DAGCombiner.cpp revision b05e4778f0871cbb02f61e4d55ad7375738a1d01
1//===-- DAGCombiner.cpp - Implement a DAG node combiner -------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass combines dag nodes to form fewer, simpler DAG nodes.  It can be run
11// both before and after the DAG is legalized.
12//
13// This pass is not a substitute for the LLVM IR instcombine pass. This pass is
14// primarily intended to handle simplification opportunities that are implicit
15// in the LLVM IR and exposed by the various codegen lowering phases.
16//
17//===----------------------------------------------------------------------===//
18
19#define DEBUG_TYPE "dagcombine"
20#include "llvm/CodeGen/SelectionDAG.h"
21#include "llvm/ADT/SmallPtrSet.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/Analysis/AliasAnalysis.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineFunction.h"
26#include "llvm/IR/DataLayout.h"
27#include "llvm/IR/DerivedTypes.h"
28#include "llvm/IR/Function.h"
29#include "llvm/IR/LLVMContext.h"
30#include "llvm/Support/CommandLine.h"
31#include "llvm/Support/Debug.h"
32#include "llvm/Support/ErrorHandling.h"
33#include "llvm/Support/MathExtras.h"
34#include "llvm/Support/raw_ostream.h"
35#include "llvm/Target/TargetLowering.h"
36#include "llvm/Target/TargetMachine.h"
37#include "llvm/Target/TargetOptions.h"
38#include <algorithm>
39using namespace llvm;
40
41STATISTIC(NodesCombined   , "Number of dag nodes combined");
42STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created");
43STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created");
44STATISTIC(OpsNarrowed     , "Number of load/op/store narrowed");
45STATISTIC(LdStFP2Int      , "Number of fp load/store pairs transformed to int");
46
47namespace {
48  static cl::opt<bool>
49    CombinerAA("combiner-alias-analysis", cl::Hidden,
50               cl::desc("Turn on alias analysis during testing"));
51
52  static cl::opt<bool>
53    CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden,
54               cl::desc("Include global information in alias analysis"));
55
56//------------------------------ DAGCombiner ---------------------------------//
57
58  class DAGCombiner {
59    SelectionDAG &DAG;
60    const TargetLowering &TLI;
61    CombineLevel Level;
62    CodeGenOpt::Level OptLevel;
63    bool LegalOperations;
64    bool LegalTypes;
65
66    // Worklist of all of the nodes that need to be simplified.
67    //
68    // This has the semantics that when adding to the worklist,
69    // the item added must be next to be processed. It should
70    // also only appear once. The naive approach to this takes
71    // linear time.
72    //
73    // To reduce the insert/remove time to logarithmic, we use
74    // a set and a vector to maintain our worklist.
75    //
76    // The set contains the items on the worklist, but does not
77    // maintain the order they should be visited.
78    //
79    // The vector maintains the order nodes should be visited, but may
80    // contain duplicate or removed nodes. When choosing a node to
81    // visit, we pop off the order stack until we find an item that is
82    // also in the contents set. All operations are O(log N).
83    SmallPtrSet<SDNode*, 64> WorkListContents;
84    SmallVector<SDNode*, 64> WorkListOrder;
85
86    // AA - Used for DAG load/store alias analysis.
87    AliasAnalysis &AA;
88
89    /// AddUsersToWorkList - When an instruction is simplified, add all users of
90    /// the instruction to the work lists because they might get more simplified
91    /// now.
92    ///
93    void AddUsersToWorkList(SDNode *N) {
94      for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
95           UI != UE; ++UI)
96        AddToWorkList(*UI);
97    }
98
99    /// visit - call the node-specific routine that knows how to fold each
100    /// particular type of node.
101    SDValue visit(SDNode *N);
102
103  public:
104    /// AddToWorkList - Add to the work list making sure its instance is at the
105    /// back (next to be processed.)
106    void AddToWorkList(SDNode *N) {
107      WorkListContents.insert(N);
108      WorkListOrder.push_back(N);
109    }
110
111    /// removeFromWorkList - remove all instances of N from the worklist.
112    ///
113    void removeFromWorkList(SDNode *N) {
114      WorkListContents.erase(N);
115    }
116
117    SDValue CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
118                      bool AddTo = true);
119
120    SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true) {
121      return CombineTo(N, &Res, 1, AddTo);
122    }
123
124    SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1,
125                      bool AddTo = true) {
126      SDValue To[] = { Res0, Res1 };
127      return CombineTo(N, To, 2, AddTo);
128    }
129
130    void CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO);
131
132  private:
133
134    /// SimplifyDemandedBits - Check the specified integer node value to see if
135    /// it can be simplified or if things it uses can be simplified by bit
136    /// propagation.  If so, return true.
137    bool SimplifyDemandedBits(SDValue Op) {
138      unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
139      APInt Demanded = APInt::getAllOnesValue(BitWidth);
140      return SimplifyDemandedBits(Op, Demanded);
141    }
142
143    bool SimplifyDemandedBits(SDValue Op, const APInt &Demanded);
144
145    bool CombineToPreIndexedLoadStore(SDNode *N);
146    bool CombineToPostIndexedLoadStore(SDNode *N);
147
148    void ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad);
149    SDValue PromoteOperand(SDValue Op, EVT PVT, bool &Replace);
150    SDValue SExtPromoteOperand(SDValue Op, EVT PVT);
151    SDValue ZExtPromoteOperand(SDValue Op, EVT PVT);
152    SDValue PromoteIntBinOp(SDValue Op);
153    SDValue PromoteIntShiftOp(SDValue Op);
154    SDValue PromoteExtend(SDValue Op);
155    bool PromoteLoad(SDValue Op);
156
157    void ExtendSetCCUses(SmallVector<SDNode*, 4> SetCCs,
158                         SDValue Trunc, SDValue ExtLoad, SDLoc DL,
159                         ISD::NodeType ExtType);
160
161    /// combine - call the node-specific routine that knows how to fold each
162    /// particular type of node. If that doesn't do anything, try the
163    /// target-specific DAG combines.
164    SDValue combine(SDNode *N);
165
166    // Visitation implementation - Implement dag node combining for different
167    // node types.  The semantics are as follows:
168    // Return Value:
169    //   SDValue.getNode() == 0 - No change was made
170    //   SDValue.getNode() == N - N was replaced, is dead and has been handled.
171    //   otherwise              - N should be replaced by the returned Operand.
172    //
173    SDValue visitTokenFactor(SDNode *N);
174    SDValue visitMERGE_VALUES(SDNode *N);
175    SDValue visitADD(SDNode *N);
176    SDValue visitSUB(SDNode *N);
177    SDValue visitADDC(SDNode *N);
178    SDValue visitSUBC(SDNode *N);
179    SDValue visitADDE(SDNode *N);
180    SDValue visitSUBE(SDNode *N);
181    SDValue visitMUL(SDNode *N);
182    SDValue visitSDIV(SDNode *N);
183    SDValue visitUDIV(SDNode *N);
184    SDValue visitSREM(SDNode *N);
185    SDValue visitUREM(SDNode *N);
186    SDValue visitMULHU(SDNode *N);
187    SDValue visitMULHS(SDNode *N);
188    SDValue visitSMUL_LOHI(SDNode *N);
189    SDValue visitUMUL_LOHI(SDNode *N);
190    SDValue visitSMULO(SDNode *N);
191    SDValue visitUMULO(SDNode *N);
192    SDValue visitSDIVREM(SDNode *N);
193    SDValue visitUDIVREM(SDNode *N);
194    SDValue visitAND(SDNode *N);
195    SDValue visitOR(SDNode *N);
196    SDValue visitXOR(SDNode *N);
197    SDValue SimplifyVBinOp(SDNode *N);
198    SDValue SimplifyVUnaryOp(SDNode *N);
199    SDValue visitSHL(SDNode *N);
200    SDValue visitSRA(SDNode *N);
201    SDValue visitSRL(SDNode *N);
202    SDValue visitCTLZ(SDNode *N);
203    SDValue visitCTLZ_ZERO_UNDEF(SDNode *N);
204    SDValue visitCTTZ(SDNode *N);
205    SDValue visitCTTZ_ZERO_UNDEF(SDNode *N);
206    SDValue visitCTPOP(SDNode *N);
207    SDValue visitSELECT(SDNode *N);
208    SDValue visitVSELECT(SDNode *N);
209    SDValue visitSELECT_CC(SDNode *N);
210    SDValue visitSETCC(SDNode *N);
211    SDValue visitSIGN_EXTEND(SDNode *N);
212    SDValue visitZERO_EXTEND(SDNode *N);
213    SDValue visitANY_EXTEND(SDNode *N);
214    SDValue visitSIGN_EXTEND_INREG(SDNode *N);
215    SDValue visitTRUNCATE(SDNode *N);
216    SDValue visitBITCAST(SDNode *N);
217    SDValue visitBUILD_PAIR(SDNode *N);
218    SDValue visitFADD(SDNode *N);
219    SDValue visitFSUB(SDNode *N);
220    SDValue visitFMUL(SDNode *N);
221    SDValue visitFMA(SDNode *N);
222    SDValue visitFDIV(SDNode *N);
223    SDValue visitFREM(SDNode *N);
224    SDValue visitFCOPYSIGN(SDNode *N);
225    SDValue visitSINT_TO_FP(SDNode *N);
226    SDValue visitUINT_TO_FP(SDNode *N);
227    SDValue visitFP_TO_SINT(SDNode *N);
228    SDValue visitFP_TO_UINT(SDNode *N);
229    SDValue visitFP_ROUND(SDNode *N);
230    SDValue visitFP_ROUND_INREG(SDNode *N);
231    SDValue visitFP_EXTEND(SDNode *N);
232    SDValue visitFNEG(SDNode *N);
233    SDValue visitFABS(SDNode *N);
234    SDValue visitFCEIL(SDNode *N);
235    SDValue visitFTRUNC(SDNode *N);
236    SDValue visitFFLOOR(SDNode *N);
237    SDValue visitBRCOND(SDNode *N);
238    SDValue visitBR_CC(SDNode *N);
239    SDValue visitLOAD(SDNode *N);
240    SDValue visitSTORE(SDNode *N);
241    SDValue visitINSERT_VECTOR_ELT(SDNode *N);
242    SDValue visitEXTRACT_VECTOR_ELT(SDNode *N);
243    SDValue visitBUILD_VECTOR(SDNode *N);
244    SDValue visitCONCAT_VECTORS(SDNode *N);
245    SDValue visitEXTRACT_SUBVECTOR(SDNode *N);
246    SDValue visitVECTOR_SHUFFLE(SDNode *N);
247
248    SDValue XformToShuffleWithZero(SDNode *N);
249    SDValue ReassociateOps(unsigned Opc, SDLoc DL, SDValue LHS, SDValue RHS);
250
251    SDValue visitShiftByConstant(SDNode *N, unsigned Amt);
252
253    bool SimplifySelectOps(SDNode *SELECT, SDValue LHS, SDValue RHS);
254    SDValue SimplifyBinOpWithSameOpcodeHands(SDNode *N);
255    SDValue SimplifySelect(SDLoc DL, SDValue N0, SDValue N1, SDValue N2);
256    SDValue SimplifySelectCC(SDLoc DL, SDValue N0, SDValue N1, SDValue N2,
257                             SDValue N3, ISD::CondCode CC,
258                             bool NotExtCompare = false);
259    SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
260                          SDLoc DL, bool foldBooleans = true);
261    SDValue SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
262                                         unsigned HiOp);
263    SDValue CombineConsecutiveLoads(SDNode *N, EVT VT);
264    SDValue ConstantFoldBITCASTofBUILD_VECTOR(SDNode *, EVT);
265    SDValue BuildSDIV(SDNode *N);
266    SDValue BuildUDIV(SDNode *N);
267    SDValue MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1,
268                               bool DemandHighBits = true);
269    SDValue MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1);
270    SDNode *MatchRotate(SDValue LHS, SDValue RHS, SDLoc DL);
271    SDValue ReduceLoadWidth(SDNode *N);
272    SDValue ReduceLoadOpStoreWidth(SDNode *N);
273    SDValue TransformFPLoadStorePair(SDNode *N);
274    SDValue reduceBuildVecExtToExtBuildVec(SDNode *N);
275    SDValue reduceBuildVecConvertToConvertBuildVec(SDNode *N);
276
277    SDValue GetDemandedBits(SDValue V, const APInt &Mask);
278
279    /// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
280    /// looking for aliasing nodes and adding them to the Aliases vector.
281    void GatherAllAliases(SDNode *N, SDValue OriginalChain,
282                          SmallVector<SDValue, 8> &Aliases);
283
284    /// isAlias - Return true if there is any possibility that the two addresses
285    /// overlap.
286    bool isAlias(SDValue Ptr1, int64_t Size1,
287                 const Value *SrcValue1, int SrcValueOffset1,
288                 unsigned SrcValueAlign1,
289                 const MDNode *TBAAInfo1,
290                 SDValue Ptr2, int64_t Size2,
291                 const Value *SrcValue2, int SrcValueOffset2,
292                 unsigned SrcValueAlign2,
293                 const MDNode *TBAAInfo2) const;
294
295    /// isAlias - Return true if there is any possibility that the two addresses
296    /// overlap.
297    bool isAlias(LSBaseSDNode *Op0, LSBaseSDNode *Op1);
298
299    /// FindAliasInfo - Extracts the relevant alias information from the memory
300    /// node.  Returns true if the operand was a load.
301    bool FindAliasInfo(SDNode *N,
302                       SDValue &Ptr, int64_t &Size,
303                       const Value *&SrcValue, int &SrcValueOffset,
304                       unsigned &SrcValueAlignment,
305                       const MDNode *&TBAAInfo) const;
306
307    /// FindBetterChain - Walk up chain skipping non-aliasing memory nodes,
308    /// looking for a better chain (aliasing node.)
309    SDValue FindBetterChain(SDNode *N, SDValue Chain);
310
311    /// Merge consecutive store operations into a wide store.
312    /// This optimization uses wide integers or vectors when possible.
313    /// \return True if some memory operations were changed.
314    bool MergeConsecutiveStores(StoreSDNode *N);
315
316  public:
317    DAGCombiner(SelectionDAG &D, AliasAnalysis &A, CodeGenOpt::Level OL)
318      : DAG(D), TLI(D.getTargetLoweringInfo()), Level(BeforeLegalizeTypes),
319        OptLevel(OL), LegalOperations(false), LegalTypes(false), AA(A) {}
320
321    /// Run - runs the dag combiner on all nodes in the work list
322    void Run(CombineLevel AtLevel);
323
324    SelectionDAG &getDAG() const { return DAG; }
325
326    /// getShiftAmountTy - Returns a type large enough to hold any valid
327    /// shift amount - before type legalization these can be huge.
328    EVT getShiftAmountTy(EVT LHSTy) {
329      return LegalTypes ? TLI.getShiftAmountTy(LHSTy) : TLI.getPointerTy();
330    }
331
332    /// isTypeLegal - This method returns true if we are running before type
333    /// legalization or if the specified VT is legal.
334    bool isTypeLegal(const EVT &VT) {
335      if (!LegalTypes) return true;
336      return TLI.isTypeLegal(VT);
337    }
338
339    /// getSetCCResultType - Convenience wrapper around
340    /// TargetLowering::getSetCCResultType
341    EVT getSetCCResultType(EVT VT) const {
342      return TLI.getSetCCResultType(*DAG.getContext(), VT);
343    }
344  };
345}
346
347
348namespace {
349/// WorkListRemover - This class is a DAGUpdateListener that removes any deleted
350/// nodes from the worklist.
351class WorkListRemover : public SelectionDAG::DAGUpdateListener {
352  DAGCombiner &DC;
353public:
354  explicit WorkListRemover(DAGCombiner &dc)
355    : SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {}
356
357  virtual void NodeDeleted(SDNode *N, SDNode *E) {
358    DC.removeFromWorkList(N);
359  }
360};
361}
362
363//===----------------------------------------------------------------------===//
364//  TargetLowering::DAGCombinerInfo implementation
365//===----------------------------------------------------------------------===//
366
367void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) {
368  ((DAGCombiner*)DC)->AddToWorkList(N);
369}
370
371void TargetLowering::DAGCombinerInfo::RemoveFromWorklist(SDNode *N) {
372  ((DAGCombiner*)DC)->removeFromWorkList(N);
373}
374
375SDValue TargetLowering::DAGCombinerInfo::
376CombineTo(SDNode *N, const std::vector<SDValue> &To, bool AddTo) {
377  return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size(), AddTo);
378}
379
380SDValue TargetLowering::DAGCombinerInfo::
381CombineTo(SDNode *N, SDValue Res, bool AddTo) {
382  return ((DAGCombiner*)DC)->CombineTo(N, Res, AddTo);
383}
384
385
386SDValue TargetLowering::DAGCombinerInfo::
387CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo) {
388  return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1, AddTo);
389}
390
391void TargetLowering::DAGCombinerInfo::
392CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) {
393  return ((DAGCombiner*)DC)->CommitTargetLoweringOpt(TLO);
394}
395
396//===----------------------------------------------------------------------===//
397// Helper Functions
398//===----------------------------------------------------------------------===//
399
400/// isNegatibleForFree - Return 1 if we can compute the negated form of the
401/// specified expression for the same cost as the expression itself, or 2 if we
402/// can compute the negated form more cheaply than the expression itself.
403static char isNegatibleForFree(SDValue Op, bool LegalOperations,
404                               const TargetLowering &TLI,
405                               const TargetOptions *Options,
406                               unsigned Depth = 0) {
407  // fneg is removable even if it has multiple uses.
408  if (Op.getOpcode() == ISD::FNEG) return 2;
409
410  // Don't allow anything with multiple uses.
411  if (!Op.hasOneUse()) return 0;
412
413  // Don't recurse exponentially.
414  if (Depth > 6) return 0;
415
416  switch (Op.getOpcode()) {
417  default: return false;
418  case ISD::ConstantFP:
419    // Don't invert constant FP values after legalize.  The negated constant
420    // isn't necessarily legal.
421    return LegalOperations ? 0 : 1;
422  case ISD::FADD:
423    // FIXME: determine better conditions for this xform.
424    if (!Options->UnsafeFPMath) return 0;
425
426    // After operation legalization, it might not be legal to create new FSUBs.
427    if (LegalOperations &&
428        !TLI.isOperationLegalOrCustom(ISD::FSUB,  Op.getValueType()))
429      return 0;
430
431    // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
432    if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI,
433                                    Options, Depth + 1))
434      return V;
435    // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
436    return isNegatibleForFree(Op.getOperand(1), LegalOperations, TLI, Options,
437                              Depth + 1);
438  case ISD::FSUB:
439    // We can't turn -(A-B) into B-A when we honor signed zeros.
440    if (!Options->UnsafeFPMath) return 0;
441
442    // fold (fneg (fsub A, B)) -> (fsub B, A)
443    return 1;
444
445  case ISD::FMUL:
446  case ISD::FDIV:
447    if (Options->HonorSignDependentRoundingFPMath()) return 0;
448
449    // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y))
450    if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI,
451                                    Options, Depth + 1))
452      return V;
453
454    return isNegatibleForFree(Op.getOperand(1), LegalOperations, TLI, Options,
455                              Depth + 1);
456
457  case ISD::FP_EXTEND:
458  case ISD::FP_ROUND:
459  case ISD::FSIN:
460    return isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI, Options,
461                              Depth + 1);
462  }
463}
464
465/// GetNegatedExpression - If isNegatibleForFree returns true, this function
466/// returns the newly negated expression.
467static SDValue GetNegatedExpression(SDValue Op, SelectionDAG &DAG,
468                                    bool LegalOperations, unsigned Depth = 0) {
469  // fneg is removable even if it has multiple uses.
470  if (Op.getOpcode() == ISD::FNEG) return Op.getOperand(0);
471
472  // Don't allow anything with multiple uses.
473  assert(Op.hasOneUse() && "Unknown reuse!");
474
475  assert(Depth <= 6 && "GetNegatedExpression doesn't match isNegatibleForFree");
476  switch (Op.getOpcode()) {
477  default: llvm_unreachable("Unknown code");
478  case ISD::ConstantFP: {
479    APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
480    V.changeSign();
481    return DAG.getConstantFP(V, Op.getValueType());
482  }
483  case ISD::FADD:
484    // FIXME: determine better conditions for this xform.
485    assert(DAG.getTarget().Options.UnsafeFPMath);
486
487    // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
488    if (isNegatibleForFree(Op.getOperand(0), LegalOperations,
489                           DAG.getTargetLoweringInfo(),
490                           &DAG.getTarget().Options, Depth+1))
491      return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
492                         GetNegatedExpression(Op.getOperand(0), DAG,
493                                              LegalOperations, Depth+1),
494                         Op.getOperand(1));
495    // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
496    return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
497                       GetNegatedExpression(Op.getOperand(1), DAG,
498                                            LegalOperations, Depth+1),
499                       Op.getOperand(0));
500  case ISD::FSUB:
501    // We can't turn -(A-B) into B-A when we honor signed zeros.
502    assert(DAG.getTarget().Options.UnsafeFPMath);
503
504    // fold (fneg (fsub 0, B)) -> B
505    if (ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(Op.getOperand(0)))
506      if (N0CFP->getValueAPF().isZero())
507        return Op.getOperand(1);
508
509    // fold (fneg (fsub A, B)) -> (fsub B, A)
510    return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
511                       Op.getOperand(1), Op.getOperand(0));
512
513  case ISD::FMUL:
514  case ISD::FDIV:
515    assert(!DAG.getTarget().Options.HonorSignDependentRoundingFPMath());
516
517    // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
518    if (isNegatibleForFree(Op.getOperand(0), LegalOperations,
519                           DAG.getTargetLoweringInfo(),
520                           &DAG.getTarget().Options, Depth+1))
521      return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
522                         GetNegatedExpression(Op.getOperand(0), DAG,
523                                              LegalOperations, Depth+1),
524                         Op.getOperand(1));
525
526    // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
527    return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
528                       Op.getOperand(0),
529                       GetNegatedExpression(Op.getOperand(1), DAG,
530                                            LegalOperations, Depth+1));
531
532  case ISD::FP_EXTEND:
533  case ISD::FSIN:
534    return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
535                       GetNegatedExpression(Op.getOperand(0), DAG,
536                                            LegalOperations, Depth+1));
537  case ISD::FP_ROUND:
538      return DAG.getNode(ISD::FP_ROUND, SDLoc(Op), Op.getValueType(),
539                         GetNegatedExpression(Op.getOperand(0), DAG,
540                                              LegalOperations, Depth+1),
541                         Op.getOperand(1));
542  }
543}
544
545
546// isSetCCEquivalent - Return true if this node is a setcc, or is a select_cc
547// that selects between the values 1 and 0, making it equivalent to a setcc.
548// Also, set the incoming LHS, RHS, and CC references to the appropriate
549// nodes based on the type of node we are checking.  This simplifies life a
550// bit for the callers.
551static bool isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS,
552                              SDValue &CC) {
553  if (N.getOpcode() == ISD::SETCC) {
554    LHS = N.getOperand(0);
555    RHS = N.getOperand(1);
556    CC  = N.getOperand(2);
557    return true;
558  }
559  if (N.getOpcode() == ISD::SELECT_CC &&
560      N.getOperand(2).getOpcode() == ISD::Constant &&
561      N.getOperand(3).getOpcode() == ISD::Constant &&
562      cast<ConstantSDNode>(N.getOperand(2))->getAPIntValue() == 1 &&
563      cast<ConstantSDNode>(N.getOperand(3))->isNullValue()) {
564    LHS = N.getOperand(0);
565    RHS = N.getOperand(1);
566    CC  = N.getOperand(4);
567    return true;
568  }
569  return false;
570}
571
572// isOneUseSetCC - Return true if this is a SetCC-equivalent operation with only
573// one use.  If this is true, it allows the users to invert the operation for
574// free when it is profitable to do so.
