DAGCombiner.cpp revision 888cbad774acdff580611f6b07daaf96e825b7e7
1//===-- DAGCombiner.cpp - Implement a DAG node combiner -------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass combines dag nodes to form fewer, simpler DAG nodes.  It can be run
11// both before and after the DAG is legalized.
12//
13// This pass is not a substitute for the LLVM IR instcombine pass. This pass is
14// primarily intended to handle simplification opportunities that are implicit
15// in the LLVM IR and exposed by the various codegen lowering phases.
16//
17//===----------------------------------------------------------------------===//
18
19#define DEBUG_TYPE "dagcombine"
20#include "llvm/CodeGen/SelectionDAG.h"
21#include "llvm/ADT/SmallPtrSet.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/Analysis/AliasAnalysis.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineFunction.h"
26#include "llvm/IR/DataLayout.h"
27#include "llvm/IR/DerivedTypes.h"
28#include "llvm/IR/Function.h"
29#include "llvm/IR/LLVMContext.h"
30#include "llvm/Support/CommandLine.h"
31#include "llvm/Support/Debug.h"
32#include "llvm/Support/ErrorHandling.h"
33#include "llvm/Support/MathExtras.h"
34#include "llvm/Support/raw_ostream.h"
35#include "llvm/Target/TargetLowering.h"
36#include "llvm/Target/TargetMachine.h"
37#include "llvm/Target/TargetOptions.h"
38#include "llvm/Target/TargetRegisterInfo.h"
39#include "llvm/Target/TargetSubtargetInfo.h"
40#include <algorithm>
41using namespace llvm;
42
43STATISTIC(NodesCombined   , "Number of dag nodes combined");
44STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created");
45STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created");
46STATISTIC(OpsNarrowed     , "Number of load/op/store narrowed");
47STATISTIC(LdStFP2Int      , "Number of fp load/store pairs transformed to int");
48STATISTIC(SlicedLoads, "Number of load sliced");
49
50namespace {
51  static cl::opt<bool>
52    CombinerAA("combiner-alias-analysis", cl::Hidden,
53               cl::desc("Turn on alias analysis during testing"));
54
55  static cl::opt<bool>
56    CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden,
57               cl::desc("Include global information in alias analysis"));
58
59  /// Hidden option to stress test load slicing, i.e., when this option
60  /// is enabled, load slicing bypasses most of its profitability guards.
61  static cl::opt<bool>
62  StressLoadSlicing("combiner-stress-load-slicing", cl::Hidden,
63                    cl::desc("Bypass the profitability model of load "
64                             "slicing"),
65                    cl::init(false));
66
67//------------------------------ DAGCombiner ---------------------------------//
68
69  class DAGCombiner {
70    SelectionDAG &DAG;
71    const TargetLowering &TLI;
72    CombineLevel Level;
73    CodeGenOpt::Level OptLevel;
74    bool LegalOperations;
75    bool LegalTypes;
76    bool ForCodeSize;
77
78    // Worklist of all of the nodes that need to be simplified.
79    //
80    // This has the semantics that when adding to the worklist,
81    // the item added must be next to be processed. It should
82    // also only appear once. The naive approach to this takes
83    // linear time.
84    //
85    // To reduce the insert/remove time to logarithmic, we use
86    // a set and a vector to maintain our worklist.
87    //
88    // The set contains the items on the worklist, but does not
89    // maintain the order they should be visited.
90    //
91    // The vector maintains the order nodes should be visited, but may
92    // contain duplicate or removed nodes. When choosing a node to
93    // visit, we pop off the order stack until we find an item that is
94    // also in the contents set. All operations are O(log N).
95    SmallPtrSet<SDNode*, 64> WorkListContents;
96    SmallVector<SDNode*, 64> WorkListOrder;
97
98    // AA - Used for DAG load/store alias analysis.
99    AliasAnalysis &AA;
100
101    /// AddUsersToWorkList - When an instruction is simplified, add all users of
102    /// the instruction to the work lists because they might get more simplified
103    /// now.
104    ///
105    void AddUsersToWorkList(SDNode *N) {
106      for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
107           UI != UE; ++UI)
108        AddToWorkList(*UI);
109    }
110
111    /// visit - call the node-specific routine that knows how to fold each
112    /// particular type of node.
113    SDValue visit(SDNode *N);
114
115  public:
116    /// AddToWorkList - Add to the work list making sure its instance is at the
117    /// back (next to be processed.)
118    void AddToWorkList(SDNode *N) {
119      WorkListContents.insert(N);
120      WorkListOrder.push_back(N);
121    }
122
123    /// removeFromWorkList - remove all instances of N from the worklist.
124    ///
125    void removeFromWorkList(SDNode *N) {
126      WorkListContents.erase(N);
127    }
128
129    SDValue CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
130                      bool AddTo = true);
131
132    SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true) {
133      return CombineTo(N, &Res, 1, AddTo);
134    }
135
136    SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1,
137                      bool AddTo = true) {
138      SDValue To[] = { Res0, Res1 };
139      return CombineTo(N, To, 2, AddTo);
140    }
141
142    void CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO);
143
144  private:
145
146    /// SimplifyDemandedBits - Check the specified integer node value to see if
147    /// it can be simplified or if things it uses can be simplified by bit
148    /// propagation.  If so, return true.
149    bool SimplifyDemandedBits(SDValue Op) {
150      unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
151      APInt Demanded = APInt::getAllOnesValue(BitWidth);
152      return SimplifyDemandedBits(Op, Demanded);
153    }
154
155    bool SimplifyDemandedBits(SDValue Op, const APInt &Demanded);
156
157    bool CombineToPreIndexedLoadStore(SDNode *N);
158    bool CombineToPostIndexedLoadStore(SDNode *N);
159    bool SliceUpLoad(SDNode *N);
160
161    void ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad);
162    SDValue PromoteOperand(SDValue Op, EVT PVT, bool &Replace);
163    SDValue SExtPromoteOperand(SDValue Op, EVT PVT);
164    SDValue ZExtPromoteOperand(SDValue Op, EVT PVT);
165    SDValue PromoteIntBinOp(SDValue Op);
166    SDValue PromoteIntShiftOp(SDValue Op);
167    SDValue PromoteExtend(SDValue Op);
168    bool PromoteLoad(SDValue Op);
169
170    void ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs,
171                         SDValue Trunc, SDValue ExtLoad, SDLoc DL,
172                         ISD::NodeType ExtType);
173
174    /// combine - call the node-specific routine that knows how to fold each
175    /// particular type of node. If that doesn't do anything, try the
176    /// target-specific DAG combines.
177    SDValue combine(SDNode *N);
178
179    // Visitation implementation - Implement dag node combining for different
180    // node types.  The semantics are as follows:
181    // Return Value:
182    //   SDValue.getNode() == 0 - No change was made
183    //   SDValue.getNode() == N - N was replaced, is dead and has been handled.
184    //   otherwise              - N should be replaced by the returned Operand.
185    //
186    SDValue visitTokenFactor(SDNode *N);
187    SDValue visitMERGE_VALUES(SDNode *N);
188    SDValue visitADD(SDNode *N);
189    SDValue visitSUB(SDNode *N);
190    SDValue visitADDC(SDNode *N);
191    SDValue visitSUBC(SDNode *N);
192    SDValue visitADDE(SDNode *N);
193    SDValue visitSUBE(SDNode *N);
194    SDValue visitMUL(SDNode *N);
195    SDValue visitSDIV(SDNode *N);
196    SDValue visitUDIV(SDNode *N);
197    SDValue visitSREM(SDNode *N);
198    SDValue visitUREM(SDNode *N);
199    SDValue visitMULHU(SDNode *N);
200    SDValue visitMULHS(SDNode *N);
201    SDValue visitSMUL_LOHI(SDNode *N);
202    SDValue visitUMUL_LOHI(SDNode *N);
203    SDValue visitSMULO(SDNode *N);
204    SDValue visitUMULO(SDNode *N);
205    SDValue visitSDIVREM(SDNode *N);
206    SDValue visitUDIVREM(SDNode *N);
207    SDValue visitAND(SDNode *N);
208    SDValue visitOR(SDNode *N);
209    SDValue visitXOR(SDNode *N);
210    SDValue SimplifyVBinOp(SDNode *N);
211    SDValue SimplifyVUnaryOp(SDNode *N);
212    SDValue visitSHL(SDNode *N);
213    SDValue visitSRA(SDNode *N);
214    SDValue visitSRL(SDNode *N);
215    SDValue visitCTLZ(SDNode *N);
216    SDValue visitCTLZ_ZERO_UNDEF(SDNode *N);
217    SDValue visitCTTZ(SDNode *N);
218    SDValue visitCTTZ_ZERO_UNDEF(SDNode *N);
219    SDValue visitCTPOP(SDNode *N);
220    SDValue visitSELECT(SDNode *N);
221    SDValue visitVSELECT(SDNode *N);
222    SDValue visitSELECT_CC(SDNode *N);
223    SDValue visitSETCC(SDNode *N);
224    SDValue visitSIGN_EXTEND(SDNode *N);
225    SDValue visitZERO_EXTEND(SDNode *N);
226    SDValue visitANY_EXTEND(SDNode *N);
227    SDValue visitSIGN_EXTEND_INREG(SDNode *N);
228    SDValue visitTRUNCATE(SDNode *N);
229    SDValue visitBITCAST(SDNode *N);
230    SDValue visitBUILD_PAIR(SDNode *N);
231    SDValue visitFADD(SDNode *N);
232    SDValue visitFSUB(SDNode *N);
233    SDValue visitFMUL(SDNode *N);
234    SDValue visitFMA(SDNode *N);
235    SDValue visitFDIV(SDNode *N);
236    SDValue visitFREM(SDNode *N);
237    SDValue visitFCOPYSIGN(SDNode *N);
238    SDValue visitSINT_TO_FP(SDNode *N);
239    SDValue visitUINT_TO_FP(SDNode *N);
240    SDValue visitFP_TO_SINT(SDNode *N);
241    SDValue visitFP_TO_UINT(SDNode *N);
242    SDValue visitFP_ROUND(SDNode *N);
243    SDValue visitFP_ROUND_INREG(SDNode *N);
244    SDValue visitFP_EXTEND(SDNode *N);
245    SDValue visitFNEG(SDNode *N);
246    SDValue visitFABS(SDNode *N);
247    SDValue visitFCEIL(SDNode *N);
248    SDValue visitFTRUNC(SDNode *N);
249    SDValue visitFFLOOR(SDNode *N);
250    SDValue visitBRCOND(SDNode *N);
251    SDValue visitBR_CC(SDNode *N);
252    SDValue visitLOAD(SDNode *N);
253    SDValue visitSTORE(SDNode *N);
254    SDValue visitINSERT_VECTOR_ELT(SDNode *N);
255    SDValue visitEXTRACT_VECTOR_ELT(SDNode *N);
256    SDValue visitBUILD_VECTOR(SDNode *N);
257    SDValue visitCONCAT_VECTORS(SDNode *N);
258    SDValue visitEXTRACT_SUBVECTOR(SDNode *N);
259    SDValue visitVECTOR_SHUFFLE(SDNode *N);
260
261    SDValue XformToShuffleWithZero(SDNode *N);
262    SDValue ReassociateOps(unsigned Opc, SDLoc DL, SDValue LHS, SDValue RHS);
263
264    SDValue visitShiftByConstant(SDNode *N, unsigned Amt);
265
266    bool SimplifySelectOps(SDNode *SELECT, SDValue LHS, SDValue RHS);
267    SDValue SimplifyBinOpWithSameOpcodeHands(SDNode *N);
268    SDValue SimplifySelect(SDLoc DL, SDValue N0, SDValue N1, SDValue N2);
269    SDValue SimplifySelectCC(SDLoc DL, SDValue N0, SDValue N1, SDValue N2,
270                             SDValue N3, ISD::CondCode CC,
271                             bool NotExtCompare = false);
272    SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
273                          SDLoc DL, bool foldBooleans = true);
274    SDValue SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
275                                         unsigned HiOp);
276    SDValue CombineConsecutiveLoads(SDNode *N, EVT VT);
277    SDValue ConstantFoldBITCASTofBUILD_VECTOR(SDNode *, EVT);
278    SDValue BuildSDIV(SDNode *N);
279    SDValue BuildUDIV(SDNode *N);
280    SDValue MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1,
281                               bool DemandHighBits = true);
282    SDValue MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1);
283    SDNode *MatchRotate(SDValue LHS, SDValue RHS, SDLoc DL);
284    SDValue ReduceLoadWidth(SDNode *N);
285    SDValue ReduceLoadOpStoreWidth(SDNode *N);
286    SDValue TransformFPLoadStorePair(SDNode *N);
287    SDValue reduceBuildVecExtToExtBuildVec(SDNode *N);
288    SDValue reduceBuildVecConvertToConvertBuildVec(SDNode *N);
289
290    SDValue GetDemandedBits(SDValue V, const APInt &Mask);
291
292    /// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
293    /// looking for aliasing nodes and adding them to the Aliases vector.
294    void GatherAllAliases(SDNode *N, SDValue OriginalChain,
295                          SmallVectorImpl<SDValue> &Aliases);
296
297    /// isAlias - Return true if there is any possibility that the two addresses
298    /// overlap.
299    bool isAlias(SDValue Ptr1, int64_t Size1,
300                 const Value *SrcValue1, int SrcValueOffset1,
301                 unsigned SrcValueAlign1,
302                 const MDNode *TBAAInfo1,
303                 SDValue Ptr2, int64_t Size2,
304                 const Value *SrcValue2, int SrcValueOffset2,
305                 unsigned SrcValueAlign2,
306                 const MDNode *TBAAInfo2) const;
307
308    /// isAlias - Return true if there is any possibility that the two addresses
309    /// overlap.
310    bool isAlias(LSBaseSDNode *Op0, LSBaseSDNode *Op1);
311
312    /// FindAliasInfo - Extracts the relevant alias information from the memory
313    /// node.  Returns true if the operand was a load.
314    bool FindAliasInfo(SDNode *N,
315                       SDValue &Ptr, int64_t &Size,
316                       const Value *&SrcValue, int &SrcValueOffset,
317                       unsigned &SrcValueAlignment,
318                       const MDNode *&TBAAInfo) const;
319
320    /// FindBetterChain - Walk up chain skipping non-aliasing memory nodes,
321    /// looking for a better chain (aliasing node.)
322    SDValue FindBetterChain(SDNode *N, SDValue Chain);
323
324    /// Merge consecutive store operations into a wide store.
325    /// This optimization uses wide integers or vectors when possible.
326    /// \return True if some memory operations were changed.
327    bool MergeConsecutiveStores(StoreSDNode *N);
328
329  public:
330    DAGCombiner(SelectionDAG &D, AliasAnalysis &A, CodeGenOpt::Level OL)
331        : DAG(D), TLI(D.getTargetLoweringInfo()), Level(BeforeLegalizeTypes),
332          OptLevel(OL), LegalOperations(false), LegalTypes(false), AA(A) {
333      AttributeSet FnAttrs =
334          DAG.getMachineFunction().getFunction()->getAttributes();
335      ForCodeSize =
336          FnAttrs.hasAttribute(AttributeSet::FunctionIndex,
337                               Attribute::OptimizeForSize) ||
338          FnAttrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::MinSize);
339    }
340
341    /// Run - runs the dag combiner on all nodes in the work list
342    void Run(CombineLevel AtLevel);
343
344    SelectionDAG &getDAG() const { return DAG; }
345
346    /// getShiftAmountTy - Returns a type large enough to hold any valid
347    /// shift amount - before type legalization these can be huge.
348    EVT getShiftAmountTy(EVT LHSTy) {
349      assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
350      if (LHSTy.isVector())
351        return LHSTy;
352      return LegalTypes ? TLI.getScalarShiftAmountTy(LHSTy)
353                        : TLI.getPointerTy();
354    }
355
356    /// isTypeLegal - This method returns true if we are running before type
357    /// legalization or if the specified VT is legal.
358    bool isTypeLegal(const EVT &VT) {
359      if (!LegalTypes) return true;
360      return TLI.isTypeLegal(VT);
361    }
362
363    /// getSetCCResultType - Convenience wrapper around
364    /// TargetLowering::getSetCCResultType
365    EVT getSetCCResultType(EVT VT) const {
366      return TLI.getSetCCResultType(*DAG.getContext(), VT);
367    }
368  };
369}
370
371
372namespace {
373/// WorkListRemover - This class is a DAGUpdateListener that removes any deleted
374/// nodes from the worklist.
375class WorkListRemover : public SelectionDAG::DAGUpdateListener {
376  DAGCombiner &DC;
377public:
378  explicit WorkListRemover(DAGCombiner &dc)
379    : SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {}
380
381  virtual void NodeDeleted(SDNode *N, SDNode *E) {
382    DC.removeFromWorkList(N);
383  }
384};
385}
386
387//===----------------------------------------------------------------------===//
388//  TargetLowering::DAGCombinerInfo implementation
389//===----------------------------------------------------------------------===//
390
391void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) {
392  ((DAGCombiner*)DC)->AddToWorkList(N);
393}
394
395void TargetLowering::DAGCombinerInfo::RemoveFromWorklist(SDNode *N) {
396  ((DAGCombiner*)DC)->removeFromWorkList(N);
397}
398
399SDValue TargetLowering::DAGCombinerInfo::
400CombineTo(SDNode *N, const std::vector<SDValue> &To, bool AddTo) {
401  return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size(), AddTo);
402}
403
404SDValue TargetLowering::DAGCombinerInfo::
405CombineTo(SDNode *N, SDValue Res, bool AddTo) {
406  return ((DAGCombiner*)DC)->CombineTo(N, Res, AddTo);
407}
408
409
410SDValue TargetLowering::DAGCombinerInfo::
411CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo) {
412  return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1, AddTo);
413}
414
415void TargetLowering::DAGCombinerInfo::
416CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) {
417  return ((DAGCombiner*)DC)->CommitTargetLoweringOpt(TLO);
418}
419
420//===----------------------------------------------------------------------===//
421// Helper Functions
422//===----------------------------------------------------------------------===//
423
424/// isNegatibleForFree - Return 1 if we can compute the negated form of the
425/// specified expression for the same cost as the expression itself, or 2 if we
426/// can compute the negated form more cheaply than the expression itself.
427static char isNegatibleForFree(SDValue Op, bool LegalOperations,
428                               const TargetLowering &TLI,
429                               const TargetOptions *Options,
430                               unsigned Depth = 0) {
431  // fneg is removable even if it has multiple uses.
432  if (Op.getOpcode() == ISD::FNEG) return 2;
433
434  // Don't allow anything with multiple uses.
435  if (!Op.hasOneUse()) return 0;
436
437  // Don't recurse exponentially.
438  if (Depth > 6) return 0;
439
440  switch (Op.getOpcode()) {
441  default: return false;
442  case ISD::ConstantFP:
443    // Don't invert constant FP values after legalize.  The negated constant
444    // isn't necessarily legal.
445    return LegalOperations ? 0 : 1;
446  case ISD::FADD:
447    // FIXME: determine better conditions for this xform.
448    if (!Options->UnsafeFPMath) return 0;
449
450    // After operation legalization, it might not be legal to create new FSUBs.
451    if (LegalOperations &&
452        !TLI.isOperationLegalOrCustom(ISD::FSUB,  Op.getValueType()))
453      return 0;
454
455    // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
456    if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI,
457                                    Options, Depth + 1))
458      return V;
459    // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
460    return isNegatibleForFree(Op.getOperand(1), LegalOperations, TLI, Options,
461                              Depth + 1);
462  case ISD::FSUB:
463    // We can't turn -(A-B) into B-A when we honor signed zeros.
464    if (!Options->UnsafeFPMath) return 0;
465
466    // fold (fneg (fsub A, B)) -> (fsub B, A)
467    return 1;
468
469  case ISD::FMUL:
470  case ISD::FDIV:
471    if (Options->HonorSignDependentRoundingFPMath()) return 0;
472
473    // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y))
474    if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI,
475                                    Options, Depth + 1))
476      return V;
477
478    return isNegatibleForFree(Op.getOperand(1), LegalOperations, TLI, Options,
479                              Depth + 1);
480
481  case ISD::FP_EXTEND:
482  case ISD::FP_ROUND:
483  case ISD::FSIN:
484    return isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI, Options,
485                              Depth + 1);
486  }
487}
488
489/// GetNegatedExpression - If isNegatibleForFree returns true, this function
490/// returns the newly negated expression.
491static SDValue GetNegatedExpression(SDValue Op, SelectionDAG &DAG,
492                                    bool LegalOperations, unsigned Depth = 0) {
493  // fneg is removable even if it has multiple uses.
494  if (Op.getOpcode() == ISD::FNEG) return Op.getOperand(0);
495
496  // Don't allow anything with multiple uses.
497  assert(Op.hasOneUse() && "Unknown reuse!");
498
499  assert(Depth <= 6 && "GetNegatedExpression doesn't match isNegatibleForFree");
500  switch (Op.getOpcode()) {
501  default: llvm_unreachable("Unknown code");
502  case ISD::ConstantFP: {
503    APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
504    V.changeSign();
505    return DAG.getConstantFP(V, Op.getValueType());
506  }
507  case ISD::FADD:
508    // FIXME: determine better conditions for this xform.
509    assert(DAG.getTarget().Options.UnsafeFPMath);
510
511    // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
512    if (isNegatibleForFree(Op.getOperand(0), LegalOperations,
513                           DAG.getTargetLoweringInfo(),
514                           &DAG.getTarget().Options, Depth+1))
515      return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
516                         GetNegatedExpression(Op.getOperand(0), DAG,
517                                              LegalOperations, Depth+1),
518                         Op.getOperand(1));
519    // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
520    return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
521                       GetNegatedExpression(Op.getOperand(1), DAG,
522                                            LegalOperations, Depth+1),
523                       Op.getOperand(0));
524  case ISD::FSUB:
525    // We can't turn -(A-B) into B-A when we honor signed zeros.
526    assert(DAG.getTarget().Options.UnsafeFPMath);
527
528    // fold (fneg (fsub 0, B)) -> B
529    if (ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(Op.getOperand(0)))
530      if (N0CFP->getValueAPF().isZero())
531        return Op.getOperand(1);
532
533    // fold (fneg (fsub A, B)) -> (fsub B, A)
534    return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
535                       Op.getOperand(1), Op.getOperand(0));
536
537  case ISD::FMUL:
538  case ISD::FDIV:
539    assert(!DAG.getTarget().Options.HonorSignDependentRoundingFPMath());
540
541    // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
542    if (isNegatibleForFree(Op.getOperand(0), LegalOperations,
543                           DAG.getTargetLoweringInfo(),
544                           &DAG.getTarget().Options, Depth+1))
545      return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
546                         GetNegatedExpression(Op.getOperand(0), DAG,
547                                              LegalOperations, Depth+1),
548                         Op.getOperand(1));
549
550    // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
551    return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
552                       Op.getOperand(0),
553                       GetNegatedExpression(Op.getOperand(1), DAG,
554                                            LegalOperations, Depth+1));
555
556  case ISD::FP_EXTEND:
557  case ISD::FSIN:
558    return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
559                       GetNegatedExpression(Op.getOperand(0), DAG,
560                                            LegalOperations, Depth+1));
561  case ISD::FP_ROUND:
562      return DAG.getNode(ISD::FP_ROUND, SDLoc(Op), Op.getValueType(),
563                         GetNegatedExpression(Op.getOperand(0), DAG,
564                                              LegalOperations, Depth+1),
565                         Op.getOperand(1));
566  }
567}
568
569
570// isSetCCEquivalent - Return true if this node is a setcc, or is a select_cc
571// that selects between the values 1 and 0, making it equivalent to a setcc.
572// Also, set the incoming LHS, RHS, and CC references to the appropriate
573// nodes based on the type of node we are checking.  This simplifies life a
574// bit for the callers.
575static bool isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS,
576                              SDValue &CC) {
577  if (N.getOpcode() == ISD::SETCC) {
578    LHS = N.getOperand(0);
579    RHS = N.getOperand(1);
580    CC  = N.getOperand(2);
581    return true;
582  }
583  if (N.getOpcode() == ISD::SELECT_CC &&
584      N.getOperand(2).getOpcode() == ISD::Constant &&
585      N.getOperand(3).getOpcode() == ISD::Constant &&
586      cast<ConstantSDNode>(N.getOperand(2))->getAPIntValue() == 1 &&
587      cast<ConstantSDNode>(N.getOperand(3))->isNullValue()) {
588    LHS = N.getOperand(0);
589    RHS = N.getOperand(1);
590    CC  = N.getOperand(4);
591    return true;
592  }
593  return false;
594}
595
596// isOneUseSetCC - Return true if this is a SetCC-equivalent operation with only
597// one use.  If this is true, it allows the users to invert the operation for
598// free when it is profitable to do so.
599static bool isOneUseSetCC(SDValue N) {
600  SDValue N0, N1, N2;
601  if (isSetCCEquivalent(N, N0, N1, N2) && N.getNode()->hasOneUse())
602    return true;
603  return false;
604}
605
606SDValue DAGCombiner::ReassociateOps(unsigned Opc, SDLoc DL,
607                                    SDValue N0, SDValue N1) {
608  EVT VT = N0.getValueType();
609  if (N0.getOpcode() == Opc && isa<ConstantSDNode>(N0.getOperand(1))) {
610    if (isa<ConstantSDNode>(N1)) {
611      // reassoc. (op (op x, c1), c2) -> (op x, (op c1, c2))
612      SDValue OpNode =
613        DAG.FoldConstantArithmetic(Opc, VT,
614                                   cast<ConstantSDNode>(N0.getOperand(1)),
615                                   cast<ConstantSDNode>(N1));
616      return DAG.getNode(Opc, DL, VT, N0.getOperand(0), OpNode);
617    }
618    if (N0.hasOneUse()) {
619      // reassoc. (op (op x, c1), y) -> (op (op x, y), c1) iff x+c1 has one use
620      SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT,
621                                   N0.getOperand(0), N1);
622      AddToWorkList(OpNode.getNode());
623      return DAG.getNode(Opc, DL, VT, OpNode, N0.getOperand(1));
624    }
625  }
626
627  if (N1.getOpcode() == Opc && isa<ConstantSDNode>(N1.getOperand(1))) {
628    if (isa<ConstantSDNode>(N0)) {
629      // reassoc. (op c2, (op x, c1)) -> (op x, (op c1, c2))
630      SDValue OpNode =
631        DAG.FoldConstantArithmetic(Opc, VT,
632                                   cast<ConstantSDNode>(N1.getOperand(1)),
633                                   cast<ConstantSDNode>(N0));
634      return DAG.getNode(Opc, DL, VT, N1.getOperand(0), OpNode);
635    }
636    if (N1.hasOneUse()) {
637      // reassoc. (op y, (op x, c1)) -> (op (op x, y), c1) iff x+c1 has one use
638      SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT,
639                                   N1.getOperand(0), N0);
640      AddToWorkList(OpNode.getNode());
641      return DAG.getNode(Opc, DL, VT, OpNode, N1.getOperand(1));
642    }
643  }
644
645  return SDValue();
646}
647
648SDValue DAGCombiner::CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
649                               bool AddTo) {
650  assert(N->getNumValues() == NumTo && "Broken CombineTo call!");
651  ++NodesCombined;
652  DEBUG(dbgs() << "\nReplacing.1 ";
653        N->dump(&DAG);
654        dbgs() << "\nWith: ";
655        To[0].getNode()->dump(&DAG);
656        dbgs() << " and " << NumTo-1 << " other values\n";
657        for (unsigned i = 0, e = NumTo; i != e; ++i)
658          assert((!To[i].getNode() ||
659                  N->getValueType(i) == To[i].getValueType()) &&
660                 "Cannot combine value to value of different type!"));
661  WorkListRemover DeadNodes(*this);
662  DAG.ReplaceAllUsesWith(N, To);
663  if (AddTo) {
664    // Push the new nodes and any users onto the worklist
665    for (unsigned i = 0, e = NumTo; i != e; ++i) {
666      if (To[i].getNode()) {
667        AddToWorkList(To[i].getNode());
668        AddUsersToWorkList(To[i].getNode());
669      }
670    }
671  }
672
673  // Finally, if the node is now dead, remove it from the graph.  The node
674  // may not be dead if the replacement process recursively simplified to
675  // something else needing this node.
676  if (N->use_empty()) {
677    // Nodes can be reintroduced into the worklist.  Make sure we do not
678    // process a node that has been replaced.
679    removeFromWorkList(N);
680
681    // Finally, since the node is now dead, remove it from the graph.
682    DAG.DeleteNode(N);
683  }
684  return SDValue(N, 0);
685}
686
687void DAGCombiner::
688CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) {
689  // Replace all uses.  If any nodes become isomorphic to other nodes and
690  // are deleted, make sure to remove them from our worklist.
691  WorkListRemover DeadNodes(*this);
692  DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New);
693
694  // Push the new node and any (possibly new) users onto the worklist.
695  AddToWorkList(TLO.New.getNode());
696  AddUsersToWorkList(TLO.New.getNode());
697
698  // Finally, if the node is now dead, remove it from the graph.  The node
699  // may not be dead if the replacement process recursively simplified to
700  // something else needing this node.
701  if (TLO.Old.getNode()->use_empty()) {
702    removeFromWorkList(TLO.Old.getNode());
703
704    // If the operands of this node are only used by the node, they will now
705    // be dead.  Make sure to visit them first to delete dead nodes early.
706    for (unsigned i = 0, e = TLO.Old.getNode()->getNumOperands(); i != e; ++i)
707      if (TLO.Old.getNode()->getOperand(i).getNode()->hasOneUse())
708        AddToWorkList(TLO.Old.getNode()->getOperand(i).getNode());
709
710    DAG.DeleteNode(TLO.Old.getNode());
711  }
712}
713
714/// SimplifyDemandedBits - Check the specified integer node value to see if
715/// it can be simplified or if things it uses can be simplified by bit
716/// propagation.  If so, return true.
717bool DAGCombiner::SimplifyDemandedBits(SDValue Op, const APInt &Demanded) {
718  TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations);
719  APInt KnownZero, KnownOne;
720  if (!TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO))
721    return false;
722
723  // Revisit the node.
724  AddToWorkList(Op.getNode());
725
726  // Replace the old value with the new one.
727  ++NodesCombined;
728  DEBUG(dbgs() << "\nReplacing.2 ";
729        TLO.Old.getNode()->dump(&DAG);
730        dbgs() << "\nWith: ";
731        TLO.New.getNode()->dump(&DAG);
732        dbgs() << '\n');
733
734  CommitTargetLoweringOpt(TLO);
735  return true;
736}
737
738void DAGCombiner::ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad) {
739  SDLoc dl(Load);
740  EVT VT = Load->getValueType(0);
741  SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, VT, SDValue(ExtLoad, 0));
742
743  DEBUG(dbgs() << "\nReplacing.9 ";
744        Load->dump(&DAG);
745        dbgs() << "\nWith: ";
746        Trunc.getNode()->dump(&DAG);
747        dbgs() << '\n');
748  WorkListRemover DeadNodes(*this);
749  DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), Trunc);
750  DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), SDValue(ExtLoad, 1));
751  removeFromWorkList(Load);
752  DAG.DeleteNode(Load);
753  AddToWorkList(Trunc.getNode());
754}
755
756SDValue DAGCombiner::PromoteOperand(SDValue Op, EVT PVT, bool &Replace) {
757  Replace = false;
758  SDLoc dl(Op);
759  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
760    EVT MemVT = LD->getMemoryVT();
761    ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD)
762      ? (TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT) ? ISD::ZEXTLOAD
763                                                  : ISD::EXTLOAD)
764      : LD->getExtensionType();
765    Replace = true;
766    return DAG.getExtLoad(ExtType, dl, PVT,
767                          LD->getChain(), LD->getBasePtr(),
768                          LD->getPointerInfo(),
769                          MemVT, LD->isVolatile(),
770                          LD->isNonTemporal(), LD->getAlignment());
771  }
772
773  unsigned Opc = Op.getOpcode();
774  switch (Opc) {
775  default: break;
776  case ISD::AssertSext:
777    return DAG.getNode(ISD::AssertSext, dl, PVT,
778                       SExtPromoteOperand(Op.getOperand(0), PVT),
779                       Op.getOperand(1));
780  case ISD::AssertZext:
781    return DAG.getNode(ISD::AssertZext, dl, PVT,
782                       ZExtPromoteOperand(Op.getOperand(0), PVT),
783                       Op.getOperand(1));
784  case ISD::Constant: {
785    unsigned ExtOpc =
786      Op.getValueType().isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
787    return DAG.getNode(ExtOpc, dl, PVT, Op);
788  }
789  }
790
791  if (!TLI.isOperationLegal(ISD::ANY_EXTEND, PVT))
792    return SDValue();
793  return DAG.getNode(ISD::ANY_EXTEND, dl, PVT, Op);
794}
795
796SDValue DAGCombiner::SExtPromoteOperand(SDValue Op, EVT PVT) {
797  if (!TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, PVT))
798    return SDValue();
799  EVT OldVT = Op.getValueType();
800  SDLoc dl(Op);
801  bool Replace = false;
802  SDValue NewOp = PromoteOperand(Op, PVT, Replace);
803  if (NewOp.getNode() == 0)
804    return SDValue();
805  AddToWorkList(NewOp.getNode());
806
807  if (Replace)
808    ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode());
809  return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NewOp.getValueType(), NewOp,
810                     DAG.getValueType(OldVT));
811}
812
813SDValue DAGCombiner::ZExtPromoteOperand(SDValue Op, EVT PVT) {
814  EVT OldVT = Op.getValueType();
815  SDLoc dl(Op);
816  bool Replace = false;
817  SDValue NewOp = PromoteOperand(Op, PVT, Replace);
818  if (NewOp.getNode() == 0)
819    return SDValue();
820  AddToWorkList(NewOp.getNode());
821
822  if (Replace)
823    ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode());
824  return DAG.getZeroExtendInReg(NewOp, dl, OldVT);
825}
826
827/// PromoteIntBinOp - Promote the specified integer binary operation if the
828/// target indicates it is beneficial. e.g. On x86, it's usually better to
829/// promote i16 operations to i32 since i16 instructions are longer.
830SDValue DAGCombiner::PromoteIntBinOp(SDValue Op) {
831  if (!LegalOperations)
832    return SDValue();
833
834  EVT VT = Op.getValueType();
835  if (VT.isVector() || !VT.isInteger())
836    return SDValue();
837
838  // If operation type is 'undesirable', e.g. i16 on x86, consider
839  // promoting it.
840  unsigned Opc = Op.getOpcode();
841  if (TLI.isTypeDesirableForOp(Opc, VT))
842    return SDValue();
843
844  EVT PVT = VT;
845  // Consult target whether it is a good idea to promote this operation and
846  // what's the right type to promote it to.
847  if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
848    assert(PVT != VT && "Don't know what type to promote to!");
849
850    bool Replace0 = false;
851    SDValue N0 = Op.getOperand(0);
852    SDValue NN0 = PromoteOperand(N0, PVT, Replace0);
853    if (NN0.getNode() == 0)
854      return SDValue();
855
856    bool Replace1 = false;
857    SDValue N1 = Op.getOperand(1);
858    SDValue NN1;
859    if (N0 == N1)
860      NN1 = NN0;
861    else {
862      NN1 = PromoteOperand(N1, PVT, Replace1);
863      if (NN1.getNode() == 0)
864        return SDValue();
865    }
866
867    AddToWorkList(NN0.getNode());
868    if (NN1.getNode())
869      AddToWorkList(NN1.getNode());
870
871    if (Replace0)
872      ReplaceLoadWithPromotedLoad(N0.getNode(), NN0.getNode());
873    if (Replace1)
874      ReplaceLoadWithPromotedLoad(N1.getNode(), NN1.getNode());
875
876    DEBUG(dbgs() << "\nPromoting ";
877          Op.getNode()->dump(&DAG));
878    SDLoc dl(Op);
879    return DAG.getNode(ISD::TRUNCATE, dl, VT,
880                       DAG.getNode(Opc, dl, PVT, NN0, NN1));
881  }
882  return SDValue();
883}
884
885/// PromoteIntShiftOp - Promote the specified integer shift operation if the
886/// target indicates it is beneficial. e.g. On x86, it's usually better to
887/// promote i16 operations to i32 since i16 instructions are longer.
888SDValue DAGCombiner::PromoteIntShiftOp(SDValue Op) {
889  if (!LegalOperations)
890    return SDValue();
891
892  EVT VT = Op.getValueType();
893  if (VT.isVector() || !VT.isInteger())
894    return SDValue();
895
896  // If operation type is 'undesirable', e.g. i16 on x86, consider
897  // promoting it.
898  unsigned Opc = Op.getOpcode();
899  if (TLI.isTypeDesirableForOp(Opc, VT))
900    return SDValue();
901
902  EVT PVT = VT;
903  // Consult target whether it is a good idea to promote this operation and
904  // what's the right type to promote it to.
905  if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
906    assert(PVT != VT && "Don't know what type to promote to!");
907
908    bool Replace = false;
909    SDValue N0 = Op.getOperand(0);
910    if (Opc == ISD::SRA)
911      N0 = SExtPromoteOperand(Op.getOperand(0), PVT);
912    else if (Opc == ISD::SRL)
913      N0 = ZExtPromoteOperand(Op.getOperand(0), PVT);
914    else
915      N0 = PromoteOperand(N0, PVT, Replace);
916    if (N0.getNode() == 0)
917      return SDValue();
918
919    AddToWorkList(N0.getNode());
920    if (Replace)
921      ReplaceLoadWithPromotedLoad(Op.getOperand(0).getNode(), N0.getNode());
922
923    DEBUG(dbgs() << "\nPromoting ";
924          Op.getNode()->dump(&DAG));
925    SDLoc dl(Op);
926    return DAG.getNode(ISD::TRUNCATE, dl, VT,
927                       DAG.getNode(Opc, dl, PVT, N0, Op.getOperand(1)));
928  }
929  return SDValue();
930}
931
932SDValue DAGCombiner::PromoteExtend(SDValue Op) {
933  if (!LegalOperations)
934    return SDValue();
935
936  EVT VT = Op.getValueType();
937  if (VT.isVector() || !VT.isInteger())
938    return SDValue();
939
940  // If operation type is 'undesirable', e.g. i16 on x86, consider
941  // promoting it.
942  unsigned Opc = Op.getOpcode();
943  if (TLI.isTypeDesirableForOp(Opc, VT))
944    return SDValue();
945
946  EVT PVT = VT;
947  // Consult target whether it is a good idea to promote this operation and
948  // what's the right type to promote it to.
949  if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
950    assert(PVT != VT && "Don't know what type to promote to!");
951    // fold (aext (aext x)) -> (aext x)
952    // fold (aext (zext x)) -> (zext x)
953    // fold (aext (sext x)) -> (sext x)
954    DEBUG(dbgs() << "\nPromoting ";
955          Op.getNode()->dump(&DAG));
956    return DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, Op.getOperand(0));
957  }
958  return SDValue();
959}
960
961bool DAGCombiner::PromoteLoad(SDValue Op) {
962  if (!LegalOperations)
963    return false;
964
965  EVT VT = Op.getValueType();
966  if (VT.isVector() || !VT.isInteger())
967    return false;
968
969  // If operation type is 'undesirable', e.g. i16 on x86, consider
970  // promoting it.
971  unsigned Opc = Op.getOpcode();
972  if (TLI.isTypeDesirableForOp(Opc, VT))
973    return false;
974
975  EVT PVT = VT;
976  // Consult target whether it is a good idea to promote this operation and
977  // what's the right type to promote it to.
978  if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
979    assert(PVT != VT && "Don't know what type to promote to!");
980
981    SDLoc dl(Op);
982    SDNode *N = Op.getNode();
983    LoadSDNode *LD = cast<LoadSDNode>(N);
984    EVT MemVT = LD->getMemoryVT();
985    ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD)
986      ? (TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT) ? ISD::ZEXTLOAD
987                                                  : ISD::EXTLOAD)
988      : LD->getExtensionType();
989    SDValue NewLD = DAG.getExtLoad(ExtType, dl, PVT,
990                                   LD->getChain(), LD->getBasePtr(),
991                                   LD->getPointerInfo(),
992                                   MemVT, LD->isVolatile(),
993                                   LD->isNonTemporal(), LD->getAlignment());
994    SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, VT, NewLD);
995
996    DEBUG(dbgs() << "\nPromoting ";
997          N->dump(&DAG);
998          dbgs() << "\nTo: ";
999          Result.getNode()->dump(&DAG);
1000          dbgs() << '\n');
1001    WorkListRemover DeadNodes(*this);
1002    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
1003    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), NewLD.getValue(1));
1004    removeFromWorkList(N);
1005    DAG.DeleteNode(N);
1006    AddToWorkList(Result.getNode());
1007    return true;
1008  }
1009  return false;
1010}
1011
1012
1013//===----------------------------------------------------------------------===//
1014//  Main DAG Combiner implementation
1015//===----------------------------------------------------------------------===//
1016
1017void DAGCombiner::Run(CombineLevel AtLevel) {
1018  // set the instance variables, so that the various visit routines may use it.
1019  Level = AtLevel;
1020  LegalOperations = Level >= AfterLegalizeVectorOps;
1021  LegalTypes = Level >= AfterLegalizeTypes;
1022
1023  // Add all the dag nodes to the worklist.
1024  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
1025       E = DAG.allnodes_end(); I != E; ++I)
1026    AddToWorkList(I);
1027
1028  // Create a dummy node (which is not added to allnodes), that adds a reference
1029  // to the root node, preventing it from being deleted, and tracking any
1030  // changes of the root.
1031  HandleSDNode Dummy(DAG.getRoot());
1032
1033  // The root of the dag may dangle to deleted nodes until the dag combiner is
1034  // done.  Set it to null to avoid confusion.
1035  DAG.setRoot(SDValue());
1036
1037  // while the worklist isn't empty, find a node and
1038  // try and combine it.
1039  while (!WorkListContents.empty()) {
1040    SDNode *N;
1041    // The WorkListOrder holds the SDNodes in order, but it may contain
1042    // duplicates.
1043    // In order to avoid a linear scan, we use a set (O(log N)) to hold what the
1044    // worklist *should* contain, and check the node we want to visit is should
1045    // actually be visited.
1046    do {
1047      N = WorkListOrder.pop_back_val();
1048    } while (!WorkListContents.erase(N));
1049
1050    // If N has no uses, it is dead.  Make sure to revisit all N's operands once
1051    // N is deleted from the DAG, since they too may now be dead or may have a
1052    // reduced number of uses, allowing other xforms.
1053    if (N->use_empty() && N != &Dummy) {
1054      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1055        AddToWorkList(N->getOperand(i).getNode());
1056
1057      DAG.DeleteNode(N);
1058      continue;
1059    }
1060
1061    SDValue RV = combine(N);
1062
1063    if (RV.getNode() == 0)
1064      continue;
1065
1066    ++NodesCombined;
1067
1068    // If we get back the same node we passed in, rather than a new node or
1069    // zero, we know that the node must have defined multiple values and
1070    // CombineTo was used.  Since CombineTo takes care of the worklist
1071    // mechanics for us, we have no work to do in this case.
1072    if (RV.getNode() == N)
1073      continue;
1074
1075    assert(N->getOpcode() != ISD::DELETED_NODE &&
1076           RV.getNode()->getOpcode() != ISD::DELETED_NODE &&
1077           "Node was deleted but visit returned new node!");
1078
1079    DEBUG(dbgs() << "\nReplacing.3 ";
1080          N->dump(&DAG);
1081          dbgs() << "\nWith: ";
1082          RV.getNode()->dump(&DAG);
1083          dbgs() << '\n');
1084
1085    // Transfer debug value.
1086    DAG.TransferDbgValues(SDValue(N, 0), RV);
1087    WorkListRemover DeadNodes(*this);
1088    if (N->getNumValues() == RV.getNode()->getNumValues())
1089      DAG.ReplaceAllUsesWith(N, RV.getNode());
1090    else {
1091      assert(N->getValueType(0) == RV.getValueType() &&
1092             N->getNumValues() == 1 && "Type mismatch");
1093      SDValue OpV = RV;
1094      DAG.ReplaceAllUsesWith(N, &OpV);
1095    }
1096
1097    // Push the new node and any users onto the worklist
1098    AddToWorkList(RV.getNode());
1099    AddUsersToWorkList(RV.getNode());
1100
1101    // Add any uses of the old node to the worklist in case this node is the
1102    // last one that uses them.  They may become dead after this node is
1103    // deleted.
1104    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1105      AddToWorkList(N->getOperand(i).getNode());
1106
1107    // Finally, if the node is now dead, remove it from the graph.  The node
1108    // may not be dead if the replacement process recursively simplified to
1109    // something else needing this node.
1110    if (N->use_empty()) {
1111      // Nodes can be reintroduced into the worklist.  Make sure we do not
1112      // process a node that has been replaced.
1113      removeFromWorkList(N);
1114
1115      // Finally, since the node is now dead, remove it from the graph.
1116      DAG.DeleteNode(N);
1117    }
1118  }
1119
1120  // If the root changed (e.g. it was a dead load, update the root).
1121  DAG.setRoot(Dummy.getValue());
1122  DAG.RemoveDeadNodes();
1123}
1124
1125SDValue DAGCombiner::visit(SDNode *N) {
1126  switch (N->getOpcode()) {
1127  default: break;
1128  case ISD::TokenFactor:        return visitTokenFactor(N);
1129  case ISD::MERGE_VALUES:       return visitMERGE_VALUES(N);
1130  case ISD::ADD:                return visitADD(N);
1131  case ISD::SUB:                return visitSUB(N);
1132  case ISD::ADDC:               return visitADDC(N);
1133  case ISD::SUBC:               return visitSUBC(N);
1134  case ISD::ADDE:               return visitADDE(N);
1135  case ISD::SUBE:               return visitSUBE(N);
1136  case ISD::MUL:                return visitMUL(N);
1137  case ISD::SDIV:               return visitSDIV(N);
1138  case ISD::UDIV:               return visitUDIV(N);
1139  case ISD::SREM:               return visitSREM(N);
1140  case ISD::UREM:               return visitUREM(N);
1141  case ISD::MULHU:              return visitMULHU(N);
1142  case ISD::MULHS:              return visitMULHS(N);
1143  case ISD::SMUL_LOHI:          return visitSMUL_LOHI(N);
1144  case ISD::UMUL_LOHI:          return visitUMUL_LOHI(N);
1145  case ISD::SMULO:              return visitSMULO(N);
1146  case ISD::UMULO:              return visitUMULO(N);
1147  case ISD::SDIVREM:            return visitSDIVREM(N);
1148  case ISD::UDIVREM:            return visitUDIVREM(N);
1149  case ISD::AND:                return visitAND(N);
1150  case ISD::OR:                 return visitOR(N);
1151  case ISD::XOR:                return visitXOR(N);
1152  case ISD::SHL:                return visitSHL(N);
1153  case ISD::SRA:                return visitSRA(N);
1154  case ISD::SRL:                return visitSRL(N);
1155  case ISD::CTLZ:               return visitCTLZ(N);
1156  case ISD::CTLZ_ZERO_UNDEF:    return visitCTLZ_ZERO_UNDEF(N);
1157  case ISD::CTTZ:               return visitCTTZ(N);
1158  case ISD::CTTZ_ZERO_UNDEF:    return visitCTTZ_ZERO_UNDEF(N);
1159  case ISD::CTPOP:              return visitCTPOP(N);
1160  case ISD::SELECT:             return visitSELECT(N);
1161  case ISD::VSELECT:            return visitVSELECT(N);
1162  case ISD::SELECT_CC:          return visitSELECT_CC(N);
1163  case ISD::SETCC:              return visitSETCC(N);
1164  case ISD::SIGN_EXTEND:        return visitSIGN_EXTEND(N);
1165  case ISD::ZERO_EXTEND:        return visitZERO_EXTEND(N);
1166  case ISD::ANY_EXTEND:         return visitANY_EXTEND(N);
1167  case ISD::SIGN_EXTEND_INREG:  return visitSIGN_EXTEND_INREG(N);
1168  case ISD::TRUNCATE:           return visitTRUNCATE(N);
1169  case ISD::BITCAST:            return visitBITCAST(N);
1170  case ISD::BUILD_PAIR:         return visitBUILD_PAIR(N);
1171  case ISD::FADD:               return visitFADD(N);
1172  case ISD::FSUB:               return visitFSUB(N);
1173  case ISD::FMUL:               return visitFMUL(N);
1174  case ISD::FMA:                return visitFMA(N);
1175  case ISD::FDIV:               return visitFDIV(N);
1176  case ISD::FREM:               return visitFREM(N);
1177  case ISD::FCOPYSIGN:          return visitFCOPYSIGN(N);
1178  case ISD::SINT_TO_FP:         return visitSINT_TO_FP(N);
1179  case ISD::UINT_TO_FP:         return visitUINT_TO_FP(N);
1180  case ISD::FP_TO_SINT:         return visitFP_TO_SINT(N);
1181  case ISD::FP_TO_UINT:         return visitFP_TO_UINT(N);
1182  case ISD::FP_ROUND:           return visitFP_ROUND(N);
1183  case ISD::FP_ROUND_INREG:     return visitFP_ROUND_INREG(N);
1184  case ISD::FP_EXTEND:          return visitFP_EXTEND(N);
1185  case ISD::FNEG:               return visitFNEG(N);
1186  case ISD::FABS:               return visitFABS(N);
1187  case ISD::FFLOOR:             return visitFFLOOR(N);
1188  case ISD::FCEIL:              return visitFCEIL(N);
1189  case ISD::FTRUNC:             return visitFTRUNC(N);
1190  case ISD::BRCOND:             return visitBRCOND(N);
1191  case ISD::BR_CC:              return visitBR_CC(N);
1192  case ISD::LOAD:               return visitLOAD(N);
1193  case ISD::STORE:              return visitSTORE(N);
1194  case ISD::INSERT_VECTOR_ELT:  return visitINSERT_VECTOR_ELT(N);
1195  case ISD::EXTRACT_VECTOR_ELT: return visitEXTRACT_VECTOR_ELT(N);
1196  case ISD::BUILD_VECTOR:       return visitBUILD_VECTOR(N);
1197  case ISD::CONCAT_VECTORS:     return visitCONCAT_VECTORS(N);
1198  case ISD::EXTRACT_SUBVECTOR:  return visitEXTRACT_SUBVECTOR(N);
1199  case ISD::VECTOR_SHUFFLE:     return visitVECTOR_SHUFFLE(N);
1200  }
1201  return SDValue();
1202}
1203
1204SDValue DAGCombiner::combine(SDNode *N) {
1205  SDValue RV = visit(N);
1206
1207  // If nothing happened, try a target-specific DAG combine.
1208  if (RV.getNode() == 0) {
1209    assert(N->getOpcode() != ISD::DELETED_NODE &&
1210           "Node was deleted but visit returned NULL!");
1211
1212    if (N->getOpcode() >= ISD::BUILTIN_OP_END ||
1213        TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) {
1214
1215      // Expose the DAG combiner to the target combiner impls.
1216      TargetLowering::DAGCombinerInfo
1217        DagCombineInfo(DAG, Level, false, this);
1218
1219      RV = TLI.PerformDAGCombine(N, DagCombineInfo);
1220    }
1221  }
1222
1223  // If nothing happened still, try promoting the operation.
1224  if (RV.getNode() == 0) {
1225    switch (N->getOpcode()) {
1226    default: break;
1227    case ISD::ADD:
1228    case ISD::SUB:
1229    case ISD::MUL:
1230    case ISD::AND:
1231    case ISD::OR:
1232    case ISD::XOR:
1233      RV = PromoteIntBinOp(SDValue(N, 0));
1234      break;
1235    case ISD::SHL:
1236    case ISD::SRA:
1237    case ISD::SRL:
1238      RV = PromoteIntShiftOp(SDValue(N, 0));
1239      break;
1240    case ISD::SIGN_EXTEND:
1241    case ISD::ZERO_EXTEND:
1242    case ISD::ANY_EXTEND:
1243      RV = PromoteExtend(SDValue(N, 0));
1244      break;
1245    case ISD::LOAD:
1246      if (PromoteLoad(SDValue(N, 0)))
1247        RV = SDValue(N, 0);
1248      break;
1249    }
1250  }
1251
1252  // If N is a commutative binary node, try commuting it to enable more
1253  // sdisel CSE.
1254  if (RV.getNode() == 0 &&
1255      SelectionDAG::isCommutativeBinOp(N->getOpcode()) &&
1256      N->getNumValues() == 1) {
1257    SDValue N0 = N->getOperand(0);
1258    SDValue N1 = N->getOperand(1);
1259
1260    // Constant operands are canonicalized to RHS.
1261    if (isa<ConstantSDNode>(N0) || !isa<ConstantSDNode>(N1)) {
1262      SDValue Ops[] = { N1, N0 };
1263      SDNode *CSENode = DAG.getNodeIfExists(N->getOpcode(), N->getVTList(),
1264                                            Ops, 2);
1265      if (CSENode)
1266        return SDValue(CSENode, 0);
1267    }
1268  }
1269
1270  return RV;
1271}
1272
1273/// getInputChainForNode - Given a node, return its input chain if it has one,
1274/// otherwise return a null sd operand.
1275static SDValue getInputChainForNode(SDNode *N) {
1276  if (unsigned NumOps = N->getNumOperands()) {
1277    if (N->getOperand(0).getValueType() == MVT::Other)
1278      return N->getOperand(0);
1279    if (N->getOperand(NumOps-1).getValueType() == MVT::Other)
1280      return N->getOperand(NumOps-1);
1281    for (unsigned i = 1; i < NumOps-1; ++i)
1282      if (N->getOperand(i).getValueType() == MVT::Other)
1283        return N->getOperand(i);
1284  }
1285  return SDValue();
1286}
1287
1288SDValue DAGCombiner::visitTokenFactor(SDNode *N) {
1289  // If N has two operands, where one has an input chain equal to the other,
1290  // the 'other' chain is redundant.
1291  if (N->getNumOperands() == 2) {
1292    if (getInputChainForNode(N->getOperand(0).getNode()) == N->getOperand(1))
1293      return N->getOperand(0);
1294    if (getInputChainForNode(N->getOperand(1).getNode()) == N->getOperand(0))
1295      return N->getOperand(1);
1296  }
1297
1298  SmallVector<SDNode *, 8> TFs;     // List of token factors to visit.
1299  SmallVector<SDValue, 8> Ops;    // Ops for replacing token factor.
1300  SmallPtrSet<SDNode*, 16> SeenOps;
1301  bool Changed = false;             // If we should replace this token factor.
1302
1303  // Start out with this token factor.
1304  TFs.push_back(N);
1305
1306  // Iterate through token factors.  The TFs grows when new token factors are
1307  // encountered.
1308  for (unsigned i = 0; i < TFs.size(); ++i) {
1309    SDNode *TF = TFs[i];
1310
1311    // Check each of the operands.
1312    for (unsigned i = 0, ie = TF->getNumOperands(); i != ie; ++i) {
1313      SDValue Op = TF->getOperand(i);
1314
1315      switch (Op.getOpcode()) {
1316      case ISD::EntryToken:
1317        // Entry tokens don't need to be added to the list. They are
1318        // rededundant.
1319        Changed = true;
1320        break;
1321
1322      case ISD::TokenFactor:
1323        if (Op.hasOneUse() &&
1324            std::find(TFs.begin(), TFs.end(), Op.getNode()) == TFs.end()) {
1325          // Queue up for processing.
1326          TFs.push_back(Op.getNode());
1327          // Clean up in case the token factor is removed.
1328          AddToWorkList(Op.getNode());
1329          Changed = true;
1330          break;
1331        }
1332        // Fall thru
1333
1334      default:
1335        // Only add if it isn't already in the list.
1336        if (SeenOps.insert(Op.getNode()))
1337          Ops.push_back(Op);
1338        else
1339          Changed = true;
1340        break;
1341      }
1342    }
1343  }
1344
1345  SDValue Result;
1346
1347  // If we've change things around then replace token factor.
1348  if (Changed) {
1349    if (Ops.empty()) {
1350      // The entry token is the only possible outcome.
1351      Result = DAG.getEntryNode();
1352    } else {
1353      // New and improved token factor.
1354      Result = DAG.getNode(ISD::TokenFactor, SDLoc(N),
1355                           MVT::Other, &Ops[0], Ops.size());
1356    }
1357
1358    // Don't add users to work list.
1359    return CombineTo(N, Result, false);
1360  }
1361
1362  return Result;
1363}
1364
1365/// MERGE_VALUES can always be eliminated.
1366SDValue DAGCombiner::visitMERGE_VALUES(SDNode *N) {
1367  WorkListRemover DeadNodes(*this);
1368  // Replacing results may cause a different MERGE_VALUES to suddenly
1369  // be CSE'd with N, and carry its uses with it. Iterate until no
1370  // uses remain, to ensure that the node can be safely deleted.
1371  // First add the users of this node to the work list so that they
1372  // can be tried again once they have new operands.
1373  AddUsersToWorkList(N);
1374  do {
1375    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1376      DAG.ReplaceAllUsesOfValueWith(SDValue(N, i), N->getOperand(i));
1377  } while (!N->use_empty());
1378  removeFromWorkList(N);
1379  DAG.DeleteNode(N);
1380  return SDValue(N, 0);   // Return N so it doesn't get rechecked!
1381}
1382
1383static
1384SDValue combineShlAddConstant(SDLoc DL, SDValue N0, SDValue N1,
1385                              SelectionDAG &DAG) {
1386  EVT VT = N0.getValueType();
1387  SDValue N00 = N0.getOperand(0);
1388  SDValue N01 = N0.getOperand(1);
1389  ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N01);
1390
1391  if (N01C && N00.getOpcode() == ISD::ADD && N00.getNode()->hasOneUse() &&
1392      isa<ConstantSDNode>(N00.getOperand(1))) {
1393    // fold (add (shl (add x, c1), c2), ) -> (add (add (shl x, c2), c1<<c2), )
1394    N0 = DAG.getNode(ISD::ADD, SDLoc(N0), VT,
1395                     DAG.getNode(ISD::SHL, SDLoc(N00), VT,
1396                                 N00.getOperand(0), N01),
1397                     DAG.getNode(ISD::SHL, SDLoc(N01), VT,
1398                                 N00.getOperand(1), N01));
1399    return DAG.getNode(ISD::ADD, DL, VT, N0, N1);
1400  }
1401
1402  return SDValue();
1403}
1404
1405SDValue DAGCombiner::visitADD(SDNode *N) {
1406  SDValue N0 = N->getOperand(0);
1407  SDValue N1 = N->getOperand(1);
1408  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1409  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1410  EVT VT = N0.getValueType();
1411
1412  // fold vector ops
1413  if (VT.isVector()) {
1414    SDValue FoldedVOp = SimplifyVBinOp(N);
1415    if (FoldedVOp.getNode()) return FoldedVOp;
1416
1417    // fold (add x, 0) -> x, vector edition
1418    if (ISD::isBuildVectorAllZeros(N1.getNode()))
1419      return N0;
1420    if (ISD::isBuildVectorAllZeros(N0.getNode()))
1421      return N1;
1422  }
1423
1424  // fold (add x, undef) -> undef
1425  if (N0.getOpcode() == ISD::UNDEF)
1426    return N0;
1427  if (N1.getOpcode() == ISD::UNDEF)
1428    return N1;
1429  // fold (add c1, c2) -> c1+c2
1430  if (N0C && N1C)
1431    return DAG.FoldConstantArithmetic(ISD::ADD, VT, N0C, N1C);
1432  // canonicalize constant to RHS
1433  if (N0C && !N1C)
1434    return DAG.getNode(ISD::ADD, SDLoc(N), VT, N1, N0);
1435  // fold (add x, 0) -> x
1436  if (N1C && N1C->isNullValue())
1437    return N0;
1438  // fold (add Sym, c) -> Sym+c
1439  if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0))
1440    if (!LegalOperations && TLI.isOffsetFoldingLegal(GA) && N1C &&
1441        GA->getOpcode() == ISD::GlobalAddress)
1442      return DAG.getGlobalAddress(GA->getGlobal(), SDLoc(N1C), VT,
1443                                  GA->getOffset() +
1444                                    (uint64_t)N1C->getSExtValue());
1445  // fold ((c1-A)+c2) -> (c1+c2)-A
1446  if (N1C && N0.getOpcode() == ISD::SUB)
1447    if (ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getOperand(0)))
1448      return DAG.getNode(ISD::SUB, SDLoc(N), VT,
1449                         DAG.getConstant(N1C->getAPIntValue()+
1450                                         N0C->getAPIntValue(), VT),
1451                         N0.getOperand(1));
1452  // reassociate add
1453  SDValue RADD = ReassociateOps(ISD::ADD, SDLoc(N), N0, N1);
1454  if (RADD.getNode() != 0)
1455    return RADD;
1456  // fold ((0-A) + B) -> B-A
1457  if (N0.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N0.getOperand(0)) &&
1458      cast<ConstantSDNode>(N0.getOperand(0))->isNullValue())
1459    return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1, N0.getOperand(1));
1460  // fold (A + (0-B)) -> A-B
1461  if (N1.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N1.getOperand(0)) &&
1462      cast<ConstantSDNode>(N1.getOperand(0))->isNullValue())
1463    return DAG.getNode(ISD::SUB, SDLoc(N), VT, N0, N1.getOperand(1));
1464  // fold (A+(B-A)) -> B
1465  if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1))
1466    return N1.getOperand(0);
1467  // fold ((B-A)+A) -> B
1468  if (N0.getOpcode() == ISD::SUB && N1 == N0.getOperand(1))
1469    return N0.getOperand(0);
1470  // fold (A+(B-(A+C))) to (B-C)
1471  if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD &&
1472      N0 == N1.getOperand(1).getOperand(0))
1473    return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1.getOperand(0),
1474                       N1.getOperand(1).getOperand(1));
1475  // fold (A+(B-(C+A))) to (B-C)
1476  if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD &&
1477      N0 == N1.getOperand(1).getOperand(1))
1478    return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1.getOperand(0),
1479                       N1.getOperand(1).getOperand(0));
1480  // fold (A+((B-A)+or-C)) to (B+or-C)
1481  if ((N1.getOpcode() == ISD::SUB || N1.getOpcode() == ISD::ADD) &&
1482      N1.getOperand(0).getOpcode() == ISD::SUB &&
1483      N0 == N1.getOperand(0).getOperand(1))
1484    return DAG.getNode(N1.getOpcode(), SDLoc(N), VT,
1485                       N1.getOperand(0).getOperand(0), N1.getOperand(1));
1486
1487  // fold (A-B)+(C-D) to (A+C)-(B+D) when A or C is constant
1488  if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB) {
1489    SDValue N00 = N0.getOperand(0);
1490    SDValue N01 = N0.getOperand(1);
1491    SDValue N10 = N1.getOperand(0);
1492    SDValue N11 = N1.getOperand(1);
1493
1494    if (isa<ConstantSDNode>(N00) || isa<ConstantSDNode>(N10))
1495      return DAG.getNode(ISD::SUB, SDLoc(N), VT,
1496                         DAG.getNode(ISD::ADD, SDLoc(N0), VT, N00, N10),
1497                         DAG.getNode(ISD::ADD, SDLoc(N1), VT, N01, N11));
1498  }
1499
1500  if (!VT.isVector() && SimplifyDemandedBits(SDValue(N, 0)))
1501    return SDValue(N, 0);
1502
1503  // fold (a+b) -> (a|b) iff a and b share no bits.
