DAGCombiner.cpp revision 62fcc41d958bf9b8cee43271789136cb7100705f
1//===-- DAGCombiner.cpp - Implement a DAG node combiner -------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass combines dag nodes to form fewer, simpler DAG nodes.  It can be run
11// both before and after the DAG is legalized.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "dagcombine"
16#include "llvm/CodeGen/SelectionDAG.h"
17#include "llvm/CodeGen/MachineFunction.h"
18#include "llvm/CodeGen/MachineFrameInfo.h"
19#include "llvm/Analysis/AliasAnalysis.h"
20#include "llvm/Target/TargetData.h"
21#include "llvm/Target/TargetFrameInfo.h"
22#include "llvm/Target/TargetLowering.h"
23#include "llvm/Target/TargetMachine.h"
24#include "llvm/Target/TargetOptions.h"
25#include "llvm/ADT/SmallPtrSet.h"
26#include "llvm/ADT/Statistic.h"
27#include "llvm/Support/Compiler.h"
28#include "llvm/Support/CommandLine.h"
29#include "llvm/Support/Debug.h"
30#include "llvm/Support/MathExtras.h"
31#include <algorithm>
32using namespace llvm;
33
34STATISTIC(NodesCombined   , "Number of dag nodes combined");
35STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created");
36STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created");
37
38namespace {
39#ifndef NDEBUG
40  static cl::opt<bool>
41    ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
42                    cl::desc("Pop up a window to show dags before the first "
43                             "dag combine pass"));
44  static cl::opt<bool>
45    ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
46                    cl::desc("Pop up a window to show dags before the second "
47                             "dag combine pass"));
48#else
49  static const bool ViewDAGCombine1 = false;
50  static const bool ViewDAGCombine2 = false;
51#endif
52
53  static cl::opt<bool>
54    CombinerAA("combiner-alias-analysis", cl::Hidden,
55               cl::desc("Turn on alias analysis during testing"));
56
57  static cl::opt<bool>
58    CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden,
59               cl::desc("Include global information in alias analysis"));
60
61//------------------------------ DAGCombiner ---------------------------------//
62
63  class VISIBILITY_HIDDEN DAGCombiner {
64    SelectionDAG &DAG;
65    TargetLowering &TLI;
66    bool AfterLegalize;
67
68    // Worklist of all of the nodes that need to be simplified.
69    std::vector<SDNode*> WorkList;
70
71    // AA - Used for DAG load/store alias analysis.
72    AliasAnalysis &AA;
73
74    /// AddUsersToWorkList - When an instruction is simplified, add all users of
75    /// the instruction to the work lists because they might get more simplified
76    /// now.
77    ///
78    void AddUsersToWorkList(SDNode *N) {
79      for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
80           UI != UE; ++UI)
81        AddToWorkList(*UI);
82    }
83
84    /// visit - call the node-specific routine that knows how to fold each
85    /// particular type of node.
86    SDOperand visit(SDNode *N);
87
88  public:
89    /// AddToWorkList - Add to the work list making sure it's instance is at the
90    /// the back (next to be processed.)
91    void AddToWorkList(SDNode *N) {
92      removeFromWorkList(N);
93      WorkList.push_back(N);
94    }
95
96    /// removeFromWorkList - remove all instances of N from the worklist.
97    ///
98    void removeFromWorkList(SDNode *N) {
99      WorkList.erase(std::remove(WorkList.begin(), WorkList.end(), N),
100                     WorkList.end());
101    }
102
103    SDOperand CombineTo(SDNode *N, const SDOperand *To, unsigned NumTo,
104                        bool AddTo = true);
105
106    SDOperand CombineTo(SDNode *N, SDOperand Res, bool AddTo = true) {
107      return CombineTo(N, &Res, 1, AddTo);
108    }
109
110    SDOperand CombineTo(SDNode *N, SDOperand Res0, SDOperand Res1,
111                        bool AddTo = true) {
112      SDOperand To[] = { Res0, Res1 };
113      return CombineTo(N, To, 2, AddTo);
114    }
115
116  private:
117
118    /// SimplifyDemandedBits - Check the specified integer node value to see if
119    /// it can be simplified or if things it uses can be simplified by bit
120    /// propagation.  If so, return true.
121    bool SimplifyDemandedBits(SDOperand Op) {
122      APInt Demanded = APInt::getAllOnesValue(Op.getValueSizeInBits());
123      return SimplifyDemandedBits(Op, Demanded);
124    }
125
126    bool SimplifyDemandedBits(SDOperand Op, const APInt &Demanded);
127
128    bool CombineToPreIndexedLoadStore(SDNode *N);
129    bool CombineToPostIndexedLoadStore(SDNode *N);
130
131
132    /// combine - call the node-specific routine that knows how to fold each
133    /// particular type of node. If that doesn't do anything, try the
134    /// target-specific DAG combines.
135    SDOperand combine(SDNode *N);
136
137    // Visitation implementation - Implement dag node combining for different
138    // node types.  The semantics are as follows:
139    // Return Value:
140    //   SDOperand.Val == 0   - No change was made
141    //   SDOperand.Val == N   - N was replaced, is dead, and is already handled.
142    //   otherwise            - N should be replaced by the returned Operand.
143    //
144    SDOperand visitTokenFactor(SDNode *N);
145    SDOperand visitMERGE_VALUES(SDNode *N);
146    SDOperand visitADD(SDNode *N);
147    SDOperand visitSUB(SDNode *N);
148    SDOperand visitADDC(SDNode *N);
149    SDOperand visitADDE(SDNode *N);
150    SDOperand visitMUL(SDNode *N);
151    SDOperand visitSDIV(SDNode *N);
152    SDOperand visitUDIV(SDNode *N);
153    SDOperand visitSREM(SDNode *N);
154    SDOperand visitUREM(SDNode *N);
155    SDOperand visitMULHU(SDNode *N);
156    SDOperand visitMULHS(SDNode *N);
157    SDOperand visitSMUL_LOHI(SDNode *N);
158    SDOperand visitUMUL_LOHI(SDNode *N);
159    SDOperand visitSDIVREM(SDNode *N);
160    SDOperand visitUDIVREM(SDNode *N);
161    SDOperand visitAND(SDNode *N);
162    SDOperand visitOR(SDNode *N);
163    SDOperand visitXOR(SDNode *N);
164    SDOperand SimplifyVBinOp(SDNode *N);
165    SDOperand visitSHL(SDNode *N);
166    SDOperand visitSRA(SDNode *N);
167    SDOperand visitSRL(SDNode *N);
168    SDOperand visitCTLZ(SDNode *N);
169    SDOperand visitCTTZ(SDNode *N);
170    SDOperand visitCTPOP(SDNode *N);
171    SDOperand visitSELECT(SDNode *N);
172    SDOperand visitSELECT_CC(SDNode *N);
173    SDOperand visitSETCC(SDNode *N);
174    SDOperand visitSIGN_EXTEND(SDNode *N);
175    SDOperand visitZERO_EXTEND(SDNode *N);
176    SDOperand visitANY_EXTEND(SDNode *N);
177    SDOperand visitSIGN_EXTEND_INREG(SDNode *N);
178    SDOperand visitTRUNCATE(SDNode *N);
179    SDOperand visitBIT_CONVERT(SDNode *N);
180    SDOperand visitFADD(SDNode *N);
181    SDOperand visitFSUB(SDNode *N);
182    SDOperand visitFMUL(SDNode *N);
183    SDOperand visitFDIV(SDNode *N);
184    SDOperand visitFREM(SDNode *N);
185    SDOperand visitFCOPYSIGN(SDNode *N);
186    SDOperand visitSINT_TO_FP(SDNode *N);
187    SDOperand visitUINT_TO_FP(SDNode *N);
188    SDOperand visitFP_TO_SINT(SDNode *N);
189    SDOperand visitFP_TO_UINT(SDNode *N);
190    SDOperand visitFP_ROUND(SDNode *N);
191    SDOperand visitFP_ROUND_INREG(SDNode *N);
192    SDOperand visitFP_EXTEND(SDNode *N);
193    SDOperand visitFNEG(SDNode *N);
194    SDOperand visitFABS(SDNode *N);
195    SDOperand visitBRCOND(SDNode *N);
196    SDOperand visitBR_CC(SDNode *N);
197    SDOperand visitLOAD(SDNode *N);
198    SDOperand visitSTORE(SDNode *N);
199    SDOperand visitINSERT_VECTOR_ELT(SDNode *N);
200    SDOperand visitEXTRACT_VECTOR_ELT(SDNode *N);
201    SDOperand visitBUILD_VECTOR(SDNode *N);
202    SDOperand visitCONCAT_VECTORS(SDNode *N);
203    SDOperand visitVECTOR_SHUFFLE(SDNode *N);
204
205    SDOperand XformToShuffleWithZero(SDNode *N);
206    SDOperand ReassociateOps(unsigned Opc, SDOperand LHS, SDOperand RHS);
207
208    SDOperand visitShiftByConstant(SDNode *N, unsigned Amt);
209
210    bool SimplifySelectOps(SDNode *SELECT, SDOperand LHS, SDOperand RHS);
211    SDOperand SimplifyBinOpWithSameOpcodeHands(SDNode *N);
212    SDOperand SimplifySelect(SDOperand N0, SDOperand N1, SDOperand N2);
213    SDOperand SimplifySelectCC(SDOperand N0, SDOperand N1, SDOperand N2,
214                               SDOperand N3, ISD::CondCode CC,
215                               bool NotExtCompare = false);
216    SDOperand SimplifySetCC(MVT::ValueType VT, SDOperand N0, SDOperand N1,
217                            ISD::CondCode Cond, bool foldBooleans = true);
218    SDOperand SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
219                                         unsigned HiOp);
220    SDOperand ConstantFoldBIT_CONVERTofBUILD_VECTOR(SDNode *, MVT::ValueType);
221    SDOperand BuildSDIV(SDNode *N);
222    SDOperand BuildUDIV(SDNode *N);
223    SDNode *MatchRotate(SDOperand LHS, SDOperand RHS);
224    SDOperand ReduceLoadWidth(SDNode *N);
225
226    SDOperand GetDemandedBits(SDOperand V, const APInt &Mask);
227
228    /// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
229    /// looking for aliasing nodes and adding them to the Aliases vector.
230    void GatherAllAliases(SDNode *N, SDOperand OriginalChain,
231                          SmallVector<SDOperand, 8> &Aliases);
232
233    /// isAlias - Return true if there is any possibility that the two addresses
234    /// overlap.
235    bool isAlias(SDOperand Ptr1, int64_t Size1,
236                 const Value *SrcValue1, int SrcValueOffset1,
237                 SDOperand Ptr2, int64_t Size2,
238                 const Value *SrcValue2, int SrcValueOffset2);
239
240    /// FindAliasInfo - Extracts the relevant alias information from the memory
241    /// node.  Returns true if the operand was a load.
242    bool FindAliasInfo(SDNode *N,
243                       SDOperand &Ptr, int64_t &Size,
244                       const Value *&SrcValue, int &SrcValueOffset);
245
246    /// FindBetterChain - Walk up chain skipping non-aliasing memory nodes,
247    /// looking for a better chain (aliasing node.)
248    SDOperand FindBetterChain(SDNode *N, SDOperand Chain);
249
250public:
251    DAGCombiner(SelectionDAG &D, AliasAnalysis &A)
252      : DAG(D),
253        TLI(D.getTargetLoweringInfo()),
254        AfterLegalize(false),
255        AA(A) {}
256
257    /// Run - runs the dag combiner on all nodes in the work list
258    void Run(bool RunningAfterLegalize);
259  };
260}
261
262
263namespace {
264/// WorkListRemover - This class is a DAGUpdateListener that removes any deleted
265/// nodes from the worklist.
266class VISIBILITY_HIDDEN WorkListRemover :
267  public SelectionDAG::DAGUpdateListener {
268  DAGCombiner &DC;
269public:
270  explicit WorkListRemover(DAGCombiner &dc) : DC(dc) {}
271
272  virtual void NodeDeleted(SDNode *N) {
273    DC.removeFromWorkList(N);
274  }
275
276  virtual void NodeUpdated(SDNode *N) {
277    // Ignore updates.
278  }
279};
280}
281
282//===----------------------------------------------------------------------===//
283//  TargetLowering::DAGCombinerInfo implementation
284//===----------------------------------------------------------------------===//
285
286void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) {
287  ((DAGCombiner*)DC)->AddToWorkList(N);
288}
289
290SDOperand TargetLowering::DAGCombinerInfo::
291CombineTo(SDNode *N, const std::vector<SDOperand> &To) {
292  return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size());
293}
294
295SDOperand TargetLowering::DAGCombinerInfo::
296CombineTo(SDNode *N, SDOperand Res) {
297  return ((DAGCombiner*)DC)->CombineTo(N, Res);
298}
299
300
301SDOperand TargetLowering::DAGCombinerInfo::
302CombineTo(SDNode *N, SDOperand Res0, SDOperand Res1) {
303  return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1);
304}
305
306
307//===----------------------------------------------------------------------===//
308// Helper Functions
309//===----------------------------------------------------------------------===//
310
311/// isNegatibleForFree - Return 1 if we can compute the negated form of the
312/// specified expression for the same cost as the expression itself, or 2 if we
313/// can compute the negated form more cheaply than the expression itself.
314static char isNegatibleForFree(SDOperand Op, bool AfterLegalize,
315                               unsigned Depth = 0) {
316  // No compile time optimizations on this type.
317  if (Op.getValueType() == MVT::ppcf128)
318    return 0;
319
320  // fneg is removable even if it has multiple uses.
321  if (Op.getOpcode() == ISD::FNEG) return 2;
322
323  // Don't allow anything with multiple uses.
324  if (!Op.hasOneUse()) return 0;
325
326  // Don't recurse exponentially.
327  if (Depth > 6) return 0;
328
329  switch (Op.getOpcode()) {
330  default: return false;
331  case ISD::ConstantFP:
332    // Don't invert constant FP values after legalize.  The negated constant
333    // isn't necessarily legal.
334    return AfterLegalize ? 0 : 1;
335  case ISD::FADD:
336    // FIXME: determine better conditions for this xform.
337    if (!UnsafeFPMath) return 0;
338
339    // -(A+B) -> -A - B
340    if (char V = isNegatibleForFree(Op.getOperand(0), AfterLegalize, Depth+1))
341      return V;
342    // -(A+B) -> -B - A
343    return isNegatibleForFree(Op.getOperand(1), AfterLegalize, Depth+1);
344  case ISD::FSUB:
345    // We can't turn -(A-B) into B-A when we honor signed zeros.
346    if (!UnsafeFPMath) return 0;
347
348    // -(A-B) -> B-A
349    return 1;
350
351  case ISD::FMUL:
352  case ISD::FDIV:
353    if (HonorSignDependentRoundingFPMath()) return 0;
354
355    // -(X*Y) -> (-X * Y) or (X*-Y)
356    if (char V = isNegatibleForFree(Op.getOperand(0), AfterLegalize, Depth+1))
357      return V;
358
359    return isNegatibleForFree(Op.getOperand(1), AfterLegalize, Depth+1);
360
361  case ISD::FP_EXTEND:
362  case ISD::FP_ROUND:
363  case ISD::FSIN:
364    return isNegatibleForFree(Op.getOperand(0), AfterLegalize, Depth+1);
365  }
366}
367
368/// GetNegatedExpression - If isNegatibleForFree returns true, this function
369/// returns the newly negated expression.
370static SDOperand GetNegatedExpression(SDOperand Op, SelectionDAG &DAG,
371                                      bool AfterLegalize, unsigned Depth = 0) {
372  // fneg is removable even if it has multiple uses.
373  if (Op.getOpcode() == ISD::FNEG) return Op.getOperand(0);
374
375  // Don't allow anything with multiple uses.
376  assert(Op.hasOneUse() && "Unknown reuse!");
377
378  assert(Depth <= 6 && "GetNegatedExpression doesn't match isNegatibleForFree");
379  switch (Op.getOpcode()) {
380  default: assert(0 && "Unknown code");
381  case ISD::ConstantFP: {
382    APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
383    V.changeSign();
384    return DAG.getConstantFP(V, Op.getValueType());
385  }
386  case ISD::FADD:
387    // FIXME: determine better conditions for this xform.
388    assert(UnsafeFPMath);
389
390    // -(A+B) -> -A - B
391    if (isNegatibleForFree(Op.getOperand(0), AfterLegalize, Depth+1))
392      return DAG.getNode(ISD::FSUB, Op.getValueType(),
393                         GetNegatedExpression(Op.getOperand(0), DAG,
394                                              AfterLegalize, Depth+1),
395                         Op.getOperand(1));
396    // -(A+B) -> -B - A
397    return DAG.getNode(ISD::FSUB, Op.getValueType(),
398                       GetNegatedExpression(Op.getOperand(1), DAG,
399                                            AfterLegalize, Depth+1),
400                       Op.getOperand(0));
401  case ISD::FSUB:
402    // We can't turn -(A-B) into B-A when we honor signed zeros.
403    assert(UnsafeFPMath);
404
405    // -(0-B) -> B
406    if (ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(Op.getOperand(0)))
407      if (N0CFP->getValueAPF().isZero())
408        return Op.getOperand(1);
409
410    // -(A-B) -> B-A
411    return DAG.getNode(ISD::FSUB, Op.getValueType(), Op.getOperand(1),
412                       Op.getOperand(0));
413
414  case ISD::FMUL:
415  case ISD::FDIV:
416    assert(!HonorSignDependentRoundingFPMath());
417
418    // -(X*Y) -> -X * Y
419    if (isNegatibleForFree(Op.getOperand(0), AfterLegalize, Depth+1))
420      return DAG.getNode(Op.getOpcode(), Op.getValueType(),
421                         GetNegatedExpression(Op.getOperand(0), DAG,
422                                              AfterLegalize, Depth+1),
423                         Op.getOperand(1));
424
425    // -(X*Y) -> X * -Y
426    return DAG.getNode(Op.getOpcode(), Op.getValueType(),
427                       Op.getOperand(0),
428                       GetNegatedExpression(Op.getOperand(1), DAG,
429                                            AfterLegalize, Depth+1));
430
431  case ISD::FP_EXTEND:
432  case ISD::FSIN:
433    return DAG.getNode(Op.getOpcode(), Op.getValueType(),
434                       GetNegatedExpression(Op.getOperand(0), DAG,
435                                            AfterLegalize, Depth+1));
436  case ISD::FP_ROUND:
437      return DAG.getNode(ISD::FP_ROUND, Op.getValueType(),
438                         GetNegatedExpression(Op.getOperand(0), DAG,
439                                              AfterLegalize, Depth+1),
440                         Op.getOperand(1));
441  }
442}
443
444
445// isSetCCEquivalent - Return true if this node is a setcc, or is a select_cc
446// that selects between the values 1 and 0, making it equivalent to a setcc.
447// Also, set the incoming LHS, RHS, and CC references to the appropriate
448// nodes based on the type of node we are checking.  This simplifies life a
449// bit for the callers.
450static bool isSetCCEquivalent(SDOperand N, SDOperand &LHS, SDOperand &RHS,
451                              SDOperand &CC) {
452  if (N.getOpcode() == ISD::SETCC) {
453    LHS = N.getOperand(0);
454    RHS = N.getOperand(1);
455    CC  = N.getOperand(2);
456    return true;
457  }
458  if (N.getOpcode() == ISD::SELECT_CC &&
459      N.getOperand(2).getOpcode() == ISD::Constant &&
460      N.getOperand(3).getOpcode() == ISD::Constant &&
461      cast<ConstantSDNode>(N.getOperand(2))->getValue() == 1 &&
462      cast<ConstantSDNode>(N.getOperand(3))->isNullValue()) {
463    LHS = N.getOperand(0);
464    RHS = N.getOperand(1);
465    CC  = N.getOperand(4);
466    return true;
467  }
468  return false;
469}
470
471// isOneUseSetCC - Return true if this is a SetCC-equivalent operation with only
472// one use.  If this is true, it allows the users to invert the operation for
473// free when it is profitable to do so.
474static bool isOneUseSetCC(SDOperand N) {
475  SDOperand N0, N1, N2;
476  if (isSetCCEquivalent(N, N0, N1, N2) && N.Val->hasOneUse())
477    return true;
478  return false;
479}
480
481SDOperand DAGCombiner::ReassociateOps(unsigned Opc, SDOperand N0, SDOperand N1){
482  MVT::ValueType VT = N0.getValueType();
483  // reassoc. (op (op x, c1), y) -> (op (op x, y), c1) iff x+c1 has one use
484  // reassoc. (op (op x, c1), c2) -> (op x, (op c1, c2))
485  if (N0.getOpcode() == Opc && isa<ConstantSDNode>(N0.getOperand(1))) {
486    if (isa<ConstantSDNode>(N1)) {
487      SDOperand OpNode = DAG.getNode(Opc, VT, N0.getOperand(1), N1);
488      AddToWorkList(OpNode.Val);
489      return DAG.getNode(Opc, VT, OpNode, N0.getOperand(0));
490    } else if (N0.hasOneUse()) {
491      SDOperand OpNode = DAG.getNode(Opc, VT, N0.getOperand(0), N1);
492      AddToWorkList(OpNode.Val);
493      return DAG.getNode(Opc, VT, OpNode, N0.getOperand(1));
494    }
495  }
496  // reassoc. (op y, (op x, c1)) -> (op (op x, y), c1) iff x+c1 has one use
497  // reassoc. (op c2, (op x, c1)) -> (op x, (op c1, c2))
498  if (N1.getOpcode() == Opc && isa<ConstantSDNode>(N1.getOperand(1))) {
499    if (isa<ConstantSDNode>(N0)) {
500      SDOperand OpNode = DAG.getNode(Opc, VT, N1.getOperand(1), N0);
501      AddToWorkList(OpNode.Val);
502      return DAG.getNode(Opc, VT, OpNode, N1.getOperand(0));
503    } else if (N1.hasOneUse()) {
504      SDOperand OpNode = DAG.getNode(Opc, VT, N1.getOperand(0), N0);
505      AddToWorkList(OpNode.Val);
506      return DAG.getNode(Opc, VT, OpNode, N1.getOperand(1));
507    }
508  }
509  return SDOperand();
510}
511
512SDOperand DAGCombiner::CombineTo(SDNode *N, const SDOperand *To, unsigned NumTo,
513                                 bool AddTo) {
514  assert(N->getNumValues() == NumTo && "Broken CombineTo call!");
515  ++NodesCombined;
516  DOUT << "\nReplacing.1 "; DEBUG(N->dump(&DAG));
517  DOUT << "\nWith: "; DEBUG(To[0].Val->dump(&DAG));
518  DOUT << " and " << NumTo-1 << " other values\n";
519  WorkListRemover DeadNodes(*this);
520  DAG.ReplaceAllUsesWith(N, To, &DeadNodes);
521
522  if (AddTo) {
523    // Push the new nodes and any users onto the worklist
524    for (unsigned i = 0, e = NumTo; i != e; ++i) {
525      AddToWorkList(To[i].Val);
526      AddUsersToWorkList(To[i].Val);
527    }
528  }
529
530  // Nodes can be reintroduced into the worklist.  Make sure we do not
531  // process a node that has been replaced.
532  removeFromWorkList(N);
533
534  // Finally, since the node is now dead, remove it from the graph.
535  DAG.DeleteNode(N);
536  return SDOperand(N, 0);
537}
538
539/// SimplifyDemandedBits - Check the specified integer node value to see if
540/// it can be simplified or if things it uses can be simplified by bit
541/// propagation.  If so, return true.
542bool DAGCombiner::SimplifyDemandedBits(SDOperand Op, const APInt &Demanded) {
543  TargetLowering::TargetLoweringOpt TLO(DAG, AfterLegalize);
544  APInt KnownZero, KnownOne;
545  if (!TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO))
546    return false;
547
548  // Revisit the node.
549  AddToWorkList(Op.Val);
550
551  // Replace the old value with the new one.
552  ++NodesCombined;
553  DOUT << "\nReplacing.2 "; DEBUG(TLO.Old.Val->dump(&DAG));
554  DOUT << "\nWith: "; DEBUG(TLO.New.Val->dump(&DAG));
555  DOUT << '\n';
556
557  // Replace all uses.  If any nodes become isomorphic to other nodes and
558  // are deleted, make sure to remove them from our worklist.
559  WorkListRemover DeadNodes(*this);
560  DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New, &DeadNodes);
561
562  // Push the new node and any (possibly new) users onto the worklist.
563  AddToWorkList(TLO.New.Val);
564  AddUsersToWorkList(TLO.New.Val);
565
566  // Finally, if the node is now dead, remove it from the graph.  The node
567  // may not be dead if the replacement process recursively simplified to
568  // something else needing this node.
569  if (TLO.Old.Val->use_empty()) {
570    removeFromWorkList(TLO.Old.Val);
571
572    // If the operands of this node are only used by the node, they will now
573    // be dead.  Make sure to visit them first to delete dead nodes early.
574    for (unsigned i = 0, e = TLO.Old.Val->getNumOperands(); i != e; ++i)
575      if (TLO.Old.Val->getOperand(i).Val->hasOneUse())
576        AddToWorkList(TLO.Old.Val->getOperand(i).Val);
577
578    DAG.DeleteNode(TLO.Old.Val);
579  }
580  return true;
581}
582
583//===----------------------------------------------------------------------===//
584//  Main DAG Combiner implementation
585//===----------------------------------------------------------------------===//
586
587void DAGCombiner::Run(bool RunningAfterLegalize) {
588  // set the instance variable, so that the various visit routines may use it.
589  AfterLegalize = RunningAfterLegalize;
590
591  // Add all the dag nodes to the worklist.
592  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
593       E = DAG.allnodes_end(); I != E; ++I)
594    WorkList.push_back(I);
595
596  // Create a dummy node (which is not added to allnodes), that adds a reference
597  // to the root node, preventing it from being deleted, and tracking any
598  // changes of the root.
599  HandleSDNode Dummy(DAG.getRoot());
600
601  // The root of the dag may dangle to deleted nodes until the dag combiner is
602  // done.  Set it to null to avoid confusion.
603  DAG.setRoot(SDOperand());
604
605  // while the worklist isn't empty, inspect the node on the end of it and
606  // try and combine it.
607  while (!WorkList.empty()) {
608    SDNode *N = WorkList.back();
609    WorkList.pop_back();
610
611    // If N has no uses, it is dead.  Make sure to revisit all N's operands once
612    // N is deleted from the DAG, since they too may now be dead or may have a
613    // reduced number of uses, allowing other xforms.
614    if (N->use_empty() && N != &Dummy) {
615      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
616        AddToWorkList(N->getOperand(i).Val);
617
618      DAG.DeleteNode(N);
619      continue;
620    }
621
622    SDOperand RV = combine(N);
623
624    if (RV.Val == 0)
625      continue;
626
627    ++NodesCombined;
628
629    // If we get back the same node we passed in, rather than a new node or
630    // zero, we know that the node must have defined multiple values and
631    // CombineTo was used.  Since CombineTo takes care of the worklist
632    // mechanics for us, we have no work to do in this case.
633    if (RV.Val == N)
634      continue;
635
636    assert(N->getOpcode() != ISD::DELETED_NODE &&
637           RV.Val->getOpcode() != ISD::DELETED_NODE &&
638           "Node was deleted but visit returned new node!");
639
640    DOUT << "\nReplacing.3 "; DEBUG(N->dump(&DAG));
641    DOUT << "\nWith: "; DEBUG(RV.Val->dump(&DAG));
642    DOUT << '\n';
643    WorkListRemover DeadNodes(*this);
644    if (N->getNumValues() == RV.Val->getNumValues())
645      DAG.ReplaceAllUsesWith(N, RV.Val, &DeadNodes);
646    else {
647      assert(N->getValueType(0) == RV.getValueType() &&
648             N->getNumValues() == 1 && "Type mismatch");
649      SDOperand OpV = RV;
650      DAG.ReplaceAllUsesWith(N, &OpV, &DeadNodes);
651    }
652
653    // Push the new node and any users onto the worklist
654    AddToWorkList(RV.Val);
655    AddUsersToWorkList(RV.Val);
656
657    // Add any uses of the old node to the worklist in case this node is the
658    // last one that uses them.  They may become dead after this node is
659    // deleted.
660    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
661      AddToWorkList(N->getOperand(i).Val);
662
663    // Nodes can be reintroduced into the worklist.  Make sure we do not
664    // process a node that has been replaced.
665    removeFromWorkList(N);
666
667    // Finally, since the node is now dead, remove it from the graph.
668    DAG.DeleteNode(N);
669  }
670
671  // If the root changed (e.g. it was a dead load, update the root).
672  DAG.setRoot(Dummy.getValue());
673}
674
675SDOperand DAGCombiner::visit(SDNode *N) {
676  switch(N->getOpcode()) {
677  default: break;
678  case ISD::TokenFactor:        return visitTokenFactor(N);
679  case ISD::MERGE_VALUES:       return visitMERGE_VALUES(N);
680  case ISD::ADD:                return visitADD(N);
681  case ISD::SUB:                return visitSUB(N);
682  case ISD::ADDC:               return visitADDC(N);
683  case ISD::ADDE:               return visitADDE(N);
684  case ISD::MUL:                return visitMUL(N);
685  case ISD::SDIV:               return visitSDIV(N);
686  case ISD::UDIV:               return visitUDIV(N);
687  case ISD::SREM:               return visitSREM(N);
688  case ISD::UREM:               return visitUREM(N);
689  case ISD::MULHU:              return visitMULHU(N);
690  case ISD::MULHS:              return visitMULHS(N);
691  case ISD::SMUL_LOHI:          return visitSMUL_LOHI(N);
692  case ISD::UMUL_LOHI:          return visitUMUL_LOHI(N);
693  case ISD::SDIVREM:            return visitSDIVREM(N);
694  case ISD::UDIVREM:            return visitUDIVREM(N);
695  case ISD::AND:                return visitAND(N);
696  case ISD::OR:                 return visitOR(N);
697  case ISD::XOR:                return visitXOR(N);
698  case ISD::SHL:                return visitSHL(N);
699  case ISD::SRA:                return visitSRA(N);
700  case ISD::SRL:                return visitSRL(N);
701  case ISD::CTLZ:               return visitCTLZ(N);
702  case ISD::CTTZ:               return visitCTTZ(N);
703  case ISD::CTPOP:              return visitCTPOP(N);
704  case ISD::SELECT:             return visitSELECT(N);
705  case ISD::SELECT_CC:          return visitSELECT_CC(N);
706  case ISD::SETCC:              return visitSETCC(N);
707  case ISD::SIGN_EXTEND:        return visitSIGN_EXTEND(N);
708  case ISD::ZERO_EXTEND:        return visitZERO_EXTEND(N);
709  case ISD::ANY_EXTEND:         return visitANY_EXTEND(N);
710  case ISD::SIGN_EXTEND_INREG:  return visitSIGN_EXTEND_INREG(N);
711  case ISD::TRUNCATE:           return visitTRUNCATE(N);
712  case ISD::BIT_CONVERT:        return visitBIT_CONVERT(N);
713  case ISD::FADD:               return visitFADD(N);
714  case ISD::FSUB:               return visitFSUB(N);
715  case ISD::FMUL:               return visitFMUL(N);
716  case ISD::FDIV:               return visitFDIV(N);
717  case ISD::FREM:               return visitFREM(N);
718  case ISD::FCOPYSIGN:          return visitFCOPYSIGN(N);
719  case ISD::SINT_TO_FP:         return visitSINT_TO_FP(N);
720  case ISD::UINT_TO_FP:         return visitUINT_TO_FP(N);
721  case ISD::FP_TO_SINT:         return visitFP_TO_SINT(N);
722  case ISD::FP_TO_UINT:         return visitFP_TO_UINT(N);
723  case ISD::FP_ROUND:           return visitFP_ROUND(N);
724  case ISD::FP_ROUND_INREG:     return visitFP_ROUND_INREG(N);
725  case ISD::FP_EXTEND:          return visitFP_EXTEND(N);
726  case ISD::FNEG:               return visitFNEG(N);
727  case ISD::FABS:               return visitFABS(N);
728  case ISD::BRCOND:             return visitBRCOND(N);
729  case ISD::BR_CC:              return visitBR_CC(N);
730  case ISD::LOAD:               return visitLOAD(N);
731  case ISD::STORE:              return visitSTORE(N);
732  case ISD::INSERT_VECTOR_ELT:  return visitINSERT_VECTOR_ELT(N);
733  case ISD::EXTRACT_VECTOR_ELT: return visitEXTRACT_VECTOR_ELT(N);
734  case ISD::BUILD_VECTOR:       return visitBUILD_VECTOR(N);
735  case ISD::CONCAT_VECTORS:     return visitCONCAT_VECTORS(N);
736  case ISD::VECTOR_SHUFFLE:     return visitVECTOR_SHUFFLE(N);
737  }
738  return SDOperand();
739}
740
741SDOperand DAGCombiner::combine(SDNode *N) {
742
743  SDOperand RV = visit(N);
744
745  // If nothing happened, try a target-specific DAG combine.
