DAGCombiner.cpp revision a569a80e58fd89f08600b002f2e46b60ed2ba554
1//===-- DAGCombiner.cpp - Implement a DAG node combiner -------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass combines dag nodes to form fewer, simpler DAG nodes.  It can be run
11// both before and after the DAG is legalized.
12//
13// This pass is not a substitute for the LLVM IR instcombine pass. This pass is
14// primarily intended to handle simplification opportunities that are implicit
15// in the LLVM IR and exposed by the various codegen lowering phases.
16//
17//===----------------------------------------------------------------------===//
18
19#define DEBUG_TYPE "dagcombine"
20#include "llvm/CodeGen/SelectionDAG.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/LLVMContext.h"
23#include "llvm/CodeGen/MachineFunction.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/Analysis/AliasAnalysis.h"
26#include "llvm/DataLayout.h"
27#include "llvm/Target/TargetLowering.h"
28#include "llvm/Target/TargetMachine.h"
29#include "llvm/Target/TargetOptions.h"
30#include "llvm/ADT/SmallPtrSet.h"
31#include "llvm/ADT/Statistic.h"
32#include "llvm/Support/CommandLine.h"
33#include "llvm/Support/Debug.h"
34#include "llvm/Support/ErrorHandling.h"
35#include "llvm/Support/MathExtras.h"
36#include "llvm/Support/raw_ostream.h"
37#include <algorithm>
38using namespace llvm;
39
40STATISTIC(NodesCombined   , "Number of dag nodes combined");
41STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created");
42STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created");
43STATISTIC(OpsNarrowed     , "Number of load/op/store narrowed");
44STATISTIC(LdStFP2Int      , "Number of fp load/store pairs transformed to int");
45
46namespace {
47  static cl::opt<bool>
48    CombinerAA("combiner-alias-analysis", cl::Hidden,
49               cl::desc("Turn on alias analysis during testing"));
50
51  static cl::opt<bool>
52    CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden,
53               cl::desc("Include global information in alias analysis"));
54
55//------------------------------ DAGCombiner ---------------------------------//
56
57  class DAGCombiner {
58    SelectionDAG &DAG;
59    const TargetLowering &TLI;
60    CombineLevel Level;
61    CodeGenOpt::Level OptLevel;
62    bool LegalOperations;
63    bool LegalTypes;
64
65    // Worklist of all of the nodes that need to be simplified.
66    //
67    // This has the semantics that when adding to the worklist,
68    // the item added must be next to be processed. It should
69    // also only appear once. The naive approach to this takes
70    // linear time.
71    //
72    // To reduce the insert/remove time to logarithmic, we use
73    // a set and a vector to maintain our worklist.
74    //
75    // The set contains the items on the worklist, but does not
76    // maintain the order they should be visited.
77    //
78    // The vector maintains the order nodes should be visited, but may
79    // contain duplicate or removed nodes. When choosing a node to
80    // visit, we pop off the order stack until we find an item that is
81    // also in the contents set. All operations are O(log N).
82    SmallPtrSet<SDNode*, 64> WorkListContents;
83    SmallVector<SDNode*, 64> WorkListOrder;
84
85    // AA - Used for DAG load/store alias analysis.
86    AliasAnalysis &AA;
87
88    /// AddUsersToWorkList - When an instruction is simplified, add all users of
89    /// the instruction to the work lists because they might get more simplified
90    /// now.
91    ///
92    void AddUsersToWorkList(SDNode *N) {
93      for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
94           UI != UE; ++UI)
95        AddToWorkList(*UI);
96    }
97
98    /// visit - call the node-specific routine that knows how to fold each
99    /// particular type of node.
100    SDValue visit(SDNode *N);
101
102  public:
103    /// AddToWorkList - Add to the work list making sure its instance is at the
104    /// back (next to be processed.)
105    void AddToWorkList(SDNode *N) {
106      WorkListContents.insert(N);
107      WorkListOrder.push_back(N);
108    }
109
110    /// removeFromWorkList - remove all instances of N from the worklist.
111    ///
112    void removeFromWorkList(SDNode *N) {
113      WorkListContents.erase(N);
114    }
115
116    SDValue CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
117                      bool AddTo = true);
118
119    SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true) {
120      return CombineTo(N, &Res, 1, AddTo);
121    }
122
123    SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1,
124                      bool AddTo = true) {
125      SDValue To[] = { Res0, Res1 };
126      return CombineTo(N, To, 2, AddTo);
127    }
128
129    void CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO);
130
131  private:
132
133    /// SimplifyDemandedBits - Check the specified integer node value to see if
134    /// it can be simplified or if things it uses can be simplified by bit
135    /// propagation.  If so, return true.
136    bool SimplifyDemandedBits(SDValue Op) {
137      unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
138      APInt Demanded = APInt::getAllOnesValue(BitWidth);
139      return SimplifyDemandedBits(Op, Demanded);
140    }
141
142    bool SimplifyDemandedBits(SDValue Op, const APInt &Demanded);
143
144    bool CombineToPreIndexedLoadStore(SDNode *N);
145    bool CombineToPostIndexedLoadStore(SDNode *N);
146
147    void ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad);
148    SDValue PromoteOperand(SDValue Op, EVT PVT, bool &Replace);
149    SDValue SExtPromoteOperand(SDValue Op, EVT PVT);
150    SDValue ZExtPromoteOperand(SDValue Op, EVT PVT);
151    SDValue PromoteIntBinOp(SDValue Op);
152    SDValue PromoteIntShiftOp(SDValue Op);
153    SDValue PromoteExtend(SDValue Op);
154    bool PromoteLoad(SDValue Op);
155
156    void ExtendSetCCUses(SmallVector<SDNode*, 4> SetCCs,
157                         SDValue Trunc, SDValue ExtLoad, DebugLoc DL,
158                         ISD::NodeType ExtType);
159
160    /// combine - call the node-specific routine that knows how to fold each
161    /// particular type of node. If that doesn't do anything, try the
162    /// target-specific DAG combines.
163    SDValue combine(SDNode *N);
164
165    // Visitation implementation - Implement dag node combining for different
166    // node types.  The semantics are as follows:
167    // Return Value:
168    //   SDValue.getNode() == 0 - No change was made
169    //   SDValue.getNode() == N - N was replaced, is dead and has been handled.
170    //   otherwise              - N should be replaced by the returned Operand.
171    //
172    SDValue visitTokenFactor(SDNode *N);
173    SDValue visitMERGE_VALUES(SDNode *N);
174    SDValue visitADD(SDNode *N);
175    SDValue visitSUB(SDNode *N);
176    SDValue visitADDC(SDNode *N);
177    SDValue visitSUBC(SDNode *N);
178    SDValue visitADDE(SDNode *N);
179    SDValue visitSUBE(SDNode *N);
180    SDValue visitMUL(SDNode *N);
181    SDValue visitSDIV(SDNode *N);
182    SDValue visitUDIV(SDNode *N);
183    SDValue visitSREM(SDNode *N);
184    SDValue visitUREM(SDNode *N);
185    SDValue visitMULHU(SDNode *N);
186    SDValue visitMULHS(SDNode *N);
187    SDValue visitSMUL_LOHI(SDNode *N);
188    SDValue visitUMUL_LOHI(SDNode *N);
189    SDValue visitSMULO(SDNode *N);
190    SDValue visitUMULO(SDNode *N);
191    SDValue visitSDIVREM(SDNode *N);
192    SDValue visitUDIVREM(SDNode *N);
193    SDValue visitAND(SDNode *N);
194    SDValue visitOR(SDNode *N);
195    SDValue visitXOR(SDNode *N);
196    SDValue SimplifyVBinOp(SDNode *N);
197    SDValue SimplifyVUnaryOp(SDNode *N);
198    SDValue visitSHL(SDNode *N);
199    SDValue visitSRA(SDNode *N);
200    SDValue visitSRL(SDNode *N);
201    SDValue visitCTLZ(SDNode *N);
202    SDValue visitCTLZ_ZERO_UNDEF(SDNode *N);
203    SDValue visitCTTZ(SDNode *N);
204    SDValue visitCTTZ_ZERO_UNDEF(SDNode *N);
205    SDValue visitCTPOP(SDNode *N);
206    SDValue visitSELECT(SDNode *N);
207    SDValue visitSELECT_CC(SDNode *N);
208    SDValue visitSETCC(SDNode *N);
209    SDValue visitSIGN_EXTEND(SDNode *N);
210    SDValue visitZERO_EXTEND(SDNode *N);
211    SDValue visitANY_EXTEND(SDNode *N);
212    SDValue visitSIGN_EXTEND_INREG(SDNode *N);
213    SDValue visitTRUNCATE(SDNode *N);
214    SDValue visitBITCAST(SDNode *N);
215    SDValue visitBUILD_PAIR(SDNode *N);
216    SDValue visitFADD(SDNode *N);
217    SDValue visitFSUB(SDNode *N);
218    SDValue visitFMUL(SDNode *N);
219    SDValue visitFMA(SDNode *N);
220    SDValue visitFDIV(SDNode *N);
221    SDValue visitFREM(SDNode *N);
222    SDValue visitFCOPYSIGN(SDNode *N);
223    SDValue visitSINT_TO_FP(SDNode *N);
224    SDValue visitUINT_TO_FP(SDNode *N);
225    SDValue visitFP_TO_SINT(SDNode *N);
226    SDValue visitFP_TO_UINT(SDNode *N);
227    SDValue visitFP_ROUND(SDNode *N);
228    SDValue visitFP_ROUND_INREG(SDNode *N);
229    SDValue visitFP_EXTEND(SDNode *N);
230    SDValue visitFNEG(SDNode *N);
231    SDValue visitFABS(SDNode *N);
232    SDValue visitFCEIL(SDNode *N);
233    SDValue visitFTRUNC(SDNode *N);
234    SDValue visitFFLOOR(SDNode *N);
235    SDValue visitBRCOND(SDNode *N);
236    SDValue visitBR_CC(SDNode *N);
237    SDValue visitLOAD(SDNode *N);
238    SDValue visitSTORE(SDNode *N);
239    SDValue visitINSERT_VECTOR_ELT(SDNode *N);
240    SDValue visitEXTRACT_VECTOR_ELT(SDNode *N);
241    SDValue visitBUILD_VECTOR(SDNode *N);
242    SDValue visitCONCAT_VECTORS(SDNode *N);
243    SDValue visitEXTRACT_SUBVECTOR(SDNode *N);
244    SDValue visitVECTOR_SHUFFLE(SDNode *N);
245    SDValue visitMEMBARRIER(SDNode *N);
246
247    SDValue XformToShuffleWithZero(SDNode *N);
248    SDValue ReassociateOps(unsigned Opc, DebugLoc DL, SDValue LHS, SDValue RHS);
249
250    SDValue visitShiftByConstant(SDNode *N, unsigned Amt);
251
252    bool SimplifySelectOps(SDNode *SELECT, SDValue LHS, SDValue RHS);
253    SDValue SimplifyBinOpWithSameOpcodeHands(SDNode *N);
254    SDValue SimplifySelect(DebugLoc DL, SDValue N0, SDValue N1, SDValue N2);
255    SDValue SimplifySelectCC(DebugLoc DL, SDValue N0, SDValue N1, SDValue N2,
256                             SDValue N3, ISD::CondCode CC,
257                             bool NotExtCompare = false);
258    SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
259                          DebugLoc DL, bool foldBooleans = true);
260    SDValue SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
261                                         unsigned HiOp);
262    SDValue CombineConsecutiveLoads(SDNode *N, EVT VT);
263    SDValue ConstantFoldBITCASTofBUILD_VECTOR(SDNode *, EVT);
264    SDValue BuildSDIV(SDNode *N);
265    SDValue BuildUDIV(SDNode *N);
266    SDValue MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1,
267                               bool DemandHighBits = true);
268    SDValue MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1);
269    SDNode *MatchRotate(SDValue LHS, SDValue RHS, DebugLoc DL);
270    SDValue ReduceLoadWidth(SDNode *N);
271    SDValue ReduceLoadOpStoreWidth(SDNode *N);
272    SDValue TransformFPLoadStorePair(SDNode *N);
273    SDValue reduceBuildVecExtToExtBuildVec(SDNode *N);
274    SDValue reduceBuildVecConvertToConvertBuildVec(SDNode *N);
275
276    SDValue GetDemandedBits(SDValue V, const APInt &Mask);
277
278    /// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
279    /// looking for aliasing nodes and adding them to the Aliases vector.
280    void GatherAllAliases(SDNode *N, SDValue OriginalChain,
281                          SmallVector<SDValue, 8> &Aliases);
282
283    /// isAlias - Return true if there is any possibility that the two addresses
284    /// overlap.
285    bool isAlias(SDValue Ptr1, int64_t Size1,
286                 const Value *SrcValue1, int SrcValueOffset1,
287                 unsigned SrcValueAlign1,
288                 const MDNode *TBAAInfo1,
289                 SDValue Ptr2, int64_t Size2,
290                 const Value *SrcValue2, int SrcValueOffset2,
291                 unsigned SrcValueAlign2,
292                 const MDNode *TBAAInfo2) const;
293
294    /// isAlias - Return true if there is any possibility that the two addresses
295    /// overlap.
296    bool isAlias(LSBaseSDNode *Op0, LSBaseSDNode *Op1);
297
298    /// FindAliasInfo - Extracts the relevant alias information from the memory
299    /// node.  Returns true if the operand was a load.
300    bool FindAliasInfo(SDNode *N,
301                       SDValue &Ptr, int64_t &Size,
302                       const Value *&SrcValue, int &SrcValueOffset,
303                       unsigned &SrcValueAlignment,
304                       const MDNode *&TBAAInfo) const;
305
306    /// FindBetterChain - Walk up chain skipping non-aliasing memory nodes,
307    /// looking for a better chain (aliasing node.)
308    SDValue FindBetterChain(SDNode *N, SDValue Chain);
309
310    /// Merge consecutive store operations into a wide store.
311    /// This optimization uses wide integers or vectors when possible.
312    /// \return True if some memory operations were changed.
313    bool MergeConsecutiveStores(StoreSDNode *N);
314
315  public:
316    DAGCombiner(SelectionDAG &D, AliasAnalysis &A, CodeGenOpt::Level OL)
317      : DAG(D), TLI(D.getTargetLoweringInfo()), Level(BeforeLegalizeTypes),
318        OptLevel(OL), LegalOperations(false), LegalTypes(false), AA(A) {}
319
320    /// Run - runs the dag combiner on all nodes in the work list
321    void Run(CombineLevel AtLevel);
322
323    SelectionDAG &getDAG() const { return DAG; }
324
325    /// getShiftAmountTy - Returns a type large enough to hold any valid
326    /// shift amount - before type legalization these can be huge.
327    EVT getShiftAmountTy(EVT LHSTy) {
328      return LegalTypes ? TLI.getShiftAmountTy(LHSTy) : TLI.getPointerTy();
329    }
330
331    /// isTypeLegal - This method returns true if we are running before type
332    /// legalization or if the specified VT is legal.
333    bool isTypeLegal(const EVT &VT) {
334      if (!LegalTypes) return true;
335      return TLI.isTypeLegal(VT);
336    }
337  };
338}
339
340
341namespace {
342/// WorkListRemover - This class is a DAGUpdateListener that removes any deleted
343/// nodes from the worklist.
344class WorkListRemover : public SelectionDAG::DAGUpdateListener {
345  DAGCombiner &DC;
346public:
347  explicit WorkListRemover(DAGCombiner &dc)
348    : SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {}
349
350  virtual void NodeDeleted(SDNode *N, SDNode *E) {
351    DC.removeFromWorkList(N);
352  }
353};
354}
355
356//===----------------------------------------------------------------------===//
357//  TargetLowering::DAGCombinerInfo implementation
358//===----------------------------------------------------------------------===//
359
360void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) {
361  ((DAGCombiner*)DC)->AddToWorkList(N);
362}
363
364void TargetLowering::DAGCombinerInfo::RemoveFromWorklist(SDNode *N) {
365  ((DAGCombiner*)DC)->removeFromWorkList(N);
366}
367
368SDValue TargetLowering::DAGCombinerInfo::
369CombineTo(SDNode *N, const std::vector<SDValue> &To, bool AddTo) {
370  return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size(), AddTo);
371}
372
373SDValue TargetLowering::DAGCombinerInfo::
374CombineTo(SDNode *N, SDValue Res, bool AddTo) {
375  return ((DAGCombiner*)DC)->CombineTo(N, Res, AddTo);
376}
377
378
379SDValue TargetLowering::DAGCombinerInfo::
380CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo) {
381  return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1, AddTo);
382}
383
384void TargetLowering::DAGCombinerInfo::
385CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) {
386  return ((DAGCombiner*)DC)->CommitTargetLoweringOpt(TLO);
387}
388
389//===----------------------------------------------------------------------===//
390// Helper Functions
391//===----------------------------------------------------------------------===//
392
393/// isNegatibleForFree - Return 1 if we can compute the negated form of the
394/// specified expression for the same cost as the expression itself, or 2 if we
395/// can compute the negated form more cheaply than the expression itself.
396static char isNegatibleForFree(SDValue Op, bool LegalOperations,
397                               const TargetLowering &TLI,
398                               const TargetOptions *Options,
399                               unsigned Depth = 0) {
400  // fneg is removable even if it has multiple uses.
401  if (Op.getOpcode() == ISD::FNEG) return 2;
402
403  // Don't allow anything with multiple uses.
404  if (!Op.hasOneUse()) return 0;
405
406  // Don't recurse exponentially.
407  if (Depth > 6) return 0;
408
409  switch (Op.getOpcode()) {
410  default: return false;
411  case ISD::ConstantFP:
412    // Don't invert constant FP values after legalize.  The negated constant
413    // isn't necessarily legal.
414    return LegalOperations ? 0 : 1;
415  case ISD::FADD:
416    // FIXME: determine better conditions for this xform.
417    if (!Options->UnsafeFPMath) return 0;
418
419    // After operation legalization, it might not be legal to create new FSUBs.
420    if (LegalOperations &&
421        !TLI.isOperationLegalOrCustom(ISD::FSUB,  Op.getValueType()))
422      return 0;
423
424    // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
425    if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI,
426                                    Options, Depth + 1))
427      return V;
428    // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
429    return isNegatibleForFree(Op.getOperand(1), LegalOperations, TLI, Options,
430                              Depth + 1);
431  case ISD::FSUB:
432    // We can't turn -(A-B) into B-A when we honor signed zeros.
433    if (!Options->UnsafeFPMath) return 0;
434
435    // fold (fneg (fsub A, B)) -> (fsub B, A)
436    return 1;
437
438  case ISD::FMUL:
439  case ISD::FDIV:
440    if (Options->HonorSignDependentRoundingFPMath()) return 0;
441
442    // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y))
443    if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI,
444                                    Options, Depth + 1))
445      return V;
446
447    return isNegatibleForFree(Op.getOperand(1), LegalOperations, TLI, Options,
448                              Depth + 1);
449
450  case ISD::FP_EXTEND:
451  case ISD::FP_ROUND:
452  case ISD::FSIN:
453    return isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI, Options,
454                              Depth + 1);
455  }
456}
457
458/// GetNegatedExpression - If isNegatibleForFree returns true, this function
459/// returns the newly negated expression.
460static SDValue GetNegatedExpression(SDValue Op, SelectionDAG &DAG,
461                                    bool LegalOperations, unsigned Depth = 0) {
462  // fneg is removable even if it has multiple uses.
463  if (Op.getOpcode() == ISD::FNEG) return Op.getOperand(0);
464
465  // Don't allow anything with multiple uses.
466  assert(Op.hasOneUse() && "Unknown reuse!");
467
468  assert(Depth <= 6 && "GetNegatedExpression doesn't match isNegatibleForFree");
469  switch (Op.getOpcode()) {
470  default: llvm_unreachable("Unknown code");
471  case ISD::ConstantFP: {
472    APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
473    V.changeSign();
474    return DAG.getConstantFP(V, Op.getValueType());
475  }
476  case ISD::FADD:
477    // FIXME: determine better conditions for this xform.
478    assert(DAG.getTarget().Options.UnsafeFPMath);
479
480    // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
481    if (isNegatibleForFree(Op.getOperand(0), LegalOperations,
482                           DAG.getTargetLoweringInfo(),
483                           &DAG.getTarget().Options, Depth+1))
484      return DAG.getNode(ISD::FSUB, Op.getDebugLoc(), Op.getValueType(),
485                         GetNegatedExpression(Op.getOperand(0), DAG,
486                                              LegalOperations, Depth+1),
487                         Op.getOperand(1));
488    // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
489    return DAG.getNode(ISD::FSUB, Op.getDebugLoc(), Op.getValueType(),
490                       GetNegatedExpression(Op.getOperand(1), DAG,
491                                            LegalOperations, Depth+1),
492                       Op.getOperand(0));
493  case ISD::FSUB:
494    // We can't turn -(A-B) into B-A when we honor signed zeros.
495    assert(DAG.getTarget().Options.UnsafeFPMath);
496
497    // fold (fneg (fsub 0, B)) -> B
498    if (ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(Op.getOperand(0)))
499      if (N0CFP->getValueAPF().isZero())
500        return Op.getOperand(1);
501
502    // fold (fneg (fsub A, B)) -> (fsub B, A)
503    return DAG.getNode(ISD::FSUB, Op.getDebugLoc(), Op.getValueType(),
504                       Op.getOperand(1), Op.getOperand(0));
505
506  case ISD::FMUL:
507  case ISD::FDIV:
508    assert(!DAG.getTarget().Options.HonorSignDependentRoundingFPMath());
509
510    // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
511    if (isNegatibleForFree(Op.getOperand(0), LegalOperations,
512                           DAG.getTargetLoweringInfo(),
513                           &DAG.getTarget().Options, Depth+1))
514      return DAG.getNode(Op.getOpcode(), Op.getDebugLoc(), Op.getValueType(),
515                         GetNegatedExpression(Op.getOperand(0), DAG,
516                                              LegalOperations, Depth+1),
517                         Op.getOperand(1));
518
519    // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
520    return DAG.getNode(Op.getOpcode(), Op.getDebugLoc(), Op.getValueType(),
521                       Op.getOperand(0),
522                       GetNegatedExpression(Op.getOperand(1), DAG,
523                                            LegalOperations, Depth+1));
524
525  case ISD::FP_EXTEND:
526  case ISD::FSIN:
527    return DAG.getNode(Op.getOpcode(), Op.getDebugLoc(), Op.getValueType(),
528                       GetNegatedExpression(Op.getOperand(0), DAG,
529                                            LegalOperations, Depth+1));
530  case ISD::FP_ROUND:
531      return DAG.getNode(ISD::FP_ROUND, Op.getDebugLoc(), Op.getValueType(),
532                         GetNegatedExpression(Op.getOperand(0), DAG,
533                                              LegalOperations, Depth+1),
534                         Op.getOperand(1));
535  }
536}
537
538
539// isSetCCEquivalent - Return true if this node is a setcc, or is a select_cc
540// that selects between the values 1 and 0, making it equivalent to a setcc.
541// Also, set the incoming LHS, RHS, and CC references to the appropriate
542// nodes based on the type of node we are checking.  This simplifies life a
543// bit for the callers.
544static bool isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS,
545                              SDValue &CC) {
546  if (N.getOpcode() == ISD::SETCC) {
547    LHS = N.getOperand(0);
548    RHS = N.getOperand(1);
549    CC  = N.getOperand(2);
550    return true;
551  }
552  if (N.getOpcode() == ISD::SELECT_CC &&
553      N.getOperand(2).getOpcode() == ISD::Constant &&
554      N.getOperand(3).getOpcode() == ISD::Constant &&
555      cast<ConstantSDNode>(N.getOperand(2))->getAPIntValue() == 1 &&
556      cast<ConstantSDNode>(N.getOperand(3))->isNullValue()) {
557    LHS = N.getOperand(0);
558    RHS = N.getOperand(1);
559    CC  = N.getOperand(4);
560    return true;
561  }
562  return false;
563}
564
565// isOneUseSetCC - Return true if this is a SetCC-equivalent operation with only
566// one use.  If this is true, it allows the users to invert the operation for
567// free when it is profitable to do so.
568static bool isOneUseSetCC(SDValue N) {
569  SDValue N0, N1, N2;
570  if (isSetCCEquivalent(N, N0, N1, N2) && N.getNode()->hasOneUse())
571    return true;
572  return false;
573}
574
575SDValue DAGCombiner::ReassociateOps(unsigned Opc, DebugLoc DL,
576                                    SDValue N0, SDValue N1) {
577  EVT VT = N0.getValueType();
578  if (N0.getOpcode() == Opc && isa<ConstantSDNode>(N0.getOperand(1))) {
579    if (isa<ConstantSDNode>(N1)) {
580      // reassoc. (op (op x, c1), c2) -> (op x, (op c1, c2))
581      SDValue OpNode =
582        DAG.FoldConstantArithmetic(Opc, VT,
583                                   cast<ConstantSDNode>(N0.getOperand(1)),
584                                   cast<ConstantSDNode>(N1));
585      return DAG.getNode(Opc, DL, VT, N0.getOperand(0), OpNode);
586    }
587    if (N0.hasOneUse()) {
588      // reassoc. (op (op x, c1), y) -> (op (op x, y), c1) iff x+c1 has one use
589      SDValue OpNode = DAG.getNode(Opc, N0.getDebugLoc(), VT,
590                                   N0.getOperand(0), N1);
591      AddToWorkList(OpNode.getNode());
592      return DAG.getNode(Opc, DL, VT, OpNode, N0.getOperand(1));
593    }
594  }
595
596  if (N1.getOpcode() == Opc && isa<ConstantSDNode>(N1.getOperand(1))) {
597    if (isa<ConstantSDNode>(N0)) {
598      // reassoc. (op c2, (op x, c1)) -> (op x, (op c1, c2))
599      SDValue OpNode =
600        DAG.FoldConstantArithmetic(Opc, VT,
601                                   cast<ConstantSDNode>(N1.getOperand(1)),
602                                   cast<ConstantSDNode>(N0));
603      return DAG.getNode(Opc, DL, VT, N1.getOperand(0), OpNode);
604    }
605    if (N1.hasOneUse()) {
606      // reassoc. (op y, (op x, c1)) -> (op (op x, y), c1) iff x+c1 has one use
607      SDValue OpNode = DAG.getNode(Opc, N0.getDebugLoc(), VT,
608                                   N1.getOperand(0), N0);
609      AddToWorkList(OpNode.getNode());
610      return DAG.getNode(Opc, DL, VT, OpNode, N1.getOperand(1));
611    }
612  }
613
614  return SDValue();
615}
616
617SDValue DAGCombiner::CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
618                               bool AddTo) {
619  assert(N->getNumValues() == NumTo && "Broken CombineTo call!");
620  ++NodesCombined;
621  DEBUG(dbgs() << "\nReplacing.1 ";
622        N->dump(&DAG);
623        dbgs() << "\nWith: ";
624        To[0].getNode()->dump(&DAG);
625        dbgs() << " and " << NumTo-1 << " other values\n";
626        for (unsigned i = 0, e = NumTo; i != e; ++i)
627          assert((!To[i].getNode() ||
628                  N->getValueType(i) == To[i].getValueType()) &&
629                 "Cannot combine value to value of different type!"));
630  WorkListRemover DeadNodes(*this);
631  DAG.ReplaceAllUsesWith(N, To);
632  if (AddTo) {
633    // Push the new nodes and any users onto the worklist
634    for (unsigned i = 0, e = NumTo; i != e; ++i) {
635      if (To[i].getNode()) {
636        AddToWorkList(To[i].getNode());
637        AddUsersToWorkList(To[i].getNode());
638      }
639    }
640  }
641
642  // Finally, if the node is now dead, remove it from the graph.  The node
643  // may not be dead if the replacement process recursively simplified to
644  // something else needing this node.
645  if (N->use_empty()) {
646    // Nodes can be reintroduced into the worklist.  Make sure we do not
647    // process a node that has been replaced.
648    removeFromWorkList(N);
649
650    // Finally, since the node is now dead, remove it from the graph.
651    DAG.DeleteNode(N);
652  }
653  return SDValue(N, 0);
654}
655
656void DAGCombiner::
657CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) {
658  // Replace all uses.  If any nodes become isomorphic to other nodes and
659  // are deleted, make sure to remove them from our worklist.
660  WorkListRemover DeadNodes(*this);
661  DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New);
662
663  // Push the new node and any (possibly new) users onto the worklist.
664  AddToWorkList(TLO.New.getNode());
665  AddUsersToWorkList(TLO.New.getNode());
666
667  // Finally, if the node is now dead, remove it from the graph.  The node
668  // may not be dead if the replacement process recursively simplified to
669  // something else needing this node.
670  if (TLO.Old.getNode()->use_empty()) {
671    removeFromWorkList(TLO.Old.getNode());
672
673    // If the operands of this node are only used by the node, they will now
674    // be dead.  Make sure to visit them first to delete dead nodes early.
675    for (unsigned i = 0, e = TLO.Old.getNode()->getNumOperands(); i != e; ++i)
676      if (TLO.Old.getNode()->getOperand(i).getNode()->hasOneUse())
677        AddToWorkList(TLO.Old.getNode()->getOperand(i).getNode());
678
679    DAG.DeleteNode(TLO.Old.getNode());
680  }
681}
682
683/// SimplifyDemandedBits - Check the specified integer node value to see if
684/// it can be simplified or if things it uses can be simplified by bit
685/// propagation.  If so, return true.
686bool DAGCombiner::SimplifyDemandedBits(SDValue Op, const APInt &Demanded) {
687  TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations);
688  APInt KnownZero, KnownOne;
689  if (!TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO))
690    return false;
691
692  // Revisit the node.
693  AddToWorkList(Op.getNode());
694
695  // Replace the old value with the new one.
696  ++NodesCombined;
697  DEBUG(dbgs() << "\nReplacing.2 ";
698        TLO.Old.getNode()->dump(&DAG);
699        dbgs() << "\nWith: ";
700        TLO.New.getNode()->dump(&DAG);
701        dbgs() << '\n');
702
703  CommitTargetLoweringOpt(TLO);
704  return true;
705}
706
707void DAGCombiner::ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad) {
708  DebugLoc dl = Load->getDebugLoc();
709  EVT VT = Load->getValueType(0);
710  SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, VT, SDValue(ExtLoad, 0));
711
712  DEBUG(dbgs() << "\nReplacing.9 ";
713        Load->dump(&DAG);
714        dbgs() << "\nWith: ";
715        Trunc.getNode()->dump(&DAG);
716        dbgs() << '\n');
717  WorkListRemover DeadNodes(*this);
718  DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), Trunc);
719  DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), SDValue(ExtLoad, 1));
720  removeFromWorkList(Load);
721  DAG.DeleteNode(Load);
722  AddToWorkList(Trunc.getNode());
723}
724
725SDValue DAGCombiner::PromoteOperand(SDValue Op, EVT PVT, bool &Replace) {
726  Replace = false;
727  DebugLoc dl = Op.getDebugLoc();
728  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
729    EVT MemVT = LD->getMemoryVT();
730    ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD)
731      ? (TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT) ? ISD::ZEXTLOAD
732                                                  : ISD::EXTLOAD)
733      : LD->getExtensionType();
734    Replace = true;
735    return DAG.getExtLoad(ExtType, dl, PVT,
736                          LD->getChain(), LD->getBasePtr(),
737                          LD->getPointerInfo(),
738                          MemVT, LD->isVolatile(),
739                          LD->isNonTemporal(), LD->getAlignment());
740  }
741
742  unsigned Opc = Op.getOpcode();
743  switch (Opc) {
744  default: break;
745  case ISD::AssertSext:
746    return DAG.getNode(ISD::AssertSext, dl, PVT,
747                       SExtPromoteOperand(Op.getOperand(0), PVT),
748                       Op.getOperand(1));
749  case ISD::AssertZext:
750    return DAG.getNode(ISD::AssertZext, dl, PVT,
751                       ZExtPromoteOperand(Op.getOperand(0), PVT),
752                       Op.getOperand(1));
753  case ISD::Constant: {
754    unsigned ExtOpc =
755      Op.getValueType().isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
756    return DAG.getNode(ExtOpc, dl, PVT, Op);
757  }
758  }
759
760  if (!TLI.isOperationLegal(ISD::ANY_EXTEND, PVT))
761    return SDValue();
762  return DAG.getNode(ISD::ANY_EXTEND, dl, PVT, Op);
763}
764
765SDValue DAGCombiner::SExtPromoteOperand(SDValue Op, EVT PVT) {
766  if (!TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, PVT))
767    return SDValue();
768  EVT OldVT = Op.getValueType();
769  DebugLoc dl = Op.getDebugLoc();
770  bool Replace = false;
771  SDValue NewOp = PromoteOperand(Op, PVT, Replace);
772  if (NewOp.getNode() == 0)
773    return SDValue();
774  AddToWorkList(NewOp.getNode());
775
776  if (Replace)
777    ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode());
778  return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NewOp.getValueType(), NewOp,
779                     DAG.getValueType(OldVT));
780}
781
782SDValue DAGCombiner::ZExtPromoteOperand(SDValue Op, EVT PVT) {
783  EVT OldVT = Op.getValueType();
784  DebugLoc dl = Op.getDebugLoc();
785  bool Replace = false;
786  SDValue NewOp = PromoteOperand(Op, PVT, Replace);
787  if (NewOp.getNode() == 0)
788    return SDValue();
789  AddToWorkList(NewOp.getNode());
790
791  if (Replace)
792    ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode());
793  return DAG.getZeroExtendInReg(NewOp, dl, OldVT);
794}
795
796/// PromoteIntBinOp - Promote the specified integer binary operation if the
797/// target indicates it is beneficial. e.g. On x86, it's usually better to
798/// promote i16 operations to i32 since i16 instructions are longer.
799SDValue DAGCombiner::PromoteIntBinOp(SDValue Op) {
800  if (!LegalOperations)
801    return SDValue();
802
803  EVT VT = Op.getValueType();
804  if (VT.isVector() || !VT.isInteger())
805    return SDValue();
806
807  // If operation type is 'undesirable', e.g. i16 on x86, consider
808  // promoting it.
809  unsigned Opc = Op.getOpcode();
810  if (TLI.isTypeDesirableForOp(Opc, VT))
811    return SDValue();
812
813  EVT PVT = VT;
814  // Consult target whether it is a good idea to promote this operation and
815  // what's the right type to promote it to.
816  if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
817    assert(PVT != VT && "Don't know what type to promote to!");
818
819    bool Replace0 = false;
820    SDValue N0 = Op.getOperand(0);
821    SDValue NN0 = PromoteOperand(N0, PVT, Replace0);
822    if (NN0.getNode() == 0)
823      return SDValue();
824
825    bool Replace1 = false;
826    SDValue N1 = Op.getOperand(1);
827    SDValue NN1;
828    if (N0 == N1)
829      NN1 = NN0;
830    else {
831      NN1 = PromoteOperand(N1, PVT, Replace1);
832      if (NN1.getNode() == 0)
833        return SDValue();
834    }
835
836    AddToWorkList(NN0.getNode());
837    if (NN1.getNode())
838      AddToWorkList(NN1.getNode());
839
840    if (Replace0)
841      ReplaceLoadWithPromotedLoad(N0.getNode(), NN0.getNode());
842    if (Replace1)
843      ReplaceLoadWithPromotedLoad(N1.getNode(), NN1.getNode());
844
845    DEBUG(dbgs() << "\nPromoting ";
846          Op.getNode()->dump(&DAG));
847    DebugLoc dl = Op.getDebugLoc();
848    return DAG.getNode(ISD::TRUNCATE, dl, VT,
849                       DAG.getNode(Opc, dl, PVT, NN0, NN1));
850  }
851  return SDValue();
852}
853
854/// PromoteIntShiftOp - Promote the specified integer shift operation if the
855/// target indicates it is beneficial. e.g. On x86, it's usually better to
856/// promote i16 operations to i32 since i16 instructions are longer.
857SDValue DAGCombiner::PromoteIntShiftOp(SDValue Op) {
858  if (!LegalOperations)
859    return SDValue();
860
861  EVT VT = Op.getValueType();
862  if (VT.isVector() || !VT.isInteger())
863    return SDValue();
864
865  // If operation type is 'undesirable', e.g. i16 on x86, consider
866  // promoting it.
867  unsigned Opc = Op.getOpcode();
868  if (TLI.isTypeDesirableForOp(Opc, VT))
869    return SDValue();
870
871  EVT PVT = VT;
872  // Consult target whether it is a good idea to promote this operation and
873  // what's the right type to promote it to.
874  if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
875    assert(PVT != VT && "Don't know what type to promote to!");
876
877    bool Replace = false;
878    SDValue N0 = Op.getOperand(0);
879    if (Opc == ISD::SRA)
880      N0 = SExtPromoteOperand(Op.getOperand(0), PVT);
881    else if (Opc == ISD::SRL)
882      N0 = ZExtPromoteOperand(Op.getOperand(0), PVT);
883    else
884      N0 = PromoteOperand(N0, PVT, Replace);
885    if (N0.getNode() == 0)
886      return SDValue();
887
888    AddToWorkList(N0.getNode());
889    if (Replace)
890      ReplaceLoadWithPromotedLoad(Op.getOperand(0).getNode(), N0.getNode());
891
892    DEBUG(dbgs() << "\nPromoting ";
893          Op.getNode()->dump(&DAG));
894    DebugLoc dl = Op.getDebugLoc();
895    return DAG.getNode(ISD::TRUNCATE, dl, VT,
896                       DAG.getNode(Opc, dl, PVT, N0, Op.getOperand(1)));
897  }
898  return SDValue();
899}
900
901SDValue DAGCombiner::PromoteExtend(SDValue Op) {
902  if (!LegalOperations)
903    return SDValue();
904
905  EVT VT = Op.getValueType();
906  if (VT.isVector() || !VT.isInteger())
907    return SDValue();
908
909  // If operation type is 'undesirable', e.g. i16 on x86, consider
910  // promoting it.
911  unsigned Opc = Op.getOpcode();
912  if (TLI.isTypeDesirableForOp(Opc, VT))
913    return SDValue();
914
915  EVT PVT = VT;
916  // Consult target whether it is a good idea to promote this operation and
917  // what's the right type to promote it to.
918  if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
919    assert(PVT != VT && "Don't know what type to promote to!");
920    // fold (aext (aext x)) -> (aext x)
921    // fold (aext (zext x)) -> (zext x)
922    // fold (aext (sext x)) -> (sext x)
923    DEBUG(dbgs() << "\nPromoting ";
924          Op.getNode()->dump(&DAG));
925    return DAG.getNode(Op.getOpcode(), Op.getDebugLoc(), VT, Op.getOperand(0));
926  }
927  return SDValue();
928}
929
930bool DAGCombiner::PromoteLoad(SDValue Op) {
931  if (!LegalOperations)
932    return false;
933
934  EVT VT = Op.getValueType();
935  if (VT.isVector() || !VT.isInteger())
936    return false;
937
938  // If operation type is 'undesirable', e.g. i16 on x86, consider
939  // promoting it.
940  unsigned Opc = Op.getOpcode();
941  if (TLI.isTypeDesirableForOp(Opc, VT))
942    return false;
943
944  EVT PVT = VT;
945  // Consult target whether it is a good idea to promote this operation and
946  // what's the right type to promote it to.
947  if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
948    assert(PVT != VT && "Don't know what type to promote to!");
949
950    DebugLoc dl = Op.getDebugLoc();
951    SDNode *N = Op.getNode();
952    LoadSDNode *LD = cast<LoadSDNode>(N);
953    EVT MemVT = LD->getMemoryVT();
954    ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD)
955      ? (TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT) ? ISD::ZEXTLOAD
956                                                  : ISD::EXTLOAD)
957      : LD->getExtensionType();
958    SDValue NewLD = DAG.getExtLoad(ExtType, dl, PVT,
959                                   LD->getChain(), LD->getBasePtr(),
960                                   LD->getPointerInfo(),
961                                   MemVT, LD->isVolatile(),
962                                   LD->isNonTemporal(), LD->getAlignment());
963    SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, VT, NewLD);
964
965    DEBUG(dbgs() << "\nPromoting ";
966          N->dump(&DAG);
967          dbgs() << "\nTo: ";
968          Result.getNode()->dump(&DAG);
969          dbgs() << '\n');
970    WorkListRemover DeadNodes(*this);
971    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
972    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), NewLD.getValue(1));
973    removeFromWorkList(N);
974    DAG.DeleteNode(N);
975    AddToWorkList(Result.getNode());
976    return true;
977  }
978  return false;
979}
980
981
982//===----------------------------------------------------------------------===//
983//  Main DAG Combiner implementation
984//===----------------------------------------------------------------------===//
985
986void DAGCombiner::Run(CombineLevel AtLevel) {
987  // set the instance variables, so that the various visit routines may use it.
988  Level = AtLevel;
989  LegalOperations = Level >= AfterLegalizeVectorOps;
990  LegalTypes = Level >= AfterLegalizeTypes;
991
992  // Add all the dag nodes to the worklist.
993  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
994       E = DAG.allnodes_end(); I != E; ++I)
995    AddToWorkList(I);
996
997  // Create a dummy node (which is not added to allnodes), that adds a reference
998  // to the root node, preventing it from being deleted, and tracking any
999  // changes of the root.
1000  HandleSDNode Dummy(DAG.getRoot());
1001
1002  // The root of the dag may dangle to deleted nodes until the dag combiner is
1003  // done.  Set it to null to avoid confusion.
1004  DAG.setRoot(SDValue());
1005
1006  // while the worklist isn't empty, find a node and
1007  // try and combine it.
1008  while (!WorkListContents.empty()) {
1009    SDNode *N;
1010    // The WorkListOrder holds the SDNodes in order, but it may contain duplicates.
1011    // In order to avoid a linear scan, we use a set (O(log N)) to hold what the
1012    // worklist *should* contain, and check the node we want to visit is should
1013    // actually be visited.
1014    do {
1015      N = WorkListOrder.pop_back_val();
1016    } while (!WorkListContents.erase(N));
1017
1018    // If N has no uses, it is dead.  Make sure to revisit all N's operands once
1019    // N is deleted from the DAG, since they too may now be dead or may have a
1020    // reduced number of uses, allowing other xforms.
1021    if (N->use_empty() && N != &Dummy) {
1022      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1023        AddToWorkList(N->getOperand(i).getNode());
1024
1025      DAG.DeleteNode(N);
1026      continue;
1027    }
1028
1029    SDValue RV = combine(N);
1030
1031    if (RV.getNode() == 0)
1032      continue;
1033
1034    ++NodesCombined;
1035
1036    // If we get back the same node we passed in, rather than a new node or
1037    // zero, we know that the node must have defined multiple values and
1038    // CombineTo was used.  Since CombineTo takes care of the worklist
1039    // mechanics for us, we have no work to do in this case.
1040    if (RV.getNode() == N)
1041      continue;
1042
1043    assert(N->getOpcode() != ISD::DELETED_NODE &&
1044           RV.getNode()->getOpcode() != ISD::DELETED_NODE &&
1045           "Node was deleted but visit returned new node!");
1046
1047    DEBUG(dbgs() << "\nReplacing.3 ";
1048          N->dump(&DAG);
1049          dbgs() << "\nWith: ";
1050          RV.getNode()->dump(&DAG);
1051          dbgs() << '\n');
1052
1053    // Transfer debug value.
1054    DAG.TransferDbgValues(SDValue(N, 0), RV);
1055    WorkListRemover DeadNodes(*this);
1056    if (N->getNumValues() == RV.getNode()->getNumValues())
1057      DAG.ReplaceAllUsesWith(N, RV.getNode());
1058    else {
1059      assert(N->getValueType(0) == RV.getValueType() &&
1060             N->getNumValues() == 1 && "Type mismatch");
1061      SDValue OpV = RV;
1062      DAG.ReplaceAllUsesWith(N, &OpV);
1063    }
1064
1065    // Push the new node and any users onto the worklist
1066    AddToWorkList(RV.getNode());
1067    AddUsersToWorkList(RV.getNode());
1068
1069    // Add any uses of the old node to the worklist in case this node is the
1070    // last one that uses them.  They may become dead after this node is
1071    // deleted.
1072    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1073      AddToWorkList(N->getOperand(i).getNode());
1074
1075    // Finally, if the node is now dead, remove it from the graph.  The node
1076    // may not be dead if the replacement process recursively simplified to
1077    // something else needing this node.
1078    if (N->use_empty()) {
1079      // Nodes can be reintroduced into the worklist.  Make sure we do not
1080      // process a node that has been replaced.
1081      removeFromWorkList(N);
1082
1083      // Finally, since the node is now dead, remove it from the graph.
1084      DAG.DeleteNode(N);
1085    }
1086  }
1087
1088  // If the root changed (e.g. it was a dead load, update the root).
1089  DAG.setRoot(Dummy.getValue());
1090  DAG.RemoveDeadNodes();
1091}
1092
1093SDValue DAGCombiner::visit(SDNode *N) {
1094  switch (N->getOpcode()) {
1095  default: break;
1096  case ISD::TokenFactor:        return visitTokenFactor(N);
1097  case ISD::MERGE_VALUES:       return visitMERGE_VALUES(N);
1098  case ISD::ADD:                return visitADD(N);
1099  case ISD::SUB:                return visitSUB(N);
1100  case ISD::ADDC:               return visitADDC(N);
1101  case ISD::SUBC:               return visitSUBC(N);
1102  case ISD::ADDE:               return visitADDE(N);
1103  case ISD::SUBE:               return visitSUBE(N);
1104  case ISD::MUL:                return visitMUL(N);
1105  case ISD::SDIV:               return visitSDIV(N);
1106  case ISD::UDIV:               return visitUDIV(N);
1107  case ISD::SREM:               return visitSREM(N);
1108  case ISD::UREM:               return visitUREM(N);
1109  case ISD::MULHU:              return visitMULHU(N);
1110  case ISD::MULHS:              return visitMULHS(N);
1111  case ISD::SMUL_LOHI:          return visitSMUL_LOHI(N);
1112  case ISD::UMUL_LOHI:          return visitUMUL_LOHI(N);
1113  case ISD::SMULO:              return visitSMULO(N);
1114  case ISD::UMULO:              return visitUMULO(N);
1115  case ISD::SDIVREM:            return visitSDIVREM(N);
1116  case ISD::UDIVREM:            return visitUDIVREM(N);
1117  case ISD::AND:                return visitAND(N);
1118  case ISD::OR:                 return visitOR(N);
1119  case ISD::XOR:                return visitXOR(N);
1120  case ISD::SHL:                return visitSHL(N);
1121  case ISD::SRA:                return visitSRA(N);
1122  case ISD::SRL:                return visitSRL(N);
1123  case ISD::CTLZ:               return visitCTLZ(N);
1124  case ISD::CTLZ_ZERO_UNDEF:    return visitCTLZ_ZERO_UNDEF(N);
1125  case ISD::CTTZ:               return visitCTTZ(N);
1126  case ISD::CTTZ_ZERO_UNDEF:    return visitCTTZ_ZERO_UNDEF(N);
1127  case ISD::CTPOP:              return visitCTPOP(N);
1128  case ISD::SELECT:             return visitSELECT(N);
1129  case ISD::SELECT_CC:          return visitSELECT_CC(N);
1130  case ISD::SETCC:              return visitSETCC(N);
1131  case ISD::SIGN_EXTEND:        return visitSIGN_EXTEND(N);
1132  case ISD::ZERO_EXTEND:        return visitZERO_EXTEND(N);
1133  case ISD::ANY_EXTEND:         return visitANY_EXTEND(N);
1134  case ISD::SIGN_EXTEND_INREG:  return visitSIGN_EXTEND_INREG(N);
1135  case ISD::TRUNCATE:           return visitTRUNCATE(N);
1136  case ISD::BITCAST:            return visitBITCAST(N);
1137  case ISD::BUILD_PAIR:         return visitBUILD_PAIR(N);
1138  case ISD::FADD:               return visitFADD(N);
1139  case ISD::FSUB:               return visitFSUB(N);
1140  case ISD::FMUL:               return visitFMUL(N);
1141  case ISD::FMA:                return visitFMA(N);
1142  case ISD::FDIV:               return visitFDIV(N);
1143  case ISD::FREM:               return visitFREM(N);
1144  case ISD::FCOPYSIGN:          return visitFCOPYSIGN(N);
1145  case ISD::SINT_TO_FP:         return visitSINT_TO_FP(N);
1146  case ISD::UINT_TO_FP:         return visitUINT_TO_FP(N);
1147  case ISD::FP_TO_SINT:         return visitFP_TO_SINT(N);
1148  case ISD::FP_TO_UINT:         return visitFP_TO_UINT(N);
1149  case ISD::FP_ROUND:           return visitFP_ROUND(N);
1150  case ISD::FP_ROUND_INREG:     return visitFP_ROUND_INREG(N);
1151  case ISD::FP_EXTEND:          return visitFP_EXTEND(N);
1152  case ISD::FNEG:               return visitFNEG(N);
1153  case ISD::FABS:               return visitFABS(N);
1154  case ISD::FFLOOR:             return visitFFLOOR(N);
1155  case ISD::FCEIL:              return visitFCEIL(N);
1156  case ISD::FTRUNC:             return visitFTRUNC(N);
1157  case ISD::BRCOND:             return visitBRCOND(N);
1158  case ISD::BR_CC:              return visitBR_CC(N);
1159  case ISD::LOAD:               return visitLOAD(N);
1160  case ISD::STORE:              return visitSTORE(N);
1161  case ISD::INSERT_VECTOR_ELT:  return visitINSERT_VECTOR_ELT(N);
1162  case ISD::EXTRACT_VECTOR_ELT: return visitEXTRACT_VECTOR_ELT(N);
1163  case ISD::BUILD_VECTOR:       return visitBUILD_VECTOR(N);
1164  case ISD::CONCAT_VECTORS:     return visitCONCAT_VECTORS(N);
1165  case ISD::EXTRACT_SUBVECTOR:  return visitEXTRACT_SUBVECTOR(N);
1166  case ISD::VECTOR_SHUFFLE:     return visitVECTOR_SHUFFLE(N);
1167  case ISD::MEMBARRIER:         return visitMEMBARRIER(N);
1168  }
1169  return SDValue();
1170}
1171
1172SDValue DAGCombiner::combine(SDNode *N) {
1173  SDValue RV = visit(N);
1174
1175  // If nothing happened, try a target-specific DAG combine.
1176  if (RV.getNode() == 0) {
1177    assert(N->getOpcode() != ISD::DELETED_NODE &&
1178           "Node was deleted but visit returned NULL!");
1179
1180    if (N->getOpcode() >= ISD::BUILTIN_OP_END ||
1181        TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) {
1182
1183      // Expose the DAG combiner to the target combiner impls.
1184      TargetLowering::DAGCombinerInfo
1185        DagCombineInfo(DAG, !LegalTypes, !LegalOperations, false, this);
1186
1187      RV = TLI.PerformDAGCombine(N, DagCombineInfo);
1188    }
1189  }
1190
1191  // If nothing happened still, try promoting the operation.
1192  if (RV.getNode() == 0) {
1193    switch (N->getOpcode()) {
1194    default: break;
1195    case ISD::ADD:
1196    case ISD::SUB:
1197    case ISD::MUL:
1198    case ISD::AND:
1199    case ISD::OR:
1200    case ISD::XOR:
1201      RV = PromoteIntBinOp(SDValue(N, 0));
1202      break;
1203    case ISD::SHL:
1204    case ISD::SRA:
1205    case ISD::SRL:
1206      RV = PromoteIntShiftOp(SDValue(N, 0));
1207      break;
1208    case ISD::SIGN_EXTEND:
1209    case ISD::ZERO_EXTEND:
1210    case ISD::ANY_EXTEND:
1211      RV = PromoteExtend(SDValue(N, 0));
1212      break;
1213    case ISD::LOAD:
1214      if (PromoteLoad(SDValue(N, 0)))
1215        RV = SDValue(N, 0);
1216      break;
1217    }
1218  }
1219
1220  // If N is a commutative binary node, try commuting it to enable more
1221  // sdisel CSE.
1222  if (RV.getNode() == 0 &&
1223      SelectionDAG::isCommutativeBinOp(N->getOpcode()) &&
1224      N->getNumValues() == 1) {
1225    SDValue N0 = N->getOperand(0);
1226    SDValue N1 = N->getOperand(1);
1227
1228    // Constant operands are canonicalized to RHS.
1229    if (isa<ConstantSDNode>(N0) || !isa<ConstantSDNode>(N1)) {
1230      SDValue Ops[] = { N1, N0 };
1231      SDNode *CSENode = DAG.getNodeIfExists(N->getOpcode(), N->getVTList(),
1232                                            Ops, 2);
1233      if (CSENode)
1234        return SDValue(CSENode, 0);
1235    }
1236  }
1237
1238  return RV;
1239}
1240
1241/// getInputChainForNode - Given a node, return its input chain if it has one,
1242/// otherwise return a null sd operand.
1243static SDValue getInputChainForNode(SDNode *N) {
1244  if (unsigned NumOps = N->getNumOperands()) {
1245    if (N->getOperand(0).getValueType() == MVT::Other)
1246      return N->getOperand(0);
1247    else if (N->getOperand(NumOps-1).getValueType() == MVT::Other)
1248      return N->getOperand(NumOps-1);
1249    for (unsigned i = 1; i < NumOps-1; ++i)
1250      if (N->getOperand(i).getValueType() == MVT::Other)
1251        return N->getOperand(i);
1252  }
1253  return SDValue();
1254}
1255
1256SDValue DAGCombiner::visitTokenFactor(SDNode *N) {
1257  // If N has two operands, where one has an input chain equal to the other,
1258  // the 'other' chain is redundant.
1259  if (N->getNumOperands() == 2) {
1260    if (getInputChainForNode(N->getOperand(0).getNode()) == N->getOperand(1))
1261      return N->getOperand(0);
1262    if (getInputChainForNode(N->getOperand(1).getNode()) == N->getOperand(0))
1263      return N->getOperand(1);
1264  }
1265
1266  SmallVector<SDNode *, 8> TFs;     // List of token factors to visit.
1267  SmallVector<SDValue, 8> Ops;    // Ops for replacing token factor.
1268  SmallPtrSet<SDNode*, 16> SeenOps;
1269  bool Changed = false;             // If we should replace this token factor.
1270
1271  // Start out with this token factor.
1272  TFs.push_back(N);
1273
1274  // Iterate through token factors.  The TFs grows when new token factors are
1275  // encountered.
1276  for (unsigned i = 0; i < TFs.size(); ++i) {
1277    SDNode *TF = TFs[i];
1278
1279    // Check each of the operands.
1280    for (unsigned i = 0, ie = TF->getNumOperands(); i != ie; ++i) {
1281      SDValue Op = TF->getOperand(i);
1282
1283      switch (Op.getOpcode()) {
1284      case ISD::EntryToken:
1285        // Entry tokens don't need to be added to the list. They are
1286        // rededundant.
1287        Changed = true;
1288        break;
1289
1290      case ISD::TokenFactor:
1291        if (Op.hasOneUse() &&
1292            std::find(TFs.begin(), TFs.end(), Op.getNode()) == TFs.end()) {
1293          // Queue up for processing.
1294          TFs.push_back(Op.getNode());
1295          // Clean up in case the token factor is removed.
1296          AddToWorkList(Op.getNode());
1297          Changed = true;
1298          break;
1299        }
1300        // Fall thru
1301
1302      default:
1303        // Only add if it isn't already in the list.
1304        if (SeenOps.insert(Op.getNode()))
1305          Ops.push_back(Op);
1306        else
1307          Changed = true;
1308        break;
1309      }
1310    }
1311  }
1312
1313  SDValue Result;
1314
1315  // If we've change things around then replace token factor.
1316  if (Changed) {
1317    if (Ops.empty()) {
1318      // The entry token is the only possible outcome.
1319      Result = DAG.getEntryNode();
1320    } else {
1321      // New and improved token factor.
1322      Result = DAG.getNode(ISD::TokenFactor, N->getDebugLoc(),
1323                           MVT::Other, &Ops[0], Ops.size());
1324    }
1325
1326    // Don't add users to work list.
1327    return CombineTo(N, Result, false);
1328  }
1329
1330  return Result;
1331}
1332
1333/// MERGE_VALUES can always be eliminated.
1334SDValue DAGCombiner::visitMERGE_VALUES(SDNode *N) {
1335  WorkListRemover DeadNodes(*this);
1336  // Replacing results may cause a different MERGE_VALUES to suddenly
1337  // be CSE'd with N, and carry its uses with it. Iterate until no
1338  // uses remain, to ensure that the node can be safely deleted.
