8> Opnds;
9028  for (unsigned i = 0; i != NumInScalars; ++i) {
9029    SDValue In = N->getOperand(i);
9030
9031    if (In.getOpcode() == ISD::UNDEF)
9032      Opnds.push_back(DAG.getUNDEF(SrcVT));
9033    else
9034      Opnds.push_back(In.getOperand(0));
9035  }
9036  SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, NVT,
9037                           &Opnds[0], Opnds.size());
9038  AddToWorkList(BV.getNode());
9039
9040  return DAG.getNode(Opcode, dl, VT, BV);
9041}
9042
9043SDValue DAGCombiner::visitBUILD_VECTOR(SDNode *N) {
9044  unsigned NumInScalars = N->getNumOperands();
9045  SDLoc dl(N);
9046  EVT VT = N->getValueType(0);
9047
9048  // A vector built entirely of undefs is undef.
9049  if (ISD::allOperandsUndef(N))
9050    return DAG.getUNDEF(VT);
9051
9052  SDValue V = reduceBuildVecExtToExtBuildVec(N);
9053  if (V.getNode())
9054    return V;
9055
9056  V = reduceBuildVecConvertToConvertBuildVec(N);
9057  if (V.getNode())
9058    return V;
9059
9060  // Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT
9061  // operations.  If so, and if the EXTRACT_VECTOR_ELT vector inputs come from
9062  // at most two distinct vectors, turn this into a shuffle node.
9063
9064  // May only combine to shuffle after legalize if shuffle is legal.
9065  if (LegalOperations &&
9066      !TLI.isOperationLegalOrCustom(ISD::VECTOR_SHUFFLE, VT))
9067    return SDValue();
9068
9069  SDValue VecIn1, VecIn2;
9070  for (unsigned i = 0; i != NumInScalars; ++i) {
9071    // Ignore undef inputs.
9072    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
9073
9074    // If this input is something other than a EXTRACT_VECTOR_ELT with a
9075    // constant index, bail out.
9076    if (N->getOperand(i).getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
9077        !isa<ConstantSDNode>(N->getOperand(i).getOperand(1))) {
9078      VecIn1 = VecIn2 = SDValue(0, 0);
9079      break;
9080    }
9081
9082    // We allow up to two distinct input vectors.
9083    SDValue ExtractedFromVec = N->getOperand(i).getOperand(0);
9084    if (ExtractedFromVec == VecIn1 || ExtractedFromVec == VecIn2)
9085      continue;
9086
9087    if (VecIn1.getNode() == 0) {
9088      VecIn1 = ExtractedFromVec;
9089    } else if (VecIn2.getNode() == 0) {
9090      VecIn2 = ExtractedFromVec;
9091    } else {
9092      // Too many inputs.
9093      VecIn1 = VecIn2 = SDValue(0, 0);
9094      break;
9095    }
9096  }
9097
9098    // If everything is good, we can make a shuffle operation.
9099  if (VecIn1.getNode()) {
9100    SmallVector<int, 8> Mask;
9101    for (unsigned i = 0; i != NumInScalars; ++i) {
9102      if (N->getOperand(i).getOpcode() == ISD::UNDEF) {
9103        Mask.push_back(-1);
9104        continue;
9105      }
9106
9107      // If extracting from the first vector, just use the index directly.
9108      SDValue Extract = N->getOperand(i);
9109      SDValue ExtVal = Extract.getOperand(1);
9110      if (Extract.getOperand(0) == VecIn1) {
9111        unsigned ExtIndex = cast<ConstantSDNode>(ExtVal)->getZExtValue();
9112        if (ExtIndex > VT.getVectorNumElements())
9113          return SDValue();
9114
9115        Mask.push_back(ExtIndex);
9116        continue;
9117      }
9118
9119      // Otherwise, use InIdx + VecSize
9120      unsigned Idx = cast<ConstantSDNode>(ExtVal)->getZExtValue();
9121      Mask.push_back(Idx+NumInScalars);
9122    }
9123
9124    // We can't generate a shuffle node with mismatched input and output types.
9125    // Attempt to transform a single input vector to the correct type.
9126    if ((VT != VecIn1.getValueType())) {
9127      // We don't support shuffeling between TWO values of different types.
9128      if (VecIn2.getNode() != 0)
9129        return SDValue();
9130
9131      // We only support widening of vectors which are half the size of the
9132      // output registers. For example XMM->YMM widening on X86 with AVX.
9133      if (VecIn1.getValueType().getSizeInBits()*2 != VT.getSizeInBits())
9134        return SDValue();
9135
9136      // If the input vector type has a different base type to the output
9137      // vector type, bail out.
9138      if (VecIn1.getValueType().getVectorElementType() !=
9139          VT.getVectorElementType())
9140        return SDValue();
9141
9142      // Widen the input vector by adding undef values.
9143      VecIn1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
9144                           VecIn1, DAG.getUNDEF(VecIn1.getValueType()));
9145    }
9146
9147    // If VecIn2 is unused then change it to undef.
9148    VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(VT);
9149
9150    // Check that we were able to transform all incoming values to the same
9151    // type.
9152    if (VecIn2.getValueType() != VecIn1.getValueType() ||
9153        VecIn1.getValueType() != VT)
9154          return SDValue();
9155
9156    // Only type-legal BUILD_VECTOR nodes are converted to shuffle nodes.
9157    if (!isTypeLegal(VT))
9158      return SDValue();
9159
9160    // Return the new VECTOR_SHUFFLE node.
9161    SDValue Ops[2];
9162    Ops[0] = VecIn1;
9163    Ops[1] = VecIn2;
9164    return DAG.getVectorShuffle(VT, dl, Ops[0], Ops[1], &Mask[0]);
9165  }
9166
9167  return SDValue();
9168}
9169
9170SDValue DAGCombiner::visitCONCAT_VECTORS(SDNode *N) {
9171  // TODO: Check to see if this is a CONCAT_VECTORS of a bunch of
9172  // EXTRACT_SUBVECTOR operations.  If so, and if the EXTRACT_SUBVECTOR vector
9173  // inputs come from at most two distinct vectors, turn this into a shuffle
9174  // node.
9175
9176  // If we only have one input vector, we don't need to do any concatenation.
9177  if (N->getNumOperands() == 1)
9178    return N->getOperand(0);
9179
9180  // Check if all of the operands are undefs.
9181  if (ISD::allOperandsUndef(N))
9182    return DAG.getUNDEF(N->getValueType(0));
9183
9184  // Type legalization of vectors and DAG canonicalization of SHUFFLE_VECTOR
9185  // nodes often generate nop CONCAT_VECTOR nodes.
9186  // Scan the CONCAT_VECTOR operands and look for a CONCAT operations that
9187  // place the incoming vectors at the exact same location.
9188  SDValue SingleSource = SDValue();
9189  unsigned PartNumElem = N->getOperand(0).getValueType().getVectorNumElements();
9190
9191  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
9192    SDValue Op = N->getOperand(i);
9193
9194    if (Op.getOpcode() == ISD::UNDEF)
9195      continue;
9196
9197    // Check if this is the identity extract:
9198    if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR)
9199      return SDValue();
9200
9201    // Find the single incoming vector for the extract_subvector.
9202    if (SingleSource.getNode()) {
9203      if (Op.getOperand(0) != SingleSource)
9204        return SDValue();
9205    } else {
9206      SingleSource = Op.getOperand(0);
9207
9208      // Check the source type is the same as the type of the result.
9209      // If not, this concat may extend the vector, so we can not
9210      // optimize it away.
9211      if (SingleSource.getValueType() != N->getValueType(0))
9212        return SDValue();
9213    }
9214
9215    unsigned IdentityIndex = i * PartNumElem;
9216    ConstantSDNode *CS = dyn_cast<ConstantSDNode>(Op.getOperand(1));
9217    // The extract index must be constant.
9218    if (!CS)
9219      return SDValue();
9220
9221    // Check that we are reading from the identity index.