746  if (RV.Val == 0) {
747    assert(N->getOpcode() != ISD::DELETED_NODE &&
748           "Node was deleted but visit returned NULL!");
749
750    if (N->getOpcode() >= ISD::BUILTIN_OP_END ||
751        TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) {
752
753      // Expose the DAG combiner to the target combiner impls.
754      TargetLowering::DAGCombinerInfo
755        DagCombineInfo(DAG, !AfterLegalize, false, this);
756
757      RV = TLI.PerformDAGCombine(N, DagCombineInfo);
758    }
759  }
760
761  return RV;
762}
763
764/// getInputChainForNode - Given a node, return its input chain if it has one,
765/// otherwise return a null sd operand.
766static SDOperand getInputChainForNode(SDNode *N) {
767  if (unsigned NumOps = N->getNumOperands()) {
768    if (N->getOperand(0).getValueType() == MVT::Other)
769      return N->getOperand(0);
770    else if (N->getOperand(NumOps-1).getValueType() == MVT::Other)
771      return N->getOperand(NumOps-1);
772    for (unsigned i = 1; i < NumOps-1; ++i)
773      if (N->getOperand(i).getValueType() == MVT::Other)
774        return N->getOperand(i);
775  }
776  return SDOperand(0, 0);
777}
778
779SDOperand DAGCombiner::visitTokenFactor(SDNode *N) {
780  // If N has two operands, where one has an input chain equal to the other,
781  // the 'other' chain is redundant.
782  if (N->getNumOperands() == 2) {
783    if (getInputChainForNode(N->getOperand(0).Val) == N->getOperand(1))
784      return N->getOperand(0);
785    if (getInputChainForNode(N->getOperand(1).Val) == N->getOperand(0))
786      return N->getOperand(1);
787  }
788
789  SmallVector<SDNode *, 8> TFs;     // List of token factors to visit.
790  SmallVector<SDOperand, 8> Ops;    // Ops for replacing token factor.
791  SmallPtrSet<SDNode*, 16> SeenOps;
792  bool Changed = false;             // If we should replace this token factor.
793
794  // Start out with this token factor.
795  TFs.push_back(N);
796
797  // Iterate through token factors.  The TFs grows when new token factors are
798  // encountered.
799  for (unsigned i = 0; i < TFs.size(); ++i) {
800    SDNode *TF = TFs[i];
801
802    // Check each of the operands.
803    for (unsigned i = 0, ie = TF->getNumOperands(); i != ie; ++i) {
804      SDOperand Op = TF->getOperand(i);
805
806      switch (Op.getOpcode()) {
807      case ISD::EntryToken:
808        // Entry tokens don't need to be added to the list. They are
809        // rededundant.
810        Changed = true;
811        break;
812
813      case ISD::TokenFactor:
814        if ((CombinerAA || Op.hasOneUse()) &&
815            std::find(TFs.begin(), TFs.end(), Op.Val) == TFs.end()) {
816          // Queue up for processing.
817          TFs.push_back(Op.Val);
818          // Clean up in case the token factor is removed.
819          AddToWorkList(Op.Val);
820          Changed = true;
821          break;
822        }
823        // Fall thru
824
825      default:
826        // Only add if it isn't already in the list.
827        if (SeenOps.insert(Op.Val))
828          Ops.push_back(Op);
829        else
830          Changed = true;
831        break;
832      }
833    }
834  }
835
836  SDOperand Result;
837
838  // If we've change things around then replace token factor.
839  if (Changed) {
840    if (Ops.empty()) {
841      // The entry token is the only possible outcome.
842      Result = DAG.getEntryNode();
843    } else {
844      // New and improved token factor.
845      Result = DAG.getNode(ISD::TokenFactor, MVT::Other, &Ops[0], Ops.size());
846    }
847
848    // Don't add users to work list.
849    return CombineTo(N, Result, false);
850  }
851
852  return Result;
853}
854
855/// MERGE_VALUES can always be eliminated.
856SDOperand DAGCombiner::visitMERGE_VALUES(SDNode *N) {
857  WorkListRemover DeadNodes(*this);
858  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
859    DAG.ReplaceAllUsesOfValueWith(SDOperand(N, i), N->getOperand(i),
860                                  &DeadNodes);
861  removeFromWorkList(N);
862  DAG.DeleteNode(N);
863  return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
864}
865
866
867static
868SDOperand combineShlAddConstant(SDOperand N0, SDOperand N1, SelectionDAG &DAG) {
869  MVT::ValueType VT = N0.getValueType();
870  SDOperand N00 = N0.getOperand(0);
871  SDOperand N01 = N0.getOperand(1);
872  ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N01);
873  if (N01C && N00.getOpcode() == ISD::ADD && N00.Val->hasOneUse() &&
874      isa<ConstantSDNode>(N00.getOperand(1))) {
875    N0 = DAG.getNode(ISD::ADD, VT,
876                     DAG.getNode(ISD::SHL, VT, N00.getOperand(0), N01),
877                     DAG.getNode(ISD::SHL, VT, N00.getOperand(1), N01));
878    return DAG.getNode(ISD::ADD, VT, N0, N1);
879  }
880  return SDOperand();
881}
882
883static
884SDOperand combineSelectAndUse(SDNode *N, SDOperand Slct, SDOperand OtherOp,
885                              SelectionDAG &DAG) {
886  MVT::ValueType VT = N->getValueType(0);
887  unsigned Opc = N->getOpcode();
888  bool isSlctCC = Slct.getOpcode() == ISD::SELECT_CC;
889  SDOperand LHS = isSlctCC ? Slct.getOperand(2) : Slct.getOperand(1);
890  SDOperand RHS = isSlctCC ? Slct.getOperand(3) : Slct.getOperand(2);
891  ISD::CondCode CC = ISD::SETCC_INVALID;
892  if (isSlctCC)
893    CC = cast<CondCodeSDNode>(Slct.getOperand(4))->get();
894  else {
895    SDOperand CCOp = Slct.getOperand(0);
896    if (CCOp.getOpcode() == ISD::SETCC)
897      CC = cast<CondCodeSDNode>(CCOp.getOperand(2))->get();
898  }
899
900  bool DoXform = false;
901  bool InvCC = false;
902  assert ((Opc == ISD::ADD || (Opc == ISD::SUB && Slct == N->getOperand(1))) &&
903          "Bad input!");
904  if (LHS.getOpcode() == ISD::Constant &&
905      cast<ConstantSDNode>(LHS)->isNullValue())
906    DoXform = true;
907  else if (CC != ISD::SETCC_INVALID &&
908           RHS.getOpcode() == ISD::Constant &&
909           cast<ConstantSDNode>(RHS)->isNullValue()) {
910    std::swap(LHS, RHS);
911    SDOperand Op0 = Slct.getOperand(0);
912    bool isInt = MVT::isInteger(isSlctCC ? Op0.getValueType()
913                                : Op0.getOperand(0).getValueType());
914    CC = ISD::getSetCCInverse(CC, isInt);
915    DoXform = true;
916    InvCC = true;
917  }
918
919  if (DoXform) {
920    SDOperand Result = DAG.getNode(Opc, VT, OtherOp, RHS);
921    if (isSlctCC)
922      return DAG.getSelectCC(OtherOp, Result,
923                             Slct.getOperand(0), Slct.getOperand(1), CC);
924    SDOperand CCOp = Slct.getOperand(0);
925    if (InvCC)
926      CCOp = DAG.getSetCC(CCOp.getValueType(), CCOp.getOperand(0),
927                          CCOp.getOperand(1), CC);
928    return DAG.getNode(ISD::SELECT, VT, CCOp, OtherOp, Result);
929  }
930  return SDOperand();
931}
932
933SDOperand DAGCombiner::visitADD(SDNode *N) {
934  SDOperand N0 = N->getOperand(0);
935  SDOperand N1 = N->getOperand(1);
936  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
937  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
938  MVT::ValueType VT = N0.getValueType();
939
940  // fold vector ops
941  if (MVT::isVector(VT)) {
942    SDOperand FoldedVOp = SimplifyVBinOp(N);
943    if (FoldedVOp.Val) return FoldedVOp;
944  }
945
946  // fold (add x, undef) -> undef
947  if (N0.getOpcode() == ISD::UNDEF)
948    return N0;
949  if (N1.getOpcode() == ISD::UNDEF)
950    return N1;
951  // fold (add c1, c2) -> c1+c2
952  if (N0C && N1C)
953    return DAG.getConstant(N0C->getValue() + N1C->getValue(), VT);
954  // canonicalize constant to RHS
955  if (N0C && !N1C)
956    return DAG.getNode(ISD::ADD, VT, N1, N0);
957  // fold (add x, 0) -> x
958  if (N1C && N1C->isNullValue())
959    return N0;
960  // fold ((c1-A)+c2) -> (c1+c2)-A
961  if (N1C && N0.getOpcode() == ISD::SUB)
962    if (ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getOperand(0)))
963      return DAG.getNode(ISD::SUB, VT,
964                         DAG.getConstant(N1C->getValue()+N0C->getValue(), VT),
965                         N0.getOperand(1));
966  // reassociate add
967  SDOperand RADD = ReassociateOps(ISD::ADD, N0, N1);
968  if (RADD.Val != 0)
969    return RADD;
970  // fold ((0-A) + B) -> B-A
971  if (N0.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N0.getOperand(0)) &&
972      cast<ConstantSDNode>(N0.getOperand(0))->isNullValue())
973    return DAG.getNode(ISD::SUB, VT, N1, N0.getOperand(1));
974  // fold (A + (0-B)) -> A-B
975  if (N1.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N1.getOperand(0)) &&
976      cast<ConstantSDNode>(N1.getOperand(0))->isNullValue())
977    return DAG.getNode(ISD::SUB, VT, N0, N1.getOperand(1));
978  // fold (A+(B-A)) -> B
979  if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1))
980    return N1.getOperand(0);
981
982  if (!MVT::isVector(VT) && SimplifyDemandedBits(SDOperand(N, 0)))
983    return SDOperand(N, 0);
984
985  // fold (a+b) -> (a|b) iff a and b share no bits.
986  if (MVT::isInteger(VT) && !MVT::isVector(VT)) {
987    APInt LHSZero, LHSOne;
988    APInt RHSZero, RHSOne;
989    APInt Mask = APInt::getAllOnesValue(MVT::getSizeInBits(VT));
990    DAG.ComputeMaskedBits(N0, Mask, LHSZero, LHSOne);
991    if (LHSZero.getBoolValue()) {
992      DAG.ComputeMaskedBits(N1, Mask, RHSZero, RHSOne);
993
994      // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
995      // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
996      if ((RHSZero & (~LHSZero & Mask)) == (~LHSZero & Mask) ||
997          (LHSZero & (~RHSZero & Mask)) == (~RHSZero & Mask))
998        return DAG.getNode(ISD::OR, VT, N0, N1);
999    }
1000  }
1001
1002  // fold (add (shl (add x, c1), c2), ) -> (add (add (shl x, c2), c1<<c2), )
1003  if (N0.getOpcode() == ISD::SHL && N0.Val->hasOneUse()) {
1004    SDOperand Result = combineShlAddConstant(N0, N1, DAG);
1005    if (Result.Val) return Result;
1006  }
1007  if (N1.getOpcode() == ISD::SHL && N1.Val->hasOneUse()) {
1008    SDOperand Result = combineShlAddConstant(N1, N0, DAG);
1009    if (Result.Val) return Result;
1010  }
1011
1012  // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
1013  if (N0.getOpcode() == ISD::SELECT && N0.Val->hasOneUse()) {
1014    SDOperand Result = combineSelectAndUse(N, N0, N1, DAG);
1015    if (Result.Val) return Result;
1016  }
1017  if (N1.getOpcode() == ISD::SELECT && N1.Val->hasOneUse()) {
1018    SDOperand Result = combineSelectAndUse(N, N1, N0, DAG);
1019    if (Result.Val) return Result;
1020  }
1021
1022  return SDOperand();
1023}
1024
1025SDOperand DAGCombiner::visitADDC(SDNode *N) {
1026  SDOperand N0 = N->getOperand(0);
1027  SDOperand N1 = N->getOperand(1);
1028  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1029  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1030  MVT::ValueType VT = N0.getValueType();
1031
1032  // If the flag result is dead, turn this into an ADD.
1033  if (N->hasNUsesOfValue(0, 1))
1034    return CombineTo(N, DAG.getNode(ISD::ADD, VT, N1, N0),
1035                     DAG.getNode(ISD::CARRY_FALSE, MVT::Flag));
1036
1037  // canonicalize constant to RHS.
1038  if (N0C && !N1C) {
1039    SDOperand Ops[] = { N1, N0 };
1040    return DAG.getNode(ISD::ADDC, N->getVTList(), Ops, 2);
1041  }
1042
1043  // fold (addc x, 0) -> x + no carry out
1044  if (N1C && N1C->isNullValue())
1045    return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, MVT::Flag));
1046
1047  // fold (addc a, b) -> (or a, b), CARRY_FALSE iff a and b share no bits.
1048  APInt LHSZero, LHSOne;
1049  APInt RHSZero, RHSOne;
1050  APInt Mask = APInt::getAllOnesValue(MVT::getSizeInBits(VT));
1051  DAG.ComputeMaskedBits(N0, Mask, LHSZero, LHSOne);
1052  if (LHSZero.getBoolValue()) {
1053    DAG.ComputeMaskedBits(N1, Mask, RHSZero, RHSOne);
1054
1055    // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
1056    // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
1057    if ((RHSZero & (~LHSZero & Mask)) == (~LHSZero & Mask) ||
1058        (LHSZero & (~RHSZero & Mask)) == (~RHSZero & Mask))
1059      return CombineTo(N, DAG.getNode(ISD::OR, VT, N0, N1),
1060                       DAG.getNode(ISD::CARRY_FALSE, MVT::Flag));
1061  }
1062
1063  return SDOperand();
1064}
1065
1066SDOperand DAGCombiner::visitADDE(SDNode *N) {
1067  SDOperand N0 = N->getOperand(0);
1068  SDOperand N1 = N->getOperand(1);
1069  SDOperand CarryIn = N->getOperand(2);
1070  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1071  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1072  //MVT::ValueType VT = N0.getValueType();
1073
1074  // canonicalize constant to RHS
1075  if (N0C && !N1C) {
1076    SDOperand Ops[] = { N1, N0, CarryIn };
1077    return DAG.getNode(ISD::ADDE, N->getVTList(), Ops, 3);
1078  }
1079
1080  // fold (adde x, y, false) -> (addc x, y)
1081  if (CarryIn.getOpcode() == ISD::CARRY_FALSE) {
1082    SDOperand Ops[] = { N1, N0 };
1083    return DAG.getNode(ISD::ADDC, N->getVTList(), Ops, 2);
1084  }
1085
1086  return SDOperand();
1087}
1088
1089
1090
1091SDOperand DAGCombiner::visitSUB(SDNode *N) {
1092  SDOperand N0 = N->getOperand(0);
1093  SDOperand N1 = N->getOperand(1);
1094  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.Val);
1095  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1096  MVT::ValueType VT = N0.getValueType();
1097
1098  // fold vector ops
1099  if (MVT::isVector(VT)) {
1100    SDOperand FoldedVOp = SimplifyVBinOp(N);
1101    if (FoldedVOp.Val) return FoldedVOp;
1102  }
1103
1104  // fold (sub x, x) -> 0
1105  if (N0 == N1) {
1106    if (!AfterLegalize || !MVT::isVector(VT))
1107      // For example, zero vectors might be normalized to a particular vector
1108      // type to ensure they are CSE'd. Avoid issuing zero vector nodes of
1109      // *unexpected* type after legalization.
1110      return N0;
1111    return DAG.getConstant(0, N->getValueType(0));
1112  }
1113  // fold (sub c1, c2) -> c1-c2
1114  if (N0C && N1C)
1115    return DAG.getNode(ISD::SUB, VT, N0, N1);
1116  // fold (sub x, c) -> (add x, -c)
1117  if (N1C)
1118    return DAG.getNode(ISD::ADD, VT, N0, DAG.getConstant(-N1C->getValue(), VT));
1119  // fold (A+B)-A -> B
1120  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1)
1121    return N0.getOperand(1);
1122  // fold (A+B)-B -> A
1123  if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1)
1124    return N0.getOperand(0);
1125  // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
1126  if (N1.getOpcode() == ISD::SELECT && N1.Val->hasOneUse()) {
1127    SDOperand Result = combineSelectAndUse(N, N1, N0, DAG);
1128    if (Result.Val) return Result;
1129  }
1130  // If either operand of a sub is undef, the result is undef
1131  if (N0.getOpcode() == ISD::UNDEF)
1132    return N0;
1133  if (N1.getOpcode() == ISD::UNDEF)
1134    return N1;
1135
1136  return SDOperand();
1137}
1138
1139SDOperand DAGCombiner::visitMUL(SDNode *N) {
1140  SDOperand N0 = N->getOperand(0);
1141  SDOperand N1 = N->getOperand(1);
1142  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1143  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1144  MVT::ValueType VT = N0.getValueType();
1145
1146  // fold vector ops
1147  if (MVT::isVector(VT)) {
1148    SDOperand FoldedVOp = SimplifyVBinOp(N);
1149    if (FoldedVOp.Val) return FoldedVOp;
1150  }
1151
1152  // fold (mul x, undef) -> 0
1153  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1154    return DAG.getConstant(0, VT);
1155  // fold (mul c1, c2) -> c1*c2
1156  if (N0C && N1C)
1157    return DAG.getNode(ISD::MUL, VT, N0, N1);
1158  // canonicalize constant to RHS
1159  if (N0C && !N1C)
1160    return DAG.getNode(ISD::MUL, VT, N1, N0);
1161  // fold (mul x, 0) -> 0
1162  if (N1C && N1C->isNullValue())
1163    return N1;
1164  // fold (mul x, -1) -> 0-x
1165  if (N1C && N1C->isAllOnesValue())
1166    return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT), N0);
1167  // fold (mul x, (1 << c)) -> x << c
1168  if (N1C && isPowerOf2_64(N1C->getValue()))
1169    return DAG.getNode(ISD::SHL, VT, N0,
1170                       DAG.getConstant(Log2_64(N1C->getValue()),
1171                                       TLI.getShiftAmountTy()));
1172  // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c
1173  if (N1C && isPowerOf2_64(-N1C->getSignExtended())) {
1174    // FIXME: If the input is something that is easily negated (e.g. a
1175    // single-use add), we should put the negate there.
1176    return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT),
1177                       DAG.getNode(ISD::SHL, VT, N0,
1178                            DAG.getConstant(Log2_64(-N1C->getSignExtended()),
1179                                            TLI.getShiftAmountTy())));
1180  }
1181
1182  // (mul (shl X, c1), c2) -> (mul X, c2 << c1)
1183  if (N1C && N0.getOpcode() == ISD::SHL &&
1184      isa<ConstantSDNode>(N0.getOperand(1))) {
1185    SDOperand C3 = DAG.getNode(ISD::SHL, VT, N1, N0.getOperand(1));
1186    AddToWorkList(C3.Val);
1187    return DAG.getNode(ISD::MUL, VT, N0.getOperand(0), C3);
1188  }
1189
1190  // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one
1191  // use.
1192  {
1193    SDOperand Sh(0,0), Y(0,0);
1194    // Check for both (mul (shl X, C), Y)  and  (mul Y, (shl X, C)).
1195    if (N0.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N0.getOperand(1)) &&
1196        N0.Val->hasOneUse()) {
1197      Sh = N0; Y = N1;
1198    } else if (N1.getOpcode() == ISD::SHL &&
1199               isa<ConstantSDNode>(N1.getOperand(1)) && N1.Val->hasOneUse()) {
1200      Sh = N1; Y = N0;
1201    }
1202    if (Sh.Val) {
1203      SDOperand Mul = DAG.getNode(ISD::MUL, VT, Sh.getOperand(0), Y);
1204      return DAG.getNode(ISD::SHL, VT, Mul, Sh.getOperand(1));
1205    }
1206  }
1207  // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2)
1208  if (N1C && N0.getOpcode() == ISD::ADD && N0.Val->hasOneUse() &&
1209      isa<ConstantSDNode>(N0.getOperand(1))) {
1210    return DAG.getNode(ISD::ADD, VT,
1211                       DAG.getNode(ISD::MUL, VT, N0.getOperand(0), N1),
1212                       DAG.getNode(ISD::MUL, VT, N0.getOperand(1), N1));
1213  }
1214
1215  // reassociate mul
1216  SDOperand RMUL = ReassociateOps(ISD::MUL, N0, N1);
1217  if (RMUL.Val != 0)
1218    return RMUL;
1219
1220  return SDOperand();
1221}
1222
1223SDOperand DAGCombiner::visitSDIV(SDNode *N) {
1224  SDOperand N0 = N->getOperand(0);
1225  SDOperand N1 = N->getOperand(1);
1226  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.Val);
1227  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1228  MVT::ValueType VT = N->getValueType(0);
1229
1230  // fold vector ops
1231  if (MVT::isVector(VT)) {
1232    SDOperand FoldedVOp = SimplifyVBinOp(N);
1233    if (FoldedVOp.Val) return FoldedVOp;
1234  }
1235
1236  // fold (sdiv c1, c2) -> c1/c2
1237  if (N0C && N1C && !N1C->isNullValue())
1238    return DAG.getNode(ISD::SDIV, VT, N0, N1);
1239  // fold (sdiv X, 1) -> X
1240  if (N1C && N1C->getSignExtended() == 1LL)
1241    return N0;
1242  // fold (sdiv X, -1) -> 0-X
1243  if (N1C && N1C->isAllOnesValue())
1244    return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT), N0);
1245  // If we know the sign bits of both operands are zero, strength reduce to a
1246  // udiv instead.  Handles (X&15) /s 4 -> X&15 >> 2
1247  if (!MVT::isVector(VT)) {
1248    if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
1249      return DAG.getNode(ISD::UDIV, N1.getValueType(), N0, N1);
1250  }
1251  // fold (sdiv X, pow2) -> simple ops after legalize
1252  if (N1C && N1C->getValue() && !TLI.isIntDivCheap() &&
1253      (isPowerOf2_64(N1C->getSignExtended()) ||
1254       isPowerOf2_64(-N1C->getSignExtended()))) {
1255    // If dividing by powers of two is cheap, then don't perform the following
1256    // fold.
1257    if (TLI.isPow2DivCheap())
1258      return SDOperand();
1259    int64_t pow2 = N1C->getSignExtended();
1260    int64_t abs2 = pow2 > 0 ? pow2 : -pow2;
1261    unsigned lg2 = Log2_64(abs2);
1262    // Splat the sign bit into the register
1263    SDOperand SGN = DAG.getNode(ISD::SRA, VT, N0,
1264                                DAG.getConstant(MVT::getSizeInBits(VT)-1,
1265                                                TLI.getShiftAmountTy()));
1266    AddToWorkList(SGN.Val);
1267    // Add (N0 < 0) ? abs2 - 1 : 0;
1268    SDOperand SRL = DAG.getNode(ISD::SRL, VT, SGN,
1269                                DAG.getConstant(MVT::getSizeInBits(VT)-lg2,
1270                                                TLI.getShiftAmountTy()));
1271    SDOperand ADD = DAG.getNode(ISD::ADD, VT, N0, SRL);
1272    AddToWorkList(SRL.Val);
1273    AddToWorkList(ADD.Val);    // Divide by pow2
1274    SDOperand SRA = DAG.getNode(ISD::SRA, VT, ADD,
1275                                DAG.getConstant(lg2, TLI.getShiftAmountTy()));
1276    // If we're dividing by a positive value, we're done.  Otherwise, we must
1277    // negate the result.
1278    if (pow2 > 0)
1279      return SRA;
1280    AddToWorkList(SRA.Val);
1281    return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT), SRA);
1282  }
1283  // if integer divide is expensive and we satisfy the requirements, emit an
1284  // alternate sequence.
1285  if (N1C && (N1C->getSignExtended() < -1 || N1C->getSignExtended() > 1) &&
1286      !TLI.isIntDivCheap()) {
1287    SDOperand Op = BuildSDIV(N);
1288    if (Op.Val) return Op;
1289  }
1290
1291  // undef / X -> 0
1292  if (N0.getOpcode() == ISD::UNDEF)
1293    return DAG.getConstant(0, VT);
1294  // X / undef -> undef
1295  if (N1.getOpcode() == ISD::UNDEF)
1296    return N1;
1297
1298  return SDOperand();
1299}
1300
1301SDOperand DAGCombiner::visitUDIV(SDNode *N) {
1302  SDOperand N0 = N->getOperand(0);
1303  SDOperand N1 = N->getOperand(1);
1304  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.Val);
1305  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1306  MVT::ValueType VT = N->getValueType(0);
1307
1308  // fold vector ops
1309  if (MVT::isVector(VT)) {
1310    SDOperand FoldedVOp = SimplifyVBinOp(N);
1311    if (FoldedVOp.Val) return FoldedVOp;
1312  }
1313
1314  // fold (udiv c1, c2) -> c1/c2
1315  if (N0C && N1C && !N1C->isNullValue())
1316    return DAG.getNode(ISD::UDIV, VT, N0, N1);
1317  // fold (udiv x, (1 << c)) -> x >>u c
1318  if (N1C && isPowerOf2_64(N1C->getValue()))
1319    return DAG.getNode(ISD::SRL, VT, N0,
1320                       DAG.getConstant(Log2_64(N1C->getValue()),
1321                                       TLI.getShiftAmountTy()));
1322  // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
1323  if (N1.getOpcode() == ISD::SHL) {
1324    if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
1325      if (isPowerOf2_64(SHC->getValue())) {
1326        MVT::ValueType ADDVT = N1.getOperand(1).getValueType();
1327        SDOperand Add = DAG.getNode(ISD::ADD, ADDVT, N1.getOperand(1),
1328                                    DAG.getConstant(Log2_64(SHC->getValue()),
1329                                                    ADDVT));
1330        AddToWorkList(Add.Val);
1331        return DAG.getNode(ISD::SRL, VT, N0, Add);
1332      }
1333    }
1334  }
1335  // fold (udiv x, c) -> alternate
1336  if (N1C && N1C->getValue() && !TLI.isIntDivCheap()) {
1337    SDOperand Op = BuildUDIV(N);
1338    if (Op.Val) return Op;
1339  }
1340
1341  // undef / X -> 0
1342  if (N0.getOpcode() == ISD::UNDEF)
1343    return DAG.getConstant(0, VT);
1344  // X / undef -> undef
1345  if (N1.getOpcode() == ISD::UNDEF)
1346    return N1;
1347
1348  return SDOperand();
1349}
1350
1351SDOperand DAGCombiner::visitSREM(SDNode *N) {
1352  SDOperand N0 = N->getOperand(0);
1353  SDOperand N1 = N->getOperand(1);
1354  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1355  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1356  MVT::ValueType VT = N->getValueType(0);
1357
1358  // fold (srem c1, c2) -> c1%c2
1359  if (N0C && N1C && !N1C->isNullValue())
1360    return DAG.getNode(ISD::SREM, VT, N0, N1);
1361  // If we know the sign bits of both operands are zero, strength reduce to a
1362  // urem instead.  Handles (X & 0x0FFFFFFF) %s 16 -> X&15
1363  if (!MVT::isVector(VT)) {
1364    if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
1365      return DAG.getNode(ISD::UREM, VT, N0, N1);
1366  }
1367
1368  // If X/C can be simplified by the division-by-constant logic, lower
1369  // X%C to the equivalent of X-X/C*C.
1370  if (N1C && !N1C->isNullValue()) {
1371    SDOperand Div = DAG.getNode(ISD::SDIV, VT, N0, N1);
1372    AddToWorkList(Div.Val);
1373    SDOperand OptimizedDiv = combine(Div.Val);
1374    if (OptimizedDiv.Val && OptimizedDiv.Val != Div.Val) {
1375      SDOperand Mul = DAG.getNode(ISD::MUL, VT, OptimizedDiv, N1);
1376      SDOperand Sub = DAG.getNode(ISD::SUB, VT, N0, Mul);
1377      AddToWorkList(Mul.Val);
1378      return Sub;
1379    }
1380  }
1381
1382  // undef % X -> 0
1383  if (N0.getOpcode() == ISD::UNDEF)
1384    return DAG.getConstant(0, VT);
1385  // X % undef -> undef
1386  if (N1.getOpcode() == ISD::UNDEF)
1387    return N1;
1388
1389  return SDOperand();
1390}
1391
1392SDOperand DAGCombiner::visitUREM(SDNode *N) {
1393  SDOperand N0 = N->getOperand(0);
1394  SDOperand N1 = N->getOperand(1);
1395  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1396  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1397  MVT::ValueType VT = N->getValueType(0);
1398
1399  // fold (urem c1, c2) -> c1%c2
1400  if (N0C && N1C && !N1C->isNullValue())
1401    return DAG.getNode(ISD::UREM, VT, N0, N1);
1402  // fold (urem x, pow2) -> (and x, pow2-1)
1403  if (N1C && !N1C->isNullValue() && isPowerOf2_64(N1C->getValue()))
1404    return DAG.getNode(ISD::AND, VT, N0, DAG.getConstant(N1C->getValue()-1,VT));
1405  // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1))
1406  if (N1.getOpcode() == ISD::SHL) {
1407    if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
1408      if (isPowerOf2_64(SHC->getValue())) {
1409        SDOperand Add = DAG.getNode(ISD::ADD, VT, N1,DAG.getConstant(~0ULL,VT));
1410        AddToWorkList(Add.Val);
1411        return DAG.getNode(ISD::AND, VT, N0, Add);
1412      }
1413    }
1414  }
1415
1416  // If X/C can be simplified by the division-by-constant logic, lower
1417  // X%C to the equivalent of X-X/C*C.