1339  // First add the users of this node to the work list so that they
1340  // can be tried again once they have new operands.
1341  AddUsersToWorkList(N);
1342  do {
1343    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1344      DAG.ReplaceAllUsesOfValueWith(SDValue(N, i), N->getOperand(i));
1345  } while (!N->use_empty());
1346  removeFromWorkList(N);
1347  DAG.DeleteNode(N);
1348  return SDValue(N, 0);   // Return N so it doesn't get rechecked!
1349}
1350
1351static
1352SDValue combineShlAddConstant(DebugLoc DL, SDValue N0, SDValue N1,
1353                              SelectionDAG &DAG) {
1354  EVT VT = N0.getValueType();
1355  SDValue N00 = N0.getOperand(0);
1356  SDValue N01 = N0.getOperand(1);
1357  ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N01);
1358
1359  if (N01C && N00.getOpcode() == ISD::ADD && N00.getNode()->hasOneUse() &&
1360      isa<ConstantSDNode>(N00.getOperand(1))) {
1361    // fold (add (shl (add x, c1), c2), ) -> (add (add (shl x, c2), c1<<c2), )
1362    N0 = DAG.getNode(ISD::ADD, N0.getDebugLoc(), VT,
1363                     DAG.getNode(ISD::SHL, N00.getDebugLoc(), VT,
1364                                 N00.getOperand(0), N01),
1365                     DAG.getNode(ISD::SHL, N01.getDebugLoc(), VT,
1366                                 N00.getOperand(1), N01));
1367    return DAG.getNode(ISD::ADD, DL, VT, N0, N1);
1368  }
1369
1370  return SDValue();
1371}
1372
1373SDValue DAGCombiner::visitADD(SDNode *N) {
1374  SDValue N0 = N->getOperand(0);
1375  SDValue N1 = N->getOperand(1);
1376  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1377  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1378  EVT VT = N0.getValueType();
1379
1380  // fold vector ops
1381  if (VT.isVector()) {
1382    SDValue FoldedVOp = SimplifyVBinOp(N);
1383    if (FoldedVOp.getNode()) return FoldedVOp;
1384  }
1385
1386  // fold (add x, undef) -> undef
1387  if (N0.getOpcode() == ISD::UNDEF)
1388    return N0;
1389  if (N1.getOpcode() == ISD::UNDEF)
1390    return N1;
1391  // fold (add c1, c2) -> c1+c2
1392  if (N0C && N1C)
1393    return DAG.FoldConstantArithmetic(ISD::ADD, VT, N0C, N1C);
1394  // canonicalize constant to RHS
1395  if (N0C && !N1C)
1396    return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N1, N0);
1397  // fold (add x, 0) -> x
1398  if (N1C && N1C->isNullValue())
1399    return N0;
1400  // fold (add Sym, c) -> Sym+c
1401  if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0))
1402    if (!LegalOperations && TLI.isOffsetFoldingLegal(GA) && N1C &&
1403        GA->getOpcode() == ISD::GlobalAddress)
1404      return DAG.getGlobalAddress(GA->getGlobal(), N1C->getDebugLoc(), VT,
1405                                  GA->getOffset() +
1406                                    (uint64_t)N1C->getSExtValue());
1407  // fold ((c1-A)+c2) -> (c1+c2)-A
1408  if (N1C && N0.getOpcode() == ISD::SUB)
1409    if (ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getOperand(0)))
1410      return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
1411                         DAG.getConstant(N1C->getAPIntValue()+
1412                                         N0C->getAPIntValue(), VT),
1413                         N0.getOperand(1));
1414  // reassociate add
1415  SDValue RADD = ReassociateOps(ISD::ADD, N->getDebugLoc(), N0, N1);
1416  if (RADD.getNode() != 0)
1417    return RADD;
1418  // fold ((0-A) + B) -> B-A
1419  if (N0.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N0.getOperand(0)) &&
1420      cast<ConstantSDNode>(N0.getOperand(0))->isNullValue())
1421    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N1, N0.getOperand(1));
1422  // fold (A + (0-B)) -> A-B
1423  if (N1.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N1.getOperand(0)) &&
1424      cast<ConstantSDNode>(N1.getOperand(0))->isNullValue())
1425    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N0, N1.getOperand(1));
1426  // fold (A+(B-A)) -> B
1427  if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1))
1428    return N1.getOperand(0);
1429  // fold ((B-A)+A) -> B
1430  if (N0.getOpcode() == ISD::SUB && N1 == N0.getOperand(1))
1431    return N0.getOperand(0);
1432  // fold (A+(B-(A+C))) to (B-C)
1433  if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD &&
1434      N0 == N1.getOperand(1).getOperand(0))
1435    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N1.getOperand(0),
1436                       N1.getOperand(1).getOperand(1));
1437  // fold (A+(B-(C+A))) to (B-C)
1438  if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD &&
1439      N0 == N1.getOperand(1).getOperand(1))
1440    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N1.getOperand(0),
1441                       N1.getOperand(1).getOperand(0));
1442  // fold (A+((B-A)+or-C)) to (B+or-C)
1443  if ((N1.getOpcode() == ISD::SUB || N1.getOpcode() == ISD::ADD) &&
1444      N1.getOperand(0).getOpcode() == ISD::SUB &&
1445      N0 == N1.getOperand(0).getOperand(1))
1446    return DAG.getNode(N1.getOpcode(), N->getDebugLoc(), VT,
1447                       N1.getOperand(0).getOperand(0), N1.getOperand(1));
1448
1449  // fold (A-B)+(C-D) to (A+C)-(B+D) when A or C is constant
1450  if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB) {
1451    SDValue N00 = N0.getOperand(0);
1452    SDValue N01 = N0.getOperand(1);
1453    SDValue N10 = N1.getOperand(0);
1454    SDValue N11 = N1.getOperand(1);
1455
1456    if (isa<ConstantSDNode>(N00) || isa<ConstantSDNode>(N10))
1457      return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
1458                         DAG.getNode(ISD::ADD, N0.getDebugLoc(), VT, N00, N10),
1459                         DAG.getNode(ISD::ADD, N1.getDebugLoc(), VT, N01, N11));
1460  }
1461
1462  if (!VT.isVector() && SimplifyDemandedBits(SDValue(N, 0)))
1463    return SDValue(N, 0);
1464
1465  // fold (a+b) -> (a|b) iff a and b share no bits.
1466  if (VT.isInteger() && !VT.isVector()) {
1467    APInt LHSZero, LHSOne;
1468    APInt RHSZero, RHSOne;
1469    DAG.ComputeMaskedBits(N0, LHSZero, LHSOne);
1470
1471    if (LHSZero.getBoolValue()) {
1472      DAG.ComputeMaskedBits(N1, RHSZero, RHSOne);
1473
1474      // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
1475      // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
1476      if ((RHSZero & ~LHSZero) == ~LHSZero || (LHSZero & ~RHSZero) == ~RHSZero)
1477        return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, N0, N1);
1478    }
1479  }
1480
1481  // fold (add (shl (add x, c1), c2), ) -> (add (add (shl x, c2), c1<<c2), )
1482  if (N0.getOpcode() == ISD::SHL && N0.getNode()->hasOneUse()) {
1483    SDValue Result = combineShlAddConstant(N->getDebugLoc(), N0, N1, DAG);
1484    if (Result.getNode()) return Result;
1485  }
1486  if (N1.getOpcode() == ISD::SHL && N1.getNode()->hasOneUse()) {
1487    SDValue Result = combineShlAddConstant(N->getDebugLoc(), N1, N0, DAG);
1488    if (Result.getNode()) return Result;
1489  }
1490
1491  // fold (add x, shl(0 - y, n)) -> sub(x, shl(y, n))
1492  if (N1.getOpcode() == ISD::SHL &&
1493      N1.getOperand(0).getOpcode() == ISD::SUB)
1494    if (ConstantSDNode *C =
1495          dyn_cast<ConstantSDNode>(N1.getOperand(0).getOperand(0)))
1496      if (C->getAPIntValue() == 0)
1497        return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N0,
1498                           DAG.getNode(ISD::SHL, N->getDebugLoc(), VT,
1499                                       N1.getOperand(0).getOperand(1),
1500                                       N1.getOperand(1)));
1501  if (N0.getOpcode() == ISD::SHL &&
1502      N0.getOperand(0).getOpcode() == ISD::SUB)
1503    if (ConstantSDNode *C =
1504          dyn_cast<ConstantSDNode>(N0.getOperand(0).getOperand(0)))
1505      if (C->getAPIntValue() == 0)
1506        return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N1,
1507                           DAG.getNode(ISD::SHL, N->getDebugLoc(), VT,
1508                                       N0.getOperand(0).getOperand(1),
1509                                       N0.getOperand(1)));
1510
1511  if (N1.getOpcode() == ISD::AND) {
1512    SDValue AndOp0 = N1.getOperand(0);
1513    ConstantSDNode *AndOp1 = dyn_cast<ConstantSDNode>(N1->getOperand(1));
1514    unsigned NumSignBits = DAG.ComputeNumSignBits(AndOp0);
1515    unsigned DestBits = VT.getScalarType().getSizeInBits();
1516
1517    // (add z, (and (sbbl x, x), 1)) -> (sub z, (sbbl x, x))
1518    // and similar xforms where the inner op is either ~0 or 0.
1519    if (NumSignBits == DestBits && AndOp1 && AndOp1->isOne()) {
1520      DebugLoc DL = N->getDebugLoc();
1521      return DAG.getNode(ISD::SUB, DL, VT, N->getOperand(0), AndOp0);
1522    }
1523  }
1524
1525  // add (sext i1), X -> sub X, (zext i1)
1526  if (N0.getOpcode() == ISD::SIGN_EXTEND &&
1527      N0.getOperand(0).getValueType() == MVT::i1 &&
1528      !TLI.isOperationLegal(ISD::SIGN_EXTEND, MVT::i1)) {
1529    DebugLoc DL = N->getDebugLoc();
1530    SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0));
1531    return DAG.getNode(ISD::SUB, DL, VT, N1, ZExt);
1532  }
1533
1534  return SDValue();
1535}
1536
1537SDValue DAGCombiner::visitADDC(SDNode *N) {
1538  SDValue N0 = N->getOperand(0);
1539  SDValue N1 = N->getOperand(1);
1540  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1541  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1542  EVT VT = N0.getValueType();
1543
1544  // If the flag result is dead, turn this into an ADD.
1545  if (!N->hasAnyUseOfValue(1))
1546    return CombineTo(N, DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0, N1),
1547                     DAG.getNode(ISD::CARRY_FALSE,
1548                                 N->getDebugLoc(), MVT::Glue));
1549
1550  // canonicalize constant to RHS.
1551  if (N0C && !N1C)
1552    return DAG.getNode(ISD::ADDC, N->getDebugLoc(), N->getVTList(), N1, N0);
1553
1554  // fold (addc x, 0) -> x + no carry out
1555  if (N1C && N1C->isNullValue())
1556    return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE,
1557                                        N->getDebugLoc(), MVT::Glue));
1558
1559  // fold (addc a, b) -> (or a, b), CARRY_FALSE iff a and b share no bits.
1560  APInt LHSZero, LHSOne;
1561  APInt RHSZero, RHSOne;
1562  DAG.ComputeMaskedBits(N0, LHSZero, LHSOne);
1563
1564  if (LHSZero.getBoolValue()) {
1565    DAG.ComputeMaskedBits(N1, RHSZero, RHSOne);
1566
1567    // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
1568    // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
1569    if ((RHSZero & ~LHSZero) == ~LHSZero || (LHSZero & ~RHSZero) == ~RHSZero)
1570      return CombineTo(N, DAG.getNode(ISD::OR, N->getDebugLoc(), VT, N0, N1),
1571                       DAG.getNode(ISD::CARRY_FALSE,
1572                                   N->getDebugLoc(), MVT::Glue));
1573  }
1574
1575  return SDValue();
1576}
1577
1578SDValue DAGCombiner::visitADDE(SDNode *N) {
1579  SDValue N0 = N->getOperand(0);
1580  SDValue N1 = N->getOperand(1);
1581  SDValue CarryIn = N->getOperand(2);
1582  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1583  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1584
1585  // canonicalize constant to RHS
1586  if (N0C && !N1C)
1587    return DAG.getNode(ISD::ADDE, N->getDebugLoc(), N->getVTList(),
1588                       N1, N0, CarryIn);
1589
1590  // fold (adde x, y, false) -> (addc x, y)
1591  if (CarryIn.getOpcode() == ISD::CARRY_FALSE)
1592    return DAG.getNode(ISD::ADDC, N->getDebugLoc(), N->getVTList(), N0, N1);
1593
1594  return SDValue();
1595}
1596
1597// Since it may not be valid to emit a fold to zero for vector initializers
1598// check if we can before folding.
1599static SDValue tryFoldToZero(DebugLoc DL, const TargetLowering &TLI, EVT VT,
1600                             SelectionDAG &DAG, bool LegalOperations) {
1601  if (!VT.isVector()) {
1602    return DAG.getConstant(0, VT);
1603  }
1604  if (!LegalOperations || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) {
1605    // Produce a vector of zeros.
1606    SDValue El = DAG.getConstant(0, VT.getVectorElementType());
1607    std::vector<SDValue> Ops(VT.getVectorNumElements(), El);
1608    return DAG.getNode(ISD::BUILD_VECTOR, DL, VT,
1609      &Ops[0], Ops.size());
1610  }
1611  return SDValue();
1612}
1613
1614SDValue DAGCombiner::visitSUB(SDNode *N) {
1615  SDValue N0 = N->getOperand(0);
1616  SDValue N1 = N->getOperand(1);
1617  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getNode());
1618  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
1619  ConstantSDNode *N1C1 = N1.getOpcode() != ISD::ADD ? 0 :
1620    dyn_cast<ConstantSDNode>(N1.getOperand(1).getNode());
1621  EVT VT = N0.getValueType();
1622
1623  // fold vector ops
1624  if (VT.isVector()) {
1625    SDValue FoldedVOp = SimplifyVBinOp(N);
1626    if (FoldedVOp.getNode()) return FoldedVOp;
1627  }
1628
1629  // fold (sub x, x) -> 0
1630  // FIXME: Refactor this and xor and other similar operations together.
1631  if (N0 == N1)
1632    return tryFoldToZero(N->getDebugLoc(), TLI, VT, DAG, LegalOperations);
1633  // fold (sub c1, c2) -> c1-c2
1634  if (N0C && N1C)
1635    return DAG.FoldConstantArithmetic(ISD::SUB, VT, N0C, N1C);
1636  // fold (sub x, c) -> (add x, -c)
1637  if (N1C)
1638    return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0,
1639                       DAG.getConstant(-N1C->getAPIntValue(), VT));
1640  // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1)
1641  if (N0C && N0C->isAllOnesValue())
1642    return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT, N1, N0);
1643  // fold A-(A-B) -> B
1644  if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(0))
1645    return N1.getOperand(1);
1646  // fold (A+B)-A -> B
1647  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1)
1648    return N0.getOperand(1);
1649  // fold (A+B)-B -> A
1650  if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1)
1651    return N0.getOperand(0);
1652  // fold C2-(A+C1) -> (C2-C1)-A
1653  if (N1.getOpcode() == ISD::ADD && N0C && N1C1) {
1654    SDValue NewC = DAG.getConstant(N0C->getAPIntValue() - N1C1->getAPIntValue(),
1655                                   VT);
1656    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, NewC,
1657                       N1.getOperand(0));
1658  }
1659  // fold ((A+(B+or-C))-B) -> A+or-C
1660  if (N0.getOpcode() == ISD::ADD &&
1661      (N0.getOperand(1).getOpcode() == ISD::SUB ||
1662       N0.getOperand(1).getOpcode() == ISD::ADD) &&
1663      N0.getOperand(1).getOperand(0) == N1)
1664    return DAG.getNode(N0.getOperand(1).getOpcode(), N->getDebugLoc(), VT,
1665                       N0.getOperand(0), N0.getOperand(1).getOperand(1));
1666  // fold ((A+(C+B))-B) -> A+C
1667  if (N0.getOpcode() == ISD::ADD &&
1668      N0.getOperand(1).getOpcode() == ISD::ADD &&
1669      N0.getOperand(1).getOperand(1) == N1)
1670    return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT,
1671                       N0.getOperand(0), N0.getOperand(1).getOperand(0));
1672  // fold ((A-(B-C))-C) -> A-B
1673  if (N0.getOpcode() == ISD::SUB &&
1674      N0.getOperand(1).getOpcode() == ISD::SUB &&
1675      N0.getOperand(1).getOperand(1) == N1)
1676    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
1677                       N0.getOperand(0), N0.getOperand(1).getOperand(0));
1678
1679  // If either operand of a sub is undef, the result is undef
1680  if (N0.getOpcode() == ISD::UNDEF)
1681    return N0;
1682  if (N1.getOpcode() == ISD::UNDEF)
1683    return N1;
1684
1685  // If the relocation model supports it, consider symbol offsets.
1686  if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0))
1687    if (!LegalOperations && TLI.isOffsetFoldingLegal(GA)) {
1688      // fold (sub Sym, c) -> Sym-c
1689      if (N1C && GA->getOpcode() == ISD::GlobalAddress)
1690        return DAG.getGlobalAddress(GA->getGlobal(), N1C->getDebugLoc(), VT,
1691                                    GA->getOffset() -
1692                                      (uint64_t)N1C->getSExtValue());
1693      // fold (sub Sym+c1, Sym+c2) -> c1-c2
1694      if (GlobalAddressSDNode *GB = dyn_cast<GlobalAddressSDNode>(N1))
1695        if (GA->getGlobal() == GB->getGlobal())
1696          return DAG.getConstant((uint64_t)GA->getOffset() - GB->getOffset(),
1697                                 VT);
1698    }
1699
1700  return SDValue();
1701}
1702
1703SDValue DAGCombiner::visitSUBC(SDNode *N) {
1704  SDValue N0 = N->getOperand(0);
1705  SDValue N1 = N->getOperand(1);
1706  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1707  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1708  EVT VT = N0.getValueType();
1709
1710  // If the flag result is dead, turn this into an SUB.
1711  if (!N->hasAnyUseOfValue(1))
1712    return CombineTo(N, DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N0, N1),
1713                     DAG.getNode(ISD::CARRY_FALSE, N->getDebugLoc(),
1714                                 MVT::Glue));
1715
1716  // fold (subc x, x) -> 0 + no borrow
1717  if (N0 == N1)
1718    return CombineTo(N, DAG.getConstant(0, VT),
1719                     DAG.getNode(ISD::CARRY_FALSE, N->getDebugLoc(),
1720                                 MVT::Glue));
1721
1722  // fold (subc x, 0) -> x + no borrow
1723  if (N1C && N1C->isNullValue())
1724    return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, N->getDebugLoc(),
1725                                        MVT::Glue));
1726
1727  // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) + no borrow
1728  if (N0C && N0C->isAllOnesValue())
1729    return CombineTo(N, DAG.getNode(ISD::XOR, N->getDebugLoc(), VT, N1, N0),
1730                     DAG.getNode(ISD::CARRY_FALSE, N->getDebugLoc(),
1731                                 MVT::Glue));
1732
1733  return SDValue();
1734}
1735
1736SDValue DAGCombiner::visitSUBE(SDNode *N) {
1737  SDValue N0 = N->getOperand(0);
1738  SDValue N1 = N->getOperand(1);
1739  SDValue CarryIn = N->getOperand(2);
1740
1741  // fold (sube x, y, false) -> (subc x, y)
1742  if (CarryIn.getOpcode() == ISD::CARRY_FALSE)
1743    return DAG.getNode(ISD::SUBC, N->getDebugLoc(), N->getVTList(), N0, N1);
1744
1745  return SDValue();
1746}
1747
1748SDValue DAGCombiner::visitMUL(SDNode *N) {
1749  SDValue N0 = N->getOperand(0);
1750  SDValue N1 = N->getOperand(1);
1751  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1752  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1753  EVT VT = N0.getValueType();
1754
1755  // fold vector ops
1756  if (VT.isVector()) {
1757    SDValue FoldedVOp = SimplifyVBinOp(N);
1758    if (FoldedVOp.getNode()) return FoldedVOp;
1759  }
1760
1761  // fold (mul x, undef) -> 0
1762  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1763    return DAG.getConstant(0, VT);
1764  // fold (mul c1, c2) -> c1*c2
1765  if (N0C && N1C)
1766    return DAG.FoldConstantArithmetic(ISD::MUL, VT, N0C, N1C);
1767  // canonicalize constant to RHS
1768  if (N0C && !N1C)
1769    return DAG.getNode(ISD::MUL, N->getDebugLoc(), VT, N1, N0);
1770  // fold (mul x, 0) -> 0
1771  if (N1C && N1C->isNullValue())
1772    return N1;
1773  // fold (mul x, -1) -> 0-x
1774  if (N1C && N1C->isAllOnesValue())
1775    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
1776                       DAG.getConstant(0, VT), N0);
1777  // fold (mul x, (1 << c)) -> x << c
1778  if (N1C && N1C->getAPIntValue().isPowerOf2())
1779    return DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, N0,
1780                       DAG.getConstant(N1C->getAPIntValue().logBase2(),
1781                                       getShiftAmountTy(N0.getValueType())));
1782  // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c
1783  if (N1C && (-N1C->getAPIntValue()).isPowerOf2()) {
1784    unsigned Log2Val = (-N1C->getAPIntValue()).logBase2();
1785    // FIXME: If the input is something that is easily negated (e.g. a
1786    // single-use add), we should put the negate there.
1787    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
1788                       DAG.getConstant(0, VT),
1789                       DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, N0,
1790                            DAG.getConstant(Log2Val,
1791                                      getShiftAmountTy(N0.getValueType()))));
1792  }
1793  // (mul (shl X, c1), c2) -> (mul X, c2 << c1)
1794  if (N1C && N0.getOpcode() == ISD::SHL &&
1795      isa<ConstantSDNode>(N0.getOperand(1))) {
1796    SDValue C3 = DAG.getNode(ISD::SHL, N->getDebugLoc(), VT,
1797                             N1, N0.getOperand(1));
1798    AddToWorkList(C3.getNode());
1799    return DAG.getNode(ISD::MUL, N->getDebugLoc(), VT,
1800                       N0.getOperand(0), C3);
1801  }
1802
1803  // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one
1804  // use.
1805  {
1806    SDValue Sh(0,0), Y(0,0);
1807    // Check for both (mul (shl X, C), Y)  and  (mul Y, (shl X, C)).
1808    if (N0.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N0.getOperand(1)) &&
1809        N0.getNode()->hasOneUse()) {
1810      Sh = N0; Y = N1;
1811    } else if (N1.getOpcode() == ISD::SHL &&
1812               isa<ConstantSDNode>(N1.getOperand(1)) &&
1813               N1.getNode()->hasOneUse()) {
1814      Sh = N1; Y = N0;
1815    }
1816
1817    if (Sh.getNode()) {
1818      SDValue Mul = DAG.getNode(ISD::MUL, N->getDebugLoc(), VT,
1819                                Sh.getOperand(0), Y);
1820      return DAG.getNode(ISD::SHL, N->getDebugLoc(), VT,
1821                         Mul, Sh.getOperand(1));
1822    }
1823  }
1824
1825  // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2)
1826  if (N1C && N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse() &&
1827      isa<ConstantSDNode>(N0.getOperand(1)))
1828    return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT,
1829                       DAG.getNode(ISD::MUL, N0.getDebugLoc(), VT,
1830                                   N0.getOperand(0), N1),
1831                       DAG.getNode(ISD::MUL, N1.getDebugLoc(), VT,
1832                                   N0.getOperand(1), N1));
1833
1834  // reassociate mul
1835  SDValue RMUL = ReassociateOps(ISD::MUL, N->getDebugLoc(), N0, N1);
1836  if (RMUL.getNode() != 0)
1837    return RMUL;
1838
1839  return SDValue();
1840}
1841
1842SDValue DAGCombiner::visitSDIV(SDNode *N) {
1843  SDValue N0 = N->getOperand(0);
1844  SDValue N1 = N->getOperand(1);
1845  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getNode());
1846  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
1847  EVT VT = N->getValueType(0);
1848
1849  // fold vector ops
1850  if (VT.isVector()) {
1851    SDValue FoldedVOp = SimplifyVBinOp(N);
1852    if (FoldedVOp.getNode()) return FoldedVOp;
1853  }
1854
1855  // fold (sdiv c1, c2) -> c1/c2
1856  if (N0C && N1C && !N1C->isNullValue())
1857    return DAG.FoldConstantArithmetic(ISD::SDIV, VT, N0C, N1C);
1858  // fold (sdiv X, 1) -> X
1859  if (N1C && N1C->getAPIntValue() == 1LL)
1860    return N0;
1861  // fold (sdiv X, -1) -> 0-X
1862  if (N1C && N1C->isAllOnesValue())
1863    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
1864                       DAG.getConstant(0, VT), N0);
1865  // If we know the sign bits of both operands are zero, strength reduce to a
1866  // udiv instead.  Handles (X&15) /s 4 -> X&15 >> 2
1867  if (!VT.isVector()) {
1868    if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
1869      return DAG.getNode(ISD::UDIV, N->getDebugLoc(), N1.getValueType(),
1870                         N0, N1);
1871  }
1872  // fold (sdiv X, pow2) -> simple ops after legalize
1873  if (N1C && !N1C->isNullValue() &&
1874      (N1C->getAPIntValue().isPowerOf2() ||
1875       (-N1C->getAPIntValue()).isPowerOf2())) {
1876    // If dividing by powers of two is cheap, then don't perform the following
1877    // fold.
1878    if (TLI.isPow2DivCheap())
1879      return SDValue();
1880
1881    unsigned lg2 = N1C->getAPIntValue().countTrailingZeros();
1882
1883    // Splat the sign bit into the register
1884    SDValue SGN = DAG.getNode(ISD::SRA, N->getDebugLoc(), VT, N0,
1885                              DAG.getConstant(VT.getSizeInBits()-1,
1886                                       getShiftAmountTy(N0.getValueType())));
1887    AddToWorkList(SGN.getNode());
1888
1889    // Add (N0 < 0) ? abs2 - 1 : 0;
1890    SDValue SRL = DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, SGN,
1891                              DAG.getConstant(VT.getSizeInBits() - lg2,
1892                                       getShiftAmountTy(SGN.getValueType())));
1893    SDValue ADD = DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0, SRL);
1894    AddToWorkList(SRL.getNode());
1895    AddToWorkList(ADD.getNode());    // Divide by pow2
1896    SDValue SRA = DAG.getNode(ISD::SRA, N->getDebugLoc(), VT, ADD,
1897                  DAG.getConstant(lg2, getShiftAmountTy(ADD.getValueType())));
1898
1899    // If we're dividing by a positive value, we're done.  Otherwise, we must
1900    // negate the result.
1901    if (N1C->getAPIntValue().isNonNegative())
1902      return SRA;
1903
1904    AddToWorkList(SRA.getNode());
1905    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
1906                       DAG.getConstant(0, VT), SRA);
1907  }
1908
1909  // if integer divide is expensive and we satisfy the requirements, emit an
1910  // alternate sequence.
1911  if (N1C && !N1C->isNullValue() && !TLI.isIntDivCheap()) {
1912    SDValue Op = BuildSDIV(N);
1913    if (Op.getNode()) return Op;
1914  }
1915
1916  // undef / X -> 0
1917  if (N0.getOpcode() == ISD::UNDEF)
1918    return DAG.getConstant(0, VT);
1919  // X / undef -> undef
1920  if (N1.getOpcode() == ISD::UNDEF)
1921    return N1;
1922
1923  return SDValue();
1924}
1925
1926SDValue DAGCombiner::visitUDIV(SDNode *N) {
1927  SDValue N0 = N->getOperand(0);
1928  SDValue N1 = N->getOperand(1);
1929  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getNode());
1930  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
1931  EVT VT = N->getValueType(0);
1932
1933  // fold vector ops
1934  if (VT.isVector()) {
1935    SDValue FoldedVOp = SimplifyVBinOp(N);
1936    if (FoldedVOp.getNode()) return FoldedVOp;
1937  }
1938
1939  // fold (udiv c1, c2) -> c1/c2
1940  if (N0C && N1C && !N1C->isNullValue())
1941    return DAG.FoldConstantArithmetic(ISD::UDIV, VT, N0C, N1C);
1942  // fold (udiv x, (1 << c)) -> x >>u c
1943  if (N1C && N1C->getAPIntValue().isPowerOf2())
1944    return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0,
1945                       DAG.getConstant(N1C->getAPIntValue().logBase2(),
1946                                       getShiftAmountTy(N0.getValueType())));
1947  // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
1948  if (N1.getOpcode() == ISD::SHL) {
1949    if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
1950      if (SHC->getAPIntValue().isPowerOf2()) {
1951        EVT ADDVT = N1.getOperand(1).getValueType();
1952        SDValue Add = DAG.getNode(ISD::ADD, N->getDebugLoc(), ADDVT,
1953                                  N1.getOperand(1),
1954                                  DAG.getConstant(SHC->getAPIntValue()
1955                                                                  .logBase2(),
1956                                                  ADDVT));
1957        AddToWorkList(Add.getNode());
1958        return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0, Add);
1959      }
1960    }
1961  }
1962  // fold (udiv x, c) -> alternate
1963  if (N1C && !N1C->isNullValue() && !TLI.isIntDivCheap()) {
1964    SDValue Op = BuildUDIV(N);
1965    if (Op.getNode()) return Op;
1966  }
1967
1968  // undef / X -> 0
1969  if (N0.getOpcode() == ISD::UNDEF)
1970    return DAG.getConstant(0, VT);
1971  // X / undef -> undef
1972  if (N1.getOpcode() == ISD::UNDEF)
1973    return N1;
1974
1975  return SDValue();
1976}
1977
1978SDValue DAGCombiner::visitSREM(SDNode *N) {
1979  SDValue N0 = N->getOperand(0);
1980  SDValue N1 = N->getOperand(1);
1981  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1982  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1983  EVT VT = N->getValueType(0);
1984
1985  // fold (srem c1, c2) -> c1%c2
1986  if (N0C && N1C && !N1C->isNullValue())
1987    return DAG.FoldConstantArithmetic(ISD::SREM, VT, N0C, N1C);
1988  // If we know the sign bits of both operands are zero, strength reduce to a
1989  // urem instead.  Handles (X & 0x0FFFFFFF) %s 16 -> X&15
1990  if (!VT.isVector()) {
1991    if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
1992      return DAG.getNode(ISD::UREM, N->getDebugLoc(), VT, N0, N1);
1993  }
1994
1995  // If X/C can be simplified by the division-by-constant logic, lower
1996  // X%C to the equivalent of X-X/C*C.
1997  if (N1C && !N1C->isNullValue()) {
1998    SDValue Div = DAG.getNode(ISD::SDIV, N->getDebugLoc(), VT, N0, N1);
1999    AddToWorkList(Div.getNode());
2000    SDValue OptimizedDiv = combine(Div.getNode());
2001    if (OptimizedDiv.getNode() && OptimizedDiv.getNode() != Div.getNode()) {
2002      SDValue Mul = DAG.getNode(ISD::MUL, N->getDebugLoc(), VT,
2003                                OptimizedDiv, N1);
2004      SDValue Sub = DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N0, Mul);
2005      AddToWorkList(Mul.getNode());
2006      return Sub;
2007    }
2008  }
2009
2010  // undef % X -> 0
2011  if (N0.getOpcode() == ISD::UNDEF)
2012    return DAG.getConstant(0, VT);
2013  // X % undef -> undef
2014  if (N1.getOpcode() == ISD::UNDEF)
2015    return N1;
2016
2017  return SDValue();
2018}
2019
2020SDValue DAGCombiner::visitUREM(SDNode *N) {
2021  SDValue N0 = N->getOperand(0);
2022  SDValue N1 = N->getOperand(1);
2023  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2024  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2025  EVT VT = N->getValueType(0);
2026
2027  // fold (urem c1, c2) -> c1%c2
2028  if (N0C && N1C && !N1C->isNullValue())
2029    return DAG.FoldConstantArithmetic(ISD::UREM, VT, N0C, N1C);
2030  // fold (urem x, pow2) -> (and x, pow2-1)
2031  if (N1C && !N1C->isNullValue() && N1C->getAPIntValue().isPowerOf2())
2032    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0,
2033                       DAG.getConstant(N1C->getAPIntValue()-1,VT));
2034  // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1))
2035  if (N1.getOpcode() == ISD::SHL) {
2036    if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
2037      if (SHC->getAPIntValue().isPowerOf2()) {
2038        SDValue Add =
2039          DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N1,
2040                 DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()),
2041                                 VT));
2042        AddToWorkList(Add.getNode());
2043        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0, Add);
2044      }
2045    }
2046  }
2047
2048  // If X/C can be simplified by the division-by-constant logic, lower
2049  // X%C to the equivalent of X-X/C*C.
2050  if (N1C && !N1C->isNullValue()) {
2051    SDValue Div = DAG.getNode(ISD::UDIV, N->getDebugLoc(), VT, N0, N1);
2052    AddToWorkList(Div.getNode());
2053    SDValue OptimizedDiv = combine(Div.getNode());
2054    if (OptimizedDiv.getNode() && OptimizedDiv.getNode() != Div.getNode()) {
2055      SDValue Mul = DAG.getNode(ISD::MUL, N->getDebugLoc(), VT,
2056                                OptimizedDiv, N1);
2057      SDValue Sub = DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N0, Mul);
2058      AddToWorkList(Mul.getNode());
2059      return Sub;
2060    }
2061  }
2062
2063  // undef % X -> 0
2064  if (N0.getOpcode() == ISD::UNDEF)
2065    return DAG.getConstant(0, VT);
2066  // X % undef -> undef
2067  if (N1.getOpcode() == ISD::UNDEF)
2068    return N1;
2069
2070  return SDValue();
2071}
2072
2073SDValue DAGCombiner::visitMULHS(SDNode *N) {
2074  SDValue N0 = N->getOperand(0);
2075  SDValue N1 = N->getOperand(1);
2076  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2077  EVT VT = N->getValueType(0);
2078  DebugLoc DL = N->getDebugLoc();
2079
2080  // fold (mulhs x, 0) -> 0
2081  if (N1C && N1C->isNullValue())
2082    return N1;
2083  // fold (mulhs x, 1) -> (sra x, size(x)-1)
2084  if (N1C && N1C->getAPIntValue() == 1)
2085    return DAG.getNode(ISD::SRA, N->getDebugLoc(), N0.getValueType(), N0,
2086                       DAG.getConstant(N0.getValueType().getSizeInBits() - 1,
2087                                       getShiftAmountTy(N0.getValueType())));
2088  // fold (mulhs x, undef) -> 0
2089  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
2090    return DAG.getConstant(0, VT);
2091
2092  // If the type twice as wide is legal, transform the mulhs to a wider multiply
2093  // plus a shift.
2094  if (VT.isSimple() && !VT.isVector()) {
2095    MVT Simple = VT.getSimpleVT();
2096    unsigned SimpleSize = Simple.getSizeInBits();
2097    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2098    if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2099      N0 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N0);
2100      N1 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N1);
2101      N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1);
2102      N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1,
2103            DAG.getConstant(SimpleSize, getShiftAmountTy(N1.getValueType())));
2104      return DAG.getNode(ISD::TRUNCATE, DL, VT, N1);
2105    }
2106  }
2107
2108  return SDValue();
2109}
2110
2111SDValue DAGCombiner::visitMULHU(SDNode *N) {
2112  SDValue N0 = N->getOperand(0);
2113  SDValue N1 = N->getOperand(1);
2114  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2115  EVT VT = N->getValueType(0);
2116  DebugLoc DL = N->getDebugLoc();
2117
2118  // fold (mulhu x, 0) -> 0
2119  if (N1C && N1C->isNullValue())
2120    return N1;
2121  // fold (mulhu x, 1) -> 0
2122  if (N1C && N1C->getAPIntValue() == 1)
2123    return DAG.getConstant(0, N0.getValueType());
2124  // fold (mulhu x, undef) -> 0
2125  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
2126    return DAG.getConstant(0, VT);
2127
2128  // If the type twice as wide is legal, transform the mulhu to a wider multiply
2129  // plus a shift.
2130  if (VT.isSimple() && !VT.isVector()) {
2131    MVT Simple = VT.getSimpleVT();
2132    unsigned SimpleSize = Simple.getSizeInBits();
2133    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2134    if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2135      N0 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N0);
2136      N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N1);
2137      N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1);
2138      N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1,
2139            DAG.getConstant(SimpleSize, getShiftAmountTy(N1.getValueType())));
2140      return DAG.getNode(ISD::TRUNCATE, DL, VT, N1);
2141    }
2142  }
2143
2144  return SDValue();
2145}
2146
2147/// SimplifyNodeWithTwoResults - Perform optimizations common to nodes that
2148/// compute two values. LoOp and HiOp give the opcodes for the two computations
2149/// that are being performed. Return true if a simplification was made.
2150///
2151SDValue DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
2152                                                unsigned HiOp) {
2153  // If the high half is not needed, just compute the low half.
2154  bool HiExists = N->hasAnyUseOfValue(1);
2155  if (!HiExists &&
2156      (!LegalOperations ||
2157       TLI.isOperationLegal(LoOp, N->getValueType(0)))) {
2158    SDValue Res = DAG.getNode(LoOp, N->getDebugLoc(), N->getValueType(0),
2159                              N->op_begin(), N->getNumOperands());
2160    return CombineTo(N, Res, Res);
2161  }
2162
2163  // If the low half is not needed, just compute the high half.
2164  bool LoExists = N->hasAnyUseOfValue(0);
2165  if (!LoExists &&
2166      (!LegalOperations ||
2167       TLI.isOperationLegal(HiOp, N->getValueType(1)))) {
2168    SDValue Res = DAG.getNode(HiOp, N->getDebugLoc(), N->getValueType(1),
2169                              N->op_begin(), N->getNumOperands());
2170    return CombineTo(N, Res, Res);
2171  }
2172
2173  // If both halves are used, return as it is.
2174  if (LoExists && HiExists)
2175    return SDValue();
2176
2177  // If the two computed results can be simplified separately, separate them.
2178  if (LoExists) {
2179    SDValue Lo = DAG.getNode(LoOp, N->getDebugLoc(), N->getValueType(0),
2180                             N->op_begin(), N->getNumOperands());
2181    AddToWorkList(Lo.getNode());
2182    SDValue LoOpt = combine(Lo.getNode());
2183    if (LoOpt.getNode() && LoOpt.getNode() != Lo.getNode() &&
2184        (!LegalOperations ||
2185         TLI.isOperationLegal(LoOpt.getOpcode(), LoOpt.getValueType())))
2186      return CombineTo(N, LoOpt, LoOpt);
2187  }
2188
2189  if (HiExists) {
2190    SDValue Hi = DAG.getNode(HiOp, N->getDebugLoc(), N->getValueType(1),
2191                             N->op_begin(), N->getNumOperands());
2192    AddToWorkList(Hi.getNode());
2193    SDValue HiOpt = combine(Hi.getNode());
2194    if (HiOpt.getNode() && HiOpt != Hi &&
2195        (!LegalOperations ||
2196         TLI.isOperationLegal(HiOpt.getOpcode(), HiOpt.getValueType())))
2197      return CombineTo(N, HiOpt, HiOpt);
2198  }
2199
2200  return SDValue();
2201}
2202
2203SDValue DAGCombiner::visitSMUL_LOHI(SDNode *N) {
2204  SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHS);
2205  if (Res.getNode()) return Res;
2206
2207  EVT VT = N->getValueType(0);
2208  DebugLoc DL = N->getDebugLoc();
2209
2210  // If the type twice as wide is legal, transform the mulhu to a wider multiply
2211  // plus a shift.
2212  if (VT.isSimple() && !VT.isVector()) {
2213    MVT Simple = VT.getSimpleVT();
2214    unsigned SimpleSize = Simple.getSizeInBits();
2215    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2216    if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2217      SDValue Lo = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(0));
2218      SDValue Hi = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(1));
2219      Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi);
2220      // Compute the high part as N1.
2221      Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo,
2222            DAG.getConstant(SimpleSize, getShiftAmountTy(Lo.getValueType())));
2223      Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi);
2224      // Compute the low part as N0.
2225      Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo);
2226      return CombineTo(N, Lo, Hi);
2227    }
2228  }
2229
2230  return SDValue();
2231}
2232
2233SDValue DAGCombiner::visitUMUL_LOHI(SDNode *N) {
2234  SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHU);
2235  if (Res.getNode()) return Res;
2236
2237  EVT VT = N->getValueType(0);
2238  DebugLoc DL = N->getDebugLoc();
2239
2240  // If the type twice as wide is legal, transform the mulhu to a wider multiply
2241  // plus a shift.
2242  if (VT.isSimple() && !VT.isVector()) {
2243    MVT Simple = VT.getSimpleVT();
2244    unsigned SimpleSize = Simple.getSizeInBits();
2245    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2246    if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2247      SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(0));
2248      SDValue Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(1));
2249      Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi);
2250      // Compute the high part as N1.
2251      Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo,
2252            DAG.getConstant(SimpleSize, getShiftAmountTy(Lo.getValueType())));
2253      Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi);
2254      // Compute the low part as N0.
2255      Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo);
2256      return CombineTo(N, Lo, Hi);
2257    }
2258  }
2259
2260  return SDValue();
2261}
2262
2263SDValue DAGCombiner::visitSMULO(SDNode *N) {
2264  // (smulo x, 2) -> (saddo x, x)
2265  if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)))
2266    if (C2->getAPIntValue() == 2)
2267      return DAG.getNode(ISD::SADDO, N->getDebugLoc(), N->getVTList(),
2268                         N->getOperand(0), N->getOperand(0));
2269
2270  return SDValue();
2271}
2272
2273SDValue DAGCombiner::visitUMULO(SDNode *N) {
2274  // (umulo x, 2) -> (uaddo x, x)
2275  if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)))
2276    if (C2->getAPIntValue() == 2)
2277      return DAG.getNode(ISD::UADDO, N->getDebugLoc(), N->getVTList(),
2278                         N->getOperand(0), N->getOperand(0));
2279
2280  return SDValue();
2281}
2282
2283SDValue DAGCombiner::visitSDIVREM(SDNode *N) {
2284  SDValue Res = SimplifyNodeWithTwoResults(N, ISD::SDIV, ISD::SREM);
2285  if (Res.getNode()) return Res;
2286
2287  return SDValue();
2288}
2289
2290SDValue DAGCombiner::visitUDIVREM(SDNode *N) {
2291  SDValue Res = SimplifyNodeWithTwoResults(N, ISD::UDIV, ISD::UREM);
2292  if (Res.getNode()) return Res;
2293
2294  return SDValue();
2295}
2296
2297/// SimplifyBinOpWithSameOpcodeHands - If this is a binary operator with
2298/// two operands of the same opcode, try to simplify it.
2299SDValue DAGCombiner::SimplifyBinOpWithSameOpcodeHands(SDNode *N) {
2300  SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
2301  EVT VT = N0.getValueType();
2302  assert(N0.getOpcode() == N1.getOpcode() && "Bad input!");
2303
2304  // Bail early if none of these transforms apply.
2305  if (N0.getNode()->getNumOperands() == 0) return SDValue();
2306
2307  // For each of OP in AND/OR/XOR:
2308  // fold (OP (zext x), (zext y)) -> (zext (OP x, y))
2309  // fold (OP (sext x), (sext y)) -> (sext (OP x, y))
2310  // fold (OP (aext x), (aext y)) -> (aext (OP x, y))
2311  // fold (OP (trunc x), (trunc y)) -> (trunc (OP x, y)) (if trunc isn't free)
2312  //
2313  // do not sink logical op inside of a vector extend, since it may combine
2314  // into a vsetcc.
2315  EVT Op0VT = N0.getOperand(0).getValueType();
2316  if ((N0.getOpcode() == ISD::ZERO_EXTEND ||
2317       N0.getOpcode() == ISD::SIGN_EXTEND ||
2318       // Avoid infinite looping with PromoteIntBinOp.
2319       (N0.getOpcode() == ISD::ANY_EXTEND &&
2320        (!LegalTypes || TLI.isTypeDesirableForOp(N->getOpcode(), Op0VT))) ||
2321       (N0.getOpcode() == ISD::TRUNCATE &&
2322        (!TLI.isZExtFree(VT, Op0VT) ||
2323         !TLI.isTruncateFree(Op0VT, VT)) &&
2324        TLI.isTypeLegal(Op0VT))) &&
2325      !VT.isVector() &&
2326      Op0VT == N1.getOperand(0).getValueType() &&
2327      (!LegalOperations || TLI.isOperationLegal(N->getOpcode(), Op0VT))) {
2328    SDValue ORNode = DAG.getNode(N->getOpcode(), N0.getDebugLoc(),
2329                                 N0.getOperand(0).getValueType(),
2330                                 N0.getOperand(0), N1.getOperand(0));
2331    AddToWorkList(ORNode.getNode());
2332    return DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT, ORNode);
2333  }
2334
2335  // For each of OP in SHL/SRL/SRA/AND...
2336  //   fold (and (OP x, z), (OP y, z)) -> (OP (and x, y), z)
2337  //   fold (or  (OP x, z), (OP y, z)) -> (OP (or  x, y), z)
2338  //   fold (xor (OP x, z), (OP y, z)) -> (OP (xor x, y), z)
2339  if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL ||
2340       N0.getOpcode() == ISD::SRA || N0.getOpcode() == ISD::AND) &&
2341      N0.getOperand(1) == N1.getOperand(1)) {
2342    SDValue ORNode = DAG.getNode(N->getOpcode(), N0.getDebugLoc(),
2343                                 N0.getOperand(0).getValueType(),
2344                                 N0.getOperand(0), N1.getOperand(0));
2345    AddToWorkList(ORNode.getNode());
2346    return DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT,
2347                       ORNode, N0.getOperand(1));
2348  }
2349
2350  // Simplify xor/and/or (bitcast(A), bitcast(B)) -> bitcast(op (A,B))
2351  // Only perform this optimization after type legalization and before
2352  // LegalizeVectorOprs. LegalizeVectorOprs promotes vector operations by
2353  // adding bitcasts. For example (xor v4i32) is promoted to (v2i64), and
2354  // we don't want to undo this promotion.
2355  // We also handle SCALAR_TO_VECTOR because xor/or/and operations are cheaper
2356  // on scalars.
2357  if ((N0.getOpcode() == ISD::BITCAST ||
2358       N0.getOpcode() == ISD::SCALAR_TO_VECTOR) &&
2359      Level == AfterLegalizeTypes) {
2360    SDValue In0 = N0.getOperand(0);
2361    SDValue In1 = N1.getOperand(0);
2362    EVT In0Ty = In0.getValueType();
2363    EVT In1Ty = In1.getValueType();
2364    DebugLoc DL = N->getDebugLoc();
2365    // If both incoming values are integers, and the original types are the
2366    // same.
2367    if (In0Ty.isInteger() && In1Ty.isInteger() && In0Ty == In1Ty) {
2368      SDValue Op = DAG.getNode(N->getOpcode(), DL, In0Ty, In0, In1);
2369      SDValue BC = DAG.getNode(N0.getOpcode(), DL, VT, Op);
2370      AddToWorkList(Op.getNode());
2371      return BC;
2372    }
2373  }
2374
2375  // Xor/and/or are indifferent to the swizzle operation (shuffle of one value).
2376  // Simplify xor/and/or (shuff(A), shuff(B)) -> shuff(op (A,B))
2377  // If both shuffles use the same mask, and both shuffle within a single
2378  // vector, then it is worthwhile to move the swizzle after the operation.
2379  // The type-legalizer generates this pattern when loading illegal
2380  // vector types from memory. In many cases this allows additional shuffle
2381  // optimizations.
2382  if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG &&
2383      N0.getOperand(1).getOpcode() == ISD::UNDEF &&
2384      N1.getOperand(1).getOpcode() == ISD::UNDEF) {
2385    ShuffleVectorSDNode *SVN0 = cast<ShuffleVectorSDNode>(N0);
2386    ShuffleVectorSDNode *SVN1 = cast<ShuffleVectorSDNode>(N1);
2387
2388    assert(N0.getOperand(0).getValueType() == N1.getOperand(1).getValueType() &&
2389           "Inputs to shuffles are not the same type");
2390
2391    unsigned NumElts = VT.getVectorNumElements();
2392
2393    // Check that both shuffles use the same mask. The masks are known to be of
2394    // the same length because the result vector type is the same.
2395    bool SameMask = true;
2396    for (unsigned i = 0; i != NumElts; ++i) {
2397      int Idx0 = SVN0->getMaskElt(i);
2398      int Idx1 = SVN1->getMaskElt(i);
2399      if (Idx0 != Idx1) {
2400        SameMask = false;
2401        break;
2402      }
2403    }
2404
2405    if (SameMask) {
2406      SDValue Op = DAG.getNode(N->getOpcode(), N->getDebugLoc(), VT,
2407                               N0.getOperand(0), N1.getOperand(0));
2408      AddToWorkList(Op.getNode());
2409      return DAG.getVectorShuffle(VT, N->getDebugLoc(), Op,
2410                                  DAG.getUNDEF(VT), &SVN0->getMask()[0]);
2411    }
2412  }
2413
2414  return SDValue();
2415}
2416
2417SDValue DAGCombiner::visitAND(SDNode *N) {
2418  SDValue N0 = N->getOperand(0);
2419  SDValue N1 = N->getOperand(1);
2420  SDValue LL, LR, RL, RR, CC0, CC1;
2421  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2422  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2423  EVT VT = N1.getValueType();
2424  unsigned BitWidth = VT.getScalarType().getSizeInBits();
2425
2426  // fold vector ops
2427  if (VT.isVector()) {
2428    SDValue FoldedVOp = SimplifyVBinOp(N);
2429    if (FoldedVOp.getNode()) return FoldedVOp;
2430  }
2431
2432  // fold (and x, undef) -> 0
2433  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
2434    return DAG.getConstant(0, VT);
2435  // fold (and c1, c2) -> c1&c2
2436  if (N0C && N1C)
2437    return DAG.FoldConstantArithmetic(ISD::AND, VT, N0C, N1C);
2438  // canonicalize constant to RHS
2439  if (N0C && !N1C)
2440    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N1, N0);
2441  // fold (and x, -1) -> x
2442  if (N1C && N1C->isAllOnesValue())
2443    return N0;
2444  // if (and x, c) is known to be zero, return 0
2445  if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0),
2446                                   APInt::getAllOnesValue(BitWidth)))
2447    return DAG.getConstant(0, VT);
2448  // reassociate and
2449  SDValue RAND = ReassociateOps(ISD::AND, N->getDebugLoc(), N0, N1);
2450  if (RAND.getNode() != 0)
2451    return RAND;
2452  // fold (and (or x, C), D) -> D if (C & D) == D
2453  if (N1C && N0.getOpcode() == ISD::OR)
2454    if (ConstantSDNode *ORI = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
2455      if ((ORI->getAPIntValue() & N1C->getAPIntValue()) == N1C->getAPIntValue())
2456        return N1;
2457  // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits.
2458  if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
2459    SDValue N0Op0 = N0.getOperand(0);
2460    APInt Mask = ~N1C->getAPIntValue();
2461    Mask = Mask.trunc(N0Op0.getValueSizeInBits());
2462    if (DAG.MaskedValueIsZero(N0Op0, Mask)) {
2463      SDValue Zext = DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(),
2464                                 N0.getValueType(), N0Op0);
2465
2466      // Replace uses of the AND with uses of the Zero extend node.
2467      CombineTo(N, Zext);
2468
2469      // We actually want to replace all uses of the any_extend with the
2470      // zero_extend, to avoid duplicating things.  This will later cause this
2471      // AND to be folded.
2472      CombineTo(N0.getNode(), Zext);
2473      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
2474    }
2475  }
2476  // similarly fold (and (X (load ([non_ext|any_ext|zero_ext] V))), c) ->
2477  // (X (load ([non_ext|zero_ext] V))) if 'and' only clears top bits which must
2478  // already be zero by virtue of the width of the base type of the load.
2479  //
2480  // the 'X' node here can either be nothing or an extract_vector_elt to catch
2481  // more cases.
2482  if ((N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
2483       N0.getOperand(0).getOpcode() == ISD::LOAD) ||
2484      N0.getOpcode() == ISD::LOAD) {
2485    LoadSDNode *Load = cast<LoadSDNode>( (N0.getOpcode() == ISD::LOAD) ?
2486                                         N0 : N0.getOperand(0) );
2487
2488    // Get the constant (if applicable) the zero'th operand is being ANDed with.
2489    // This can be a pure constant or a vector splat, in which case we treat the
2490    // vector as a scalar and use the splat value.
2491    APInt Constant = APInt::getNullValue(1);
2492    if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2493      Constant = C->getAPIntValue();
2494    } else if (BuildVectorSDNode *Vector = dyn_cast<BuildVectorSDNode>(N1)) {
2495      APInt SplatValue, SplatUndef;
2496      unsigned SplatBitSize;
2497      bool HasAnyUndefs;
2498      bool IsSplat = Vector->isConstantSplat(SplatValue, SplatUndef,
2499                                             SplatBitSize, HasAnyUndefs);
2500      if (IsSplat) {
2501        // Undef bits can contribute to a possible optimisation if set, so
2502        // set them.
2503        SplatValue |= SplatUndef;
2504
2505        // The splat value may be something like "0x00FFFFFF", which means 0 for
2506        // the first vector value and FF for the rest, repeating. We need a mask
2507        // that will apply equally to all members of the vector, so AND all the
2508        // lanes of the constant together.
2509        EVT VT = Vector->getValueType(0);
2510        unsigned BitWidth = VT.getVectorElementType().getSizeInBits();
2511
2512        // If the splat value has been compressed to a bitlength lower
2513        // than the size of the vector lane, we need to re-expand it to
2514        // the lane size.
2515        if (BitWidth > SplatBitSize)
2516          for (SplatValue = SplatValue.zextOrTrunc(BitWidth);
2517               SplatBitSize < BitWidth;
2518               SplatBitSize = SplatBitSize * 2)
2519            SplatValue |= SplatValue.shl(SplatBitSize);
2520
2521        Constant = APInt::getAllOnesValue(BitWidth);
2522        for (unsigned i = 0, n = SplatBitSize/BitWidth; i < n; ++i)
2523          Constant &= SplatValue.lshr(i*BitWidth).zextOrTrunc(BitWidth);
2524      }
2525    }
2526
2527    // If we want to change an EXTLOAD to a ZEXTLOAD, ensure a ZEXTLOAD is
2528    // actually legal and isn't going to get expanded, else this is a false
2529    // optimisation.
2530    bool CanZextLoadProfitably = TLI.isLoadExtLegal(ISD::ZEXTLOAD,
2531                                                    Load->getMemoryVT());
2532
2533    // Resize the constant to the same size as the original memory access before
2534    // extension. If it is still the AllOnesValue then this AND is completely
2535    // unneeded.
2536    Constant =
2537      Constant.zextOrTrunc(Load->getMemoryVT().getScalarType().getSizeInBits());
2538
2539    bool B;
2540    switch (Load->getExtensionType()) {
2541    default: B = false; break;
2542    case ISD::EXTLOAD: B = CanZextLoadProfitably; break;
2543    case ISD::ZEXTLOAD:
2544    case ISD::NON_EXTLOAD: B = true; break;
2545    }
2546
2547    if (B && Constant.isAllOnesValue()) {
2548      // If the load type was an EXTLOAD, convert to ZEXTLOAD in order to
2549      // preserve semantics once we get rid of the AND.
2550      SDValue NewLoad(Load, 0);
2551      if (Load->getExtensionType() == ISD::EXTLOAD) {
2552        NewLoad = DAG.getLoad(Load->getAddressingMode(), ISD::ZEXTLOAD,
2553                              Load->getValueType(0), Load->getDebugLoc(),
2554                              Load->getChain(), Load->getBasePtr(),
2555                              Load->getOffset(), Load->getMemoryVT(),
2556                              Load->getMemOperand());
2557        // Replace uses of the EXTLOAD with the new ZEXTLOAD.
2558        if (Load->getNumValues() == 3) {
2559          // PRE/POST_INC loads have 3 values.
2560          SDValue To[] = { NewLoad.getValue(0), NewLoad.getValue(1),
2561                           NewLoad.getValue(2) };
2562          CombineTo(Load, To, 3, true);
2563        } else {
2564          CombineTo(Load, NewLoad.getValue(0), NewLoad.getValue(1));
2565        }
2566      }
2567
2568      // Fold the AND away, taking care not to fold to the old load node if we
2569      // replaced it.