9222    if (CS->getZExtValue() != IdentityIndex)
9223      return SDValue();
9224  }
9225
9226  if (SingleSource.getNode())
9227    return SingleSource;
9228
9229  return SDValue();
9230}
9231
9232SDValue DAGCombiner::visitEXTRACT_SUBVECTOR(SDNode* N) {
9233  EVT NVT = N->getValueType(0);
9234  SDValue V = N->getOperand(0);
9235
9236  if (V->getOpcode() == ISD::CONCAT_VECTORS) {
9237    // Combine:
9238    //    (extract_subvec (concat V1, V2, ...), i)
9239    // Into:
9240    //    Vi if possible
9241    // Only operand 0 is checked as 'concat' assumes all inputs of the same type.
9242    if (V->getOperand(0).getValueType() != NVT)
9243      return SDValue();
9244    unsigned Idx = dyn_cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
9245    unsigned NumElems = NVT.getVectorNumElements();
9246    assert((Idx % NumElems) == 0 &&
9247           "IDX in concat is not a multiple of the result vector length.");
9248    return V->getOperand(Idx / NumElems);
9249  }
9250
9251  // Skip bitcasting
9252  if (V->getOpcode() == ISD::BITCAST)
9253    V = V.getOperand(0);
9254
9255  if (V->getOpcode() == ISD::INSERT_SUBVECTOR) {
9256    SDLoc dl(N);
9257    // Handle only simple case where vector being inserted and vector
9258    // being extracted are of same type, and are half size of larger vectors.
9259    EVT BigVT = V->getOperand(0).getValueType();
9260    EVT SmallVT = V->getOperand(1).getValueType();
9261    if (!NVT.bitsEq(SmallVT) || NVT.getSizeInBits()*2 != BigVT.getSizeInBits())
9262      return SDValue();
9263
9264    // Only handle cases where both indexes are constants with the same type.
9265    ConstantSDNode *ExtIdx = dyn_cast<ConstantSDNode>(N->getOperand(1));
9266    ConstantSDNode *InsIdx = dyn_cast<ConstantSDNode>(V->getOperand(2));
9267
9268    if (InsIdx && ExtIdx &&
9269        InsIdx->getValueType(0).getSizeInBits() <= 64 &&
9270        ExtIdx->getValueType(0).getSizeInBits() <= 64) {
9271      // Combine:
9272      //    (extract_subvec (insert_subvec V1, V2, InsIdx), ExtIdx)
9273      // Into:
9274      //    indices are equal or bit offsets are equal => V1
9275      //    otherwise => (extract_subvec V1, ExtIdx)
9276      if (InsIdx->getZExtValue() * SmallVT.getScalarType().getSizeInBits() ==
9277          ExtIdx->getZExtValue() * NVT.getScalarType().getSizeInBits())
9278        return DAG.getNode(ISD::BITCAST, dl, NVT, V->getOperand(1));
9279      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, NVT,
9280                         DAG.getNode(ISD::BITCAST, dl,
9281                                     N->getOperand(0).getValueType(),
9282                                     V->getOperand(0)), N->getOperand(1));
9283    }
9284  }
9285
9286  return SDValue();
9287}
9288
9289// Tries to turn a shuffle of two CONCAT_VECTORS into a single concat.
9290static SDValue partitionShuffleOfConcats(SDNode *N, SelectionDAG &DAG) {
9291  EVT VT = N->getValueType(0);
9292  unsigned NumElts = VT.getVectorNumElements();
9293
9294  SDValue N0 = N->getOperand(0);
9295  SDValue N1 = N->getOperand(1);
9296  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
9297
9298  SmallVector<SDValue, 4> Ops;
9299  EVT ConcatVT = N0.getOperand(0).getValueType();
9300  unsigned NumElemsPerConcat = ConcatVT.getVectorNumElements();
9301  unsigned NumConcats = NumElts / NumElemsPerConcat;
9302
9303  // Look at every vector that's inserted. We're looking for exact
9304  // subvector-sized copies from a concatenated vector
9305  for (unsigned I = 0; I != NumConcats; ++I) {
9306    // Make sure we're dealing with a copy.
9307    unsigned Begin = I * NumElemsPerConcat;
9308    bool AllUndef = true, NoUndef = true;
9309    for (unsigned J = Begin; J != Begin + NumElemsPerConcat; ++J) {
9310      if (SVN->getMaskElt(J) >= 0)
9311        AllUndef = false;
9312      else
9313        NoUndef = false;
9314    }
9315
9316    if (NoUndef) {
9317      if (SVN->getMaskElt(Begin) % NumElemsPerConcat != 0)
9318        return SDValue();
9319
9320      for (unsigned J = 1; J != NumElemsPerConcat; ++J)
9321        if (SVN->getMaskElt(Begin + J - 1) + 1 != SVN->getMaskElt(Begin + J))
9322          return SDValue();
9323
9324      unsigned FirstElt = SVN->getMaskElt(Begin) / NumElemsPerConcat;
9325      if (FirstElt < N0.getNumOperands())
9326        Ops.push_back(N0.getOperand(FirstElt));
9327      else
9328        Ops.push_back(N1.getOperand(FirstElt - N0.getNumOperands()));
9329
9330    } else if (AllUndef) {
9331      Ops.push_back(DAG.getUNDEF(N0.getOperand(0).getValueType()));
9332    } else { // Mixed with general masks and undefs, can't do optimization.
9333      return SDValue();
9334    }
9335  }
9336
9337  return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops.data(),
9338                     Ops.size());
9339}
9340
9341SDValue DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) {
9342  EVT VT = N->getValueType(0);
9343  unsigned NumElts = VT.getVectorNumElements();
9344
9345  SDValue N0 = N->getOperand(0);
9346  SDValue N1 = N->getOperand(1);
9347
9348  assert(N0.getValueType() == VT && "Vector shuffle must be normalized in DAG");
9349
9350  // Canonicalize shuffle undef, undef -> undef
9351  if (N0.getOpcode() == ISD::UNDEF && N1.getOpcode() == ISD::UNDEF)
9352    return DAG.getUNDEF(VT);
9353
9354  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
9355
9356  // Canonicalize shuffle v, v -> v, undef
9357  if (N0 == N1) {
9358    SmallVector<int, 8> NewMask;
9359    for (unsigned i = 0; i != NumElts; ++i) {
9360      int Idx = SVN->getMaskElt(i);
9361      if (Idx >= (int)NumElts) Idx -= NumElts;
9362      NewMask.push_back(Idx);
9363    }
9364    return DAG.getVectorShuffle(VT, SDLoc(N), N0, DAG.getUNDEF(VT),
9365                                &NewMask[0]);
9366  }
9367
9368  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
9369  if (N0.getOpcode() == ISD::UNDEF) {
9370    SmallVector<int, 8> NewMask;
9371    for (unsigned i = 0; i != NumElts; ++i) {
9372      int Idx = SVN->getMaskElt(i);
9373      if (Idx >= 0) {
9374        if (Idx >= (int)NumElts)
9375          Idx -= NumElts;
9376        else
9377          Idx = -1; // remove reference to lhs
9378      }
9379      NewMask.push_back(Idx);
9380    }
9381    return DAG.getVectorShuffle(VT, SDLoc(N), N1, DAG.getUNDEF(VT),
9382                                &NewMask[0]);
9383  }
9384
9385  // Remove references to rhs if it is undef
9386  if (N1.getOpcode() == ISD::UNDEF) {
9387    bool Changed = false;
9388    SmallVector<int, 8> NewMask;
9389    for (unsigned i = 0; i != NumElts; ++i) {
9390      int Idx = SVN->getMaskElt(i);
9391      if (Idx >= (int)NumElts) {
9392        Idx = -1;
9393        Changed = true;
9394      }
9395      NewMask.push_back(Idx);
9396    }
9397    if (Changed)
9398      return DAG.getVectorShuffle(VT, SDLoc(N), N0, N1, &NewMask[0]);
9399  }
9400
9401  // If it is a splat, check if the argument vector is another splat or a
9402  // build_vector with all scalar elements the same.
9403  if (SVN->isSplat() && SVN->getSplatIndex() < (int)NumElts) {
9404    SDNode *V = N0.getNode();
9405
9406    // If this is a bit convert that changes the element type of the vector but
9407    // not the number of vector elements, look through it.  Be careful not to
9408    // look though conversions that change things like v4f32 to v2f64.