1504  if (VT.isInteger() && !VT.isVector()) {
1505    APInt LHSZero, LHSOne;
1506    APInt RHSZero, RHSOne;
1507    DAG.ComputeMaskedBits(N0, LHSZero, LHSOne);
1508
1509    if (LHSZero.getBoolValue()) {
1510      DAG.ComputeMaskedBits(N1, RHSZero, RHSOne);
1511
1512      // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
1513      // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
1514      if ((RHSZero & ~LHSZero) == ~LHSZero || (LHSZero & ~RHSZero) == ~RHSZero)
1515        return DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N1);
1516    }
1517  }
1518
1519  // fold (add (shl (add x, c1), c2), ) -> (add (add (shl x, c2), c1<<c2), )
1520  if (N0.getOpcode() == ISD::SHL && N0.getNode()->hasOneUse()) {
1521    SDValue Result = combineShlAddConstant(SDLoc(N), N0, N1, DAG);
1522    if (Result.getNode()) return Result;
1523  }
1524  if (N1.getOpcode() == ISD::SHL && N1.getNode()->hasOneUse()) {
1525    SDValue Result = combineShlAddConstant(SDLoc(N), N1, N0, DAG);
1526    if (Result.getNode()) return Result;
1527  }
1528
1529  // fold (add x, shl(0 - y, n)) -> sub(x, shl(y, n))
1530  if (N1.getOpcode() == ISD::SHL &&
1531      N1.getOperand(0).getOpcode() == ISD::SUB)
1532    if (ConstantSDNode *C =
1533          dyn_cast<ConstantSDNode>(N1.getOperand(0).getOperand(0)))
1534      if (C->getAPIntValue() == 0)
1535        return DAG.getNode(ISD::SUB, SDLoc(N), VT, N0,
1536                           DAG.getNode(ISD::SHL, SDLoc(N), VT,
1537                                       N1.getOperand(0).getOperand(1),
1538                                       N1.getOperand(1)));
1539  if (N0.getOpcode() == ISD::SHL &&
1540      N0.getOperand(0).getOpcode() == ISD::SUB)
1541    if (ConstantSDNode *C =
1542          dyn_cast<ConstantSDNode>(N0.getOperand(0).getOperand(0)))
1543      if (C->getAPIntValue() == 0)
1544        return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1,
1545                           DAG.getNode(ISD::SHL, SDLoc(N), VT,
1546                                       N0.getOperand(0).getOperand(1),
1547                                       N0.getOperand(1)));
1548
1549  if (N1.getOpcode() == ISD::AND) {
1550    SDValue AndOp0 = N1.getOperand(0);
1551    ConstantSDNode *AndOp1 = dyn_cast<ConstantSDNode>(N1->getOperand(1));
1552    unsigned NumSignBits = DAG.ComputeNumSignBits(AndOp0);
1553    unsigned DestBits = VT.getScalarType().getSizeInBits();
1554
1555    // (add z, (and (sbbl x, x), 1)) -> (sub z, (sbbl x, x))
1556    // and similar xforms where the inner op is either ~0 or 0.
1557    if (NumSignBits == DestBits && AndOp1 && AndOp1->isOne()) {
1558      SDLoc DL(N);
1559      return DAG.getNode(ISD::SUB, DL, VT, N->getOperand(0), AndOp0);
1560    }
1561  }
1562
1563  // add (sext i1), X -> sub X, (zext i1)
1564  if (N0.getOpcode() == ISD::SIGN_EXTEND &&
1565      N0.getOperand(0).getValueType() == MVT::i1 &&
1566      !TLI.isOperationLegal(ISD::SIGN_EXTEND, MVT::i1)) {
1567    SDLoc DL(N);
1568    SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0));
1569    return DAG.getNode(ISD::SUB, DL, VT, N1, ZExt);
1570  }
1571
1572  return SDValue();
1573}
1574
1575SDValue DAGCombiner::visitADDC(SDNode *N) {
1576  SDValue N0 = N->getOperand(0);
1577  SDValue N1 = N->getOperand(1);
1578  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1579  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1580  EVT VT = N0.getValueType();
1581
1582  // If the flag result is dead, turn this into an ADD.
1583  if (!N->hasAnyUseOfValue(1))
1584    return CombineTo(N, DAG.getNode(ISD::ADD, SDLoc(N), VT, N0, N1),
1585                     DAG.getNode(ISD::CARRY_FALSE,
1586                                 SDLoc(N), MVT::Glue));
1587
1588  // canonicalize constant to RHS.
1589  if (N0C && !N1C)
1590    return DAG.getNode(ISD::ADDC, SDLoc(N), N->getVTList(), N1, N0);
1591
1592  // fold (addc x, 0) -> x + no carry out
1593  if (N1C && N1C->isNullValue())
1594    return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE,
1595                                        SDLoc(N), MVT::Glue));
1596
1597  // fold (addc a, b) -> (or a, b), CARRY_FALSE iff a and b share no bits.
1598  APInt LHSZero, LHSOne;
1599  APInt RHSZero, RHSOne;
1600  DAG.ComputeMaskedBits(N0, LHSZero, LHSOne);
1601
1602  if (LHSZero.getBoolValue()) {
1603    DAG.ComputeMaskedBits(N1, RHSZero, RHSOne);
1604
1605    // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
1606    // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
1607    if ((RHSZero & ~LHSZero) == ~LHSZero || (LHSZero & ~RHSZero) == ~RHSZero)
1608      return CombineTo(N, DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N1),
1609                       DAG.getNode(ISD::CARRY_FALSE,
1610                                   SDLoc(N), MVT::Glue));
1611  }
1612
1613  return SDValue();
1614}
1615
1616SDValue DAGCombiner::visitADDE(SDNode *N) {
1617  SDValue N0 = N->getOperand(0);
1618  SDValue N1 = N->getOperand(1);
1619  SDValue CarryIn = N->getOperand(2);
1620  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1621  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1622
1623  // canonicalize constant to RHS
1624  if (N0C && !N1C)
1625    return DAG.getNode(ISD::ADDE, SDLoc(N), N->getVTList(),
1626                       N1, N0, CarryIn);
1627
1628  // fold (adde x, y, false) -> (addc x, y)
1629  if (CarryIn.getOpcode() == ISD::CARRY_FALSE)
1630    return DAG.getNode(ISD::ADDC, SDLoc(N), N->getVTList(), N0, N1);
1631
1632  return SDValue();
1633}
1634
1635// Since it may not be valid to emit a fold to zero for vector initializers
1636// check if we can before folding.
1637static SDValue tryFoldToZero(SDLoc DL, const TargetLowering &TLI, EVT VT,
1638                             SelectionDAG &DAG,
1639                             bool LegalOperations, bool LegalTypes) {
1640  if (!VT.isVector())
1641    return DAG.getConstant(0, VT);
1642  if (!LegalOperations || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) {
1643    // Produce a vector of zeros.
1644    EVT ElemTy = VT.getVectorElementType();
1645    if (LegalTypes && TLI.getTypeAction(*DAG.getContext(), ElemTy) ==
1646                      TargetLowering::TypePromoteInteger)
1647      ElemTy = TLI.getTypeToTransformTo(*DAG.getContext(), ElemTy);
1648    assert((!LegalTypes || TLI.isTypeLegal(ElemTy)) &&
1649           "Type for zero vector elements is not legal");
1650    SDValue El = DAG.getConstant(0, ElemTy);
1651    std::vector<SDValue> Ops(VT.getVectorNumElements(), El);
1652    return DAG.getNode(ISD::BUILD_VECTOR, DL, VT,
1653      &Ops[0], Ops.size());
1654  }
1655  return SDValue();
1656}
1657
1658SDValue DAGCombiner::visitSUB(SDNode *N) {
1659  SDValue N0 = N->getOperand(0);
1660  SDValue N1 = N->getOperand(1);
1661  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getNode());
1662  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
1663  ConstantSDNode *N1C1 = N1.getOpcode() != ISD::ADD ? 0 :
1664    dyn_cast<ConstantSDNode>(N1.getOperand(1).getNode());
1665  EVT VT = N0.getValueType();
1666
1667  // fold vector ops
1668  if (VT.isVector()) {
1669    SDValue FoldedVOp = SimplifyVBinOp(N);
1670    if (FoldedVOp.getNode()) return FoldedVOp;
1671
1672    // fold (sub x, 0) -> x, vector edition
1673    if (ISD::isBuildVectorAllZeros(N1.getNode()))
1674      return N0;
1675  }
1676
1677  // fold (sub x, x) -> 0
1678  // FIXME: Refactor this and xor and other similar operations together.
1679  if (N0 == N1)
1680    return tryFoldToZero(SDLoc(N), TLI, VT, DAG, LegalOperations, LegalTypes);
1681  // fold (sub c1, c2) -> c1-c2
1682  if (N0C && N1C)
1683    return DAG.FoldConstantArithmetic(ISD::SUB, VT, N0C, N1C);
1684  // fold (sub x, c) -> (add x, -c)
1685  if (N1C)
1686    return DAG.getNode(ISD::ADD, SDLoc(N), VT, N0,
1687                       DAG.getConstant(-N1C->getAPIntValue(), VT));
1688  // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1)
1689  if (N0C && N0C->isAllOnesValue())
1690    return DAG.getNode(ISD::XOR, SDLoc(N), VT, N1, N0);
1691  // fold A-(A-B) -> B
1692  if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(0))
1693    return N1.getOperand(1);
1694  // fold (A+B)-A -> B
1695  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1)
1696    return N0.getOperand(1);
1697  // fold (A+B)-B -> A
1698  if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1)
1699    return N0.getOperand(0);
1700  // fold C2-(A+C1) -> (C2-C1)-A
1701  if (N1.getOpcode() == ISD::ADD && N0C && N1C1) {
1702    SDValue NewC = DAG.getConstant(N0C->getAPIntValue() - N1C1->getAPIntValue(),
1703                                   VT);
1704    return DAG.getNode(ISD::SUB, SDLoc(N), VT, NewC,
1705                       N1.getOperand(0));
1706  }
1707  // fold ((A+(B+or-C))-B) -> A+or-C
1708  if (N0.getOpcode() == ISD::ADD &&
1709      (N0.getOperand(1).getOpcode() == ISD::SUB ||
1710       N0.getOperand(1).getOpcode() == ISD::ADD) &&
1711      N0.getOperand(1).getOperand(0) == N1)
1712    return DAG.getNode(N0.getOperand(1).getOpcode(), SDLoc(N), VT,
1713                       N0.getOperand(0), N0.getOperand(1).getOperand(1));
1714  // fold ((A+(C+B))-B) -> A+C
1715  if (N0.getOpcode() == ISD::ADD &&
1716      N0.getOperand(1).getOpcode() == ISD::ADD &&
1717      N0.getOperand(1).getOperand(1) == N1)
1718    return DAG.getNode(ISD::ADD, SDLoc(N), VT,
1719                       N0.getOperand(0), N0.getOperand(1).getOperand(0));
1720  // fold ((A-(B-C))-C) -> A-B
1721  if (N0.getOpcode() == ISD::SUB &&
1722      N0.getOperand(1).getOpcode() == ISD::SUB &&
1723      N0.getOperand(1).getOperand(1) == N1)
1724    return DAG.getNode(ISD::SUB, SDLoc(N), VT,
1725                       N0.getOperand(0), N0.getOperand(1).getOperand(0));
1726
1727  // If either operand of a sub is undef, the result is undef
1728  if (N0.getOpcode() == ISD::UNDEF)
1729    return N0;
1730  if (N1.getOpcode() == ISD::UNDEF)
1731    return N1;
1732
1733  // If the relocation model supports it, consider symbol offsets.
1734  if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0))
1735    if (!LegalOperations && TLI.isOffsetFoldingLegal(GA)) {
1736      // fold (sub Sym, c) -> Sym-c
1737      if (N1C && GA->getOpcode() == ISD::GlobalAddress)
1738        return DAG.getGlobalAddress(GA->getGlobal(), SDLoc(N1C), VT,
1739                                    GA->getOffset() -
1740                                      (uint64_t)N1C->getSExtValue());
1741      // fold (sub Sym+c1, Sym+c2) -> c1-c2
1742      if (GlobalAddressSDNode *GB = dyn_cast<GlobalAddressSDNode>(N1))
1743        if (GA->getGlobal() == GB->getGlobal())
1744          return DAG.getConstant((uint64_t)GA->getOffset() - GB->getOffset(),
1745                                 VT);
1746    }
1747
1748  return SDValue();
1749}
1750
1751SDValue DAGCombiner::visitSUBC(SDNode *N) {
1752  SDValue N0 = N->getOperand(0);
1753  SDValue N1 = N->getOperand(1);
1754  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1755  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1756  EVT VT = N0.getValueType();
1757
1758  // If the flag result is dead, turn this into an SUB.
1759  if (!N->hasAnyUseOfValue(1))
1760    return CombineTo(N, DAG.getNode(ISD::SUB, SDLoc(N), VT, N0, N1),
1761                     DAG.getNode(ISD::CARRY_FALSE, SDLoc(N),
1762                                 MVT::Glue));
1763
1764  // fold (subc x, x) -> 0 + no borrow
1765  if (N0 == N1)
1766    return CombineTo(N, DAG.getConstant(0, VT),
1767                     DAG.getNode(ISD::CARRY_FALSE, SDLoc(N),
1768                                 MVT::Glue));
1769
1770  // fold (subc x, 0) -> x + no borrow
1771  if (N1C && N1C->isNullValue())
1772    return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, SDLoc(N),
1773                                        MVT::Glue));
1774
1775  // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) + no borrow
1776  if (N0C && N0C->isAllOnesValue())
1777    return CombineTo(N, DAG.getNode(ISD::XOR, SDLoc(N), VT, N1, N0),
1778                     DAG.getNode(ISD::CARRY_FALSE, SDLoc(N),
1779                                 MVT::Glue));
1780
1781  return SDValue();
1782}
1783
1784SDValue DAGCombiner::visitSUBE(SDNode *N) {
1785  SDValue N0 = N->getOperand(0);
1786  SDValue N1 = N->getOperand(1);
1787  SDValue CarryIn = N->getOperand(2);
1788
1789  // fold (sube x, y, false) -> (subc x, y)
1790  if (CarryIn.getOpcode() == ISD::CARRY_FALSE)
1791    return DAG.getNode(ISD::SUBC, SDLoc(N), N->getVTList(), N0, N1);
1792
1793  return SDValue();
1794}
1795
1796/// isConstantSplatVector - Returns true if N is a BUILD_VECTOR node whose
1797/// elements are all the same constant or undefined.
1798static bool isConstantSplatVector(SDNode *N, APInt& SplatValue) {
1799  BuildVectorSDNode *C = dyn_cast<BuildVectorSDNode>(N);
1800  if (!C)
1801    return false;
1802
1803  APInt SplatUndef;
1804  unsigned SplatBitSize;
1805  bool HasAnyUndefs;
1806  EVT EltVT = N->getValueType(0).getVectorElementType();
1807  return (C->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
1808                             HasAnyUndefs) &&
1809          EltVT.getSizeInBits() >= SplatBitSize);
1810}
1811
1812SDValue DAGCombiner::visitMUL(SDNode *N) {
1813  SDValue N0 = N->getOperand(0);
1814  SDValue N1 = N->getOperand(1);
1815  EVT VT = N0.getValueType();
1816
1817  // fold (mul x, undef) -> 0
1818  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1819    return DAG.getConstant(0, VT);
1820
1821  bool N0IsConst = false;
1822  bool N1IsConst = false;
1823  APInt ConstValue0, ConstValue1;
1824  // fold vector ops
1825  if (VT.isVector()) {
1826    SDValue FoldedVOp = SimplifyVBinOp(N);
1827    if (FoldedVOp.getNode()) return FoldedVOp;
1828
1829    N0IsConst = isConstantSplatVector(N0.getNode(), ConstValue0);
1830    N1IsConst = isConstantSplatVector(N1.getNode(), ConstValue1);
1831  } else {
1832    N0IsConst = dyn_cast<ConstantSDNode>(N0) != 0;
1833    ConstValue0 = N0IsConst ? (dyn_cast<ConstantSDNode>(N0))->getAPIntValue()
1834                            : APInt();
1835    N1IsConst = dyn_cast<ConstantSDNode>(N1) != 0;
1836    ConstValue1 = N1IsConst ? (dyn_cast<ConstantSDNode>(N1))->getAPIntValue()
1837                            : APInt();
1838  }
1839
1840  // fold (mul c1, c2) -> c1*c2
1841  if (N0IsConst && N1IsConst)
1842    return DAG.FoldConstantArithmetic(ISD::MUL, VT, N0.getNode(), N1.getNode());
1843
1844  // canonicalize constant to RHS
1845  if (N0IsConst && !N1IsConst)
1846    return DAG.getNode(ISD::MUL, SDLoc(N), VT, N1, N0);
1847  // fold (mul x, 0) -> 0
1848  if (N1IsConst && ConstValue1 == 0)
1849    return N1;
1850  // We require a splat of the entire scalar bit width for non-contiguous
1851  // bit patterns.
1852  bool IsFullSplat =
1853    ConstValue1.getBitWidth() == VT.getScalarType().getSizeInBits();
1854  // fold (mul x, 1) -> x
1855  if (N1IsConst && ConstValue1 == 1 && IsFullSplat)
1856    return N0;
1857  // fold (mul x, -1) -> 0-x
1858  if (N1IsConst && ConstValue1.isAllOnesValue())
1859    return DAG.getNode(ISD::SUB, SDLoc(N), VT,
1860                       DAG.getConstant(0, VT), N0);
1861  // fold (mul x, (1 << c)) -> x << c
1862  if (N1IsConst && ConstValue1.isPowerOf2() && IsFullSplat)
1863    return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0,
1864                       DAG.getConstant(ConstValue1.logBase2(),
1865                                       getShiftAmountTy(N0.getValueType())));
1866  // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c
1867  if (N1IsConst && (-ConstValue1).isPowerOf2() && IsFullSplat) {
1868    unsigned Log2Val = (-ConstValue1).logBase2();
1869    // FIXME: If the input is something that is easily negated (e.g. a
1870    // single-use add), we should put the negate there.
1871    return DAG.getNode(ISD::SUB, SDLoc(N), VT,
1872                       DAG.getConstant(0, VT),
1873                       DAG.getNode(ISD::SHL, SDLoc(N), VT, N0,
1874                            DAG.getConstant(Log2Val,
1875                                      getShiftAmountTy(N0.getValueType()))));
1876  }
1877
1878  APInt Val;
1879  // (mul (shl X, c1), c2) -> (mul X, c2 << c1)
1880  if (N1IsConst && N0.getOpcode() == ISD::SHL &&
1881      (isConstantSplatVector(N0.getOperand(1).getNode(), Val) ||
1882                     isa<ConstantSDNode>(N0.getOperand(1)))) {
1883    SDValue C3 = DAG.getNode(ISD::SHL, SDLoc(N), VT,
1884                             N1, N0.getOperand(1));
1885    AddToWorkList(C3.getNode());
1886    return DAG.getNode(ISD::MUL, SDLoc(N), VT,
1887                       N0.getOperand(0), C3);
1888  }
1889
1890  // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one
1891  // use.
1892  {
1893    SDValue Sh(0,0), Y(0,0);
1894    // Check for both (mul (shl X, C), Y)  and  (mul Y, (shl X, C)).
1895    if (N0.getOpcode() == ISD::SHL &&
1896        (isConstantSplatVector(N0.getOperand(1).getNode(), Val) ||
1897                       isa<ConstantSDNode>(N0.getOperand(1))) &&
1898        N0.getNode()->hasOneUse()) {
1899      Sh = N0; Y = N1;
1900    } else if (N1.getOpcode() == ISD::SHL &&
1901               isa<ConstantSDNode>(N1.getOperand(1)) &&
1902               N1.getNode()->hasOneUse()) {
1903      Sh = N1; Y = N0;
1904    }
1905
1906    if (Sh.getNode()) {
1907      SDValue Mul = DAG.getNode(ISD::MUL, SDLoc(N), VT,
1908                                Sh.getOperand(0), Y);
1909      return DAG.getNode(ISD::SHL, SDLoc(N), VT,
1910                         Mul, Sh.getOperand(1));
1911    }
1912  }
1913
1914  // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2)
1915  if (N1IsConst && N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse() &&
1916      (isConstantSplatVector(N0.getOperand(1).getNode(), Val) ||
1917                     isa<ConstantSDNode>(N0.getOperand(1))))
1918    return DAG.getNode(ISD::ADD, SDLoc(N), VT,
1919                       DAG.getNode(ISD::MUL, SDLoc(N0), VT,
1920                                   N0.getOperand(0), N1),
1921                       DAG.getNode(ISD::MUL, SDLoc(N1), VT,
1922                                   N0.getOperand(1), N1));
1923
1924  // reassociate mul
1925  SDValue RMUL = ReassociateOps(ISD::MUL, SDLoc(N), N0, N1);
1926  if (RMUL.getNode() != 0)
1927    return RMUL;
1928
1929  return SDValue();
1930}
1931
1932SDValue DAGCombiner::visitSDIV(SDNode *N) {
1933  SDValue N0 = N->getOperand(0);
1934  SDValue N1 = N->getOperand(1);
1935  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getNode());
1936  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
1937  EVT VT = N->getValueType(0);
1938
1939  // fold vector ops
1940  if (VT.isVector()) {
1941    SDValue FoldedVOp = SimplifyVBinOp(N);
1942    if (FoldedVOp.getNode()) return FoldedVOp;
1943  }
1944
1945  // fold (sdiv c1, c2) -> c1/c2
1946  if (N0C && N1C && !N1C->isNullValue())
1947    return DAG.FoldConstantArithmetic(ISD::SDIV, VT, N0C, N1C);
1948  // fold (sdiv X, 1) -> X
1949  if (N1C && N1C->getAPIntValue() == 1LL)
1950    return N0;
1951  // fold (sdiv X, -1) -> 0-X
1952  if (N1C && N1C->isAllOnesValue())
1953    return DAG.getNode(ISD::SUB, SDLoc(N), VT,
1954                       DAG.getConstant(0, VT), N0);
1955  // If we know the sign bits of both operands are zero, strength reduce to a
1956  // udiv instead.  Handles (X&15) /s 4 -> X&15 >> 2
1957  if (!VT.isVector()) {
1958    if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
1959      return DAG.getNode(ISD::UDIV, SDLoc(N), N1.getValueType(),
1960                         N0, N1);
1961  }
1962  // fold (sdiv X, pow2) -> simple ops after legalize
1963  if (N1C && !N1C->isNullValue() &&
1964      (N1C->getAPIntValue().isPowerOf2() ||
1965       (-N1C->getAPIntValue()).isPowerOf2())) {
1966    // If dividing by powers of two is cheap, then don't perform the following
1967    // fold.
1968    if (TLI.isPow2DivCheap())
1969      return SDValue();
1970
1971    unsigned lg2 = N1C->getAPIntValue().countTrailingZeros();
1972
1973    // Splat the sign bit into the register
1974    SDValue SGN = DAG.getNode(ISD::SRA, SDLoc(N), VT, N0,
1975                              DAG.getConstant(VT.getSizeInBits()-1,
1976                                       getShiftAmountTy(N0.getValueType())));
1977    AddToWorkList(SGN.getNode());
1978
1979    // Add (N0 < 0) ? abs2 - 1 : 0;
1980    SDValue SRL = DAG.getNode(ISD::SRL, SDLoc(N), VT, SGN,
1981                              DAG.getConstant(VT.getSizeInBits() - lg2,
1982                                       getShiftAmountTy(SGN.getValueType())));
1983    SDValue ADD = DAG.getNode(ISD::ADD, SDLoc(N), VT, N0, SRL);
1984    AddToWorkList(SRL.getNode());
1985    AddToWorkList(ADD.getNode());    // Divide by pow2
1986    SDValue SRA = DAG.getNode(ISD::SRA, SDLoc(N), VT, ADD,
1987                  DAG.getConstant(lg2, getShiftAmountTy(ADD.getValueType())));
1988
1989    // If we're dividing by a positive value, we're done.  Otherwise, we must
1990    // negate the result.
1991    if (N1C->getAPIntValue().isNonNegative())
1992      return SRA;
1993
1994    AddToWorkList(SRA.getNode());
1995    return DAG.getNode(ISD::SUB, SDLoc(N), VT,
1996                       DAG.getConstant(0, VT), SRA);
1997  }
1998
1999  // if integer divide is expensive and we satisfy the requirements, emit an
2000  // alternate sequence.
2001  if (N1C && !N1C->isNullValue() && !TLI.isIntDivCheap()) {
2002    SDValue Op = BuildSDIV(N);
2003    if (Op.getNode()) return Op;
2004  }
2005
2006  // undef / X -> 0
2007  if (N0.getOpcode() == ISD::UNDEF)
2008    return DAG.getConstant(0, VT);
2009  // X / undef -> undef
2010  if (N1.getOpcode() == ISD::UNDEF)
2011    return N1;
2012
2013  return SDValue();
2014}
2015
2016SDValue DAGCombiner::visitUDIV(SDNode *N) {
2017  SDValue N0 = N->getOperand(0);
2018  SDValue N1 = N->getOperand(1);
2019  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getNode());
2020  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2021  EVT VT = N->getValueType(0);
2022
2023  // fold vector ops
2024  if (VT.isVector()) {
2025    SDValue FoldedVOp = SimplifyVBinOp(N);
2026    if (FoldedVOp.getNode()) return FoldedVOp;
2027  }
2028
2029  // fold (udiv c1, c2) -> c1/c2
2030  if (N0C && N1C && !N1C->isNullValue())
2031    return DAG.FoldConstantArithmetic(ISD::UDIV, VT, N0C, N1C);
2032  // fold (udiv x, (1 << c)) -> x >>u c
2033  if (N1C && N1C->getAPIntValue().isPowerOf2())
2034    return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0,
2035                       DAG.getConstant(N1C->getAPIntValue().logBase2(),
2036                                       getShiftAmountTy(N0.getValueType())));
2037  // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
2038  if (N1.getOpcode() == ISD::SHL) {
2039    if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
2040      if (SHC->getAPIntValue().isPowerOf2()) {
2041        EVT ADDVT = N1.getOperand(1).getValueType();
2042        SDValue Add = DAG.getNode(ISD::ADD, SDLoc(N), ADDVT,
2043                                  N1.getOperand(1),
2044                                  DAG.getConstant(SHC->getAPIntValue()
2045                                                                  .logBase2(),
2046                                                  ADDVT));
2047        AddToWorkList(Add.getNode());
2048        return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, Add);
2049      }
2050    }
2051  }
2052  // fold (udiv x, c) -> alternate
2053  if (N1C && !N1C->isNullValue() && !TLI.isIntDivCheap()) {
2054    SDValue Op = BuildUDIV(N);
2055    if (Op.getNode()) return Op;
2056  }
2057
2058  // undef / X -> 0
2059  if (N0.getOpcode() == ISD::UNDEF)
2060    return DAG.getConstant(0, VT);
2061  // X / undef -> undef
2062  if (N1.getOpcode() == ISD::UNDEF)
2063    return N1;
2064
2065  return SDValue();
2066}
2067
2068SDValue DAGCombiner::visitSREM(SDNode *N) {
2069  SDValue N0 = N->getOperand(0);
2070  SDValue N1 = N->getOperand(1);
2071  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2072  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2073  EVT VT = N->getValueType(0);
2074
2075  // fold (srem c1, c2) -> c1%c2
2076  if (N0C && N1C && !N1C->isNullValue())
2077    return DAG.FoldConstantArithmetic(ISD::SREM, VT, N0C, N1C);
2078  // If we know the sign bits of both operands are zero, strength reduce to a
2079  // urem instead.  Handles (X & 0x0FFFFFFF) %s 16 -> X&15
2080  if (!VT.isVector()) {
2081    if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
2082      return DAG.getNode(ISD::UREM, SDLoc(N), VT, N0, N1);
2083  }
2084
2085  // If X/C can be simplified by the division-by-constant logic, lower
2086  // X%C to the equivalent of X-X/C*C.
2087  if (N1C && !N1C->isNullValue()) {
2088    SDValue Div = DAG.getNode(ISD::SDIV, SDLoc(N), VT, N0, N1);
2089    AddToWorkList(Div.getNode());
2090    SDValue OptimizedDiv = combine(Div.getNode());
2091    if (OptimizedDiv.getNode() && OptimizedDiv.getNode() != Div.getNode()) {
2092      SDValue Mul = DAG.getNode(ISD::MUL, SDLoc(N), VT,
2093                                OptimizedDiv, N1);
2094      SDValue Sub = DAG.getNode(ISD::SUB, SDLoc(N), VT, N0, Mul);
2095      AddToWorkList(Mul.getNode());
2096      return Sub;
2097    }
2098  }
2099
2100  // undef % X -> 0
2101  if (N0.getOpcode() == ISD::UNDEF)
2102    return DAG.getConstant(0, VT);
2103  // X % undef -> undef
2104  if (N1.getOpcode() == ISD::UNDEF)
2105    return N1;
2106
2107  return SDValue();
2108}
2109
2110SDValue DAGCombiner::visitUREM(SDNode *N) {
2111  SDValue N0 = N->getOperand(0);
2112  SDValue N1 = N->getOperand(1);
2113  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2114  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2115  EVT VT = N->getValueType(0);
2116
2117  // fold (urem c1, c2) -> c1%c2
2118  if (N0C && N1C && !N1C->isNullValue())
2119    return DAG.FoldConstantArithmetic(ISD::UREM, VT, N0C, N1C);
2120  // fold (urem x, pow2) -> (and x, pow2-1)
2121  if (N1C && !N1C->isNullValue() && N1C->getAPIntValue().isPowerOf2())
2122    return DAG.getNode(ISD::AND, SDLoc(N), VT, N0,
2123                       DAG.getConstant(N1C->getAPIntValue()-1,VT));
2124  // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1))
2125  if (N1.getOpcode() == ISD::SHL) {
2126    if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
2127      if (SHC->getAPIntValue().isPowerOf2()) {
2128        SDValue Add =
2129          DAG.getNode(ISD::ADD, SDLoc(N), VT, N1,
2130                 DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()),
2131                                 VT));
2132        AddToWorkList(Add.getNode());
2133        return DAG.getNode(ISD::AND, SDLoc(N), VT, N0, Add);
2134      }
2135    }
2136  }
2137
2138  // If X/C can be simplified by the division-by-constant logic, lower
2139  // X%C to the equivalent of X-X/C*C.
2140  if (N1C && !N1C->isNullValue()) {
2141    SDValue Div = DAG.getNode(ISD::UDIV, SDLoc(N), VT, N0, N1);
2142    AddToWorkList(Div.getNode());
2143    SDValue OptimizedDiv = combine(Div.getNode());
2144    if (OptimizedDiv.getNode() && OptimizedDiv.getNode() != Div.getNode()) {
2145      SDValue Mul = DAG.getNode(ISD::MUL, SDLoc(N), VT,
2146                                OptimizedDiv, N1);
2147      SDValue Sub = DAG.getNode(ISD::SUB, SDLoc(N), VT, N0, Mul);
2148      AddToWorkList(Mul.getNode());
2149      return Sub;
2150    }
2151  }
2152
2153  // undef % X -> 0
2154  if (N0.getOpcode() == ISD::UNDEF)
2155    return DAG.getConstant(0, VT);
2156  // X % undef -> undef
2157  if (N1.getOpcode() == ISD::UNDEF)
2158    return N1;
2159
2160  return SDValue();
2161}
2162
2163SDValue DAGCombiner::visitMULHS(SDNode *N) {
2164  SDValue N0 = N->getOperand(0);
2165  SDValue N1 = N->getOperand(1);
2166  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2167  EVT VT = N->getValueType(0);
2168  SDLoc DL(N);
2169
2170  // fold (mulhs x, 0) -> 0
2171  if (N1C && N1C->isNullValue())
2172    return N1;
2173  // fold (mulhs x, 1) -> (sra x, size(x)-1)
2174  if (N1C && N1C->getAPIntValue() == 1)
2175    return DAG.getNode(ISD::SRA, SDLoc(N), N0.getValueType(), N0,
2176                       DAG.getConstant(N0.getValueType().getSizeInBits() - 1,
2177                                       getShiftAmountTy(N0.getValueType())));
2178  // fold (mulhs x, undef) -> 0
2179  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
2180    return DAG.getConstant(0, VT);
2181
2182  // If the type twice as wide is legal, transform the mulhs to a wider multiply
2183  // plus a shift.
2184  if (VT.isSimple() && !VT.isVector()) {
2185    MVT Simple = VT.getSimpleVT();
2186    unsigned SimpleSize = Simple.getSizeInBits();
2187    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2188    if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2189      N0 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N0);
2190      N1 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N1);
2191      N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1);
2192      N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1,
2193            DAG.getConstant(SimpleSize, getShiftAmountTy(N1.getValueType())));
2194      return DAG.getNode(ISD::TRUNCATE, DL, VT, N1);
2195    }
2196  }
2197
2198  return SDValue();
2199}
2200
2201SDValue DAGCombiner::visitMULHU(SDNode *N) {
2202  SDValue N0 = N->getOperand(0);
2203  SDValue N1 = N->getOperand(1);
2204  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2205  EVT VT = N->getValueType(0);
2206  SDLoc DL(N);
2207
2208  // fold (mulhu x, 0) -> 0
2209  if (N1C && N1C->isNullValue())
2210    return N1;
2211  // fold (mulhu x, 1) -> 0
2212  if (N1C && N1C->getAPIntValue() == 1)
2213    return DAG.getConstant(0, N0.getValueType());
2214  // fold (mulhu x, undef) -> 0
2215  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
2216    return DAG.getConstant(0, VT);
2217
2218  // If the type twice as wide is legal, transform the mulhu to a wider multiply
2219  // plus a shift.
2220  if (VT.isSimple() && !VT.isVector()) {
2221    MVT Simple = VT.getSimpleVT();
2222    unsigned SimpleSize = Simple.getSizeInBits();
2223    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2224    if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2225      N0 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N0);
2226      N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N1);
2227      N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1);
2228      N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1,
2229            DAG.getConstant(SimpleSize, getShiftAmountTy(N1.getValueType())));
2230      return DAG.getNode(ISD::TRUNCATE, DL, VT, N1);
2231    }
2232  }
2233
2234  return SDValue();
2235}
2236
2237/// SimplifyNodeWithTwoResults - Perform optimizations common to nodes that
2238/// compute two values. LoOp and HiOp give the opcodes for the two computations
2239/// that are being performed. Return true if a simplification was made.
2240///
2241SDValue DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
2242                                                unsigned HiOp) {
2243  // If the high half is not needed, just compute the low half.
2244  bool HiExists = N->hasAnyUseOfValue(1);
2245  if (!HiExists &&
2246      (!LegalOperations ||
2247       TLI.isOperationLegal(LoOp, N->getValueType(0)))) {
2248    SDValue Res = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0),
2249                              N->op_begin(), N->getNumOperands());
2250    return CombineTo(N, Res, Res);
2251  }
2252
2253  // If the low half is not needed, just compute the high half.
2254  bool LoExists = N->hasAnyUseOfValue(0);
2255  if (!LoExists &&
2256      (!LegalOperations ||
2257       TLI.isOperationLegal(HiOp, N->getValueType(1)))) {
2258    SDValue Res = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1),
2259                              N->op_begin(), N->getNumOperands());
2260    return CombineTo(N, Res, Res);
2261  }
2262
2263  // If both halves are used, return as it is.
2264  if (LoExists && HiExists)
2265    return SDValue();
2266
2267  // If the two computed results can be simplified separately, separate them.
2268  if (LoExists) {
2269    SDValue Lo = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0),
2270                             N->op_begin(), N->getNumOperands());
2271    AddToWorkList(Lo.getNode());
2272    SDValue LoOpt = combine(Lo.getNode());
2273    if (LoOpt.getNode() && LoOpt.getNode() != Lo.getNode() &&
2274        (!LegalOperations ||
2275         TLI.isOperationLegal(LoOpt.getOpcode(), LoOpt.getValueType())))
2276      return CombineTo(N, LoOpt, LoOpt);
2277  }
2278
2279  if (HiExists) {
2280    SDValue Hi = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1),
2281                             N->op_begin(), N->getNumOperands());
2282    AddToWorkList(Hi.getNode());
2283    SDValue HiOpt = combine(Hi.getNode());
2284    if (HiOpt.getNode() && HiOpt != Hi &&
2285        (!LegalOperations ||
2286         TLI.isOperationLegal(HiOpt.getOpcode(), HiOpt.getValueType())))
2287      return CombineTo(N, HiOpt, HiOpt);
2288  }
2289
2290  return SDValue();
2291}
2292
2293SDValue DAGCombiner::visitSMUL_LOHI(SDNode *N) {
2294  SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHS);
2295  if (Res.getNode()) return Res;
2296
2297  EVT VT = N->getValueType(0);
2298  SDLoc DL(N);
2299
2300  // If the type twice as wide is legal, transform the mulhu to a wider multiply
2301  // plus a shift.
2302  if (VT.isSimple() && !VT.isVector()) {
2303    MVT Simple = VT.getSimpleVT();
2304    unsigned SimpleSize = Simple.getSizeInBits();
2305    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2306    if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2307      SDValue Lo = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(0));
2308      SDValue Hi = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(1));
2309      Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi);
2310      // Compute the high part as N1.
2311      Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo,
2312            DAG.getConstant(SimpleSize, getShiftAmountTy(Lo.getValueType())));
2313      Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi);
2314      // Compute the low part as N0.
2315      Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo);
2316      return CombineTo(N, Lo, Hi);
2317    }
2318  }
2319
2320  return SDValue();
2321}
2322
2323SDValue DAGCombiner::visitUMUL_LOHI(SDNode *N) {
2324  SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHU);
2325  if (Res.getNode()) return Res;
2326
2327  EVT VT = N->getValueType(0);
2328  SDLoc DL(N);
2329
2330  // If the type twice as wide is legal, transform the mulhu to a wider multiply
2331  // plus a shift.
2332  if (VT.isSimple() && !VT.isVector()) {
2333    MVT Simple = VT.getSimpleVT();
2334    unsigned SimpleSize = Simple.getSizeInBits();
2335    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2336    if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2337      SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(0));
2338      SDValue Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(1));
2339      Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi);
2340      // Compute the high part as N1.
2341      Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo,
2342            DAG.getConstant(SimpleSize, getShiftAmountTy(Lo.getValueType())));
2343      Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi);
2344      // Compute the low part as N0.
2345      Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo);
2346      return CombineTo(N, Lo, Hi);
2347    }
2348  }
2349
2350  return SDValue();
2351}
2352
2353SDValue DAGCombiner::visitSMULO(SDNode *N) {
2354  // (smulo x, 2) -> (saddo x, x)
2355  if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)))
2356    if (C2->getAPIntValue() == 2)
2357      return DAG.getNode(ISD::SADDO, SDLoc(N), N->getVTList(),
2358                         N->getOperand(0), N->getOperand(0));
2359
2360  return SDValue();
2361}
2362
2363SDValue DAGCombiner::visitUMULO(SDNode *N) {
2364  // (umulo x, 2) -> (uaddo x, x)
2365  if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)))
2366    if (C2->getAPIntValue() == 2)
2367      return DAG.getNode(ISD::UADDO, SDLoc(N), N->getVTList(),
2368                         N->getOperand(0), N->getOperand(0));
2369
2370  return SDValue();
2371}
2372
2373SDValue DAGCombiner::visitSDIVREM(SDNode *N) {
2374  SDValue Res = SimplifyNodeWithTwoResults(N, ISD::SDIV, ISD::SREM);
2375  if (Res.getNode()) return Res;
2376
2377  return SDValue();
2378}
2379
2380SDValue DAGCombiner::visitUDIVREM(SDNode *N) {
2381  SDValue Res = SimplifyNodeWithTwoResults(N, ISD::UDIV, ISD::UREM);
2382  if (Res.getNode()) return Res;
2383
2384  return SDValue();
2385}
2386
2387/// SimplifyBinOpWithSameOpcodeHands - If this is a binary operator with
2388/// two operands of the same opcode, try to simplify it.
2389SDValue DAGCombiner::SimplifyBinOpWithSameOpcodeHands(SDNode *N) {
2390  SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
2391  EVT VT = N0.getValueType();
2392  assert(N0.getOpcode() == N1.getOpcode() && "Bad input!");
2393
2394  // Bail early if none of these transforms apply.
2395  if (N0.getNode()->getNumOperands() == 0) return SDValue();
2396
2397  // For each of OP in AND/OR/XOR:
2398  // fold (OP (zext x), (zext y)) -> (zext (OP x, y))
2399  // fold (OP (sext x), (sext y)) -> (sext (OP x, y))
2400  // fold (OP (aext x), (aext y)) -> (aext (OP x, y))
2401  // fold (OP (trunc x), (trunc y)) -> (trunc (OP x, y)) (if trunc isn't free)
2402  //
2403  // do not sink logical op inside of a vector extend, since it may combine
2404  // into a vsetcc.
2405  EVT Op0VT = N0.getOperand(0).getValueType();
2406  if ((N0.getOpcode() == ISD::ZERO_EXTEND ||
2407       N0.getOpcode() == ISD::SIGN_EXTEND ||
2408       // Avoid infinite looping with PromoteIntBinOp.
2409       (N0.getOpcode() == ISD::ANY_EXTEND &&
2410        (!LegalTypes || TLI.isTypeDesirableForOp(N->getOpcode(), Op0VT))) ||
2411       (N0.getOpcode() == ISD::TRUNCATE &&
2412        (!TLI.isZExtFree(VT, Op0VT) ||
2413         !TLI.isTruncateFree(Op0VT, VT)) &&
2414        TLI.isTypeLegal(Op0VT))) &&
2415      !VT.isVector() &&
2416      Op0VT == N1.getOperand(0).getValueType() &&
2417      (!LegalOperations || TLI.isOperationLegal(N->getOpcode(), Op0VT))) {
2418    SDValue ORNode = DAG.getNode(N->getOpcode(), SDLoc(N0),
2419                                 N0.getOperand(0).getValueType(),
2420                                 N0.getOperand(0), N1.getOperand(0));
2421    AddToWorkList(ORNode.getNode());
2422    return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, ORNode);
2423  }
2424
2425  // For each of OP in SHL/SRL/SRA/AND...
2426  //   fold (and (OP x, z), (OP y, z)) -> (OP (and x, y), z)
2427  //   fold (or  (OP x, z), (OP y, z)) -> (OP (or  x, y), z)
2428  //   fold (xor (OP x, z), (OP y, z)) -> (OP (xor x, y), z)
2429  if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL ||
2430       N0.getOpcode() == ISD::SRA || N0.getOpcode() == ISD::AND) &&
2431      N0.getOperand(1) == N1.getOperand(1)) {
2432    SDValue ORNode = DAG.getNode(N->getOpcode(), SDLoc(N0),
2433                                 N0.getOperand(0).getValueType(),
2434                                 N0.getOperand(0), N1.getOperand(0));
2435    AddToWorkList(ORNode.getNode());
2436    return DAG.getNode(N0.getOpcode(), SDLoc(N), VT,
2437                       ORNode, N0.getOperand(1));
2438  }
2439
2440  // Simplify xor/and/or (bitcast(A), bitcast(B)) -> bitcast(op (A,B))
2441  // Only perform this optimization after type legalization and before
2442  // LegalizeVectorOprs. LegalizeVectorOprs promotes vector operations by
2443  // adding bitcasts. For example (xor v4i32) is promoted to (v2i64), and
2444  // we don't want to undo this promotion.
2445  // We also handle SCALAR_TO_VECTOR because xor/or/and operations are cheaper
2446  // on scalars.
2447  if ((N0.getOpcode() == ISD::BITCAST ||
2448       N0.getOpcode() == ISD::SCALAR_TO_VECTOR) &&
2449      Level == AfterLegalizeTypes) {
2450    SDValue In0 = N0.getOperand(0);
2451    SDValue In1 = N1.getOperand(0);
2452    EVT In0Ty = In0.getValueType();
2453    EVT In1Ty = In1.getValueType();
2454    SDLoc DL(N);
2455    // If both incoming values are integers, and the original types are the
2456    // same.
2457    if (In0Ty.isInteger() && In1Ty.isInteger() && In0Ty == In1Ty) {
2458      SDValue Op = DAG.getNode(N->getOpcode(), DL, In0Ty, In0, In1);
2459      SDValue BC = DAG.getNode(N0.getOpcode(), DL, VT, Op);
2460      AddToWorkList(Op.getNode());
2461      return BC;
2462    }
2463  }
2464
2465  // Xor/and/or are indifferent to the swizzle operation (shuffle of one value).
2466  // Simplify xor/and/or (shuff(A), shuff(B)) -> shuff(op (A,B))
2467  // If both shuffles use the same mask, and both shuffle within a single
2468  // vector, then it is worthwhile to move the swizzle after the operation.
2469  // The type-legalizer generates this pattern when loading illegal
2470  // vector types from memory. In many cases this allows additional shuffle
2471  // optimizations.
2472  if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG &&
2473      N0.getOperand(1).getOpcode() == ISD::UNDEF &&
2474      N1.getOperand(1).getOpcode() == ISD::UNDEF) {
2475    ShuffleVectorSDNode *SVN0 = cast<ShuffleVectorSDNode>(N0);
2476    ShuffleVectorSDNode *SVN1 = cast<ShuffleVectorSDNode>(N1);
2477
2478    assert(N0.getOperand(0).getValueType() == N1.getOperand(1).getValueType() &&
2479           "Inputs to shuffles are not the same type");
2480
2481    unsigned NumElts = VT.getVectorNumElements();
2482
2483    // Check that both shuffles use the same mask. The masks are known to be of
2484    // the same length because the result vector type is the same.
2485    bool SameMask = true;
2486    for (unsigned i = 0; i != NumElts; ++i) {
2487      int Idx0 = SVN0->getMaskElt(i);
2488      int Idx1 = SVN1->getMaskElt(i);
2489      if (Idx0 != Idx1) {
2490        SameMask = false;
2491        break;
2492      }
2493    }
2494
2495    if (SameMask) {
2496      SDValue Op = DAG.getNode(N->getOpcode(), SDLoc(N), VT,
2497                               N0.getOperand(0), N1.getOperand(0));
2498      AddToWorkList(Op.getNode());
2499      return DAG.getVectorShuffle(VT, SDLoc(N), Op,
2500                                  DAG.getUNDEF(VT), &SVN0->getMask()[0]);
2501    }
2502  }
2503
2504  return SDValue();
2505}
2506
2507SDValue DAGCombiner::visitAND(SDNode *N) {
2508  SDValue N0 = N->getOperand(0);
2509  SDValue N1 = N->getOperand(1);
2510  SDValue LL, LR, RL, RR, CC0, CC1;
2511  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2512  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2513  EVT VT = N1.getValueType();
2514  unsigned BitWidth = VT.getScalarType().getSizeInBits();
2515
2516  // fold vector ops
2517  if (VT.isVector()) {
2518    SDValue FoldedVOp = SimplifyVBinOp(N);
2519    if (FoldedVOp.getNode()) return FoldedVOp;
2520
2521    // fold (and x, 0) -> 0, vector edition
2522    if (ISD::isBuildVectorAllZeros(N0.getNode()))
2523      return N0;
2524    if (ISD::isBuildVectorAllZeros(N1.getNode()))
2525      return N1;
2526
2527    // fold (and x, -1) -> x, vector edition
2528    if (ISD::isBuildVectorAllOnes(N0.getNode()))
2529      return N1;
2530    if (ISD::isBuildVectorAllOnes(N1.getNode()))
2531      return N0;
2532  }
2533
2534  // fold (and x, undef) -> 0
2535  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
2536    return DAG.getConstant(0, VT);
2537  // fold (and c1, c2) -> c1&c2
2538  if (N0C && N1C)
2539    return DAG.FoldConstantArithmetic(ISD::AND, VT, N0C, N1C);
2540  // canonicalize constant to RHS
2541  if (N0C && !N1C)
2542    return DAG.getNode(ISD::AND, SDLoc(N), VT, N1, N0);
2543  // fold (and x, -1) -> x
2544  if (N1C && N1C->isAllOnesValue())
2545    return N0;
2546  // if (and x, c) is known to be zero, return 0
2547  if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0),
2548                                   APInt::getAllOnesValue(BitWidth)))
2549    return DAG.getConstant(0, VT);
2550  // reassociate and
2551  SDValue RAND = ReassociateOps(ISD::AND, SDLoc(N), N0, N1);
2552  if (RAND.getNode() != 0)
2553    return RAND;
2554  // fold (and (or x, C), D) -> D if (C & D) == D
2555  if (N1C && N0.getOpcode() == ISD::OR)
2556    if (ConstantSDNode *ORI = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
2557      if ((ORI->getAPIntValue() & N1C->getAPIntValue()) == N1C->getAPIntValue())
2558        return N1;
2559  // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits.
2560  if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
2561    SDValue N0Op0 = N0.getOperand(0);
2562    APInt Mask = ~N1C->getAPIntValue();
2563    Mask = Mask.trunc(N0Op0.getValueSizeInBits());
2564    if (DAG.MaskedValueIsZero(N0Op0, Mask)) {
2565      SDValue Zext = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N),
2566                                 N0.getValueType(), N0Op0);
2567
2568      // Replace uses of the AND with uses of the Zero extend node.
2569      CombineTo(N, Zext);
2570
2571      // We actually want to replace all uses of the any_extend with the
2572      // zero_extend, to avoid duplicating things.  This will later cause this
2573      // AND to be folded.
2574      CombineTo(N0.getNode(), Zext);
2575      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
2576    }
2577  }
2578  // similarly fold (and (X (load ([non_ext|any_ext|zero_ext] V))), c) ->
2579  // (X (load ([non_ext|zero_ext] V))) if 'and' only clears top bits which must
2580  // already be zero by virtue of the width of the base type of the load.
2581  //
2582  // the 'X' node here can either be nothing or an extract_vector_elt to catch
2583  // more cases.
2584  if ((N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
2585       N0.getOperand(0).getOpcode() == ISD::LOAD) ||
2586      N0.getOpcode() == ISD::LOAD) {
2587    LoadSDNode *Load = cast<LoadSDNode>( (N0.getOpcode() == ISD::LOAD) ?
2588                                         N0 : N0.getOperand(0) );
2589
2590    // Get the constant (if applicable) the zero'th operand is being ANDed with.
2591    // This can be a pure constant or a vector splat, in which case we treat the
2592    // vector as a scalar and use the splat value.
2593    APInt Constant = APInt::getNullValue(1);
2594    if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2595      Constant = C->getAPIntValue();
2596    } else if (BuildVectorSDNode *Vector = dyn_cast<BuildVectorSDNode>(N1)) {
2597      APInt SplatValue, SplatUndef;
2598      unsigned SplatBitSize;
2599      bool HasAnyUndefs;
2600      bool IsSplat = Vector->isConstantSplat(SplatValue, SplatUndef,
2601                                             SplatBitSize, HasAnyUndefs);
2602      if (IsSplat) {
2603        // Undef bits can contribute to a possible optimisation if set, so
2604        // set them.
2605        SplatValue |= SplatUndef;
2606
2607        // The splat value may be something like "0x00FFFFFF", which means 0 for
2608        // the first vector value and FF for the rest, repeating. We need a mask
2609        // that will apply equally to all members of the vector, so AND all the
2610        // lanes of the constant together.
2611        EVT VT = Vector->getValueType(0);
2612        unsigned BitWidth = VT.getVectorElementType().getSizeInBits();
2613
2614        // If the splat value has been compressed to a bitlength lower
2615        // than the size of the vector lane, we need to re-expand it to
2616        // the lane size.
2617        if (BitWidth > SplatBitSize)
2618          for (SplatValue = SplatValue.zextOrTrunc(BitWidth);
2619               SplatBitSize < BitWidth;
2620               SplatBitSize = SplatBitSize * 2)
2621            SplatValue |= SplatValue.shl(SplatBitSize);
2622
2623        Constant = APInt::getAllOnesValue(BitWidth);
2624        for (unsigned i = 0, n = SplatBitSize/BitWidth; i < n; ++i)
2625          Constant &= SplatValue.lshr(i*BitWidth).zextOrTrunc(BitWidth);
2626      }
2627    }
2628
2629    // If we want to change an EXTLOAD to a ZEXTLOAD, ensure a ZEXTLOAD is
2630    // actually legal and isn't going to get expanded, else this is a false
2631    // optimisation.
2632    bool CanZextLoadProfitably = TLI.isLoadExtLegal(ISD::ZEXTLOAD,
2633                                                    Load->getMemoryVT());
2634
2635    // Resize the constant to the same size as the original memory access before
2636    // extension. If it is still the AllOnesValue then this AND is completely
2637    // unneeded.
2638    Constant =
2639      Constant.zextOrTrunc(Load->getMemoryVT().getScalarType().getSizeInBits());
2640
2641    bool B;
2642    switch (Load->getExtensionType()) {
2643    default: B = false; break;
2644    case ISD::EXTLOAD: B = CanZextLoadProfitably; break;
2645    case ISD::ZEXTLOAD:
2646    case ISD::NON_EXTLOAD: B = true; break;
2647    }
2648
2649    if (B && Constant.isAllOnesValue()) {
2650      // If the load type was an EXTLOAD, convert to ZEXTLOAD in order to
2651      // preserve semantics once we get rid of the AND.
2652      SDValue NewLoad(Load, 0);
2653      if (Load->getExtensionType() == ISD::EXTLOAD) {
2654        NewLoad = DAG.getLoad(Load->getAddressingMode(), ISD::ZEXTLOAD,
2655                              Load->getValueType(0), SDLoc(Load),
2656                              Load->getChain(), Load->getBasePtr(),
2657                              Load->getOffset(), Load->getMemoryVT(),
2658                              Load->getMemOperand());
2659        // Replace uses of the EXTLOAD with the new ZEXTLOAD.
2660        if (Load->getNumValues() == 3) {
2661          // PRE/POST_INC loads have 3 values.
2662          SDValue To[] = { NewLoad.getValue(0), NewLoad.getValue(1),
2663                           NewLoad.getValue(2) };
2664          CombineTo(Load, To, 3, true);
2665        } else {
2666          CombineTo(Load, NewLoad.getValue(0), NewLoad.getValue(1));
2667        }
2668      }
2669
2670      // Fold the AND away, taking care not to fold to the old load node if we
2671      // replaced it.
2672      CombineTo(N, (N0.getNode() == Load) ? NewLoad : N0);
2673
2674      return SDValue(N, 0); // Return N so it doesn't get rechecked!
2675    }
2676  }
2677  // fold (and (setcc x), (setcc y)) -> (setcc (and x, y))
2678  if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
2679    ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
2680    ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
2681
2682    if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
2683        LL.getValueType().isInteger()) {
2684      // fold (and (seteq X, 0), (seteq Y, 0)) -> (seteq (or X, Y), 0)
2685      if (cast<ConstantSDNode>(LR)->isNullValue() && Op1 == ISD::SETEQ) {
2686        SDValue ORNode = DAG.getNode(ISD::OR, SDLoc(N0),
2687                                     LR.getValueType(), LL, RL);
2688        AddToWorkList(ORNode.getNode());
2689        return DAG.getSetCC(SDLoc(N), VT, ORNode, LR, Op1);
2690      }
2691      // fold (and (seteq X, -1), (seteq Y, -1)) -> (seteq (and X, Y), -1)
2692      if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETEQ) {
2693        SDValue ANDNode = DAG.getNode(ISD::AND, SDLoc(N0),
2694                                      LR.getValueType(), LL, RL);
2695        AddToWorkList(ANDNode.getNode());
2696        return DAG.getSetCC(SDLoc(N), VT, ANDNode, LR, Op1);
2697      }
2698      // fold (and (setgt X,  -1), (setgt Y,  -1)) -> (setgt (or X, Y), -1)
2699      if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETGT) {
2700        SDValue ORNode = DAG.getNode(ISD::OR, SDLoc(N0),
2701                                     LR.getValueType(), LL, RL);
2702        AddToWorkList(ORNode.getNode());
2703        return DAG.getSetCC(SDLoc(N), VT, ORNode, LR, Op1);
2704      }
2705    }
2706    // Simplify (and (setne X, 0), (setne X, -1)) -> (setuge (add X, 1), 2)
2707    if (LL == RL && isa<ConstantSDNode>(LR) && isa<ConstantSDNode>(RR) &&
2708        Op0 == Op1 && LL.getValueType().isInteger() &&
2709      Op0 == ISD::SETNE && ((cast<ConstantSDNode>(LR)->isNullValue() &&
2710                                 cast<ConstantSDNode>(RR)->isAllOnesValue()) ||
2711                                (cast<ConstantSDNode>(LR)->isAllOnesValue() &&
2712                                 cast<ConstantSDNode>(RR)->isNullValue()))) {
2713      SDValue ADDNode = DAG.getNode(ISD::ADD, SDLoc(N0), LL.getValueType(),
2714                                    LL, DAG.getConstant(1, LL.getValueType()));
2715      AddToWorkList(ADDNode.getNode());
2716      return DAG.getSetCC(SDLoc(N), VT, ADDNode,
2717                          DAG.getConstant(2, LL.getValueType()), ISD::SETUGE);
2718    }
2719    // canonicalize equivalent to ll == rl
2720    if (LL == RR && LR == RL) {
2721      Op1 = ISD::getSetCCSwappedOperands(Op1);
2722      std::swap(RL, RR);
2723    }
2724    if (LL == RL && LR == RR) {
2725      bool isInteger = LL.getValueType().isInteger();
2726      ISD::CondCode Result = ISD::getSetCCAndOperation(Op0, Op1, isInteger);
2727      if (Result != ISD::SETCC_INVALID &&
2728          (!LegalOperations ||
2729           (TLI.isCondCodeLegal(Result, LL.getSimpleValueType()) &&
2730            TLI.isOperationLegal(ISD::SETCC,
2731                            getSetCCResultType(N0.getSimpleValueType())))))
2732        return DAG.getSetCC(SDLoc(N), N0.getValueType(),
2733                            LL, LR, Result);
2734    }
2735  }
2736
2737  // Simplify: (and (op x...), (op y...))  -> (op (and x, y))
2738  if (N0.getOpcode() == N1.getOpcode()) {
2739    SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N);
2740    if (Tmp.getNode()) return Tmp;
2741  }
2742
2743  // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1)
2744  // fold (and (sra)) -> (and (srl)) when possible.
2745  if (!VT.isVector() &&
2746      SimplifyDemandedBits(SDValue(N, 0)))
2747    return SDValue(N, 0);
2748
2749  // fold (zext_inreg (extload x)) -> (zextload x)
2750  if (ISD::isEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode())) {
2751    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2752    EVT MemVT = LN0->getMemoryVT();
2753    // If we zero all the possible extended bits, then we can turn this into
2754    // a zextload if we are running before legalize or the operation is legal.
2755    unsigned BitWidth = N1.getValueType().getScalarType().getSizeInBits();
2756    if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth,
2757                           BitWidth - MemVT.getScalarType().getSizeInBits())) &&
2758        ((!LegalOperations && !LN0->isVolatile()) ||
2759         TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT))) {
2760      SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT,
2761                                       LN0->getChain(), LN0->getBasePtr(),
2762                                       LN0->getPointerInfo(), MemVT,
2763                                       LN0->isVolatile(), LN0->isNonTemporal(),
2764                                       LN0->getAlignment());
2765      AddToWorkList(N);
2766      CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
2767      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
2768    }
2769  }
2770  // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use
2771  if (ISD::isSEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
2772      N0.hasOneUse()) {
2773    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2774    EVT MemVT = LN0->getMemoryVT();
2775    // If we zero all the possible extended bits, then we can turn this into
2776    // a zextload if we are running before legalize or the operation is legal.
2777    unsigned BitWidth = N1.getValueType().getScalarType().getSizeInBits();
2778    if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth,
2779                           BitWidth - MemVT.getScalarType().getSizeInBits())) &&
2780        ((!LegalOperations && !LN0->isVolatile()) ||
2781         TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT))) {
2782      SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT,
2783                                       LN0->getChain(),
2784                                       LN0->getBasePtr(), LN0->getPointerInfo(),
2785                                       MemVT,
2786                                       LN0->isVolatile(), LN0->isNonTemporal(),
2787                                       LN0->getAlignment());
2788      AddToWorkList(N);
2789      CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
2790      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
2791    }
2792  }
2793
2794  // fold (and (load x), 255) -> (zextload x, i8)
2795  // fold (and (extload x, i16), 255) -> (zextload x, i8)
2796  // fold (and (any_ext (extload x, i16)), 255) -> (zextload x, i8)
2797  if (N1C && (N0.getOpcode() == ISD::LOAD ||
2798              (N0.getOpcode() == ISD::ANY_EXTEND &&
2799               N0.getOperand(0).getOpcode() == ISD::LOAD))) {
2800    bool HasAnyExt = N0.getOpcode() == ISD::ANY_EXTEND;
2801    LoadSDNode *LN0 = HasAnyExt
2802      ? cast<LoadSDNode>(N0.getOperand(0))
2803      : cast<LoadSDNode>(N0);
2804    if (LN0->getExtensionType() != ISD::SEXTLOAD &&
2805        LN0->isUnindexed() && N0.hasOneUse() && SDValue(LN0, 0).hasOneUse()) {
2806      uint32_t ActiveBits = N1C->getAPIntValue().getActiveBits();
2807      if (ActiveBits > 0 && APIntOps::isMask(ActiveBits, N1C->getAPIntValue())){
2808        EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits);
2809        EVT LoadedVT = LN0->getMemoryVT();
2810
2811        if (ExtVT == LoadedVT &&
2812            (!LegalOperations || TLI.isLoadExtLegal(ISD::ZEXTLOAD, ExtVT))) {
2813          EVT LoadResultTy = HasAnyExt ? LN0->getValueType(0) : VT;
2814
2815          SDValue NewLoad =
2816            DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN0), LoadResultTy,
2817                           LN0->getChain(), LN0->getBasePtr(),
2818                           LN0->getPointerInfo(),
2819                           ExtVT, LN0->isVolatile(), LN0->isNonTemporal(),
2820                           LN0->getAlignment());
2821          AddToWorkList(N);
2822          CombineTo(LN0, NewLoad, NewLoad.getValue(1));
2823          return SDValue(N, 0);   // Return N so it doesn't get rechecked!