2570      CombineTo(N, (N0.getNode() == Load) ? NewLoad : N0);
2571
2572      return SDValue(N, 0); // Return N so it doesn't get rechecked!
2573    }
2574  }
2575  // fold (and (setcc x), (setcc y)) -> (setcc (and x, y))
2576  if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
2577    ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
2578    ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
2579
2580    if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
2581        LL.getValueType().isInteger()) {
2582      // fold (and (seteq X, 0), (seteq Y, 0)) -> (seteq (or X, Y), 0)
2583      if (cast<ConstantSDNode>(LR)->isNullValue() && Op1 == ISD::SETEQ) {
2584        SDValue ORNode = DAG.getNode(ISD::OR, N0.getDebugLoc(),
2585                                     LR.getValueType(), LL, RL);
2586        AddToWorkList(ORNode.getNode());
2587        return DAG.getSetCC(N->getDebugLoc(), VT, ORNode, LR, Op1);
2588      }
2589      // fold (and (seteq X, -1), (seteq Y, -1)) -> (seteq (and X, Y), -1)
2590      if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETEQ) {
2591        SDValue ANDNode = DAG.getNode(ISD::AND, N0.getDebugLoc(),
2592                                      LR.getValueType(), LL, RL);
2593        AddToWorkList(ANDNode.getNode());
2594        return DAG.getSetCC(N->getDebugLoc(), VT, ANDNode, LR, Op1);
2595      }
2596      // fold (and (setgt X,  -1), (setgt Y,  -1)) -> (setgt (or X, Y), -1)
2597      if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETGT) {
2598        SDValue ORNode = DAG.getNode(ISD::OR, N0.getDebugLoc(),
2599                                     LR.getValueType(), LL, RL);
2600        AddToWorkList(ORNode.getNode());
2601        return DAG.getSetCC(N->getDebugLoc(), VT, ORNode, LR, Op1);
2602      }
2603    }
2604    // canonicalize equivalent to ll == rl
2605    if (LL == RR && LR == RL) {
2606      Op1 = ISD::getSetCCSwappedOperands(Op1);
2607      std::swap(RL, RR);
2608    }
2609    if (LL == RL && LR == RR) {
2610      bool isInteger = LL.getValueType().isInteger();
2611      ISD::CondCode Result = ISD::getSetCCAndOperation(Op0, Op1, isInteger);
2612      if (Result != ISD::SETCC_INVALID &&
2613          (!LegalOperations || TLI.isCondCodeLegal(Result, LL.getValueType())))
2614        return DAG.getSetCC(N->getDebugLoc(), N0.getValueType(),
2615                            LL, LR, Result);
2616    }
2617  }
2618
2619  // Simplify: (and (op x...), (op y...))  -> (op (and x, y))
2620  if (N0.getOpcode() == N1.getOpcode()) {
2621    SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N);
2622    if (Tmp.getNode()) return Tmp;
2623  }
2624
2625  // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1)
2626  // fold (and (sra)) -> (and (srl)) when possible.
2627  if (!VT.isVector() &&
2628      SimplifyDemandedBits(SDValue(N, 0)))
2629    return SDValue(N, 0);
2630
2631  // fold (zext_inreg (extload x)) -> (zextload x)
2632  if (ISD::isEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode())) {
2633    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2634    EVT MemVT = LN0->getMemoryVT();
2635    // If we zero all the possible extended bits, then we can turn this into
2636    // a zextload if we are running before legalize or the operation is legal.
2637    unsigned BitWidth = N1.getValueType().getScalarType().getSizeInBits();
2638    if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth,
2639                           BitWidth - MemVT.getScalarType().getSizeInBits())) &&
2640        ((!LegalOperations && !LN0->isVolatile()) ||
2641         TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT))) {
2642      SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, N0.getDebugLoc(), VT,
2643                                       LN0->getChain(), LN0->getBasePtr(),
2644                                       LN0->getPointerInfo(), MemVT,
2645                                       LN0->isVolatile(), LN0->isNonTemporal(),
2646                                       LN0->getAlignment());
2647      AddToWorkList(N);
2648      CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
2649      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
2650    }
2651  }
2652  // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use
2653  if (ISD::isSEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
2654      N0.hasOneUse()) {
2655    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2656    EVT MemVT = LN0->getMemoryVT();
2657    // If we zero all the possible extended bits, then we can turn this into
2658    // a zextload if we are running before legalize or the operation is legal.
2659    unsigned BitWidth = N1.getValueType().getScalarType().getSizeInBits();
2660    if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth,
2661                           BitWidth - MemVT.getScalarType().getSizeInBits())) &&
2662        ((!LegalOperations && !LN0->isVolatile()) ||
2663         TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT))) {
2664      SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, N0.getDebugLoc(), VT,
2665                                       LN0->getChain(),
2666                                       LN0->getBasePtr(), LN0->getPointerInfo(),
2667                                       MemVT,
2668                                       LN0->isVolatile(), LN0->isNonTemporal(),
2669                                       LN0->getAlignment());
2670      AddToWorkList(N);
2671      CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
2672      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
2673    }
2674  }
2675
2676  // fold (and (load x), 255) -> (zextload x, i8)
2677  // fold (and (extload x, i16), 255) -> (zextload x, i8)
2678  // fold (and (any_ext (extload x, i16)), 255) -> (zextload x, i8)
2679  if (N1C && (N0.getOpcode() == ISD::LOAD ||
2680              (N0.getOpcode() == ISD::ANY_EXTEND &&
2681               N0.getOperand(0).getOpcode() == ISD::LOAD))) {
2682    bool HasAnyExt = N0.getOpcode() == ISD::ANY_EXTEND;
2683    LoadSDNode *LN0 = HasAnyExt
2684      ? cast<LoadSDNode>(N0.getOperand(0))
2685      : cast<LoadSDNode>(N0);
2686    if (LN0->getExtensionType() != ISD::SEXTLOAD &&
2687        LN0->isUnindexed() && N0.hasOneUse() && LN0->hasOneUse()) {
2688      uint32_t ActiveBits = N1C->getAPIntValue().getActiveBits();
2689      if (ActiveBits > 0 && APIntOps::isMask(ActiveBits, N1C->getAPIntValue())){
2690        EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits);
2691        EVT LoadedVT = LN0->getMemoryVT();
2692
2693        if (ExtVT == LoadedVT &&
2694            (!LegalOperations || TLI.isLoadExtLegal(ISD::ZEXTLOAD, ExtVT))) {
2695          EVT LoadResultTy = HasAnyExt ? LN0->getValueType(0) : VT;
2696
2697          SDValue NewLoad =
2698            DAG.getExtLoad(ISD::ZEXTLOAD, LN0->getDebugLoc(), LoadResultTy,
2699                           LN0->getChain(), LN0->getBasePtr(),
2700                           LN0->getPointerInfo(),
2701                           ExtVT, LN0->isVolatile(), LN0->isNonTemporal(),
2702                           LN0->getAlignment());
2703          AddToWorkList(N);
2704          CombineTo(LN0, NewLoad, NewLoad.getValue(1));
2705          return SDValue(N, 0);   // Return N so it doesn't get rechecked!
2706        }
2707
2708        // Do not change the width of a volatile load.
2709        // Do not generate loads of non-round integer types since these can
2710        // be expensive (and would be wrong if the type is not byte sized).
2711        if (!LN0->isVolatile() && LoadedVT.bitsGT(ExtVT) && ExtVT.isRound() &&
2712            (!LegalOperations || TLI.isLoadExtLegal(ISD::ZEXTLOAD, ExtVT))) {
2713          EVT PtrType = LN0->getOperand(1).getValueType();
2714
2715          unsigned Alignment = LN0->getAlignment();
2716          SDValue NewPtr = LN0->getBasePtr();
2717
2718          // For big endian targets, we need to add an offset to the pointer
2719          // to load the correct bytes.  For little endian systems, we merely
2720          // need to read fewer bytes from the same pointer.
2721          if (TLI.isBigEndian()) {
2722            unsigned LVTStoreBytes = LoadedVT.getStoreSize();
2723            unsigned EVTStoreBytes = ExtVT.getStoreSize();
2724            unsigned PtrOff = LVTStoreBytes - EVTStoreBytes;
2725            NewPtr = DAG.getNode(ISD::ADD, LN0->getDebugLoc(), PtrType,
2726                                 NewPtr, DAG.getConstant(PtrOff, PtrType));
2727            Alignment = MinAlign(Alignment, PtrOff);
2728          }
2729
2730          AddToWorkList(NewPtr.getNode());
2731
2732          EVT LoadResultTy = HasAnyExt ? LN0->getValueType(0) : VT;
2733          SDValue Load =
2734            DAG.getExtLoad(ISD::ZEXTLOAD, LN0->getDebugLoc(), LoadResultTy,
2735                           LN0->getChain(), NewPtr,
2736                           LN0->getPointerInfo(),
2737                           ExtVT, LN0->isVolatile(), LN0->isNonTemporal(),
2738                           Alignment);
2739          AddToWorkList(N);
2740          CombineTo(LN0, Load, Load.getValue(1));
2741          return SDValue(N, 0);   // Return N so it doesn't get rechecked!
2742        }
2743      }
2744    }
2745  }
2746
2747  if (N0.getOpcode() == ISD::ADD && N1.getOpcode() == ISD::SRL &&
2748      VT.getSizeInBits() <= 64) {
2749    if (ConstantSDNode *ADDI = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2750      APInt ADDC = ADDI->getAPIntValue();
2751      if (!TLI.isLegalAddImmediate(ADDC.getSExtValue())) {
2752        // Look for (and (add x, c1), (lshr y, c2)). If C1 wasn't a legal
2753        // immediate for an add, but it is legal if its top c2 bits are set,
2754        // transform the ADD so the immediate doesn't need to be materialized
2755        // in a register.
2756        if (ConstantSDNode *SRLI = dyn_cast<ConstantSDNode>(N1.getOperand(1))) {
2757          APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
2758                                             SRLI->getZExtValue());
2759          if (DAG.MaskedValueIsZero(N0.getOperand(1), Mask)) {
2760            ADDC |= Mask;
2761            if (TLI.isLegalAddImmediate(ADDC.getSExtValue())) {
2762              SDValue NewAdd =
2763                DAG.getNode(ISD::ADD, N0.getDebugLoc(), VT,
2764                            N0.getOperand(0), DAG.getConstant(ADDC, VT));
2765              CombineTo(N0.getNode(), NewAdd);
2766              return SDValue(N, 0); // Return N so it doesn't get rechecked!
2767            }
2768          }
2769        }
2770      }
2771    }
2772  }
2773
2774
2775  return SDValue();
2776}
2777
2778/// MatchBSwapHWord - Match (a >> 8) | (a << 8) as (bswap a) >> 16
2779///
2780SDValue DAGCombiner::MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1,
2781                                        bool DemandHighBits) {
2782  if (!LegalOperations)
2783    return SDValue();
2784
2785  EVT VT = N->getValueType(0);
2786  if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16)
2787    return SDValue();
2788  if (!TLI.isOperationLegal(ISD::BSWAP, VT))
2789    return SDValue();
2790
2791  // Recognize (and (shl a, 8), 0xff), (and (srl a, 8), 0xff00)
2792  bool LookPassAnd0 = false;
2793  bool LookPassAnd1 = false;
2794  if (N0.getOpcode() == ISD::AND && N0.getOperand(0).getOpcode() == ISD::SRL)
2795      std::swap(N0, N1);
2796  if (N1.getOpcode() == ISD::AND && N1.getOperand(0).getOpcode() == ISD::SHL)
2797      std::swap(N0, N1);
2798  if (N0.getOpcode() == ISD::AND) {
2799    if (!N0.getNode()->hasOneUse())
2800      return SDValue();
2801    ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
2802    if (!N01C || N01C->getZExtValue() != 0xFF00)
2803      return SDValue();
2804    N0 = N0.getOperand(0);
2805    LookPassAnd0 = true;
2806  }
2807
2808  if (N1.getOpcode() == ISD::AND) {
2809    if (!N1.getNode()->hasOneUse())
2810      return SDValue();
2811    ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
2812    if (!N11C || N11C->getZExtValue() != 0xFF)
2813      return SDValue();
2814    N1 = N1.getOperand(0);
2815    LookPassAnd1 = true;
2816  }
2817
2818  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
2819    std::swap(N0, N1);
2820  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
2821    return SDValue();
2822  if (!N0.getNode()->hasOneUse() ||
2823      !N1.getNode()->hasOneUse())
2824    return SDValue();
2825
2826  ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
2827  ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
2828  if (!N01C || !N11C)
2829    return SDValue();
2830  if (N01C->getZExtValue() != 8 || N11C->getZExtValue() != 8)
2831    return SDValue();
2832
2833  // Look for (shl (and a, 0xff), 8), (srl (and a, 0xff00), 8)
2834  SDValue N00 = N0->getOperand(0);
2835  if (!LookPassAnd0 && N00.getOpcode() == ISD::AND) {
2836    if (!N00.getNode()->hasOneUse())
2837      return SDValue();
2838    ConstantSDNode *N001C = dyn_cast<ConstantSDNode>(N00.getOperand(1));
2839    if (!N001C || N001C->getZExtValue() != 0xFF)
2840      return SDValue();
2841    N00 = N00.getOperand(0);
2842    LookPassAnd0 = true;
2843  }
2844
2845  SDValue N10 = N1->getOperand(0);
2846  if (!LookPassAnd1 && N10.getOpcode() == ISD::AND) {
2847    if (!N10.getNode()->hasOneUse())
2848      return SDValue();
2849    ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N10.getOperand(1));
2850    if (!N101C || N101C->getZExtValue() != 0xFF00)
2851      return SDValue();
2852    N10 = N10.getOperand(0);
2853    LookPassAnd1 = true;
2854  }
2855
2856  if (N00 != N10)
2857    return SDValue();
2858
2859  // Make sure everything beyond the low halfword is zero since the SRL 16
2860  // will clear the top bits.
2861  unsigned OpSizeInBits = VT.getSizeInBits();
2862  if (DemandHighBits && OpSizeInBits > 16 &&
2863      (!LookPassAnd0 || !LookPassAnd1) &&
2864      !DAG.MaskedValueIsZero(N10, APInt::getHighBitsSet(OpSizeInBits, 16)))
2865    return SDValue();
2866
2867  SDValue Res = DAG.getNode(ISD::BSWAP, N->getDebugLoc(), VT, N00);
2868  if (OpSizeInBits > 16)
2869    Res = DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, Res,
2870                      DAG.getConstant(OpSizeInBits-16, getShiftAmountTy(VT)));
2871  return Res;
2872}
2873
2874/// isBSwapHWordElement - Return true if the specified node is an element
2875/// that makes up a 32-bit packed halfword byteswap. i.e.
2876/// ((x&0xff)<<8)|((x&0xff00)>>8)|((x&0x00ff0000)<<8)|((x&0xff000000)>>8)
2877static bool isBSwapHWordElement(SDValue N, SmallVector<SDNode*,4> &Parts) {
2878  if (!N.getNode()->hasOneUse())
2879    return false;
2880
2881  unsigned Opc = N.getOpcode();
2882  if (Opc != ISD::AND && Opc != ISD::SHL && Opc != ISD::SRL)
2883    return false;
2884
2885  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N.getOperand(1));
2886  if (!N1C)
2887    return false;
2888
2889  unsigned Num;
2890  switch (N1C->getZExtValue()) {
2891  default:
2892    return false;
2893  case 0xFF:       Num = 0; break;
2894  case 0xFF00:     Num = 1; break;
2895  case 0xFF0000:   Num = 2; break;
2896  case 0xFF000000: Num = 3; break;
2897  }
2898
2899  // Look for (x & 0xff) << 8 as well as ((x << 8) & 0xff00).
2900  SDValue N0 = N.getOperand(0);
2901  if (Opc == ISD::AND) {
2902    if (Num == 0 || Num == 2) {
2903      // (x >> 8) & 0xff
2904      // (x >> 8) & 0xff0000
2905      if (N0.getOpcode() != ISD::SRL)
2906        return false;
2907      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
2908      if (!C || C->getZExtValue() != 8)
2909        return false;
2910    } else {
2911      // (x << 8) & 0xff00
2912      // (x << 8) & 0xff000000
2913      if (N0.getOpcode() != ISD::SHL)
2914        return false;
2915      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
2916      if (!C || C->getZExtValue() != 8)
2917        return false;
2918    }
2919  } else if (Opc == ISD::SHL) {
2920    // (x & 0xff) << 8
2921    // (x & 0xff0000) << 8
2922    if (Num != 0 && Num != 2)
2923      return false;
2924    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1));
2925    if (!C || C->getZExtValue() != 8)
2926      return false;
2927  } else { // Opc == ISD::SRL
2928    // (x & 0xff00) >> 8
2929    // (x & 0xff000000) >> 8
2930    if (Num != 1 && Num != 3)
2931      return false;
2932    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1));
2933    if (!C || C->getZExtValue() != 8)
2934      return false;
2935  }
2936
2937  if (Parts[Num])
2938    return false;
2939
2940  Parts[Num] = N0.getOperand(0).getNode();
2941  return true;
2942}
2943
2944/// MatchBSwapHWord - Match a 32-bit packed halfword bswap. That is
2945/// ((x&0xff)<<8)|((x&0xff00)>>8)|((x&0x00ff0000)<<8)|((x&0xff000000)>>8)
2946/// => (rotl (bswap x), 16)
2947SDValue DAGCombiner::MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1) {
2948  if (!LegalOperations)
2949    return SDValue();
2950
2951  EVT VT = N->getValueType(0);
2952  if (VT != MVT::i32)
2953    return SDValue();
2954  if (!TLI.isOperationLegal(ISD::BSWAP, VT))
2955    return SDValue();
2956
2957  SmallVector<SDNode*,4> Parts(4, (SDNode*)0);
2958  // Look for either
2959  // (or (or (and), (and)), (or (and), (and)))
2960  // (or (or (or (and), (and)), (and)), (and))
2961  if (N0.getOpcode() != ISD::OR)
2962    return SDValue();
2963  SDValue N00 = N0.getOperand(0);
2964  SDValue N01 = N0.getOperand(1);
2965
2966  if (N1.getOpcode() == ISD::OR) {
2967    // (or (or (and), (and)), (or (and), (and)))
2968    SDValue N000 = N00.getOperand(0);
2969    if (!isBSwapHWordElement(N000, Parts))
2970      return SDValue();
2971
2972    SDValue N001 = N00.getOperand(1);
2973    if (!isBSwapHWordElement(N001, Parts))
2974      return SDValue();
2975    SDValue N010 = N01.getOperand(0);
2976    if (!isBSwapHWordElement(N010, Parts))
2977      return SDValue();
2978    SDValue N011 = N01.getOperand(1);
2979    if (!isBSwapHWordElement(N011, Parts))
2980      return SDValue();
2981  } else {
2982    // (or (or (or (and), (and)), (and)), (and))
2983    if (!isBSwapHWordElement(N1, Parts))
2984      return SDValue();
2985    if (!isBSwapHWordElement(N01, Parts))
2986      return SDValue();
2987    if (N00.getOpcode() != ISD::OR)
2988      return SDValue();
2989    SDValue N000 = N00.getOperand(0);
2990    if (!isBSwapHWordElement(N000, Parts))
2991      return SDValue();
2992    SDValue N001 = N00.getOperand(1);
2993    if (!isBSwapHWordElement(N001, Parts))
2994      return SDValue();
2995  }
2996
2997  // Make sure the parts are all coming from the same node.
2998  if (Parts[0] != Parts[1] || Parts[0] != Parts[2] || Parts[0] != Parts[3])
2999    return SDValue();
3000
3001  SDValue BSwap = DAG.getNode(ISD::BSWAP, N->getDebugLoc(), VT,
3002                              SDValue(Parts[0],0));
3003
3004  // Result of the bswap should be rotated by 16. If it's not legal, than
3005  // do  (x << 16) | (x >> 16).
3006  SDValue ShAmt = DAG.getConstant(16, getShiftAmountTy(VT));
3007  if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT))
3008    return DAG.getNode(ISD::ROTL, N->getDebugLoc(), VT, BSwap, ShAmt);
3009  if (TLI.isOperationLegalOrCustom(ISD::ROTR, VT))
3010    return DAG.getNode(ISD::ROTR, N->getDebugLoc(), VT, BSwap, ShAmt);
3011  return DAG.getNode(ISD::OR, N->getDebugLoc(), VT,
3012                     DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, BSwap, ShAmt),
3013                     DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, BSwap, ShAmt));
3014}
3015
3016SDValue DAGCombiner::visitOR(SDNode *N) {
3017  SDValue N0 = N->getOperand(0);
3018  SDValue N1 = N->getOperand(1);
3019  SDValue LL, LR, RL, RR, CC0, CC1;
3020  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3021  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3022  EVT VT = N1.getValueType();
3023
3024  // fold vector ops
3025  if (VT.isVector()) {
3026    SDValue FoldedVOp = SimplifyVBinOp(N);
3027    if (FoldedVOp.getNode()) return FoldedVOp;
3028  }
3029
3030  // fold (or x, undef) -> -1
3031  if (!LegalOperations &&
3032      (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)) {
3033    EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
3034    return DAG.getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
3035  }
3036  // fold (or c1, c2) -> c1|c2
3037  if (N0C && N1C)
3038    return DAG.FoldConstantArithmetic(ISD::OR, VT, N0C, N1C);
3039  // canonicalize constant to RHS
3040  if (N0C && !N1C)
3041    return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, N1, N0);
3042  // fold (or x, 0) -> x
3043  if (N1C && N1C->isNullValue())
3044    return N0;
3045  // fold (or x, -1) -> -1
3046  if (N1C && N1C->isAllOnesValue())
3047    return N1;
3048  // fold (or x, c) -> c iff (x & ~c) == 0
3049  if (N1C && DAG.MaskedValueIsZero(N0, ~N1C->getAPIntValue()))
3050    return N1;
3051
3052  // Recognize halfword bswaps as (bswap + rotl 16) or (bswap + shl 16)
3053  SDValue BSwap = MatchBSwapHWord(N, N0, N1);
3054  if (BSwap.getNode() != 0)
3055    return BSwap;
3056  BSwap = MatchBSwapHWordLow(N, N0, N1);
3057  if (BSwap.getNode() != 0)
3058    return BSwap;
3059
3060  // reassociate or
3061  SDValue ROR = ReassociateOps(ISD::OR, N->getDebugLoc(), N0, N1);
3062  if (ROR.getNode() != 0)
3063    return ROR;
3064  // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2)
3065  // iff (c1 & c2) == 0.
3066  if (N1C && N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() &&
3067             isa<ConstantSDNode>(N0.getOperand(1))) {
3068    ConstantSDNode *C1 = cast<ConstantSDNode>(N0.getOperand(1));
3069    if ((C1->getAPIntValue() & N1C->getAPIntValue()) != 0)
3070      return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
3071                         DAG.getNode(ISD::OR, N0.getDebugLoc(), VT,
3072                                     N0.getOperand(0), N1),
3073                         DAG.FoldConstantArithmetic(ISD::OR, VT, N1C, C1));
3074  }
3075  // fold (or (setcc x), (setcc y)) -> (setcc (or x, y))
3076  if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
3077    ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
3078    ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
3079
3080    if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
3081        LL.getValueType().isInteger()) {
3082      // fold (or (setne X, 0), (setne Y, 0)) -> (setne (or X, Y), 0)
3083      // fold (or (setlt X, 0), (setlt Y, 0)) -> (setne (or X, Y), 0)
3084      if (cast<ConstantSDNode>(LR)->isNullValue() &&
3085          (Op1 == ISD::SETNE || Op1 == ISD::SETLT)) {
3086        SDValue ORNode = DAG.getNode(ISD::OR, LR.getDebugLoc(),
3087                                     LR.getValueType(), LL, RL);
3088        AddToWorkList(ORNode.getNode());
3089        return DAG.getSetCC(N->getDebugLoc(), VT, ORNode, LR, Op1);
3090      }
3091      // fold (or (setne X, -1), (setne Y, -1)) -> (setne (and X, Y), -1)
3092      // fold (or (setgt X, -1), (setgt Y  -1)) -> (setgt (and X, Y), -1)
3093      if (cast<ConstantSDNode>(LR)->isAllOnesValue() &&
3094          (Op1 == ISD::SETNE || Op1 == ISD::SETGT)) {
3095        SDValue ANDNode = DAG.getNode(ISD::AND, LR.getDebugLoc(),
3096                                      LR.getValueType(), LL, RL);
3097        AddToWorkList(ANDNode.getNode());
3098        return DAG.getSetCC(N->getDebugLoc(), VT, ANDNode, LR, Op1);
3099      }
3100    }
3101    // canonicalize equivalent to ll == rl
3102    if (LL == RR && LR == RL) {
3103      Op1 = ISD::getSetCCSwappedOperands(Op1);
3104      std::swap(RL, RR);
3105    }
3106    if (LL == RL && LR == RR) {
3107      bool isInteger = LL.getValueType().isInteger();
3108      ISD::CondCode Result = ISD::getSetCCOrOperation(Op0, Op1, isInteger);
3109      if (Result != ISD::SETCC_INVALID &&
3110          (!LegalOperations || TLI.isCondCodeLegal(Result, LL.getValueType())))
3111        return DAG.getSetCC(N->getDebugLoc(), N0.getValueType(),
3112                            LL, LR, Result);
3113    }
3114  }
3115
3116  // Simplify: (or (op x...), (op y...))  -> (op (or x, y))
3117  if (N0.getOpcode() == N1.getOpcode()) {
3118    SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N);
3119    if (Tmp.getNode()) return Tmp;
3120  }
3121
3122  // (or (and X, C1), (and Y, C2))  -> (and (or X, Y), C3) if possible.
3123  if (N0.getOpcode() == ISD::AND &&
3124      N1.getOpcode() == ISD::AND &&
3125      N0.getOperand(1).getOpcode() == ISD::Constant &&
3126      N1.getOperand(1).getOpcode() == ISD::Constant &&
3127      // Don't increase # computations.
3128      (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) {
3129    // We can only do this xform if we know that bits from X that are set in C2
3130    // but not in C1 are already zero.  Likewise for Y.
3131    const APInt &LHSMask =
3132      cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
3133    const APInt &RHSMask =
3134      cast<ConstantSDNode>(N1.getOperand(1))->getAPIntValue();
3135
3136    if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) &&
3137        DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) {
3138      SDValue X = DAG.getNode(ISD::OR, N0.getDebugLoc(), VT,
3139                              N0.getOperand(0), N1.getOperand(0));
3140      return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, X,
3141                         DAG.getConstant(LHSMask | RHSMask, VT));
3142    }
3143  }
3144
3145  // See if this is some rotate idiom.
3146  if (SDNode *Rot = MatchRotate(N0, N1, N->getDebugLoc()))
3147    return SDValue(Rot, 0);
3148
3149  // Simplify the operands using demanded-bits information.
3150  if (!VT.isVector() &&
3151      SimplifyDemandedBits(SDValue(N, 0)))
3152    return SDValue(N, 0);
3153
3154  return SDValue();
3155}
3156
3157/// MatchRotateHalf - Match "(X shl/srl V1) & V2" where V2 may not be present.
3158static bool MatchRotateHalf(SDValue Op, SDValue &Shift, SDValue &Mask) {
3159  if (Op.getOpcode() == ISD::AND) {
3160    if (isa<ConstantSDNode>(Op.getOperand(1))) {
3161      Mask = Op.getOperand(1);
3162      Op = Op.getOperand(0);
3163    } else {
3164      return false;
3165    }
3166  }
3167
3168  if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) {
3169    Shift = Op;
3170    return true;
3171  }
3172
3173  return false;
3174}
3175
3176// MatchRotate - Handle an 'or' of two operands.  If this is one of the many
3177// idioms for rotate, and if the target supports rotation instructions, generate
3178// a rot[lr].
3179SDNode *DAGCombiner::MatchRotate(SDValue LHS, SDValue RHS, DebugLoc DL) {
3180  // Must be a legal type.  Expanded 'n promoted things won't work with rotates.
3181  EVT VT = LHS.getValueType();
3182  if (!TLI.isTypeLegal(VT)) return 0;
3183
3184  // The target must have at least one rotate flavor.
3185  bool HasROTL = TLI.isOperationLegalOrCustom(ISD::ROTL, VT);
3186  bool HasROTR = TLI.isOperationLegalOrCustom(ISD::ROTR, VT);
3187  if (!HasROTL && !HasROTR) return 0;
3188
3189  // Match "(X shl/srl V1) & V2" where V2 may not be present.
3190  SDValue LHSShift;   // The shift.
3191  SDValue LHSMask;    // AND value if any.
3192  if (!MatchRotateHalf(LHS, LHSShift, LHSMask))
3193    return 0; // Not part of a rotate.
3194
3195  SDValue RHSShift;   // The shift.
3196  SDValue RHSMask;    // AND value if any.
3197  if (!MatchRotateHalf(RHS, RHSShift, RHSMask))
3198    return 0; // Not part of a rotate.
3199
3200  if (LHSShift.getOperand(0) != RHSShift.getOperand(0))
3201    return 0;   // Not shifting the same value.
3202
3203  if (LHSShift.getOpcode() == RHSShift.getOpcode())
3204    return 0;   // Shifts must disagree.
3205
3206  // Canonicalize shl to left side in a shl/srl pair.
3207  if (RHSShift.getOpcode() == ISD::SHL) {
3208    std::swap(LHS, RHS);
3209    std::swap(LHSShift, RHSShift);
3210    std::swap(LHSMask , RHSMask );
3211  }
3212
3213  unsigned OpSizeInBits = VT.getSizeInBits();
3214  SDValue LHSShiftArg = LHSShift.getOperand(0);
3215  SDValue LHSShiftAmt = LHSShift.getOperand(1);
3216  SDValue RHSShiftAmt = RHSShift.getOperand(1);
3217
3218  // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1)
3219  // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2)
3220  if (LHSShiftAmt.getOpcode() == ISD::Constant &&
3221      RHSShiftAmt.getOpcode() == ISD::Constant) {
3222    uint64_t LShVal = cast<ConstantSDNode>(LHSShiftAmt)->getZExtValue();
3223    uint64_t RShVal = cast<ConstantSDNode>(RHSShiftAmt)->getZExtValue();
3224    if ((LShVal + RShVal) != OpSizeInBits)
3225      return 0;
3226
3227    SDValue Rot = DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT,
3228                              LHSShiftArg, HasROTL ? LHSShiftAmt : RHSShiftAmt);
3229
3230    // If there is an AND of either shifted operand, apply it to the result.
3231    if (LHSMask.getNode() || RHSMask.getNode()) {
3232      APInt Mask = APInt::getAllOnesValue(OpSizeInBits);
3233
3234      if (LHSMask.getNode()) {
3235        APInt RHSBits = APInt::getLowBitsSet(OpSizeInBits, LShVal);
3236        Mask &= cast<ConstantSDNode>(LHSMask)->getAPIntValue() | RHSBits;
3237      }
3238      if (RHSMask.getNode()) {
3239        APInt LHSBits = APInt::getHighBitsSet(OpSizeInBits, RShVal);
3240        Mask &= cast<ConstantSDNode>(RHSMask)->getAPIntValue() | LHSBits;
3241      }
3242
3243      Rot = DAG.getNode(ISD::AND, DL, VT, Rot, DAG.getConstant(Mask, VT));
3244    }
3245
3246    return Rot.getNode();
3247  }
3248
3249  // If there is a mask here, and we have a variable shift, we can't be sure
3250  // that we're masking out the right stuff.
3251  if (LHSMask.getNode() || RHSMask.getNode())
3252    return 0;
3253
3254  // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotl x, y)
3255  // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotr x, (sub 32, y))
3256  if (RHSShiftAmt.getOpcode() == ISD::SUB &&
3257      LHSShiftAmt == RHSShiftAmt.getOperand(1)) {
3258    if (ConstantSDNode *SUBC =
3259          dyn_cast<ConstantSDNode>(RHSShiftAmt.getOperand(0))) {
3260      if (SUBC->getAPIntValue() == OpSizeInBits) {
3261        return DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT, LHSShiftArg,
3262                           HasROTL ? LHSShiftAmt : RHSShiftAmt).getNode();
3263      }
3264    }
3265  }
3266
3267  // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotr x, y)
3268  // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotl x, (sub 32, y))
3269  if (LHSShiftAmt.getOpcode() == ISD::SUB &&
3270      RHSShiftAmt == LHSShiftAmt.getOperand(1)) {
3271    if (ConstantSDNode *SUBC =
3272          dyn_cast<ConstantSDNode>(LHSShiftAmt.getOperand(0))) {
3273      if (SUBC->getAPIntValue() == OpSizeInBits) {
3274        return DAG.getNode(HasROTR ? ISD::ROTR : ISD::ROTL, DL, VT, LHSShiftArg,
3275                           HasROTR ? RHSShiftAmt : LHSShiftAmt).getNode();
3276      }
3277    }
3278  }
3279
3280  // Look for sign/zext/any-extended or truncate cases:
3281  if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND ||
3282       LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND ||
3283       LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND ||
3284       LHSShiftAmt.getOpcode() == ISD::TRUNCATE) &&
3285      (RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND ||
3286       RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND ||
3287       RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND ||
3288       RHSShiftAmt.getOpcode() == ISD::TRUNCATE)) {
3289    SDValue LExtOp0 = LHSShiftAmt.getOperand(0);
3290    SDValue RExtOp0 = RHSShiftAmt.getOperand(0);
3291    if (RExtOp0.getOpcode() == ISD::SUB &&
3292        RExtOp0.getOperand(1) == LExtOp0) {
3293      // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
3294      //   (rotl x, y)
3295      // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
3296      //   (rotr x, (sub 32, y))
3297      if (ConstantSDNode *SUBC =
3298            dyn_cast<ConstantSDNode>(RExtOp0.getOperand(0))) {
3299        if (SUBC->getAPIntValue() == OpSizeInBits) {
3300          return DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT,
3301                             LHSShiftArg,
3302                             HasROTL ? LHSShiftAmt : RHSShiftAmt).getNode();
3303        }
3304      }
3305    } else if (LExtOp0.getOpcode() == ISD::SUB &&
3306               RExtOp0 == LExtOp0.getOperand(1)) {
3307      // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext y))) ->
3308      //   (rotr x, y)
3309      // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext y))) ->
3310      //   (rotl x, (sub 32, y))
3311      if (ConstantSDNode *SUBC =
3312            dyn_cast<ConstantSDNode>(LExtOp0.getOperand(0))) {
3313        if (SUBC->getAPIntValue() == OpSizeInBits) {
3314          return DAG.getNode(HasROTR ? ISD::ROTR : ISD::ROTL, DL, VT,
3315                             LHSShiftArg,
3316                             HasROTR ? RHSShiftAmt : LHSShiftAmt).getNode();
3317        }
3318      }
3319    }
3320  }
3321
3322  return 0;
3323}
3324
3325SDValue DAGCombiner::visitXOR(SDNode *N) {
3326  SDValue N0 = N->getOperand(0);
3327  SDValue N1 = N->getOperand(1);
3328  SDValue LHS, RHS, CC;
3329  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3330  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3331  EVT VT = N0.getValueType();
3332
3333  // fold vector ops
3334  if (VT.isVector()) {
3335    SDValue FoldedVOp = SimplifyVBinOp(N);
3336    if (FoldedVOp.getNode()) return FoldedVOp;
3337  }
3338
3339  // fold (xor undef, undef) -> 0. This is a common idiom (misuse).
3340  if (N0.getOpcode() == ISD::UNDEF && N1.getOpcode() == ISD::UNDEF)
3341    return DAG.getConstant(0, VT);
3342  // fold (xor x, undef) -> undef
3343  if (N0.getOpcode() == ISD::UNDEF)
3344    return N0;
3345  if (N1.getOpcode() == ISD::UNDEF)
3346    return N1;
3347  // fold (xor c1, c2) -> c1^c2
3348  if (N0C && N1C)
3349    return DAG.FoldConstantArithmetic(ISD::XOR, VT, N0C, N1C);
3350  // canonicalize constant to RHS
3351  if (N0C && !N1C)
3352    return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT, N1, N0);
3353  // fold (xor x, 0) -> x
3354  if (N1C && N1C->isNullValue())
3355    return N0;
3356  // reassociate xor
3357  SDValue RXOR = ReassociateOps(ISD::XOR, N->getDebugLoc(), N0, N1);
3358  if (RXOR.getNode() != 0)
3359    return RXOR;
3360
3361  // fold !(x cc y) -> (x !cc y)
3362  if (N1C && N1C->getAPIntValue() == 1 && isSetCCEquivalent(N0, LHS, RHS, CC)) {
3363    bool isInt = LHS.getValueType().isInteger();
3364    ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
3365                                               isInt);
3366
3367    if (!LegalOperations || TLI.isCondCodeLegal(NotCC, LHS.getValueType())) {
3368      switch (N0.getOpcode()) {
3369      default:
3370        llvm_unreachable("Unhandled SetCC Equivalent!");
3371      case ISD::SETCC:
3372        return DAG.getSetCC(N->getDebugLoc(), VT, LHS, RHS, NotCC);
3373      case ISD::SELECT_CC:
3374        return DAG.getSelectCC(N->getDebugLoc(), LHS, RHS, N0.getOperand(2),
3375                               N0.getOperand(3), NotCC);
3376      }
3377    }
3378  }
3379
3380  // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y)))
3381  if (N1C && N1C->getAPIntValue() == 1 && N0.getOpcode() == ISD::ZERO_EXTEND &&
3382      N0.getNode()->hasOneUse() &&
3383      isSetCCEquivalent(N0.getOperand(0), LHS, RHS, CC)){
3384    SDValue V = N0.getOperand(0);
3385    V = DAG.getNode(ISD::XOR, N0.getDebugLoc(), V.getValueType(), V,
3386                    DAG.getConstant(1, V.getValueType()));
3387    AddToWorkList(V.getNode());
3388    return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT, V);
3389  }
3390
3391  // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are setcc
3392  if (N1C && N1C->getAPIntValue() == 1 && VT == MVT::i1 &&
3393      (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
3394    SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
3395    if (isOneUseSetCC(RHS) || isOneUseSetCC(LHS)) {
3396      unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
3397      LHS = DAG.getNode(ISD::XOR, LHS.getDebugLoc(), VT, LHS, N1); // LHS = ~LHS
3398      RHS = DAG.getNode(ISD::XOR, RHS.getDebugLoc(), VT, RHS, N1); // RHS = ~RHS
3399      AddToWorkList(LHS.getNode()); AddToWorkList(RHS.getNode());
3400      return DAG.getNode(NewOpcode, N->getDebugLoc(), VT, LHS, RHS);
3401    }
3402  }
3403  // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are constants
3404  if (N1C && N1C->isAllOnesValue() &&
3405      (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
3406    SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
3407    if (isa<ConstantSDNode>(RHS) || isa<ConstantSDNode>(LHS)) {
3408      unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
3409      LHS = DAG.getNode(ISD::XOR, LHS.getDebugLoc(), VT, LHS, N1); // LHS = ~LHS
3410      RHS = DAG.getNode(ISD::XOR, RHS.getDebugLoc(), VT, RHS, N1); // RHS = ~RHS
3411      AddToWorkList(LHS.getNode()); AddToWorkList(RHS.getNode());
3412      return DAG.getNode(NewOpcode, N->getDebugLoc(), VT, LHS, RHS);
3413    }
3414  }
3415  // fold (xor (xor x, c1), c2) -> (xor x, (xor c1, c2))
3416  if (N1C && N0.getOpcode() == ISD::XOR) {
3417    ConstantSDNode *N00C = dyn_cast<ConstantSDNode>(N0.getOperand(0));
3418    ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
3419    if (N00C)
3420      return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT, N0.getOperand(1),
3421                         DAG.getConstant(N1C->getAPIntValue() ^
3422                                         N00C->getAPIntValue(), VT));
3423    if (N01C)
3424      return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT, N0.getOperand(0),
3425                         DAG.getConstant(N1C->getAPIntValue() ^
3426                                         N01C->getAPIntValue(), VT));
3427  }
3428  // fold (xor x, x) -> 0
3429  if (N0 == N1)
3430    return tryFoldToZero(N->getDebugLoc(), TLI, VT, DAG, LegalOperations);
3431
3432  // Simplify: xor (op x...), (op y...)  -> (op (xor x, y))
3433  if (N0.getOpcode() == N1.getOpcode()) {
3434    SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N);
3435    if (Tmp.getNode()) return Tmp;
3436  }
3437
3438  // Simplify the expression using non-local knowledge.
3439  if (!VT.isVector() &&
3440      SimplifyDemandedBits(SDValue(N, 0)))
3441    return SDValue(N, 0);
3442
3443  return SDValue();
3444}
3445
3446/// visitShiftByConstant - Handle transforms common to the three shifts, when
3447/// the shift amount is a constant.
3448SDValue DAGCombiner::visitShiftByConstant(SDNode *N, unsigned Amt) {
3449  SDNode *LHS = N->getOperand(0).getNode();
3450  if (!LHS->hasOneUse()) return SDValue();
3451
3452  // We want to pull some binops through shifts, so that we have (and (shift))
3453  // instead of (shift (and)), likewise for add, or, xor, etc.  This sort of
3454  // thing happens with address calculations, so it's important to canonicalize
3455  // it.
3456  bool HighBitSet = false;  // Can we transform this if the high bit is set?
3457
3458  switch (LHS->getOpcode()) {
3459  default: return SDValue();
3460  case ISD::OR:
3461  case ISD::XOR:
3462    HighBitSet = false; // We can only transform sra if the high bit is clear.
3463    break;
3464  case ISD::AND:
3465    HighBitSet = true;  // We can only transform sra if the high bit is set.
3466    break;
3467  case ISD::ADD:
3468    if (N->getOpcode() != ISD::SHL)
3469      return SDValue(); // only shl(add) not sr[al](add).
3470    HighBitSet = false; // We can only transform sra if the high bit is clear.
3471    break;
3472  }
3473
3474  // We require the RHS of the binop to be a constant as well.
3475  ConstantSDNode *BinOpCst = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
3476  if (!BinOpCst) return SDValue();
3477
3478  // FIXME: disable this unless the input to the binop is a shift by a constant.
3479  // If it is not a shift, it pessimizes some common cases like:
3480  //
3481  //    void foo(int *X, int i) { X[i & 1235] = 1; }
3482  //    int bar(int *X, int i) { return X[i & 255]; }
3483  SDNode *BinOpLHSVal = LHS->getOperand(0).getNode();
3484  if ((BinOpLHSVal->getOpcode() != ISD::SHL &&
3485       BinOpLHSVal->getOpcode() != ISD::SRA &&
3486       BinOpLHSVal->getOpcode() != ISD::SRL) ||
3487      !isa<ConstantSDNode>(BinOpLHSVal->getOperand(1)))
3488    return SDValue();
3489
3490  EVT VT = N->getValueType(0);
3491
3492  // If this is a signed shift right, and the high bit is modified by the
3493  // logical operation, do not perform the transformation. The highBitSet
3494  // boolean indicates the value of the high bit of the constant which would
3495  // cause it to be modified for this operation.
3496  if (N->getOpcode() == ISD::SRA) {
3497    bool BinOpRHSSignSet = BinOpCst->getAPIntValue().isNegative();
3498    if (BinOpRHSSignSet != HighBitSet)
3499      return SDValue();
3500  }
3501
3502  // Fold the constants, shifting the binop RHS by the shift amount.
3503  SDValue NewRHS = DAG.getNode(N->getOpcode(), LHS->getOperand(1).getDebugLoc(),
3504                               N->getValueType(0),
3505                               LHS->getOperand(1), N->getOperand(1));
3506
3507  // Create the new shift.
3508  SDValue NewShift = DAG.getNode(N->getOpcode(),
3509                                 LHS->getOperand(0).getDebugLoc(),
3510                                 VT, LHS->getOperand(0), N->getOperand(1));
3511
3512  // Create the new binop.
3513  return DAG.getNode(LHS->getOpcode(), N->getDebugLoc(), VT, NewShift, NewRHS);
3514}
3515
3516SDValue DAGCombiner::visitSHL(SDNode *N) {
3517  SDValue N0 = N->getOperand(0);
3518  SDValue N1 = N->getOperand(1);
3519  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3520  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3521  EVT VT = N0.getValueType();
3522  unsigned OpSizeInBits = VT.getScalarType().getSizeInBits();
3523
3524  // fold (shl c1, c2) -> c1<<c2
3525  if (N0C && N1C)
3526    return DAG.FoldConstantArithmetic(ISD::SHL, VT, N0C, N1C);
3527  // fold (shl 0, x) -> 0
3528  if (N0C && N0C->isNullValue())
3529    return N0;
3530  // fold (shl x, c >= size(x)) -> undef
3531  if (N1C && N1C->getZExtValue() >= OpSizeInBits)
3532    return DAG.getUNDEF(VT);
3533  // fold (shl x, 0) -> x
3534  if (N1C && N1C->isNullValue())
3535    return N0;
3536  // fold (shl undef, x) -> 0
3537  if (N0.getOpcode() == ISD::UNDEF)
3538    return DAG.getConstant(0, VT);
3539  // if (shl x, c) is known to be zero, return 0
3540  if (DAG.MaskedValueIsZero(SDValue(N, 0),
3541                            APInt::getAllOnesValue(OpSizeInBits)))
3542    return DAG.getConstant(0, VT);
3543  // fold (shl x, (trunc (and y, c))) -> (shl x, (and (trunc y), (trunc c))).
3544  if (N1.getOpcode() == ISD::TRUNCATE &&
3545      N1.getOperand(0).getOpcode() == ISD::AND &&
3546      N1.hasOneUse() && N1.getOperand(0).hasOneUse()) {
3547    SDValue N101 = N1.getOperand(0).getOperand(1);
3548    if (ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N101)) {
3549      EVT TruncVT = N1.getValueType();
3550      SDValue N100 = N1.getOperand(0).getOperand(0);
3551      APInt TruncC = N101C->getAPIntValue();
3552      TruncC = TruncC.trunc(TruncVT.getSizeInBits());
3553      return DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, N0,
3554                         DAG.getNode(ISD::AND, N->getDebugLoc(), TruncVT,
3555                                     DAG.getNode(ISD::TRUNCATE,
3556                                                 N->getDebugLoc(),
3557                                                 TruncVT, N100),
3558                                     DAG.getConstant(TruncC, TruncVT)));
3559    }
3560  }
3561
3562  if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
3563    return SDValue(N, 0);
3564
3565  // fold (shl (shl x, c1), c2) -> 0 or (shl x, (add c1, c2))
3566  if (N1C && N0.getOpcode() == ISD::SHL &&
3567      N0.getOperand(1).getOpcode() == ISD::Constant) {
3568    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
3569    uint64_t c2 = N1C->getZExtValue();
3570    if (c1 + c2 >= OpSizeInBits)
3571      return DAG.getConstant(0, VT);
3572    return DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, N0.getOperand(0),
3573                       DAG.getConstant(c1 + c2, N1.getValueType()));
3574  }
3575
3576  // fold (shl (ext (shl x, c1)), c2) -> (ext (shl x, (add c1, c2)))
3577  // For this to be valid, the second form must not preserve any of the bits
3578  // that are shifted out by the inner shift in the first form.  This means
3579  // the outer shift size must be >= the number of bits added by the ext.
3580  // As a corollary, we don't care what kind of ext it is.
3581  if (N1C && (N0.getOpcode() == ISD::ZERO_EXTEND ||
3582              N0.getOpcode() == ISD::ANY_EXTEND ||
3583              N0.getOpcode() == ISD::SIGN_EXTEND) &&
3584      N0.getOperand(0).getOpcode() == ISD::SHL &&
3585      isa<ConstantSDNode>(N0.getOperand(0)->getOperand(1))) {
3586    uint64_t c1 =
3587      cast<ConstantSDNode>(N0.getOperand(0)->getOperand(1))->getZExtValue();
3588    uint64_t c2 = N1C->getZExtValue();
3589    EVT InnerShiftVT = N0.getOperand(0).getValueType();
3590    uint64_t InnerShiftSize = InnerShiftVT.getScalarType().getSizeInBits();
3591    if (c2 >= OpSizeInBits - InnerShiftSize) {
3592      if (c1 + c2 >= OpSizeInBits)
3593        return DAG.getConstant(0, VT);
3594      return DAG.getNode(ISD::SHL, N0->getDebugLoc(), VT,
3595                         DAG.getNode(N0.getOpcode(), N0->getDebugLoc(), VT,
3596                                     N0.getOperand(0)->getOperand(0)),
3597                         DAG.getConstant(c1 + c2, N1.getValueType()));
3598    }
3599  }
3600
3601  // fold (shl (srl x, c1), c2) -> (and (shl x, (sub c2, c1), MASK) or
3602  //                               (and (srl x, (sub c1, c2), MASK)
3603  // Only fold this if the inner shift has no other uses -- if it does, folding
3604  // this will increase the total number of instructions.
3605  if (N1C && N0.getOpcode() == ISD::SRL && N0.hasOneUse() &&
3606      N0.getOperand(1).getOpcode() == ISD::Constant) {
3607    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
3608    if (c1 < VT.getSizeInBits()) {
3609      uint64_t c2 = N1C->getZExtValue();
3610      APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
3611                                         VT.getSizeInBits() - c1);
3612      SDValue Shift;
3613      if (c2 > c1) {
3614        Mask = Mask.shl(c2-c1);
3615        Shift = DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, N0.getOperand(0),
3616                            DAG.getConstant(c2-c1, N1.getValueType()));
3617      } else {
3618        Mask = Mask.lshr(c1-c2);
3619        Shift = DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0.getOperand(0),
3620                            DAG.getConstant(c1-c2, N1.getValueType()));
3621      }
3622      return DAG.getNode(ISD::AND, N0.getDebugLoc(), VT, Shift,
3623                         DAG.getConstant(Mask, VT));
3624    }
3625  }
3626  // fold (shl (sra x, c1), c1) -> (and x, (shl -1, c1))
3627  if (N1C && N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1)) {
3628    SDValue HiBitsMask =
3629      DAG.getConstant(APInt::getHighBitsSet(VT.getSizeInBits(),
3630                                            VT.getSizeInBits() -
3631                                              N1C->getZExtValue()),
3632                      VT);
3633    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0.getOperand(0),
3634                       HiBitsMask);
3635  }
3636
3637  if (N1C) {
3638    SDValue NewSHL = visitShiftByConstant(N, N1C->getZExtValue());
3639    if (NewSHL.getNode())
3640      return NewSHL;
3641  }
3642
3643  return SDValue();
3644}
3645
3646SDValue DAGCombiner::visitSRA(SDNode *N) {
3647  SDValue N0 = N->getOperand(0);
3648  SDValue N1 = N->getOperand(1);
3649  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3650  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3651  EVT VT = N0.getValueType();
3652  unsigned OpSizeInBits = VT.getScalarType().getSizeInBits();
3653
3654  // fold (sra c1, c2) -> (sra c1, c2)
3655  if (N0C && N1C)
3656    return DAG.FoldConstantArithmetic(ISD::SRA, VT, N0C, N1C);
3657  // fold (sra 0, x) -> 0
3658  if (N0C && N0C->isNullValue())
3659    return N0;
3660  // fold (sra -1, x) -> -1
3661  if (N0C && N0C->isAllOnesValue())
3662    return N0;
3663  // fold (sra x, (setge c, size(x))) -> undef
3664  if (N1C && N1C->getZExtValue() >= OpSizeInBits)
3665    return DAG.getUNDEF(VT);
3666  // fold (sra x, 0) -> x
3667  if (N1C && N1C->isNullValue())
3668    return N0;
3669  // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports
3670  // sext_inreg.
3671  if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) {
3672    unsigned LowBits = OpSizeInBits - (unsigned)N1C->getZExtValue();
3673    EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), LowBits);
3674    if (VT.isVector())
3675      ExtVT = EVT::getVectorVT(*DAG.getContext(),
3676                               ExtVT, VT.getVectorNumElements());
3677    if ((!LegalOperations ||
3678         TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, ExtVT)))
3679      return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(), VT,
3680                         N0.getOperand(0), DAG.getValueType(ExtVT));
3681  }
3682
3683  // fold (sra (sra x, c1), c2) -> (sra x, (add c1, c2))
3684  if (N1C && N0.getOpcode() == ISD::SRA) {
3685    if (ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3686      unsigned Sum = N1C->getZExtValue() + C1->getZExtValue();
3687      if (Sum >= OpSizeInBits) Sum = OpSizeInBits-1;
3688      return DAG.getNode(ISD::SRA, N->getDebugLoc(), VT, N0.getOperand(0),
3689                         DAG.getConstant(Sum, N1C->getValueType(0)));
3690    }
3691  }
3692
3693  // fold (sra (shl X, m), (sub result_size, n))
3694  // -> (sign_extend (trunc (shl X, (sub (sub result_size, n), m)))) for
3695  // result_size - n != m.
3696  // If truncate is free for the target sext(shl) is likely to result in better
3697  // code.
3698  if (N0.getOpcode() == ISD::SHL) {
3699    // Get the two constanst of the shifts, CN0 = m, CN = n.
3700    const ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
3701    if (N01C && N1C) {
3702      // Determine what the truncate's result bitsize and type would be.
3703      EVT TruncVT =
3704        EVT::getIntegerVT(*DAG.getContext(),
3705                          OpSizeInBits - N1C->getZExtValue());
3706      // Determine the residual right-shift amount.
3707      signed ShiftAmt = N1C->getZExtValue() - N01C->getZExtValue();
3708
3709      // If the shift is not a no-op (in which case this should be just a sign
3710      // extend already), the truncated to type is legal, sign_extend is legal
3711      // on that type, and the truncate to that type is both legal and free,
3712      // perform the transform.
3713      if ((ShiftAmt > 0) &&
3714          TLI.isOperationLegalOrCustom(ISD::SIGN_EXTEND, TruncVT) &&
3715          TLI.isOperationLegalOrCustom(ISD::TRUNCATE, VT) &&
3716          TLI.isTruncateFree(VT, TruncVT)) {
3717
3718          SDValue Amt = DAG.getConstant(ShiftAmt,
3719              getShiftAmountTy(N0.getOperand(0).getValueType()));
3720          SDValue Shift = DAG.getNode(ISD::SRL, N0.getDebugLoc(), VT,
3721                                      N0.getOperand(0), Amt);
3722          SDValue Trunc = DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(), TruncVT,
3723                                      Shift);
3724          return DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(),
3725                             N->getValueType(0), Trunc);
3726      }
3727    }
3728  }
3729
3730  // fold (sra x, (trunc (and y, c))) -> (sra x, (and (trunc y), (trunc c))).
3731  if (N1.getOpcode() == ISD::TRUNCATE &&
3732      N1.getOperand(0).getOpcode() == ISD::AND &&
3733      N1.hasOneUse() && N1.getOperand(0).hasOneUse()) {
3734    SDValue N101 = N1.getOperand(0).getOperand(1);
3735    if (ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N101)) {
3736      EVT TruncVT = N1.getValueType();
3737      SDValue N100 = N1.getOperand(0).getOperand(0);
3738      APInt TruncC = N101C->getAPIntValue();
3739      TruncC = TruncC.trunc(TruncVT.getScalarType().getSizeInBits());
3740      return DAG.getNode(ISD::SRA, N->getDebugLoc(), VT, N0,
3741                         DAG.getNode(ISD::AND, N->getDebugLoc(),
3742                                     TruncVT,
3743                                     DAG.getNode(ISD::TRUNCATE,
3744                                                 N->getDebugLoc(),
3745                                                 TruncVT, N100),
3746                                     DAG.getConstant(TruncC, TruncVT)));
3747    }
3748  }
3749
3750  // fold (sra (trunc (sr x, c1)), c2) -> (trunc (sra x, c1+c2))
3751  //      if c1 is equal to the number of bits the trunc removes
3752  if (N0.getOpcode() == ISD::TRUNCATE &&
3753      (N0.getOperand(0).getOpcode() == ISD::SRL ||
3754       N0.getOperand(0).getOpcode() == ISD::SRA) &&
3755      N0.getOperand(0).hasOneUse() &&
3756      N0.getOperand(0).getOperand(1).hasOneUse() &&
3757      N1C && isa<ConstantSDNode>(N0.getOperand(0).getOperand(1))) {
3758    EVT LargeVT = N0.getOperand(0).getValueType();
3759    ConstantSDNode *LargeShiftAmt =
3760      cast<ConstantSDNode>(N0.getOperand(0).getOperand(1));
3761
3762    if (LargeVT.getScalarType().getSizeInBits() - OpSizeInBits ==
3763        LargeShiftAmt->getZExtValue()) {
3764      SDValue Amt =
3765        DAG.getConstant(LargeShiftAmt->getZExtValue() + N1C->getZExtValue(),
3766              getShiftAmountTy(N0.getOperand(0).getOperand(0).getValueType()));
3767      SDValue SRA = DAG.getNode(ISD::SRA, N->getDebugLoc(), LargeVT,
3768                                N0.getOperand(0).getOperand(0), Amt);
3769      return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, SRA);
3770    }
3771  }
3772
3773  // Simplify, based on bits shifted out of the LHS.