575static bool isOneUseSetCC(SDValue N) {
576  SDValue N0, N1, N2;
577  if (isSetCCEquivalent(N, N0, N1, N2) && N.getNode()->hasOneUse())
578    return true;
579  return false;
580}
581
582SDValue DAGCombiner::ReassociateOps(unsigned Opc, SDLoc DL,
583                                    SDValue N0, SDValue N1) {
584  EVT VT = N0.getValueType();
585  if (N0.getOpcode() == Opc && isa<ConstantSDNode>(N0.getOperand(1))) {
586    if (isa<ConstantSDNode>(N1)) {
587      // reassoc. (op (op x, c1), c2) -> (op x, (op c1, c2))
588      SDValue OpNode =
589        DAG.FoldConstantArithmetic(Opc, VT,
590                                   cast<ConstantSDNode>(N0.getOperand(1)),
591                                   cast<ConstantSDNode>(N1));
592      return DAG.getNode(Opc, DL, VT, N0.getOperand(0), OpNode);
593    }
594    if (N0.hasOneUse()) {
595      // reassoc. (op (op x, c1), y) -> (op (op x, y), c1) iff x+c1 has one use
596      SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT,
597                                   N0.getOperand(0), N1);
598      AddToWorkList(OpNode.getNode());
599      return DAG.getNode(Opc, DL, VT, OpNode, N0.getOperand(1));
600    }
601  }
602
603  if (N1.getOpcode() == Opc && isa<ConstantSDNode>(N1.getOperand(1))) {
604    if (isa<ConstantSDNode>(N0)) {
605      // reassoc. (op c2, (op x, c1)) -> (op x, (op c1, c2))
606      SDValue OpNode =
607        DAG.FoldConstantArithmetic(Opc, VT,
608                                   cast<ConstantSDNode>(N1.getOperand(1)),
609                                   cast<ConstantSDNode>(N0));
610      return DAG.getNode(Opc, DL, VT, N1.getOperand(0), OpNode);
611    }
612    if (N1.hasOneUse()) {
613      // reassoc. (op y, (op x, c1)) -> (op (op x, y), c1) iff x+c1 has one use
614      SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT,
615                                   N1.getOperand(0), N0);
616      AddToWorkList(OpNode.getNode());
617      return DAG.getNode(Opc, DL, VT, OpNode, N1.getOperand(1));
618    }
619  }
620
621  return SDValue();
622}
623
624SDValue DAGCombiner::CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
625                               bool AddTo) {
626  assert(N->getNumValues() == NumTo && "Broken CombineTo call!");
627  ++NodesCombined;
628  DEBUG(dbgs() << "\nReplacing.1 ";
629        N->dump(&DAG);
630        dbgs() << "\nWith: ";
631        To[0].getNode()->dump(&DAG);
632        dbgs() << " and " << NumTo-1 << " other values\n";
633        for (unsigned i = 0, e = NumTo; i != e; ++i)
634          assert((!To[i].getNode() ||
635                  N->getValueType(i) == To[i].getValueType()) &&
636                 "Cannot combine value to value of different type!"));
637  WorkListRemover DeadNodes(*this);
638  DAG.ReplaceAllUsesWith(N, To);
639  if (AddTo) {
640    // Push the new nodes and any users onto the worklist
641    for (unsigned i = 0, e = NumTo; i != e; ++i) {
642      if (To[i].getNode()) {
643        AddToWorkList(To[i].getNode());
644        AddUsersToWorkList(To[i].getNode());
645      }
646    }
647  }
648
649  // Finally, if the node is now dead, remove it from the graph.  The node
650  // may not be dead if the replacement process recursively simplified to
651  // something else needing this node.
652  if (N->use_empty()) {
653    // Nodes can be reintroduced into the worklist.  Make sure we do not
654    // process a node that has been replaced.
655    removeFromWorkList(N);
656
657    // Finally, since the node is now dead, remove it from the graph.
658    DAG.DeleteNode(N);
659  }
660  return SDValue(N, 0);
661}
662
663void DAGCombiner::
664CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) {
665  // Replace all uses.  If any nodes become isomorphic to other nodes and
666  // are deleted, make sure to remove them from our worklist.
667  WorkListRemover DeadNodes(*this);
668  DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New);
669
670  // Push the new node and any (possibly new) users onto the worklist.
671  AddToWorkList(TLO.New.getNode());
672  AddUsersToWorkList(TLO.New.getNode());
673
674  // Finally, if the node is now dead, remove it from the graph.  The node
675  // may not be dead if the replacement process recursively simplified to
676  // something else needing this node.
677  if (TLO.Old.getNode()->use_empty()) {
678    removeFromWorkList(TLO.Old.getNode());
679
680    // If the operands of this node are only used by the node, they will now
681    // be dead.  Make sure to visit them first to delete dead nodes early.
682    for (unsigned i = 0, e = TLO.Old.getNode()->getNumOperands(); i != e; ++i)
683      if (TLO.Old.getNode()->getOperand(i).getNode()->hasOneUse())
684        AddToWorkList(TLO.Old.getNode()->getOperand(i).getNode());
685
686    DAG.DeleteNode(TLO.Old.getNode());
687  }
688}
689
690/// SimplifyDemandedBits - Check the specified integer node value to see if
691/// it can be simplified or if things it uses can be simplified by bit
692/// propagation.  If so, return true.
693bool DAGCombiner::SimplifyDemandedBits(SDValue Op, const APInt &Demanded) {
694  TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations);
695  APInt KnownZero, KnownOne;
696  if (!TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO))
697    return false;
698
699  // Revisit the node.
700  AddToWorkList(Op.getNode());
701
702  // Replace the old value with the new one.
703  ++NodesCombined;
704  DEBUG(dbgs() << "\nReplacing.2 ";
705        TLO.Old.getNode()->dump(&DAG);
706        dbgs() << "\nWith: ";
707        TLO.New.getNode()->dump(&DAG);
708        dbgs() << '\n');
709
710  CommitTargetLoweringOpt(TLO);
711  return true;
712}
713
714void DAGCombiner::ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad) {
715  SDLoc dl(Load);
716  EVT VT = Load->getValueType(0);
717  SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, VT, SDValue(ExtLoad, 0));
718
719  DEBUG(dbgs() << "\nReplacing.9 ";
720        Load->dump(&DAG);
721        dbgs() << "\nWith: ";
722        Trunc.getNode()->dump(&DAG);
723        dbgs() << '\n');
724  WorkListRemover DeadNodes(*this);
725  DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), Trunc);
726  DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), SDValue(ExtLoad, 1));
727  removeFromWorkList(Load);
728  DAG.DeleteNode(Load);
729  AddToWorkList(Trunc.getNode());
730}
731
732SDValue DAGCombiner::PromoteOperand(SDValue Op, EVT PVT, bool &Replace) {
733  Replace = false;
734  SDLoc dl(Op);
735  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
736    EVT MemVT = LD->getMemoryVT();
737    ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD)
738      ? (TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT) ? ISD::ZEXTLOAD
739                                                  : ISD::EXTLOAD)
740      : LD->getExtensionType();
741    Replace = true;
742    return DAG.getExtLoad(ExtType, dl, PVT,
743                          LD->getChain(), LD->getBasePtr(),
744                          LD->getPointerInfo(),
745                          MemVT, LD->isVolatile(),
746                          LD->isNonTemporal(), LD->getAlignment());
747  }
748
749  unsigned Opc = Op.getOpcode();
750  switch (Opc) {
751  default: break;
752  case ISD::AssertSext:
753    return DAG.getNode(ISD::AssertSext, dl, PVT,
754                       SExtPromoteOperand(Op.getOperand(0), PVT),
755                       Op.getOperand(1));
756  case ISD::AssertZext:
757    return DAG.getNode(ISD::AssertZext, dl, PVT,
758                       ZExtPromoteOperand(Op.getOperand(0), PVT),
759                       Op.getOperand(1));
760  case ISD::Constant: {
761    unsigned ExtOpc =
762      Op.getValueType().isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
763    return DAG.getNode(ExtOpc, dl, PVT, Op);
764  }
765  }
766
767  if (!TLI.isOperationLegal(ISD::ANY_EXTEND, PVT))
768    return SDValue();
769  return DAG.getNode(ISD::ANY_EXTEND, dl, PVT, Op);
770}
771
772SDValue DAGCombiner::SExtPromoteOperand(SDValue Op, EVT PVT) {
773  if (!TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, PVT))
774    return SDValue();
775  EVT OldVT = Op.getValueType();
776  SDLoc dl(Op);
777  bool Replace = false;
778  SDValue NewOp = PromoteOperand(Op, PVT, Replace);
779  if (NewOp.getNode() == 0)
780    return SDValue();
781  AddToWorkList(NewOp.getNode());
782
783  if (Replace)
784    ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode());
785  return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NewOp.getValueType(), NewOp,
786                     DAG.getValueType(OldVT));
787}
788
789SDValue DAGCombiner::ZExtPromoteOperand(SDValue Op, EVT PVT) {
790  EVT OldVT = Op.getValueType();
791  SDLoc dl(Op);
792  bool Replace = false;
793  SDValue NewOp = PromoteOperand(Op, PVT, Replace);
794  if (NewOp.getNode() == 0)
795    return SDValue();
796  AddToWorkList(NewOp.getNode());
797
798  if (Replace)
799    ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode());
800  return DAG.getZeroExtendInReg(NewOp, dl, OldVT);
801}
802
803/// PromoteIntBinOp - Promote the specified integer binary operation if the
804/// target indicates it is beneficial. e.g. On x86, it's usually better to
805/// promote i16 operations to i32 since i16 instructions are longer.
806SDValue DAGCombiner::PromoteIntBinOp(SDValue Op) {
807  if (!LegalOperations)
808    return SDValue();
809
810  EVT VT = Op.getValueType();
811  if (VT.isVector() || !VT.isInteger())
812    return SDValue();
813
814  // If operation type is 'undesirable', e.g. i16 on x86, consider
815  // promoting it.
816  unsigned Opc = Op.getOpcode();
817  if (TLI.isTypeDesirableForOp(Opc, VT))
818    return SDValue();
819
820  EVT PVT = VT;
821  // Consult target whether it is a good idea to promote this operation and
822  // what's the right type to promote it to.
823  if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
824    assert(PVT != VT && "Don't know what type to promote to!");
825
826    bool Replace0 = false;
827    SDValue N0 = Op.getOperand(0);
828    SDValue NN0 = PromoteOperand(N0, PVT, Replace0);
829    if (NN0.getNode() == 0)
830      return SDValue();
831
832    bool Replace1 = false;
833    SDValue N1 = Op.getOperand(1);
834    SDValue NN1;
835    if (N0 == N1)
836      NN1 = NN0;
837    else {
838      NN1 = PromoteOperand(N1, PVT, Replace1);
839      if (NN1.getNode() == 0)
840        return SDValue();
841    }
842
843    AddToWorkList(NN0.getNode());
844    if (NN1.getNode())
845      AddToWorkList(NN1.getNode());
846
847    if (Replace0)
848      ReplaceLoadWithPromotedLoad(N0.getNode(), NN0.getNode());
849    if (Replace1)
850      ReplaceLoadWithPromotedLoad(N1.getNode(), NN1.getNode());
851
852    DEBUG(dbgs() << "\nPromoting ";
853          Op.getNode()->dump(&DAG));
854    SDLoc dl(Op);
855    return DAG.getNode(ISD::TRUNCATE, dl, VT,
856                       DAG.getNode(Opc, dl, PVT, NN0, NN1));
857  }
858  return SDValue();
859}
860
861/// PromoteIntShiftOp - Promote the specified integer shift operation if the
862/// target indicates it is beneficial. e.g. On x86, it's usually better to
863/// promote i16 operations to i32 since i16 instructions are longer.
864SDValue DAGCombiner::PromoteIntShiftOp(SDValue Op) {
865  if (!LegalOperations)
866    return SDValue();
867
868  EVT VT = Op.getValueType();
869  if (VT.isVector() || !VT.isInteger())
870    return SDValue();
871
872  // If operation type is 'undesirable', e.g. i16 on x86, consider
873  // promoting it.
874  unsigned Opc = Op.getOpcode();
875  if (TLI.isTypeDesirableForOp(Opc, VT))
876    return SDValue();
877
878  EVT PVT = VT;
879  // Consult target whether it is a good idea to promote this operation and
880  // what's the right type to promote it to.
881  if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
882    assert(PVT != VT && "Don't know what type to promote to!");
883
884    bool Replace = false;
885    SDValue N0 = Op.getOperand(0);
886    if (Opc == ISD::SRA)
887      N0 = SExtPromoteOperand(Op.getOperand(0), PVT);
888    else if (Opc == ISD::SRL)
889      N0 = ZExtPromoteOperand(Op.getOperand(0), PVT);
890    else
891      N0 = PromoteOperand(N0, PVT, Replace);
892    if (N0.getNode() == 0)
893      return SDValue();
894
895    AddToWorkList(N0.getNode());
896    if (Replace)
897      ReplaceLoadWithPromotedLoad(Op.getOperand(0).getNode(), N0.getNode());
898
899    DEBUG(dbgs() << "\nPromoting ";
900          Op.getNode()->dump(&DAG));
901    SDLoc dl(Op);
902    return DAG.getNode(ISD::TRUNCATE, dl, VT,
903                       DAG.getNode(Opc, dl, PVT, N0, Op.getOperand(1)));
904  }
905  return SDValue();
906}
907
908SDValue DAGCombiner::PromoteExtend(SDValue Op) {
909  if (!LegalOperations)
910    return SDValue();
911
912  EVT VT = Op.getValueType();
913  if (VT.isVector() || !VT.isInteger())
914    return SDValue();
915
916  // If operation type is 'undesirable', e.g. i16 on x86, consider
917  // promoting it.
918  unsigned Opc = Op.getOpcode();
919  if (TLI.isTypeDesirableForOp(Opc, VT))
920    return SDValue();
921
922  EVT PVT = VT;
923  // Consult target whether it is a good idea to promote this operation and
924  // what's the right type to promote it to.
925  if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
926    assert(PVT != VT && "Don't know what type to promote to!");
927    // fold (aext (aext x)) -> (aext x)
928    // fold (aext (zext x)) -> (zext x)
929    // fold (aext (sext x)) -> (sext x)
930    DEBUG(dbgs() << "\nPromoting ";
931          Op.getNode()->dump(&DAG));
932    return DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, Op.getOperand(0));
933  }
934  return SDValue();
935}
936
937bool DAGCombiner::PromoteLoad(SDValue Op) {
938  if (!LegalOperations)
939    return false;
940
941  EVT VT = Op.getValueType();
942  if (VT.isVector() || !VT.isInteger())
943    return false;
944
945  // If operation type is 'undesirable', e.g. i16 on x86, consider
946  // promoting it.
947  unsigned Opc = Op.getOpcode();
948  if (TLI.isTypeDesirableForOp(Opc, VT))
949    return false;
950
951  EVT PVT = VT;
952  // Consult target whether it is a good idea to promote this operation and
953  // what's the right type to promote it to.
954  if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
955    assert(PVT != VT && "Don't know what type to promote to!");
956
957    SDLoc dl(Op);
958    SDNode *N = Op.getNode();
959    LoadSDNode *LD = cast<LoadSDNode>(N);
960    EVT MemVT = LD->getMemoryVT();
961    ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD)
962      ? (TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT) ? ISD::ZEXTLOAD
963                                                  : ISD::EXTLOAD)
964      : LD->getExtensionType();
965    SDValue NewLD = DAG.getExtLoad(ExtType, dl, PVT,
966                                   LD->getChain(), LD->getBasePtr(),
967                                   LD->getPointerInfo(),
968                                   MemVT, LD->isVolatile(),
969                                   LD->isNonTemporal(), LD->getAlignment());
970    SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, VT, NewLD);
971
972    DEBUG(dbgs() << "\nPromoting ";
973          N->dump(&DAG);
974          dbgs() << "\nTo: ";
975          Result.getNode()->dump(&DAG);
976          dbgs() << '\n');
977    WorkListRemover DeadNodes(*this);
978    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
979    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), NewLD.getValue(1));
980    removeFromWorkList(N);
981    DAG.DeleteNode(N);
982    AddToWorkList(Result.getNode());
983    return true;
984  }
985  return false;
986}
987
988
989//===----------------------------------------------------------------------===//
990//  Main DAG Combiner implementation
991//===----------------------------------------------------------------------===//
992
993void DAGCombiner::Run(CombineLevel AtLevel) {
994  // set the instance variables, so that the various visit routines may use it.
995  Level = AtLevel;
996  LegalOperations = Level >= AfterLegalizeVectorOps;
997  LegalTypes = Level >= AfterLegalizeTypes;
998
999  // Add all the dag nodes to the worklist.
1000  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
1001       E = DAG.allnodes_end(); I != E; ++I)
1002    AddToWorkList(I);
1003
1004  // Create a dummy node (which is not added to allnodes), that adds a reference
1005  // to the root node, preventing it from being deleted, and tracking any
1006  // changes of the root.
1007  HandleSDNode Dummy(DAG.getRoot());
1008
1009  // The root of the dag may dangle to deleted nodes until the dag combiner is
1010  // done.  Set it to null to avoid confusion.
1011  DAG.setRoot(SDValue());
1012
1013  // while the worklist isn't empty, find a node and
1014  // try and combine it.
1015  while (!WorkListContents.empty()) {
1016    SDNode *N;
1017    // The WorkListOrder holds the SDNodes in order, but it may contain duplicates.
1018    // In order to avoid a linear scan, we use a set (O(log N)) to hold what the
1019    // worklist *should* contain, and check the node we want to visit is should
1020    // actually be visited.
1021    do {
1022      N = WorkListOrder.pop_back_val();
1023    } while (!WorkListContents.erase(N));
1024
1025    // If N has no uses, it is dead.  Make sure to revisit all N's operands once
1026    // N is deleted from the DAG, since they too may now be dead or may have a
1027    // reduced number of uses, allowing other xforms.
1028    if (N->use_empty() && N != &Dummy) {
1029      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1030        AddToWorkList(N->getOperand(i).getNode());
1031
1032      DAG.DeleteNode(N);
1033      continue;
1034    }
1035
1036    SDValue RV = combine(N);
1037
1038    if (RV.getNode() == 0)
1039      continue;
1040
1041    ++NodesCombined;
1042
1043    // If we get back the same node we passed in, rather than a new node or
1044    // zero, we know that the node must have defined multiple values and
1045    // CombineTo was used.  Since CombineTo takes care of the worklist
1046    // mechanics for us, we have no work to do in this case.
1047    if (RV.getNode() == N)
1048      continue;
1049
1050    assert(N->getOpcode() != ISD::DELETED_NODE &&
1051           RV.getNode()->getOpcode() != ISD::DELETED_NODE &&
1052           "Node was deleted but visit returned new node!");
1053
1054    DEBUG(dbgs() << "\nReplacing.3 ";
1055          N->dump(&DAG);
1056          dbgs() << "\nWith: ";
1057          RV.getNode()->dump(&DAG);
1058          dbgs() << '\n');
1059
1060    // Transfer debug value.
1061    DAG.TransferDbgValues(SDValue(N, 0), RV);
1062    WorkListRemover DeadNodes(*this);
1063    if (N->getNumValues() == RV.getNode()->getNumValues())
1064      DAG.ReplaceAllUsesWith(N, RV.getNode());
1065    else {
1066      assert(N->getValueType(0) == RV.getValueType() &&
1067             N->getNumValues() == 1 && "Type mismatch");
1068      SDValue OpV = RV;
1069      DAG.ReplaceAllUsesWith(N, &OpV);
1070    }
1071
1072    // Push the new node and any users onto the worklist
1073    AddToWorkList(RV.getNode());
1074    AddUsersToWorkList(RV.getNode());
1075
1076    // Add any uses of the old node to the worklist in case this node is the
1077    // last one that uses them.  They may become dead after this node is
1078    // deleted.
1079    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1080      AddToWorkList(N->getOperand(i).getNode());
1081
1082    // Finally, if the node is now dead, remove it from the graph.  The node
1083    // may not be dead if the replacement process recursively simplified to
1084    // something else needing this node.
1085    if (N->use_empty()) {
1086      // Nodes can be reintroduced into the worklist.  Make sure we do not
1087      // process a node that has been replaced.
1088      removeFromWorkList(N);
1089
1090      // Finally, since the node is now dead, remove it from the graph.
1091      DAG.DeleteNode(N);
1092    }
1093  }
1094
1095  // If the root changed (e.g. it was a dead load, update the root).
1096  DAG.setRoot(Dummy.getValue());
1097  DAG.RemoveDeadNodes();
1098}
1099
1100SDValue DAGCombiner::visit(SDNode *N) {
1101  switch (N->getOpcode()) {
1102  default: break;
1103  case ISD::TokenFactor:        return visitTokenFactor(N);
1104  case ISD::MERGE_VALUES:       return visitMERGE_VALUES(N);
1105  case ISD::ADD:                return visitADD(N);
1106  case ISD::SUB:                return visitSUB(N);
1107  case ISD::ADDC:               return visitADDC(N);
1108  case ISD::SUBC:               return visitSUBC(N);
1109  case ISD::ADDE:               return visitADDE(N);
1110  case ISD::SUBE:               return visitSUBE(N);
1111  case ISD::MUL:                return visitMUL(N);
1112  case ISD::SDIV:               return visitSDIV(N);
1113  case ISD::UDIV:               return visitUDIV(N);
1114  case ISD::SREM:               return visitSREM(N);
1115  case ISD::UREM:               return visitUREM(N);
1116  case ISD::MULHU:              return visitMULHU(N);
1117  case ISD::MULHS:              return visitMULHS(N);
1118  case ISD::SMUL_LOHI:          return visitSMUL_LOHI(N);
1119  case ISD::UMUL_LOHI:          return visitUMUL_LOHI(N);
1120  case ISD::SMULO:              return visitSMULO(N);
1121  case ISD::UMULO:              return visitUMULO(N);
1122  case ISD::SDIVREM:            return visitSDIVREM(N);
1123  case ISD::UDIVREM:            return visitUDIVREM(N);
1124  case ISD::AND:                return visitAND(N);
1125  case ISD::OR:                 return visitOR(N);
1126  case ISD::XOR:                return visitXOR(N);
1127  case ISD::SHL:                return visitSHL(N);
1128  case ISD::SRA:                return visitSRA(N);
1129  case ISD::SRL:                return visitSRL(N);
1130  case ISD::CTLZ:               return visitCTLZ(N);
1131  case ISD::CTLZ_ZERO_UNDEF:    return visitCTLZ_ZERO_UNDEF(N);
1132  case ISD::CTTZ:               return visitCTTZ(N);
1133  case ISD::CTTZ_ZERO_UNDEF:    return visitCTTZ_ZERO_UNDEF(N);
1134  case ISD::CTPOP:              return visitCTPOP(N);
1135  case ISD::SELECT:             return visitSELECT(N);
1136  case ISD::VSELECT:            return visitVSELECT(N);
1137  case ISD::SELECT_CC:          return visitSELECT_CC(N);
1138  case ISD::SETCC:              return visitSETCC(N);
1139  case ISD::SIGN_EXTEND:        return visitSIGN_EXTEND(N);
1140  case ISD::ZERO_EXTEND:        return visitZERO_EXTEND(N);
1141  case ISD::ANY_EXTEND:         return visitANY_EXTEND(N);
1142  case ISD::SIGN_EXTEND_INREG:  return visitSIGN_EXTEND_INREG(N);
1143  case ISD::TRUNCATE:           return visitTRUNCATE(N);
1144  case ISD::BITCAST:            return visitBITCAST(N);
1145  case ISD::BUILD_PAIR:         return visitBUILD_PAIR(N);
1146  case ISD::FADD:               return visitFADD(N);
1147  case ISD::FSUB:               return visitFSUB(N);
1148  case ISD::FMUL:               return visitFMUL(N);
1149  case ISD::FMA:                return visitFMA(N);
1150  case ISD::FDIV:               return visitFDIV(N);
1151  case ISD::FREM:               return visitFREM(N);
1152  case ISD::FCOPYSIGN:          return visitFCOPYSIGN(N);
1153  case ISD::SINT_TO_FP:         return visitSINT_TO_FP(N);
1154  case ISD::UINT_TO_FP:         return visitUINT_TO_FP(N);
1155  case ISD::FP_TO_SINT:         return visitFP_TO_SINT(N);
1156  case ISD::FP_TO_UINT:         return visitFP_TO_UINT(N);
1157  case ISD::FP_ROUND:           return visitFP_ROUND(N);
1158  case ISD::FP_ROUND_INREG:     return visitFP_ROUND_INREG(N);
1159  case ISD::FP_EXTEND:          return visitFP_EXTEND(N);
1160  case ISD::FNEG:               return visitFNEG(N);
1161  case ISD::FABS:               return visitFABS(N);
1162  case ISD::FFLOOR:             return visitFFLOOR(N);
1163  case ISD::FCEIL:              return visitFCEIL(N);
1164  case ISD::FTRUNC:             return visitFTRUNC(N);
1165  case ISD::BRCOND:             return visitBRCOND(N);
1166  case ISD::BR_CC:              return visitBR_CC(N);
1167  case ISD::LOAD:               return visitLOAD(N);
1168  case ISD::STORE:              return visitSTORE(N);
1169  case ISD::INSERT_VECTOR_ELT:  return visitINSERT_VECTOR_ELT(N);
1170  case ISD::EXTRACT_VECTOR_ELT: return visitEXTRACT_VECTOR_ELT(N);
1171  case ISD::BUILD_VECTOR:       return visitBUILD_VECTOR(N);
1172  case ISD::CONCAT_VECTORS:     return visitCONCAT_VECTORS(N);
1173  case ISD::EXTRACT_SUBVECTOR:  return visitEXTRACT_SUBVECTOR(N);
1174  case ISD::VECTOR_SHUFFLE:     return visitVECTOR_SHUFFLE(N);
1175  }
1176  return SDValue();
1177}
1178
1179SDValue DAGCombiner::combine(SDNode *N) {
1180  SDValue RV = visit(N);
1181
1182  // If nothing happened, try a target-specific DAG combine.