9409    if (V->getOpcode() == ISD::BITCAST) {
9410      SDValue ConvInput = V->getOperand(0);
9411      if (ConvInput.getValueType().isVector() &&
9412          ConvInput.getValueType().getVectorNumElements() == NumElts)
9413        V = ConvInput.getNode();
9414    }
9415
9416    if (V->getOpcode() == ISD::BUILD_VECTOR) {
9417      assert(V->getNumOperands() == NumElts &&
9418             "BUILD_VECTOR has wrong number of operands");
9419      SDValue Base;
9420      bool AllSame = true;
9421      for (unsigned i = 0; i != NumElts; ++i) {
9422        if (V->getOperand(i).getOpcode() != ISD::UNDEF) {
9423          Base = V->getOperand(i);
9424          break;
9425        }
9426      }
9427      // Splat of <u, u, u, u>, return <u, u, u, u>
9428      if (!Base.getNode())
9429        return N0;
9430      for (unsigned i = 0; i != NumElts; ++i) {
9431        if (V->getOperand(i) != Base) {
9432          AllSame = false;
9433          break;
9434        }
9435      }
9436      // Splat of <x, x, x, x>, return <x, x, x, x>
9437      if (AllSame)
9438        return N0;
9439    }
9440  }
9441
9442  if (N0.getOpcode() == ISD::CONCAT_VECTORS &&
9443      Level < AfterLegalizeVectorOps &&
9444      (N1.getOpcode() == ISD::UNDEF ||
9445      (N1.getOpcode() == ISD::CONCAT_VECTORS &&
9446       N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()))) {
9447    SDValue V = partitionShuffleOfConcats(N, DAG);
9448
9449    if (V.getNode())
9450      return V;
9451  }
9452
9453  // If this shuffle node is simply a swizzle of another shuffle node,
9454  // and it reverses the swizzle of the previous shuffle then we can
9455  // optimize shuffle(shuffle(x, undef), undef) -> x.
9456  if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG &&
9457      N1.getOpcode() == ISD::UNDEF) {
9458
9459    ShuffleVectorSDNode *OtherSV = cast<ShuffleVectorSDNode>(N0);
9460
9461    // Shuffle nodes can only reverse shuffles with a single non-undef value.
9462    if (N0.getOperand(1).getOpcode() != ISD::UNDEF)
9463      return SDValue();
9464
9465    // The incoming shuffle must be of the same type as the result of the
9466    // current shuffle.
9467    assert(OtherSV->getOperand(0).getValueType() == VT &&
9468           "Shuffle types don't match");
9469
9470    for (unsigned i = 0; i != NumElts; ++i) {
9471      int Idx = SVN->getMaskElt(i);
9472      assert(Idx < (int)NumElts && "Index references undef operand");
9473      // Next, this index comes from the first value, which is the incoming
9474      // shuffle. Adopt the incoming index.
9475      if (Idx >= 0)
9476        Idx = OtherSV->getMaskElt(Idx);
9477
9478      // The combined shuffle must map each index to itself.
9479      if (Idx >= 0 && (unsigned)Idx != i)
9480        return SDValue();
9481    }
9482
9483    return OtherSV->getOperand(0);
9484  }
9485
9486  return SDValue();
9487}
9488
9489/// XformToShuffleWithZero - Returns a vector_shuffle if it able to transform
9490/// an AND to a vector_shuffle with the destination vector and a zero vector.
9491/// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==>
9492///      vector_shuffle V, Zero, <0, 4, 2, 4>
9493SDValue DAGCombiner::XformToShuffleWithZero(SDNode *N) {
9494  EVT VT = N->getValueType(0);
9495  SDLoc dl(N);
9496  SDValue LHS = N->getOperand(0);
9497  SDValue RHS = N->getOperand(1);
9498  if (N->getOpcode() == ISD::AND) {
9499    if (RHS.getOpcode() == ISD::BITCAST)
9500      RHS = RHS.getOperand(0);
9501    if (RHS.getOpcode() == ISD::BUILD_VECTOR) {
9502      SmallVector<int, 8> Indices;
9503      unsigned NumElts = RHS.getNumOperands();
9504      for (unsigned i = 0; i != NumElts; ++i) {
9505        SDValue Elt = RHS.getOperand(i);
9506        if (!isa<ConstantSDNode>(Elt))
9507          return SDValue();
9508
9509        if (cast<ConstantSDNode>(Elt)->isAllOnesValue())
9510          Indices.push_back(i);
9511        else if (cast<ConstantSDNode>(Elt)->isNullValue())
9512          Indices.push_back(NumElts);
9513        else
9514          return SDValue();
9515      }
9516
9517      // Let's see if the target supports this vector_shuffle.
9518      EVT RVT = RHS.getValueType();
9519      if (!TLI.isVectorClearMaskLegal(Indices, RVT))
9520        return SDValue();
9521
9522      // Return the new VECTOR_SHUFFLE node.
9523      EVT EltVT = RVT.getVectorElementType();
9524      SmallVector<SDValue,8> ZeroOps(RVT.getVectorNumElements(),
9525                                     DAG.getConstant(0, EltVT));
9526      SDValue Zero = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N),
9527                                 RVT, &ZeroOps[0], ZeroOps.size());
9528      LHS = DAG.getNode(ISD::BITCAST, dl, RVT, LHS);
9529      SDValue Shuf = DAG.getVectorShuffle(RVT, dl, LHS, Zero, &Indices[0]);
9530      return DAG.getNode(ISD::BITCAST, dl, VT, Shuf);
9531    }
9532  }
9533
9534  return SDValue();
9535}
9536
9537/// SimplifyVBinOp - Visit a binary vector operation, like ADD.
9538SDValue DAGCombiner::SimplifyVBinOp(SDNode *N) {
9539  assert(N->getValueType(0).isVector() &&
9540         "SimplifyVBinOp only works on vectors!");
9541
9542  SDValue LHS = N->getOperand(0);
9543  SDValue RHS = N->getOperand(1);
9544  SDValue Shuffle = XformToShuffleWithZero(N);
9545  if (Shuffle.getNode()) return Shuffle;
9546
9547  // If the LHS and RHS are BUILD_VECTOR nodes, see if we can constant fold
9548  // this operation.
9549  if (LHS.getOpcode() == ISD::BUILD_VECTOR &&
9550      RHS.getOpcode() == ISD::BUILD_VECTOR) {
9551    SmallVector<SDValue, 8> Ops;
9552    for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
9553      SDValue LHSOp = LHS.getOperand(i);
9554      SDValue RHSOp = RHS.getOperand(i);
9555      // If these two elements can't be folded, bail out.
9556      if ((LHSOp.getOpcode() != ISD::UNDEF &&
9557           LHSOp.getOpcode() != ISD::Constant &&
9558           LHSOp.getOpcode() != ISD::ConstantFP) ||
9559          (RHSOp.getOpcode() != ISD::UNDEF &&
9560           RHSOp.getOpcode() != ISD::Constant &&
9561           RHSOp.getOpcode() != ISD::ConstantFP))
9562        break;
9563
9564      // Can't fold divide by zero.
9565      if (N->getOpcode() == ISD::SDIV || N->getOpcode() == ISD::UDIV ||
9566          N->getOpcode() == ISD::FDIV) {
9567        if ((RHSOp.getOpcode() == ISD::Constant &&
9568             cast<ConstantSDNode>(RHSOp.getNode())->isNullValue()) ||
9569            (RHSOp.getOpcode() == ISD::ConstantFP &&
9570             cast<ConstantFPSDNode>(RHSOp.getNode())->getValueAPF().isZero()))
9571          break;
9572      }
9573
9574      EVT VT = LHSOp.getValueType();
9575      EVT RVT = RHSOp.getValueType();
9576      if (RVT != VT) {
9577        // Integer BUILD_VECTOR operands may have types larger than the element
9578        // size (e.g., when the element type is not legal).  Prior to type
9579        // legalization, the types may not match between the two BUILD_VECTORS.
9580        // Truncate one of the operands to make them match.