2824        }
2825
2826        // Do not change the width of a volatile load.
2827        // Do not generate loads of non-round integer types since these can
2828        // be expensive (and would be wrong if the type is not byte sized).
2829        if (!LN0->isVolatile() && LoadedVT.bitsGT(ExtVT) && ExtVT.isRound() &&
2830            (!LegalOperations || TLI.isLoadExtLegal(ISD::ZEXTLOAD, ExtVT))) {
2831          EVT PtrType = LN0->getOperand(1).getValueType();
2832
2833          unsigned Alignment = LN0->getAlignment();
2834          SDValue NewPtr = LN0->getBasePtr();
2835
2836          // For big endian targets, we need to add an offset to the pointer
2837          // to load the correct bytes.  For little endian systems, we merely
2838          // need to read fewer bytes from the same pointer.
2839          if (TLI.isBigEndian()) {
2840            unsigned LVTStoreBytes = LoadedVT.getStoreSize();
2841            unsigned EVTStoreBytes = ExtVT.getStoreSize();
2842            unsigned PtrOff = LVTStoreBytes - EVTStoreBytes;
2843            NewPtr = DAG.getNode(ISD::ADD, SDLoc(LN0), PtrType,
2844                                 NewPtr, DAG.getConstant(PtrOff, PtrType));
2845            Alignment = MinAlign(Alignment, PtrOff);
2846          }
2847
2848          AddToWorkList(NewPtr.getNode());
2849
2850          EVT LoadResultTy = HasAnyExt ? LN0->getValueType(0) : VT;
2851          SDValue Load =
2852            DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN0), LoadResultTy,
2853                           LN0->getChain(), NewPtr,
2854                           LN0->getPointerInfo(),
2855                           ExtVT, LN0->isVolatile(), LN0->isNonTemporal(),
2856                           Alignment);
2857          AddToWorkList(N);
2858          CombineTo(LN0, Load, Load.getValue(1));
2859          return SDValue(N, 0);   // Return N so it doesn't get rechecked!
2860        }
2861      }
2862    }
2863  }
2864
2865  if (N0.getOpcode() == ISD::ADD && N1.getOpcode() == ISD::SRL &&
2866      VT.getSizeInBits() <= 64) {
2867    if (ConstantSDNode *ADDI = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2868      APInt ADDC = ADDI->getAPIntValue();
2869      if (!TLI.isLegalAddImmediate(ADDC.getSExtValue())) {
2870        // Look for (and (add x, c1), (lshr y, c2)). If C1 wasn't a legal
2871        // immediate for an add, but it is legal if its top c2 bits are set,
2872        // transform the ADD so the immediate doesn't need to be materialized
2873        // in a register.
2874        if (ConstantSDNode *SRLI = dyn_cast<ConstantSDNode>(N1.getOperand(1))) {
2875          APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
2876                                             SRLI->getZExtValue());
2877          if (DAG.MaskedValueIsZero(N0.getOperand(1), Mask)) {
2878            ADDC |= Mask;
2879            if (TLI.isLegalAddImmediate(ADDC.getSExtValue())) {
2880              SDValue NewAdd =
2881                DAG.getNode(ISD::ADD, SDLoc(N0), VT,
2882                            N0.getOperand(0), DAG.getConstant(ADDC, VT));
2883              CombineTo(N0.getNode(), NewAdd);
2884              return SDValue(N, 0); // Return N so it doesn't get rechecked!
2885            }
2886          }
2887        }
2888      }
2889    }
2890  }
2891
2892  // fold (and (or (srl N, 8), (shl N, 8)), 0xffff) -> (srl (bswap N), const)
2893  if (N1C && N1C->getAPIntValue() == 0xffff && N0.getOpcode() == ISD::OR) {
2894    SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0),
2895                                       N0.getOperand(1), false);
2896    if (BSwap.getNode())
2897      return BSwap;
2898  }
2899
2900  return SDValue();
2901}
2902
2903/// MatchBSwapHWord - Match (a >> 8) | (a << 8) as (bswap a) >> 16
2904///
2905SDValue DAGCombiner::MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1,
2906                                        bool DemandHighBits) {
2907  if (!LegalOperations)
2908    return SDValue();
2909
2910  EVT VT = N->getValueType(0);
2911  if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16)
2912    return SDValue();
2913  if (!TLI.isOperationLegal(ISD::BSWAP, VT))
2914    return SDValue();
2915
2916  // Recognize (and (shl a, 8), 0xff), (and (srl a, 8), 0xff00)
2917  bool LookPassAnd0 = false;
2918  bool LookPassAnd1 = false;
2919  if (N0.getOpcode() == ISD::AND && N0.getOperand(0).getOpcode() == ISD::SRL)
2920      std::swap(N0, N1);
2921  if (N1.getOpcode() == ISD::AND && N1.getOperand(0).getOpcode() == ISD::SHL)
2922      std::swap(N0, N1);
2923  if (N0.getOpcode() == ISD::AND) {
2924    if (!N0.getNode()->hasOneUse())
2925      return SDValue();
2926    ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
2927    if (!N01C || N01C->getZExtValue() != 0xFF00)
2928      return SDValue();
2929    N0 = N0.getOperand(0);
2930    LookPassAnd0 = true;
2931  }
2932
2933  if (N1.getOpcode() == ISD::AND) {
2934    if (!N1.getNode()->hasOneUse())
2935      return SDValue();
2936    ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
2937    if (!N11C || N11C->getZExtValue() != 0xFF)
2938      return SDValue();
2939    N1 = N1.getOperand(0);
2940    LookPassAnd1 = true;
2941  }
2942
2943  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
2944    std::swap(N0, N1);
2945  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
2946    return SDValue();
2947  if (!N0.getNode()->hasOneUse() ||
2948      !N1.getNode()->hasOneUse())
2949    return SDValue();
2950
2951  ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
2952  ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
2953  if (!N01C || !N11C)
2954    return SDValue();
2955  if (N01C->getZExtValue() != 8 || N11C->getZExtValue() != 8)
2956    return SDValue();
2957
2958  // Look for (shl (and a, 0xff), 8), (srl (and a, 0xff00), 8)
2959  SDValue N00 = N0->getOperand(0);
2960  if (!LookPassAnd0 && N00.getOpcode() == ISD::AND) {
2961    if (!N00.getNode()->hasOneUse())
2962      return SDValue();
2963    ConstantSDNode *N001C = dyn_cast<ConstantSDNode>(N00.getOperand(1));
2964    if (!N001C || N001C->getZExtValue() != 0xFF)
2965      return SDValue();
2966    N00 = N00.getOperand(0);
2967    LookPassAnd0 = true;
2968  }
2969
2970  SDValue N10 = N1->getOperand(0);
2971  if (!LookPassAnd1 && N10.getOpcode() == ISD::AND) {
2972    if (!N10.getNode()->hasOneUse())
2973      return SDValue();
2974    ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N10.getOperand(1));
2975    if (!N101C || N101C->getZExtValue() != 0xFF00)
2976      return SDValue();
2977    N10 = N10.getOperand(0);
2978    LookPassAnd1 = true;
2979  }
2980
2981  if (N00 != N10)
2982    return SDValue();
2983
2984  // Make sure everything beyond the low halfword gets set to zero since the SRL
2985  // 16 will clear the top bits.
2986  unsigned OpSizeInBits = VT.getSizeInBits();
2987  if (DemandHighBits && OpSizeInBits > 16) {
2988    // If the left-shift isn't masked out then the only way this is a bswap is
2989    // if all bits beyond the low 8 are 0. In that case the entire pattern
2990    // reduces to a left shift anyway: leave it for other parts of the combiner.
2991    if (!LookPassAnd0)
2992      return SDValue();
2993
2994    // However, if the right shift isn't masked out then it might be because
2995    // it's not needed. See if we can spot that too.
2996    if (!LookPassAnd1 &&
2997        !DAG.MaskedValueIsZero(
2998            N10, APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - 16)))
2999      return SDValue();
3000  }
3001
3002  SDValue Res = DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N00);
3003  if (OpSizeInBits > 16)
3004    Res = DAG.getNode(ISD::SRL, SDLoc(N), VT, Res,
3005                      DAG.getConstant(OpSizeInBits-16, getShiftAmountTy(VT)));
3006  return Res;
3007}
3008
3009/// isBSwapHWordElement - Return true if the specified node is an element
3010/// that makes up a 32-bit packed halfword byteswap. i.e.
3011/// ((x&0xff)<<8)|((x&0xff00)>>8)|((x&0x00ff0000)<<8)|((x&0xff000000)>>8)
3012static bool isBSwapHWordElement(SDValue N, SmallVectorImpl<SDNode *> &Parts) {
3013  if (!N.getNode()->hasOneUse())
3014    return false;
3015
3016  unsigned Opc = N.getOpcode();
3017  if (Opc != ISD::AND && Opc != ISD::SHL && Opc != ISD::SRL)
3018    return false;
3019
3020  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N.getOperand(1));
3021  if (!N1C)
3022    return false;
3023
3024  unsigned Num;
3025  switch (N1C->getZExtValue()) {
3026  default:
3027    return false;
3028  case 0xFF:       Num = 0; break;
3029  case 0xFF00:     Num = 1; break;
3030  case 0xFF0000:   Num = 2; break;
3031  case 0xFF000000: Num = 3; break;
3032  }
3033
3034  // Look for (x & 0xff) << 8 as well as ((x << 8) & 0xff00).
3035  SDValue N0 = N.getOperand(0);
3036  if (Opc == ISD::AND) {
3037    if (Num == 0 || Num == 2) {
3038      // (x >> 8) & 0xff
3039      // (x >> 8) & 0xff0000
3040      if (N0.getOpcode() != ISD::SRL)
3041        return false;
3042      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
3043      if (!C || C->getZExtValue() != 8)
3044        return false;
3045    } else {
3046      // (x << 8) & 0xff00
3047      // (x << 8) & 0xff000000
3048      if (N0.getOpcode() != ISD::SHL)
3049        return false;
3050      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
3051      if (!C || C->getZExtValue() != 8)
3052        return false;
3053    }
3054  } else if (Opc == ISD::SHL) {
3055    // (x & 0xff) << 8
3056    // (x & 0xff0000) << 8
3057    if (Num != 0 && Num != 2)
3058      return false;
3059    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1));
3060    if (!C || C->getZExtValue() != 8)
3061      return false;
3062  } else { // Opc == ISD::SRL
3063    // (x & 0xff00) >> 8
3064    // (x & 0xff000000) >> 8
3065    if (Num != 1 && Num != 3)
3066      return false;
3067    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1));
3068    if (!C || C->getZExtValue() != 8)
3069      return false;
3070  }
3071
3072  if (Parts[Num])
3073    return false;
3074
3075  Parts[Num] = N0.getOperand(0).getNode();
3076  return true;
3077}
3078
3079/// MatchBSwapHWord - Match a 32-bit packed halfword bswap. That is
3080/// ((x&0xff)<<8)|((x&0xff00)>>8)|((x&0x00ff0000)<<8)|((x&0xff000000)>>8)
3081/// => (rotl (bswap x), 16)
3082SDValue DAGCombiner::MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1) {
3083  if (!LegalOperations)
3084    return SDValue();
3085
3086  EVT VT = N->getValueType(0);
3087  if (VT != MVT::i32)
3088    return SDValue();
3089  if (!TLI.isOperationLegal(ISD::BSWAP, VT))
3090    return SDValue();
3091
3092  SmallVector<SDNode*,4> Parts(4, (SDNode*)0);
3093  // Look for either
3094  // (or (or (and), (and)), (or (and), (and)))
3095  // (or (or (or (and), (and)), (and)), (and))
3096  if (N0.getOpcode() != ISD::OR)
3097    return SDValue();
3098  SDValue N00 = N0.getOperand(0);
3099  SDValue N01 = N0.getOperand(1);
3100
3101  if (N1.getOpcode() == ISD::OR &&
3102      N00.getNumOperands() == 2 && N01.getNumOperands() == 2) {
3103    // (or (or (and), (and)), (or (and), (and)))
3104    SDValue N000 = N00.getOperand(0);
3105    if (!isBSwapHWordElement(N000, Parts))
3106      return SDValue();
3107
3108    SDValue N001 = N00.getOperand(1);
3109    if (!isBSwapHWordElement(N001, Parts))
3110      return SDValue();
3111    SDValue N010 = N01.getOperand(0);
3112    if (!isBSwapHWordElement(N010, Parts))
3113      return SDValue();
3114    SDValue N011 = N01.getOperand(1);
3115    if (!isBSwapHWordElement(N011, Parts))
3116      return SDValue();
3117  } else {
3118    // (or (or (or (and), (and)), (and)), (and))
3119    if (!isBSwapHWordElement(N1, Parts))
3120      return SDValue();
3121    if (!isBSwapHWordElement(N01, Parts))
3122      return SDValue();
3123    if (N00.getOpcode() != ISD::OR)
3124      return SDValue();
3125    SDValue N000 = N00.getOperand(0);
3126    if (!isBSwapHWordElement(N000, Parts))
3127      return SDValue();
3128    SDValue N001 = N00.getOperand(1);
3129    if (!isBSwapHWordElement(N001, Parts))
3130      return SDValue();
3131  }
3132
3133  // Make sure the parts are all coming from the same node.
3134  if (Parts[0] != Parts[1] || Parts[0] != Parts[2] || Parts[0] != Parts[3])
3135    return SDValue();
3136
3137  SDValue BSwap = DAG.getNode(ISD::BSWAP, SDLoc(N), VT,
3138                              SDValue(Parts[0],0));
3139
3140  // Result of the bswap should be rotated by 16. If it's not legal, then
3141  // do  (x << 16) | (x >> 16).
3142  SDValue ShAmt = DAG.getConstant(16, getShiftAmountTy(VT));
3143  if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT))
3144    return DAG.getNode(ISD::ROTL, SDLoc(N), VT, BSwap, ShAmt);
3145  if (TLI.isOperationLegalOrCustom(ISD::ROTR, VT))
3146    return DAG.getNode(ISD::ROTR, SDLoc(N), VT, BSwap, ShAmt);
3147  return DAG.getNode(ISD::OR, SDLoc(N), VT,
3148                     DAG.getNode(ISD::SHL, SDLoc(N), VT, BSwap, ShAmt),
3149                     DAG.getNode(ISD::SRL, SDLoc(N), VT, BSwap, ShAmt));
3150}
3151
3152SDValue DAGCombiner::visitOR(SDNode *N) {
3153  SDValue N0 = N->getOperand(0);
3154  SDValue N1 = N->getOperand(1);
3155  SDValue LL, LR, RL, RR, CC0, CC1;
3156  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3157  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3158  EVT VT = N1.getValueType();
3159
3160  // fold vector ops
3161  if (VT.isVector()) {
3162    SDValue FoldedVOp = SimplifyVBinOp(N);
3163    if (FoldedVOp.getNode()) return FoldedVOp;
3164
3165    // fold (or x, 0) -> x, vector edition
3166    if (ISD::isBuildVectorAllZeros(N0.getNode()))
3167      return N1;
3168    if (ISD::isBuildVectorAllZeros(N1.getNode()))
3169      return N0;
3170
3171    // fold (or x, -1) -> -1, vector edition
3172    if (ISD::isBuildVectorAllOnes(N0.getNode()))
3173      return N0;
3174    if (ISD::isBuildVectorAllOnes(N1.getNode()))
3175      return N1;
3176  }
3177
3178  // fold (or x, undef) -> -1
3179  if (!LegalOperations &&
3180      (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)) {
3181    EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
3182    return DAG.getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
3183  }
3184  // fold (or c1, c2) -> c1|c2
3185  if (N0C && N1C)
3186    return DAG.FoldConstantArithmetic(ISD::OR, VT, N0C, N1C);
3187  // canonicalize constant to RHS
3188  if (N0C && !N1C)
3189    return DAG.getNode(ISD::OR, SDLoc(N), VT, N1, N0);
3190  // fold (or x, 0) -> x
3191  if (N1C && N1C->isNullValue())
3192    return N0;
3193  // fold (or x, -1) -> -1
3194  if (N1C && N1C->isAllOnesValue())
3195    return N1;
3196  // fold (or x, c) -> c iff (x & ~c) == 0
3197  if (N1C && DAG.MaskedValueIsZero(N0, ~N1C->getAPIntValue()))
3198    return N1;
3199
3200  // Recognize halfword bswaps as (bswap + rotl 16) or (bswap + shl 16)
3201  SDValue BSwap = MatchBSwapHWord(N, N0, N1);
3202  if (BSwap.getNode() != 0)
3203    return BSwap;
3204  BSwap = MatchBSwapHWordLow(N, N0, N1);
3205  if (BSwap.getNode() != 0)
3206    return BSwap;
3207
3208  // reassociate or
3209  SDValue ROR = ReassociateOps(ISD::OR, SDLoc(N), N0, N1);
3210  if (ROR.getNode() != 0)
3211    return ROR;
3212  // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2)
3213  // iff (c1 & c2) == 0.
3214  if (N1C && N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() &&
3215             isa<ConstantSDNode>(N0.getOperand(1))) {
3216    ConstantSDNode *C1 = cast<ConstantSDNode>(N0.getOperand(1));
3217    if ((C1->getAPIntValue() & N1C->getAPIntValue()) != 0)
3218      return DAG.getNode(ISD::AND, SDLoc(N), VT,
3219                         DAG.getNode(ISD::OR, SDLoc(N0), VT,
3220                                     N0.getOperand(0), N1),
3221                         DAG.FoldConstantArithmetic(ISD::OR, VT, N1C, C1));
3222  }
3223  // fold (or (setcc x), (setcc y)) -> (setcc (or x, y))
3224  if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
3225    ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
3226    ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
3227
3228    if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
3229        LL.getValueType().isInteger()) {
3230      // fold (or (setne X, 0), (setne Y, 0)) -> (setne (or X, Y), 0)
3231      // fold (or (setlt X, 0), (setlt Y, 0)) -> (setne (or X, Y), 0)
3232      if (cast<ConstantSDNode>(LR)->isNullValue() &&
3233          (Op1 == ISD::SETNE || Op1 == ISD::SETLT)) {
3234        SDValue ORNode = DAG.getNode(ISD::OR, SDLoc(LR),
3235                                     LR.getValueType(), LL, RL);
3236        AddToWorkList(ORNode.getNode());
3237        return DAG.getSetCC(SDLoc(N), VT, ORNode, LR, Op1);
3238      }
3239      // fold (or (setne X, -1), (setne Y, -1)) -> (setne (and X, Y), -1)
3240      // fold (or (setgt X, -1), (setgt Y  -1)) -> (setgt (and X, Y), -1)
3241      if (cast<ConstantSDNode>(LR)->isAllOnesValue() &&
3242          (Op1 == ISD::SETNE || Op1 == ISD::SETGT)) {
3243        SDValue ANDNode = DAG.getNode(ISD::AND, SDLoc(LR),
3244                                      LR.getValueType(), LL, RL);
3245        AddToWorkList(ANDNode.getNode());
3246        return DAG.getSetCC(SDLoc(N), VT, ANDNode, LR, Op1);
3247      }
3248    }
3249    // canonicalize equivalent to ll == rl
3250    if (LL == RR && LR == RL) {
3251      Op1 = ISD::getSetCCSwappedOperands(Op1);
3252      std::swap(RL, RR);
3253    }
3254    if (LL == RL && LR == RR) {
3255      bool isInteger = LL.getValueType().isInteger();
3256      ISD::CondCode Result = ISD::getSetCCOrOperation(Op0, Op1, isInteger);
3257      if (Result != ISD::SETCC_INVALID &&
3258          (!LegalOperations ||
3259           (TLI.isCondCodeLegal(Result, LL.getSimpleValueType()) &&
3260            TLI.isOperationLegal(ISD::SETCC,
3261              getSetCCResultType(N0.getValueType())))))
3262        return DAG.getSetCC(SDLoc(N), N0.getValueType(),
3263                            LL, LR, Result);
3264    }
3265  }
3266
3267  // Simplify: (or (op x...), (op y...))  -> (op (or x, y))
3268  if (N0.getOpcode() == N1.getOpcode()) {
3269    SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N);
3270    if (Tmp.getNode()) return Tmp;
3271  }
3272
3273  // (or (and X, C1), (and Y, C2))  -> (and (or X, Y), C3) if possible.
3274  if (N0.getOpcode() == ISD::AND &&
3275      N1.getOpcode() == ISD::AND &&
3276      N0.getOperand(1).getOpcode() == ISD::Constant &&
3277      N1.getOperand(1).getOpcode() == ISD::Constant &&
3278      // Don't increase # computations.
3279      (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) {
3280    // We can only do this xform if we know that bits from X that are set in C2
3281    // but not in C1 are already zero.  Likewise for Y.
3282    const APInt &LHSMask =
3283      cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
3284    const APInt &RHSMask =
3285      cast<ConstantSDNode>(N1.getOperand(1))->getAPIntValue();
3286
3287    if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) &&
3288        DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) {
3289      SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT,
3290                              N0.getOperand(0), N1.getOperand(0));
3291      return DAG.getNode(ISD::AND, SDLoc(N), VT, X,
3292                         DAG.getConstant(LHSMask | RHSMask, VT));
3293    }
3294  }
3295
3296  // See if this is some rotate idiom.
3297  if (SDNode *Rot = MatchRotate(N0, N1, SDLoc(N)))
3298    return SDValue(Rot, 0);
3299
3300  // Simplify the operands using demanded-bits information.
3301  if (!VT.isVector() &&
3302      SimplifyDemandedBits(SDValue(N, 0)))
3303    return SDValue(N, 0);
3304
3305  return SDValue();
3306}
3307
3308/// MatchRotateHalf - Match "(X shl/srl V1) & V2" where V2 may not be present.
3309static bool MatchRotateHalf(SDValue Op, SDValue &Shift, SDValue &Mask) {
3310  if (Op.getOpcode() == ISD::AND) {
3311    if (isa<ConstantSDNode>(Op.getOperand(1))) {
3312      Mask = Op.getOperand(1);
3313      Op = Op.getOperand(0);
3314    } else {
3315      return false;
3316    }
3317  }
3318
3319  if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) {
3320    Shift = Op;
3321    return true;
3322  }
3323
3324  return false;
3325}
3326
3327// MatchRotate - Handle an 'or' of two operands.  If this is one of the many
3328// idioms for rotate, and if the target supports rotation instructions, generate
3329// a rot[lr].
3330SDNode *DAGCombiner::MatchRotate(SDValue LHS, SDValue RHS, SDLoc DL) {
3331  // Must be a legal type.  Expanded 'n promoted things won't work with rotates.
3332  EVT VT = LHS.getValueType();
3333  if (!TLI.isTypeLegal(VT)) return 0;
3334
3335  // The target must have at least one rotate flavor.
3336  bool HasROTL = TLI.isOperationLegalOrCustom(ISD::ROTL, VT);
3337  bool HasROTR = TLI.isOperationLegalOrCustom(ISD::ROTR, VT);
3338  if (!HasROTL && !HasROTR) return 0;
3339
3340  // Match "(X shl/srl V1) & V2" where V2 may not be present.
3341  SDValue LHSShift;   // The shift.
3342  SDValue LHSMask;    // AND value if any.
3343  if (!MatchRotateHalf(LHS, LHSShift, LHSMask))
3344    return 0; // Not part of a rotate.
3345
3346  SDValue RHSShift;   // The shift.
3347  SDValue RHSMask;    // AND value if any.
3348  if (!MatchRotateHalf(RHS, RHSShift, RHSMask))
3349    return 0; // Not part of a rotate.
3350
3351  if (LHSShift.getOperand(0) != RHSShift.getOperand(0))
3352    return 0;   // Not shifting the same value.
3353
3354  if (LHSShift.getOpcode() == RHSShift.getOpcode())
3355    return 0;   // Shifts must disagree.
3356
3357  // Canonicalize shl to left side in a shl/srl pair.
3358  if (RHSShift.getOpcode() == ISD::SHL) {
3359    std::swap(LHS, RHS);
3360    std::swap(LHSShift, RHSShift);
3361    std::swap(LHSMask , RHSMask );
3362  }
3363
3364  unsigned OpSizeInBits = VT.getSizeInBits();
3365  SDValue LHSShiftArg = LHSShift.getOperand(0);
3366  SDValue LHSShiftAmt = LHSShift.getOperand(1);
3367  SDValue RHSShiftArg = RHSShift.getOperand(0);
3368  SDValue RHSShiftAmt = RHSShift.getOperand(1);
3369
3370  // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1)
3371  // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2)
3372  if (LHSShiftAmt.getOpcode() == ISD::Constant &&
3373      RHSShiftAmt.getOpcode() == ISD::Constant) {
3374    uint64_t LShVal = cast<ConstantSDNode>(LHSShiftAmt)->getZExtValue();
3375    uint64_t RShVal = cast<ConstantSDNode>(RHSShiftAmt)->getZExtValue();
3376    if ((LShVal + RShVal) != OpSizeInBits)
3377      return 0;
3378
3379    SDValue Rot = DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT,
3380                              LHSShiftArg, HasROTL ? LHSShiftAmt : RHSShiftAmt);
3381
3382    // If there is an AND of either shifted operand, apply it to the result.
3383    if (LHSMask.getNode() || RHSMask.getNode()) {
3384      APInt Mask = APInt::getAllOnesValue(OpSizeInBits);
3385
3386      if (LHSMask.getNode()) {
3387        APInt RHSBits = APInt::getLowBitsSet(OpSizeInBits, LShVal);
3388        Mask &= cast<ConstantSDNode>(LHSMask)->getAPIntValue() | RHSBits;
3389      }
3390      if (RHSMask.getNode()) {
3391        APInt LHSBits = APInt::getHighBitsSet(OpSizeInBits, RShVal);
3392        Mask &= cast<ConstantSDNode>(RHSMask)->getAPIntValue() | LHSBits;
3393      }
3394
3395      Rot = DAG.getNode(ISD::AND, DL, VT, Rot, DAG.getConstant(Mask, VT));
3396    }
3397
3398    return Rot.getNode();
3399  }
3400
3401  // If there is a mask here, and we have a variable shift, we can't be sure
3402  // that we're masking out the right stuff.
3403  if (LHSMask.getNode() || RHSMask.getNode())
3404    return 0;
3405
3406  // If the shift amount is sign/zext/any-extended just peel it off.
3407  SDValue LExtOp0 = LHSShiftAmt;
3408  SDValue RExtOp0 = RHSShiftAmt;
3409  if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND ||
3410       LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND ||
3411       LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND ||
3412       LHSShiftAmt.getOpcode() == ISD::TRUNCATE) &&
3413      (RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND ||
3414       RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND ||
3415       RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND ||
3416       RHSShiftAmt.getOpcode() == ISD::TRUNCATE)) {
3417    LExtOp0 = LHSShiftAmt.getOperand(0);
3418    RExtOp0 = RHSShiftAmt.getOperand(0);
3419  }
3420
3421  if (RExtOp0.getOpcode() == ISD::SUB && RExtOp0.getOperand(1) == LExtOp0) {
3422    // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
3423    //   (rotl x, y)
3424    // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
3425    //   (rotr x, (sub 32, y))
3426    if (ConstantSDNode *SUBC =
3427            dyn_cast<ConstantSDNode>(RExtOp0.getOperand(0))) {
3428      if (SUBC->getAPIntValue() == OpSizeInBits) {
3429        return DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT, LHSShiftArg,
3430                           HasROTL ? LHSShiftAmt : RHSShiftAmt).getNode();
3431      } else if (LHSShiftArg.getOpcode() == ISD::ZERO_EXTEND ||
3432                 LHSShiftArg.getOpcode() == ISD::ANY_EXTEND) {
3433        // fold (or (shl (*ext x), (*ext y)),
3434        //          (srl (*ext x), (*ext (sub 32, y)))) ->
3435        //   (*ext (rotl x, y))
3436        // fold (or (shl (*ext x), (*ext y)),
3437        //          (srl (*ext x), (*ext (sub 32, y)))) ->
3438        //   (*ext (rotr x, (sub 32, y)))
3439        SDValue LArgExtOp0 = LHSShiftArg.getOperand(0);
3440        EVT LArgVT = LArgExtOp0.getValueType();
3441        bool HasROTRWithLArg = TLI.isOperationLegalOrCustom(ISD::ROTR, LArgVT);
3442        bool HasROTLWithLArg = TLI.isOperationLegalOrCustom(ISD::ROTL, LArgVT);
3443        if (HasROTRWithLArg || HasROTLWithLArg) {
3444          if (LArgVT.getSizeInBits() == SUBC->getAPIntValue()) {
3445            SDValue V =
3446                DAG.getNode(HasROTLWithLArg ? ISD::ROTL : ISD::ROTR, DL, LArgVT,
3447                            LArgExtOp0, HasROTL ? LHSShiftAmt : RHSShiftAmt);
3448            return DAG.getNode(LHSShiftArg.getOpcode(), DL, VT, V).getNode();
3449          }
3450        }
3451      }
3452    }
3453  } else if (LExtOp0.getOpcode() == ISD::SUB &&
3454             RExtOp0 == LExtOp0.getOperand(1)) {
3455    // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext y))) ->
3456    //   (rotr x, y)
3457    // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext y))) ->
3458    //   (rotl x, (sub 32, y))
3459    if (ConstantSDNode *SUBC =
3460            dyn_cast<ConstantSDNode>(LExtOp0.getOperand(0))) {
3461      if (SUBC->getAPIntValue() == OpSizeInBits) {
3462        return DAG.getNode(HasROTR ? ISD::ROTR : ISD::ROTL, DL, VT, LHSShiftArg,
3463                           HasROTR ? RHSShiftAmt : LHSShiftAmt).getNode();
3464      } else if (RHSShiftArg.getOpcode() == ISD::ZERO_EXTEND ||
3465                 RHSShiftArg.getOpcode() == ISD::ANY_EXTEND) {
3466        // fold (or (shl (*ext x), (*ext (sub 32, y))),
3467        //          (srl (*ext x), (*ext y))) ->
3468        //   (*ext (rotl x, y))
3469        // fold (or (shl (*ext x), (*ext (sub 32, y))),
3470        //          (srl (*ext x), (*ext y))) ->
3471        //   (*ext (rotr x, (sub 32, y)))
3472        SDValue RArgExtOp0 = RHSShiftArg.getOperand(0);
3473        EVT RArgVT = RArgExtOp0.getValueType();
3474        bool HasROTRWithRArg = TLI.isOperationLegalOrCustom(ISD::ROTR, RArgVT);
3475        bool HasROTLWithRArg = TLI.isOperationLegalOrCustom(ISD::ROTL, RArgVT);
3476        if (HasROTRWithRArg || HasROTLWithRArg) {
3477          if (RArgVT.getSizeInBits() == SUBC->getAPIntValue()) {
3478            SDValue V =
3479                DAG.getNode(HasROTRWithRArg ? ISD::ROTR : ISD::ROTL, DL, RArgVT,
3480                            RArgExtOp0, HasROTR ? RHSShiftAmt : LHSShiftAmt);
3481            return DAG.getNode(RHSShiftArg.getOpcode(), DL, VT, V).getNode();
3482          }
3483        }
3484      }
3485    }
3486  }
3487
3488  return 0;
3489}
3490
3491SDValue DAGCombiner::visitXOR(SDNode *N) {
3492  SDValue N0 = N->getOperand(0);
3493  SDValue N1 = N->getOperand(1);
3494  SDValue LHS, RHS, CC;
3495  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3496  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3497  EVT VT = N0.getValueType();
3498
3499  // fold vector ops
3500  if (VT.isVector()) {
3501    SDValue FoldedVOp = SimplifyVBinOp(N);
3502    if (FoldedVOp.getNode()) return FoldedVOp;
3503
3504    // fold (xor x, 0) -> x, vector edition
3505    if (ISD::isBuildVectorAllZeros(N0.getNode()))
3506      return N1;
3507    if (ISD::isBuildVectorAllZeros(N1.getNode()))
3508      return N0;
3509  }
3510
3511  // fold (xor undef, undef) -> 0. This is a common idiom (misuse).
3512  if (N0.getOpcode() == ISD::UNDEF && N1.getOpcode() == ISD::UNDEF)
3513    return DAG.getConstant(0, VT);
3514  // fold (xor x, undef) -> undef
3515  if (N0.getOpcode() == ISD::UNDEF)
3516    return N0;
3517  if (N1.getOpcode() == ISD::UNDEF)
3518    return N1;
3519  // fold (xor c1, c2) -> c1^c2
3520  if (N0C && N1C)
3521    return DAG.FoldConstantArithmetic(ISD::XOR, VT, N0C, N1C);
3522  // canonicalize constant to RHS
3523  if (N0C && !N1C)
3524    return DAG.getNode(ISD::XOR, SDLoc(N), VT, N1, N0);
3525  // fold (xor x, 0) -> x
3526  if (N1C && N1C->isNullValue())
3527    return N0;
3528  // reassociate xor
3529  SDValue RXOR = ReassociateOps(ISD::XOR, SDLoc(N), N0, N1);
3530  if (RXOR.getNode() != 0)
3531    return RXOR;
3532
3533  // fold !(x cc y) -> (x !cc y)
3534  if (N1C && N1C->getAPIntValue() == 1 && isSetCCEquivalent(N0, LHS, RHS, CC)) {
3535    bool isInt = LHS.getValueType().isInteger();
3536    ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
3537                                               isInt);
3538
3539    if (!LegalOperations ||
3540        TLI.isCondCodeLegal(NotCC, LHS.getSimpleValueType())) {
3541      switch (N0.getOpcode()) {
3542      default:
3543        llvm_unreachable("Unhandled SetCC Equivalent!");
3544      case ISD::SETCC:
3545        return DAG.getSetCC(SDLoc(N), VT, LHS, RHS, NotCC);
3546      case ISD::SELECT_CC:
3547        return DAG.getSelectCC(SDLoc(N), LHS, RHS, N0.getOperand(2),
3548                               N0.getOperand(3), NotCC);
3549      }
3550    }
3551  }
3552
3553  // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y)))
3554  if (N1C && N1C->getAPIntValue() == 1 && N0.getOpcode() == ISD::ZERO_EXTEND &&
3555      N0.getNode()->hasOneUse() &&
3556      isSetCCEquivalent(N0.getOperand(0), LHS, RHS, CC)){
3557    SDValue V = N0.getOperand(0);
3558    V = DAG.getNode(ISD::XOR, SDLoc(N0), V.getValueType(), V,
3559                    DAG.getConstant(1, V.getValueType()));
3560    AddToWorkList(V.getNode());
3561    return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, V);
3562  }
3563
3564  // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are setcc
3565  if (N1C && N1C->getAPIntValue() == 1 && VT == MVT::i1 &&
3566      (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
3567    SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
3568    if (isOneUseSetCC(RHS) || isOneUseSetCC(LHS)) {
3569      unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
3570      LHS = DAG.getNode(ISD::XOR, SDLoc(LHS), VT, LHS, N1); // LHS = ~LHS
3571      RHS = DAG.getNode(ISD::XOR, SDLoc(RHS), VT, RHS, N1); // RHS = ~RHS
3572      AddToWorkList(LHS.getNode()); AddToWorkList(RHS.getNode());
3573      return DAG.getNode(NewOpcode, SDLoc(N), VT, LHS, RHS);
3574    }
3575  }
3576  // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are constants
3577  if (N1C && N1C->isAllOnesValue() &&
3578      (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
3579    SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
3580    if (isa<ConstantSDNode>(RHS) || isa<ConstantSDNode>(LHS)) {
3581      unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
3582      LHS = DAG.getNode(ISD::XOR, SDLoc(LHS), VT, LHS, N1); // LHS = ~LHS
3583      RHS = DAG.getNode(ISD::XOR, SDLoc(RHS), VT, RHS, N1); // RHS = ~RHS
3584      AddToWorkList(LHS.getNode()); AddToWorkList(RHS.getNode());
3585      return DAG.getNode(NewOpcode, SDLoc(N), VT, LHS, RHS);
3586    }
3587  }
3588  // fold (xor (and x, y), y) -> (and (not x), y)
3589  if (N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() &&
3590      N0->getOperand(1) == N1 && isTypeLegal(VT.getScalarType())) {
3591    SDValue X = N0->getOperand(0);
3592    SDValue NotX = DAG.getNOT(SDLoc(X), X, VT);
3593    AddToWorkList(NotX.getNode());
3594    return DAG.getNode(ISD::AND, SDLoc(N), VT, NotX, N1);
3595  }
3596  // fold (xor (xor x, c1), c2) -> (xor x, (xor c1, c2))
3597  if (N1C && N0.getOpcode() == ISD::XOR) {
3598    ConstantSDNode *N00C = dyn_cast<ConstantSDNode>(N0.getOperand(0));
3599    ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
3600    if (N00C)
3601      return DAG.getNode(ISD::XOR, SDLoc(N), VT, N0.getOperand(1),
3602                         DAG.getConstant(N1C->getAPIntValue() ^
3603                                         N00C->getAPIntValue(), VT));
3604    if (N01C)
3605      return DAG.getNode(ISD::XOR, SDLoc(N), VT, N0.getOperand(0),
3606                         DAG.getConstant(N1C->getAPIntValue() ^
3607                                         N01C->getAPIntValue(), VT));
3608  }
3609  // fold (xor x, x) -> 0
3610  if (N0 == N1)
3611    return tryFoldToZero(SDLoc(N), TLI, VT, DAG, LegalOperations, LegalTypes);
3612
3613  // Simplify: xor (op x...), (op y...)  -> (op (xor x, y))
3614  if (N0.getOpcode() == N1.getOpcode()) {
3615    SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N);
3616    if (Tmp.getNode()) return Tmp;
3617  }
3618
3619  // Simplify the expression using non-local knowledge.
3620  if (!VT.isVector() &&
3621      SimplifyDemandedBits(SDValue(N, 0)))
3622    return SDValue(N, 0);
3623
3624  return SDValue();
3625}
3626
3627/// visitShiftByConstant - Handle transforms common to the three shifts, when
3628/// the shift amount is a constant.
3629SDValue DAGCombiner::visitShiftByConstant(SDNode *N, unsigned Amt) {
3630  SDNode *LHS = N->getOperand(0).getNode();
3631  if (!LHS->hasOneUse()) return SDValue();
3632
3633  // We want to pull some binops through shifts, so that we have (and (shift))
3634  // instead of (shift (and)), likewise for add, or, xor, etc.  This sort of
3635  // thing happens with address calculations, so it's important to canonicalize
3636  // it.
3637  bool HighBitSet = false;  // Can we transform this if the high bit is set?
3638
3639  switch (LHS->getOpcode()) {
3640  default: return SDValue();
3641  case ISD::OR:
3642  case ISD::XOR:
3643    HighBitSet = false; // We can only transform sra if the high bit is clear.
3644    break;
3645  case ISD::AND:
3646    HighBitSet = true;  // We can only transform sra if the high bit is set.
3647    break;
3648  case ISD::ADD:
3649    if (N->getOpcode() != ISD::SHL)
3650      return SDValue(); // only shl(add) not sr[al](add).
3651    HighBitSet = false; // We can only transform sra if the high bit is clear.
3652    break;
3653  }
3654
3655  // We require the RHS of the binop to be a constant as well.
3656  ConstantSDNode *BinOpCst = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
3657  if (!BinOpCst) return SDValue();
3658
3659  // FIXME: disable this unless the input to the binop is a shift by a constant.
3660  // If it is not a shift, it pessimizes some common cases like:
3661  //
3662  //    void foo(int *X, int i) { X[i & 1235] = 1; }
3663  //    int bar(int *X, int i) { return X[i & 255]; }
3664  SDNode *BinOpLHSVal = LHS->getOperand(0).getNode();
3665  if ((BinOpLHSVal->getOpcode() != ISD::SHL &&
3666       BinOpLHSVal->getOpcode() != ISD::SRA &&
3667       BinOpLHSVal->getOpcode() != ISD::SRL) ||
3668      !isa<ConstantSDNode>(BinOpLHSVal->getOperand(1)))
3669    return SDValue();
3670
3671  EVT VT = N->getValueType(0);
3672
3673  // If this is a signed shift right, and the high bit is modified by the
3674  // logical operation, do not perform the transformation. The highBitSet
3675  // boolean indicates the value of the high bit of the constant which would
3676  // cause it to be modified for this operation.
3677  if (N->getOpcode() == ISD::SRA) {
3678    bool BinOpRHSSignSet = BinOpCst->getAPIntValue().isNegative();
3679    if (BinOpRHSSignSet != HighBitSet)
3680      return SDValue();
3681  }
3682
3683  // Fold the constants, shifting the binop RHS by the shift amount.
3684  SDValue NewRHS = DAG.getNode(N->getOpcode(), SDLoc(LHS->getOperand(1)),
3685                               N->getValueType(0),
3686                               LHS->getOperand(1), N->getOperand(1));
3687
3688  // Create the new shift.
3689  SDValue NewShift = DAG.getNode(N->getOpcode(),
3690                                 SDLoc(LHS->getOperand(0)),
3691                                 VT, LHS->getOperand(0), N->getOperand(1));
3692
3693  // Create the new binop.
3694  return DAG.getNode(LHS->getOpcode(), SDLoc(N), VT, NewShift, NewRHS);
3695}
3696
3697SDValue DAGCombiner::visitSHL(SDNode *N) {
3698  SDValue N0 = N->getOperand(0);
3699  SDValue N1 = N->getOperand(1);
3700  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3701  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3702  EVT VT = N0.getValueType();
3703  unsigned OpSizeInBits = VT.getScalarType().getSizeInBits();
3704
3705  // fold (shl c1, c2) -> c1<<c2
3706  if (N0C && N1C)
3707    return DAG.FoldConstantArithmetic(ISD::SHL, VT, N0C, N1C);
3708  // fold (shl 0, x) -> 0
3709  if (N0C && N0C->isNullValue())
3710    return N0;
3711  // fold (shl x, c >= size(x)) -> undef
3712  if (N1C && N1C->getZExtValue() >= OpSizeInBits)
3713    return DAG.getUNDEF(VT);
3714  // fold (shl x, 0) -> x
3715  if (N1C && N1C->isNullValue())
3716    return N0;
3717  // fold (shl undef, x) -> 0
3718  if (N0.getOpcode() == ISD::UNDEF)
3719    return DAG.getConstant(0, VT);
3720  // if (shl x, c) is known to be zero, return 0
3721  if (DAG.MaskedValueIsZero(SDValue(N, 0),
3722                            APInt::getAllOnesValue(OpSizeInBits)))
3723    return DAG.getConstant(0, VT);
3724  // fold (shl x, (trunc (and y, c))) -> (shl x, (and (trunc y), (trunc c))).
3725  if (N1.getOpcode() == ISD::TRUNCATE &&
3726      N1.getOperand(0).getOpcode() == ISD::AND &&
3727      N1.hasOneUse() && N1.getOperand(0).hasOneUse()) {
3728    SDValue N101 = N1.getOperand(0).getOperand(1);
3729    if (ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N101)) {
3730      EVT TruncVT = N1.getValueType();
3731      SDValue N100 = N1.getOperand(0).getOperand(0);
3732      APInt TruncC = N101C->getAPIntValue();
3733      TruncC = TruncC.trunc(TruncVT.getSizeInBits());
3734      return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0,
3735                         DAG.getNode(ISD::AND, SDLoc(N), TruncVT,
3736                                     DAG.getNode(ISD::TRUNCATE,
3737                                                 SDLoc(N),
3738                                                 TruncVT, N100),
3739                                     DAG.getConstant(TruncC, TruncVT)));
3740    }
3741  }
3742
3743  if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
3744    return SDValue(N, 0);
3745
3746  // fold (shl (shl x, c1), c2) -> 0 or (shl x, (add c1, c2))
3747  if (N1C && N0.getOpcode() == ISD::SHL &&
3748      N0.getOperand(1).getOpcode() == ISD::Constant) {
3749    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
3750    uint64_t c2 = N1C->getZExtValue();
3751    if (c1 + c2 >= OpSizeInBits)
3752      return DAG.getConstant(0, VT);
3753    return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0.getOperand(0),
3754                       DAG.getConstant(c1 + c2, N1.getValueType()));
3755  }
3756
3757  // fold (shl (ext (shl x, c1)), c2) -> (ext (shl x, (add c1, c2)))
3758  // For this to be valid, the second form must not preserve any of the bits
3759  // that are shifted out by the inner shift in the first form.  This means
3760  // the outer shift size must be >= the number of bits added by the ext.
3761  // As a corollary, we don't care what kind of ext it is.
3762  if (N1C && (N0.getOpcode() == ISD::ZERO_EXTEND ||
3763              N0.getOpcode() == ISD::ANY_EXTEND ||
3764              N0.getOpcode() == ISD::SIGN_EXTEND) &&
3765      N0.getOperand(0).getOpcode() == ISD::SHL &&
3766      isa<ConstantSDNode>(N0.getOperand(0)->getOperand(1))) {
3767    uint64_t c1 =
3768      cast<ConstantSDNode>(N0.getOperand(0)->getOperand(1))->getZExtValue();
3769    uint64_t c2 = N1C->getZExtValue();
3770    EVT InnerShiftVT = N0.getOperand(0).getValueType();
3771    uint64_t InnerShiftSize = InnerShiftVT.getScalarType().getSizeInBits();
3772    if (c2 >= OpSizeInBits - InnerShiftSize) {
3773      if (c1 + c2 >= OpSizeInBits)
3774        return DAG.getConstant(0, VT);
3775      return DAG.getNode(ISD::SHL, SDLoc(N0), VT,
3776                         DAG.getNode(N0.getOpcode(), SDLoc(N0), VT,
3777                                     N0.getOperand(0)->getOperand(0)),
3778                         DAG.getConstant(c1 + c2, N1.getValueType()));
3779    }
3780  }
3781
3782  // fold (shl (zext (srl x, C)), C) -> (zext (shl (srl x, C), C))
3783  // Only fold this if the inner zext has no other uses to avoid increasing
3784  // the total number of instructions.
3785  if (N1C && N0.getOpcode() == ISD::ZERO_EXTEND && N0.hasOneUse() &&
3786      N0.getOperand(0).getOpcode() == ISD::SRL &&
3787      isa<ConstantSDNode>(N0.getOperand(0)->getOperand(1))) {
3788    uint64_t c1 =
3789      cast<ConstantSDNode>(N0.getOperand(0)->getOperand(1))->getZExtValue();
3790    if (c1 < VT.getSizeInBits()) {
3791      uint64_t c2 = N1C->getZExtValue();
3792      if (c1 == c2) {
3793        SDValue NewOp0 = N0.getOperand(0);
3794        EVT CountVT = NewOp0.getOperand(1).getValueType();
3795        SDValue NewSHL = DAG.getNode(ISD::SHL, SDLoc(N), NewOp0.getValueType(),
3796                                     NewOp0, DAG.getConstant(c2, CountVT));
3797        AddToWorkList(NewSHL.getNode());
3798        return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N0), VT, NewSHL);
3799      }
3800    }
3801  }
3802
3803  // fold (shl (srl x, c1), c2) -> (and (shl x, (sub c2, c1), MASK) or
3804  //                               (and (srl x, (sub c1, c2), MASK)
3805  // Only fold this if the inner shift has no other uses -- if it does, folding
3806  // this will increase the total number of instructions.
3807  if (N1C && N0.getOpcode() == ISD::SRL && N0.hasOneUse() &&
3808      N0.getOperand(1).getOpcode() == ISD::Constant) {
3809    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
3810    if (c1 < VT.getSizeInBits()) {
3811      uint64_t c2 = N1C->getZExtValue();
3812      APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
3813                                         VT.getSizeInBits() - c1);
3814      SDValue Shift;
3815      if (c2 > c1) {
3816        Mask = Mask.shl(c2-c1);
3817        Shift = DAG.getNode(ISD::SHL, SDLoc(N), VT, N0.getOperand(0),
3818                            DAG.getConstant(c2-c1, N1.getValueType()));
3819      } else {
3820        Mask = Mask.lshr(c1-c2);
3821        Shift = DAG.getNode(ISD::SRL, SDLoc(N), VT, N0.getOperand(0),
3822                            DAG.getConstant(c1-c2, N1.getValueType()));
3823      }
3824      return DAG.getNode(ISD::AND, SDLoc(N0), VT, Shift,
3825                         DAG.getConstant(Mask, VT));
3826    }
3827  }
3828  // fold (shl (sra x, c1), c1) -> (and x, (shl -1, c1))
3829  if (N1C && N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1)) {
3830    SDValue HiBitsMask =
3831      DAG.getConstant(APInt::getHighBitsSet(VT.getSizeInBits(),
3832                                            VT.getSizeInBits() -
3833                                              N1C->getZExtValue()),
3834                      VT);
3835    return DAG.getNode(ISD::AND, SDLoc(N), VT, N0.getOperand(0),
3836                       HiBitsMask);
3837  }
3838
3839  if (N1C) {
3840    SDValue NewSHL = visitShiftByConstant(N, N1C->getZExtValue());
3841    if (NewSHL.getNode())
3842      return NewSHL;
3843  }
3844
3845  return SDValue();
3846}
3847
3848SDValue DAGCombiner::visitSRA(SDNode *N) {
3849  SDValue N0 = N->getOperand(0);
3850  SDValue N1 = N->getOperand(1);
3851  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3852  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3853  EVT VT = N0.getValueType();
3854  unsigned OpSizeInBits = VT.getScalarType().getSizeInBits();
3855
3856  // fold (sra c1, c2) -> (sra c1, c2)
3857  if (N0C && N1C)
3858    return DAG.FoldConstantArithmetic(ISD::SRA, VT, N0C, N1C);
3859  // fold (sra 0, x) -> 0
3860  if (N0C && N0C->isNullValue())
3861    return N0;
3862  // fold (sra -1, x) -> -1
3863  if (N0C && N0C->isAllOnesValue())
3864    return N0;
3865  // fold (sra x, (setge c, size(x))) -> undef
3866  if (N1C && N1C->getZExtValue() >= OpSizeInBits)
3867    return DAG.getUNDEF(VT);
3868  // fold (sra x, 0) -> x
3869  if (N1C && N1C->isNullValue())
3870    return N0;
3871  // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports
3872  // sext_inreg.
3873  if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) {
3874    unsigned LowBits = OpSizeInBits - (unsigned)N1C->getZExtValue();
3875    EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), LowBits);
3876    if (VT.isVector())
3877      ExtVT = EVT::getVectorVT(*DAG.getContext(),
3878                               ExtVT, VT.getVectorNumElements());
3879    if ((!LegalOperations ||
3880         TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, ExtVT)))
3881      return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT,
3882                         N0.getOperand(0), DAG.getValueType(ExtVT));
3883  }
3884
3885  // fold (sra (sra x, c1), c2) -> (sra x, (add c1, c2))
3886  if (N1C && N0.getOpcode() == ISD::SRA) {
3887    if (ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3888      unsigned Sum = N1C->getZExtValue() + C1->getZExtValue();
3889      if (Sum >= OpSizeInBits) Sum = OpSizeInBits-1;
3890      return DAG.getNode(ISD::SRA, SDLoc(N), VT, N0.getOperand(0),
3891                         DAG.getConstant(Sum, N1C->getValueType(0)));
3892    }
3893  }
3894
3895  // fold (sra (shl X, m), (sub result_size, n))
3896  // -> (sign_extend (trunc (shl X, (sub (sub result_size, n), m)))) for
3897  // result_size - n != m.
3898  // If truncate is free for the target sext(shl) is likely to result in better
3899  // code.
3900  if (N0.getOpcode() == ISD::SHL) {
3901    // Get the two constanst of the shifts, CN0 = m, CN = n.
3902    const ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
3903    if (N01C && N1C) {
3904      // Determine what the truncate's result bitsize and type would be.
3905      EVT TruncVT =
3906        EVT::getIntegerVT(*DAG.getContext(),
3907                          OpSizeInBits - N1C->getZExtValue());
3908      // Determine the residual right-shift amount.
3909      signed ShiftAmt = N1C->getZExtValue() - N01C->getZExtValue();
3910
3911      // If the shift is not a no-op (in which case this should be just a sign
3912      // extend already), the truncated to type is legal, sign_extend is legal
3913      // on that type, and the truncate to that type is both legal and free,
3914      // perform the transform.
3915      if ((ShiftAmt > 0) &&
3916          TLI.isOperationLegalOrCustom(ISD::SIGN_EXTEND, TruncVT) &&
3917          TLI.isOperationLegalOrCustom(ISD::TRUNCATE, VT) &&
3918          TLI.isTruncateFree(VT, TruncVT)) {
3919
3920          SDValue Amt = DAG.getConstant(ShiftAmt,
3921              getShiftAmountTy(N0.getOperand(0).getValueType()));
3922          SDValue Shift = DAG.getNode(ISD::SRL, SDLoc(N0), VT,
3923                                      N0.getOperand(0), Amt);
3924          SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), TruncVT,
3925                                      Shift);
3926          return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N),
3927                             N->getValueType(0), Trunc);
3928      }
3929    }
3930  }
3931
3932  // fold (sra x, (trunc (and y, c))) -> (sra x, (and (trunc y), (trunc c))).
3933  if (N1.getOpcode() == ISD::TRUNCATE &&
3934      N1.getOperand(0).getOpcode() == ISD::AND &&
3935      N1.hasOneUse() && N1.getOperand(0).hasOneUse()) {
3936    SDValue N101 = N1.getOperand(0).getOperand(1);
3937    if (ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N101)) {
3938      EVT TruncVT = N1.getValueType();
3939      SDValue N100 = N1.getOperand(0).getOperand(0);
3940      APInt TruncC = N101C->getAPIntValue();
3941      TruncC = TruncC.trunc(TruncVT.getScalarType().getSizeInBits());
3942      return DAG.getNode(ISD::SRA, SDLoc(N), VT, N0,
3943                         DAG.getNode(ISD::AND, SDLoc(N),
3944                                     TruncVT,
3945                                     DAG.getNode(ISD::TRUNCATE,
3946                                                 SDLoc(N),
3947                                                 TruncVT, N100),
3948                                     DAG.getConstant(TruncC, TruncVT)));
3949    }
3950  }
3951
3952  // fold (sra (trunc (sr x, c1)), c2) -> (trunc (sra x, c1+c2))
3953  //      if c1 is equal to the number of bits the trunc removes
3954  if (N0.getOpcode() == ISD::TRUNCATE &&
3955      (N0.getOperand(0).getOpcode() == ISD::SRL ||
3956       N0.getOperand(0).getOpcode() == ISD::SRA) &&
3957      N0.getOperand(0).hasOneUse() &&
3958      N0.getOperand(0).getOperand(1).hasOneUse() &&
3959      N1C && isa<ConstantSDNode>(N0.getOperand(0).getOperand(1))) {
3960    EVT LargeVT = N0.getOperand(0).getValueType();
3961    ConstantSDNode *LargeShiftAmt =
3962      cast<ConstantSDNode>(N0.getOperand(0).getOperand(1));
3963
3964    if (LargeVT.getScalarType().getSizeInBits() - OpSizeInBits ==
3965        LargeShiftAmt->getZExtValue()) {
3966      SDValue Amt =
3967        DAG.getConstant(LargeShiftAmt->getZExtValue() + N1C->getZExtValue(),
3968              getShiftAmountTy(N0.getOperand(0).getOperand(0).getValueType()));
3969      SDValue SRA = DAG.getNode(ISD::SRA, SDLoc(N), LargeVT,
3970                                N0.getOperand(0).getOperand(0), Amt);
3971      return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, SRA);
3972    }
3973  }
3974
3975  // Simplify, based on bits shifted out of the LHS.
3976  if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
3977    return SDValue(N, 0);
3978
3979
3980  // If the sign bit is known to be zero, switch this to a SRL.
3981  if (DAG.SignBitIsZero(N0))
3982    return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, N1);
3983
3984  if (N1C) {
3985    SDValue NewSRA = visitShiftByConstant(N, N1C->getZExtValue());
3986    if (NewSRA.getNode())
3987      return NewSRA;
3988  }
3989
3990  return SDValue();
3991}
3992
3993SDValue DAGCombiner::visitSRL(SDNode *N) {
3994  SDValue N0 = N->getOperand(0);
3995  SDValue N1 = N->getOperand(1);
3996  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3997  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3998  EVT VT = N0.getValueType();
3999  unsigned OpSizeInBits = VT.getScalarType().getSizeInBits();
4000
4001  // fold (srl c1, c2) -> c1 >>u c2
4002  if (N0C && N1C)
4003    return DAG.FoldConstantArithmetic(ISD::SRL, VT, N0C, N1C);
4004  // fold (srl 0, x) -> 0
4005  if (N0C && N0C->isNullValue())
4006    return N0;
4007  // fold (srl x, c >= size(x)) -> undef
4008  if (N1C && N1C->getZExtValue() >= OpSizeInBits)
4009    return DAG.getUNDEF(VT);
4010  // fold (srl x, 0) -> x
4011  if (N1C && N1C->isNullValue())
4012    return N0;
4013  // if (srl x, c) is known to be zero, return 0
4014  if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0),
4015                                   APInt::getAllOnesValue(OpSizeInBits)))
4016    return DAG.getConstant(0, VT);
4017
4018  // fold (srl (srl x, c1), c2) -> 0 or (srl x, (add c1, c2))
4019  if (N1C && N0.getOpcode() == ISD::SRL &&
4020      N0.getOperand(1).getOpcode() == ISD::Constant) {
4021    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
4022    uint64_t c2 = N1C->getZExtValue();
4023    if (c1 + c2 >= OpSizeInBits)
4024      return DAG.getConstant(0, VT);
4025    return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0.getOperand(0),
4026                       DAG.getConstant(c1 + c2, N1.getValueType()));
4027  }
4028
4029  // fold (srl (trunc (srl x, c1)), c2) -> 0 or (trunc (srl x, (add c1, c2)))
4030  if (N1C && N0.getOpcode() == ISD::TRUNCATE &&
4031      N0.getOperand(0).getOpcode() == ISD::SRL &&
4032      isa<ConstantSDNode>(N0.getOperand(0)->getOperand(1))) {
4033    uint64_t c1 =
4034      cast<ConstantSDNode>(N0.getOperand(0)->getOperand(1))->getZExtValue();
4035    uint64_t c2 = N1C->getZExtValue();
4036    EVT InnerShiftVT = N0.getOperand(0).getValueType();
4037    EVT ShiftCountVT = N0.getOperand(0)->getOperand(1).getValueType();
4038    uint64_t InnerShiftSize = InnerShiftVT.getScalarType().getSizeInBits();
4039    // This is only valid if the OpSizeInBits + c1 = size of inner shift.
4040    if (c1 + OpSizeInBits == InnerShiftSize) {
4041      if (c1 + c2 >= InnerShiftSize)
4042        return DAG.getConstant(0, VT);
4043      return DAG.getNode(ISD::TRUNCATE, SDLoc(N0), VT,
4044                         DAG.getNode(ISD::SRL, SDLoc(N0), InnerShiftVT,
4045                                     N0.getOperand(0)->getOperand(0),
4046                                     DAG.getConstant(c1 + c2, ShiftCountVT)));
4047    }
4048  }
4049
4050  // fold (srl (shl x, c), c) -> (and x, cst2)
4051  if (N1C && N0.getOpcode() == ISD::SHL && N0.getOperand(1) == N1 &&
4052      N0.getValueSizeInBits() <= 64) {
4053    uint64_t ShAmt = N1C->getZExtValue()+64-N0.getValueSizeInBits();
4054    return DAG.getNode(ISD::AND, SDLoc(N), VT, N0.getOperand(0),
4055                       DAG.getConstant(~0ULL >> ShAmt, VT));
4056  }
4057
4058  // fold (srl (anyextend x), c) -> (and (anyextend (srl x, c)), mask)
4059  if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
4060    // Shifting in all undef bits?
4061    EVT SmallVT = N0.getOperand(0).getValueType();
4062    if (N1C->getZExtValue() >= SmallVT.getSizeInBits())
4063      return DAG.getUNDEF(VT);
4064
4065    if (!LegalTypes || TLI.isTypeDesirableForOp(ISD::SRL, SmallVT)) {
4066      uint64_t ShiftAmt = N1C->getZExtValue();
4067      SDValue SmallShift = DAG.getNode(ISD::SRL, SDLoc(N0), SmallVT,
4068                                       N0.getOperand(0),
4069                          DAG.getConstant(ShiftAmt, getShiftAmountTy(SmallVT)));
4070      AddToWorkList(SmallShift.getNode());
4071      APInt Mask = APInt::getAllOnesValue(VT.getSizeInBits()).lshr(ShiftAmt);
4072      return DAG.getNode(ISD::AND, SDLoc(N), VT,
4073                         DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, SmallShift),
4074                         DAG.getConstant(Mask, VT));
4075    }
4076  }
4077
4078  // fold (srl (sra X, Y), 31) -> (srl X, 31).  This srl only looks at the sign
4079  // bit, which is unmodified by sra.
4080  if (N1C && N1C->getZExtValue() + 1 == VT.getSizeInBits()) {
4081    if (N0.getOpcode() == ISD::SRA)
4082      return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0.getOperand(0), N1);
4083  }
4084
4085  // fold (srl (ctlz x), "5") -> x  iff x has one bit set (the low bit).
4086  if (N1C && N0.getOpcode() == ISD::CTLZ &&
4087      N1C->getAPIntValue() == Log2_32(VT.getSizeInBits())) {
4088    APInt KnownZero, KnownOne;
4089    DAG.ComputeMaskedBits(N0.getOperand(0), KnownZero, KnownOne);
4090
4091    // If any of the input bits are KnownOne, then the input couldn't be all
4092    // zeros, thus the result of the srl will always be zero.
4093    if (KnownOne.getBoolValue()) return DAG.getConstant(0, VT);
4094
4095    // If all of the bits input the to ctlz node are known to be zero, then
4096    // the result of the ctlz is "32" and the result of the shift is one.
4097    APInt UnknownBits = ~KnownZero;
4098    if (UnknownBits == 0) return DAG.getConstant(1, VT);
4099
4100    // Otherwise, check to see if there is exactly one bit input to the ctlz.
4101    if ((UnknownBits & (UnknownBits - 1)) == 0) {
4102      // Okay, we know that only that the single bit specified by UnknownBits
4103      // could be set on input to the CTLZ node. If this bit is set, the SRL
4104      // will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair
4105      // to an SRL/XOR pair, which is likely to simplify more.