3774  if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
3775    return SDValue(N, 0);
3776
3777
3778  // If the sign bit is known to be zero, switch this to a SRL.
3779  if (DAG.SignBitIsZero(N0))
3780    return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0, N1);
3781
3782  if (N1C) {
3783    SDValue NewSRA = visitShiftByConstant(N, N1C->getZExtValue());
3784    if (NewSRA.getNode())
3785      return NewSRA;
3786  }
3787
3788  return SDValue();
3789}
3790
3791SDValue DAGCombiner::visitSRL(SDNode *N) {
3792  SDValue N0 = N->getOperand(0);
3793  SDValue N1 = N->getOperand(1);
3794  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3795  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3796  EVT VT = N0.getValueType();
3797  unsigned OpSizeInBits = VT.getScalarType().getSizeInBits();
3798
3799  // fold (srl c1, c2) -> c1 >>u c2
3800  if (N0C && N1C)
3801    return DAG.FoldConstantArithmetic(ISD::SRL, VT, N0C, N1C);
3802  // fold (srl 0, x) -> 0
3803  if (N0C && N0C->isNullValue())
3804    return N0;
3805  // fold (srl x, c >= size(x)) -> undef
3806  if (N1C && N1C->getZExtValue() >= OpSizeInBits)
3807    return DAG.getUNDEF(VT);
3808  // fold (srl x, 0) -> x
3809  if (N1C && N1C->isNullValue())
3810    return N0;
3811  // if (srl x, c) is known to be zero, return 0
3812  if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0),
3813                                   APInt::getAllOnesValue(OpSizeInBits)))
3814    return DAG.getConstant(0, VT);
3815
3816  // fold (srl (srl x, c1), c2) -> 0 or (srl x, (add c1, c2))
3817  if (N1C && N0.getOpcode() == ISD::SRL &&
3818      N0.getOperand(1).getOpcode() == ISD::Constant) {
3819    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
3820    uint64_t c2 = N1C->getZExtValue();
3821    if (c1 + c2 >= OpSizeInBits)
3822      return DAG.getConstant(0, VT);
3823    return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0.getOperand(0),
3824                       DAG.getConstant(c1 + c2, N1.getValueType()));
3825  }
3826
3827  // fold (srl (trunc (srl x, c1)), c2) -> 0 or (trunc (srl x, (add c1, c2)))
3828  if (N1C && N0.getOpcode() == ISD::TRUNCATE &&
3829      N0.getOperand(0).getOpcode() == ISD::SRL &&
3830      isa<ConstantSDNode>(N0.getOperand(0)->getOperand(1))) {
3831    uint64_t c1 =
3832      cast<ConstantSDNode>(N0.getOperand(0)->getOperand(1))->getZExtValue();
3833    uint64_t c2 = N1C->getZExtValue();
3834    EVT InnerShiftVT = N0.getOperand(0).getValueType();
3835    EVT ShiftCountVT = N0.getOperand(0)->getOperand(1).getValueType();
3836    uint64_t InnerShiftSize = InnerShiftVT.getScalarType().getSizeInBits();
3837    // This is only valid if the OpSizeInBits + c1 = size of inner shift.
3838    if (c1 + OpSizeInBits == InnerShiftSize) {
3839      if (c1 + c2 >= InnerShiftSize)
3840        return DAG.getConstant(0, VT);
3841      return DAG.getNode(ISD::TRUNCATE, N0->getDebugLoc(), VT,
3842                         DAG.getNode(ISD::SRL, N0->getDebugLoc(), InnerShiftVT,
3843                                     N0.getOperand(0)->getOperand(0),
3844                                     DAG.getConstant(c1 + c2, ShiftCountVT)));
3845    }
3846  }
3847
3848  // fold (srl (shl x, c), c) -> (and x, cst2)
3849  if (N1C && N0.getOpcode() == ISD::SHL && N0.getOperand(1) == N1 &&
3850      N0.getValueSizeInBits() <= 64) {
3851    uint64_t ShAmt = N1C->getZExtValue()+64-N0.getValueSizeInBits();
3852    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0.getOperand(0),
3853                       DAG.getConstant(~0ULL >> ShAmt, VT));
3854  }
3855
3856
3857  // fold (srl (anyextend x), c) -> (anyextend (srl x, c))
3858  if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
3859    // Shifting in all undef bits?
3860    EVT SmallVT = N0.getOperand(0).getValueType();
3861    if (N1C->getZExtValue() >= SmallVT.getSizeInBits())
3862      return DAG.getUNDEF(VT);
3863
3864    if (!LegalTypes || TLI.isTypeDesirableForOp(ISD::SRL, SmallVT)) {
3865      uint64_t ShiftAmt = N1C->getZExtValue();
3866      SDValue SmallShift = DAG.getNode(ISD::SRL, N0.getDebugLoc(), SmallVT,
3867                                       N0.getOperand(0),
3868                          DAG.getConstant(ShiftAmt, getShiftAmountTy(SmallVT)));
3869      AddToWorkList(SmallShift.getNode());
3870      return DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, SmallShift);
3871    }
3872  }
3873
3874  // fold (srl (sra X, Y), 31) -> (srl X, 31).  This srl only looks at the sign
3875  // bit, which is unmodified by sra.
3876  if (N1C && N1C->getZExtValue() + 1 == VT.getSizeInBits()) {
3877    if (N0.getOpcode() == ISD::SRA)
3878      return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0.getOperand(0), N1);
3879  }
3880
3881  // fold (srl (ctlz x), "5") -> x  iff x has one bit set (the low bit).
3882  if (N1C && N0.getOpcode() == ISD::CTLZ &&
3883      N1C->getAPIntValue() == Log2_32(VT.getSizeInBits())) {
3884    APInt KnownZero, KnownOne;
3885    DAG.ComputeMaskedBits(N0.getOperand(0), KnownZero, KnownOne);
3886
3887    // If any of the input bits are KnownOne, then the input couldn't be all
3888    // zeros, thus the result of the srl will always be zero.
3889    if (KnownOne.getBoolValue()) return DAG.getConstant(0, VT);
3890
3891    // If all of the bits input the to ctlz node are known to be zero, then
3892    // the result of the ctlz is "32" and the result of the shift is one.
3893    APInt UnknownBits = ~KnownZero;
3894    if (UnknownBits == 0) return DAG.getConstant(1, VT);
3895
3896    // Otherwise, check to see if there is exactly one bit input to the ctlz.
3897    if ((UnknownBits & (UnknownBits - 1)) == 0) {
3898      // Okay, we know that only that the single bit specified by UnknownBits
3899      // could be set on input to the CTLZ node. If this bit is set, the SRL
3900      // will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair
3901      // to an SRL/XOR pair, which is likely to simplify more.
3902      unsigned ShAmt = UnknownBits.countTrailingZeros();
3903      SDValue Op = N0.getOperand(0);
3904
3905      if (ShAmt) {
3906        Op = DAG.getNode(ISD::SRL, N0.getDebugLoc(), VT, Op,
3907                  DAG.getConstant(ShAmt, getShiftAmountTy(Op.getValueType())));
3908        AddToWorkList(Op.getNode());
3909      }
3910
3911      return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT,
3912                         Op, DAG.getConstant(1, VT));
3913    }
3914  }
3915
3916  // fold (srl x, (trunc (and y, c))) -> (srl x, (and (trunc y), (trunc c))).
3917  if (N1.getOpcode() == ISD::TRUNCATE &&
3918      N1.getOperand(0).getOpcode() == ISD::AND &&
3919      N1.hasOneUse() && N1.getOperand(0).hasOneUse()) {
3920    SDValue N101 = N1.getOperand(0).getOperand(1);
3921    if (ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N101)) {
3922      EVT TruncVT = N1.getValueType();
3923      SDValue N100 = N1.getOperand(0).getOperand(0);
3924      APInt TruncC = N101C->getAPIntValue();
3925      TruncC = TruncC.trunc(TruncVT.getSizeInBits());
3926      return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0,
3927                         DAG.getNode(ISD::AND, N->getDebugLoc(),
3928                                     TruncVT,
3929                                     DAG.getNode(ISD::TRUNCATE,
3930                                                 N->getDebugLoc(),
3931                                                 TruncVT, N100),
3932                                     DAG.getConstant(TruncC, TruncVT)));
3933    }
3934  }
3935
3936  // fold operands of srl based on knowledge that the low bits are not
3937  // demanded.
3938  if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
3939    return SDValue(N, 0);
3940
3941  if (N1C) {
3942    SDValue NewSRL = visitShiftByConstant(N, N1C->getZExtValue());
3943    if (NewSRL.getNode())
3944      return NewSRL;
3945  }
3946
3947  // Attempt to convert a srl of a load into a narrower zero-extending load.
3948  SDValue NarrowLoad = ReduceLoadWidth(N);
3949  if (NarrowLoad.getNode())
3950    return NarrowLoad;
3951
3952  // Here is a common situation. We want to optimize:
3953  //
3954  //   %a = ...
3955  //   %b = and i32 %a, 2
3956  //   %c = srl i32 %b, 1
3957  //   brcond i32 %c ...
3958  //
3959  // into
3960  //
3961  //   %a = ...
3962  //   %b = and %a, 2
3963  //   %c = setcc eq %b, 0
3964  //   brcond %c ...
3965  //
3966  // However when after the source operand of SRL is optimized into AND, the SRL
3967  // itself may not be optimized further. Look for it and add the BRCOND into
3968  // the worklist.
3969  if (N->hasOneUse()) {
3970    SDNode *Use = *N->use_begin();
3971    if (Use->getOpcode() == ISD::BRCOND)
3972      AddToWorkList(Use);
3973    else if (Use->getOpcode() == ISD::TRUNCATE && Use->hasOneUse()) {
3974      // Also look pass the truncate.
3975      Use = *Use->use_begin();
3976      if (Use->getOpcode() == ISD::BRCOND)
3977        AddToWorkList(Use);
3978    }
3979  }
3980
3981  return SDValue();
3982}
3983
3984SDValue DAGCombiner::visitCTLZ(SDNode *N) {
3985  SDValue N0 = N->getOperand(0);
3986  EVT VT = N->getValueType(0);
3987
3988  // fold (ctlz c1) -> c2
3989  if (isa<ConstantSDNode>(N0))
3990    return DAG.getNode(ISD::CTLZ, N->getDebugLoc(), VT, N0);
3991  return SDValue();
3992}
3993
3994SDValue DAGCombiner::visitCTLZ_ZERO_UNDEF(SDNode *N) {
3995  SDValue N0 = N->getOperand(0);
3996  EVT VT = N->getValueType(0);
3997
3998  // fold (ctlz_zero_undef c1) -> c2
3999  if (isa<ConstantSDNode>(N0))
4000    return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, N->getDebugLoc(), VT, N0);
4001  return SDValue();
4002}
4003
4004SDValue DAGCombiner::visitCTTZ(SDNode *N) {
4005  SDValue N0 = N->getOperand(0);
4006  EVT VT = N->getValueType(0);
4007
4008  // fold (cttz c1) -> c2
4009  if (isa<ConstantSDNode>(N0))
4010    return DAG.getNode(ISD::CTTZ, N->getDebugLoc(), VT, N0);
4011  return SDValue();
4012}
4013
4014SDValue DAGCombiner::visitCTTZ_ZERO_UNDEF(SDNode *N) {
4015  SDValue N0 = N->getOperand(0);
4016  EVT VT = N->getValueType(0);
4017
4018  // fold (cttz_zero_undef c1) -> c2
4019  if (isa<ConstantSDNode>(N0))
4020    return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, N->getDebugLoc(), VT, N0);
4021  return SDValue();
4022}
4023
4024SDValue DAGCombiner::visitCTPOP(SDNode *N) {
4025  SDValue N0 = N->getOperand(0);
4026  EVT VT = N->getValueType(0);
4027
4028  // fold (ctpop c1) -> c2
4029  if (isa<ConstantSDNode>(N0))
4030    return DAG.getNode(ISD::CTPOP, N->getDebugLoc(), VT, N0);
4031  return SDValue();
4032}
4033
4034SDValue DAGCombiner::visitSELECT(SDNode *N) {
4035  SDValue N0 = N->getOperand(0);
4036  SDValue N1 = N->getOperand(1);
4037  SDValue N2 = N->getOperand(2);
4038  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
4039  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
4040  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
4041  EVT VT = N->getValueType(0);
4042  EVT VT0 = N0.getValueType();
4043
4044  // fold (select C, X, X) -> X
4045  if (N1 == N2)
4046    return N1;
4047  // fold (select true, X, Y) -> X
4048  if (N0C && !N0C->isNullValue())
4049    return N1;
4050  // fold (select false, X, Y) -> Y
4051  if (N0C && N0C->isNullValue())
4052    return N2;
4053  // fold (select C, 1, X) -> (or C, X)
4054  if (VT == MVT::i1 && N1C && N1C->getAPIntValue() == 1)
4055    return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, N0, N2);
4056  // fold (select C, 0, 1) -> (xor C, 1)
4057  if (VT.isInteger() &&
4058      (VT0 == MVT::i1 ||
4059       (VT0.isInteger() &&
4060        TLI.getBooleanContents(false) ==
4061        TargetLowering::ZeroOrOneBooleanContent)) &&
4062      N1C && N2C && N1C->isNullValue() && N2C->getAPIntValue() == 1) {
4063    SDValue XORNode;
4064    if (VT == VT0)
4065      return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT0,
4066                         N0, DAG.getConstant(1, VT0));
4067    XORNode = DAG.getNode(ISD::XOR, N0.getDebugLoc(), VT0,
4068                          N0, DAG.getConstant(1, VT0));
4069    AddToWorkList(XORNode.getNode());
4070    if (VT.bitsGT(VT0))
4071      return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT, XORNode);
4072    return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, XORNode);
4073  }
4074  // fold (select C, 0, X) -> (and (not C), X)
4075  if (VT == VT0 && VT == MVT::i1 && N1C && N1C->isNullValue()) {
4076    SDValue NOTNode = DAG.getNOT(N0.getDebugLoc(), N0, VT);
4077    AddToWorkList(NOTNode.getNode());
4078    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, NOTNode, N2);
4079  }
4080  // fold (select C, X, 1) -> (or (not C), X)
4081  if (VT == VT0 && VT == MVT::i1 && N2C && N2C->getAPIntValue() == 1) {
4082    SDValue NOTNode = DAG.getNOT(N0.getDebugLoc(), N0, VT);
4083    AddToWorkList(NOTNode.getNode());
4084    return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, NOTNode, N1);
4085  }
4086  // fold (select C, X, 0) -> (and C, X)
4087  if (VT == MVT::i1 && N2C && N2C->isNullValue())
4088    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0, N1);
4089  // fold (select X, X, Y) -> (or X, Y)
4090  // fold (select X, 1, Y) -> (or X, Y)
4091  if (VT == MVT::i1 && (N0 == N1 || (N1C && N1C->getAPIntValue() == 1)))
4092    return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, N0, N2);
4093  // fold (select X, Y, X) -> (and X, Y)
4094  // fold (select X, Y, 0) -> (and X, Y)
4095  if (VT == MVT::i1 && (N0 == N2 || (N2C && N2C->getAPIntValue() == 0)))
4096    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0, N1);
4097
4098  // If we can fold this based on the true/false value, do so.
4099  if (SimplifySelectOps(N, N1, N2))
4100    return SDValue(N, 0);  // Don't revisit N.
4101
4102  // fold selects based on a setcc into other things, such as min/max/abs
4103  if (N0.getOpcode() == ISD::SETCC) {
4104    // FIXME:
4105    // Check against MVT::Other for SELECT_CC, which is a workaround for targets
4106    // having to say they don't support SELECT_CC on every type the DAG knows
4107    // about, since there is no way to mark an opcode illegal at all value types
4108    if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, MVT::Other) &&
4109        TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT))
4110      return DAG.getNode(ISD::SELECT_CC, N->getDebugLoc(), VT,
4111                         N0.getOperand(0), N0.getOperand(1),
4112                         N1, N2, N0.getOperand(2));
4113    return SimplifySelect(N->getDebugLoc(), N0, N1, N2);
4114  }
4115
4116  return SDValue();
4117}
4118
4119SDValue DAGCombiner::visitSELECT_CC(SDNode *N) {
4120  SDValue N0 = N->getOperand(0);
4121  SDValue N1 = N->getOperand(1);
4122  SDValue N2 = N->getOperand(2);
4123  SDValue N3 = N->getOperand(3);
4124  SDValue N4 = N->getOperand(4);
4125  ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get();
4126
4127  // fold select_cc lhs, rhs, x, x, cc -> x
4128  if (N2 == N3)
4129    return N2;
4130
4131  // Determine if the condition we're dealing with is constant
4132  SDValue SCC = SimplifySetCC(TLI.getSetCCResultType(N0.getValueType()),
4133                              N0, N1, CC, N->getDebugLoc(), false);
4134  if (SCC.getNode()) AddToWorkList(SCC.getNode());
4135
4136  if (ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.getNode())) {
4137    if (!SCCC->isNullValue())
4138      return N2;    // cond always true -> true val
4139    else
4140      return N3;    // cond always false -> false val
4141  }
4142
4143  // Fold to a simpler select_cc
4144  if (SCC.getNode() && SCC.getOpcode() == ISD::SETCC)
4145    return DAG.getNode(ISD::SELECT_CC, N->getDebugLoc(), N2.getValueType(),
4146                       SCC.getOperand(0), SCC.getOperand(1), N2, N3,
4147                       SCC.getOperand(2));
4148
4149  // If we can fold this based on the true/false value, do so.
4150  if (SimplifySelectOps(N, N2, N3))
4151    return SDValue(N, 0);  // Don't revisit N.
4152
4153  // fold select_cc into other things, such as min/max/abs
4154  return SimplifySelectCC(N->getDebugLoc(), N0, N1, N2, N3, CC);
4155}
4156
4157SDValue DAGCombiner::visitSETCC(SDNode *N) {
4158  return SimplifySetCC(N->getValueType(0), N->getOperand(0), N->getOperand(1),
4159                       cast<CondCodeSDNode>(N->getOperand(2))->get(),
4160                       N->getDebugLoc());
4161}
4162
4163// ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this:
4164// "fold ({s|z|a}ext (load x)) -> ({s|z|a}ext (truncate ({s|z|a}extload x)))"
4165// transformation. Returns true if extension are possible and the above
4166// mentioned transformation is profitable.
4167static bool ExtendUsesToFormExtLoad(SDNode *N, SDValue N0,
4168                                    unsigned ExtOpc,
4169                                    SmallVector<SDNode*, 4> &ExtendNodes,
4170                                    const TargetLowering &TLI) {
4171  bool HasCopyToRegUses = false;
4172  bool isTruncFree = TLI.isTruncateFree(N->getValueType(0), N0.getValueType());
4173  for (SDNode::use_iterator UI = N0.getNode()->use_begin(),
4174                            UE = N0.getNode()->use_end();
4175       UI != UE; ++UI) {
4176    SDNode *User = *UI;
4177    if (User == N)
4178      continue;
4179    if (UI.getUse().getResNo() != N0.getResNo())
4180      continue;
4181    // FIXME: Only extend SETCC N, N and SETCC N, c for now.
4182    if (ExtOpc != ISD::ANY_EXTEND && User->getOpcode() == ISD::SETCC) {
4183      ISD::CondCode CC = cast<CondCodeSDNode>(User->getOperand(2))->get();
4184      if (ExtOpc == ISD::ZERO_EXTEND && ISD::isSignedIntSetCC(CC))
4185        // Sign bits will be lost after a zext.
4186        return false;
4187      bool Add = false;
4188      for (unsigned i = 0; i != 2; ++i) {
4189        SDValue UseOp = User->getOperand(i);
4190        if (UseOp == N0)
4191          continue;
4192        if (!isa<ConstantSDNode>(UseOp))
4193          return false;
4194        Add = true;
4195      }
4196      if (Add)
4197        ExtendNodes.push_back(User);
4198      continue;
4199    }
4200    // If truncates aren't free and there are users we can't
4201    // extend, it isn't worthwhile.
4202    if (!isTruncFree)
4203      return false;
4204    // Remember if this value is live-out.
4205    if (User->getOpcode() == ISD::CopyToReg)
4206      HasCopyToRegUses = true;
4207  }
4208
4209  if (HasCopyToRegUses) {
4210    bool BothLiveOut = false;
4211    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
4212         UI != UE; ++UI) {
4213      SDUse &Use = UI.getUse();
4214      if (Use.getResNo() == 0 && Use.getUser()->getOpcode() == ISD::CopyToReg) {
4215        BothLiveOut = true;
4216        break;
4217      }
4218    }
4219    if (BothLiveOut)
4220      // Both unextended and extended values are live out. There had better be
4221      // a good reason for the transformation.
4222      return ExtendNodes.size();
4223  }
4224  return true;
4225}
4226
4227void DAGCombiner::ExtendSetCCUses(SmallVector<SDNode*, 4> SetCCs,
4228                                  SDValue Trunc, SDValue ExtLoad, DebugLoc DL,
4229                                  ISD::NodeType ExtType) {
4230  // Extend SetCC uses if necessary.
4231  for (unsigned i = 0, e = SetCCs.size(); i != e; ++i) {
4232    SDNode *SetCC = SetCCs[i];
4233    SmallVector<SDValue, 4> Ops;
4234
4235    for (unsigned j = 0; j != 2; ++j) {
4236      SDValue SOp = SetCC->getOperand(j);
4237      if (SOp == Trunc)
4238        Ops.push_back(ExtLoad);
4239      else
4240        Ops.push_back(DAG.getNode(ExtType, DL, ExtLoad->getValueType(0), SOp));
4241    }
4242
4243    Ops.push_back(SetCC->getOperand(2));
4244    CombineTo(SetCC, DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0),
4245                                 &Ops[0], Ops.size()));
4246  }
4247}
4248
4249SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) {
4250  SDValue N0 = N->getOperand(0);
4251  EVT VT = N->getValueType(0);
4252
4253  // fold (sext c1) -> c1
4254  if (isa<ConstantSDNode>(N0))
4255    return DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), VT, N0);
4256
4257  // fold (sext (sext x)) -> (sext x)
4258  // fold (sext (aext x)) -> (sext x)
4259  if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
4260    return DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), VT,
4261                       N0.getOperand(0));
4262
4263  if (N0.getOpcode() == ISD::TRUNCATE) {
4264    // fold (sext (truncate (load x))) -> (sext (smaller load x))
4265    // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n)))
4266    SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
4267    if (NarrowLoad.getNode()) {
4268      SDNode* oye = N0.getNode()->getOperand(0).getNode();
4269      if (NarrowLoad.getNode() != N0.getNode()) {
4270        CombineTo(N0.getNode(), NarrowLoad);
4271        // CombineTo deleted the truncate, if needed, but not what's under it.
4272        AddToWorkList(oye);
4273      }
4274      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4275    }
4276
4277    // See if the value being truncated is already sign extended.  If so, just
4278    // eliminate the trunc/sext pair.
4279    SDValue Op = N0.getOperand(0);
4280    unsigned OpBits   = Op.getValueType().getScalarType().getSizeInBits();
4281    unsigned MidBits  = N0.getValueType().getScalarType().getSizeInBits();
4282    unsigned DestBits = VT.getScalarType().getSizeInBits();
4283    unsigned NumSignBits = DAG.ComputeNumSignBits(Op);
4284
4285    if (OpBits == DestBits) {
4286      // Op is i32, Mid is i8, and Dest is i32.  If Op has more than 24 sign
4287      // bits, it is already ready.
4288      if (NumSignBits > DestBits-MidBits)
4289        return Op;
4290    } else if (OpBits < DestBits) {
4291      // Op is i32, Mid is i8, and Dest is i64.  If Op has more than 24 sign
4292      // bits, just sext from i32.
4293      if (NumSignBits > OpBits-MidBits)
4294        return DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), VT, Op);
4295    } else {
4296      // Op is i64, Mid is i8, and Dest is i32.  If Op has more than 56 sign
4297      // bits, just truncate to i32.
4298      if (NumSignBits > OpBits-MidBits)
4299        return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, Op);
4300    }
4301
4302    // fold (sext (truncate x)) -> (sextinreg x).
4303    if (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG,
4304                                                 N0.getValueType())) {
4305      if (OpBits < DestBits)
4306        Op = DAG.getNode(ISD::ANY_EXTEND, N0.getDebugLoc(), VT, Op);
4307      else if (OpBits > DestBits)
4308        Op = DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(), VT, Op);
4309      return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(), VT, Op,
4310                         DAG.getValueType(N0.getValueType()));
4311    }
4312  }
4313
4314  // fold (sext (load x)) -> (sext (truncate (sextload x)))
4315  // None of the supported targets knows how to perform load and sign extend
4316  // on vectors in one instruction.  We only perform this transformation on
4317  // scalars.
4318  if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() &&
4319      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
4320       TLI.isLoadExtLegal(ISD::SEXTLOAD, N0.getValueType()))) {
4321    bool DoXform = true;
4322    SmallVector<SDNode*, 4> SetCCs;
4323    if (!N0.hasOneUse())
4324      DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::SIGN_EXTEND, SetCCs, TLI);
4325    if (DoXform) {
4326      LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4327      SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, N->getDebugLoc(), VT,
4328                                       LN0->getChain(),
4329                                       LN0->getBasePtr(), LN0->getPointerInfo(),
4330                                       N0.getValueType(),
4331                                       LN0->isVolatile(), LN0->isNonTemporal(),
4332                                       LN0->getAlignment());
4333      CombineTo(N, ExtLoad);
4334      SDValue Trunc = DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(),
4335                                  N0.getValueType(), ExtLoad);
4336      CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1));
4337      ExtendSetCCUses(SetCCs, Trunc, ExtLoad, N->getDebugLoc(),
4338                      ISD::SIGN_EXTEND);
4339      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4340    }
4341  }
4342
4343  // fold (sext (sextload x)) -> (sext (truncate (sextload x)))
4344  // fold (sext ( extload x)) -> (sext (truncate (sextload x)))
4345  if ((ISD::isSEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) &&
4346      ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) {
4347    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4348    EVT MemVT = LN0->getMemoryVT();
4349    if ((!LegalOperations && !LN0->isVolatile()) ||
4350        TLI.isLoadExtLegal(ISD::SEXTLOAD, MemVT)) {
4351      SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, N->getDebugLoc(), VT,
4352                                       LN0->getChain(),
4353                                       LN0->getBasePtr(), LN0->getPointerInfo(),
4354                                       MemVT,
4355                                       LN0->isVolatile(), LN0->isNonTemporal(),
4356                                       LN0->getAlignment());
4357      CombineTo(N, ExtLoad);
4358      CombineTo(N0.getNode(),
4359                DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(),
4360                            N0.getValueType(), ExtLoad),
4361                ExtLoad.getValue(1));
4362      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4363    }
4364  }
4365
4366  // fold (sext (and/or/xor (load x), cst)) ->
4367  //      (and/or/xor (sextload x), (sext cst))
4368  if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR ||
4369       N0.getOpcode() == ISD::XOR) &&
4370      isa<LoadSDNode>(N0.getOperand(0)) &&
4371      N0.getOperand(1).getOpcode() == ISD::Constant &&
4372      TLI.isLoadExtLegal(ISD::SEXTLOAD, N0.getValueType()) &&
4373      (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) {
4374    LoadSDNode *LN0 = cast<LoadSDNode>(N0.getOperand(0));
4375    if (LN0->getExtensionType() != ISD::ZEXTLOAD) {
4376      bool DoXform = true;
4377      SmallVector<SDNode*, 4> SetCCs;
4378      if (!N0.hasOneUse())
4379        DoXform = ExtendUsesToFormExtLoad(N, N0.getOperand(0), ISD::SIGN_EXTEND,
4380                                          SetCCs, TLI);
4381      if (DoXform) {
4382        SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, LN0->getDebugLoc(), VT,
4383                                         LN0->getChain(), LN0->getBasePtr(),
4384                                         LN0->getPointerInfo(),
4385                                         LN0->getMemoryVT(),
4386                                         LN0->isVolatile(),
4387                                         LN0->isNonTemporal(),
4388                                         LN0->getAlignment());
4389        APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
4390        Mask = Mask.sext(VT.getSizeInBits());
4391        SDValue And = DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT,
4392                                  ExtLoad, DAG.getConstant(Mask, VT));
4393        SDValue Trunc = DAG.getNode(ISD::TRUNCATE,
4394                                    N0.getOperand(0).getDebugLoc(),
4395                                    N0.getOperand(0).getValueType(), ExtLoad);
4396        CombineTo(N, And);
4397        CombineTo(N0.getOperand(0).getNode(), Trunc, ExtLoad.getValue(1));
4398        ExtendSetCCUses(SetCCs, Trunc, ExtLoad, N->getDebugLoc(),
4399                        ISD::SIGN_EXTEND);
4400        return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4401      }
4402    }
4403  }
4404
4405  if (N0.getOpcode() == ISD::SETCC) {
4406    // sext(setcc) -> sext_in_reg(vsetcc) for vectors.
4407    // Only do this before legalize for now.
4408    if (VT.isVector() && !LegalOperations) {
4409      EVT N0VT = N0.getOperand(0).getValueType();
4410      // On some architectures (such as SSE/NEON/etc) the SETCC result type is
4411      // of the same size as the compared operands. Only optimize sext(setcc())
4412      // if this is the case.
4413      EVT SVT = TLI.getSetCCResultType(N0VT);
4414
4415      // We know that the # elements of the results is the same as the
4416      // # elements of the compare (and the # elements of the compare result
4417      // for that matter).  Check to see that they are the same size.  If so,
4418      // we know that the element size of the sext'd result matches the
4419      // element size of the compare operands.
4420      if (VT.getSizeInBits() == SVT.getSizeInBits())
4421        return DAG.getSetCC(N->getDebugLoc(), VT, N0.getOperand(0),
4422                             N0.getOperand(1),
4423                             cast<CondCodeSDNode>(N0.getOperand(2))->get());
4424      // If the desired elements are smaller or larger than the source
4425      // elements we can use a matching integer vector type and then
4426      // truncate/sign extend
4427      EVT MatchingElementType =
4428        EVT::getIntegerVT(*DAG.getContext(),
4429                          N0VT.getScalarType().getSizeInBits());
4430      EVT MatchingVectorType =
4431        EVT::getVectorVT(*DAG.getContext(), MatchingElementType,
4432                         N0VT.getVectorNumElements());
4433
4434      if (SVT == MatchingVectorType) {
4435        SDValue VsetCC = DAG.getSetCC(N->getDebugLoc(), MatchingVectorType,
4436                               N0.getOperand(0), N0.getOperand(1),
4437                               cast<CondCodeSDNode>(N0.getOperand(2))->get());
4438        return DAG.getSExtOrTrunc(VsetCC, N->getDebugLoc(), VT);
4439      }
4440    }
4441
4442    // sext(setcc x, y, cc) -> (select_cc x, y, -1, 0, cc)
4443    unsigned ElementWidth = VT.getScalarType().getSizeInBits();
4444    SDValue NegOne =
4445      DAG.getConstant(APInt::getAllOnesValue(ElementWidth), VT);
4446    SDValue SCC =
4447      SimplifySelectCC(N->getDebugLoc(), N0.getOperand(0), N0.getOperand(1),
4448                       NegOne, DAG.getConstant(0, VT),
4449                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
4450    if (SCC.getNode()) return SCC;
4451    if (!LegalOperations ||
4452        TLI.isOperationLegal(ISD::SETCC, TLI.getSetCCResultType(VT)))
4453      return DAG.getNode(ISD::SELECT, N->getDebugLoc(), VT,
4454                         DAG.getSetCC(N->getDebugLoc(),
4455                                      TLI.getSetCCResultType(VT),
4456                                      N0.getOperand(0), N0.getOperand(1),
4457                                 cast<CondCodeSDNode>(N0.getOperand(2))->get()),
4458                         NegOne, DAG.getConstant(0, VT));
4459  }
4460
4461  // fold (sext x) -> (zext x) if the sign bit is known zero.
4462  if ((!LegalOperations || TLI.isOperationLegal(ISD::ZERO_EXTEND, VT)) &&
4463      DAG.SignBitIsZero(N0))
4464    return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT, N0);
4465
4466  return SDValue();
4467}
4468
4469// isTruncateOf - If N is a truncate of some other value, return true, record
4470// the value being truncated in Op and which of Op's bits are zero in KnownZero.
4471// This function computes KnownZero to avoid a duplicated call to
4472// ComputeMaskedBits in the caller.
4473static bool isTruncateOf(SelectionDAG &DAG, SDValue N, SDValue &Op,
4474                         APInt &KnownZero) {
4475  APInt KnownOne;
4476  if (N->getOpcode() == ISD::TRUNCATE) {
4477    Op = N->getOperand(0);
4478    DAG.ComputeMaskedBits(Op, KnownZero, KnownOne);
4479    return true;
4480  }
4481
4482  if (N->getOpcode() != ISD::SETCC || N->getValueType(0) != MVT::i1 ||
4483      cast<CondCodeSDNode>(N->getOperand(2))->get() != ISD::SETNE)
4484    return false;
4485
4486  SDValue Op0 = N->getOperand(0);
4487  SDValue Op1 = N->getOperand(1);
4488  assert(Op0.getValueType() == Op1.getValueType());
4489
4490  ConstantSDNode *COp0 = dyn_cast<ConstantSDNode>(Op0);
4491  ConstantSDNode *COp1 = dyn_cast<ConstantSDNode>(Op1);
4492  if (COp0 && COp0->isNullValue())
4493    Op = Op1;
4494  else if (COp1 && COp1->isNullValue())
4495    Op = Op0;
4496  else
4497    return false;
4498
4499  DAG.ComputeMaskedBits(Op, KnownZero, KnownOne);
4500
4501  if (!(KnownZero | APInt(Op.getValueSizeInBits(), 1)).isAllOnesValue())
4502    return false;
4503
4504  return true;
4505}
4506
4507SDValue DAGCombiner::visitZERO_EXTEND(SDNode *N) {
4508  SDValue N0 = N->getOperand(0);
4509  EVT VT = N->getValueType(0);
4510
4511  // fold (zext c1) -> c1
4512  if (isa<ConstantSDNode>(N0))
4513    return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT, N0);
4514  // fold (zext (zext x)) -> (zext x)
4515  // fold (zext (aext x)) -> (zext x)
4516  if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
4517    return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT,
4518                       N0.getOperand(0));
4519
4520  // fold (zext (truncate x)) -> (zext x) or
4521  //      (zext (truncate x)) -> (truncate x)
4522  // This is valid when the truncated bits of x are already zero.
4523  // FIXME: We should extend this to work for vectors too.
4524  SDValue Op;
4525  APInt KnownZero;
4526  if (!VT.isVector() && isTruncateOf(DAG, N0, Op, KnownZero)) {
4527    APInt TruncatedBits =
4528      (Op.getValueSizeInBits() == N0.getValueSizeInBits()) ?
4529      APInt(Op.getValueSizeInBits(), 0) :
4530      APInt::getBitsSet(Op.getValueSizeInBits(),
4531                        N0.getValueSizeInBits(),
4532                        std::min(Op.getValueSizeInBits(),
4533                                 VT.getSizeInBits()));
4534    if (TruncatedBits == (KnownZero & TruncatedBits)) {
4535      if (VT.bitsGT(Op.getValueType()))
4536        return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT, Op);
4537      if (VT.bitsLT(Op.getValueType()))
4538        return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, Op);
4539
4540      return Op;
4541    }
4542  }
4543
4544  // fold (zext (truncate (load x))) -> (zext (smaller load x))
4545  // fold (zext (truncate (srl (load x), c))) -> (zext (small load (x+c/n)))
4546  if (N0.getOpcode() == ISD::TRUNCATE) {
4547    SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
4548    if (NarrowLoad.getNode()) {
4549      SDNode* oye = N0.getNode()->getOperand(0).getNode();
4550      if (NarrowLoad.getNode() != N0.getNode()) {
4551        CombineTo(N0.getNode(), NarrowLoad);
4552        // CombineTo deleted the truncate, if needed, but not what's under it.
4553        AddToWorkList(oye);
4554      }
4555      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4556    }
4557  }
4558
4559  // fold (zext (truncate x)) -> (and x, mask)
4560  if (N0.getOpcode() == ISD::TRUNCATE &&
4561      (!LegalOperations || TLI.isOperationLegal(ISD::AND, VT))) {
4562
4563    // fold (zext (truncate (load x))) -> (zext (smaller load x))
4564    // fold (zext (truncate (srl (load x), c))) -> (zext (smaller load (x+c/n)))
4565    SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
4566    if (NarrowLoad.getNode()) {
4567      SDNode* oye = N0.getNode()->getOperand(0).getNode();
4568      if (NarrowLoad.getNode() != N0.getNode()) {
4569        CombineTo(N0.getNode(), NarrowLoad);
4570        // CombineTo deleted the truncate, if needed, but not what's under it.
4571        AddToWorkList(oye);
4572      }
4573      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4574    }
4575
4576    SDValue Op = N0.getOperand(0);
4577    if (Op.getValueType().bitsLT(VT)) {
4578      Op = DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, Op);
4579      AddToWorkList(Op.getNode());
4580    } else if (Op.getValueType().bitsGT(VT)) {
4581      Op = DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, Op);
4582      AddToWorkList(Op.getNode());
4583    }
4584    return DAG.getZeroExtendInReg(Op, N->getDebugLoc(),
4585                                  N0.getValueType().getScalarType());
4586  }
4587
4588  // Fold (zext (and (trunc x), cst)) -> (and x, cst),
4589  // if either of the casts is not free.
4590  if (N0.getOpcode() == ISD::AND &&
4591      N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
4592      N0.getOperand(1).getOpcode() == ISD::Constant &&
4593      (!TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(),
4594                           N0.getValueType()) ||
4595       !TLI.isZExtFree(N0.getValueType(), VT))) {
4596    SDValue X = N0.getOperand(0).getOperand(0);
4597    if (X.getValueType().bitsLT(VT)) {
4598      X = DAG.getNode(ISD::ANY_EXTEND, X.getDebugLoc(), VT, X);
4599    } else if (X.getValueType().bitsGT(VT)) {
4600      X = DAG.getNode(ISD::TRUNCATE, X.getDebugLoc(), VT, X);
4601    }
4602    APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
4603    Mask = Mask.zext(VT.getSizeInBits());
4604    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
4605                       X, DAG.getConstant(Mask, VT));
4606  }
4607
4608  // fold (zext (load x)) -> (zext (truncate (zextload x)))
4609  // None of the supported targets knows how to perform load and vector_zext
4610  // on vectors in one instruction.  We only perform this transformation on
4611  // scalars.
4612  if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() &&
4613      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
4614       TLI.isLoadExtLegal(ISD::ZEXTLOAD, N0.getValueType()))) {
4615    bool DoXform = true;
4616    SmallVector<SDNode*, 4> SetCCs;
4617    if (!N0.hasOneUse())
4618      DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ZERO_EXTEND, SetCCs, TLI);
4619    if (DoXform) {
4620      LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4621      SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, N->getDebugLoc(), VT,
4622                                       LN0->getChain(),
4623                                       LN0->getBasePtr(), LN0->getPointerInfo(),
4624                                       N0.getValueType(),
4625                                       LN0->isVolatile(), LN0->isNonTemporal(),
4626                                       LN0->getAlignment());
4627      CombineTo(N, ExtLoad);
4628      SDValue Trunc = DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(),
4629                                  N0.getValueType(), ExtLoad);
4630      CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1));
4631
4632      ExtendSetCCUses(SetCCs, Trunc, ExtLoad, N->getDebugLoc(),
4633                      ISD::ZERO_EXTEND);
4634      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4635    }
4636  }
4637
4638  // fold (zext (and/or/xor (load x), cst)) ->
4639  //      (and/or/xor (zextload x), (zext cst))
4640  if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR ||
4641       N0.getOpcode() == ISD::XOR) &&
4642      isa<LoadSDNode>(N0.getOperand(0)) &&
4643      N0.getOperand(1).getOpcode() == ISD::Constant &&
4644      TLI.isLoadExtLegal(ISD::ZEXTLOAD, N0.getValueType()) &&
4645      (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) {
4646    LoadSDNode *LN0 = cast<LoadSDNode>(N0.getOperand(0));
4647    if (LN0->getExtensionType() != ISD::SEXTLOAD) {
4648      bool DoXform = true;
4649      SmallVector<SDNode*, 4> SetCCs;
4650      if (!N0.hasOneUse())
4651        DoXform = ExtendUsesToFormExtLoad(N, N0.getOperand(0), ISD::ZERO_EXTEND,
4652                                          SetCCs, TLI);
4653      if (DoXform) {
4654        SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, LN0->getDebugLoc(), VT,
4655                                         LN0->getChain(), LN0->getBasePtr(),
4656                                         LN0->getPointerInfo(),
4657                                         LN0->getMemoryVT(),
4658                                         LN0->isVolatile(),
4659                                         LN0->isNonTemporal(),
4660                                         LN0->getAlignment());
4661        APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
4662        Mask = Mask.zext(VT.getSizeInBits());
4663        SDValue And = DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT,
4664                                  ExtLoad, DAG.getConstant(Mask, VT));
4665        SDValue Trunc = DAG.getNode(ISD::TRUNCATE,
4666                                    N0.getOperand(0).getDebugLoc(),
4667                                    N0.getOperand(0).getValueType(), ExtLoad);
4668        CombineTo(N, And);
4669        CombineTo(N0.getOperand(0).getNode(), Trunc, ExtLoad.getValue(1));
4670        ExtendSetCCUses(SetCCs, Trunc, ExtLoad, N->getDebugLoc(),
4671                        ISD::ZERO_EXTEND);
4672        return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4673      }
4674    }
4675  }
4676
4677  // fold (zext (zextload x)) -> (zext (truncate (zextload x)))
4678  // fold (zext ( extload x)) -> (zext (truncate (zextload x)))
4679  if ((ISD::isZEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) &&
4680      ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) {
4681    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4682    EVT MemVT = LN0->getMemoryVT();
4683    if ((!LegalOperations && !LN0->isVolatile()) ||
4684        TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT)) {
4685      SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, N->getDebugLoc(), VT,
4686                                       LN0->getChain(),
4687                                       LN0->getBasePtr(), LN0->getPointerInfo(),
4688                                       MemVT,
4689                                       LN0->isVolatile(), LN0->isNonTemporal(),
4690                                       LN0->getAlignment());
4691      CombineTo(N, ExtLoad);
4692      CombineTo(N0.getNode(),
4693                DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(), N0.getValueType(),
4694                            ExtLoad),
4695                ExtLoad.getValue(1));
4696      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4697    }
4698  }
4699
4700  if (N0.getOpcode() == ISD::SETCC) {
4701    if (!LegalOperations && VT.isVector()) {
4702      // zext(setcc) -> (and (vsetcc), (1, 1, ...) for vectors.
4703      // Only do this before legalize for now.
4704      EVT N0VT = N0.getOperand(0).getValueType();
4705      EVT EltVT = VT.getVectorElementType();
4706      SmallVector<SDValue,8> OneOps(VT.getVectorNumElements(),
4707                                    DAG.getConstant(1, EltVT));
4708      if (VT.getSizeInBits() == N0VT.getSizeInBits())
4709        // We know that the # elements of the results is the same as the
4710        // # elements of the compare (and the # elements of the compare result
4711        // for that matter).  Check to see that they are the same size.  If so,
4712        // we know that the element size of the sext'd result matches the
4713        // element size of the compare operands.
4714        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
4715                           DAG.getSetCC(N->getDebugLoc(), VT, N0.getOperand(0),
4716                                         N0.getOperand(1),
4717                                 cast<CondCodeSDNode>(N0.getOperand(2))->get()),
4718                           DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), VT,
4719                                       &OneOps[0], OneOps.size()));
4720
4721      // If the desired elements are smaller or larger than the source
4722      // elements we can use a matching integer vector type and then
4723      // truncate/sign extend
4724      EVT MatchingElementType =
4725        EVT::getIntegerVT(*DAG.getContext(),
4726                          N0VT.getScalarType().getSizeInBits());
4727      EVT MatchingVectorType =
4728        EVT::getVectorVT(*DAG.getContext(), MatchingElementType,
4729                         N0VT.getVectorNumElements());
4730      SDValue VsetCC =
4731        DAG.getSetCC(N->getDebugLoc(), MatchingVectorType, N0.getOperand(0),
4732                      N0.getOperand(1),
4733                      cast<CondCodeSDNode>(N0.getOperand(2))->get());
4734      return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
4735                         DAG.getSExtOrTrunc(VsetCC, N->getDebugLoc(), VT),
4736                         DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), VT,
4737                                     &OneOps[0], OneOps.size()));
4738    }
4739
4740    // zext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
4741    SDValue SCC =
4742      SimplifySelectCC(N->getDebugLoc(), N0.getOperand(0), N0.getOperand(1),
4743                       DAG.getConstant(1, VT), DAG.getConstant(0, VT),
4744                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
4745    if (SCC.getNode()) return SCC;
4746  }
4747
4748  // (zext (shl (zext x), cst)) -> (shl (zext x), cst)
4749  if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL) &&
4750      isa<ConstantSDNode>(N0.getOperand(1)) &&
4751      N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND &&
4752      N0.hasOneUse()) {
4753    SDValue ShAmt = N0.getOperand(1);
4754    unsigned ShAmtVal = cast<ConstantSDNode>(ShAmt)->getZExtValue();
4755    if (N0.getOpcode() == ISD::SHL) {
4756      SDValue InnerZExt = N0.getOperand(0);
4757      // If the original shl may be shifting out bits, do not perform this
4758      // transformation.
4759      unsigned KnownZeroBits = InnerZExt.getValueType().getSizeInBits() -
4760        InnerZExt.getOperand(0).getValueType().getSizeInBits();
4761      if (ShAmtVal > KnownZeroBits)
4762        return SDValue();
4763    }
4764
4765    DebugLoc DL = N->getDebugLoc();
4766
4767    // Ensure that the shift amount is wide enough for the shifted value.
4768    if (VT.getSizeInBits() >= 256)
4769      ShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, ShAmt);
4770
4771    return DAG.getNode(N0.getOpcode(), DL, VT,
4772                       DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)),
4773                       ShAmt);
4774  }
4775
4776  return SDValue();
4777}
4778
4779SDValue DAGCombiner::visitANY_EXTEND(SDNode *N) {
4780  SDValue N0 = N->getOperand(0);
4781  EVT VT = N->getValueType(0);
4782
4783  // fold (aext c1) -> c1
4784  if (isa<ConstantSDNode>(N0))
4785    return DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, N0);
4786  // fold (aext (aext x)) -> (aext x)
4787  // fold (aext (zext x)) -> (zext x)
4788  // fold (aext (sext x)) -> (sext x)
4789  if (N0.getOpcode() == ISD::ANY_EXTEND  ||
4790      N0.getOpcode() == ISD::ZERO_EXTEND ||
4791      N0.getOpcode() == ISD::SIGN_EXTEND)
4792    return DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT, N0.getOperand(0));
4793
4794  // fold (aext (truncate (load x))) -> (aext (smaller load x))
4795  // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n)))
4796  if (N0.getOpcode() == ISD::TRUNCATE) {
4797    SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
4798    if (NarrowLoad.getNode()) {
4799      SDNode* oye = N0.getNode()->getOperand(0).getNode();
4800      if (NarrowLoad.getNode() != N0.getNode()) {
4801        CombineTo(N0.getNode(), NarrowLoad);
4802        // CombineTo deleted the truncate, if needed, but not what's under it.
4803        AddToWorkList(oye);
4804      }
4805      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4806    }
4807  }
4808
4809  // fold (aext (truncate x))
4810  if (N0.getOpcode() == ISD::TRUNCATE) {
4811    SDValue TruncOp = N0.getOperand(0);
4812    if (TruncOp.getValueType() == VT)
4813      return TruncOp; // x iff x size == zext size.
4814    if (TruncOp.getValueType().bitsGT(VT))
4815      return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, TruncOp);
4816    return DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, TruncOp);
4817  }
4818
4819  // Fold (aext (and (trunc x), cst)) -> (and x, cst)
4820  // if the trunc is not free.
4821  if (N0.getOpcode() == ISD::AND &&
4822      N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
4823      N0.getOperand(1).getOpcode() == ISD::Constant &&
4824      !TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(),
4825                          N0.getValueType())) {
4826    SDValue X = N0.getOperand(0).getOperand(0);
4827    if (X.getValueType().bitsLT(VT)) {
4828      X = DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, X);
4829    } else if (X.getValueType().bitsGT(VT)) {
4830      X = DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, X);
4831    }
4832    APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
4833    Mask = Mask.zext(VT.getSizeInBits());
4834    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
4835                       X, DAG.getConstant(Mask, VT));
4836  }
4837
4838  // fold (aext (load x)) -> (aext (truncate (extload x)))
4839  // None of the supported targets knows how to perform load and any_ext
4840  // on vectors in one instruction.  We only perform this transformation on
4841  // scalars.
4842  if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() &&
4843      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
4844       TLI.isLoadExtLegal(ISD::EXTLOAD, N0.getValueType()))) {
4845    bool DoXform = true;
4846    SmallVector<SDNode*, 4> SetCCs;
4847    if (!N0.hasOneUse())
4848      DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ANY_EXTEND, SetCCs, TLI);
4849    if (DoXform) {
4850      LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4851      SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, N->getDebugLoc(), VT,
4852                                       LN0->getChain(),
4853                                       LN0->getBasePtr(), LN0->getPointerInfo(),
4854                                       N0.getValueType(),
4855                                       LN0->isVolatile(), LN0->isNonTemporal(),
4856                                       LN0->getAlignment());
4857      CombineTo(N, ExtLoad);
4858      SDValue Trunc = DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(),
4859                                  N0.getValueType(), ExtLoad);
4860      CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1));
4861      ExtendSetCCUses(SetCCs, Trunc, ExtLoad, N->getDebugLoc(),
4862                      ISD::ANY_EXTEND);
4863      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4864    }
4865  }
4866
4867  // fold (aext (zextload x)) -> (aext (truncate (zextload x)))
4868  // fold (aext (sextload x)) -> (aext (truncate (sextload x)))
4869  // fold (aext ( extload x)) -> (aext (truncate (extload  x)))
4870  if (N0.getOpcode() == ISD::LOAD &&
4871      !ISD::isNON_EXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
4872      N0.hasOneUse()) {
4873    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4874    EVT MemVT = LN0->getMemoryVT();
4875    SDValue ExtLoad = DAG.getExtLoad(LN0->getExtensionType(), N->getDebugLoc(),
4876                                     VT, LN0->getChain(), LN0->getBasePtr(),
4877                                     LN0->getPointerInfo(), MemVT,
4878                                     LN0->isVolatile(), LN0->isNonTemporal(),
4879                                     LN0->getAlignment());
4880    CombineTo(N, ExtLoad);
4881    CombineTo(N0.getNode(),
4882              DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(),
4883                          N0.getValueType(), ExtLoad),
4884              ExtLoad.getValue(1));
4885    return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4886  }
4887
4888  if (N0.getOpcode() == ISD::SETCC) {
4889    // aext(setcc) -> sext_in_reg(vsetcc) for vectors.
4890    // Only do this before legalize for now.
4891    if (VT.isVector() && !LegalOperations) {
4892      EVT N0VT = N0.getOperand(0).getValueType();
4893        // We know that the # elements of the results is the same as the
4894        // # elements of the compare (and the # elements of the compare result
4895        // for that matter).  Check to see that they are the same size.  If so,
4896        // we know that the element size of the sext'd result matches the
4897        // element size of the compare operands.
4898      if (VT.getSizeInBits() == N0VT.getSizeInBits())
4899        return DAG.getSetCC(N->getDebugLoc(), VT, N0.getOperand(0),
4900                             N0.getOperand(1),
4901                             cast<CondCodeSDNode>(N0.getOperand(2))->get());
4902      // If the desired elements are smaller or larger than the source
4903      // elements we can use a matching integer vector type and then
4904      // truncate/sign extend
4905      else {
4906        EVT MatchingElementType =
4907          EVT::getIntegerVT(*DAG.getContext(),
4908                            N0VT.getScalarType().getSizeInBits());
4909        EVT MatchingVectorType =
4910          EVT::getVectorVT(*DAG.getContext(), MatchingElementType,
4911                           N0VT.getVectorNumElements());
4912        SDValue VsetCC =
4913          DAG.getSetCC(N->getDebugLoc(), MatchingVectorType, N0.getOperand(0),
4914                        N0.getOperand(1),
4915                        cast<CondCodeSDNode>(N0.getOperand(2))->get());
4916        return DAG.getSExtOrTrunc(VsetCC, N->getDebugLoc(), VT);
4917      }
4918    }
4919
4920    // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
4921    SDValue SCC =
4922      SimplifySelectCC(N->getDebugLoc(), N0.getOperand(0), N0.getOperand(1),
4923                       DAG.getConstant(1, VT), DAG.getConstant(0, VT),
4924                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
4925    if (SCC.getNode())
4926      return SCC;
4927  }
4928
4929  return SDValue();
4930}
4931
4932/// GetDemandedBits - See if the specified operand can be simplified with the
4933/// knowledge that only the bits specified by Mask are used.  If so, return the
4934/// simpler operand, otherwise return a null SDValue.
4935SDValue DAGCombiner::GetDemandedBits(SDValue V, const APInt &Mask) {
4936  switch (V.getOpcode()) {
4937  default: break;
4938  case ISD::Constant: {
4939    const ConstantSDNode *CV = cast<ConstantSDNode>(V.getNode());
4940    assert(CV != 0 && "Const value should be ConstSDNode.");
4941    const APInt &CVal = CV->getAPIntValue();
4942    APInt NewVal = CVal & Mask;
4943    if (NewVal != CVal) {
4944      return DAG.getConstant(NewVal, V.getValueType());
4945    }
4946    break;
4947  }
4948  case ISD::OR:
4949  case ISD::XOR:
4950    // If the LHS or RHS don't contribute bits to the or, drop them.
4951    if (DAG.MaskedValueIsZero(V.getOperand(0), Mask))
4952      return V.getOperand(1);
4953    if (DAG.MaskedValueIsZero(V.getOperand(1), Mask))
4954      return V.getOperand(0);
4955    break;
4956  case ISD::SRL:
4957    // Only look at single-use SRLs.
4958    if (!V.getNode()->hasOneUse())
4959      break;
4960    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
4961      // See if we can recursively simplify the LHS.
4962      unsigned Amt = RHSC->getZExtValue();
4963
4964      // Watch out for shift count overflow though.
4965      if (Amt >= Mask.getBitWidth()) break;
4966      APInt NewMask = Mask << Amt;
4967      SDValue SimplifyLHS = GetDemandedBits(V.getOperand(0), NewMask);
4968      if (SimplifyLHS.getNode())
4969        return DAG.getNode(ISD::SRL, V.getDebugLoc(), V.getValueType(),
4970                           SimplifyLHS, V.getOperand(1));
4971    }
4972  }
4973  return SDValue();
4974}
4975
4976/// ReduceLoadWidth - If the result of a wider load is shifted to right of N
4977/// bits and then truncated to a narrower type and where N is a multiple
4978/// of number of bits of the narrower type, transform it to a narrower load
4979/// from address + N / num of bits of new type. If the result is to be
4980/// extended, also fold the extension to form a extending load.
4981SDValue DAGCombiner::ReduceLoadWidth(SDNode *N) {
4982  unsigned Opc = N->getOpcode();
4983
4984  ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
4985  SDValue N0 = N->getOperand(0);
4986  EVT VT = N->getValueType(0);
4987  EVT ExtVT = VT;
4988
4989  // This transformation isn't valid for vector loads.
4990  if (VT.isVector())
4991    return SDValue();
4992
4993  // Special case: SIGN_EXTEND_INREG is basically truncating to ExtVT then
4994  // extended to VT.
4995  if (Opc == ISD::SIGN_EXTEND_INREG) {
4996    ExtType = ISD::SEXTLOAD;
4997    ExtVT = cast<VTSDNode>(N->getOperand(1))->getVT();
4998  } else if (Opc == ISD::SRL) {
4999    // Another special-case: SRL is basically zero-extending a narrower value.