9581        if (RVT.getSizeInBits() > VT.getSizeInBits()) {
9582          RHSOp = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, RHSOp);
9583        } else {
9584          LHSOp = DAG.getNode(ISD::TRUNCATE, SDLoc(N), RVT, LHSOp);
9585          VT = RVT;
9586        }
9587      }
9588      SDValue FoldOp = DAG.getNode(N->getOpcode(), SDLoc(LHS), VT,
9589                                   LHSOp, RHSOp);
9590      if (FoldOp.getOpcode() != ISD::UNDEF &&
9591          FoldOp.getOpcode() != ISD::Constant &&
9592          FoldOp.getOpcode() != ISD::ConstantFP)
9593        break;
9594      Ops.push_back(FoldOp);
9595      AddToWorkList(FoldOp.getNode());
9596    }
9597
9598    if (Ops.size() == LHS.getNumOperands())
9599      return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N),
9600                         LHS.getValueType(), &Ops[0], Ops.size());
9601  }
9602
9603  return SDValue();
9604}
9605
9606/// SimplifyVUnaryOp - Visit a binary vector operation, like FABS/FNEG.
9607SDValue DAGCombiner::SimplifyVUnaryOp(SDNode *N) {
9608  assert(N->getValueType(0).isVector() &&
9609         "SimplifyVUnaryOp only works on vectors!");
9610
9611  SDValue N0 = N->getOperand(0);
9612
9613  if (N0.getOpcode() != ISD::BUILD_VECTOR)
9614    return SDValue();
9615
9616  // Operand is a BUILD_VECTOR node, see if we can constant fold it.
9617  SmallVector<SDValue, 8> Ops;
9618  for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i) {
9619    SDValue Op = N0.getOperand(i);
9620    if (Op.getOpcode() != ISD::UNDEF &&
9621        Op.getOpcode() != ISD::ConstantFP)
9622      break;
9623    EVT EltVT = Op.getValueType();
9624    SDValue FoldOp = DAG.getNode(N->getOpcode(), SDLoc(N0), EltVT, Op);
9625    if (FoldOp.getOpcode() != ISD::UNDEF &&
9626        FoldOp.getOpcode() != ISD::ConstantFP)
9627      break;
9628    Ops.push_back(FoldOp);
9629    AddToWorkList(FoldOp.getNode());
9630  }
9631
9632  if (Ops.size() != N0.getNumOperands())
9633    return SDValue();
9634
9635  return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N),
9636                     N0.getValueType(), &Ops[0], Ops.size());
9637}
9638
9639SDValue DAGCombiner::SimplifySelect(SDLoc DL, SDValue N0,
9640                                    SDValue N1, SDValue N2){
9641  assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!");
9642
9643  SDValue SCC = SimplifySelectCC(DL, N0.getOperand(0), N0.getOperand(1), N1, N2,
9644                                 cast<CondCodeSDNode>(N0.getOperand(2))->get());
9645
9646  // If we got a simplified select_cc node back from SimplifySelectCC, then
9647  // break it down into a new SETCC node, and a new SELECT node, and then return
9648  // the SELECT node, since we were called with a SELECT node.
9649  if (SCC.getNode()) {
9650    // Check to see if we got a select_cc back (to turn into setcc/select).
9651    // Otherwise, just return whatever node we got back, like fabs.
9652    if (SCC.getOpcode() == ISD::SELECT_CC) {
9653      SDValue SETCC = DAG.getNode(ISD::SETCC, SDLoc(N0),
9654                                  N0.getValueType(),
9655                                  SCC.getOperand(0), SCC.getOperand(1),
9656                                  SCC.getOperand(4));
9657      AddToWorkList(SETCC.getNode());
9658      return DAG.getSelect(SDLoc(SCC), SCC.getValueType(),
9659                           SCC.getOperand(2), SCC.getOperand(3), SETCC);
9660    }
9661
9662    return SCC;
9663  }
9664  return SDValue();
9665}
9666
9667/// SimplifySelectOps - Given a SELECT or a SELECT_CC node, where LHS and RHS
9668/// are the two values being selected between, see if we can simplify the
9669/// select.  Callers of this should assume that TheSelect is deleted if this
9670/// returns true.  As such, they should return the appropriate thing (e.g. the
9671/// node) back to the top-level of the DAG combiner loop to avoid it being
9672/// looked at.
9673bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDValue LHS,
9674                                    SDValue RHS) {
9675
9676  // Cannot simplify select with vector condition
9677  if (TheSelect->getOperand(0).getValueType().isVector()) return false;
9678
9679  // If this is a select from two identical things, try to pull the operation
9680  // through the select.
9681  if (LHS.getOpcode() != RHS.getOpcode() ||
9682      !LHS.hasOneUse() || !RHS.hasOneUse())
9683    return false;
9684
9685  // If this is a load and the token chain is identical, replace the select
9686  // of two loads with a load through a select of the address to load from.
9687  // This triggers in things like "select bool X, 10.0, 123.0" after the FP
9688  // constants have been dropped into the constant pool.
9689  if (LHS.getOpcode() == ISD::LOAD) {
9690    LoadSDNode *LLD = cast<LoadSDNode>(LHS);
9691    LoadSDNode *RLD = cast<LoadSDNode>(RHS);
9692
9693    // Token chains must be identical.
9694    if (LHS.getOperand(0) != RHS.getOperand(0) ||
9695        // Do not let this transformation reduce the number of volatile loads.
9696        LLD->isVolatile() || RLD->isVolatile() ||
9697        // If this is an EXTLOAD, the VT's must match.
9698        LLD->getMemoryVT() != RLD->getMemoryVT() ||
9699        // If this is an EXTLOAD, the kind of extension must match.
9700        (LLD->getExtensionType() != RLD->getExtensionType() &&
9701         // The only exception is if one of the extensions is anyext.
9702         LLD->getExtensionType() != ISD::EXTLOAD &&
9703         RLD->getExtensionType() != ISD::EXTLOAD) ||
9704        // FIXME: this discards src value information.  This is
9705        // over-conservative. It would be beneficial to be able to remember
9706        // both potential memory locations.  Since we are discarding
9707        // src value info, don't do the transformation if the memory
9708        // locations are not in the default address space.
9709        LLD->getPointerInfo().getAddrSpace() != 0 ||
9710        RLD->getPointerInfo().getAddrSpace() != 0 ||
9711        !TLI.isOperationLegalOrCustom(TheSelect->getOpcode(),
9712                                      LLD->getBasePtr().getValueType()))
9713      return false;
9714
9715    // Check that the select condition doesn't reach either load.  If so,
9716    // folding this will induce a cycle into the DAG.  If not, this is safe to
9717    // xform, so create a select of the addresses.
9718    SDValue Addr;
9719    if (TheSelect->getOpcode() == ISD::SELECT) {
9720      SDNode *CondNode = TheSelect->getOperand(0).getNode();
9721      if ((LLD->hasAnyUseOfValue(1) && LLD->isPredecessorOf(CondNode)) ||
9722          (RLD->hasAnyUseOfValue(1) && RLD->isPredecessorOf(CondNode)))
9723        return false;
9724      // The loads must not depend on one another.
9725      if (LLD->isPredecessorOf(RLD) ||
9726          RLD->isPredecessorOf(LLD))
9727        return false;
9728      Addr = DAG.getSelect(SDLoc(TheSelect),
9729                           LLD->getBasePtr().getValueType(),
9730                           TheSelect->getOperand(0), LLD->getBasePtr(),
9731                           RLD->getBasePtr());
9732    } else {  // Otherwise SELECT_CC
9733      SDNode *CondLHS = TheSelect->getOperand(0).getNode();
9734      SDNode *CondRHS = TheSelect->getOperand(1).getNode();
9735
9736      if ((LLD->hasAnyUseOfValue(1) &&
9737           (LLD->isPredecessorOf(CondLHS) || LLD->isPredecessorOf(CondRHS))) ||
9738          (RLD->hasAnyUseOfValue(1) &&
9739           (RLD->isPredecessorOf(CondLHS) || RLD->isPredecessorOf(CondRHS))))
9740        return false;
9741
9742      Addr = DAG.getNode(ISD::SELECT_CC, SDLoc(TheSelect),
9743                         LLD->getBasePtr().getValueType(),
9744                         TheSelect->getOperand(0),
9745                         TheSelect->getOperand(1),
9746                         LLD->getBasePtr(), RLD->getBasePtr(),
9747                         TheSelect->getOperand(4));
9748    }
9749
9750    SDValue Load;
9751    if (LLD->getExtensionType() == ISD::NON_EXTLOAD) {
9752      Load = DAG.getLoad(TheSelect->getValueType(0),
9753                         SDLoc(TheSelect),
9754                         // FIXME: Discards pointer info.