4106      unsigned ShAmt = UnknownBits.countTrailingZeros();
4107      SDValue Op = N0.getOperand(0);
4108
4109      if (ShAmt) {
4110        Op = DAG.getNode(ISD::SRL, SDLoc(N0), VT, Op,
4111                  DAG.getConstant(ShAmt, getShiftAmountTy(Op.getValueType())));
4112        AddToWorkList(Op.getNode());
4113      }
4114
4115      return DAG.getNode(ISD::XOR, SDLoc(N), VT,
4116                         Op, DAG.getConstant(1, VT));
4117    }
4118  }
4119
4120  // fold (srl x, (trunc (and y, c))) -> (srl x, (and (trunc y), (trunc c))).
4121  if (N1.getOpcode() == ISD::TRUNCATE &&
4122      N1.getOperand(0).getOpcode() == ISD::AND &&
4123      N1.hasOneUse() && N1.getOperand(0).hasOneUse()) {
4124    SDValue N101 = N1.getOperand(0).getOperand(1);
4125    if (ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N101)) {
4126      EVT TruncVT = N1.getValueType();
4127      SDValue N100 = N1.getOperand(0).getOperand(0);
4128      APInt TruncC = N101C->getAPIntValue();
4129      TruncC = TruncC.trunc(TruncVT.getSizeInBits());
4130      return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0,
4131                         DAG.getNode(ISD::AND, SDLoc(N),
4132                                     TruncVT,
4133                                     DAG.getNode(ISD::TRUNCATE,
4134                                                 SDLoc(N),
4135                                                 TruncVT, N100),
4136                                     DAG.getConstant(TruncC, TruncVT)));
4137    }
4138  }
4139
4140  // fold operands of srl based on knowledge that the low bits are not
4141  // demanded.
4142  if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
4143    return SDValue(N, 0);
4144
4145  if (N1C) {
4146    SDValue NewSRL = visitShiftByConstant(N, N1C->getZExtValue());
4147    if (NewSRL.getNode())
4148      return NewSRL;
4149  }
4150
4151  // Attempt to convert a srl of a load into a narrower zero-extending load.
4152  SDValue NarrowLoad = ReduceLoadWidth(N);
4153  if (NarrowLoad.getNode())
4154    return NarrowLoad;
4155
4156  // Here is a common situation. We want to optimize:
4157  //
4158  //   %a = ...
4159  //   %b = and i32 %a, 2
4160  //   %c = srl i32 %b, 1
4161  //   brcond i32 %c ...
4162  //
4163  // into
4164  //
4165  //   %a = ...
4166  //   %b = and %a, 2
4167  //   %c = setcc eq %b, 0
4168  //   brcond %c ...
4169  //
4170  // However when after the source operand of SRL is optimized into AND, the SRL
4171  // itself may not be optimized further. Look for it and add the BRCOND into
4172  // the worklist.
4173  if (N->hasOneUse()) {
4174    SDNode *Use = *N->use_begin();
4175    if (Use->getOpcode() == ISD::BRCOND)
4176      AddToWorkList(Use);
4177    else if (Use->getOpcode() == ISD::TRUNCATE && Use->hasOneUse()) {
4178      // Also look pass the truncate.
4179      Use = *Use->use_begin();
4180      if (Use->getOpcode() == ISD::BRCOND)
4181        AddToWorkList(Use);
4182    }
4183  }
4184
4185  return SDValue();
4186}
4187
4188SDValue DAGCombiner::visitCTLZ(SDNode *N) {
4189  SDValue N0 = N->getOperand(0);
4190  EVT VT = N->getValueType(0);
4191
4192  // fold (ctlz c1) -> c2
4193  if (isa<ConstantSDNode>(N0))
4194    return DAG.getNode(ISD::CTLZ, SDLoc(N), VT, N0);
4195  return SDValue();
4196}
4197
4198SDValue DAGCombiner::visitCTLZ_ZERO_UNDEF(SDNode *N) {
4199  SDValue N0 = N->getOperand(0);
4200  EVT VT = N->getValueType(0);
4201
4202  // fold (ctlz_zero_undef c1) -> c2
4203  if (isa<ConstantSDNode>(N0))
4204    return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SDLoc(N), VT, N0);
4205  return SDValue();
4206}
4207
4208SDValue DAGCombiner::visitCTTZ(SDNode *N) {
4209  SDValue N0 = N->getOperand(0);
4210  EVT VT = N->getValueType(0);
4211
4212  // fold (cttz c1) -> c2
4213  if (isa<ConstantSDNode>(N0))
4214    return DAG.getNode(ISD::CTTZ, SDLoc(N), VT, N0);
4215  return SDValue();
4216}
4217
4218SDValue DAGCombiner::visitCTTZ_ZERO_UNDEF(SDNode *N) {
4219  SDValue N0 = N->getOperand(0);
4220  EVT VT = N->getValueType(0);
4221
4222  // fold (cttz_zero_undef c1) -> c2
4223  if (isa<ConstantSDNode>(N0))
4224    return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, SDLoc(N), VT, N0);
4225  return SDValue();
4226}
4227
4228SDValue DAGCombiner::visitCTPOP(SDNode *N) {
4229  SDValue N0 = N->getOperand(0);
4230  EVT VT = N->getValueType(0);
4231
4232  // fold (ctpop c1) -> c2
4233  if (isa<ConstantSDNode>(N0))
4234    return DAG.getNode(ISD::CTPOP, SDLoc(N), VT, N0);
4235  return SDValue();
4236}
4237
4238SDValue DAGCombiner::visitSELECT(SDNode *N) {
4239  SDValue N0 = N->getOperand(0);
4240  SDValue N1 = N->getOperand(1);
4241  SDValue N2 = N->getOperand(2);
4242  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
4243  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
4244  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
4245  EVT VT = N->getValueType(0);
4246  EVT VT0 = N0.getValueType();
4247
4248  // fold (select C, X, X) -> X
4249  if (N1 == N2)
4250    return N1;
4251  // fold (select true, X, Y) -> X
4252  if (N0C && !N0C->isNullValue())
4253    return N1;
4254  // fold (select false, X, Y) -> Y
4255  if (N0C && N0C->isNullValue())
4256    return N2;
4257  // fold (select C, 1, X) -> (or C, X)
4258  if (VT == MVT::i1 && N1C && N1C->getAPIntValue() == 1)
4259    return DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N2);
4260  // fold (select C, 0, 1) -> (xor C, 1)
4261  if (VT.isInteger() &&
4262      (VT0 == MVT::i1 ||
4263       (VT0.isInteger() &&
4264        TLI.getBooleanContents(false) ==
4265        TargetLowering::ZeroOrOneBooleanContent)) &&
4266      N1C && N2C && N1C->isNullValue() && N2C->getAPIntValue() == 1) {
4267    SDValue XORNode;
4268    if (VT == VT0)
4269      return DAG.getNode(ISD::XOR, SDLoc(N), VT0,
4270                         N0, DAG.getConstant(1, VT0));
4271    XORNode = DAG.getNode(ISD::XOR, SDLoc(N0), VT0,
4272                          N0, DAG.getConstant(1, VT0));
4273    AddToWorkList(XORNode.getNode());
4274    if (VT.bitsGT(VT0))
4275      return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, XORNode);
4276    return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, XORNode);
4277  }
4278  // fold (select C, 0, X) -> (and (not C), X)
4279  if (VT == VT0 && VT == MVT::i1 && N1C && N1C->isNullValue()) {
4280    SDValue NOTNode = DAG.getNOT(SDLoc(N0), N0, VT);
4281    AddToWorkList(NOTNode.getNode());
4282    return DAG.getNode(ISD::AND, SDLoc(N), VT, NOTNode, N2);
4283  }
4284  // fold (select C, X, 1) -> (or (not C), X)
4285  if (VT == VT0 && VT == MVT::i1 && N2C && N2C->getAPIntValue() == 1) {
4286    SDValue NOTNode = DAG.getNOT(SDLoc(N0), N0, VT);
4287    AddToWorkList(NOTNode.getNode());
4288    return DAG.getNode(ISD::OR, SDLoc(N), VT, NOTNode, N1);
4289  }
4290  // fold (select C, X, 0) -> (and C, X)
4291  if (VT == MVT::i1 && N2C && N2C->isNullValue())
4292    return DAG.getNode(ISD::AND, SDLoc(N), VT, N0, N1);
4293  // fold (select X, X, Y) -> (or X, Y)
4294  // fold (select X, 1, Y) -> (or X, Y)
4295  if (VT == MVT::i1 && (N0 == N1 || (N1C && N1C->getAPIntValue() == 1)))
4296    return DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N2);
4297  // fold (select X, Y, X) -> (and X, Y)
4298  // fold (select X, Y, 0) -> (and X, Y)
4299  if (VT == MVT::i1 && (N0 == N2 || (N2C && N2C->getAPIntValue() == 0)))
4300    return DAG.getNode(ISD::AND, SDLoc(N), VT, N0, N1);
4301
4302  // If we can fold this based on the true/false value, do so.
4303  if (SimplifySelectOps(N, N1, N2))
4304    return SDValue(N, 0);  // Don't revisit N.
4305
4306  // fold selects based on a setcc into other things, such as min/max/abs
4307  if (N0.getOpcode() == ISD::SETCC) {
4308    // FIXME:
4309    // Check against MVT::Other for SELECT_CC, which is a workaround for targets
4310    // having to say they don't support SELECT_CC on every type the DAG knows
4311    // about, since there is no way to mark an opcode illegal at all value types
4312    if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, MVT::Other) &&
4313        TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT))
4314      return DAG.getNode(ISD::SELECT_CC, SDLoc(N), VT,
4315                         N0.getOperand(0), N0.getOperand(1),
4316                         N1, N2, N0.getOperand(2));
4317    return SimplifySelect(SDLoc(N), N0, N1, N2);
4318  }
4319
4320  return SDValue();
4321}
4322
4323SDValue DAGCombiner::visitVSELECT(SDNode *N) {
4324  SDValue N0 = N->getOperand(0);
4325  SDValue N1 = N->getOperand(1);
4326  SDValue N2 = N->getOperand(2);
4327  SDLoc DL(N);
4328
4329  // Canonicalize integer abs.
4330  // vselect (setg[te] X,  0),  X, -X ->
4331  // vselect (setgt    X, -1),  X, -X ->
4332  // vselect (setl[te] X,  0), -X,  X ->
4333  // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
4334  if (N0.getOpcode() == ISD::SETCC) {
4335    SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
4336    ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
4337    bool isAbs = false;
4338    bool RHSIsAllZeros = ISD::isBuildVectorAllZeros(RHS.getNode());
4339
4340    if (((RHSIsAllZeros && (CC == ISD::SETGT || CC == ISD::SETGE)) ||
4341         (ISD::isBuildVectorAllOnes(RHS.getNode()) && CC == ISD::SETGT)) &&
4342        N1 == LHS && N2.getOpcode() == ISD::SUB && N1 == N2.getOperand(1))
4343      isAbs = ISD::isBuildVectorAllZeros(N2.getOperand(0).getNode());
4344    else if ((RHSIsAllZeros && (CC == ISD::SETLT || CC == ISD::SETLE)) &&
4345             N2 == LHS && N1.getOpcode() == ISD::SUB && N2 == N1.getOperand(1))
4346      isAbs = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode());
4347
4348    if (isAbs) {
4349      EVT VT = LHS.getValueType();
4350      SDValue Shift = DAG.getNode(
4351          ISD::SRA, DL, VT, LHS,
4352          DAG.getConstant(VT.getScalarType().getSizeInBits() - 1, VT));
4353      SDValue Add = DAG.getNode(ISD::ADD, DL, VT, LHS, Shift);
4354      AddToWorkList(Shift.getNode());
4355      AddToWorkList(Add.getNode());
4356      return DAG.getNode(ISD::XOR, DL, VT, Add, Shift);
4357    }
4358  }
4359
4360  return SDValue();
4361}
4362
4363SDValue DAGCombiner::visitSELECT_CC(SDNode *N) {
4364  SDValue N0 = N->getOperand(0);
4365  SDValue N1 = N->getOperand(1);
4366  SDValue N2 = N->getOperand(2);
4367  SDValue N3 = N->getOperand(3);
4368  SDValue N4 = N->getOperand(4);
4369  ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get();
4370
4371  // fold select_cc lhs, rhs, x, x, cc -> x
4372  if (N2 == N3)
4373    return N2;
4374
4375  // Determine if the condition we're dealing with is constant
4376  SDValue SCC = SimplifySetCC(getSetCCResultType(N0.getValueType()),
4377                              N0, N1, CC, SDLoc(N), false);
4378  if (SCC.getNode()) {
4379    AddToWorkList(SCC.getNode());
4380
4381    if (ConstantSDNode *SCCC = dyn_cast<ConstantSDNode>(SCC.getNode())) {
4382      if (!SCCC->isNullValue())
4383        return N2;    // cond always true -> true val
4384      else
4385        return N3;    // cond always false -> false val
4386    }
4387
4388    // Fold to a simpler select_cc
4389    if (SCC.getOpcode() == ISD::SETCC)
4390      return DAG.getNode(ISD::SELECT_CC, SDLoc(N), N2.getValueType(),
4391                         SCC.getOperand(0), SCC.getOperand(1), N2, N3,
4392                         SCC.getOperand(2));
4393  }
4394
4395  // If we can fold this based on the true/false value, do so.
4396  if (SimplifySelectOps(N, N2, N3))
4397    return SDValue(N, 0);  // Don't revisit N.
4398
4399  // fold select_cc into other things, such as min/max/abs
4400  return SimplifySelectCC(SDLoc(N), N0, N1, N2, N3, CC);
4401}
4402
4403SDValue DAGCombiner::visitSETCC(SDNode *N) {
4404  return SimplifySetCC(N->getValueType(0), N->getOperand(0), N->getOperand(1),
4405                       cast<CondCodeSDNode>(N->getOperand(2))->get(),
4406                       SDLoc(N));
4407}
4408
4409// ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this:
4410// "fold ({s|z|a}ext (load x)) -> ({s|z|a}ext (truncate ({s|z|a}extload x)))"
4411// transformation. Returns true if extension are possible and the above
4412// mentioned transformation is profitable.
4413static bool ExtendUsesToFormExtLoad(SDNode *N, SDValue N0,
4414                                    unsigned ExtOpc,
4415                                    SmallVectorImpl<SDNode *> &ExtendNodes,
4416                                    const TargetLowering &TLI) {
4417  bool HasCopyToRegUses = false;
4418  bool isTruncFree = TLI.isTruncateFree(N->getValueType(0), N0.getValueType());
4419  for (SDNode::use_iterator UI = N0.getNode()->use_begin(),
4420                            UE = N0.getNode()->use_end();
4421       UI != UE; ++UI) {
4422    SDNode *User = *UI;
4423    if (User == N)
4424      continue;
4425    if (UI.getUse().getResNo() != N0.getResNo())
4426      continue;
4427    // FIXME: Only extend SETCC N, N and SETCC N, c for now.
4428    if (ExtOpc != ISD::ANY_EXTEND && User->getOpcode() == ISD::SETCC) {
4429      ISD::CondCode CC = cast<CondCodeSDNode>(User->getOperand(2))->get();
4430      if (ExtOpc == ISD::ZERO_EXTEND && ISD::isSignedIntSetCC(CC))
4431        // Sign bits will be lost after a zext.
4432        return false;
4433      bool Add = false;
4434      for (unsigned i = 0; i != 2; ++i) {
4435        SDValue UseOp = User->getOperand(i);
4436        if (UseOp == N0)
4437          continue;
4438        if (!isa<ConstantSDNode>(UseOp))
4439          return false;
4440        Add = true;
4441      }
4442      if (Add)
4443        ExtendNodes.push_back(User);
4444      continue;
4445    }
4446    // If truncates aren't free and there are users we can't
4447    // extend, it isn't worthwhile.
4448    if (!isTruncFree)
4449      return false;
4450    // Remember if this value is live-out.
4451    if (User->getOpcode() == ISD::CopyToReg)
4452      HasCopyToRegUses = true;
4453  }
4454
4455  if (HasCopyToRegUses) {
4456    bool BothLiveOut = false;
4457    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
4458         UI != UE; ++UI) {
4459      SDUse &Use = UI.getUse();
4460      if (Use.getResNo() == 0 && Use.getUser()->getOpcode() == ISD::CopyToReg) {
4461        BothLiveOut = true;
4462        break;
4463      }
4464    }
4465    if (BothLiveOut)
4466      // Both unextended and extended values are live out. There had better be
4467      // a good reason for the transformation.
4468      return ExtendNodes.size();
4469  }
4470  return true;
4471}
4472
4473void DAGCombiner::ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs,
4474                                  SDValue Trunc, SDValue ExtLoad, SDLoc DL,
4475                                  ISD::NodeType ExtType) {
4476  // Extend SetCC uses if necessary.
4477  for (unsigned i = 0, e = SetCCs.size(); i != e; ++i) {
4478    SDNode *SetCC = SetCCs[i];
4479    SmallVector<SDValue, 4> Ops;
4480
4481    for (unsigned j = 0; j != 2; ++j) {
4482      SDValue SOp = SetCC->getOperand(j);
4483      if (SOp == Trunc)
4484        Ops.push_back(ExtLoad);
4485      else
4486        Ops.push_back(DAG.getNode(ExtType, DL, ExtLoad->getValueType(0), SOp));
4487    }
4488
4489    Ops.push_back(SetCC->getOperand(2));
4490    CombineTo(SetCC, DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0),
4491                                 &Ops[0], Ops.size()));
4492  }
4493}
4494
4495SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) {
4496  SDValue N0 = N->getOperand(0);
4497  EVT VT = N->getValueType(0);
4498
4499  // fold (sext c1) -> c1
4500  if (isa<ConstantSDNode>(N0))
4501    return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N0);
4502
4503  // fold (sext (sext x)) -> (sext x)
4504  // fold (sext (aext x)) -> (sext x)
4505  if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
4506    return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT,
4507                       N0.getOperand(0));
4508
4509  if (N0.getOpcode() == ISD::TRUNCATE) {
4510    // fold (sext (truncate (load x))) -> (sext (smaller load x))
4511    // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n)))
4512    SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
4513    if (NarrowLoad.getNode()) {
4514      SDNode* oye = N0.getNode()->getOperand(0).getNode();
4515      if (NarrowLoad.getNode() != N0.getNode()) {
4516        CombineTo(N0.getNode(), NarrowLoad);
4517        // CombineTo deleted the truncate, if needed, but not what's under it.
4518        AddToWorkList(oye);
4519      }
4520      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4521    }
4522
4523    // See if the value being truncated is already sign extended.  If so, just
4524    // eliminate the trunc/sext pair.
4525    SDValue Op = N0.getOperand(0);
4526    unsigned OpBits   = Op.getValueType().getScalarType().getSizeInBits();
4527    unsigned MidBits  = N0.getValueType().getScalarType().getSizeInBits();
4528    unsigned DestBits = VT.getScalarType().getSizeInBits();
4529    unsigned NumSignBits = DAG.ComputeNumSignBits(Op);
4530
4531    if (OpBits == DestBits) {
4532      // Op is i32, Mid is i8, and Dest is i32.  If Op has more than 24 sign
4533      // bits, it is already ready.
4534      if (NumSignBits > DestBits-MidBits)
4535        return Op;
4536    } else if (OpBits < DestBits) {
4537      // Op is i32, Mid is i8, and Dest is i64.  If Op has more than 24 sign
4538      // bits, just sext from i32.
4539      if (NumSignBits > OpBits-MidBits)
4540        return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, Op);
4541    } else {
4542      // Op is i64, Mid is i8, and Dest is i32.  If Op has more than 56 sign
4543      // bits, just truncate to i32.
4544      if (NumSignBits > OpBits-MidBits)
4545        return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Op);
4546    }
4547
4548    // fold (sext (truncate x)) -> (sextinreg x).
4549    if (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG,
4550                                                 N0.getValueType())) {
4551      if (OpBits < DestBits)
4552        Op = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N0), VT, Op);
4553      else if (OpBits > DestBits)
4554        Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), VT, Op);
4555      return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, Op,
4556                         DAG.getValueType(N0.getValueType()));
4557    }
4558  }
4559
4560  // fold (sext (load x)) -> (sext (truncate (sextload x)))
4561  // None of the supported targets knows how to perform load and sign extend
4562  // on vectors in one instruction.  We only perform this transformation on
4563  // scalars.
4564  if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() &&
4565      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
4566       TLI.isLoadExtLegal(ISD::SEXTLOAD, N0.getValueType()))) {
4567    bool DoXform = true;
4568    SmallVector<SDNode*, 4> SetCCs;
4569    if (!N0.hasOneUse())
4570      DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::SIGN_EXTEND, SetCCs, TLI);
4571    if (DoXform) {
4572      LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4573      SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
4574                                       LN0->getChain(),
4575                                       LN0->getBasePtr(), LN0->getPointerInfo(),
4576                                       N0.getValueType(),
4577                                       LN0->isVolatile(), LN0->isNonTemporal(),
4578                                       LN0->getAlignment());
4579      CombineTo(N, ExtLoad);
4580      SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0),
4581                                  N0.getValueType(), ExtLoad);
4582      CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1));
4583      ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N),
4584                      ISD::SIGN_EXTEND);
4585      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4586    }
4587  }
4588
4589  // fold (sext (sextload x)) -> (sext (truncate (sextload x)))
4590  // fold (sext ( extload x)) -> (sext (truncate (sextload x)))
4591  if ((ISD::isSEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) &&
4592      ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) {
4593    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4594    EVT MemVT = LN0->getMemoryVT();
4595    if ((!LegalOperations && !LN0->isVolatile()) ||
4596        TLI.isLoadExtLegal(ISD::SEXTLOAD, MemVT)) {
4597      SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
4598                                       LN0->getChain(),
4599                                       LN0->getBasePtr(), LN0->getPointerInfo(),
4600                                       MemVT,
4601                                       LN0->isVolatile(), LN0->isNonTemporal(),
4602                                       LN0->getAlignment());
4603      CombineTo(N, ExtLoad);
4604      CombineTo(N0.getNode(),
4605                DAG.getNode(ISD::TRUNCATE, SDLoc(N0),
4606                            N0.getValueType(), ExtLoad),
4607                ExtLoad.getValue(1));
4608      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4609    }
4610  }
4611
4612  // fold (sext (and/or/xor (load x), cst)) ->
4613  //      (and/or/xor (sextload x), (sext cst))
4614  if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR ||
4615       N0.getOpcode() == ISD::XOR) &&
4616      isa<LoadSDNode>(N0.getOperand(0)) &&
4617      N0.getOperand(1).getOpcode() == ISD::Constant &&
4618      TLI.isLoadExtLegal(ISD::SEXTLOAD, N0.getValueType()) &&
4619      (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) {
4620    LoadSDNode *LN0 = cast<LoadSDNode>(N0.getOperand(0));
4621    if (LN0->getExtensionType() != ISD::ZEXTLOAD) {
4622      bool DoXform = true;
4623      SmallVector<SDNode*, 4> SetCCs;
4624      if (!N0.hasOneUse())
4625        DoXform = ExtendUsesToFormExtLoad(N, N0.getOperand(0), ISD::SIGN_EXTEND,
4626                                          SetCCs, TLI);
4627      if (DoXform) {
4628        SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(LN0), VT,
4629                                         LN0->getChain(), LN0->getBasePtr(),
4630                                         LN0->getPointerInfo(),
4631                                         LN0->getMemoryVT(),
4632                                         LN0->isVolatile(),
4633                                         LN0->isNonTemporal(),
4634                                         LN0->getAlignment());
4635        APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
4636        Mask = Mask.sext(VT.getSizeInBits());
4637        SDValue And = DAG.getNode(N0.getOpcode(), SDLoc(N), VT,
4638                                  ExtLoad, DAG.getConstant(Mask, VT));
4639        SDValue Trunc = DAG.getNode(ISD::TRUNCATE,
4640                                    SDLoc(N0.getOperand(0)),
4641                                    N0.getOperand(0).getValueType(), ExtLoad);
4642        CombineTo(N, And);
4643        CombineTo(N0.getOperand(0).getNode(), Trunc, ExtLoad.getValue(1));
4644        ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N),
4645                        ISD::SIGN_EXTEND);
4646        return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4647      }
4648    }
4649  }
4650
4651  if (N0.getOpcode() == ISD::SETCC) {
4652    // sext(setcc) -> sext_in_reg(vsetcc) for vectors.
4653    // Only do this before legalize for now.
4654    if (VT.isVector() && !LegalOperations &&
4655        TLI.getBooleanContents(true) ==
4656          TargetLowering::ZeroOrNegativeOneBooleanContent) {
4657      EVT N0VT = N0.getOperand(0).getValueType();
4658      // On some architectures (such as SSE/NEON/etc) the SETCC result type is
4659      // of the same size as the compared operands. Only optimize sext(setcc())
4660      // if this is the case.
4661      EVT SVT = getSetCCResultType(N0VT);
4662
4663      // We know that the # elements of the results is the same as the
4664      // # elements of the compare (and the # elements of the compare result
4665      // for that matter).  Check to see that they are the same size.  If so,
4666      // we know that the element size of the sext'd result matches the
4667      // element size of the compare operands.
4668      if (VT.getSizeInBits() == SVT.getSizeInBits())
4669        return DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0),
4670                             N0.getOperand(1),
4671                             cast<CondCodeSDNode>(N0.getOperand(2))->get());
4672
4673      // If the desired elements are smaller or larger than the source
4674      // elements we can use a matching integer vector type and then
4675      // truncate/sign extend
4676      EVT MatchingVectorType = N0VT.changeVectorElementTypeToInteger();
4677      if (SVT == MatchingVectorType) {
4678        SDValue VsetCC = DAG.getSetCC(SDLoc(N), MatchingVectorType,
4679                               N0.getOperand(0), N0.getOperand(1),
4680                               cast<CondCodeSDNode>(N0.getOperand(2))->get());
4681        return DAG.getSExtOrTrunc(VsetCC, SDLoc(N), VT);
4682      }
4683    }
4684
4685    // sext(setcc x, y, cc) -> (select_cc x, y, -1, 0, cc)
4686    unsigned ElementWidth = VT.getScalarType().getSizeInBits();
4687    SDValue NegOne =
4688      DAG.getConstant(APInt::getAllOnesValue(ElementWidth), VT);
4689    SDValue SCC =
4690      SimplifySelectCC(SDLoc(N), N0.getOperand(0), N0.getOperand(1),
4691                       NegOne, DAG.getConstant(0, VT),
4692                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
4693    if (SCC.getNode()) return SCC;
4694    if (!VT.isVector() &&
4695        (!LegalOperations ||
4696         TLI.isOperationLegal(ISD::SETCC, getSetCCResultType(VT)))) {
4697      return DAG.getSelect(SDLoc(N), VT,
4698                           DAG.getSetCC(SDLoc(N),
4699                           getSetCCResultType(VT),
4700                           N0.getOperand(0), N0.getOperand(1),
4701                           cast<CondCodeSDNode>(N0.getOperand(2))->get()),
4702                           NegOne, DAG.getConstant(0, VT));
4703    }
4704  }
4705
4706  // fold (sext x) -> (zext x) if the sign bit is known zero.
4707  if ((!LegalOperations || TLI.isOperationLegal(ISD::ZERO_EXTEND, VT)) &&
4708      DAG.SignBitIsZero(N0))
4709    return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, N0);
4710
4711  return SDValue();
4712}
4713
4714// isTruncateOf - If N is a truncate of some other value, return true, record
4715// the value being truncated in Op and which of Op's bits are zero in KnownZero.
4716// This function computes KnownZero to avoid a duplicated call to
4717// ComputeMaskedBits in the caller.
4718static bool isTruncateOf(SelectionDAG &DAG, SDValue N, SDValue &Op,
4719                         APInt &KnownZero) {
4720  APInt KnownOne;
4721  if (N->getOpcode() == ISD::TRUNCATE) {
4722    Op = N->getOperand(0);
4723    DAG.ComputeMaskedBits(Op, KnownZero, KnownOne);
4724    return true;
4725  }
4726
4727  if (N->getOpcode() != ISD::SETCC || N->getValueType(0) != MVT::i1 ||
4728      cast<CondCodeSDNode>(N->getOperand(2))->get() != ISD::SETNE)
4729    return false;
4730
4731  SDValue Op0 = N->getOperand(0);
4732  SDValue Op1 = N->getOperand(1);
4733  assert(Op0.getValueType() == Op1.getValueType());
4734
4735  ConstantSDNode *COp0 = dyn_cast<ConstantSDNode>(Op0);
4736  ConstantSDNode *COp1 = dyn_cast<ConstantSDNode>(Op1);
4737  if (COp0 && COp0->isNullValue())
4738    Op = Op1;
4739  else if (COp1 && COp1->isNullValue())
4740    Op = Op0;
4741  else
4742    return false;
4743
4744  DAG.ComputeMaskedBits(Op, KnownZero, KnownOne);
4745
4746  if (!(KnownZero | APInt(Op.getValueSizeInBits(), 1)).isAllOnesValue())
4747    return false;
4748
4749  return true;
4750}
4751
4752SDValue DAGCombiner::visitZERO_EXTEND(SDNode *N) {
4753  SDValue N0 = N->getOperand(0);
4754  EVT VT = N->getValueType(0);
4755
4756  // fold (zext c1) -> c1
4757  if (isa<ConstantSDNode>(N0))
4758    return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, N0);
4759  // fold (zext (zext x)) -> (zext x)
4760  // fold (zext (aext x)) -> (zext x)
4761  if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
4762    return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT,
4763                       N0.getOperand(0));
4764
4765  // fold (zext (truncate x)) -> (zext x) or
4766  //      (zext (truncate x)) -> (truncate x)
4767  // This is valid when the truncated bits of x are already zero.
4768  // FIXME: We should extend this to work for vectors too.
4769  SDValue Op;
4770  APInt KnownZero;
4771  if (!VT.isVector() && isTruncateOf(DAG, N0, Op, KnownZero)) {
4772    APInt TruncatedBits =
4773      (Op.getValueSizeInBits() == N0.getValueSizeInBits()) ?
4774      APInt(Op.getValueSizeInBits(), 0) :
4775      APInt::getBitsSet(Op.getValueSizeInBits(),
4776                        N0.getValueSizeInBits(),
4777                        std::min(Op.getValueSizeInBits(),
4778                                 VT.getSizeInBits()));
4779    if (TruncatedBits == (KnownZero & TruncatedBits)) {
4780      if (VT.bitsGT(Op.getValueType()))
4781        return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, Op);
4782      if (VT.bitsLT(Op.getValueType()))
4783        return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Op);
4784
4785      return Op;
4786    }
4787  }
4788
4789  // fold (zext (truncate (load x))) -> (zext (smaller load x))
4790  // fold (zext (truncate (srl (load x), c))) -> (zext (small load (x+c/n)))
4791  if (N0.getOpcode() == ISD::TRUNCATE) {
4792    SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
4793    if (NarrowLoad.getNode()) {
4794      SDNode* oye = N0.getNode()->getOperand(0).getNode();
4795      if (NarrowLoad.getNode() != N0.getNode()) {
4796        CombineTo(N0.getNode(), NarrowLoad);
4797        // CombineTo deleted the truncate, if needed, but not what's under it.
4798        AddToWorkList(oye);
4799      }
4800      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4801    }
4802  }
4803
4804  // fold (zext (truncate x)) -> (and x, mask)
4805  if (N0.getOpcode() == ISD::TRUNCATE &&
4806      (!LegalOperations || TLI.isOperationLegal(ISD::AND, VT))) {
4807
4808    // fold (zext (truncate (load x))) -> (zext (smaller load x))
4809    // fold (zext (truncate (srl (load x), c))) -> (zext (smaller load (x+c/n)))
4810    SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
4811    if (NarrowLoad.getNode()) {
4812      SDNode* oye = N0.getNode()->getOperand(0).getNode();
4813      if (NarrowLoad.getNode() != N0.getNode()) {
4814        CombineTo(N0.getNode(), NarrowLoad);
4815        // CombineTo deleted the truncate, if needed, but not what's under it.
4816        AddToWorkList(oye);
4817      }
4818      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4819    }
4820
4821    SDValue Op = N0.getOperand(0);
4822    if (Op.getValueType().bitsLT(VT)) {
4823      Op = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, Op);
4824      AddToWorkList(Op.getNode());
4825    } else if (Op.getValueType().bitsGT(VT)) {
4826      Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Op);
4827      AddToWorkList(Op.getNode());
4828    }
4829    return DAG.getZeroExtendInReg(Op, SDLoc(N),
4830                                  N0.getValueType().getScalarType());
4831  }
4832
4833  // Fold (zext (and (trunc x), cst)) -> (and x, cst),
4834  // if either of the casts is not free.
4835  if (N0.getOpcode() == ISD::AND &&
4836      N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
4837      N0.getOperand(1).getOpcode() == ISD::Constant &&
4838      (!TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(),
4839                           N0.getValueType()) ||
4840       !TLI.isZExtFree(N0.getValueType(), VT))) {
4841    SDValue X = N0.getOperand(0).getOperand(0);
4842    if (X.getValueType().bitsLT(VT)) {
4843      X = DAG.getNode(ISD::ANY_EXTEND, SDLoc(X), VT, X);
4844    } else if (X.getValueType().bitsGT(VT)) {
4845      X = DAG.getNode(ISD::TRUNCATE, SDLoc(X), VT, X);
4846    }
4847    APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
4848    Mask = Mask.zext(VT.getSizeInBits());
4849    return DAG.getNode(ISD::AND, SDLoc(N), VT,
4850                       X, DAG.getConstant(Mask, VT));
4851  }
4852
4853  // fold (zext (load x)) -> (zext (truncate (zextload x)))
4854  // None of the supported targets knows how to perform load and vector_zext
4855  // on vectors in one instruction.  We only perform this transformation on
4856  // scalars.
4857  if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() &&
4858      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
4859       TLI.isLoadExtLegal(ISD::ZEXTLOAD, N0.getValueType()))) {
4860    bool DoXform = true;
4861    SmallVector<SDNode*, 4> SetCCs;
4862    if (!N0.hasOneUse())
4863      DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ZERO_EXTEND, SetCCs, TLI);
4864    if (DoXform) {
4865      LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4866      SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N), VT,
4867                                       LN0->getChain(),
4868                                       LN0->getBasePtr(), LN0->getPointerInfo(),
4869                                       N0.getValueType(),
4870                                       LN0->isVolatile(), LN0->isNonTemporal(),
4871                                       LN0->getAlignment());
4872      CombineTo(N, ExtLoad);
4873      SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0),
4874                                  N0.getValueType(), ExtLoad);
4875      CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1));
4876
4877      ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N),
4878                      ISD::ZERO_EXTEND);
4879      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4880    }
4881  }
4882
4883  // fold (zext (and/or/xor (load x), cst)) ->
4884  //      (and/or/xor (zextload x), (zext cst))
4885  if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR ||
4886       N0.getOpcode() == ISD::XOR) &&
4887      isa<LoadSDNode>(N0.getOperand(0)) &&
4888      N0.getOperand(1).getOpcode() == ISD::Constant &&
4889      TLI.isLoadExtLegal(ISD::ZEXTLOAD, N0.getValueType()) &&
4890      (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) {
4891    LoadSDNode *LN0 = cast<LoadSDNode>(N0.getOperand(0));
4892    if (LN0->getExtensionType() != ISD::SEXTLOAD) {
4893      bool DoXform = true;
4894      SmallVector<SDNode*, 4> SetCCs;
4895      if (!N0.hasOneUse())
4896        DoXform = ExtendUsesToFormExtLoad(N, N0.getOperand(0), ISD::ZERO_EXTEND,
4897                                          SetCCs, TLI);
4898      if (DoXform) {
4899        SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN0), VT,
4900                                         LN0->getChain(), LN0->getBasePtr(),
4901                                         LN0->getPointerInfo(),
4902                                         LN0->getMemoryVT(),
4903                                         LN0->isVolatile(),
4904                                         LN0->isNonTemporal(),
4905                                         LN0->getAlignment());
4906        APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
4907        Mask = Mask.zext(VT.getSizeInBits());
4908        SDValue And = DAG.getNode(N0.getOpcode(), SDLoc(N), VT,
4909                                  ExtLoad, DAG.getConstant(Mask, VT));
4910        SDValue Trunc = DAG.getNode(ISD::TRUNCATE,
4911                                    SDLoc(N0.getOperand(0)),
4912                                    N0.getOperand(0).getValueType(), ExtLoad);
4913        CombineTo(N, And);
4914        CombineTo(N0.getOperand(0).getNode(), Trunc, ExtLoad.getValue(1));
4915        ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N),
4916                        ISD::ZERO_EXTEND);
4917        return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4918      }
4919    }
4920  }
4921
4922  // fold (zext (zextload x)) -> (zext (truncate (zextload x)))
4923  // fold (zext ( extload x)) -> (zext (truncate (zextload x)))
4924  if ((ISD::isZEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) &&
4925      ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) {
4926    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4927    EVT MemVT = LN0->getMemoryVT();
4928    if ((!LegalOperations && !LN0->isVolatile()) ||
4929        TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT)) {
4930      SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N), VT,
4931                                       LN0->getChain(),
4932                                       LN0->getBasePtr(), LN0->getPointerInfo(),
4933                                       MemVT,
4934                                       LN0->isVolatile(), LN0->isNonTemporal(),
4935                                       LN0->getAlignment());
4936      CombineTo(N, ExtLoad);
4937      CombineTo(N0.getNode(),
4938                DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(),
4939                            ExtLoad),
4940                ExtLoad.getValue(1));
4941      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4942    }
4943  }
4944
4945  if (N0.getOpcode() == ISD::SETCC) {
4946    if (!LegalOperations && VT.isVector()) {
4947      // zext(setcc) -> (and (vsetcc), (1, 1, ...) for vectors.
4948      // Only do this before legalize for now.
4949      EVT N0VT = N0.getOperand(0).getValueType();
4950      EVT EltVT = VT.getVectorElementType();
4951      SmallVector<SDValue,8> OneOps(VT.getVectorNumElements(),
4952                                    DAG.getConstant(1, EltVT));
4953      if (VT.getSizeInBits() == N0VT.getSizeInBits())
4954        // We know that the # elements of the results is the same as the
4955        // # elements of the compare (and the # elements of the compare result
4956        // for that matter).  Check to see that they are the same size.  If so,
4957        // we know that the element size of the sext'd result matches the
4958        // element size of the compare operands.
4959        return DAG.getNode(ISD::AND, SDLoc(N), VT,
4960                           DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0),
4961                                         N0.getOperand(1),
4962                                 cast<CondCodeSDNode>(N0.getOperand(2))->get()),
4963                           DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), VT,
4964                                       &OneOps[0], OneOps.size()));
4965
4966      // If the desired elements are smaller or larger than the source
4967      // elements we can use a matching integer vector type and then
4968      // truncate/sign extend
4969      EVT MatchingElementType =
4970        EVT::getIntegerVT(*DAG.getContext(),
4971                          N0VT.getScalarType().getSizeInBits());
4972      EVT MatchingVectorType =
4973        EVT::getVectorVT(*DAG.getContext(), MatchingElementType,
4974                         N0VT.getVectorNumElements());
4975      SDValue VsetCC =
4976        DAG.getSetCC(SDLoc(N), MatchingVectorType, N0.getOperand(0),
4977                      N0.getOperand(1),
4978                      cast<CondCodeSDNode>(N0.getOperand(2))->get());
4979      return DAG.getNode(ISD::AND, SDLoc(N), VT,
4980                         DAG.getSExtOrTrunc(VsetCC, SDLoc(N), VT),
4981                         DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), VT,
4982                                     &OneOps[0], OneOps.size()));
4983    }
4984
4985    // zext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
4986    SDValue SCC =
4987      SimplifySelectCC(SDLoc(N), N0.getOperand(0), N0.getOperand(1),
4988                       DAG.getConstant(1, VT), DAG.getConstant(0, VT),
4989                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
4990    if (SCC.getNode()) return SCC;
4991  }
4992
4993  // (zext (shl (zext x), cst)) -> (shl (zext x), cst)
4994  if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL) &&
4995      isa<ConstantSDNode>(N0.getOperand(1)) &&
4996      N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND &&
4997      N0.hasOneUse()) {
4998    SDValue ShAmt = N0.getOperand(1);
4999    unsigned ShAmtVal = cast<ConstantSDNode>(ShAmt)->getZExtValue();
5000    if (N0.getOpcode() == ISD::SHL) {
5001      SDValue InnerZExt = N0.getOperand(0);
5002      // If the original shl may be shifting out bits, do not perform this
5003      // transformation.
5004      unsigned KnownZeroBits = InnerZExt.getValueType().getSizeInBits() -
5005        InnerZExt.getOperand(0).getValueType().getSizeInBits();
5006      if (ShAmtVal > KnownZeroBits)
5007        return SDValue();
5008    }
5009
5010    SDLoc DL(N);
5011
5012    // Ensure that the shift amount is wide enough for the shifted value.
5013    if (VT.getSizeInBits() >= 256)
5014      ShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, ShAmt);
5015
5016    return DAG.getNode(N0.getOpcode(), DL, VT,
5017                       DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)),
5018                       ShAmt);
5019  }
5020
5021  return SDValue();
5022}
5023
5024SDValue DAGCombiner::visitANY_EXTEND(SDNode *N) {
5025  SDValue N0 = N->getOperand(0);
5026  EVT VT = N->getValueType(0);
5027
5028  // fold (aext c1) -> c1
5029  if (isa<ConstantSDNode>(N0))
5030    return DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, N0);
5031  // fold (aext (aext x)) -> (aext x)
5032  // fold (aext (zext x)) -> (zext x)
5033  // fold (aext (sext x)) -> (sext x)
5034  if (N0.getOpcode() == ISD::ANY_EXTEND  ||
5035      N0.getOpcode() == ISD::ZERO_EXTEND ||
5036      N0.getOpcode() == ISD::SIGN_EXTEND)
5037    return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, N0.getOperand(0));
5038
5039  // fold (aext (truncate (load x))) -> (aext (smaller load x))
5040  // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n)))
5041  if (N0.getOpcode() == ISD::TRUNCATE) {
5042    SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
5043    if (NarrowLoad.getNode()) {
5044      SDNode* oye = N0.getNode()->getOperand(0).getNode();
5045      if (NarrowLoad.getNode() != N0.getNode()) {
5046        CombineTo(N0.getNode(), NarrowLoad);
5047        // CombineTo deleted the truncate, if needed, but not what's under it.
5048        AddToWorkList(oye);
5049      }
5050      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
5051    }
5052  }
5053
5054  // fold (aext (truncate x))
5055  if (N0.getOpcode() == ISD::TRUNCATE) {
5056    SDValue TruncOp = N0.getOperand(0);
5057    if (TruncOp.getValueType() == VT)
5058      return TruncOp; // x iff x size == zext size.
5059    if (TruncOp.getValueType().bitsGT(VT))
5060      return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, TruncOp);
5061    return DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, TruncOp);
5062  }
5063
5064  // Fold (aext (and (trunc x), cst)) -> (and x, cst)
5065  // if the trunc is not free.
5066  if (N0.getOpcode() == ISD::AND &&
5067      N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
5068      N0.getOperand(1).getOpcode() == ISD::Constant &&
5069      !TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(),
5070                          N0.getValueType())) {
5071    SDValue X = N0.getOperand(0).getOperand(0);
5072    if (X.getValueType().bitsLT(VT)) {
5073      X = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, X);
5074    } else if (X.getValueType().bitsGT(VT)) {
5075      X = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, X);
5076    }
5077    APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
5078    Mask = Mask.zext(VT.getSizeInBits());
5079    return DAG.getNode(ISD::AND, SDLoc(N), VT,
5080                       X, DAG.getConstant(Mask, VT));
5081  }
5082
5083  // fold (aext (load x)) -> (aext (truncate (extload x)))
5084  // None of the supported targets knows how to perform load and any_ext
5085  // on vectors in one instruction.  We only perform this transformation on
5086  // scalars.
5087  if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() &&
5088      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
5089       TLI.isLoadExtLegal(ISD::EXTLOAD, N0.getValueType()))) {
5090    bool DoXform = true;
5091    SmallVector<SDNode*, 4> SetCCs;
5092    if (!N0.hasOneUse())
5093      DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ANY_EXTEND, SetCCs, TLI);
5094    if (DoXform) {
5095      LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5096      SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT,
5097                                       LN0->getChain(),
5098                                       LN0->getBasePtr(), LN0->getPointerInfo(),
5099                                       N0.getValueType(),
5100                                       LN0->isVolatile(), LN0->isNonTemporal(),
5101                                       LN0->getAlignment());
5102      CombineTo(N, ExtLoad);
5103      SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0),
5104                                  N0.getValueType(), ExtLoad);
5105      CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1));
5106      ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N),
5107                      ISD::ANY_EXTEND);
5108      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
5109    }
5110  }
5111
5112  // fold (aext (zextload x)) -> (aext (truncate (zextload x)))
5113  // fold (aext (sextload x)) -> (aext (truncate (sextload x)))
5114  // fold (aext ( extload x)) -> (aext (truncate (extload  x)))
5115  if (N0.getOpcode() == ISD::LOAD &&
5116      !ISD::isNON_EXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
5117      N0.hasOneUse()) {
5118    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5119    EVT MemVT = LN0->getMemoryVT();
5120    SDValue ExtLoad = DAG.getExtLoad(LN0->getExtensionType(), SDLoc(N),
5121                                     VT, LN0->getChain(), LN0->getBasePtr(),
5122                                     LN0->getPointerInfo(), MemVT,
5123                                     LN0->isVolatile(), LN0->isNonTemporal(),
5124                                     LN0->getAlignment());
5125    CombineTo(N, ExtLoad);
5126    CombineTo(N0.getNode(),
5127              DAG.getNode(ISD::TRUNCATE, SDLoc(N0),
5128                          N0.getValueType(), ExtLoad),
5129              ExtLoad.getValue(1));
5130    return SDValue(N, 0);   // Return N so it doesn't get rechecked!
5131  }
5132
5133  if (N0.getOpcode() == ISD::SETCC) {
5134    // aext(setcc) -> sext_in_reg(vsetcc) for vectors.
5135    // Only do this before legalize for now.
5136    if (VT.isVector() && !LegalOperations) {
5137      EVT N0VT = N0.getOperand(0).getValueType();
5138        // We know that the # elements of the results is the same as the
5139        // # elements of the compare (and the # elements of the compare result
5140        // for that matter).  Check to see that they are the same size.  If so,
5141        // we know that the element size of the sext'd result matches the
5142        // element size of the compare operands.
5143      if (VT.getSizeInBits() == N0VT.getSizeInBits())
5144        return DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0),
5145                             N0.getOperand(1),
5146                             cast<CondCodeSDNode>(N0.getOperand(2))->get());
5147      // If the desired elements are smaller or larger than the source
5148      // elements we can use a matching integer vector type and then
5149      // truncate/sign extend
5150      else {
5151        EVT MatchingElementType =
5152          EVT::getIntegerVT(*DAG.getContext(),
5153                            N0VT.getScalarType().getSizeInBits());
5154        EVT MatchingVectorType =
5155          EVT::getVectorVT(*DAG.getContext(), MatchingElementType,
5156                           N0VT.getVectorNumElements());
5157        SDValue VsetCC =
5158          DAG.getSetCC(SDLoc(N), MatchingVectorType, N0.getOperand(0),
5159                        N0.getOperand(1),
5160                        cast<CondCodeSDNode>(N0.getOperand(2))->get());
5161        return DAG.getSExtOrTrunc(VsetCC, SDLoc(N), VT);
5162      }
5163    }
5164
5165    // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
5166    SDValue SCC =
5167      SimplifySelectCC(SDLoc(N), N0.getOperand(0), N0.getOperand(1),
5168                       DAG.getConstant(1, VT), DAG.getConstant(0, VT),
5169                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
5170    if (SCC.getNode())
5171      return SCC;
5172  }
5173
5174  return SDValue();
5175}
5176
5177/// GetDemandedBits - See if the specified operand can be simplified with the
5178/// knowledge that only the bits specified by Mask are used.  If so, return the
5179/// simpler operand, otherwise return a null SDValue.
5180SDValue DAGCombiner::GetDemandedBits(SDValue V, const APInt &Mask) {
5181  switch (V.getOpcode()) {
5182  default: break;
5183  case ISD::Constant: {
5184    const ConstantSDNode *CV = cast<ConstantSDNode>(V.getNode());
5185    assert(CV != 0 && "Const value should be ConstSDNode.");
5186    const APInt &CVal = CV->getAPIntValue();
5187    APInt NewVal = CVal & Mask;
5188    if (NewVal != CVal)
5189      return DAG.getConstant(NewVal, V.getValueType());
5190    break;
5191  }
5192  case ISD::OR:
5193  case ISD::XOR:
5194    // If the LHS or RHS don't contribute bits to the or, drop them.
5195    if (DAG.MaskedValueIsZero(V.getOperand(0), Mask))
5196      return V.getOperand(1);
5197    if (DAG.MaskedValueIsZero(V.getOperand(1), Mask))
5198      return V.getOperand(0);
5199    break;
5200  case ISD::SRL:
5201    // Only look at single-use SRLs.
5202    if (!V.getNode()->hasOneUse())
5203      break;
5204    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
5205      // See if we can recursively simplify the LHS.
5206      unsigned Amt = RHSC->getZExtValue();
5207
5208      // Watch out for shift count overflow though.
5209      if (Amt >= Mask.getBitWidth()) break;
5210      APInt NewMask = Mask << Amt;
5211      SDValue SimplifyLHS = GetDemandedBits(V.getOperand(0), NewMask);
5212      if (SimplifyLHS.getNode())
5213        return DAG.getNode(ISD::SRL, SDLoc(V), V.getValueType(),
5214                           SimplifyLHS, V.getOperand(1));
5215    }
5216  }
5217  return SDValue();
5218}
5219
5220/// ReduceLoadWidth - If the result of a wider load is shifted to right of N
5221/// bits and then truncated to a narrower type and where N is a multiple
5222/// of number of bits of the narrower type, transform it to a narrower load
5223/// from address + N / num of bits of new type. If the result is to be
5224/// extended, also fold the extension to form a extending load.
5225SDValue DAGCombiner::ReduceLoadWidth(SDNode *N) {
5226  unsigned Opc = N->getOpcode();
5227
5228  ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
5229  SDValue N0 = N->getOperand(0);
5230  EVT VT = N->getValueType(0);
5231  EVT ExtVT = VT;
5232
5233  // This transformation isn't valid for vector loads.
5234  if (VT.isVector())
5235    return SDValue();
5236
5237  // Special case: SIGN_EXTEND_INREG is basically truncating to ExtVT then
5238  // extended to VT.
5239  if (Opc == ISD::SIGN_EXTEND_INREG) {
5240    ExtType = ISD::SEXTLOAD;
5241    ExtVT = cast<VTSDNode>(N->getOperand(1))->getVT();
5242  } else if (Opc == ISD::SRL) {
5243    // Another special-case: SRL is basically zero-extending a narrower value.
5244    ExtType = ISD::ZEXTLOAD;
5245    N0 = SDValue(N, 0);
5246    ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5247    if (!N01) return SDValue();
5248    ExtVT = EVT::getIntegerVT(*DAG.getContext(),
5249                              VT.getSizeInBits() - N01->getZExtValue());
5250  }
5251  if (LegalOperations && !TLI.isLoadExtLegal(ExtType, ExtVT))
5252    return SDValue();
5253
5254  unsigned EVTBits = ExtVT.getSizeInBits();
5255
5256  // Do not generate loads of non-round integer types since these can
5257  // be expensive (and would be wrong if the type is not byte sized).
5258  if (!ExtVT.isRound())
5259    return SDValue();
5260
5261  unsigned ShAmt = 0;
5262  if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) {
5263    if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
5264      ShAmt = N01->getZExtValue();
5265      // Is the shift amount a multiple of size of VT?
5266      if ((ShAmt & (EVTBits-1)) == 0) {
5267        N0 = N0.getOperand(0);
5268        // Is the load width a multiple of size of VT?
5269        if ((N0.getValueType().getSizeInBits() & (EVTBits-1)) != 0)
5270          return SDValue();
5271      }
5272
5273      // At this point, we must have a load or else we can't do the transform.
5274      if (!isa<LoadSDNode>(N0)) return SDValue();
5275
5276      // Because a SRL must be assumed to *need* to zero-extend the high bits
5277      // (as opposed to anyext the high bits), we can't combine the zextload
5278      // lowering of SRL and an sextload.
5279      if (cast<LoadSDNode>(N0)->getExtensionType() == ISD::SEXTLOAD)
5280        return SDValue();
5281
5282      // If the shift amount is larger than the input type then we're not
5283      // accessing any of the loaded bytes.  If the load was a zextload/extload
5284      // then the result of the shift+trunc is zero/undef (handled elsewhere).
5285      if (ShAmt >= cast<LoadSDNode>(N0)->getMemoryVT().getSizeInBits())
5286        return SDValue();
5287    }
5288  }
5289
5290  // If the load is shifted left (and the result isn't shifted back right),
5291  // we can fold the truncate through the shift.
5292  unsigned ShLeftAmt = 0;
5293  if (ShAmt == 0 && N0.getOpcode() == ISD::SHL && N0.hasOneUse() &&
5294      ExtVT == VT && TLI.isNarrowingProfitable(N0.getValueType(), VT)) {
5295    if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
5296      ShLeftAmt = N01->getZExtValue();
5297      N0 = N0.getOperand(0);
5298    }
5299  }
5300
5301  // If we haven't found a load, we can't narrow it.  Don't transform one with
5302  // multiple uses, this would require adding a new load.
5303  if (!isa<LoadSDNode>(N0) || !N0.hasOneUse())
5304    return SDValue();
5305
5306  // Don't change the width of a volatile load.
5307  LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5308  if (LN0->isVolatile())
5309    return SDValue();
5310
5311  // Verify that we are actually reducing a load width here.
5312  if (LN0->getMemoryVT().getSizeInBits() < EVTBits)
5313    return SDValue();
5314
5315  // For the transform to be legal, the load must produce only two values
5316  // (the value loaded and the chain).  Don't transform a pre-increment
5317  // load, for example, which produces an extra value.  Otherwise the
5318  // transformation is not equivalent, and the downstream logic to replace
5319  // uses gets things wrong.
5320  if (LN0->getNumValues() > 2)
5321    return SDValue();
5322
5323  // If the load that we're shrinking is an extload and we're not just
5324  // discarding the extension we can't simply shrink the load. Bail.
5325  // TODO: It would be possible to merge the extensions in some cases.
5326  if (LN0->getExtensionType() != ISD::NON_EXTLOAD &&
5327      LN0->getMemoryVT().getSizeInBits() < ExtVT.getSizeInBits() + ShAmt)
5328    return SDValue();
5329
5330  EVT PtrType = N0.getOperand(1).getValueType();
5331
5332  if (PtrType == MVT::Untyped || PtrType.isExtended())
5333    // It's not possible to generate a constant of extended or untyped type.
5334    return SDValue();
5335
5336  // For big endian targets, we need to adjust the offset to the pointer to
5337  // load the correct bytes.
5338  if (TLI.isBigEndian()) {
5339    unsigned LVTStoreBits = LN0->getMemoryVT().getStoreSizeInBits();
5340    unsigned EVTStoreBits = ExtVT.getStoreSizeInBits();
5341    ShAmt = LVTStoreBits - EVTStoreBits - ShAmt;
5342  }
5343
5344  uint64_t PtrOff = ShAmt / 8;
5345  unsigned NewAlign = MinAlign(LN0->getAlignment(), PtrOff);
5346  SDValue NewPtr = DAG.getNode(ISD::ADD, SDLoc(LN0),
5347                               PtrType, LN0->getBasePtr(),
5348                               DAG.getConstant(PtrOff, PtrType));
5349  AddToWorkList(NewPtr.getNode());
5350
5351  SDValue Load;
5352  if (ExtType == ISD::NON_EXTLOAD)
5353    Load =  DAG.getLoad(VT, SDLoc(N0), LN0->getChain(), NewPtr,
5354                        LN0->getPointerInfo().getWithOffset(PtrOff),
5355                        LN0->isVolatile(), LN0->isNonTemporal(),
5356                        LN0->isInvariant(), NewAlign);
5357  else
5358    Load = DAG.getExtLoad(ExtType, SDLoc(N0), VT, LN0->getChain(),NewPtr,
5359                          LN0->getPointerInfo().getWithOffset(PtrOff),
5360                          ExtVT, LN0->isVolatile(), LN0->isNonTemporal(),
5361                          NewAlign);
5362
5363  // Replace the old load's chain with the new load's chain.
5364  WorkListRemover DeadNodes(*this);
5365  DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1));
5366
5367  // Shift the result left, if we've swallowed a left shift.
5368  SDValue Result = Load;
5369  if (ShLeftAmt != 0) {
5370    EVT ShImmTy = getShiftAmountTy(Result.getValueType());
5371    if (!isUIntN(ShImmTy.getSizeInBits(), ShLeftAmt))
5372      ShImmTy = VT;
5373    // If the shift amount is as large as the result size (but, presumably,
5374    // no larger than the source) then the useful bits of the result are
5375    // zero; we can't simply return the shortened shift, because the result
5376    // of that operation is undefined.
5377    if (ShLeftAmt >= VT.getSizeInBits())
5378      Result = DAG.getConstant(0, VT);
5379    else
5380      Result = DAG.getNode(ISD::SHL, SDLoc(N0), VT,
5381                          Result, DAG.getConstant(ShLeftAmt, ShImmTy));
5382  }
5383
5384  // Return the new loaded value.
5385  return Result;
5386}
5387
5388SDValue DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) {
5389  SDValue N0 = N->getOperand(0);
5390  SDValue N1 = N->getOperand(1);
5391  EVT VT = N->getValueType(0);
5392  EVT EVT = cast<VTSDNode>(N1)->getVT();
5393  unsigned VTBits = VT.getScalarType().getSizeInBits();
5394  unsigned EVTBits = EVT.getScalarType().getSizeInBits();
5395
5396  // fold (sext_in_reg c1) -> c1
5397  if (isa<ConstantSDNode>(N0) || N0.getOpcode() == ISD::UNDEF)
5398    return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, N0, N1);
5399
5400  // If the input is already sign extended, just drop the extension.
5401  if (DAG.ComputeNumSignBits(N0) >= VTBits-EVTBits+1)
5402    return N0;
5403
5404  // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2
5405  if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
5406      EVT.bitsLT(cast<VTSDNode>(N0.getOperand(1))->getVT()))
5407    return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT,
5408                       N0.getOperand(0), N1);
5409
5410  // fold (sext_in_reg (sext x)) -> (sext x)
5411  // fold (sext_in_reg (aext x)) -> (sext x)
5412  // if x is small enough.
5413  if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) {
5414    SDValue N00 = N0.getOperand(0);
5415    if (N00.getValueType().getScalarType().getSizeInBits() <= EVTBits &&
5416        (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT)))
5417      return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N00, N1);
5418  }
5419
5420  // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero.
5421  if (DAG.MaskedValueIsZero(N0, APInt::getBitsSet(VTBits, EVTBits-1, EVTBits)))
5422    return DAG.getZeroExtendInReg(N0, SDLoc(N), EVT);
5423
5424  // fold operands of sext_in_reg based on knowledge that the top bits are not
5425  // demanded.
5426  if (SimplifyDemandedBits(SDValue(N, 0)))
5427    return SDValue(N, 0);
5428
5429  // fold (sext_in_reg (load x)) -> (smaller sextload x)
5430  // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits))
5431  SDValue NarrowLoad = ReduceLoadWidth(N);
5432  if (NarrowLoad.getNode())
5433    return NarrowLoad;
5434
5435  // fold (sext_in_reg (srl X, 24), i8) -> (sra X, 24)
5436  // fold (sext_in_reg (srl X, 23), i8) -> (sra X, 23) iff possible.
5437  // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above.
5438  if (N0.getOpcode() == ISD::SRL) {
5439    if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
5440      if (ShAmt->getZExtValue()+EVTBits <= VTBits) {
5441        // We can turn this into an SRA iff the input to the SRL is already sign
5442        // extended enough.
5443        unsigned InSignBits = DAG.ComputeNumSignBits(N0.getOperand(0));
5444        if (VTBits-(ShAmt->getZExtValue()+EVTBits) < InSignBits)
5445          return DAG.getNode(ISD::SRA, SDLoc(N), VT,
5446                             N0.getOperand(0), N0.getOperand(1));
5447      }
5448  }
5449
5450  // fold (sext_inreg (extload x)) -> (sextload x)
5451  if (ISD::isEXTLoad(N0.getNode()) &&
5452      ISD::isUNINDEXEDLoad(N0.getNode()) &&
5453      EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
5454      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
5455       TLI.isLoadExtLegal(ISD::SEXTLOAD, EVT))) {
5456    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5457    SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
5458                                     LN0->getChain(),
5459                                     LN0->getBasePtr(), LN0->getPointerInfo(),
5460                                     EVT,
5461                                     LN0->isVolatile(), LN0->isNonTemporal(),
5462                                     LN0->getAlignment());
5463    CombineTo(N, ExtLoad);
5464    CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
5465    AddToWorkList(ExtLoad.getNode());
5466    return SDValue(N, 0);   // Return N so it doesn't get rechecked!
5467  }
5468  // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use
5469  if (ISD::isZEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
5470      N0.hasOneUse() &&
5471      EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
5472      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
5473       TLI.isLoadExtLegal(ISD::SEXTLOAD, EVT))) {
5474    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5475    SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
5476                                     LN0->getChain(),
5477                                     LN0->getBasePtr(), LN0->getPointerInfo(),
5478                                     EVT,
5479                                     LN0->isVolatile(), LN0->isNonTemporal(),
5480                                     LN0->getAlignment());
5481    CombineTo(N, ExtLoad);
5482    CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
5483    return SDValue(N, 0);   // Return N so it doesn't get rechecked!
5484  }
5485
5486  // Form (sext_inreg (bswap >> 16)) or (sext_inreg (rotl (bswap) 16))
5487  if (EVTBits <= 16 && N0.getOpcode() == ISD::OR) {
5488    SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0),
5489                                       N0.getOperand(1), false);
5490    if (BSwap.getNode() != 0)
5491      return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT,
5492                         BSwap, N1);
5493  }
5494
5495  return SDValue();
5496}
5497
5498SDValue DAGCombiner::visitTRUNCATE(SDNode *N) {
5499  SDValue N0 = N->getOperand(0);
5500  EVT VT = N->getValueType(0);
5501  bool isLE = TLI.isLittleEndian();
5502
5503  // noop truncate
5504  if (N0.getValueType() == N->getValueType(0))
5505    return N0;
5506  // fold (truncate c1) -> c1
5507  if (isa<ConstantSDNode>(N0))
5508    return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0);
5509  // fold (truncate (truncate x)) -> (truncate x)
5510  if (N0.getOpcode() == ISD::TRUNCATE)
5511    return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0));
5512  // fold (truncate (ext x)) -> (ext x) or (truncate x) or x
5513  if (N0.getOpcode() == ISD::ZERO_EXTEND ||
5514      N0.getOpcode() == ISD::SIGN_EXTEND ||
5515      N0.getOpcode() == ISD::ANY_EXTEND) {
5516    if (N0.getOperand(0).getValueType().bitsLT(VT))
5517      // if the source is smaller than the dest, we still need an extend
5518      return DAG.getNode(N0.getOpcode(), SDLoc(N), VT,
5519                         N0.getOperand(0));
5520    if (N0.getOperand(0).getValueType().bitsGT(VT))
5521      // if the source is larger than the dest, than we just need the truncate
5522      return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0));
5523    // if the source and dest are the same type, we can drop both the extend
5524    // and the truncate.