1183  if (RV.getNode() == 0) {
1184    assert(N->getOpcode() != ISD::DELETED_NODE &&
1185           "Node was deleted but visit returned NULL!");
1186
1187    if (N->getOpcode() >= ISD::BUILTIN_OP_END ||
1188        TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) {
1189
1190      // Expose the DAG combiner to the target combiner impls.
1191      TargetLowering::DAGCombinerInfo
1192        DagCombineInfo(DAG, Level, false, this);
1193
1194      RV = TLI.PerformDAGCombine(N, DagCombineInfo);
1195    }
1196  }
1197
1198  // If nothing happened still, try promoting the operation.
1199  if (RV.getNode() == 0) {
1200    switch (N->getOpcode()) {
1201    default: break;
1202    case ISD::ADD:
1203    case ISD::SUB:
1204    case ISD::MUL:
1205    case ISD::AND:
1206    case ISD::OR:
1207    case ISD::XOR:
1208      RV = PromoteIntBinOp(SDValue(N, 0));
1209      break;
1210    case ISD::SHL:
1211    case ISD::SRA:
1212    case ISD::SRL:
1213      RV = PromoteIntShiftOp(SDValue(N, 0));
1214      break;
1215    case ISD::SIGN_EXTEND:
1216    case ISD::ZERO_EXTEND:
1217    case ISD::ANY_EXTEND:
1218      RV = PromoteExtend(SDValue(N, 0));
1219      break;
1220    case ISD::LOAD:
1221      if (PromoteLoad(SDValue(N, 0)))
1222        RV = SDValue(N, 0);
1223      break;
1224    }
1225  }
1226
1227  // If N is a commutative binary node, try commuting it to enable more
1228  // sdisel CSE.
1229  if (RV.getNode() == 0 &&
1230      SelectionDAG::isCommutativeBinOp(N->getOpcode()) &&
1231      N->getNumValues() == 1) {
1232    SDValue N0 = N->getOperand(0);
1233    SDValue N1 = N->getOperand(1);
1234
1235    // Constant operands are canonicalized to RHS.
1236    if (isa<ConstantSDNode>(N0) || !isa<ConstantSDNode>(N1)) {
1237      SDValue Ops[] = { N1, N0 };
1238      SDNode *CSENode = DAG.getNodeIfExists(N->getOpcode(), N->getVTList(),
1239                                            Ops, 2);
1240      if (CSENode)
1241        return SDValue(CSENode, 0);
1242    }
1243  }
1244
1245  return RV;
1246}
1247
1248/// getInputChainForNode - Given a node, return its input chain if it has one,
1249/// otherwise return a null sd operand.
1250static SDValue getInputChainForNode(SDNode *N) {
1251  if (unsigned NumOps = N->getNumOperands()) {
1252    if (N->getOperand(0).getValueType() == MVT::Other)
1253      return N->getOperand(0);
1254    else if (N->getOperand(NumOps-1).getValueType() == MVT::Other)
1255      return N->getOperand(NumOps-1);
1256    for (unsigned i = 1; i < NumOps-1; ++i)
1257      if (N->getOperand(i).getValueType() == MVT::Other)
1258        return N->getOperand(i);
1259  }
1260  return SDValue();
1261}
1262
1263SDValue DAGCombiner::visitTokenFactor(SDNode *N) {
1264  // If N has two operands, where one has an input chain equal to the other,
1265  // the 'other' chain is redundant.
1266  if (N->getNumOperands() == 2) {
1267    if (getInputChainForNode(N->getOperand(0).getNode()) == N->getOperand(1))
1268      return N->getOperand(0);
1269    if (getInputChainForNode(N->getOperand(1).getNode()) == N->getOperand(0))
1270      return N->getOperand(1);
1271  }
1272
1273  SmallVector<SDNode *, 8> TFs;     // List of token factors to visit.
1274  SmallVector<SDValue, 8> Ops;    // Ops for replacing token factor.
1275  SmallPtrSet<SDNode*, 16> SeenOps;
1276  bool Changed = false;             // If we should replace this token factor.
1277
1278  // Start out with this token factor.
1279  TFs.push_back(N);
1280
1281  // Iterate through token factors.  The TFs grows when new token factors are
1282  // encountered.
1283  for (unsigned i = 0; i < TFs.size(); ++i) {
1284    SDNode *TF = TFs[i];
1285
1286    // Check each of the operands.
1287    for (unsigned i = 0, ie = TF->getNumOperands(); i != ie; ++i) {
1288      SDValue Op = TF->getOperand(i);
1289
1290      switch (Op.getOpcode()) {
1291      case ISD::EntryToken:
1292        // Entry tokens don't need to be added to the list. They are
1293        // rededundant.
1294        Changed = true;
1295        break;
1296
1297      case ISD::TokenFactor:
1298        if (Op.hasOneUse() &&
1299            std::find(TFs.begin(), TFs.end(), Op.getNode()) == TFs.end()) {
1300          // Queue up for processing.
1301          TFs.push_back(Op.getNode());
1302          // Clean up in case the token factor is removed.
1303          AddToWorkList(Op.getNode());
1304          Changed = true;
1305          break;
1306        }
1307        // Fall thru
1308
1309      default:
1310        // Only add if it isn't already in the list.
1311        if (SeenOps.insert(Op.getNode()))
1312          Ops.push_back(Op);
1313        else
1314          Changed = true;
1315        break;
1316      }
1317    }
1318  }
1319
1320  SDValue Result;
1321
1322  // If we've change things around then replace token factor.
1323  if (Changed) {
1324    if (Ops.empty()) {
1325      // The entry token is the only possible outcome.
1326      Result = DAG.getEntryNode();
1327    } else {
1328      // New and improved token factor.
1329      Result = DAG.getNode(ISD::TokenFactor, SDLoc(N),
1330                           MVT::Other, &Ops[0], Ops.size());
1331    }
1332
1333    // Don't add users to work list.
1334    return CombineTo(N, Result, false);
1335  }
1336
1337  return Result;
1338}
1339
1340/// MERGE_VALUES can always be eliminated.
1341SDValue DAGCombiner::visitMERGE_VALUES(SDNode *N) {
1342  WorkListRemover DeadNodes(*this);
1343  // Replacing results may cause a different MERGE_VALUES to suddenly
1344  // be CSE'd with N, and carry its uses with it. Iterate until no
1345  // uses remain, to ensure that the node can be safely deleted.
1346  // First add the users of this node to the work list so that they
1347  // can be tried again once they have new operands.
1348  AddUsersToWorkList(N);
1349  do {
1350    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1351      DAG.ReplaceAllUsesOfValueWith(SDValue(N, i), N->getOperand(i));
1352  } while (!N->use_empty());
1353  removeFromWorkList(N);
1354  DAG.DeleteNode(N);
1355  return SDValue(N, 0);   // Return N so it doesn't get rechecked!
1356}
1357
1358static
1359SDValue combineShlAddConstant(SDLoc DL, SDValue N0, SDValue N1,
1360                              SelectionDAG &DAG) {
1361  EVT VT = N0.getValueType();
1362  SDValue N00 = N0.getOperand(0);
1363  SDValue N01 = N0.getOperand(1);
1364  ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N01);
1365
1366  if (N01C && N00.getOpcode() == ISD::ADD && N00.getNode()->hasOneUse() &&
1367      isa<ConstantSDNode>(N00.getOperand(1))) {
1368    // fold (add (shl (add x, c1), c2), ) -> (add (add (shl x, c2), c1<<c2), )
1369    N0 = DAG.getNode(ISD::ADD, SDLoc(N0), VT,
1370                     DAG.getNode(ISD::SHL, SDLoc(N00), VT,
1371                                 N00.getOperand(0), N01),
1372                     DAG.getNode(ISD::SHL, SDLoc(N01), VT,
1373                                 N00.getOperand(1), N01));
1374    return DAG.getNode(ISD::ADD, DL, VT, N0, N1);
1375  }
1376
1377  return SDValue();
1378}
1379
1380SDValue DAGCombiner::visitADD(SDNode *N) {
1381  SDValue N0 = N->getOperand(0);
1382  SDValue N1 = N->getOperand(1);
1383  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1384  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1385  EVT VT = N0.getValueType();
1386
1387  // fold vector ops
1388  if (VT.isVector()) {
1389    SDValue FoldedVOp = SimplifyVBinOp(N);
1390    if (FoldedVOp.getNode()) return FoldedVOp;
1391
1392    // fold (add x, 0) -> x, vector edition
1393    if (ISD::isBuildVectorAllZeros(N1.getNode()))
1394      return N0;
1395    if (ISD::isBuildVectorAllZeros(N0.getNode()))
1396      return N1;
1397  }
1398
1399  // fold (add x, undef) -> undef
1400  if (N0.getOpcode() == ISD::UNDEF)
1401    return N0;
1402  if (N1.getOpcode() == ISD::UNDEF)
1403    return N1;
1404  // fold (add c1, c2) -> c1+c2
1405  if (N0C && N1C)
1406    return DAG.FoldConstantArithmetic(ISD::ADD, VT, N0C, N1C);
1407  // canonicalize constant to RHS
1408  if (N0C && !N1C)
1409    return DAG.getNode(ISD::ADD, SDLoc(N), VT, N1, N0);
1410  // fold (add x, 0) -> x
1411  if (N1C && N1C->isNullValue())
1412    return N0;
1413  // fold (add Sym, c) -> Sym+c
1414  if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0))
1415    if (!LegalOperations && TLI.isOffsetFoldingLegal(GA) && N1C &&
1416        GA->getOpcode() == ISD::GlobalAddress)
1417      return DAG.getGlobalAddress(GA->getGlobal(), SDLoc(N1C), VT,
1418                                  GA->getOffset() +
1419                                    (uint64_t)N1C->getSExtValue());
1420  // fold ((c1-A)+c2) -> (c1+c2)-A
1421  if (N1C && N0.getOpcode() == ISD::SUB)
1422    if (ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getOperand(0)))
1423      return DAG.getNode(ISD::SUB, SDLoc(N), VT,
1424                         DAG.getConstant(N1C->getAPIntValue()+
1425                                         N0C->getAPIntValue(), VT),
1426                         N0.getOperand(1));
1427  // reassociate add
1428  SDValue RADD = ReassociateOps(ISD::ADD, SDLoc(N), N0, N1);
1429  if (RADD.getNode() != 0)
1430    return RADD;
1431  // fold ((0-A) + B) -> B-A
1432  if (N0.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N0.getOperand(0)) &&
1433      cast<ConstantSDNode>(N0.getOperand(0))->isNullValue())
1434    return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1, N0.getOperand(1));
1435  // fold (A + (0-B)) -> A-B
1436  if (N1.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N1.getOperand(0)) &&
1437      cast<ConstantSDNode>(N1.getOperand(0))->isNullValue())
1438    return DAG.getNode(ISD::SUB, SDLoc(N), VT, N0, N1.getOperand(1));
1439  // fold (A+(B-A)) -> B
1440  if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1))
1441    return N1.getOperand(0);
1442  // fold ((B-A)+A) -> B
1443  if (N0.getOpcode() == ISD::SUB && N1 == N0.getOperand(1))
1444    return N0.getOperand(0);
1445  // fold (A+(B-(A+C))) to (B-C)
1446  if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD &&
1447      N0 == N1.getOperand(1).getOperand(0))
1448    return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1.getOperand(0),
1449                       N1.getOperand(1).getOperand(1));
1450  // fold (A+(B-(C+A))) to (B-C)
1451  if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD &&
1452      N0 == N1.getOperand(1).getOperand(1))
1453    return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1.getOperand(0),
1454                       N1.getOperand(1).getOperand(0));
1455  // fold (A+((B-A)+or-C)) to (B+or-C)
1456  if ((N1.getOpcode() == ISD::SUB || N1.getOpcode() == ISD::ADD) &&
1457      N1.getOperand(0).getOpcode() == ISD::SUB &&
1458      N0 == N1.getOperand(0).getOperand(1))
1459    return DAG.getNode(N1.getOpcode(), SDLoc(N), VT,
1460                       N1.getOperand(0).getOperand(0), N1.getOperand(1));
1461
1462  // fold (A-B)+(C-D) to (A+C)-(B+D) when A or C is constant
1463  if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB) {
1464    SDValue N00 = N0.getOperand(0);
1465    SDValue N01 = N0.getOperand(1);
1466    SDValue N10 = N1.getOperand(0);
1467    SDValue N11 = N1.getOperand(1);
1468
1469    if (isa<ConstantSDNode>(N00) || isa<ConstantSDNode>(N10))
1470      return DAG.getNode(ISD::SUB, SDLoc(N), VT,
1471                         DAG.getNode(ISD::ADD, SDLoc(N0), VT, N00, N10),
1472                         DAG.getNode(ISD::ADD, SDLoc(N1), VT, N01, N11));
1473  }
1474
1475  if (!VT.isVector() && SimplifyDemandedBits(SDValue(N, 0)))
1476    return SDValue(N, 0);
1477
1478  // fold (a+b) -> (a|b) iff a and b share no bits.
1479  if (VT.isInteger() && !VT.isVector()) {
1480    APInt LHSZero, LHSOne;
1481    APInt RHSZero, RHSOne;
1482    DAG.ComputeMaskedBits(N0, LHSZero, LHSOne);
1483
1484    if (LHSZero.getBoolValue()) {
1485      DAG.ComputeMaskedBits(N1, RHSZero, RHSOne);
1486
1487      // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
1488      // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
1489      if ((RHSZero & ~LHSZero) == ~LHSZero || (LHSZero & ~RHSZero) == ~RHSZero)
1490        return DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N1);
1491    }
1492  }
1493
1494  // fold (add (shl (add x, c1), c2), ) -> (add (add (shl x, c2), c1<<c2), )
1495  if (N0.getOpcode() == ISD::SHL && N0.getNode()->hasOneUse()) {
1496    SDValue Result = combineShlAddConstant(SDLoc(N), N0, N1, DAG);
1497    if (Result.getNode()) return Result;
1498  }
1499  if (N1.getOpcode() == ISD::SHL && N1.getNode()->hasOneUse()) {
1500    SDValue Result = combineShlAddConstant(SDLoc(N), N1, N0, DAG);
1501    if (Result.getNode()) return Result;
1502  }
1503
1504  // fold (add x, shl(0 - y, n)) -> sub(x, shl(y, n))
1505  if (N1.getOpcode() == ISD::SHL &&
1506      N1.getOperand(0).getOpcode() == ISD::SUB)
1507    if (ConstantSDNode *C =
1508          dyn_cast<ConstantSDNode>(N1.getOperand(0).getOperand(0)))
1509      if (C->getAPIntValue() == 0)
1510        return DAG.getNode(ISD::SUB, SDLoc(N), VT, N0,
1511                           DAG.getNode(ISD::SHL, SDLoc(N), VT,
1512                                       N1.getOperand(0).getOperand(1),
1513                                       N1.getOperand(1)));
1514  if (N0.getOpcode() == ISD::SHL &&
1515      N0.getOperand(0).getOpcode() == ISD::SUB)
1516    if (ConstantSDNode *C =
1517          dyn_cast<ConstantSDNode>(N0.getOperand(0).getOperand(0)))
1518      if (C->getAPIntValue() == 0)
1519        return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1,
1520                           DAG.getNode(ISD::SHL, SDLoc(N), VT,
1521                                       N0.getOperand(0).getOperand(1),
1522                                       N0.getOperand(1)));
1523
1524  if (N1.getOpcode() == ISD::AND) {
1525    SDValue AndOp0 = N1.getOperand(0);
1526    ConstantSDNode *AndOp1 = dyn_cast<ConstantSDNode>(N1->getOperand(1));
1527    unsigned NumSignBits = DAG.ComputeNumSignBits(AndOp0);
1528    unsigned DestBits = VT.getScalarType().getSizeInBits();
1529
1530    // (add z, (and (sbbl x, x), 1)) -> (sub z, (sbbl x, x))
1531    // and similar xforms where the inner op is either ~0 or 0.
1532    if (NumSignBits == DestBits && AndOp1 && AndOp1->isOne()) {
1533      SDLoc DL(N);
1534      return DAG.getNode(ISD::SUB, DL, VT, N->getOperand(0), AndOp0);
1535    }
1536  }
1537
1538  // add (sext i1), X -> sub X, (zext i1)
1539  if (N0.getOpcode() == ISD::SIGN_EXTEND &&
1540      N0.getOperand(0).getValueType() == MVT::i1 &&
1541      !TLI.isOperationLegal(ISD::SIGN_EXTEND, MVT::i1)) {
1542    SDLoc DL(N);
1543    SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0));
1544    return DAG.getNode(ISD::SUB, DL, VT, N1, ZExt);
1545  }
1546
1547  return SDValue();
1548}
1549
1550SDValue DAGCombiner::visitADDC(SDNode *N) {
1551  SDValue N0 = N->getOperand(0);
1552  SDValue N1 = N->getOperand(1);
1553  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1554  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1555  EVT VT = N0.getValueType();
1556
1557  // If the flag result is dead, turn this into an ADD.
1558  if (!N->hasAnyUseOfValue(1))
1559    return CombineTo(N, DAG.getNode(ISD::ADD, SDLoc(N), VT, N0, N1),
1560                     DAG.getNode(ISD::CARRY_FALSE,
1561                                 SDLoc(N), MVT::Glue));
1562
1563  // canonicalize constant to RHS.
1564  if (N0C && !N1C)
1565    return DAG.getNode(ISD::ADDC, SDLoc(N), N->getVTList(), N1, N0);
1566
1567  // fold (addc x, 0) -> x + no carry out
1568  if (N1C && N1C->isNullValue())
1569    return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE,
1570                                        SDLoc(N), MVT::Glue));
1571
1572  // fold (addc a, b) -> (or a, b), CARRY_FALSE iff a and b share no bits.
1573  APInt LHSZero, LHSOne;
1574  APInt RHSZero, RHSOne;
1575  DAG.ComputeMaskedBits(N0, LHSZero, LHSOne);
1576
1577  if (LHSZero.getBoolValue()) {
1578    DAG.ComputeMaskedBits(N1, RHSZero, RHSOne);
1579
1580    // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
1581    // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
1582    if ((RHSZero & ~LHSZero) == ~LHSZero || (LHSZero & ~RHSZero) == ~RHSZero)
1583      return CombineTo(N, DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N1),
1584                       DAG.getNode(ISD::CARRY_FALSE,
1585                                   SDLoc(N), MVT::Glue));
1586  }
1587
1588  return SDValue();
1589}
1590
1591SDValue DAGCombiner::visitADDE(SDNode *N) {
1592  SDValue N0 = N->getOperand(0);
1593  SDValue N1 = N->getOperand(1);
1594  SDValue CarryIn = N->getOperand(2);
1595  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1596  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1597
1598  // canonicalize constant to RHS
1599  if (N0C && !N1C)
1600    return DAG.getNode(ISD::ADDE, SDLoc(N), N->getVTList(),
1601                       N1, N0, CarryIn);
1602
1603  // fold (adde x, y, false) -> (addc x, y)
1604  if (CarryIn.getOpcode() == ISD::CARRY_FALSE)
1605    return DAG.getNode(ISD::ADDC, SDLoc(N), N->getVTList(), N0, N1);
1606
1607  return SDValue();
1608}
1609
1610// Since it may not be valid to emit a fold to zero for vector initializers
1611// check if we can before folding.
1612static SDValue tryFoldToZero(SDLoc DL, const TargetLowering &TLI, EVT VT,
1613                             SelectionDAG &DAG, bool LegalOperations) {
1614  if (!VT.isVector()) {
1615    return DAG.getConstant(0, VT);
1616  }
1617  if (!LegalOperations || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) {
1618    // Produce a vector of zeros.
1619    SDValue El = DAG.getConstant(0, VT.getVectorElementType());
1620    std::vector<SDValue> Ops(VT.getVectorNumElements(), El);
1621    return DAG.getNode(ISD::BUILD_VECTOR, DL, VT,
1622      &Ops[0], Ops.size());
1623  }
1624  return SDValue();
1625}
1626
1627SDValue DAGCombiner::visitSUB(SDNode *N) {
1628  SDValue N0 = N->getOperand(0);
1629  SDValue N1 = N->getOperand(1);
1630  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getNode());
1631  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
1632  ConstantSDNode *N1C1 = N1.getOpcode() != ISD::ADD ? 0 :
1633    dyn_cast<ConstantSDNode>(N1.getOperand(1).getNode());
1634  EVT VT = N0.getValueType();
1635
1636  // fold vector ops
1637  if (VT.isVector()) {
1638    SDValue FoldedVOp = SimplifyVBinOp(N);
1639    if (FoldedVOp.getNode()) return FoldedVOp;
1640
1641    // fold (sub x, 0) -> x, vector edition
1642    if (ISD::isBuildVectorAllZeros(N1.getNode()))
1643      return N0;
1644  }
1645
1646  // fold (sub x, x) -> 0
1647  // FIXME: Refactor this and xor and other similar operations together.
1648  if (N0 == N1)
1649    return tryFoldToZero(SDLoc(N), TLI, VT, DAG, LegalOperations);
1650  // fold (sub c1, c2) -> c1-c2
1651  if (N0C && N1C)
1652    return DAG.FoldConstantArithmetic(ISD::SUB, VT, N0C, N1C);
1653  // fold (sub x, c) -> (add x, -c)
1654  if (N1C)
1655    return DAG.getNode(ISD::ADD, SDLoc(N), VT, N0,
1656                       DAG.getConstant(-N1C->getAPIntValue(), VT));
1657  // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1)
1658  if (N0C && N0C->isAllOnesValue())
1659    return DAG.getNode(ISD::XOR, SDLoc(N), VT, N1, N0);
1660  // fold A-(A-B) -> B
1661  if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(0))
1662    return N1.getOperand(1);
1663  // fold (A+B)-A -> B
1664  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1)
1665    return N0.getOperand(1);
1666  // fold (A+B)-B -> A
1667  if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1)
1668    return N0.getOperand(0);
1669  // fold C2-(A+C1) -> (C2-C1)-A
1670  if (N1.getOpcode() == ISD::ADD && N0C && N1C1) {
1671    SDValue NewC = DAG.getConstant(N0C->getAPIntValue() - N1C1->getAPIntValue(),
1672                                   VT);
1673    return DAG.getNode(ISD::SUB, SDLoc(N), VT, NewC,
1674                       N1.getOperand(0));
1675  }
1676  // fold ((A+(B+or-C))-B) -> A+or-C
1677  if (N0.getOpcode() == ISD::ADD &&
1678      (N0.getOperand(1).getOpcode() == ISD::SUB ||
1679       N0.getOperand(1).getOpcode() == ISD::ADD) &&
1680      N0.getOperand(1).getOperand(0) == N1)
1681    return DAG.getNode(N0.getOperand(1).getOpcode(), SDLoc(N), VT,
1682                       N0.getOperand(0), N0.getOperand(1).getOperand(1));
1683  // fold ((A+(C+B))-B) -> A+C
1684  if (N0.getOpcode() == ISD::ADD &&
1685      N0.getOperand(1).getOpcode() == ISD::ADD &&
1686      N0.getOperand(1).getOperand(1) == N1)
1687    return DAG.getNode(ISD::ADD, SDLoc(N), VT,
1688                       N0.getOperand(0), N0.getOperand(1).getOperand(0));
1689  // fold ((A-(B-C))-C) -> A-B
1690  if (N0.getOpcode() == ISD::SUB &&
1691      N0.getOperand(1).getOpcode() == ISD::SUB &&
1692      N0.getOperand(1).getOperand(1) == N1)
1693    return DAG.getNode(ISD::SUB, SDLoc(N), VT,
1694                       N0.getOperand(0), N0.getOperand(1).getOperand(0));
1695
1696  // If either operand of a sub is undef, the result is undef
1697  if (N0.getOpcode() == ISD::UNDEF)
1698    return N0;
1699  if (N1.getOpcode() == ISD::UNDEF)
1700    return N1;
1701
1702  // If the relocation model supports it, consider symbol offsets.