9755                         LLD->getChain(), Addr, MachinePointerInfo(),
9756                         LLD->isVolatile(), LLD->isNonTemporal(),
9757                         LLD->isInvariant(), LLD->getAlignment());
9758    } else {
9759      Load = DAG.getExtLoad(LLD->getExtensionType() == ISD::EXTLOAD ?
9760                            RLD->getExtensionType() : LLD->getExtensionType(),
9761                            SDLoc(TheSelect),
9762                            TheSelect->getValueType(0),
9763                            // FIXME: Discards pointer info.
9764                            LLD->getChain(), Addr, MachinePointerInfo(),
9765                            LLD->getMemoryVT(), LLD->isVolatile(),
9766                            LLD->isNonTemporal(), LLD->getAlignment());
9767    }
9768
9769    // Users of the select now use the result of the load.
9770    CombineTo(TheSelect, Load);
9771
9772    // Users of the old loads now use the new load's chain.  We know the
9773    // old-load value is dead now.
9774    CombineTo(LHS.getNode(), Load.getValue(0), Load.getValue(1));
9775    CombineTo(RHS.getNode(), Load.getValue(0), Load.getValue(1));
9776    return true;
9777  }
9778
9779  return false;
9780}
9781
9782/// SimplifySelectCC - Simplify an expression of the form (N0 cond N1) ? N2 : N3
9783/// where 'cond' is the comparison specified by CC.
9784SDValue DAGCombiner::SimplifySelectCC(SDLoc DL, SDValue N0, SDValue N1,
9785                                      SDValue N2, SDValue N3,
9786                                      ISD::CondCode CC, bool NotExtCompare) {
9787  // (x ? y : y) -> y.
9788  if (N2 == N3) return N2;
9789
9790  EVT VT = N2.getValueType();
9791  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
9792  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
9793  ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.getNode());
9794
9795  // Determine if the condition we're dealing with is constant
9796  SDValue SCC = SimplifySetCC(getSetCCResultType(N0.getValueType()),
9797                              N0, N1, CC, DL, false);
9798  if (SCC.getNode()) AddToWorkList(SCC.getNode());
9799  ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.getNode());
9800
9801  // fold select_cc true, x, y -> x
9802  if (SCCC && !SCCC->isNullValue())
9803    return N2;
9804  // fold select_cc false, x, y -> y
9805  if (SCCC && SCCC->isNullValue())
9806    return N3;
9807
9808  // Check to see if we can simplify the select into an fabs node
9809  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1)) {
9810    // Allow either -0.0 or 0.0
9811    if (CFP->getValueAPF().isZero()) {
9812      // select (setg[te] X, +/-0.0), X, fneg(X) -> fabs
9813      if ((CC == ISD::SETGE || CC == ISD::SETGT) &&
9814          N0 == N2 && N3.getOpcode() == ISD::FNEG &&
9815          N2 == N3.getOperand(0))
9816        return DAG.getNode(ISD::FABS, DL, VT, N0);
9817
9818      // select (setl[te] X, +/-0.0), fneg(X), X -> fabs
9819      if ((CC == ISD::SETLT || CC == ISD::SETLE) &&
9820          N0 == N3 && N2.getOpcode() == ISD::FNEG &&
9821          N2.getOperand(0) == N3)
9822        return DAG.getNode(ISD::FABS, DL, VT, N3);
9823    }
9824  }
9825
9826  // Turn "(a cond b) ? 1.0f : 2.0f" into "load (tmp + ((a cond b) ? 0 : 4)"
9827  // where "tmp" is a constant pool entry containing an array with 1.0 and 2.0
9828  // in it.  This is a win when the constant is not otherwise available because
9829  // it replaces two constant pool loads with one.  We only do this if the FP
9830  // type is known to be legal, because if it isn't, then we are before legalize
9831  // types an we want the other legalization to happen first (e.g. to avoid
9832  // messing with soft float) and if the ConstantFP is not legal, because if
9833  // it is legal, we may not need to store the FP constant in a constant pool.
9834  if (ConstantFPSDNode *TV = dyn_cast<ConstantFPSDNode>(N2))
9835    if (ConstantFPSDNode *FV = dyn_cast<ConstantFPSDNode>(N3)) {
9836      if (TLI.isTypeLegal(N2.getValueType()) &&
9837          (TLI.getOperationAction(ISD::ConstantFP, N2.getValueType()) !=
9838           TargetLowering::Legal) &&
9839          // If both constants have multiple uses, then we won't need to do an
9840          // extra load, they are likely around in registers for other users.
9841          (TV->hasOneUse() || FV->hasOneUse())) {
9842        Constant *Elts[] = {
9843          const_cast<ConstantFP*>(FV->getConstantFPValue()),
9844          const_cast<ConstantFP*>(TV->getConstantFPValue())
9845        };
9846        Type *FPTy = Elts[0]->getType();
9847        const DataLayout &TD = *TLI.getDataLayout();
9848
9849        // Create a ConstantArray of the two constants.
9850        Constant *CA = ConstantArray::get(ArrayType::get(FPTy, 2), Elts);
9851        SDValue CPIdx = DAG.getConstantPool(CA, TLI.getPointerTy(),
9852                                            TD.getPrefTypeAlignment(FPTy));
9853        unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
9854
9855        // Get the offsets to the 0 and 1 element of the array so that we can
9856        // select between them.
9857        SDValue Zero = DAG.getIntPtrConstant(0);
9858        unsigned EltSize = (unsigned)TD.getTypeAllocSize(Elts[0]->getType());
9859        SDValue One = DAG.getIntPtrConstant(EltSize);
9860
9861        SDValue Cond = DAG.getSetCC(DL,
9862                                    getSetCCResultType(N0.getValueType()),
9863                                    N0, N1, CC);
9864        AddToWorkList(Cond.getNode());
9865        SDValue CstOffset = DAG.getSelect(DL, Zero.getValueType(),
9866                                          Cond, One, Zero);
9867        AddToWorkList(CstOffset.getNode());
9868        CPIdx = DAG.getNode(ISD::ADD, DL, TLI.getPointerTy(), CPIdx,
9869                            CstOffset);
9870        AddToWorkList(CPIdx.getNode());
9871        return DAG.getLoad(TV->getValueType(0), DL, DAG.getEntryNode(), CPIdx,
9872                           MachinePointerInfo::getConstantPool(), false,
9873                           false, false, Alignment);
9874
9875      }
9876    }
9877
9878  // Check to see if we can perform the "gzip trick", transforming
9879  // (select_cc setlt X, 0, A, 0) -> (and (sra X, (sub size(X), 1), A)
9880  if (N1C && N3C && N3C->isNullValue() && CC == ISD::SETLT &&
9881      (N1C->isNullValue() ||                         // (a < 0) ? b : 0
9882       (N1C->getAPIntValue() == 1 && N0 == N2))) {   // (a < 1) ? a : 0
9883    EVT XType = N0.getValueType();
9884    EVT AType = N2.getValueType();
9885    if (XType.bitsGE(AType)) {
9886      // and (sra X, size(X)-1, A) -> "and (srl X, C2), A" iff A is a
9887      // single-bit constant.