5000    ExtType = ISD::ZEXTLOAD;
5001    N0 = SDValue(N, 0);
5002    ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5003    if (!N01) return SDValue();
5004    ExtVT = EVT::getIntegerVT(*DAG.getContext(),
5005                              VT.getSizeInBits() - N01->getZExtValue());
5006  }
5007  if (LegalOperations && !TLI.isLoadExtLegal(ExtType, ExtVT))
5008    return SDValue();
5009
5010  unsigned EVTBits = ExtVT.getSizeInBits();
5011
5012  // Do not generate loads of non-round integer types since these can
5013  // be expensive (and would be wrong if the type is not byte sized).
5014  if (!ExtVT.isRound())
5015    return SDValue();
5016
5017  unsigned ShAmt = 0;
5018  if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) {
5019    if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
5020      ShAmt = N01->getZExtValue();
5021      // Is the shift amount a multiple of size of VT?
5022      if ((ShAmt & (EVTBits-1)) == 0) {
5023        N0 = N0.getOperand(0);
5024        // Is the load width a multiple of size of VT?
5025        if ((N0.getValueType().getSizeInBits() & (EVTBits-1)) != 0)
5026          return SDValue();
5027      }
5028
5029      // At this point, we must have a load or else we can't do the transform.
5030      if (!isa<LoadSDNode>(N0)) return SDValue();
5031
5032      // If the shift amount is larger than the input type then we're not
5033      // accessing any of the loaded bytes.  If the load was a zextload/extload
5034      // then the result of the shift+trunc is zero/undef (handled elsewhere).
5035      // If the load was a sextload then the result is a splat of the sign bit
5036      // of the extended byte.  This is not worth optimizing for.
5037      if (ShAmt >= cast<LoadSDNode>(N0)->getMemoryVT().getSizeInBits())
5038        return SDValue();
5039    }
5040  }
5041
5042  // If the load is shifted left (and the result isn't shifted back right),
5043  // we can fold the truncate through the shift.
5044  unsigned ShLeftAmt = 0;
5045  if (ShAmt == 0 && N0.getOpcode() == ISD::SHL && N0.hasOneUse() &&
5046      ExtVT == VT && TLI.isNarrowingProfitable(N0.getValueType(), VT)) {
5047    if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
5048      ShLeftAmt = N01->getZExtValue();
5049      N0 = N0.getOperand(0);
5050    }
5051  }
5052
5053  // If we haven't found a load, we can't narrow it.  Don't transform one with
5054  // multiple uses, this would require adding a new load.
5055  if (!isa<LoadSDNode>(N0) || !N0.hasOneUse() ||
5056      // Don't change the width of a volatile load.
5057      cast<LoadSDNode>(N0)->isVolatile())
5058    return SDValue();
5059
5060  // Verify that we are actually reducing a load width here.
5061  if (cast<LoadSDNode>(N0)->getMemoryVT().getSizeInBits() < EVTBits)
5062    return SDValue();
5063
5064  LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5065  EVT PtrType = N0.getOperand(1).getValueType();
5066
5067  if (PtrType == MVT::Untyped || PtrType.isExtended())
5068    // It's not possible to generate a constant of extended or untyped type.
5069    return SDValue();
5070
5071  // For big endian targets, we need to adjust the offset to the pointer to
5072  // load the correct bytes.
5073  if (TLI.isBigEndian()) {
5074    unsigned LVTStoreBits = LN0->getMemoryVT().getStoreSizeInBits();
5075    unsigned EVTStoreBits = ExtVT.getStoreSizeInBits();
5076    ShAmt = LVTStoreBits - EVTStoreBits - ShAmt;
5077  }
5078
5079  uint64_t PtrOff = ShAmt / 8;
5080  unsigned NewAlign = MinAlign(LN0->getAlignment(), PtrOff);
5081  SDValue NewPtr = DAG.getNode(ISD::ADD, LN0->getDebugLoc(),
5082                               PtrType, LN0->getBasePtr(),
5083                               DAG.getConstant(PtrOff, PtrType));
5084  AddToWorkList(NewPtr.getNode());
5085
5086  SDValue Load;
5087  if (ExtType == ISD::NON_EXTLOAD)
5088    Load =  DAG.getLoad(VT, N0.getDebugLoc(), LN0->getChain(), NewPtr,
5089                        LN0->getPointerInfo().getWithOffset(PtrOff),
5090                        LN0->isVolatile(), LN0->isNonTemporal(),
5091                        LN0->isInvariant(), NewAlign);
5092  else
5093    Load = DAG.getExtLoad(ExtType, N0.getDebugLoc(), VT, LN0->getChain(),NewPtr,
5094                          LN0->getPointerInfo().getWithOffset(PtrOff),
5095                          ExtVT, LN0->isVolatile(), LN0->isNonTemporal(),
5096                          NewAlign);
5097
5098  // Replace the old load's chain with the new load's chain.
5099  WorkListRemover DeadNodes(*this);
5100  DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1));
5101
5102  // Shift the result left, if we've swallowed a left shift.
5103  SDValue Result = Load;
5104  if (ShLeftAmt != 0) {
5105    EVT ShImmTy = getShiftAmountTy(Result.getValueType());
5106    if (!isUIntN(ShImmTy.getSizeInBits(), ShLeftAmt))
5107      ShImmTy = VT;
5108    Result = DAG.getNode(ISD::SHL, N0.getDebugLoc(), VT,
5109                         Result, DAG.getConstant(ShLeftAmt, ShImmTy));
5110  }
5111
5112  // Return the new loaded value.
5113  return Result;
5114}
5115
5116SDValue DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) {
5117  SDValue N0 = N->getOperand(0);
5118  SDValue N1 = N->getOperand(1);
5119  EVT VT = N->getValueType(0);
5120  EVT EVT = cast<VTSDNode>(N1)->getVT();
5121  unsigned VTBits = VT.getScalarType().getSizeInBits();
5122  unsigned EVTBits = EVT.getScalarType().getSizeInBits();
5123
5124  // fold (sext_in_reg c1) -> c1
5125  if (isa<ConstantSDNode>(N0) || N0.getOpcode() == ISD::UNDEF)
5126    return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(), VT, N0, N1);
5127
5128  // If the input is already sign extended, just drop the extension.
5129  if (DAG.ComputeNumSignBits(N0) >= VTBits-EVTBits+1)
5130    return N0;
5131
5132  // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2
5133  if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
5134      EVT.bitsLT(cast<VTSDNode>(N0.getOperand(1))->getVT())) {
5135    return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(), VT,
5136                       N0.getOperand(0), N1);
5137  }
5138
5139  // fold (sext_in_reg (sext x)) -> (sext x)
5140  // fold (sext_in_reg (aext x)) -> (sext x)
5141  // if x is small enough.
5142  if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) {
5143    SDValue N00 = N0.getOperand(0);
5144    if (N00.getValueType().getScalarType().getSizeInBits() <= EVTBits &&
5145        (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT)))
5146      return DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), VT, N00, N1);
5147  }
5148
5149  // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero.
5150  if (DAG.MaskedValueIsZero(N0, APInt::getBitsSet(VTBits, EVTBits-1, EVTBits)))
5151    return DAG.getZeroExtendInReg(N0, N->getDebugLoc(), EVT);
5152
5153  // fold operands of sext_in_reg based on knowledge that the top bits are not
5154  // demanded.
5155  if (SimplifyDemandedBits(SDValue(N, 0)))
5156    return SDValue(N, 0);
5157
5158  // fold (sext_in_reg (load x)) -> (smaller sextload x)
5159  // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits))
5160  SDValue NarrowLoad = ReduceLoadWidth(N);
5161  if (NarrowLoad.getNode())
5162    return NarrowLoad;
5163
5164  // fold (sext_in_reg (srl X, 24), i8) -> (sra X, 24)
5165  // fold (sext_in_reg (srl X, 23), i8) -> (sra X, 23) iff possible.
5166  // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above.
5167  if (N0.getOpcode() == ISD::SRL) {
5168    if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
5169      if (ShAmt->getZExtValue()+EVTBits <= VTBits) {
5170        // We can turn this into an SRA iff the input to the SRL is already sign
5171        // extended enough.
5172        unsigned InSignBits = DAG.ComputeNumSignBits(N0.getOperand(0));
5173        if (VTBits-(ShAmt->getZExtValue()+EVTBits) < InSignBits)
5174          return DAG.getNode(ISD::SRA, N->getDebugLoc(), VT,
5175                             N0.getOperand(0), N0.getOperand(1));
5176      }
5177  }
5178
5179  // fold (sext_inreg (extload x)) -> (sextload x)
5180  if (ISD::isEXTLoad(N0.getNode()) &&
5181      ISD::isUNINDEXEDLoad(N0.getNode()) &&
5182      EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
5183      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
5184       TLI.isLoadExtLegal(ISD::SEXTLOAD, EVT))) {
5185    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5186    SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, N->getDebugLoc(), VT,
5187                                     LN0->getChain(),
5188                                     LN0->getBasePtr(), LN0->getPointerInfo(),
5189                                     EVT,
5190                                     LN0->isVolatile(), LN0->isNonTemporal(),
5191                                     LN0->getAlignment());
5192    CombineTo(N, ExtLoad);
5193    CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
5194    return SDValue(N, 0);   // Return N so it doesn't get rechecked!
5195  }
5196  // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use
5197  if (ISD::isZEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
5198      N0.hasOneUse() &&
5199      EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
5200      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
5201       TLI.isLoadExtLegal(ISD::SEXTLOAD, EVT))) {
5202    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5203    SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, N->getDebugLoc(), VT,
5204                                     LN0->getChain(),
5205                                     LN0->getBasePtr(), LN0->getPointerInfo(),
5206                                     EVT,
5207                                     LN0->isVolatile(), LN0->isNonTemporal(),
5208                                     LN0->getAlignment());
5209    CombineTo(N, ExtLoad);
5210    CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
5211    return SDValue(N, 0);   // Return N so it doesn't get rechecked!
5212  }
5213
5214  // Form (sext_inreg (bswap >> 16)) or (sext_inreg (rotl (bswap) 16))
5215  if (EVTBits <= 16 && N0.getOpcode() == ISD::OR) {
5216    SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0),
5217                                       N0.getOperand(1), false);
5218    if (BSwap.getNode() != 0)
5219      return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(), VT,
5220                         BSwap, N1);
5221  }
5222
5223  return SDValue();
5224}
5225
5226SDValue DAGCombiner::visitTRUNCATE(SDNode *N) {
5227  SDValue N0 = N->getOperand(0);
5228  EVT VT = N->getValueType(0);
5229  bool isLE = TLI.isLittleEndian();
5230
5231  // noop truncate
5232  if (N0.getValueType() == N->getValueType(0))
5233    return N0;
5234  // fold (truncate c1) -> c1
5235  if (isa<ConstantSDNode>(N0))
5236    return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, N0);
5237  // fold (truncate (truncate x)) -> (truncate x)
5238  if (N0.getOpcode() == ISD::TRUNCATE)
5239    return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, N0.getOperand(0));
5240  // fold (truncate (ext x)) -> (ext x) or (truncate x) or x
5241  if (N0.getOpcode() == ISD::ZERO_EXTEND ||
5242      N0.getOpcode() == ISD::SIGN_EXTEND ||
5243      N0.getOpcode() == ISD::ANY_EXTEND) {
5244    if (N0.getOperand(0).getValueType().bitsLT(VT))
5245      // if the source is smaller than the dest, we still need an extend
5246      return DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT,
5247                         N0.getOperand(0));
5248    if (N0.getOperand(0).getValueType().bitsGT(VT))
5249      // if the source is larger than the dest, than we just need the truncate
5250      return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, N0.getOperand(0));
5251    // if the source and dest are the same type, we can drop both the extend
5252    // and the truncate.
5253    return N0.getOperand(0);
5254  }
5255
5256  // Fold extract-and-trunc into a narrow extract. For example:
5257  //   i64 x = EXTRACT_VECTOR_ELT(v2i64 val, i32 1)
5258  //   i32 y = TRUNCATE(i64 x)
5259  //        -- becomes --
5260  //   v16i8 b = BITCAST (v2i64 val)
5261  //   i8 x = EXTRACT_VECTOR_ELT(v16i8 b, i32 8)
5262  //
5263  // Note: We only run this optimization after type legalization (which often
5264  // creates this pattern) and before operation legalization after which
5265  // we need to be more careful about the vector instructions that we generate.
5266  if (N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5267      LegalTypes && !LegalOperations && N0->hasOneUse()) {
5268
5269    EVT VecTy = N0.getOperand(0).getValueType();
5270    EVT ExTy = N0.getValueType();
5271    EVT TrTy = N->getValueType(0);
5272
5273    unsigned NumElem = VecTy.getVectorNumElements();
5274    unsigned SizeRatio = ExTy.getSizeInBits()/TrTy.getSizeInBits();
5275
5276    EVT NVT = EVT::getVectorVT(*DAG.getContext(), TrTy, SizeRatio * NumElem);
5277    assert(NVT.getSizeInBits() == VecTy.getSizeInBits() && "Invalid Size");
5278
5279    SDValue EltNo = N0->getOperand(1);
5280    if (isa<ConstantSDNode>(EltNo) && isTypeLegal(NVT)) {
5281      int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
5282      EVT IndexTy = N0->getOperand(1).getValueType();
5283      int Index = isLE ? (Elt*SizeRatio) : (Elt*SizeRatio + (SizeRatio-1));
5284
5285      SDValue V = DAG.getNode(ISD::BITCAST, N->getDebugLoc(),
5286                              NVT, N0.getOperand(0));
5287
5288      return DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
5289                         N->getDebugLoc(), TrTy, V,
5290                         DAG.getConstant(Index, IndexTy));
5291    }
5292  }
5293
5294  // See if we can simplify the input to this truncate through knowledge that
5295  // only the low bits are being used.
5296  // For example "trunc (or (shl x, 8), y)" // -> trunc y
5297  // Currently we only perform this optimization on scalars because vectors
5298  // may have different active low bits.
5299  if (!VT.isVector()) {
5300    SDValue Shorter =
5301      GetDemandedBits(N0, APInt::getLowBitsSet(N0.getValueSizeInBits(),
5302                                               VT.getSizeInBits()));
5303    if (Shorter.getNode())
5304      return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, Shorter);
5305  }
5306  // fold (truncate (load x)) -> (smaller load x)
5307  // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits))
5308  if (!LegalTypes || TLI.isTypeDesirableForOp(N0.getOpcode(), VT)) {
5309    SDValue Reduced = ReduceLoadWidth(N);
5310    if (Reduced.getNode())
5311      return Reduced;
5312  }
5313  // fold (trunc (concat ... x ...)) -> (concat ..., (trunc x), ...)),
5314  // where ... are all 'undef'.
5315  if (N0.getOpcode() == ISD::CONCAT_VECTORS && !LegalTypes) {
5316    SmallVector<EVT, 8> VTs;
5317    SDValue V;
5318    unsigned Idx = 0;
5319    unsigned NumDefs = 0;
5320
5321    for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i) {
5322      SDValue X = N0.getOperand(i);
5323      if (X.getOpcode() != ISD::UNDEF) {
5324        V = X;
5325        Idx = i;
5326        NumDefs++;
5327      }
5328      // Stop if more than one members are non-undef.
5329      if (NumDefs > 1)
5330        break;
5331      VTs.push_back(EVT::getVectorVT(*DAG.getContext(),
5332                                     VT.getVectorElementType(),
5333                                     X.getValueType().getVectorNumElements()));
5334    }
5335
5336    if (NumDefs == 0)
5337      return DAG.getUNDEF(VT);
5338
5339    if (NumDefs == 1) {
5340      assert(V.getNode() && "The single defined operand is empty!");
5341      SmallVector<SDValue, 8> Opnds;
5342      for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
5343        if (i != Idx) {
5344          Opnds.push_back(DAG.getUNDEF(VTs[i]));
5345          continue;
5346        }
5347        SDValue NV = DAG.getNode(ISD::TRUNCATE, V.getDebugLoc(), VTs[i], V);
5348        AddToWorkList(NV.getNode());
5349        Opnds.push_back(NV);
5350      }
5351      return DAG.getNode(ISD::CONCAT_VECTORS, N->getDebugLoc(), VT,
5352                         &Opnds[0], Opnds.size());
5353    }
5354  }
5355
5356  // Simplify the operands using demanded-bits information.
5357  if (!VT.isVector() &&
5358      SimplifyDemandedBits(SDValue(N, 0)))
5359    return SDValue(N, 0);
5360
5361  return SDValue();
5362}
5363
5364static SDNode *getBuildPairElt(SDNode *N, unsigned i) {
5365  SDValue Elt = N->getOperand(i);
5366  if (Elt.getOpcode() != ISD::MERGE_VALUES)
5367    return Elt.getNode();
5368  return Elt.getOperand(Elt.getResNo()).getNode();
5369}
5370
5371/// CombineConsecutiveLoads - build_pair (load, load) -> load
5372/// if load locations are consecutive.
5373SDValue DAGCombiner::CombineConsecutiveLoads(SDNode *N, EVT VT) {
5374  assert(N->getOpcode() == ISD::BUILD_PAIR);
5375
5376  LoadSDNode *LD1 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 0));
5377  LoadSDNode *LD2 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 1));
5378  if (!LD1 || !LD2 || !ISD::isNON_EXTLoad(LD1) || !LD1->hasOneUse() ||
5379      LD1->getPointerInfo().getAddrSpace() !=
5380         LD2->getPointerInfo().getAddrSpace())
5381    return SDValue();
5382  EVT LD1VT = LD1->getValueType(0);
5383
5384  if (ISD::isNON_EXTLoad(LD2) &&
5385      LD2->hasOneUse() &&
5386      // If both are volatile this would reduce the number of volatile loads.
5387      // If one is volatile it might be ok, but play conservative and bail out.
5388      !LD1->isVolatile() &&
5389      !LD2->isVolatile() &&
5390      DAG.isConsecutiveLoad(LD2, LD1, LD1VT.getSizeInBits()/8, 1)) {
5391    unsigned Align = LD1->getAlignment();
5392    unsigned NewAlign = TLI.getDataLayout()->
5393      getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
5394
5395    if (NewAlign <= Align &&
5396        (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT)))
5397      return DAG.getLoad(VT, N->getDebugLoc(), LD1->getChain(),
5398                         LD1->getBasePtr(), LD1->getPointerInfo(),
5399                         false, false, false, Align);
5400  }
5401
5402  return SDValue();
5403}
5404
5405SDValue DAGCombiner::visitBITCAST(SDNode *N) {
5406  SDValue N0 = N->getOperand(0);
5407  EVT VT = N->getValueType(0);
5408
5409  // If the input is a BUILD_VECTOR with all constant elements, fold this now.
5410  // Only do this before legalize, since afterward the target may be depending
5411  // on the bitconvert.
5412  // First check to see if this is all constant.
5413  if (!LegalTypes &&
5414      N0.getOpcode() == ISD::BUILD_VECTOR && N0.getNode()->hasOneUse() &&
5415      VT.isVector()) {
5416    bool isSimple = true;
5417    for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i)
5418      if (N0.getOperand(i).getOpcode() != ISD::UNDEF &&
5419          N0.getOperand(i).getOpcode() != ISD::Constant &&
5420          N0.getOperand(i).getOpcode() != ISD::ConstantFP) {
5421        isSimple = false;
5422        break;
5423      }
5424
5425    EVT DestEltVT = N->getValueType(0).getVectorElementType();
5426    assert(!DestEltVT.isVector() &&
5427           "Element type of vector ValueType must not be vector!");
5428    if (isSimple)
5429      return ConstantFoldBITCASTofBUILD_VECTOR(N0.getNode(), DestEltVT);
5430  }
5431
5432  // If the input is a constant, let getNode fold it.
5433  if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0)) {
5434    SDValue Res = DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, N0);
5435    if (Res.getNode() != N) {
5436      if (!LegalOperations ||
5437          TLI.isOperationLegal(Res.getNode()->getOpcode(), VT))
5438        return Res;
5439
5440      // Folding it resulted in an illegal node, and it's too late to
5441      // do that. Clean up the old node and forego the transformation.
5442      // Ideally this won't happen very often, because instcombine
5443      // and the earlier dagcombine runs (where illegal nodes are
5444      // permitted) should have folded most of them already.
5445      DAG.DeleteNode(Res.getNode());
5446    }
5447  }
5448
5449  // (conv (conv x, t1), t2) -> (conv x, t2)
5450  if (N0.getOpcode() == ISD::BITCAST)
5451    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT,
5452                       N0.getOperand(0));
5453
5454  // fold (conv (load x)) -> (load (conv*)x)
5455  // If the resultant load doesn't need a higher alignment than the original!
5456  if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
5457      // Do not change the width of a volatile load.
5458      !cast<LoadSDNode>(N0)->isVolatile() &&
5459      (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT))) {
5460    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5461    unsigned Align = TLI.getDataLayout()->
5462      getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
5463    unsigned OrigAlign = LN0->getAlignment();
5464
5465    if (Align <= OrigAlign) {
5466      SDValue Load = DAG.getLoad(VT, N->getDebugLoc(), LN0->getChain(),
5467                                 LN0->getBasePtr(), LN0->getPointerInfo(),
5468                                 LN0->isVolatile(), LN0->isNonTemporal(),
5469                                 LN0->isInvariant(), OrigAlign);
5470      AddToWorkList(N);
5471      CombineTo(N0.getNode(),
5472                DAG.getNode(ISD::BITCAST, N0.getDebugLoc(),
5473                            N0.getValueType(), Load),
5474                Load.getValue(1));
5475      return Load;
5476    }
5477  }
5478
5479  // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
5480  // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
5481  // This often reduces constant pool loads.
5482  if (((N0.getOpcode() == ISD::FNEG && !TLI.isFNegFree(VT)) ||
5483       (N0.getOpcode() == ISD::FABS && !TLI.isFAbsFree(VT))) &&
5484      N0.getNode()->hasOneUse() && VT.isInteger() &&
5485      !VT.isVector() && !N0.getValueType().isVector()) {
5486    SDValue NewConv = DAG.getNode(ISD::BITCAST, N0.getDebugLoc(), VT,
5487                                  N0.getOperand(0));
5488    AddToWorkList(NewConv.getNode());
5489
5490    APInt SignBit = APInt::getSignBit(VT.getSizeInBits());
5491    if (N0.getOpcode() == ISD::FNEG)
5492      return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT,
5493                         NewConv, DAG.getConstant(SignBit, VT));
5494    assert(N0.getOpcode() == ISD::FABS);
5495    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
5496                       NewConv, DAG.getConstant(~SignBit, VT));
5497  }
5498
5499  // fold (bitconvert (fcopysign cst, x)) ->
5500  //         (or (and (bitconvert x), sign), (and cst, (not sign)))
5501  // Note that we don't handle (copysign x, cst) because this can always be
5502  // folded to an fneg or fabs.
5503  if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse() &&
5504      isa<ConstantFPSDNode>(N0.getOperand(0)) &&
5505      VT.isInteger() && !VT.isVector()) {
5506    unsigned OrigXWidth = N0.getOperand(1).getValueType().getSizeInBits();
5507    EVT IntXVT = EVT::getIntegerVT(*DAG.getContext(), OrigXWidth);
5508    if (isTypeLegal(IntXVT)) {
5509      SDValue X = DAG.getNode(ISD::BITCAST, N0.getDebugLoc(),
5510                              IntXVT, N0.getOperand(1));
5511      AddToWorkList(X.getNode());
5512
5513      // If X has a different width than the result/lhs, sext it or truncate it.
5514      unsigned VTWidth = VT.getSizeInBits();
5515      if (OrigXWidth < VTWidth) {
5516        X = DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), VT, X);
5517        AddToWorkList(X.getNode());
5518      } else if (OrigXWidth > VTWidth) {
5519        // To get the sign bit in the right place, we have to shift it right
5520        // before truncating.
5521        X = DAG.getNode(ISD::SRL, X.getDebugLoc(),
5522                        X.getValueType(), X,
5523                        DAG.getConstant(OrigXWidth-VTWidth, X.getValueType()));
5524        AddToWorkList(X.getNode());
5525        X = DAG.getNode(ISD::TRUNCATE, X.getDebugLoc(), VT, X);
5526        AddToWorkList(X.getNode());
5527      }
5528
5529      APInt SignBit = APInt::getSignBit(VT.getSizeInBits());
5530      X = DAG.getNode(ISD::AND, X.getDebugLoc(), VT,
5531                      X, DAG.getConstant(SignBit, VT));
5532      AddToWorkList(X.getNode());
5533
5534      SDValue Cst = DAG.getNode(ISD::BITCAST, N0.getDebugLoc(),
5535                                VT, N0.getOperand(0));
5536      Cst = DAG.getNode(ISD::AND, Cst.getDebugLoc(), VT,
5537                        Cst, DAG.getConstant(~SignBit, VT));
5538      AddToWorkList(Cst.getNode());
5539
5540      return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, X, Cst);
5541    }
5542  }
5543
5544  // bitconvert(build_pair(ld, ld)) -> ld iff load locations are consecutive.
5545  if (N0.getOpcode() == ISD::BUILD_PAIR) {
5546    SDValue CombineLD = CombineConsecutiveLoads(N0.getNode(), VT);
5547    if (CombineLD.getNode())
5548      return CombineLD;
5549  }
5550
5551  return SDValue();
5552}
5553
5554SDValue DAGCombiner::visitBUILD_PAIR(SDNode *N) {
5555  EVT VT = N->getValueType(0);
5556  return CombineConsecutiveLoads(N, VT);
5557}
5558
5559/// ConstantFoldBITCASTofBUILD_VECTOR - We know that BV is a build_vector
5560/// node with Constant, ConstantFP or Undef operands.  DstEltVT indicates the
5561/// destination element value type.
5562SDValue DAGCombiner::
5563ConstantFoldBITCASTofBUILD_VECTOR(SDNode *BV, EVT DstEltVT) {
5564  EVT SrcEltVT = BV->getValueType(0).getVectorElementType();
5565
5566  // If this is already the right type, we're done.
5567  if (SrcEltVT == DstEltVT) return SDValue(BV, 0);
5568
5569  unsigned SrcBitSize = SrcEltVT.getSizeInBits();
5570  unsigned DstBitSize = DstEltVT.getSizeInBits();
5571
5572  // If this is a conversion of N elements of one type to N elements of another
5573  // type, convert each element.  This handles FP<->INT cases.
5574  if (SrcBitSize == DstBitSize) {
5575    EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT,
5576                              BV->getValueType(0).getVectorNumElements());
5577
5578    // Due to the FP element handling below calling this routine recursively,
5579    // we can end up with a scalar-to-vector node here.
5580    if (BV->getOpcode() == ISD::SCALAR_TO_VECTOR)
5581      return DAG.getNode(ISD::SCALAR_TO_VECTOR, BV->getDebugLoc(), VT,
5582                         DAG.getNode(ISD::BITCAST, BV->getDebugLoc(),
5583                                     DstEltVT, BV->getOperand(0)));
5584
5585    SmallVector<SDValue, 8> Ops;
5586    for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
5587      SDValue Op = BV->getOperand(i);
5588      // If the vector element type is not legal, the BUILD_VECTOR operands
5589      // are promoted and implicitly truncated.  Make that explicit here.
5590      if (Op.getValueType() != SrcEltVT)
5591        Op = DAG.getNode(ISD::TRUNCATE, BV->getDebugLoc(), SrcEltVT, Op);
5592      Ops.push_back(DAG.getNode(ISD::BITCAST, BV->getDebugLoc(),
5593                                DstEltVT, Op));
5594      AddToWorkList(Ops.back().getNode());
5595    }
5596    return DAG.getNode(ISD::BUILD_VECTOR, BV->getDebugLoc(), VT,
5597                       &Ops[0], Ops.size());
5598  }
5599
5600  // Otherwise, we're growing or shrinking the elements.  To avoid having to
5601  // handle annoying details of growing/shrinking FP values, we convert them to
5602  // int first.
5603  if (SrcEltVT.isFloatingPoint()) {
5604    // Convert the input float vector to a int vector where the elements are the
5605    // same sizes.
5606    assert((SrcEltVT == MVT::f32 || SrcEltVT == MVT::f64) && "Unknown FP VT!");
5607    EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), SrcEltVT.getSizeInBits());
5608    BV = ConstantFoldBITCASTofBUILD_VECTOR(BV, IntVT).getNode();
5609    SrcEltVT = IntVT;
5610  }
5611
5612  // Now we know the input is an integer vector.  If the output is a FP type,
5613  // convert to integer first, then to FP of the right size.
5614  if (DstEltVT.isFloatingPoint()) {
5615    assert((DstEltVT == MVT::f32 || DstEltVT == MVT::f64) && "Unknown FP VT!");
5616    EVT TmpVT = EVT::getIntegerVT(*DAG.getContext(), DstEltVT.getSizeInBits());
5617    SDNode *Tmp = ConstantFoldBITCASTofBUILD_VECTOR(BV, TmpVT).getNode();
5618
5619    // Next, convert to FP elements of the same size.
5620    return ConstantFoldBITCASTofBUILD_VECTOR(Tmp, DstEltVT);
5621  }
5622
5623  // Okay, we know the src/dst types are both integers of differing types.
5624  // Handling growing first.
5625  assert(SrcEltVT.isInteger() && DstEltVT.isInteger());
5626  if (SrcBitSize < DstBitSize) {
5627    unsigned NumInputsPerOutput = DstBitSize/SrcBitSize;
5628
5629    SmallVector<SDValue, 8> Ops;
5630    for (unsigned i = 0, e = BV->getNumOperands(); i != e;
5631         i += NumInputsPerOutput) {
5632      bool isLE = TLI.isLittleEndian();
5633      APInt NewBits = APInt(DstBitSize, 0);
5634      bool EltIsUndef = true;
5635      for (unsigned j = 0; j != NumInputsPerOutput; ++j) {
5636        // Shift the previously computed bits over.
5637        NewBits <<= SrcBitSize;
5638        SDValue Op = BV->getOperand(i+ (isLE ? (NumInputsPerOutput-j-1) : j));
5639        if (Op.getOpcode() == ISD::UNDEF) continue;
5640        EltIsUndef = false;
5641
5642        NewBits |= cast<ConstantSDNode>(Op)->getAPIntValue().
5643                   zextOrTrunc(SrcBitSize).zext(DstBitSize);
5644      }
5645
5646      if (EltIsUndef)
5647        Ops.push_back(DAG.getUNDEF(DstEltVT));
5648      else
5649        Ops.push_back(DAG.getConstant(NewBits, DstEltVT));
5650    }
5651
5652    EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, Ops.size());
5653    return DAG.getNode(ISD::BUILD_VECTOR, BV->getDebugLoc(), VT,
5654                       &Ops[0], Ops.size());
5655  }
5656
5657  // Finally, this must be the case where we are shrinking elements: each input
5658  // turns into multiple outputs.
5659  bool isS2V = ISD::isScalarToVector(BV);
5660  unsigned NumOutputsPerInput = SrcBitSize/DstBitSize;
5661  EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT,
5662                            NumOutputsPerInput*BV->getNumOperands());
5663  SmallVector<SDValue, 8> Ops;
5664
5665  for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
5666    if (BV->getOperand(i).getOpcode() == ISD::UNDEF) {
5667      for (unsigned j = 0; j != NumOutputsPerInput; ++j)
5668        Ops.push_back(DAG.getUNDEF(DstEltVT));
5669      continue;
5670    }
5671
5672    APInt OpVal = cast<ConstantSDNode>(BV->getOperand(i))->
5673                  getAPIntValue().zextOrTrunc(SrcBitSize);
5674
5675    for (unsigned j = 0; j != NumOutputsPerInput; ++j) {
5676      APInt ThisVal = OpVal.trunc(DstBitSize);
5677      Ops.push_back(DAG.getConstant(ThisVal, DstEltVT));
5678      if (isS2V && i == 0 && j == 0 && ThisVal.zext(SrcBitSize) == OpVal)
5679        // Simply turn this into a SCALAR_TO_VECTOR of the new type.
5680        return DAG.getNode(ISD::SCALAR_TO_VECTOR, BV->getDebugLoc(), VT,
5681                           Ops[0]);
5682      OpVal = OpVal.lshr(DstBitSize);
5683    }
5684
5685    // For big endian targets, swap the order of the pieces of each element.
5686    if (TLI.isBigEndian())
5687      std::reverse(Ops.end()-NumOutputsPerInput, Ops.end());
5688  }
5689
5690  return DAG.getNode(ISD::BUILD_VECTOR, BV->getDebugLoc(), VT,
5691                     &Ops[0], Ops.size());
5692}
5693
5694SDValue DAGCombiner::visitFADD(SDNode *N) {
5695  SDValue N0 = N->getOperand(0);
5696  SDValue N1 = N->getOperand(1);
5697  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
5698  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5699  EVT VT = N->getValueType(0);
5700
5701  // fold vector ops
5702  if (VT.isVector()) {
5703    SDValue FoldedVOp = SimplifyVBinOp(N);
5704    if (FoldedVOp.getNode()) return FoldedVOp;
5705  }
5706
5707  // fold (fadd c1, c2) -> c1 + c2
5708  if (N0CFP && N1CFP)
5709    return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N0, N1);
5710  // canonicalize constant to RHS
5711  if (N0CFP && !N1CFP)
5712    return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N1, N0);
5713  // fold (fadd A, 0) -> A
5714  if (DAG.getTarget().Options.UnsafeFPMath && N1CFP &&
5715      N1CFP->getValueAPF().isZero())
5716    return N0;
5717  // fold (fadd A, (fneg B)) -> (fsub A, B)
5718  if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) &&
5719    isNegatibleForFree(N1, LegalOperations, TLI, &DAG.getTarget().Options) == 2)
5720    return DAG.getNode(ISD::FSUB, N->getDebugLoc(), VT, N0,
5721                       GetNegatedExpression(N1, DAG, LegalOperations));
5722  // fold (fadd (fneg A), B) -> (fsub B, A)
5723  if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) &&
5724    isNegatibleForFree(N0, LegalOperations, TLI, &DAG.getTarget().Options) == 2)
5725    return DAG.getNode(ISD::FSUB, N->getDebugLoc(), VT, N1,
5726                       GetNegatedExpression(N0, DAG, LegalOperations));
5727
5728  // If allowed, fold (fadd (fadd x, c1), c2) -> (fadd x, (fadd c1, c2))
5729  if (DAG.getTarget().Options.UnsafeFPMath && N1CFP &&
5730      N0.getOpcode() == ISD::FADD && N0.getNode()->hasOneUse() &&
5731      isa<ConstantFPSDNode>(N0.getOperand(1)))
5732    return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N0.getOperand(0),
5733                       DAG.getNode(ISD::FADD, N->getDebugLoc(), VT,
5734                                   N0.getOperand(1), N1));
5735
5736  // If allow, fold (fadd (fneg x), x) -> 0.0
5737  if (DAG.getTarget().Options.UnsafeFPMath &&
5738      N0.getOpcode() == ISD::FNEG && N0.getOperand(0) == N1) {
5739    return DAG.getConstantFP(0.0, VT);
5740  }
5741
5742    // If allow, fold (fadd x, (fneg x)) -> 0.0
5743  if (DAG.getTarget().Options.UnsafeFPMath &&
5744      N1.getOpcode() == ISD::FNEG && N1.getOperand(0) == N0) {
5745    return DAG.getConstantFP(0.0, VT);
5746  }
5747
5748  // In unsafe math mode, we can fold chains of FADD's of the same value
5749  // into multiplications.  This transform is not safe in general because
5750  // we are reducing the number of rounding steps.
5751  if (DAG.getTarget().Options.UnsafeFPMath &&
5752      TLI.isOperationLegalOrCustom(ISD::FMUL, VT) &&
5753      !N0CFP && !N1CFP) {
5754    if (N0.getOpcode() == ISD::FMUL) {
5755      ConstantFPSDNode *CFP00 = dyn_cast<ConstantFPSDNode>(N0.getOperand(0));
5756      ConstantFPSDNode *CFP01 = dyn_cast<ConstantFPSDNode>(N0.getOperand(1));
5757
5758      // (fadd (fmul c, x), x) -> (fmul c+1, x)
5759      if (CFP00 && !CFP01 && N0.getOperand(1) == N1) {
5760        SDValue NewCFP = DAG.getNode(ISD::FADD, N->getDebugLoc(), VT,
5761                                     SDValue(CFP00, 0),
5762                                     DAG.getConstantFP(1.0, VT));
5763        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
5764                           N1, NewCFP);
5765      }
5766
5767      // (fadd (fmul x, c), x) -> (fmul c+1, x)
5768      if (CFP01 && !CFP00 && N0.getOperand(0) == N1) {
5769        SDValue NewCFP = DAG.getNode(ISD::FADD, N->getDebugLoc(), VT,
5770                                     SDValue(CFP01, 0),
5771                                     DAG.getConstantFP(1.0, VT));
5772        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
5773                           N1, NewCFP);
5774      }
5775
5776      // (fadd (fadd x, x), x) -> (fmul 3.0, x)
5777      if (!CFP00 && !CFP01 && N0.getOperand(0) == N0.getOperand(1) &&
5778          N0.getOperand(0) == N1) {
5779        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
5780                           N1, DAG.getConstantFP(3.0, VT));
5781      }
5782
5783      // (fadd (fmul c, x), (fadd x, x)) -> (fmul c+2, x)
5784      if (CFP00 && !CFP01 && N1.getOpcode() == ISD::FADD &&
5785          N1.getOperand(0) == N1.getOperand(1) &&
5786          N0.getOperand(1) == N1.getOperand(0)) {
5787        SDValue NewCFP = DAG.getNode(ISD::FADD, N->getDebugLoc(), VT,
5788                                     SDValue(CFP00, 0),
5789                                     DAG.getConstantFP(2.0, VT));
5790        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
5791                           N0.getOperand(1), NewCFP);
5792      }
5793
5794      // (fadd (fmul x, c), (fadd x, x)) -> (fmul c+2, x)
5795      if (CFP01 && !CFP00 && N1.getOpcode() == ISD::FADD &&
5796          N1.getOperand(0) == N1.getOperand(1) &&
5797          N0.getOperand(0) == N1.getOperand(0)) {
5798        SDValue NewCFP = DAG.getNode(ISD::FADD, N->getDebugLoc(), VT,
5799                                     SDValue(CFP01, 0),
5800                                     DAG.getConstantFP(2.0, VT));
5801        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
5802                           N0.getOperand(0), NewCFP);
5803      }
5804    }
5805
5806    if (N1.getOpcode() == ISD::FMUL) {
5807      ConstantFPSDNode *CFP10 = dyn_cast<ConstantFPSDNode>(N1.getOperand(0));
5808      ConstantFPSDNode *CFP11 = dyn_cast<ConstantFPSDNode>(N1.getOperand(1));
5809
5810      // (fadd x, (fmul c, x)) -> (fmul c+1, x)
5811      if (CFP10 && !CFP11 && N1.getOperand(1) == N0) {
5812        SDValue NewCFP = DAG.getNode(ISD::FADD, N->getDebugLoc(), VT,
5813                                     SDValue(CFP10, 0),
5814                                     DAG.getConstantFP(1.0, VT));
5815        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
5816                           N0, NewCFP);
5817      }
5818
5819      // (fadd x, (fmul x, c)) -> (fmul c+1, x)
5820      if (CFP11 && !CFP10 && N1.getOperand(0) == N0) {
5821        SDValue NewCFP = DAG.getNode(ISD::FADD, N->getDebugLoc(), VT,
5822                                     SDValue(CFP11, 0),
5823                                     DAG.getConstantFP(1.0, VT));
5824        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
5825                           N0, NewCFP);
5826      }
5827
5828      // (fadd x, (fadd x, x)) -> (fmul 3.0, x)
5829      if (!CFP10 && !CFP11 && N1.getOperand(0) == N1.getOperand(1) &&
5830          N1.getOperand(0) == N0) {
5831        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
5832                           N0, DAG.getConstantFP(3.0, VT));
5833      }
5834
5835      // (fadd (fadd x, x), (fmul c, x)) -> (fmul c+2, x)
5836      if (CFP10 && !CFP11 && N1.getOpcode() == ISD::FADD &&
5837          N1.getOperand(0) == N1.getOperand(1) &&
5838          N0.getOperand(1) == N1.getOperand(0)) {
5839        SDValue NewCFP = DAG.getNode(ISD::FADD, N->getDebugLoc(), VT,
5840                                     SDValue(CFP10, 0),
5841                                     DAG.getConstantFP(2.0, VT));
5842        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
5843                           N0.getOperand(1), NewCFP);
5844      }
5845
5846      // (fadd (fadd x, x), (fmul x, c)) -> (fmul c+2, x)
5847      if (CFP11 && !CFP10 && N1.getOpcode() == ISD::FADD &&
5848          N1.getOperand(0) == N1.getOperand(1) &&
5849          N0.getOperand(0) == N1.getOperand(0)) {
5850        SDValue NewCFP = DAG.getNode(ISD::FADD, N->getDebugLoc(), VT,
5851                                     SDValue(CFP11, 0),
5852                                     DAG.getConstantFP(2.0, VT));
5853        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
5854                           N0.getOperand(0), NewCFP);
5855      }
5856    }
5857
5858    // (fadd (fadd x, x), (fadd x, x)) -> (fmul 4.0, x)
5859    if (N0.getOpcode() == ISD::FADD && N1.getOpcode() == ISD::FADD &&
5860        N0.getOperand(0) == N0.getOperand(1) &&
5861        N1.getOperand(0) == N1.getOperand(1) &&
5862        N0.getOperand(0) == N1.getOperand(0)) {
5863      return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
5864                         N0.getOperand(0),
5865                         DAG.getConstantFP(4.0, VT));
5866    }
5867  }
5868
5869  // FADD -> FMA combines:
5870  if ((DAG.getTarget().Options.AllowFPOpFusion == FPOpFusion::Fast ||
5871       DAG.getTarget().Options.UnsafeFPMath) &&
5872      DAG.getTarget().getTargetLowering()->isFMAFasterThanMulAndAdd(VT) &&
5873      TLI.isOperationLegalOrCustom(ISD::FMA, VT)) {
5874
5875    // fold (fadd (fmul x, y), z) -> (fma x, y, z)
5876    if (N0.getOpcode() == ISD::FMUL && N0->hasOneUse()) {
5877      return DAG.getNode(ISD::FMA, N->getDebugLoc(), VT,
5878                         N0.getOperand(0), N0.getOperand(1), N1);
5879    }
5880
5881    // fold (fadd x, (fmul y, z)) -> (fma y, z, x)
5882    // Note: Commutes FADD operands.
5883    if (N1.getOpcode() == ISD::FMUL && N1->hasOneUse()) {
5884      return DAG.getNode(ISD::FMA, N->getDebugLoc(), VT,
5885                         N1.getOperand(0), N1.getOperand(1), N0);
5886    }
5887  }
5888
5889  return SDValue();
5890}
5891
5892SDValue DAGCombiner::visitFSUB(SDNode *N) {
5893  SDValue N0 = N->getOperand(0);
5894  SDValue N1 = N->getOperand(1);
5895  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
5896  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5897  EVT VT = N->getValueType(0);
5898  DebugLoc dl = N->getDebugLoc();
5899
5900  // fold vector ops
5901  if (VT.isVector()) {
5902    SDValue FoldedVOp = SimplifyVBinOp(N);
5903    if (FoldedVOp.getNode()) return FoldedVOp;
5904  }
5905
5906  // fold (fsub c1, c2) -> c1-c2
5907  if (N0CFP && N1CFP)
5908    return DAG.getNode(ISD::FSUB, N->getDebugLoc(), VT, N0, N1);
5909  // fold (fsub A, 0) -> A
5910  if (DAG.getTarget().Options.UnsafeFPMath &&
5911      N1CFP && N1CFP->getValueAPF().isZero())
5912    return N0;
5913  // fold (fsub 0, B) -> -B
5914  if (DAG.getTarget().Options.UnsafeFPMath &&
5915      N0CFP && N0CFP->getValueAPF().isZero()) {
5916    if (isNegatibleForFree(N1, LegalOperations, TLI, &DAG.getTarget().Options))
5917      return GetNegatedExpression(N1, DAG, LegalOperations);
5918    if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
5919      return DAG.getNode(ISD::FNEG, dl, VT, N1);
5920  }
5921  // fold (fsub A, (fneg B)) -> (fadd A, B)
5922  if (isNegatibleForFree(N1, LegalOperations, TLI, &DAG.getTarget().Options))
5923    return DAG.getNode(ISD::FADD, dl, VT, N0,
5924                       GetNegatedExpression(N1, DAG, LegalOperations));
5925
5926  // If 'unsafe math' is enabled, fold
5927  //    (fsub x, x) -> 0.0 &
5928  //    (fsub x, (fadd x, y)) -> (fneg y) &
5929  //    (fsub x, (fadd y, x)) -> (fneg y)
5930  if (DAG.getTarget().Options.UnsafeFPMath) {
5931    if (N0 == N1)
5932      return DAG.getConstantFP(0.0f, VT);
5933
5934    if (N1.getOpcode() == ISD::FADD) {
5935      SDValue N10 = N1->getOperand(0);
5936      SDValue N11 = N1->getOperand(1);
5937
5938      if (N10 == N0 && isNegatibleForFree(N11, LegalOperations, TLI,
5939                                          &DAG.getTarget().Options))
5940        return GetNegatedExpression(N11, DAG, LegalOperations);
5941      else if (N11 == N0 && isNegatibleForFree(N10, LegalOperations, TLI,
5942                                               &DAG.getTarget().Options))
5943        return GetNegatedExpression(N10, DAG, LegalOperations);
5944    }
5945  }
5946
5947  // FSUB -> FMA combines:
5948  if ((DAG.getTarget().Options.AllowFPOpFusion == FPOpFusion::Fast ||
5949       DAG.getTarget().Options.UnsafeFPMath) &&
5950      DAG.getTarget().getTargetLowering()->isFMAFasterThanMulAndAdd(VT) &&
5951      TLI.isOperationLegalOrCustom(ISD::FMA, VT)) {
5952
5953    // fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z))
5954    if (N0.getOpcode() == ISD::FMUL && N0->hasOneUse()) {
5955      return DAG.getNode(ISD::FMA, dl, VT,
5956                         N0.getOperand(0), N0.getOperand(1),
5957                         DAG.getNode(ISD::FNEG, dl, VT, N1));
5958    }
5959
5960    // fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x)
5961    // Note: Commutes FSUB operands.
5962    if (N1.getOpcode() == ISD::FMUL && N1->hasOneUse()) {
5963      return DAG.getNode(ISD::FMA, dl, VT,
5964                         DAG.getNode(ISD::FNEG, dl, VT,
5965                         N1.getOperand(0)),
5966                         N1.getOperand(1), N0);
5967    }
5968
5969    // fold (fsub (-(fmul, x, y)), z) -> (fma (fneg x), y, (fneg z))
5970    if (N0.getOpcode() == ISD::FNEG &&
5971        N0.getOperand(0).getOpcode() == ISD::FMUL &&
5972        N0->hasOneUse() && N0.getOperand(0).hasOneUse()) {
5973      SDValue N00 = N0.getOperand(0).getOperand(0);
5974      SDValue N01 = N0.getOperand(0).getOperand(1);
5975      return DAG.getNode(ISD::FMA, dl, VT,
5976                         DAG.getNode(ISD::FNEG, dl, VT, N00), N01,
5977                         DAG.getNode(ISD::FNEG, dl, VT, N1));
5978    }
5979  }
5980
5981  return SDValue();
5982}
5983
5984SDValue DAGCombiner::visitFMUL(SDNode *N) {
5985  SDValue N0 = N->getOperand(0);
5986  SDValue N1 = N->getOperand(1);
5987  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
5988  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5989  EVT VT = N->getValueType(0);
5990  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5991
5992  // fold vector ops
5993  if (VT.isVector()) {
5994    SDValue FoldedVOp = SimplifyVBinOp(N);
5995    if (FoldedVOp.getNode()) return FoldedVOp;
5996  }
5997
5998  // fold (fmul c1, c2) -> c1*c2
5999  if (N0CFP && N1CFP)
6000    return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT, N0, N1);
6001  // canonicalize constant to RHS
6002  if (N0CFP && !N1CFP)
6003    return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT, N1, N0);
6004  // fold (fmul A, 0) -> 0
6005  if (DAG.getTarget().Options.UnsafeFPMath &&
6006      N1CFP && N1CFP->getValueAPF().isZero())
6007    return N1;
6008  // fold (fmul A, 0) -> 0, vector edition.
6009  if (DAG.getTarget().Options.UnsafeFPMath &&
6010      ISD::isBuildVectorAllZeros(N1.getNode()))
6011    return N1;
6012  // fold (fmul A, 1.0) -> A
6013  if (N1CFP && N1CFP->isExactlyValue(1.0))
6014    return N0;
6015  // fold (fmul X, 2.0) -> (fadd X, X)
6016  if (N1CFP && N1CFP->isExactlyValue(+2.0))
6017    return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N0, N0);
6018  // fold (fmul X, -1.0) -> (fneg X)
6019  if (N1CFP && N1CFP->isExactlyValue(-1.0))
6020    if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
6021      return DAG.getNode(ISD::FNEG, N->getDebugLoc(), VT, N0);
6022
6023  // fold (fmul (fneg X), (fneg Y)) -> (fmul X, Y)
6024  if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, TLI,
6025                                       &DAG.getTarget().Options)) {
6026    if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, TLI,
6027                                         &DAG.getTarget().Options)) {
6028      // Both can be negated for free, check to see if at least one is cheaper
6029      // negated.
6030      if (LHSNeg == 2 || RHSNeg == 2)
6031        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
6032                           GetNegatedExpression(N0, DAG, LegalOperations),
6033                           GetNegatedExpression(N1, DAG, LegalOperations));
6034    }
6035  }
6036
6037  // If allowed, fold (fmul (fmul x, c1), c2) -> (fmul x, (fmul c1, c2))
6038  if (DAG.getTarget().Options.UnsafeFPMath &&
6039      N1CFP && N0.getOpcode() == ISD::FMUL &&
6040      N0.getNode()->hasOneUse() && isa<ConstantFPSDNode>(N0.getOperand(1)))
6041    return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT, N0.getOperand(0),
6042                       DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
6043                                   N0.getOperand(1), N1));
6044
6045  return SDValue();
6046}
6047
6048SDValue DAGCombiner::visitFMA(SDNode *N) {
6049  SDValue N0 = N->getOperand(0);
6050  SDValue N1 = N->getOperand(1);
6051  SDValue N2 = N->getOperand(2);
6052  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6053  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6054  EVT VT = N->getValueType(0);
6055  DebugLoc dl = N->getDebugLoc();
6056
6057  if (DAG.getTarget().Options.UnsafeFPMath) {
6058    if (N0CFP && N0CFP->isZero())
6059      return N2;
6060    if (N1CFP && N1CFP->isZero())
6061      return N2;
6062  }
6063  if (N0CFP && N0CFP->isExactlyValue(1.0))
6064    return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N1, N2);
6065  if (N1CFP && N1CFP->isExactlyValue(1.0))
6066    return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N0, N2);
6067
6068  // Canonicalize (fma c, x, y) -> (fma x, c, y)
6069  if (N0CFP && !N1CFP)
6070    return DAG.getNode(ISD::FMA, N->getDebugLoc(), VT, N1, N0, N2);
6071
6072  // (fma x, c1, (fmul x, c2)) -> (fmul x, c1+c2)
6073  if (DAG.getTarget().Options.UnsafeFPMath && N1CFP &&
6074      N2.getOpcode() == ISD::FMUL &&
6075      N0 == N2.getOperand(0) &&
6076      N2.getOperand(1).getOpcode() == ISD::ConstantFP) {
6077    return DAG.getNode(ISD::FMUL, dl, VT, N0,
6078                       DAG.getNode(ISD::FADD, dl, VT, N1, N2.getOperand(1)));
6079  }
6080
6081
6082  // (fma (fmul x, c1), c2, y) -> (fma x, c1*c2, y)
6083  if (DAG.getTarget().Options.UnsafeFPMath &&
6084      N0.getOpcode() == ISD::FMUL && N1CFP &&
6085      N0.getOperand(1).getOpcode() == ISD::ConstantFP) {
6086    return DAG.getNode(ISD::FMA, dl, VT,
6087                       N0.getOperand(0),
6088                       DAG.getNode(ISD::FMUL, dl, VT, N1, N0.getOperand(1)),
6089                       N2);
6090  }
6091
6092  // (fma x, 1, y) -> (fadd x, y)
6093  // (fma x, -1, y) -> (fadd (fneg x), y)
6094  if (N1CFP) {
6095    if (N1CFP->isExactlyValue(1.0))
6096      return DAG.getNode(ISD::FADD, dl, VT, N0, N2);
6097
6098    if (N1CFP->isExactlyValue(-1.0) &&
6099        (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))) {
6100      SDValue RHSNeg = DAG.getNode(ISD::FNEG, dl, VT, N0);
6101      AddToWorkList(RHSNeg.getNode());
6102      return DAG.getNode(ISD::FADD, dl, VT, N2, RHSNeg);
6103    }
6104  }
6105
6106  // (fma x, c, x) -> (fmul x, (c+1))
6107  if (DAG.getTarget().Options.UnsafeFPMath && N1CFP && N0 == N2) {
6108    return DAG.getNode(ISD::FMUL, dl, VT,
6109                       N0,
6110                       DAG.getNode(ISD::FADD, dl, VT,
6111                                   N1, DAG.getConstantFP(1.0, VT)));
6112  }
6113
6114  // (fma x, c, (fneg x)) -> (fmul x, (c-1))
6115  if (DAG.getTarget().Options.UnsafeFPMath && N1CFP &&
6116      N2.getOpcode() == ISD::FNEG && N2.getOperand(0) == N0) {
6117    return DAG.getNode(ISD::FMUL, dl, VT,
6118                       N0,
6119                       DAG.getNode(ISD::FADD, dl, VT,
6120                                   N1, DAG.getConstantFP(-1.0, VT)));
6121  }
6122
6123
6124  return SDValue();
6125}
6126
6127SDValue DAGCombiner::visitFDIV(SDNode *N) {
6128  SDValue N0 = N->getOperand(0);
6129  SDValue N1 = N->getOperand(1);
6130  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6131  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6132  EVT VT = N->getValueType(0);
6133  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6134
6135  // fold vector ops
6136  if (VT.isVector()) {
6137    SDValue FoldedVOp = SimplifyVBinOp(N);
6138    if (FoldedVOp.getNode()) return FoldedVOp;
6139  }
6140
6141  // fold (fdiv c1, c2) -> c1/c2
6142  if (N0CFP && N1CFP)
6143    return DAG.getNode(ISD::FDIV, N->getDebugLoc(), VT, N0, N1);
6144
6145  // fold (fdiv X, c2) -> fmul X, 1/c2 if losing precision is acceptable.
6146  if (N1CFP && DAG.getTarget().Options.UnsafeFPMath) {
6147    // Compute the reciprocal 1.0 / c2.
6148    APFloat N1APF = N1CFP->getValueAPF();
6149    APFloat Recip(N1APF.getSemantics(), 1); // 1.0
6150    APFloat::opStatus st = Recip.divide(N1APF, APFloat::rmNearestTiesToEven);
6151    // Only do the transform if the reciprocal is a legal fp immediate that
6152    // isn't too nasty (eg NaN, denormal, ...).
6153    if ((st == APFloat::opOK || st == APFloat::opInexact) && // Not too nasty
6154        (!LegalOperations ||
6155         // FIXME: custom lowering of ConstantFP might fail (see e.g. ARM
6156         // backend)... we should handle this gracefully after Legalize.
6157         // TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT) ||
6158         TLI.isOperationLegal(llvm::ISD::ConstantFP, VT) ||
6159         TLI.isFPImmLegal(Recip, VT)))
6160      return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT, N0,
6161                         DAG.getConstantFP(Recip, VT));
6162  }
6163
6164  // (fdiv (fneg X), (fneg Y)) -> (fdiv X, Y)
6165  if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, TLI,
6166                                       &DAG.getTarget().Options)) {
6167    if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, TLI,
6168                                         &DAG.getTarget().Options)) {
6169      // Both can be negated for free, check to see if at least one is cheaper
6170      // negated.