1703  if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0))
1704    if (!LegalOperations && TLI.isOffsetFoldingLegal(GA)) {
1705      // fold (sub Sym, c) -> Sym-c
1706      if (N1C && GA->getOpcode() == ISD::GlobalAddress)
1707        return DAG.getGlobalAddress(GA->getGlobal(), SDLoc(N1C), VT,
1708                                    GA->getOffset() -
1709                                      (uint64_t)N1C->getSExtValue());
1710      // fold (sub Sym+c1, Sym+c2) -> c1-c2
1711      if (GlobalAddressSDNode *GB = dyn_cast<GlobalAddressSDNode>(N1))
1712        if (GA->getGlobal() == GB->getGlobal())
1713          return DAG.getConstant((uint64_t)GA->getOffset() - GB->getOffset(),
1714                                 VT);
1715    }
1716
1717  return SDValue();
1718}
1719
1720SDValue DAGCombiner::visitSUBC(SDNode *N) {
1721  SDValue N0 = N->getOperand(0);
1722  SDValue N1 = N->getOperand(1);
1723  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1724  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1725  EVT VT = N0.getValueType();
1726
1727  // If the flag result is dead, turn this into an SUB.
1728  if (!N->hasAnyUseOfValue(1))
1729    return CombineTo(N, DAG.getNode(ISD::SUB, SDLoc(N), VT, N0, N1),
1730                     DAG.getNode(ISD::CARRY_FALSE, SDLoc(N),
1731                                 MVT::Glue));
1732
1733  // fold (subc x, x) -> 0 + no borrow
1734  if (N0 == N1)
1735    return CombineTo(N, DAG.getConstant(0, VT),
1736                     DAG.getNode(ISD::CARRY_FALSE, SDLoc(N),
1737                                 MVT::Glue));
1738
1739  // fold (subc x, 0) -> x + no borrow
1740  if (N1C && N1C->isNullValue())
1741    return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, SDLoc(N),
1742                                        MVT::Glue));
1743
1744  // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) + no borrow
1745  if (N0C && N0C->isAllOnesValue())
1746    return CombineTo(N, DAG.getNode(ISD::XOR, SDLoc(N), VT, N1, N0),
1747                     DAG.getNode(ISD::CARRY_FALSE, SDLoc(N),
1748                                 MVT::Glue));
1749
1750  return SDValue();
1751}
1752
1753SDValue DAGCombiner::visitSUBE(SDNode *N) {
1754  SDValue N0 = N->getOperand(0);
1755  SDValue N1 = N->getOperand(1);
1756  SDValue CarryIn = N->getOperand(2);
1757
1758  // fold (sube x, y, false) -> (subc x, y)
1759  if (CarryIn.getOpcode() == ISD::CARRY_FALSE)
1760    return DAG.getNode(ISD::SUBC, SDLoc(N), N->getVTList(), N0, N1);
1761
1762  return SDValue();
1763}
1764
1765SDValue DAGCombiner::visitMUL(SDNode *N) {
1766  SDValue N0 = N->getOperand(0);
1767  SDValue N1 = N->getOperand(1);
1768  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1769  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1770  EVT VT = N0.getValueType();
1771
1772  // fold vector ops
1773  if (VT.isVector()) {
1774    SDValue FoldedVOp = SimplifyVBinOp(N);
1775    if (FoldedVOp.getNode()) return FoldedVOp;
1776  }
1777
1778  // fold (mul x, undef) -> 0
1779  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1780    return DAG.getConstant(0, VT);
1781  // fold (mul c1, c2) -> c1*c2
1782  if (N0C && N1C)
1783    return DAG.FoldConstantArithmetic(ISD::MUL, VT, N0C, N1C);
1784  // canonicalize constant to RHS
1785  if (N0C && !N1C)
1786    return DAG.getNode(ISD::MUL, SDLoc(N), VT, N1, N0);
1787  // fold (mul x, 0) -> 0
1788  if (N1C && N1C->isNullValue())
1789    return N1;
1790  // fold (mul x, -1) -> 0-x
1791  if (N1C && N1C->isAllOnesValue())
1792    return DAG.getNode(ISD::SUB, SDLoc(N), VT,
1793                       DAG.getConstant(0, VT), N0);
1794  // fold (mul x, (1 << c)) -> x << c
1795  if (N1C && N1C->getAPIntValue().isPowerOf2())
1796    return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0,
1797                       DAG.getConstant(N1C->getAPIntValue().logBase2(),
1798                                       getShiftAmountTy(N0.getValueType())));
1799  // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c
1800  if (N1C && (-N1C->getAPIntValue()).isPowerOf2()) {
1801    unsigned Log2Val = (-N1C->getAPIntValue()).logBase2();
1802    // FIXME: If the input is something that is easily negated (e.g. a
1803    // single-use add), we should put the negate there.
1804    return DAG.getNode(ISD::SUB, SDLoc(N), VT,
1805                       DAG.getConstant(0, VT),
1806                       DAG.getNode(ISD::SHL, SDLoc(N), VT, N0,
1807                            DAG.getConstant(Log2Val,
1808                                      getShiftAmountTy(N0.getValueType()))));
1809  }
1810  // (mul (shl X, c1), c2) -> (mul X, c2 << c1)
1811  if (N1C && N0.getOpcode() == ISD::SHL &&
1812      isa<ConstantSDNode>(N0.getOperand(1))) {
1813    SDValue C3 = DAG.getNode(ISD::SHL, SDLoc(N), VT,
1814                             N1, N0.getOperand(1));
1815    AddToWorkList(C3.getNode());
1816    return DAG.getNode(ISD::MUL, SDLoc(N), VT,
1817                       N0.getOperand(0), C3);
1818  }
1819
1820  // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one
1821  // use.
1822  {
1823    SDValue Sh(0,0), Y(0,0);
1824    // Check for both (mul (shl X, C), Y)  and  (mul Y, (shl X, C)).
1825    if (N0.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N0.getOperand(1)) &&
1826        N0.getNode()->hasOneUse()) {
1827      Sh = N0; Y = N1;
1828    } else if (N1.getOpcode() == ISD::SHL &&
1829               isa<ConstantSDNode>(N1.getOperand(1)) &&
1830               N1.getNode()->hasOneUse()) {
1831      Sh = N1; Y = N0;
1832    }
1833
1834    if (Sh.getNode()) {
1835      SDValue Mul = DAG.getNode(ISD::MUL, SDLoc(N), VT,
1836                                Sh.getOperand(0), Y);
1837      return DAG.getNode(ISD::SHL, SDLoc(N), VT,
1838                         Mul, Sh.getOperand(1));
1839    }
1840  }
1841
1842  // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2)
1843  if (N1C && N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse() &&
1844      isa<ConstantSDNode>(N0.getOperand(1)))
1845    return DAG.getNode(ISD::ADD, SDLoc(N), VT,
1846                       DAG.getNode(ISD::MUL, SDLoc(N0), VT,
1847                                   N0.getOperand(0), N1),
1848                       DAG.getNode(ISD::MUL, SDLoc(N1), VT,
1849                                   N0.getOperand(1), N1));
1850
1851  // reassociate mul
1852  SDValue RMUL = ReassociateOps(ISD::MUL, SDLoc(N), N0, N1);
1853  if (RMUL.getNode() != 0)
1854    return RMUL;
1855
1856  return SDValue();
1857}
1858
1859SDValue DAGCombiner::visitSDIV(SDNode *N) {
1860  SDValue N0 = N->getOperand(0);
1861  SDValue N1 = N->getOperand(1);
1862  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getNode());
1863  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
1864  EVT VT = N->getValueType(0);
1865
1866  // fold vector ops
1867  if (VT.isVector()) {
1868    SDValue FoldedVOp = SimplifyVBinOp(N);
1869    if (FoldedVOp.getNode()) return FoldedVOp;
1870  }
1871
1872  // fold (sdiv c1, c2) -> c1/c2
1873  if (N0C && N1C && !N1C->isNullValue())
1874    return DAG.FoldConstantArithmetic(ISD::SDIV, VT, N0C, N1C);
1875  // fold (sdiv X, 1) -> X
1876  if (N1C && N1C->getAPIntValue() == 1LL)
1877    return N0;
1878  // fold (sdiv X, -1) -> 0-X
1879  if (N1C && N1C->isAllOnesValue())
1880    return DAG.getNode(ISD::SUB, SDLoc(N), VT,
1881                       DAG.getConstant(0, VT), N0);
1882  // If we know the sign bits of both operands are zero, strength reduce to a
1883  // udiv instead.  Handles (X&15) /s 4 -> X&15 >> 2
1884  if (!VT.isVector()) {
1885    if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
1886      return DAG.getNode(ISD::UDIV, SDLoc(N), N1.getValueType(),
1887                         N0, N1);
1888  }
1889  // fold (sdiv X, pow2) -> simple ops after legalize
1890  if (N1C && !N1C->isNullValue() &&
1891      (N1C->getAPIntValue().isPowerOf2() ||
1892       (-N1C->getAPIntValue()).isPowerOf2())) {
1893    // If dividing by powers of two is cheap, then don't perform the following
1894    // fold.
1895    if (TLI.isPow2DivCheap())
1896      return SDValue();
1897
1898    unsigned lg2 = N1C->getAPIntValue().countTrailingZeros();
1899
1900    // Splat the sign bit into the register
1901    SDValue SGN = DAG.getNode(ISD::SRA, SDLoc(N), VT, N0,
1902                              DAG.getConstant(VT.getSizeInBits()-1,
1903                                       getShiftAmountTy(N0.getValueType())));
1904    AddToWorkList(SGN.getNode());
1905
1906    // Add (N0 < 0) ? abs2 - 1 : 0;
1907    SDValue SRL = DAG.getNode(ISD::SRL, SDLoc(N), VT, SGN,
1908                              DAG.getConstant(VT.getSizeInBits() - lg2,
1909                                       getShiftAmountTy(SGN.getValueType())));
1910    SDValue ADD = DAG.getNode(ISD::ADD, SDLoc(N), VT, N0, SRL);
1911    AddToWorkList(SRL.getNode());
1912    AddToWorkList(ADD.getNode());    // Divide by pow2
1913    SDValue SRA = DAG.getNode(ISD::SRA, SDLoc(N), VT, ADD,
1914                  DAG.getConstant(lg2, getShiftAmountTy(ADD.getValueType())));
1915
1916    // If we're dividing by a positive value, we're done.  Otherwise, we must
1917    // negate the result.
1918    if (N1C->getAPIntValue().isNonNegative())
1919      return SRA;
1920
1921    AddToWorkList(SRA.getNode());
1922    return DAG.getNode(ISD::SUB, SDLoc(N), VT,
1923                       DAG.getConstant(0, VT), SRA);
1924  }
1925
1926  // if integer divide is expensive and we satisfy the requirements, emit an
1927  // alternate sequence.
1928  if (N1C && !N1C->isNullValue() && !TLI.isIntDivCheap()) {
1929    SDValue Op = BuildSDIV(N);
1930    if (Op.getNode()) return Op;
1931  }
1932
1933  // undef / X -> 0
1934  if (N0.getOpcode() == ISD::UNDEF)
1935    return DAG.getConstant(0, VT);
1936  // X / undef -> undef
1937  if (N1.getOpcode() == ISD::UNDEF)
1938    return N1;
1939
1940  return SDValue();
1941}
1942
1943SDValue DAGCombiner::visitUDIV(SDNode *N) {
1944  SDValue N0 = N->getOperand(0);
1945  SDValue N1 = N->getOperand(1);
1946  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getNode());
1947  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
1948  EVT VT = N->getValueType(0);
1949
1950  // fold vector ops
1951  if (VT.isVector()) {
1952    SDValue FoldedVOp = SimplifyVBinOp(N);
1953    if (FoldedVOp.getNode()) return FoldedVOp;
1954  }
1955
1956  // fold (udiv c1, c2) -> c1/c2
1957  if (N0C && N1C && !N1C->isNullValue())
1958    return DAG.FoldConstantArithmetic(ISD::UDIV, VT, N0C, N1C);
1959  // fold (udiv x, (1 << c)) -> x >>u c
1960  if (N1C && N1C->getAPIntValue().isPowerOf2())
1961    return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0,
1962                       DAG.getConstant(N1C->getAPIntValue().logBase2(),
1963                                       getShiftAmountTy(N0.getValueType())));
1964  // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
1965  if (N1.getOpcode() == ISD::SHL) {
1966    if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
1967      if (SHC->getAPIntValue().isPowerOf2()) {
1968        EVT ADDVT = N1.getOperand(1).getValueType();
1969        SDValue Add = DAG.getNode(ISD::ADD, SDLoc(N), ADDVT,
1970                                  N1.getOperand(1),
1971                                  DAG.getConstant(SHC->getAPIntValue()
1972                                                                  .logBase2(),
1973                                                  ADDVT));
1974        AddToWorkList(Add.getNode());
1975        return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, Add);
1976      }
1977    }
1978  }
1979  // fold (udiv x, c) -> alternate
1980  if (N1C && !N1C->isNullValue() && !TLI.isIntDivCheap()) {
1981    SDValue Op = BuildUDIV(N);
1982    if (Op.getNode()) return Op;
1983  }
1984
1985  // undef / X -> 0
1986  if (N0.getOpcode() == ISD::UNDEF)
1987    return DAG.getConstant(0, VT);
1988  // X / undef -> undef
1989  if (N1.getOpcode() == ISD::UNDEF)
1990    return N1;
1991
1992  return SDValue();
1993}
1994
1995SDValue DAGCombiner::visitSREM(SDNode *N) {
1996  SDValue N0 = N->getOperand(0);
1997  SDValue N1 = N->getOperand(1);
1998  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1999  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2000  EVT VT = N->getValueType(0);
2001
2002  // fold (srem c1, c2) -> c1%c2
2003  if (N0C && N1C && !N1C->isNullValue())
2004    return DAG.FoldConstantArithmetic(ISD::SREM, VT, N0C, N1C);
2005  // If we know the sign bits of both operands are zero, strength reduce to a
2006  // urem instead.  Handles (X & 0x0FFFFFFF) %s 16 -> X&15
2007  if (!VT.isVector()) {
2008    if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
2009      return DAG.getNode(ISD::UREM, SDLoc(N), VT, N0, N1);
2010  }
2011
2012  // If X/C can be simplified by the division-by-constant logic, lower
2013  // X%C to the equivalent of X-X/C*C.
2014  if (N1C && !N1C->isNullValue()) {
2015    SDValue Div = DAG.getNode(ISD::SDIV, SDLoc(N), VT, N0, N1);
2016    AddToWorkList(Div.getNode());
2017    SDValue OptimizedDiv = combine(Div.getNode());
2018    if (OptimizedDiv.getNode() && OptimizedDiv.getNode() != Div.getNode()) {
2019      SDValue Mul = DAG.getNode(ISD::MUL, SDLoc(N), VT,
2020                                OptimizedDiv, N1);
2021      SDValue Sub = DAG.getNode(ISD::SUB, SDLoc(N), VT, N0, Mul);
2022      AddToWorkList(Mul.getNode());
2023      return Sub;
2024    }
2025  }
2026
2027  // undef % X -> 0
2028  if (N0.getOpcode() == ISD::UNDEF)
2029    return DAG.getConstant(0, VT);
2030  // X % undef -> undef
2031  if (N1.getOpcode() == ISD::UNDEF)
2032    return N1;
2033
2034  return SDValue();
2035}
2036
2037SDValue DAGCombiner::visitUREM(SDNode *N) {
2038  SDValue N0 = N->getOperand(0);
2039  SDValue N1 = N->getOperand(1);
2040  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2041  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2042  EVT VT = N->getValueType(0);
2043
2044  // fold (urem c1, c2) -> c1%c2
2045  if (N0C && N1C && !N1C->isNullValue())
2046    return DAG.FoldConstantArithmetic(ISD::UREM, VT, N0C, N1C);
2047  // fold (urem x, pow2) -> (and x, pow2-1)
2048  if (N1C && !N1C->isNullValue() && N1C->getAPIntValue().isPowerOf2())
2049    return DAG.getNode(ISD::AND, SDLoc(N), VT, N0,
2050                       DAG.getConstant(N1C->getAPIntValue()-1,VT));
2051  // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1))
2052  if (N1.getOpcode() == ISD::SHL) {
2053    if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
2054      if (SHC->getAPIntValue().isPowerOf2()) {
2055        SDValue Add =
2056          DAG.getNode(ISD::ADD, SDLoc(N), VT, N1,
2057                 DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()),
2058                                 VT));
2059        AddToWorkList(Add.getNode());
2060        return DAG.getNode(ISD::AND, SDLoc(N), VT, N0, Add);
2061      }
2062    }
2063  }
2064
2065  // If X/C can be simplified by the division-by-constant logic, lower
2066  // X%C to the equivalent of X-X/C*C.
2067  if (N1C && !N1C->isNullValue()) {
2068    SDValue Div = DAG.getNode(ISD::UDIV, SDLoc(N), VT, N0, N1);
2069    AddToWorkList(Div.getNode());
2070    SDValue OptimizedDiv = combine(Div.getNode());
2071    if (OptimizedDiv.getNode() && OptimizedDiv.getNode() != Div.getNode()) {
2072      SDValue Mul = DAG.getNode(ISD::MUL, SDLoc(N), VT,
2073                                OptimizedDiv, N1);
2074      SDValue Sub = DAG.getNode(ISD::SUB, SDLoc(N), VT, N0, Mul);
2075      AddToWorkList(Mul.getNode());
2076      return Sub;
2077    }
2078  }
2079
2080  // undef % X -> 0
2081  if (N0.getOpcode() == ISD::UNDEF)
2082    return DAG.getConstant(0, VT);
2083  // X % undef -> undef
2084  if (N1.getOpcode() == ISD::UNDEF)
2085    return N1;
2086
2087  return SDValue();
2088}
2089
2090SDValue DAGCombiner::visitMULHS(SDNode *N) {
2091  SDValue N0 = N->getOperand(0);
2092  SDValue N1 = N->getOperand(1);
2093  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2094  EVT VT = N->getValueType(0);
2095  SDLoc DL(N);
2096
2097  // fold (mulhs x, 0) -> 0
2098  if (N1C && N1C->isNullValue())
2099    return N1;
2100  // fold (mulhs x, 1) -> (sra x, size(x)-1)
2101  if (N1C && N1C->getAPIntValue() == 1)
2102    return DAG.getNode(ISD::SRA, SDLoc(N), N0.getValueType(), N0,
2103                       DAG.getConstant(N0.getValueType().getSizeInBits() - 1,
2104                                       getShiftAmountTy(N0.getValueType())));
2105  // fold (mulhs x, undef) -> 0
2106  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
2107    return DAG.getConstant(0, VT);
2108
2109  // If the type twice as wide is legal, transform the mulhs to a wider multiply
2110  // plus a shift.
2111  if (VT.isSimple() && !VT.isVector()) {
2112    MVT Simple = VT.getSimpleVT();
2113    unsigned SimpleSize = Simple.getSizeInBits();
2114    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2115    if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2116      N0 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N0);
2117      N1 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N1);
2118      N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1);
2119      N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1,
2120            DAG.getConstant(SimpleSize, getShiftAmountTy(N1.getValueType())));
2121      return DAG.getNode(ISD::TRUNCATE, DL, VT, N1);
2122    }
2123  }
2124
2125  return SDValue();
2126}
2127
2128SDValue DAGCombiner::visitMULHU(SDNode *N) {
2129  SDValue N0 = N->getOperand(0);
2130  SDValue N1 = N->getOperand(1);
2131  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2132  EVT VT = N->getValueType(0);
2133  SDLoc DL(N);
2134
2135  // fold (mulhu x, 0) -> 0
2136  if (N1C && N1C->isNullValue())
2137    return N1;
2138  // fold (mulhu x, 1) -> 0
2139  if (N1C && N1C->getAPIntValue() == 1)
2140    return DAG.getConstant(0, N0.getValueType());
2141  // fold (mulhu x, undef) -> 0
2142  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
2143    return DAG.getConstant(0, VT);
2144
2145  // If the type twice as wide is legal, transform the mulhu to a wider multiply
2146  // plus a shift.
2147  if (VT.isSimple() && !VT.isVector()) {
2148    MVT Simple = VT.getSimpleVT();
2149    unsigned SimpleSize = Simple.getSizeInBits();
2150    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2151    if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2152      N0 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N0);
2153      N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N1);
2154      N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1);
2155      N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1,
2156            DAG.getConstant(SimpleSize, getShiftAmountTy(N1.getValueType())));
2157      return DAG.getNode(ISD::TRUNCATE, DL, VT, N1);
2158    }
2159  }
2160
2161  return SDValue();
2162}
2163
2164/// SimplifyNodeWithTwoResults - Perform optimizations common to nodes that
2165/// compute two values. LoOp and HiOp give the opcodes for the two computations
2166/// that are being performed. Return true if a simplification was made.
2167///
2168SDValue DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
2169                                                unsigned HiOp) {
2170  // If the high half is not needed, just compute the low half.
2171  bool HiExists = N->hasAnyUseOfValue(1);
2172  if (!HiExists &&
2173      (!LegalOperations ||
2174       TLI.isOperationLegal(LoOp, N->getValueType(0)))) {
2175    SDValue Res = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0),
2176                              N->op_begin(), N->getNumOperands());
2177    return CombineTo(N, Res, Res);
2178  }
2179
2180  // If the low half is not needed, just compute the high half.
2181  bool LoExists = N->hasAnyUseOfValue(0);
2182  if (!LoExists &&
2183      (!LegalOperations ||
2184       TLI.isOperationLegal(HiOp, N->getValueType(1)))) {
2185    SDValue Res = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1),
2186                              N->op_begin(), N->getNumOperands());
2187    return CombineTo(N, Res, Res);
2188  }
2189
2190  // If both halves are used, return as it is.
2191  if (LoExists && HiExists)
2192    return SDValue();
2193
2194  // If the two computed results can be simplified separately, separate them.
2195  if (LoExists) {
2196    SDValue Lo = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0),
2197                             N->op_begin(), N->getNumOperands());
2198    AddToWorkList(Lo.getNode());
2199    SDValue LoOpt = combine(Lo.getNode());
2200    if (LoOpt.getNode() && LoOpt.getNode() != Lo.getNode() &&
2201        (!LegalOperations ||
2202         TLI.isOperationLegal(LoOpt.getOpcode(), LoOpt.getValueType())))
2203      return CombineTo(N, LoOpt, LoOpt);
2204  }
2205
2206  if (HiExists) {
2207    SDValue Hi = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1),
2208                             N->op_begin(), N->getNumOperands());
2209    AddToWorkList(Hi.getNode());
2210    SDValue HiOpt = combine(Hi.getNode());
2211    if (HiOpt.getNode() && HiOpt != Hi &&
2212        (!LegalOperations ||
2213         TLI.isOperationLegal(HiOpt.getOpcode(), HiOpt.getValueType())))
2214      return CombineTo(N, HiOpt, HiOpt);
2215  }
2216
2217  return SDValue();
2218}
2219
2220SDValue DAGCombiner::visitSMUL_LOHI(SDNode *N) {
2221  SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHS);
2222  if (Res.getNode()) return Res;
2223
2224  EVT VT = N->getValueType(0);
2225  SDLoc DL(N);
2226
2227  // If the type twice as wide is legal, transform the mulhu to a wider multiply
2228  // plus a shift.
2229  if (VT.isSimple() && !VT.isVector()) {
2230    MVT Simple = VT.getSimpleVT();
2231    unsigned SimpleSize = Simple.getSizeInBits();
2232    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2233    if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2234      SDValue Lo = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(0));
2235      SDValue Hi = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(1));
2236      Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi);
2237      // Compute the high part as N1.