5525    return N0.getOperand(0);
5526  }
5527
5528  // Fold extract-and-trunc into a narrow extract. For example:
5529  //   i64 x = EXTRACT_VECTOR_ELT(v2i64 val, i32 1)
5530  //   i32 y = TRUNCATE(i64 x)
5531  //        -- becomes --
5532  //   v16i8 b = BITCAST (v2i64 val)
5533  //   i8 x = EXTRACT_VECTOR_ELT(v16i8 b, i32 8)
5534  //
5535  // Note: We only run this optimization after type legalization (which often
5536  // creates this pattern) and before operation legalization after which
5537  // we need to be more careful about the vector instructions that we generate.
5538  if (N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5539      LegalTypes && !LegalOperations && N0->hasOneUse()) {
5540
5541    EVT VecTy = N0.getOperand(0).getValueType();
5542    EVT ExTy = N0.getValueType();
5543    EVT TrTy = N->getValueType(0);
5544
5545    unsigned NumElem = VecTy.getVectorNumElements();
5546    unsigned SizeRatio = ExTy.getSizeInBits()/TrTy.getSizeInBits();
5547
5548    EVT NVT = EVT::getVectorVT(*DAG.getContext(), TrTy, SizeRatio * NumElem);
5549    assert(NVT.getSizeInBits() == VecTy.getSizeInBits() && "Invalid Size");
5550
5551    SDValue EltNo = N0->getOperand(1);
5552    if (isa<ConstantSDNode>(EltNo) && isTypeLegal(NVT)) {
5553      int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
5554      EVT IndexTy = TLI.getVectorIdxTy();
5555      int Index = isLE ? (Elt*SizeRatio) : (Elt*SizeRatio + (SizeRatio-1));
5556
5557      SDValue V = DAG.getNode(ISD::BITCAST, SDLoc(N),
5558                              NVT, N0.getOperand(0));
5559
5560      return DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
5561                         SDLoc(N), TrTy, V,
5562                         DAG.getConstant(Index, IndexTy));
5563    }
5564  }
5565
5566  // Fold a series of buildvector, bitcast, and truncate if possible.
5567  // For example fold
5568  //   (2xi32 trunc (bitcast ((4xi32)buildvector x, x, y, y) 2xi64)) to
5569  //   (2xi32 (buildvector x, y)).
5570  if (Level == AfterLegalizeVectorOps && VT.isVector() &&
5571      N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() &&
5572      N0.getOperand(0).getOpcode() == ISD::BUILD_VECTOR &&
5573      N0.getOperand(0).hasOneUse()) {
5574
5575    SDValue BuildVect = N0.getOperand(0);
5576    EVT BuildVectEltTy = BuildVect.getValueType().getVectorElementType();
5577    EVT TruncVecEltTy = VT.getVectorElementType();
5578
5579    // Check that the element types match.
5580    if (BuildVectEltTy == TruncVecEltTy) {
5581      // Now we only need to compute the offset of the truncated elements.
5582      unsigned BuildVecNumElts =  BuildVect.getNumOperands();
5583      unsigned TruncVecNumElts = VT.getVectorNumElements();
5584      unsigned TruncEltOffset = BuildVecNumElts / TruncVecNumElts;
5585
5586      assert((BuildVecNumElts % TruncVecNumElts) == 0 &&
5587             "Invalid number of elements");
5588
5589      SmallVector<SDValue, 8> Opnds;
5590      for (unsigned i = 0, e = BuildVecNumElts; i != e; i += TruncEltOffset)
5591        Opnds.push_back(BuildVect.getOperand(i));
5592
5593      return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), VT, &Opnds[0],
5594                         Opnds.size());
5595    }
5596  }
5597
5598  // See if we can simplify the input to this truncate through knowledge that
5599  // only the low bits are being used.
5600  // For example "trunc (or (shl x, 8), y)" // -> trunc y
5601  // Currently we only perform this optimization on scalars because vectors
5602  // may have different active low bits.
5603  if (!VT.isVector()) {
5604    SDValue Shorter =
5605      GetDemandedBits(N0, APInt::getLowBitsSet(N0.getValueSizeInBits(),
5606                                               VT.getSizeInBits()));
5607    if (Shorter.getNode())
5608      return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Shorter);
5609  }
5610  // fold (truncate (load x)) -> (smaller load x)
5611  // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits))
5612  if (!LegalTypes || TLI.isTypeDesirableForOp(N0.getOpcode(), VT)) {
5613    SDValue Reduced = ReduceLoadWidth(N);
5614    if (Reduced.getNode())
5615      return Reduced;
5616  }
5617  // fold (trunc (concat ... x ...)) -> (concat ..., (trunc x), ...)),
5618  // where ... are all 'undef'.
5619  if (N0.getOpcode() == ISD::CONCAT_VECTORS && !LegalTypes) {
5620    SmallVector<EVT, 8> VTs;
5621    SDValue V;
5622    unsigned Idx = 0;
5623    unsigned NumDefs = 0;
5624
5625    for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i) {
5626      SDValue X = N0.getOperand(i);
5627      if (X.getOpcode() != ISD::UNDEF) {
5628        V = X;
5629        Idx = i;
5630        NumDefs++;
5631      }
5632      // Stop if more than one members are non-undef.
5633      if (NumDefs > 1)
5634        break;
5635      VTs.push_back(EVT::getVectorVT(*DAG.getContext(),
5636                                     VT.getVectorElementType(),
5637                                     X.getValueType().getVectorNumElements()));
5638    }
5639
5640    if (NumDefs == 0)
5641      return DAG.getUNDEF(VT);
5642
5643    if (NumDefs == 1) {
5644      assert(V.getNode() && "The single defined operand is empty!");
5645      SmallVector<SDValue, 8> Opnds;
5646      for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
5647        if (i != Idx) {
5648          Opnds.push_back(DAG.getUNDEF(VTs[i]));
5649          continue;
5650        }
5651        SDValue NV = DAG.getNode(ISD::TRUNCATE, SDLoc(V), VTs[i], V);
5652        AddToWorkList(NV.getNode());
5653        Opnds.push_back(NV);
5654      }
5655      return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT,
5656                         &Opnds[0], Opnds.size());
5657    }
5658  }
5659
5660  // Simplify the operands using demanded-bits information.
5661  if (!VT.isVector() &&
5662      SimplifyDemandedBits(SDValue(N, 0)))
5663    return SDValue(N, 0);
5664
5665  return SDValue();
5666}
5667
5668static SDNode *getBuildPairElt(SDNode *N, unsigned i) {
5669  SDValue Elt = N->getOperand(i);
5670  if (Elt.getOpcode() != ISD::MERGE_VALUES)
5671    return Elt.getNode();
5672  return Elt.getOperand(Elt.getResNo()).getNode();
5673}
5674
5675/// CombineConsecutiveLoads - build_pair (load, load) -> load
5676/// if load locations are consecutive.
5677SDValue DAGCombiner::CombineConsecutiveLoads(SDNode *N, EVT VT) {
5678  assert(N->getOpcode() == ISD::BUILD_PAIR);
5679
5680  LoadSDNode *LD1 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 0));
5681  LoadSDNode *LD2 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 1));
5682  if (!LD1 || !LD2 || !ISD::isNON_EXTLoad(LD1) || !LD1->hasOneUse() ||
5683      LD1->getPointerInfo().getAddrSpace() !=
5684         LD2->getPointerInfo().getAddrSpace())
5685    return SDValue();
5686  EVT LD1VT = LD1->getValueType(0);
5687
5688  if (ISD::isNON_EXTLoad(LD2) &&
5689      LD2->hasOneUse() &&
5690      // If both are volatile this would reduce the number of volatile loads.
5691      // If one is volatile it might be ok, but play conservative and bail out.
5692      !LD1->isVolatile() &&
5693      !LD2->isVolatile() &&
5694      DAG.isConsecutiveLoad(LD2, LD1, LD1VT.getSizeInBits()/8, 1)) {
5695    unsigned Align = LD1->getAlignment();
5696    unsigned NewAlign = TLI.getDataLayout()->
5697      getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
5698
5699    if (NewAlign <= Align &&
5700        (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT)))
5701      return DAG.getLoad(VT, SDLoc(N), LD1->getChain(),
5702                         LD1->getBasePtr(), LD1->getPointerInfo(),
5703                         false, false, false, Align);
5704  }
5705
5706  return SDValue();
5707}
5708
5709SDValue DAGCombiner::visitBITCAST(SDNode *N) {
5710  SDValue N0 = N->getOperand(0);
5711  EVT VT = N->getValueType(0);
5712
5713  // If the input is a BUILD_VECTOR with all constant elements, fold this now.
5714  // Only do this before legalize, since afterward the target may be depending
5715  // on the bitconvert.
5716  // First check to see if this is all constant.
5717  if (!LegalTypes &&
5718      N0.getOpcode() == ISD::BUILD_VECTOR && N0.getNode()->hasOneUse() &&
5719      VT.isVector()) {
5720    bool isSimple = true;
5721    for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i)
5722      if (N0.getOperand(i).getOpcode() != ISD::UNDEF &&
5723          N0.getOperand(i).getOpcode() != ISD::Constant &&
5724          N0.getOperand(i).getOpcode() != ISD::ConstantFP) {
5725        isSimple = false;
5726        break;
5727      }
5728
5729    EVT DestEltVT = N->getValueType(0).getVectorElementType();
5730    assert(!DestEltVT.isVector() &&
5731           "Element type of vector ValueType must not be vector!");
5732    if (isSimple)
5733      return ConstantFoldBITCASTofBUILD_VECTOR(N0.getNode(), DestEltVT);
5734  }
5735
5736  // If the input is a constant, let getNode fold it.
5737  if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0)) {
5738    SDValue Res = DAG.getNode(ISD::BITCAST, SDLoc(N), VT, N0);
5739    if (Res.getNode() != N) {
5740      if (!LegalOperations ||
5741          TLI.isOperationLegal(Res.getNode()->getOpcode(), VT))
5742        return Res;
5743
5744      // Folding it resulted in an illegal node, and it's too late to
5745      // do that. Clean up the old node and forego the transformation.
5746      // Ideally this won't happen very often, because instcombine
5747      // and the earlier dagcombine runs (where illegal nodes are
5748      // permitted) should have folded most of them already.
5749      DAG.DeleteNode(Res.getNode());
5750    }
5751  }
5752
5753  // (conv (conv x, t1), t2) -> (conv x, t2)
5754  if (N0.getOpcode() == ISD::BITCAST)
5755    return DAG.getNode(ISD::BITCAST, SDLoc(N), VT,
5756                       N0.getOperand(0));
5757
5758  // fold (conv (load x)) -> (load (conv*)x)
5759  // If the resultant load doesn't need a higher alignment than the original!
5760  if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
5761      // Do not change the width of a volatile load.
5762      !cast<LoadSDNode>(N0)->isVolatile() &&
5763      (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT))) {
5764    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5765    unsigned Align = TLI.getDataLayout()->
5766      getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
5767    unsigned OrigAlign = LN0->getAlignment();
5768
5769    if (Align <= OrigAlign) {
5770      SDValue Load = DAG.getLoad(VT, SDLoc(N), LN0->getChain(),
5771                                 LN0->getBasePtr(), LN0->getPointerInfo(),
5772                                 LN0->isVolatile(), LN0->isNonTemporal(),
5773                                 LN0->isInvariant(), OrigAlign);
5774      AddToWorkList(N);
5775      CombineTo(N0.getNode(),
5776                DAG.getNode(ISD::BITCAST, SDLoc(N0),
5777                            N0.getValueType(), Load),
5778                Load.getValue(1));
5779      return Load;
5780    }
5781  }
5782
5783  // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
5784  // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
5785  // This often reduces constant pool loads.
5786  if (((N0.getOpcode() == ISD::FNEG && !TLI.isFNegFree(N0.getValueType())) ||
5787       (N0.getOpcode() == ISD::FABS && !TLI.isFAbsFree(N0.getValueType()))) &&
5788      N0.getNode()->hasOneUse() && VT.isInteger() &&
5789      !VT.isVector() && !N0.getValueType().isVector()) {
5790    SDValue NewConv = DAG.getNode(ISD::BITCAST, SDLoc(N0), VT,
5791                                  N0.getOperand(0));
5792    AddToWorkList(NewConv.getNode());
5793
5794    APInt SignBit = APInt::getSignBit(VT.getSizeInBits());
5795    if (N0.getOpcode() == ISD::FNEG)
5796      return DAG.getNode(ISD::XOR, SDLoc(N), VT,
5797                         NewConv, DAG.getConstant(SignBit, VT));
5798    assert(N0.getOpcode() == ISD::FABS);
5799    return DAG.getNode(ISD::AND, SDLoc(N), VT,
5800                       NewConv, DAG.getConstant(~SignBit, VT));
5801  }
5802
5803  // fold (bitconvert (fcopysign cst, x)) ->
5804  //         (or (and (bitconvert x), sign), (and cst, (not sign)))
5805  // Note that we don't handle (copysign x, cst) because this can always be
5806  // folded to an fneg or fabs.
5807  if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse() &&
5808      isa<ConstantFPSDNode>(N0.getOperand(0)) &&
5809      VT.isInteger() && !VT.isVector()) {
5810    unsigned OrigXWidth = N0.getOperand(1).getValueType().getSizeInBits();
5811    EVT IntXVT = EVT::getIntegerVT(*DAG.getContext(), OrigXWidth);
5812    if (isTypeLegal(IntXVT)) {
5813      SDValue X = DAG.getNode(ISD::BITCAST, SDLoc(N0),
5814                              IntXVT, N0.getOperand(1));
5815      AddToWorkList(X.getNode());
5816
5817      // If X has a different width than the result/lhs, sext it or truncate it.
5818      unsigned VTWidth = VT.getSizeInBits();
5819      if (OrigXWidth < VTWidth) {
5820        X = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, X);
5821        AddToWorkList(X.getNode());
5822      } else if (OrigXWidth > VTWidth) {
5823        // To get the sign bit in the right place, we have to shift it right
5824        // before truncating.
5825        X = DAG.getNode(ISD::SRL, SDLoc(X),
5826                        X.getValueType(), X,
5827                        DAG.getConstant(OrigXWidth-VTWidth, X.getValueType()));
5828        AddToWorkList(X.getNode());
5829        X = DAG.getNode(ISD::TRUNCATE, SDLoc(X), VT, X);
5830        AddToWorkList(X.getNode());
5831      }
5832
5833      APInt SignBit = APInt::getSignBit(VT.getSizeInBits());
5834      X = DAG.getNode(ISD::AND, SDLoc(X), VT,
5835                      X, DAG.getConstant(SignBit, VT));
5836      AddToWorkList(X.getNode());
5837
5838      SDValue Cst = DAG.getNode(ISD::BITCAST, SDLoc(N0),
5839                                VT, N0.getOperand(0));
5840      Cst = DAG.getNode(ISD::AND, SDLoc(Cst), VT,
5841                        Cst, DAG.getConstant(~SignBit, VT));
5842      AddToWorkList(Cst.getNode());
5843
5844      return DAG.getNode(ISD::OR, SDLoc(N), VT, X, Cst);
5845    }
5846  }
5847
5848  // bitconvert(build_pair(ld, ld)) -> ld iff load locations are consecutive.
5849  if (N0.getOpcode() == ISD::BUILD_PAIR) {
5850    SDValue CombineLD = CombineConsecutiveLoads(N0.getNode(), VT);
5851    if (CombineLD.getNode())
5852      return CombineLD;
5853  }
5854
5855  return SDValue();
5856}
5857
5858SDValue DAGCombiner::visitBUILD_PAIR(SDNode *N) {
5859  EVT VT = N->getValueType(0);
5860  return CombineConsecutiveLoads(N, VT);
5861}
5862
5863/// ConstantFoldBITCASTofBUILD_VECTOR - We know that BV is a build_vector
5864/// node with Constant, ConstantFP or Undef operands.  DstEltVT indicates the
5865/// destination element value type.
5866SDValue DAGCombiner::
5867ConstantFoldBITCASTofBUILD_VECTOR(SDNode *BV, EVT DstEltVT) {
5868  EVT SrcEltVT = BV->getValueType(0).getVectorElementType();
5869
5870  // If this is already the right type, we're done.
5871  if (SrcEltVT == DstEltVT) return SDValue(BV, 0);
5872
5873  unsigned SrcBitSize = SrcEltVT.getSizeInBits();
5874  unsigned DstBitSize = DstEltVT.getSizeInBits();
5875
5876  // If this is a conversion of N elements of one type to N elements of another
5877  // type, convert each element.  This handles FP<->INT cases.
5878  if (SrcBitSize == DstBitSize) {
5879    EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT,
5880                              BV->getValueType(0).getVectorNumElements());
5881
5882    // Due to the FP element handling below calling this routine recursively,
5883    // we can end up with a scalar-to-vector node here.
5884    if (BV->getOpcode() == ISD::SCALAR_TO_VECTOR)
5885      return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(BV), VT,
5886                         DAG.getNode(ISD::BITCAST, SDLoc(BV),
5887                                     DstEltVT, BV->getOperand(0)));
5888
5889    SmallVector<SDValue, 8> Ops;
5890    for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
5891      SDValue Op = BV->getOperand(i);
5892      // If the vector element type is not legal, the BUILD_VECTOR operands
5893      // are promoted and implicitly truncated.  Make that explicit here.
5894      if (Op.getValueType() != SrcEltVT)
5895        Op = DAG.getNode(ISD::TRUNCATE, SDLoc(BV), SrcEltVT, Op);
5896      Ops.push_back(DAG.getNode(ISD::BITCAST, SDLoc(BV),
5897                                DstEltVT, Op));
5898      AddToWorkList(Ops.back().getNode());
5899    }
5900    return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(BV), VT,
5901                       &Ops[0], Ops.size());
5902  }
5903
5904  // Otherwise, we're growing or shrinking the elements.  To avoid having to
5905  // handle annoying details of growing/shrinking FP values, we convert them to
5906  // int first.
5907  if (SrcEltVT.isFloatingPoint()) {
5908    // Convert the input float vector to a int vector where the elements are the
5909    // same sizes.
5910    assert((SrcEltVT == MVT::f32 || SrcEltVT == MVT::f64) && "Unknown FP VT!");
5911    EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), SrcEltVT.getSizeInBits());
5912    BV = ConstantFoldBITCASTofBUILD_VECTOR(BV, IntVT).getNode();
5913    SrcEltVT = IntVT;
5914  }
5915
5916  // Now we know the input is an integer vector.  If the output is a FP type,
5917  // convert to integer first, then to FP of the right size.
5918  if (DstEltVT.isFloatingPoint()) {
5919    assert((DstEltVT == MVT::f32 || DstEltVT == MVT::f64) && "Unknown FP VT!");
5920    EVT TmpVT = EVT::getIntegerVT(*DAG.getContext(), DstEltVT.getSizeInBits());
5921    SDNode *Tmp = ConstantFoldBITCASTofBUILD_VECTOR(BV, TmpVT).getNode();
5922
5923    // Next, convert to FP elements of the same size.
5924    return ConstantFoldBITCASTofBUILD_VECTOR(Tmp, DstEltVT);
5925  }
5926
5927  // Okay, we know the src/dst types are both integers of differing types.
5928  // Handling growing first.
5929  assert(SrcEltVT.isInteger() && DstEltVT.isInteger());
5930  if (SrcBitSize < DstBitSize) {
5931    unsigned NumInputsPerOutput = DstBitSize/SrcBitSize;
5932
5933    SmallVector<SDValue, 8> Ops;
5934    for (unsigned i = 0, e = BV->getNumOperands(); i != e;
5935         i += NumInputsPerOutput) {
5936      bool isLE = TLI.isLittleEndian();
5937      APInt NewBits = APInt(DstBitSize, 0);
5938      bool EltIsUndef = true;
5939      for (unsigned j = 0; j != NumInputsPerOutput; ++j) {
5940        // Shift the previously computed bits over.
5941        NewBits <<= SrcBitSize;
5942        SDValue Op = BV->getOperand(i+ (isLE ? (NumInputsPerOutput-j-1) : j));
5943        if (Op.getOpcode() == ISD::UNDEF) continue;
5944        EltIsUndef = false;
5945
5946        NewBits |= cast<ConstantSDNode>(Op)->getAPIntValue().
5947                   zextOrTrunc(SrcBitSize).zext(DstBitSize);
5948      }
5949
5950      if (EltIsUndef)
5951        Ops.push_back(DAG.getUNDEF(DstEltVT));
5952      else
5953        Ops.push_back(DAG.getConstant(NewBits, DstEltVT));
5954    }
5955
5956    EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, Ops.size());
5957    return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(BV), VT,
5958                       &Ops[0], Ops.size());
5959  }
5960
5961  // Finally, this must be the case where we are shrinking elements: each input
5962  // turns into multiple outputs.
5963  bool isS2V = ISD::isScalarToVector(BV);
5964  unsigned NumOutputsPerInput = SrcBitSize/DstBitSize;
5965  EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT,
5966                            NumOutputsPerInput*BV->getNumOperands());
5967  SmallVector<SDValue, 8> Ops;
5968
5969  for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
5970    if (BV->getOperand(i).getOpcode() == ISD::UNDEF) {
5971      for (unsigned j = 0; j != NumOutputsPerInput; ++j)
5972        Ops.push_back(DAG.getUNDEF(DstEltVT));
5973      continue;
5974    }
5975
5976    APInt OpVal = cast<ConstantSDNode>(BV->getOperand(i))->
5977                  getAPIntValue().zextOrTrunc(SrcBitSize);
5978
5979    for (unsigned j = 0; j != NumOutputsPerInput; ++j) {
5980      APInt ThisVal = OpVal.trunc(DstBitSize);
5981      Ops.push_back(DAG.getConstant(ThisVal, DstEltVT));
5982      if (isS2V && i == 0 && j == 0 && ThisVal.zext(SrcBitSize) == OpVal)
5983        // Simply turn this into a SCALAR_TO_VECTOR of the new type.
5984        return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(BV), VT,
5985                           Ops[0]);
5986      OpVal = OpVal.lshr(DstBitSize);
5987    }
5988
5989    // For big endian targets, swap the order of the pieces of each element.
5990    if (TLI.isBigEndian())
5991      std::reverse(Ops.end()-NumOutputsPerInput, Ops.end());
5992  }
5993
5994  return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(BV), VT,
5995                     &Ops[0], Ops.size());
5996}
5997
5998SDValue DAGCombiner::visitFADD(SDNode *N) {
5999  SDValue N0 = N->getOperand(0);
6000  SDValue N1 = N->getOperand(1);
6001  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6002  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6003  EVT VT = N->getValueType(0);
6004
6005  // fold vector ops
6006  if (VT.isVector()) {
6007    SDValue FoldedVOp = SimplifyVBinOp(N);
6008    if (FoldedVOp.getNode()) return FoldedVOp;
6009  }
6010
6011  // fold (fadd c1, c2) -> c1 + c2
6012  if (N0CFP && N1CFP)
6013    return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0, N1);
6014  // canonicalize constant to RHS
6015  if (N0CFP && !N1CFP)
6016    return DAG.getNode(ISD::FADD, SDLoc(N), VT, N1, N0);
6017  // fold (fadd A, 0) -> A
6018  if (DAG.getTarget().Options.UnsafeFPMath && N1CFP &&
6019      N1CFP->getValueAPF().isZero())
6020    return N0;
6021  // fold (fadd A, (fneg B)) -> (fsub A, B)
6022  if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) &&
6023    isNegatibleForFree(N1, LegalOperations, TLI, &DAG.getTarget().Options) == 2)
6024    return DAG.getNode(ISD::FSUB, SDLoc(N), VT, N0,
6025                       GetNegatedExpression(N1, DAG, LegalOperations));
6026  // fold (fadd (fneg A), B) -> (fsub B, A)
6027  if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) &&
6028    isNegatibleForFree(N0, LegalOperations, TLI, &DAG.getTarget().Options) == 2)
6029    return DAG.getNode(ISD::FSUB, SDLoc(N), VT, N1,
6030                       GetNegatedExpression(N0, DAG, LegalOperations));
6031
6032  // If allowed, fold (fadd (fadd x, c1), c2) -> (fadd x, (fadd c1, c2))
6033  if (DAG.getTarget().Options.UnsafeFPMath && N1CFP &&
6034      N0.getOpcode() == ISD::FADD && N0.getNode()->hasOneUse() &&
6035      isa<ConstantFPSDNode>(N0.getOperand(1)))
6036    return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0.getOperand(0),
6037                       DAG.getNode(ISD::FADD, SDLoc(N), VT,
6038                                   N0.getOperand(1), N1));
6039
6040  // No FP constant should be created after legalization as Instruction
6041  // Selection pass has hard time in dealing with FP constant.
6042  //
6043  // We don't need test this condition for transformation like following, as
6044  // the DAG being transformed implies it is legal to take FP constant as
6045  // operand.
6046  //
6047  //  (fadd (fmul c, x), x) -> (fmul c+1, x)
6048  //
6049  bool AllowNewFpConst = (Level < AfterLegalizeDAG);
6050
6051  // If allow, fold (fadd (fneg x), x) -> 0.0
6052  if (AllowNewFpConst && DAG.getTarget().Options.UnsafeFPMath &&
6053      N0.getOpcode() == ISD::FNEG && N0.getOperand(0) == N1)
6054    return DAG.getConstantFP(0.0, VT);
6055
6056    // If allow, fold (fadd x, (fneg x)) -> 0.0
6057  if (AllowNewFpConst && DAG.getTarget().Options.UnsafeFPMath &&
6058      N1.getOpcode() == ISD::FNEG && N1.getOperand(0) == N0)
6059    return DAG.getConstantFP(0.0, VT);
6060
6061  // In unsafe math mode, we can fold chains of FADD's of the same value
6062  // into multiplications.  This transform is not safe in general because
6063  // we are reducing the number of rounding steps.
6064  if (DAG.getTarget().Options.UnsafeFPMath &&
6065      TLI.isOperationLegalOrCustom(ISD::FMUL, VT) &&
6066      !N0CFP && !N1CFP) {
6067    if (N0.getOpcode() == ISD::FMUL) {
6068      ConstantFPSDNode *CFP00 = dyn_cast<ConstantFPSDNode>(N0.getOperand(0));
6069      ConstantFPSDNode *CFP01 = dyn_cast<ConstantFPSDNode>(N0.getOperand(1));
6070
6071      // (fadd (fmul c, x), x) -> (fmul x, c+1)
6072      if (CFP00 && !CFP01 && N0.getOperand(1) == N1) {
6073        SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
6074                                     SDValue(CFP00, 0),
6075                                     DAG.getConstantFP(1.0, VT));
6076        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6077                           N1, NewCFP);
6078      }
6079
6080      // (fadd (fmul x, c), x) -> (fmul x, c+1)
6081      if (CFP01 && !CFP00 && N0.getOperand(0) == N1) {
6082        SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
6083                                     SDValue(CFP01, 0),
6084                                     DAG.getConstantFP(1.0, VT));
6085        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6086                           N1, NewCFP);
6087      }
6088
6089      // (fadd (fmul c, x), (fadd x, x)) -> (fmul x, c+2)
6090      if (CFP00 && !CFP01 && N1.getOpcode() == ISD::FADD &&
6091          N1.getOperand(0) == N1.getOperand(1) &&
6092          N0.getOperand(1) == N1.getOperand(0)) {
6093        SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
6094                                     SDValue(CFP00, 0),
6095                                     DAG.getConstantFP(2.0, VT));
6096        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6097                           N0.getOperand(1), NewCFP);
6098      }
6099
6100      // (fadd (fmul x, c), (fadd x, x)) -> (fmul x, c+2)
6101      if (CFP01 && !CFP00 && N1.getOpcode() == ISD::FADD &&
6102          N1.getOperand(0) == N1.getOperand(1) &&
6103          N0.getOperand(0) == N1.getOperand(0)) {
6104        SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
6105                                     SDValue(CFP01, 0),
6106                                     DAG.getConstantFP(2.0, VT));
6107        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6108                           N0.getOperand(0), NewCFP);
6109      }
6110    }
6111
6112    if (N1.getOpcode() == ISD::FMUL) {
6113      ConstantFPSDNode *CFP10 = dyn_cast<ConstantFPSDNode>(N1.getOperand(0));
6114      ConstantFPSDNode *CFP11 = dyn_cast<ConstantFPSDNode>(N1.getOperand(1));
6115
6116      // (fadd x, (fmul c, x)) -> (fmul x, c+1)
6117      if (CFP10 && !CFP11 && N1.getOperand(1) == N0) {
6118        SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
6119                                     SDValue(CFP10, 0),
6120                                     DAG.getConstantFP(1.0, VT));
6121        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6122                           N0, NewCFP);
6123      }
6124
6125      // (fadd x, (fmul x, c)) -> (fmul x, c+1)
6126      if (CFP11 && !CFP10 && N1.getOperand(0) == N0) {
6127        SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
6128                                     SDValue(CFP11, 0),
6129                                     DAG.getConstantFP(1.0, VT));
6130        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6131                           N0, NewCFP);
6132      }
6133
6134
6135      // (fadd (fadd x, x), (fmul c, x)) -> (fmul x, c+2)
6136      if (CFP10 && !CFP11 && N0.getOpcode() == ISD::FADD &&
6137          N0.getOperand(0) == N0.getOperand(1) &&
6138          N1.getOperand(1) == N0.getOperand(0)) {
6139        SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
6140                                     SDValue(CFP10, 0),
6141                                     DAG.getConstantFP(2.0, VT));
6142        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6143                           N1.getOperand(1), NewCFP);
6144      }
6145
6146      // (fadd (fadd x, x), (fmul x, c)) -> (fmul x, c+2)
6147      if (CFP11 && !CFP10 && N0.getOpcode() == ISD::FADD &&
6148          N0.getOperand(0) == N0.getOperand(1) &&
6149          N1.getOperand(0) == N0.getOperand(0)) {
6150        SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
6151                                     SDValue(CFP11, 0),
6152                                     DAG.getConstantFP(2.0, VT));
6153        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6154                           N1.getOperand(0), NewCFP);
6155      }
6156    }
6157
6158    if (N0.getOpcode() == ISD::FADD && AllowNewFpConst) {
6159      ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N0.getOperand(0));
6160      // (fadd (fadd x, x), x) -> (fmul x, 3.0)
6161      if (!CFP && N0.getOperand(0) == N0.getOperand(1) &&
6162          (N0.getOperand(0) == N1))
6163        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6164                           N1, DAG.getConstantFP(3.0, VT));
6165    }
6166
6167    if (N1.getOpcode() == ISD::FADD && AllowNewFpConst) {
6168      ConstantFPSDNode *CFP10 = dyn_cast<ConstantFPSDNode>(N1.getOperand(0));
6169      // (fadd x, (fadd x, x)) -> (fmul x, 3.0)
6170      if (!CFP10 && N1.getOperand(0) == N1.getOperand(1) &&
6171          N1.getOperand(0) == N0)
6172        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6173                           N0, DAG.getConstantFP(3.0, VT));
6174    }
6175
6176    // (fadd (fadd x, x), (fadd x, x)) -> (fmul x, 4.0)
6177    if (AllowNewFpConst &&
6178        N0.getOpcode() == ISD::FADD && N1.getOpcode() == ISD::FADD &&
6179        N0.getOperand(0) == N0.getOperand(1) &&
6180        N1.getOperand(0) == N1.getOperand(1) &&
6181        N0.getOperand(0) == N1.getOperand(0))
6182      return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6183                         N0.getOperand(0),
6184                         DAG.getConstantFP(4.0, VT));
6185  }
6186
6187  // FADD -> FMA combines:
6188  if ((DAG.getTarget().Options.AllowFPOpFusion == FPOpFusion::Fast ||
6189       DAG.getTarget().Options.UnsafeFPMath) &&
6190      DAG.getTarget().getTargetLowering()->isFMAFasterThanFMulAndFAdd(VT) &&
6191      (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT))) {
6192
6193    // fold (fadd (fmul x, y), z) -> (fma x, y, z)
6194    if (N0.getOpcode() == ISD::FMUL && N0->hasOneUse())
6195      return DAG.getNode(ISD::FMA, SDLoc(N), VT,
6196                         N0.getOperand(0), N0.getOperand(1), N1);
6197
6198    // fold (fadd x, (fmul y, z)) -> (fma y, z, x)
6199    // Note: Commutes FADD operands.
6200    if (N1.getOpcode() == ISD::FMUL && N1->hasOneUse())
6201      return DAG.getNode(ISD::FMA, SDLoc(N), VT,
6202                         N1.getOperand(0), N1.getOperand(1), N0);
6203  }
6204
6205  return SDValue();
6206}
6207
6208SDValue DAGCombiner::visitFSUB(SDNode *N) {
6209  SDValue N0 = N->getOperand(0);
6210  SDValue N1 = N->getOperand(1);
6211  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6212  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6213  EVT VT = N->getValueType(0);
6214  SDLoc dl(N);
6215
6216  // fold vector ops
6217  if (VT.isVector()) {
6218    SDValue FoldedVOp = SimplifyVBinOp(N);
6219    if (FoldedVOp.getNode()) return FoldedVOp;
6220  }
6221
6222  // fold (fsub c1, c2) -> c1-c2
6223  if (N0CFP && N1CFP)
6224    return DAG.getNode(ISD::FSUB, SDLoc(N), VT, N0, N1);
6225  // fold (fsub A, 0) -> A
6226  if (DAG.getTarget().Options.UnsafeFPMath &&
6227      N1CFP && N1CFP->getValueAPF().isZero())
6228    return N0;
6229  // fold (fsub 0, B) -> -B
6230  if (DAG.getTarget().Options.UnsafeFPMath &&
6231      N0CFP && N0CFP->getValueAPF().isZero()) {
6232    if (isNegatibleForFree(N1, LegalOperations, TLI, &DAG.getTarget().Options))
6233      return GetNegatedExpression(N1, DAG, LegalOperations);
6234    if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
6235      return DAG.getNode(ISD::FNEG, dl, VT, N1);
6236  }
6237  // fold (fsub A, (fneg B)) -> (fadd A, B)
6238  if (isNegatibleForFree(N1, LegalOperations, TLI, &DAG.getTarget().Options))
6239    return DAG.getNode(ISD::FADD, dl, VT, N0,
6240                       GetNegatedExpression(N1, DAG, LegalOperations));
6241
6242  // If 'unsafe math' is enabled, fold
6243  //    (fsub x, x) -> 0.0 &
6244  //    (fsub x, (fadd x, y)) -> (fneg y) &
6245  //    (fsub x, (fadd y, x)) -> (fneg y)
6246  if (DAG.getTarget().Options.UnsafeFPMath) {
6247    if (N0 == N1)
6248      return DAG.getConstantFP(0.0f, VT);
6249
6250    if (N1.getOpcode() == ISD::FADD) {
6251      SDValue N10 = N1->getOperand(0);
6252      SDValue N11 = N1->getOperand(1);
6253
6254      if (N10 == N0 && isNegatibleForFree(N11, LegalOperations, TLI,
6255                                          &DAG.getTarget().Options))
6256        return GetNegatedExpression(N11, DAG, LegalOperations);
6257
6258      if (N11 == N0 && isNegatibleForFree(N10, LegalOperations, TLI,
6259                                          &DAG.getTarget().Options))
6260        return GetNegatedExpression(N10, DAG, LegalOperations);
6261    }
6262  }
6263
6264  // FSUB -> FMA combines:
6265  if ((DAG.getTarget().Options.AllowFPOpFusion == FPOpFusion::Fast ||
6266       DAG.getTarget().Options.UnsafeFPMath) &&
6267      DAG.getTarget().getTargetLowering()->isFMAFasterThanFMulAndFAdd(VT) &&
6268      (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT))) {
6269
6270    // fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z))
6271    if (N0.getOpcode() == ISD::FMUL && N0->hasOneUse())
6272      return DAG.getNode(ISD::FMA, dl, VT,
6273                         N0.getOperand(0), N0.getOperand(1),
6274                         DAG.getNode(ISD::FNEG, dl, VT, N1));
6275
6276    // fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x)
6277    // Note: Commutes FSUB operands.
6278    if (N1.getOpcode() == ISD::FMUL && N1->hasOneUse())
6279      return DAG.getNode(ISD::FMA, dl, VT,
6280                         DAG.getNode(ISD::FNEG, dl, VT,
6281                         N1.getOperand(0)),
6282                         N1.getOperand(1), N0);
6283
6284    // fold (fsub (fneg (fmul, x, y)), z) -> (fma (fneg x), y, (fneg z))
6285    if (N0.getOpcode() == ISD::FNEG &&
6286        N0.getOperand(0).getOpcode() == ISD::FMUL &&
6287        N0->hasOneUse() && N0.getOperand(0).hasOneUse()) {
6288      SDValue N00 = N0.getOperand(0).getOperand(0);
6289      SDValue N01 = N0.getOperand(0).getOperand(1);
6290      return DAG.getNode(ISD::FMA, dl, VT,
6291                         DAG.getNode(ISD::FNEG, dl, VT, N00), N01,
6292                         DAG.getNode(ISD::FNEG, dl, VT, N1));
6293    }
6294  }
6295
6296  return SDValue();
6297}
6298
6299SDValue DAGCombiner::visitFMUL(SDNode *N) {
6300  SDValue N0 = N->getOperand(0);
6301  SDValue N1 = N->getOperand(1);
6302  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6303  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6304  EVT VT = N->getValueType(0);
6305  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6306
6307  // fold vector ops
6308  if (VT.isVector()) {
6309    SDValue FoldedVOp = SimplifyVBinOp(N);
6310    if (FoldedVOp.getNode()) return FoldedVOp;
6311  }
6312
6313  // fold (fmul c1, c2) -> c1*c2
6314  if (N0CFP && N1CFP)
6315    return DAG.getNode(ISD::FMUL, SDLoc(N), VT, N0, N1);
6316  // canonicalize constant to RHS
6317  if (N0CFP && !N1CFP)
6318    return DAG.getNode(ISD::FMUL, SDLoc(N), VT, N1, N0);
6319  // fold (fmul A, 0) -> 0
6320  if (DAG.getTarget().Options.UnsafeFPMath &&
6321      N1CFP && N1CFP->getValueAPF().isZero())
6322    return N1;
6323  // fold (fmul A, 0) -> 0, vector edition.
6324  if (DAG.getTarget().Options.UnsafeFPMath &&
6325      ISD::isBuildVectorAllZeros(N1.getNode()))
6326    return N1;
6327  // fold (fmul A, 1.0) -> A
6328  if (N1CFP && N1CFP->isExactlyValue(1.0))
6329    return N0;
6330  // fold (fmul X, 2.0) -> (fadd X, X)
6331  if (N1CFP && N1CFP->isExactlyValue(+2.0))
6332    return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0, N0);
6333  // fold (fmul X, -1.0) -> (fneg X)
6334  if (N1CFP && N1CFP->isExactlyValue(-1.0))
6335    if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
6336      return DAG.getNode(ISD::FNEG, SDLoc(N), VT, N0);
6337
6338  // fold (fmul (fneg X), (fneg Y)) -> (fmul X, Y)
6339  if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, TLI,
6340                                       &DAG.getTarget().Options)) {
6341    if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, TLI,
6342                                         &DAG.getTarget().Options)) {
6343      // Both can be negated for free, check to see if at least one is cheaper
6344      // negated.
6345      if (LHSNeg == 2 || RHSNeg == 2)
6346        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6347                           GetNegatedExpression(N0, DAG, LegalOperations),
6348                           GetNegatedExpression(N1, DAG, LegalOperations));
6349    }
6350  }
6351
6352  // If allowed, fold (fmul (fmul x, c1), c2) -> (fmul x, (fmul c1, c2))
6353  if (DAG.getTarget().Options.UnsafeFPMath &&
6354      N1CFP && N0.getOpcode() == ISD::FMUL &&
6355      N0.getNode()->hasOneUse() && isa<ConstantFPSDNode>(N0.getOperand(1)))
6356    return DAG.getNode(ISD::FMUL, SDLoc(N), VT, N0.getOperand(0),
6357                       DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6358                                   N0.getOperand(1), N1));
6359
6360  return SDValue();
6361}
6362
6363SDValue DAGCombiner::visitFMA(SDNode *N) {
6364  SDValue N0 = N->getOperand(0);
6365  SDValue N1 = N->getOperand(1);
6366  SDValue N2 = N->getOperand(2);
6367  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6368  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6369  EVT VT = N->getValueType(0);
6370  SDLoc dl(N);
6371
6372  if (DAG.getTarget().Options.UnsafeFPMath) {
6373    if (N0CFP && N0CFP->isZero())
6374      return N2;
6375    if (N1CFP && N1CFP->isZero())
6376      return N2;
6377  }
6378  if (N0CFP && N0CFP->isExactlyValue(1.0))
6379    return DAG.getNode(ISD::FADD, SDLoc(N), VT, N1, N2);
6380  if (N1CFP && N1CFP->isExactlyValue(1.0))
6381    return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0, N2);
6382
6383  // Canonicalize (fma c, x, y) -> (fma x, c, y)
6384  if (N0CFP && !N1CFP)
6385    return DAG.getNode(ISD::FMA, SDLoc(N), VT, N1, N0, N2);
6386
6387  // (fma x, c1, (fmul x, c2)) -> (fmul x, c1+c2)
6388  if (DAG.getTarget().Options.UnsafeFPMath && N1CFP &&
6389      N2.getOpcode() == ISD::FMUL &&
6390      N0 == N2.getOperand(0) &&
6391      N2.getOperand(1).getOpcode() == ISD::ConstantFP) {
6392    return DAG.getNode(ISD::FMUL, dl, VT, N0,
6393                       DAG.getNode(ISD::FADD, dl, VT, N1, N2.getOperand(1)));
6394  }
6395
6396
6397  // (fma (fmul x, c1), c2, y) -> (fma x, c1*c2, y)
6398  if (DAG.getTarget().Options.UnsafeFPMath &&
6399      N0.getOpcode() == ISD::FMUL && N1CFP &&
6400      N0.getOperand(1).getOpcode() == ISD::ConstantFP) {
6401    return DAG.getNode(ISD::FMA, dl, VT,
6402                       N0.getOperand(0),
6403                       DAG.getNode(ISD::FMUL, dl, VT, N1, N0.getOperand(1)),
6404                       N2);
6405  }
6406
6407  // (fma x, 1, y) -> (fadd x, y)
6408  // (fma x, -1, y) -> (fadd (fneg x), y)
6409  if (N1CFP) {
6410    if (N1CFP->isExactlyValue(1.0))
6411      return DAG.getNode(ISD::FADD, dl, VT, N0, N2);
6412
6413    if (N1CFP->isExactlyValue(-1.0) &&
6414        (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))) {
6415      SDValue RHSNeg = DAG.getNode(ISD::FNEG, dl, VT, N0);
6416      AddToWorkList(RHSNeg.getNode());
6417      return DAG.getNode(ISD::FADD, dl, VT, N2, RHSNeg);
6418    }
6419  }
6420
6421  // (fma x, c, x) -> (fmul x, (c+1))
6422  if (DAG.getTarget().Options.UnsafeFPMath && N1CFP && N0 == N2)
6423    return DAG.getNode(ISD::FMUL, dl, VT, N0,
6424                       DAG.getNode(ISD::FADD, dl, VT,
6425                                   N1, DAG.getConstantFP(1.0, VT)));
6426
6427  // (fma x, c, (fneg x)) -> (fmul x, (c-1))
6428  if (DAG.getTarget().Options.UnsafeFPMath && N1CFP &&
6429      N2.getOpcode() == ISD::FNEG && N2.getOperand(0) == N0)
6430    return DAG.getNode(ISD::FMUL, dl, VT, N0,
6431                       DAG.getNode(ISD::FADD, dl, VT,
6432                                   N1, DAG.getConstantFP(-1.0, VT)));
6433
6434
6435  return SDValue();
6436}
6437
6438SDValue DAGCombiner::visitFDIV(SDNode *N) {
6439  SDValue N0 = N->getOperand(0);
6440  SDValue N1 = N->getOperand(1);
6441  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6442  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6443  EVT VT = N->getValueType(0);
6444  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6445
6446  // fold vector ops
6447  if (VT.isVector()) {
6448    SDValue FoldedVOp = SimplifyVBinOp(N);
6449    if (FoldedVOp.getNode()) return FoldedVOp;
6450  }
6451
6452  // fold (fdiv c1, c2) -> c1/c2
6453  if (N0CFP && N1CFP)
6454    return DAG.getNode(ISD::FDIV, SDLoc(N), VT, N0, N1);
6455
6456  // fold (fdiv X, c2) -> fmul X, 1/c2 if losing precision is acceptable.
6457  if (N1CFP && DAG.getTarget().Options.UnsafeFPMath) {
6458    // Compute the reciprocal 1.0 / c2.
6459    APFloat N1APF = N1CFP->getValueAPF();
6460    APFloat Recip(N1APF.getSemantics(), 1); // 1.0
6461    APFloat::opStatus st = Recip.divide(N1APF, APFloat::rmNearestTiesToEven);
6462    // Only do the transform if the reciprocal is a legal fp immediate that
6463    // isn't too nasty (eg NaN, denormal, ...).
6464    if ((st == APFloat::opOK || st == APFloat::opInexact) && // Not too nasty
6465        (!LegalOperations ||
6466         // FIXME: custom lowering of ConstantFP might fail (see e.g. ARM
6467         // backend)... we should handle this gracefully after Legalize.
6468         // TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT) ||
6469         TLI.isOperationLegal(llvm::ISD::ConstantFP, VT) ||
6470         TLI.isFPImmLegal(Recip, VT)))
6471      return DAG.getNode(ISD::FMUL, SDLoc(N), VT, N0,
6472                         DAG.getConstantFP(Recip, VT));
6473  }
6474
6475  // (fdiv (fneg X), (fneg Y)) -> (fdiv X, Y)
6476  if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, TLI,
6477                                       &DAG.getTarget().Options)) {
6478    if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, TLI,
6479                                         &DAG.getTarget().Options)) {
6480      // Both can be negated for free, check to see if at least one is cheaper
6481      // negated.
6482      if (LHSNeg == 2 || RHSNeg == 2)
6483        return DAG.getNode(ISD::FDIV, SDLoc(N), VT,
6484                           GetNegatedExpression(N0, DAG, LegalOperations),
6485                           GetNegatedExpression(N1, DAG, LegalOperations));
6486    }
6487  }
6488
6489  return SDValue();
6490}
6491
6492SDValue DAGCombiner::visitFREM(SDNode *N) {
6493  SDValue N0 = N->getOperand(0);
6494  SDValue N1 = N->getOperand(1);
6495  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6496  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6497  EVT VT = N->getValueType(0);
6498
6499  // fold (frem c1, c2) -> fmod(c1,c2)
6500  if (N0CFP && N1CFP)
6501    return DAG.getNode(ISD::FREM, SDLoc(N), VT, N0, N1);
6502
6503  return SDValue();
6504}
6505
6506SDValue DAGCombiner::visitFCOPYSIGN(SDNode *N) {
6507  SDValue N0 = N->getOperand(0);
6508  SDValue N1 = N->getOperand(1);
6509  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6510  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6511  EVT VT = N->getValueType(0);
6512
6513  if (N0CFP && N1CFP)  // Constant fold
6514    return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1);
6515
6516  if (N1CFP) {
6517    const APFloat& V = N1CFP->getValueAPF();
6518    // copysign(x, c1) -> fabs(x)       iff ispos(c1)
6519    // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1)
6520    if (!V.isNegative()) {
6521      if (!LegalOperations || TLI.isOperationLegal(ISD::FABS, VT))
6522        return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0);
6523    } else {
6524      if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
6525        return DAG.getNode(ISD::FNEG, SDLoc(N), VT,
6526                           DAG.getNode(ISD::FABS, SDLoc(N0), VT, N0));
6527    }
6528  }
6529
6530  // copysign(fabs(x), y) -> copysign(x, y)
6531  // copysign(fneg(x), y) -> copysign(x, y)
6532  // copysign(copysign(x,z), y) -> copysign(x, y)
6533  if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG ||
6534      N0.getOpcode() == ISD::FCOPYSIGN)
6535    return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT,
6536                       N0.getOperand(0), N1);
6537
6538  // copysign(x, abs(y)) -> abs(x)
6539  if (N1.getOpcode() == ISD::FABS)
6540    return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0);
6541
6542  // copysign(x, copysign(y,z)) -> copysign(x, z)
6543  if (N1.getOpcode() == ISD::FCOPYSIGN)
6544    return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT,
6545                       N0, N1.getOperand(1));
6546
6547  // copysign(x, fp_extend(y)) -> copysign(x, y)
6548  // copysign(x, fp_round(y)) -> copysign(x, y)
6549  if (N1.getOpcode() == ISD::FP_EXTEND || N1.getOpcode() == ISD::FP_ROUND)
6550    return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT,
6551                       N0, N1.getOperand(0));
6552
6553  return SDValue();
6554}
6555
6556SDValue DAGCombiner::visitSINT_TO_FP(SDNode *N) {
6557  SDValue N0 = N->getOperand(0);
6558  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
6559  EVT VT = N->getValueType(0);
6560  EVT OpVT = N0.getValueType();
6561
6562  // fold (sint_to_fp c1) -> c1fp
6563  if (N0C &&
6564      // ...but only if the target supports immediate floating-point values
6565      (!LegalOperations ||
6566       TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT)))
6567    return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0);
6568
6569  // If the input is a legal type, and SINT_TO_FP is not legal on this target,
6570  // but UINT_TO_FP is legal on this target, try to convert.
6571  if (!TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, OpVT) &&
6572      TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, OpVT)) {
6573    // If the sign bit is known to be zero, we can change this to UINT_TO_FP.
6574    if (DAG.SignBitIsZero(N0))
6575      return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0);
6576  }
6577
6578  // The next optimizations are desireable only if SELECT_CC can be lowered.
6579  // Check against MVT::Other for SELECT_CC, which is a workaround for targets
6580  // having to say they don't support SELECT_CC on every type the DAG knows
6581  // about, since there is no way to mark an opcode illegal at all value types
6582  // (See also visitSELECT)
6583  if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, MVT::Other)) {
6584    // fold (sint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc)
6585    if (N0.getOpcode() == ISD::SETCC && N0.getValueType() == MVT::i1 &&
6586        !VT.isVector() &&
6587        (!LegalOperations ||
6588         TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) {
6589      SDValue Ops[] =
6590        { N0.getOperand(0), N0.getOperand(1),
6591          DAG.getConstantFP(-1.0, VT) , DAG.getConstantFP(0.0, VT),
6592          N0.getOperand(2) };
6593      return DAG.getNode(ISD::SELECT_CC, SDLoc(N), VT, Ops, 5);
6594    }
6595
6596    // fold (sint_to_fp (zext (setcc x, y, cc))) ->
6597    //      (select_cc x, y, 1.0, 0.0,, cc)
6598    if (N0.getOpcode() == ISD::ZERO_EXTEND &&
6599        N0.getOperand(0).getOpcode() == ISD::SETCC &&!VT.isVector() &&
6600        (!LegalOperations ||
6601         TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) {
6602      SDValue Ops[] =
6603        { N0.getOperand(0).getOperand(0), N0.getOperand(0).getOperand(1),
6604          DAG.getConstantFP(1.0, VT) , DAG.getConstantFP(0.0, VT),
6605          N0.getOperand(0).getOperand(2) };
6606      return DAG.getNode(ISD::SELECT_CC, SDLoc(N), VT, Ops, 5);
6607    }
6608  }
6609
6610  return SDValue();
6611}
6612
6613SDValue DAGCombiner::visitUINT_TO_FP(SDNode *N) {
6614  SDValue N0 = N->getOperand(0);
6615  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
6616  EVT VT = N->getValueType(0);
6617  EVT OpVT = N0.getValueType();
6618
6619  // fold (uint_to_fp c1) -> c1fp
6620  if (N0C &&
6621      // ...but only if the target supports immediate floating-point values
6622      (!LegalOperations ||
6623       TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT)))
6624    return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0);
6625
6626  // If the input is a legal type, and UINT_TO_FP is not legal on this target,
6627  // but SINT_TO_FP is legal on this target, try to convert.
6628  if (!TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, OpVT) &&
6629      TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, OpVT)) {
6630    // If the sign bit is known to be zero, we can change this to SINT_TO_FP.
6631    if (DAG.SignBitIsZero(N0))
6632      return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0);
6633  }
6634
6635  // The next optimizations are desireable only if SELECT_CC can be lowered.
6636  // Check against MVT::Other for SELECT_CC, which is a workaround for targets
6637  // having to say they don't support SELECT_CC on every type the DAG knows
6638  // about, since there is no way to mark an opcode illegal at all value types
6639  // (See also visitSELECT)
6640  if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, MVT::Other)) {
6641    // fold (uint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc)
6642
6643    if (N0.getOpcode() == ISD::SETCC && !VT.isVector() &&
6644        (!LegalOperations ||
6645         TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) {
6646      SDValue Ops[] =
6647        { N0.getOperand(0), N0.getOperand(1),
6648          DAG.getConstantFP(1.0, VT),  DAG.getConstantFP(0.0, VT),
6649          N0.getOperand(2) };
6650      return DAG.getNode(ISD::SELECT_CC, SDLoc(N), VT, Ops, 5);
6651    }
6652  }
6653
6654  return SDValue();
6655}
6656
6657SDValue DAGCombiner::visitFP_TO_SINT(SDNode *N) {
6658  SDValue N0 = N->getOperand(0);
6659  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6660  EVT VT = N->getValueType(0);
6661
6662  // fold (fp_to_sint c1fp) -> c1
6663  if (N0CFP)
6664    return DAG.getNode(ISD::FP_TO_SINT, SDLoc(N), VT, N0);
6665
6666  return SDValue();
6667}
6668
6669SDValue DAGCombiner::visitFP_TO_UINT(SDNode *N) {
6670  SDValue N0 = N->getOperand(0);
6671  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6672  EVT VT = N->getValueType(0);
6673
6674  // fold (fp_to_uint c1fp) -> c1
6675  if (N0CFP)
6676    return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), VT, N0);
6677
6678  return SDValue();
6679}
6680
6681SDValue DAGCombiner::visitFP_ROUND(SDNode *N) {
6682  SDValue N0 = N->getOperand(0);
6683  SDValue N1 = N->getOperand(1);
6684  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6685  EVT VT = N->getValueType(0);
6686
6687  // fold (fp_round c1fp) -> c1fp
6688  if (N0CFP)
6689    return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT, N0, N1);
6690
6691  // fold (fp_round (fp_extend x)) -> x
6692  if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType())
6693    return N0.getOperand(0);
6694
6695  // fold (fp_round (fp_round x)) -> (fp_round x)
6696  if (N0.getOpcode() == ISD::FP_ROUND) {
6697    // This is a value preserving truncation if both round's are.
6698    bool IsTrunc = N->getConstantOperandVal(1) == 1 &&
6699                   N0.getNode()->getConstantOperandVal(1) == 1;
6700    return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT, N0.getOperand(0),
6701                       DAG.getIntPtrConstant(IsTrunc));
6702  }
6703
6704  // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y)
6705  if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse()) {
6706    SDValue Tmp = DAG.getNode(ISD::FP_ROUND, SDLoc(N0), VT,
6707                              N0.getOperand(0), N1);
6708    AddToWorkList(Tmp.getNode());
6709    return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT,
6710                       Tmp, N0.getOperand(1));
6711  }
6712
6713  return SDValue();
6714}
6715
6716SDValue DAGCombiner::visitFP_ROUND_INREG(SDNode *N) {
6717  SDValue N0 = N->getOperand(0);
6718  EVT VT = N->getValueType(0);
6719  EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
6720  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6721
6722  // fold (fp_round_inreg c1fp) -> c1fp
6723  if (N0CFP && isTypeLegal(EVT)) {
6724    SDValue Round = DAG.getConstantFP(*N0CFP->getConstantFPValue(), EVT);
6725    return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, Round);
6726  }
6727
6728  return SDValue();
6729}
6730
6731SDValue DAGCombiner::visitFP_EXTEND(SDNode *N) {
6732  SDValue N0 = N->getOperand(0);
6733  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6734  EVT VT = N->getValueType(0);
6735
6736  // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded.
6737  if (N->hasOneUse() &&
6738      N->use_begin()->getOpcode() == ISD::FP_ROUND)
6739    return SDValue();
6740
6741  // fold (fp_extend c1fp) -> c1fp
6742  if (N0CFP)
6743    return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, N0);
6744
6745  // Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the
6746  // value of X.
6747  if (N0.getOpcode() == ISD::FP_ROUND
6748      && N0.getNode()->getConstantOperandVal(1) == 1) {
6749    SDValue In = N0.getOperand(0);
6750    if (In.getValueType() == VT) return In;
6751    if (VT.bitsLT(In.getValueType()))
6752      return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT,
6753                         In, N0.getOperand(1));
6754    return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, In);
6755  }
6756
6757  // fold (fpext (load x)) -> (fpext (fptrunc (extload x)))
6758  if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
6759      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
6760       TLI.isLoadExtLegal(ISD::EXTLOAD, N0.getValueType()))) {
6761    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
6762    SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT,
6763                                     LN0->getChain(),
6764                                     LN0->getBasePtr(), LN0->getPointerInfo(),
6765                                     N0.getValueType(),
6766                                     LN0->isVolatile(), LN0->isNonTemporal(),
6767                                     LN0->getAlignment());
6768    CombineTo(N, ExtLoad);
6769    CombineTo(N0.getNode(),
6770              DAG.getNode(ISD::FP_ROUND, SDLoc(N0),
6771                          N0.getValueType(), ExtLoad, DAG.getIntPtrConstant(1)),
6772              ExtLoad.getValue(1));
6773    return SDValue(N, 0);   // Return N so it doesn't get rechecked!
6774  }
6775
6776  return SDValue();
6777}
6778
6779SDValue DAGCombiner::visitFNEG(SDNode *N) {
6780  SDValue N0 = N->getOperand(0);
6781  EVT VT = N->getValueType(0);
6782
6783  if (VT.isVector()) {
6784    SDValue FoldedVOp = SimplifyVUnaryOp(N);
6785    if (FoldedVOp.getNode()) return FoldedVOp;
6786  }
6787
6788  if (isNegatibleForFree(N0, LegalOperations, DAG.getTargetLoweringInfo(),
6789                         &DAG.getTarget().Options))
6790    return GetNegatedExpression(N0, DAG, LegalOperations);
6791
6792  // Transform fneg(bitconvert(x)) -> bitconvert(x^sign) to avoid loading
6793  // constant pool values.
6794  if (!TLI.isFNegFree(VT) && N0.getOpcode() == ISD::BITCAST &&
6795      !VT.isVector() &&
6796      N0.getNode()->hasOneUse() &&
6797      N0.getOperand(0).getValueType().isInteger()) {
6798    SDValue Int = N0.getOperand(0);
6799    EVT IntVT = Int.getValueType();
6800    if (IntVT.isInteger() && !IntVT.isVector()) {
6801      Int = DAG.getNode(ISD::XOR, SDLoc(N0), IntVT, Int,
6802              DAG.getConstant(APInt::getSignBit(IntVT.getSizeInBits()), IntVT));
6803      AddToWorkList(Int.getNode());
6804      return DAG.getNode(ISD::BITCAST, SDLoc(N),
6805                         VT, Int);
6806    }
6807  }
6808
6809  // (fneg (fmul c, x)) -> (fmul -c, x)
6810  if (N0.getOpcode() == ISD::FMUL) {
6811    ConstantFPSDNode *CFP1 = dyn_cast<ConstantFPSDNode>(N0.getOperand(1));
6812    if (CFP1)
6813      return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6814                         N0.getOperand(0),
6815                         DAG.getNode(ISD::FNEG, SDLoc(N), VT,
6816                                     N0.getOperand(1)));
6817  }
6818
6819  return SDValue();
6820}
6821
6822SDValue DAGCombiner::visitFCEIL(SDNode *N) {
6823  SDValue N0 = N->getOperand(0);
6824  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6825  EVT VT = N->getValueType(0);
6826
6827  // fold (fceil c1) -> fceil(c1)
6828  if (N0CFP)
6829    return DAG.getNode(ISD::FCEIL, SDLoc(N), VT, N0);
6830
6831  return SDValue();
6832}
6833
6834SDValue DAGCombiner::visitFTRUNC(SDNode *N) {
6835  SDValue N0 = N->getOperand(0);
6836  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6837  EVT VT = N->getValueType(0);
6838
6839  // fold (ftrunc c1) -> ftrunc(c1)
6840  if (N0CFP)
6841    return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0);
6842
6843  return SDValue();
6844}
6845
6846SDValue DAGCombiner::visitFFLOOR(SDNode *N) {
6847  SDValue N0 = N->getOperand(0);
6848  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6849  EVT VT = N->getValueType(0);
6850
6851  // fold (ffloor c1) -> ffloor(c1)
6852  if (N0CFP)
6853    return DAG.getNode(ISD::FFLOOR, SDLoc(N), VT, N0);
6854
6855  return SDValue();
6856}
6857
6858SDValue DAGCombiner::visitFABS(SDNode *N) {
6859  SDValue N0 = N->getOperand(0);
6860  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6861  EVT VT = N->getValueType(0);
6862
6863  if (VT.isVector()) {
6864    SDValue FoldedVOp = SimplifyVUnaryOp(N);
6865    if (FoldedVOp.getNode()) return FoldedVOp;
6866  }
6867
6868  // fold (fabs c1) -> fabs(c1)
6869  if (N0CFP)
6870    return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0);
6871  // fold (fabs (fabs x)) -> (fabs x)
6872  if (N0.getOpcode() == ISD::FABS)
6873    return N->getOperand(0);
6874  // fold (fabs (fneg x)) -> (fabs x)
6875  // fold (fabs (fcopysign x, y)) -> (fabs x)
6876  if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN)
6877    return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0.getOperand(0));
6878
6879  // Transform fabs(bitconvert(x)) -> bitconvert(x&~sign) to avoid loading
6880  // constant pool values.