6171      if (LHSNeg == 2 || RHSNeg == 2)
6172        return DAG.getNode(ISD::FDIV, N->getDebugLoc(), VT,
6173                           GetNegatedExpression(N0, DAG, LegalOperations),
6174                           GetNegatedExpression(N1, DAG, LegalOperations));
6175    }
6176  }
6177
6178  return SDValue();
6179}
6180
6181SDValue DAGCombiner::visitFREM(SDNode *N) {
6182  SDValue N0 = N->getOperand(0);
6183  SDValue N1 = N->getOperand(1);
6184  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6185  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6186  EVT VT = N->getValueType(0);
6187
6188  // fold (frem c1, c2) -> fmod(c1,c2)
6189  if (N0CFP && N1CFP)
6190    return DAG.getNode(ISD::FREM, N->getDebugLoc(), VT, N0, N1);
6191
6192  return SDValue();
6193}
6194
6195SDValue DAGCombiner::visitFCOPYSIGN(SDNode *N) {
6196  SDValue N0 = N->getOperand(0);
6197  SDValue N1 = N->getOperand(1);
6198  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6199  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6200  EVT VT = N->getValueType(0);
6201
6202  if (N0CFP && N1CFP)  // Constant fold
6203    return DAG.getNode(ISD::FCOPYSIGN, N->getDebugLoc(), VT, N0, N1);
6204
6205  if (N1CFP) {
6206    const APFloat& V = N1CFP->getValueAPF();
6207    // copysign(x, c1) -> fabs(x)       iff ispos(c1)
6208    // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1)
6209    if (!V.isNegative()) {
6210      if (!LegalOperations || TLI.isOperationLegal(ISD::FABS, VT))
6211        return DAG.getNode(ISD::FABS, N->getDebugLoc(), VT, N0);
6212    } else {
6213      if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
6214        return DAG.getNode(ISD::FNEG, N->getDebugLoc(), VT,
6215                           DAG.getNode(ISD::FABS, N0.getDebugLoc(), VT, N0));
6216    }
6217  }
6218
6219  // copysign(fabs(x), y) -> copysign(x, y)
6220  // copysign(fneg(x), y) -> copysign(x, y)
6221  // copysign(copysign(x,z), y) -> copysign(x, y)
6222  if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG ||
6223      N0.getOpcode() == ISD::FCOPYSIGN)
6224    return DAG.getNode(ISD::FCOPYSIGN, N->getDebugLoc(), VT,
6225                       N0.getOperand(0), N1);
6226
6227  // copysign(x, abs(y)) -> abs(x)
6228  if (N1.getOpcode() == ISD::FABS)
6229    return DAG.getNode(ISD::FABS, N->getDebugLoc(), VT, N0);
6230
6231  // copysign(x, copysign(y,z)) -> copysign(x, z)
6232  if (N1.getOpcode() == ISD::FCOPYSIGN)
6233    return DAG.getNode(ISD::FCOPYSIGN, N->getDebugLoc(), VT,
6234                       N0, N1.getOperand(1));
6235
6236  // copysign(x, fp_extend(y)) -> copysign(x, y)
6237  // copysign(x, fp_round(y)) -> copysign(x, y)
6238  if (N1.getOpcode() == ISD::FP_EXTEND || N1.getOpcode() == ISD::FP_ROUND)
6239    return DAG.getNode(ISD::FCOPYSIGN, N->getDebugLoc(), VT,
6240                       N0, N1.getOperand(0));
6241
6242  return SDValue();
6243}
6244
6245SDValue DAGCombiner::visitSINT_TO_FP(SDNode *N) {
6246  SDValue N0 = N->getOperand(0);
6247  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
6248  EVT VT = N->getValueType(0);
6249  EVT OpVT = N0.getValueType();
6250
6251  // fold (sint_to_fp c1) -> c1fp
6252  if (N0C &&
6253      // ...but only if the target supports immediate floating-point values
6254      (!LegalOperations ||
6255       TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT)))
6256    return DAG.getNode(ISD::SINT_TO_FP, N->getDebugLoc(), VT, N0);
6257
6258  // If the input is a legal type, and SINT_TO_FP is not legal on this target,
6259  // but UINT_TO_FP is legal on this target, try to convert.
6260  if (!TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, OpVT) &&
6261      TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, OpVT)) {
6262    // If the sign bit is known to be zero, we can change this to UINT_TO_FP.
6263    if (DAG.SignBitIsZero(N0))
6264      return DAG.getNode(ISD::UINT_TO_FP, N->getDebugLoc(), VT, N0);
6265  }
6266
6267  // The next optimizations are desireable only if SELECT_CC can be lowered.
6268  // Check against MVT::Other for SELECT_CC, which is a workaround for targets
6269  // having to say they don't support SELECT_CC on every type the DAG knows
6270  // about, since there is no way to mark an opcode illegal at all value types
6271  // (See also visitSELECT)
6272  if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, MVT::Other)) {
6273    // fold (sint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc)
6274    if (N0.getOpcode() == ISD::SETCC && N0.getValueType() == MVT::i1 &&
6275        !VT.isVector() &&
6276        (!LegalOperations ||
6277         TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) {
6278      SDValue Ops[] =
6279        { N0.getOperand(0), N0.getOperand(1),
6280          DAG.getConstantFP(-1.0, VT) , DAG.getConstantFP(0.0, VT),
6281          N0.getOperand(2) };
6282      return DAG.getNode(ISD::SELECT_CC, N->getDebugLoc(), VT, Ops, 5);
6283    }
6284
6285    // fold (sint_to_fp (zext (setcc x, y, cc))) ->
6286    //      (select_cc x, y, 1.0, 0.0,, cc)
6287    if (N0.getOpcode() == ISD::ZERO_EXTEND &&
6288        N0.getOperand(0).getOpcode() == ISD::SETCC &&!VT.isVector() &&
6289        (!LegalOperations ||
6290         TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) {
6291      SDValue Ops[] =
6292        { N0.getOperand(0).getOperand(0), N0.getOperand(0).getOperand(1),
6293          DAG.getConstantFP(1.0, VT) , DAG.getConstantFP(0.0, VT),
6294          N0.getOperand(0).getOperand(2) };
6295      return DAG.getNode(ISD::SELECT_CC, N->getDebugLoc(), VT, Ops, 5);
6296    }
6297  }
6298
6299  return SDValue();
6300}
6301
6302SDValue DAGCombiner::visitUINT_TO_FP(SDNode *N) {
6303  SDValue N0 = N->getOperand(0);
6304  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
6305  EVT VT = N->getValueType(0);
6306  EVT OpVT = N0.getValueType();
6307
6308  // fold (uint_to_fp c1) -> c1fp
6309  if (N0C &&
6310      // ...but only if the target supports immediate floating-point values
6311      (!LegalOperations ||
6312       TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT)))
6313    return DAG.getNode(ISD::UINT_TO_FP, N->getDebugLoc(), VT, N0);
6314
6315  // If the input is a legal type, and UINT_TO_FP is not legal on this target,
6316  // but SINT_TO_FP is legal on this target, try to convert.
6317  if (!TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, OpVT) &&
6318      TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, OpVT)) {
6319    // If the sign bit is known to be zero, we can change this to SINT_TO_FP.
6320    if (DAG.SignBitIsZero(N0))
6321      return DAG.getNode(ISD::SINT_TO_FP, N->getDebugLoc(), VT, N0);
6322  }
6323
6324  // The next optimizations are desireable only if SELECT_CC can be lowered.
6325  // Check against MVT::Other for SELECT_CC, which is a workaround for targets
6326  // having to say they don't support SELECT_CC on every type the DAG knows
6327  // about, since there is no way to mark an opcode illegal at all value types
6328  // (See also visitSELECT)
6329  if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, MVT::Other)) {
6330    // fold (uint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc)
6331
6332    if (N0.getOpcode() == ISD::SETCC && !VT.isVector() &&
6333        (!LegalOperations ||
6334         TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) {
6335      SDValue Ops[] =
6336        { N0.getOperand(0), N0.getOperand(1),
6337          DAG.getConstantFP(1.0, VT),  DAG.getConstantFP(0.0, VT),
6338          N0.getOperand(2) };
6339      return DAG.getNode(ISD::SELECT_CC, N->getDebugLoc(), VT, Ops, 5);
6340    }
6341  }
6342
6343  return SDValue();
6344}
6345
6346SDValue DAGCombiner::visitFP_TO_SINT(SDNode *N) {
6347  SDValue N0 = N->getOperand(0);
6348  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6349  EVT VT = N->getValueType(0);
6350
6351  // fold (fp_to_sint c1fp) -> c1
6352  if (N0CFP)
6353    return DAG.getNode(ISD::FP_TO_SINT, N->getDebugLoc(), VT, N0);
6354
6355  return SDValue();
6356}
6357
6358SDValue DAGCombiner::visitFP_TO_UINT(SDNode *N) {
6359  SDValue N0 = N->getOperand(0);
6360  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6361  EVT VT = N->getValueType(0);
6362
6363  // fold (fp_to_uint c1fp) -> c1
6364  if (N0CFP)
6365    return DAG.getNode(ISD::FP_TO_UINT, N->getDebugLoc(), VT, N0);
6366
6367  return SDValue();
6368}
6369
6370SDValue DAGCombiner::visitFP_ROUND(SDNode *N) {
6371  SDValue N0 = N->getOperand(0);
6372  SDValue N1 = N->getOperand(1);
6373  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6374  EVT VT = N->getValueType(0);
6375
6376  // fold (fp_round c1fp) -> c1fp
6377  if (N0CFP)
6378    return DAG.getNode(ISD::FP_ROUND, N->getDebugLoc(), VT, N0, N1);
6379
6380  // fold (fp_round (fp_extend x)) -> x
6381  if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType())
6382    return N0.getOperand(0);
6383
6384  // fold (fp_round (fp_round x)) -> (fp_round x)
6385  if (N0.getOpcode() == ISD::FP_ROUND) {
6386    // This is a value preserving truncation if both round's are.
6387    bool IsTrunc = N->getConstantOperandVal(1) == 1 &&
6388                   N0.getNode()->getConstantOperandVal(1) == 1;
6389    return DAG.getNode(ISD::FP_ROUND, N->getDebugLoc(), VT, N0.getOperand(0),
6390                       DAG.getIntPtrConstant(IsTrunc));
6391  }
6392
6393  // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y)
6394  if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse()) {
6395    SDValue Tmp = DAG.getNode(ISD::FP_ROUND, N0.getDebugLoc(), VT,
6396                              N0.getOperand(0), N1);
6397    AddToWorkList(Tmp.getNode());
6398    return DAG.getNode(ISD::FCOPYSIGN, N->getDebugLoc(), VT,
6399                       Tmp, N0.getOperand(1));
6400  }
6401
6402  return SDValue();
6403}
6404
6405SDValue DAGCombiner::visitFP_ROUND_INREG(SDNode *N) {
6406  SDValue N0 = N->getOperand(0);
6407  EVT VT = N->getValueType(0);
6408  EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
6409  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6410
6411  // fold (fp_round_inreg c1fp) -> c1fp
6412  if (N0CFP && isTypeLegal(EVT)) {
6413    SDValue Round = DAG.getConstantFP(*N0CFP->getConstantFPValue(), EVT);
6414    return DAG.getNode(ISD::FP_EXTEND, N->getDebugLoc(), VT, Round);
6415  }
6416
6417  return SDValue();
6418}
6419
6420SDValue DAGCombiner::visitFP_EXTEND(SDNode *N) {
6421  SDValue N0 = N->getOperand(0);
6422  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6423  EVT VT = N->getValueType(0);
6424
6425  // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded.
6426  if (N->hasOneUse() &&
6427      N->use_begin()->getOpcode() == ISD::FP_ROUND)
6428    return SDValue();
6429
6430  // fold (fp_extend c1fp) -> c1fp
6431  if (N0CFP)
6432    return DAG.getNode(ISD::FP_EXTEND, N->getDebugLoc(), VT, N0);
6433
6434  // Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the
6435  // value of X.
6436  if (N0.getOpcode() == ISD::FP_ROUND
6437      && N0.getNode()->getConstantOperandVal(1) == 1) {
6438    SDValue In = N0.getOperand(0);
6439    if (In.getValueType() == VT) return In;
6440    if (VT.bitsLT(In.getValueType()))
6441      return DAG.getNode(ISD::FP_ROUND, N->getDebugLoc(), VT,
6442                         In, N0.getOperand(1));
6443    return DAG.getNode(ISD::FP_EXTEND, N->getDebugLoc(), VT, In);
6444  }
6445
6446  // fold (fpext (load x)) -> (fpext (fptrunc (extload x)))
6447  if (ISD::isNON_EXTLoad(N0.getNode()) && N0.hasOneUse() &&
6448      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
6449       TLI.isLoadExtLegal(ISD::EXTLOAD, N0.getValueType()))) {
6450    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
6451    SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, N->getDebugLoc(), VT,
6452                                     LN0->getChain(),
6453                                     LN0->getBasePtr(), LN0->getPointerInfo(),
6454                                     N0.getValueType(),
6455                                     LN0->isVolatile(), LN0->isNonTemporal(),
6456                                     LN0->getAlignment());
6457    CombineTo(N, ExtLoad);
6458    CombineTo(N0.getNode(),
6459              DAG.getNode(ISD::FP_ROUND, N0.getDebugLoc(),
6460                          N0.getValueType(), ExtLoad, DAG.getIntPtrConstant(1)),
6461              ExtLoad.getValue(1));
6462    return SDValue(N, 0);   // Return N so it doesn't get rechecked!
6463  }
6464
6465  return SDValue();
6466}
6467
6468SDValue DAGCombiner::visitFNEG(SDNode *N) {
6469  SDValue N0 = N->getOperand(0);
6470  EVT VT = N->getValueType(0);
6471
6472  if (VT.isVector()) {
6473    SDValue FoldedVOp = SimplifyVUnaryOp(N);
6474    if (FoldedVOp.getNode()) return FoldedVOp;
6475  }
6476
6477  if (isNegatibleForFree(N0, LegalOperations, DAG.getTargetLoweringInfo(),
6478                         &DAG.getTarget().Options))
6479    return GetNegatedExpression(N0, DAG, LegalOperations);
6480
6481  // Transform fneg(bitconvert(x)) -> bitconvert(x^sign) to avoid loading
6482  // constant pool values.
6483  if (!TLI.isFNegFree(VT) && N0.getOpcode() == ISD::BITCAST &&
6484      !VT.isVector() &&
6485      N0.getNode()->hasOneUse() &&
6486      N0.getOperand(0).getValueType().isInteger()) {
6487    SDValue Int = N0.getOperand(0);
6488    EVT IntVT = Int.getValueType();
6489    if (IntVT.isInteger() && !IntVT.isVector()) {
6490      Int = DAG.getNode(ISD::XOR, N0.getDebugLoc(), IntVT, Int,
6491              DAG.getConstant(APInt::getSignBit(IntVT.getSizeInBits()), IntVT));
6492      AddToWorkList(Int.getNode());
6493      return DAG.getNode(ISD::BITCAST, N->getDebugLoc(),
6494                         VT, Int);
6495    }
6496  }
6497
6498  // (fneg (fmul c, x)) -> (fmul -c, x)
6499  if (N0.getOpcode() == ISD::FMUL) {
6500    ConstantFPSDNode *CFP1 = dyn_cast<ConstantFPSDNode>(N0.getOperand(1));
6501    if (CFP1) {
6502      return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
6503                         N0.getOperand(0),
6504                         DAG.getNode(ISD::FNEG, N->getDebugLoc(), VT,
6505                                     N0.getOperand(1)));
6506    }
6507  }
6508
6509  return SDValue();
6510}
6511
6512SDValue DAGCombiner::visitFCEIL(SDNode *N) {
6513  SDValue N0 = N->getOperand(0);
6514  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6515  EVT VT = N->getValueType(0);
6516
6517  // fold (fceil c1) -> fceil(c1)
6518  if (N0CFP)
6519    return DAG.getNode(ISD::FCEIL, N->getDebugLoc(), VT, N0);
6520
6521  return SDValue();
6522}
6523
6524SDValue DAGCombiner::visitFTRUNC(SDNode *N) {
6525  SDValue N0 = N->getOperand(0);
6526  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6527  EVT VT = N->getValueType(0);
6528
6529  // fold (ftrunc c1) -> ftrunc(c1)
6530  if (N0CFP)
6531    return DAG.getNode(ISD::FTRUNC, N->getDebugLoc(), VT, N0);
6532
6533  return SDValue();
6534}
6535
6536SDValue DAGCombiner::visitFFLOOR(SDNode *N) {
6537  SDValue N0 = N->getOperand(0);
6538  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6539  EVT VT = N->getValueType(0);
6540
6541  // fold (ffloor c1) -> ffloor(c1)
6542  if (N0CFP)
6543    return DAG.getNode(ISD::FFLOOR, N->getDebugLoc(), VT, N0);
6544
6545  return SDValue();
6546}
6547
6548SDValue DAGCombiner::visitFABS(SDNode *N) {
6549  SDValue N0 = N->getOperand(0);
6550  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6551  EVT VT = N->getValueType(0);
6552
6553  if (VT.isVector()) {
6554    SDValue FoldedVOp = SimplifyVUnaryOp(N);
6555    if (FoldedVOp.getNode()) return FoldedVOp;
6556  }
6557
6558  // fold (fabs c1) -> fabs(c1)
6559  if (N0CFP)
6560    return DAG.getNode(ISD::FABS, N->getDebugLoc(), VT, N0);
6561  // fold (fabs (fabs x)) -> (fabs x)
6562  if (N0.getOpcode() == ISD::FABS)
6563    return N->getOperand(0);
6564  // fold (fabs (fneg x)) -> (fabs x)
6565  // fold (fabs (fcopysign x, y)) -> (fabs x)
6566  if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN)
6567    return DAG.getNode(ISD::FABS, N->getDebugLoc(), VT, N0.getOperand(0));
6568
6569  // Transform fabs(bitconvert(x)) -> bitconvert(x&~sign) to avoid loading
6570  // constant pool values.
6571  if (!TLI.isFAbsFree(VT) &&
6572      N0.getOpcode() == ISD::BITCAST && N0.getNode()->hasOneUse() &&
6573      N0.getOperand(0).getValueType().isInteger() &&
6574      !N0.getOperand(0).getValueType().isVector()) {
6575    SDValue Int = N0.getOperand(0);
6576    EVT IntVT = Int.getValueType();
6577    if (IntVT.isInteger() && !IntVT.isVector()) {
6578      Int = DAG.getNode(ISD::AND, N0.getDebugLoc(), IntVT, Int,
6579             DAG.getConstant(~APInt::getSignBit(IntVT.getSizeInBits()), IntVT));
6580      AddToWorkList(Int.getNode());
6581      return DAG.getNode(ISD::BITCAST, N->getDebugLoc(),
6582                         N->getValueType(0), Int);
6583    }
6584  }
6585
6586  return SDValue();
6587}
6588
6589SDValue DAGCombiner::visitBRCOND(SDNode *N) {
6590  SDValue Chain = N->getOperand(0);
6591  SDValue N1 = N->getOperand(1);
6592  SDValue N2 = N->getOperand(2);
6593
6594  // If N is a constant we could fold this into a fallthrough or unconditional
6595  // branch. However that doesn't happen very often in normal code, because
6596  // Instcombine/SimplifyCFG should have handled the available opportunities.
6597  // If we did this folding here, it would be necessary to update the
6598  // MachineBasicBlock CFG, which is awkward.
6599
6600  // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal
6601  // on the target.
6602  if (N1.getOpcode() == ISD::SETCC &&
6603      TLI.isOperationLegalOrCustom(ISD::BR_CC, MVT::Other)) {
6604    return DAG.getNode(ISD::BR_CC, N->getDebugLoc(), MVT::Other,
6605                       Chain, N1.getOperand(2),
6606                       N1.getOperand(0), N1.getOperand(1), N2);
6607  }
6608
6609  if ((N1.hasOneUse() && N1.getOpcode() == ISD::SRL) ||
6610      ((N1.getOpcode() == ISD::TRUNCATE && N1.hasOneUse()) &&
6611       (N1.getOperand(0).hasOneUse() &&
6612        N1.getOperand(0).getOpcode() == ISD::SRL))) {
6613    SDNode *Trunc = 0;
6614    if (N1.getOpcode() == ISD::TRUNCATE) {
6615      // Look pass the truncate.
6616      Trunc = N1.getNode();
6617      N1 = N1.getOperand(0);
6618    }
6619
6620    // Match this pattern so that we can generate simpler code:
6621    //
6622    //   %a = ...
6623    //   %b = and i32 %a, 2
6624    //   %c = srl i32 %b, 1
6625    //   brcond i32 %c ...
6626    //
6627    // into
6628    //
6629    //   %a = ...
6630    //   %b = and i32 %a, 2
6631    //   %c = setcc eq %b, 0
6632    //   brcond %c ...
6633    //
6634    // This applies only when the AND constant value has one bit set and the
6635    // SRL constant is equal to the log2 of the AND constant. The back-end is
6636    // smart enough to convert the result into a TEST/JMP sequence.
6637    SDValue Op0 = N1.getOperand(0);
6638    SDValue Op1 = N1.getOperand(1);
6639
6640    if (Op0.getOpcode() == ISD::AND &&
6641        Op1.getOpcode() == ISD::Constant) {
6642      SDValue AndOp1 = Op0.getOperand(1);
6643
6644      if (AndOp1.getOpcode() == ISD::Constant) {
6645        const APInt &AndConst = cast<ConstantSDNode>(AndOp1)->getAPIntValue();
6646
6647        if (AndConst.isPowerOf2() &&
6648            cast<ConstantSDNode>(Op1)->getAPIntValue()==AndConst.logBase2()) {
6649          SDValue SetCC =
6650            DAG.getSetCC(N->getDebugLoc(),
6651                         TLI.getSetCCResultType(Op0.getValueType()),
6652                         Op0, DAG.getConstant(0, Op0.getValueType()),
6653                         ISD::SETNE);
6654
6655          SDValue NewBRCond = DAG.getNode(ISD::BRCOND, N->getDebugLoc(),
6656                                          MVT::Other, Chain, SetCC, N2);
6657          // Don't add the new BRCond into the worklist or else SimplifySelectCC
6658          // will convert it back to (X & C1) >> C2.
6659          CombineTo(N, NewBRCond, false);
6660          // Truncate is dead.
6661          if (Trunc) {
6662            removeFromWorkList(Trunc);
6663            DAG.DeleteNode(Trunc);
6664          }
6665          // Replace the uses of SRL with SETCC
6666          WorkListRemover DeadNodes(*this);
6667          DAG.ReplaceAllUsesOfValueWith(N1, SetCC);
6668          removeFromWorkList(N1.getNode());
6669          DAG.DeleteNode(N1.getNode());
6670          return SDValue(N, 0);   // Return N so it doesn't get rechecked!
6671        }
6672      }
6673    }
6674
6675    if (Trunc)
6676      // Restore N1 if the above transformation doesn't match.
6677      N1 = N->getOperand(1);
6678  }
6679
6680  // Transform br(xor(x, y)) -> br(x != y)
6681  // Transform br(xor(xor(x,y), 1)) -> br (x == y)
6682  if (N1.hasOneUse() && N1.getOpcode() == ISD::XOR) {
6683    SDNode *TheXor = N1.getNode();
6684    SDValue Op0 = TheXor->getOperand(0);
6685    SDValue Op1 = TheXor->getOperand(1);
6686    if (Op0.getOpcode() == Op1.getOpcode()) {
6687      // Avoid missing important xor optimizations.
6688      SDValue Tmp = visitXOR(TheXor);
6689      if (Tmp.getNode() && Tmp.getNode() != TheXor) {
6690        DEBUG(dbgs() << "\nReplacing.8 ";
6691              TheXor->dump(&DAG);
6692              dbgs() << "\nWith: ";
6693              Tmp.getNode()->dump(&DAG);
6694              dbgs() << '\n');
6695        WorkListRemover DeadNodes(*this);
6696        DAG.ReplaceAllUsesOfValueWith(N1, Tmp);
6697        removeFromWorkList(TheXor);
6698        DAG.DeleteNode(TheXor);
6699        return DAG.getNode(ISD::BRCOND, N->getDebugLoc(),
6700                           MVT::Other, Chain, Tmp, N2);
6701      }
6702    }
6703
6704    if (Op0.getOpcode() != ISD::SETCC && Op1.getOpcode() != ISD::SETCC) {
6705      bool Equal = false;
6706      if (ConstantSDNode *RHSCI = dyn_cast<ConstantSDNode>(Op0))
6707        if (RHSCI->getAPIntValue() == 1 && Op0.hasOneUse() &&
6708            Op0.getOpcode() == ISD::XOR) {
6709          TheXor = Op0.getNode();
6710          Equal = true;
6711        }
6712
6713      EVT SetCCVT = N1.getValueType();
6714      if (LegalTypes)
6715        SetCCVT = TLI.getSetCCResultType(SetCCVT);
6716      SDValue SetCC = DAG.getSetCC(TheXor->getDebugLoc(),
6717                                   SetCCVT,
6718                                   Op0, Op1,
6719                                   Equal ? ISD::SETEQ : ISD::SETNE);
6720      // Replace the uses of XOR with SETCC
6721      WorkListRemover DeadNodes(*this);
6722      DAG.ReplaceAllUsesOfValueWith(N1, SetCC);
6723      removeFromWorkList(N1.getNode());
6724      DAG.DeleteNode(N1.getNode());
6725      return DAG.getNode(ISD::BRCOND, N->getDebugLoc(),
6726                         MVT::Other, Chain, SetCC, N2);
6727    }
6728  }
6729
6730  return SDValue();
6731}
6732
6733// Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB.
6734//
6735SDValue DAGCombiner::visitBR_CC(SDNode *N) {
6736  CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1));
6737  SDValue CondLHS = N->getOperand(2), CondRHS = N->getOperand(3);
6738
6739  // If N is a constant we could fold this into a fallthrough or unconditional
6740  // branch. However that doesn't happen very often in normal code, because
6741  // Instcombine/SimplifyCFG should have handled the available opportunities.
6742  // If we did this folding here, it would be necessary to update the
6743  // MachineBasicBlock CFG, which is awkward.
6744
6745  // Use SimplifySetCC to simplify SETCC's.
6746  SDValue Simp = SimplifySetCC(TLI.getSetCCResultType(CondLHS.getValueType()),
6747                               CondLHS, CondRHS, CC->get(), N->getDebugLoc(),
6748                               false);
6749  if (Simp.getNode()) AddToWorkList(Simp.getNode());
6750
6751  // fold to a simpler setcc
6752  if (Simp.getNode() && Simp.getOpcode() == ISD::SETCC)
6753    return DAG.getNode(ISD::BR_CC, N->getDebugLoc(), MVT::Other,
6754                       N->getOperand(0), Simp.getOperand(2),
6755                       Simp.getOperand(0), Simp.getOperand(1),
6756                       N->getOperand(4));
6757
6758  return SDValue();
6759}
6760
6761/// canFoldInAddressingMode - Return true if 'Use' is a load or a store that
6762/// uses N as its base pointer and that N may be folded in the load / store
6763/// addressing mode.
6764static bool canFoldInAddressingMode(SDNode *N, SDNode *Use,
6765                                    SelectionDAG &DAG,
6766                                    const TargetLowering &TLI) {
6767  EVT VT;
6768  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(Use)) {
6769    if (LD->isIndexed() || LD->getBasePtr().getNode() != N)
6770      return false;
6771    VT = Use->getValueType(0);
6772  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(Use)) {
6773    if (ST->isIndexed() || ST->getBasePtr().getNode() != N)
6774      return false;
6775    VT = ST->getValue().getValueType();
6776  } else
6777    return false;
6778
6779  AddrMode AM;
6780  if (N->getOpcode() == ISD::ADD) {
6781    ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
6782    if (Offset)
6783      // [reg +/- imm]
6784      AM.BaseOffs = Offset->getSExtValue();
6785    else
6786      // [reg +/- reg]
6787      AM.Scale = 1;
6788  } else if (N->getOpcode() == ISD::SUB) {
6789    ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
6790    if (Offset)
6791      // [reg +/- imm]
6792      AM.BaseOffs = -Offset->getSExtValue();
6793    else
6794      // [reg +/- reg]
6795      AM.Scale = 1;
6796  } else
6797    return false;
6798
6799  return TLI.isLegalAddressingMode(AM, VT.getTypeForEVT(*DAG.getContext()));
6800}
6801
6802/// CombineToPreIndexedLoadStore - Try turning a load / store into a
6803/// pre-indexed load / store when the base pointer is an add or subtract
6804/// and it has other uses besides the load / store. After the
6805/// transformation, the new indexed load / store has effectively folded
6806/// the add / subtract in and all of its other uses are redirected to the
6807/// new load / store.
6808bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) {
6809  if (Level < AfterLegalizeDAG)
6810    return false;
6811
6812  bool isLoad = true;
6813  SDValue Ptr;
6814  EVT VT;
6815  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(N)) {
6816    if (LD->isIndexed())
6817      return false;
6818    VT = LD->getMemoryVT();
6819    if (!TLI.isIndexedLoadLegal(ISD::PRE_INC, VT) &&
6820        !TLI.isIndexedLoadLegal(ISD::PRE_DEC, VT))
6821      return false;
6822    Ptr = LD->getBasePtr();
6823  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(N)) {
6824    if (ST->isIndexed())
6825      return false;
6826    VT = ST->getMemoryVT();
6827    if (!TLI.isIndexedStoreLegal(ISD::PRE_INC, VT) &&
6828        !TLI.isIndexedStoreLegal(ISD::PRE_DEC, VT))
6829      return false;
6830    Ptr = ST->getBasePtr();
6831    isLoad = false;
6832  } else {
6833    return false;
6834  }
6835
6836  // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail
6837  // out.  There is no reason to make this a preinc/predec.
6838  if ((Ptr.getOpcode() != ISD::ADD && Ptr.getOpcode() != ISD::SUB) ||
6839      Ptr.getNode()->hasOneUse())
6840    return false;
6841
6842  // Ask the target to do addressing mode selection.
6843  SDValue BasePtr;
6844  SDValue Offset;
6845  ISD::MemIndexedMode AM = ISD::UNINDEXED;
6846  if (!TLI.getPreIndexedAddressParts(N, BasePtr, Offset, AM, DAG))
6847    return false;
6848  // Don't create a indexed load / store with zero offset.
6849  if (isa<ConstantSDNode>(Offset) &&
6850      cast<ConstantSDNode>(Offset)->isNullValue())
6851    return false;
6852
6853  // Try turning it into a pre-indexed load / store except when:
6854  // 1) The new base ptr is a frame index.
6855  // 2) If N is a store and the new base ptr is either the same as or is a
6856  //    predecessor of the value being stored.
6857  // 3) Another use of old base ptr is a predecessor of N. If ptr is folded
6858  //    that would create a cycle.
6859  // 4) All uses are load / store ops that use it as old base ptr.
6860
6861  // Check #1.  Preinc'ing a frame index would require copying the stack pointer
6862  // (plus the implicit offset) to a register to preinc anyway.
6863  if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr))
6864    return false;
6865
6866  // Check #2.
6867  if (!isLoad) {
6868    SDValue Val = cast<StoreSDNode>(N)->getValue();
6869    if (Val == BasePtr || BasePtr.getNode()->isPredecessorOf(Val.getNode()))
6870      return false;
6871  }
6872
6873  // Now check for #3 and #4.
6874  bool RealUse = false;
6875
6876  // Caches for hasPredecessorHelper
6877  SmallPtrSet<const SDNode *, 32> Visited;
6878  SmallVector<const SDNode *, 16> Worklist;
6879
6880  for (SDNode::use_iterator I = Ptr.getNode()->use_begin(),
6881         E = Ptr.getNode()->use_end(); I != E; ++I) {
6882    SDNode *Use = *I;
6883    if (Use == N)
6884      continue;
6885    if (N->hasPredecessorHelper(Use, Visited, Worklist))
6886      return false;
6887
6888    // If Ptr may be folded in addressing mode of other use, then it's
6889    // not profitable to do this transformation.
6890    if (!canFoldInAddressingMode(Ptr.getNode(), Use, DAG, TLI))
6891      RealUse = true;
6892  }
6893
6894  if (!RealUse)
6895    return false;
6896
6897  SDValue Result;
6898  if (isLoad)
6899    Result = DAG.getIndexedLoad(SDValue(N,0), N->getDebugLoc(),
6900                                BasePtr, Offset, AM);
6901  else
6902    Result = DAG.getIndexedStore(SDValue(N,0), N->getDebugLoc(),
6903                                 BasePtr, Offset, AM);
6904  ++PreIndexedNodes;
6905  ++NodesCombined;
6906  DEBUG(dbgs() << "\nReplacing.4 ";
6907        N->dump(&DAG);
6908        dbgs() << "\nWith: ";
6909        Result.getNode()->dump(&DAG);
6910        dbgs() << '\n');
6911  WorkListRemover DeadNodes(*this);
6912  if (isLoad) {
6913    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0));
6914    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2));
6915  } else {
6916    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1));
6917  }
6918
6919  // Finally, since the node is now dead, remove it from the graph.
6920  DAG.DeleteNode(N);
6921
6922  // Replace the uses of Ptr with uses of the updated base value.
6923  DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(isLoad ? 1 : 0));
6924  removeFromWorkList(Ptr.getNode());
6925  DAG.DeleteNode(Ptr.getNode());
6926
6927  return true;
6928}
6929
6930/// CombineToPostIndexedLoadStore - Try to combine a load / store with a
6931/// add / sub of the base pointer node into a post-indexed load / store.
6932/// The transformation folded the add / subtract into the new indexed
6933/// load / store effectively and all of its uses are redirected to the
6934/// new load / store.
6935bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) {
6936  if (Level < AfterLegalizeDAG)
6937    return false;
6938
6939  bool isLoad = true;
6940  SDValue Ptr;
6941  EVT VT;
6942  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(N)) {
6943    if (LD->isIndexed())
6944      return false;
6945    VT = LD->getMemoryVT();
6946    if (!TLI.isIndexedLoadLegal(ISD::POST_INC, VT) &&
6947        !TLI.isIndexedLoadLegal(ISD::POST_DEC, VT))
6948      return false;
6949    Ptr = LD->getBasePtr();
6950  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(N)) {
6951    if (ST->isIndexed())
6952      return false;
6953    VT = ST->getMemoryVT();
6954    if (!TLI.isIndexedStoreLegal(ISD::POST_INC, VT) &&
6955        !TLI.isIndexedStoreLegal(ISD::POST_DEC, VT))
6956      return false;
6957    Ptr = ST->getBasePtr();
6958    isLoad = false;
6959  } else {
6960    return false;
6961  }
6962
6963  if (Ptr.getNode()->hasOneUse())
6964    return false;
6965
6966  for (SDNode::use_iterator I = Ptr.getNode()->use_begin(),
6967         E = Ptr.getNode()->use_end(); I != E; ++I) {
6968    SDNode *Op = *I;
6969    if (Op == N ||
6970        (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB))
6971      continue;
6972
6973    SDValue BasePtr;
6974    SDValue Offset;
6975    ISD::MemIndexedMode AM = ISD::UNINDEXED;
6976    if (TLI.getPostIndexedAddressParts(N, Op, BasePtr, Offset, AM, DAG)) {
6977      // Don't create a indexed load / store with zero offset.
6978      if (isa<ConstantSDNode>(Offset) &&
6979          cast<ConstantSDNode>(Offset)->isNullValue())
6980        continue;
6981
6982      // Try turning it into a post-indexed load / store except when
6983      // 1) All uses are load / store ops that use it as base ptr (and
6984      //    it may be folded as addressing mmode).
6985      // 2) Op must be independent of N, i.e. Op is neither a predecessor
6986      //    nor a successor of N. Otherwise, if Op is folded that would
6987      //    create a cycle.
6988
6989      if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr))
6990        continue;
6991
6992      // Check for #1.
6993      bool TryNext = false;
6994      for (SDNode::use_iterator II = BasePtr.getNode()->use_begin(),
6995             EE = BasePtr.getNode()->use_end(); II != EE; ++II) {
6996        SDNode *Use = *II;
6997        if (Use == Ptr.getNode())
6998          continue;
6999
7000        // If all the uses are load / store addresses, then don't do the
7001        // transformation.
7002        if (Use->getOpcode() == ISD::ADD || Use->getOpcode() == ISD::SUB){
7003          bool RealUse = false;
7004          for (SDNode::use_iterator III = Use->use_begin(),
7005                 EEE = Use->use_end(); III != EEE; ++III) {
7006            SDNode *UseUse = *III;
7007            if (!canFoldInAddressingMode(Use, UseUse, DAG, TLI))
7008              RealUse = true;
7009          }
7010
7011          if (!RealUse) {
7012            TryNext = true;
7013            break;
7014          }
7015        }
7016      }
7017
7018      if (TryNext)
7019        continue;
7020
7021      // Check for #2
7022      if (!Op->isPredecessorOf(N) && !N->isPredecessorOf(Op)) {
7023        SDValue Result = isLoad
7024          ? DAG.getIndexedLoad(SDValue(N,0), N->getDebugLoc(),
7025                               BasePtr, Offset, AM)
7026          : DAG.getIndexedStore(SDValue(N,0), N->getDebugLoc(),
7027                                BasePtr, Offset, AM);
7028        ++PostIndexedNodes;
7029        ++NodesCombined;
7030        DEBUG(dbgs() << "\nReplacing.5 ";
7031              N->dump(&DAG);
7032              dbgs() << "\nWith: ";
7033              Result.getNode()->dump(&DAG);
7034              dbgs() << '\n');
7035        WorkListRemover DeadNodes(*this);
7036        if (isLoad) {
7037          DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0));
7038          DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2));
7039        } else {
7040          DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1));
7041        }
7042
7043        // Finally, since the node is now dead, remove it from the graph.
7044        DAG.DeleteNode(N);
7045
7046        // Replace the uses of Use with uses of the updated base value.
7047        DAG.ReplaceAllUsesOfValueWith(SDValue(Op, 0),
7048                                      Result.getValue(isLoad ? 1 : 0));
7049        removeFromWorkList(Op);
7050        DAG.DeleteNode(Op);
7051        return true;
7052      }
7053    }
7054  }
7055
7056  return false;
7057}
7058
7059SDValue DAGCombiner::visitLOAD(SDNode *N) {
7060  LoadSDNode *LD  = cast<LoadSDNode>(N);
7061  SDValue Chain = LD->getChain();
7062  SDValue Ptr   = LD->getBasePtr();
7063
7064  // If load is not volatile and there are no uses of the loaded value (and
7065  // the updated indexed value in case of indexed loads), change uses of the
7066  // chain value into uses of the chain input (i.e. delete the dead load).
7067  if (!LD->isVolatile()) {
7068    if (N->getValueType(1) == MVT::Other) {
7069      // Unindexed loads.
7070      if (!N->hasAnyUseOfValue(0)) {
7071        // It's not safe to use the two value CombineTo variant here. e.g.
7072        // v1, chain2 = load chain1, loc
7073        // v2, chain3 = load chain2, loc
7074        // v3         = add v2, c
7075        // Now we replace use of chain2 with chain1.  This makes the second load
7076        // isomorphic to the one we are deleting, and thus makes this load live.
7077        DEBUG(dbgs() << "\nReplacing.6 ";
7078              N->dump(&DAG);
7079              dbgs() << "\nWith chain: ";
7080              Chain.getNode()->dump(&DAG);
7081              dbgs() << "\n");
7082        WorkListRemover DeadNodes(*this);
7083        DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain);
7084
7085        if (N->use_empty()) {
7086          removeFromWorkList(N);
7087          DAG.DeleteNode(N);
7088        }
7089
7090        return SDValue(N, 0);   // Return N so it doesn't get rechecked!
7091      }
7092    } else {
7093      // Indexed loads.
7094      assert(N->getValueType(2) == MVT::Other && "Malformed indexed loads?");
7095      if (!N->hasAnyUseOfValue(0) && !N->hasAnyUseOfValue(1)) {
7096        SDValue Undef = DAG.getUNDEF(N->getValueType(0));
7097        DEBUG(dbgs() << "\nReplacing.7 ";
7098              N->dump(&DAG);
7099              dbgs() << "\nWith: ";
7100              Undef.getNode()->dump(&DAG);
7101              dbgs() << " and 2 other values\n");
7102        WorkListRemover DeadNodes(*this);
7103        DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Undef);
7104        DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1),
7105                                      DAG.getUNDEF(N->getValueType(1)));
7106        DAG.ReplaceAllUsesOfValueWith(SDValue(N, 2), Chain);
7107        removeFromWorkList(N);
7108        DAG.DeleteNode(N);
7109        return SDValue(N, 0);   // Return N so it doesn't get rechecked!
7110      }
7111    }
7112  }
7113
7114  // If this load is directly stored, replace the load value with the stored
7115  // value.
7116  // TODO: Handle store large -> read small portion.
7117  // TODO: Handle TRUNCSTORE/LOADEXT
7118  if (ISD::isNormalLoad(N) && !LD->isVolatile()) {
7119    if (ISD::isNON_TRUNCStore(Chain.getNode())) {
7120      StoreSDNode *PrevST = cast<StoreSDNode>(Chain);
7121      if (PrevST->getBasePtr() == Ptr &&
7122          PrevST->getValue().getValueType() == N->getValueType(0))
7123      return CombineTo(N, Chain.getOperand(1), Chain);
7124    }
7125  }
7126
7127  // Try to infer better alignment information than the load already has.
7128  if (OptLevel != CodeGenOpt::None && LD->isUnindexed()) {
7129    if (unsigned Align = DAG.InferPtrAlignment(Ptr)) {
7130      if (Align > LD->getAlignment())
7131        return DAG.getExtLoad(LD->getExtensionType(), N->getDebugLoc(),
7132                              LD->getValueType(0),
7133                              Chain, Ptr, LD->getPointerInfo(),
7134                              LD->getMemoryVT(),
7135                              LD->isVolatile(), LD->isNonTemporal(), Align);
7136    }
7137  }
7138
7139  if (CombinerAA) {
7140    // Walk up chain skipping non-aliasing memory nodes.
7141    SDValue BetterChain = FindBetterChain(N, Chain);
7142
7143    // If there is a better chain.
7144    if (Chain != BetterChain) {
7145      SDValue ReplLoad;
7146
7147      // Replace the chain to void dependency.
7148      if (LD->getExtensionType() == ISD::NON_EXTLOAD) {
7149        ReplLoad = DAG.getLoad(N->getValueType(0), LD->getDebugLoc(),
7150                               BetterChain, Ptr, LD->getPointerInfo(),
7151                               LD->isVolatile(), LD->isNonTemporal(),
7152                               LD->isInvariant(), LD->getAlignment());
7153      } else {
7154        ReplLoad = DAG.getExtLoad(LD->getExtensionType(), LD->getDebugLoc(),
7155                                  LD->getValueType(0),
7156                                  BetterChain, Ptr, LD->getPointerInfo(),
7157                                  LD->getMemoryVT(),
7158                                  LD->isVolatile(),
7159                                  LD->isNonTemporal(),
7160                                  LD->getAlignment());
7161      }
7162
7163      // Create token factor to keep old chain connected.
7164      SDValue Token = DAG.getNode(ISD::TokenFactor, N->getDebugLoc(),
7165                                  MVT::Other, Chain, ReplLoad.getValue(1));
7166
7167      // Make sure the new and old chains are cleaned up.
7168      AddToWorkList(Token.getNode());
7169
7170      // Replace uses with load result and token factor. Don't add users
7171      // to work list.
7172      return CombineTo(N, ReplLoad.getValue(0), Token, false);
7173    }
7174  }
7175
7176  // Try transforming N to an indexed load.
7177  if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
7178    return SDValue(N, 0);
7179
7180  return SDValue();
7181}
7182
7183/// CheckForMaskedLoad - Check to see if V is (and load (ptr), imm), where the
7184/// load is having specific bytes cleared out.  If so, return the byte size
7185/// being masked out and the shift amount.
7186static std::pair<unsigned, unsigned>
7187CheckForMaskedLoad(SDValue V, SDValue Ptr, SDValue Chain) {
7188  std::pair<unsigned, unsigned> Result(0, 0);
7189
7190  // Check for the structure we're looking for.
7191  if (V->getOpcode() != ISD::AND ||
7192      !isa<ConstantSDNode>(V->getOperand(1)) ||
7193      !ISD::isNormalLoad(V->getOperand(0).getNode()))
7194    return Result;
7195
7196  // Check the chain and pointer.
7197  LoadSDNode *LD = cast<LoadSDNode>(V->getOperand(0));
7198  if (LD->getBasePtr() != Ptr) return Result;  // Not from same pointer.
7199
7200  // The store should be chained directly to the load or be an operand of a
7201  // tokenfactor.
7202  if (LD == Chain.getNode())
7203    ; // ok.
7204  else if (Chain->getOpcode() != ISD::TokenFactor)
7205    return Result; // Fail.
7206  else {
7207    bool isOk = false;
7208    for (unsigned i = 0, e = Chain->getNumOperands(); i != e; ++i)
7209      if (Chain->getOperand(i).getNode() == LD) {
7210        isOk = true;
7211        break;
7212      }
7213    if (!isOk) return Result;
7214  }
7215
7216  // This only handles simple types.
7217  if (V.getValueType() != MVT::i16 &&
7218      V.getValueType() != MVT::i32 &&
7219      V.getValueType() != MVT::i64)
7220    return Result;
7221
7222  // Check the constant mask.  Invert it so that the bits being masked out are
7223  // 0 and the bits being kept are 1.  Use getSExtValue so that leading bits
7224  // follow the sign bit for uniformity.
7225  uint64_t NotMask = ~cast<ConstantSDNode>(V->getOperand(1))->getSExtValue();
7226  unsigned NotMaskLZ = CountLeadingZeros_64(NotMask);
7227  if (NotMaskLZ & 7) return Result;  // Must be multiple of a byte.
7228  unsigned NotMaskTZ = CountTrailingZeros_64(NotMask);
7229  if (NotMaskTZ & 7) return Result;  // Must be multiple of a byte.
7230  if (NotMaskLZ == 64) return Result;  // All zero mask.
7231
7232  // See if we have a continuous run of bits.  If so, we have 0*1+0*
7233  if (CountTrailingOnes_64(NotMask >> NotMaskTZ)+NotMaskTZ+NotMaskLZ != 64)
7234    return Result;
7235
7236  // Adjust NotMaskLZ down to be from the actual size of the int instead of i64.
7237  if (V.getValueType() != MVT::i64 && NotMaskLZ)
7238    NotMaskLZ -= 64-V.getValueSizeInBits();
7239
7240  unsigned MaskedBytes = (V.getValueSizeInBits()-NotMaskLZ-NotMaskTZ)/8;
7241  switch (MaskedBytes) {
7242  case 1:
7243  case 2:
7244  case 4: break;
7245  default: return Result; // All one mask, or 5-byte mask.
7246  }
7247
7248  // Verify that the first bit starts at a multiple of mask so that the access
7249  // is aligned the same as the access width.
7250  if (NotMaskTZ && NotMaskTZ/8 % MaskedBytes) return Result;
7251
7252  Result.first = MaskedBytes;
7253  Result.second = NotMaskTZ/8;
7254  return Result;
7255}
7256
7257
7258/// ShrinkLoadReplaceStoreWithStore - Check to see if IVal is something that
7259/// provides a value as specified by MaskInfo.  If so, replace the specified
7260/// store with a narrower store of truncated IVal.
7261static SDNode *
7262ShrinkLoadReplaceStoreWithStore(const std::pair<unsigned, unsigned> &MaskInfo,
7263                                SDValue IVal, StoreSDNode *St,
7264                                DAGCombiner *DC) {
7265  unsigned NumBytes = MaskInfo.first;
7266  unsigned ByteShift = MaskInfo.second;
7267  SelectionDAG &DAG = DC->getDAG();
7268
7269  // Check to see if IVal is all zeros in the part being masked in by the 'or'
7270  // that uses this.  If not, this is not a replacement.
7271  APInt Mask = ~APInt::getBitsSet(IVal.getValueSizeInBits(),
7272                                  ByteShift*8, (ByteShift+NumBytes)*8);
7273  if (!DAG.MaskedValueIsZero(IVal, Mask)) return 0;
7274
7275  // Check that it is legal on the target to do this.  It is legal if the new
7276  // VT we're shrinking to (i8/i16/i32) is legal or we're still before type
7277  // legalization.
7278  MVT VT = MVT::getIntegerVT(NumBytes*8);
7279  if (!DC->isTypeLegal(VT))
7280    return 0;
7281
7282  // Okay, we can do this!  Replace the 'St' store with a store of IVal that is
7283  // shifted by ByteShift and truncated down to NumBytes.
7284  if (ByteShift)
7285    IVal = DAG.getNode(ISD::SRL, IVal->getDebugLoc(), IVal.getValueType(), IVal,
7286                       DAG.getConstant(ByteShift*8,
7287                                    DC->getShiftAmountTy(IVal.getValueType())));
7288
7289  // Figure out the offset for the store and the alignment of the access.
7290  unsigned StOffset;
7291  unsigned NewAlign = St->getAlignment();
7292
7293  if (DAG.getTargetLoweringInfo().isLittleEndian())
7294    StOffset = ByteShift;
7295  else
7296    StOffset = IVal.getValueType().getStoreSize() - ByteShift - NumBytes;
7297
7298  SDValue Ptr = St->getBasePtr();
7299  if (StOffset) {
7300    Ptr = DAG.getNode(ISD::ADD, IVal->getDebugLoc(), Ptr.getValueType(),
7301                      Ptr, DAG.getConstant(StOffset, Ptr.getValueType()));
7302    NewAlign = MinAlign(NewAlign, StOffset);
7303  }
7304
7305  // Truncate down to the new size.
7306  IVal = DAG.getNode(ISD::TRUNCATE, IVal->getDebugLoc(), VT, IVal);
7307
7308  ++OpsNarrowed;
7309  return DAG.getStore(St->getChain(), St->getDebugLoc(), IVal, Ptr,
7310                      St->getPointerInfo().getWithOffset(StOffset),
7311                      false, false, NewAlign).getNode();
7312}
7313
7314
7315/// ReduceLoadOpStoreWidth - Look for sequence of load / op / store where op is
7316/// one of 'or', 'xor', and 'and' of immediates. If 'op' is only touching some
7317/// of the loaded bits, try narrowing the load and store if it would end up
7318/// being a win for performance or code size.
7319SDValue DAGCombiner::ReduceLoadOpStoreWidth(SDNode *N) {
7320  StoreSDNode *ST  = cast<StoreSDNode>(N);
7321  if (ST->isVolatile())
7322    return SDValue();
7323
7324  SDValue Chain = ST->getChain();
7325  SDValue Value = ST->getValue();
7326  SDValue Ptr   = ST->getBasePtr();
7327  EVT VT = Value.getValueType();
7328
7329  if (ST->isTruncatingStore() || VT.isVector() || !Value.hasOneUse())
7330    return SDValue();
7331
7332  unsigned Opc = Value.getOpcode();
7333
7334  // If this is "store (or X, Y), P" and X is "(and (load P), cst)", where cst
7335  // is a byte mask indicating a consecutive number of bytes, check to see if
7336  // Y is known to provide just those bytes.  If so, we try to replace the
7337  // load + replace + store sequence with a single (narrower) store, which makes
7338  // the load dead.
7339  if (Opc == ISD::OR) {
7340    std::pair<unsigned, unsigned> MaskedLoad;
7341    MaskedLoad = CheckForMaskedLoad(Value.getOperand(0), Ptr, Chain);
7342    if (MaskedLoad.first)
7343      if (SDNode *NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad,
7344                                                  Value.getOperand(1), ST,this))
7345        return SDValue(NewST, 0);
7346
7347    // Or is commutative, so try swapping X and Y.
7348    MaskedLoad = CheckForMaskedLoad(Value.getOperand(1), Ptr, Chain);
7349    if (MaskedLoad.first)
7350      if (SDNode *NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad,
7351                                                  Value.getOperand(0), ST,this))
7352        return SDValue(NewST, 0);
7353  }
7354
7355  if ((Opc != ISD::OR && Opc != ISD::XOR && Opc != ISD::AND) ||
7356      Value.getOperand(1).getOpcode() != ISD::Constant)
7357    return SDValue();
7358
7359  SDValue N0 = Value.getOperand(0);
7360  if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
7361      Chain == SDValue(N0.getNode(), 1)) {
7362    LoadSDNode *LD = cast<LoadSDNode>(N0);
7363    if (LD->getBasePtr() != Ptr ||
7364        LD->getPointerInfo().getAddrSpace() !=
7365        ST->getPointerInfo().getAddrSpace())
7366      return SDValue();
7367
7368    // Find the type to narrow it the load / op / store to.
7369    SDValue N1 = Value.getOperand(1);
7370    unsigned BitWidth = N1.getValueSizeInBits();
7371    APInt Imm = cast<ConstantSDNode>(N1)->getAPIntValue();
7372    if (Opc == ISD::AND)
7373      Imm ^= APInt::getAllOnesValue(BitWidth);
7374    if (Imm == 0 || Imm.isAllOnesValue())
7375      return SDValue();
7376    unsigned ShAmt = Imm.countTrailingZeros();
7377    unsigned MSB = BitWidth - Imm.countLeadingZeros() - 1;
7378    unsigned NewBW = NextPowerOf2(MSB - ShAmt);
7379    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW);
7380    while (NewBW < BitWidth &&
7381           !(TLI.isOperationLegalOrCustom(Opc, NewVT) &&
7382             TLI.isNarrowingProfitable(VT, NewVT))) {
7383      NewBW = NextPowerOf2(NewBW);
7384      NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW);
7385    }
7386    if (NewBW >= BitWidth)
7387      return SDValue();
7388
7389    // If the lsb changed does not start at the type bitwidth boundary,
7390    // start at the previous one.
7391    if (ShAmt % NewBW)
7392      ShAmt = (((ShAmt + NewBW - 1) / NewBW) * NewBW) - NewBW;
7393    APInt Mask = APInt::getBitsSet(BitWidth, ShAmt, ShAmt + NewBW);
7394    if ((Imm & Mask) == Imm) {
7395      APInt NewImm = (Imm & Mask).lshr(ShAmt).trunc(NewBW);
7396      if (Opc == ISD::AND)
7397        NewImm ^= APInt::getAllOnesValue(NewBW);
7398      uint64_t PtrOff = ShAmt / 8;
7399      // For big endian targets, we need to adjust the offset to the pointer to
7400      // load the correct bytes.
7401      if (TLI.isBigEndian())
7402        PtrOff = (BitWidth + 7 - NewBW) / 8 - PtrOff;
7403
7404      unsigned NewAlign = MinAlign(LD->getAlignment(), PtrOff);
7405      Type *NewVTTy = NewVT.getTypeForEVT(*DAG.getContext());
7406      if (NewAlign < TLI.getDataLayout()->getABITypeAlignment(NewVTTy))
7407        return SDValue();
7408
7409      SDValue NewPtr = DAG.getNode(ISD::ADD, LD->getDebugLoc(),
7410                                   Ptr.getValueType(), Ptr,
7411                                   DAG.getConstant(PtrOff, Ptr.getValueType()));
7412      SDValue NewLD = DAG.getLoad(NewVT, N0.getDebugLoc(),
7413                                  LD->getChain(), NewPtr,
7414                                  LD->getPointerInfo().getWithOffset(PtrOff),
7415                                  LD->isVolatile(), LD->isNonTemporal(),
7416                                  LD->isInvariant(), NewAlign);
7417      SDValue NewVal = DAG.getNode(Opc, Value.getDebugLoc(), NewVT, NewLD,
7418                                   DAG.getConstant(NewImm, NewVT));
7419      SDValue NewST = DAG.getStore(Chain, N->getDebugLoc(),
7420                                   NewVal, NewPtr,
7421                                   ST->getPointerInfo().getWithOffset(PtrOff),
7422                                   false, false, NewAlign);
7423
7424      AddToWorkList(NewPtr.getNode());
7425      AddToWorkList(NewLD.getNode());
7426      AddToWorkList(NewVal.getNode());
7427      WorkListRemover DeadNodes(*this);
7428      DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLD.getValue(1));
7429      ++OpsNarrowed;
7430      return NewST;
7431    }
7432  }
7433
7434  return SDValue();
7435}
7436
7437/// TransformFPLoadStorePair - For a given floating point load / store pair,
7438/// if the load value isn't used by any other operations, then consider
7439/// transforming the pair to integer load / store operations if the target
7440/// deems the transformation profitable.