2238      Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo,
2239            DAG.getConstant(SimpleSize, getShiftAmountTy(Lo.getValueType())));
2240      Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi);
2241      // Compute the low part as N0.
2242      Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo);
2243      return CombineTo(N, Lo, Hi);
2244    }
2245  }
2246
2247  return SDValue();
2248}
2249
2250SDValue DAGCombiner::visitUMUL_LOHI(SDNode *N) {
2251  SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHU);
2252  if (Res.getNode()) return Res;
2253
2254  EVT VT = N->getValueType(0);
2255  SDLoc DL(N);
2256
2257  // If the type twice as wide is legal, transform the mulhu to a wider multiply
2258  // plus a shift.
2259  if (VT.isSimple() && !VT.isVector()) {
2260    MVT Simple = VT.getSimpleVT();
2261    unsigned SimpleSize = Simple.getSizeInBits();
2262    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2263    if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2264      SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(0));
2265      SDValue Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(1));
2266      Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi);
2267      // Compute the high part as N1.
2268      Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo,
2269            DAG.getConstant(SimpleSize, getShiftAmountTy(Lo.getValueType())));
2270      Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi);
2271      // Compute the low part as N0.
2272      Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo);
2273      return CombineTo(N, Lo, Hi);
2274    }
2275  }
2276
2277  return SDValue();
2278}
2279
2280SDValue DAGCombiner::visitSMULO(SDNode *N) {
2281  // (smulo x, 2) -> (saddo x, x)
2282  if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)))
2283    if (C2->getAPIntValue() == 2)
2284      return DAG.getNode(ISD::SADDO, SDLoc(N), N->getVTList(),
2285                         N->getOperand(0), N->getOperand(0));
2286
2287  return SDValue();
2288}
2289
2290SDValue DAGCombiner::visitUMULO(SDNode *N) {
2291  // (umulo x, 2) -> (uaddo x, x)
2292  if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)))
2293    if (C2->getAPIntValue() == 2)
2294      return DAG.getNode(ISD::UADDO, SDLoc(N), N->getVTList(),
2295                         N->getOperand(0), N->getOperand(0));
2296
2297  return SDValue();
2298}
2299
2300SDValue DAGCombiner::visitSDIVREM(SDNode *N) {
2301  SDValue Res = SimplifyNodeWithTwoResults(N, ISD::SDIV, ISD::SREM);
2302  if (Res.getNode()) return Res;
2303
2304  return SDValue();
2305}
2306
2307SDValue DAGCombiner::visitUDIVREM(SDNode *N) {
2308  SDValue Res = SimplifyNodeWithTwoResults(N, ISD::UDIV, ISD::UREM);
2309  if (Res.getNode()) return Res;
2310
2311  return SDValue();
2312}
2313
2314/// SimplifyBinOpWithSameOpcodeHands - If this is a binary operator with
2315/// two operands of the same opcode, try to simplify it.
2316SDValue DAGCombiner::SimplifyBinOpWithSameOpcodeHands(SDNode *N) {
2317  SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
2318  EVT VT = N0.getValueType();
2319  assert(N0.getOpcode() == N1.getOpcode() && "Bad input!");
2320
2321  // Bail early if none of these transforms apply.
2322  if (N0.getNode()->getNumOperands() == 0) return SDValue();
2323
2324  // For each of OP in AND/OR/XOR:
2325  // fold (OP (zext x), (zext y)) -> (zext (OP x, y))
2326  // fold (OP (sext x), (sext y)) -> (sext (OP x, y))
2327  // fold (OP (aext x), (aext y)) -> (aext (OP x, y))
2328  // fold (OP (trunc x), (trunc y)) -> (trunc (OP x, y)) (if trunc isn't free)
2329  //
2330  // do not sink logical op inside of a vector extend, since it may combine
2331  // into a vsetcc.
2332  EVT Op0VT = N0.getOperand(0).getValueType();
2333  if ((N0.getOpcode() == ISD::ZERO_EXTEND ||
2334       N0.getOpcode() == ISD::SIGN_EXTEND ||
2335       // Avoid infinite looping with PromoteIntBinOp.
2336       (N0.getOpcode() == ISD::ANY_EXTEND &&
2337        (!LegalTypes || TLI.isTypeDesirableForOp(N->getOpcode(), Op0VT))) ||
2338       (N0.getOpcode() == ISD::TRUNCATE &&
2339        (!TLI.isZExtFree(VT, Op0VT) ||
2340         !TLI.isTruncateFree(Op0VT, VT)) &&
2341        TLI.isTypeLegal(Op0VT))) &&
2342      !VT.isVector() &&
2343      Op0VT == N1.getOperand(0).getValueType() &&
2344      (!LegalOperations || TLI.isOperationLegal(N->getOpcode(), Op0VT))) {
2345    SDValue ORNode = DAG.getNode(N->getOpcode(), SDLoc(N0),
2346                                 N0.getOperand(0).getValueType(),
2347                                 N0.getOperand(0), N1.getOperand(0));
2348    AddToWorkList(ORNode.getNode());
2349    return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, ORNode);
2350  }
2351
2352  // For each of OP in SHL/SRL/SRA/AND...
2353  //   fold (and (OP x, z), (OP y, z)) -> (OP (and x, y), z)
2354  //   fold (or  (OP x, z), (OP y, z)) -> (OP (or  x, y), z)
2355  //   fold (xor (OP x, z), (OP y, z)) -> (OP (xor x, y), z)
2356  if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL ||
2357       N0.getOpcode() == ISD::SRA || N0.getOpcode() == ISD::AND) &&
2358      N0.getOperand(1) == N1.getOperand(1)) {
2359    SDValue ORNode = DAG.getNode(N->getOpcode(), SDLoc(N0),
2360                                 N0.getOperand(0).getValueType(),
2361                                 N0.getOperand(0), N1.getOperand(0));
2362    AddToWorkList(ORNode.getNode());
2363    return DAG.getNode(N0.getOpcode(), SDLoc(N), VT,
2364                       ORNode, N0.getOperand(1));
2365  }
2366
2367  // Simplify xor/and/or (bitcast(A), bitcast(B)) -> bitcast(op (A,B))
2368  // Only perform this optimization after type legalization and before
2369  // LegalizeVectorOprs. LegalizeVectorOprs promotes vector operations by
2370  // adding bitcasts. For example (xor v4i32) is promoted to (v2i64), and
2371  // we don't want to undo this promotion.
2372  // We also handle SCALAR_TO_VECTOR because xor/or/and operations are cheaper
2373  // on scalars.
2374  if ((N0.getOpcode() == ISD::BITCAST ||
2375       N0.getOpcode() == ISD::SCALAR_TO_VECTOR) &&
2376      Level == AfterLegalizeTypes) {
2377    SDValue In0 = N0.getOperand(0);
2378    SDValue In1 = N1.getOperand(0);
2379    EVT In0Ty = In0.getValueType();
2380    EVT In1Ty = In1.getValueType();
2381    SDLoc DL(N);
2382    // If both incoming values are integers, and the original types are the
2383    // same.
2384    if (In0Ty.isInteger() && In1Ty.isInteger() && In0Ty == In1Ty) {
2385      SDValue Op = DAG.getNode(N->getOpcode(), DL, In0Ty, In0, In1);
2386      SDValue BC = DAG.getNode(N0.getOpcode(), DL, VT, Op);
2387      AddToWorkList(Op.getNode());
2388      return BC;
2389    }
2390  }
2391
2392  // Xor/and/or are indifferent to the swizzle operation (shuffle of one value).
2393  // Simplify xor/and/or (shuff(A), shuff(B)) -> shuff(op (A,B))
2394  // If both shuffles use the same mask, and both shuffle within a single
2395  // vector, then it is worthwhile to move the swizzle after the operation.
2396  // The type-legalizer generates this pattern when loading illegal
2397  // vector types from memory. In many cases this allows additional shuffle
2398  // optimizations.
2399  if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG &&
2400      N0.getOperand(1).getOpcode() == ISD::UNDEF &&
2401      N1.getOperand(1).getOpcode() == ISD::UNDEF) {
2402    ShuffleVectorSDNode *SVN0 = cast<ShuffleVectorSDNode>(N0);
2403    ShuffleVectorSDNode *SVN1 = cast<ShuffleVectorSDNode>(N1);
2404
2405    assert(N0.getOperand(0).getValueType() == N1.getOperand(1).getValueType() &&
2406           "Inputs to shuffles are not the same type");
2407
2408    unsigned NumElts = VT.getVectorNumElements();
2409
2410    // Check that both shuffles use the same mask. The masks are known to be of
2411    // the same length because the result vector type is the same.
2412    bool SameMask = true;
2413    for (unsigned i = 0; i != NumElts; ++i) {
2414      int Idx0 = SVN0->getMaskElt(i);
2415      int Idx1 = SVN1->getMaskElt(i);
2416      if (Idx0 != Idx1) {
2417        SameMask = false;
2418        break;
2419      }
2420    }
2421
2422    if (SameMask) {
2423      SDValue Op = DAG.getNode(N->getOpcode(), SDLoc(N), VT,
2424                               N0.getOperand(0), N1.getOperand(0));
2425      AddToWorkList(Op.getNode());
2426      return DAG.getVectorShuffle(VT, SDLoc(N), Op,
2427                                  DAG.getUNDEF(VT), &SVN0->getMask()[0]);
2428    }
2429  }
2430
2431  return SDValue();
2432}
2433
2434SDValue DAGCombiner::visitAND(SDNode *N) {
2435  SDValue N0 = N->getOperand(0);
2436  SDValue N1 = N->getOperand(1);
2437  SDValue LL, LR, RL, RR, CC0, CC1;
2438  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2439  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2440  EVT VT = N1.getValueType();
2441  unsigned BitWidth = VT.getScalarType().getSizeInBits();
2442
2443  // fold vector ops
2444  if (VT.isVector()) {
2445    SDValue FoldedVOp = SimplifyVBinOp(N);
2446    if (FoldedVOp.getNode()) return FoldedVOp;
2447
2448    // fold (and x, 0) -> 0, vector edition
2449    if (ISD::isBuildVectorAllZeros(N0.getNode()))
2450      return N0;
2451    if (ISD::isBuildVectorAllZeros(N1.getNode()))
2452      return N1;
2453
2454    // fold (and x, -1) -> x, vector edition
2455    if (ISD::isBuildVectorAllOnes(N0.getNode()))
2456      return N1;
2457    if (ISD::isBuildVectorAllOnes(N1.getNode()))
2458      return N0;
2459  }
2460
2461  // fold (and x, undef) -> 0
2462  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
2463    return DAG.getConstant(0, VT);
2464  // fold (and c1, c2) -> c1&c2
2465  if (N0C && N1C)
2466    return DAG.FoldConstantArithmetic(ISD::AND, VT, N0C, N1C);
2467  // canonicalize constant to RHS
2468  if (N0C && !N1C)
2469    return DAG.getNode(ISD::AND, SDLoc(N), VT, N1, N0);
2470  // fold (and x, -1) -> x
2471  if (N1C && N1C->isAllOnesValue())
2472    return N0;
2473  // if (and x, c) is known to be zero, return 0
2474  if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0),
2475                                   APInt::getAllOnesValue(BitWidth)))
2476    return DAG.getConstant(0, VT);
2477  // reassociate and
2478  SDValue RAND = ReassociateOps(ISD::AND, SDLoc(N), N0, N1);
2479  if (RAND.getNode() != 0)
2480    return RAND;
2481  // fold (and (or x, C), D) -> D if (C & D) == D
2482  if (N1C && N0.getOpcode() == ISD::OR)
2483    if (ConstantSDNode *ORI = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
2484      if ((ORI->getAPIntValue() & N1C->getAPIntValue()) == N1C->getAPIntValue())
2485        return N1;
2486  // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits.
2487  if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
2488    SDValue N0Op0 = N0.getOperand(0);
2489    APInt Mask = ~N1C->getAPIntValue();
2490    Mask = Mask.trunc(N0Op0.getValueSizeInBits());
2491    if (DAG.MaskedValueIsZero(N0Op0, Mask)) {
2492      SDValue Zext = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N),
2493                                 N0.getValueType(), N0Op0);
2494
2495      // Replace uses of the AND with uses of the Zero extend node.
2496      CombineTo(N, Zext);
2497
2498      // We actually want to replace all uses of the any_extend with the
2499      // zero_extend, to avoid duplicating things.  This will later cause this
2500      // AND to be folded.
2501      CombineTo(N0.getNode(), Zext);
2502      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
2503    }
2504  }
2505  // similarly fold (and (X (load ([non_ext|any_ext|zero_ext] V))), c) ->
2506  // (X (load ([non_ext|zero_ext] V))) if 'and' only clears top bits which must
2507  // already be zero by virtue of the width of the base type of the load.
2508  //
2509  // the 'X' node here can either be nothing or an extract_vector_elt to catch
2510  // more cases.
2511  if ((N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
2512       N0.getOperand(0).getOpcode() == ISD::LOAD) ||
2513      N0.getOpcode() == ISD::LOAD) {
2514    LoadSDNode *Load = cast<LoadSDNode>( (N0.getOpcode() == ISD::LOAD) ?
2515                                         N0 : N0.getOperand(0) );
2516
2517    // Get the constant (if applicable) the zero'th operand is being ANDed with.
2518    // This can be a pure constant or a vector splat, in which case we treat the
2519    // vector as a scalar and use the splat value.
2520    APInt Constant = APInt::getNullValue(1);
2521    if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2522      Constant = C->getAPIntValue();
2523    } else if (BuildVectorSDNode *Vector = dyn_cast<BuildVectorSDNode>(N1)) {
2524      APInt SplatValue, SplatUndef;
2525      unsigned SplatBitSize;
2526      bool HasAnyUndefs;
2527      bool IsSplat = Vector->isConstantSplat(SplatValue, SplatUndef,
2528                                             SplatBitSize, HasAnyUndefs);
2529      if (IsSplat) {
2530        // Undef bits can contribute to a possible optimisation if set, so
2531        // set them.
2532        SplatValue |= SplatUndef;
2533
2534        // The splat value may be something like "0x00FFFFFF", which means 0 for
2535        // the first vector value and FF for the rest, repeating. We need a mask
2536        // that will apply equally to all members of the vector, so AND all the
2537        // lanes of the constant together.
2538        EVT VT = Vector->getValueType(0);
2539        unsigned BitWidth = VT.getVectorElementType().getSizeInBits();
2540
2541        // If the splat value has been compressed to a bitlength lower
2542        // than the size of the vector lane, we need to re-expand it to
2543        // the lane size.
2544        if (BitWidth > SplatBitSize)
2545          for (SplatValue = SplatValue.zextOrTrunc(BitWidth);
2546               SplatBitSize < BitWidth;
2547               SplatBitSize = SplatBitSize * 2)
2548            SplatValue |= SplatValue.shl(SplatBitSize);
2549
2550        Constant = APInt::getAllOnesValue(BitWidth);
2551        for (unsigned i = 0, n = SplatBitSize/BitWidth; i < n; ++i)
2552          Constant &= SplatValue.lshr(i*BitWidth).zextOrTrunc(BitWidth);
2553      }
2554    }
2555
2556    // If we want to change an EXTLOAD to a ZEXTLOAD, ensure a ZEXTLOAD is
2557    // actually legal and isn't going to get expanded, else this is a false
2558    // optimisation.
2559    bool CanZextLoadProfitably = TLI.isLoadExtLegal(ISD::ZEXTLOAD,
2560                                                    Load->getMemoryVT());
2561
2562    // Resize the constant to the same size as the original memory access before
2563    // extension. If it is still the AllOnesValue then this AND is completely
2564    // unneeded.
2565    Constant =
2566      Constant.zextOrTrunc(Load->getMemoryVT().getScalarType().getSizeInBits());
2567
2568    bool B;
2569    switch (Load->getExtensionType()) {
2570    default: B = false; break;
2571    case ISD::EXTLOAD: B = CanZextLoadProfitably; break;
2572    case ISD::ZEXTLOAD:
2573    case ISD::NON_EXTLOAD: B = true; break;
2574    }
2575
2576    if (B && Constant.isAllOnesValue()) {
2577      // If the load type was an EXTLOAD, convert to ZEXTLOAD in order to
2578      // preserve semantics once we get rid of the AND.
2579      SDValue NewLoad(Load, 0);
2580      if (Load->getExtensionType() == ISD::EXTLOAD) {
2581        NewLoad = DAG.getLoad(Load->getAddressingMode(), ISD::ZEXTLOAD,
2582                              Load->getValueType(0), SDLoc(Load),
2583                              Load->getChain(), Load->getBasePtr(),
2584                              Load->getOffset(), Load->getMemoryVT(),
2585                              Load->getMemOperand());
2586        // Replace uses of the EXTLOAD with the new ZEXTLOAD.
2587        if (Load->getNumValues() == 3) {
2588          // PRE/POST_INC loads have 3 values.
2589          SDValue To[] = { NewLoad.getValue(0), NewLoad.getValue(1),
2590                           NewLoad.getValue(2) };
2591          CombineTo(Load, To, 3, true);
2592        } else {
2593          CombineTo(Load, NewLoad.getValue(0), NewLoad.getValue(1));
2594        }
2595      }
2596
2597      // Fold the AND away, taking care not to fold to the old load node if we
2598      // replaced it.
2599      CombineTo(N, (N0.getNode() == Load) ? NewLoad : N0);
2600
2601      return SDValue(N, 0); // Return N so it doesn't get rechecked!
2602    }
2603  }
2604  // fold (and (setcc x), (setcc y)) -> (setcc (and x, y))
2605  if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
2606    ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
2607    ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
2608
2609    if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
2610        LL.getValueType().isInteger()) {
2611      // fold (and (seteq X, 0), (seteq Y, 0)) -> (seteq (or X, Y), 0)
2612      if (cast<ConstantSDNode>(LR)->isNullValue() && Op1 == ISD::SETEQ) {
2613        SDValue ORNode = DAG.getNode(ISD::OR, SDLoc(N0),
2614                                     LR.getValueType(), LL, RL);
2615        AddToWorkList(ORNode.getNode());
2616        return DAG.getSetCC(SDLoc(N), VT, ORNode, LR, Op1);
2617      }
2618      // fold (and (seteq X, -1), (seteq Y, -1)) -> (seteq (and X, Y), -1)
2619      if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETEQ) {
2620        SDValue ANDNode = DAG.getNode(ISD::AND, SDLoc(N0),
2621                                      LR.getValueType(), LL, RL);
2622        AddToWorkList(ANDNode.getNode());
2623        return DAG.getSetCC(SDLoc(N), VT, ANDNode, LR, Op1);
2624      }
2625      // fold (and (setgt X,  -1), (setgt Y,  -1)) -> (setgt (or X, Y), -1)
2626      if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETGT) {
2627        SDValue ORNode = DAG.getNode(ISD::OR, SDLoc(N0),
2628                                     LR.getValueType(), LL, RL);
2629        AddToWorkList(ORNode.getNode());
2630        return DAG.getSetCC(SDLoc(N), VT, ORNode, LR, Op1);
2631      }
2632    }
2633    // canonicalize equivalent to ll == rl
2634    if (LL == RR && LR == RL) {
2635      Op1 = ISD::getSetCCSwappedOperands(Op1);
2636      std::swap(RL, RR);
2637    }
2638    if (LL == RL && LR == RR) {
2639      bool isInteger = LL.getValueType().isInteger();
2640      ISD::CondCode Result = ISD::getSetCCAndOperation(Op0, Op1, isInteger);
2641      if (Result != ISD::SETCC_INVALID &&
2642          (!LegalOperations ||
2643           (TLI.isCondCodeLegal(Result, LL.getSimpleValueType()) &&
2644            TLI.isOperationLegal(ISD::SETCC,
2645                            getSetCCResultType(N0.getSimpleValueType())))))
2646        return DAG.getSetCC(SDLoc(N), N0.getValueType(),
2647                            LL, LR, Result);
2648    }
2649  }
2650
2651  // Simplify: (and (op x...), (op y...))  -> (op (and x, y))
2652  if (N0.getOpcode() == N1.getOpcode()) {
2653    SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N);
2654    if (Tmp.getNode()) return Tmp;
2655  }
2656
2657  // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1)
2658  // fold (and (sra)) -> (and (srl)) when possible.
2659  if (!VT.isVector() &&
2660      SimplifyDemandedBits(SDValue(N, 0)))
2661    return SDValue(N, 0);
2662
2663  // fold (zext_inreg (extload x)) -> (zextload x)
2664  if (ISD::isEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode())) {
2665    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2666    EVT MemVT = LN0->getMemoryVT();
2667    // If we zero all the possible extended bits, then we can turn this into
2668    // a zextload if we are running before legalize or the operation is legal.
2669    unsigned BitWidth = N1.getValueType().getScalarType().getSizeInBits();
2670    if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth,
2671                           BitWidth - MemVT.getScalarType().getSizeInBits())) &&
2672        ((!LegalOperations && !LN0->isVolatile()) ||
2673         TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT))) {
2674      SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT,
2675                                       LN0->getChain(), LN0->getBasePtr(),
2676                                       LN0->getPointerInfo(), MemVT,
2677                                       LN0->isVolatile(), LN0->isNonTemporal(),
2678                                       LN0->getAlignment());
2679      AddToWorkList(N);
2680      CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
2681      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
2682    }
2683  }
2684  // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use
2685  if (ISD::isSEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
2686      N0.hasOneUse()) {
2687    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2688    EVT MemVT = LN0->getMemoryVT();
2689    // If we zero all the possible extended bits, then we can turn this into
2690    // a zextload if we are running before legalize or the operation is legal.
2691    unsigned BitWidth = N1.getValueType().getScalarType().getSizeInBits();
2692    if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth,
2693                           BitWidth - MemVT.getScalarType().getSizeInBits())) &&
2694        ((!LegalOperations && !LN0->isVolatile()) ||
2695         TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT))) {
2696      SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT,
2697                                       LN0->getChain(),
2698                                       LN0->getBasePtr(), LN0->getPointerInfo(),
2699                                       MemVT,
2700                                       LN0->isVolatile(), LN0->isNonTemporal(),
2701                                       LN0->getAlignment());
2702      AddToWorkList(N);
2703      CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
2704      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
2705    }
2706  }
2707
2708  // fold (and (load x), 255) -> (zextload x, i8)
2709  // fold (and (extload x, i16), 255) -> (zextload x, i8)
2710  // fold (and (any_ext (extload x, i16)), 255) -> (zextload x, i8)
2711  if (N1C && (N0.getOpcode() == ISD::LOAD ||
2712              (N0.getOpcode() == ISD::ANY_EXTEND &&
2713               N0.getOperand(0).getOpcode() == ISD::LOAD))) {
2714    bool HasAnyExt = N0.getOpcode() == ISD::ANY_EXTEND;
2715    LoadSDNode *LN0 = HasAnyExt
2716      ? cast<LoadSDNode>(N0.getOperand(0))
2717      : cast<LoadSDNode>(N0);
2718    if (LN0->getExtensionType() != ISD::SEXTLOAD &&
2719        LN0->isUnindexed() && N0.hasOneUse() && LN0->hasOneUse()) {
2720      uint32_t ActiveBits = N1C->getAPIntValue().getActiveBits();
2721      if (ActiveBits > 0 && APIntOps::isMask(ActiveBits, N1C->getAPIntValue())){
2722        EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits);
2723        EVT LoadedVT = LN0->getMemoryVT();
2724
2725        if (ExtVT == LoadedVT &&
2726            (!LegalOperations || TLI.isLoadExtLegal(ISD::ZEXTLOAD, ExtVT))) {
2727          EVT LoadResultTy = HasAnyExt ? LN0->getValueType(0) : VT;
2728
2729          SDValue NewLoad =
2730            DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN0), LoadResultTy,
2731                           LN0->getChain(), LN0->getBasePtr(),
2732                           LN0->getPointerInfo(),
2733                           ExtVT, LN0->isVolatile(), LN0->isNonTemporal(),
2734                           LN0->getAlignment());
2735          AddToWorkList(N);
2736          CombineTo(LN0, NewLoad, NewLoad.getValue(1));
2737          return SDValue(N, 0);   // Return N so it doesn't get rechecked!
2738        }
2739
2740        // Do not change the width of a volatile load.
2741        // Do not generate loads of non-round integer types since these can
2742        // be expensive (and would be wrong if the type is not byte sized).