6881  if (!TLI.isFAbsFree(VT) &&
6882      N0.getOpcode() == ISD::BITCAST && N0.getNode()->hasOneUse() &&
6883      N0.getOperand(0).getValueType().isInteger() &&
6884      !N0.getOperand(0).getValueType().isVector()) {
6885    SDValue Int = N0.getOperand(0);
6886    EVT IntVT = Int.getValueType();
6887    if (IntVT.isInteger() && !IntVT.isVector()) {
6888      Int = DAG.getNode(ISD::AND, SDLoc(N0), IntVT, Int,
6889             DAG.getConstant(~APInt::getSignBit(IntVT.getSizeInBits()), IntVT));
6890      AddToWorkList(Int.getNode());
6891      return DAG.getNode(ISD::BITCAST, SDLoc(N),
6892                         N->getValueType(0), Int);
6893    }
6894  }
6895
6896  return SDValue();
6897}
6898
6899SDValue DAGCombiner::visitBRCOND(SDNode *N) {
6900  SDValue Chain = N->getOperand(0);
6901  SDValue N1 = N->getOperand(1);
6902  SDValue N2 = N->getOperand(2);
6903
6904  // If N is a constant we could fold this into a fallthrough or unconditional
6905  // branch. However that doesn't happen very often in normal code, because
6906  // Instcombine/SimplifyCFG should have handled the available opportunities.
6907  // If we did this folding here, it would be necessary to update the
6908  // MachineBasicBlock CFG, which is awkward.
6909
6910  // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal
6911  // on the target.
6912  if (N1.getOpcode() == ISD::SETCC &&
6913      TLI.isOperationLegalOrCustom(ISD::BR_CC,
6914                                   N1.getOperand(0).getValueType())) {
6915    return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other,
6916                       Chain, N1.getOperand(2),
6917                       N1.getOperand(0), N1.getOperand(1), N2);
6918  }
6919
6920  if ((N1.hasOneUse() && N1.getOpcode() == ISD::SRL) ||
6921      ((N1.getOpcode() == ISD::TRUNCATE && N1.hasOneUse()) &&
6922       (N1.getOperand(0).hasOneUse() &&
6923        N1.getOperand(0).getOpcode() == ISD::SRL))) {
6924    SDNode *Trunc = 0;
6925    if (N1.getOpcode() == ISD::TRUNCATE) {
6926      // Look pass the truncate.
6927      Trunc = N1.getNode();
6928      N1 = N1.getOperand(0);
6929    }
6930
6931    // Match this pattern so that we can generate simpler code:
6932    //
6933    //   %a = ...
6934    //   %b = and i32 %a, 2
6935    //   %c = srl i32 %b, 1
6936    //   brcond i32 %c ...
6937    //
6938    // into
6939    //
6940    //   %a = ...
6941    //   %b = and i32 %a, 2
6942    //   %c = setcc eq %b, 0
6943    //   brcond %c ...
6944    //
6945    // This applies only when the AND constant value has one bit set and the
6946    // SRL constant is equal to the log2 of the AND constant. The back-end is
6947    // smart enough to convert the result into a TEST/JMP sequence.
6948    SDValue Op0 = N1.getOperand(0);
6949    SDValue Op1 = N1.getOperand(1);
6950
6951    if (Op0.getOpcode() == ISD::AND &&
6952        Op1.getOpcode() == ISD::Constant) {
6953      SDValue AndOp1 = Op0.getOperand(1);
6954
6955      if (AndOp1.getOpcode() == ISD::Constant) {
6956        const APInt &AndConst = cast<ConstantSDNode>(AndOp1)->getAPIntValue();
6957
6958        if (AndConst.isPowerOf2() &&
6959            cast<ConstantSDNode>(Op1)->getAPIntValue()==AndConst.logBase2()) {
6960          SDValue SetCC =
6961            DAG.getSetCC(SDLoc(N),
6962                         getSetCCResultType(Op0.getValueType()),
6963                         Op0, DAG.getConstant(0, Op0.getValueType()),
6964                         ISD::SETNE);
6965
6966          SDValue NewBRCond = DAG.getNode(ISD::BRCOND, SDLoc(N),
6967                                          MVT::Other, Chain, SetCC, N2);
6968          // Don't add the new BRCond into the worklist or else SimplifySelectCC
6969          // will convert it back to (X & C1) >> C2.
6970          CombineTo(N, NewBRCond, false);
6971          // Truncate is dead.
6972          if (Trunc) {
6973            removeFromWorkList(Trunc);
6974            DAG.DeleteNode(Trunc);
6975          }
6976          // Replace the uses of SRL with SETCC
6977          WorkListRemover DeadNodes(*this);
6978          DAG.ReplaceAllUsesOfValueWith(N1, SetCC);
6979          removeFromWorkList(N1.getNode());
6980          DAG.DeleteNode(N1.getNode());
6981          return SDValue(N, 0);   // Return N so it doesn't get rechecked!
6982        }
6983      }
6984    }
6985
6986    if (Trunc)
6987      // Restore N1 if the above transformation doesn't match.
6988      N1 = N->getOperand(1);
6989  }
6990
6991  // Transform br(xor(x, y)) -> br(x != y)
6992  // Transform br(xor(xor(x,y), 1)) -> br (x == y)
6993  if (N1.hasOneUse() && N1.getOpcode() == ISD::XOR) {
6994    SDNode *TheXor = N1.getNode();
6995    SDValue Op0 = TheXor->getOperand(0);
6996    SDValue Op1 = TheXor->getOperand(1);
6997    if (Op0.getOpcode() == Op1.getOpcode()) {
6998      // Avoid missing important xor optimizations.
6999      SDValue Tmp = visitXOR(TheXor);
7000      if (Tmp.getNode()) {
7001        if (Tmp.getNode() != TheXor) {
7002          DEBUG(dbgs() << "\nReplacing.8 ";
7003                TheXor->dump(&DAG);
7004                dbgs() << "\nWith: ";
7005                Tmp.getNode()->dump(&DAG);
7006                dbgs() << '\n');
7007          WorkListRemover DeadNodes(*this);
7008          DAG.ReplaceAllUsesOfValueWith(N1, Tmp);
7009          removeFromWorkList(TheXor);
7010          DAG.DeleteNode(TheXor);
7011          return DAG.getNode(ISD::BRCOND, SDLoc(N),
7012                             MVT::Other, Chain, Tmp, N2);
7013        }
7014
7015        // visitXOR has changed XOR's operands or replaced the XOR completely,
7016        // bail out.
7017        return SDValue(N, 0);
7018      }
7019    }
7020
7021    if (Op0.getOpcode() != ISD::SETCC && Op1.getOpcode() != ISD::SETCC) {
7022      bool Equal = false;
7023      if (ConstantSDNode *RHSCI = dyn_cast<ConstantSDNode>(Op0))
7024        if (RHSCI->getAPIntValue() == 1 && Op0.hasOneUse() &&
7025            Op0.getOpcode() == ISD::XOR) {
7026          TheXor = Op0.getNode();
7027          Equal = true;
7028        }
7029
7030      EVT SetCCVT = N1.getValueType();
7031      if (LegalTypes)
7032        SetCCVT = getSetCCResultType(SetCCVT);
7033      SDValue SetCC = DAG.getSetCC(SDLoc(TheXor),
7034                                   SetCCVT,
7035                                   Op0, Op1,
7036                                   Equal ? ISD::SETEQ : ISD::SETNE);
7037      // Replace the uses of XOR with SETCC
7038      WorkListRemover DeadNodes(*this);
7039      DAG.ReplaceAllUsesOfValueWith(N1, SetCC);
7040      removeFromWorkList(N1.getNode());
7041      DAG.DeleteNode(N1.getNode());
7042      return DAG.getNode(ISD::BRCOND, SDLoc(N),
7043                         MVT::Other, Chain, SetCC, N2);
7044    }
7045  }
7046
7047  return SDValue();
7048}
7049
7050// Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB.
7051//
7052SDValue DAGCombiner::visitBR_CC(SDNode *N) {
7053  CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1));
7054  SDValue CondLHS = N->getOperand(2), CondRHS = N->getOperand(3);
7055
7056  // If N is a constant we could fold this into a fallthrough or unconditional
7057  // branch. However that doesn't happen very often in normal code, because
7058  // Instcombine/SimplifyCFG should have handled the available opportunities.
7059  // If we did this folding here, it would be necessary to update the
7060  // MachineBasicBlock CFG, which is awkward.
7061
7062  // Use SimplifySetCC to simplify SETCC's.
7063  SDValue Simp = SimplifySetCC(getSetCCResultType(CondLHS.getValueType()),
7064                               CondLHS, CondRHS, CC->get(), SDLoc(N),
7065                               false);
7066  if (Simp.getNode()) AddToWorkList(Simp.getNode());
7067
7068  // fold to a simpler setcc
7069  if (Simp.getNode() && Simp.getOpcode() == ISD::SETCC)
7070    return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other,
7071                       N->getOperand(0), Simp.getOperand(2),
7072                       Simp.getOperand(0), Simp.getOperand(1),
7073                       N->getOperand(4));
7074
7075  return SDValue();
7076}
7077
7078/// canFoldInAddressingMode - Return true if 'Use' is a load or a store that
7079/// uses N as its base pointer and that N may be folded in the load / store
7080/// addressing mode.
7081static bool canFoldInAddressingMode(SDNode *N, SDNode *Use,
7082                                    SelectionDAG &DAG,
7083                                    const TargetLowering &TLI) {
7084  EVT VT;
7085  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(Use)) {
7086    if (LD->isIndexed() || LD->getBasePtr().getNode() != N)
7087      return false;
7088    VT = Use->getValueType(0);
7089  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(Use)) {
7090    if (ST->isIndexed() || ST->getBasePtr().getNode() != N)
7091      return false;
7092    VT = ST->getValue().getValueType();
7093  } else
7094    return false;
7095
7096  TargetLowering::AddrMode AM;
7097  if (N->getOpcode() == ISD::ADD) {
7098    ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
7099    if (Offset)
7100      // [reg +/- imm]
7101      AM.BaseOffs = Offset->getSExtValue();
7102    else
7103      // [reg +/- reg]
7104      AM.Scale = 1;
7105  } else if (N->getOpcode() == ISD::SUB) {
7106    ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
7107    if (Offset)
7108      // [reg +/- imm]
7109      AM.BaseOffs = -Offset->getSExtValue();
7110    else
7111      // [reg +/- reg]
7112      AM.Scale = 1;
7113  } else
7114    return false;
7115
7116  return TLI.isLegalAddressingMode(AM, VT.getTypeForEVT(*DAG.getContext()));
7117}
7118
7119/// CombineToPreIndexedLoadStore - Try turning a load / store into a
7120/// pre-indexed load / store when the base pointer is an add or subtract
7121/// and it has other uses besides the load / store. After the
7122/// transformation, the new indexed load / store has effectively folded
7123/// the add / subtract in and all of its other uses are redirected to the
7124/// new load / store.
7125bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) {
7126  if (Level < AfterLegalizeDAG)
7127    return false;
7128
7129  bool isLoad = true;
7130  SDValue Ptr;
7131  EVT VT;
7132  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(N)) {
7133    if (LD->isIndexed())
7134      return false;
7135    VT = LD->getMemoryVT();
7136    if (!TLI.isIndexedLoadLegal(ISD::PRE_INC, VT) &&
7137        !TLI.isIndexedLoadLegal(ISD::PRE_DEC, VT))
7138      return false;
7139    Ptr = LD->getBasePtr();
7140  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(N)) {
7141    if (ST->isIndexed())
7142      return false;
7143    VT = ST->getMemoryVT();
7144    if (!TLI.isIndexedStoreLegal(ISD::PRE_INC, VT) &&
7145        !TLI.isIndexedStoreLegal(ISD::PRE_DEC, VT))
7146      return false;
7147    Ptr = ST->getBasePtr();
7148    isLoad = false;
7149  } else {
7150    return false;
7151  }
7152
7153  // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail
7154  // out.  There is no reason to make this a preinc/predec.
7155  if ((Ptr.getOpcode() != ISD::ADD && Ptr.getOpcode() != ISD::SUB) ||
7156      Ptr.getNode()->hasOneUse())
7157    return false;
7158
7159  // Ask the target to do addressing mode selection.
7160  SDValue BasePtr;
7161  SDValue Offset;
7162  ISD::MemIndexedMode AM = ISD::UNINDEXED;
7163  if (!TLI.getPreIndexedAddressParts(N, BasePtr, Offset, AM, DAG))
7164    return false;
7165
7166  // Backends without true r+i pre-indexed forms may need to pass a
7167  // constant base with a variable offset so that constant coercion
7168  // will work with the patterns in canonical form.
7169  bool Swapped = false;
7170  if (isa<ConstantSDNode>(BasePtr)) {
7171    std::swap(BasePtr, Offset);
7172    Swapped = true;
7173  }
7174
7175  // Don't create a indexed load / store with zero offset.
7176  if (isa<ConstantSDNode>(Offset) &&
7177      cast<ConstantSDNode>(Offset)->isNullValue())
7178    return false;
7179
7180  // Try turning it into a pre-indexed load / store except when:
7181  // 1) The new base ptr is a frame index.
7182  // 2) If N is a store and the new base ptr is either the same as or is a
7183  //    predecessor of the value being stored.
7184  // 3) Another use of old base ptr is a predecessor of N. If ptr is folded
7185  //    that would create a cycle.
7186  // 4) All uses are load / store ops that use it as old base ptr.
7187
7188  // Check #1.  Preinc'ing a frame index would require copying the stack pointer
7189  // (plus the implicit offset) to a register to preinc anyway.
7190  if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr))
7191    return false;
7192
7193  // Check #2.
7194  if (!isLoad) {
7195    SDValue Val = cast<StoreSDNode>(N)->getValue();
7196    if (Val == BasePtr || BasePtr.getNode()->isPredecessorOf(Val.getNode()))
7197      return false;
7198  }
7199
7200  // If the offset is a constant, there may be other adds of constants that
7201  // can be folded with this one. We should do this to avoid having to keep
7202  // a copy of the original base pointer.
7203  SmallVector<SDNode *, 16> OtherUses;
7204  if (isa<ConstantSDNode>(Offset))
7205    for (SDNode::use_iterator I = BasePtr.getNode()->use_begin(),
7206         E = BasePtr.getNode()->use_end(); I != E; ++I) {
7207      SDNode *Use = *I;
7208      if (Use == Ptr.getNode())
7209        continue;
7210
7211      if (Use->isPredecessorOf(N))
7212        continue;
7213
7214      if (Use->getOpcode() != ISD::ADD && Use->getOpcode() != ISD::SUB) {
7215        OtherUses.clear();
7216        break;
7217      }
7218
7219      SDValue Op0 = Use->getOperand(0), Op1 = Use->getOperand(1);
7220      if (Op1.getNode() == BasePtr.getNode())
7221        std::swap(Op0, Op1);
7222      assert(Op0.getNode() == BasePtr.getNode() &&
7223             "Use of ADD/SUB but not an operand");
7224
7225      if (!isa<ConstantSDNode>(Op1)) {
7226        OtherUses.clear();
7227        break;
7228      }
7229
7230      // FIXME: In some cases, we can be smarter about this.
7231      if (Op1.getValueType() != Offset.getValueType()) {
7232        OtherUses.clear();
7233        break;
7234      }
7235
7236      OtherUses.push_back(Use);
7237    }
7238
7239  if (Swapped)
7240    std::swap(BasePtr, Offset);
7241
7242  // Now check for #3 and #4.
7243  bool RealUse = false;
7244
7245  // Caches for hasPredecessorHelper
7246  SmallPtrSet<const SDNode *, 32> Visited;
7247  SmallVector<const SDNode *, 16> Worklist;
7248
7249  for (SDNode::use_iterator I = Ptr.getNode()->use_begin(),
7250         E = Ptr.getNode()->use_end(); I != E; ++I) {
7251    SDNode *Use = *I;
7252    if (Use == N)
7253      continue;
7254    if (N->hasPredecessorHelper(Use, Visited, Worklist))
7255      return false;
7256
7257    // If Ptr may be folded in addressing mode of other use, then it's
7258    // not profitable to do this transformation.
7259    if (!canFoldInAddressingMode(Ptr.getNode(), Use, DAG, TLI))
7260      RealUse = true;
7261  }
7262
7263  if (!RealUse)
7264    return false;
7265
7266  SDValue Result;
7267  if (isLoad)
7268    Result = DAG.getIndexedLoad(SDValue(N,0), SDLoc(N),
7269                                BasePtr, Offset, AM);
7270  else
7271    Result = DAG.getIndexedStore(SDValue(N,0), SDLoc(N),
7272                                 BasePtr, Offset, AM);
7273  ++PreIndexedNodes;
7274  ++NodesCombined;
7275  DEBUG(dbgs() << "\nReplacing.4 ";
7276        N->dump(&DAG);
7277        dbgs() << "\nWith: ";
7278        Result.getNode()->dump(&DAG);
7279        dbgs() << '\n');
7280  WorkListRemover DeadNodes(*this);
7281  if (isLoad) {
7282    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0));
7283    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2));
7284  } else {
7285    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1));
7286  }
7287
7288  // Finally, since the node is now dead, remove it from the graph.
7289  DAG.DeleteNode(N);
7290
7291  if (Swapped)
7292    std::swap(BasePtr, Offset);
7293
7294  // Replace other uses of BasePtr that can be updated to use Ptr
7295  for (unsigned i = 0, e = OtherUses.size(); i != e; ++i) {
7296    unsigned OffsetIdx = 1;
7297    if (OtherUses[i]->getOperand(OffsetIdx).getNode() == BasePtr.getNode())
7298      OffsetIdx = 0;
7299    assert(OtherUses[i]->getOperand(!OffsetIdx).getNode() ==
7300           BasePtr.getNode() && "Expected BasePtr operand");
7301
7302    // We need to replace ptr0 in the following expression:
7303    //   x0 * offset0 + y0 * ptr0 = t0
7304    // knowing that
7305    //   x1 * offset1 + y1 * ptr0 = t1 (the indexed load/store)
7306    //
7307    // where x0, x1, y0 and y1 in {-1, 1} are given by the types of the
7308    // indexed load/store and the expresion that needs to be re-written.
7309    //
7310    // Therefore, we have:
7311    //   t0 = (x0 * offset0 - x1 * y0 * y1 *offset1) + (y0 * y1) * t1
7312
7313    ConstantSDNode *CN =
7314      cast<ConstantSDNode>(OtherUses[i]->getOperand(OffsetIdx));
7315    int X0, X1, Y0, Y1;
7316    APInt Offset0 = CN->getAPIntValue();
7317    APInt Offset1 = cast<ConstantSDNode>(Offset)->getAPIntValue();
7318
7319    X0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 1) ? -1 : 1;
7320    Y0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 0) ? -1 : 1;
7321    X1 = (AM == ISD::PRE_DEC && !Swapped) ? -1 : 1;
7322    Y1 = (AM == ISD::PRE_DEC && Swapped) ? -1 : 1;
7323
7324    unsigned Opcode = (Y0 * Y1 < 0) ? ISD::SUB : ISD::ADD;
7325
7326    APInt CNV = Offset0;
7327    if (X0 < 0) CNV = -CNV;
7328    if (X1 * Y0 * Y1 < 0) CNV = CNV + Offset1;
7329    else CNV = CNV - Offset1;
7330
7331    // We can now generate the new expression.
7332    SDValue NewOp1 = DAG.getConstant(CNV, CN->getValueType(0));
7333    SDValue NewOp2 = Result.getValue(isLoad ? 1 : 0);
7334
7335    SDValue NewUse = DAG.getNode(Opcode,
7336                                 SDLoc(OtherUses[i]),
7337                                 OtherUses[i]->getValueType(0), NewOp1, NewOp2);
7338    DAG.ReplaceAllUsesOfValueWith(SDValue(OtherUses[i], 0), NewUse);
7339    removeFromWorkList(OtherUses[i]);
7340    DAG.DeleteNode(OtherUses[i]);
7341  }
7342
7343  // Replace the uses of Ptr with uses of the updated base value.
7344  DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(isLoad ? 1 : 0));
7345  removeFromWorkList(Ptr.getNode());
7346  DAG.DeleteNode(Ptr.getNode());
7347
7348  return true;
7349}
7350
7351/// CombineToPostIndexedLoadStore - Try to combine a load / store with a
7352/// add / sub of the base pointer node into a post-indexed load / store.
7353/// The transformation folded the add / subtract into the new indexed
7354/// load / store effectively and all of its uses are redirected to the
7355/// new load / store.
7356bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) {
7357  if (Level < AfterLegalizeDAG)
7358    return false;
7359
7360  bool isLoad = true;
7361  SDValue Ptr;
7362  EVT VT;
7363  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(N)) {
7364    if (LD->isIndexed())
7365      return false;
7366    VT = LD->getMemoryVT();
7367    if (!TLI.isIndexedLoadLegal(ISD::POST_INC, VT) &&
7368        !TLI.isIndexedLoadLegal(ISD::POST_DEC, VT))
7369      return false;
7370    Ptr = LD->getBasePtr();
7371  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(N)) {
7372    if (ST->isIndexed())
7373      return false;
7374    VT = ST->getMemoryVT();
7375    if (!TLI.isIndexedStoreLegal(ISD::POST_INC, VT) &&
7376        !TLI.isIndexedStoreLegal(ISD::POST_DEC, VT))
7377      return false;
7378    Ptr = ST->getBasePtr();
7379    isLoad = false;
7380  } else {
7381    return false;
7382  }
7383
7384  if (Ptr.getNode()->hasOneUse())
7385    return false;
7386
7387  for (SDNode::use_iterator I = Ptr.getNode()->use_begin(),
7388         E = Ptr.getNode()->use_end(); I != E; ++I) {
7389    SDNode *Op = *I;
7390    if (Op == N ||
7391        (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB))
7392      continue;
7393
7394    SDValue BasePtr;
7395    SDValue Offset;
7396    ISD::MemIndexedMode AM = ISD::UNINDEXED;
7397    if (TLI.getPostIndexedAddressParts(N, Op, BasePtr, Offset, AM, DAG)) {
7398      // Don't create a indexed load / store with zero offset.
7399      if (isa<ConstantSDNode>(Offset) &&
7400          cast<ConstantSDNode>(Offset)->isNullValue())
7401        continue;
7402
7403      // Try turning it into a post-indexed load / store except when
7404      // 1) All uses are load / store ops that use it as base ptr (and
7405      //    it may be folded as addressing mmode).
7406      // 2) Op must be independent of N, i.e. Op is neither a predecessor
7407      //    nor a successor of N. Otherwise, if Op is folded that would
7408      //    create a cycle.
7409
7410      if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr))
7411        continue;
7412
7413      // Check for #1.
7414      bool TryNext = false;
7415      for (SDNode::use_iterator II = BasePtr.getNode()->use_begin(),
7416             EE = BasePtr.getNode()->use_end(); II != EE; ++II) {
7417        SDNode *Use = *II;
7418        if (Use == Ptr.getNode())
7419          continue;
7420
7421        // If all the uses are load / store addresses, then don't do the
7422        // transformation.
7423        if (Use->getOpcode() == ISD::ADD || Use->getOpcode() == ISD::SUB){
7424          bool RealUse = false;
7425          for (SDNode::use_iterator III = Use->use_begin(),
7426                 EEE = Use->use_end(); III != EEE; ++III) {
7427            SDNode *UseUse = *III;
7428            if (!canFoldInAddressingMode(Use, UseUse, DAG, TLI))
7429              RealUse = true;
7430          }
7431
7432          if (!RealUse) {
7433            TryNext = true;
7434            break;
7435          }
7436        }
7437      }
7438
7439      if (TryNext)
7440        continue;
7441
7442      // Check for #2
7443      if (!Op->isPredecessorOf(N) && !N->isPredecessorOf(Op)) {
7444        SDValue Result = isLoad
7445          ? DAG.getIndexedLoad(SDValue(N,0), SDLoc(N),
7446                               BasePtr, Offset, AM)
7447          : DAG.getIndexedStore(SDValue(N,0), SDLoc(N),
7448                                BasePtr, Offset, AM);
7449        ++PostIndexedNodes;
7450        ++NodesCombined;
7451        DEBUG(dbgs() << "\nReplacing.5 ";
7452              N->dump(&DAG);
7453              dbgs() << "\nWith: ";
7454              Result.getNode()->dump(&DAG);
7455              dbgs() << '\n');
7456        WorkListRemover DeadNodes(*this);
7457        if (isLoad) {
7458          DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0));
7459          DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2));
7460        } else {
7461          DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1));
7462        }
7463
7464        // Finally, since the node is now dead, remove it from the graph.
7465        DAG.DeleteNode(N);
7466
7467        // Replace the uses of Use with uses of the updated base value.
7468        DAG.ReplaceAllUsesOfValueWith(SDValue(Op, 0),
7469                                      Result.getValue(isLoad ? 1 : 0));
7470        removeFromWorkList(Op);
7471        DAG.DeleteNode(Op);
7472        return true;
7473      }
7474    }
7475  }
7476
7477  return false;
7478}
7479
7480SDValue DAGCombiner::visitLOAD(SDNode *N) {
7481  LoadSDNode *LD  = cast<LoadSDNode>(N);
7482  SDValue Chain = LD->getChain();
7483  SDValue Ptr   = LD->getBasePtr();
7484
7485  // If load is not volatile and there are no uses of the loaded value (and
7486  // the updated indexed value in case of indexed loads), change uses of the
7487  // chain value into uses of the chain input (i.e. delete the dead load).
7488  if (!LD->isVolatile()) {
7489    if (N->getValueType(1) == MVT::Other) {
7490      // Unindexed loads.
7491      if (!N->hasAnyUseOfValue(0)) {
7492        // It's not safe to use the two value CombineTo variant here. e.g.
7493        // v1, chain2 = load chain1, loc
7494        // v2, chain3 = load chain2, loc
7495        // v3         = add v2, c
7496        // Now we replace use of chain2 with chain1.  This makes the second load
7497        // isomorphic to the one we are deleting, and thus makes this load live.
7498        DEBUG(dbgs() << "\nReplacing.6 ";
7499              N->dump(&DAG);
7500              dbgs() << "\nWith chain: ";
7501              Chain.getNode()->dump(&DAG);
7502              dbgs() << "\n");
7503        WorkListRemover DeadNodes(*this);
7504        DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain);
7505
7506        if (N->use_empty()) {
7507          removeFromWorkList(N);
7508          DAG.DeleteNode(N);
7509        }
7510
7511        return SDValue(N, 0);   // Return N so it doesn't get rechecked!
7512      }
7513    } else {
7514      // Indexed loads.
7515      assert(N->getValueType(2) == MVT::Other && "Malformed indexed loads?");
7516      if (!N->hasAnyUseOfValue(0) && !N->hasAnyUseOfValue(1)) {
7517        SDValue Undef = DAG.getUNDEF(N->getValueType(0));
7518        DEBUG(dbgs() << "\nReplacing.7 ";
7519              N->dump(&DAG);
7520              dbgs() << "\nWith: ";
7521              Undef.getNode()->dump(&DAG);
7522              dbgs() << " and 2 other values\n");
7523        WorkListRemover DeadNodes(*this);
7524        DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Undef);
7525        DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1),
7526                                      DAG.getUNDEF(N->getValueType(1)));
7527        DAG.ReplaceAllUsesOfValueWith(SDValue(N, 2), Chain);
7528        removeFromWorkList(N);
7529        DAG.DeleteNode(N);
7530        return SDValue(N, 0);   // Return N so it doesn't get rechecked!
7531      }
7532    }
7533  }
7534
7535  // If this load is directly stored, replace the load value with the stored
7536  // value.
7537  // TODO: Handle store large -> read small portion.
7538  // TODO: Handle TRUNCSTORE/LOADEXT
7539  if (ISD::isNormalLoad(N) && !LD->isVolatile()) {
7540    if (ISD::isNON_TRUNCStore(Chain.getNode())) {
7541      StoreSDNode *PrevST = cast<StoreSDNode>(Chain);
7542      if (PrevST->getBasePtr() == Ptr &&
7543          PrevST->getValue().getValueType() == N->getValueType(0))
7544      return CombineTo(N, Chain.getOperand(1), Chain);
7545    }
7546  }
7547
7548  // Try to infer better alignment information than the load already has.
7549  if (OptLevel != CodeGenOpt::None && LD->isUnindexed()) {
7550    if (unsigned Align = DAG.InferPtrAlignment(Ptr)) {
7551      if (Align > LD->getMemOperand()->getBaseAlignment()) {
7552        SDValue NewLoad =
7553               DAG.getExtLoad(LD->getExtensionType(), SDLoc(N),
7554                              LD->getValueType(0),
7555                              Chain, Ptr, LD->getPointerInfo(),
7556                              LD->getMemoryVT(),
7557                              LD->isVolatile(), LD->isNonTemporal(), Align);
7558        return CombineTo(N, NewLoad, SDValue(NewLoad.getNode(), 1), true);
7559      }
7560    }
7561  }
7562
7563  bool UseAA = CombinerAA.getNumOccurrences() > 0 ? CombinerAA :
7564    TLI.getTargetMachine().getSubtarget<TargetSubtargetInfo>().useAA();
7565  if (UseAA) {
7566    // Walk up chain skipping non-aliasing memory nodes.
7567    SDValue BetterChain = FindBetterChain(N, Chain);
7568
7569    // If there is a better chain.
7570    if (Chain != BetterChain) {
7571      SDValue ReplLoad;
7572
7573      // Replace the chain to void dependency.
7574      if (LD->getExtensionType() == ISD::NON_EXTLOAD) {
7575        ReplLoad = DAG.getLoad(N->getValueType(0), SDLoc(LD),
7576                               BetterChain, Ptr, LD->getPointerInfo(),
7577                               LD->isVolatile(), LD->isNonTemporal(),
7578                               LD->isInvariant(), LD->getAlignment());
7579      } else {
7580        ReplLoad = DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD),
7581                                  LD->getValueType(0),
7582                                  BetterChain, Ptr, LD->getPointerInfo(),
7583                                  LD->getMemoryVT(),
7584                                  LD->isVolatile(),
7585                                  LD->isNonTemporal(),
7586                                  LD->getAlignment());
7587      }
7588
7589      // Create token factor to keep old chain connected.
7590      SDValue Token = DAG.getNode(ISD::TokenFactor, SDLoc(N),
7591                                  MVT::Other, Chain, ReplLoad.getValue(1));
7592
7593      // Make sure the new and old chains are cleaned up.
7594      AddToWorkList(Token.getNode());
7595
7596      // Replace uses with load result and token factor. Don't add users
7597      // to work list.
7598      return CombineTo(N, ReplLoad.getValue(0), Token, false);
7599    }
7600  }
7601
7602  // Try transforming N to an indexed load.
7603  if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
7604    return SDValue(N, 0);
7605
7606  // Try to slice up N to more direct loads if the slices are mapped to
7607  // different register banks or pairing can take place.
7608  if (SliceUpLoad(N))
7609    return SDValue(N, 0);
7610
7611  return SDValue();
7612}
7613
7614namespace {
7615/// \brief Helper structure used to slice a load in smaller loads.
7616/// Basically a slice is obtained from the following sequence:
7617/// Origin = load Ty1, Base
7618/// Shift = srl Ty1 Origin, CstTy Amount
7619/// Inst = trunc Shift to Ty2
7620///
7621/// Then, it will be rewriten into:
7622/// Slice = load SliceTy, Base + SliceOffset
7623/// [Inst = zext Slice to Ty2], only if SliceTy <> Ty2
7624///
7625/// SliceTy is deduced from the number of bits that are actually used to
7626/// build Inst.
7627struct LoadedSlice {
7628  /// \brief Helper structure used to compute the cost of a slice.
7629  struct Cost {
7630    /// Are we optimizing for code size.
7631    bool ForCodeSize;
7632    /// Various cost.
7633    unsigned Loads;
7634    unsigned Truncates;
7635    unsigned CrossRegisterBanksCopies;
7636    unsigned ZExts;
7637    unsigned Shift;
7638
7639    Cost(bool ForCodeSize = false)
7640        : ForCodeSize(ForCodeSize), Loads(0), Truncates(0),
7641          CrossRegisterBanksCopies(0), ZExts(0), Shift(0) {}
7642
7643    /// \brief Get the cost of one isolated slice.
7644    Cost(const LoadedSlice &LS, bool ForCodeSize = false)
7645        : ForCodeSize(ForCodeSize), Loads(1), Truncates(0),
7646          CrossRegisterBanksCopies(0), ZExts(0), Shift(0) {
7647      EVT TruncType = LS.Inst->getValueType(0);
7648      EVT LoadedType = LS.getLoadedType();
7649      if (TruncType != LoadedType &&
7650          !LS.DAG->getTargetLoweringInfo().isZExtFree(LoadedType, TruncType))
7651        ZExts = 1;
7652    }
7653
7654    /// \brief Account for slicing gain in the current cost.
7655    /// Slicing provide a few gains like removing a shift or a
7656    /// truncate. This method allows to grow the cost of the original
7657    /// load with the gain from this slice.
7658    void addSliceGain(const LoadedSlice &LS) {
7659      // Each slice saves a truncate.
7660      const TargetLowering &TLI = LS.DAG->getTargetLoweringInfo();
7661      if (!TLI.isTruncateFree(LS.Inst->getValueType(0),
7662                              LS.Inst->getOperand(0).getValueType()))
7663        ++Truncates;
7664      // If there is a shift amount, this slice gets rid of it.
7665      if (LS.Shift)
7666        ++Shift;
7667      // If this slice can merge a cross register bank copy, account for it.
7668      if (LS.canMergeExpensiveCrossRegisterBankCopy())
7669        ++CrossRegisterBanksCopies;
7670    }
7671
7672    Cost &operator+=(const Cost &RHS) {
7673      Loads += RHS.Loads;
7674      Truncates += RHS.Truncates;
7675      CrossRegisterBanksCopies += RHS.CrossRegisterBanksCopies;
7676      ZExts += RHS.ZExts;
7677      Shift += RHS.Shift;
7678      return *this;
7679    }
7680
7681    bool operator==(const Cost &RHS) const {
7682      return Loads == RHS.Loads && Truncates == RHS.Truncates &&
7683             CrossRegisterBanksCopies == RHS.CrossRegisterBanksCopies &&
7684             ZExts == RHS.ZExts && Shift == RHS.Shift;
7685    }
7686
7687    bool operator!=(const Cost &RHS) const { return !(*this == RHS); }
7688
7689    bool operator<(const Cost &RHS) const {
7690      // Assume cross register banks copies are as expensive as loads.
7691      // FIXME: Do we want some more target hooks?
7692      unsigned ExpensiveOpsLHS = Loads + CrossRegisterBanksCopies;
7693      unsigned ExpensiveOpsRHS = RHS.Loads + RHS.CrossRegisterBanksCopies;
7694      // Unless we are optimizing for code size, consider the
7695      // expensive operation first.
7696      if (!ForCodeSize && ExpensiveOpsLHS != ExpensiveOpsRHS)
7697        return ExpensiveOpsLHS < ExpensiveOpsRHS;
7698      return (Truncates + ZExts + Shift + ExpensiveOpsLHS) <
7699             (RHS.Truncates + RHS.ZExts + RHS.Shift + ExpensiveOpsRHS);
7700    }
7701
7702    bool operator>(const Cost &RHS) const { return RHS < *this; }
7703
7704    bool operator<=(const Cost &RHS) const { return !(RHS < *this); }
7705
7706    bool operator>=(const Cost &RHS) const { return !(*this < RHS); }
7707  };
7708  // The last instruction that represent the slice. This should be a
7709  // truncate instruction.
7710  SDNode *Inst;
7711  // The original load instruction.
7712  LoadSDNode *Origin;
7713  // The right shift amount in bits from the original load.
7714  unsigned Shift;
7715  // The DAG from which Origin came from.
7716  // This is used to get some contextual information about legal types, etc.
7717  SelectionDAG *DAG;
7718
7719  LoadedSlice(SDNode *Inst = NULL, LoadSDNode *Origin = NULL,
7720              unsigned Shift = 0, SelectionDAG *DAG = NULL)
7721      : Inst(Inst), Origin(Origin), Shift(Shift), DAG(DAG) {}
7722
7723  LoadedSlice(const LoadedSlice &LS)
7724      : Inst(LS.Inst), Origin(LS.Origin), Shift(LS.Shift), DAG(LS.DAG) {}
7725
7726  /// \brief Get the bits used in a chunk of bits \p BitWidth large.
7727  /// \return Result is \p BitWidth and has used bits set to 1 and
7728  ///         not used bits set to 0.
7729  APInt getUsedBits() const {
7730    // Reproduce the trunc(lshr) sequence:
7731    // - Start from the truncated value.
7732    // - Zero extend to the desired bit width.
7733    // - Shift left.
7734    assert(Origin && "No original load to compare against.");
7735    unsigned BitWidth = Origin->getValueSizeInBits(0);
7736    assert(Inst && "This slice is not bound to an instruction");
7737    assert(Inst->getValueSizeInBits(0) <= BitWidth &&
7738           "Extracted slice is bigger than the whole type!");
7739    APInt UsedBits(Inst->getValueSizeInBits(0), 0);
7740    UsedBits.setAllBits();
7741    UsedBits = UsedBits.zext(BitWidth);
7742    UsedBits <<= Shift;
7743    return UsedBits;
7744  }
7745
7746  /// \brief Get the size of the slice to be loaded in bytes.
7747  unsigned getLoadedSize() const {
7748    unsigned SliceSize = getUsedBits().countPopulation();
7749    assert(!(SliceSize & 0x7) && "Size is not a multiple of a byte.");
7750    return SliceSize / 8;
7751  }
7752
7753  /// \brief Get the type that will be loaded for this slice.
7754  /// Note: This may not be the final type for the slice.
7755  EVT getLoadedType() const {
7756    assert(DAG && "Missing context");
7757    LLVMContext &Ctxt = *DAG->getContext();
7758    return EVT::getIntegerVT(Ctxt, getLoadedSize() * 8);
7759  }
7760
7761  /// \brief Get the alignment of the load used for this slice.
7762  unsigned getAlignment() const {
7763    unsigned Alignment = Origin->getAlignment();
7764    unsigned Offset = getOffsetFromBase();
7765    if (Offset != 0)
7766      Alignment = MinAlign(Alignment, Alignment + Offset);
7767    return Alignment;
7768  }
7769
7770  /// \brief Check if this slice can be rewritten with legal operations.
7771  bool isLegal() const {
7772    // An invalid slice is not legal.
7773    if (!Origin || !Inst || !DAG)
7774      return false;
7775
7776    // Offsets are for indexed load only, we do not handle that.
7777    if (Origin->getOffset().getOpcode() != ISD::UNDEF)
7778      return false;
7779
7780    const TargetLowering &TLI = DAG->getTargetLoweringInfo();
7781
7782    // Check that the type is legal.
7783    EVT SliceType = getLoadedType();
7784    if (!TLI.isTypeLegal(SliceType))
7785      return false;
7786
7787    // Check that the load is legal for this type.
7788    if (!TLI.isOperationLegal(ISD::LOAD, SliceType))
7789      return false;
7790
7791    // Check that the offset can be computed.
7792    // 1. Check its type.
7793    EVT PtrType = Origin->getBasePtr().getValueType();
7794    if (PtrType == MVT::Untyped || PtrType.isExtended())
7795      return false;
7796
7797    // 2. Check that it fits in the immediate.
7798    if (!TLI.isLegalAddImmediate(getOffsetFromBase()))
7799      return false;
7800
7801    // 3. Check that the computation is legal.
7802    if (!TLI.isOperationLegal(ISD::ADD, PtrType))
7803      return false;
7804
7805    // Check that the zext is legal if it needs one.
7806    EVT TruncateType = Inst->getValueType(0);
7807    if (TruncateType != SliceType &&
7808        !TLI.isOperationLegal(ISD::ZERO_EXTEND, TruncateType))
7809      return false;
7810
7811    return true;
7812  }
7813
7814  /// \brief Get the offset in bytes of this slice in the original chunk of
7815  /// bits.
7816  /// \pre DAG != NULL.
7817  uint64_t getOffsetFromBase() const {
7818    assert(DAG && "Missing context.");
7819    bool IsBigEndian =
7820        DAG->getTargetLoweringInfo().getDataLayout()->isBigEndian();
7821    assert(!(Shift & 0x7) && "Shifts not aligned on Bytes are not supported.");
7822    uint64_t Offset = Shift / 8;
7823    unsigned TySizeInBytes = Origin->getValueSizeInBits(0) / 8;
7824    assert(!(Origin->getValueSizeInBits(0) & 0x7) &&
7825           "The size of the original loaded type is not a multiple of a"
7826           " byte.");
7827    // If Offset is bigger than TySizeInBytes, it means we are loading all
7828    // zeros. This should have been optimized before in the process.
7829    assert(TySizeInBytes > Offset &&
7830           "Invalid shift amount for given loaded size");
7831    if (IsBigEndian)
7832      Offset = TySizeInBytes - Offset - getLoadedSize();
7833    return Offset;
7834  }
7835
7836  /// \brief Generate the sequence of instructions to load the slice
7837  /// represented by this object and redirect the uses of this slice to
7838  /// this new sequence of instructions.
7839  /// \pre this->Inst && this->Origin are valid Instructions and this
7840  /// object passed the legal check: LoadedSlice::isLegal returned true.
7841  /// \return The last instruction of the sequence used to load the slice.
7842  SDValue loadSlice() const {
7843    assert(Inst && Origin && "Unable to replace a non-existing slice.");
7844    const SDValue &OldBaseAddr = Origin->getBasePtr();
7845    SDValue BaseAddr = OldBaseAddr;
7846    // Get the offset in that chunk of bytes w.r.t. the endianess.
7847    int64_t Offset = static_cast<int64_t>(getOffsetFromBase());
7848    assert(Offset >= 0 && "Offset too big to fit in int64_t!");
7849    if (Offset) {
7850      // BaseAddr = BaseAddr + Offset.
7851      EVT ArithType = BaseAddr.getValueType();
7852      BaseAddr = DAG->getNode(ISD::ADD, SDLoc(Origin), ArithType, BaseAddr,
7853                              DAG->getConstant(Offset, ArithType));
7854    }
7855
7856    // Create the type of the loaded slice according to its size.
7857    EVT SliceType = getLoadedType();
7858
7859    // Create the load for the slice.
7860    SDValue LastInst = DAG->getLoad(
7861        SliceType, SDLoc(Origin), Origin->getChain(), BaseAddr,
7862        Origin->getPointerInfo().getWithOffset(Offset), Origin->isVolatile(),
7863        Origin->isNonTemporal(), Origin->isInvariant(), getAlignment());
7864    // If the final type is not the same as the loaded type, this means that
7865    // we have to pad with zero. Create a zero extend for that.
7866    EVT FinalType = Inst->getValueType(0);
7867    if (SliceType != FinalType)
7868      LastInst =
7869          DAG->getNode(ISD::ZERO_EXTEND, SDLoc(LastInst), FinalType, LastInst);
7870    return LastInst;
7871  }
7872
7873  /// \brief Check if this slice can be merged with an expensive cross register
7874  /// bank copy. E.g.,
7875  /// i = load i32
7876  /// f = bitcast i32 i to float
7877  bool canMergeExpensiveCrossRegisterBankCopy() const {
7878    if (!Inst || !Inst->hasOneUse())
7879      return false;
7880    SDNode *Use = *Inst->use_begin();
7881    if (Use->getOpcode() != ISD::BITCAST)
7882      return false;
7883    assert(DAG && "Missing context");
7884    const TargetLowering &TLI = DAG->getTargetLoweringInfo();
7885    EVT ResVT = Use->getValueType(0);
7886    const TargetRegisterClass *ResRC = TLI.getRegClassFor(ResVT.getSimpleVT());
7887    const TargetRegisterClass *ArgRC =
7888        TLI.getRegClassFor(Use->getOperand(0).getValueType().getSimpleVT());
7889    if (ArgRC == ResRC || !TLI.isOperationLegal(ISD::LOAD, ResVT))
7890      return false;
7891
7892    // At this point, we know that we perform a cross-register-bank copy.
7893    // Check if it is expensive.
7894    const TargetRegisterInfo *TRI = TLI.getTargetMachine().getRegisterInfo();
7895    // Assume bitcasts are cheap, unless both register classes do not
7896    // explicitly share a common sub class.
7897    if (!TRI || TRI->getCommonSubClass(ArgRC, ResRC))
7898      return false;
7899
7900    // Check if it will be merged with the load.
7901    // 1. Check the alignment constraint.
7902    unsigned RequiredAlignment = TLI.getDataLayout()->getABITypeAlignment(
7903        ResVT.getTypeForEVT(*DAG->getContext()));
7904
7905    if (RequiredAlignment > getAlignment())
7906      return false;
7907
7908    // 2. Check that the load is a legal operation for that type.
7909    if (!TLI.isOperationLegal(ISD::LOAD, ResVT))
7910      return false;
7911
7912    // 3. Check that we do not have a zext in the way.
7913    if (Inst->getValueType(0) != getLoadedType())
7914      return false;
7915
7916    return true;
7917  }
7918};
7919}
7920
7921/// \brief Sorts LoadedSlice according to their offset.
7922struct LoadedSliceSorter {
7923  bool operator()(const LoadedSlice &LHS, const LoadedSlice &RHS) {
7924    assert(LHS.Origin == RHS.Origin && "Different bases not implemented.");
7925    return LHS.getOffsetFromBase() < RHS.getOffsetFromBase();
7926  }
7927};
7928
7929/// \brief Check that all bits set in \p UsedBits form a dense region, i.e.,
7930/// \p UsedBits looks like 0..0 1..1 0..0.
7931static bool areUsedBitsDense(const APInt &UsedBits) {
7932  // If all the bits are one, this is dense!
7933  if (UsedBits.isAllOnesValue())
7934    return true;
7935
7936  // Get rid of the unused bits on the right.
7937  APInt NarrowedUsedBits = UsedBits.lshr(UsedBits.countTrailingZeros());
7938  // Get rid of the unused bits on the left.
7939  if (NarrowedUsedBits.countLeadingZeros())
7940    NarrowedUsedBits = NarrowedUsedBits.trunc(NarrowedUsedBits.getActiveBits());
7941  // Check that the chunk of bits is completely used.
7942  return NarrowedUsedBits.isAllOnesValue();
7943}
7944
7945/// \brief Check whether or not \p First and \p Second are next to each other
7946/// in memory. This means that there is no hole between the bits loaded
7947/// by \p First and the bits loaded by \p Second.
7948static bool areSlicesNextToEachOther(const LoadedSlice &First,
7949                                     const LoadedSlice &Second) {
7950  assert(First.Origin == Second.Origin && First.Origin &&
7951         "Unable to match different memory origins.");
7952  APInt UsedBits = First.getUsedBits();
7953  assert((UsedBits & Second.getUsedBits()) == 0 &&
7954         "Slices are not supposed to overlap.");
7955  UsedBits |= Second.getUsedBits();
7956  return areUsedBitsDense(UsedBits);
7957}
7958
7959/// \brief Adjust the \p GlobalLSCost according to the target
7960/// paring capabilities and the layout of the slices.
7961/// \pre \p GlobalLSCost should account for at least as many loads as
7962/// there is in the slices in \p LoadedSlices.
7963static void adjustCostForPairing(SmallVectorImpl<LoadedSlice> &LoadedSlices,
7964                                 LoadedSlice::Cost &GlobalLSCost) {
7965  unsigned NumberOfSlices = LoadedSlices.size();
7966  // If there is less than 2 elements, no pairing is possible.
7967  if (NumberOfSlices < 2)
7968    return;
7969
7970  // Sort the slices so that elements that are likely to be next to each
7971  // other in memory are next to each other in the list.
7972  std::sort(LoadedSlices.begin(), LoadedSlices.end(), LoadedSliceSorter());
7973  const TargetLowering &TLI = LoadedSlices[0].DAG->getTargetLoweringInfo();
7974  // First (resp. Second) is the first (resp. Second) potentially candidate
7975  // to be placed in a paired load.
7976  const LoadedSlice *First = NULL;
7977  const LoadedSlice *Second = NULL;
7978  for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice,
7979                // Set the beginning of the pair.
7980                                                           First = Second) {
7981
7982    Second = &LoadedSlices[CurrSlice];
7983
7984    // If First is NULL, it means we start a new pair.
7985    // Get to the next slice.
7986    if (!First)
7987      continue;
7988
7989    EVT LoadedType = First->getLoadedType();
7990
7991    // If the types of the slices are different, we cannot pair them.
7992    if (LoadedType != Second->getLoadedType())
7993      continue;
7994
7995    // Check if the target supplies paired loads for this type.
7996    unsigned RequiredAlignment = 0;
7997    if (!TLI.hasPairedLoad(LoadedType, RequiredAlignment)) {
7998      // move to the next pair, this type is hopeless.
7999      Second = NULL;
8000      continue;
8001    }
8002    // Check if we meet the alignment requirement.
8003    if (RequiredAlignment > First->getAlignment())
8004      continue;
8005
8006    // Check that both loads are next to each other in memory.
8007    if (!areSlicesNextToEachOther(*First, *Second))
8008      continue;
8009
8010    assert(GlobalLSCost.Loads > 0 && "We save more loads than we created!");
8011    --GlobalLSCost.Loads;
8012    // Move to the next pair.
8013    Second = NULL;
8014  }
8015}
8016
8017/// \brief Check the profitability of all involved LoadedSlice.
8018/// Currently, it is considered profitable if there is exactly two
8019/// involved slices (1) which are (2) next to each other in memory, and
8020/// whose cost (\see LoadedSlice::Cost) is smaller than the original load (3).
8021///
8022/// Note: The order of the elements in \p LoadedSlices may be modified, but not
8023/// the elements themselves.
8024///
8025/// FIXME: When the cost model will be mature enough, we can relax
8026/// constraints (1) and (2).
8027static bool isSlicingProfitable(SmallVectorImpl<LoadedSlice> &LoadedSlices,
8028                                const APInt &UsedBits, bool ForCodeSize) {
8029  unsigned NumberOfSlices = LoadedSlices.size();
8030  if (StressLoadSlicing)
8031    return NumberOfSlices > 1;
8032
8033  // Check (1).
8034  if (NumberOfSlices != 2)
8035    return false;
8036
8037  // Check (2).
8038  if (!areUsedBitsDense(UsedBits))
8039    return false;
8040
8041  // Check (3).
8042  LoadedSlice::Cost OrigCost(ForCodeSize), GlobalSlicingCost(ForCodeSize);
8043  // The original code has one big load.
8044  OrigCost.Loads = 1;
8045  for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice) {
8046    const LoadedSlice &LS = LoadedSlices[CurrSlice];
8047    // Accumulate the cost of all the slices.
8048    LoadedSlice::Cost SliceCost(LS, ForCodeSize);
8049    GlobalSlicingCost += SliceCost;
8050
8051    // Account as cost in the original configuration the gain obtained
8052    // with the current slices.
8053    OrigCost.addSliceGain(LS);
8054  }
8055
8056  // If the target supports paired load, adjust the cost accordingly.
8057  adjustCostForPairing(LoadedSlices, GlobalSlicingCost);
8058  return OrigCost > GlobalSlicingCost;
8059}
8060
8061/// \brief If the given load, \p LI, is used only by trunc or trunc(lshr)
8062/// operations, split it in the various pieces being extracted.
8063///
8064/// This sort of thing is introduced by SROA.
8065/// This slicing takes care not to insert overlapping loads.
8066/// \pre LI is a simple load (i.e., not an atomic or volatile load).
8067bool DAGCombiner::SliceUpLoad(SDNode *N) {
8068  if (Level < AfterLegalizeDAG)
8069    return false;
8070
8071  LoadSDNode *LD = cast<LoadSDNode>(N);
8072  if (LD->isVolatile() || !ISD::isNormalLoad(LD) ||
8073      !LD->getValueType(0).isInteger())
8074    return false;
8075
8076  // Keep track of already used bits to detect overlapping values.
8077  // In that case, we will just abort the transformation.
8078  APInt UsedBits(LD->getValueSizeInBits(0), 0);
8079
8080  SmallVector<LoadedSlice, 4> LoadedSlices;
8081
8082  // Check if this load is used as several smaller chunks of bits.
8083  // Basically, look for uses in trunc or trunc(lshr) and record a new chain
8084  // of computation for each trunc.
8085  for (SDNode::use_iterator UI = LD->use_begin(), UIEnd = LD->use_end();
8086       UI != UIEnd; ++UI) {
8087    // Skip the uses of the chain.
8088    if (UI.getUse().getResNo() != 0)
8089      continue;
8090
8091    SDNode *User = *UI;
8092    unsigned Shift = 0;
8093
8094    // Check if this is a trunc(lshr).
8095    if (User->getOpcode() == ISD::SRL && User->hasOneUse() &&
8096        isa<ConstantSDNode>(User->getOperand(1))) {
8097      Shift = cast<ConstantSDNode>(User->getOperand(1))->getZExtValue();
8098      User = *User->use_begin();
8099    }
8100
8101    // At this point, User is a Truncate, iff we encountered, trunc or
8102    // trunc(lshr).
8103    if (User->getOpcode() != ISD::TRUNCATE)
8104      return false;
8105
8106    // The width of the type must be a power of 2 and greater than 8-bits.
8107    // Otherwise the load cannot be represented in LLVM IR.
8108    // Moreover, if we shifted with a non 8-bits multiple, the slice
8109    // will be accross several bytes. We do not support that.
8110    unsigned Width = User->getValueSizeInBits(0);
8111    if (Width < 8 || !isPowerOf2_32(Width) || (Shift & 0x7))
8112      return 0;
8113
8114    // Build the slice for this chain of computations.
8115    LoadedSlice LS(User, LD, Shift, &DAG);
8116    APInt CurrentUsedBits = LS.getUsedBits();
8117
8118    // Check if this slice overlaps with another.
8119    if ((CurrentUsedBits & UsedBits) != 0)
8120      return false;
8121    // Update the bits used globally.
8122    UsedBits |= CurrentUsedBits;
8123
8124    // Check if the new slice would be legal.
8125    if (!LS.isLegal())
8126      return false;
8127
8128    // Record the slice.
8129    LoadedSlices.push_back(LS);
8130  }
8131
8132  // Abort slicing if it does not seem to be profitable.
8133  if (!isSlicingProfitable(LoadedSlices, UsedBits, ForCodeSize))
8134    return false;
8135
8136  ++SlicedLoads;
8137
8138  // Rewrite each chain to use an independent load.
8139  // By construction, each chain can be represented by a unique load.
8140
8141  // Prepare the argument for the new token factor for all the slices.
8142  SmallVector<SDValue, 8> ArgChains;
8143  for (SmallVectorImpl<LoadedSlice>::const_iterator
8144           LSIt = LoadedSlices.begin(),
8145           LSItEnd = LoadedSlices.end();
8146       LSIt != LSItEnd; ++LSIt) {
8147    SDValue SliceInst = LSIt->loadSlice();
8148    CombineTo(LSIt->Inst, SliceInst, true);
8149    if (SliceInst.getNode()->getOpcode() != ISD::LOAD)
8150      SliceInst = SliceInst.getOperand(0);
8151    assert(SliceInst->getOpcode() == ISD::LOAD &&
8152           "It takes more than a zext to get to the loaded slice!!");
8153    ArgChains.push_back(SliceInst.getValue(1));
8154  }
8155
8156  SDValue Chain = DAG.getNode(ISD::TokenFactor, SDLoc(LD), MVT::Other,
8157                              &ArgChains[0], ArgChains.size());
8158  DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain);
8159  return true;
8160}
8161
8162/// CheckForMaskedLoad - Check to see if V is (and load (ptr), imm), where the
8163/// load is having specific bytes cleared out.  If so, return the byte size
8164/// being masked out and the shift amount.
8165static std::pair<unsigned, unsigned>
8166CheckForMaskedLoad(SDValue V, SDValue Ptr, SDValue Chain) {
8167  std::pair<unsigned, unsigned> Result(0, 0);
8168
8169  // Check for the structure we're looking for.
8170  if (V->getOpcode() != ISD::AND ||
8171      !isa<ConstantSDNode>(V->getOperand(1)) ||
8172      !ISD::isNormalLoad(V->getOperand(0).getNode()))
8173    return Result;
8174
8175  // Check the chain and pointer.
8176  LoadSDNode *LD = cast<LoadSDNode>(V->getOperand(0));
8177  if (LD->getBasePtr() != Ptr) return Result;  // Not from same pointer.
8178
8179  // The store should be chained directly to the load or be an operand of a
8180  // tokenfactor.
8181  if (LD == Chain.getNode())
8182    ; // ok.
8183  else if (Chain->getOpcode() != ISD::TokenFactor)
8184    return Result; // Fail.
8185  else {
8186    bool isOk = false;
8187    for (unsigned i = 0, e = Chain->getNumOperands(); i != e; ++i)
8188      if (Chain->getOperand(i).getNode() == LD) {
8189        isOk = true;
8190        break;
8191      }
8192    if (!isOk) return Result;
8193  }
8194
8195  // This only handles simple types.
8196  if (V.getValueType() != MVT::i16 &&
8197      V.getValueType() != MVT::i32 &&
8198      V.getValueType() != MVT::i64)
8199    return Result;
8200
8201  // Check the constant mask.  Invert it so that the bits being masked out are
8202  // 0 and the bits being kept are 1.  Use getSExtValue so that leading bits
8203  // follow the sign bit for uniformity.
8204  uint64_t NotMask = ~cast<ConstantSDNode>(V->getOperand(1))->getSExtValue();
8205  unsigned NotMaskLZ = countLeadingZeros(NotMask);
8206  if (NotMaskLZ & 7) return Result;  // Must be multiple of a byte.
8207  unsigned NotMaskTZ = countTrailingZeros(NotMask);
8208  if (NotMaskTZ & 7) return Result;  // Must be multiple of a byte.
8209  if (NotMaskLZ == 64) return Result;  // All zero mask.
8210
8211  // See if we have a continuous run of bits.  If so, we have 0*1+0*
8212  if (CountTrailingOnes_64(NotMask >> NotMaskTZ)+NotMaskTZ+NotMaskLZ != 64)
8213    return Result;
8214
8215  // Adjust NotMaskLZ down to be from the actual size of the int instead of i64.
8216  if (V.getValueType() != MVT::i64 && NotMaskLZ)
8217    NotMaskLZ -= 64-V.getValueSizeInBits();
8218
8219  unsigned MaskedBytes = (V.getValueSizeInBits()-NotMaskLZ-NotMaskTZ)/8;
8220  switch (MaskedBytes) {
8221  case 1:
8222  case 2:
8223  case 4: break;
8224  default: return Result; // All one mask, or 5-byte mask.
8225  }
8226
8227  // Verify that the first bit starts at a multiple of mask so that the access
8228  // is aligned the same as the access width.
8229  if (NotMaskTZ && NotMaskTZ/8 % MaskedBytes) return Result;
8230
8231  Result.first = MaskedBytes;
8232  Result.second = NotMaskTZ/8;
8233  return Result;
8234}
8235
8236
8237/// ShrinkLoadReplaceStoreWithStore - Check to see if IVal is something that
8238/// provides a value as specified by MaskInfo.  If so, replace the specified
8239/// store with a narrower store of truncated IVal.
8240static SDNode *
8241ShrinkLoadReplaceStoreWithStore(const std::pair<unsigned, unsigned> &MaskInfo,
8242                                SDValue IVal, StoreSDNode *St,
8243                                DAGCombiner *DC) {
8244  unsigned NumBytes = MaskInfo.first;
8245  unsigned ByteShift = MaskInfo.second;
8246  SelectionDAG &DAG = DC->getDAG();
8247
8248  // Check to see if IVal is all zeros in the part being masked in by the 'or'
8249  // that uses this.  If not, this is not a replacement.
8250  APInt Mask = ~APInt::getBitsSet(IVal.getValueSizeInBits(),
8251                                  ByteShift*8, (ByteShift+NumBytes)*8);
8252  if (!DAG.MaskedValueIsZero(IVal, Mask)) return 0;
8253
8254  // Check that it is legal on the target to do this.  It is legal if the new
8255  // VT we're shrinking to (i8/i16/i32) is legal or we're still before type
8256  // legalization.
8257  MVT VT = MVT::getIntegerVT(NumBytes*8);
8258  if (!DC->isTypeLegal(VT))
8259    return 0;
8260
8261  // Okay, we can do this!  Replace the 'St' store with a store of IVal that is
8262  // shifted by ByteShift and truncated down to NumBytes.
8263  if (ByteShift)
8264    IVal = DAG.getNode(ISD::SRL, SDLoc(IVal), IVal.getValueType(), IVal,
8265                       DAG.getConstant(ByteShift*8,
8266                                    DC->getShiftAmountTy(IVal.getValueType())));
8267
8268  // Figure out the offset for the store and the alignment of the access.
8269  unsigned StOffset;
8270  unsigned NewAlign = St->getAlignment();
8271
8272  if (DAG.getTargetLoweringInfo().isLittleEndian())
8273    StOffset = ByteShift;
8274  else
8275    StOffset = IVal.getValueType().getStoreSize() - ByteShift - NumBytes;
8276
8277  SDValue Ptr = St->getBasePtr();
8278  if (StOffset) {
8279    Ptr = DAG.getNode(ISD::ADD, SDLoc(IVal), Ptr.getValueType(),
8280                      Ptr, DAG.getConstant(StOffset, Ptr.getValueType()));
8281    NewAlign = MinAlign(NewAlign, StOffset);
8282  }
8283
8284  // Truncate down to the new size.
8285  IVal = DAG.getNode(ISD::TRUNCATE, SDLoc(IVal), VT, IVal);
8286
8287  ++OpsNarrowed;
8288  return DAG.getStore(St->getChain(), SDLoc(St), IVal, Ptr,
8289                      St->getPointerInfo().getWithOffset(StOffset),
8290                      false, false, NewAlign).getNode();
8291}
8292
8293
8294/// ReduceLoadOpStoreWidth - Look for sequence of load / op / store where op is
8295/// one of 'or', 'xor', and 'and' of immediates. If 'op' is only touching some
8296/// of the loaded bits, try narrowing the load and store if it would end up
8297/// being a win for performance or code size.
8298SDValue DAGCombiner::ReduceLoadOpStoreWidth(SDNode *N) {
8299  StoreSDNode *ST  = cast<StoreSDNode>(N);
8300  if (ST->isVolatile())
8301    return SDValue();
8302
8303  SDValue Chain = ST->getChain();
8304  SDValue Value = ST->getValue();
8305  SDValue Ptr   = ST->getBasePtr();
8306  EVT VT = Value.getValueType();
8307
8308  if (ST->isTruncatingStore() || VT.isVector() || !Value.hasOneUse())
8309    return SDValue();
8310
8311  unsigned Opc = Value.getOpcode();
8312
8313  // If this is "store (or X, Y), P" and X is "(and (load P), cst)", where cst
8314  // is a byte mask indicating a consecutive number of bytes, check to see if
8315  // Y is known to provide just those bytes.  If so, we try to replace the
8316  // load + replace + store sequence with a single (narrower) store, which makes
8317  // the load dead.