1418  if (N1C && !N1C->isNullValue()) {
1419    SDOperand Div = DAG.getNode(ISD::UDIV, VT, N0, N1);
1420    SDOperand OptimizedDiv = combine(Div.Val);
1421    if (OptimizedDiv.Val && OptimizedDiv.Val != Div.Val) {
1422      SDOperand Mul = DAG.getNode(ISD::MUL, VT, OptimizedDiv, N1);
1423      SDOperand Sub = DAG.getNode(ISD::SUB, VT, N0, Mul);
1424      AddToWorkList(Mul.Val);
1425      return Sub;
1426    }
1427  }
1428
1429  // undef % X -> 0
1430  if (N0.getOpcode() == ISD::UNDEF)
1431    return DAG.getConstant(0, VT);
1432  // X % undef -> undef
1433  if (N1.getOpcode() == ISD::UNDEF)
1434    return N1;
1435
1436  return SDOperand();
1437}
1438
1439SDOperand DAGCombiner::visitMULHS(SDNode *N) {
1440  SDOperand N0 = N->getOperand(0);
1441  SDOperand N1 = N->getOperand(1);
1442  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1443  MVT::ValueType VT = N->getValueType(0);
1444
1445  // fold (mulhs x, 0) -> 0
1446  if (N1C && N1C->isNullValue())
1447    return N1;
1448  // fold (mulhs x, 1) -> (sra x, size(x)-1)
1449  if (N1C && N1C->getValue() == 1)
1450    return DAG.getNode(ISD::SRA, N0.getValueType(), N0,
1451                       DAG.getConstant(MVT::getSizeInBits(N0.getValueType())-1,
1452                                       TLI.getShiftAmountTy()));
1453  // fold (mulhs x, undef) -> 0
1454  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1455    return DAG.getConstant(0, VT);
1456
1457  return SDOperand();
1458}
1459
1460SDOperand DAGCombiner::visitMULHU(SDNode *N) {
1461  SDOperand N0 = N->getOperand(0);
1462  SDOperand N1 = N->getOperand(1);
1463  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1464  MVT::ValueType VT = N->getValueType(0);
1465
1466  // fold (mulhu x, 0) -> 0
1467  if (N1C && N1C->isNullValue())
1468    return N1;
1469  // fold (mulhu x, 1) -> 0
1470  if (N1C && N1C->getValue() == 1)
1471    return DAG.getConstant(0, N0.getValueType());
1472  // fold (mulhu x, undef) -> 0
1473  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1474    return DAG.getConstant(0, VT);
1475
1476  return SDOperand();
1477}
1478
1479/// SimplifyNodeWithTwoResults - Perform optimizations common to nodes that
1480/// compute two values. LoOp and HiOp give the opcodes for the two computations
1481/// that are being performed. Return true if a simplification was made.
1482///
1483SDOperand DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
1484                                                  unsigned HiOp) {
1485  // If the high half is not needed, just compute the low half.
1486  bool HiExists = N->hasAnyUseOfValue(1);
1487  if (!HiExists &&
1488      (!AfterLegalize ||
1489       TLI.isOperationLegal(LoOp, N->getValueType(0)))) {
1490    SDOperand Res = DAG.getNode(LoOp, N->getValueType(0), N->op_begin(),
1491                                N->getNumOperands());
1492    return CombineTo(N, Res, Res);
1493  }
1494
1495  // If the low half is not needed, just compute the high half.
1496  bool LoExists = N->hasAnyUseOfValue(0);
1497  if (!LoExists &&
1498      (!AfterLegalize ||
1499       TLI.isOperationLegal(HiOp, N->getValueType(1)))) {
1500    SDOperand Res = DAG.getNode(HiOp, N->getValueType(1), N->op_begin(),
1501                                N->getNumOperands());
1502    return CombineTo(N, Res, Res);
1503  }
1504
1505  // If both halves are used, return as it is.
1506  if (LoExists && HiExists)
1507    return SDOperand();
1508
1509  // If the two computed results can be simplified separately, separate them.
1510  if (LoExists) {
1511    SDOperand Lo = DAG.getNode(LoOp, N->getValueType(0),
1512                               N->op_begin(), N->getNumOperands());
1513    AddToWorkList(Lo.Val);
1514    SDOperand LoOpt = combine(Lo.Val);
1515    if (LoOpt.Val && LoOpt.Val != Lo.Val &&
1516        TLI.isOperationLegal(LoOpt.getOpcode(), LoOpt.getValueType()))
1517      return CombineTo(N, LoOpt, LoOpt);
1518  }
1519
1520  if (HiExists) {
1521    SDOperand Hi = DAG.getNode(HiOp, N->getValueType(1),
1522                               N->op_begin(), N->getNumOperands());
1523    AddToWorkList(Hi.Val);
1524    SDOperand HiOpt = combine(Hi.Val);
1525    if (HiOpt.Val && HiOpt != Hi &&
1526        TLI.isOperationLegal(HiOpt.getOpcode(), HiOpt.getValueType()))
1527      return CombineTo(N, HiOpt, HiOpt);
1528  }
1529  return SDOperand();
1530}
1531
1532SDOperand DAGCombiner::visitSMUL_LOHI(SDNode *N) {
1533  SDOperand Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHS);
1534  if (Res.Val) return Res;
1535
1536  return SDOperand();
1537}
1538
1539SDOperand DAGCombiner::visitUMUL_LOHI(SDNode *N) {
1540  SDOperand Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHU);
1541  if (Res.Val) return Res;
1542
1543  return SDOperand();
1544}
1545
1546SDOperand DAGCombiner::visitSDIVREM(SDNode *N) {
1547  SDOperand Res = SimplifyNodeWithTwoResults(N, ISD::SDIV, ISD::SREM);
1548  if (Res.Val) return Res;
1549
1550  return SDOperand();
1551}
1552
1553SDOperand DAGCombiner::visitUDIVREM(SDNode *N) {
1554  SDOperand Res = SimplifyNodeWithTwoResults(N, ISD::UDIV, ISD::UREM);
1555  if (Res.Val) return Res;
1556
1557  return SDOperand();
1558}
1559
1560/// SimplifyBinOpWithSameOpcodeHands - If this is a binary operator with
1561/// two operands of the same opcode, try to simplify it.
1562SDOperand DAGCombiner::SimplifyBinOpWithSameOpcodeHands(SDNode *N) {
1563  SDOperand N0 = N->getOperand(0), N1 = N->getOperand(1);
1564  MVT::ValueType VT = N0.getValueType();
1565  assert(N0.getOpcode() == N1.getOpcode() && "Bad input!");
1566
1567  // For each of OP in AND/OR/XOR:
1568  // fold (OP (zext x), (zext y)) -> (zext (OP x, y))
1569  // fold (OP (sext x), (sext y)) -> (sext (OP x, y))
1570  // fold (OP (aext x), (aext y)) -> (aext (OP x, y))
1571  // fold (OP (trunc x), (trunc y)) -> (trunc (OP x, y))
1572  if ((N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND||
1573       N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::TRUNCATE) &&
1574      N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()) {
1575    SDOperand ORNode = DAG.getNode(N->getOpcode(),
1576                                   N0.getOperand(0).getValueType(),
1577                                   N0.getOperand(0), N1.getOperand(0));
1578    AddToWorkList(ORNode.Val);
1579    return DAG.getNode(N0.getOpcode(), VT, ORNode);
1580  }
1581
1582  // For each of OP in SHL/SRL/SRA/AND...
1583  //   fold (and (OP x, z), (OP y, z)) -> (OP (and x, y), z)
1584  //   fold (or  (OP x, z), (OP y, z)) -> (OP (or  x, y), z)
1585  //   fold (xor (OP x, z), (OP y, z)) -> (OP (xor x, y), z)
1586  if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL ||
1587       N0.getOpcode() == ISD::SRA || N0.getOpcode() == ISD::AND) &&
1588      N0.getOperand(1) == N1.getOperand(1)) {
1589    SDOperand ORNode = DAG.getNode(N->getOpcode(),
1590                                   N0.getOperand(0).getValueType(),
1591                                   N0.getOperand(0), N1.getOperand(0));
1592    AddToWorkList(ORNode.Val);
1593    return DAG.getNode(N0.getOpcode(), VT, ORNode, N0.getOperand(1));
1594  }
1595
1596  return SDOperand();
1597}
1598
1599SDOperand DAGCombiner::visitAND(SDNode *N) {
1600  SDOperand N0 = N->getOperand(0);
1601  SDOperand N1 = N->getOperand(1);
1602  SDOperand LL, LR, RL, RR, CC0, CC1;
1603  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1604  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1605  MVT::ValueType VT = N1.getValueType();
1606  unsigned BitWidth = MVT::getSizeInBits(VT);
1607
1608  // fold vector ops
1609  if (MVT::isVector(VT)) {
1610    SDOperand FoldedVOp = SimplifyVBinOp(N);
1611    if (FoldedVOp.Val) return FoldedVOp;
1612  }
1613
1614  // fold (and x, undef) -> 0
1615  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1616    return DAG.getConstant(0, VT);
1617  // fold (and c1, c2) -> c1&c2
1618  if (N0C && N1C)
1619    return DAG.getNode(ISD::AND, VT, N0, N1);
1620  // canonicalize constant to RHS
1621  if (N0C && !N1C)
1622    return DAG.getNode(ISD::AND, VT, N1, N0);
1623  // fold (and x, -1) -> x
1624  if (N1C && N1C->isAllOnesValue())
1625    return N0;
1626  // if (and x, c) is known to be zero, return 0
1627  if (N1C && DAG.MaskedValueIsZero(SDOperand(N, 0),
1628                                   APInt::getAllOnesValue(BitWidth)))
1629    return DAG.getConstant(0, VT);
1630  // reassociate and
1631  SDOperand RAND = ReassociateOps(ISD::AND, N0, N1);
1632  if (RAND.Val != 0)
1633    return RAND;
1634  // fold (and (or x, 0xFFFF), 0xFF) -> 0xFF
1635  if (N1C && N0.getOpcode() == ISD::OR)
1636    if (ConstantSDNode *ORI = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
1637      if ((ORI->getValue() & N1C->getValue()) == N1C->getValue())
1638        return N1;
1639  // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits.
1640  if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
1641    SDOperand N0Op0 = N0.getOperand(0);
1642    APInt Mask = ~N1C->getAPIntValue();
1643    Mask.trunc(N0Op0.getValueSizeInBits());
1644    if (DAG.MaskedValueIsZero(N0Op0, Mask)) {
1645      SDOperand Zext = DAG.getNode(ISD::ZERO_EXTEND, N0.getValueType(),
1646                                   N0Op0);
1647
1648      // Replace uses of the AND with uses of the Zero extend node.
1649      CombineTo(N, Zext);
1650
1651      // We actually want to replace all uses of the any_extend with the
1652      // zero_extend, to avoid duplicating things.  This will later cause this
1653      // AND to be folded.
1654      CombineTo(N0.Val, Zext);
1655      return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
1656    }
1657  }
1658  // fold (and (setcc x), (setcc y)) -> (setcc (and x, y))
1659  if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
1660    ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
1661    ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
1662
1663    if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
1664        MVT::isInteger(LL.getValueType())) {
1665      // fold (X == 0) & (Y == 0) -> (X|Y == 0)
1666      if (cast<ConstantSDNode>(LR)->getValue() == 0 && Op1 == ISD::SETEQ) {
1667        SDOperand ORNode = DAG.getNode(ISD::OR, LR.getValueType(), LL, RL);
1668        AddToWorkList(ORNode.Val);
1669        return DAG.getSetCC(VT, ORNode, LR, Op1);
1670      }
1671      // fold (X == -1) & (Y == -1) -> (X&Y == -1)
1672      if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETEQ) {
1673        SDOperand ANDNode = DAG.getNode(ISD::AND, LR.getValueType(), LL, RL);
1674        AddToWorkList(ANDNode.Val);
1675        return DAG.getSetCC(VT, ANDNode, LR, Op1);
1676      }
1677      // fold (X >  -1) & (Y >  -1) -> (X|Y > -1)
1678      if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETGT) {
1679        SDOperand ORNode = DAG.getNode(ISD::OR, LR.getValueType(), LL, RL);
1680        AddToWorkList(ORNode.Val);
1681        return DAG.getSetCC(VT, ORNode, LR, Op1);
1682      }
1683    }
1684    // canonicalize equivalent to ll == rl
1685    if (LL == RR && LR == RL) {
1686      Op1 = ISD::getSetCCSwappedOperands(Op1);
1687      std::swap(RL, RR);
1688    }
1689    if (LL == RL && LR == RR) {
1690      bool isInteger = MVT::isInteger(LL.getValueType());
1691      ISD::CondCode Result = ISD::getSetCCAndOperation(Op0, Op1, isInteger);
1692      if (Result != ISD::SETCC_INVALID)
1693        return DAG.getSetCC(N0.getValueType(), LL, LR, Result);
1694    }
1695  }
1696
1697  // Simplify: and (op x...), (op y...)  -> (op (and x, y))
1698  if (N0.getOpcode() == N1.getOpcode()) {
1699    SDOperand Tmp = SimplifyBinOpWithSameOpcodeHands(N);
1700    if (Tmp.Val) return Tmp;
1701  }
1702
1703  // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1)
1704  // fold (and (sra)) -> (and (srl)) when possible.
1705  if (!MVT::isVector(VT) &&
1706      SimplifyDemandedBits(SDOperand(N, 0)))
1707    return SDOperand(N, 0);
1708  // fold (zext_inreg (extload x)) -> (zextload x)
1709  if (ISD::isEXTLoad(N0.Val) && ISD::isUNINDEXEDLoad(N0.Val)) {
1710    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
1711    MVT::ValueType EVT = LN0->getMemoryVT();
1712    // If we zero all the possible extended bits, then we can turn this into
1713    // a zextload if we are running before legalize or the operation is legal.
1714    unsigned BitWidth = N1.getValueSizeInBits();
1715    if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth,
1716                                     BitWidth - MVT::getSizeInBits(EVT))) &&
1717        (!AfterLegalize || TLI.isLoadXLegal(ISD::ZEXTLOAD, EVT))) {
1718      SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(),
1719                                         LN0->getBasePtr(), LN0->getSrcValue(),
1720                                         LN0->getSrcValueOffset(), EVT,
1721                                         LN0->isVolatile(),
1722                                         LN0->getAlignment());
1723      AddToWorkList(N);
1724      CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1));
1725      return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
1726    }
1727  }
1728  // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use
1729  if (ISD::isSEXTLoad(N0.Val) && ISD::isUNINDEXEDLoad(N0.Val) &&
1730      N0.hasOneUse()) {
1731    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
1732    MVT::ValueType EVT = LN0->getMemoryVT();
1733    // If we zero all the possible extended bits, then we can turn this into
1734    // a zextload if we are running before legalize or the operation is legal.
1735    unsigned BitWidth = N1.getValueSizeInBits();
1736    if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth,
1737                                     BitWidth - MVT::getSizeInBits(EVT))) &&
1738        (!AfterLegalize || TLI.isLoadXLegal(ISD::ZEXTLOAD, EVT))) {
1739      SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(),
1740                                         LN0->getBasePtr(), LN0->getSrcValue(),
1741                                         LN0->getSrcValueOffset(), EVT,
1742                                         LN0->isVolatile(),
1743                                         LN0->getAlignment());
1744      AddToWorkList(N);
1745      CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1));
1746      return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
1747    }
1748  }
1749
1750  // fold (and (load x), 255) -> (zextload x, i8)
1751  // fold (and (extload x, i16), 255) -> (zextload x, i8)
1752  if (N1C && N0.getOpcode() == ISD::LOAD) {
1753    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
1754    if (LN0->getExtensionType() != ISD::SEXTLOAD &&
1755        LN0->isUnindexed() && N0.hasOneUse()) {
1756      MVT::ValueType EVT, LoadedVT;
1757      if (N1C->getValue() == 255)
1758        EVT = MVT::i8;
1759      else if (N1C->getValue() == 65535)
1760        EVT = MVT::i16;
1761      else if (N1C->getValue() == ~0U)
1762        EVT = MVT::i32;
1763      else
1764        EVT = MVT::Other;
1765
1766      LoadedVT = LN0->getMemoryVT();
1767      if (EVT != MVT::Other && LoadedVT > EVT &&
1768          (!AfterLegalize || TLI.isLoadXLegal(ISD::ZEXTLOAD, EVT))) {
1769        MVT::ValueType PtrType = N0.getOperand(1).getValueType();
1770        // For big endian targets, we need to add an offset to the pointer to
1771        // load the correct bytes.  For little endian systems, we merely need to
1772        // read fewer bytes from the same pointer.
1773        unsigned LVTStoreBytes = MVT::getStoreSizeInBits(LoadedVT)/8;
1774        unsigned EVTStoreBytes = MVT::getStoreSizeInBits(EVT)/8;
1775        unsigned PtrOff = LVTStoreBytes - EVTStoreBytes;
1776        unsigned Alignment = LN0->getAlignment();
1777        SDOperand NewPtr = LN0->getBasePtr();
1778        if (TLI.isBigEndian()) {
1779          NewPtr = DAG.getNode(ISD::ADD, PtrType, NewPtr,
1780                               DAG.getConstant(PtrOff, PtrType));
1781          Alignment = MinAlign(Alignment, PtrOff);
1782        }
1783        AddToWorkList(NewPtr.Val);
1784        SDOperand Load =
1785          DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(), NewPtr,
1786                         LN0->getSrcValue(), LN0->getSrcValueOffset(), EVT,
1787                         LN0->isVolatile(), Alignment);
1788        AddToWorkList(N);
1789        CombineTo(N0.Val, Load, Load.getValue(1));
1790        return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
1791      }
1792    }
1793  }
1794
1795  return SDOperand();
1796}
1797
1798SDOperand DAGCombiner::visitOR(SDNode *N) {
1799  SDOperand N0 = N->getOperand(0);
1800  SDOperand N1 = N->getOperand(1);
1801  SDOperand LL, LR, RL, RR, CC0, CC1;
1802  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1803  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1804  MVT::ValueType VT = N1.getValueType();
1805
1806  // fold vector ops
1807  if (MVT::isVector(VT)) {
1808    SDOperand FoldedVOp = SimplifyVBinOp(N);
1809    if (FoldedVOp.Val) return FoldedVOp;
1810  }
1811
1812  // fold (or x, undef) -> -1
1813  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1814    return DAG.getConstant(~0ULL, VT);
1815  // fold (or c1, c2) -> c1|c2
1816  if (N0C && N1C)
1817    return DAG.getNode(ISD::OR, VT, N0, N1);
1818  // canonicalize constant to RHS
1819  if (N0C && !N1C)
1820    return DAG.getNode(ISD::OR, VT, N1, N0);
1821  // fold (or x, 0) -> x
1822  if (N1C && N1C->isNullValue())
1823    return N0;
1824  // fold (or x, -1) -> -1
1825  if (N1C && N1C->isAllOnesValue())
1826    return N1;
1827  // fold (or x, c) -> c iff (x & ~c) == 0
1828  if (N1C && DAG.MaskedValueIsZero(N0, ~N1C->getAPIntValue()))
1829    return N1;
1830  // reassociate or
1831  SDOperand ROR = ReassociateOps(ISD::OR, N0, N1);
1832  if (ROR.Val != 0)
1833    return ROR;
1834  // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2)
1835  if (N1C && N0.getOpcode() == ISD::AND && N0.Val->hasOneUse() &&
1836             isa<ConstantSDNode>(N0.getOperand(1))) {
1837    ConstantSDNode *C1 = cast<ConstantSDNode>(N0.getOperand(1));
1838    return DAG.getNode(ISD::AND, VT, DAG.getNode(ISD::OR, VT, N0.getOperand(0),
1839                                                 N1),
1840                       DAG.getConstant(N1C->getValue() | C1->getValue(), VT));
1841  }
1842  // fold (or (setcc x), (setcc y)) -> (setcc (or x, y))
1843  if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
1844    ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
1845    ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
1846
1847    if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
1848        MVT::isInteger(LL.getValueType())) {
1849      // fold (X != 0) | (Y != 0) -> (X|Y != 0)
1850      // fold (X <  0) | (Y <  0) -> (X|Y < 0)
1851      if (cast<ConstantSDNode>(LR)->getValue() == 0 &&
1852          (Op1 == ISD::SETNE || Op1 == ISD::SETLT)) {
1853        SDOperand ORNode = DAG.getNode(ISD::OR, LR.getValueType(), LL, RL);
1854        AddToWorkList(ORNode.Val);
1855        return DAG.getSetCC(VT, ORNode, LR, Op1);
1856      }
1857      // fold (X != -1) | (Y != -1) -> (X&Y != -1)
1858      // fold (X >  -1) | (Y >  -1) -> (X&Y >  -1)
1859      if (cast<ConstantSDNode>(LR)->isAllOnesValue() &&
1860          (Op1 == ISD::SETNE || Op1 == ISD::SETGT)) {
1861        SDOperand ANDNode = DAG.getNode(ISD::AND, LR.getValueType(), LL, RL);
1862        AddToWorkList(ANDNode.Val);
1863        return DAG.getSetCC(VT, ANDNode, LR, Op1);
1864      }
1865    }
1866    // canonicalize equivalent to ll == rl
1867    if (LL == RR && LR == RL) {
1868      Op1 = ISD::getSetCCSwappedOperands(Op1);
1869      std::swap(RL, RR);
1870    }
1871    if (LL == RL && LR == RR) {
1872      bool isInteger = MVT::isInteger(LL.getValueType());
1873      ISD::CondCode Result = ISD::getSetCCOrOperation(Op0, Op1, isInteger);
1874      if (Result != ISD::SETCC_INVALID)
1875        return DAG.getSetCC(N0.getValueType(), LL, LR, Result);
1876    }
1877  }
1878
1879  // Simplify: or (op x...), (op y...)  -> (op (or x, y))
1880  if (N0.getOpcode() == N1.getOpcode()) {
1881    SDOperand Tmp = SimplifyBinOpWithSameOpcodeHands(N);
1882    if (Tmp.Val) return Tmp;
1883  }
1884
1885  // (X & C1) | (Y & C2)  -> (X|Y) & C3  if possible.
1886  if (N0.getOpcode() == ISD::AND &&
1887      N1.getOpcode() == ISD::AND &&
1888      N0.getOperand(1).getOpcode() == ISD::Constant &&
1889      N1.getOperand(1).getOpcode() == ISD::Constant &&
1890      // Don't increase # computations.
1891      (N0.Val->hasOneUse() || N1.Val->hasOneUse())) {
1892    // We can only do this xform if we know that bits from X that are set in C2
1893    // but not in C1 are already zero.  Likewise for Y.
1894    const APInt &LHSMask =
1895      cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1896    const APInt &RHSMask =
1897      cast<ConstantSDNode>(N1.getOperand(1))->getAPIntValue();
1898
1899    if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) &&
1900        DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) {
1901      SDOperand X =DAG.getNode(ISD::OR, VT, N0.getOperand(0), N1.getOperand(0));
1902      return DAG.getNode(ISD::AND, VT, X, DAG.getConstant(LHSMask|RHSMask, VT));
1903    }
1904  }
1905
1906
1907  // See if this is some rotate idiom.
1908  if (SDNode *Rot = MatchRotate(N0, N1))
1909    return SDOperand(Rot, 0);
1910
1911  return SDOperand();
1912}
1913
1914
1915/// MatchRotateHalf - Match "(X shl/srl V1) & V2" where V2 may not be present.
1916static bool MatchRotateHalf(SDOperand Op, SDOperand &Shift, SDOperand &Mask) {
1917  if (Op.getOpcode() == ISD::AND) {
1918    if (isa<ConstantSDNode>(Op.getOperand(1))) {
1919      Mask = Op.getOperand(1);
1920      Op = Op.getOperand(0);
1921    } else {
1922      return false;
1923    }
1924  }
1925
1926  if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) {
1927    Shift = Op;
1928    return true;
1929  }
1930  return false;
1931}
1932
1933
1934// MatchRotate - Handle an 'or' of two operands.  If this is one of the many
1935// idioms for rotate, and if the target supports rotation instructions, generate
1936// a rot[lr].
1937SDNode *DAGCombiner::MatchRotate(SDOperand LHS, SDOperand RHS) {
1938  // Must be a legal type.  Expanded an promoted things won't work with rotates.
1939  MVT::ValueType VT = LHS.getValueType();
1940  if (!TLI.isTypeLegal(VT)) return 0;
1941
1942  // The target must have at least one rotate flavor.
1943  bool HasROTL = TLI.isOperationLegal(ISD::ROTL, VT);
1944  bool HasROTR = TLI.isOperationLegal(ISD::ROTR, VT);
1945  if (!HasROTL && !HasROTR) return 0;
1946
1947  // Match "(X shl/srl V1) & V2" where V2 may not be present.
1948  SDOperand LHSShift;   // The shift.
1949  SDOperand LHSMask;    // AND value if any.
1950  if (!MatchRotateHalf(LHS, LHSShift, LHSMask))
1951    return 0; // Not part of a rotate.
1952
1953  SDOperand RHSShift;   // The shift.
1954  SDOperand RHSMask;    // AND value if any.
1955  if (!MatchRotateHalf(RHS, RHSShift, RHSMask))
1956    return 0; // Not part of a rotate.
1957
1958  if (LHSShift.getOperand(0) != RHSShift.getOperand(0))
1959    return 0;   // Not shifting the same value.
1960
1961  if (LHSShift.getOpcode() == RHSShift.getOpcode())
1962    return 0;   // Shifts must disagree.
1963
1964  // Canonicalize shl to left side in a shl/srl pair.
1965  if (RHSShift.getOpcode() == ISD::SHL) {
1966    std::swap(LHS, RHS);
1967    std::swap(LHSShift, RHSShift);
1968    std::swap(LHSMask , RHSMask );
1969  }
1970
1971  unsigned OpSizeInBits = MVT::getSizeInBits(VT);
1972  SDOperand LHSShiftArg = LHSShift.getOperand(0);
1973  SDOperand LHSShiftAmt = LHSShift.getOperand(1);
1974  SDOperand RHSShiftAmt = RHSShift.getOperand(1);
1975
1976  // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1)
1977  // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2)
1978  if (LHSShiftAmt.getOpcode() == ISD::Constant &&
1979      RHSShiftAmt.getOpcode() == ISD::Constant) {
1980    uint64_t LShVal = cast<ConstantSDNode>(LHSShiftAmt)->getValue();
1981    uint64_t RShVal = cast<ConstantSDNode>(RHSShiftAmt)->getValue();
1982    if ((LShVal + RShVal) != OpSizeInBits)
1983      return 0;
1984
1985    SDOperand Rot;
1986    if (HasROTL)
1987      Rot = DAG.getNode(ISD::ROTL, VT, LHSShiftArg, LHSShiftAmt);
1988    else
1989      Rot = DAG.getNode(ISD::ROTR, VT, LHSShiftArg, RHSShiftAmt);
1990
1991    // If there is an AND of either shifted operand, apply it to the result.
1992    if (LHSMask.Val || RHSMask.Val) {
1993      APInt Mask = APInt::getAllOnesValue(OpSizeInBits);
1994
1995      if (LHSMask.Val) {
1996        APInt RHSBits = APInt::getLowBitsSet(OpSizeInBits, LShVal);
1997        Mask &= cast<ConstantSDNode>(LHSMask)->getAPIntValue() | RHSBits;
1998      }
1999      if (RHSMask.Val) {
2000        APInt LHSBits = APInt::getHighBitsSet(OpSizeInBits, RShVal);
2001        Mask &= cast<ConstantSDNode>(RHSMask)->getAPIntValue() | LHSBits;
2002      }
2003
2004      Rot = DAG.getNode(ISD::AND, VT, Rot, DAG.getConstant(Mask, VT));
2005    }
2006
2007    return Rot.Val;
2008  }
2009
2010  // If there is a mask here, and we have a variable shift, we can't be sure
2011  // that we're masking out the right stuff.
2012  if (LHSMask.Val || RHSMask.Val)
2013    return 0;
2014
2015  // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotl x, y)
2016  // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotr x, (sub 32, y))
2017  if (RHSShiftAmt.getOpcode() == ISD::SUB &&
2018      LHSShiftAmt == RHSShiftAmt.getOperand(1)) {
2019    if (ConstantSDNode *SUBC =
2020          dyn_cast<ConstantSDNode>(RHSShiftAmt.getOperand(0))) {
2021      if (SUBC->getValue() == OpSizeInBits) {
2022        if (HasROTL)
2023          return DAG.getNode(ISD::ROTL, VT, LHSShiftArg, LHSShiftAmt).Val;
2024        else
2025          return DAG.getNode(ISD::ROTR, VT, LHSShiftArg, RHSShiftAmt).Val;
2026      }
2027    }
2028  }
2029
2030  // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotr x, y)
2031  // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotl x, (sub 32, y))
2032  if (LHSShiftAmt.getOpcode() == ISD::SUB &&
2033      RHSShiftAmt == LHSShiftAmt.getOperand(1)) {
2034    if (ConstantSDNode *SUBC =
2035          dyn_cast<ConstantSDNode>(LHSShiftAmt.getOperand(0))) {
2036      if (SUBC->getValue() == OpSizeInBits) {
2037        if (HasROTL)
2038          return DAG.getNode(ISD::ROTL, VT, LHSShiftArg, LHSShiftAmt).Val;
2039        else
2040          return DAG.getNode(ISD::ROTR, VT, LHSShiftArg, RHSShiftAmt).Val;
2041      }
2042    }
2043  }
2044
2045  // Look for sign/zext/any-extended cases:
2046  if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND
2047       || LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND
2048       || LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND) &&
2049      (RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND
2050       || RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND
2051       || RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND)) {
2052    SDOperand LExtOp0 = LHSShiftAmt.getOperand(0);
2053    SDOperand RExtOp0 = RHSShiftAmt.getOperand(0);
2054    if (RExtOp0.getOpcode() == ISD::SUB &&
2055        RExtOp0.getOperand(1) == LExtOp0) {
2056      // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
2057      //   (rotr x, y)
2058      // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
2059      //   (rotl x, (sub 32, y))
2060      if (ConstantSDNode *SUBC = cast<ConstantSDNode>(RExtOp0.getOperand(0))) {
2061        if (SUBC->getValue() == OpSizeInBits) {
2062          if (HasROTL)
2063            return DAG.getNode(ISD::ROTL, VT, LHSShiftArg, LHSShiftAmt).Val;
2064          else
2065            return DAG.getNode(ISD::ROTR, VT, LHSShiftArg, RHSShiftAmt).Val;
2066        }
2067      }
2068    } else if (LExtOp0.getOpcode() == ISD::SUB &&
2069               RExtOp0 == LExtOp0.getOperand(1)) {
2070      // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext r))) ->
2071      //   (rotl x, y)
2072      // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext r))) ->
2073      //   (rotr x, (sub 32, y))
2074      if (ConstantSDNode *SUBC = cast<ConstantSDNode>(LExtOp0.getOperand(0))) {
2075        if (SUBC->getValue() == OpSizeInBits) {
2076          if (HasROTL)
2077            return DAG.getNode(ISD::ROTL, VT, LHSShiftArg, RHSShiftAmt).Val;
2078          else
2079            return DAG.getNode(ISD::ROTL, VT, LHSShiftArg, LHSShiftAmt).Val;
2080        }
2081      }
2082    }
2083  }
2084
2085  return 0;
2086}
2087
2088
2089SDOperand DAGCombiner::visitXOR(SDNode *N) {
2090  SDOperand N0 = N->getOperand(0);
2091  SDOperand N1 = N->getOperand(1);
2092  SDOperand LHS, RHS, CC;
2093  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2094  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2095  MVT::ValueType VT = N0.getValueType();
2096
2097  // fold vector ops
2098  if (MVT::isVector(VT)) {
2099    SDOperand FoldedVOp = SimplifyVBinOp(N);
2100    if (FoldedVOp.Val) return FoldedVOp;
2101  }
2102
2103  // fold (xor x, undef) -> undef
2104  if (N0.getOpcode() == ISD::UNDEF)
2105    return N0;
2106  if (N1.getOpcode() == ISD::UNDEF)
2107    return N1;
2108  // fold (xor c1, c2) -> c1^c2
2109  if (N0C && N1C)
2110    return DAG.getNode(ISD::XOR, VT, N0, N1);
2111  // canonicalize constant to RHS
2112  if (N0C && !N1C)
2113    return DAG.getNode(ISD::XOR, VT, N1, N0);
2114  // fold (xor x, 0) -> x
2115  if (N1C && N1C->isNullValue())
2116    return N0;
2117  // reassociate xor
2118  SDOperand RXOR = ReassociateOps(ISD::XOR, N0, N1);
2119  if (RXOR.Val != 0)
2120    return RXOR;
2121  // fold !(x cc y) -> (x !cc y)
2122  if (N1C && N1C->getValue() == 1 && isSetCCEquivalent(N0, LHS, RHS, CC)) {
2123    bool isInt = MVT::isInteger(LHS.getValueType());
2124    ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
2125                                               isInt);
2126    if (N0.getOpcode() == ISD::SETCC)
2127      return DAG.getSetCC(VT, LHS, RHS, NotCC);
2128    if (N0.getOpcode() == ISD::SELECT_CC)
2129      return DAG.getSelectCC(LHS, RHS, N0.getOperand(2),N0.getOperand(3),NotCC);
2130    assert(0 && "Unhandled SetCC Equivalent!");
2131    abort();
2132  }
2133  // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y)))
2134  if (N1C && N1C->getValue() == 1 && N0.getOpcode() == ISD::ZERO_EXTEND &&
2135      N0.Val->hasOneUse() && isSetCCEquivalent(N0.getOperand(0), LHS, RHS, CC)){
2136    SDOperand V = N0.getOperand(0);
2137    V = DAG.getNode(ISD::XOR, V.getValueType(), V,
2138                    DAG.getConstant(1, V.getValueType()));
2139    AddToWorkList(V.Val);
2140    return DAG.getNode(ISD::ZERO_EXTEND, VT, V);
2141  }
2142
2143  // fold !(x or y) -> (!x and !y) iff x or y are setcc
2144  if (N1C && N1C->getValue() == 1 && VT == MVT::i1 &&
2145      (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
2146    SDOperand LHS = N0.getOperand(0), RHS = N0.getOperand(1);
2147    if (isOneUseSetCC(RHS) || isOneUseSetCC(LHS)) {
2148      unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
2149      LHS = DAG.getNode(ISD::XOR, VT, LHS, N1);  // RHS = ~LHS
2150      RHS = DAG.getNode(ISD::XOR, VT, RHS, N1);  // RHS = ~RHS
2151      AddToWorkList(LHS.Val); AddToWorkList(RHS.Val);
2152      return DAG.getNode(NewOpcode, VT, LHS, RHS);
2153    }
2154  }
2155  // fold !(x or y) -> (!x and !y) iff x or y are constants
2156  if (N1C && N1C->isAllOnesValue() &&
2157      (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
2158    SDOperand LHS = N0.getOperand(0), RHS = N0.getOperand(1);
2159    if (isa<ConstantSDNode>(RHS) || isa<ConstantSDNode>(LHS)) {
2160      unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
2161      LHS = DAG.getNode(ISD::XOR, VT, LHS, N1);  // RHS = ~LHS
2162      RHS = DAG.getNode(ISD::XOR, VT, RHS, N1);  // RHS = ~RHS
2163      AddToWorkList(LHS.Val); AddToWorkList(RHS.Val);
2164      return DAG.getNode(NewOpcode, VT, LHS, RHS);
2165    }
2166  }
2167  // fold (xor (xor x, c1), c2) -> (xor x, c1^c2)
2168  if (N1C && N0.getOpcode() == ISD::XOR) {
2169    ConstantSDNode *N00C = dyn_cast<ConstantSDNode>(N0.getOperand(0));
2170    ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
2171    if (N00C)
2172      return DAG.getNode(ISD::XOR, VT, N0.getOperand(1),
2173                         DAG.getConstant(N1C->getValue()^N00C->getValue(), VT));
2174    if (N01C)
2175      return DAG.getNode(ISD::XOR, VT, N0.getOperand(0),
2176                         DAG.getConstant(N1C->getValue()^N01C->getValue(), VT));
2177  }
2178  // fold (xor x, x) -> 0
2179  if (N0 == N1) {
2180    if (!MVT::isVector(VT)) {
2181      return DAG.getConstant(0, VT);
2182    } else if (!AfterLegalize || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) {
2183      // Produce a vector of zeros.