7441SDValue DAGCombiner::TransformFPLoadStorePair(SDNode *N) {
7442  StoreSDNode *ST  = cast<StoreSDNode>(N);
7443  SDValue Chain = ST->getChain();
7444  SDValue Value = ST->getValue();
7445  if (ISD::isNormalStore(ST) && ISD::isNormalLoad(Value.getNode()) &&
7446      Value.hasOneUse() &&
7447      Chain == SDValue(Value.getNode(), 1)) {
7448    LoadSDNode *LD = cast<LoadSDNode>(Value);
7449    EVT VT = LD->getMemoryVT();
7450    if (!VT.isFloatingPoint() ||
7451        VT != ST->getMemoryVT() ||
7452        LD->isNonTemporal() ||
7453        ST->isNonTemporal() ||
7454        LD->getPointerInfo().getAddrSpace() != 0 ||
7455        ST->getPointerInfo().getAddrSpace() != 0)
7456      return SDValue();
7457
7458    EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
7459    if (!TLI.isOperationLegal(ISD::LOAD, IntVT) ||
7460        !TLI.isOperationLegal(ISD::STORE, IntVT) ||
7461        !TLI.isDesirableToTransformToIntegerOp(ISD::LOAD, VT) ||
7462        !TLI.isDesirableToTransformToIntegerOp(ISD::STORE, VT))
7463      return SDValue();
7464
7465    unsigned LDAlign = LD->getAlignment();
7466    unsigned STAlign = ST->getAlignment();
7467    Type *IntVTTy = IntVT.getTypeForEVT(*DAG.getContext());
7468    unsigned ABIAlign = TLI.getDataLayout()->getABITypeAlignment(IntVTTy);
7469    if (LDAlign < ABIAlign || STAlign < ABIAlign)
7470      return SDValue();
7471
7472    SDValue NewLD = DAG.getLoad(IntVT, Value.getDebugLoc(),
7473                                LD->getChain(), LD->getBasePtr(),
7474                                LD->getPointerInfo(),
7475                                false, false, false, LDAlign);
7476
7477    SDValue NewST = DAG.getStore(NewLD.getValue(1), N->getDebugLoc(),
7478                                 NewLD, ST->getBasePtr(),
7479                                 ST->getPointerInfo(),
7480                                 false, false, STAlign);
7481
7482    AddToWorkList(NewLD.getNode());
7483    AddToWorkList(NewST.getNode());
7484    WorkListRemover DeadNodes(*this);
7485    DAG.ReplaceAllUsesOfValueWith(Value.getValue(1), NewLD.getValue(1));
7486    ++LdStFP2Int;
7487    return NewST;
7488  }
7489
7490  return SDValue();
7491}
7492
7493/// Returns the base pointer and an integer offset from that object.
7494static std::pair<SDValue, int64_t> GetPointerBaseAndOffset(SDValue Ptr) {
7495  if (Ptr->getOpcode() == ISD::ADD && isa<ConstantSDNode>(Ptr->getOperand(1))) {
7496    int64_t Offset = cast<ConstantSDNode>(Ptr->getOperand(1))->getSExtValue();
7497    SDValue Base = Ptr->getOperand(0);
7498    return std::make_pair(Base, Offset);
7499  }
7500
7501  return std::make_pair(Ptr, 0);
7502}
7503
7504/// Holds a pointer to an LSBaseSDNode as well as information on where it
7505/// is located in a sequence of memory operations connected by a chain.
7506struct MemOpLink {
7507  MemOpLink (LSBaseSDNode *N, int64_t Offset, unsigned Seq):
7508    MemNode(N), OffsetFromBase(Offset), SequenceNum(Seq) { }
7509  // Ptr to the mem node.
7510  LSBaseSDNode *MemNode;
7511  // Offset from the base ptr.
7512  int64_t OffsetFromBase;
7513  // What is the sequence number of this mem node.
7514  // Lowest mem operand in the DAG starts at zero.
7515  unsigned SequenceNum;
7516};
7517
7518/// Sorts store nodes in a link according to their offset from a shared
7519// base ptr.
7520struct ConsecutiveMemoryChainSorter {
7521  bool operator()(MemOpLink LHS, MemOpLink RHS) {
7522    return LHS.OffsetFromBase < RHS.OffsetFromBase;
7523  }
7524};
7525
7526bool DAGCombiner::MergeConsecutiveStores(StoreSDNode* St) {
7527  EVT MemVT = St->getMemoryVT();
7528  int64_t ElementSizeBytes = MemVT.getSizeInBits()/8;
7529
7530  // Don't merge vectors into wider inputs.
7531  if (MemVT.isVector() || !MemVT.isSimple())
7532    return false;
7533
7534  // Perform an early exit check. Do not bother looking at stored values that
7535  // are not constants or loads.
7536  SDValue StoredVal = St->getValue();
7537  bool IsLoadSrc = isa<LoadSDNode>(StoredVal);
7538  if (!isa<ConstantSDNode>(StoredVal) && !isa<ConstantFPSDNode>(StoredVal) &&
7539      !IsLoadSrc)
7540    return false;
7541
7542  // Only look at ends of store sequences.
7543  SDValue Chain = SDValue(St, 1);
7544  if (Chain->hasOneUse() && Chain->use_begin()->getOpcode() == ISD::STORE)
7545    return false;
7546
7547  // This holds the base pointer and the offset in bytes from the base pointer.
7548  std::pair<SDValue, int64_t> BasePtr =
7549      GetPointerBaseAndOffset(St->getBasePtr());
7550
7551  // We must have a base and an offset.
7552  if (!BasePtr.first.getNode())
7553    return false;
7554
7555  // Do not handle stores to undef base pointers.
7556  if (BasePtr.first.getOpcode() == ISD::UNDEF)
7557    return false;
7558
7559  // Save the LoadSDNodes that we find in the chain.
7560  // We need to make sure that these nodes do not interfere with
7561  // any of the store nodes.
7562  SmallVector<LSBaseSDNode*, 8> AliasLoadNodes;
7563
7564  // Save the StoreSDNodes that we find in the chain.
7565  SmallVector<MemOpLink, 8> StoreNodes;
7566
7567  // Walk up the chain and look for nodes with offsets from the same
7568  // base pointer. Stop when reaching an instruction with a different kind
7569  // or instruction which has a different base pointer.
7570  unsigned Seq = 0;
7571  StoreSDNode *Index = St;
7572  while (Index) {
7573    // If the chain has more than one use, then we can't reorder the mem ops.
7574    if (Index != St && !SDValue(Index, 1)->hasOneUse())
7575      break;
7576
7577    // Find the base pointer and offset for this memory node.
7578    std::pair<SDValue, int64_t> Ptr =
7579      GetPointerBaseAndOffset(Index->getBasePtr());
7580
7581    // Check that the base pointer is the same as the original one.
7582    if (Ptr.first.getNode() != BasePtr.first.getNode())
7583      break;
7584
7585    // Check that the alignment is the same.
7586    if (Index->getAlignment() != St->getAlignment())
7587      break;
7588
7589    // The memory operands must not be volatile.
7590    if (Index->isVolatile() || Index->isIndexed())
7591      break;
7592
7593    // No truncation.
7594    if (StoreSDNode *St = dyn_cast<StoreSDNode>(Index))
7595      if (St->isTruncatingStore())
7596        break;
7597
7598    // The stored memory type must be the same.
7599    if (Index->getMemoryVT() != MemVT)
7600      break;
7601
7602    // We do not allow unaligned stores because we want to prevent overriding
7603    // stores.
7604    if (Index->getAlignment()*8 != MemVT.getSizeInBits())
7605      break;
7606
7607    // We found a potential memory operand to merge.
7608    StoreNodes.push_back(MemOpLink(Index, Ptr.second, Seq++));
7609
7610    // Find the next memory operand in the chain. If the next operand in the
7611    // chain is a store then move up and continue the scan with the next
7612    // memory operand. If the next operand is a load save it and use alias
7613    // information to check if it interferes with anything.
7614    SDNode *NextInChain = Index->getChain().getNode();
7615    while (1) {
7616      if (isa<StoreSDNode>(NextInChain)) {
7617        // We found a store node. Use it for the next iteration.
7618        Index = cast<StoreSDNode>(NextInChain);
7619        break;
7620      } else if (LoadSDNode *Ldn = dyn_cast<LoadSDNode>(NextInChain)) {
7621        // Save the load node for later. Continue the scan.
7622        AliasLoadNodes.push_back(Ldn);
7623        NextInChain = Ldn->getChain().getNode();
7624        continue;
7625      } else {
7626        Index = NULL;
7627        break;
7628      }
7629    }
7630  }
7631
7632  // Check if there is anything to merge.
7633  if (StoreNodes.size() < 2)
7634    return false;
7635
7636  // Sort the memory operands according to their distance from the base pointer.
7637  std::sort(StoreNodes.begin(), StoreNodes.end(),
7638            ConsecutiveMemoryChainSorter());
7639
7640  // Scan the memory operations on the chain and find the first non-consecutive
7641  // store memory address.
7642  unsigned LastConsecutiveStore = 0;
7643  int64_t StartAddress = StoreNodes[0].OffsetFromBase;
7644  for (unsigned i = 1, e = StoreNodes.size(); i < e; ++i) {
7645    int64_t CurrAddress = StoreNodes[i].OffsetFromBase;
7646    if (CurrAddress - StartAddress != (ElementSizeBytes * i))
7647      break;
7648
7649    bool Alias = false;
7650    // Check if this store interferes with any of the loads that we found.
7651    for (unsigned ld = 0, lde = AliasLoadNodes.size(); ld < lde; ++ld)
7652      if (isAlias(AliasLoadNodes[ld], StoreNodes[i].MemNode)) {
7653        Alias = true;
7654        break;
7655      }
7656
7657    // We found a load that alias with this store. Stop the sequence.
7658    if (Alias)
7659      break;
7660
7661    // Mark this node as useful.
7662    LastConsecutiveStore = i;
7663  }
7664
7665  // The node with the lowest store address.
7666  LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode;
7667
7668  // Store the constants into memory as one consecutive store.
7669  if (!IsLoadSrc) {
7670    unsigned LastLegalType = 0;
7671    unsigned LastLegalVectorType = 0;
7672    bool NonZero = false;
7673    for (unsigned i=0; i<LastConsecutiveStore+1; ++i) {
7674      StoreSDNode *St  = cast<StoreSDNode>(StoreNodes[i].MemNode);
7675      SDValue StoredVal = St->getValue();
7676
7677      if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(StoredVal)) {
7678        NonZero |= !C->isNullValue();
7679      } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(StoredVal)) {
7680        NonZero |= !C->getConstantFPValue()->isNullValue();
7681      } else {
7682        // Non constant.
7683        break;
7684      }
7685
7686      // Find a legal type for the constant store.
7687      unsigned StoreBW = (i+1) * ElementSizeBytes * 8;
7688      EVT StoreTy = EVT::getIntegerVT(*DAG.getContext(), StoreBW);
7689      if (TLI.isTypeLegal(StoreTy))
7690        LastLegalType = i+1;
7691
7692      // Find a legal type for the vector store.
7693      EVT Ty = EVT::getVectorVT(*DAG.getContext(), MemVT, i+1);
7694      if (TLI.isTypeLegal(Ty))
7695        LastLegalVectorType = i + 1;
7696    }
7697
7698    // We only use vectors if the constant is known to be zero.
7699    if (NonZero)
7700      LastLegalVectorType = 0;
7701
7702    // Check if we found a legal integer type to store.
7703    if (LastLegalType == 0 && LastLegalVectorType == 0)
7704      return false;
7705
7706    bool UseVector = LastLegalVectorType > LastLegalType;
7707    unsigned NumElem = UseVector ? LastLegalVectorType : LastLegalType;
7708
7709    // Make sure we have something to merge.
7710    if (NumElem < 2)
7711      return false;
7712
7713    unsigned EarliestNodeUsed = 0;
7714    for (unsigned i=0; i < NumElem; ++i) {
7715      // Find a chain for the new wide-store operand. Notice that some
7716      // of the store nodes that we found may not be selected for inclusion
7717      // in the wide store. The chain we use needs to be the chain of the
7718      // earliest store node which is *used* and replaced by the wide store.
7719      if (StoreNodes[i].SequenceNum > StoreNodes[EarliestNodeUsed].SequenceNum)
7720        EarliestNodeUsed = i;
7721    }
7722
7723    // The earliest Node in the DAG.
7724    LSBaseSDNode *EarliestOp = StoreNodes[EarliestNodeUsed].MemNode;
7725    DebugLoc DL = StoreNodes[0].MemNode->getDebugLoc();
7726
7727    SDValue StoredVal;
7728    if (UseVector) {
7729      // Find a legal type for the vector store.
7730      EVT Ty = EVT::getVectorVT(*DAG.getContext(), MemVT, NumElem);
7731      assert(TLI.isTypeLegal(Ty) && "Illegal vector store");
7732      StoredVal = DAG.getConstant(0, Ty);
7733    } else {
7734      unsigned StoreBW = NumElem * ElementSizeBytes * 8;
7735      APInt StoreInt(StoreBW, 0);
7736
7737      // Construct a single integer constant which is made of the smaller
7738      // constant inputs.
7739      bool IsLE = TLI.isLittleEndian();
7740      for (unsigned i = 0; i < NumElem ; ++i) {
7741        unsigned Idx = IsLE ?(NumElem - 1 - i) : i;
7742        StoreSDNode *St  = cast<StoreSDNode>(StoreNodes[Idx].MemNode);
7743        SDValue Val = St->getValue();
7744        StoreInt<<=ElementSizeBytes*8;
7745        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) {
7746          StoreInt|=C->getAPIntValue().zext(StoreBW);
7747        } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Val)) {
7748          StoreInt|= C->getValueAPF().bitcastToAPInt().zext(StoreBW);
7749        } else {
7750          assert(false && "Invalid constant element type");
7751        }
7752      }
7753
7754      // Create the new Load and Store operations.
7755      EVT StoreTy = EVT::getIntegerVT(*DAG.getContext(), StoreBW);
7756      StoredVal = DAG.getConstant(StoreInt, StoreTy);
7757    }
7758
7759    SDValue NewStore = DAG.getStore(EarliestOp->getChain(), DL, StoredVal,
7760                                    FirstInChain->getBasePtr(),
7761                                    FirstInChain->getPointerInfo(),
7762                                    false, false,
7763                                    FirstInChain->getAlignment());
7764
7765    // Replace the first store with the new store
7766    CombineTo(EarliestOp, NewStore);
7767    // Erase all other stores.
7768    for (unsigned i = 0; i < NumElem ; ++i) {
7769      if (StoreNodes[i].MemNode == EarliestOp)
7770        continue;
7771      StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode);
7772      // ReplaceAllUsesWith will replace all uses that existed when it was
7773      // called, but graph optimizations may cause new ones to appear. For
7774      // example, the case in pr14333 looks like
7775      //
7776      //  St's chain -> St -> another store -> X
7777      //
7778      // And the only difference from St to the other store is the chain.
7779      // When we change it's chain to be St's chain they become identical,
7780      // get CSEed and the net result is that X is now a use of St.
7781      // Since we know that St is redundant, just iterate.
7782      while (!St->use_empty())
7783        DAG.ReplaceAllUsesWith(SDValue(St, 0), St->getChain());
7784      removeFromWorkList(St);
7785      DAG.DeleteNode(St);
7786    }
7787
7788    return true;
7789  }
7790
7791  // Below we handle the case of multiple consecutive stores that
7792  // come from multiple consecutive loads. We merge them into a single
7793  // wide load and a single wide store.
7794
7795  // Look for load nodes which are used by the stored values.
7796  SmallVector<MemOpLink, 8> LoadNodes;
7797
7798  // Find acceptable loads. Loads need to have the same chain (token factor),
7799  // must not be zext, volatile, indexed, and they must be consecutive.
7800  SDValue LdBasePtr;
7801  for (unsigned i=0; i<LastConsecutiveStore+1; ++i) {
7802    StoreSDNode *St  = cast<StoreSDNode>(StoreNodes[i].MemNode);
7803    LoadSDNode *Ld = dyn_cast<LoadSDNode>(St->getValue());
7804    if (!Ld) break;
7805
7806    // Loads must only have one use.
7807    if (!Ld->hasNUsesOfValue(1, 0))
7808      break;
7809
7810    // Check that the alignment is the same as the stores.
7811    if (Ld->getAlignment() != St->getAlignment())
7812      break;
7813
7814    // The memory operands must not be volatile.
7815    if (Ld->isVolatile() || Ld->isIndexed())
7816      break;
7817
7818    // We do not accept ext loads.
7819    if (Ld->getExtensionType() != ISD::NON_EXTLOAD)
7820      break;
7821
7822    // The stored memory type must be the same.
7823    if (Ld->getMemoryVT() != MemVT)
7824      break;
7825
7826    std::pair<SDValue, int64_t> LdPtr =
7827    GetPointerBaseAndOffset(Ld->getBasePtr());
7828
7829    // If this is not the first ptr that we check.
7830    if (LdBasePtr.getNode()) {
7831      // The base ptr must be the same.
7832      if (LdPtr.first != LdBasePtr)
7833        break;
7834    } else {
7835      // Check that all other base pointers are the same as this one.
7836      LdBasePtr = LdPtr.first;
7837    }
7838
7839    // We found a potential memory operand to merge.
7840    LoadNodes.push_back(MemOpLink(Ld, LdPtr.second, 0));
7841  }
7842
7843  if (LoadNodes.size() < 2)
7844    return false;
7845
7846  // Scan the memory operations on the chain and find the first non-consecutive
7847  // load memory address. These variables hold the index in the store node
7848  // array.
7849  unsigned LastConsecutiveLoad = 0;
7850  // This variable refers to the size and not index in the array.
7851  unsigned LastLegalVectorType = 0;
7852  unsigned LastLegalIntegerType = 0;
7853  StartAddress = LoadNodes[0].OffsetFromBase;
7854  SDValue FirstChain = LoadNodes[0].MemNode->getChain();
7855  for (unsigned i = 1; i < LoadNodes.size(); ++i) {
7856    // All loads much share the same chain.
7857    if (LoadNodes[i].MemNode->getChain() != FirstChain)
7858      break;
7859
7860    int64_t CurrAddress = LoadNodes[i].OffsetFromBase;
7861    if (CurrAddress - StartAddress != (ElementSizeBytes * i))
7862      break;
7863    LastConsecutiveLoad = i;
7864
7865    // Find a legal type for the vector store.
7866    EVT StoreTy = EVT::getVectorVT(*DAG.getContext(), MemVT, i+1);
7867    if (TLI.isTypeLegal(StoreTy))
7868      LastLegalVectorType = i + 1;
7869
7870    // Find a legal type for the integer store.
7871    unsigned StoreBW = (i+1) * ElementSizeBytes * 8;
7872    StoreTy = EVT::getIntegerVT(*DAG.getContext(), StoreBW);
7873    if (TLI.isTypeLegal(StoreTy))
7874      LastLegalIntegerType = i + 1;
7875  }
7876
7877  // Only use vector types if the vector type is larger than the integer type.
7878  // If they are the same, use integers.
7879  bool UseVectorTy = LastLegalVectorType > LastLegalIntegerType;
7880  unsigned LastLegalType = std::max(LastLegalVectorType, LastLegalIntegerType);
7881
7882  // We add +1 here because the LastXXX variables refer to location while
7883  // the NumElem refers to array/index size.
7884  unsigned NumElem = std::min(LastConsecutiveStore, LastConsecutiveLoad) + 1;
7885  NumElem = std::min(LastLegalType, NumElem);
7886
7887  if (NumElem < 2)
7888    return false;
7889
7890  // The earliest Node in the DAG.
7891  unsigned EarliestNodeUsed = 0;
7892  LSBaseSDNode *EarliestOp = StoreNodes[EarliestNodeUsed].MemNode;
7893  for (unsigned i=1; i<NumElem; ++i) {
7894    // Find a chain for the new wide-store operand. Notice that some
7895    // of the store nodes that we found may not be selected for inclusion
7896    // in the wide store. The chain we use needs to be the chain of the
7897    // earliest store node which is *used* and replaced by the wide store.
7898    if (StoreNodes[i].SequenceNum > StoreNodes[EarliestNodeUsed].SequenceNum)
7899      EarliestNodeUsed = i;
7900  }
7901
7902  // Find if it is better to use vectors or integers to load and store
7903  // to memory.
7904  EVT JointMemOpVT;
7905  if (UseVectorTy) {
7906    JointMemOpVT = EVT::getVectorVT(*DAG.getContext(), MemVT, NumElem);
7907  } else {
7908    unsigned StoreBW = NumElem * ElementSizeBytes * 8;
7909    JointMemOpVT = EVT::getIntegerVT(*DAG.getContext(), StoreBW);
7910  }
7911
7912  DebugLoc LoadDL = LoadNodes[0].MemNode->getDebugLoc();
7913  DebugLoc StoreDL = StoreNodes[0].MemNode->getDebugLoc();
7914
7915  LoadSDNode *FirstLoad = cast<LoadSDNode>(LoadNodes[0].MemNode);
7916  SDValue NewLoad = DAG.getLoad(JointMemOpVT, LoadDL,
7917                                FirstLoad->getChain(),
7918                                FirstLoad->getBasePtr(),
7919                                FirstLoad->getPointerInfo(),
7920                                false, false, false,
7921                                FirstLoad->getAlignment());
7922
7923  SDValue NewStore = DAG.getStore(EarliestOp->getChain(), StoreDL, NewLoad,
7924                                  FirstInChain->getBasePtr(),
7925                                  FirstInChain->getPointerInfo(), false, false,
7926                                  FirstInChain->getAlignment());
7927
7928  // Replace one of the loads with the new load.
7929  LoadSDNode *Ld = cast<LoadSDNode>(LoadNodes[0].MemNode);
7930  DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1),
7931                                SDValue(NewLoad.getNode(), 1));
7932
7933  // Remove the rest of the load chains.
7934  for (unsigned i = 1; i < NumElem ; ++i) {
7935    // Replace all chain users of the old load nodes with the chain of the new
7936    // load node.
7937    LoadSDNode *Ld = cast<LoadSDNode>(LoadNodes[i].MemNode);
7938    DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), Ld->getChain());
7939  }
7940
7941  // Replace the first store with the new store.
7942  CombineTo(EarliestOp, NewStore);
7943  // Erase all other stores.
7944  for (unsigned i = 0; i < NumElem ; ++i) {
7945    // Remove all Store nodes.
7946    if (StoreNodes[i].MemNode == EarliestOp)
7947      continue;
7948    StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode);
7949    DAG.ReplaceAllUsesOfValueWith(SDValue(St, 0), St->getChain());
7950    removeFromWorkList(St);
7951    DAG.DeleteNode(St);
7952  }
7953
7954  return true;
7955}
7956
7957SDValue DAGCombiner::visitSTORE(SDNode *N) {
7958  StoreSDNode *ST  = cast<StoreSDNode>(N);
7959  SDValue Chain = ST->getChain();
7960  SDValue Value = ST->getValue();
7961  SDValue Ptr   = ST->getBasePtr();
7962
7963  // If this is a store of a bit convert, store the input value if the
7964  // resultant store does not need a higher alignment than the original.
7965  if (Value.getOpcode() == ISD::BITCAST && !ST->isTruncatingStore() &&
7966      ST->isUnindexed()) {
7967    unsigned OrigAlign = ST->getAlignment();
7968    EVT SVT = Value.getOperand(0).getValueType();
7969    unsigned Align = TLI.getDataLayout()->
7970      getABITypeAlignment(SVT.getTypeForEVT(*DAG.getContext()));
7971    if (Align <= OrigAlign &&
7972        ((!LegalOperations && !ST->isVolatile()) ||
7973         TLI.isOperationLegalOrCustom(ISD::STORE, SVT)))
7974      return DAG.getStore(Chain, N->getDebugLoc(), Value.getOperand(0),
7975                          Ptr, ST->getPointerInfo(), ST->isVolatile(),
7976                          ST->isNonTemporal(), OrigAlign);
7977  }
7978
7979  // Turn 'store undef, Ptr' -> nothing.
7980  if (Value.getOpcode() == ISD::UNDEF && ST->isUnindexed())
7981    return Chain;
7982
7983  // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
7984  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Value)) {
7985    // NOTE: If the original store is volatile, this transform must not increase
7986    // the number of stores.  For example, on x86-32 an f64 can be stored in one
7987    // processor operation but an i64 (which is not legal) requires two.  So the
7988    // transform should not be done in this case.
7989    if (Value.getOpcode() != ISD::TargetConstantFP) {
7990      SDValue Tmp;
7991      switch (CFP->getValueType(0).getSimpleVT().SimpleTy) {
7992      default: llvm_unreachable("Unknown FP type");
7993      case MVT::f16:    // We don't do this for these yet.
7994      case MVT::f80:
7995      case MVT::f128:
7996      case MVT::ppcf128:
7997        break;
7998      case MVT::f32:
7999        if ((isTypeLegal(MVT::i32) && !LegalOperations && !ST->isVolatile()) ||
8000            TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) {
8001          Tmp = DAG.getConstant((uint32_t)CFP->getValueAPF().
8002                              bitcastToAPInt().getZExtValue(), MVT::i32);
8003          return DAG.getStore(Chain, N->getDebugLoc(), Tmp,
8004                              Ptr, ST->getPointerInfo(), ST->isVolatile(),
8005                              ST->isNonTemporal(), ST->getAlignment());
8006        }
8007        break;
8008      case MVT::f64:
8009        if ((TLI.isTypeLegal(MVT::i64) && !LegalOperations &&
8010             !ST->isVolatile()) ||
8011            TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i64)) {
8012          Tmp = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
8013                                getZExtValue(), MVT::i64);
8014          return DAG.getStore(Chain, N->getDebugLoc(), Tmp,
8015                              Ptr, ST->getPointerInfo(), ST->isVolatile(),
8016                              ST->isNonTemporal(), ST->getAlignment());
8017        }
8018
8019        if (!ST->isVolatile() &&
8020            TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) {
8021          // Many FP stores are not made apparent until after legalize, e.g. for
8022          // argument passing.  Since this is so common, custom legalize the
8023          // 64-bit integer store into two 32-bit stores.
8024          uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
8025          SDValue Lo = DAG.getConstant(Val & 0xFFFFFFFF, MVT::i32);
8026          SDValue Hi = DAG.getConstant(Val >> 32, MVT::i32);
8027          if (TLI.isBigEndian()) std::swap(Lo, Hi);
8028
8029          unsigned Alignment = ST->getAlignment();
8030          bool isVolatile = ST->isVolatile();
8031          bool isNonTemporal = ST->isNonTemporal();
8032
8033          SDValue St0 = DAG.getStore(Chain, ST->getDebugLoc(), Lo,
8034                                     Ptr, ST->getPointerInfo(),
8035                                     isVolatile, isNonTemporal,
8036                                     ST->getAlignment());
8037          Ptr = DAG.getNode(ISD::ADD, N->getDebugLoc(), Ptr.getValueType(), Ptr,
8038                            DAG.getConstant(4, Ptr.getValueType()));
8039          Alignment = MinAlign(Alignment, 4U);
8040          SDValue St1 = DAG.getStore(Chain, ST->getDebugLoc(), Hi,
8041                                     Ptr, ST->getPointerInfo().getWithOffset(4),
8042                                     isVolatile, isNonTemporal,
8043                                     Alignment);
8044          return DAG.getNode(ISD::TokenFactor, N->getDebugLoc(), MVT::Other,
8045                             St0, St1);
8046        }
8047
8048        break;
8049      }
8050    }
8051  }
8052
8053  // Try to infer better alignment information than the store already has.
8054  if (OptLevel != CodeGenOpt::None && ST->isUnindexed()) {
8055    if (unsigned Align = DAG.InferPtrAlignment(Ptr)) {
8056      if (Align > ST->getAlignment())
8057        return DAG.getTruncStore(Chain, N->getDebugLoc(), Value,
8058                                 Ptr, ST->getPointerInfo(), ST->getMemoryVT(),
8059                                 ST->isVolatile(), ST->isNonTemporal(), Align);
8060    }
8061  }
8062
8063  // Try transforming a pair floating point load / store ops to integer
8064  // load / store ops.
8065  SDValue NewST = TransformFPLoadStorePair(N);
8066  if (NewST.getNode())
8067    return NewST;
8068
8069  if (CombinerAA) {
8070    // Walk up chain skipping non-aliasing memory nodes.
8071    SDValue BetterChain = FindBetterChain(N, Chain);
8072
8073    // If there is a better chain.
8074    if (Chain != BetterChain) {
8075      SDValue ReplStore;
8076
8077      // Replace the chain to avoid dependency.
8078      if (ST->isTruncatingStore()) {
8079        ReplStore = DAG.getTruncStore(BetterChain, N->getDebugLoc(), Value, Ptr,
8080                                      ST->getPointerInfo(),
8081                                      ST->getMemoryVT(), ST->isVolatile(),
8082                                      ST->isNonTemporal(), ST->getAlignment());
8083      } else {
8084        ReplStore = DAG.getStore(BetterChain, N->getDebugLoc(), Value, Ptr,
8085                                 ST->getPointerInfo(),
8086                                 ST->isVolatile(), ST->isNonTemporal(),
8087                                 ST->getAlignment());
8088      }
8089
8090      // Create token to keep both nodes around.
8091      SDValue Token = DAG.getNode(ISD::TokenFactor, N->getDebugLoc(),
8092                                  MVT::Other, Chain, ReplStore);
8093
8094      // Make sure the new and old chains are cleaned up.
8095      AddToWorkList(Token.getNode());
8096
8097      // Don't add users to work list.
8098      return CombineTo(N, Token, false);
8099    }
8100  }
8101
8102  // Try transforming N to an indexed store.
8103  if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
8104    return SDValue(N, 0);
8105
8106  // FIXME: is there such a thing as a truncating indexed store?
8107  if (ST->isTruncatingStore() && ST->isUnindexed() &&
8108      Value.getValueType().isInteger()) {
8109    // See if we can simplify the input to this truncstore with knowledge that
8110    // only the low bits are being used.  For example:
8111    // "truncstore (or (shl x, 8), y), i8"  -> "truncstore y, i8"
8112    SDValue Shorter =
8113      GetDemandedBits(Value,
8114                      APInt::getLowBitsSet(
8115                        Value.getValueType().getScalarType().getSizeInBits(),
8116                        ST->getMemoryVT().getScalarType().getSizeInBits()));
8117    AddToWorkList(Value.getNode());
8118    if (Shorter.getNode())
8119      return DAG.getTruncStore(Chain, N->getDebugLoc(), Shorter,
8120                               Ptr, ST->getPointerInfo(), ST->getMemoryVT(),
8121                               ST->isVolatile(), ST->isNonTemporal(),
8122                               ST->getAlignment());
8123
8124    // Otherwise, see if we can simplify the operation with
8125    // SimplifyDemandedBits, which only works if the value has a single use.
8126    if (SimplifyDemandedBits(Value,
8127                        APInt::getLowBitsSet(
8128                          Value.getValueType().getScalarType().getSizeInBits(),
8129                          ST->getMemoryVT().getScalarType().getSizeInBits())))
8130      return SDValue(N, 0);
8131  }
8132
8133  // If this is a load followed by a store to the same location, then the store
8134  // is dead/noop.
8135  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Value)) {
8136    if (Ld->getBasePtr() == Ptr && ST->getMemoryVT() == Ld->getMemoryVT() &&
8137        ST->isUnindexed() && !ST->isVolatile() &&
8138        // There can't be any side effects between the load and store, such as
8139        // a call or store.
8140        Chain.reachesChainWithoutSideEffects(SDValue(Ld, 1))) {
8141      // The store is dead, remove it.
8142      return Chain;
8143    }
8144  }
8145
8146  // If this is an FP_ROUND or TRUNC followed by a store, fold this into a
8147  // truncating store.  We can do this even if this is already a truncstore.
8148  if ((Value.getOpcode() == ISD::FP_ROUND || Value.getOpcode() == ISD::TRUNCATE)
8149      && Value.getNode()->hasOneUse() && ST->isUnindexed() &&
8150      TLI.isTruncStoreLegal(Value.getOperand(0).getValueType(),
8151                            ST->getMemoryVT())) {
8152    return DAG.getTruncStore(Chain, N->getDebugLoc(), Value.getOperand(0),
8153                             Ptr, ST->getPointerInfo(), ST->getMemoryVT(),
8154                             ST->isVolatile(), ST->isNonTemporal(),
8155                             ST->getAlignment());
8156  }
8157
8158  // Only perform this optimization before the types are legal, because we
8159  // don't want to perform this optimization on every DAGCombine invocation.
8160  if (!LegalTypes) {
8161    bool EverChanged = false;
8162
8163    do {
8164      // There can be multiple store sequences on the same chain.
8165      // Keep trying to merge store sequences until we are unable to do so
8166      // or until we merge the last store on the chain.
8167      bool Changed = MergeConsecutiveStores(ST);
8168      EverChanged |= Changed;
8169      if (!Changed) break;
8170    } while (ST->getOpcode() != ISD::DELETED_NODE);
8171
8172    if (EverChanged)
8173      return SDValue(N, 0);
8174  }
8175
8176  return ReduceLoadOpStoreWidth(N);
8177}
8178
8179SDValue DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) {
8180  SDValue InVec = N->getOperand(0);
8181  SDValue InVal = N->getOperand(1);
8182  SDValue EltNo = N->getOperand(2);
8183  DebugLoc dl = N->getDebugLoc();
8184
8185  // If the inserted element is an UNDEF, just use the input vector.
8186  if (InVal.getOpcode() == ISD::UNDEF)
8187    return InVec;
8188
8189  EVT VT = InVec.getValueType();
8190
8191  // If we can't generate a legal BUILD_VECTOR, exit
8192  if (LegalOperations && !TLI.isOperationLegal(ISD::BUILD_VECTOR, VT))
8193    return SDValue();
8194
8195  // Check that we know which element is being inserted
8196  if (!isa<ConstantSDNode>(EltNo))
8197    return SDValue();
8198  unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
8199
8200  // Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially
8201  // be converted to a BUILD_VECTOR).  Fill in the Ops vector with the
8202  // vector elements.
8203  SmallVector<SDValue, 8> Ops;
8204  if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
8205    Ops.append(InVec.getNode()->op_begin(),
8206               InVec.getNode()->op_end());
8207  } else if (InVec.getOpcode() == ISD::UNDEF) {
8208    unsigned NElts = VT.getVectorNumElements();
8209    Ops.append(NElts, DAG.getUNDEF(InVal.getValueType()));
8210  } else {
8211    return SDValue();
8212  }
8213
8214  // Insert the element
8215  if (Elt < Ops.size()) {
8216    // All the operands of BUILD_VECTOR must have the same type;
8217    // we enforce that here.
8218    EVT OpVT = Ops[0].getValueType();
8219    if (InVal.getValueType() != OpVT)
8220      InVal = OpVT.bitsGT(InVal.getValueType()) ?
8221                DAG.getNode(ISD::ANY_EXTEND, dl, OpVT, InVal) :
8222                DAG.getNode(ISD::TRUNCATE, dl, OpVT, InVal);
8223    Ops[Elt] = InVal;
8224  }
8225
8226  // Return the new vector
8227  return DAG.getNode(ISD::BUILD_VECTOR, dl,
8228                     VT, &Ops[0], Ops.size());
8229}
8230
8231SDValue DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) {
8232  // (vextract (scalar_to_vector val, 0) -> val
8233  SDValue InVec = N->getOperand(0);
8234  EVT VT = InVec.getValueType();
8235  EVT NVT = N->getValueType(0);
8236
8237  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
8238    // Check if the result type doesn't match the inserted element type. A
8239    // SCALAR_TO_VECTOR may truncate the inserted element and the
8240    // EXTRACT_VECTOR_ELT may widen the extracted vector.
8241    SDValue InOp = InVec.getOperand(0);
8242    if (InOp.getValueType() != NVT) {
8243      assert(InOp.getValueType().isInteger() && NVT.isInteger());
8244      return DAG.getSExtOrTrunc(InOp, InVec.getDebugLoc(), NVT);
8245    }
8246    return InOp;
8247  }
8248
8249  SDValue EltNo = N->getOperand(1);
8250  bool ConstEltNo = isa<ConstantSDNode>(EltNo);
8251
8252  // Transform: (EXTRACT_VECTOR_ELT( VECTOR_SHUFFLE )) -> EXTRACT_VECTOR_ELT.
8253  // We only perform this optimization before the op legalization phase because
8254  // we may introduce new vector instructions which are not backed by TD
8255  // patterns. For example on AVX, extracting elements from a wide vector
8256  // without using extract_subvector.
8257  if (InVec.getOpcode() == ISD::VECTOR_SHUFFLE
8258      && ConstEltNo && !LegalOperations) {
8259    int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
8260    int NumElem = VT.getVectorNumElements();
8261    ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(InVec);
8262    // Find the new index to extract from.
8263    int OrigElt = SVOp->getMaskElt(Elt);
8264
8265    // Extracting an undef index is undef.
8266    if (OrigElt == -1)
8267      return DAG.getUNDEF(NVT);
8268
8269    // Select the right vector half to extract from.
8270    if (OrigElt < NumElem) {
8271      InVec = InVec->getOperand(0);
8272    } else {
8273      InVec = InVec->getOperand(1);
8274      OrigElt -= NumElem;
8275    }
8276
8277    EVT IndexTy = N->getOperand(1).getValueType();
8278    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, N->getDebugLoc(), NVT,
8279                       InVec, DAG.getConstant(OrigElt, IndexTy));
8280  }
8281
8282  // Perform only after legalization to ensure build_vector / vector_shuffle
8283  // optimizations have already been done.
8284  if (!LegalOperations) return SDValue();
8285
8286  // (vextract (v4f32 load $addr), c) -> (f32 load $addr+c*size)
8287  // (vextract (v4f32 s2v (f32 load $addr)), c) -> (f32 load $addr+c*size)
8288  // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), 0) -> (f32 load $addr)
8289
8290  if (ConstEltNo) {
8291    int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
8292    bool NewLoad = false;
8293    bool BCNumEltsChanged = false;
8294    EVT ExtVT = VT.getVectorElementType();
8295    EVT LVT = ExtVT;
8296
8297    // If the result of load has to be truncated, then it's not necessarily
8298    // profitable.
8299    if (NVT.bitsLT(LVT) && !TLI.isTruncateFree(LVT, NVT))
8300      return SDValue();
8301
8302    if (InVec.getOpcode() == ISD::BITCAST) {
8303      // Don't duplicate a load with other uses.
8304      if (!InVec.hasOneUse())
8305        return SDValue();
8306
8307      EVT BCVT = InVec.getOperand(0).getValueType();
8308      if (!BCVT.isVector() || ExtVT.bitsGT(BCVT.getVectorElementType()))
8309        return SDValue();
8310      if (VT.getVectorNumElements() != BCVT.getVectorNumElements())
8311        BCNumEltsChanged = true;
8312      InVec = InVec.getOperand(0);
8313      ExtVT = BCVT.getVectorElementType();
8314      NewLoad = true;
8315    }
8316
8317    LoadSDNode *LN0 = NULL;
8318    const ShuffleVectorSDNode *SVN = NULL;
8319    if (ISD::isNormalLoad(InVec.getNode())) {
8320      LN0 = cast<LoadSDNode>(InVec);
8321    } else if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR &&
8322               InVec.getOperand(0).getValueType() == ExtVT &&
8323               ISD::isNormalLoad(InVec.getOperand(0).getNode())) {
8324      // Don't duplicate a load with other uses.
8325      if (!InVec.hasOneUse())
8326        return SDValue();
8327
8328      LN0 = cast<LoadSDNode>(InVec.getOperand(0));
8329    } else if ((SVN = dyn_cast<ShuffleVectorSDNode>(InVec))) {
8330      // (vextract (vector_shuffle (load $addr), v2, <1, u, u, u>), 1)
8331      // =>
8332      // (load $addr+1*size)
8333
8334      // Don't duplicate a load with other uses.
8335      if (!InVec.hasOneUse())
8336        return SDValue();
8337
8338      // If the bit convert changed the number of elements, it is unsafe
8339      // to examine the mask.
8340      if (BCNumEltsChanged)
8341        return SDValue();
8342
8343      // Select the input vector, guarding against out of range extract vector.
8344      unsigned NumElems = VT.getVectorNumElements();
8345      int Idx = (Elt > (int)NumElems) ? -1 : SVN->getMaskElt(Elt);
8346      InVec = (Idx < (int)NumElems) ? InVec.getOperand(0) : InVec.getOperand(1);
8347
8348      if (InVec.getOpcode() == ISD::BITCAST) {
8349        // Don't duplicate a load with other uses.
8350        if (!InVec.hasOneUse())
8351          return SDValue();
8352
8353        InVec = InVec.getOperand(0);
8354      }
8355      if (ISD::isNormalLoad(InVec.getNode())) {
8356        LN0 = cast<LoadSDNode>(InVec);
8357        Elt = (Idx < (int)NumElems) ? Idx : Idx - (int)NumElems;
8358      }
8359    }
8360
8361    // Make sure we found a non-volatile load and the extractelement is
8362    // the only use.
8363    if (!LN0 || !LN0->hasNUsesOfValue(1,0) || LN0->isVolatile())
8364      return SDValue();
8365
8366    // If Idx was -1 above, Elt is going to be -1, so just return undef.
8367    if (Elt == -1)
8368      return DAG.getUNDEF(LVT);
8369
8370    unsigned Align = LN0->getAlignment();
8371    if (NewLoad) {
8372      // Check the resultant load doesn't need a higher alignment than the
8373      // original load.
8374      unsigned NewAlign =
8375        TLI.getDataLayout()
8376            ->getABITypeAlignment(LVT.getTypeForEVT(*DAG.getContext()));
8377
8378      if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, LVT))
8379        return SDValue();
8380
8381      Align = NewAlign;
8382    }
8383
8384    SDValue NewPtr = LN0->getBasePtr();
8385    unsigned PtrOff = 0;
8386
8387    if (Elt) {
8388      PtrOff = LVT.getSizeInBits() * Elt / 8;
8389      EVT PtrType = NewPtr.getValueType();
8390      if (TLI.isBigEndian())
8391        PtrOff = VT.getSizeInBits() / 8 - PtrOff;
8392      NewPtr = DAG.getNode(ISD::ADD, N->getDebugLoc(), PtrType, NewPtr,
8393                           DAG.getConstant(PtrOff, PtrType));
8394    }
8395
8396    // The replacement we need to do here is a little tricky: we need to
8397    // replace an extractelement of a load with a load.
8398    // Use ReplaceAllUsesOfValuesWith to do the replacement.
8399    // Note that this replacement assumes that the extractvalue is the only
8400    // use of the load; that's okay because we don't want to perform this
8401    // transformation in other cases anyway.
8402    SDValue Load;
8403    SDValue Chain;
8404    if (NVT.bitsGT(LVT)) {
8405      // If the result type of vextract is wider than the load, then issue an
8406      // extending load instead.
8407      ISD::LoadExtType ExtType = TLI.isLoadExtLegal(ISD::ZEXTLOAD, LVT)
8408        ? ISD::ZEXTLOAD : ISD::EXTLOAD;
8409      Load = DAG.getExtLoad(ExtType, N->getDebugLoc(), NVT, LN0->getChain(),
8410                            NewPtr, LN0->getPointerInfo().getWithOffset(PtrOff),
8411                            LVT, LN0->isVolatile(), LN0->isNonTemporal(),Align);
8412      Chain = Load.getValue(1);
8413    } else {
8414      Load = DAG.getLoad(LVT, N->getDebugLoc(), LN0->getChain(), NewPtr,
8415                         LN0->getPointerInfo().getWithOffset(PtrOff),
8416                         LN0->isVolatile(), LN0->isNonTemporal(),
8417                         LN0->isInvariant(), Align);
8418      Chain = Load.getValue(1);
8419      if (NVT.bitsLT(LVT))
8420        Load = DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), NVT, Load);
8421      else
8422        Load = DAG.getNode(ISD::BITCAST, N->getDebugLoc(), NVT, Load);
8423    }
8424    WorkListRemover DeadNodes(*this);
8425    SDValue From[] = { SDValue(N, 0), SDValue(LN0,1) };
8426    SDValue To[] = { Load, Chain };
8427    DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
8428    // Since we're explcitly calling ReplaceAllUses, add the new node to the
8429    // worklist explicitly as well.
8430    AddToWorkList(Load.getNode());
8431    AddUsersToWorkList(Load.getNode()); // Add users too
8432    // Make sure to revisit this node to clean it up; it will usually be dead.
8433    AddToWorkList(N);
8434    return SDValue(N, 0);
8435  }
8436
8437  return SDValue();
8438}
8439
8440// Simplify (build_vec (ext )) to (bitcast (build_vec ))
8441SDValue DAGCombiner::reduceBuildVecExtToExtBuildVec(SDNode *N) {
8442  // We perform this optimization post type-legalization because
8443  // the type-legalizer often scalarizes integer-promoted vectors.
8444  // Performing this optimization before may create bit-casts which
8445  // will be type-legalized to complex code sequences.
8446  // We perform this optimization only before the operation legalizer because we
8447  // may introduce illegal operations.
8448  if (Level != AfterLegalizeVectorOps && Level != AfterLegalizeTypes)
8449    return SDValue();
8450
8451  unsigned NumInScalars = N->getNumOperands();
8452  DebugLoc dl = N->getDebugLoc();
8453  EVT VT = N->getValueType(0);
8454
8455  // Check to see if this is a BUILD_VECTOR of a bunch of values
8456  // which come from any_extend or zero_extend nodes. If so, we can create
8457  // a new BUILD_VECTOR using bit-casts which may enable other BUILD_VECTOR
8458  // optimizations. We do not handle sign-extend because we can't fill the sign
8459  // using shuffles.
8460  EVT SourceType = MVT::Other;
8461  bool AllAnyExt = true;
8462
8463  for (unsigned i = 0; i != NumInScalars; ++i) {
8464    SDValue In = N->getOperand(i);
8465    // Ignore undef inputs.
8466    if (In.getOpcode() == ISD::UNDEF) continue;
8467
8468    bool AnyExt  = In.getOpcode() == ISD::ANY_EXTEND;
8469    bool ZeroExt = In.getOpcode() == ISD::ZERO_EXTEND;
8470
8471    // Abort if the element is not an extension.
8472    if (!ZeroExt && !AnyExt) {
8473      SourceType = MVT::Other;
8474      break;
8475    }
8476
8477    // The input is a ZeroExt or AnyExt. Check the original type.
8478    EVT InTy = In.getOperand(0).getValueType();
8479
8480    // Check that all of the widened source types are the same.
8481    if (SourceType == MVT::Other)
8482      // First time.
8483      SourceType = InTy;
8484    else if (InTy != SourceType) {
8485      // Multiple income types. Abort.
8486      SourceType = MVT::Other;
8487      break;
8488    }
8489
8490    // Check if all of the extends are ANY_EXTENDs.
8491    AllAnyExt &= AnyExt;
8492  }
8493
8494  // In order to have valid types, all of the inputs must be extended from the
8495  // same source type and all of the inputs must be any or zero extend.
8496  // Scalar sizes must be a power of two.
8497  EVT OutScalarTy = VT.getScalarType();
8498  bool ValidTypes = SourceType != MVT::Other &&
8499                 isPowerOf2_32(OutScalarTy.getSizeInBits()) &&
8500                 isPowerOf2_32(SourceType.getSizeInBits());
8501
8502  // Create a new simpler BUILD_VECTOR sequence which other optimizations can
8503  // turn into a single shuffle instruction.
8504  if (!ValidTypes)
8505    return SDValue();
8506
8507  bool isLE = TLI.isLittleEndian();
8508  unsigned ElemRatio = OutScalarTy.getSizeInBits()/SourceType.getSizeInBits();
8509  assert(ElemRatio > 1 && "Invalid element size ratio");
8510  SDValue Filler = AllAnyExt ? DAG.getUNDEF(SourceType):
8511                               DAG.getConstant(0, SourceType);
8512
8513  unsigned NewBVElems = ElemRatio * VT.getVectorNumElements();
8514  SmallVector<SDValue, 8> Ops(NewBVElems, Filler);
8515
8516  // Populate the new build_vector
8517  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
8518    SDValue Cast = N->getOperand(i);
8519    assert((Cast.getOpcode() == ISD::ANY_EXTEND ||
8520            Cast.getOpcode() == ISD::ZERO_EXTEND ||
8521            Cast.getOpcode() == ISD::UNDEF) && "Invalid cast opcode");
8522    SDValue In;
8523    if (Cast.getOpcode() == ISD::UNDEF)
8524      In = DAG.getUNDEF(SourceType);
8525    else
8526      In = Cast->getOperand(0);
8527    unsigned Index = isLE ? (i * ElemRatio) :
8528                            (i * ElemRatio + (ElemRatio - 1));
8529
8530    assert(Index < Ops.size() && "Invalid index");
8531    Ops[Index] = In;
8532  }
8533
8534  // The type of the new BUILD_VECTOR node.
8535  EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SourceType, NewBVElems);
8536  assert(VecVT.getSizeInBits() == VT.getSizeInBits() &&
8537         "Invalid vector size");
8538  // Check if the new vector type is legal.
8539  if (!isTypeLegal(VecVT)) return SDValue();
8540
8541  // Make the new BUILD_VECTOR.
8542  SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, &Ops[0], Ops.size());
8543
8544  // The new BUILD_VECTOR node has the potential to be further optimized.
8545  AddToWorkList(BV.getNode());
8546  // Bitcast to the desired type.
8547  return DAG.getNode(ISD::BITCAST, dl, VT, BV);
8548}
8549
8550SDValue DAGCombiner::reduceBuildVecConvertToConvertBuildVec(SDNode *N) {
8551  EVT VT = N->getValueType(0);
8552
8553  unsigned NumInScalars = N->getNumOperands();
8554  DebugLoc dl = N->getDebugLoc();
8555
8556  EVT SrcVT = MVT::Other;
8557  unsigned Opcode = ISD::DELETED_NODE;
8558  unsigned NumDefs = 0;
8559
8560  for (unsigned i = 0; i != NumInScalars; ++i) {
8561    SDValue In = N->getOperand(i);
8562    unsigned Opc = In.getOpcode();
8563
8564    if (Opc == ISD::UNDEF)
8565      continue;
8566
8567    // If all scalar values are floats and converted from integers.
8568    if (Opcode == ISD::DELETED_NODE &&
8569        (Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP)) {
8570      Opcode = Opc;
8571      // If not supported by target, bail out.
8572      if (TLI.getOperationAction(Opcode, VT) != TargetLowering::Legal &&
8573          TLI.getOperationAction(Opcode, VT) != TargetLowering::Custom)
8574        return SDValue();
8575    }
8576    if (Opc != Opcode)
8577      return SDValue();
8578
8579    EVT InVT = In.getOperand(0).getValueType();
8580
8581    // If all scalar values are typed differently, bail out. It's chosen to
8582    // simplify BUILD_VECTOR of integer types.
8583    if (SrcVT == MVT::Other)
8584      SrcVT = InVT;
8585    if (SrcVT != InVT)
8586      return SDValue();
8587    NumDefs++;
8588  }
8589
8590  // If the vector has just one element defined, it's not worth to fold it into
8591  // a vectorized one.
8592  if (NumDefs < 2)
8593    return SDValue();
8594
8595  assert((Opcode == ISD::UINT_TO_FP || Opcode == ISD::SINT_TO_FP)
8596         && "Should only handle conversion from integer to float.");
8597  assert(SrcVT != MVT::Other && "Cannot determine source type!");
8598
8599  EVT NVT = EVT::getVectorVT(*DAG.getContext(), SrcVT, NumInScalars);
8600  SmallVector<SDValue, 8> Opnds;
8601  for (unsigned i = 0; i != NumInScalars; ++i) {
8602    SDValue In = N->getOperand(i);
8603
8604    if (In.getOpcode() == ISD::UNDEF)
8605      Opnds.push_back(DAG.getUNDEF(SrcVT));
8606    else
8607      Opnds.push_back(In.getOperand(0));
8608  }
8609  SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, NVT,
8610                           &Opnds[0], Opnds.size());
8611  AddToWorkList(BV.getNode());
8612
8613  return DAG.getNode(Opcode, dl, VT, BV);
8614}
8615
8616SDValue DAGCombiner::visitBUILD_VECTOR(SDNode *N) {
8617  unsigned NumInScalars = N->getNumOperands();
8618  DebugLoc dl = N->getDebugLoc();
8619  EVT VT = N->getValueType(0);
8620
8621  // A vector built entirely of undefs is undef.
8622  if (ISD::allOperandsUndef(N))
8623    return DAG.getUNDEF(VT);
8624
8625  SDValue V = reduceBuildVecExtToExtBuildVec(N);
8626  if (V.getNode())
8627    return V;
8628
8629  V = reduceBuildVecConvertToConvertBuildVec(N);
8630  if (V.getNode())
8631    return V;
8632
8633  // Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT
8634  // operations.  If so, and if the EXTRACT_VECTOR_ELT vector inputs come from
8635  // at most two distinct vectors, turn this into a shuffle node.
8636
8637  // May only combine to shuffle after legalize if shuffle is legal.
8638  if (LegalOperations &&
8639      !TLI.isOperationLegalOrCustom(ISD::VECTOR_SHUFFLE, VT))
8640    return SDValue();
8641
8642  SDValue VecIn1, VecIn2;
8643  for (unsigned i = 0; i != NumInScalars; ++i) {
8644    // Ignore undef inputs.
8645    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
8646
8647    // If this input is something other than a EXTRACT_VECTOR_ELT with a
8648    // constant index, bail out.
8649    if (N->getOperand(i).getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
8650        !isa<ConstantSDNode>(N->getOperand(i).getOperand(1))) {
8651      VecIn1 = VecIn2 = SDValue(0, 0);
8652      break;
8653    }
8654
8655    // We allow up to two distinct input vectors.
8656    SDValue ExtractedFromVec = N->getOperand(i).getOperand(0);
8657    if (ExtractedFromVec == VecIn1 || ExtractedFromVec == VecIn2)
8658      continue;
8659
8660    if (VecIn1.getNode() == 0) {
8661      VecIn1 = ExtractedFromVec;
8662    } else if (VecIn2.getNode() == 0) {
8663      VecIn2 = ExtractedFromVec;
8664    } else {
8665      // Too many inputs.
8666      VecIn1 = VecIn2 = SDValue(0, 0);
8667      break;
8668    }
8669  }
8670
8671    // If everything is good, we can make a shuffle operation.
8672  if (VecIn1.getNode()) {
8673    SmallVector<int, 8> Mask;
8674    for (unsigned i = 0; i != NumInScalars; ++i) {
8675      if (N->getOperand(i).getOpcode() == ISD::UNDEF) {
8676        Mask.push_back(-1);
8677        continue;
8678      }
8679
8680      // If extracting from the first vector, just use the index directly.
8681      SDValue Extract = N->getOperand(i);
8682      SDValue ExtVal = Extract.getOperand(1);
8683      if (Extract.getOperand(0) == VecIn1) {
8684        unsigned ExtIndex = cast<ConstantSDNode>(ExtVal)->getZExtValue();
8685        if (ExtIndex > VT.getVectorNumElements())
8686          return SDValue();
8687
8688        Mask.push_back(ExtIndex);
8689        continue;
8690      }
8691
8692      // Otherwise, use InIdx + VecSize
8693      unsigned Idx = cast<ConstantSDNode>(ExtVal)->getZExtValue();
8694      Mask.push_back(Idx+NumInScalars);
8695    }
8696
8697    // We can't generate a shuffle node with mismatched input and output types.
8698    // Attempt to transform a single input vector to the correct type.
8699    if ((VT != VecIn1.getValueType())) {
8700      // We don't support shuffeling between TWO values of different types.
8701      if (VecIn2.getNode() != 0)
8702        return SDValue();
8703
8704      // We only support widening of vectors which are half the size of the
8705      // output registers. For example XMM->YMM widening on X86 with AVX.
8706      if (VecIn1.getValueType().getSizeInBits()*2 != VT.getSizeInBits())
8707        return SDValue();
8708
8709      // If the input vector type has a different base type to the output
8710      // vector type, bail out.
8711      if (VecIn1.getValueType().getVectorElementType() !=
8712          VT.getVectorElementType())
8713        return SDValue();
8714
8715      // Widen the input vector by adding undef values.
8716      VecIn1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
8717                           VecIn1, DAG.getUNDEF(VecIn1.getValueType()));
8718    }
8719
8720    // If VecIn2 is unused then change it to undef.
8721    VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(VT);
8722
8723    // Check that we were able to transform all incoming values to the same
8724    // type.
8725    if (VecIn2.getValueType() != VecIn1.getValueType() ||
8726        VecIn1.getValueType() != VT)
8727          return SDValue();
8728
8729    // Only type-legal BUILD_VECTOR nodes are converted to shuffle nodes.