9888      if (N2C && ((N2C->getAPIntValue() & (N2C->getAPIntValue()-1)) == 0)) {
9889        unsigned ShCtV = N2C->getAPIntValue().logBase2();
9890        ShCtV = XType.getSizeInBits()-ShCtV-1;
9891        SDValue ShCt = DAG.getConstant(ShCtV,
9892                                       getShiftAmountTy(N0.getValueType()));
9893        SDValue Shift = DAG.getNode(ISD::SRL, SDLoc(N0),
9894                                    XType, N0, ShCt);
9895        AddToWorkList(Shift.getNode());
9896
9897        if (XType.bitsGT(AType)) {
9898          Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift);
9899          AddToWorkList(Shift.getNode());
9900        }
9901
9902        return DAG.getNode(ISD::AND, DL, AType, Shift, N2);
9903      }
9904
9905      SDValue Shift = DAG.getNode(ISD::SRA, SDLoc(N0),
9906                                  XType, N0,
9907                                  DAG.getConstant(XType.getSizeInBits()-1,
9908                                         getShiftAmountTy(N0.getValueType())));
9909      AddToWorkList(Shift.getNode());
9910
9911      if (XType.bitsGT(AType)) {
9912        Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift);
9913        AddToWorkList(Shift.getNode());
9914      }
9915
9916      return DAG.getNode(ISD::AND, DL, AType, Shift, N2);
9917    }
9918  }
9919
9920  // fold (select_cc seteq (and x, y), 0, 0, A) -> (and (shr (shl x)) A)
9921  // where y is has a single bit set.
9922  // A plaintext description would be, we can turn the SELECT_CC into an AND
9923  // when the condition can be materialized as an all-ones register.  Any
9924  // single bit-test can be materialized as an all-ones register with
9925  // shift-left and shift-right-arith.
9926  if (CC == ISD::SETEQ && N0->getOpcode() == ISD::AND &&
9927      N0->getValueType(0) == VT &&
9928      N1C && N1C->isNullValue() &&
9929      N2C && N2C->isNullValue()) {
9930    SDValue AndLHS = N0->getOperand(0);
9931    ConstantSDNode *ConstAndRHS = dyn_cast<ConstantSDNode>(N0->getOperand(1));
9932    if (ConstAndRHS && ConstAndRHS->getAPIntValue().countPopulation() == 1) {
9933      // Shift the tested bit over the sign bit.
9934      APInt AndMask = ConstAndRHS->getAPIntValue();
9935      SDValue ShlAmt =
9936        DAG.getConstant(AndMask.countLeadingZeros(),
9937                        getShiftAmountTy(AndLHS.getValueType()));
9938      SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(N0), VT, AndLHS, ShlAmt);
9939
9940      // Now arithmetic right shift it all the way over, so the result is either
9941      // all-ones, or zero.
9942      SDValue ShrAmt =
9943        DAG.getConstant(AndMask.getBitWidth()-1,
9944                        getShiftAmountTy(Shl.getValueType()));
9945      SDValue Shr = DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, ShrAmt);
9946
9947      return DAG.getNode(ISD::AND, DL, VT, Shr, N3);
9948    }
9949  }
9950
9951  // fold select C, 16, 0 -> shl C, 4
9952  if (N2C && N3C && N3C->isNullValue() && N2C->getAPIntValue().isPowerOf2() &&
9953    TLI.getBooleanContents(N0.getValueType().isVector()) ==
9954      TargetLowering::ZeroOrOneBooleanContent) {
9955
9956    // If the caller doesn't want us to simplify this into a zext of a compare,
9957    // don't do it.
9958    if (NotExtCompare && N2C->getAPIntValue() == 1)
9959      return SDValue();
9960
9961    // Get a SetCC of the condition
9962    // NOTE: Don't create a SETCC if it's not legal on this target.
9963    if (!LegalOperations ||
9964        TLI.isOperationLegal(ISD::SETCC,
9965          LegalTypes ? getSetCCResultType(N0.getValueType()) : MVT::i1)) {
9966      SDValue Temp, SCC;
9967      // cast from setcc result type to select result type
9968      if (LegalTypes) {
9969        SCC  = DAG.getSetCC(DL, getSetCCResultType(N0.getValueType()),
9970                            N0, N1, CC);
9971        if (N2.getValueType().bitsLT(SCC.getValueType()))
9972          Temp = DAG.getZeroExtendInReg(SCC, SDLoc(N2),
9973                                        N2.getValueType());
9974        else
9975          Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2),
9976                             N2.getValueType(), SCC);
9977      } else {
9978        SCC  = DAG.getSetCC(SDLoc(N0), MVT::i1, N0, N1, CC);
9979        Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2),
9980                           N2.getValueType(), SCC);
9981      }
9982
9983      AddToWorkList(SCC.getNode());
9984      AddToWorkList(Temp.getNode());
9985
9986      if (N2C->getAPIntValue() == 1)
9987        return Temp;
9988
9989      // shl setcc result by log2 n2c
9990      return DAG.getNode(ISD::SHL, DL, N2.getValueType(), Temp,
9991                         DAG.getConstant(N2C->getAPIntValue().logBase2(),
9992                                         getShiftAmountTy(Temp.getValueType())));
9993    }
9994  }
9995
9996  // Check to see if this is the equivalent of setcc
9997  // FIXME: Turn all of these into setcc if setcc if setcc is legal
9998  // otherwise, go ahead with the folds.
9999  if (0 && N3C && N3C->isNullValue() && N2C && (N2C->getAPIntValue() == 1ULL)) {
10000    EVT XType = N0.getValueType();
10001    if (!LegalOperations ||
10002        TLI.isOperationLegal(ISD::SETCC, getSetCCResultType(XType))) {
10003      SDValue Res = DAG.getSetCC(DL, getSetCCResultType(XType), N0, N1, CC);
10004      if (Res.getValueType() != VT)
10005        Res = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Res);
10006      return Res;
10007    }
10008
10009    // fold (seteq X, 0) -> (srl (ctlz X, log2(size(X))))
10010    if (N1C && N1C->isNullValue() && CC == ISD::SETEQ &&
10011        (!LegalOperations ||
10012         TLI.isOperationLegal(ISD::CTLZ, XType))) {
10013      SDValue Ctlz = DAG.getNode(ISD::CTLZ, SDLoc(N0), XType, N0);
10014      return DAG.getNode(ISD::SRL, DL, XType, Ctlz,
10015                         DAG.getConstant(Log2_32(XType.getSizeInBits()),
10016                                       getShiftAmountTy(Ctlz.getValueType())));
10017    }
10018    // fold (setgt X, 0) -> (srl (and (-X, ~X), size(X)-1))
10019    if (N1C && N1C->isNullValue() && CC == ISD::SETGT) {
10020      SDValue NegN0 = DAG.getNode(ISD::SUB, SDLoc(N0),
10021                                  XType, DAG.getConstant(0, XType), N0);
10022      SDValue NotN0 = DAG.getNOT(SDLoc(N0), N0, XType);
10023      return DAG.getNode(ISD::SRL, DL, XType,
10024                         DAG.getNode(ISD::AND, DL, XType, NegN0, NotN0),
10025                         DAG.getConstant(XType.getSizeInBits()-1,
10026                                         getShiftAmountTy(XType)));
10027    }
10028    // fold (setgt X, -1) -> (xor (srl (X, size(X)-1), 1))
10029    if (N1C && N1C->isAllOnesValue() && CC == ISD::SETGT) {
10030      SDValue Sign = DAG.getNode(ISD::SRL, SDLoc(N0), XType, N0,
10031                                 DAG.getConstant(XType.getSizeInBits()-1,
10032                                         getShiftAmountTy(N0.getValueType())));
10033      return DAG.getNode(ISD::XOR, DL, XType, Sign, DAG.getConstant(1, XType));
10034    }
10035  }
10036
10037  // Check to see if this is an integer abs.