2743        if (!LN0->isVolatile() && LoadedVT.bitsGT(ExtVT) && ExtVT.isRound() &&
2744            (!LegalOperations || TLI.isLoadExtLegal(ISD::ZEXTLOAD, ExtVT))) {
2745          EVT PtrType = LN0->getOperand(1).getValueType();
2746
2747          unsigned Alignment = LN0->getAlignment();
2748          SDValue NewPtr = LN0->getBasePtr();
2749
2750          // For big endian targets, we need to add an offset to the pointer
2751          // to load the correct bytes.  For little endian systems, we merely
2752          // need to read fewer bytes from the same pointer.
2753          if (TLI.isBigEndian()) {
2754            unsigned LVTStoreBytes = LoadedVT.getStoreSize();
2755            unsigned EVTStoreBytes = ExtVT.getStoreSize();
2756            unsigned PtrOff = LVTStoreBytes - EVTStoreBytes;
2757            NewPtr = DAG.getNode(ISD::ADD, SDLoc(LN0), PtrType,
2758                                 NewPtr, DAG.getConstant(PtrOff, PtrType));
2759            Alignment = MinAlign(Alignment, PtrOff);
2760          }
2761
2762          AddToWorkList(NewPtr.getNode());
2763
2764          EVT LoadResultTy = HasAnyExt ? LN0->getValueType(0) : VT;
2765          SDValue Load =
2766            DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN0), LoadResultTy,
2767                           LN0->getChain(), NewPtr,
2768                           LN0->getPointerInfo(),
2769                           ExtVT, LN0->isVolatile(), LN0->isNonTemporal(),
2770                           Alignment);
2771          AddToWorkList(N);
2772          CombineTo(LN0, Load, Load.getValue(1));
2773          return SDValue(N, 0);   // Return N so it doesn't get rechecked!
2774        }
2775      }
2776    }
2777  }
2778
2779  if (N0.getOpcode() == ISD::ADD && N1.getOpcode() == ISD::SRL &&
2780      VT.getSizeInBits() <= 64) {
2781    if (ConstantSDNode *ADDI = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2782      APInt ADDC = ADDI->getAPIntValue();
2783      if (!TLI.isLegalAddImmediate(ADDC.getSExtValue())) {
2784        // Look for (and (add x, c1), (lshr y, c2)). If C1 wasn't a legal
2785        // immediate for an add, but it is legal if its top c2 bits are set,
2786        // transform the ADD so the immediate doesn't need to be materialized
2787        // in a register.
2788        if (ConstantSDNode *SRLI = dyn_cast<ConstantSDNode>(N1.getOperand(1))) {
2789          APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
2790                                             SRLI->getZExtValue());
2791          if (DAG.MaskedValueIsZero(N0.getOperand(1), Mask)) {
2792            ADDC |= Mask;
2793            if (TLI.isLegalAddImmediate(ADDC.getSExtValue())) {
2794              SDValue NewAdd =
2795                DAG.getNode(ISD::ADD, SDLoc(N0), VT,
2796                            N0.getOperand(0), DAG.getConstant(ADDC, VT));
2797              CombineTo(N0.getNode(), NewAdd);
2798              return SDValue(N, 0); // Return N so it doesn't get rechecked!
2799            }
2800          }
2801        }
2802      }
2803    }
2804  }
2805
2806  return SDValue();
2807}
2808
2809/// MatchBSwapHWord - Match (a >> 8) | (a << 8) as (bswap a) >> 16
2810///
2811SDValue DAGCombiner::MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1,
2812                                        bool DemandHighBits) {
2813  if (!LegalOperations)
2814    return SDValue();
2815
2816  EVT VT = N->getValueType(0);
2817  if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16)
2818    return SDValue();
2819  if (!TLI.isOperationLegal(ISD::BSWAP, VT))
2820    return SDValue();
2821
2822  // Recognize (and (shl a, 8), 0xff), (and (srl a, 8), 0xff00)
2823  bool LookPassAnd0 = false;
2824  bool LookPassAnd1 = false;
2825  if (N0.getOpcode() == ISD::AND && N0.getOperand(0).getOpcode() == ISD::SRL)
2826      std::swap(N0, N1);
2827  if (N1.getOpcode() == ISD::AND && N1.getOperand(0).getOpcode() == ISD::SHL)
2828      std::swap(N0, N1);
2829  if (N0.getOpcode() == ISD::AND) {
2830    if (!N0.getNode()->hasOneUse())
2831      return SDValue();
2832    ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
2833    if (!N01C || N01C->getZExtValue() != 0xFF00)
2834      return SDValue();
2835    N0 = N0.getOperand(0);
2836    LookPassAnd0 = true;
2837  }
2838
2839  if (N1.getOpcode() == ISD::AND) {
2840    if (!N1.getNode()->hasOneUse())
2841      return SDValue();
2842    ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
2843    if (!N11C || N11C->getZExtValue() != 0xFF)
2844      return SDValue();
2845    N1 = N1.getOperand(0);
2846    LookPassAnd1 = true;
2847  }
2848
2849  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
2850    std::swap(N0, N1);
2851  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
2852    return SDValue();
2853  if (!N0.getNode()->hasOneUse() ||
2854      !N1.getNode()->hasOneUse())
2855    return SDValue();
2856
2857  ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
2858  ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
2859  if (!N01C || !N11C)
2860    return SDValue();
2861  if (N01C->getZExtValue() != 8 || N11C->getZExtValue() != 8)
2862    return SDValue();
2863
2864  // Look for (shl (and a, 0xff), 8), (srl (and a, 0xff00), 8)
2865  SDValue N00 = N0->getOperand(0);
2866  if (!LookPassAnd0 && N00.getOpcode() == ISD::AND) {
2867    if (!N00.getNode()->hasOneUse())
2868      return SDValue();
2869    ConstantSDNode *N001C = dyn_cast<ConstantSDNode>(N00.getOperand(1));
2870    if (!N001C || N001C->getZExtValue() != 0xFF)
2871      return SDValue();
2872    N00 = N00.getOperand(0);
2873    LookPassAnd0 = true;
2874  }
2875
2876  SDValue N10 = N1->getOperand(0);
2877  if (!LookPassAnd1 && N10.getOpcode() == ISD::AND) {
2878    if (!N10.getNode()->hasOneUse())
2879      return SDValue();
2880    ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N10.getOperand(1));
2881    if (!N101C || N101C->getZExtValue() != 0xFF00)
2882      return SDValue();
2883    N10 = N10.getOperand(0);
2884    LookPassAnd1 = true;
2885  }
2886
2887  if (N00 != N10)
2888    return SDValue();
2889
2890  // Make sure everything beyond the low halfword is zero since the SRL 16
2891  // will clear the top bits.
2892  unsigned OpSizeInBits = VT.getSizeInBits();
2893  if (DemandHighBits && OpSizeInBits > 16 &&
2894      (!LookPassAnd0 || !LookPassAnd1) &&
2895      !DAG.MaskedValueIsZero(N10, APInt::getHighBitsSet(OpSizeInBits, 16)))
2896    return SDValue();
2897
2898  SDValue Res = DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N00);
2899  if (OpSizeInBits > 16)
2900    Res = DAG.getNode(ISD::SRL, SDLoc(N), VT, Res,
2901                      DAG.getConstant(OpSizeInBits-16, getShiftAmountTy(VT)));
2902  return Res;
2903}
2904
2905/// isBSwapHWordElement - Return true if the specified node is an element
2906/// that makes up a 32-bit packed halfword byteswap. i.e.
2907/// ((x&0xff)<<8)|((x&0xff00)>>8)|((x&0x00ff0000)<<8)|((x&0xff000000)>>8)
2908static bool isBSwapHWordElement(SDValue N, SmallVector<SDNode*,4> &Parts) {
2909  if (!N.getNode()->hasOneUse())
2910    return false;
2911
2912  unsigned Opc = N.getOpcode();
2913  if (Opc != ISD::AND && Opc != ISD::SHL && Opc != ISD::SRL)
2914    return false;
2915
2916  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N.getOperand(1));
2917  if (!N1C)
2918    return false;
2919
2920  unsigned Num;
2921  switch (N1C->getZExtValue()) {
2922  default:
2923    return false;
2924  case 0xFF:       Num = 0; break;
2925  case 0xFF00:     Num = 1; break;
2926  case 0xFF0000:   Num = 2; break;
2927  case 0xFF000000: Num = 3; break;
2928  }
2929
2930  // Look for (x & 0xff) << 8 as well as ((x << 8) & 0xff00).
2931  SDValue N0 = N.getOperand(0);
2932  if (Opc == ISD::AND) {
2933    if (Num == 0 || Num == 2) {
2934      // (x >> 8) & 0xff
2935      // (x >> 8) & 0xff0000
2936      if (N0.getOpcode() != ISD::SRL)
2937        return false;
2938      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
2939      if (!C || C->getZExtValue() != 8)
2940        return false;
2941    } else {
2942      // (x << 8) & 0xff00
2943      // (x << 8) & 0xff000000
2944      if (N0.getOpcode() != ISD::SHL)
2945        return false;
2946      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
2947      if (!C || C->getZExtValue() != 8)
2948        return false;
2949    }
2950  } else if (Opc == ISD::SHL) {
2951    // (x & 0xff) << 8
2952    // (x & 0xff0000) << 8
2953    if (Num != 0 && Num != 2)
2954      return false;
2955    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1));
2956    if (!C || C->getZExtValue() != 8)
2957      return false;
2958  } else { // Opc == ISD::SRL
2959    // (x & 0xff00) >> 8
2960    // (x & 0xff000000) >> 8
2961    if (Num != 1 && Num != 3)
2962      return false;
2963    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1));
2964    if (!C || C->getZExtValue() != 8)
2965      return false;
2966  }
2967
2968  if (Parts[Num])
2969    return false;
2970
2971  Parts[Num] = N0.getOperand(0).getNode();
2972  return true;
2973}
2974
2975/// MatchBSwapHWord - Match a 32-bit packed halfword bswap. That is
2976/// ((x&0xff)<<8)|((x&0xff00)>>8)|((x&0x00ff0000)<<8)|((x&0xff000000)>>8)
2977/// => (rotl (bswap x), 16)
2978SDValue DAGCombiner::MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1) {
2979  if (!LegalOperations)
2980    return SDValue();
2981
2982  EVT VT = N->getValueType(0);
2983  if (VT != MVT::i32)
2984    return SDValue();
2985  if (!TLI.isOperationLegal(ISD::BSWAP, VT))
2986    return SDValue();
2987
2988  SmallVector<SDNode*,4> Parts(4, (SDNode*)0);
2989  // Look for either
2990  // (or (or (and), (and)), (or (and), (and)))
2991  // (or (or (or (and), (and)), (and)), (and))
2992  if (N0.getOpcode() != ISD::OR)
2993    return SDValue();
2994  SDValue N00 = N0.getOperand(0);
2995  SDValue N01 = N0.getOperand(1);
2996
2997  if (N1.getOpcode() == ISD::OR &&
2998      N00.getNumOperands() == 2 && N01.getNumOperands() == 2) {
2999    // (or (or (and), (and)), (or (and), (and)))
3000    SDValue N000 = N00.getOperand(0);
3001    if (!isBSwapHWordElement(N000, Parts))
3002      return SDValue();
3003
3004    SDValue N001 = N00.getOperand(1);
3005    if (!isBSwapHWordElement(N001, Parts))
3006      return SDValue();
3007    SDValue N010 = N01.getOperand(0);
3008    if (!isBSwapHWordElement(N010, Parts))
3009      return SDValue();
3010    SDValue N011 = N01.getOperand(1);
3011    if (!isBSwapHWordElement(N011, Parts))
3012      return SDValue();
3013  } else {
3014    // (or (or (or (and), (and)), (and)), (and))
3015    if (!isBSwapHWordElement(N1, Parts))
3016      return SDValue();
3017    if (!isBSwapHWordElement(N01, Parts))
3018      return SDValue();
3019    if (N00.getOpcode() != ISD::OR)
3020      return SDValue();
3021    SDValue N000 = N00.getOperand(0);
3022    if (!isBSwapHWordElement(N000, Parts))
3023      return SDValue();
3024    SDValue N001 = N00.getOperand(1);
3025    if (!isBSwapHWordElement(N001, Parts))
3026      return SDValue();
3027  }
3028
3029  // Make sure the parts are all coming from the same node.
3030  if (Parts[0] != Parts[1] || Parts[0] != Parts[2] || Parts[0] != Parts[3])
3031    return SDValue();
3032
3033  SDValue BSwap = DAG.getNode(ISD::BSWAP, SDLoc(N), VT,
3034                              SDValue(Parts[0],0));
3035
3036  // Result of the bswap should be rotated by 16. If it's not legal, than
3037  // do  (x << 16) | (x >> 16).
3038  SDValue ShAmt = DAG.getConstant(16, getShiftAmountTy(VT));
3039  if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT))
3040    return DAG.getNode(ISD::ROTL, SDLoc(N), VT, BSwap, ShAmt);
3041  if (TLI.isOperationLegalOrCustom(ISD::ROTR, VT))
3042    return DAG.getNode(ISD::ROTR, SDLoc(N), VT, BSwap, ShAmt);
3043  return DAG.getNode(ISD::OR, SDLoc(N), VT,
3044                     DAG.getNode(ISD::SHL, SDLoc(N), VT, BSwap, ShAmt),
3045                     DAG.getNode(ISD::SRL, SDLoc(N), VT, BSwap, ShAmt));
3046}
3047
3048SDValue DAGCombiner::visitOR(SDNode *N) {
3049  SDValue N0 = N->getOperand(0);
3050  SDValue N1 = N->getOperand(1);
3051  SDValue LL, LR, RL, RR, CC0, CC1;
3052  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3053  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3054  EVT VT = N1.getValueType();
3055
3056  // fold vector ops
3057  if (VT.isVector()) {
3058    SDValue FoldedVOp = SimplifyVBinOp(N);
3059    if (FoldedVOp.getNode()) return FoldedVOp;
3060
3061    // fold (or x, 0) -> x, vector edition
3062    if (ISD::isBuildVectorAllZeros(N0.getNode()))
3063      return N1;
3064    if (ISD::isBuildVectorAllZeros(N1.getNode()))
3065      return N0;
3066
3067    // fold (or x, -1) -> -1, vector edition
3068    if (ISD::isBuildVectorAllOnes(N0.getNode()))
3069      return N0;
3070    if (ISD::isBuildVectorAllOnes(N1.getNode()))
3071      return N1;
3072  }
3073
3074  // fold (or x, undef) -> -1
3075  if (!LegalOperations &&
3076      (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)) {
3077    EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
3078    return DAG.getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
3079  }
3080  // fold (or c1, c2) -> c1|c2
3081  if (N0C && N1C)
3082    return DAG.FoldConstantArithmetic(ISD::OR, VT, N0C, N1C);
3083  // canonicalize constant to RHS
3084  if (N0C && !N1C)
3085    return DAG.getNode(ISD::OR, SDLoc(N), VT, N1, N0);
3086  // fold (or x, 0) -> x
3087  if (N1C && N1C->isNullValue())
3088    return N0;
3089  // fold (or x, -1) -> -1
3090  if (N1C && N1C->isAllOnesValue())
3091    return N1;
3092  // fold (or x, c) -> c iff (x & ~c) == 0
3093  if (N1C && DAG.MaskedValueIsZero(N0, ~N1C->getAPIntValue()))
3094    return N1;
3095
3096  // Recognize halfword bswaps as (bswap + rotl 16) or (bswap + shl 16)
3097  SDValue BSwap = MatchBSwapHWord(N, N0, N1);
3098  if (BSwap.getNode() != 0)
3099    return BSwap;
3100  BSwap = MatchBSwapHWordLow(N, N0, N1);
3101  if (BSwap.getNode() != 0)
3102    return BSwap;
3103
3104  // reassociate or
3105  SDValue ROR = ReassociateOps(ISD::OR, SDLoc(N), N0, N1);
3106  if (ROR.getNode() != 0)
3107    return ROR;
3108  // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2)
3109  // iff (c1 & c2) == 0.
3110  if (N1C && N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() &&
3111             isa<ConstantSDNode>(N0.getOperand(1))) {
3112    ConstantSDNode *C1 = cast<ConstantSDNode>(N0.getOperand(1));
3113    if ((C1->getAPIntValue() & N1C->getAPIntValue()) != 0)
3114      return DAG.getNode(ISD::AND, SDLoc(N), VT,
3115                         DAG.getNode(ISD::OR, SDLoc(N0), VT,
3116                                     N0.getOperand(0), N1),
3117                         DAG.FoldConstantArithmetic(ISD::OR, VT, N1C, C1));
3118  }
3119  // fold (or (setcc x), (setcc y)) -> (setcc (or x, y))
3120  if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
3121    ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
3122    ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
3123
3124    if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
3125        LL.getValueType().isInteger()) {
3126      // fold (or (setne X, 0), (setne Y, 0)) -> (setne (or X, Y), 0)
3127      // fold (or (setlt X, 0), (setlt Y, 0)) -> (setne (or X, Y), 0)
3128      if (cast<ConstantSDNode>(LR)->isNullValue() &&
3129          (Op1 == ISD::SETNE || Op1 == ISD::SETLT)) {
3130        SDValue ORNode = DAG.getNode(ISD::OR, SDLoc(LR),
3131                                     LR.getValueType(), LL, RL);
3132        AddToWorkList(ORNode.getNode());
3133        return DAG.getSetCC(SDLoc(N), VT, ORNode, LR, Op1);
3134      }
3135      // fold (or (setne X, -1), (setne Y, -1)) -> (setne (and X, Y), -1)
3136      // fold (or (setgt X, -1), (setgt Y  -1)) -> (setgt (and X, Y), -1)
3137      if (cast<ConstantSDNode>(LR)->isAllOnesValue() &&
3138          (Op1 == ISD::SETNE || Op1 == ISD::SETGT)) {
3139        SDValue ANDNode = DAG.getNode(ISD::AND, SDLoc(LR),
3140                                      LR.getValueType(), LL, RL);
3141        AddToWorkList(ANDNode.getNode());
3142        return DAG.getSetCC(SDLoc(N), VT, ANDNode, LR, Op1);
3143      }
3144    }
3145    // canonicalize equivalent to ll == rl
3146    if (LL == RR && LR == RL) {
3147      Op1 = ISD::getSetCCSwappedOperands(Op1);
3148      std::swap(RL, RR);
3149    }
3150    if (LL == RL && LR == RR) {
3151      bool isInteger = LL.getValueType().isInteger();
3152      ISD::CondCode Result = ISD::getSetCCOrOperation(Op0, Op1, isInteger);
3153      if (Result != ISD::SETCC_INVALID &&
3154          (!LegalOperations ||
3155           (TLI.isCondCodeLegal(Result, LL.getSimpleValueType()) &&
3156            TLI.isOperationLegal(ISD::SETCC,
3157              getSetCCResultType(N0.getValueType())))))
3158        return DAG.getSetCC(SDLoc(N), N0.getValueType(),
3159                            LL, LR, Result);
3160    }
3161  }
3162
3163  // Simplify: (or (op x...), (op y...))  -> (op (or x, y))
3164  if (N0.getOpcode() == N1.getOpcode()) {
3165    SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N);
3166    if (Tmp.getNode()) return Tmp;
3167  }
3168
3169  // (or (and X, C1), (and Y, C2))  -> (and (or X, Y), C3) if possible.
3170  if (N0.getOpcode() == ISD::AND &&
3171      N1.getOpcode() == ISD::AND &&
3172      N0.getOperand(1).getOpcode() == ISD::Constant &&
3173      N1.getOperand(1).getOpcode() == ISD::Constant &&
3174      // Don't increase # computations.
3175      (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) {
3176    // We can only do this xform if we know that bits from X that are set in C2
3177    // but not in C1 are already zero.  Likewise for Y.
3178    const APInt &LHSMask =
3179      cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
3180    const APInt &RHSMask =
3181      cast<ConstantSDNode>(N1.getOperand(1))->getAPIntValue();
3182
3183    if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) &&
3184        DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) {
3185      SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT,
3186                              N0.getOperand(0), N1.getOperand(0));
3187      return DAG.getNode(ISD::AND, SDLoc(N), VT, X,
3188                         DAG.getConstant(LHSMask | RHSMask, VT));
3189    }
3190  }
3191
3192  // See if this is some rotate idiom.
3193  if (SDNode *Rot = MatchRotate(N0, N1, SDLoc(N)))
3194    return SDValue(Rot, 0);
3195
3196  // Simplify the operands using demanded-bits information.
3197  if (!VT.isVector() &&
3198      SimplifyDemandedBits(SDValue(N, 0)))
3199    return SDValue(N, 0);
3200
3201  return SDValue();
3202}
3203
3204/// MatchRotateHalf - Match "(X shl/srl V1) & V2" where V2 may not be present.
3205static bool MatchRotateHalf(SDValue Op, SDValue &Shift, SDValue &Mask) {
3206  if (Op.getOpcode() == ISD::AND) {
3207    if (isa<ConstantSDNode>(Op.getOperand(1))) {
3208      Mask = Op.getOperand(1);
3209      Op = Op.getOperand(0);
3210    } else {
3211      return false;
3212    }
3213  }
3214
3215  if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) {
3216    Shift = Op;
3217    return true;
3218  }
3219
3220  return false;
3221}
3222
3223// MatchRotate - Handle an 'or' of two operands.  If this is one of the many
3224// idioms for rotate, and if the target supports rotation instructions, generate
3225// a rot[lr].
3226SDNode *DAGCombiner::MatchRotate(SDValue LHS, SDValue RHS, SDLoc DL) {
3227  // Must be a legal type.  Expanded 'n promoted things won't work with rotates.
3228  EVT VT = LHS.getValueType();
3229  if (!TLI.isTypeLegal(VT)) return 0;
3230
3231  // The target must have at least one rotate flavor.
3232  bool HasROTL = TLI.isOperationLegalOrCustom(ISD::ROTL, VT);
3233  bool HasROTR = TLI.isOperationLegalOrCustom(ISD::ROTR, VT);
3234  if (!HasROTL && !HasROTR) return 0;
3235
3236  // Match "(X shl/srl V1) & V2" where V2 may not be present.
3237  SDValue LHSShift;   // The shift.
3238  SDValue LHSMask;    // AND value if any.
3239  if (!MatchRotateHalf(LHS, LHSShift, LHSMask))
3240    return 0; // Not part of a rotate.
3241
3242  SDValue RHSShift;   // The shift.
3243  SDValue RHSMask;    // AND value if any.
3244  if (!MatchRotateHalf(RHS, RHSShift, RHSMask))
3245    return 0; // Not part of a rotate.
3246
3247  if (LHSShift.getOperand(0) != RHSShift.getOperand(0))
3248    return 0;   // Not shifting the same value.
3249
3250  if (LHSShift.getOpcode() == RHSShift.getOpcode())
3251    return 0;   // Shifts must disagree.
3252
3253  // Canonicalize shl to left side in a shl/srl pair.
3254  if (RHSShift.getOpcode() == ISD::SHL) {
3255    std::swap(LHS, RHS);
3256    std::swap(LHSShift, RHSShift);
3257    std::swap(LHSMask , RHSMask );
3258  }
3259
3260  unsigned OpSizeInBits = VT.getSizeInBits();
3261  SDValue LHSShiftArg = LHSShift.getOperand(0);
3262  SDValue LHSShiftAmt = LHSShift.getOperand(1);
3263  SDValue RHSShiftAmt = RHSShift.getOperand(1);
3264
3265  // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1)
3266  // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2)
3267  if (LHSShiftAmt.getOpcode() == ISD::Constant &&
3268      RHSShiftAmt.getOpcode() == ISD::Constant) {
3269    uint64_t LShVal = cast<ConstantSDNode>(LHSShiftAmt)->getZExtValue();
3270    uint64_t RShVal = cast<ConstantSDNode>(RHSShiftAmt)->getZExtValue();
3271    if ((LShVal + RShVal) != OpSizeInBits)
3272      return 0;
3273
3274    SDValue Rot = DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT,
3275                              LHSShiftArg, HasROTL ? LHSShiftAmt : RHSShiftAmt);
3276
3277    // If there is an AND of either shifted operand, apply it to the result.