2184      SDOperand El = DAG.getConstant(0, MVT::getVectorElementType(VT));
2185      std::vector<SDOperand> Ops(MVT::getVectorNumElements(VT), El);
2186      return DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
2187    }
2188  }
2189
2190  // Simplify: xor (op x...), (op y...)  -> (op (xor x, y))
2191  if (N0.getOpcode() == N1.getOpcode()) {
2192    SDOperand Tmp = SimplifyBinOpWithSameOpcodeHands(N);
2193    if (Tmp.Val) return Tmp;
2194  }
2195
2196  // Simplify the expression using non-local knowledge.
2197  if (!MVT::isVector(VT) &&
2198      SimplifyDemandedBits(SDOperand(N, 0)))
2199    return SDOperand(N, 0);
2200
2201  return SDOperand();
2202}
2203
2204/// visitShiftByConstant - Handle transforms common to the three shifts, when
2205/// the shift amount is a constant.
2206SDOperand DAGCombiner::visitShiftByConstant(SDNode *N, unsigned Amt) {
2207  SDNode *LHS = N->getOperand(0).Val;
2208  if (!LHS->hasOneUse()) return SDOperand();
2209
2210  // We want to pull some binops through shifts, so that we have (and (shift))
2211  // instead of (shift (and)), likewise for add, or, xor, etc.  This sort of
2212  // thing happens with address calculations, so it's important to canonicalize
2213  // it.
2214  bool HighBitSet = false;  // Can we transform this if the high bit is set?
2215
2216  switch (LHS->getOpcode()) {
2217  default: return SDOperand();
2218  case ISD::OR:
2219  case ISD::XOR:
2220    HighBitSet = false; // We can only transform sra if the high bit is clear.
2221    break;
2222  case ISD::AND:
2223    HighBitSet = true;  // We can only transform sra if the high bit is set.
2224    break;
2225  case ISD::ADD:
2226    if (N->getOpcode() != ISD::SHL)
2227      return SDOperand(); // only shl(add) not sr[al](add).
2228    HighBitSet = false; // We can only transform sra if the high bit is clear.
2229    break;
2230  }
2231
2232  // We require the RHS of the binop to be a constant as well.
2233  ConstantSDNode *BinOpCst = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
2234  if (!BinOpCst) return SDOperand();
2235
2236
2237  // FIXME: disable this for unless the input to the binop is a shift by a
2238  // constant.  If it is not a shift, it pessimizes some common cases like:
2239  //
2240  //void foo(int *X, int i) { X[i & 1235] = 1; }
2241  //int bar(int *X, int i) { return X[i & 255]; }
2242  SDNode *BinOpLHSVal = LHS->getOperand(0).Val;
2243  if ((BinOpLHSVal->getOpcode() != ISD::SHL &&
2244       BinOpLHSVal->getOpcode() != ISD::SRA &&
2245       BinOpLHSVal->getOpcode() != ISD::SRL) ||
2246      !isa<ConstantSDNode>(BinOpLHSVal->getOperand(1)))
2247    return SDOperand();
2248
2249  MVT::ValueType VT = N->getValueType(0);
2250
2251  // If this is a signed shift right, and the high bit is modified
2252  // by the logical operation, do not perform the transformation.
2253  // The highBitSet boolean indicates the value of the high bit of
2254  // the constant which would cause it to be modified for this
2255  // operation.
2256  if (N->getOpcode() == ISD::SRA) {
2257    bool BinOpRHSSignSet = BinOpCst->getAPIntValue().isNegative();
2258    if (BinOpRHSSignSet != HighBitSet)
2259      return SDOperand();
2260  }
2261
2262  // Fold the constants, shifting the binop RHS by the shift amount.
2263  SDOperand NewRHS = DAG.getNode(N->getOpcode(), N->getValueType(0),
2264                                 LHS->getOperand(1), N->getOperand(1));
2265
2266  // Create the new shift.
2267  SDOperand NewShift = DAG.getNode(N->getOpcode(), VT, LHS->getOperand(0),
2268                                   N->getOperand(1));
2269
2270  // Create the new binop.
2271  return DAG.getNode(LHS->getOpcode(), VT, NewShift, NewRHS);
2272}
2273
2274
2275SDOperand DAGCombiner::visitSHL(SDNode *N) {
2276  SDOperand N0 = N->getOperand(0);
2277  SDOperand N1 = N->getOperand(1);
2278  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2279  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2280  MVT::ValueType VT = N0.getValueType();
2281  unsigned OpSizeInBits = MVT::getSizeInBits(VT);
2282
2283  // fold (shl c1, c2) -> c1<<c2
2284  if (N0C && N1C)
2285    return DAG.getNode(ISD::SHL, VT, N0, N1);
2286  // fold (shl 0, x) -> 0
2287  if (N0C && N0C->isNullValue())
2288    return N0;
2289  // fold (shl x, c >= size(x)) -> undef
2290  if (N1C && N1C->getValue() >= OpSizeInBits)
2291    return DAG.getNode(ISD::UNDEF, VT);
2292  // fold (shl x, 0) -> x
2293  if (N1C && N1C->isNullValue())
2294    return N0;
2295  // if (shl x, c) is known to be zero, return 0
2296  if (DAG.MaskedValueIsZero(SDOperand(N, 0),
2297                            APInt::getAllOnesValue(MVT::getSizeInBits(VT))))
2298    return DAG.getConstant(0, VT);
2299  if (N1C && SimplifyDemandedBits(SDOperand(N, 0)))
2300    return SDOperand(N, 0);
2301  // fold (shl (shl x, c1), c2) -> 0 or (shl x, c1+c2)
2302  if (N1C && N0.getOpcode() == ISD::SHL &&
2303      N0.getOperand(1).getOpcode() == ISD::Constant) {
2304    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
2305    uint64_t c2 = N1C->getValue();
2306    if (c1 + c2 > OpSizeInBits)
2307      return DAG.getConstant(0, VT);
2308    return DAG.getNode(ISD::SHL, VT, N0.getOperand(0),
2309                       DAG.getConstant(c1 + c2, N1.getValueType()));
2310  }
2311  // fold (shl (srl x, c1), c2) -> (shl (and x, -1 << c1), c2-c1) or
2312  //                               (srl (and x, -1 << c1), c1-c2)
2313  if (N1C && N0.getOpcode() == ISD::SRL &&
2314      N0.getOperand(1).getOpcode() == ISD::Constant) {
2315    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
2316    uint64_t c2 = N1C->getValue();
2317    SDOperand Mask = DAG.getNode(ISD::AND, VT, N0.getOperand(0),
2318                                 DAG.getConstant(~0ULL << c1, VT));
2319    if (c2 > c1)
2320      return DAG.getNode(ISD::SHL, VT, Mask,
2321                         DAG.getConstant(c2-c1, N1.getValueType()));
2322    else
2323      return DAG.getNode(ISD::SRL, VT, Mask,
2324                         DAG.getConstant(c1-c2, N1.getValueType()));
2325  }
2326  // fold (shl (sra x, c1), c1) -> (and x, -1 << c1)
2327  if (N1C && N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1))
2328    return DAG.getNode(ISD::AND, VT, N0.getOperand(0),
2329                       DAG.getConstant(~0ULL << N1C->getValue(), VT));
2330
2331  return N1C ? visitShiftByConstant(N, N1C->getValue()) : SDOperand();
2332}
2333
2334SDOperand DAGCombiner::visitSRA(SDNode *N) {
2335  SDOperand N0 = N->getOperand(0);
2336  SDOperand N1 = N->getOperand(1);
2337  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2338  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2339  MVT::ValueType VT = N0.getValueType();
2340
2341  // fold (sra c1, c2) -> c1>>c2
2342  if (N0C && N1C)
2343    return DAG.getNode(ISD::SRA, VT, N0, N1);
2344  // fold (sra 0, x) -> 0
2345  if (N0C && N0C->isNullValue())
2346    return N0;
2347  // fold (sra -1, x) -> -1
2348  if (N0C && N0C->isAllOnesValue())
2349    return N0;
2350  // fold (sra x, c >= size(x)) -> undef
2351  if (N1C && N1C->getValue() >= MVT::getSizeInBits(VT))
2352    return DAG.getNode(ISD::UNDEF, VT);
2353  // fold (sra x, 0) -> x
2354  if (N1C && N1C->isNullValue())
2355    return N0;
2356  // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports
2357  // sext_inreg.
2358  if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) {
2359    unsigned LowBits = MVT::getSizeInBits(VT) - (unsigned)N1C->getValue();
2360    MVT::ValueType EVT;
2361    switch (LowBits) {
2362    default: EVT = MVT::Other; break;
2363    case  1: EVT = MVT::i1;    break;
2364    case  8: EVT = MVT::i8;    break;
2365    case 16: EVT = MVT::i16;   break;
2366    case 32: EVT = MVT::i32;   break;
2367    }
2368    if (EVT > MVT::Other && TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, EVT))
2369      return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, N0.getOperand(0),
2370                         DAG.getValueType(EVT));
2371  }
2372
2373  // fold (sra (sra x, c1), c2) -> (sra x, c1+c2)
2374  if (N1C && N0.getOpcode() == ISD::SRA) {
2375    if (ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2376      unsigned Sum = N1C->getValue() + C1->getValue();
2377      if (Sum >= MVT::getSizeInBits(VT)) Sum = MVT::getSizeInBits(VT)-1;
2378      return DAG.getNode(ISD::SRA, VT, N0.getOperand(0),
2379                         DAG.getConstant(Sum, N1C->getValueType(0)));
2380    }
2381  }
2382
2383  // Simplify, based on bits shifted out of the LHS.
2384  if (N1C && SimplifyDemandedBits(SDOperand(N, 0)))
2385    return SDOperand(N, 0);
2386
2387
2388  // If the sign bit is known to be zero, switch this to a SRL.
2389  if (DAG.SignBitIsZero(N0))
2390    return DAG.getNode(ISD::SRL, VT, N0, N1);
2391
2392  return N1C ? visitShiftByConstant(N, N1C->getValue()) : SDOperand();
2393}
2394
2395SDOperand DAGCombiner::visitSRL(SDNode *N) {
2396  SDOperand N0 = N->getOperand(0);
2397  SDOperand N1 = N->getOperand(1);
2398  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2399  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2400  MVT::ValueType VT = N0.getValueType();
2401  unsigned OpSizeInBits = MVT::getSizeInBits(VT);
2402
2403  // fold (srl c1, c2) -> c1 >>u c2
2404  if (N0C && N1C)
2405    return DAG.getNode(ISD::SRL, VT, N0, N1);
2406  // fold (srl 0, x) -> 0
2407  if (N0C && N0C->isNullValue())
2408    return N0;
2409  // fold (srl x, c >= size(x)) -> undef
2410  if (N1C && N1C->getValue() >= OpSizeInBits)
2411    return DAG.getNode(ISD::UNDEF, VT);
2412  // fold (srl x, 0) -> x
2413  if (N1C && N1C->isNullValue())
2414    return N0;
2415  // if (srl x, c) is known to be zero, return 0
2416  if (N1C && DAG.MaskedValueIsZero(SDOperand(N, 0),
2417                                   APInt::getAllOnesValue(OpSizeInBits)))
2418    return DAG.getConstant(0, VT);
2419
2420  // fold (srl (srl x, c1), c2) -> 0 or (srl x, c1+c2)
2421  if (N1C && N0.getOpcode() == ISD::SRL &&
2422      N0.getOperand(1).getOpcode() == ISD::Constant) {
2423    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
2424    uint64_t c2 = N1C->getValue();
2425    if (c1 + c2 > OpSizeInBits)
2426      return DAG.getConstant(0, VT);
2427    return DAG.getNode(ISD::SRL, VT, N0.getOperand(0),
2428                       DAG.getConstant(c1 + c2, N1.getValueType()));
2429  }
2430
2431  // fold (srl (anyextend x), c) -> (anyextend (srl x, c))
2432  if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
2433    // Shifting in all undef bits?
2434    MVT::ValueType SmallVT = N0.getOperand(0).getValueType();
2435    if (N1C->getValue() >= MVT::getSizeInBits(SmallVT))
2436      return DAG.getNode(ISD::UNDEF, VT);
2437
2438    SDOperand SmallShift = DAG.getNode(ISD::SRL, SmallVT, N0.getOperand(0), N1);
2439    AddToWorkList(SmallShift.Val);
2440    return DAG.getNode(ISD::ANY_EXTEND, VT, SmallShift);
2441  }
2442
2443  // fold (srl (sra X, Y), 31) -> (srl X, 31).  This srl only looks at the sign
2444  // bit, which is unmodified by sra.
2445  if (N1C && N1C->getValue()+1 == MVT::getSizeInBits(VT)) {
2446    if (N0.getOpcode() == ISD::SRA)
2447      return DAG.getNode(ISD::SRL, VT, N0.getOperand(0), N1);
2448  }
2449
2450  // fold (srl (ctlz x), "5") -> x  iff x has one bit set (the low bit).
2451  if (N1C && N0.getOpcode() == ISD::CTLZ &&
2452      N1C->getValue() == Log2_32(MVT::getSizeInBits(VT))) {
2453    APInt KnownZero, KnownOne;
2454    APInt Mask = APInt::getAllOnesValue(MVT::getSizeInBits(VT));
2455    DAG.ComputeMaskedBits(N0.getOperand(0), Mask, KnownZero, KnownOne);
2456
2457    // If any of the input bits are KnownOne, then the input couldn't be all
2458    // zeros, thus the result of the srl will always be zero.
2459    if (KnownOne.getBoolValue()) return DAG.getConstant(0, VT);
2460
2461    // If all of the bits input the to ctlz node are known to be zero, then
2462    // the result of the ctlz is "32" and the result of the shift is one.
2463    APInt UnknownBits = ~KnownZero & Mask;
2464    if (UnknownBits == 0) return DAG.getConstant(1, VT);
2465
2466    // Otherwise, check to see if there is exactly one bit input to the ctlz.
2467    if ((UnknownBits & (UnknownBits-1)) == 0) {
2468      // Okay, we know that only that the single bit specified by UnknownBits
2469      // could be set on input to the CTLZ node.  If this bit is set, the SRL
2470      // will return 0, if it is clear, it returns 1.  Change the CTLZ/SRL pair
2471      // to an SRL,XOR pair, which is likely to simplify more.
2472      unsigned ShAmt = UnknownBits.countTrailingZeros();
2473      SDOperand Op = N0.getOperand(0);
2474      if (ShAmt) {
2475        Op = DAG.getNode(ISD::SRL, VT, Op,
2476                         DAG.getConstant(ShAmt, TLI.getShiftAmountTy()));
2477        AddToWorkList(Op.Val);
2478      }
2479      return DAG.getNode(ISD::XOR, VT, Op, DAG.getConstant(1, VT));
2480    }
2481  }
2482
2483  // fold operands of srl based on knowledge that the low bits are not
2484  // demanded.
2485  if (N1C && SimplifyDemandedBits(SDOperand(N, 0)))
2486    return SDOperand(N, 0);
2487
2488  return N1C ? visitShiftByConstant(N, N1C->getValue()) : SDOperand();
2489}
2490
2491SDOperand DAGCombiner::visitCTLZ(SDNode *N) {
2492  SDOperand N0 = N->getOperand(0);
2493  MVT::ValueType VT = N->getValueType(0);
2494
2495  // fold (ctlz c1) -> c2
2496  if (isa<ConstantSDNode>(N0))
2497    return DAG.getNode(ISD::CTLZ, VT, N0);
2498  return SDOperand();
2499}
2500
2501SDOperand DAGCombiner::visitCTTZ(SDNode *N) {
2502  SDOperand N0 = N->getOperand(0);
2503  MVT::ValueType VT = N->getValueType(0);
2504
2505  // fold (cttz c1) -> c2
2506  if (isa<ConstantSDNode>(N0))
2507    return DAG.getNode(ISD::CTTZ, VT, N0);
2508  return SDOperand();
2509}
2510
2511SDOperand DAGCombiner::visitCTPOP(SDNode *N) {
2512  SDOperand N0 = N->getOperand(0);
2513  MVT::ValueType VT = N->getValueType(0);
2514
2515  // fold (ctpop c1) -> c2
2516  if (isa<ConstantSDNode>(N0))
2517    return DAG.getNode(ISD::CTPOP, VT, N0);
2518  return SDOperand();
2519}
2520
2521SDOperand DAGCombiner::visitSELECT(SDNode *N) {
2522  SDOperand N0 = N->getOperand(0);
2523  SDOperand N1 = N->getOperand(1);
2524  SDOperand N2 = N->getOperand(2);
2525  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2526  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2527  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
2528  MVT::ValueType VT = N->getValueType(0);
2529  MVT::ValueType VT0 = N0.getValueType();
2530
2531  // fold select C, X, X -> X
2532  if (N1 == N2)
2533    return N1;
2534  // fold select true, X, Y -> X
2535  if (N0C && !N0C->isNullValue())
2536    return N1;
2537  // fold select false, X, Y -> Y
2538  if (N0C && N0C->isNullValue())
2539    return N2;
2540  // fold select C, 1, X -> C | X
2541  if (MVT::i1 == VT && N1C && N1C->getValue() == 1)
2542    return DAG.getNode(ISD::OR, VT, N0, N2);
2543  // fold select C, 0, 1 -> ~C
2544  if (MVT::isInteger(VT) && MVT::isInteger(VT0) &&
2545      N1C && N2C && N1C->isNullValue() && N2C->getValue() == 1) {
2546    SDOperand XORNode = DAG.getNode(ISD::XOR, VT0, N0, DAG.getConstant(1, VT0));
2547    if (VT == VT0)
2548      return XORNode;
2549    AddToWorkList(XORNode.Val);
2550    if (MVT::getSizeInBits(VT) > MVT::getSizeInBits(VT0))
2551      return DAG.getNode(ISD::ZERO_EXTEND, VT, XORNode);
2552    return DAG.getNode(ISD::TRUNCATE, VT, XORNode);
2553  }
2554  // fold select C, 0, X -> ~C & X
2555  if (VT == VT0 && VT == MVT::i1 && N1C && N1C->isNullValue()) {
2556    SDOperand XORNode = DAG.getNode(ISD::XOR, VT, N0, DAG.getConstant(1, VT));
2557    AddToWorkList(XORNode.Val);
2558    return DAG.getNode(ISD::AND, VT, XORNode, N2);
2559  }
2560  // fold select C, X, 1 -> ~C | X
2561  if (VT == VT0 && VT == MVT::i1 && N2C && N2C->getValue() == 1) {
2562    SDOperand XORNode = DAG.getNode(ISD::XOR, VT, N0, DAG.getConstant(1, VT));
2563    AddToWorkList(XORNode.Val);
2564    return DAG.getNode(ISD::OR, VT, XORNode, N1);
2565  }
2566  // fold select C, X, 0 -> C & X
2567  // FIXME: this should check for C type == X type, not i1?
2568  if (MVT::i1 == VT && N2C && N2C->isNullValue())
2569    return DAG.getNode(ISD::AND, VT, N0, N1);
2570  // fold  X ? X : Y --> X ? 1 : Y --> X | Y
2571  if (MVT::i1 == VT && N0 == N1)
2572    return DAG.getNode(ISD::OR, VT, N0, N2);
2573  // fold X ? Y : X --> X ? Y : 0 --> X & Y
2574  if (MVT::i1 == VT && N0 == N2)
2575    return DAG.getNode(ISD::AND, VT, N0, N1);
2576
2577  // If we can fold this based on the true/false value, do so.
2578  if (SimplifySelectOps(N, N1, N2))
2579    return SDOperand(N, 0);  // Don't revisit N.
2580
2581  // fold selects based on a setcc into other things, such as min/max/abs
2582  if (N0.getOpcode() == ISD::SETCC) {
2583    // FIXME:
2584    // Check against MVT::Other for SELECT_CC, which is a workaround for targets
2585    // having to say they don't support SELECT_CC on every type the DAG knows
2586    // about, since there is no way to mark an opcode illegal at all value types
2587    if (TLI.isOperationLegal(ISD::SELECT_CC, MVT::Other))
2588      return DAG.getNode(ISD::SELECT_CC, VT, N0.getOperand(0), N0.getOperand(1),
2589                         N1, N2, N0.getOperand(2));
2590    else
2591      return SimplifySelect(N0, N1, N2);
2592  }
2593  return SDOperand();
2594}
2595
2596SDOperand DAGCombiner::visitSELECT_CC(SDNode *N) {
2597  SDOperand N0 = N->getOperand(0);
2598  SDOperand N1 = N->getOperand(1);
2599  SDOperand N2 = N->getOperand(2);
2600  SDOperand N3 = N->getOperand(3);
2601  SDOperand N4 = N->getOperand(4);
2602  ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get();
2603
2604  // fold select_cc lhs, rhs, x, x, cc -> x
2605  if (N2 == N3)
2606    return N2;
2607
2608  // Determine if the condition we're dealing with is constant
2609  SDOperand SCC = SimplifySetCC(TLI.getSetCCResultType(N0), N0, N1, CC, false);
2610  if (SCC.Val) AddToWorkList(SCC.Val);
2611
2612  if (ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.Val)) {
2613    if (SCCC->getValue())
2614      return N2;    // cond always true -> true val
2615    else
2616      return N3;    // cond always false -> false val
2617  }
2618
2619  // Fold to a simpler select_cc
2620  if (SCC.Val && SCC.getOpcode() == ISD::SETCC)
2621    return DAG.getNode(ISD::SELECT_CC, N2.getValueType(),
2622                       SCC.getOperand(0), SCC.getOperand(1), N2, N3,
2623                       SCC.getOperand(2));
2624
2625  // If we can fold this based on the true/false value, do so.
2626  if (SimplifySelectOps(N, N2, N3))
2627    return SDOperand(N, 0);  // Don't revisit N.
2628
2629  // fold select_cc into other things, such as min/max/abs
2630  return SimplifySelectCC(N0, N1, N2, N3, CC);
2631}
2632
2633SDOperand DAGCombiner::visitSETCC(SDNode *N) {
2634  return SimplifySetCC(N->getValueType(0), N->getOperand(0), N->getOperand(1),
2635                       cast<CondCodeSDNode>(N->getOperand(2))->get());
2636}
2637
2638// ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this:
2639// "fold ({s|z}ext (load x)) -> ({s|z}ext (truncate ({s|z}extload x)))"
2640// transformation. Returns true if extension are possible and the above
2641// mentioned transformation is profitable.
2642static bool ExtendUsesToFormExtLoad(SDNode *N, SDOperand N0,
2643                                    unsigned ExtOpc,
2644                                    SmallVector<SDNode*, 4> &ExtendNodes,
2645                                    TargetLowering &TLI) {
2646  bool HasCopyToRegUses = false;
2647  bool isTruncFree = TLI.isTruncateFree(N->getValueType(0), N0.getValueType());
2648  for (SDNode::use_iterator UI = N0.Val->use_begin(), UE = N0.Val->use_end();
2649       UI != UE; ++UI) {
2650    SDNode *User = *UI;
2651    if (User == N)
2652      continue;
2653    // FIXME: Only extend SETCC N, N and SETCC N, c for now.
2654    if (User->getOpcode() == ISD::SETCC) {
2655      ISD::CondCode CC = cast<CondCodeSDNode>(User->getOperand(2))->get();
2656      if (ExtOpc == ISD::ZERO_EXTEND && ISD::isSignedIntSetCC(CC))
2657        // Sign bits will be lost after a zext.
2658        return false;
2659      bool Add = false;
2660      for (unsigned i = 0; i != 2; ++i) {
2661        SDOperand UseOp = User->getOperand(i);
2662        if (UseOp == N0)
2663          continue;
2664        if (!isa<ConstantSDNode>(UseOp))
2665          return false;
2666        Add = true;
2667      }
2668      if (Add)
2669        ExtendNodes.push_back(User);
2670    } else {
2671      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
2672        SDOperand UseOp = User->getOperand(i);
2673        if (UseOp == N0) {
2674          // If truncate from extended type to original load type is free
2675          // on this target, then it's ok to extend a CopyToReg.
2676          if (isTruncFree && User->getOpcode() == ISD::CopyToReg)
2677            HasCopyToRegUses = true;
2678          else
2679            return false;
2680        }
2681      }
2682    }
2683  }
2684
2685  if (HasCopyToRegUses) {
2686    bool BothLiveOut = false;
2687    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
2688         UI != UE; ++UI) {
2689      SDNode *User = *UI;
2690      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
2691        SDOperand UseOp = User->getOperand(i);
2692        if (UseOp.Val == N && UseOp.ResNo == 0) {
2693          BothLiveOut = true;
2694          break;
2695        }
2696      }
2697    }
2698    if (BothLiveOut)
2699      // Both unextended and extended values are live out. There had better be
2700      // good a reason for the transformation.
2701      return ExtendNodes.size();
2702  }
2703  return true;
2704}
2705
2706SDOperand DAGCombiner::visitSIGN_EXTEND(SDNode *N) {
2707  SDOperand N0 = N->getOperand(0);
2708  MVT::ValueType VT = N->getValueType(0);
2709
2710  // fold (sext c1) -> c1
2711  if (isa<ConstantSDNode>(N0))
2712    return DAG.getNode(ISD::SIGN_EXTEND, VT, N0);
2713
2714  // fold (sext (sext x)) -> (sext x)
2715  // fold (sext (aext x)) -> (sext x)
2716  if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
2717    return DAG.getNode(ISD::SIGN_EXTEND, VT, N0.getOperand(0));
2718
2719  // fold (sext (truncate (load x))) -> (sext (smaller load x))
2720  // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n)))
2721  if (N0.getOpcode() == ISD::TRUNCATE) {
2722    SDOperand NarrowLoad = ReduceLoadWidth(N0.Val);
2723    if (NarrowLoad.Val) {
2724      if (NarrowLoad.Val != N0.Val)
2725        CombineTo(N0.Val, NarrowLoad);
2726      return DAG.getNode(ISD::SIGN_EXTEND, VT, NarrowLoad);
2727    }
2728  }
2729
2730  // See if the value being truncated is already sign extended.  If so, just
2731  // eliminate the trunc/sext pair.
2732  if (N0.getOpcode() == ISD::TRUNCATE) {
2733    SDOperand Op = N0.getOperand(0);
2734    unsigned OpBits   = MVT::getSizeInBits(Op.getValueType());
2735    unsigned MidBits  = MVT::getSizeInBits(N0.getValueType());
2736    unsigned DestBits = MVT::getSizeInBits(VT);
2737    unsigned NumSignBits = DAG.ComputeNumSignBits(Op);
2738
2739    if (OpBits == DestBits) {
2740      // Op is i32, Mid is i8, and Dest is i32.  If Op has more than 24 sign
2741      // bits, it is already ready.
2742      if (NumSignBits > DestBits-MidBits)
2743        return Op;
2744    } else if (OpBits < DestBits) {
2745      // Op is i32, Mid is i8, and Dest is i64.  If Op has more than 24 sign
2746      // bits, just sext from i32.
2747      if (NumSignBits > OpBits-MidBits)
2748        return DAG.getNode(ISD::SIGN_EXTEND, VT, Op);
2749    } else {
2750      // Op is i64, Mid is i8, and Dest is i32.  If Op has more than 56 sign
2751      // bits, just truncate to i32.
2752      if (NumSignBits > OpBits-MidBits)
2753        return DAG.getNode(ISD::TRUNCATE, VT, Op);
2754    }
2755
2756    // fold (sext (truncate x)) -> (sextinreg x).
2757    if (!AfterLegalize || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG,
2758                                               N0.getValueType())) {
2759      if (Op.getValueType() < VT)
2760        Op = DAG.getNode(ISD::ANY_EXTEND, VT, Op);
2761      else if (Op.getValueType() > VT)
2762        Op = DAG.getNode(ISD::TRUNCATE, VT, Op);
2763      return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, Op,
2764                         DAG.getValueType(N0.getValueType()));
2765    }
2766  }
2767
2768  // fold (sext (load x)) -> (sext (truncate (sextload x)))
2769  if (ISD::isNON_EXTLoad(N0.Val) &&
2770      (!AfterLegalize||TLI.isLoadXLegal(ISD::SEXTLOAD, N0.getValueType()))){
2771    bool DoXform = true;
2772    SmallVector<SDNode*, 4> SetCCs;
2773    if (!N0.hasOneUse())
2774      DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::SIGN_EXTEND, SetCCs, TLI);
2775    if (DoXform) {
2776      LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2777      SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, LN0->getChain(),
2778                                         LN0->getBasePtr(), LN0->getSrcValue(),
2779                                         LN0->getSrcValueOffset(),
2780                                         N0.getValueType(),
2781                                         LN0->isVolatile(),
2782                                         LN0->getAlignment());
2783      CombineTo(N, ExtLoad);
2784      SDOperand Trunc = DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad);
2785      CombineTo(N0.Val, Trunc, ExtLoad.getValue(1));
2786      // Extend SetCC uses if necessary.