10038  // select_cc setg[te] X,  0,  X, -X ->
10039  // select_cc setgt    X, -1,  X, -X ->
10040  // select_cc setl[te] X,  0, -X,  X ->
10041  // select_cc setlt    X,  1, -X,  X ->
10042  // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
10043  if (N1C) {
10044    ConstantSDNode *SubC = NULL;
10045    if (((N1C->isNullValue() && (CC == ISD::SETGT || CC == ISD::SETGE)) ||
10046         (N1C->isAllOnesValue() && CC == ISD::SETGT)) &&
10047        N0 == N2 && N3.getOpcode() == ISD::SUB && N0 == N3.getOperand(1))
10048      SubC = dyn_cast<ConstantSDNode>(N3.getOperand(0));
10049    else if (((N1C->isNullValue() && (CC == ISD::SETLT || CC == ISD::SETLE)) ||
10050              (N1C->isOne() && CC == ISD::SETLT)) &&
10051             N0 == N3 && N2.getOpcode() == ISD::SUB && N0 == N2.getOperand(1))
10052      SubC = dyn_cast<ConstantSDNode>(N2.getOperand(0));
10053
10054    EVT XType = N0.getValueType();
10055    if (SubC && SubC->isNullValue() && XType.isInteger()) {
10056      SDValue Shift = DAG.getNode(ISD::SRA, SDLoc(N0), XType,
10057                                  N0,
10058                                  DAG.getConstant(XType.getSizeInBits()-1,
10059                                         getShiftAmountTy(N0.getValueType())));
10060      SDValue Add = DAG.getNode(ISD::ADD, SDLoc(N0),
10061                                XType, N0, Shift);
10062      AddToWorkList(Shift.getNode());
10063      AddToWorkList(Add.getNode());
10064      return DAG.getNode(ISD::XOR, DL, XType, Add, Shift);
10065    }
10066  }
10067
10068  return SDValue();
10069}
10070
10071/// SimplifySetCC - This is a stub for TargetLowering::SimplifySetCC.
10072SDValue DAGCombiner::SimplifySetCC(EVT VT, SDValue N0,
10073                                   SDValue N1, ISD::CondCode Cond,
10074                                   SDLoc DL, bool foldBooleans) {
10075  TargetLowering::DAGCombinerInfo
10076    DagCombineInfo(DAG, Level, false, this);
10077  return TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo, DL);
10078}
10079
10080/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
10081/// return a DAG expression to select that will generate the same value by
10082/// multiplying by a magic number.  See:
10083/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
10084SDValue DAGCombiner::BuildSDIV(SDNode *N) {
10085  std::vector<SDNode*> Built;
10086  SDValue S = TLI.BuildSDIV(N, DAG, LegalOperations, &Built);
10087
10088  for (std::vector<SDNode*>::iterator ii = Built.begin(), ee = Built.end();
10089       ii != ee; ++ii)
10090    AddToWorkList(*ii);
10091  return S;
10092}
10093
10094/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
10095/// return a DAG expression to select that will generate the same value by
10096/// multiplying by a magic number.  See:
10097/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
10098SDValue DAGCombiner::BuildUDIV(SDNode *N) {
10099  std::vector<SDNode*> Built;
10100  SDValue S = TLI.BuildUDIV(N, DAG, LegalOperations, &Built);
10101
10102  for (std::vector<SDNode*>::iterator ii = Built.begin(), ee = Built.end();
10103       ii != ee; ++ii)
10104    AddToWorkList(*ii);
10105  return S;
10106}
10107
10108/// FindBaseOffset - Return true if base is a frame index, which is known not
10109// to alias with anything but itself.  Provides base object and offset as
10110// results.
10111static bool FindBaseOffset(SDValue Ptr, SDValue &Base, int64_t &Offset,
10112                           const GlobalValue *&GV, const void *&CV) {
10113  // Assume it is a primitive operation.
10114  Base = Ptr; Offset = 0; GV = 0; CV = 0;
10115
10116  // If it's an adding a simple constant then integrate the offset.
10117  if (Base.getOpcode() == ISD::ADD) {
10118    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Base.getOperand(1))) {
10119      Base = Base.getOperand(0);
10120      Offset += C->getZExtValue();
10121    }
10122  }
10123
10124  // Return the underlying GlobalValue, and update the Offset.  Return false
10125  // for GlobalAddressSDNode since the same GlobalAddress may be represented
10126  // by multiple nodes with different offsets.
10127  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Base)) {
10128    GV = G->getGlobal();
10129    Offset += G->getOffset();
10130    return false;
10131  }
10132
10133  // Return the underlying Constant value, and update the Offset.  Return false
10134  // for ConstantSDNodes since the same constant pool entry may be represented
10135  // by multiple nodes with different offsets.
10136  if (ConstantPoolSDNode *C = dyn_cast<ConstantPoolSDNode>(Base)) {
10137    CV = C->isMachineConstantPoolEntry() ? (const void *)C->getMachineCPVal()
10138                                         : (const void *)C->getConstVal();
10139    Offset += C->getOffset();
10140    return false;
10141  }
10142  // If it's any of the following then it can't alias with anything but itself.
10143  return isa<FrameIndexSDNode>(Base);
10144}
10145
10146/// isAlias - Return true if there is any possibility that the two addresses
10147/// overlap.
10148bool DAGCombiner::isAlias(SDValue Ptr1, int64_t Size1,
10149                          const Value *SrcValue1, int SrcValueOffset1,
10150                          unsigned SrcValueAlign1,
10151                          const MDNode *TBAAInfo1,
10152                          SDValue Ptr2, int64_t Size2,
10153                          const Value *SrcValue2, int SrcValueOffset2,
10154                          unsigned SrcValueAlign2,
10155                          const MDNode *TBAAInfo2) const {
10156  // If they are the same then they must be aliases.
10157  if (Ptr1 == Ptr2) return true;
10158
10159  // Gather base node and offset information.
10160  SDValue Base1, Base2;
10161  int64_t Offset1, Offset2;
10162  const GlobalValue *GV1, *GV2;
10163  const void *CV1, *CV2;
10164  bool isFrameIndex1 = FindBaseOffset(Ptr1, Base1, Offset1, GV1, CV1);
10165  bool isFrameIndex2 = FindBaseOffset(Ptr2, Base2, Offset2, GV2, CV2);
10166
10167  // If they have a same base address then check to see if they overlap.
10168  if (Base1 == Base2 || (GV1 && (GV1 == GV2)) || (CV1 && (CV1 == CV2)))
10169    return !((Offset1 + Size1) <= Offset2 || (Offset2 + Size2) <= Offset1);
10170
10171  // It is possible for different frame indices to alias each other, mostly
10172  // when tail call optimization reuses return address slots for arguments.
10173  // To catch this case, look up the actual index of frame indices to compute
10174  // the real alias relationship.
10175  if (isFrameIndex1 && isFrameIndex2) {
10176    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
10177    Offset1 += MFI->getObjectOffset(cast<FrameIndexSDNode>(Base1)->getIndex());
10178    Offset2 += MFI->getObjectOffset(cast<FrameIndexSDNode>(Base2)->getIndex());
10179    return !((Offset1 + Size1) <= Offset2 || (Offset2 + Size2) <= Offset1);
10180  }
10181
10182  // Otherwise, if we know what the bases are, and they aren't identical, then
10183  // we know they cannot alias.
10184  if ((isFrameIndex1 || CV1 || GV1) && (isFrameIndex2 || CV2 || GV2))
10185    return false;
10186
10187  // If we know required SrcValue1 and SrcValue2 have relatively large alignment
10188  // compared to the size and offset of the access, we may be able to prove they
10189  // do not alias.  This check is conservative for now to catch cases created by
10190  // splitting vector types.
10191  if ((SrcValueAlign1 == SrcValueAlign2) &&
10192      (SrcValueOffset1 != SrcValueOffset2) &&
10193      (Size1 == Size2) && (SrcValueAlign1 > Size1)) {
10194    int64_t OffAlign1 = SrcValueOffset1 % SrcValueAlign1;
10195    int64_t OffAlign2 = SrcValueOffset2 % SrcValueAlign1;
10196
10197    // There is no overlap between these relatively aligned accesses of similar
10198    // size, return no alias.
10199    if ((OffAlign1 + Size1) <= OffAlign2 || (OffAlign2 + Size2) <= OffAlign1)
10200      return false;
10201  }
10202
10203  if (CombinerGlobalAA) {
10204    // Use alias analysis information.