3278    if (LHSMask.getNode() || RHSMask.getNode()) {
3279      APInt Mask = APInt::getAllOnesValue(OpSizeInBits);
3280
3281      if (LHSMask.getNode()) {
3282        APInt RHSBits = APInt::getLowBitsSet(OpSizeInBits, LShVal);
3283        Mask &= cast<ConstantSDNode>(LHSMask)->getAPIntValue() | RHSBits;
3284      }
3285      if (RHSMask.getNode()) {
3286        APInt LHSBits = APInt::getHighBitsSet(OpSizeInBits, RShVal);
3287        Mask &= cast<ConstantSDNode>(RHSMask)->getAPIntValue() | LHSBits;
3288      }
3289
3290      Rot = DAG.getNode(ISD::AND, DL, VT, Rot, DAG.getConstant(Mask, VT));
3291    }
3292
3293    return Rot.getNode();
3294  }
3295
3296  // If there is a mask here, and we have a variable shift, we can't be sure
3297  // that we're masking out the right stuff.
3298  if (LHSMask.getNode() || RHSMask.getNode())
3299    return 0;
3300
3301  // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotl x, y)
3302  // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotr x, (sub 32, y))
3303  if (RHSShiftAmt.getOpcode() == ISD::SUB &&
3304      LHSShiftAmt == RHSShiftAmt.getOperand(1)) {
3305    if (ConstantSDNode *SUBC =
3306          dyn_cast<ConstantSDNode>(RHSShiftAmt.getOperand(0))) {
3307      if (SUBC->getAPIntValue() == OpSizeInBits) {
3308        return DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT, LHSShiftArg,
3309                           HasROTL ? LHSShiftAmt : RHSShiftAmt).getNode();
3310      }
3311    }
3312  }
3313
3314  // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotr x, y)
3315  // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotl x, (sub 32, y))
3316  if (LHSShiftAmt.getOpcode() == ISD::SUB &&
3317      RHSShiftAmt == LHSShiftAmt.getOperand(1)) {
3318    if (ConstantSDNode *SUBC =
3319          dyn_cast<ConstantSDNode>(LHSShiftAmt.getOperand(0))) {
3320      if (SUBC->getAPIntValue() == OpSizeInBits) {
3321        return DAG.getNode(HasROTR ? ISD::ROTR : ISD::ROTL, DL, VT, LHSShiftArg,
3322                           HasROTR ? RHSShiftAmt : LHSShiftAmt).getNode();
3323      }
3324    }
3325  }
3326
3327  // Look for sign/zext/any-extended or truncate cases:
3328  if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND ||
3329       LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND ||
3330       LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND ||
3331       LHSShiftAmt.getOpcode() == ISD::TRUNCATE) &&
3332      (RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND ||
3333       RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND ||
3334       RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND ||
3335       RHSShiftAmt.getOpcode() == ISD::TRUNCATE)) {
3336    SDValue LExtOp0 = LHSShiftAmt.getOperand(0);
3337    SDValue RExtOp0 = RHSShiftAmt.getOperand(0);
3338    if (RExtOp0.getOpcode() == ISD::SUB &&
3339        RExtOp0.getOperand(1) == LExtOp0) {
3340      // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
3341      //   (rotl x, y)
3342      // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
3343      //   (rotr x, (sub 32, y))
3344      if (ConstantSDNode *SUBC =
3345            dyn_cast<ConstantSDNode>(RExtOp0.getOperand(0))) {
3346        if (SUBC->getAPIntValue() == OpSizeInBits) {
3347          return DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT,
3348                             LHSShiftArg,
3349                             HasROTL ? LHSShiftAmt : RHSShiftAmt).getNode();
3350        }
3351      }
3352    } else if (LExtOp0.getOpcode() == ISD::SUB &&
3353               RExtOp0 == LExtOp0.getOperand(1)) {
3354      // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext y))) ->
3355      //   (rotr x, y)
3356      // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext y))) ->
3357      //   (rotl x, (sub 32, y))
3358      if (ConstantSDNode *SUBC =
3359            dyn_cast<ConstantSDNode>(LExtOp0.getOperand(0))) {
3360        if (SUBC->getAPIntValue() == OpSizeInBits) {
3361          return DAG.getNode(HasROTR ? ISD::ROTR : ISD::ROTL, DL, VT,
3362                             LHSShiftArg,
3363                             HasROTR ? RHSShiftAmt : LHSShiftAmt).getNode();
3364        }
3365      }
3366    }
3367  }
3368
3369  return 0;
3370}
3371
3372SDValue DAGCombiner::visitXOR(SDNode *N) {
3373  SDValue N0 = N->getOperand(0);
3374  SDValue N1 = N->getOperand(1);
3375  SDValue LHS, RHS, CC;
3376  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3377  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3378  EVT VT = N0.getValueType();
3379
3380  // fold vector ops
3381  if (VT.isVector()) {
3382    SDValue FoldedVOp = SimplifyVBinOp(N);
3383    if (FoldedVOp.getNode()) return FoldedVOp;
3384
3385    // fold (xor x, 0) -> x, vector edition
3386    if (ISD::isBuildVectorAllZeros(N0.getNode()))
3387      return N1;
3388    if (ISD::isBuildVectorAllZeros(N1.getNode()))
3389      return N0;
3390  }
3391
3392  // fold (xor undef, undef) -> 0. This is a common idiom (misuse).
3393  if (N0.getOpcode() == ISD::UNDEF && N1.getOpcode() == ISD::UNDEF)
3394    return DAG.getConstant(0, VT);
3395  // fold (xor x, undef) -> undef
3396  if (N0.getOpcode() == ISD::UNDEF)
3397    return N0;
3398  if (N1.getOpcode() == ISD::UNDEF)
3399    return N1;
3400  // fold (xor c1, c2) -> c1^c2
3401  if (N0C && N1C)
3402    return DAG.FoldConstantArithmetic(ISD::XOR, VT, N0C, N1C);
3403  // canonicalize constant to RHS
3404  if (N0C && !N1C)
3405    return DAG.getNode(ISD::XOR, SDLoc(N), VT, N1, N0);
3406  // fold (xor x, 0) -> x
3407  if (N1C && N1C->isNullValue())
3408    return N0;
3409  // reassociate xor
3410  SDValue RXOR = ReassociateOps(ISD::XOR, SDLoc(N), N0, N1);
3411  if (RXOR.getNode() != 0)
3412    return RXOR;
3413
3414  // fold !(x cc y) -> (x !cc y)
3415  if (N1C && N1C->getAPIntValue() == 1 && isSetCCEquivalent(N0, LHS, RHS, CC)) {
3416    bool isInt = LHS.getValueType().isInteger();
3417    ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
3418                                               isInt);
3419
3420    if (!LegalOperations ||
3421        TLI.isCondCodeLegal(NotCC, LHS.getSimpleValueType())) {
3422      switch (N0.getOpcode()) {
3423      default:
3424        llvm_unreachable("Unhandled SetCC Equivalent!");
3425      case ISD::SETCC:
3426        return DAG.getSetCC(SDLoc(N), VT, LHS, RHS, NotCC);
3427      case ISD::SELECT_CC:
3428        return DAG.getSelectCC(SDLoc(N), LHS, RHS, N0.getOperand(2),
3429                               N0.getOperand(3), NotCC);
3430      }
3431    }
3432  }
3433
3434  // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y)))
3435  if (N1C && N1C->getAPIntValue() == 1 && N0.getOpcode() == ISD::ZERO_EXTEND &&
3436      N0.getNode()->hasOneUse() &&
3437      isSetCCEquivalent(N0.getOperand(0), LHS, RHS, CC)){
3438    SDValue V = N0.getOperand(0);
3439    V = DAG.getNode(ISD::XOR, SDLoc(N0), V.getValueType(), V,
3440                    DAG.getConstant(1, V.getValueType()));
3441    AddToWorkList(V.getNode());
3442    return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, V);
3443  }
3444
3445  // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are setcc
3446  if (N1C && N1C->getAPIntValue() == 1 && VT == MVT::i1 &&
3447      (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
3448    SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
3449    if (isOneUseSetCC(RHS) || isOneUseSetCC(LHS)) {
3450      unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
3451      LHS = DAG.getNode(ISD::XOR, SDLoc(LHS), VT, LHS, N1); // LHS = ~LHS
3452      RHS = DAG.getNode(ISD::XOR, SDLoc(RHS), VT, RHS, N1); // RHS = ~RHS
3453      AddToWorkList(LHS.getNode()); AddToWorkList(RHS.getNode());
3454      return DAG.getNode(NewOpcode, SDLoc(N), VT, LHS, RHS);
3455    }
3456  }
3457  // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are constants
3458  if (N1C && N1C->isAllOnesValue() &&
3459      (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
3460    SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
3461    if (isa<ConstantSDNode>(RHS) || isa<ConstantSDNode>(LHS)) {
3462      unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
3463      LHS = DAG.getNode(ISD::XOR, SDLoc(LHS), VT, LHS, N1); // LHS = ~LHS
3464      RHS = DAG.getNode(ISD::XOR, SDLoc(RHS), VT, RHS, N1); // RHS = ~RHS
3465      AddToWorkList(LHS.getNode()); AddToWorkList(RHS.getNode());
3466      return DAG.getNode(NewOpcode, SDLoc(N), VT, LHS, RHS);
3467    }
3468  }
3469  // fold (xor (and x, y), y) -> (and (not x), y)
3470  if (N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() &&
3471      N0->getOperand(1) == N1) {
3472    SDValue X = N0->getOperand(0);
3473    SDValue NotX = DAG.getNOT(SDLoc(X), X, VT);
3474    AddToWorkList(NotX.getNode());
3475    return DAG.getNode(ISD::AND, SDLoc(N), VT, NotX, N1);
3476  }
3477  // fold (xor (xor x, c1), c2) -> (xor x, (xor c1, c2))
3478  if (N1C && N0.getOpcode() == ISD::XOR) {
3479    ConstantSDNode *N00C = dyn_cast<ConstantSDNode>(N0.getOperand(0));
3480    ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
3481    if (N00C)
3482      return DAG.getNode(ISD::XOR, SDLoc(N), VT, N0.getOperand(1),
3483                         DAG.getConstant(N1C->getAPIntValue() ^
3484                                         N00C->getAPIntValue(), VT));
3485    if (N01C)
3486      return DAG.getNode(ISD::XOR, SDLoc(N), VT, N0.getOperand(0),
3487                         DAG.getConstant(N1C->getAPIntValue() ^
3488                                         N01C->getAPIntValue(), VT));
3489  }
3490  // fold (xor x, x) -> 0
3491  if (N0 == N1)
3492    return tryFoldToZero(SDLoc(N), TLI, VT, DAG, LegalOperations);
3493
3494  // Simplify: xor (op x...), (op y...)  -> (op (xor x, y))
3495  if (N0.getOpcode() == N1.getOpcode()) {
3496    SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N);
3497    if (Tmp.getNode()) return Tmp;
3498  }
3499
3500  // Simplify the expression using non-local knowledge.
3501  if (!VT.isVector() &&
3502      SimplifyDemandedBits(SDValue(N, 0)))
3503    return SDValue(N, 0);
3504
3505  return SDValue();
3506}
3507
3508/// visitShiftByConstant - Handle transforms common to the three shifts, when
3509/// the shift amount is a constant.
3510SDValue DAGCombiner::visitShiftByConstant(SDNode *N, unsigned Amt) {
3511  SDNode *LHS = N->getOperand(0).getNode();
3512  if (!LHS->hasOneUse()) return SDValue();
3513
3514  // We want to pull some binops through shifts, so that we have (and (shift))
3515  // instead of (shift (and)), likewise for add, or, xor, etc.  This sort of
3516  // thing happens with address calculations, so it's important to canonicalize
3517  // it.
3518  bool HighBitSet = false;  // Can we transform this if the high bit is set?
3519
3520  switch (LHS->getOpcode()) {
3521  default: return SDValue();
3522  case ISD::OR:
3523  case ISD::XOR:
3524    HighBitSet = false; // We can only transform sra if the high bit is clear.
3525    break;
3526  case ISD::AND:
3527    HighBitSet = true;  // We can only transform sra if the high bit is set.
3528    break;
3529  case ISD::ADD:
3530    if (N->getOpcode() != ISD::SHL)
3531      return SDValue(); // only shl(add) not sr[al](add).
3532    HighBitSet = false; // We can only transform sra if the high bit is clear.
3533    break;
3534  }
3535
3536  // We require the RHS of the binop to be a constant as well.
3537  ConstantSDNode *BinOpCst = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
3538  if (!BinOpCst) return SDValue();
3539
3540  // FIXME: disable this unless the input to the binop is a shift by a constant.
3541  // If it is not a shift, it pessimizes some common cases like:
3542  //
3543  //    void foo(int *X, int i) { X[i & 1235] = 1; }
3544  //    int bar(int *X, int i) { return X[i & 255]; }
3545  SDNode *BinOpLHSVal = LHS->getOperand(0).getNode();
3546  if ((BinOpLHSVal->getOpcode() != ISD::SHL &&
3547       BinOpLHSVal->getOpcode() != ISD::SRA &&
3548       BinOpLHSVal->getOpcode() != ISD::SRL) ||
3549      !isa<ConstantSDNode>(BinOpLHSVal->getOperand(1)))
3550    return SDValue();
3551
3552  EVT VT = N->getValueType(0);
3553
3554  // If this is a signed shift right, and the high bit is modified by the
3555  // logical operation, do not perform the transformation. The highBitSet
3556  // boolean indicates the value of the high bit of the constant which would
3557  // cause it to be modified for this operation.
3558  if (N->getOpcode() == ISD::SRA) {
3559    bool BinOpRHSSignSet = BinOpCst->getAPIntValue().isNegative();
3560    if (BinOpRHSSignSet != HighBitSet)
3561      return SDValue();
3562  }
3563
3564  // Fold the constants, shifting the binop RHS by the shift amount.
3565  SDValue NewRHS = DAG.getNode(N->getOpcode(), SDLoc(LHS->getOperand(1)),
3566                               N->getValueType(0),
3567                               LHS->getOperand(1), N->getOperand(1));
3568
3569  // Create the new shift.
3570  SDValue NewShift = DAG.getNode(N->getOpcode(),
3571                                 SDLoc(LHS->getOperand(0)),
3572                                 VT, LHS->getOperand(0), N->getOperand(1));
3573
3574  // Create the new binop.
3575  return DAG.getNode(LHS->getOpcode(), SDLoc(N), VT, NewShift, NewRHS);
3576}
3577
3578SDValue DAGCombiner::visitSHL(SDNode *N) {
3579  SDValue N0 = N->getOperand(0);
3580  SDValue N1 = N->getOperand(1);
3581  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3582  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3583  EVT VT = N0.getValueType();
3584  unsigned OpSizeInBits = VT.getScalarType().getSizeInBits();
3585
3586  // fold (shl c1, c2) -> c1<<c2
3587  if (N0C && N1C)
3588    return DAG.FoldConstantArithmetic(ISD::SHL, VT, N0C, N1C);
3589  // fold (shl 0, x) -> 0
3590  if (N0C && N0C->isNullValue())
3591    return N0;
3592  // fold (shl x, c >= size(x)) -> undef
3593  if (N1C && N1C->getZExtValue() >= OpSizeInBits)
3594    return DAG.getUNDEF(VT);
3595  // fold (shl x, 0) -> x
3596  if (N1C && N1C->isNullValue())
3597    return N0;
3598  // fold (shl undef, x) -> 0
3599  if (N0.getOpcode() == ISD::UNDEF)
3600    return DAG.getConstant(0, VT);
3601  // if (shl x, c) is known to be zero, return 0
3602  if (DAG.MaskedValueIsZero(SDValue(N, 0),
3603                            APInt::getAllOnesValue(OpSizeInBits)))
3604    return DAG.getConstant(0, VT);
3605  // fold (shl x, (trunc (and y, c))) -> (shl x, (and (trunc y), (trunc c))).
3606  if (N1.getOpcode() == ISD::TRUNCATE &&
3607      N1.getOperand(0).getOpcode() == ISD::AND &&
3608      N1.hasOneUse() && N1.getOperand(0).hasOneUse()) {
3609    SDValue N101 = N1.getOperand(0).getOperand(1);
3610    if (ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N101)) {
3611      EVT TruncVT = N1.getValueType();
3612      SDValue N100 = N1.getOperand(0).getOperand(0);
3613      APInt TruncC = N101C->getAPIntValue();
3614      TruncC = TruncC.trunc(TruncVT.getSizeInBits());
3615      return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0,
3616                         DAG.getNode(ISD::AND, SDLoc(N), TruncVT,
3617                                     DAG.getNode(ISD::TRUNCATE,
3618                                                 SDLoc(N),
3619                                                 TruncVT, N100),
3620                                     DAG.getConstant(TruncC, TruncVT)));
3621    }
3622  }
3623
3624  if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
3625    return SDValue(N, 0);
3626
3627  // fold (shl (shl x, c1), c2) -> 0 or (shl x, (add c1, c2))
3628  if (N1C && N0.getOpcode() == ISD::SHL &&
3629      N0.getOperand(1).getOpcode() == ISD::Constant) {
3630    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
3631    uint64_t c2 = N1C->getZExtValue();
3632    if (c1 + c2 >= OpSizeInBits)
3633      return DAG.getConstant(0, VT);
3634    return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0.getOperand(0),
3635                       DAG.getConstant(c1 + c2, N1.getValueType()));
3636  }
3637
3638  // fold (shl (ext (shl x, c1)), c2) -> (ext (shl x, (add c1, c2)))
3639  // For this to be valid, the second form must not preserve any of the bits
3640  // that are shifted out by the inner shift in the first form.  This means
3641  // the outer shift size must be >= the number of bits added by the ext.
3642  // As a corollary, we don't care what kind of ext it is.
3643  if (N1C && (N0.getOpcode() == ISD::ZERO_EXTEND ||
3644              N0.getOpcode() == ISD::ANY_EXTEND ||
3645              N0.getOpcode() == ISD::SIGN_EXTEND) &&
3646      N0.getOperand(0).getOpcode() == ISD::SHL &&
3647      isa<ConstantSDNode>(N0.getOperand(0)->getOperand(1))) {
3648    uint64_t c1 =
3649      cast<ConstantSDNode>(N0.getOperand(0)->getOperand(1))->getZExtValue();
3650    uint64_t c2 = N1C->getZExtValue();
3651    EVT InnerShiftVT = N0.getOperand(0).getValueType();
3652    uint64_t InnerShiftSize = InnerShiftVT.getScalarType().getSizeInBits();
3653    if (c2 >= OpSizeInBits - InnerShiftSize) {
3654      if (c1 + c2 >= OpSizeInBits)
3655        return DAG.getConstant(0, VT);
3656      return DAG.getNode(ISD::SHL, SDLoc(N0), VT,
3657                         DAG.getNode(N0.getOpcode(), SDLoc(N0), VT,
3658                                     N0.getOperand(0)->getOperand(0)),
3659                         DAG.getConstant(c1 + c2, N1.getValueType()));
3660    }
3661  }
3662
3663  // fold (shl (srl x, c1), c2) -> (and (shl x, (sub c2, c1), MASK) or
3664  //                               (and (srl x, (sub c1, c2), MASK)
3665  // Only fold this if the inner shift has no other uses -- if it does, folding
3666  // this will increase the total number of instructions.
3667  if (N1C && N0.getOpcode() == ISD::SRL && N0.hasOneUse() &&
3668      N0.getOperand(1).getOpcode() == ISD::Constant) {
3669    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
3670    if (c1 < VT.getSizeInBits()) {
3671      uint64_t c2 = N1C->getZExtValue();
3672      APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
3673                                         VT.getSizeInBits() - c1);
3674      SDValue Shift;
3675      if (c2 > c1) {
3676        Mask = Mask.shl(c2-c1);
3677        Shift = DAG.getNode(ISD::SHL, SDLoc(N), VT, N0.getOperand(0),
3678                            DAG.getConstant(c2-c1, N1.getValueType()));
3679      } else {
3680        Mask = Mask.lshr(c1-c2);
3681        Shift = DAG.getNode(ISD::SRL, SDLoc(N), VT, N0.getOperand(0),
3682                            DAG.getConstant(c1-c2, N1.getValueType()));
3683      }
3684      return DAG.getNode(ISD::AND, SDLoc(N0), VT, Shift,
3685                         DAG.getConstant(Mask, VT));
3686    }
3687  }
3688  // fold (shl (sra x, c1), c1) -> (and x, (shl -1, c1))
3689  if (N1C && N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1)) {
3690    SDValue HiBitsMask =
3691      DAG.getConstant(APInt::getHighBitsSet(VT.getSizeInBits(),
3692                                            VT.getSizeInBits() -
3693                                              N1C->getZExtValue()),
3694                      VT);
3695    return DAG.getNode(ISD::AND, SDLoc(N), VT, N0.getOperand(0),
3696                       HiBitsMask);
3697  }
3698
3699  if (N1C) {
3700    SDValue NewSHL = visitShiftByConstant(N, N1C->getZExtValue());
3701    if (NewSHL.getNode())
3702      return NewSHL;
3703  }
3704
3705  return SDValue();
3706}
3707
3708SDValue DAGCombiner::visitSRA(SDNode *N) {
3709  SDValue N0 = N->getOperand(0);
3710  SDValue N1 = N->getOperand(1);
3711  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3712  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3713  EVT VT = N0.getValueType();
3714  unsigned OpSizeInBits = VT.getScalarType().getSizeInBits();
3715
3716  // fold (sra c1, c2) -> (sra c1, c2)
3717  if (N0C && N1C)
3718    return DAG.FoldConstantArithmetic(ISD::SRA, VT, N0C, N1C);
3719  // fold (sra 0, x) -> 0
3720  if (N0C && N0C->isNullValue())
3721    return N0;
3722  // fold (sra -1, x) -> -1
3723  if (N0C && N0C->isAllOnesValue())
3724    return N0;
3725  // fold (sra x, (setge c, size(x))) -> undef
3726  if (N1C && N1C->getZExtValue() >= OpSizeInBits)
3727    return DAG.getUNDEF(VT);
3728  // fold (sra x, 0) -> x
3729  if (N1C && N1C->isNullValue())
3730    return N0;
3731  // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports
3732  // sext_inreg.
3733  if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) {
3734    unsigned LowBits = OpSizeInBits - (unsigned)N1C->getZExtValue();
3735    EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), LowBits);
3736    if (VT.isVector())
3737      ExtVT = EVT::getVectorVT(*DAG.getContext(),
3738                               ExtVT, VT.getVectorNumElements());
3739    if ((!LegalOperations ||
3740         TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, ExtVT)))
3741      return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT,
3742                         N0.getOperand(0), DAG.getValueType(ExtVT));
3743  }
3744
3745  // fold (sra (sra x, c1), c2) -> (sra x, (add c1, c2))
3746  if (N1C && N0.getOpcode() == ISD::SRA) {
3747    if (ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3748      unsigned Sum = N1C->getZExtValue() + C1->getZExtValue();
3749      if (Sum >= OpSizeInBits) Sum = OpSizeInBits-1;
3750      return DAG.getNode(ISD::SRA, SDLoc(N), VT, N0.getOperand(0),
3751                         DAG.getConstant(Sum, N1C->getValueType(0)));
3752    }
3753  }
3754
3755  // fold (sra (shl X, m), (sub result_size, n))
3756  // -> (sign_extend (trunc (shl X, (sub (sub result_size, n), m)))) for
3757  // result_size - n != m.
3758  // If truncate is free for the target sext(shl) is likely to result in better
3759  // code.
3760  if (N0.getOpcode() == ISD::SHL) {
3761    // Get the two constanst of the shifts, CN0 = m, CN = n.
3762    const ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
3763    if (N01C && N1C) {
3764      // Determine what the truncate's result bitsize and type would be.
3765      EVT TruncVT =
3766        EVT::getIntegerVT(*DAG.getContext(),
3767                          OpSizeInBits - N1C->getZExtValue());
3768      // Determine the residual right-shift amount.
3769      signed ShiftAmt = N1C->getZExtValue() - N01C->getZExtValue();
3770
3771      // If the shift is not a no-op (in which case this should be just a sign
3772      // extend already), the truncated to type is legal, sign_extend is legal
3773      // on that type, and the truncate to that type is both legal and free,
3774      // perform the transform.