2787      for (unsigned i = 0, e = SetCCs.size(); i != e; ++i) {
2788        SDNode *SetCC = SetCCs[i];
2789        SmallVector<SDOperand, 4> Ops;
2790        for (unsigned j = 0; j != 2; ++j) {
2791          SDOperand SOp = SetCC->getOperand(j);
2792          if (SOp == Trunc)
2793            Ops.push_back(ExtLoad);
2794          else
2795            Ops.push_back(DAG.getNode(ISD::SIGN_EXTEND, VT, SOp));
2796          }
2797        Ops.push_back(SetCC->getOperand(2));
2798        CombineTo(SetCC, DAG.getNode(ISD::SETCC, SetCC->getValueType(0),
2799                                     &Ops[0], Ops.size()));
2800      }
2801      return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
2802    }
2803  }
2804
2805  // fold (sext (sextload x)) -> (sext (truncate (sextload x)))
2806  // fold (sext ( extload x)) -> (sext (truncate (sextload x)))
2807  if ((ISD::isSEXTLoad(N0.Val) || ISD::isEXTLoad(N0.Val)) &&
2808      ISD::isUNINDEXEDLoad(N0.Val) && N0.hasOneUse()) {
2809    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2810    MVT::ValueType EVT = LN0->getMemoryVT();
2811    if (!AfterLegalize || TLI.isLoadXLegal(ISD::SEXTLOAD, EVT)) {
2812      SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, LN0->getChain(),
2813                                         LN0->getBasePtr(), LN0->getSrcValue(),
2814                                         LN0->getSrcValueOffset(), EVT,
2815                                         LN0->isVolatile(),
2816                                         LN0->getAlignment());
2817      CombineTo(N, ExtLoad);
2818      CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
2819                ExtLoad.getValue(1));
2820      return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
2821    }
2822  }
2823
2824  // sext(setcc x,y,cc) -> select_cc x, y, -1, 0, cc
2825  if (N0.getOpcode() == ISD::SETCC) {
2826    SDOperand SCC =
2827      SimplifySelectCC(N0.getOperand(0), N0.getOperand(1),
2828                       DAG.getConstant(~0ULL, VT), DAG.getConstant(0, VT),
2829                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
2830    if (SCC.Val) return SCC;
2831  }
2832
2833  return SDOperand();
2834}
2835
2836SDOperand DAGCombiner::visitZERO_EXTEND(SDNode *N) {
2837  SDOperand N0 = N->getOperand(0);
2838  MVT::ValueType VT = N->getValueType(0);
2839
2840  // fold (zext c1) -> c1
2841  if (isa<ConstantSDNode>(N0))
2842    return DAG.getNode(ISD::ZERO_EXTEND, VT, N0);
2843  // fold (zext (zext x)) -> (zext x)
2844  // fold (zext (aext x)) -> (zext x)
2845  if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
2846    return DAG.getNode(ISD::ZERO_EXTEND, VT, N0.getOperand(0));
2847
2848  // fold (zext (truncate (load x))) -> (zext (smaller load x))
2849  // fold (zext (truncate (srl (load x), c))) -> (zext (small load (x+c/n)))
2850  if (N0.getOpcode() == ISD::TRUNCATE) {
2851    SDOperand NarrowLoad = ReduceLoadWidth(N0.Val);
2852    if (NarrowLoad.Val) {
2853      if (NarrowLoad.Val != N0.Val)
2854        CombineTo(N0.Val, NarrowLoad);
2855      return DAG.getNode(ISD::ZERO_EXTEND, VT, NarrowLoad);
2856    }
2857  }
2858
2859  // fold (zext (truncate x)) -> (and x, mask)
2860  if (N0.getOpcode() == ISD::TRUNCATE &&
2861      (!AfterLegalize || TLI.isOperationLegal(ISD::AND, VT))) {
2862    SDOperand Op = N0.getOperand(0);
2863    if (Op.getValueType() < VT) {
2864      Op = DAG.getNode(ISD::ANY_EXTEND, VT, Op);
2865    } else if (Op.getValueType() > VT) {
2866      Op = DAG.getNode(ISD::TRUNCATE, VT, Op);
2867    }
2868    return DAG.getZeroExtendInReg(Op, N0.getValueType());
2869  }
2870
2871  // fold (zext (and (trunc x), cst)) -> (and x, cst).
2872  if (N0.getOpcode() == ISD::AND &&
2873      N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
2874      N0.getOperand(1).getOpcode() == ISD::Constant) {
2875    SDOperand X = N0.getOperand(0).getOperand(0);
2876    if (X.getValueType() < VT) {
2877      X = DAG.getNode(ISD::ANY_EXTEND, VT, X);
2878    } else if (X.getValueType() > VT) {
2879      X = DAG.getNode(ISD::TRUNCATE, VT, X);
2880    }
2881    APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
2882    Mask.zext(MVT::getSizeInBits(VT));
2883    return DAG.getNode(ISD::AND, VT, X, DAG.getConstant(Mask, VT));
2884  }
2885
2886  // fold (zext (load x)) -> (zext (truncate (zextload x)))
2887  if (ISD::isNON_EXTLoad(N0.Val) &&
2888      (!AfterLegalize||TLI.isLoadXLegal(ISD::ZEXTLOAD, N0.getValueType()))) {
2889    bool DoXform = true;
2890    SmallVector<SDNode*, 4> SetCCs;
2891    if (!N0.hasOneUse())
2892      DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ZERO_EXTEND, SetCCs, TLI);
2893    if (DoXform) {
2894      LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2895      SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(),
2896                                         LN0->getBasePtr(), LN0->getSrcValue(),
2897                                         LN0->getSrcValueOffset(),
2898                                         N0.getValueType(),
2899                                         LN0->isVolatile(),
2900                                         LN0->getAlignment());
2901      CombineTo(N, ExtLoad);
2902      SDOperand Trunc = DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad);
2903      CombineTo(N0.Val, Trunc, ExtLoad.getValue(1));
2904      // Extend SetCC uses if necessary.
2905      for (unsigned i = 0, e = SetCCs.size(); i != e; ++i) {
2906        SDNode *SetCC = SetCCs[i];
2907        SmallVector<SDOperand, 4> Ops;
2908        for (unsigned j = 0; j != 2; ++j) {
2909          SDOperand SOp = SetCC->getOperand(j);
2910          if (SOp == Trunc)
2911            Ops.push_back(ExtLoad);
2912          else
2913            Ops.push_back(DAG.getNode(ISD::ZERO_EXTEND, VT, SOp));
2914          }
2915        Ops.push_back(SetCC->getOperand(2));
2916        CombineTo(SetCC, DAG.getNode(ISD::SETCC, SetCC->getValueType(0),
2917                                     &Ops[0], Ops.size()));
2918      }
2919      return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
2920    }
2921  }
2922
2923  // fold (zext (zextload x)) -> (zext (truncate (zextload x)))
2924  // fold (zext ( extload x)) -> (zext (truncate (zextload x)))
2925  if ((ISD::isZEXTLoad(N0.Val) || ISD::isEXTLoad(N0.Val)) &&
2926      ISD::isUNINDEXEDLoad(N0.Val) && N0.hasOneUse()) {
2927    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2928    MVT::ValueType EVT = LN0->getMemoryVT();
2929    SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(),
2930                                       LN0->getBasePtr(), LN0->getSrcValue(),
2931                                       LN0->getSrcValueOffset(), EVT,
2932                                       LN0->isVolatile(),
2933                                       LN0->getAlignment());
2934    CombineTo(N, ExtLoad);
2935    CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
2936              ExtLoad.getValue(1));
2937    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
2938  }
2939
2940  // zext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
2941  if (N0.getOpcode() == ISD::SETCC) {
2942    SDOperand SCC =
2943      SimplifySelectCC(N0.getOperand(0), N0.getOperand(1),
2944                       DAG.getConstant(1, VT), DAG.getConstant(0, VT),
2945                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
2946    if (SCC.Val) return SCC;
2947  }
2948
2949  return SDOperand();
2950}
2951
2952SDOperand DAGCombiner::visitANY_EXTEND(SDNode *N) {
2953  SDOperand N0 = N->getOperand(0);
2954  MVT::ValueType VT = N->getValueType(0);
2955
2956  // fold (aext c1) -> c1
2957  if (isa<ConstantSDNode>(N0))
2958    return DAG.getNode(ISD::ANY_EXTEND, VT, N0);
2959  // fold (aext (aext x)) -> (aext x)
2960  // fold (aext (zext x)) -> (zext x)
2961  // fold (aext (sext x)) -> (sext x)
2962  if (N0.getOpcode() == ISD::ANY_EXTEND  ||
2963      N0.getOpcode() == ISD::ZERO_EXTEND ||
2964      N0.getOpcode() == ISD::SIGN_EXTEND)
2965    return DAG.getNode(N0.getOpcode(), VT, N0.getOperand(0));
2966
2967  // fold (aext (truncate (load x))) -> (aext (smaller load x))
2968  // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n)))
2969  if (N0.getOpcode() == ISD::TRUNCATE) {
2970    SDOperand NarrowLoad = ReduceLoadWidth(N0.Val);
2971    if (NarrowLoad.Val) {
2972      if (NarrowLoad.Val != N0.Val)
2973        CombineTo(N0.Val, NarrowLoad);
2974      return DAG.getNode(ISD::ANY_EXTEND, VT, NarrowLoad);
2975    }
2976  }
2977
2978  // fold (aext (truncate x))
2979  if (N0.getOpcode() == ISD::TRUNCATE) {
2980    SDOperand TruncOp = N0.getOperand(0);
2981    if (TruncOp.getValueType() == VT)
2982      return TruncOp; // x iff x size == zext size.
2983    if (TruncOp.getValueType() > VT)
2984      return DAG.getNode(ISD::TRUNCATE, VT, TruncOp);
2985    return DAG.getNode(ISD::ANY_EXTEND, VT, TruncOp);
2986  }
2987
2988  // fold (aext (and (trunc x), cst)) -> (and x, cst).
2989  if (N0.getOpcode() == ISD::AND &&
2990      N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
2991      N0.getOperand(1).getOpcode() == ISD::Constant) {
2992    SDOperand X = N0.getOperand(0).getOperand(0);
2993    if (X.getValueType() < VT) {
2994      X = DAG.getNode(ISD::ANY_EXTEND, VT, X);
2995    } else if (X.getValueType() > VT) {
2996      X = DAG.getNode(ISD::TRUNCATE, VT, X);
2997    }
2998    APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
2999    Mask.zext(MVT::getSizeInBits(VT));
3000    return DAG.getNode(ISD::AND, VT, X, DAG.getConstant(Mask, VT));
3001  }
3002
3003  // fold (aext (load x)) -> (aext (truncate (extload x)))
3004  if (ISD::isNON_EXTLoad(N0.Val) && N0.hasOneUse() &&
3005      (!AfterLegalize||TLI.isLoadXLegal(ISD::EXTLOAD, N0.getValueType()))) {
3006    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3007    SDOperand ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, VT, LN0->getChain(),
3008                                       LN0->getBasePtr(), LN0->getSrcValue(),
3009                                       LN0->getSrcValueOffset(),
3010                                       N0.getValueType(),
3011                                       LN0->isVolatile(),
3012                                       LN0->getAlignment());
3013    CombineTo(N, ExtLoad);
3014    CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
3015              ExtLoad.getValue(1));
3016    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
3017  }
3018
3019  // fold (aext (zextload x)) -> (aext (truncate (zextload x)))
3020  // fold (aext (sextload x)) -> (aext (truncate (sextload x)))
3021  // fold (aext ( extload x)) -> (aext (truncate (extload  x)))
3022  if (N0.getOpcode() == ISD::LOAD &&
3023      !ISD::isNON_EXTLoad(N0.Val) && ISD::isUNINDEXEDLoad(N0.Val) &&
3024      N0.hasOneUse()) {
3025    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3026    MVT::ValueType EVT = LN0->getMemoryVT();
3027    SDOperand ExtLoad = DAG.getExtLoad(LN0->getExtensionType(), VT,
3028                                       LN0->getChain(), LN0->getBasePtr(),
3029                                       LN0->getSrcValue(),
3030                                       LN0->getSrcValueOffset(), EVT,
3031                                       LN0->isVolatile(),
3032                                       LN0->getAlignment());
3033    CombineTo(N, ExtLoad);
3034    CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
3035              ExtLoad.getValue(1));
3036    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
3037  }
3038
3039  // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
3040  if (N0.getOpcode() == ISD::SETCC) {
3041    SDOperand SCC =
3042      SimplifySelectCC(N0.getOperand(0), N0.getOperand(1),
3043                       DAG.getConstant(1, VT), DAG.getConstant(0, VT),
3044                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
3045    if (SCC.Val)
3046      return SCC;
3047  }
3048
3049  return SDOperand();
3050}
3051
3052/// GetDemandedBits - See if the specified operand can be simplified with the
3053/// knowledge that only the bits specified by Mask are used.  If so, return the
3054/// simpler operand, otherwise return a null SDOperand.
3055SDOperand DAGCombiner::GetDemandedBits(SDOperand V, const APInt &Mask) {
3056  switch (V.getOpcode()) {
3057  default: break;
3058  case ISD::OR:
3059  case ISD::XOR:
3060    // If the LHS or RHS don't contribute bits to the or, drop them.
3061    if (DAG.MaskedValueIsZero(V.getOperand(0), Mask))
3062      return V.getOperand(1);
3063    if (DAG.MaskedValueIsZero(V.getOperand(1), Mask))
3064      return V.getOperand(0);
3065    break;
3066  case ISD::SRL:
3067    // Only look at single-use SRLs.
3068    if (!V.Val->hasOneUse())
3069      break;
3070    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
3071      // See if we can recursively simplify the LHS.
3072      unsigned Amt = RHSC->getValue();
3073      APInt NewMask = Mask << Amt;
3074      SDOperand SimplifyLHS = GetDemandedBits(V.getOperand(0), NewMask);
3075      if (SimplifyLHS.Val) {
3076        return DAG.getNode(ISD::SRL, V.getValueType(),
3077                           SimplifyLHS, V.getOperand(1));
3078      }
3079    }
3080  }
3081  return SDOperand();
3082}
3083
3084/// ReduceLoadWidth - If the result of a wider load is shifted to right of N
3085/// bits and then truncated to a narrower type and where N is a multiple
3086/// of number of bits of the narrower type, transform it to a narrower load
3087/// from address + N / num of bits of new type. If the result is to be
3088/// extended, also fold the extension to form a extending load.
3089SDOperand DAGCombiner::ReduceLoadWidth(SDNode *N) {
3090  unsigned Opc = N->getOpcode();
3091  ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
3092  SDOperand N0 = N->getOperand(0);
3093  MVT::ValueType VT = N->getValueType(0);
3094  MVT::ValueType EVT = N->getValueType(0);
3095
3096  // Special case: SIGN_EXTEND_INREG is basically truncating to EVT then
3097  // extended to VT.
3098  if (Opc == ISD::SIGN_EXTEND_INREG) {
3099    ExtType = ISD::SEXTLOAD;
3100    EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
3101    if (AfterLegalize && !TLI.isLoadXLegal(ISD::SEXTLOAD, EVT))
3102      return SDOperand();
3103  }
3104
3105  unsigned EVTBits = MVT::getSizeInBits(EVT);
3106  unsigned ShAmt = 0;
3107  bool CombineSRL =  false;
3108  if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) {
3109    if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3110      ShAmt = N01->getValue();
3111      // Is the shift amount a multiple of size of VT?
3112      if ((ShAmt & (EVTBits-1)) == 0) {
3113        N0 = N0.getOperand(0);
3114        if (MVT::getSizeInBits(N0.getValueType()) <= EVTBits)
3115          return SDOperand();
3116        CombineSRL = true;
3117      }
3118    }
3119  }
3120
3121  if (ISD::isNON_EXTLoad(N0.Val) && N0.hasOneUse() &&
3122      // Do not allow folding to i1 here.  i1 is implicitly stored in memory in
3123      // zero extended form: by shrinking the load, we lose track of the fact
3124      // that it is already zero extended.
3125      // FIXME: This should be reevaluated.
3126      VT != MVT::i1) {
3127    assert(MVT::getSizeInBits(N0.getValueType()) > EVTBits &&
3128           "Cannot truncate to larger type!");
3129    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3130    MVT::ValueType PtrType = N0.getOperand(1).getValueType();
3131    // For big endian targets, we need to adjust the offset to the pointer to
3132    // load the correct bytes.
3133    if (TLI.isBigEndian()) {
3134      unsigned LVTStoreBits = MVT::getStoreSizeInBits(N0.getValueType());
3135      unsigned EVTStoreBits = MVT::getStoreSizeInBits(EVT);
3136      ShAmt = LVTStoreBits - EVTStoreBits - ShAmt;
3137    }
3138    uint64_t PtrOff =  ShAmt / 8;
3139    unsigned NewAlign = MinAlign(LN0->getAlignment(), PtrOff);
3140    SDOperand NewPtr = DAG.getNode(ISD::ADD, PtrType, LN0->getBasePtr(),
3141                                   DAG.getConstant(PtrOff, PtrType));
3142    AddToWorkList(NewPtr.Val);
3143    SDOperand Load = (ExtType == ISD::NON_EXTLOAD)
3144      ? DAG.getLoad(VT, LN0->getChain(), NewPtr,
3145                    LN0->getSrcValue(), LN0->getSrcValueOffset(),
3146                    LN0->isVolatile(), NewAlign)
3147      : DAG.getExtLoad(ExtType, VT, LN0->getChain(), NewPtr,
3148                       LN0->getSrcValue(), LN0->getSrcValueOffset(), EVT,
3149                       LN0->isVolatile(), NewAlign);
3150    AddToWorkList(N);
3151    if (CombineSRL) {
3152      WorkListRemover DeadNodes(*this);
3153      DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1),
3154                                    &DeadNodes);
3155      CombineTo(N->getOperand(0).Val, Load);
3156    } else
3157      CombineTo(N0.Val, Load, Load.getValue(1));
3158    if (ShAmt) {
3159      if (Opc == ISD::SIGN_EXTEND_INREG)
3160        return DAG.getNode(Opc, VT, Load, N->getOperand(1));
3161      else
3162        return DAG.getNode(Opc, VT, Load);
3163    }
3164    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
3165  }
3166
3167  return SDOperand();
3168}
3169
3170
3171SDOperand DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) {
3172  SDOperand N0 = N->getOperand(0);
3173  SDOperand N1 = N->getOperand(1);
3174  MVT::ValueType VT = N->getValueType(0);
3175  MVT::ValueType EVT = cast<VTSDNode>(N1)->getVT();
3176  unsigned VTBits = MVT::getSizeInBits(VT);
3177  unsigned EVTBits = MVT::getSizeInBits(EVT);
3178
3179  // fold (sext_in_reg c1) -> c1
3180  if (isa<ConstantSDNode>(N0) || N0.getOpcode() == ISD::UNDEF)
3181    return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, N0, N1);
3182
3183  // If the input is already sign extended, just drop the extension.
3184  if (DAG.ComputeNumSignBits(N0) >= MVT::getSizeInBits(VT)-EVTBits+1)
3185    return N0;
3186
3187  // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2
3188  if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3189      EVT < cast<VTSDNode>(N0.getOperand(1))->getVT()) {
3190    return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, N0.getOperand(0), N1);
3191  }
3192
3193  // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero.
3194  if (DAG.MaskedValueIsZero(N0, APInt::getBitsSet(VTBits, EVTBits-1, EVTBits)))
3195    return DAG.getZeroExtendInReg(N0, EVT);
3196
3197  // fold operands of sext_in_reg based on knowledge that the top bits are not
3198  // demanded.
3199  if (SimplifyDemandedBits(SDOperand(N, 0)))
3200    return SDOperand(N, 0);
3201
3202  // fold (sext_in_reg (load x)) -> (smaller sextload x)
3203  // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits))
3204  SDOperand NarrowLoad = ReduceLoadWidth(N);
3205  if (NarrowLoad.Val)
3206    return NarrowLoad;
3207
3208  // fold (sext_in_reg (srl X, 24), i8) -> sra X, 24
3209  // fold (sext_in_reg (srl X, 23), i8) -> sra X, 23 iff possible.
3210  // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above.
3211  if (N0.getOpcode() == ISD::SRL) {
3212    if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
3213      if (ShAmt->getValue()+EVTBits <= MVT::getSizeInBits(VT)) {
3214        // We can turn this into an SRA iff the input to the SRL is already sign
3215        // extended enough.
3216        unsigned InSignBits = DAG.ComputeNumSignBits(N0.getOperand(0));
3217        if (MVT::getSizeInBits(VT)-(ShAmt->getValue()+EVTBits) < InSignBits)
3218          return DAG.getNode(ISD::SRA, VT, N0.getOperand(0), N0.getOperand(1));
3219      }
3220  }
3221
3222  // fold (sext_inreg (extload x)) -> (sextload x)
3223  if (ISD::isEXTLoad(N0.Val) &&
3224      ISD::isUNINDEXEDLoad(N0.Val) &&
3225      EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
3226      (!AfterLegalize || TLI.isLoadXLegal(ISD::SEXTLOAD, EVT))) {
3227    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3228    SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, LN0->getChain(),
3229                                       LN0->getBasePtr(), LN0->getSrcValue(),
3230                                       LN0->getSrcValueOffset(), EVT,
3231                                       LN0->isVolatile(),
3232                                       LN0->getAlignment());
3233    CombineTo(N, ExtLoad);
3234    CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1));
3235    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
3236  }
3237  // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use
3238  if (ISD::isZEXTLoad(N0.Val) && ISD::isUNINDEXEDLoad(N0.Val) &&
3239      N0.hasOneUse() &&
3240      EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
3241      (!AfterLegalize || TLI.isLoadXLegal(ISD::SEXTLOAD, EVT))) {
3242    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3243    SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, LN0->getChain(),
3244                                       LN0->getBasePtr(), LN0->getSrcValue(),
3245                                       LN0->getSrcValueOffset(), EVT,
3246                                       LN0->isVolatile(),
3247                                       LN0->getAlignment());
3248    CombineTo(N, ExtLoad);
3249    CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1));
3250    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
3251  }
3252  return SDOperand();
3253}
3254
3255SDOperand DAGCombiner::visitTRUNCATE(SDNode *N) {
3256  SDOperand N0 = N->getOperand(0);
3257  MVT::ValueType VT = N->getValueType(0);
3258
3259  // noop truncate
3260  if (N0.getValueType() == N->getValueType(0))
3261    return N0;
3262  // fold (truncate c1) -> c1
3263  if (isa<ConstantSDNode>(N0))
3264    return DAG.getNode(ISD::TRUNCATE, VT, N0);
3265  // fold (truncate (truncate x)) -> (truncate x)
3266  if (N0.getOpcode() == ISD::TRUNCATE)
3267    return DAG.getNode(ISD::TRUNCATE, VT, N0.getOperand(0));
3268  // fold (truncate (ext x)) -> (ext x) or (truncate x) or x
3269  if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::SIGN_EXTEND||
3270      N0.getOpcode() == ISD::ANY_EXTEND) {
3271    if (N0.getOperand(0).getValueType() < VT)
3272      // if the source is smaller than the dest, we still need an extend
3273      return DAG.getNode(N0.getOpcode(), VT, N0.getOperand(0));
3274    else if (N0.getOperand(0).getValueType() > VT)
3275      // if the source is larger than the dest, than we just need the truncate
3276      return DAG.getNode(ISD::TRUNCATE, VT, N0.getOperand(0));
3277    else
3278      // if the source and dest are the same type, we can drop both the extend
3279      // and the truncate
3280      return N0.getOperand(0);
3281  }
3282
3283  // See if we can simplify the input to this truncate through knowledge that
3284  // only the low bits are being used.  For example "trunc (or (shl x, 8), y)"
3285  // -> trunc y
3286  SDOperand Shorter =
3287    GetDemandedBits(N0, APInt::getLowBitsSet(N0.getValueSizeInBits(),
3288                                             MVT::getSizeInBits(VT)));
3289  if (Shorter.Val)
3290    return DAG.getNode(ISD::TRUNCATE, VT, Shorter);
3291
3292  // fold (truncate (load x)) -> (smaller load x)
3293  // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits))
3294  return ReduceLoadWidth(N);
3295}
3296
3297SDOperand DAGCombiner::visitBIT_CONVERT(SDNode *N) {
3298  SDOperand N0 = N->getOperand(0);
3299  MVT::ValueType VT = N->getValueType(0);
3300
3301  // If the input is a BUILD_VECTOR with all constant elements, fold this now.
3302  // Only do this before legalize, since afterward the target may be depending
3303  // on the bitconvert.
3304  // First check to see if this is all constant.
3305  if (!AfterLegalize &&
3306      N0.getOpcode() == ISD::BUILD_VECTOR && N0.Val->hasOneUse() &&
3307      MVT::isVector(VT)) {
3308    bool isSimple = true;
3309    for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i)
3310      if (N0.getOperand(i).getOpcode() != ISD::UNDEF &&
3311          N0.getOperand(i).getOpcode() != ISD::Constant &&
3312          N0.getOperand(i).getOpcode() != ISD::ConstantFP) {
3313        isSimple = false;
3314        break;
3315      }
3316
3317    MVT::ValueType DestEltVT = MVT::getVectorElementType(N->getValueType(0));
3318    assert(!MVT::isVector(DestEltVT) &&
3319           "Element type of vector ValueType must not be vector!");
3320    if (isSimple) {
3321      return ConstantFoldBIT_CONVERTofBUILD_VECTOR(N0.Val, DestEltVT);
3322    }
3323  }
3324
3325  // If the input is a constant, let getNode() fold it.
3326  if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0)) {
3327    SDOperand Res = DAG.getNode(ISD::BIT_CONVERT, VT, N0);
3328    if (Res.Val != N) return Res;
3329  }
3330
3331  if (N0.getOpcode() == ISD::BIT_CONVERT)  // conv(conv(x,t1),t2) -> conv(x,t2)
3332    return DAG.getNode(ISD::BIT_CONVERT, VT, N0.getOperand(0));
3333
3334  // fold (conv (load x)) -> (load (conv*)x)
3335  // If the resultant load doesn't need a higher alignment than the original!
3336  if (ISD::isNormalLoad(N0.Val) && N0.hasOneUse() &&
3337      TLI.isOperationLegal(ISD::LOAD, VT)) {
3338    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3339    unsigned Align = TLI.getTargetMachine().getTargetData()->
3340      getABITypeAlignment(MVT::getTypeForValueType(VT));
3341    unsigned OrigAlign = LN0->getAlignment();
3342    if (Align <= OrigAlign) {
3343      SDOperand Load = DAG.getLoad(VT, LN0->getChain(), LN0->getBasePtr(),
3344                                   LN0->getSrcValue(), LN0->getSrcValueOffset(),
3345                                   LN0->isVolatile(), Align);
3346      AddToWorkList(N);
3347      CombineTo(N0.Val, DAG.getNode(ISD::BIT_CONVERT, N0.getValueType(), Load),
3348                Load.getValue(1));
3349      return Load;
3350    }
3351  }
3352
3353  // Fold bitconvert(fneg(x)) -> xor(bitconvert(x), signbit)
3354  // Fold bitconvert(fabs(x)) -> and(bitconvert(x), ~signbit)
3355  // This often reduces constant pool loads.
3356  if ((N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FABS) &&
3357      N0.Val->hasOneUse() && MVT::isInteger(VT) && !MVT::isVector(VT)) {
3358    SDOperand NewConv = DAG.getNode(ISD::BIT_CONVERT, VT, N0.getOperand(0));
3359    AddToWorkList(NewConv.Val);
3360
3361    APInt SignBit = APInt::getSignBit(MVT::getSizeInBits(VT));
3362    if (N0.getOpcode() == ISD::FNEG)
3363      return DAG.getNode(ISD::XOR, VT, NewConv, DAG.getConstant(SignBit, VT));
3364    assert(N0.getOpcode() == ISD::FABS);
3365    return DAG.getNode(ISD::AND, VT, NewConv, DAG.getConstant(~SignBit, VT));
3366  }
3367
3368  // Fold bitconvert(fcopysign(cst, x)) -> bitconvert(x)&sign | cst&~sign'
3369  // Note that we don't handle copysign(x,cst) because this can always be folded
3370  // to an fneg or fabs.
3371  if (N0.getOpcode() == ISD::FCOPYSIGN && N0.Val->hasOneUse() &&
3372      isa<ConstantFPSDNode>(N0.getOperand(0)) &&
3373      MVT::isInteger(VT) && !MVT::isVector(VT)) {
3374    unsigned OrigXWidth = MVT::getSizeInBits(N0.getOperand(1).getValueType());
3375    SDOperand X = DAG.getNode(ISD::BIT_CONVERT, MVT::getIntegerType(OrigXWidth),
3376                              N0.getOperand(1));
3377    AddToWorkList(X.Val);
3378
3379    // If X has a different width than the result/lhs, sext it or truncate it.
3380    unsigned VTWidth = MVT::getSizeInBits(VT);
3381    if (OrigXWidth < VTWidth) {
3382      X = DAG.getNode(ISD::SIGN_EXTEND, VT, X);
3383      AddToWorkList(X.Val);
3384    } else if (OrigXWidth > VTWidth) {
3385      // To get the sign bit in the right place, we have to shift it right
3386      // before truncating.
3387      X = DAG.getNode(ISD::SRL, X.getValueType(), X,
3388                      DAG.getConstant(OrigXWidth-VTWidth, X.getValueType()));
3389      AddToWorkList(X.Val);
3390      X = DAG.getNode(ISD::TRUNCATE, VT, X);
3391      AddToWorkList(X.Val);
3392    }
3393
3394    APInt SignBit = APInt::getSignBit(MVT::getSizeInBits(VT));
3395    X = DAG.getNode(ISD::AND, VT, X, DAG.getConstant(SignBit, VT));
3396    AddToWorkList(X.Val);
3397
3398    SDOperand Cst = DAG.getNode(ISD::BIT_CONVERT, VT, N0.getOperand(0));
3399    Cst = DAG.getNode(ISD::AND, VT, Cst, DAG.getConstant(~SignBit, VT));
3400    AddToWorkList(Cst.Val);
3401
3402    return DAG.getNode(ISD::OR, VT, X, Cst);
3403  }
3404
3405  return SDOperand();
3406}
3407
3408/// ConstantFoldBIT_CONVERTofBUILD_VECTOR - We know that BV is a build_vector
3409/// node with Constant, ConstantFP or Undef operands.  DstEltVT indicates the
3410/// destination element value type.
3411SDOperand DAGCombiner::
3412ConstantFoldBIT_CONVERTofBUILD_VECTOR(SDNode *BV, MVT::ValueType DstEltVT) {
3413  MVT::ValueType SrcEltVT = BV->getOperand(0).getValueType();
3414
3415  // If this is already the right type, we're done.
3416  if (SrcEltVT == DstEltVT) return SDOperand(BV, 0);
3417
3418  unsigned SrcBitSize = MVT::getSizeInBits(SrcEltVT);
3419  unsigned DstBitSize = MVT::getSizeInBits(DstEltVT);
3420
3421  // If this is a conversion of N elements of one type to N elements of another
3422  // type, convert each element.  This handles FP<->INT cases.
3423  if (SrcBitSize == DstBitSize) {
3424    SmallVector<SDOperand, 8> Ops;
3425    for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
3426      Ops.push_back(DAG.getNode(ISD::BIT_CONVERT, DstEltVT, BV->getOperand(i)));
3427      AddToWorkList(Ops.back().Val);
3428    }
3429    MVT::ValueType VT =
3430      MVT::getVectorType(DstEltVT,
3431                         MVT::getVectorNumElements(BV->getValueType(0)));
3432    return DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
3433  }
3434
3435  // Otherwise, we're growing or shrinking the elements.  To avoid having to
3436  // handle annoying details of growing/shrinking FP values, we convert them to
3437  // int first.