8730    if (!isTypeLegal(VT))
8731      return SDValue();
8732
8733    // Return the new VECTOR_SHUFFLE node.
8734    SDValue Ops[2];
8735    Ops[0] = VecIn1;
8736    Ops[1] = VecIn2;
8737    return DAG.getVectorShuffle(VT, dl, Ops[0], Ops[1], &Mask[0]);
8738  }
8739
8740  return SDValue();
8741}
8742
8743SDValue DAGCombiner::visitCONCAT_VECTORS(SDNode *N) {
8744  // TODO: Check to see if this is a CONCAT_VECTORS of a bunch of
8745  // EXTRACT_SUBVECTOR operations.  If so, and if the EXTRACT_SUBVECTOR vector
8746  // inputs come from at most two distinct vectors, turn this into a shuffle
8747  // node.
8748
8749  // If we only have one input vector, we don't need to do any concatenation.
8750  if (N->getNumOperands() == 1)
8751    return N->getOperand(0);
8752
8753  // Check if all of the operands are undefs.
8754  if (ISD::allOperandsUndef(N))
8755    return DAG.getUNDEF(N->getValueType(0));
8756
8757  return SDValue();
8758}
8759
8760SDValue DAGCombiner::visitEXTRACT_SUBVECTOR(SDNode* N) {
8761  EVT NVT = N->getValueType(0);
8762  SDValue V = N->getOperand(0);
8763
8764  if (V->getOpcode() == ISD::INSERT_SUBVECTOR) {
8765    // Handle only simple case where vector being inserted and vector
8766    // being extracted are of same type, and are half size of larger vectors.
8767    EVT BigVT = V->getOperand(0).getValueType();
8768    EVT SmallVT = V->getOperand(1).getValueType();
8769    if (NVT != SmallVT || NVT.getSizeInBits()*2 != BigVT.getSizeInBits())
8770      return SDValue();
8771
8772    // Only handle cases where both indexes are constants with the same type.
8773    ConstantSDNode *ExtIdx = dyn_cast<ConstantSDNode>(N->getOperand(1));
8774    ConstantSDNode *InsIdx = dyn_cast<ConstantSDNode>(V->getOperand(2));
8775
8776    if (InsIdx && ExtIdx &&
8777        InsIdx->getValueType(0).getSizeInBits() <= 64 &&
8778        ExtIdx->getValueType(0).getSizeInBits() <= 64) {
8779      // Combine:
8780      //    (extract_subvec (insert_subvec V1, V2, InsIdx), ExtIdx)
8781      // Into:
8782      //    indices are equal => V1
8783      //    otherwise => (extract_subvec V1, ExtIdx)
8784      if (InsIdx->getZExtValue() == ExtIdx->getZExtValue())
8785        return V->getOperand(1);
8786      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, N->getDebugLoc(), NVT,
8787                         V->getOperand(0), N->getOperand(1));
8788    }
8789  }
8790
8791  if (V->getOpcode() == ISD::CONCAT_VECTORS) {
8792    // Combine:
8793    //    (extract_subvec (concat V1, V2, ...), i)
8794    // Into:
8795    //    Vi if possible
8796    // Only operand 0 is checked as 'concat' assumes all inputs of the same type.
8797    if (V->getOperand(0).getValueType() != NVT)
8798      return SDValue();
8799    unsigned Idx = dyn_cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
8800    unsigned NumElems = NVT.getVectorNumElements();
8801    assert((Idx % NumElems) == 0 &&
8802           "IDX in concat is not a multiple of the result vector length.");
8803    return V->getOperand(Idx / NumElems);
8804  }
8805
8806  return SDValue();
8807}
8808
8809SDValue DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) {
8810  EVT VT = N->getValueType(0);
8811  unsigned NumElts = VT.getVectorNumElements();
8812
8813  SDValue N0 = N->getOperand(0);
8814  SDValue N1 = N->getOperand(1);
8815
8816  assert(N0.getValueType() == VT && "Vector shuffle must be normalized in DAG");
8817
8818  // Canonicalize shuffle undef, undef -> undef
8819  if (N0.getOpcode() == ISD::UNDEF && N1.getOpcode() == ISD::UNDEF)
8820    return DAG.getUNDEF(VT);
8821
8822  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
8823
8824  // Canonicalize shuffle v, v -> v, undef
8825  if (N0 == N1) {
8826    SmallVector<int, 8> NewMask;
8827    for (unsigned i = 0; i != NumElts; ++i) {
8828      int Idx = SVN->getMaskElt(i);
8829      if (Idx >= (int)NumElts) Idx -= NumElts;
8830      NewMask.push_back(Idx);
8831    }
8832    return DAG.getVectorShuffle(VT, N->getDebugLoc(), N0, DAG.getUNDEF(VT),
8833                                &NewMask[0]);
8834  }
8835
8836  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
8837  if (N0.getOpcode() == ISD::UNDEF) {
8838    SmallVector<int, 8> NewMask;
8839    for (unsigned i = 0; i != NumElts; ++i) {
8840      int Idx = SVN->getMaskElt(i);
8841      if (Idx >= 0) {
8842        if (Idx < (int)NumElts)
8843          Idx += NumElts;
8844        else
8845          Idx -= NumElts;
8846      }
8847      NewMask.push_back(Idx);
8848    }
8849    return DAG.getVectorShuffle(VT, N->getDebugLoc(), N1, DAG.getUNDEF(VT),
8850                                &NewMask[0]);
8851  }
8852
8853  // Remove references to rhs if it is undef
8854  if (N1.getOpcode() == ISD::UNDEF) {
8855    bool Changed = false;
8856    SmallVector<int, 8> NewMask;
8857    for (unsigned i = 0; i != NumElts; ++i) {
8858      int Idx = SVN->getMaskElt(i);
8859      if (Idx >= (int)NumElts) {
8860        Idx = -1;
8861        Changed = true;
8862      }
8863      NewMask.push_back(Idx);
8864    }
8865    if (Changed)
8866      return DAG.getVectorShuffle(VT, N->getDebugLoc(), N0, N1, &NewMask[0]);
8867  }
8868
8869  // If it is a splat, check if the argument vector is another splat or a
8870  // build_vector with all scalar elements the same.
8871  if (SVN->isSplat() && SVN->getSplatIndex() < (int)NumElts) {
8872    SDNode *V = N0.getNode();
8873
8874    // If this is a bit convert that changes the element type of the vector but
8875    // not the number of vector elements, look through it.  Be careful not to
8876    // look though conversions that change things like v4f32 to v2f64.
8877    if (V->getOpcode() == ISD::BITCAST) {
8878      SDValue ConvInput = V->getOperand(0);
8879      if (ConvInput.getValueType().isVector() &&
8880          ConvInput.getValueType().getVectorNumElements() == NumElts)
8881        V = ConvInput.getNode();
8882    }
8883
8884    if (V->getOpcode() == ISD::BUILD_VECTOR) {
8885      assert(V->getNumOperands() == NumElts &&
8886             "BUILD_VECTOR has wrong number of operands");
8887      SDValue Base;
8888      bool AllSame = true;
8889      for (unsigned i = 0; i != NumElts; ++i) {
8890        if (V->getOperand(i).getOpcode() != ISD::UNDEF) {
8891          Base = V->getOperand(i);
8892          break;
8893        }
8894      }
8895      // Splat of <u, u, u, u>, return <u, u, u, u>
8896      if (!Base.getNode())
8897        return N0;
8898      for (unsigned i = 0; i != NumElts; ++i) {
8899        if (V->getOperand(i) != Base) {
8900          AllSame = false;
8901          break;
8902        }
8903      }
8904      // Splat of <x, x, x, x>, return <x, x, x, x>
8905      if (AllSame)
8906        return N0;
8907    }
8908  }
8909
8910  // If this shuffle node is simply a swizzle of another shuffle node,
8911  // and it reverses the swizzle of the previous shuffle then we can
8912  // optimize shuffle(shuffle(x, undef), undef) -> x.
8913  if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG &&
8914      N1.getOpcode() == ISD::UNDEF) {
8915
8916    ShuffleVectorSDNode *OtherSV = cast<ShuffleVectorSDNode>(N0);
8917
8918    // Shuffle nodes can only reverse shuffles with a single non-undef value.
8919    if (N0.getOperand(1).getOpcode() != ISD::UNDEF)
8920      return SDValue();
8921
8922    // The incoming shuffle must be of the same type as the result of the
8923    // current shuffle.
8924    assert(OtherSV->getOperand(0).getValueType() == VT &&
8925           "Shuffle types don't match");
8926
8927    for (unsigned i = 0; i != NumElts; ++i) {
8928      int Idx = SVN->getMaskElt(i);
8929      assert(Idx < (int)NumElts && "Index references undef operand");
8930      // Next, this index comes from the first value, which is the incoming
8931      // shuffle. Adopt the incoming index.
8932      if (Idx >= 0)
8933        Idx = OtherSV->getMaskElt(Idx);
8934
8935      // The combined shuffle must map each index to itself.
8936      if (Idx >= 0 && (unsigned)Idx != i)
8937        return SDValue();
8938    }
8939
8940    return OtherSV->getOperand(0);
8941  }
8942
8943  return SDValue();
8944}
8945
8946SDValue DAGCombiner::visitMEMBARRIER(SDNode* N) {
8947  if (!TLI.getShouldFoldAtomicFences())
8948    return SDValue();
8949
8950  SDValue atomic = N->getOperand(0);
8951  switch (atomic.getOpcode()) {
8952    case ISD::ATOMIC_CMP_SWAP:
8953    case ISD::ATOMIC_SWAP:
8954    case ISD::ATOMIC_LOAD_ADD:
8955    case ISD::ATOMIC_LOAD_SUB:
8956    case ISD::ATOMIC_LOAD_AND:
8957    case ISD::ATOMIC_LOAD_OR:
8958    case ISD::ATOMIC_LOAD_XOR:
8959    case ISD::ATOMIC_LOAD_NAND:
8960    case ISD::ATOMIC_LOAD_MIN:
8961    case ISD::ATOMIC_LOAD_MAX:
8962    case ISD::ATOMIC_LOAD_UMIN:
8963    case ISD::ATOMIC_LOAD_UMAX:
8964      break;
8965    default:
8966      return SDValue();
8967  }
8968
8969  SDValue fence = atomic.getOperand(0);
8970  if (fence.getOpcode() != ISD::MEMBARRIER)
8971    return SDValue();
8972
8973  switch (atomic.getOpcode()) {
8974    case ISD::ATOMIC_CMP_SWAP:
8975      return SDValue(DAG.UpdateNodeOperands(atomic.getNode(),
8976                                    fence.getOperand(0),
8977                                    atomic.getOperand(1), atomic.getOperand(2),
8978                                    atomic.getOperand(3)), atomic.getResNo());
8979    case ISD::ATOMIC_SWAP:
8980    case ISD::ATOMIC_LOAD_ADD:
8981    case ISD::ATOMIC_LOAD_SUB:
8982    case ISD::ATOMIC_LOAD_AND:
8983    case ISD::ATOMIC_LOAD_OR:
8984    case ISD::ATOMIC_LOAD_XOR:
8985    case ISD::ATOMIC_LOAD_NAND:
8986    case ISD::ATOMIC_LOAD_MIN:
8987    case ISD::ATOMIC_LOAD_MAX:
8988    case ISD::ATOMIC_LOAD_UMIN:
8989    case ISD::ATOMIC_LOAD_UMAX:
8990      return SDValue(DAG.UpdateNodeOperands(atomic.getNode(),
8991                                    fence.getOperand(0),
8992                                    atomic.getOperand(1), atomic.getOperand(2)),
8993                     atomic.getResNo());
8994    default:
8995      return SDValue();
8996  }
8997}
8998
8999/// XformToShuffleWithZero - Returns a vector_shuffle if it able to transform
9000/// an AND to a vector_shuffle with the destination vector and a zero vector.
9001/// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==>
9002///      vector_shuffle V, Zero, <0, 4, 2, 4>
9003SDValue DAGCombiner::XformToShuffleWithZero(SDNode *N) {
9004  EVT VT = N->getValueType(0);
9005  DebugLoc dl = N->getDebugLoc();
9006  SDValue LHS = N->getOperand(0);
9007  SDValue RHS = N->getOperand(1);
9008  if (N->getOpcode() == ISD::AND) {
9009    if (RHS.getOpcode() == ISD::BITCAST)
9010      RHS = RHS.getOperand(0);
9011    if (RHS.getOpcode() == ISD::BUILD_VECTOR) {
9012      SmallVector<int, 8> Indices;
9013      unsigned NumElts = RHS.getNumOperands();
9014      for (unsigned i = 0; i != NumElts; ++i) {
9015        SDValue Elt = RHS.getOperand(i);
9016        if (!isa<ConstantSDNode>(Elt))
9017          return SDValue();
9018
9019        if (cast<ConstantSDNode>(Elt)->isAllOnesValue())
9020          Indices.push_back(i);
9021        else if (cast<ConstantSDNode>(Elt)->isNullValue())
9022          Indices.push_back(NumElts);
9023        else
9024          return SDValue();
9025      }
9026
9027      // Let's see if the target supports this vector_shuffle.
9028      EVT RVT = RHS.getValueType();
9029      if (!TLI.isVectorClearMaskLegal(Indices, RVT))
9030        return SDValue();
9031
9032      // Return the new VECTOR_SHUFFLE node.
9033      EVT EltVT = RVT.getVectorElementType();
9034      SmallVector<SDValue,8> ZeroOps(RVT.getVectorNumElements(),
9035                                     DAG.getConstant(0, EltVT));
9036      SDValue Zero = DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(),
9037                                 RVT, &ZeroOps[0], ZeroOps.size());
9038      LHS = DAG.getNode(ISD::BITCAST, dl, RVT, LHS);
9039      SDValue Shuf = DAG.getVectorShuffle(RVT, dl, LHS, Zero, &Indices[0]);
9040      return DAG.getNode(ISD::BITCAST, dl, VT, Shuf);
9041    }
9042  }
9043
9044  return SDValue();
9045}
9046
9047/// SimplifyVBinOp - Visit a binary vector operation, like ADD.
9048SDValue DAGCombiner::SimplifyVBinOp(SDNode *N) {
9049  // After legalize, the target may be depending on adds and other
9050  // binary ops to provide legal ways to construct constants or other
9051  // things. Simplifying them may result in a loss of legality.
9052  if (LegalOperations) return SDValue();
9053
9054  assert(N->getValueType(0).isVector() &&
9055         "SimplifyVBinOp only works on vectors!");
9056
9057  SDValue LHS = N->getOperand(0);
9058  SDValue RHS = N->getOperand(1);
9059  SDValue Shuffle = XformToShuffleWithZero(N);
9060  if (Shuffle.getNode()) return Shuffle;
9061
9062  // If the LHS and RHS are BUILD_VECTOR nodes, see if we can constant fold
9063  // this operation.
9064  if (LHS.getOpcode() == ISD::BUILD_VECTOR &&
9065      RHS.getOpcode() == ISD::BUILD_VECTOR) {
9066    SmallVector<SDValue, 8> Ops;
9067    for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
9068      SDValue LHSOp = LHS.getOperand(i);
9069      SDValue RHSOp = RHS.getOperand(i);
9070      // If these two elements can't be folded, bail out.
9071      if ((LHSOp.getOpcode() != ISD::UNDEF &&
9072           LHSOp.getOpcode() != ISD::Constant &&
9073           LHSOp.getOpcode() != ISD::ConstantFP) ||
9074          (RHSOp.getOpcode() != ISD::UNDEF &&
9075           RHSOp.getOpcode() != ISD::Constant &&
9076           RHSOp.getOpcode() != ISD::ConstantFP))
9077        break;
9078
9079      // Can't fold divide by zero.
9080      if (N->getOpcode() == ISD::SDIV || N->getOpcode() == ISD::UDIV ||
9081          N->getOpcode() == ISD::FDIV) {
9082        if ((RHSOp.getOpcode() == ISD::Constant &&
9083             cast<ConstantSDNode>(RHSOp.getNode())->isNullValue()) ||
9084            (RHSOp.getOpcode() == ISD::ConstantFP &&
9085             cast<ConstantFPSDNode>(RHSOp.getNode())->getValueAPF().isZero()))
9086          break;
9087      }
9088
9089      EVT VT = LHSOp.getValueType();
9090      EVT RVT = RHSOp.getValueType();
9091      if (RVT != VT) {
9092        // Integer BUILD_VECTOR operands may have types larger than the element
9093        // size (e.g., when the element type is not legal).  Prior to type
9094        // legalization, the types may not match between the two BUILD_VECTORS.
9095        // Truncate one of the operands to make them match.
9096        if (RVT.getSizeInBits() > VT.getSizeInBits()) {
9097          RHSOp = DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, RHSOp);
9098        } else {
9099          LHSOp = DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), RVT, LHSOp);
9100          VT = RVT;
9101        }
9102      }
9103      SDValue FoldOp = DAG.getNode(N->getOpcode(), LHS.getDebugLoc(), VT,
9104                                   LHSOp, RHSOp);
9105      if (FoldOp.getOpcode() != ISD::UNDEF &&
9106          FoldOp.getOpcode() != ISD::Constant &&
9107          FoldOp.getOpcode() != ISD::ConstantFP)
9108        break;
9109      Ops.push_back(FoldOp);
9110      AddToWorkList(FoldOp.getNode());
9111    }
9112
9113    if (Ops.size() == LHS.getNumOperands())
9114      return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(),
9115                         LHS.getValueType(), &Ops[0], Ops.size());
9116  }
9117
9118  return SDValue();
9119}
9120
9121/// SimplifyVUnaryOp - Visit a binary vector operation, like FABS/FNEG.
9122SDValue DAGCombiner::SimplifyVUnaryOp(SDNode *N) {
9123  // After legalize, the target may be depending on adds and other
9124  // binary ops to provide legal ways to construct constants or other
9125  // things. Simplifying them may result in a loss of legality.
9126  if (LegalOperations) return SDValue();
9127
9128  assert(N->getValueType(0).isVector() &&
9129         "SimplifyVUnaryOp only works on vectors!");
9130
9131  SDValue N0 = N->getOperand(0);
9132
9133  if (N0.getOpcode() != ISD::BUILD_VECTOR)
9134    return SDValue();
9135
9136  // Operand is a BUILD_VECTOR node, see if we can constant fold it.
9137  SmallVector<SDValue, 8> Ops;
9138  for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i) {
9139    SDValue Op = N0.getOperand(i);
9140    if (Op.getOpcode() != ISD::UNDEF &&
9141        Op.getOpcode() != ISD::ConstantFP)
9142      break;
9143    EVT EltVT = Op.getValueType();
9144    SDValue FoldOp = DAG.getNode(N->getOpcode(), N0.getDebugLoc(), EltVT, Op);
9145    if (FoldOp.getOpcode() != ISD::UNDEF &&
9146        FoldOp.getOpcode() != ISD::ConstantFP)
9147      break;
9148    Ops.push_back(FoldOp);
9149    AddToWorkList(FoldOp.getNode());
9150  }
9151
9152  if (Ops.size() != N0.getNumOperands())
9153    return SDValue();
9154
9155  return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(),
9156                     N0.getValueType(), &Ops[0], Ops.size());
9157}
9158
9159SDValue DAGCombiner::SimplifySelect(DebugLoc DL, SDValue N0,
9160                                    SDValue N1, SDValue N2){
9161  assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!");
9162
9163  SDValue SCC = SimplifySelectCC(DL, N0.getOperand(0), N0.getOperand(1), N1, N2,
9164                                 cast<CondCodeSDNode>(N0.getOperand(2))->get());
9165
9166  // If we got a simplified select_cc node back from SimplifySelectCC, then
9167  // break it down into a new SETCC node, and a new SELECT node, and then return
9168  // the SELECT node, since we were called with a SELECT node.
9169  if (SCC.getNode()) {
9170    // Check to see if we got a select_cc back (to turn into setcc/select).
9171    // Otherwise, just return whatever node we got back, like fabs.
9172    if (SCC.getOpcode() == ISD::SELECT_CC) {
9173      SDValue SETCC = DAG.getNode(ISD::SETCC, N0.getDebugLoc(),
9174                                  N0.getValueType(),
9175                                  SCC.getOperand(0), SCC.getOperand(1),
9176                                  SCC.getOperand(4));
9177      AddToWorkList(SETCC.getNode());
9178      return DAG.getNode(ISD::SELECT, SCC.getDebugLoc(), SCC.getValueType(),
9179                         SCC.getOperand(2), SCC.getOperand(3), SETCC);
9180    }
9181
9182    return SCC;
9183  }
9184  return SDValue();
9185}
9186
9187/// SimplifySelectOps - Given a SELECT or a SELECT_CC node, where LHS and RHS
9188/// are the two values being selected between, see if we can simplify the
9189/// select.  Callers of this should assume that TheSelect is deleted if this
9190/// returns true.  As such, they should return the appropriate thing (e.g. the
9191/// node) back to the top-level of the DAG combiner loop to avoid it being
9192/// looked at.
9193bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDValue LHS,
9194                                    SDValue RHS) {
9195
9196  // Cannot simplify select with vector condition
9197  if (TheSelect->getOperand(0).getValueType().isVector()) return false;
9198
9199  // If this is a select from two identical things, try to pull the operation
9200  // through the select.
9201  if (LHS.getOpcode() != RHS.getOpcode() ||
9202      !LHS.hasOneUse() || !RHS.hasOneUse())
9203    return false;
9204
9205  // If this is a load and the token chain is identical, replace the select
9206  // of two loads with a load through a select of the address to load from.
9207  // This triggers in things like "select bool X, 10.0, 123.0" after the FP
9208  // constants have been dropped into the constant pool.
9209  if (LHS.getOpcode() == ISD::LOAD) {
9210    LoadSDNode *LLD = cast<LoadSDNode>(LHS);
9211    LoadSDNode *RLD = cast<LoadSDNode>(RHS);
9212
9213    // Token chains must be identical.
9214    if (LHS.getOperand(0) != RHS.getOperand(0) ||
9215        // Do not let this transformation reduce the number of volatile loads.
9216        LLD->isVolatile() || RLD->isVolatile() ||
9217        // If this is an EXTLOAD, the VT's must match.
9218        LLD->getMemoryVT() != RLD->getMemoryVT() ||
9219        // If this is an EXTLOAD, the kind of extension must match.
9220        (LLD->getExtensionType() != RLD->getExtensionType() &&
9221         // The only exception is if one of the extensions is anyext.
9222         LLD->getExtensionType() != ISD::EXTLOAD &&
9223         RLD->getExtensionType() != ISD::EXTLOAD) ||
9224        // FIXME: this discards src value information.  This is
9225        // over-conservative. It would be beneficial to be able to remember
9226        // both potential memory locations.  Since we are discarding
9227        // src value info, don't do the transformation if the memory
9228        // locations are not in the default address space.
9229        LLD->getPointerInfo().getAddrSpace() != 0 ||
9230        RLD->getPointerInfo().getAddrSpace() != 0)
9231      return false;
9232
9233    // Check that the select condition doesn't reach either load.  If so,
9234    // folding this will induce a cycle into the DAG.  If not, this is safe to
9235    // xform, so create a select of the addresses.
9236    SDValue Addr;
9237    if (TheSelect->getOpcode() == ISD::SELECT) {
9238      SDNode *CondNode = TheSelect->getOperand(0).getNode();
9239      if ((LLD->hasAnyUseOfValue(1) && LLD->isPredecessorOf(CondNode)) ||
9240          (RLD->hasAnyUseOfValue(1) && RLD->isPredecessorOf(CondNode)))
9241        return false;
9242      // The loads must not depend on one another.
9243      if (LLD->isPredecessorOf(RLD) ||
9244          RLD->isPredecessorOf(LLD))
9245        return false;
9246      Addr = DAG.getNode(ISD::SELECT, TheSelect->getDebugLoc(),
9247                         LLD->getBasePtr().getValueType(),
9248                         TheSelect->getOperand(0), LLD->getBasePtr(),
9249                         RLD->getBasePtr());
9250    } else {  // Otherwise SELECT_CC
9251      SDNode *CondLHS = TheSelect->getOperand(0).getNode();
9252      SDNode *CondRHS = TheSelect->getOperand(1).getNode();
9253
9254      if ((LLD->hasAnyUseOfValue(1) &&
9255           (LLD->isPredecessorOf(CondLHS) || LLD->isPredecessorOf(CondRHS))) ||
9256          (RLD->hasAnyUseOfValue(1) &&
9257           (RLD->isPredecessorOf(CondLHS) || RLD->isPredecessorOf(CondRHS))))
9258        return false;
9259
9260      Addr = DAG.getNode(ISD::SELECT_CC, TheSelect->getDebugLoc(),
9261                         LLD->getBasePtr().getValueType(),
9262                         TheSelect->getOperand(0),
9263                         TheSelect->getOperand(1),
9264                         LLD->getBasePtr(), RLD->getBasePtr(),
9265                         TheSelect->getOperand(4));
9266    }
9267
9268    SDValue Load;
9269    if (LLD->getExtensionType() == ISD::NON_EXTLOAD) {
9270      Load = DAG.getLoad(TheSelect->getValueType(0),
9271                         TheSelect->getDebugLoc(),
9272                         // FIXME: Discards pointer info.
9273                         LLD->getChain(), Addr, MachinePointerInfo(),
9274                         LLD->isVolatile(), LLD->isNonTemporal(),
9275                         LLD->isInvariant(), LLD->getAlignment());
9276    } else {
9277      Load = DAG.getExtLoad(LLD->getExtensionType() == ISD::EXTLOAD ?
9278                            RLD->getExtensionType() : LLD->getExtensionType(),
9279                            TheSelect->getDebugLoc(),
9280                            TheSelect->getValueType(0),
9281                            // FIXME: Discards pointer info.
9282                            LLD->getChain(), Addr, MachinePointerInfo(),
9283                            LLD->getMemoryVT(), LLD->isVolatile(),
9284                            LLD->isNonTemporal(), LLD->getAlignment());
9285    }
9286
9287    // Users of the select now use the result of the load.
9288    CombineTo(TheSelect, Load);
9289
9290    // Users of the old loads now use the new load's chain.  We know the
9291    // old-load value is dead now.
9292    CombineTo(LHS.getNode(), Load.getValue(0), Load.getValue(1));
9293    CombineTo(RHS.getNode(), Load.getValue(0), Load.getValue(1));
9294    return true;
9295  }
9296
9297  return false;
9298}
9299
9300/// SimplifySelectCC - Simplify an expression of the form (N0 cond N1) ? N2 : N3
9301/// where 'cond' is the comparison specified by CC.
9302SDValue DAGCombiner::SimplifySelectCC(DebugLoc DL, SDValue N0, SDValue N1,
9303                                      SDValue N2, SDValue N3,
9304                                      ISD::CondCode CC, bool NotExtCompare) {
9305  // (x ? y : y) -> y.
9306  if (N2 == N3) return N2;
9307
9308  EVT VT = N2.getValueType();
9309  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
9310  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
9311  ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.getNode());
9312
9313  // Determine if the condition we're dealing with is constant
9314  SDValue SCC = SimplifySetCC(TLI.getSetCCResultType(N0.getValueType()),
9315                              N0, N1, CC, DL, false);
9316  if (SCC.getNode()) AddToWorkList(SCC.getNode());
9317  ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.getNode());
9318
9319  // fold select_cc true, x, y -> x
9320  if (SCCC && !SCCC->isNullValue())
9321    return N2;
9322  // fold select_cc false, x, y -> y
9323  if (SCCC && SCCC->isNullValue())
9324    return N3;
9325
9326  // Check to see if we can simplify the select into an fabs node
9327  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1)) {
9328    // Allow either -0.0 or 0.0
9329    if (CFP->getValueAPF().isZero()) {
9330      // select (setg[te] X, +/-0.0), X, fneg(X) -> fabs
9331      if ((CC == ISD::SETGE || CC == ISD::SETGT) &&
9332          N0 == N2 && N3.getOpcode() == ISD::FNEG &&
9333          N2 == N3.getOperand(0))
9334        return DAG.getNode(ISD::FABS, DL, VT, N0);
9335
9336      // select (setl[te] X, +/-0.0), fneg(X), X -> fabs
9337      if ((CC == ISD::SETLT || CC == ISD::SETLE) &&
9338          N0 == N3 && N2.getOpcode() == ISD::FNEG &&
9339          N2.getOperand(0) == N3)
9340        return DAG.getNode(ISD::FABS, DL, VT, N3);
9341    }
9342  }
9343
9344  // Turn "(a cond b) ? 1.0f : 2.0f" into "load (tmp + ((a cond b) ? 0 : 4)"
9345  // where "tmp" is a constant pool entry containing an array with 1.0 and 2.0
9346  // in it.  This is a win when the constant is not otherwise available because
9347  // it replaces two constant pool loads with one.  We only do this if the FP
9348  // type is known to be legal, because if it isn't, then we are before legalize
9349  // types an we want the other legalization to happen first (e.g. to avoid
9350  // messing with soft float) and if the ConstantFP is not legal, because if
9351  // it is legal, we may not need to store the FP constant in a constant pool.
9352  if (ConstantFPSDNode *TV = dyn_cast<ConstantFPSDNode>(N2))
9353    if (ConstantFPSDNode *FV = dyn_cast<ConstantFPSDNode>(N3)) {
9354      if (TLI.isTypeLegal(N2.getValueType()) &&
9355          (TLI.getOperationAction(ISD::ConstantFP, N2.getValueType()) !=
9356           TargetLowering::Legal) &&
9357          // If both constants have multiple uses, then we won't need to do an
9358          // extra load, they are likely around in registers for other users.
9359          (TV->hasOneUse() || FV->hasOneUse())) {
9360        Constant *Elts[] = {
9361          const_cast<ConstantFP*>(FV->getConstantFPValue()),
9362          const_cast<ConstantFP*>(TV->getConstantFPValue())
9363        };
9364        Type *FPTy = Elts[0]->getType();
9365        const DataLayout &TD = *TLI.getDataLayout();
9366
9367        // Create a ConstantArray of the two constants.
9368        Constant *CA = ConstantArray::get(ArrayType::get(FPTy, 2), Elts);
9369        SDValue CPIdx = DAG.getConstantPool(CA, TLI.getPointerTy(),
9370                                            TD.getPrefTypeAlignment(FPTy));
9371        unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
9372
9373        // Get the offsets to the 0 and 1 element of the array so that we can
9374        // select between them.
9375        SDValue Zero = DAG.getIntPtrConstant(0);
9376        unsigned EltSize = (unsigned)TD.getTypeAllocSize(Elts[0]->getType());
9377        SDValue One = DAG.getIntPtrConstant(EltSize);
9378
9379        SDValue Cond = DAG.getSetCC(DL,
9380                                    TLI.getSetCCResultType(N0.getValueType()),
9381                                    N0, N1, CC);
9382        AddToWorkList(Cond.getNode());
9383        SDValue CstOffset = DAG.getNode(ISD::SELECT, DL, Zero.getValueType(),
9384                                        Cond, One, Zero);
9385        AddToWorkList(CstOffset.getNode());
9386        CPIdx = DAG.getNode(ISD::ADD, DL, TLI.getPointerTy(), CPIdx,
9387                            CstOffset);
9388        AddToWorkList(CPIdx.getNode());
9389        return DAG.getLoad(TV->getValueType(0), DL, DAG.getEntryNode(), CPIdx,
9390                           MachinePointerInfo::getConstantPool(), false,
9391                           false, false, Alignment);
9392
9393      }
9394    }
9395
9396  // Check to see if we can perform the "gzip trick", transforming
9397  // (select_cc setlt X, 0, A, 0) -> (and (sra X, (sub size(X), 1), A)
9398  if (N1C && N3C && N3C->isNullValue() && CC == ISD::SETLT &&
9399      (N1C->isNullValue() ||                         // (a < 0) ? b : 0
9400       (N1C->getAPIntValue() == 1 && N0 == N2))) {   // (a < 1) ? a : 0
9401    EVT XType = N0.getValueType();
9402    EVT AType = N2.getValueType();
9403    if (XType.bitsGE(AType)) {
9404      // and (sra X, size(X)-1, A) -> "and (srl X, C2), A" iff A is a
9405      // single-bit constant.
9406      if (N2C && ((N2C->getAPIntValue() & (N2C->getAPIntValue()-1)) == 0)) {
9407        unsigned ShCtV = N2C->getAPIntValue().logBase2();
9408        ShCtV = XType.getSizeInBits()-ShCtV-1;
9409        SDValue ShCt = DAG.getConstant(ShCtV,
9410                                       getShiftAmountTy(N0.getValueType()));
9411        SDValue Shift = DAG.getNode(ISD::SRL, N0.getDebugLoc(),
9412                                    XType, N0, ShCt);
9413        AddToWorkList(Shift.getNode());
9414
9415        if (XType.bitsGT(AType)) {
9416          Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift);
9417          AddToWorkList(Shift.getNode());
9418        }
9419
9420        return DAG.getNode(ISD::AND, DL, AType, Shift, N2);
9421      }
9422
9423      SDValue Shift = DAG.getNode(ISD::SRA, N0.getDebugLoc(),
9424                                  XType, N0,
9425                                  DAG.getConstant(XType.getSizeInBits()-1,
9426                                         getShiftAmountTy(N0.getValueType())));
9427      AddToWorkList(Shift.getNode());
9428
9429      if (XType.bitsGT(AType)) {
9430        Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift);
9431        AddToWorkList(Shift.getNode());
9432      }
9433
9434      return DAG.getNode(ISD::AND, DL, AType, Shift, N2);
9435    }
9436  }
9437
9438  // fold (select_cc seteq (and x, y), 0, 0, A) -> (and (shr (shl x)) A)
9439  // where y is has a single bit set.
9440  // A plaintext description would be, we can turn the SELECT_CC into an AND
9441  // when the condition can be materialized as an all-ones register.  Any
9442  // single bit-test can be materialized as an all-ones register with
9443  // shift-left and shift-right-arith.
9444  if (CC == ISD::SETEQ && N0->getOpcode() == ISD::AND &&
9445      N0->getValueType(0) == VT &&
9446      N1C && N1C->isNullValue() &&
9447      N2C && N2C->isNullValue()) {
9448    SDValue AndLHS = N0->getOperand(0);
9449    ConstantSDNode *ConstAndRHS = dyn_cast<ConstantSDNode>(N0->getOperand(1));
9450    if (ConstAndRHS && ConstAndRHS->getAPIntValue().countPopulation() == 1) {
9451      // Shift the tested bit over the sign bit.
9452      APInt AndMask = ConstAndRHS->getAPIntValue();
9453      SDValue ShlAmt =
9454        DAG.getConstant(AndMask.countLeadingZeros(),
9455                        getShiftAmountTy(AndLHS.getValueType()));
9456      SDValue Shl = DAG.getNode(ISD::SHL, N0.getDebugLoc(), VT, AndLHS, ShlAmt);
9457
9458      // Now arithmetic right shift it all the way over, so the result is either
9459      // all-ones, or zero.
9460      SDValue ShrAmt =
9461        DAG.getConstant(AndMask.getBitWidth()-1,
9462                        getShiftAmountTy(Shl.getValueType()));
9463      SDValue Shr = DAG.getNode(ISD::SRA, N0.getDebugLoc(), VT, Shl, ShrAmt);
9464
9465      return DAG.getNode(ISD::AND, DL, VT, Shr, N3);
9466    }
9467  }
9468
9469  // fold select C, 16, 0 -> shl C, 4
9470  if (N2C && N3C && N3C->isNullValue() && N2C->getAPIntValue().isPowerOf2() &&
9471    TLI.getBooleanContents(N0.getValueType().isVector()) ==
9472      TargetLowering::ZeroOrOneBooleanContent) {
9473
9474    // If the caller doesn't want us to simplify this into a zext of a compare,
9475    // don't do it.
9476    if (NotExtCompare && N2C->getAPIntValue() == 1)
9477      return SDValue();
9478
9479    // Get a SetCC of the condition
9480    // NOTE: Don't create a SETCC if it's not legal on this target.
9481    if (!LegalOperations ||
9482        TLI.isOperationLegal(ISD::SETCC,
9483          LegalTypes ? TLI.getSetCCResultType(N0.getValueType()) : MVT::i1)) {
9484      SDValue Temp, SCC;
9485      // cast from setcc result type to select result type
9486      if (LegalTypes) {
9487        SCC  = DAG.getSetCC(DL, TLI.getSetCCResultType(N0.getValueType()),
9488                            N0, N1, CC);
9489        if (N2.getValueType().bitsLT(SCC.getValueType()))
9490          Temp = DAG.getZeroExtendInReg(SCC, N2.getDebugLoc(),
9491                                        N2.getValueType());
9492        else
9493          Temp = DAG.getNode(ISD::ZERO_EXTEND, N2.getDebugLoc(),
9494                             N2.getValueType(), SCC);
9495      } else {
9496        SCC  = DAG.getSetCC(N0.getDebugLoc(), MVT::i1, N0, N1, CC);
9497        Temp = DAG.getNode(ISD::ZERO_EXTEND, N2.getDebugLoc(),
9498                           N2.getValueType(), SCC);
9499      }
9500
9501      AddToWorkList(SCC.getNode());
9502      AddToWorkList(Temp.getNode());
9503
9504      if (N2C->getAPIntValue() == 1)
9505        return Temp;
9506
9507      // shl setcc result by log2 n2c
9508      return DAG.getNode(ISD::SHL, DL, N2.getValueType(), Temp,
9509                         DAG.getConstant(N2C->getAPIntValue().logBase2(),
9510                                         getShiftAmountTy(Temp.getValueType())));
9511    }
9512  }
9513
9514  // Check to see if this is the equivalent of setcc
9515  // FIXME: Turn all of these into setcc if setcc if setcc is legal
9516  // otherwise, go ahead with the folds.
9517  if (0 && N3C && N3C->isNullValue() && N2C && (N2C->getAPIntValue() == 1ULL)) {
9518    EVT XType = N0.getValueType();
9519    if (!LegalOperations ||
9520        TLI.isOperationLegal(ISD::SETCC, TLI.getSetCCResultType(XType))) {
9521      SDValue Res = DAG.getSetCC(DL, TLI.getSetCCResultType(XType), N0, N1, CC);
9522      if (Res.getValueType() != VT)
9523        Res = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Res);
9524      return Res;
9525    }
9526
9527    // fold (seteq X, 0) -> (srl (ctlz X, log2(size(X))))
9528    if (N1C && N1C->isNullValue() && CC == ISD::SETEQ &&
9529        (!LegalOperations ||
9530         TLI.isOperationLegal(ISD::CTLZ, XType))) {
9531      SDValue Ctlz = DAG.getNode(ISD::CTLZ, N0.getDebugLoc(), XType, N0);
9532      return DAG.getNode(ISD::SRL, DL, XType, Ctlz,
9533                         DAG.getConstant(Log2_32(XType.getSizeInBits()),
9534                                       getShiftAmountTy(Ctlz.getValueType())));
9535    }
9536    // fold (setgt X, 0) -> (srl (and (-X, ~X), size(X)-1))
9537    if (N1C && N1C->isNullValue() && CC == ISD::SETGT) {
9538      SDValue NegN0 = DAG.getNode(ISD::SUB, N0.getDebugLoc(),
9539                                  XType, DAG.getConstant(0, XType), N0);
9540      SDValue NotN0 = DAG.getNOT(N0.getDebugLoc(), N0, XType);
9541      return DAG.getNode(ISD::SRL, DL, XType,
9542                         DAG.getNode(ISD::AND, DL, XType, NegN0, NotN0),
9543                         DAG.getConstant(XType.getSizeInBits()-1,
9544                                         getShiftAmountTy(XType)));
9545    }
9546    // fold (setgt X, -1) -> (xor (srl (X, size(X)-1), 1))
9547    if (N1C && N1C->isAllOnesValue() && CC == ISD::SETGT) {
9548      SDValue Sign = DAG.getNode(ISD::SRL, N0.getDebugLoc(), XType, N0,
9549                                 DAG.getConstant(XType.getSizeInBits()-1,
9550                                         getShiftAmountTy(N0.getValueType())));
9551      return DAG.getNode(ISD::XOR, DL, XType, Sign, DAG.getConstant(1, XType));
9552    }
9553  }
9554
9555  // Check to see if this is an integer abs.
9556  // select_cc setg[te] X,  0,  X, -X ->
9557  // select_cc setgt    X, -1,  X, -X ->
9558  // select_cc setl[te] X,  0, -X,  X ->
9559  // select_cc setlt    X,  1, -X,  X ->
9560  // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
9561  if (N1C) {
9562    ConstantSDNode *SubC = NULL;
9563    if (((N1C->isNullValue() && (CC == ISD::SETGT || CC == ISD::SETGE)) ||
9564         (N1C->isAllOnesValue() && CC == ISD::SETGT)) &&
9565        N0 == N2 && N3.getOpcode() == ISD::SUB && N0 == N3.getOperand(1))
9566      SubC = dyn_cast<ConstantSDNode>(N3.getOperand(0));
9567    else if (((N1C->isNullValue() && (CC == ISD::SETLT || CC == ISD::SETLE)) ||
9568              (N1C->isOne() && CC == ISD::SETLT)) &&
9569             N0 == N3 && N2.getOpcode() == ISD::SUB && N0 == N2.getOperand(1))
9570      SubC = dyn_cast<ConstantSDNode>(N2.getOperand(0));
9571
9572    EVT XType = N0.getValueType();
9573    if (SubC && SubC->isNullValue() && XType.isInteger()) {
9574      SDValue Shift = DAG.getNode(ISD::SRA, N0.getDebugLoc(), XType,
9575                                  N0,
9576                                  DAG.getConstant(XType.getSizeInBits()-1,
9577                                         getShiftAmountTy(N0.getValueType())));
9578      SDValue Add = DAG.getNode(ISD::ADD, N0.getDebugLoc(),
9579                                XType, N0, Shift);
9580      AddToWorkList(Shift.getNode());
9581      AddToWorkList(Add.getNode());
9582      return DAG.getNode(ISD::XOR, DL, XType, Add, Shift);
9583    }
9584  }
9585
9586  return SDValue();
9587}
9588
9589/// SimplifySetCC - This is a stub for TargetLowering::SimplifySetCC.
9590SDValue DAGCombiner::SimplifySetCC(EVT VT, SDValue N0,
9591                                   SDValue N1, ISD::CondCode Cond,
9592                                   DebugLoc DL, bool foldBooleans) {
9593  TargetLowering::DAGCombinerInfo
9594    DagCombineInfo(DAG, !LegalTypes, !LegalOperations, false, this);
9595  return TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo, DL);
9596}
9597
9598/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
9599/// return a DAG expression to select that will generate the same value by
9600/// multiplying by a magic number.  See:
9601/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
9602SDValue DAGCombiner::BuildSDIV(SDNode *N) {
9603  std::vector<SDNode*> Built;
9604  SDValue S = TLI.BuildSDIV(N, DAG, LegalOperations, &Built);
9605
9606  for (std::vector<SDNode*>::iterator ii = Built.begin(), ee = Built.end();
9607       ii != ee; ++ii)
9608    AddToWorkList(*ii);
9609  return S;
9610}
9611
9612/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
9613/// return a DAG expression to select that will generate the same value by
9614/// multiplying by a magic number.  See:
9615/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
9616SDValue DAGCombiner::BuildUDIV(SDNode *N) {
9617  std::vector<SDNode*> Built;
9618  SDValue S = TLI.BuildUDIV(N, DAG, LegalOperations, &Built);
9619
9620  for (std::vector<SDNode*>::iterator ii = Built.begin(), ee = Built.end();
9621       ii != ee; ++ii)
9622    AddToWorkList(*ii);
9623  return S;
9624}
9625
9626/// FindBaseOffset - Return true if base is a frame index, which is known not
9627// to alias with anything but itself.  Provides base object and offset as
9628// results.
9629static bool FindBaseOffset(SDValue Ptr, SDValue &Base, int64_t &Offset,
9630                           const GlobalValue *&GV, const void *&CV) {
9631  // Assume it is a primitive operation.
9632  Base = Ptr; Offset = 0; GV = 0; CV = 0;
9633
9634  // If it's an adding a simple constant then integrate the offset.
9635  if (Base.getOpcode() == ISD::ADD) {
9636    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Base.getOperand(1))) {
9637      Base = Base.getOperand(0);
9638      Offset += C->getZExtValue();
9639    }
9640  }
9641
9642  // Return the underlying GlobalValue, and update the Offset.  Return false
9643  // for GlobalAddressSDNode since the same GlobalAddress may be represented
9644  // by multiple nodes with different offsets.
9645  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Base)) {
9646    GV = G->getGlobal();
9647    Offset += G->getOffset();
9648    return false;
9649  }
9650
9651  // Return the underlying Constant value, and update the Offset.  Return false
9652  // for ConstantSDNodes since the same constant pool entry may be represented
9653  // by multiple nodes with different offsets.
9654  if (ConstantPoolSDNode *C = dyn_cast<ConstantPoolSDNode>(Base)) {
9655    CV = C->isMachineConstantPoolEntry() ? (const void *)C->getMachineCPVal()
9656                                         : (const void *)C->getConstVal();
9657    Offset += C->getOffset();
9658    return false;
9659  }
9660  // If it's any of the following then it can't alias with anything but itself.
9661  return isa<FrameIndexSDNode>(Base);
9662}
9663
9664/// isAlias - Return true if there is any possibility that the two addresses
9665/// overlap.
9666bool DAGCombiner::isAlias(SDValue Ptr1, int64_t Size1,
9667                          const Value *SrcValue1, int SrcValueOffset1,
9668                          unsigned SrcValueAlign1,
9669                          const MDNode *TBAAInfo1,
9670                          SDValue Ptr2, int64_t Size2,
9671                          const Value *SrcValue2, int SrcValueOffset2,
9672                          unsigned SrcValueAlign2,
9673                          const MDNode *TBAAInfo2) const {
9674  // If they are the same then they must be aliases.
9675  if (Ptr1 == Ptr2) return true;
9676
9677  // Gather base node and offset information.
9678  SDValue Base1, Base2;
9679  int64_t Offset1, Offset2;
9680  const GlobalValue *GV1, *GV2;
9681  const void *CV1, *CV2;
9682  bool isFrameIndex1 = FindBaseOffset(Ptr1, Base1, Offset1, GV1, CV1);
9683  bool isFrameIndex2 = FindBaseOffset(Ptr2, Base2, Offset2, GV2, CV2);
9684
9685  // If they have a same base address then check to see if they overlap.
9686  if (Base1 == Base2 || (GV1 && (GV1 == GV2)) || (CV1 && (CV1 == CV2)))
9687    return !((Offset1 + Size1) <= Offset2 || (Offset2 + Size2) <= Offset1);
9688
9689  // It is possible for different frame indices to alias each other, mostly
9690  // when tail call optimization reuses return address slots for arguments.
9691  // To catch this case, look up the actual index of frame indices to compute
9692  // the real alias relationship.
9693  if (isFrameIndex1 && isFrameIndex2) {
9694    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9695    Offset1 += MFI->getObjectOffset(cast<FrameIndexSDNode>(Base1)->getIndex());
9696    Offset2 += MFI->getObjectOffset(cast<FrameIndexSDNode>(Base2)->getIndex());
9697    return !((Offset1 + Size1) <= Offset2 || (Offset2 + Size2) <= Offset1);
9698  }
9699
9700  // Otherwise, if we know what the bases are, and they aren't identical, then
9701  // we know they cannot alias.
9702  if ((isFrameIndex1 || CV1 || GV1) && (isFrameIndex2 || CV2 || GV2))
9703    return false;
9704
9705  // If we know required SrcValue1 and SrcValue2 have relatively large alignment
9706  // compared to the size and offset of the access, we may be able to prove they
9707  // do not alias.  This check is conservative for now to catch cases created by
9708  // splitting vector types.
9709  if ((SrcValueAlign1 == SrcValueAlign2) &&
9710      (SrcValueOffset1 != SrcValueOffset2) &&
9711      (Size1 == Size2) && (SrcValueAlign1 > Size1)) {
9712    int64_t OffAlign1 = SrcValueOffset1 % SrcValueAlign1;
9713    int64_t OffAlign2 = SrcValueOffset2 % SrcValueAlign1;
9714
9715    // There is no overlap between these relatively aligned accesses of similar
9716    // size, return no alias.
9717    if ((OffAlign1 + Size1) <= OffAlign2 || (OffAlign2 + Size2) <= OffAlign1)
9718      return false;
9719  }
9720
9721  if (CombinerGlobalAA) {
9722    // Use alias analysis information.
9723    int64_t MinOffset = std::min(SrcValueOffset1, SrcValueOffset2);
9724    int64_t Overlap1 = Size1 + SrcValueOffset1 - MinOffset;
9725    int64_t Overlap2 = Size2 + SrcValueOffset2 - MinOffset;
9726    AliasAnalysis::AliasResult AAResult =
9727      AA.alias(AliasAnalysis::Location(SrcValue1, Overlap1, TBAAInfo1),
9728               AliasAnalysis::Location(SrcValue2, Overlap2, TBAAInfo2));
9729    if (AAResult == AliasAnalysis::NoAlias)
9730      return false;
9731  }
9732
9733  // Otherwise we have to assume they alias.
9734  return true;
9735}
9736
9737bool DAGCombiner::isAlias(LSBaseSDNode *Op0, LSBaseSDNode *Op1) {
9738  SDValue Ptr0, Ptr1;
9739  int64_t Size0, Size1;
9740  const Value *SrcValue0, *SrcValue1;
9741  int SrcValueOffset0, SrcValueOffset1;
9742  unsigned SrcValueAlign0, SrcValueAlign1;
9743  const MDNode *SrcTBAAInfo0, *SrcTBAAInfo1;
9744  FindAliasInfo(Op0, Ptr0, Size0, SrcValue0, SrcValueOffset0,
9745                SrcValueAlign0, SrcTBAAInfo0);
9746  FindAliasInfo(Op1, Ptr1, Size1, SrcValue1, SrcValueOffset1,
9747                SrcValueAlign1, SrcTBAAInfo1);
9748  return isAlias(Ptr0, Size0, SrcValue0, SrcValueOffset0,
9749               SrcValueAlign0, SrcTBAAInfo0,
9750               Ptr1, Size1, SrcValue1, SrcValueOffset1,
9751               SrcValueAlign1, SrcTBAAInfo1);
9752}
9753
9754/// FindAliasInfo - Extracts the relevant alias information from the memory
9755/// node.  Returns true if the operand was a load.
9756bool DAGCombiner::FindAliasInfo(SDNode *N,
9757                                SDValue &Ptr, int64_t &Size,
9758                                const Value *&SrcValue,
9759                                int &SrcValueOffset,
9760                                unsigned &SrcValueAlign,
9761                                const MDNode *&TBAAInfo) const {
9762  LSBaseSDNode *LS = cast<LSBaseSDNode>(N);
9763
9764  Ptr = LS->getBasePtr();
9765  Size = LS->getMemoryVT().getSizeInBits() >> 3;
9766  SrcValue = LS->getSrcValue();
9767  SrcValueOffset = LS->getSrcValueOffset();
9768  SrcValueAlign = LS->getOriginalAlignment();
9769  TBAAInfo = LS->getTBAAInfo();
9770  return isa<LoadSDNode>(LS);
9771}
9772
9773/// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
9774/// looking for aliasing nodes and adding them to the Aliases vector.
9775void DAGCombiner::GatherAllAliases(SDNode *N, SDValue OriginalChain,
9776                                   SmallVector<SDValue, 8> &Aliases) {
9777  SmallVector<SDValue, 8> Chains;     // List of chains to visit.
9778  SmallPtrSet<SDNode *, 16> Visited;  // Visited node set.
9779
9780  // Get alias information for node.
9781  SDValue Ptr;
9782  int64_t Size;
9783  const Value *SrcValue;
9784  int SrcValueOffset;
9785  unsigned SrcValueAlign;
9786  const MDNode *SrcTBAAInfo;
9787  bool IsLoad = FindAliasInfo(N, Ptr, Size, SrcValue, SrcValueOffset,
9788                              SrcValueAlign, SrcTBAAInfo);
9789
9790  // Starting off.
9791  Chains.push_back(OriginalChain);
9792  unsigned Depth = 0;
9793
9794  // Look at each chain and determine if it is an alias.  If so, add it to the
9795  // aliases list.  If not, then continue up the chain looking for the next
9796  // candidate.
9797  while (!Chains.empty()) {
9798    SDValue Chain = Chains.back();
9799    Chains.pop_back();
9800
9801    // For TokenFactor nodes, look at each operand and only continue up the
9802    // chain until we find two aliases.  If we've seen two aliases, assume we'll
9803    // find more and revert to original chain since the xform is unlikely to be
9804    // profitable.
9805    //
9806    // FIXME: The depth check could be made to return the last non-aliasing
9807    // chain we found before we hit a tokenfactor rather than the original
9808    // chain.
9809    if (Depth > 6 || Aliases.size() == 2) {
9810      Aliases.clear();
9811      Aliases.push_back(OriginalChain);
9812      break;
9813    }
9814
9815    // Don't bother if we've been before.
9816    if (!Visited.insert(Chain.getNode()))
9817      continue;
9818
9819    switch (Chain.getOpcode()) {
9820    case ISD::EntryToken:
9821      // Entry token is ideal chain operand, but handled in FindBetterChain.
9822      break;
9823
9824    case ISD::LOAD:
9825    case ISD::STORE: {
9826      // Get alias information for Chain.
9827      SDValue OpPtr;
9828      int64_t OpSize;
9829      const Value *OpSrcValue;
9830      int OpSrcValueOffset;
9831      unsigned OpSrcValueAlign;
9832      const MDNode *OpSrcTBAAInfo;
9833      bool IsOpLoad = FindAliasInfo(Chain.getNode(), OpPtr, OpSize,
9834                                    OpSrcValue, OpSrcValueOffset,
9835                                    OpSrcValueAlign,
9836                                    OpSrcTBAAInfo);
9837
9838      // If chain is alias then stop here.
9839      if (!(IsLoad && IsOpLoad) &&
9840          isAlias(Ptr, Size, SrcValue, SrcValueOffset, SrcValueAlign,
9841                  SrcTBAAInfo,
9842                  OpPtr, OpSize, OpSrcValue, OpSrcValueOffset,
9843                  OpSrcValueAlign, OpSrcTBAAInfo)) {
9844        Aliases.push_back(Chain);
9845      } else {
9846        // Look further up the chain.
9847        Chains.push_back(Chain.getOperand(0));
9848        ++Depth;
9849      }
9850      break;
9851    }
9852
9853    case ISD::TokenFactor:
9854      // We have to check each of the operands of the token factor for "small"
9855      // token factors, so we queue them up.  Adding the operands to the queue
9856      // (stack) in reverse order maintains the original order and increases the
9857      // likelihood that getNode will find a matching token factor (CSE.)
9858      if (Chain.getNumOperands() > 16) {
9859        Aliases.push_back(Chain);
9860        break;
9861      }
9862      for (unsigned n = Chain.getNumOperands(); n;)
9863        Chains.push_back(Chain.getOperand(--n));
9864      ++Depth;
9865      break;
9866
9867    default:
9868      // For all other instructions we will just have to take what we can get.
9869      Aliases.push_back(Chain);
9870      break;
9871    }
9872  }
9873}
9874
9875/// FindBetterChain - Walk up chain skipping non-aliasing memory nodes, looking
9876/// for a better chain (aliasing node.)
9877SDValue DAGCombiner::FindBetterChain(SDNode *N, SDValue OldChain) {
9878  SmallVector<SDValue, 8> Aliases;  // Ops for replacing token factor.
9879
9880  // Accumulate all the aliases to this node.
9881  GatherAllAliases(N, OldChain, Aliases);
9882
9883  // If no operands then chain to entry token.
9884  if (Aliases.size() == 0)
9885    return DAG.getEntryNode();
9886
9887  // If a single operand then chain to it.  We don't need to revisit it.
9888  if (Aliases.size() == 1)
9889    return Aliases[0];
9890
9891  // Construct a custom tailored token factor.
9892  return DAG.getNode(ISD::TokenFactor, N->getDebugLoc(), MVT::Other,
9893                     &Aliases[0], Aliases.size());
9894}
9895
9896// SelectionDAG::Combine - This is the entry point for the file.
9897//
9898void SelectionDAG::Combine(CombineLevel Level, AliasAnalysis &AA,
9899                           CodeGenOpt::Level OptLevel) {
9900  /// run - This is the main entry point to this class.
9901  ///
9902  DAGCombiner(*this, AA, OptLevel).Run(Level);
9903}
9904