8318  if (Opc == ISD::OR) {
8319    std::pair<unsigned, unsigned> MaskedLoad;
8320    MaskedLoad = CheckForMaskedLoad(Value.getOperand(0), Ptr, Chain);
8321    if (MaskedLoad.first)
8322      if (SDNode *NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad,
8323                                                  Value.getOperand(1), ST,this))
8324        return SDValue(NewST, 0);
8325
8326    // Or is commutative, so try swapping X and Y.
8327    MaskedLoad = CheckForMaskedLoad(Value.getOperand(1), Ptr, Chain);
8328    if (MaskedLoad.first)
8329      if (SDNode *NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad,
8330                                                  Value.getOperand(0), ST,this))
8331        return SDValue(NewST, 0);
8332  }
8333
8334  if ((Opc != ISD::OR && Opc != ISD::XOR && Opc != ISD::AND) ||
8335      Value.getOperand(1).getOpcode() != ISD::Constant)
8336    return SDValue();
8337
8338  SDValue N0 = Value.getOperand(0);
8339  if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
8340      Chain == SDValue(N0.getNode(), 1)) {
8341    LoadSDNode *LD = cast<LoadSDNode>(N0);
8342    if (LD->getBasePtr() != Ptr ||
8343        LD->getPointerInfo().getAddrSpace() !=
8344        ST->getPointerInfo().getAddrSpace())
8345      return SDValue();
8346
8347    // Find the type to narrow it the load / op / store to.
8348    SDValue N1 = Value.getOperand(1);
8349    unsigned BitWidth = N1.getValueSizeInBits();
8350    APInt Imm = cast<ConstantSDNode>(N1)->getAPIntValue();
8351    if (Opc == ISD::AND)
8352      Imm ^= APInt::getAllOnesValue(BitWidth);
8353    if (Imm == 0 || Imm.isAllOnesValue())
8354      return SDValue();
8355    unsigned ShAmt = Imm.countTrailingZeros();
8356    unsigned MSB = BitWidth - Imm.countLeadingZeros() - 1;
8357    unsigned NewBW = NextPowerOf2(MSB - ShAmt);
8358    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW);
8359    while (NewBW < BitWidth &&
8360           !(TLI.isOperationLegalOrCustom(Opc, NewVT) &&
8361             TLI.isNarrowingProfitable(VT, NewVT))) {
8362      NewBW = NextPowerOf2(NewBW);
8363      NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW);
8364    }
8365    if (NewBW >= BitWidth)
8366      return SDValue();
8367
8368    // If the lsb changed does not start at the type bitwidth boundary,
8369    // start at the previous one.
8370    if (ShAmt % NewBW)
8371      ShAmt = (((ShAmt + NewBW - 1) / NewBW) * NewBW) - NewBW;
8372    APInt Mask = APInt::getBitsSet(BitWidth, ShAmt,
8373                                   std::min(BitWidth, ShAmt + NewBW));
8374    if ((Imm & Mask) == Imm) {
8375      APInt NewImm = (Imm & Mask).lshr(ShAmt).trunc(NewBW);
8376      if (Opc == ISD::AND)
8377        NewImm ^= APInt::getAllOnesValue(NewBW);
8378      uint64_t PtrOff = ShAmt / 8;
8379      // For big endian targets, we need to adjust the offset to the pointer to
8380      // load the correct bytes.
8381      if (TLI.isBigEndian())
8382        PtrOff = (BitWidth + 7 - NewBW) / 8 - PtrOff;
8383
8384      unsigned NewAlign = MinAlign(LD->getAlignment(), PtrOff);
8385      Type *NewVTTy = NewVT.getTypeForEVT(*DAG.getContext());
8386      if (NewAlign < TLI.getDataLayout()->getABITypeAlignment(NewVTTy))
8387        return SDValue();
8388
8389      SDValue NewPtr = DAG.getNode(ISD::ADD, SDLoc(LD),
8390                                   Ptr.getValueType(), Ptr,
8391                                   DAG.getConstant(PtrOff, Ptr.getValueType()));
8392      SDValue NewLD = DAG.getLoad(NewVT, SDLoc(N0),
8393                                  LD->getChain(), NewPtr,
8394                                  LD->getPointerInfo().getWithOffset(PtrOff),
8395                                  LD->isVolatile(), LD->isNonTemporal(),
8396                                  LD->isInvariant(), NewAlign);
8397      SDValue NewVal = DAG.getNode(Opc, SDLoc(Value), NewVT, NewLD,
8398                                   DAG.getConstant(NewImm, NewVT));
8399      SDValue NewST = DAG.getStore(Chain, SDLoc(N),
8400                                   NewVal, NewPtr,
8401                                   ST->getPointerInfo().getWithOffset(PtrOff),
8402                                   false, false, NewAlign);
8403
8404      AddToWorkList(NewPtr.getNode());
8405      AddToWorkList(NewLD.getNode());
8406      AddToWorkList(NewVal.getNode());
8407      WorkListRemover DeadNodes(*this);
8408      DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLD.getValue(1));
8409      ++OpsNarrowed;
8410      return NewST;
8411    }
8412  }
8413
8414  return SDValue();
8415}
8416
8417/// TransformFPLoadStorePair - For a given floating point load / store pair,
8418/// if the load value isn't used by any other operations, then consider
8419/// transforming the pair to integer load / store operations if the target
8420/// deems the transformation profitable.
8421SDValue DAGCombiner::TransformFPLoadStorePair(SDNode *N) {
8422  StoreSDNode *ST  = cast<StoreSDNode>(N);
8423  SDValue Chain = ST->getChain();
8424  SDValue Value = ST->getValue();
8425  if (ISD::isNormalStore(ST) && ISD::isNormalLoad(Value.getNode()) &&
8426      Value.hasOneUse() &&
8427      Chain == SDValue(Value.getNode(), 1)) {
8428    LoadSDNode *LD = cast<LoadSDNode>(Value);
8429    EVT VT = LD->getMemoryVT();
8430    if (!VT.isFloatingPoint() ||
8431        VT != ST->getMemoryVT() ||
8432        LD->isNonTemporal() ||
8433        ST->isNonTemporal() ||
8434        LD->getPointerInfo().getAddrSpace() != 0 ||
8435        ST->getPointerInfo().getAddrSpace() != 0)
8436      return SDValue();
8437
8438    EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
8439    if (!TLI.isOperationLegal(ISD::LOAD, IntVT) ||
8440        !TLI.isOperationLegal(ISD::STORE, IntVT) ||
8441        !TLI.isDesirableToTransformToIntegerOp(ISD::LOAD, VT) ||
8442        !TLI.isDesirableToTransformToIntegerOp(ISD::STORE, VT))
8443      return SDValue();
8444
8445    unsigned LDAlign = LD->getAlignment();
8446    unsigned STAlign = ST->getAlignment();
8447    Type *IntVTTy = IntVT.getTypeForEVT(*DAG.getContext());
8448    unsigned ABIAlign = TLI.getDataLayout()->getABITypeAlignment(IntVTTy);
8449    if (LDAlign < ABIAlign || STAlign < ABIAlign)
8450      return SDValue();
8451
8452    SDValue NewLD = DAG.getLoad(IntVT, SDLoc(Value),
8453                                LD->getChain(), LD->getBasePtr(),
8454                                LD->getPointerInfo(),
8455                                false, false, false, LDAlign);
8456
8457    SDValue NewST = DAG.getStore(NewLD.getValue(1), SDLoc(N),
8458                                 NewLD, ST->getBasePtr(),
8459                                 ST->getPointerInfo(),
8460                                 false, false, STAlign);
8461
8462    AddToWorkList(NewLD.getNode());
8463    AddToWorkList(NewST.getNode());
8464    WorkListRemover DeadNodes(*this);
8465    DAG.ReplaceAllUsesOfValueWith(Value.getValue(1), NewLD.getValue(1));
8466    ++LdStFP2Int;
8467    return NewST;
8468  }
8469
8470  return SDValue();
8471}
8472
8473/// Helper struct to parse and store a memory address as base + index + offset.
8474/// We ignore sign extensions when it is safe to do so.
8475/// The following two expressions are not equivalent. To differentiate we need
8476/// to store whether there was a sign extension involved in the index
8477/// computation.
8478///  (load (i64 add (i64 copyfromreg %c)
8479///                 (i64 signextend (add (i8 load %index)
8480///                                      (i8 1))))
8481/// vs
8482///
8483/// (load (i64 add (i64 copyfromreg %c)
8484///                (i64 signextend (i32 add (i32 signextend (i8 load %index))
8485///                                         (i32 1)))))
8486struct BaseIndexOffset {
8487  SDValue Base;
8488  SDValue Index;
8489  int64_t Offset;
8490  bool IsIndexSignExt;
8491
8492  BaseIndexOffset() : Offset(0), IsIndexSignExt(false) {}
8493
8494  BaseIndexOffset(SDValue Base, SDValue Index, int64_t Offset,
8495                  bool IsIndexSignExt) :
8496    Base(Base), Index(Index), Offset(Offset), IsIndexSignExt(IsIndexSignExt) {}
8497
8498  bool equalBaseIndex(const BaseIndexOffset &Other) {
8499    return Other.Base == Base && Other.Index == Index &&
8500      Other.IsIndexSignExt == IsIndexSignExt;
8501  }
8502
8503  /// Parses tree in Ptr for base, index, offset addresses.
8504  static BaseIndexOffset match(SDValue Ptr) {
8505    bool IsIndexSignExt = false;
8506
8507    // We only can pattern match BASE + INDEX + OFFSET. If Ptr is not an ADD
8508    // instruction, then it could be just the BASE or everything else we don't
8509    // know how to handle. Just use Ptr as BASE and give up.
8510    if (Ptr->getOpcode() != ISD::ADD)
8511      return BaseIndexOffset(Ptr, SDValue(), 0, IsIndexSignExt);
8512
8513    // We know that we have at least an ADD instruction. Try to pattern match
8514    // the simple case of BASE + OFFSET.
8515    if (isa<ConstantSDNode>(Ptr->getOperand(1))) {
8516      int64_t Offset = cast<ConstantSDNode>(Ptr->getOperand(1))->getSExtValue();
8517      return  BaseIndexOffset(Ptr->getOperand(0), SDValue(), Offset,
8518                              IsIndexSignExt);
8519    }
8520
8521    // Inside a loop the current BASE pointer is calculated using an ADD and a
8522    // MUL instruction. In this case Ptr is the actual BASE pointer.
8523    // (i64 add (i64 %array_ptr)
8524    //          (i64 mul (i64 %induction_var)
8525    //                   (i64 %element_size)))
8526    if (Ptr->getOperand(1)->getOpcode() == ISD::MUL)
8527      return BaseIndexOffset(Ptr, SDValue(), 0, IsIndexSignExt);
8528
8529    // Look at Base + Index + Offset cases.
8530    SDValue Base = Ptr->getOperand(0);
8531    SDValue IndexOffset = Ptr->getOperand(1);
8532
8533    // Skip signextends.
8534    if (IndexOffset->getOpcode() == ISD::SIGN_EXTEND) {
8535      IndexOffset = IndexOffset->getOperand(0);
8536      IsIndexSignExt = true;
8537    }
8538
8539    // Either the case of Base + Index (no offset) or something else.
8540    if (IndexOffset->getOpcode() != ISD::ADD)
8541      return BaseIndexOffset(Base, IndexOffset, 0, IsIndexSignExt);
8542
8543    // Now we have the case of Base + Index + offset.
8544    SDValue Index = IndexOffset->getOperand(0);
8545    SDValue Offset = IndexOffset->getOperand(1);
8546
8547    if (!isa<ConstantSDNode>(Offset))
8548      return BaseIndexOffset(Ptr, SDValue(), 0, IsIndexSignExt);
8549
8550    // Ignore signextends.
8551    if (Index->getOpcode() == ISD::SIGN_EXTEND) {
8552      Index = Index->getOperand(0);
8553      IsIndexSignExt = true;
8554    } else IsIndexSignExt = false;
8555
8556    int64_t Off = cast<ConstantSDNode>(Offset)->getSExtValue();
8557    return BaseIndexOffset(Base, Index, Off, IsIndexSignExt);
8558  }
8559};
8560
8561/// Holds a pointer to an LSBaseSDNode as well as information on where it
8562/// is located in a sequence of memory operations connected by a chain.
8563struct MemOpLink {
8564  MemOpLink (LSBaseSDNode *N, int64_t Offset, unsigned Seq):
8565    MemNode(N), OffsetFromBase(Offset), SequenceNum(Seq) { }
8566  // Ptr to the mem node.
8567  LSBaseSDNode *MemNode;
8568  // Offset from the base ptr.
8569  int64_t OffsetFromBase;
8570  // What is the sequence number of this mem node.
8571  // Lowest mem operand in the DAG starts at zero.
8572  unsigned SequenceNum;
8573};
8574
8575/// Sorts store nodes in a link according to their offset from a shared
8576// base ptr.
8577struct ConsecutiveMemoryChainSorter {
8578  bool operator()(MemOpLink LHS, MemOpLink RHS) {
8579    return LHS.OffsetFromBase < RHS.OffsetFromBase;
8580  }
8581};
8582
8583bool DAGCombiner::MergeConsecutiveStores(StoreSDNode* St) {
8584  EVT MemVT = St->getMemoryVT();
8585  int64_t ElementSizeBytes = MemVT.getSizeInBits()/8;
8586  bool NoVectors = DAG.getMachineFunction().getFunction()->getAttributes().
8587    hasAttribute(AttributeSet::FunctionIndex, Attribute::NoImplicitFloat);
8588
8589  // Don't merge vectors into wider inputs.
8590  if (MemVT.isVector() || !MemVT.isSimple())
8591    return false;
8592
8593  // Perform an early exit check. Do not bother looking at stored values that
8594  // are not constants or loads.
8595  SDValue StoredVal = St->getValue();
8596  bool IsLoadSrc = isa<LoadSDNode>(StoredVal);
8597  if (!isa<ConstantSDNode>(StoredVal) && !isa<ConstantFPSDNode>(StoredVal) &&
8598      !IsLoadSrc)
8599    return false;
8600
8601  // Only look at ends of store sequences.
8602  SDValue Chain = SDValue(St, 1);
8603  if (Chain->hasOneUse() && Chain->use_begin()->getOpcode() == ISD::STORE)
8604    return false;
8605
8606  // This holds the base pointer, index, and the offset in bytes from the base
8607  // pointer.
8608  BaseIndexOffset BasePtr = BaseIndexOffset::match(St->getBasePtr());
8609
8610  // We must have a base and an offset.
8611  if (!BasePtr.Base.getNode())
8612    return false;
8613
8614  // Do not handle stores to undef base pointers.
8615  if (BasePtr.Base.getOpcode() == ISD::UNDEF)
8616    return false;
8617
8618  // Save the LoadSDNodes that we find in the chain.
8619  // We need to make sure that these nodes do not interfere with
8620  // any of the store nodes.
8621  SmallVector<LSBaseSDNode*, 8> AliasLoadNodes;
8622
8623  // Save the StoreSDNodes that we find in the chain.
8624  SmallVector<MemOpLink, 8> StoreNodes;
8625
8626  // Walk up the chain and look for nodes with offsets from the same
8627  // base pointer. Stop when reaching an instruction with a different kind
8628  // or instruction which has a different base pointer.
8629  unsigned Seq = 0;
8630  StoreSDNode *Index = St;
8631  while (Index) {
8632    // If the chain has more than one use, then we can't reorder the mem ops.
8633    if (Index != St && !SDValue(Index, 1)->hasOneUse())
8634      break;
8635
8636    // Find the base pointer and offset for this memory node.
8637    BaseIndexOffset Ptr = BaseIndexOffset::match(Index->getBasePtr());
8638
8639    // Check that the base pointer is the same as the original one.
8640    if (!Ptr.equalBaseIndex(BasePtr))
8641      break;
8642
8643    // Check that the alignment is the same.
8644    if (Index->getAlignment() != St->getAlignment())
8645      break;
8646
8647    // The memory operands must not be volatile.
8648    if (Index->isVolatile() || Index->isIndexed())
8649      break;
8650
8651    // No truncation.
8652    if (StoreSDNode *St = dyn_cast<StoreSDNode>(Index))
8653      if (St->isTruncatingStore())
8654        break;
8655
8656    // The stored memory type must be the same.
8657    if (Index->getMemoryVT() != MemVT)
8658      break;
8659
8660    // We do not allow unaligned stores because we want to prevent overriding
8661    // stores.
8662    if (Index->getAlignment()*8 != MemVT.getSizeInBits())
8663      break;
8664
8665    // We found a potential memory operand to merge.
8666    StoreNodes.push_back(MemOpLink(Index, Ptr.Offset, Seq++));
8667
8668    // Find the next memory operand in the chain. If the next operand in the
8669    // chain is a store then move up and continue the scan with the next
8670    // memory operand. If the next operand is a load save it and use alias
8671    // information to check if it interferes with anything.
8672    SDNode *NextInChain = Index->getChain().getNode();
8673    while (1) {
8674      if (StoreSDNode *STn = dyn_cast<StoreSDNode>(NextInChain)) {
8675        // We found a store node. Use it for the next iteration.
8676        Index = STn;
8677        break;
8678      } else if (LoadSDNode *Ldn = dyn_cast<LoadSDNode>(NextInChain)) {
8679        // Save the load node for later. Continue the scan.
8680        AliasLoadNodes.push_back(Ldn);
8681        NextInChain = Ldn->getChain().getNode();
8682        continue;
8683      } else {
8684        Index = NULL;
8685        break;
8686      }
8687    }
8688  }
8689
8690  // Check if there is anything to merge.
8691  if (StoreNodes.size() < 2)
8692    return false;
8693
8694  // Sort the memory operands according to their distance from the base pointer.
8695  std::sort(StoreNodes.begin(), StoreNodes.end(),
8696            ConsecutiveMemoryChainSorter());
8697
8698  // Scan the memory operations on the chain and find the first non-consecutive
8699  // store memory address.
8700  unsigned LastConsecutiveStore = 0;
8701  int64_t StartAddress = StoreNodes[0].OffsetFromBase;
8702  for (unsigned i = 0, e = StoreNodes.size(); i < e; ++i) {
8703
8704    // Check that the addresses are consecutive starting from the second
8705    // element in the list of stores.
8706    if (i > 0) {
8707      int64_t CurrAddress = StoreNodes[i].OffsetFromBase;
8708      if (CurrAddress - StartAddress != (ElementSizeBytes * i))
8709        break;
8710    }
8711
8712    bool Alias = false;
8713    // Check if this store interferes with any of the loads that we found.
8714    for (unsigned ld = 0, lde = AliasLoadNodes.size(); ld < lde; ++ld)
8715      if (isAlias(AliasLoadNodes[ld], StoreNodes[i].MemNode)) {
8716        Alias = true;
8717        break;
8718      }
8719    // We found a load that alias with this store. Stop the sequence.
8720    if (Alias)
8721      break;
8722
8723    // Mark this node as useful.
8724    LastConsecutiveStore = i;
8725  }
8726
8727  // The node with the lowest store address.
8728  LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode;
8729
8730  // Store the constants into memory as one consecutive store.
8731  if (!IsLoadSrc) {
8732    unsigned LastLegalType = 0;
8733    unsigned LastLegalVectorType = 0;
8734    bool NonZero = false;
8735    for (unsigned i=0; i<LastConsecutiveStore+1; ++i) {
8736      StoreSDNode *St  = cast<StoreSDNode>(StoreNodes[i].MemNode);
8737      SDValue StoredVal = St->getValue();
8738
8739      if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(StoredVal)) {
8740        NonZero |= !C->isNullValue();
8741      } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(StoredVal)) {
8742        NonZero |= !C->getConstantFPValue()->isNullValue();
8743      } else {
8744        // Non constant.
8745        break;
8746      }
8747
8748      // Find a legal type for the constant store.
8749      unsigned StoreBW = (i+1) * ElementSizeBytes * 8;
8750      EVT StoreTy = EVT::getIntegerVT(*DAG.getContext(), StoreBW);
8751      if (TLI.isTypeLegal(StoreTy))
8752        LastLegalType = i+1;
8753      // Or check whether a truncstore is legal.
8754      else if (TLI.getTypeAction(*DAG.getContext(), StoreTy) ==
8755               TargetLowering::TypePromoteInteger) {
8756        EVT LegalizedStoredValueTy =
8757          TLI.getTypeToTransformTo(*DAG.getContext(), StoredVal.getValueType());
8758        if (TLI.isTruncStoreLegal(LegalizedStoredValueTy, StoreTy))
8759          LastLegalType = i+1;
8760      }
8761
8762      // Find a legal type for the vector store.
8763      EVT Ty = EVT::getVectorVT(*DAG.getContext(), MemVT, i+1);
8764      if (TLI.isTypeLegal(Ty))
8765        LastLegalVectorType = i + 1;
8766    }
8767
8768    // We only use vectors if the constant is known to be zero and the
8769    // function is not marked with the noimplicitfloat attribute.
8770    if (NonZero || NoVectors)
8771      LastLegalVectorType = 0;
8772
8773    // Check if we found a legal integer type to store.
8774    if (LastLegalType == 0 && LastLegalVectorType == 0)
8775      return false;
8776
8777    bool UseVector = (LastLegalVectorType > LastLegalType) && !NoVectors;
8778    unsigned NumElem = UseVector ? LastLegalVectorType : LastLegalType;
8779
8780    // Make sure we have something to merge.
8781    if (NumElem < 2)
8782      return false;
8783
8784    unsigned EarliestNodeUsed = 0;
8785    for (unsigned i=0; i < NumElem; ++i) {
8786      // Find a chain for the new wide-store operand. Notice that some
8787      // of the store nodes that we found may not be selected for inclusion
8788      // in the wide store. The chain we use needs to be the chain of the
8789      // earliest store node which is *used* and replaced by the wide store.
8790      if (StoreNodes[i].SequenceNum > StoreNodes[EarliestNodeUsed].SequenceNum)
8791        EarliestNodeUsed = i;
8792    }
8793
8794    // The earliest Node in the DAG.
8795    LSBaseSDNode *EarliestOp = StoreNodes[EarliestNodeUsed].MemNode;
8796    SDLoc DL(StoreNodes[0].MemNode);
8797
8798    SDValue StoredVal;
8799    if (UseVector) {
8800      // Find a legal type for the vector store.
8801      EVT Ty = EVT::getVectorVT(*DAG.getContext(), MemVT, NumElem);
8802      assert(TLI.isTypeLegal(Ty) && "Illegal vector store");
8803      StoredVal = DAG.getConstant(0, Ty);
8804    } else {
8805      unsigned StoreBW = NumElem * ElementSizeBytes * 8;
8806      APInt StoreInt(StoreBW, 0);
8807
8808      // Construct a single integer constant which is made of the smaller
8809      // constant inputs.
8810      bool IsLE = TLI.isLittleEndian();
8811      for (unsigned i = 0; i < NumElem ; ++i) {
8812        unsigned Idx = IsLE ?(NumElem - 1 - i) : i;
8813        StoreSDNode *St  = cast<StoreSDNode>(StoreNodes[Idx].MemNode);
8814        SDValue Val = St->getValue();
8815        StoreInt<<=ElementSizeBytes*8;
8816        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) {
8817          StoreInt|=C->getAPIntValue().zext(StoreBW);
8818        } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Val)) {
8819          StoreInt|= C->getValueAPF().bitcastToAPInt().zext(StoreBW);
8820        } else {
8821          assert(false && "Invalid constant element type");
8822        }
8823      }
8824
8825      // Create the new Load and Store operations.
8826      EVT StoreTy = EVT::getIntegerVT(*DAG.getContext(), StoreBW);
8827      StoredVal = DAG.getConstant(StoreInt, StoreTy);
8828    }
8829
8830    SDValue NewStore = DAG.getStore(EarliestOp->getChain(), DL, StoredVal,
8831                                    FirstInChain->getBasePtr(),
8832                                    FirstInChain->getPointerInfo(),
8833                                    false, false,
8834                                    FirstInChain->getAlignment());
8835
8836    // Replace the first store with the new store
8837    CombineTo(EarliestOp, NewStore);
8838    // Erase all other stores.
8839    for (unsigned i = 0; i < NumElem ; ++i) {
8840      if (StoreNodes[i].MemNode == EarliestOp)
8841        continue;
8842      StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode);
8843      // ReplaceAllUsesWith will replace all uses that existed when it was
8844      // called, but graph optimizations may cause new ones to appear. For
8845      // example, the case in pr14333 looks like
8846      //
8847      //  St's chain -> St -> another store -> X
8848      //
8849      // And the only difference from St to the other store is the chain.
8850      // When we change it's chain to be St's chain they become identical,
8851      // get CSEed and the net result is that X is now a use of St.
8852      // Since we know that St is redundant, just iterate.
8853      while (!St->use_empty())
8854        DAG.ReplaceAllUsesWith(SDValue(St, 0), St->getChain());
8855      removeFromWorkList(St);
8856      DAG.DeleteNode(St);
8857    }
8858
8859    return true;
8860  }
8861
8862  // Below we handle the case of multiple consecutive stores that
8863  // come from multiple consecutive loads. We merge them into a single
8864  // wide load and a single wide store.
8865
8866  // Look for load nodes which are used by the stored values.
8867  SmallVector<MemOpLink, 8> LoadNodes;
8868
8869  // Find acceptable loads. Loads need to have the same chain (token factor),
8870  // must not be zext, volatile, indexed, and they must be consecutive.
8871  BaseIndexOffset LdBasePtr;
8872  for (unsigned i=0; i<LastConsecutiveStore+1; ++i) {
8873    StoreSDNode *St  = cast<StoreSDNode>(StoreNodes[i].MemNode);
8874    LoadSDNode *Ld = dyn_cast<LoadSDNode>(St->getValue());
8875    if (!Ld) break;
8876
8877    // Loads must only have one use.
8878    if (!Ld->hasNUsesOfValue(1, 0))
8879      break;
8880
8881    // Check that the alignment is the same as the stores.
8882    if (Ld->getAlignment() != St->getAlignment())
8883      break;
8884
8885    // The memory operands must not be volatile.
8886    if (Ld->isVolatile() || Ld->isIndexed())
8887      break;
8888
8889    // We do not accept ext loads.
8890    if (Ld->getExtensionType() != ISD::NON_EXTLOAD)
8891      break;
8892
8893    // The stored memory type must be the same.
8894    if (Ld->getMemoryVT() != MemVT)
8895      break;
8896
8897    BaseIndexOffset LdPtr = BaseIndexOffset::match(Ld->getBasePtr());
8898    // If this is not the first ptr that we check.
8899    if (LdBasePtr.Base.getNode()) {
8900      // The base ptr must be the same.
8901      if (!LdPtr.equalBaseIndex(LdBasePtr))
8902        break;
8903    } else {
8904      // Check that all other base pointers are the same as this one.
8905      LdBasePtr = LdPtr;
8906    }
8907
8908    // We found a potential memory operand to merge.
8909    LoadNodes.push_back(MemOpLink(Ld, LdPtr.Offset, 0));
8910  }
8911
8912  if (LoadNodes.size() < 2)
8913    return false;
8914
8915  // Scan the memory operations on the chain and find the first non-consecutive
8916  // load memory address. These variables hold the index in the store node
8917  // array.
8918  unsigned LastConsecutiveLoad = 0;
8919  // This variable refers to the size and not index in the array.
8920  unsigned LastLegalVectorType = 0;
8921  unsigned LastLegalIntegerType = 0;
8922  StartAddress = LoadNodes[0].OffsetFromBase;
8923  SDValue FirstChain = LoadNodes[0].MemNode->getChain();
8924  for (unsigned i = 1; i < LoadNodes.size(); ++i) {
8925    // All loads much share the same chain.
8926    if (LoadNodes[i].MemNode->getChain() != FirstChain)
8927      break;
8928
8929    int64_t CurrAddress = LoadNodes[i].OffsetFromBase;
8930    if (CurrAddress - StartAddress != (ElementSizeBytes * i))
8931      break;
8932    LastConsecutiveLoad = i;
8933
8934    // Find a legal type for the vector store.
8935    EVT StoreTy = EVT::getVectorVT(*DAG.getContext(), MemVT, i+1);
8936    if (TLI.isTypeLegal(StoreTy))
8937      LastLegalVectorType = i + 1;
8938
8939    // Find a legal type for the integer store.
8940    unsigned StoreBW = (i+1) * ElementSizeBytes * 8;
8941    StoreTy = EVT::getIntegerVT(*DAG.getContext(), StoreBW);
8942    if (TLI.isTypeLegal(StoreTy))
8943      LastLegalIntegerType = i + 1;
8944    // Or check whether a truncstore and extload is legal.
8945    else if (TLI.getTypeAction(*DAG.getContext(), StoreTy) ==
8946             TargetLowering::TypePromoteInteger) {
8947      EVT LegalizedStoredValueTy =
8948        TLI.getTypeToTransformTo(*DAG.getContext(), StoreTy);
8949      if (TLI.isTruncStoreLegal(LegalizedStoredValueTy, StoreTy) &&
8950          TLI.isLoadExtLegal(ISD::ZEXTLOAD, StoreTy) &&
8951          TLI.isLoadExtLegal(ISD::SEXTLOAD, StoreTy) &&
8952          TLI.isLoadExtLegal(ISD::EXTLOAD, StoreTy))
8953        LastLegalIntegerType = i+1;
8954    }
8955  }
8956
8957  // Only use vector types if the vector type is larger than the integer type.
8958  // If they are the same, use integers.
8959  bool UseVectorTy = LastLegalVectorType > LastLegalIntegerType && !NoVectors;
8960  unsigned LastLegalType = std::max(LastLegalVectorType, LastLegalIntegerType);
8961
8962  // We add +1 here because the LastXXX variables refer to location while
8963  // the NumElem refers to array/index size.
8964  unsigned NumElem = std::min(LastConsecutiveStore, LastConsecutiveLoad) + 1;
8965  NumElem = std::min(LastLegalType, NumElem);
8966
8967  if (NumElem < 2)
8968    return false;
8969
8970  // The earliest Node in the DAG.
8971  unsigned EarliestNodeUsed = 0;
8972  LSBaseSDNode *EarliestOp = StoreNodes[EarliestNodeUsed].MemNode;
8973  for (unsigned i=1; i<NumElem; ++i) {
8974    // Find a chain for the new wide-store operand. Notice that some
8975    // of the store nodes that we found may not be selected for inclusion
8976    // in the wide store. The chain we use needs to be the chain of the
8977    // earliest store node which is *used* and replaced by the wide store.
8978    if (StoreNodes[i].SequenceNum > StoreNodes[EarliestNodeUsed].SequenceNum)
8979      EarliestNodeUsed = i;
8980  }
8981
8982  // Find if it is better to use vectors or integers to load and store
8983  // to memory.
8984  EVT JointMemOpVT;
8985  if (UseVectorTy) {
8986    JointMemOpVT = EVT::getVectorVT(*DAG.getContext(), MemVT, NumElem);
8987  } else {
8988    unsigned StoreBW = NumElem * ElementSizeBytes * 8;
8989    JointMemOpVT = EVT::getIntegerVT(*DAG.getContext(), StoreBW);
8990  }
8991
8992  SDLoc LoadDL(LoadNodes[0].MemNode);
8993  SDLoc StoreDL(StoreNodes[0].MemNode);
8994
8995  LoadSDNode *FirstLoad = cast<LoadSDNode>(LoadNodes[0].MemNode);
8996  SDValue NewLoad = DAG.getLoad(JointMemOpVT, LoadDL,
8997                                FirstLoad->getChain(),
8998                                FirstLoad->getBasePtr(),
8999                                FirstLoad->getPointerInfo(),
9000                                false, false, false,
9001                                FirstLoad->getAlignment());
9002
9003  SDValue NewStore = DAG.getStore(EarliestOp->getChain(), StoreDL, NewLoad,
9004                                  FirstInChain->getBasePtr(),
9005                                  FirstInChain->getPointerInfo(), false, false,
9006                                  FirstInChain->getAlignment());
9007
9008  // Replace one of the loads with the new load.
9009  LoadSDNode *Ld = cast<LoadSDNode>(LoadNodes[0].MemNode);
9010  DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1),
9011                                SDValue(NewLoad.getNode(), 1));
9012
9013  // Remove the rest of the load chains.
9014  for (unsigned i = 1; i < NumElem ; ++i) {
9015    // Replace all chain users of the old load nodes with the chain of the new
9016    // load node.
9017    LoadSDNode *Ld = cast<LoadSDNode>(LoadNodes[i].MemNode);
9018    DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), Ld->getChain());
9019  }
9020
9021  // Replace the first store with the new store.
9022  CombineTo(EarliestOp, NewStore);
9023  // Erase all other stores.
9024  for (unsigned i = 0; i < NumElem ; ++i) {
9025    // Remove all Store nodes.
9026    if (StoreNodes[i].MemNode == EarliestOp)
9027      continue;
9028    StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode);
9029    DAG.ReplaceAllUsesOfValueWith(SDValue(St, 0), St->getChain());
9030    removeFromWorkList(St);
9031    DAG.DeleteNode(St);
9032  }
9033
9034  return true;
9035}
9036
9037SDValue DAGCombiner::visitSTORE(SDNode *N) {
9038  StoreSDNode *ST  = cast<StoreSDNode>(N);
9039  SDValue Chain = ST->getChain();
9040  SDValue Value = ST->getValue();
9041  SDValue Ptr   = ST->getBasePtr();
9042
9043  // If this is a store of a bit convert, store the input value if the
9044  // resultant store does not need a higher alignment than the original.
9045  if (Value.getOpcode() == ISD::BITCAST && !ST->isTruncatingStore() &&
9046      ST->isUnindexed()) {
9047    unsigned OrigAlign = ST->getAlignment();
9048    EVT SVT = Value.getOperand(0).getValueType();
9049    unsigned Align = TLI.getDataLayout()->
9050      getABITypeAlignment(SVT.getTypeForEVT(*DAG.getContext()));
9051    if (Align <= OrigAlign &&
9052        ((!LegalOperations && !ST->isVolatile()) ||
9053         TLI.isOperationLegalOrCustom(ISD::STORE, SVT)))
9054      return DAG.getStore(Chain, SDLoc(N), Value.getOperand(0),
9055                          Ptr, ST->getPointerInfo(), ST->isVolatile(),
9056                          ST->isNonTemporal(), OrigAlign);
9057  }
9058
9059  // Turn 'store undef, Ptr' -> nothing.
9060  if (Value.getOpcode() == ISD::UNDEF && ST->isUnindexed())
9061    return Chain;
9062
9063  // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
9064  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Value)) {
9065    // NOTE: If the original store is volatile, this transform must not increase
9066    // the number of stores.  For example, on x86-32 an f64 can be stored in one
9067    // processor operation but an i64 (which is not legal) requires two.  So the
9068    // transform should not be done in this case.
9069    if (Value.getOpcode() != ISD::TargetConstantFP) {
9070      SDValue Tmp;
9071      switch (CFP->getSimpleValueType(0).SimpleTy) {
9072      default: llvm_unreachable("Unknown FP type");
9073      case MVT::f16:    // We don't do this for these yet.
9074      case MVT::f80:
9075      case MVT::f128:
9076      case MVT::ppcf128:
9077        break;
9078      case MVT::f32:
9079        if ((isTypeLegal(MVT::i32) && !LegalOperations && !ST->isVolatile()) ||
9080            TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) {
9081          Tmp = DAG.getConstant((uint32_t)CFP->getValueAPF().
9082                              bitcastToAPInt().getZExtValue(), MVT::i32);
9083          return DAG.getStore(Chain, SDLoc(N), Tmp,
9084                              Ptr, ST->getPointerInfo(), ST->isVolatile(),
9085                              ST->isNonTemporal(), ST->getAlignment());
9086        }
9087        break;
9088      case MVT::f64:
9089        if ((TLI.isTypeLegal(MVT::i64) && !LegalOperations &&
9090             !ST->isVolatile()) ||
9091            TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i64)) {
9092          Tmp = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
9093                                getZExtValue(), MVT::i64);
9094          return DAG.getStore(Chain, SDLoc(N), Tmp,
9095                              Ptr, ST->getPointerInfo(), ST->isVolatile(),
9096                              ST->isNonTemporal(), ST->getAlignment());
9097        }
9098
9099        if (!ST->isVolatile() &&
9100            TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) {
9101          // Many FP stores are not made apparent until after legalize, e.g. for
9102          // argument passing.  Since this is so common, custom legalize the
9103          // 64-bit integer store into two 32-bit stores.
9104          uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
9105          SDValue Lo = DAG.getConstant(Val & 0xFFFFFFFF, MVT::i32);
9106          SDValue Hi = DAG.getConstant(Val >> 32, MVT::i32);
9107          if (TLI.isBigEndian()) std::swap(Lo, Hi);
9108
9109          unsigned Alignment = ST->getAlignment();
9110          bool isVolatile = ST->isVolatile();
9111          bool isNonTemporal = ST->isNonTemporal();
9112
9113          SDValue St0 = DAG.getStore(Chain, SDLoc(ST), Lo,
9114                                     Ptr, ST->getPointerInfo(),
9115                                     isVolatile, isNonTemporal,
9116                                     ST->getAlignment());
9117          Ptr = DAG.getNode(ISD::ADD, SDLoc(N), Ptr.getValueType(), Ptr,
9118                            DAG.getConstant(4, Ptr.getValueType()));
9119          Alignment = MinAlign(Alignment, 4U);
9120          SDValue St1 = DAG.getStore(Chain, SDLoc(ST), Hi,
9121                                     Ptr, ST->getPointerInfo().getWithOffset(4),
9122                                     isVolatile, isNonTemporal,
9123                                     Alignment);
9124          return DAG.getNode(ISD::TokenFactor, SDLoc(N), MVT::Other,
9125                             St0, St1);
9126        }
9127
9128        break;
9129      }
9130    }
9131  }
9132
9133  // Try to infer better alignment information than the store already has.
9134  if (OptLevel != CodeGenOpt::None && ST->isUnindexed()) {
9135    if (unsigned Align = DAG.InferPtrAlignment(Ptr)) {
9136      if (Align > ST->getAlignment())
9137        return DAG.getTruncStore(Chain, SDLoc(N), Value,
9138                                 Ptr, ST->getPointerInfo(), ST->getMemoryVT(),
9139                                 ST->isVolatile(), ST->isNonTemporal(), Align);
9140    }
9141  }
9142
9143  // Try transforming a pair floating point load / store ops to integer
9144  // load / store ops.
9145  SDValue NewST = TransformFPLoadStorePair(N);
9146  if (NewST.getNode())
9147    return NewST;
9148
9149  bool UseAA = CombinerAA.getNumOccurrences() > 0 ? CombinerAA :
9150    TLI.getTargetMachine().getSubtarget<TargetSubtargetInfo>().useAA();
9151  if (UseAA) {
9152    // Walk up chain skipping non-aliasing memory nodes.
9153    SDValue BetterChain = FindBetterChain(N, Chain);
9154
9155    // If there is a better chain.
9156    if (Chain != BetterChain) {
9157      SDValue ReplStore;
9158
9159      // Replace the chain to avoid dependency.
9160      if (ST->isTruncatingStore()) {
9161        ReplStore = DAG.getTruncStore(BetterChain, SDLoc(N), Value, Ptr,
9162                                      ST->getPointerInfo(),
9163                                      ST->getMemoryVT(), ST->isVolatile(),
9164                                      ST->isNonTemporal(), ST->getAlignment());
9165      } else {
9166        ReplStore = DAG.getStore(BetterChain, SDLoc(N), Value, Ptr,
9167                                 ST->getPointerInfo(),
9168                                 ST->isVolatile(), ST->isNonTemporal(),
9169                                 ST->getAlignment());
9170      }
9171
9172      // Create token to keep both nodes around.
9173      SDValue Token = DAG.getNode(ISD::TokenFactor, SDLoc(N),
9174                                  MVT::Other, Chain, ReplStore);
9175
9176      // Make sure the new and old chains are cleaned up.
9177      AddToWorkList(Token.getNode());
9178
9179      // Don't add users to work list.
9180      return CombineTo(N, Token, false);
9181    }
9182  }
9183
9184  // Try transforming N to an indexed store.
9185  if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
9186    return SDValue(N, 0);
9187
9188  // FIXME: is there such a thing as a truncating indexed store?
9189  if (ST->isTruncatingStore() && ST->isUnindexed() &&
9190      Value.getValueType().isInteger()) {
9191    // See if we can simplify the input to this truncstore with knowledge that
9192    // only the low bits are being used.  For example:
9193    // "truncstore (or (shl x, 8), y), i8"  -> "truncstore y, i8"
9194    SDValue Shorter =
9195      GetDemandedBits(Value,
9196                      APInt::getLowBitsSet(
9197                        Value.getValueType().getScalarType().getSizeInBits(),
9198                        ST->getMemoryVT().getScalarType().getSizeInBits()));
9199    AddToWorkList(Value.getNode());
9200    if (Shorter.getNode())
9201      return DAG.getTruncStore(Chain, SDLoc(N), Shorter,
9202                               Ptr, ST->getPointerInfo(), ST->getMemoryVT(),
9203                               ST->isVolatile(), ST->isNonTemporal(),
9204                               ST->getAlignment());
9205
9206    // Otherwise, see if we can simplify the operation with
9207    // SimplifyDemandedBits, which only works if the value has a single use.
9208    if (SimplifyDemandedBits(Value,
9209                        APInt::getLowBitsSet(
9210                          Value.getValueType().getScalarType().getSizeInBits(),
9211                          ST->getMemoryVT().getScalarType().getSizeInBits())))
9212      return SDValue(N, 0);
9213  }
9214
9215  // If this is a load followed by a store to the same location, then the store
9216  // is dead/noop.
9217  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Value)) {
9218    if (Ld->getBasePtr() == Ptr && ST->getMemoryVT() == Ld->getMemoryVT() &&
9219        ST->isUnindexed() && !ST->isVolatile() &&
9220        // There can't be any side effects between the load and store, such as
9221        // a call or store.
9222        Chain.reachesChainWithoutSideEffects(SDValue(Ld, 1))) {
9223      // The store is dead, remove it.
9224      return Chain;
9225    }
9226  }
9227
9228  // If this is an FP_ROUND or TRUNC followed by a store, fold this into a
9229  // truncating store.  We can do this even if this is already a truncstore.
9230  if ((Value.getOpcode() == ISD::FP_ROUND || Value.getOpcode() == ISD::TRUNCATE)
9231      && Value.getNode()->hasOneUse() && ST->isUnindexed() &&
9232      TLI.isTruncStoreLegal(Value.getOperand(0).getValueType(),
9233                            ST->getMemoryVT())) {
9234    return DAG.getTruncStore(Chain, SDLoc(N), Value.getOperand(0),
9235                             Ptr, ST->getPointerInfo(), ST->getMemoryVT(),
9236                             ST->isVolatile(), ST->isNonTemporal(),
9237                             ST->getAlignment());
9238  }
9239
9240  // Only perform this optimization before the types are legal, because we
9241  // don't want to perform this optimization on every DAGCombine invocation.
9242  if (!LegalTypes) {
9243    bool EverChanged = false;
9244
9245    do {
9246      // There can be multiple store sequences on the same chain.
9247      // Keep trying to merge store sequences until we are unable to do so
9248      // or until we merge the last store on the chain.
9249      bool Changed = MergeConsecutiveStores(ST);
9250      EverChanged |= Changed;
9251      if (!Changed) break;
9252    } while (ST->getOpcode() != ISD::DELETED_NODE);
9253
9254    if (EverChanged)
9255      return SDValue(N, 0);
9256  }
9257
9258  return ReduceLoadOpStoreWidth(N);
9259}
9260
9261SDValue DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) {
9262  SDValue InVec = N->getOperand(0);
9263  SDValue InVal = N->getOperand(1);
9264  SDValue EltNo = N->getOperand(2);
9265  SDLoc dl(N);
9266
9267  // If the inserted element is an UNDEF, just use the input vector.
9268  if (InVal.getOpcode() == ISD::UNDEF)
9269    return InVec;
9270
9271  EVT VT = InVec.getValueType();
9272
9273  // If we can't generate a legal BUILD_VECTOR, exit
9274  if (LegalOperations && !TLI.isOperationLegal(ISD::BUILD_VECTOR, VT))
9275    return SDValue();
9276
9277  // Check that we know which element is being inserted
9278  if (!isa<ConstantSDNode>(EltNo))
9279    return SDValue();
9280  unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
9281
9282  // Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially
9283  // be converted to a BUILD_VECTOR).  Fill in the Ops vector with the
9284  // vector elements.
9285  SmallVector<SDValue, 8> Ops;
9286  // Do not combine these two vectors if the output vector will not replace
9287  // the input vector.
9288  if (InVec.getOpcode() == ISD::BUILD_VECTOR && InVec.hasOneUse()) {
9289    Ops.append(InVec.getNode()->op_begin(),
9290               InVec.getNode()->op_end());
9291  } else if (InVec.getOpcode() == ISD::UNDEF) {
9292    unsigned NElts = VT.getVectorNumElements();
9293    Ops.append(NElts, DAG.getUNDEF(InVal.getValueType()));
9294  } else {
9295    return SDValue();
9296  }
9297
9298  // Insert the element
9299  if (Elt < Ops.size()) {
9300    // All the operands of BUILD_VECTOR must have the same type;
9301    // we enforce that here.
9302    EVT OpVT = Ops[0].getValueType();
9303    if (InVal.getValueType() != OpVT)
9304      InVal = OpVT.bitsGT(InVal.getValueType()) ?
9305                DAG.getNode(ISD::ANY_EXTEND, dl, OpVT, InVal) :
9306                DAG.getNode(ISD::TRUNCATE, dl, OpVT, InVal);
9307    Ops[Elt] = InVal;
9308  }
9309
9310  // Return the new vector
9311  return DAG.getNode(ISD::BUILD_VECTOR, dl,
9312                     VT, &Ops[0], Ops.size());
9313}
9314
9315SDValue DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) {
9316  // (vextract (scalar_to_vector val, 0) -> val
9317  SDValue InVec = N->getOperand(0);
9318  EVT VT = InVec.getValueType();
9319  EVT NVT = N->getValueType(0);
9320
9321  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
9322    // Check if the result type doesn't match the inserted element type. A
9323    // SCALAR_TO_VECTOR may truncate the inserted element and the
9324    // EXTRACT_VECTOR_ELT may widen the extracted vector.
9325    SDValue InOp = InVec.getOperand(0);
9326    if (InOp.getValueType() != NVT) {
9327      assert(InOp.getValueType().isInteger() && NVT.isInteger());
9328      return DAG.getSExtOrTrunc(InOp, SDLoc(InVec), NVT);
9329    }
9330    return InOp;
9331  }
9332
9333  SDValue EltNo = N->getOperand(1);
9334  bool ConstEltNo = isa<ConstantSDNode>(EltNo);
9335
9336  // Transform: (EXTRACT_VECTOR_ELT( VECTOR_SHUFFLE )) -> EXTRACT_VECTOR_ELT.
9337  // We only perform this optimization before the op legalization phase because
9338  // we may introduce new vector instructions which are not backed by TD
9339  // patterns. For example on AVX, extracting elements from a wide vector
9340  // without using extract_subvector.
9341  if (InVec.getOpcode() == ISD::VECTOR_SHUFFLE
9342      && ConstEltNo && !LegalOperations) {
9343    int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
9344    int NumElem = VT.getVectorNumElements();
9345    ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(InVec);
9346    // Find the new index to extract from.
9347    int OrigElt = SVOp->getMaskElt(Elt);
9348
9349    // Extracting an undef index is undef.
9350    if (OrigElt == -1)
9351      return DAG.getUNDEF(NVT);
9352
9353    // Select the right vector half to extract from.
9354    if (OrigElt < NumElem) {
9355      InVec = InVec->getOperand(0);
9356    } else {
9357      InVec = InVec->getOperand(1);
9358      OrigElt -= NumElem;
9359    }
9360
9361    EVT IndexTy = TLI.getVectorIdxTy();
9362    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), NVT,
9363                       InVec, DAG.getConstant(OrigElt, IndexTy));
9364  }
9365
9366  // Perform only after legalization to ensure build_vector / vector_shuffle
9367  // optimizations have already been done.
9368  if (!LegalOperations) return SDValue();
9369
9370  // (vextract (v4f32 load $addr), c) -> (f32 load $addr+c*size)
9371  // (vextract (v4f32 s2v (f32 load $addr)), c) -> (f32 load $addr+c*size)
9372  // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), 0) -> (f32 load $addr)
9373
9374  if (ConstEltNo) {
9375    int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
9376    bool NewLoad = false;
9377    bool BCNumEltsChanged = false;
9378    EVT ExtVT = VT.getVectorElementType();
9379    EVT LVT = ExtVT;
9380
9381    // If the result of load has to be truncated, then it's not necessarily
9382    // profitable.
9383    if (NVT.bitsLT(LVT) && !TLI.isTruncateFree(LVT, NVT))
9384      return SDValue();
9385
9386    if (InVec.getOpcode() == ISD::BITCAST) {
9387      // Don't duplicate a load with other uses.
9388      if (!InVec.hasOneUse())
9389        return SDValue();
9390
9391      EVT BCVT = InVec.getOperand(0).getValueType();
9392      if (!BCVT.isVector() || ExtVT.bitsGT(BCVT.getVectorElementType()))
9393        return SDValue();
9394      if (VT.getVectorNumElements() != BCVT.getVectorNumElements())
9395        BCNumEltsChanged = true;
9396      InVec = InVec.getOperand(0);
9397      ExtVT = BCVT.getVectorElementType();
9398      NewLoad = true;
9399    }
9400
9401    LoadSDNode *LN0 = NULL;
9402    const ShuffleVectorSDNode *SVN = NULL;
9403    if (ISD::isNormalLoad(InVec.getNode())) {
9404      LN0 = cast<LoadSDNode>(InVec);
9405    } else if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR &&
9406               InVec.getOperand(0).getValueType() == ExtVT &&
9407               ISD::isNormalLoad(InVec.getOperand(0).getNode())) {
9408      // Don't duplicate a load with other uses.
9409      if (!InVec.hasOneUse())
9410        return SDValue();
9411
9412      LN0 = cast<LoadSDNode>(InVec.getOperand(0));
9413    } else if ((SVN = dyn_cast<ShuffleVectorSDNode>(InVec))) {
9414      // (vextract (vector_shuffle (load $addr), v2, <1, u, u, u>), 1)
9415      // =>
9416      // (load $addr+1*size)
9417
9418      // Don't duplicate a load with other uses.
9419      if (!InVec.hasOneUse())
9420        return SDValue();
9421
9422      // If the bit convert changed the number of elements, it is unsafe
9423      // to examine the mask.
9424      if (BCNumEltsChanged)
9425        return SDValue();
9426
9427      // Select the input vector, guarding against out of range extract vector.
9428      unsigned NumElems = VT.getVectorNumElements();
9429      int Idx = (Elt > (int)NumElems) ? -1 : SVN->getMaskElt(Elt);
9430      InVec = (Idx < (int)NumElems) ? InVec.getOperand(0) : InVec.getOperand(1);
9431
9432      if (InVec.getOpcode() == ISD::BITCAST) {
9433        // Don't duplicate a load with other uses.
9434        if (!InVec.hasOneUse())
9435          return SDValue();
9436
9437        InVec = InVec.getOperand(0);
9438      }
9439      if (ISD::isNormalLoad(InVec.getNode())) {
9440        LN0 = cast<LoadSDNode>(InVec);
9441        Elt = (Idx < (int)NumElems) ? Idx : Idx - (int)NumElems;
9442      }
9443    }
9444
9445    // Make sure we found a non-volatile load and the extractelement is
9446    // the only use.
9447    if (!LN0 || !LN0->hasNUsesOfValue(1,0) || LN0->isVolatile())
9448      return SDValue();
9449
9450    // If Idx was -1 above, Elt is going to be -1, so just return undef.
9451    if (Elt == -1)
9452      return DAG.getUNDEF(LVT);
9453
9454    unsigned Align = LN0->getAlignment();
9455    if (NewLoad) {
9456      // Check the resultant load doesn't need a higher alignment than the
9457      // original load.
9458      unsigned NewAlign =
9459        TLI.getDataLayout()
9460            ->getABITypeAlignment(LVT.getTypeForEVT(*DAG.getContext()));
9461
9462      if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, LVT))
9463        return SDValue();
9464
9465      Align = NewAlign;
9466    }
9467
9468    SDValue NewPtr = LN0->getBasePtr();
9469    unsigned PtrOff = 0;
9470
9471    if (Elt) {
9472      PtrOff = LVT.getSizeInBits() * Elt / 8;
9473      EVT PtrType = NewPtr.getValueType();
9474      if (TLI.isBigEndian())
9475        PtrOff = VT.getSizeInBits() / 8 - PtrOff;
9476      NewPtr = DAG.getNode(ISD::ADD, SDLoc(N), PtrType, NewPtr,
9477                           DAG.getConstant(PtrOff, PtrType));
9478    }
9479
9480    // The replacement we need to do here is a little tricky: we need to
9481    // replace an extractelement of a load with a load.
9482    // Use ReplaceAllUsesOfValuesWith to do the replacement.
9483    // Note that this replacement assumes that the extractvalue is the only
9484    // use of the load; that's okay because we don't want to perform this
9485    // transformation in other cases anyway.
9486    SDValue Load;
9487    SDValue Chain;
9488    if (NVT.bitsGT(LVT)) {
9489      // If the result type of vextract is wider than the load, then issue an
9490      // extending load instead.
9491      ISD::LoadExtType ExtType = TLI.isLoadExtLegal(ISD::ZEXTLOAD, LVT)
9492        ? ISD::ZEXTLOAD : ISD::EXTLOAD;
9493      Load = DAG.getExtLoad(ExtType, SDLoc(N), NVT, LN0->getChain(),
9494                            NewPtr, LN0->getPointerInfo().getWithOffset(PtrOff),
9495                            LVT, LN0->isVolatile(), LN0->isNonTemporal(),Align);
9496      Chain = Load.getValue(1);
9497    } else {
9498      Load = DAG.getLoad(LVT, SDLoc(N), LN0->getChain(), NewPtr,
9499                         LN0->getPointerInfo().getWithOffset(PtrOff),
9500                         LN0->isVolatile(), LN0->isNonTemporal(),
9501                         LN0->isInvariant(), Align);
9502      Chain = Load.getValue(1);
9503      if (NVT.bitsLT(LVT))
9504        Load = DAG.getNode(ISD::TRUNCATE, SDLoc(N), NVT, Load);
9505      else
9506        Load = DAG.getNode(ISD::BITCAST, SDLoc(N), NVT, Load);
9507    }
9508    WorkListRemover DeadNodes(*this);
9509    SDValue From[] = { SDValue(N, 0), SDValue(LN0,1) };
9510    SDValue To[] = { Load, Chain };
9511    DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
9512    // Since we're explcitly calling ReplaceAllUses, add the new node to the
9513    // worklist explicitly as well.
9514    AddToWorkList(Load.getNode());
9515    AddUsersToWorkList(Load.getNode()); // Add users too
9516    // Make sure to revisit this node to clean it up; it will usually be dead.
9517    AddToWorkList(N);
9518    return SDValue(N, 0);
9519  }
9520
9521  return SDValue();
9522}
9523
9524// Simplify (build_vec (ext )) to (bitcast (build_vec ))
9525SDValue DAGCombiner::reduceBuildVecExtToExtBuildVec(SDNode *N) {
9526  // We perform this optimization post type-legalization because
9527  // the type-legalizer often scalarizes integer-promoted vectors.
9528  // Performing this optimization before may create bit-casts which
9529  // will be type-legalized to complex code sequences.
9530  // We perform this optimization only before the operation legalizer because we
9531  // may introduce illegal operations.
9532  if (Level != AfterLegalizeVectorOps && Level != AfterLegalizeTypes)
9533    return SDValue();
9534
9535  unsigned NumInScalars = N->getNumOperands();
9536  SDLoc dl(N);
9537  EVT VT = N->getValueType(0);
9538
9539  // Check to see if this is a BUILD_VECTOR of a bunch of values
9540  // which come from any_extend or zero_extend nodes. If so, we can create
9541  // a new BUILD_VECTOR using bit-casts which may enable other BUILD_VECTOR
9542  // optimizations. We do not handle sign-extend because we can't fill the sign
9543  // using shuffles.
9544  EVT SourceType = MVT::Other;
9545  bool AllAnyExt = true;
9546
9547  for (unsigned i = 0; i != NumInScalars; ++i) {
9548    SDValue In = N->getOperand(i);
9549    // Ignore undef inputs.
9550    if (In.getOpcode() == ISD::UNDEF) continue;
9551
9552    bool AnyExt  = In.getOpcode() == ISD::ANY_EXTEND;
9553    bool ZeroExt = In.getOpcode() == ISD::ZERO_EXTEND;
9554
9555    // Abort if the element is not an extension.
9556    if (!ZeroExt && !AnyExt) {
9557      SourceType = MVT::Other;
9558      break;
9559    }
9560
9561    // The input is a ZeroExt or AnyExt. Check the original type.
9562    EVT InTy = In.getOperand(0).getValueType();
9563
9564    // Check that all of the widened source types are the same.
9565    if (SourceType == MVT::Other)
9566      // First time.
9567      SourceType = InTy;
9568    else if (InTy != SourceType) {
9569      // Multiple income types. Abort.
9570      SourceType = MVT::Other;
9571      break;
9572    }
9573
9574    // Check if all of the extends are ANY_EXTENDs.
9575    AllAnyExt &= AnyExt;
9576  }
9577
9578  // In order to have valid types, all of the inputs must be extended from the
9579  // same source type and all of the inputs must be any or zero extend.
9580  // Scalar sizes must be a power of two.
9581  EVT OutScalarTy = VT.getScalarType();
9582  bool ValidTypes = SourceType != MVT::Other &&
9583                 isPowerOf2_32(OutScalarTy.getSizeInBits()) &&
9584                 isPowerOf2_32(SourceType.getSizeInBits());
9585
9586  // Create a new simpler BUILD_VECTOR sequence which other optimizations can
9587  // turn into a single shuffle instruction.
9588  if (!ValidTypes)
9589    return SDValue();
9590
9591  bool isLE = TLI.isLittleEndian();
9592  unsigned ElemRatio = OutScalarTy.getSizeInBits()/SourceType.getSizeInBits();
9593  assert(ElemRatio > 1 && "Invalid element size ratio");
9594  SDValue Filler = AllAnyExt ? DAG.getUNDEF(SourceType):
9595                               DAG.getConstant(0, SourceType);
9596
9597  unsigned NewBVElems = ElemRatio * VT.getVectorNumElements();
9598  SmallVector<SDValue, 8> Ops(NewBVElems, Filler);
9599
9600  // Populate the new build_vector
9601  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
9602    SDValue Cast = N->getOperand(i);
9603    assert((Cast.getOpcode() == ISD::ANY_EXTEND ||
9604            Cast.getOpcode() == ISD::ZERO_EXTEND ||
9605            Cast.getOpcode() == ISD::UNDEF) && "Invalid cast opcode");
9606    SDValue In;
9607    if (Cast.getOpcode() == ISD::UNDEF)
9608      In = DAG.getUNDEF(SourceType);
9609    else
9610      In = Cast->getOperand(0);
9611    unsigned Index = isLE ? (i * ElemRatio) :
9612                            (i * ElemRatio + (ElemRatio - 1));
9613
9614    assert(Index < Ops.size() && "Invalid index");
9615    Ops[Index] = In;
9616  }
9617
9618  // The type of the new BUILD_VECTOR node.
9619  EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SourceType, NewBVElems);
9620  assert(VecVT.getSizeInBits() == VT.getSizeInBits() &&
9621         "Invalid vector size");
9622  // Check if the new vector type is legal.
9623  if (!isTypeLegal(VecVT)) return SDValue();
9624
9625  // Make the new BUILD_VECTOR.
9626  SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, &Ops[0], Ops.size());
9627
9628  // The new BUILD_VECTOR node has the potential to be further optimized.
9629  AddToWorkList(BV.getNode());
9630  // Bitcast to the desired type.
9631  return DAG.getNode(ISD::BITCAST, dl, VT, BV);
9632}
9633
9634SDValue DAGCombiner::reduceBuildVecConvertToConvertBuildVec(SDNode *N) {
9635  EVT VT = N->getValueType(0);
9636
9637  unsigned NumInScalars = N->getNumOperands();
9638  SDLoc dl(N);
9639
9640  EVT SrcVT = MVT::Other;
9641  unsigned Opcode = ISD::DELETED_NODE;
9642  unsigned NumDefs = 0;
9643
9644  for (unsigned i = 0; i != NumInScalars; ++i) {
9645    SDValue In = N->getOperand(i);
9646    unsigned Opc = In.getOpcode();
9647
9648    if (Opc == ISD::UNDEF)
9649      continue;
9650
9651    // If all scalar values are floats and converted from integers.
9652    if (Opcode == ISD::DELETED_NODE &&
9653        (Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP)) {
9654      Opcode = Opc;
9655    }
9656
9657    if (Opc != Opcode)
9658      return SDValue();
9659
9660    EVT InVT = In.getOperand(0).getValueType();
9661
9662    // If all scalar values are typed differently, bail out. It's chosen to
9663    // simplify BUILD_VECTOR of integer types.
9664    if (SrcVT == MVT::Other)
9665      SrcVT = InVT;
9666    if (SrcVT != InVT)
9667      return SDValue();
9668    NumDefs++;
9669  }
9670
9671  // If the vector has just one element defined, it's not worth to fold it into
9672  // a vectorized one.
9673  if (NumDefs < 2)
9674    return SDValue();
9675
9676  assert((Opcode == ISD::UINT_TO_FP || Opcode == ISD::SINT_TO_FP)
9677         && "Should only handle conversion from integer to float.");
9678  assert(SrcVT != MVT::Other && "Cannot determine source type!");
9679
9680  EVT NVT = EVT::getVectorVT(*DAG.getContext(), SrcVT, NumInScalars);
9681
9682  if (!TLI.isOperationLegalOrCustom(Opcode, NVT))
9683    return SDValue();
9684
9685  SmallVector<SDValue, 8> Opnds;
9686  for (unsigned i = 0; i != NumInScalars; ++i) {
9687    SDValue In = N->getOperand(i);
9688
9689    if (In.getOpcode() == ISD::UNDEF)
9690      Opnds.push_back(DAG.getUNDEF(SrcVT));
9691    else
9692      Opnds.push_back(In.getOperand(0));
9693  }
9694  SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, NVT,
9695                           &Opnds[0], Opnds.size());
9696  AddToWorkList(BV.getNode());
9697
9698  return DAG.getNode(Opcode, dl, VT, BV);
9699}
9700
9701SDValue DAGCombiner::visitBUILD_VECTOR(SDNode *N) {
9702  unsigned NumInScalars = N->getNumOperands();
9703  SDLoc dl(N);
9704  EVT VT = N->getValueType(0);
9705
9706  // A vector built entirely of undefs is undef.