3438  if (MVT::isFloatingPoint(SrcEltVT)) {
3439    // Convert the input float vector to a int vector where the elements are the
3440    // same sizes.
3441    assert((SrcEltVT == MVT::f32 || SrcEltVT == MVT::f64) && "Unknown FP VT!");
3442    MVT::ValueType IntVT = SrcEltVT == MVT::f32 ? MVT::i32 : MVT::i64;
3443    BV = ConstantFoldBIT_CONVERTofBUILD_VECTOR(BV, IntVT).Val;
3444    SrcEltVT = IntVT;
3445  }
3446
3447  // Now we know the input is an integer vector.  If the output is a FP type,
3448  // convert to integer first, then to FP of the right size.
3449  if (MVT::isFloatingPoint(DstEltVT)) {
3450    assert((DstEltVT == MVT::f32 || DstEltVT == MVT::f64) && "Unknown FP VT!");
3451    MVT::ValueType TmpVT = DstEltVT == MVT::f32 ? MVT::i32 : MVT::i64;
3452    SDNode *Tmp = ConstantFoldBIT_CONVERTofBUILD_VECTOR(BV, TmpVT).Val;
3453
3454    // Next, convert to FP elements of the same size.
3455    return ConstantFoldBIT_CONVERTofBUILD_VECTOR(Tmp, DstEltVT);
3456  }
3457
3458  // Okay, we know the src/dst types are both integers of differing types.
3459  // Handling growing first.
3460  assert(MVT::isInteger(SrcEltVT) && MVT::isInteger(DstEltVT));
3461  if (SrcBitSize < DstBitSize) {
3462    unsigned NumInputsPerOutput = DstBitSize/SrcBitSize;
3463
3464    SmallVector<SDOperand, 8> Ops;
3465    for (unsigned i = 0, e = BV->getNumOperands(); i != e;
3466         i += NumInputsPerOutput) {
3467      bool isLE = TLI.isLittleEndian();
3468      APInt NewBits = APInt(DstBitSize, 0);
3469      bool EltIsUndef = true;
3470      for (unsigned j = 0; j != NumInputsPerOutput; ++j) {
3471        // Shift the previously computed bits over.
3472        NewBits <<= SrcBitSize;
3473        SDOperand Op = BV->getOperand(i+ (isLE ? (NumInputsPerOutput-j-1) : j));
3474        if (Op.getOpcode() == ISD::UNDEF) continue;
3475        EltIsUndef = false;
3476
3477        NewBits |=
3478          APInt(cast<ConstantSDNode>(Op)->getAPIntValue()).zext(DstBitSize);
3479      }
3480
3481      if (EltIsUndef)
3482        Ops.push_back(DAG.getNode(ISD::UNDEF, DstEltVT));
3483      else
3484        Ops.push_back(DAG.getConstant(NewBits, DstEltVT));
3485    }
3486
3487    MVT::ValueType VT = MVT::getVectorType(DstEltVT, Ops.size());
3488    return DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
3489  }
3490
3491  // Finally, this must be the case where we are shrinking elements: each input
3492  // turns into multiple outputs.
3493  bool isS2V = ISD::isScalarToVector(BV);
3494  unsigned NumOutputsPerInput = SrcBitSize/DstBitSize;
3495  MVT::ValueType VT = MVT::getVectorType(DstEltVT,
3496                                     NumOutputsPerInput * BV->getNumOperands());
3497  SmallVector<SDOperand, 8> Ops;
3498  for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
3499    if (BV->getOperand(i).getOpcode() == ISD::UNDEF) {
3500      for (unsigned j = 0; j != NumOutputsPerInput; ++j)
3501        Ops.push_back(DAG.getNode(ISD::UNDEF, DstEltVT));
3502      continue;
3503    }
3504    APInt OpVal = cast<ConstantSDNode>(BV->getOperand(i))->getAPIntValue();
3505    for (unsigned j = 0; j != NumOutputsPerInput; ++j) {
3506      APInt ThisVal = APInt(OpVal).trunc(DstBitSize);
3507      Ops.push_back(DAG.getConstant(ThisVal, DstEltVT));
3508      if (isS2V && i == 0 && j == 0 && APInt(ThisVal).zext(SrcBitSize) == OpVal)
3509        // Simply turn this into a SCALAR_TO_VECTOR of the new type.
3510        return DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Ops[0]);
3511      OpVal = OpVal.lshr(DstBitSize);
3512    }
3513
3514    // For big endian targets, swap the order of the pieces of each element.
3515    if (TLI.isBigEndian())
3516      std::reverse(Ops.end()-NumOutputsPerInput, Ops.end());
3517  }
3518  return DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
3519}
3520
3521
3522
3523SDOperand DAGCombiner::visitFADD(SDNode *N) {
3524  SDOperand N0 = N->getOperand(0);
3525  SDOperand N1 = N->getOperand(1);
3526  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3527  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
3528  MVT::ValueType VT = N->getValueType(0);
3529
3530  // fold vector ops
3531  if (MVT::isVector(VT)) {
3532    SDOperand FoldedVOp = SimplifyVBinOp(N);
3533    if (FoldedVOp.Val) return FoldedVOp;
3534  }
3535
3536  // fold (fadd c1, c2) -> c1+c2
3537  if (N0CFP && N1CFP && VT != MVT::ppcf128)
3538    return DAG.getNode(ISD::FADD, VT, N0, N1);
3539  // canonicalize constant to RHS
3540  if (N0CFP && !N1CFP)
3541    return DAG.getNode(ISD::FADD, VT, N1, N0);
3542  // fold (A + (-B)) -> A-B
3543  if (isNegatibleForFree(N1, AfterLegalize) == 2)
3544    return DAG.getNode(ISD::FSUB, VT, N0,
3545                       GetNegatedExpression(N1, DAG, AfterLegalize));
3546  // fold ((-A) + B) -> B-A
3547  if (isNegatibleForFree(N0, AfterLegalize) == 2)
3548    return DAG.getNode(ISD::FSUB, VT, N1,
3549                       GetNegatedExpression(N0, DAG, AfterLegalize));
3550
3551  // If allowed, fold (fadd (fadd x, c1), c2) -> (fadd x, (fadd c1, c2))
3552  if (UnsafeFPMath && N1CFP && N0.getOpcode() == ISD::FADD &&
3553      N0.Val->hasOneUse() && isa<ConstantFPSDNode>(N0.getOperand(1)))
3554    return DAG.getNode(ISD::FADD, VT, N0.getOperand(0),
3555                       DAG.getNode(ISD::FADD, VT, N0.getOperand(1), N1));
3556
3557  return SDOperand();
3558}
3559
3560SDOperand DAGCombiner::visitFSUB(SDNode *N) {
3561  SDOperand N0 = N->getOperand(0);
3562  SDOperand N1 = N->getOperand(1);
3563  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3564  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
3565  MVT::ValueType VT = N->getValueType(0);
3566
3567  // fold vector ops
3568  if (MVT::isVector(VT)) {
3569    SDOperand FoldedVOp = SimplifyVBinOp(N);
3570    if (FoldedVOp.Val) return FoldedVOp;
3571  }
3572
3573  // fold (fsub c1, c2) -> c1-c2
3574  if (N0CFP && N1CFP && VT != MVT::ppcf128)
3575    return DAG.getNode(ISD::FSUB, VT, N0, N1);
3576  // fold (0-B) -> -B
3577  if (UnsafeFPMath && N0CFP && N0CFP->getValueAPF().isZero()) {
3578    if (isNegatibleForFree(N1, AfterLegalize))
3579      return GetNegatedExpression(N1, DAG, AfterLegalize);
3580    return DAG.getNode(ISD::FNEG, VT, N1);
3581  }
3582  // fold (A-(-B)) -> A+B
3583  if (isNegatibleForFree(N1, AfterLegalize))
3584    return DAG.getNode(ISD::FADD, VT, N0,
3585                       GetNegatedExpression(N1, DAG, AfterLegalize));
3586
3587  return SDOperand();
3588}
3589
3590SDOperand DAGCombiner::visitFMUL(SDNode *N) {
3591  SDOperand N0 = N->getOperand(0);
3592  SDOperand N1 = N->getOperand(1);
3593  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3594  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
3595  MVT::ValueType VT = N->getValueType(0);
3596
3597  // fold vector ops
3598  if (MVT::isVector(VT)) {
3599    SDOperand FoldedVOp = SimplifyVBinOp(N);
3600    if (FoldedVOp.Val) return FoldedVOp;
3601  }
3602
3603  // fold (fmul c1, c2) -> c1*c2
3604  if (N0CFP && N1CFP && VT != MVT::ppcf128)
3605    return DAG.getNode(ISD::FMUL, VT, N0, N1);
3606  // canonicalize constant to RHS
3607  if (N0CFP && !N1CFP)
3608    return DAG.getNode(ISD::FMUL, VT, N1, N0);
3609  // fold (fmul X, 2.0) -> (fadd X, X)
3610  if (N1CFP && N1CFP->isExactlyValue(+2.0))
3611    return DAG.getNode(ISD::FADD, VT, N0, N0);
3612  // fold (fmul X, -1.0) -> (fneg X)
3613  if (N1CFP && N1CFP->isExactlyValue(-1.0))
3614    return DAG.getNode(ISD::FNEG, VT, N0);
3615
3616  // -X * -Y -> X*Y
3617  if (char LHSNeg = isNegatibleForFree(N0, AfterLegalize)) {
3618    if (char RHSNeg = isNegatibleForFree(N1, AfterLegalize)) {
3619      // Both can be negated for free, check to see if at least one is cheaper
3620      // negated.
3621      if (LHSNeg == 2 || RHSNeg == 2)
3622        return DAG.getNode(ISD::FMUL, VT,
3623                           GetNegatedExpression(N0, DAG, AfterLegalize),
3624                           GetNegatedExpression(N1, DAG, AfterLegalize));
3625    }
3626  }
3627
3628  // If allowed, fold (fmul (fmul x, c1), c2) -> (fmul x, (fmul c1, c2))
3629  if (UnsafeFPMath && N1CFP && N0.getOpcode() == ISD::FMUL &&
3630      N0.Val->hasOneUse() && isa<ConstantFPSDNode>(N0.getOperand(1)))
3631    return DAG.getNode(ISD::FMUL, VT, N0.getOperand(0),
3632                       DAG.getNode(ISD::FMUL, VT, N0.getOperand(1), N1));
3633
3634  return SDOperand();
3635}
3636
3637SDOperand DAGCombiner::visitFDIV(SDNode *N) {
3638  SDOperand N0 = N->getOperand(0);
3639  SDOperand N1 = N->getOperand(1);
3640  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3641  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
3642  MVT::ValueType VT = N->getValueType(0);
3643
3644  // fold vector ops
3645  if (MVT::isVector(VT)) {
3646    SDOperand FoldedVOp = SimplifyVBinOp(N);
3647    if (FoldedVOp.Val) return FoldedVOp;
3648  }
3649
3650  // fold (fdiv c1, c2) -> c1/c2
3651  if (N0CFP && N1CFP && VT != MVT::ppcf128)
3652    return DAG.getNode(ISD::FDIV, VT, N0, N1);
3653
3654
3655  // -X / -Y -> X*Y
3656  if (char LHSNeg = isNegatibleForFree(N0, AfterLegalize)) {
3657    if (char RHSNeg = isNegatibleForFree(N1, AfterLegalize)) {
3658      // Both can be negated for free, check to see if at least one is cheaper
3659      // negated.
3660      if (LHSNeg == 2 || RHSNeg == 2)
3661        return DAG.getNode(ISD::FDIV, VT,
3662                           GetNegatedExpression(N0, DAG, AfterLegalize),
3663                           GetNegatedExpression(N1, DAG, AfterLegalize));
3664    }
3665  }
3666
3667  return SDOperand();
3668}
3669
3670SDOperand DAGCombiner::visitFREM(SDNode *N) {
3671  SDOperand N0 = N->getOperand(0);
3672  SDOperand N1 = N->getOperand(1);
3673  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3674  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
3675  MVT::ValueType VT = N->getValueType(0);
3676
3677  // fold (frem c1, c2) -> fmod(c1,c2)
3678  if (N0CFP && N1CFP && VT != MVT::ppcf128)
3679    return DAG.getNode(ISD::FREM, VT, N0, N1);
3680
3681  return SDOperand();
3682}
3683
3684SDOperand DAGCombiner::visitFCOPYSIGN(SDNode *N) {
3685  SDOperand N0 = N->getOperand(0);
3686  SDOperand N1 = N->getOperand(1);
3687  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3688  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
3689  MVT::ValueType VT = N->getValueType(0);
3690
3691  if (N0CFP && N1CFP && VT != MVT::ppcf128)  // Constant fold
3692    return DAG.getNode(ISD::FCOPYSIGN, VT, N0, N1);
3693
3694  if (N1CFP) {
3695    const APFloat& V = N1CFP->getValueAPF();
3696    // copysign(x, c1) -> fabs(x)       iff ispos(c1)
3697    // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1)
3698    if (!V.isNegative())
3699      return DAG.getNode(ISD::FABS, VT, N0);
3700    else
3701      return DAG.getNode(ISD::FNEG, VT, DAG.getNode(ISD::FABS, VT, N0));
3702  }
3703
3704  // copysign(fabs(x), y) -> copysign(x, y)
3705  // copysign(fneg(x), y) -> copysign(x, y)
3706  // copysign(copysign(x,z), y) -> copysign(x, y)
3707  if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG ||
3708      N0.getOpcode() == ISD::FCOPYSIGN)
3709    return DAG.getNode(ISD::FCOPYSIGN, VT, N0.getOperand(0), N1);
3710
3711  // copysign(x, abs(y)) -> abs(x)
3712  if (N1.getOpcode() == ISD::FABS)
3713    return DAG.getNode(ISD::FABS, VT, N0);
3714
3715  // copysign(x, copysign(y,z)) -> copysign(x, z)
3716  if (N1.getOpcode() == ISD::FCOPYSIGN)
3717    return DAG.getNode(ISD::FCOPYSIGN, VT, N0, N1.getOperand(1));
3718
3719  // copysign(x, fp_extend(y)) -> copysign(x, y)
3720  // copysign(x, fp_round(y)) -> copysign(x, y)
3721  if (N1.getOpcode() == ISD::FP_EXTEND || N1.getOpcode() == ISD::FP_ROUND)
3722    return DAG.getNode(ISD::FCOPYSIGN, VT, N0, N1.getOperand(0));
3723
3724  return SDOperand();
3725}
3726
3727
3728
3729SDOperand DAGCombiner::visitSINT_TO_FP(SDNode *N) {
3730  SDOperand N0 = N->getOperand(0);
3731  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3732  MVT::ValueType VT = N->getValueType(0);
3733
3734  // fold (sint_to_fp c1) -> c1fp
3735  if (N0C && N0.getValueType() != MVT::ppcf128)
3736    return DAG.getNode(ISD::SINT_TO_FP, VT, N0);
3737  return SDOperand();
3738}
3739
3740SDOperand DAGCombiner::visitUINT_TO_FP(SDNode *N) {
3741  SDOperand N0 = N->getOperand(0);
3742  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3743  MVT::ValueType VT = N->getValueType(0);
3744
3745  // fold (uint_to_fp c1) -> c1fp
3746  if (N0C && N0.getValueType() != MVT::ppcf128)
3747    return DAG.getNode(ISD::UINT_TO_FP, VT, N0);
3748  return SDOperand();
3749}
3750
3751SDOperand DAGCombiner::visitFP_TO_SINT(SDNode *N) {
3752  SDOperand N0 = N->getOperand(0);
3753  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3754  MVT::ValueType VT = N->getValueType(0);
3755
3756  // fold (fp_to_sint c1fp) -> c1
3757  if (N0CFP)
3758    return DAG.getNode(ISD::FP_TO_SINT, VT, N0);
3759  return SDOperand();
3760}
3761
3762SDOperand DAGCombiner::visitFP_TO_UINT(SDNode *N) {
3763  SDOperand N0 = N->getOperand(0);
3764  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3765  MVT::ValueType VT = N->getValueType(0);
3766
3767  // fold (fp_to_uint c1fp) -> c1
3768  if (N0CFP && VT != MVT::ppcf128)
3769    return DAG.getNode(ISD::FP_TO_UINT, VT, N0);
3770  return SDOperand();
3771}
3772
3773SDOperand DAGCombiner::visitFP_ROUND(SDNode *N) {
3774  SDOperand N0 = N->getOperand(0);
3775  SDOperand N1 = N->getOperand(1);
3776  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3777  MVT::ValueType VT = N->getValueType(0);
3778
3779  // fold (fp_round c1fp) -> c1fp
3780  if (N0CFP && N0.getValueType() != MVT::ppcf128)
3781    return DAG.getNode(ISD::FP_ROUND, VT, N0, N1);
3782
3783  // fold (fp_round (fp_extend x)) -> x
3784  if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType())
3785    return N0.getOperand(0);
3786
3787  // fold (fp_round (fp_round x)) -> (fp_round x)
3788  if (N0.getOpcode() == ISD::FP_ROUND) {
3789    // This is a value preserving truncation if both round's are.
3790    bool IsTrunc = N->getConstantOperandVal(1) == 1 &&
3791                   N0.Val->getConstantOperandVal(1) == 1;
3792    return DAG.getNode(ISD::FP_ROUND, VT, N0.getOperand(0),
3793                       DAG.getIntPtrConstant(IsTrunc));
3794  }
3795
3796  // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y)
3797  if (N0.getOpcode() == ISD::FCOPYSIGN && N0.Val->hasOneUse()) {
3798    SDOperand Tmp = DAG.getNode(ISD::FP_ROUND, VT, N0.getOperand(0), N1);
3799    AddToWorkList(Tmp.Val);
3800    return DAG.getNode(ISD::FCOPYSIGN, VT, Tmp, N0.getOperand(1));
3801  }
3802
3803  return SDOperand();
3804}
3805
3806SDOperand DAGCombiner::visitFP_ROUND_INREG(SDNode *N) {
3807  SDOperand N0 = N->getOperand(0);
3808  MVT::ValueType VT = N->getValueType(0);
3809  MVT::ValueType EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
3810  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3811
3812  // fold (fp_round_inreg c1fp) -> c1fp
3813  if (N0CFP) {
3814    SDOperand Round = DAG.getConstantFP(N0CFP->getValueAPF(), EVT);
3815    return DAG.getNode(ISD::FP_EXTEND, VT, Round);
3816  }
3817  return SDOperand();
3818}
3819
3820SDOperand DAGCombiner::visitFP_EXTEND(SDNode *N) {
3821  SDOperand N0 = N->getOperand(0);
3822  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3823  MVT::ValueType VT = N->getValueType(0);
3824
3825  // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded.
3826  if (N->hasOneUse() && (*N->use_begin())->getOpcode() == ISD::FP_ROUND)
3827    return SDOperand();
3828
3829  // fold (fp_extend c1fp) -> c1fp
3830  if (N0CFP && VT != MVT::ppcf128)
3831    return DAG.getNode(ISD::FP_EXTEND, VT, N0);
3832
3833  // Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the
3834  // value of X.
3835  if (N0.getOpcode() == ISD::FP_ROUND && N0.Val->getConstantOperandVal(1) == 1){
3836    SDOperand In = N0.getOperand(0);
3837    if (In.getValueType() == VT) return In;
3838    if (VT < In.getValueType())
3839      return DAG.getNode(ISD::FP_ROUND, VT, In, N0.getOperand(1));
3840    return DAG.getNode(ISD::FP_EXTEND, VT, In);
3841  }
3842
3843  // fold (fpext (load x)) -> (fpext (fptrunc (extload x)))
3844  if (ISD::isNON_EXTLoad(N0.Val) && N0.hasOneUse() &&
3845      (!AfterLegalize||TLI.isLoadXLegal(ISD::EXTLOAD, N0.getValueType()))) {
3846    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3847    SDOperand ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, VT, LN0->getChain(),
3848                                       LN0->getBasePtr(), LN0->getSrcValue(),
3849                                       LN0->getSrcValueOffset(),
3850                                       N0.getValueType(),
3851                                       LN0->isVolatile(),
3852                                       LN0->getAlignment());
3853    CombineTo(N, ExtLoad);
3854    CombineTo(N0.Val, DAG.getNode(ISD::FP_ROUND, N0.getValueType(), ExtLoad,
3855                                  DAG.getIntPtrConstant(1)),
3856              ExtLoad.getValue(1));
3857    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
3858  }
3859
3860
3861  return SDOperand();
3862}
3863
3864SDOperand DAGCombiner::visitFNEG(SDNode *N) {
3865  SDOperand N0 = N->getOperand(0);
3866
3867  if (isNegatibleForFree(N0, AfterLegalize))
3868    return GetNegatedExpression(N0, DAG, AfterLegalize);
3869
3870  // Transform fneg(bitconvert(x)) -> bitconvert(x^sign) to avoid loading
3871  // constant pool values.
3872  if (N0.getOpcode() == ISD::BIT_CONVERT && N0.Val->hasOneUse() &&
3873      MVT::isInteger(N0.getOperand(0).getValueType()) &&
3874      !MVT::isVector(N0.getOperand(0).getValueType())) {
3875    SDOperand Int = N0.getOperand(0);
3876    MVT::ValueType IntVT = Int.getValueType();
3877    if (MVT::isInteger(IntVT) && !MVT::isVector(IntVT)) {
3878      Int = DAG.getNode(ISD::XOR, IntVT, Int,
3879                        DAG.getConstant(MVT::getIntVTSignBit(IntVT), IntVT));
3880      AddToWorkList(Int.Val);
3881      return DAG.getNode(ISD::BIT_CONVERT, N->getValueType(0), Int);
3882    }
3883  }
3884
3885  return SDOperand();
3886}
3887
3888SDOperand DAGCombiner::visitFABS(SDNode *N) {
3889  SDOperand N0 = N->getOperand(0);
3890  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3891  MVT::ValueType VT = N->getValueType(0);
3892
3893  // fold (fabs c1) -> fabs(c1)
3894  if (N0CFP && VT != MVT::ppcf128)
3895    return DAG.getNode(ISD::FABS, VT, N0);
3896  // fold (fabs (fabs x)) -> (fabs x)
3897  if (N0.getOpcode() == ISD::FABS)
3898    return N->getOperand(0);
3899  // fold (fabs (fneg x)) -> (fabs x)
3900  // fold (fabs (fcopysign x, y)) -> (fabs x)
3901  if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN)
3902    return DAG.getNode(ISD::FABS, VT, N0.getOperand(0));
3903
3904  // Transform fabs(bitconvert(x)) -> bitconvert(x&~sign) to avoid loading
3905  // constant pool values.
3906  if (N0.getOpcode() == ISD::BIT_CONVERT && N0.Val->hasOneUse() &&
3907      MVT::isInteger(N0.getOperand(0).getValueType()) &&
3908      !MVT::isVector(N0.getOperand(0).getValueType())) {
3909    SDOperand Int = N0.getOperand(0);
3910    MVT::ValueType IntVT = Int.getValueType();
3911    if (MVT::isInteger(IntVT) && !MVT::isVector(IntVT)) {
3912      Int = DAG.getNode(ISD::AND, IntVT, Int,
3913                        DAG.getConstant(~MVT::getIntVTSignBit(IntVT), IntVT));
3914      AddToWorkList(Int.Val);
3915      return DAG.getNode(ISD::BIT_CONVERT, N->getValueType(0), Int);
3916    }
3917  }
3918
3919  return SDOperand();
3920}
3921
3922SDOperand DAGCombiner::visitBRCOND(SDNode *N) {
3923  SDOperand Chain = N->getOperand(0);
3924  SDOperand N1 = N->getOperand(1);
3925  SDOperand N2 = N->getOperand(2);
3926  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3927
3928  // never taken branch, fold to chain
3929  if (N1C && N1C->isNullValue())
3930    return Chain;
3931  // unconditional branch
3932  if (N1C && N1C->getValue() == 1)
3933    return DAG.getNode(ISD::BR, MVT::Other, Chain, N2);
3934  // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal
3935  // on the target.
3936  if (N1.getOpcode() == ISD::SETCC &&
3937      TLI.isOperationLegal(ISD::BR_CC, MVT::Other)) {
3938    return DAG.getNode(ISD::BR_CC, MVT::Other, Chain, N1.getOperand(2),
3939                       N1.getOperand(0), N1.getOperand(1), N2);
3940  }
3941  return SDOperand();
3942}
3943
3944// Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB.
3945//
3946SDOperand DAGCombiner::visitBR_CC(SDNode *N) {
3947  CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1));
3948  SDOperand CondLHS = N->getOperand(2), CondRHS = N->getOperand(3);
3949
3950  // Use SimplifySetCC  to simplify SETCC's.
3951  SDOperand Simp = SimplifySetCC(MVT::i1, CondLHS, CondRHS, CC->get(), false);
3952  if (Simp.Val) AddToWorkList(Simp.Val);
3953
3954  ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(Simp.Val);
3955
3956  // fold br_cc true, dest -> br dest (unconditional branch)
3957  if (SCCC && SCCC->getValue())
3958    return DAG.getNode(ISD::BR, MVT::Other, N->getOperand(0),
3959                       N->getOperand(4));
3960  // fold br_cc false, dest -> unconditional fall through
3961  if (SCCC && SCCC->isNullValue())
3962    return N->getOperand(0);
3963
3964  // fold to a simpler setcc
3965  if (Simp.Val && Simp.getOpcode() == ISD::SETCC)
3966    return DAG.getNode(ISD::BR_CC, MVT::Other, N->getOperand(0),
3967                       Simp.getOperand(2), Simp.getOperand(0),
3968                       Simp.getOperand(1), N->getOperand(4));
3969  return SDOperand();
3970}
3971
3972
3973/// CombineToPreIndexedLoadStore - Try turning a load / store and a
3974/// pre-indexed load / store when the base pointer is a add or subtract
3975/// and it has other uses besides the load / store. After the
3976/// transformation, the new indexed load / store has effectively folded
3977/// the add / subtract in and all of its other uses are redirected to the
3978/// new load / store.
3979bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) {
3980  if (!AfterLegalize)
3981    return false;
3982
3983  bool isLoad = true;
3984  SDOperand Ptr;
3985  MVT::ValueType VT;
3986  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(N)) {
3987    if (LD->isIndexed())
3988      return false;
3989    VT = LD->getMemoryVT();
3990    if (!TLI.isIndexedLoadLegal(ISD::PRE_INC, VT) &&
3991        !TLI.isIndexedLoadLegal(ISD::PRE_DEC, VT))
3992      return false;
3993    Ptr = LD->getBasePtr();
3994  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(N)) {
3995    if (ST->isIndexed())
3996      return false;
3997    VT = ST->getMemoryVT();
3998    if (!TLI.isIndexedStoreLegal(ISD::PRE_INC, VT) &&
3999        !TLI.isIndexedStoreLegal(ISD::PRE_DEC, VT))
4000      return false;
4001    Ptr = ST->getBasePtr();
4002    isLoad = false;
4003  } else
4004    return false;
4005
4006  // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail
4007  // out.  There is no reason to make this a preinc/predec.
4008  if ((Ptr.getOpcode() != ISD::ADD && Ptr.getOpcode() != ISD::SUB) ||
4009      Ptr.Val->hasOneUse())
4010    return false;
4011
4012  // Ask the target to do addressing mode selection.
4013  SDOperand BasePtr;
4014  SDOperand Offset;
4015  ISD::MemIndexedMode AM = ISD::UNINDEXED;
4016  if (!TLI.getPreIndexedAddressParts(N, BasePtr, Offset, AM, DAG))
4017    return false;
4018  // Don't create a indexed load / store with zero offset.
4019  if (isa<ConstantSDNode>(Offset) &&
4020      cast<ConstantSDNode>(Offset)->getValue() == 0)
4021    return false;
4022
4023  // Try turning it into a pre-indexed load / store except when:
4024  // 1) The new base ptr is a frame index.
4025  // 2) If N is a store and the new base ptr is either the same as or is a
4026  //    predecessor of the value being stored.
4027  // 3) Another use of old base ptr is a predecessor of N. If ptr is folded
4028  //    that would create a cycle.
4029  // 4) All uses are load / store ops that use it as old base ptr.
4030
4031  // Check #1.  Preinc'ing a frame index would require copying the stack pointer
4032  // (plus the implicit offset) to a register to preinc anyway.
4033  if (isa<FrameIndexSDNode>(BasePtr))
4034    return false;
4035
4036  // Check #2.
4037  if (!isLoad) {
4038    SDOperand Val = cast<StoreSDNode>(N)->getValue();
4039    if (Val == BasePtr || BasePtr.Val->isPredecessorOf(Val.Val))
4040      return false;
4041  }
4042
4043  // Now check for #3 and #4.
4044  bool RealUse = false;
4045  for (SDNode::use_iterator I = Ptr.Val->use_begin(),
4046         E = Ptr.Val->use_end(); I != E; ++I) {
4047    SDNode *Use = *I;
4048    if (Use == N)
4049      continue;
4050    if (Use->isPredecessorOf(N))
4051      return false;
4052
4053    if (!((Use->getOpcode() == ISD::LOAD &&
4054           cast<LoadSDNode>(Use)->getBasePtr() == Ptr) ||
4055          (Use->getOpcode() == ISD::STORE &&
4056           cast<StoreSDNode>(Use)->getBasePtr() == Ptr)))
4057      RealUse = true;
4058  }
4059  if (!RealUse)
4060    return false;
4061
4062  SDOperand Result;
4063  if (isLoad)
4064    Result = DAG.getIndexedLoad(SDOperand(N,0), BasePtr, Offset, AM);
4065  else
4066    Result = DAG.getIndexedStore(SDOperand(N,0), BasePtr, Offset, AM);
4067  ++PreIndexedNodes;
4068  ++NodesCombined;
4069  DOUT << "\nReplacing.4 "; DEBUG(N->dump(&DAG));
4070  DOUT << "\nWith: "; DEBUG(Result.Val->dump(&DAG));
4071  DOUT << '\n';
4072  WorkListRemover DeadNodes(*this);
4073  if (isLoad) {
4074    DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0), Result.getValue(0),
4075                                  &DeadNodes);
4076    DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 1), Result.getValue(2),
4077                                  &DeadNodes);
4078  } else {
4079    DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0), Result.getValue(1),
4080                                  &DeadNodes);
4081  }
4082
4083  // Finally, since the node is now dead, remove it from the graph.
4084  DAG.DeleteNode(N);
4085
4086  // Replace the uses of Ptr with uses of the updated base value.
4087  DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(isLoad ? 1 : 0),
4088                                &DeadNodes);
4089  removeFromWorkList(Ptr.Val);
4090  DAG.DeleteNode(Ptr.Val);
4091
4092  return true;
4093}
4094
4095/// CombineToPostIndexedLoadStore - Try combine a load / store with a
4096/// add / sub of the base pointer node into a post-indexed load / store.
4097/// The transformation folded the add / subtract into the new indexed
4098/// load / store effectively and all of its uses are redirected to the
4099/// new load / store.