10205    int64_t MinOffset = std::min(SrcValueOffset1, SrcValueOffset2);
10206    int64_t Overlap1 = Size1 + SrcValueOffset1 - MinOffset;
10207    int64_t Overlap2 = Size2 + SrcValueOffset2 - MinOffset;
10208    AliasAnalysis::AliasResult AAResult =
10209      AA.alias(AliasAnalysis::Location(SrcValue1, Overlap1, TBAAInfo1),
10210               AliasAnalysis::Location(SrcValue2, Overlap2, TBAAInfo2));
10211    if (AAResult == AliasAnalysis::NoAlias)
10212      return false;
10213  }
10214
10215  // Otherwise we have to assume they alias.
10216  return true;
10217}
10218
10219bool DAGCombiner::isAlias(LSBaseSDNode *Op0, LSBaseSDNode *Op1) {
10220  SDValue Ptr0, Ptr1;
10221  int64_t Size0, Size1;
10222  const Value *SrcValue0, *SrcValue1;
10223  int SrcValueOffset0, SrcValueOffset1;
10224  unsigned SrcValueAlign0, SrcValueAlign1;
10225  const MDNode *SrcTBAAInfo0, *SrcTBAAInfo1;
10226  FindAliasInfo(Op0, Ptr0, Size0, SrcValue0, SrcValueOffset0,
10227                SrcValueAlign0, SrcTBAAInfo0);
10228  FindAliasInfo(Op1, Ptr1, Size1, SrcValue1, SrcValueOffset1,
10229                SrcValueAlign1, SrcTBAAInfo1);
10230  return isAlias(Ptr0, Size0, SrcValue0, SrcValueOffset0,
10231                 SrcValueAlign0, SrcTBAAInfo0,
10232                 Ptr1, Size1, SrcValue1, SrcValueOffset1,
10233                 SrcValueAlign1, SrcTBAAInfo1);
10234}
10235
10236/// FindAliasInfo - Extracts the relevant alias information from the memory
10237/// node.  Returns true if the operand was a load.
10238bool DAGCombiner::FindAliasInfo(SDNode *N,
10239                                SDValue &Ptr, int64_t &Size,
10240                                const Value *&SrcValue,
10241                                int &SrcValueOffset,
10242                                unsigned &SrcValueAlign,
10243                                const MDNode *&TBAAInfo) const {
10244  LSBaseSDNode *LS = cast<LSBaseSDNode>(N);
10245
10246  Ptr = LS->getBasePtr();
10247  Size = LS->getMemoryVT().getSizeInBits() >> 3;
10248  SrcValue = LS->getSrcValue();
10249  SrcValueOffset = LS->getSrcValueOffset();
10250  SrcValueAlign = LS->getOriginalAlignment();
10251  TBAAInfo = LS->getTBAAInfo();
10252  return isa<LoadSDNode>(LS);
10253}
10254
10255/// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
10256/// looking for aliasing nodes and adding them to the Aliases vector.
10257void DAGCombiner::GatherAllAliases(SDNode *N, SDValue OriginalChain,
10258                                   SmallVectorImpl<SDValue> &Aliases) {
10259  SmallVector<SDValue, 8> Chains;     // List of chains to visit.
10260  SmallPtrSet<SDNode *, 16> Visited;  // Visited node set.
10261
10262  // Get alias information for node.
10263  SDValue Ptr;
10264  int64_t Size;
10265  const Value *SrcValue;
10266  int SrcValueOffset;
10267  unsigned SrcValueAlign;
10268  const MDNode *SrcTBAAInfo;
10269  bool IsLoad = FindAliasInfo(N, Ptr, Size, SrcValue, SrcValueOffset,
10270                              SrcValueAlign, SrcTBAAInfo);
10271
10272  // Starting off.
10273  Chains.push_back(OriginalChain);
10274  unsigned Depth = 0;
10275
10276  // Look at each chain and determine if it is an alias.  If so, add it to the
10277  // aliases list.  If not, then continue up the chain looking for the next
10278  // candidate.
10279  while (!Chains.empty()) {
10280    SDValue Chain = Chains.back();
10281    Chains.pop_back();
10282
10283    // For TokenFactor nodes, look at each operand and only continue up the
10284    // chain until we find two aliases.  If we've seen two aliases, assume we'll
10285    // find more and revert to original chain since the xform is unlikely to be
10286    // profitable.
10287    //
10288    // FIXME: The depth check could be made to return the last non-aliasing
10289    // chain we found before we hit a tokenfactor rather than the original
10290    // chain.
10291    if (Depth > 6 || Aliases.size() == 2) {
10292      Aliases.clear();
10293      Aliases.push_back(OriginalChain);
10294      break;
10295    }
10296
10297    // Don't bother if we've been before.
10298    if (!Visited.insert(Chain.getNode()))
10299      continue;
10300
10301    switch (Chain.getOpcode()) {
10302    case ISD::EntryToken:
10303      // Entry token is ideal chain operand, but handled in FindBetterChain.
10304      break;
10305
10306    case ISD::LOAD:
10307    case ISD::STORE: {
10308      // Get alias information for Chain.
10309      SDValue OpPtr;
10310      int64_t OpSize;
10311      const Value *OpSrcValue;
10312      int OpSrcValueOffset;
10313      unsigned OpSrcValueAlign;
10314      const MDNode *OpSrcTBAAInfo;
10315      bool IsOpLoad = FindAliasInfo(Chain.getNode(), OpPtr, OpSize,
10316                                    OpSrcValue, OpSrcValueOffset,
10317                                    OpSrcValueAlign,
10318                                    OpSrcTBAAInfo);
10319
10320      // If chain is alias then stop here.
10321      if (!(IsLoad && IsOpLoad) &&
10322          isAlias(Ptr, Size, SrcValue, SrcValueOffset, SrcValueAlign,
10323                  SrcTBAAInfo,
10324                  OpPtr, OpSize, OpSrcValue, OpSrcValueOffset,
10325                  OpSrcValueAlign, OpSrcTBAAInfo)) {
10326        Aliases.push_back(Chain);
10327      } else {
10328        // Look further up the chain.
10329        Chains.push_back(Chain.getOperand(0));
10330        ++Depth;
10331      }
10332      break;
10333    }
10334
10335    case ISD::TokenFactor:
10336      // We have to check each of the operands of the token factor for "small"
10337      // token factors, so we queue them up.  Adding the operands to the queue
10338      // (stack) in reverse order maintains the original order and increases the
10339      // likelihood that getNode will find a matching token factor (CSE.)
10340      if (Chain.getNumOperands() > 16) {
10341        Aliases.push_back(Chain);
10342        break;
10343      }
10344      for (unsigned n = Chain.getNumOperands(); n;)
10345        Chains.push_back(Chain.getOperand(--n));
10346      ++Depth;
10347      break;
10348
10349    default:
10350      // For all other instructions we will just have to take what we can get.
10351      Aliases.push_back(Chain);
10352      break;
10353    }
10354  }
10355}
10356
10357/// FindBetterChain - Walk up chain skipping non-aliasing memory nodes, looking
10358/// for a better chain (aliasing node.)
10359SDValue DAGCombiner::FindBetterChain(SDNode *N, SDValue OldChain) {
10360  SmallVector<SDValue, 8> Aliases;  // Ops for replacing token factor.
10361
10362  // Accumulate all the aliases to this node.
10363  GatherAllAliases(N, OldChain, Aliases);
10364
10365  // If no operands then chain to entry token.
10366  if (Aliases.size() == 0)
10367    return DAG.getEntryNode();
10368
10369  // If a single operand then chain to it.  We don't need to revisit it.
10370  if (Aliases.size() == 1)
10371    return Aliases[0];
10372
10373  // Construct a custom tailored token factor.
10374  return DAG.getNode(ISD::TokenFactor, SDLoc(N), MVT::Other,
10375                     &Aliases[0], Aliases.size());
10376}
10377
10378// SelectionDAG::Combine - This is the entry point for the file.
10379//
10380void SelectionDAG::Combine(CombineLevel Level, AliasAnalysis &AA,
10381                           CodeGenOpt::Level OptLevel) {
10382  /// run - This is the main entry point to this class.
10383  ///
10384  DAGCombiner(*this, AA, OptLevel).Run(Level);
10385}
10386