9707  if (ISD::allOperandsUndef(N))
9708    return DAG.getUNDEF(VT);
9709
9710  SDValue V = reduceBuildVecExtToExtBuildVec(N);
9711  if (V.getNode())
9712    return V;
9713
9714  V = reduceBuildVecConvertToConvertBuildVec(N);
9715  if (V.getNode())
9716    return V;
9717
9718  // Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT
9719  // operations.  If so, and if the EXTRACT_VECTOR_ELT vector inputs come from
9720  // at most two distinct vectors, turn this into a shuffle node.
9721
9722  // May only combine to shuffle after legalize if shuffle is legal.
9723  if (LegalOperations &&
9724      !TLI.isOperationLegalOrCustom(ISD::VECTOR_SHUFFLE, VT))
9725    return SDValue();
9726
9727  SDValue VecIn1, VecIn2;
9728  for (unsigned i = 0; i != NumInScalars; ++i) {
9729    // Ignore undef inputs.
9730    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
9731
9732    // If this input is something other than a EXTRACT_VECTOR_ELT with a
9733    // constant index, bail out.
9734    if (N->getOperand(i).getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
9735        !isa<ConstantSDNode>(N->getOperand(i).getOperand(1))) {
9736      VecIn1 = VecIn2 = SDValue(0, 0);
9737      break;
9738    }
9739
9740    // We allow up to two distinct input vectors.
9741    SDValue ExtractedFromVec = N->getOperand(i).getOperand(0);
9742    if (ExtractedFromVec == VecIn1 || ExtractedFromVec == VecIn2)
9743      continue;
9744
9745    if (VecIn1.getNode() == 0) {
9746      VecIn1 = ExtractedFromVec;
9747    } else if (VecIn2.getNode() == 0) {
9748      VecIn2 = ExtractedFromVec;
9749    } else {
9750      // Too many inputs.
9751      VecIn1 = VecIn2 = SDValue(0, 0);
9752      break;
9753    }
9754  }
9755
9756    // If everything is good, we can make a shuffle operation.
9757  if (VecIn1.getNode()) {
9758    SmallVector<int, 8> Mask;
9759    for (unsigned i = 0; i != NumInScalars; ++i) {
9760      if (N->getOperand(i).getOpcode() == ISD::UNDEF) {
9761        Mask.push_back(-1);
9762        continue;
9763      }
9764
9765      // If extracting from the first vector, just use the index directly.
9766      SDValue Extract = N->getOperand(i);
9767      SDValue ExtVal = Extract.getOperand(1);
9768      if (Extract.getOperand(0) == VecIn1) {
9769        unsigned ExtIndex = cast<ConstantSDNode>(ExtVal)->getZExtValue();
9770        if (ExtIndex > VT.getVectorNumElements())
9771          return SDValue();
9772
9773        Mask.push_back(ExtIndex);
9774        continue;
9775      }
9776
9777      // Otherwise, use InIdx + VecSize
9778      unsigned Idx = cast<ConstantSDNode>(ExtVal)->getZExtValue();
9779      Mask.push_back(Idx+NumInScalars);
9780    }
9781
9782    // We can't generate a shuffle node with mismatched input and output types.
9783    // Attempt to transform a single input vector to the correct type.
9784    if ((VT != VecIn1.getValueType())) {
9785      // We don't support shuffeling between TWO values of different types.
9786      if (VecIn2.getNode() != 0)
9787        return SDValue();
9788
9789      // We only support widening of vectors which are half the size of the
9790      // output registers. For example XMM->YMM widening on X86 with AVX.
9791      if (VecIn1.getValueType().getSizeInBits()*2 != VT.getSizeInBits())
9792        return SDValue();
9793
9794      // If the input vector type has a different base type to the output
9795      // vector type, bail out.
9796      if (VecIn1.getValueType().getVectorElementType() !=
9797          VT.getVectorElementType())
9798        return SDValue();
9799
9800      // Widen the input vector by adding undef values.
9801      VecIn1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
9802                           VecIn1, DAG.getUNDEF(VecIn1.getValueType()));
9803    }
9804
9805    // If VecIn2 is unused then change it to undef.
9806    VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(VT);
9807
9808    // Check that we were able to transform all incoming values to the same
9809    // type.
9810    if (VecIn2.getValueType() != VecIn1.getValueType() ||
9811        VecIn1.getValueType() != VT)
9812          return SDValue();
9813
9814    // Only type-legal BUILD_VECTOR nodes are converted to shuffle nodes.
9815    if (!isTypeLegal(VT))
9816      return SDValue();
9817
9818    // Return the new VECTOR_SHUFFLE node.
9819    SDValue Ops[2];
9820    Ops[0] = VecIn1;
9821    Ops[1] = VecIn2;
9822    return DAG.getVectorShuffle(VT, dl, Ops[0], Ops[1], &Mask[0]);
9823  }
9824
9825  return SDValue();
9826}
9827
9828SDValue DAGCombiner::visitCONCAT_VECTORS(SDNode *N) {
9829  // TODO: Check to see if this is a CONCAT_VECTORS of a bunch of
9830  // EXTRACT_SUBVECTOR operations.  If so, and if the EXTRACT_SUBVECTOR vector
9831  // inputs come from at most two distinct vectors, turn this into a shuffle
9832  // node.
9833
9834  // If we only have one input vector, we don't need to do any concatenation.
9835  if (N->getNumOperands() == 1)
9836    return N->getOperand(0);
9837
9838  // Check if all of the operands are undefs.
9839  if (ISD::allOperandsUndef(N))
9840    return DAG.getUNDEF(N->getValueType(0));
9841
9842  // Type legalization of vectors and DAG canonicalization of SHUFFLE_VECTOR
9843  // nodes often generate nop CONCAT_VECTOR nodes.
9844  // Scan the CONCAT_VECTOR operands and look for a CONCAT operations that
9845  // place the incoming vectors at the exact same location.
9846  SDValue SingleSource = SDValue();
9847  unsigned PartNumElem = N->getOperand(0).getValueType().getVectorNumElements();
9848
9849  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
9850    SDValue Op = N->getOperand(i);
9851
9852    if (Op.getOpcode() == ISD::UNDEF)
9853      continue;
9854
9855    // Check if this is the identity extract:
9856    if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR)
9857      return SDValue();
9858
9859    // Find the single incoming vector for the extract_subvector.
9860    if (SingleSource.getNode()) {
9861      if (Op.getOperand(0) != SingleSource)
9862        return SDValue();
9863    } else {
9864      SingleSource = Op.getOperand(0);
9865
9866      // Check the source type is the same as the type of the result.
9867      // If not, this concat may extend the vector, so we can not
9868      // optimize it away.
9869      if (SingleSource.getValueType() != N->getValueType(0))
9870        return SDValue();
9871    }
9872
9873    unsigned IdentityIndex = i * PartNumElem;
9874    ConstantSDNode *CS = dyn_cast<ConstantSDNode>(Op.getOperand(1));
9875    // The extract index must be constant.
9876    if (!CS)
9877      return SDValue();
9878
9879    // Check that we are reading from the identity index.
9880    if (CS->getZExtValue() != IdentityIndex)
9881      return SDValue();
9882  }
9883
9884  if (SingleSource.getNode())
9885    return SingleSource;
9886
9887  return SDValue();
9888}
9889
9890SDValue DAGCombiner::visitEXTRACT_SUBVECTOR(SDNode* N) {
9891  EVT NVT = N->getValueType(0);
9892  SDValue V = N->getOperand(0);
9893
9894  if (V->getOpcode() == ISD::CONCAT_VECTORS) {
9895    // Combine:
9896    //    (extract_subvec (concat V1, V2, ...), i)
9897    // Into:
9898    //    Vi if possible
9899    // Only operand 0 is checked as 'concat' assumes all inputs of the same
9900    // type.
9901    if (V->getOperand(0).getValueType() != NVT)
9902      return SDValue();
9903    unsigned Idx = dyn_cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
9904    unsigned NumElems = NVT.getVectorNumElements();
9905    assert((Idx % NumElems) == 0 &&
9906           "IDX in concat is not a multiple of the result vector length.");
9907    return V->getOperand(Idx / NumElems);
9908  }
9909
9910  // Skip bitcasting
9911  if (V->getOpcode() == ISD::BITCAST)
9912    V = V.getOperand(0);
9913
9914  if (V->getOpcode() == ISD::INSERT_SUBVECTOR) {
9915    SDLoc dl(N);
9916    // Handle only simple case where vector being inserted and vector
9917    // being extracted are of same type, and are half size of larger vectors.
9918    EVT BigVT = V->getOperand(0).getValueType();
9919    EVT SmallVT = V->getOperand(1).getValueType();
9920    if (!NVT.bitsEq(SmallVT) || NVT.getSizeInBits()*2 != BigVT.getSizeInBits())
9921      return SDValue();
9922
9923    // Only handle cases where both indexes are constants with the same type.
9924    ConstantSDNode *ExtIdx = dyn_cast<ConstantSDNode>(N->getOperand(1));
9925    ConstantSDNode *InsIdx = dyn_cast<ConstantSDNode>(V->getOperand(2));
9926
9927    if (InsIdx && ExtIdx &&
9928        InsIdx->getValueType(0).getSizeInBits() <= 64 &&
9929        ExtIdx->getValueType(0).getSizeInBits() <= 64) {
9930      // Combine:
9931      //    (extract_subvec (insert_subvec V1, V2, InsIdx), ExtIdx)
9932      // Into:
9933      //    indices are equal or bit offsets are equal => V1
9934      //    otherwise => (extract_subvec V1, ExtIdx)
9935      if (InsIdx->getZExtValue() * SmallVT.getScalarType().getSizeInBits() ==
9936          ExtIdx->getZExtValue() * NVT.getScalarType().getSizeInBits())
9937        return DAG.getNode(ISD::BITCAST, dl, NVT, V->getOperand(1));
9938      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, NVT,
9939                         DAG.getNode(ISD::BITCAST, dl,
9940                                     N->getOperand(0).getValueType(),
9941                                     V->getOperand(0)), N->getOperand(1));
9942    }
9943  }
9944
9945  return SDValue();
9946}
9947
9948// Tries to turn a shuffle of two CONCAT_VECTORS into a single concat.
9949static SDValue partitionShuffleOfConcats(SDNode *N, SelectionDAG &DAG) {
9950  EVT VT = N->getValueType(0);
9951  unsigned NumElts = VT.getVectorNumElements();
9952
9953  SDValue N0 = N->getOperand(0);
9954  SDValue N1 = N->getOperand(1);
9955  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
9956
9957  SmallVector<SDValue, 4> Ops;
9958  EVT ConcatVT = N0.getOperand(0).getValueType();
9959  unsigned NumElemsPerConcat = ConcatVT.getVectorNumElements();
9960  unsigned NumConcats = NumElts / NumElemsPerConcat;
9961
9962  // Look at every vector that's inserted. We're looking for exact
9963  // subvector-sized copies from a concatenated vector
9964  for (unsigned I = 0; I != NumConcats; ++I) {
9965    // Make sure we're dealing with a copy.
9966    unsigned Begin = I * NumElemsPerConcat;
9967    bool AllUndef = true, NoUndef = true;
9968    for (unsigned J = Begin; J != Begin + NumElemsPerConcat; ++J) {
9969      if (SVN->getMaskElt(J) >= 0)
9970        AllUndef = false;
9971      else
9972        NoUndef = false;
9973    }
9974
9975    if (NoUndef) {
9976      if (SVN->getMaskElt(Begin) % NumElemsPerConcat != 0)
9977        return SDValue();
9978
9979      for (unsigned J = 1; J != NumElemsPerConcat; ++J)
9980        if (SVN->getMaskElt(Begin + J - 1) + 1 != SVN->getMaskElt(Begin + J))
9981          return SDValue();
9982
9983      unsigned FirstElt = SVN->getMaskElt(Begin) / NumElemsPerConcat;
9984      if (FirstElt < N0.getNumOperands())
9985        Ops.push_back(N0.getOperand(FirstElt));
9986      else
9987        Ops.push_back(N1.getOperand(FirstElt - N0.getNumOperands()));
9988
9989    } else if (AllUndef) {
9990      Ops.push_back(DAG.getUNDEF(N0.getOperand(0).getValueType()));
9991    } else { // Mixed with general masks and undefs, can't do optimization.
9992      return SDValue();
9993    }
9994  }
9995
9996  return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops.data(),
9997                     Ops.size());
9998}
9999
10000SDValue DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) {
10001  EVT VT = N->getValueType(0);
10002  unsigned NumElts = VT.getVectorNumElements();
10003
10004  SDValue N0 = N->getOperand(0);
10005  SDValue N1 = N->getOperand(1);
10006
10007  assert(N0.getValueType() == VT && "Vector shuffle must be normalized in DAG");
10008
10009  // Canonicalize shuffle undef, undef -> undef
10010  if (N0.getOpcode() == ISD::UNDEF && N1.getOpcode() == ISD::UNDEF)
10011    return DAG.getUNDEF(VT);
10012
10013  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
10014
10015  // Canonicalize shuffle v, v -> v, undef
10016  if (N0 == N1) {
10017    SmallVector<int, 8> NewMask;
10018    for (unsigned i = 0; i != NumElts; ++i) {
10019      int Idx = SVN->getMaskElt(i);
10020      if (Idx >= (int)NumElts) Idx -= NumElts;
10021      NewMask.push_back(Idx);
10022    }
10023    return DAG.getVectorShuffle(VT, SDLoc(N), N0, DAG.getUNDEF(VT),
10024                                &NewMask[0]);
10025  }
10026
10027  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
10028  if (N0.getOpcode() == ISD::UNDEF) {
10029    SmallVector<int, 8> NewMask;
10030    for (unsigned i = 0; i != NumElts; ++i) {
10031      int Idx = SVN->getMaskElt(i);
10032      if (Idx >= 0) {
10033        if (Idx >= (int)NumElts)
10034          Idx -= NumElts;
10035        else
10036          Idx = -1; // remove reference to lhs
10037      }
10038      NewMask.push_back(Idx);
10039    }
10040    return DAG.getVectorShuffle(VT, SDLoc(N), N1, DAG.getUNDEF(VT),
10041                                &NewMask[0]);
10042  }
10043
10044  // Remove references to rhs if it is undef
10045  if (N1.getOpcode() == ISD::UNDEF) {
10046    bool Changed = false;
10047    SmallVector<int, 8> NewMask;
10048    for (unsigned i = 0; i != NumElts; ++i) {
10049      int Idx = SVN->getMaskElt(i);
10050      if (Idx >= (int)NumElts) {
10051        Idx = -1;
10052        Changed = true;
10053      }
10054      NewMask.push_back(Idx);
10055    }
10056    if (Changed)
10057      return DAG.getVectorShuffle(VT, SDLoc(N), N0, N1, &NewMask[0]);
10058  }
10059
10060  // If it is a splat, check if the argument vector is another splat or a
10061  // build_vector with all scalar elements the same.
10062  if (SVN->isSplat() && SVN->getSplatIndex() < (int)NumElts) {
10063    SDNode *V = N0.getNode();
10064
10065    // If this is a bit convert that changes the element type of the vector but
10066    // not the number of vector elements, look through it.  Be careful not to
10067    // look though conversions that change things like v4f32 to v2f64.
10068    if (V->getOpcode() == ISD::BITCAST) {
10069      SDValue ConvInput = V->getOperand(0);
10070      if (ConvInput.getValueType().isVector() &&
10071          ConvInput.getValueType().getVectorNumElements() == NumElts)
10072        V = ConvInput.getNode();
10073    }
10074
10075    if (V->getOpcode() == ISD::BUILD_VECTOR) {
10076      assert(V->getNumOperands() == NumElts &&
10077             "BUILD_VECTOR has wrong number of operands");
10078      SDValue Base;
10079      bool AllSame = true;
10080      for (unsigned i = 0; i != NumElts; ++i) {
10081        if (V->getOperand(i).getOpcode() != ISD::UNDEF) {
10082          Base = V->getOperand(i);
10083          break;
10084        }
10085      }
10086      // Splat of <u, u, u, u>, return <u, u, u, u>
10087      if (!Base.getNode())
10088        return N0;
10089      for (unsigned i = 0; i != NumElts; ++i) {
10090        if (V->getOperand(i) != Base) {
10091          AllSame = false;
10092          break;
10093        }
10094      }
10095      // Splat of <x, x, x, x>, return <x, x, x, x>
10096      if (AllSame)
10097        return N0;
10098    }
10099  }
10100
10101  if (N0.getOpcode() == ISD::CONCAT_VECTORS &&
10102      Level < AfterLegalizeVectorOps &&
10103      (N1.getOpcode() == ISD::UNDEF ||
10104      (N1.getOpcode() == ISD::CONCAT_VECTORS &&
10105       N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()))) {
10106    SDValue V = partitionShuffleOfConcats(N, DAG);
10107
10108    if (V.getNode())
10109      return V;
10110  }
10111
10112  // If this shuffle node is simply a swizzle of another shuffle node,
10113  // and it reverses the swizzle of the previous shuffle then we can
10114  // optimize shuffle(shuffle(x, undef), undef) -> x.
10115  if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG &&
10116      N1.getOpcode() == ISD::UNDEF) {
10117
10118    ShuffleVectorSDNode *OtherSV = cast<ShuffleVectorSDNode>(N0);
10119
10120    // Shuffle nodes can only reverse shuffles with a single non-undef value.
10121    if (N0.getOperand(1).getOpcode() != ISD::UNDEF)
10122      return SDValue();
10123
10124    // The incoming shuffle must be of the same type as the result of the
10125    // current shuffle.
10126    assert(OtherSV->getOperand(0).getValueType() == VT &&
10127           "Shuffle types don't match");
10128
10129    for (unsigned i = 0; i != NumElts; ++i) {
10130      int Idx = SVN->getMaskElt(i);
10131      assert(Idx < (int)NumElts && "Index references undef operand");
10132      // Next, this index comes from the first value, which is the incoming
10133      // shuffle. Adopt the incoming index.
10134      if (Idx >= 0)
10135        Idx = OtherSV->getMaskElt(Idx);
10136
10137      // The combined shuffle must map each index to itself.
10138      if (Idx >= 0 && (unsigned)Idx != i)
10139        return SDValue();
10140    }
10141
10142    return OtherSV->getOperand(0);
10143  }
10144
10145  return SDValue();
10146}
10147
10148/// XformToShuffleWithZero - Returns a vector_shuffle if it able to transform
10149/// an AND to a vector_shuffle with the destination vector and a zero vector.
10150/// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==>
10151///      vector_shuffle V, Zero, <0, 4, 2, 4>
10152SDValue DAGCombiner::XformToShuffleWithZero(SDNode *N) {
10153  EVT VT = N->getValueType(0);
10154  SDLoc dl(N);
10155  SDValue LHS = N->getOperand(0);
10156  SDValue RHS = N->getOperand(1);
10157  if (N->getOpcode() == ISD::AND) {
10158    if (RHS.getOpcode() == ISD::BITCAST)
10159      RHS = RHS.getOperand(0);
10160    if (RHS.getOpcode() == ISD::BUILD_VECTOR) {
10161      SmallVector<int, 8> Indices;
10162      unsigned NumElts = RHS.getNumOperands();
10163      for (unsigned i = 0; i != NumElts; ++i) {
10164        SDValue Elt = RHS.getOperand(i);
10165        if (!isa<ConstantSDNode>(Elt))
10166          return SDValue();
10167
10168        if (cast<ConstantSDNode>(Elt)->isAllOnesValue())
10169          Indices.push_back(i);
10170        else if (cast<ConstantSDNode>(Elt)->isNullValue())
10171          Indices.push_back(NumElts);
10172        else
10173          return SDValue();
10174      }
10175
10176      // Let's see if the target supports this vector_shuffle.
10177      EVT RVT = RHS.getValueType();
10178      if (!TLI.isVectorClearMaskLegal(Indices, RVT))
10179        return SDValue();
10180
10181      // Return the new VECTOR_SHUFFLE node.
10182      EVT EltVT = RVT.getVectorElementType();
10183      SmallVector<SDValue,8> ZeroOps(RVT.getVectorNumElements(),
10184                                     DAG.getConstant(0, EltVT));
10185      SDValue Zero = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N),
10186                                 RVT, &ZeroOps[0], ZeroOps.size());
10187      LHS = DAG.getNode(ISD::BITCAST, dl, RVT, LHS);
10188      SDValue Shuf = DAG.getVectorShuffle(RVT, dl, LHS, Zero, &Indices[0]);
10189      return DAG.getNode(ISD::BITCAST, dl, VT, Shuf);
10190    }
10191  }
10192
10193  return SDValue();
10194}
10195
10196/// SimplifyVBinOp - Visit a binary vector operation, like ADD.
10197SDValue DAGCombiner::SimplifyVBinOp(SDNode *N) {
10198  assert(N->getValueType(0).isVector() &&
10199         "SimplifyVBinOp only works on vectors!");
10200
10201  SDValue LHS = N->getOperand(0);
10202  SDValue RHS = N->getOperand(1);
10203  SDValue Shuffle = XformToShuffleWithZero(N);
10204  if (Shuffle.getNode()) return Shuffle;
10205
10206  // If the LHS and RHS are BUILD_VECTOR nodes, see if we can constant fold
10207  // this operation.
10208  if (LHS.getOpcode() == ISD::BUILD_VECTOR &&
10209      RHS.getOpcode() == ISD::BUILD_VECTOR) {
10210    SmallVector<SDValue, 8> Ops;
10211    for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
10212      SDValue LHSOp = LHS.getOperand(i);
10213      SDValue RHSOp = RHS.getOperand(i);
10214      // If these two elements can't be folded, bail out.
10215      if ((LHSOp.getOpcode() != ISD::UNDEF &&
10216           LHSOp.getOpcode() != ISD::Constant &&
10217           LHSOp.getOpcode() != ISD::ConstantFP) ||
10218          (RHSOp.getOpcode() != ISD::UNDEF &&
10219           RHSOp.getOpcode() != ISD::Constant &&
10220           RHSOp.getOpcode() != ISD::ConstantFP))
10221        break;
10222
10223      // Can't fold divide by zero.
10224      if (N->getOpcode() == ISD::SDIV || N->getOpcode() == ISD::UDIV ||
10225          N->getOpcode() == ISD::FDIV) {
10226        if ((RHSOp.getOpcode() == ISD::Constant &&
10227             cast<ConstantSDNode>(RHSOp.getNode())->isNullValue()) ||
10228            (RHSOp.getOpcode() == ISD::ConstantFP &&
10229             cast<ConstantFPSDNode>(RHSOp.getNode())->getValueAPF().isZero()))
10230          break;
10231      }
10232
10233      EVT VT = LHSOp.getValueType();
10234      EVT RVT = RHSOp.getValueType();
10235      if (RVT != VT) {
10236        // Integer BUILD_VECTOR operands may have types larger than the element
10237        // size (e.g., when the element type is not legal).  Prior to type
10238        // legalization, the types may not match between the two BUILD_VECTORS.
10239        // Truncate one of the operands to make them match.
10240        if (RVT.getSizeInBits() > VT.getSizeInBits()) {
10241          RHSOp = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, RHSOp);
10242        } else {
10243          LHSOp = DAG.getNode(ISD::TRUNCATE, SDLoc(N), RVT, LHSOp);
10244          VT = RVT;
10245        }
10246      }
10247      SDValue FoldOp = DAG.getNode(N->getOpcode(), SDLoc(LHS), VT,
10248                                   LHSOp, RHSOp);
10249      if (FoldOp.getOpcode() != ISD::UNDEF &&
10250          FoldOp.getOpcode() != ISD::Constant &&
10251          FoldOp.getOpcode() != ISD::ConstantFP)
10252        break;
10253      Ops.push_back(FoldOp);
10254      AddToWorkList(FoldOp.getNode());
10255    }
10256
10257    if (Ops.size() == LHS.getNumOperands())
10258      return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N),
10259                         LHS.getValueType(), &Ops[0], Ops.size());
10260  }
10261
10262  return SDValue();
10263}
10264
10265/// SimplifyVUnaryOp - Visit a binary vector operation, like FABS/FNEG.
10266SDValue DAGCombiner::SimplifyVUnaryOp(SDNode *N) {
10267  assert(N->getValueType(0).isVector() &&
10268         "SimplifyVUnaryOp only works on vectors!");
10269
10270  SDValue N0 = N->getOperand(0);
10271
10272  if (N0.getOpcode() != ISD::BUILD_VECTOR)
10273    return SDValue();
10274
10275  // Operand is a BUILD_VECTOR node, see if we can constant fold it.
10276  SmallVector<SDValue, 8> Ops;
10277  for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i) {
10278    SDValue Op = N0.getOperand(i);
10279    if (Op.getOpcode() != ISD::UNDEF &&
10280        Op.getOpcode() != ISD::ConstantFP)
10281      break;
10282    EVT EltVT = Op.getValueType();
10283    SDValue FoldOp = DAG.getNode(N->getOpcode(), SDLoc(N0), EltVT, Op);
10284    if (FoldOp.getOpcode() != ISD::UNDEF &&
10285        FoldOp.getOpcode() != ISD::ConstantFP)
10286      break;
10287    Ops.push_back(FoldOp);
10288    AddToWorkList(FoldOp.getNode());
10289  }
10290
10291  if (Ops.size() != N0.getNumOperands())
10292    return SDValue();
10293
10294  return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N),
10295                     N0.getValueType(), &Ops[0], Ops.size());
10296}
10297
10298SDValue DAGCombiner::SimplifySelect(SDLoc DL, SDValue N0,
10299                                    SDValue N1, SDValue N2){
10300  assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!");
10301
10302  SDValue SCC = SimplifySelectCC(DL, N0.getOperand(0), N0.getOperand(1), N1, N2,
10303                                 cast<CondCodeSDNode>(N0.getOperand(2))->get());
10304
10305  // If we got a simplified select_cc node back from SimplifySelectCC, then
10306  // break it down into a new SETCC node, and a new SELECT node, and then return
10307  // the SELECT node, since we were called with a SELECT node.
10308  if (SCC.getNode()) {
10309    // Check to see if we got a select_cc back (to turn into setcc/select).
10310    // Otherwise, just return whatever node we got back, like fabs.
10311    if (SCC.getOpcode() == ISD::SELECT_CC) {
10312      SDValue SETCC = DAG.getNode(ISD::SETCC, SDLoc(N0),
10313                                  N0.getValueType(),
10314                                  SCC.getOperand(0), SCC.getOperand(1),
10315                                  SCC.getOperand(4));
10316      AddToWorkList(SETCC.getNode());
10317      return DAG.getSelect(SDLoc(SCC), SCC.getValueType(),
10318                           SCC.getOperand(2), SCC.getOperand(3), SETCC);
10319    }
10320
10321    return SCC;
10322  }
10323  return SDValue();
10324}
10325
10326/// SimplifySelectOps - Given a SELECT or a SELECT_CC node, where LHS and RHS
10327/// are the two values being selected between, see if we can simplify the
10328/// select.  Callers of this should assume that TheSelect is deleted if this
10329/// returns true.  As such, they should return the appropriate thing (e.g. the
10330/// node) back to the top-level of the DAG combiner loop to avoid it being
10331/// looked at.
10332bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDValue LHS,
10333                                    SDValue RHS) {
10334
10335  // Cannot simplify select with vector condition
10336  if (TheSelect->getOperand(0).getValueType().isVector()) return false;
10337
10338  // If this is a select from two identical things, try to pull the operation
10339  // through the select.
10340  if (LHS.getOpcode() != RHS.getOpcode() ||
10341      !LHS.hasOneUse() || !RHS.hasOneUse())
10342    return false;
10343
10344  // If this is a load and the token chain is identical, replace the select
10345  // of two loads with a load through a select of the address to load from.
10346  // This triggers in things like "select bool X, 10.0, 123.0" after the FP
10347  // constants have been dropped into the constant pool.
10348  if (LHS.getOpcode() == ISD::LOAD) {
10349    LoadSDNode *LLD = cast<LoadSDNode>(LHS);
10350    LoadSDNode *RLD = cast<LoadSDNode>(RHS);
10351
10352    // Token chains must be identical.
10353    if (LHS.getOperand(0) != RHS.getOperand(0) ||
10354        // Do not let this transformation reduce the number of volatile loads.
10355        LLD->isVolatile() || RLD->isVolatile() ||
10356        // If this is an EXTLOAD, the VT's must match.
10357        LLD->getMemoryVT() != RLD->getMemoryVT() ||
10358        // If this is an EXTLOAD, the kind of extension must match.
10359        (LLD->getExtensionType() != RLD->getExtensionType() &&
10360         // The only exception is if one of the extensions is anyext.
10361         LLD->getExtensionType() != ISD::EXTLOAD &&
10362         RLD->getExtensionType() != ISD::EXTLOAD) ||
10363        // FIXME: this discards src value information.  This is
10364        // over-conservative. It would be beneficial to be able to remember
10365        // both potential memory locations.  Since we are discarding
10366        // src value info, don't do the transformation if the memory
10367        // locations are not in the default address space.
10368        LLD->getPointerInfo().getAddrSpace() != 0 ||
10369        RLD->getPointerInfo().getAddrSpace() != 0 ||
10370        !TLI.isOperationLegalOrCustom(TheSelect->getOpcode(),
10371                                      LLD->getBasePtr().getValueType()))
10372      return false;
10373
10374    // Check that the select condition doesn't reach either load.  If so,
10375    // folding this will induce a cycle into the DAG.  If not, this is safe to
10376    // xform, so create a select of the addresses.
10377    SDValue Addr;
10378    if (TheSelect->getOpcode() == ISD::SELECT) {
10379      SDNode *CondNode = TheSelect->getOperand(0).getNode();
10380      if ((LLD->hasAnyUseOfValue(1) && LLD->isPredecessorOf(CondNode)) ||
10381          (RLD->hasAnyUseOfValue(1) && RLD->isPredecessorOf(CondNode)))
10382        return false;
10383      // The loads must not depend on one another.
10384      if (LLD->isPredecessorOf(RLD) ||
10385          RLD->isPredecessorOf(LLD))
10386        return false;
10387      Addr = DAG.getSelect(SDLoc(TheSelect),
10388                           LLD->getBasePtr().getValueType(),
10389                           TheSelect->getOperand(0), LLD->getBasePtr(),
10390                           RLD->getBasePtr());
10391    } else {  // Otherwise SELECT_CC
10392      SDNode *CondLHS = TheSelect->getOperand(0).getNode();
10393      SDNode *CondRHS = TheSelect->getOperand(1).getNode();
10394
10395      if ((LLD->hasAnyUseOfValue(1) &&
10396           (LLD->isPredecessorOf(CondLHS) || LLD->isPredecessorOf(CondRHS))) ||
10397          (RLD->hasAnyUseOfValue(1) &&
10398           (RLD->isPredecessorOf(CondLHS) || RLD->isPredecessorOf(CondRHS))))
10399        return false;
10400
10401      Addr = DAG.getNode(ISD::SELECT_CC, SDLoc(TheSelect),
10402                         LLD->getBasePtr().getValueType(),
10403                         TheSelect->getOperand(0),
10404                         TheSelect->getOperand(1),
10405                         LLD->getBasePtr(), RLD->getBasePtr(),
10406                         TheSelect->getOperand(4));
10407    }
10408
10409    SDValue Load;
10410    if (LLD->getExtensionType() == ISD::NON_EXTLOAD) {
10411      Load = DAG.getLoad(TheSelect->getValueType(0),
10412                         SDLoc(TheSelect),
10413                         // FIXME: Discards pointer info.
10414                         LLD->getChain(), Addr, MachinePointerInfo(),
10415                         LLD->isVolatile(), LLD->isNonTemporal(),
10416                         LLD->isInvariant(), LLD->getAlignment());
10417    } else {
10418      Load = DAG.getExtLoad(LLD->getExtensionType() == ISD::EXTLOAD ?
10419                            RLD->getExtensionType() : LLD->getExtensionType(),
10420                            SDLoc(TheSelect),
10421                            TheSelect->getValueType(0),
10422                            // FIXME: Discards pointer info.
10423                            LLD->getChain(), Addr, MachinePointerInfo(),
10424                            LLD->getMemoryVT(), LLD->isVolatile(),
10425                            LLD->isNonTemporal(), LLD->getAlignment());
10426    }
10427
10428    // Users of the select now use the result of the load.
10429    CombineTo(TheSelect, Load);
10430
10431    // Users of the old loads now use the new load's chain.  We know the
10432    // old-load value is dead now.
10433    CombineTo(LHS.getNode(), Load.getValue(0), Load.getValue(1));
10434    CombineTo(RHS.getNode(), Load.getValue(0), Load.getValue(1));
10435    return true;
10436  }
10437
10438  return false;
10439}
10440
10441/// SimplifySelectCC - Simplify an expression of the form (N0 cond N1) ? N2 : N3
10442/// where 'cond' is the comparison specified by CC.
10443SDValue DAGCombiner::SimplifySelectCC(SDLoc DL, SDValue N0, SDValue N1,
10444                                      SDValue N2, SDValue N3,
10445                                      ISD::CondCode CC, bool NotExtCompare) {
10446  // (x ? y : y) -> y.
10447  if (N2 == N3) return N2;
10448
10449  EVT VT = N2.getValueType();
10450  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
10451  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
10452  ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.getNode());
10453
10454  // Determine if the condition we're dealing with is constant
10455  SDValue SCC = SimplifySetCC(getSetCCResultType(N0.getValueType()),
10456                              N0, N1, CC, DL, false);
10457  if (SCC.getNode()) AddToWorkList(SCC.getNode());
10458  ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.getNode());
10459
10460  // fold select_cc true, x, y -> x
10461  if (SCCC && !SCCC->isNullValue())
10462    return N2;
10463  // fold select_cc false, x, y -> y
10464  if (SCCC && SCCC->isNullValue())
10465    return N3;
10466
10467  // Check to see if we can simplify the select into an fabs node
10468  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1)) {
10469    // Allow either -0.0 or 0.0
10470    if (CFP->getValueAPF().isZero()) {
10471      // select (setg[te] X, +/-0.0), X, fneg(X) -> fabs
10472      if ((CC == ISD::SETGE || CC == ISD::SETGT) &&
10473          N0 == N2 && N3.getOpcode() == ISD::FNEG &&
10474          N2 == N3.getOperand(0))
10475        return DAG.getNode(ISD::FABS, DL, VT, N0);
10476
10477      // select (setl[te] X, +/-0.0), fneg(X), X -> fabs
10478      if ((CC == ISD::SETLT || CC == ISD::SETLE) &&
10479          N0 == N3 && N2.getOpcode() == ISD::FNEG &&
10480          N2.getOperand(0) == N3)
10481        return DAG.getNode(ISD::FABS, DL, VT, N3);
10482    }
10483  }
10484
10485  // Turn "(a cond b) ? 1.0f : 2.0f" into "load (tmp + ((a cond b) ? 0 : 4)"
10486  // where "tmp" is a constant pool entry containing an array with 1.0 and 2.0
10487  // in it.  This is a win when the constant is not otherwise available because
10488  // it replaces two constant pool loads with one.  We only do this if the FP
10489  // type is known to be legal, because if it isn't, then we are before legalize
10490  // types an we want the other legalization to happen first (e.g. to avoid
10491  // messing with soft float) and if the ConstantFP is not legal, because if
10492  // it is legal, we may not need to store the FP constant in a constant pool.
10493  if (ConstantFPSDNode *TV = dyn_cast<ConstantFPSDNode>(N2))
10494    if (ConstantFPSDNode *FV = dyn_cast<ConstantFPSDNode>(N3)) {
10495      if (TLI.isTypeLegal(N2.getValueType()) &&
10496          (TLI.getOperationAction(ISD::ConstantFP, N2.getValueType()) !=
10497           TargetLowering::Legal) &&
10498          // If both constants have multiple uses, then we won't need to do an
10499          // extra load, they are likely around in registers for other users.
10500          (TV->hasOneUse() || FV->hasOneUse())) {
10501        Constant *Elts[] = {
10502          const_cast<ConstantFP*>(FV->getConstantFPValue()),
10503          const_cast<ConstantFP*>(TV->getConstantFPValue())
10504        };
10505        Type *FPTy = Elts[0]->getType();
10506        const DataLayout &TD = *TLI.getDataLayout();
10507
10508        // Create a ConstantArray of the two constants.
10509        Constant *CA = ConstantArray::get(ArrayType::get(FPTy, 2), Elts);
10510        SDValue CPIdx = DAG.getConstantPool(CA, TLI.getPointerTy(),
10511                                            TD.getPrefTypeAlignment(FPTy));
10512        unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
10513
10514        // Get the offsets to the 0 and 1 element of the array so that we can
10515        // select between them.
10516        SDValue Zero = DAG.getIntPtrConstant(0);
10517        unsigned EltSize = (unsigned)TD.getTypeAllocSize(Elts[0]->getType());
10518        SDValue One = DAG.getIntPtrConstant(EltSize);
10519
10520        SDValue Cond = DAG.getSetCC(DL,
10521                                    getSetCCResultType(N0.getValueType()),
10522                                    N0, N1, CC);
10523        AddToWorkList(Cond.getNode());
10524        SDValue CstOffset = DAG.getSelect(DL, Zero.getValueType(),
10525                                          Cond, One, Zero);
10526        AddToWorkList(CstOffset.getNode());
10527        CPIdx = DAG.getNode(ISD::ADD, DL, CPIdx.getValueType(), CPIdx,
10528                            CstOffset);
10529        AddToWorkList(CPIdx.getNode());
10530        return DAG.getLoad(TV->getValueType(0), DL, DAG.getEntryNode(), CPIdx,
10531                           MachinePointerInfo::getConstantPool(), false,
10532                           false, false, Alignment);
10533
10534      }
10535    }
10536
10537  // Check to see if we can perform the "gzip trick", transforming
10538  // (select_cc setlt X, 0, A, 0) -> (and (sra X, (sub size(X), 1), A)
10539  if (N1C && N3C && N3C->isNullValue() && CC == ISD::SETLT &&
10540      (N1C->isNullValue() ||                         // (a < 0) ? b : 0
10541       (N1C->getAPIntValue() == 1 && N0 == N2))) {   // (a < 1) ? a : 0
10542    EVT XType = N0.getValueType();
10543    EVT AType = N2.getValueType();
10544    if (XType.bitsGE(AType)) {
10545      // and (sra X, size(X)-1, A) -> "and (srl X, C2), A" iff A is a
10546      // single-bit constant.
10547      if (N2C && ((N2C->getAPIntValue() & (N2C->getAPIntValue()-1)) == 0)) {
10548        unsigned ShCtV = N2C->getAPIntValue().logBase2();
10549        ShCtV = XType.getSizeInBits()-ShCtV-1;
10550        SDValue ShCt = DAG.getConstant(ShCtV,
10551                                       getShiftAmountTy(N0.getValueType()));
10552        SDValue Shift = DAG.getNode(ISD::SRL, SDLoc(N0),
10553                                    XType, N0, ShCt);
10554        AddToWorkList(Shift.getNode());
10555
10556        if (XType.bitsGT(AType)) {
10557          Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift);
10558          AddToWorkList(Shift.getNode());
10559        }
10560
10561        return DAG.getNode(ISD::AND, DL, AType, Shift, N2);
10562      }
10563
10564      SDValue Shift = DAG.getNode(ISD::SRA, SDLoc(N0),
10565                                  XType, N0,
10566                                  DAG.getConstant(XType.getSizeInBits()-1,
10567                                         getShiftAmountTy(N0.getValueType())));
10568      AddToWorkList(Shift.getNode());
10569
10570      if (XType.bitsGT(AType)) {
10571        Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift);
10572        AddToWorkList(Shift.getNode());
10573      }
10574
10575      return DAG.getNode(ISD::AND, DL, AType, Shift, N2);
10576    }
10577  }
10578
10579  // fold (select_cc seteq (and x, y), 0, 0, A) -> (and (shr (shl x)) A)
10580  // where y is has a single bit set.
10581  // A plaintext description would be, we can turn the SELECT_CC into an AND
10582  // when the condition can be materialized as an all-ones register.  Any
10583  // single bit-test can be materialized as an all-ones register with
10584  // shift-left and shift-right-arith.
10585  if (CC == ISD::SETEQ && N0->getOpcode() == ISD::AND &&
10586      N0->getValueType(0) == VT &&
10587      N1C && N1C->isNullValue() &&
10588      N2C && N2C->isNullValue()) {
10589    SDValue AndLHS = N0->getOperand(0);
10590    ConstantSDNode *ConstAndRHS = dyn_cast<ConstantSDNode>(N0->getOperand(1));
10591    if (ConstAndRHS && ConstAndRHS->getAPIntValue().countPopulation() == 1) {
10592      // Shift the tested bit over the sign bit.
10593      APInt AndMask = ConstAndRHS->getAPIntValue();
10594      SDValue ShlAmt =
10595        DAG.getConstant(AndMask.countLeadingZeros(),
10596                        getShiftAmountTy(AndLHS.getValueType()));
10597      SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(N0), VT, AndLHS, ShlAmt);
10598
10599      // Now arithmetic right shift it all the way over, so the result is either
10600      // all-ones, or zero.
10601      SDValue ShrAmt =
10602        DAG.getConstant(AndMask.getBitWidth()-1,
10603                        getShiftAmountTy(Shl.getValueType()));
10604      SDValue Shr = DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, ShrAmt);
10605
10606      return DAG.getNode(ISD::AND, DL, VT, Shr, N3);
10607    }
10608  }
10609
10610  // fold select C, 16, 0 -> shl C, 4
10611  if (N2C && N3C && N3C->isNullValue() && N2C->getAPIntValue().isPowerOf2() &&
10612    TLI.getBooleanContents(N0.getValueType().isVector()) ==
10613      TargetLowering::ZeroOrOneBooleanContent) {
10614
10615    // If the caller doesn't want us to simplify this into a zext of a compare,
10616    // don't do it.
10617    if (NotExtCompare && N2C->getAPIntValue() == 1)
10618      return SDValue();
10619
10620    // Get a SetCC of the condition
10621    // NOTE: Don't create a SETCC if it's not legal on this target.
10622    if (!LegalOperations ||
10623        TLI.isOperationLegal(ISD::SETCC,
10624          LegalTypes ? getSetCCResultType(N0.getValueType()) : MVT::i1)) {
10625      SDValue Temp, SCC;
10626      // cast from setcc result type to select result type
10627      if (LegalTypes) {
10628        SCC  = DAG.getSetCC(DL, getSetCCResultType(N0.getValueType()),
10629                            N0, N1, CC);
10630        if (N2.getValueType().bitsLT(SCC.getValueType()))
10631          Temp = DAG.getZeroExtendInReg(SCC, SDLoc(N2),
10632                                        N2.getValueType());
10633        else
10634          Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2),
10635                             N2.getValueType(), SCC);
10636      } else {
10637        SCC  = DAG.getSetCC(SDLoc(N0), MVT::i1, N0, N1, CC);
10638        Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2),
10639                           N2.getValueType(), SCC);
10640      }
10641
10642      AddToWorkList(SCC.getNode());
10643      AddToWorkList(Temp.getNode());
10644
10645      if (N2C->getAPIntValue() == 1)
10646        return Temp;
10647
10648      // shl setcc result by log2 n2c
10649      return DAG.getNode(
10650          ISD::SHL, DL, N2.getValueType(), Temp,
10651          DAG.getConstant(N2C->getAPIntValue().logBase2(),
10652                          getShiftAmountTy(Temp.getValueType())));
10653    }
10654  }
10655
10656  // Check to see if this is the equivalent of setcc
10657  // FIXME: Turn all of these into setcc if setcc if setcc is legal
10658  // otherwise, go ahead with the folds.
10659  if (0 && N3C && N3C->isNullValue() && N2C && (N2C->getAPIntValue() == 1ULL)) {
10660    EVT XType = N0.getValueType();
10661    if (!LegalOperations ||
10662        TLI.isOperationLegal(ISD::SETCC, getSetCCResultType(XType))) {
10663      SDValue Res = DAG.getSetCC(DL, getSetCCResultType(XType), N0, N1, CC);
10664      if (Res.getValueType() != VT)
10665        Res = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Res);
10666      return Res;
10667    }
10668
10669    // fold (seteq X, 0) -> (srl (ctlz X, log2(size(X))))
10670    if (N1C && N1C->isNullValue() && CC == ISD::SETEQ &&
10671        (!LegalOperations ||
10672         TLI.isOperationLegal(ISD::CTLZ, XType))) {
10673      SDValue Ctlz = DAG.getNode(ISD::CTLZ, SDLoc(N0), XType, N0);
10674      return DAG.getNode(ISD::SRL, DL, XType, Ctlz,
10675                         DAG.getConstant(Log2_32(XType.getSizeInBits()),
10676                                       getShiftAmountTy(Ctlz.getValueType())));
10677    }
10678    // fold (setgt X, 0) -> (srl (and (-X, ~X), size(X)-1))
10679    if (N1C && N1C->isNullValue() && CC == ISD::SETGT) {
10680      SDValue NegN0 = DAG.getNode(ISD::SUB, SDLoc(N0),
10681                                  XType, DAG.getConstant(0, XType), N0);
10682      SDValue NotN0 = DAG.getNOT(SDLoc(N0), N0, XType);
10683      return DAG.getNode(ISD::SRL, DL, XType,
10684                         DAG.getNode(ISD::AND, DL, XType, NegN0, NotN0),
10685                         DAG.getConstant(XType.getSizeInBits()-1,
10686                                         getShiftAmountTy(XType)));
10687    }
10688    // fold (setgt X, -1) -> (xor (srl (X, size(X)-1), 1))
10689    if (N1C && N1C->isAllOnesValue() && CC == ISD::SETGT) {
10690      SDValue Sign = DAG.getNode(ISD::SRL, SDLoc(N0), XType, N0,
10691                                 DAG.getConstant(XType.getSizeInBits()-1,
10692                                         getShiftAmountTy(N0.getValueType())));
10693      return DAG.getNode(ISD::XOR, DL, XType, Sign, DAG.getConstant(1, XType));
10694    }
10695  }
10696
10697  // Check to see if this is an integer abs.
10698  // select_cc setg[te] X,  0,  X, -X ->
10699  // select_cc setgt    X, -1,  X, -X ->
10700  // select_cc setl[te] X,  0, -X,  X ->
10701  // select_cc setlt    X,  1, -X,  X ->
10702  // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
10703  if (N1C) {
10704    ConstantSDNode *SubC = NULL;
10705    if (((N1C->isNullValue() && (CC == ISD::SETGT || CC == ISD::SETGE)) ||
10706         (N1C->isAllOnesValue() && CC == ISD::SETGT)) &&
10707        N0 == N2 && N3.getOpcode() == ISD::SUB && N0 == N3.getOperand(1))
10708      SubC = dyn_cast<ConstantSDNode>(N3.getOperand(0));
10709    else if (((N1C->isNullValue() && (CC == ISD::SETLT || CC == ISD::SETLE)) ||
10710              (N1C->isOne() && CC == ISD::SETLT)) &&
10711             N0 == N3 && N2.getOpcode() == ISD::SUB && N0 == N2.getOperand(1))
10712      SubC = dyn_cast<ConstantSDNode>(N2.getOperand(0));
10713
10714    EVT XType = N0.getValueType();
10715    if (SubC && SubC->isNullValue() && XType.isInteger()) {
10716      SDValue Shift = DAG.getNode(ISD::SRA, SDLoc(N0), XType,
10717                                  N0,
10718                                  DAG.getConstant(XType.getSizeInBits()-1,
10719                                         getShiftAmountTy(N0.getValueType())));
10720      SDValue Add = DAG.getNode(ISD::ADD, SDLoc(N0),
10721                                XType, N0, Shift);
10722      AddToWorkList(Shift.getNode());
10723      AddToWorkList(Add.getNode());
10724      return DAG.getNode(ISD::XOR, DL, XType, Add, Shift);
10725    }
10726  }
10727
10728  return SDValue();
10729}
10730
10731/// SimplifySetCC - This is a stub for TargetLowering::SimplifySetCC.
10732SDValue DAGCombiner::SimplifySetCC(EVT VT, SDValue N0,
10733                                   SDValue N1, ISD::CondCode Cond,
10734                                   SDLoc DL, bool foldBooleans) {
10735  TargetLowering::DAGCombinerInfo
10736    DagCombineInfo(DAG, Level, false, this);
10737  return TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo, DL);
10738}
10739
10740/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
10741/// return a DAG expression to select that will generate the same value by
10742/// multiplying by a magic number.  See:
10743/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
10744SDValue DAGCombiner::BuildSDIV(SDNode *N) {
10745  std::vector<SDNode*> Built;
10746  SDValue S = TLI.BuildSDIV(N, DAG, LegalOperations, &Built);
10747
10748  for (std::vector<SDNode*>::iterator ii = Built.begin(), ee = Built.end();
10749       ii != ee; ++ii)
10750    AddToWorkList(*ii);
10751  return S;
10752}
10753
10754/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
10755/// return a DAG expression to select that will generate the same value by
10756/// multiplying by a magic number.  See:
10757/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
10758SDValue DAGCombiner::BuildUDIV(SDNode *N) {
10759  std::vector<SDNode*> Built;
10760  SDValue S = TLI.BuildUDIV(N, DAG, LegalOperations, &Built);
10761
10762  for (std::vector<SDNode*>::iterator ii = Built.begin(), ee = Built.end();
10763       ii != ee; ++ii)
10764    AddToWorkList(*ii);
10765  return S;
10766}
10767
10768/// FindBaseOffset - Return true if base is a frame index, which is known not
10769// to alias with anything but itself.  Provides base object and offset as
10770// results.
10771static bool FindBaseOffset(SDValue Ptr, SDValue &Base, int64_t &Offset,
10772                           const GlobalValue *&GV, const void *&CV) {
10773  // Assume it is a primitive operation.
10774  Base = Ptr; Offset = 0; GV = 0; CV = 0;
10775
10776  // If it's an adding a simple constant then integrate the offset.
10777  if (Base.getOpcode() == ISD::ADD) {
10778    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Base.getOperand(1))) {
10779      Base = Base.getOperand(0);
10780      Offset += C->getZExtValue();
10781    }
10782  }
10783
10784  // Return the underlying GlobalValue, and update the Offset.  Return false
10785  // for GlobalAddressSDNode since the same GlobalAddress may be represented
10786  // by multiple nodes with different offsets.
10787  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Base)) {
10788    GV = G->getGlobal();
10789    Offset += G->getOffset();
10790    return false;
10791  }
10792
10793  // Return the underlying Constant value, and update the Offset.  Return false
10794  // for ConstantSDNodes since the same constant pool entry may be represented
10795  // by multiple nodes with different offsets.
10796  if (ConstantPoolSDNode *C = dyn_cast<ConstantPoolSDNode>(Base)) {
10797    CV = C->isMachineConstantPoolEntry() ? (const void *)C->getMachineCPVal()
10798                                         : (const void *)C->getConstVal();
10799    Offset += C->getOffset();
10800    return false;
10801  }
10802  // If it's any of the following then it can't alias with anything but itself.
10803  return isa<FrameIndexSDNode>(Base);
10804}
10805
10806/// isAlias - Return true if there is any possibility that the two addresses
10807/// overlap.
10808bool DAGCombiner::isAlias(SDValue Ptr1, int64_t Size1,
10809                          const Value *SrcValue1, int SrcValueOffset1,
10810                          unsigned SrcValueAlign1,
10811                          const MDNode *TBAAInfo1,
10812                          SDValue Ptr2, int64_t Size2,
10813                          const Value *SrcValue2, int SrcValueOffset2,
10814                          unsigned SrcValueAlign2,
10815                          const MDNode *TBAAInfo2) const {
10816  // If they are the same then they must be aliases.
10817  if (Ptr1 == Ptr2) return true;
10818
10819  // Gather base node and offset information.
10820  SDValue Base1, Base2;
10821  int64_t Offset1, Offset2;
10822  const GlobalValue *GV1, *GV2;
10823  const void *CV1, *CV2;
10824  bool isFrameIndex1 = FindBaseOffset(Ptr1, Base1, Offset1, GV1, CV1);
10825  bool isFrameIndex2 = FindBaseOffset(Ptr2, Base2, Offset2, GV2, CV2);
10826
10827  // If they have a same base address then check to see if they overlap.
10828  if (Base1 == Base2 || (GV1 && (GV1 == GV2)) || (CV1 && (CV1 == CV2)))
10829    return !((Offset1 + Size1) <= Offset2 || (Offset2 + Size2) <= Offset1);
10830
10831  // It is possible for different frame indices to alias each other, mostly
10832  // when tail call optimization reuses return address slots for arguments.
10833  // To catch this case, look up the actual index of frame indices to compute
10834  // the real alias relationship.
10835  if (isFrameIndex1 && isFrameIndex2) {
10836    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
10837    Offset1 += MFI->getObjectOffset(cast<FrameIndexSDNode>(Base1)->getIndex());
10838    Offset2 += MFI->getObjectOffset(cast<FrameIndexSDNode>(Base2)->getIndex());
10839    return !((Offset1 + Size1) <= Offset2 || (Offset2 + Size2) <= Offset1);
10840  }
10841
10842  // Otherwise, if we know what the bases are, and they aren't identical, then
10843  // we know they cannot alias.
10844  if ((isFrameIndex1 || CV1 || GV1) && (isFrameIndex2 || CV2 || GV2))
10845    return false;
10846
10847  // If we know required SrcValue1 and SrcValue2 have relatively large alignment
10848  // compared to the size and offset of the access, we may be able to prove they
10849  // do not alias.  This check is conservative for now to catch cases created by
10850  // splitting vector types.
10851  if ((SrcValueAlign1 == SrcValueAlign2) &&
10852      (SrcValueOffset1 != SrcValueOffset2) &&
10853      (Size1 == Size2) && (SrcValueAlign1 > Size1)) {
10854    int64_t OffAlign1 = SrcValueOffset1 % SrcValueAlign1;
10855    int64_t OffAlign2 = SrcValueOffset2 % SrcValueAlign1;
10856
10857    // There is no overlap between these relatively aligned accesses of similar
10858    // size, return no alias.
10859    if ((OffAlign1 + Size1) <= OffAlign2 || (OffAlign2 + Size2) <= OffAlign1)
10860      return false;
10861  }
10862
10863  bool UseAA = CombinerGlobalAA.getNumOccurrences() > 0 ? CombinerGlobalAA :
10864    TLI.getTargetMachine().getSubtarget<TargetSubtargetInfo>().useAA();
10865  if (UseAA && SrcValue1 && SrcValue2) {
10866    // Use alias analysis information.
10867    int64_t MinOffset = std::min(SrcValueOffset1, SrcValueOffset2);
10868    int64_t Overlap1 = Size1 + SrcValueOffset1 - MinOffset;
10869    int64_t Overlap2 = Size2 + SrcValueOffset2 - MinOffset;
10870    AliasAnalysis::AliasResult AAResult =
10871      AA.alias(AliasAnalysis::Location(SrcValue1, Overlap1, TBAAInfo1),
10872               AliasAnalysis::Location(SrcValue2, Overlap2, TBAAInfo2));
10873    if (AAResult == AliasAnalysis::NoAlias)
10874      return false;
10875  }
10876
10877  // Otherwise we have to assume they alias.
10878  return true;
10879}
10880
10881bool DAGCombiner::isAlias(LSBaseSDNode *Op0, LSBaseSDNode *Op1) {
10882  SDValue Ptr0, Ptr1;
10883  int64_t Size0, Size1;
10884  const Value *SrcValue0, *SrcValue1;
10885  int SrcValueOffset0, SrcValueOffset1;
10886  unsigned SrcValueAlign0, SrcValueAlign1;
10887  const MDNode *SrcTBAAInfo0, *SrcTBAAInfo1;
10888  FindAliasInfo(Op0, Ptr0, Size0, SrcValue0, SrcValueOffset0,
10889                SrcValueAlign0, SrcTBAAInfo0);
10890  FindAliasInfo(Op1, Ptr1, Size1, SrcValue1, SrcValueOffset1,
10891                SrcValueAlign1, SrcTBAAInfo1);
10892  return isAlias(Ptr0, Size0, SrcValue0, SrcValueOffset0,
10893                 SrcValueAlign0, SrcTBAAInfo0,
10894                 Ptr1, Size1, SrcValue1, SrcValueOffset1,
10895                 SrcValueAlign1, SrcTBAAInfo1);
10896}
10897
10898/// FindAliasInfo - Extracts the relevant alias information from the memory
10899/// node.  Returns true if the operand was a load.
10900bool DAGCombiner::FindAliasInfo(SDNode *N,
10901                                SDValue &Ptr, int64_t &Size,
10902                                const Value *&SrcValue,
10903                                int &SrcValueOffset,
10904                                unsigned &SrcValueAlign,
10905                                const MDNode *&TBAAInfo) const {
10906  LSBaseSDNode *LS = cast<LSBaseSDNode>(N);
10907
10908  Ptr = LS->getBasePtr();
10909  Size = LS->getMemoryVT().getSizeInBits() >> 3;
10910  SrcValue = LS->getSrcValue();
10911  SrcValueOffset = LS->getSrcValueOffset();
10912  SrcValueAlign = LS->getOriginalAlignment();
10913  TBAAInfo = LS->getTBAAInfo();
10914  return isa<LoadSDNode>(LS);
10915}
10916
10917/// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
10918/// looking for aliasing nodes and adding them to the Aliases vector.
10919void DAGCombiner::GatherAllAliases(SDNode *N, SDValue OriginalChain,
10920                                   SmallVectorImpl<SDValue> &Aliases) {
10921  SmallVector<SDValue, 8> Chains;     // List of chains to visit.
10922  SmallPtrSet<SDNode *, 16> Visited;  // Visited node set.
10923
10924  // Get alias information for node.
10925  SDValue Ptr;
10926  int64_t Size;
10927  const Value *SrcValue;
10928  int SrcValueOffset;
10929  unsigned SrcValueAlign;
10930  const MDNode *SrcTBAAInfo;
10931  bool IsLoad = FindAliasInfo(N, Ptr, Size, SrcValue, SrcValueOffset,
10932                              SrcValueAlign, SrcTBAAInfo);
10933
10934  // Starting off.
10935  Chains.push_back(OriginalChain);
10936  unsigned Depth = 0;
10937
10938  // Look at each chain and determine if it is an alias.  If so, add it to the
10939  // aliases list.  If not, then continue up the chain looking for the next
10940  // candidate.
10941  while (!Chains.empty()) {
10942    SDValue Chain = Chains.back();
10943    Chains.pop_back();
10944
10945    // For TokenFactor nodes, look at each operand and only continue up the
10946    // chain until we find two aliases.  If we've seen two aliases, assume we'll
10947    // find more and revert to original chain since the xform is unlikely to be
10948    // profitable.
10949    //
10950    // FIXME: The depth check could be made to return the last non-aliasing
10951    // chain we found before we hit a tokenfactor rather than the original
10952    // chain.
10953    if (Depth > 6 || Aliases.size() == 2) {
10954      Aliases.clear();
10955      Aliases.push_back(OriginalChain);
10956      break;
10957    }
10958
10959    // Don't bother if we've been before.
10960    if (!Visited.insert(Chain.getNode()))
10961      continue;
10962
10963    switch (Chain.getOpcode()) {
10964    case ISD::EntryToken:
10965      // Entry token is ideal chain operand, but handled in FindBetterChain.
10966      break;
10967
10968    case ISD::LOAD:
10969    case ISD::STORE: {
10970      // Get alias information for Chain.
10971      SDValue OpPtr;
10972      int64_t OpSize;
10973      const Value *OpSrcValue;
10974      int OpSrcValueOffset;
10975      unsigned OpSrcValueAlign;
10976      const MDNode *OpSrcTBAAInfo;
10977      bool IsOpLoad = FindAliasInfo(Chain.getNode(), OpPtr, OpSize,
10978                                    OpSrcValue, OpSrcValueOffset,
10979                                    OpSrcValueAlign,
10980                                    OpSrcTBAAInfo);
10981
10982      // If chain is alias then stop here.
10983      if (!(IsLoad && IsOpLoad) &&
10984          isAlias(Ptr, Size, SrcValue, SrcValueOffset, SrcValueAlign,
10985                  SrcTBAAInfo,
10986                  OpPtr, OpSize, OpSrcValue, OpSrcValueOffset,
10987                  OpSrcValueAlign, OpSrcTBAAInfo)) {
10988        Aliases.push_back(Chain);
10989      } else {
10990        // Look further up the chain.
10991        Chains.push_back(Chain.getOperand(0));
10992        ++Depth;
10993      }
10994      break;
10995    }
10996
10997    case ISD::TokenFactor:
10998      // We have to check each of the operands of the token factor for "small"
10999      // token factors, so we queue them up.  Adding the operands to the queue
11000      // (stack) in reverse order maintains the original order and increases the
11001      // likelihood that getNode will find a matching token factor (CSE.)
11002      if (Chain.getNumOperands() > 16) {
11003        Aliases.push_back(Chain);
11004        break;
11005      }
11006      for (unsigned n = Chain.getNumOperands(); n;)
11007        Chains.push_back(Chain.getOperand(--n));
11008      ++Depth;
11009      break;
11010
11011    default:
11012      // For all other instructions we will just have to take what we can get.
11013      Aliases.push_back(Chain);
11014      break;
11015    }
11016  }
11017}
11018
11019/// FindBetterChain - Walk up chain skipping non-aliasing memory nodes, looking
11020/// for a better chain (aliasing node.)
11021SDValue DAGCombiner::FindBetterChain(SDNode *N, SDValue OldChain) {
11022  SmallVector<SDValue, 8> Aliases;  // Ops for replacing token factor.
11023
11024  // Accumulate all the aliases to this node.
11025  GatherAllAliases(N, OldChain, Aliases);
11026
11027  // If no operands then chain to entry token.
11028  if (Aliases.size() == 0)
11029    return DAG.getEntryNode();
11030
11031  // If a single operand then chain to it.  We don't need to revisit it.
11032  if (Aliases.size() == 1)
11033    return Aliases[0];
11034
11035  // Construct a custom tailored token factor.
11036  return DAG.getNode(ISD::TokenFactor, SDLoc(N), MVT::Other,
11037                     &Aliases[0], Aliases.size());
11038}
11039
11040// SelectionDAG::Combine - This is the entry point for the file.
11041//
11042void SelectionDAG::Combine(CombineLevel Level, AliasAnalysis &AA,
11043                           CodeGenOpt::Level OptLevel) {
11044  /// run - This is the main entry point to this class.
11045  ///
11046  DAGCombiner(*this, AA, OptLevel).Run(Level);
11047}
11048