4100bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) {
4101  if (!AfterLegalize)
4102    return false;
4103
4104  bool isLoad = true;
4105  SDOperand Ptr;
4106  MVT::ValueType VT;
4107  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(N)) {
4108    if (LD->isIndexed())
4109      return false;
4110    VT = LD->getMemoryVT();
4111    if (!TLI.isIndexedLoadLegal(ISD::POST_INC, VT) &&
4112        !TLI.isIndexedLoadLegal(ISD::POST_DEC, VT))
4113      return false;
4114    Ptr = LD->getBasePtr();
4115  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(N)) {
4116    if (ST->isIndexed())
4117      return false;
4118    VT = ST->getMemoryVT();
4119    if (!TLI.isIndexedStoreLegal(ISD::POST_INC, VT) &&
4120        !TLI.isIndexedStoreLegal(ISD::POST_DEC, VT))
4121      return false;
4122    Ptr = ST->getBasePtr();
4123    isLoad = false;
4124  } else
4125    return false;
4126
4127  if (Ptr.Val->hasOneUse())
4128    return false;
4129
4130  for (SDNode::use_iterator I = Ptr.Val->use_begin(),
4131         E = Ptr.Val->use_end(); I != E; ++I) {
4132    SDNode *Op = *I;
4133    if (Op == N ||
4134        (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB))
4135      continue;
4136
4137    SDOperand BasePtr;
4138    SDOperand Offset;
4139    ISD::MemIndexedMode AM = ISD::UNINDEXED;
4140    if (TLI.getPostIndexedAddressParts(N, Op, BasePtr, Offset, AM, DAG)) {
4141      if (Ptr == Offset)
4142        std::swap(BasePtr, Offset);
4143      if (Ptr != BasePtr)
4144        continue;
4145      // Don't create a indexed load / store with zero offset.
4146      if (isa<ConstantSDNode>(Offset) &&
4147          cast<ConstantSDNode>(Offset)->getValue() == 0)
4148        continue;
4149
4150      // Try turning it into a post-indexed load / store except when
4151      // 1) All uses are load / store ops that use it as base ptr.
4152      // 2) Op must be independent of N, i.e. Op is neither a predecessor
4153      //    nor a successor of N. Otherwise, if Op is folded that would
4154      //    create a cycle.
4155
4156      // Check for #1.
4157      bool TryNext = false;
4158      for (SDNode::use_iterator II = BasePtr.Val->use_begin(),
4159             EE = BasePtr.Val->use_end(); II != EE; ++II) {
4160        SDNode *Use = *II;
4161        if (Use == Ptr.Val)
4162          continue;
4163
4164        // If all the uses are load / store addresses, then don't do the
4165        // transformation.
4166        if (Use->getOpcode() == ISD::ADD || Use->getOpcode() == ISD::SUB){
4167          bool RealUse = false;
4168          for (SDNode::use_iterator III = Use->use_begin(),
4169                 EEE = Use->use_end(); III != EEE; ++III) {
4170            SDNode *UseUse = *III;
4171            if (!((UseUse->getOpcode() == ISD::LOAD &&
4172                   cast<LoadSDNode>(UseUse)->getBasePtr().Val == Use) ||
4173                  (UseUse->getOpcode() == ISD::STORE &&
4174                   cast<StoreSDNode>(UseUse)->getBasePtr().Val == Use)))
4175              RealUse = true;
4176          }
4177
4178          if (!RealUse) {
4179            TryNext = true;
4180            break;
4181          }
4182        }
4183      }
4184      if (TryNext)
4185        continue;
4186
4187      // Check for #2
4188      if (!Op->isPredecessorOf(N) && !N->isPredecessorOf(Op)) {
4189        SDOperand Result = isLoad
4190          ? DAG.getIndexedLoad(SDOperand(N,0), BasePtr, Offset, AM)
4191          : DAG.getIndexedStore(SDOperand(N,0), BasePtr, Offset, AM);
4192        ++PostIndexedNodes;
4193        ++NodesCombined;
4194        DOUT << "\nReplacing.5 "; DEBUG(N->dump(&DAG));
4195        DOUT << "\nWith: "; DEBUG(Result.Val->dump(&DAG));
4196        DOUT << '\n';
4197        WorkListRemover DeadNodes(*this);
4198        if (isLoad) {
4199          DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0), Result.getValue(0),
4200                                        &DeadNodes);
4201          DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 1), Result.getValue(2),
4202                                        &DeadNodes);
4203        } else {
4204          DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0), Result.getValue(1),
4205                                        &DeadNodes);
4206        }
4207
4208        // Finally, since the node is now dead, remove it from the graph.
4209        DAG.DeleteNode(N);
4210
4211        // Replace the uses of Use with uses of the updated base value.
4212        DAG.ReplaceAllUsesOfValueWith(SDOperand(Op, 0),
4213                                      Result.getValue(isLoad ? 1 : 0),
4214                                      &DeadNodes);
4215        removeFromWorkList(Op);
4216        DAG.DeleteNode(Op);
4217        return true;
4218      }
4219    }
4220  }
4221  return false;
4222}
4223
4224/// InferAlignment - If we can infer some alignment information from this
4225/// pointer, return it.
4226static unsigned InferAlignment(SDOperand Ptr, SelectionDAG &DAG) {
4227  // If this is a direct reference to a stack slot, use information about the
4228  // stack slot's alignment.
4229  int FrameIdx = 1 << 31;
4230  int64_t FrameOffset = 0;
4231  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
4232    FrameIdx = FI->getIndex();
4233  } else if (Ptr.getOpcode() == ISD::ADD &&
4234             isa<ConstantSDNode>(Ptr.getOperand(1)) &&
4235             isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
4236    FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4237    FrameOffset = Ptr.getConstantOperandVal(1);
4238  }
4239
4240  if (FrameIdx != (1 << 31)) {
4241    // FIXME: Handle FI+CST.
4242    const MachineFrameInfo &MFI = *DAG.getMachineFunction().getFrameInfo();
4243    if (MFI.isFixedObjectIndex(FrameIdx)) {
4244      int64_t ObjectOffset = MFI.getObjectOffset(FrameIdx);
4245
4246      // The alignment of the frame index can be determined from its offset from
4247      // the incoming frame position.  If the frame object is at offset 32 and
4248      // the stack is guaranteed to be 16-byte aligned, then we know that the
4249      // object is 16-byte aligned.
4250      unsigned StackAlign = DAG.getTarget().getFrameInfo()->getStackAlignment();
4251      unsigned Align = MinAlign(ObjectOffset, StackAlign);
4252
4253      // Finally, the frame object itself may have a known alignment.  Factor
4254      // the alignment + offset into a new alignment.  For example, if we know
4255      // the  FI is 8 byte aligned, but the pointer is 4 off, we really have a
4256      // 4-byte alignment of the resultant pointer.  Likewise align 4 + 4-byte
4257      // offset = 4-byte alignment, align 4 + 1-byte offset = align 1, etc.
4258      unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
4259                                      FrameOffset);
4260      return std::max(Align, FIInfoAlign);
4261    }
4262  }
4263
4264  return 0;
4265}
4266
4267SDOperand DAGCombiner::visitLOAD(SDNode *N) {
4268  LoadSDNode *LD  = cast<LoadSDNode>(N);
4269  SDOperand Chain = LD->getChain();
4270  SDOperand Ptr   = LD->getBasePtr();
4271
4272  // Try to infer better alignment information than the load already has.
4273  if (LD->isUnindexed()) {
4274    if (unsigned Align = InferAlignment(Ptr, DAG)) {
4275      if (Align > LD->getAlignment())
4276        return DAG.getExtLoad(LD->getExtensionType(), LD->getValueType(0),
4277                              Chain, Ptr, LD->getSrcValue(),
4278                              LD->getSrcValueOffset(), LD->getMemoryVT(),
4279                              LD->isVolatile(), Align);
4280    }
4281  }
4282
4283
4284  // If load is not volatile and there are no uses of the loaded value (and
4285  // the updated indexed value in case of indexed loads), change uses of the
4286  // chain value into uses of the chain input (i.e. delete the dead load).
4287  if (!LD->isVolatile()) {
4288    if (N->getValueType(1) == MVT::Other) {
4289      // Unindexed loads.
4290      if (N->hasNUsesOfValue(0, 0)) {
4291        // It's not safe to use the two value CombineTo variant here. e.g.
4292        // v1, chain2 = load chain1, loc
4293        // v2, chain3 = load chain2, loc
4294        // v3         = add v2, c
4295        // Now we replace use of chain2 with chain1.  This makes the second load
4296        // isomorphic to the one we are deleting, and thus makes this load live.
4297        DOUT << "\nReplacing.6 "; DEBUG(N->dump(&DAG));
4298        DOUT << "\nWith chain: "; DEBUG(Chain.Val->dump(&DAG));
4299        DOUT << "\n";
4300        WorkListRemover DeadNodes(*this);
4301        DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 1), Chain, &DeadNodes);
4302        if (N->use_empty()) {
4303          removeFromWorkList(N);
4304          DAG.DeleteNode(N);
4305        }
4306        return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
4307      }
4308    } else {
4309      // Indexed loads.
4310      assert(N->getValueType(2) == MVT::Other && "Malformed indexed loads?");
4311      if (N->hasNUsesOfValue(0, 0) && N->hasNUsesOfValue(0, 1)) {
4312        SDOperand Undef = DAG.getNode(ISD::UNDEF, N->getValueType(0));
4313        DOUT << "\nReplacing.6 "; DEBUG(N->dump(&DAG));
4314        DOUT << "\nWith: "; DEBUG(Undef.Val->dump(&DAG));
4315        DOUT << " and 2 other values\n";
4316        WorkListRemover DeadNodes(*this);
4317        DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0), Undef, &DeadNodes);
4318        DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 1),
4319                                    DAG.getNode(ISD::UNDEF, N->getValueType(1)),
4320                                      &DeadNodes);
4321        DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 2), Chain, &DeadNodes);
4322        removeFromWorkList(N);
4323        DAG.DeleteNode(N);
4324        return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
4325      }
4326    }
4327  }
4328
4329  // If this load is directly stored, replace the load value with the stored
4330  // value.
4331  // TODO: Handle store large -> read small portion.
4332  // TODO: Handle TRUNCSTORE/LOADEXT
4333  if (LD->getExtensionType() == ISD::NON_EXTLOAD) {
4334    if (ISD::isNON_TRUNCStore(Chain.Val)) {
4335      StoreSDNode *PrevST = cast<StoreSDNode>(Chain);
4336      if (PrevST->getBasePtr() == Ptr &&
4337          PrevST->getValue().getValueType() == N->getValueType(0))
4338      return CombineTo(N, Chain.getOperand(1), Chain);
4339    }
4340  }
4341
4342  if (CombinerAA) {
4343    // Walk up chain skipping non-aliasing memory nodes.
4344    SDOperand BetterChain = FindBetterChain(N, Chain);
4345
4346    // If there is a better chain.
4347    if (Chain != BetterChain) {
4348      SDOperand ReplLoad;
4349
4350      // Replace the chain to void dependency.
4351      if (LD->getExtensionType() == ISD::NON_EXTLOAD) {
4352        ReplLoad = DAG.getLoad(N->getValueType(0), BetterChain, Ptr,
4353                               LD->getSrcValue(), LD->getSrcValueOffset(),
4354                               LD->isVolatile(), LD->getAlignment());
4355      } else {
4356        ReplLoad = DAG.getExtLoad(LD->getExtensionType(),
4357                                  LD->getValueType(0),
4358                                  BetterChain, Ptr, LD->getSrcValue(),
4359                                  LD->getSrcValueOffset(),
4360                                  LD->getMemoryVT(),
4361                                  LD->isVolatile(),
4362                                  LD->getAlignment());
4363      }
4364
4365      // Create token factor to keep old chain connected.
4366      SDOperand Token = DAG.getNode(ISD::TokenFactor, MVT::Other,
4367                                    Chain, ReplLoad.getValue(1));
4368
4369      // Replace uses with load result and token factor. Don't add users
4370      // to work list.
4371      return CombineTo(N, ReplLoad.getValue(0), Token, false);
4372    }
4373  }
4374
4375  // Try transforming N to an indexed load.
4376  if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
4377    return SDOperand(N, 0);
4378
4379  return SDOperand();
4380}
4381
4382
4383SDOperand DAGCombiner::visitSTORE(SDNode *N) {
4384  StoreSDNode *ST  = cast<StoreSDNode>(N);
4385  SDOperand Chain = ST->getChain();
4386  SDOperand Value = ST->getValue();
4387  SDOperand Ptr   = ST->getBasePtr();
4388
4389  // Try to infer better alignment information than the store already has.
4390  if (ST->isUnindexed()) {
4391    if (unsigned Align = InferAlignment(Ptr, DAG)) {
4392      if (Align > ST->getAlignment())
4393        return DAG.getTruncStore(Chain, Value, Ptr, ST->getSrcValue(),
4394                                 ST->getSrcValueOffset(), ST->getMemoryVT(),
4395                                 ST->isVolatile(), Align);
4396    }
4397  }
4398
4399  // If this is a store of a bit convert, store the input value if the
4400  // resultant store does not need a higher alignment than the original.
4401  if (Value.getOpcode() == ISD::BIT_CONVERT && !ST->isTruncatingStore() &&
4402      ST->isUnindexed()) {
4403    unsigned Align = ST->getAlignment();
4404    MVT::ValueType SVT = Value.getOperand(0).getValueType();
4405    unsigned OrigAlign = TLI.getTargetMachine().getTargetData()->
4406      getABITypeAlignment(MVT::getTypeForValueType(SVT));
4407    if (Align <= OrigAlign && TLI.isOperationLegal(ISD::STORE, SVT))
4408      return DAG.getStore(Chain, Value.getOperand(0), Ptr, ST->getSrcValue(),
4409                          ST->getSrcValueOffset(), ST->isVolatile(), Align);
4410  }
4411
4412  // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
4413  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Value)) {
4414    if (Value.getOpcode() != ISD::TargetConstantFP) {
4415      SDOperand Tmp;
4416      switch (CFP->getValueType(0)) {
4417      default: assert(0 && "Unknown FP type");
4418      case MVT::f80:    // We don't do this for these yet.
4419      case MVT::f128:
4420      case MVT::ppcf128:
4421        break;
4422      case MVT::f32:
4423        if (!AfterLegalize || TLI.isTypeLegal(MVT::i32)) {
4424          Tmp = DAG.getConstant((uint32_t)CFP->getValueAPF().
4425                              convertToAPInt().getZExtValue(), MVT::i32);
4426          return DAG.getStore(Chain, Tmp, Ptr, ST->getSrcValue(),
4427                              ST->getSrcValueOffset(), ST->isVolatile(),
4428                              ST->getAlignment());
4429        }
4430        break;
4431      case MVT::f64:
4432        if (!AfterLegalize || TLI.isTypeLegal(MVT::i64)) {
4433          Tmp = DAG.getConstant(CFP->getValueAPF().convertToAPInt().
4434                                  getZExtValue(), MVT::i64);
4435          return DAG.getStore(Chain, Tmp, Ptr, ST->getSrcValue(),
4436                              ST->getSrcValueOffset(), ST->isVolatile(),
4437                              ST->getAlignment());
4438        } else if (TLI.isTypeLegal(MVT::i32)) {
4439          // Many FP stores are not made apparent until after legalize, e.g. for
4440          // argument passing.  Since this is so common, custom legalize the
4441          // 64-bit integer store into two 32-bit stores.
4442          uint64_t Val = CFP->getValueAPF().convertToAPInt().getZExtValue();
4443          SDOperand Lo = DAG.getConstant(Val & 0xFFFFFFFF, MVT::i32);
4444          SDOperand Hi = DAG.getConstant(Val >> 32, MVT::i32);
4445          if (TLI.isBigEndian()) std::swap(Lo, Hi);
4446
4447          int SVOffset = ST->getSrcValueOffset();
4448          unsigned Alignment = ST->getAlignment();
4449          bool isVolatile = ST->isVolatile();
4450
4451          SDOperand St0 = DAG.getStore(Chain, Lo, Ptr, ST->getSrcValue(),
4452                                       ST->getSrcValueOffset(),
4453                                       isVolatile, ST->getAlignment());
4454          Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr,
4455                            DAG.getConstant(4, Ptr.getValueType()));
4456          SVOffset += 4;
4457          Alignment = MinAlign(Alignment, 4U);
4458          SDOperand St1 = DAG.getStore(Chain, Hi, Ptr, ST->getSrcValue(),
4459                                       SVOffset, isVolatile, Alignment);
4460          return DAG.getNode(ISD::TokenFactor, MVT::Other, St0, St1);
4461        }
4462        break;
4463      }
4464    }
4465  }
4466
4467  if (CombinerAA) {
4468    // Walk up chain skipping non-aliasing memory nodes.
4469    SDOperand BetterChain = FindBetterChain(N, Chain);
4470
4471    // If there is a better chain.
4472    if (Chain != BetterChain) {
4473      // Replace the chain to avoid dependency.
4474      SDOperand ReplStore;
4475      if (ST->isTruncatingStore()) {
4476        ReplStore = DAG.getTruncStore(BetterChain, Value, Ptr,
4477                                      ST->getSrcValue(),ST->getSrcValueOffset(),
4478                                      ST->getMemoryVT(),
4479                                      ST->isVolatile(), ST->getAlignment());
4480      } else {
4481        ReplStore = DAG.getStore(BetterChain, Value, Ptr,
4482                                 ST->getSrcValue(), ST->getSrcValueOffset(),
4483                                 ST->isVolatile(), ST->getAlignment());
4484      }
4485
4486      // Create token to keep both nodes around.
4487      SDOperand Token =
4488        DAG.getNode(ISD::TokenFactor, MVT::Other, Chain, ReplStore);
4489
4490      // Don't add users to work list.
4491      return CombineTo(N, Token, false);
4492    }
4493  }
4494
4495  // Try transforming N to an indexed store.
4496  if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
4497    return SDOperand(N, 0);
4498
4499  // FIXME: is there such a thing as a truncating indexed store?
4500  if (ST->isTruncatingStore() && ST->isUnindexed() &&
4501      MVT::isInteger(Value.getValueType())) {
4502    // See if we can simplify the input to this truncstore with knowledge that
4503    // only the low bits are being used.  For example:
4504    // "truncstore (or (shl x, 8), y), i8"  -> "truncstore y, i8"
4505    SDOperand Shorter =
4506      GetDemandedBits(Value,
4507                 APInt::getLowBitsSet(Value.getValueSizeInBits(),
4508                                      MVT::getSizeInBits(ST->getMemoryVT())));
4509    AddToWorkList(Value.Val);
4510    if (Shorter.Val)
4511      return DAG.getTruncStore(Chain, Shorter, Ptr, ST->getSrcValue(),
4512                               ST->getSrcValueOffset(), ST->getMemoryVT(),
4513                               ST->isVolatile(), ST->getAlignment());
4514
4515    // Otherwise, see if we can simplify the operation with
4516    // SimplifyDemandedBits, which only works if the value has a single use.
4517    if (SimplifyDemandedBits(Value,
4518                             APInt::getLowBitsSet(
4519                               Value.getValueSizeInBits(),
4520                               MVT::getSizeInBits(ST->getMemoryVT()))))
4521      return SDOperand(N, 0);
4522  }
4523
4524  // If this is a load followed by a store to the same location, then the store
4525  // is dead/noop.
4526  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Value)) {
4527    if (Ld->getBasePtr() == Ptr && ST->getMemoryVT() == Ld->getMemoryVT() &&
4528        ST->isUnindexed() && !ST->isVolatile() &&
4529        // There can't be any side effects between the load and store, such as
4530        // a call or store.
4531        Chain.reachesChainWithoutSideEffects(SDOperand(Ld, 1))) {
4532      // The store is dead, remove it.
4533      return Chain;
4534    }
4535  }
4536
4537  // If this is an FP_ROUND or TRUNC followed by a store, fold this into a
4538  // truncating store.  We can do this even if this is already a truncstore.
4539  if ((Value.getOpcode() == ISD::FP_ROUND || Value.getOpcode() == ISD::TRUNCATE)
4540      && TLI.isTypeLegal(Value.getOperand(0).getValueType()) &&
4541      Value.Val->hasOneUse() && ST->isUnindexed() &&
4542      TLI.isTruncStoreLegal(Value.getOperand(0).getValueType(),
4543                            ST->getMemoryVT())) {
4544    return DAG.getTruncStore(Chain, Value.getOperand(0), Ptr, ST->getSrcValue(),
4545                             ST->getSrcValueOffset(), ST->getMemoryVT(),
4546                             ST->isVolatile(), ST->getAlignment());
4547  }
4548
4549  return SDOperand();
4550}
4551
4552SDOperand DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) {
4553  SDOperand InVec = N->getOperand(0);
4554  SDOperand InVal = N->getOperand(1);
4555  SDOperand EltNo = N->getOperand(2);
4556
4557  // If the invec is a BUILD_VECTOR and if EltNo is a constant, build a new
4558  // vector with the inserted element.
4559  if (InVec.getOpcode() == ISD::BUILD_VECTOR && isa<ConstantSDNode>(EltNo)) {
4560    unsigned Elt = cast<ConstantSDNode>(EltNo)->getValue();
4561    SmallVector<SDOperand, 8> Ops(InVec.Val->op_begin(), InVec.Val->op_end());
4562    if (Elt < Ops.size())
4563      Ops[Elt] = InVal;
4564    return DAG.getNode(ISD::BUILD_VECTOR, InVec.getValueType(),
4565                       &Ops[0], Ops.size());
4566  }
4567
4568  return SDOperand();
4569}
4570
4571SDOperand DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) {
4572  SDOperand InVec = N->getOperand(0);
4573  SDOperand EltNo = N->getOperand(1);
4574
4575  // (vextract (v4f32 s2v (f32 load $addr)), 0) -> (f32 load $addr)
4576  // (vextract (v4i32 bc (v4f32 s2v (f32 load $addr))), 0) -> (i32 load $addr)
4577  if (isa<ConstantSDNode>(EltNo)) {
4578    unsigned Elt = cast<ConstantSDNode>(EltNo)->getValue();
4579    bool NewLoad = false;
4580    if (Elt == 0) {
4581      MVT::ValueType VT = InVec.getValueType();
4582      MVT::ValueType EVT = MVT::getVectorElementType(VT);
4583      MVT::ValueType LVT = EVT;
4584      unsigned NumElts = MVT::getVectorNumElements(VT);
4585      if (InVec.getOpcode() == ISD::BIT_CONVERT) {
4586        MVT::ValueType BCVT = InVec.getOperand(0).getValueType();
4587        if (!MVT::isVector(BCVT) ||
4588            NumElts != MVT::getVectorNumElements(BCVT))
4589          return SDOperand();
4590        InVec = InVec.getOperand(0);
4591        EVT = MVT::getVectorElementType(BCVT);
4592        NewLoad = true;
4593      }
4594      if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR &&
4595          InVec.getOperand(0).getValueType() == EVT &&
4596          ISD::isNormalLoad(InVec.getOperand(0).Val) &&
4597          InVec.getOperand(0).hasOneUse()) {
4598        LoadSDNode *LN0 = cast<LoadSDNode>(InVec.getOperand(0));
4599        unsigned Align = LN0->getAlignment();
4600        if (NewLoad) {
4601          // Check the resultant load doesn't need a higher alignment than the
4602          // original load.
4603          unsigned NewAlign = TLI.getTargetMachine().getTargetData()->
4604            getABITypeAlignment(MVT::getTypeForValueType(LVT));
4605          if (!TLI.isOperationLegal(ISD::LOAD, LVT) || NewAlign > Align)
4606            return SDOperand();
4607          Align = NewAlign;
4608        }
4609
4610        return DAG.getLoad(LVT, LN0->getChain(), LN0->getBasePtr(),
4611                           LN0->getSrcValue(), LN0->getSrcValueOffset(),
4612                           LN0->isVolatile(), Align);
4613      }
4614    }
4615  }
4616  return SDOperand();
4617}
4618
4619
4620SDOperand DAGCombiner::visitBUILD_VECTOR(SDNode *N) {
4621  unsigned NumInScalars = N->getNumOperands();
4622  MVT::ValueType VT = N->getValueType(0);
4623  unsigned NumElts = MVT::getVectorNumElements(VT);
4624  MVT::ValueType EltType = MVT::getVectorElementType(VT);
4625
4626  // Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT
4627  // operations.  If so, and if the EXTRACT_VECTOR_ELT vector inputs come from
4628  // at most two distinct vectors, turn this into a shuffle node.
4629  SDOperand VecIn1, VecIn2;
4630  for (unsigned i = 0; i != NumInScalars; ++i) {
4631    // Ignore undef inputs.
4632    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
4633
4634    // If this input is something other than a EXTRACT_VECTOR_ELT with a
4635    // constant index, bail out.
4636    if (N->getOperand(i).getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
4637        !isa<ConstantSDNode>(N->getOperand(i).getOperand(1))) {
4638      VecIn1 = VecIn2 = SDOperand(0, 0);
4639      break;
4640    }
4641
4642    // If the input vector type disagrees with the result of the build_vector,
4643    // we can't make a shuffle.
4644    SDOperand ExtractedFromVec = N->getOperand(i).getOperand(0);
4645    if (ExtractedFromVec.getValueType() != VT) {
4646      VecIn1 = VecIn2 = SDOperand(0, 0);
4647      break;
4648    }
4649
4650    // Otherwise, remember this.  We allow up to two distinct input vectors.
4651    if (ExtractedFromVec == VecIn1 || ExtractedFromVec == VecIn2)
4652      continue;
4653
4654    if (VecIn1.Val == 0) {
4655      VecIn1 = ExtractedFromVec;
4656    } else if (VecIn2.Val == 0) {
4657      VecIn2 = ExtractedFromVec;
4658    } else {
4659      // Too many inputs.
4660      VecIn1 = VecIn2 = SDOperand(0, 0);
4661      break;
4662    }
4663  }
4664
4665  // If everything is good, we can make a shuffle operation.
4666  if (VecIn1.Val) {
4667    SmallVector<SDOperand, 8> BuildVecIndices;
4668    for (unsigned i = 0; i != NumInScalars; ++i) {
4669      if (N->getOperand(i).getOpcode() == ISD::UNDEF) {
4670        BuildVecIndices.push_back(DAG.getNode(ISD::UNDEF, TLI.getPointerTy()));
4671        continue;
4672      }
4673
4674      SDOperand Extract = N->getOperand(i);
4675
4676      // If extracting from the first vector, just use the index directly.
4677      if (Extract.getOperand(0) == VecIn1) {
4678        BuildVecIndices.push_back(Extract.getOperand(1));
4679        continue;
4680      }
4681
4682      // Otherwise, use InIdx + VecSize
4683      unsigned Idx = cast<ConstantSDNode>(Extract.getOperand(1))->getValue();
4684      BuildVecIndices.push_back(DAG.getIntPtrConstant(Idx+NumInScalars));
4685    }
4686
4687    // Add count and size info.
4688    MVT::ValueType BuildVecVT = MVT::getVectorType(TLI.getPointerTy(), NumElts);
4689
4690    // Return the new VECTOR_SHUFFLE node.
4691    SDOperand Ops[5];
4692    Ops[0] = VecIn1;
4693    if (VecIn2.Val) {
4694      Ops[1] = VecIn2;
4695    } else {
4696      // Use an undef build_vector as input for the second operand.
4697      std::vector<SDOperand> UnOps(NumInScalars,
4698                                   DAG.getNode(ISD::UNDEF,
4699                                               EltType));
4700      Ops[1] = DAG.getNode(ISD::BUILD_VECTOR, VT,
4701                           &UnOps[0], UnOps.size());
4702      AddToWorkList(Ops[1].Val);
4703    }
4704    Ops[2] = DAG.getNode(ISD::BUILD_VECTOR, BuildVecVT,
4705                         &BuildVecIndices[0], BuildVecIndices.size());
4706    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, Ops, 3);
4707  }
4708
4709  return SDOperand();
4710}
4711
4712SDOperand DAGCombiner::visitCONCAT_VECTORS(SDNode *N) {
4713  // TODO: Check to see if this is a CONCAT_VECTORS of a bunch of
4714  // EXTRACT_SUBVECTOR operations.  If so, and if the EXTRACT_SUBVECTOR vector
4715  // inputs come from at most two distinct vectors, turn this into a shuffle
4716  // node.
4717
4718  // If we only have one input vector, we don't need to do any concatenation.
4719  if (N->getNumOperands() == 1) {
4720    return N->getOperand(0);
4721  }
4722
4723  return SDOperand();
4724}
4725
4726SDOperand DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) {
4727  SDOperand ShufMask = N->getOperand(2);
4728  unsigned NumElts = ShufMask.getNumOperands();
4729
4730  // If the shuffle mask is an identity operation on the LHS, return the LHS.
4731  bool isIdentity = true;
4732  for (unsigned i = 0; i != NumElts; ++i) {
4733    if (ShufMask.getOperand(i).getOpcode() != ISD::UNDEF &&
4734        cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() != i) {
4735      isIdentity = false;
4736      break;
4737    }
4738  }
4739  if (isIdentity) return N->getOperand(0);
4740
4741  // If the shuffle mask is an identity operation on the RHS, return the RHS.
4742  isIdentity = true;
4743  for (unsigned i = 0; i != NumElts; ++i) {
4744    if (ShufMask.getOperand(i).getOpcode() != ISD::UNDEF &&
4745        cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() != i+NumElts) {
4746      isIdentity = false;
4747      break;
4748    }
4749  }
4750  if (isIdentity) return N->getOperand(1);
4751
4752  // Check if the shuffle is a unary shuffle, i.e. one of the vectors is not
4753  // needed at all.
4754  bool isUnary = true;
4755  bool isSplat = true;
4756  int VecNum = -1;
4757  unsigned BaseIdx = 0;
4758  for (unsigned i = 0; i != NumElts; ++i)
4759    if (ShufMask.getOperand(i).getOpcode() != ISD::UNDEF) {
4760      unsigned Idx = cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue();
4761      int V = (Idx < NumElts) ? 0 : 1;
4762      if (VecNum == -1) {
4763        VecNum = V;
4764        BaseIdx = Idx;
4765      } else {
4766        if (BaseIdx != Idx)
4767          isSplat = false;
4768        if (VecNum != V) {
4769          isUnary = false;
4770          break;
4771        }
4772      }
4773    }
4774
4775  SDOperand N0 = N->getOperand(0);
4776  SDOperand N1 = N->getOperand(1);
4777  // Normalize unary shuffle so the RHS is undef.
4778  if (isUnary && VecNum == 1)
4779    std::swap(N0, N1);
4780
4781  // If it is a splat, check if the argument vector is a build_vector with
4782  // all scalar elements the same.
4783  if (isSplat) {
4784    SDNode *V = N0.Val;
4785
4786    // If this is a bit convert that changes the element type of the vector but
4787    // not the number of vector elements, look through it.  Be careful not to
4788    // look though conversions that change things like v4f32 to v2f64.
4789    if (V->getOpcode() == ISD::BIT_CONVERT) {
4790      SDOperand ConvInput = V->getOperand(0);
4791      if (MVT::getVectorNumElements(ConvInput.getValueType()) == NumElts)
4792        V = ConvInput.Val;
4793    }
4794
4795    if (V->getOpcode() == ISD::BUILD_VECTOR) {
4796      unsigned NumElems = V->getNumOperands();
4797      if (NumElems > BaseIdx) {
4798        SDOperand Base;
4799        bool AllSame = true;
4800        for (unsigned i = 0; i != NumElems; ++i) {
4801          if (V->getOperand(i).getOpcode() != ISD::UNDEF) {
4802            Base = V->getOperand(i);
4803            break;
4804          }
4805        }
4806        // Splat of <u, u, u, u>, return <u, u, u, u>
4807        if (!Base.Val)
4808          return N0;
4809        for (unsigned i = 0; i != NumElems; ++i) {
4810          if (V->getOperand(i) != Base) {
4811            AllSame = false;
4812            break;
4813          }
4814        }
4815        // Splat of <x, x, x, x>, return <x, x, x, x>
4816        if (AllSame)
4817          return N0;
4818      }
4819    }
4820  }
4821
4822  // If it is a unary or the LHS and the RHS are the same node, turn the RHS
4823  // into an undef.
4824  if (isUnary || N0 == N1) {
4825    // Check the SHUFFLE mask, mapping any inputs from the 2nd operand into the
4826    // first operand.
4827    SmallVector<SDOperand, 8> MappedOps;
4828    for (unsigned i = 0; i != NumElts; ++i) {
4829      if (ShufMask.getOperand(i).getOpcode() == ISD::UNDEF ||
4830          cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() < NumElts) {
4831        MappedOps.push_back(ShufMask.getOperand(i));
4832      } else {
4833        unsigned NewIdx =
4834          cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() - NumElts;
4835        MappedOps.push_back(DAG.getConstant(NewIdx, MVT::i32));
4836      }
4837    }
4838    ShufMask = DAG.getNode(ISD::BUILD_VECTOR, ShufMask.getValueType(),
4839                           &MappedOps[0], MappedOps.size());
4840    AddToWorkList(ShufMask.Val);
4841    return DAG.getNode(ISD::VECTOR_SHUFFLE, N->getValueType(0),
4842                       N0,
4843                       DAG.getNode(ISD::UNDEF, N->getValueType(0)),
4844                       ShufMask);
4845  }
4846
4847  return SDOperand();
4848}
4849
4850/// XformToShuffleWithZero - Returns a vector_shuffle if it able to transform
4851/// an AND to a vector_shuffle with the destination vector and a zero vector.
4852/// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==>
4853///      vector_shuffle V, Zero, <0, 4, 2, 4>
4854SDOperand DAGCombiner::XformToShuffleWithZero(SDNode *N) {
4855  SDOperand LHS = N->getOperand(0);
4856  SDOperand RHS = N->getOperand(1);
4857  if (N->getOpcode() == ISD::AND) {
4858    if (RHS.getOpcode() == ISD::BIT_CONVERT)
4859      RHS = RHS.getOperand(0);
4860    if (RHS.getOpcode() == ISD::BUILD_VECTOR) {
4861      std::vector<SDOperand> IdxOps;
4862      unsigned NumOps = RHS.getNumOperands();
4863      unsigned NumElts = NumOps;
4864      MVT::ValueType EVT = MVT::getVectorElementType(RHS.getValueType());
4865      for (unsigned i = 0; i != NumElts; ++i) {
4866        SDOperand Elt = RHS.getOperand(i);
4867        if (!isa<ConstantSDNode>(Elt))
4868          return SDOperand();
4869        else if (cast<ConstantSDNode>(Elt)->isAllOnesValue())
4870          IdxOps.push_back(DAG.getConstant(i, EVT));
4871        else if (cast<ConstantSDNode>(Elt)->isNullValue())
4872          IdxOps.push_back(DAG.getConstant(NumElts, EVT));
4873        else
4874          return SDOperand();
4875      }
4876
4877      // Let's see if the target supports this vector_shuffle.
4878      if (!TLI.isVectorClearMaskLegal(IdxOps, EVT, DAG))
4879        return SDOperand();
4880
4881      // Return the new VECTOR_SHUFFLE node.
4882      MVT::ValueType VT = MVT::getVectorType(EVT, NumElts);
4883      std::vector<SDOperand> Ops;
4884      LHS = DAG.getNode(ISD::BIT_CONVERT, VT, LHS);
4885      Ops.push_back(LHS);
4886      AddToWorkList(LHS.Val);
4887      std::vector<SDOperand> ZeroOps(NumElts, DAG.getConstant(0, EVT));
4888      Ops.push_back(DAG.getNode(ISD::BUILD_VECTOR, VT,
4889                                &ZeroOps[0], ZeroOps.size()));
4890      Ops.push_back(DAG.getNode(ISD::BUILD_VECTOR, VT,
4891                                &IdxOps[0], IdxOps.size()));
4892      SDOperand Result = DAG.getNode(ISD::VECTOR_SHUFFLE, VT,
4893                                     &Ops[0], Ops.size());
4894      if (VT != LHS.getValueType()) {
4895        Result = DAG.getNode(ISD::BIT_CONVERT, LHS.getValueType(), Result);
4896      }
4897      return Result;
4898    }
4899  }
4900  return SDOperand();
4901}
4902
4903/// SimplifyVBinOp - Visit a binary vector operation, like ADD.
4904SDOperand DAGCombiner::SimplifyVBinOp(SDNode *N) {
4905  // After legalize, the target may be depending on adds and other
4906  // binary ops to provide legal ways to construct constants or other
4907  // things. Simplifying them may result in a loss of legality.
4908  if (AfterLegalize) return SDOperand();
4909
4910  MVT::ValueType VT = N->getValueType(0);
4911  assert(MVT::isVector(VT) && "SimplifyVBinOp only works on vectors!");
4912
4913  MVT::ValueType EltType = MVT::getVectorElementType(VT);
4914  SDOperand LHS = N->getOperand(0);
4915  SDOperand RHS = N->getOperand(1);
4916  SDOperand Shuffle = XformToShuffleWithZero(N);
4917  if (Shuffle.Val) return Shuffle;
4918
4919  // If the LHS and RHS are BUILD_VECTOR nodes, see if we can constant fold
4920  // this operation.
4921  if (LHS.getOpcode() == ISD::BUILD_VECTOR &&
4922      RHS.getOpcode() == ISD::BUILD_VECTOR) {
4923    SmallVector<SDOperand, 8> Ops;
4924    for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
4925      SDOperand LHSOp = LHS.getOperand(i);
4926      SDOperand RHSOp = RHS.getOperand(i);
4927      // If these two elements can't be folded, bail out.
4928      if ((LHSOp.getOpcode() != ISD::UNDEF &&
4929           LHSOp.getOpcode() != ISD::Constant &&
4930           LHSOp.getOpcode() != ISD::ConstantFP) ||
4931          (RHSOp.getOpcode() != ISD::UNDEF &&
4932           RHSOp.getOpcode() != ISD::Constant &&
4933           RHSOp.getOpcode() != ISD::ConstantFP))
4934        break;
4935      // Can't fold divide by zero.
4936      if (N->getOpcode() == ISD::SDIV || N->getOpcode() == ISD::UDIV ||
4937          N->getOpcode() == ISD::FDIV) {
4938        if ((RHSOp.getOpcode() == ISD::Constant &&
4939             cast<ConstantSDNode>(RHSOp.Val)->isNullValue()) ||
4940            (RHSOp.getOpcode() == ISD::ConstantFP &&
4941             cast<ConstantFPSDNode>(RHSOp.Val)->getValueAPF().isZero()))
4942          break;
4943      }
4944      Ops.push_back(DAG.getNode(N->getOpcode(), EltType, LHSOp, RHSOp));
4945      AddToWorkList(Ops.back().Val);
4946      assert((Ops.back().getOpcode() == ISD::UNDEF ||
4947              Ops.back().getOpcode() == ISD::Constant ||
4948              Ops.back().getOpcode() == ISD::ConstantFP) &&
4949             "Scalar binop didn't fold!");
4950    }
4951
4952    if (Ops.size() == LHS.getNumOperands()) {
4953      MVT::ValueType VT = LHS.getValueType();
4954      return DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
4955    }
4956  }
4957
4958  return SDOperand();
4959}
4960
4961SDOperand DAGCombiner::SimplifySelect(SDOperand N0, SDOperand N1, SDOperand N2){
4962  assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!");
4963
4964  SDOperand SCC = SimplifySelectCC(N0.getOperand(0), N0.getOperand(1), N1, N2,
4965                                 cast<CondCodeSDNode>(N0.getOperand(2))->get());
4966  // If we got a simplified select_cc node back from SimplifySelectCC, then
4967  // break it down into a new SETCC node, and a new SELECT node, and then return
4968  // the SELECT node, since we were called with a SELECT node.
4969  if (SCC.Val) {
4970    // Check to see if we got a select_cc back (to turn into setcc/select).
4971    // Otherwise, just return whatever node we got back, like fabs.
4972    if (SCC.getOpcode() == ISD::SELECT_CC) {
4973      SDOperand SETCC = DAG.getNode(ISD::SETCC, N0.getValueType(),
4974                                    SCC.getOperand(0), SCC.getOperand(1),
4975                                    SCC.getOperand(4));
4976      AddToWorkList(SETCC.Val);
4977      return DAG.getNode(ISD::SELECT, SCC.getValueType(), SCC.getOperand(2),
4978                         SCC.getOperand(3), SETCC);
4979    }
4980    return SCC;
4981  }
4982  return SDOperand();
4983}
4984
4985/// SimplifySelectOps - Given a SELECT or a SELECT_CC node, where LHS and RHS
4986/// are the two values being selected between, see if we can simplify the
4987/// select.  Callers of this should assume that TheSelect is deleted if this
4988/// returns true.  As such, they should return the appropriate thing (e.g. the
4989/// node) back to the top-level of the DAG combiner loop to avoid it being
4990/// looked at.
4991///
4992bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDOperand LHS,
4993                                    SDOperand RHS) {
4994
4995  // If this is a select from two identical things, try to pull the operation
4996  // through the select.
4997  if (LHS.getOpcode() == RHS.getOpcode() && LHS.hasOneUse() && RHS.hasOneUse()){
4998    // If this is a load and the token chain is identical, replace the select
4999    // of two loads with a load through a select of the address to load from.
5000    // This triggers in things like "select bool X, 10.0, 123.0" after the FP
5001    // constants have been dropped into the constant pool.
5002    if (LHS.getOpcode() == ISD::LOAD &&
5003        // Token chains must be identical.
5004        LHS.getOperand(0) == RHS.getOperand(0)) {
5005      LoadSDNode *LLD = cast<LoadSDNode>(LHS);
5006      LoadSDNode *RLD = cast<LoadSDNode>(RHS);
5007
5008      // If this is an EXTLOAD, the VT's must match.
5009      if (LLD->getMemoryVT() == RLD->getMemoryVT()) {
5010        // FIXME: this conflates two src values, discarding one.  This is not
5011        // the right thing to do, but nothing uses srcvalues now.  When they do,
5012        // turn SrcValue into a list of locations.
5013        SDOperand Addr;
5014        if (TheSelect->getOpcode() == ISD::SELECT) {
5015          // Check that the condition doesn't reach either load.  If so, folding
5016          // this will induce a cycle into the DAG.
5017          if (!LLD->isPredecessorOf(TheSelect->getOperand(0).Val) &&
5018              !RLD->isPredecessorOf(TheSelect->getOperand(0).Val)) {
5019            Addr = DAG.getNode(ISD::SELECT, LLD->getBasePtr().getValueType(),
5020                               TheSelect->getOperand(0), LLD->getBasePtr(),
5021                               RLD->getBasePtr());
5022          }
5023        } else {
5024          // Check that the condition doesn't reach either load.  If so, folding
5025          // this will induce a cycle into the DAG.
5026          if (!LLD->isPredecessorOf(TheSelect->getOperand(0).Val) &&
5027              !RLD->isPredecessorOf(TheSelect->getOperand(0).Val) &&
5028              !LLD->isPredecessorOf(TheSelect->getOperand(1).Val) &&
5029              !RLD->isPredecessorOf(TheSelect->getOperand(1).Val)) {
5030            Addr = DAG.getNode(ISD::SELECT_CC, LLD->getBasePtr().getValueType(),
5031                             TheSelect->getOperand(0),
5032                             TheSelect->getOperand(1),
5033                             LLD->getBasePtr(), RLD->getBasePtr(),
5034                             TheSelect->getOperand(4));
5035          }
5036        }
5037
5038        if (Addr.Val) {
5039          SDOperand Load;
5040          if (LLD->getExtensionType() == ISD::NON_EXTLOAD)
5041            Load = DAG.getLoad(TheSelect->getValueType(0), LLD->getChain(),
5042                               Addr,LLD->getSrcValue(),
5043                               LLD->getSrcValueOffset(),
5044                               LLD->isVolatile(),
5045                               LLD->getAlignment());
5046          else {
5047            Load = DAG.getExtLoad(LLD->getExtensionType(),
5048                                  TheSelect->getValueType(0),
5049                                  LLD->getChain(), Addr, LLD->getSrcValue(),
5050                                  LLD->getSrcValueOffset(),
5051                                  LLD->getMemoryVT(),
5052                                  LLD->isVolatile(),
5053                                  LLD->getAlignment());
5054          }
5055          // Users of the select now use the result of the load.
5056          CombineTo(TheSelect, Load);
5057
5058          // Users of the old loads now use the new load's chain.  We know the
5059          // old-load value is dead now.
5060          CombineTo(LHS.Val, Load.getValue(0), Load.getValue(1));
5061          CombineTo(RHS.Val, Load.getValue(0), Load.getValue(1));
5062          return true;
5063        }
5064      }
5065    }
5066  }
5067
5068  return false;
5069}
5070
5071SDOperand DAGCombiner::SimplifySelectCC(SDOperand N0, SDOperand N1,
5072                                        SDOperand N2, SDOperand N3,
5073                                        ISD::CondCode CC, bool NotExtCompare) {
5074
5075  MVT::ValueType VT = N2.getValueType();
5076  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
5077  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
5078  ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.Val);
5079
5080  // Determine if the condition we're dealing with is constant
5081  SDOperand SCC = SimplifySetCC(TLI.getSetCCResultType(N0), N0, N1, CC, false);
5082  if (SCC.Val) AddToWorkList(SCC.Val);
5083  ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.Val);
5084
5085  // fold select_cc true, x, y -> x
5086  if (SCCC && SCCC->getValue())
5087    return N2;
5088  // fold select_cc false, x, y -> y
5089  if (SCCC && SCCC->getValue() == 0)
5090    return N3;
5091
5092  // Check to see if we can simplify the select into an fabs node
5093  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1)) {
5094    // Allow either -0.0 or 0.0
5095    if (CFP->getValueAPF().isZero()) {
5096      // select (setg[te] X, +/-0.0), X, fneg(X) -> fabs
5097      if ((CC == ISD::SETGE || CC == ISD::SETGT) &&
5098          N0 == N2 && N3.getOpcode() == ISD::FNEG &&
5099          N2 == N3.getOperand(0))
5100        return DAG.getNode(ISD::FABS, VT, N0);
5101
5102      // select (setl[te] X, +/-0.0), fneg(X), X -> fabs
5103      if ((CC == ISD::SETLT || CC == ISD::SETLE) &&
5104          N0 == N3 && N2.getOpcode() == ISD::FNEG &&
5105          N2.getOperand(0) == N3)
5106        return DAG.getNode(ISD::FABS, VT, N3);
5107    }
5108  }
5109
5110  // Check to see if we can perform the "gzip trick", transforming
5111  // select_cc setlt X, 0, A, 0 -> and (sra X, size(X)-1), A
5112  if (N1C && N3C && N3C->isNullValue() && CC == ISD::SETLT &&
5113      MVT::isInteger(N0.getValueType()) &&
5114      MVT::isInteger(N2.getValueType()) &&
5115      (N1C->isNullValue() ||                    // (a < 0) ? b : 0
5116       (N1C->getValue() == 1 && N0 == N2))) {   // (a < 1) ? a : 0
5117    MVT::ValueType XType = N0.getValueType();
5118    MVT::ValueType AType = N2.getValueType();
5119    if (XType >= AType) {
5120      // and (sra X, size(X)-1, A) -> "and (srl X, C2), A" iff A is a
5121      // single-bit constant.
5122      if (N2C && ((N2C->getValue() & (N2C->getValue()-1)) == 0)) {
5123        unsigned ShCtV = Log2_64(N2C->getValue());
5124        ShCtV = MVT::getSizeInBits(XType)-ShCtV-1;
5125        SDOperand ShCt = DAG.getConstant(ShCtV, TLI.getShiftAmountTy());
5126        SDOperand Shift = DAG.getNode(ISD::SRL, XType, N0, ShCt);
5127        AddToWorkList(Shift.Val);
5128        if (XType > AType) {
5129          Shift = DAG.getNode(ISD::TRUNCATE, AType, Shift);
5130          AddToWorkList(Shift.Val);
5131        }
5132        return DAG.getNode(ISD::AND, AType, Shift, N2);
5133      }
5134      SDOperand Shift = DAG.getNode(ISD::SRA, XType, N0,
5135                                    DAG.getConstant(MVT::getSizeInBits(XType)-1,
5136                                                    TLI.getShiftAmountTy()));
5137      AddToWorkList(Shift.Val);
5138      if (XType > AType) {
5139        Shift = DAG.getNode(ISD::TRUNCATE, AType, Shift);
5140        AddToWorkList(Shift.Val);
5141      }
5142      return DAG.getNode(ISD::AND, AType, Shift, N2);
5143    }
5144  }
5145
5146  // fold select C, 16, 0 -> shl C, 4
5147  if (N2C && N3C && N3C->isNullValue() && isPowerOf2_64(N2C->getValue()) &&
5148      TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult) {
5149
5150    // If the caller doesn't want us to simplify this into a zext of a compare,
5151    // don't do it.
5152    if (NotExtCompare && N2C->getValue() == 1)
5153      return SDOperand();
5154
5155    // Get a SetCC of the condition
5156    // FIXME: Should probably make sure that setcc is legal if we ever have a
5157    // target where it isn't.
5158    SDOperand Temp, SCC;
5159    // cast from setcc result type to select result type
5160    if (AfterLegalize) {
5161      SCC  = DAG.getSetCC(TLI.getSetCCResultType(N0), N0, N1, CC);
5162      if (N2.getValueType() < SCC.getValueType())
5163        Temp = DAG.getZeroExtendInReg(SCC, N2.getValueType());
5164      else
5165        Temp = DAG.getNode(ISD::ZERO_EXTEND, N2.getValueType(), SCC);
5166    } else {
5167      SCC  = DAG.getSetCC(MVT::i1, N0, N1, CC);
5168      Temp = DAG.getNode(ISD::ZERO_EXTEND, N2.getValueType(), SCC);
5169    }
5170    AddToWorkList(SCC.Val);
5171    AddToWorkList(Temp.Val);
5172
5173    if (N2C->getValue() == 1)
5174      return Temp;
5175    // shl setcc result by log2 n2c
5176    return DAG.getNode(ISD::SHL, N2.getValueType(), Temp,
5177                       DAG.getConstant(Log2_64(N2C->getValue()),
5178                                       TLI.getShiftAmountTy()));
5179  }
5180
5181  // Check to see if this is the equivalent of setcc
5182  // FIXME: Turn all of these into setcc if setcc if setcc is legal
5183  // otherwise, go ahead with the folds.
5184  if (0 && N3C && N3C->isNullValue() && N2C && (N2C->getValue() == 1ULL)) {
5185    MVT::ValueType XType = N0.getValueType();
5186    if (TLI.isOperationLegal(ISD::SETCC, TLI.getSetCCResultType(N0))) {
5187      SDOperand Res = DAG.getSetCC(TLI.getSetCCResultType(N0), N0, N1, CC);
5188      if (Res.getValueType() != VT)
5189        Res = DAG.getNode(ISD::ZERO_EXTEND, VT, Res);
5190      return Res;
5191    }
5192
5193    // seteq X, 0 -> srl (ctlz X, log2(size(X)))
5194    if (N1C && N1C->isNullValue() && CC == ISD::SETEQ &&
5195        TLI.isOperationLegal(ISD::CTLZ, XType)) {
5196      SDOperand Ctlz = DAG.getNode(ISD::CTLZ, XType, N0);
5197      return DAG.getNode(ISD::SRL, XType, Ctlz,
5198                         DAG.getConstant(Log2_32(MVT::getSizeInBits(XType)),
5199                                         TLI.getShiftAmountTy()));
5200    }
5201    // setgt X, 0 -> srl (and (-X, ~X), size(X)-1)
5202    if (N1C && N1C->isNullValue() && CC == ISD::SETGT) {
5203      SDOperand NegN0 = DAG.getNode(ISD::SUB, XType, DAG.getConstant(0, XType),
5204                                    N0);
5205      SDOperand NotN0 = DAG.getNode(ISD::XOR, XType, N0,
5206                                    DAG.getConstant(~0ULL, XType));
5207      return DAG.getNode(ISD::SRL, XType,
5208                         DAG.getNode(ISD::AND, XType, NegN0, NotN0),
5209                         DAG.getConstant(MVT::getSizeInBits(XType)-1,
5210                                         TLI.getShiftAmountTy()));
5211    }
5212    // setgt X, -1 -> xor (srl (X, size(X)-1), 1)
5213    if (N1C && N1C->isAllOnesValue() && CC == ISD::SETGT) {
5214      SDOperand Sign = DAG.getNode(ISD::SRL, XType, N0,
5215                                   DAG.getConstant(MVT::getSizeInBits(XType)-1,
5216                                                   TLI.getShiftAmountTy()));
5217      return DAG.getNode(ISD::XOR, XType, Sign, DAG.getConstant(1, XType));
5218    }
5219  }
5220
5221  // Check to see if this is an integer abs. select_cc setl[te] X, 0, -X, X ->
5222  // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
5223  if (N1C && N1C->isNullValue() && (CC == ISD::SETLT || CC == ISD::SETLE) &&
5224      N0 == N3 && N2.getOpcode() == ISD::SUB && N0 == N2.getOperand(1) &&
5225      N2.getOperand(0) == N1 && MVT::isInteger(N0.getValueType())) {
5226    MVT::ValueType XType = N0.getValueType();
5227    SDOperand Shift = DAG.getNode(ISD::SRA, XType, N0,
5228                                  DAG.getConstant(MVT::getSizeInBits(XType)-1,
5229                                                  TLI.getShiftAmountTy()));
5230    SDOperand Add = DAG.getNode(ISD::ADD, XType, N0, Shift);
5231    AddToWorkList(Shift.Val);
5232    AddToWorkList(Add.Val);
5233    return DAG.getNode(ISD::XOR, XType, Add, Shift);
5234  }
5235  // Check to see if this is an integer abs. select_cc setgt X, -1, X, -X ->
5236  // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
5237  if (N1C && N1C->isAllOnesValue() && CC == ISD::SETGT &&
5238      N0 == N2 && N3.getOpcode() == ISD::SUB && N0 == N3.getOperand(1)) {
5239    if (ConstantSDNode *SubC = dyn_cast<ConstantSDNode>(N3.getOperand(0))) {
5240      MVT::ValueType XType = N0.getValueType();
5241      if (SubC->isNullValue() && MVT::isInteger(XType)) {
5242        SDOperand Shift = DAG.getNode(ISD::SRA, XType, N0,
5243                                    DAG.getConstant(MVT::getSizeInBits(XType)-1,
5244                                                      TLI.getShiftAmountTy()));
5245        SDOperand Add = DAG.getNode(ISD::ADD, XType, N0, Shift);
5246        AddToWorkList(Shift.Val);
5247        AddToWorkList(Add.Val);
5248        return DAG.getNode(ISD::XOR, XType, Add, Shift);
5249      }
5250    }
5251  }
5252
5253  return SDOperand();
5254}
5255
5256/// SimplifySetCC - This is a stub for TargetLowering::SimplifySetCC.
5257SDOperand DAGCombiner::SimplifySetCC(MVT::ValueType VT, SDOperand N0,
5258                                     SDOperand N1, ISD::CondCode Cond,
5259                                     bool foldBooleans) {
5260  TargetLowering::DAGCombinerInfo
5261    DagCombineInfo(DAG, !AfterLegalize, false, this);
5262  return TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo);
5263}
5264
5265/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
5266/// return a DAG expression to select that will generate the same value by
5267/// multiplying by a magic number.  See:
5268/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
5269SDOperand DAGCombiner::BuildSDIV(SDNode *N) {
5270  std::vector<SDNode*> Built;
5271  SDOperand S = TLI.BuildSDIV(N, DAG, &Built);
5272
5273  for (std::vector<SDNode*>::iterator ii = Built.begin(), ee = Built.end();
5274       ii != ee; ++ii)
5275    AddToWorkList(*ii);
5276  return S;
5277}
5278
5279/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
5280/// return a DAG expression to select that will generate the same value by
5281/// multiplying by a magic number.  See:
5282/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
5283SDOperand DAGCombiner::BuildUDIV(SDNode *N) {
5284  std::vector<SDNode*> Built;
5285  SDOperand S = TLI.BuildUDIV(N, DAG, &Built);
5286
5287  for (std::vector<SDNode*>::iterator ii = Built.begin(), ee = Built.end();
5288       ii != ee; ++ii)
5289    AddToWorkList(*ii);
5290  return S;
5291}
5292
5293/// FindBaseOffset - Return true if base is known not to alias with anything
5294/// but itself.  Provides base object and offset as results.
5295static bool FindBaseOffset(SDOperand Ptr, SDOperand &Base, int64_t &Offset) {
5296  // Assume it is a primitive operation.
5297  Base = Ptr; Offset = 0;
5298
5299  // If it's an adding a simple constant then integrate the offset.
5300  if (Base.getOpcode() == ISD::ADD) {
5301    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Base.getOperand(1))) {
5302      Base = Base.getOperand(0);
5303      Offset += C->getValue();
5304    }
5305  }
5306
5307  // If it's any of the following then it can't alias with anything but itself.
5308  return isa<FrameIndexSDNode>(Base) ||
5309         isa<ConstantPoolSDNode>(Base) ||
5310         isa<GlobalAddressSDNode>(Base);
5311}
5312
5313/// isAlias - Return true if there is any possibility that the two addresses
5314/// overlap.
5315bool DAGCombiner::isAlias(SDOperand Ptr1, int64_t Size1,
5316                          const Value *SrcValue1, int SrcValueOffset1,
5317                          SDOperand Ptr2, int64_t Size2,
5318                          const Value *SrcValue2, int SrcValueOffset2)
5319{
5320  // If they are the same then they must be aliases.
5321  if (Ptr1 == Ptr2) return true;
5322
5323  // Gather base node and offset information.
5324  SDOperand Base1, Base2;
5325  int64_t Offset1, Offset2;
5326  bool KnownBase1 = FindBaseOffset(Ptr1, Base1, Offset1);
5327  bool KnownBase2 = FindBaseOffset(Ptr2, Base2, Offset2);
5328
5329  // If they have a same base address then...
5330  if (Base1 == Base2) {
5331    // Check to see if the addresses overlap.
5332    return!((Offset1 + Size1) <= Offset2 || (Offset2 + Size2) <= Offset1);
5333  }
5334
5335  // If we know both bases then they can't alias.
5336  if (KnownBase1 && KnownBase2) return false;
5337
5338  if (CombinerGlobalAA) {
5339    // Use alias analysis information.
5340    int64_t MinOffset = std::min(SrcValueOffset1, SrcValueOffset2);
5341    int64_t Overlap1 = Size1 + SrcValueOffset1 - MinOffset;
5342    int64_t Overlap2 = Size2 + SrcValueOffset2 - MinOffset;
5343    AliasAnalysis::AliasResult AAResult =
5344                             AA.alias(SrcValue1, Overlap1, SrcValue2, Overlap2);
5345    if (AAResult == AliasAnalysis::NoAlias)
5346      return false;
5347  }
5348
5349  // Otherwise we have to assume they alias.
5350  return true;
5351}
5352
5353/// FindAliasInfo - Extracts the relevant alias information from the memory
5354/// node.  Returns true if the operand was a load.
5355bool DAGCombiner::FindAliasInfo(SDNode *N,
5356                        SDOperand &Ptr, int64_t &Size,
5357                        const Value *&SrcValue, int &SrcValueOffset) {
5358  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
5359    Ptr = LD->getBasePtr();
5360    Size = MVT::getSizeInBits(LD->getMemoryVT()) >> 3;
5361    SrcValue = LD->getSrcValue();
5362    SrcValueOffset = LD->getSrcValueOffset();
5363    return true;
5364  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
5365    Ptr = ST->getBasePtr();
5366    Size = MVT::getSizeInBits(ST->getMemoryVT()) >> 3;
5367    SrcValue = ST->getSrcValue();
5368    SrcValueOffset = ST->getSrcValueOffset();
5369  } else {
5370    assert(0 && "FindAliasInfo expected a memory operand");
5371  }
5372
5373  return false;
5374}
5375
5376/// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
5377/// looking for aliasing nodes and adding them to the Aliases vector.
5378void DAGCombiner::GatherAllAliases(SDNode *N, SDOperand OriginalChain,
5379                                   SmallVector<SDOperand, 8> &Aliases) {
5380  SmallVector<SDOperand, 8> Chains;     // List of chains to visit.
5381  std::set<SDNode *> Visited;           // Visited node set.
5382
5383  // Get alias information for node.
5384  SDOperand Ptr;
5385  int64_t Size;
5386  const Value *SrcValue;
5387  int SrcValueOffset;
5388  bool IsLoad = FindAliasInfo(N, Ptr, Size, SrcValue, SrcValueOffset);
5389
5390  // Starting off.
5391  Chains.push_back(OriginalChain);
5392
5393  // Look at each chain and determine if it is an alias.  If so, add it to the
5394  // aliases list.  If not, then continue up the chain looking for the next
5395  // candidate.
5396  while (!Chains.empty()) {
5397    SDOperand Chain = Chains.back();
5398    Chains.pop_back();
5399
5400     // Don't bother if we've been before.
5401    if (Visited.find(Chain.Val) != Visited.end()) continue;
5402    Visited.insert(Chain.Val);
5403
5404    switch (Chain.getOpcode()) {
5405    case ISD::EntryToken:
5406      // Entry token is ideal chain operand, but handled in FindBetterChain.
5407      break;
5408
5409    case ISD::LOAD:
5410    case ISD::STORE: {
5411      // Get alias information for Chain.
5412      SDOperand OpPtr;
5413      int64_t OpSize;
5414      const Value *OpSrcValue;
5415      int OpSrcValueOffset;
5416      bool IsOpLoad = FindAliasInfo(Chain.Val, OpPtr, OpSize,
5417                                    OpSrcValue, OpSrcValueOffset);
5418
5419      // If chain is alias then stop here.
5420      if (!(IsLoad && IsOpLoad) &&
5421          isAlias(Ptr, Size, SrcValue, SrcValueOffset,
5422                  OpPtr, OpSize, OpSrcValue, OpSrcValueOffset)) {
5423        Aliases.push_back(Chain);
5424      } else {
5425        // Look further up the chain.
5426        Chains.push_back(Chain.getOperand(0));
5427        // Clean up old chain.
5428        AddToWorkList(Chain.Val);
5429      }
5430      break;
5431    }
5432
5433    case ISD::TokenFactor:
5434      // We have to check each of the operands of the token factor, so we queue
5435      // then up.  Adding the  operands to the queue (stack) in reverse order
5436      // maintains the original order and increases the likelihood that getNode
5437      // will find a matching token factor (CSE.)
5438      for (unsigned n = Chain.getNumOperands(); n;)
5439        Chains.push_back(Chain.getOperand(--n));
5440      // Eliminate the token factor if we can.
5441      AddToWorkList(Chain.Val);
5442      break;
5443
5444    default:
5445      // For all other instructions we will just have to take what we can get.
5446      Aliases.push_back(Chain);
5447      break;
5448    }
5449  }
5450}
5451
5452/// FindBetterChain - Walk up chain skipping non-aliasing memory nodes, looking
5453/// for a better chain (aliasing node.)
5454SDOperand DAGCombiner::FindBetterChain(SDNode *N, SDOperand OldChain) {
5455  SmallVector<SDOperand, 8> Aliases;  // Ops for replacing token factor.
5456
5457  // Accumulate all the aliases to this node.
5458  GatherAllAliases(N, OldChain, Aliases);
5459
5460  if (Aliases.size() == 0) {
5461    // If no operands then chain to entry token.
5462    return DAG.getEntryNode();
5463  } else if (Aliases.size() == 1) {
5464    // If a single operand then chain to it.  We don't need to revisit it.
5465    return Aliases[0];
5466  }
5467
5468  // Construct a custom tailored token factor.
5469  SDOperand NewChain = DAG.getNode(ISD::TokenFactor, MVT::Other,
5470                                   &Aliases[0], Aliases.size());
5471
5472  // Make sure the old chain gets cleaned up.
5473  if (NewChain != OldChain) AddToWorkList(OldChain.Val);
5474
5475  return NewChain;
5476}
5477
5478// SelectionDAG::Combine - This is the entry point for the file.
5479//
5480void SelectionDAG::Combine(bool RunningAfterLegalize, AliasAnalysis &AA) {
5481  if (!RunningAfterLegalize && ViewDAGCombine1)
5482    viewGraph();
5483  if (RunningAfterLegalize && ViewDAGCombine2)
5484    viewGraph();
5485  /// run - This is the main entry point to this class.
5486  ///
5487  DAGCombiner(*this, AA).Run(RunningAfterLegalize);
5488}
5489