3775      if ((ShiftAmt > 0) &&
3776          TLI.isOperationLegalOrCustom(ISD::SIGN_EXTEND, TruncVT) &&
3777          TLI.isOperationLegalOrCustom(ISD::TRUNCATE, VT) &&
3778          TLI.isTruncateFree(VT, TruncVT)) {
3779
3780          SDValue Amt = DAG.getConstant(ShiftAmt,
3781              getShiftAmountTy(N0.getOperand(0).getValueType()));
3782          SDValue Shift = DAG.getNode(ISD::SRL, SDLoc(N0), VT,
3783                                      N0.getOperand(0), Amt);
3784          SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), TruncVT,
3785                                      Shift);
3786          return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N),
3787                             N->getValueType(0), Trunc);
3788      }
3789    }
3790  }
3791
3792  // fold (sra x, (trunc (and y, c))) -> (sra x, (and (trunc y), (trunc c))).
3793  if (N1.getOpcode() == ISD::TRUNCATE &&
3794      N1.getOperand(0).getOpcode() == ISD::AND &&
3795      N1.hasOneUse() && N1.getOperand(0).hasOneUse()) {
3796    SDValue N101 = N1.getOperand(0).getOperand(1);
3797    if (ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N101)) {
3798      EVT TruncVT = N1.getValueType();
3799      SDValue N100 = N1.getOperand(0).getOperand(0);
3800      APInt TruncC = N101C->getAPIntValue();
3801      TruncC = TruncC.trunc(TruncVT.getScalarType().getSizeInBits());
3802      return DAG.getNode(ISD::SRA, SDLoc(N), VT, N0,
3803                         DAG.getNode(ISD::AND, SDLoc(N),
3804                                     TruncVT,
3805                                     DAG.getNode(ISD::TRUNCATE,
3806                                                 SDLoc(N),
3807                                                 TruncVT, N100),
3808                                     DAG.getConstant(TruncC, TruncVT)));
3809    }
3810  }
3811
3812  // fold (sra (trunc (sr x, c1)), c2) -> (trunc (sra x, c1+c2))
3813  //      if c1 is equal to the number of bits the trunc removes
3814  if (N0.getOpcode() == ISD::TRUNCATE &&
3815      (N0.getOperand(0).getOpcode() == ISD::SRL ||
3816       N0.getOperand(0).getOpcode() == ISD::SRA) &&
3817      N0.getOperand(0).hasOneUse() &&
3818      N0.getOperand(0).getOperand(1).hasOneUse() &&
3819      N1C && isa<ConstantSDNode>(N0.getOperand(0).getOperand(1))) {
3820    EVT LargeVT = N0.getOperand(0).getValueType();
3821    ConstantSDNode *LargeShiftAmt =
3822      cast<ConstantSDNode>(N0.getOperand(0).getOperand(1));
3823
3824    if (LargeVT.getScalarType().getSizeInBits() - OpSizeInBits ==
3825        LargeShiftAmt->getZExtValue()) {
3826      SDValue Amt =
3827        DAG.getConstant(LargeShiftAmt->getZExtValue() + N1C->getZExtValue(),
3828              getShiftAmountTy(N0.getOperand(0).getOperand(0).getValueType()));
3829      SDValue SRA = DAG.getNode(ISD::SRA, SDLoc(N), LargeVT,
3830                                N0.getOperand(0).getOperand(0), Amt);
3831      return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, SRA);
3832    }
3833  }
3834
3835  // Simplify, based on bits shifted out of the LHS.
3836  if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
3837    return SDValue(N, 0);
3838
3839
3840  // If the sign bit is known to be zero, switch this to a SRL.
3841  if (DAG.SignBitIsZero(N0))
3842    return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, N1);
3843
3844  if (N1C) {
3845    SDValue NewSRA = visitShiftByConstant(N, N1C->getZExtValue());
3846    if (NewSRA.getNode())
3847      return NewSRA;
3848  }
3849
3850  return SDValue();
3851}
3852
3853SDValue DAGCombiner::visitSRL(SDNode *N) {
3854  SDValue N0 = N->getOperand(0);
3855  SDValue N1 = N->getOperand(1);
3856  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3857  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3858  EVT VT = N0.getValueType();
3859  unsigned OpSizeInBits = VT.getScalarType().getSizeInBits();
3860
3861  // fold (srl c1, c2) -> c1 >>u c2
3862  if (N0C && N1C)
3863    return DAG.FoldConstantArithmetic(ISD::SRL, VT, N0C, N1C);
3864  // fold (srl 0, x) -> 0
3865  if (N0C && N0C->isNullValue())
3866    return N0;
3867  // fold (srl x, c >= size(x)) -> undef
3868  if (N1C && N1C->getZExtValue() >= OpSizeInBits)
3869    return DAG.getUNDEF(VT);
3870  // fold (srl x, 0) -> x
3871  if (N1C && N1C->isNullValue())
3872    return N0;
3873  // if (srl x, c) is known to be zero, return 0
3874  if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0),
3875                                   APInt::getAllOnesValue(OpSizeInBits)))
3876    return DAG.getConstant(0, VT);
3877
3878  // fold (srl (srl x, c1), c2) -> 0 or (srl x, (add c1, c2))
3879  if (N1C && N0.getOpcode() == ISD::SRL &&
3880      N0.getOperand(1).getOpcode() == ISD::Constant) {
3881    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
3882    uint64_t c2 = N1C->getZExtValue();
3883    if (c1 + c2 >= OpSizeInBits)
3884      return DAG.getConstant(0, VT);
3885    return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0.getOperand(0),
3886                       DAG.getConstant(c1 + c2, N1.getValueType()));
3887  }
3888
3889  // fold (srl (trunc (srl x, c1)), c2) -> 0 or (trunc (srl x, (add c1, c2)))
3890  if (N1C && N0.getOpcode() == ISD::TRUNCATE &&
3891      N0.getOperand(0).getOpcode() == ISD::SRL &&
3892      isa<ConstantSDNode>(N0.getOperand(0)->getOperand(1))) {
3893    uint64_t c1 =
3894      cast<ConstantSDNode>(N0.getOperand(0)->getOperand(1))->getZExtValue();
3895    uint64_t c2 = N1C->getZExtValue();
3896    EVT InnerShiftVT = N0.getOperand(0).getValueType();
3897    EVT ShiftCountVT = N0.getOperand(0)->getOperand(1).getValueType();
3898    uint64_t InnerShiftSize = InnerShiftVT.getScalarType().getSizeInBits();
3899    // This is only valid if the OpSizeInBits + c1 = size of inner shift.
3900    if (c1 + OpSizeInBits == InnerShiftSize) {
3901      if (c1 + c2 >= InnerShiftSize)
3902        return DAG.getConstant(0, VT);
3903      return DAG.getNode(ISD::TRUNCATE, SDLoc(N0), VT,
3904                         DAG.getNode(ISD::SRL, SDLoc(N0), InnerShiftVT,
3905                                     N0.getOperand(0)->getOperand(0),
3906                                     DAG.getConstant(c1 + c2, ShiftCountVT)));
3907    }
3908  }
3909
3910  // fold (srl (shl x, c), c) -> (and x, cst2)
3911  if (N1C && N0.getOpcode() == ISD::SHL && N0.getOperand(1) == N1 &&
3912      N0.getValueSizeInBits() <= 64) {
3913    uint64_t ShAmt = N1C->getZExtValue()+64-N0.getValueSizeInBits();
3914    return DAG.getNode(ISD::AND, SDLoc(N), VT, N0.getOperand(0),
3915                       DAG.getConstant(~0ULL >> ShAmt, VT));
3916  }
3917
3918
3919  // fold (srl (anyextend x), c) -> (anyextend (srl x, c))
3920  if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
3921    // Shifting in all undef bits?
3922    EVT SmallVT = N0.getOperand(0).getValueType();
3923    if (N1C->getZExtValue() >= SmallVT.getSizeInBits())
3924      return DAG.getUNDEF(VT);
3925
3926    if (!LegalTypes || TLI.isTypeDesirableForOp(ISD::SRL, SmallVT)) {
3927      uint64_t ShiftAmt = N1C->getZExtValue();
3928      SDValue SmallShift = DAG.getNode(ISD::SRL, SDLoc(N0), SmallVT,
3929                                       N0.getOperand(0),
3930                          DAG.getConstant(ShiftAmt, getShiftAmountTy(SmallVT)));
3931      AddToWorkList(SmallShift.getNode());
3932      return DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, SmallShift);
3933    }
3934  }
3935
3936  // fold (srl (sra X, Y), 31) -> (srl X, 31).  This srl only looks at the sign
3937  // bit, which is unmodified by sra.
3938  if (N1C && N1C->getZExtValue() + 1 == VT.getSizeInBits()) {
3939    if (N0.getOpcode() == ISD::SRA)
3940      return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0.getOperand(0), N1);
3941  }
3942
3943  // fold (srl (ctlz x), "5") -> x  iff x has one bit set (the low bit).
3944  if (N1C && N0.getOpcode() == ISD::CTLZ &&
3945      N1C->getAPIntValue() == Log2_32(VT.getSizeInBits())) {
3946    APInt KnownZero, KnownOne;
3947    DAG.ComputeMaskedBits(N0.getOperand(0), KnownZero, KnownOne);
3948
3949    // If any of the input bits are KnownOne, then the input couldn't be all
3950    // zeros, thus the result of the srl will always be zero.
3951    if (KnownOne.getBoolValue()) return DAG.getConstant(0, VT);
3952
3953    // If all of the bits input the to ctlz node are known to be zero, then
3954    // the result of the ctlz is "32" and the result of the shift is one.
3955    APInt UnknownBits = ~KnownZero;
3956    if (UnknownBits == 0) return DAG.getConstant(1, VT);
3957
3958    // Otherwise, check to see if there is exactly one bit input to the ctlz.
3959    if ((UnknownBits & (UnknownBits - 1)) == 0) {
3960      // Okay, we know that only that the single bit specified by UnknownBits
3961      // could be set on input to the CTLZ node. If this bit is set, the SRL
3962      // will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair
3963      // to an SRL/XOR pair, which is likely to simplify more.
3964      unsigned ShAmt = UnknownBits.countTrailingZeros();
3965      SDValue Op = N0.getOperand(0);
3966
3967      if (ShAmt) {
3968        Op = DAG.getNode(ISD::SRL, SDLoc(N0), VT, Op,
3969                  DAG.getConstant(ShAmt, getShiftAmountTy(Op.getValueType())));
3970        AddToWorkList(Op.getNode());
3971      }
3972
3973      return DAG.getNode(ISD::XOR, SDLoc(N), VT,
3974                         Op, DAG.getConstant(1, VT));
3975    }
3976  }
3977
3978  // fold (srl x, (trunc (and y, c))) -> (srl x, (and (trunc y), (trunc c))).
3979  if (N1.getOpcode() == ISD::TRUNCATE &&
3980      N1.getOperand(0).getOpcode() == ISD::AND &&
3981      N1.hasOneUse() && N1.getOperand(0).hasOneUse()) {
3982    SDValue N101 = N1.getOperand(0).getOperand(1);
3983    if (ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N101)) {
3984      EVT TruncVT = N1.getValueType();
3985      SDValue N100 = N1.getOperand(0).getOperand(0);
3986      APInt TruncC = N101C->getAPIntValue();
3987      TruncC = TruncC.trunc(TruncVT.getSizeInBits());
3988      return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0,
3989                         DAG.getNode(ISD::AND, SDLoc(N),
3990                                     TruncVT,
3991                                     DAG.getNode(ISD::TRUNCATE,
3992                                                 SDLoc(N),
3993                                                 TruncVT, N100),
3994                                     DAG.getConstant(TruncC, TruncVT)));
3995    }
3996  }
3997
3998  // fold operands of srl based on knowledge that the low bits are not
3999  // demanded.
4000  if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
4001    return SDValue(N, 0);
4002
4003  if (N1C) {
4004    SDValue NewSRL = visitShiftByConstant(N, N1C->getZExtValue());
4005    if (NewSRL.getNode())
4006      return NewSRL;
4007  }
4008
4009  // Attempt to convert a srl of a load into a narrower zero-extending load.
4010  SDValue NarrowLoad = ReduceLoadWidth(N);
4011  if (NarrowLoad.getNode())
4012    return NarrowLoad;
4013
4014  // Here is a common situation. We want to optimize:
4015  //
4016  //   %a = ...
4017  //   %b = and i32 %a, 2
4018  //   %c = srl i32 %b, 1
4019  //   brcond i32 %c ...
4020  //
4021  // into
4022  //
4023  //   %a = ...
4024  //   %b = and %a, 2
4025  //   %c = setcc eq %b, 0
4026  //   brcond %c ...
4027  //
4028  // However when after the source operand of SRL is optimized into AND, the SRL
4029  // itself may not be optimized further. Look for it and add the BRCOND into
4030  // the worklist.
4031  if (N->hasOneUse()) {
4032    SDNode *Use = *N->use_begin();
4033    if (Use->getOpcode() == ISD::BRCOND)
4034      AddToWorkList(Use);
4035    else if (Use->getOpcode() == ISD::TRUNCATE && Use->hasOneUse()) {
4036      // Also look pass the truncate.
4037      Use = *Use->use_begin();
4038      if (Use->getOpcode() == ISD::BRCOND)
4039        AddToWorkList(Use);
4040    }
4041  }
4042
4043  return SDValue();
4044}
4045
4046SDValue DAGCombiner::visitCTLZ(SDNode *N) {
4047  SDValue N0 = N->getOperand(0);
4048  EVT VT = N->getValueType(0);
4049
4050  // fold (ctlz c1) -> c2
4051  if (isa<ConstantSDNode>(N0))
4052    return DAG.getNode(ISD::CTLZ, SDLoc(N), VT, N0);
4053  return SDValue();
4054}
4055
4056SDValue DAGCombiner::visitCTLZ_ZERO_UNDEF(SDNode *N) {
4057  SDValue N0 = N->getOperand(0);
4058  EVT VT = N->getValueType(0);
4059
4060  // fold (ctlz_zero_undef c1) -> c2
4061  if (isa<ConstantSDNode>(N0))
4062    return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SDLoc(N), VT, N0);
4063  return SDValue();
4064}
4065
4066SDValue DAGCombiner::visitCTTZ(SDNode *N) {
4067  SDValue N0 = N->getOperand(0);
4068  EVT VT = N->getValueType(0);
4069
4070  // fold (cttz c1) -> c2
4071  if (isa<ConstantSDNode>(N0))
4072    return DAG.getNode(ISD::CTTZ, SDLoc(N), VT, N0);
4073  return SDValue();
4074}
4075
4076SDValue DAGCombiner::visitCTTZ_ZERO_UNDEF(SDNode *N) {
4077  SDValue N0 = N->getOperand(0);
4078  EVT VT = N->getValueType(0);
4079
4080  // fold (cttz_zero_undef c1) -> c2
4081  if (isa<ConstantSDNode>(N0))
4082    return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, SDLoc(N), VT, N0);
4083  return SDValue();
4084}
4085
4086SDValue DAGCombiner::visitCTPOP(SDNode *N) {
4087  SDValue N0 = N->getOperand(0);
4088  EVT VT = N->getValueType(0);
4089
4090  // fold (ctpop c1) -> c2
4091  if (isa<ConstantSDNode>(N0))
4092    return DAG.getNode(ISD::CTPOP, SDLoc(N), VT, N0);
4093  return SDValue();
4094}
4095
4096SDValue DAGCombiner::visitSELECT(SDNode *N) {
4097  SDValue N0 = N->getOperand(0);
4098  SDValue N1 = N->getOperand(1);
4099  SDValue N2 = N->getOperand(2);
4100  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
4101  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
4102  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
4103  EVT VT = N->getValueType(0);
4104  EVT VT0 = N0.getValueType();
4105
4106  // fold (select C, X, X) -> X
4107  if (N1 == N2)
4108    return N1;
4109  // fold (select true, X, Y) -> X
4110  if (N0C && !N0C->isNullValue())
4111    return N1;
4112  // fold (select false, X, Y) -> Y
4113  if (N0C && N0C->isNullValue())
4114    return N2;
4115  // fold (select C, 1, X) -> (or C, X)
4116  if (VT == MVT::i1 && N1C && N1C->getAPIntValue() == 1)
4117    return DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N2);
4118  // fold (select C, 0, 1) -> (xor C, 1)
4119  if (VT.isInteger() &&
4120      (VT0 == MVT::i1 ||
4121       (VT0.isInteger() &&
4122        TLI.getBooleanContents(false) ==
4123        TargetLowering::ZeroOrOneBooleanContent)) &&
4124      N1C && N2C && N1C->isNullValue() && N2C->getAPIntValue() == 1) {
4125    SDValue XORNode;
4126    if (VT == VT0)
4127      return DAG.getNode(ISD::XOR, SDLoc(N), VT0,
4128                         N0, DAG.getConstant(1, VT0));
4129    XORNode = DAG.getNode(ISD::XOR, SDLoc(N0), VT0,
4130                          N0, DAG.getConstant(1, VT0));
4131    AddToWorkList(XORNode.getNode());
4132    if (VT.bitsGT(VT0))
4133      return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, XORNode);
4134    return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, XORNode);
4135  }
4136  // fold (select C, 0, X) -> (and (not C), X)
4137  if (VT == VT0 && VT == MVT::i1 && N1C && N1C->isNullValue()) {
4138    SDValue NOTNode = DAG.getNOT(SDLoc(N0), N0, VT);
4139    AddToWorkList(NOTNode.getNode());
4140    return DAG.getNode(ISD::AND, SDLoc(N), VT, NOTNode, N2);
4141  }
4142  // fold (select C, X, 1) -> (or (not C), X)
4143  if (VT == VT0 && VT == MVT::i1 && N2C && N2C->getAPIntValue() == 1) {
4144    SDValue NOTNode = DAG.getNOT(SDLoc(N0), N0, VT);
4145    AddToWorkList(NOTNode.getNode());
4146    return DAG.getNode(ISD::OR, SDLoc(N), VT, NOTNode, N1);
4147  }
4148  // fold (select C, X, 0) -> (and C, X)
4149  if (VT == MVT::i1 && N2C && N2C->isNullValue())
4150    return DAG.getNode(ISD::AND, SDLoc(N), VT, N0, N1);
4151  // fold (select X, X, Y) -> (or X, Y)
4152  // fold (select X, 1, Y) -> (or X, Y)
4153  if (VT == MVT::i1 && (N0 == N1 || (N1C && N1C->getAPIntValue() == 1)))
4154    return DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N2);
4155  // fold (select X, Y, X) -> (and X, Y)
4156  // fold (select X, Y, 0) -> (and X, Y)
4157  if (VT == MVT::i1 && (N0 == N2 || (N2C && N2C->getAPIntValue() == 0)))
4158    return DAG.getNode(ISD::AND, SDLoc(N), VT, N0, N1);
4159
4160  // If we can fold this based on the true/false value, do so.
4161  if (SimplifySelectOps(N, N1, N2))
4162    return SDValue(N, 0);  // Don't revisit N.
4163
4164  // fold selects based on a setcc into other things, such as min/max/abs
4165  if (N0.getOpcode() == ISD::SETCC) {
4166    // FIXME:
4167    // Check against MVT::Other for SELECT_CC, which is a workaround for targets
4168    // having to say they don't support SELECT_CC on every type the DAG knows
4169    // about, since there is no way to mark an opcode illegal at all value types
4170    if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, MVT::Other) &&
4171        TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT))
4172      return DAG.getNode(ISD::SELECT_CC, SDLoc(N), VT,
4173                         N0.getOperand(0), N0.getOperand(1),
4174                         N1, N2, N0.getOperand(2));
4175    return SimplifySelect(SDLoc(N), N0, N1, N2);
4176  }
4177
4178  return SDValue();
4179}
4180
4181SDValue DAGCombiner::visitVSELECT(SDNode *N) {
4182  SDValue N0 = N->getOperand(0);
4183  SDValue N1 = N->getOperand(1);
4184  SDValue N2 = N->getOperand(2);
4185  SDLoc DL(N);
4186
4187  // Canonicalize integer abs.
4188  // vselect (setg[te] X,  0),  X, -X ->
4189  // vselect (setgt    X, -1),  X, -X ->
4190  // vselect (setl[te] X,  0), -X,  X ->
4191  // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
4192  if (N0.getOpcode() == ISD::SETCC) {
4193    SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
4194    ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
4195    bool isAbs = false;
4196    bool RHSIsAllZeros = ISD::isBuildVectorAllZeros(RHS.getNode());
4197
4198    if (((RHSIsAllZeros && (CC == ISD::SETGT || CC == ISD::SETGE)) ||
4199         (ISD::isBuildVectorAllOnes(RHS.getNode()) && CC == ISD::SETGT)) &&
4200        N1 == LHS && N2.getOpcode() == ISD::SUB && N1 == N2.getOperand(1))
4201      isAbs = ISD::isBuildVectorAllZeros(N2.getOperand(0).getNode());
4202    else if ((RHSIsAllZeros && (CC == ISD::SETLT || CC == ISD::SETLE)) &&
4203             N2 == LHS && N1.getOpcode() == ISD::SUB && N2 == N1.getOperand(1))
4204      isAbs = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode());
4205
4206    if (isAbs) {
4207      EVT VT = LHS.getValueType();
4208      SDValue Shift = DAG.getNode(
4209          ISD::SRA, DL, VT, LHS,
4210          DAG.getConstant(VT.getScalarType().getSizeInBits() - 1, VT));
4211      SDValue Add = DAG.getNode(ISD::ADD, DL, VT, LHS, Shift);
4212      AddToWorkList(Shift.getNode());
4213      AddToWorkList(Add.getNode());
4214      return DAG.getNode(ISD::XOR, DL, VT, Add, Shift);
4215    }
4216  }
4217
4218  return SDValue();
4219}
4220
4221SDValue DAGCombiner::visitSELECT_CC(SDNode *N) {
4222  SDValue N0 = N->getOperand(0);
4223  SDValue N1 = N->getOperand(1);
4224  SDValue N2 = N->getOperand(2);
4225  SDValue N3 = N->getOperand(3);
4226  SDValue N4 = N->getOperand(4);
4227  ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get();
4228
4229  // fold select_cc lhs, rhs, x, x, cc -> x
4230  if (N2 == N3)
4231    return N2;
4232
4233  // Determine if the condition we're dealing with is constant
4234  SDValue SCC = SimplifySetCC(getSetCCResultType(N0.getValueType()),
4235                              N0, N1, CC, SDLoc(N), false);
4236  if (SCC.getNode()) AddToWorkList(SCC.getNode());
4237
4238  if (ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.getNode())) {
4239    if (!SCCC->isNullValue())
4240      return N2;    // cond always true -> true val
4241    else
4242      return N3;    // cond always false -> false val
4243  }
4244
4245  // Fold to a simpler select_cc
4246  if (SCC.getNode() && SCC.getOpcode() == ISD::SETCC)
4247    return DAG.getNode(ISD::SELECT_CC, SDLoc(N), N2.getValueType(),
4248                       SCC.getOperand(0), SCC.getOperand(1), N2, N3,
4249                       SCC.getOperand(2));
4250
4251  // If we can fold this based on the true/false value, do so.
4252  if (SimplifySelectOps(N, N2, N3))
4253    return SDValue(N, 0);  // Don't revisit N.
4254
4255  // fold select_cc into other things, such as min/max/abs
4256  return SimplifySelectCC(SDLoc(N), N0, N1, N2, N3, CC);
4257}
4258
4259SDValue DAGCombiner::visitSETCC(SDNode *N) {
4260  return SimplifySetCC(N->getValueType(0), N->getOperand(0), N->getOperand(1),
4261                       cast<CondCodeSDNode>(N->getOperand(2))->get(),
4262                       SDLoc(N));
4263}
4264
4265// ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this:
4266// "fold ({s|z|a}ext (load x)) -> ({s|z|a}ext (truncate ({s|z|a}extload x)))"
4267// transformation. Returns true if extension are possible and the above
4268// mentioned transformation is profitable.
4269static bool ExtendUsesToFormExtLoad(SDNode *N, SDValue N0,
4270                                    unsigned ExtOpc,
4271                                    SmallVector<SDNode*, 4> &ExtendNodes,
4272                                    const TargetLowering &TLI) {
4273  bool HasCopyToRegUses = false;
4274  bool isTruncFree = TLI.isTruncateFree(N->getValueType(0), N0.getValueType());
4275  for (SDNode::use_iterator UI = N0.getNode()->use_begin(),
4276                            UE = N0.getNode()->use_end();
4277       UI != UE; ++UI) {
4278    SDNode *User = *UI;
4279    if (User == N)
4280      continue;
4281    if (UI.getUse().getResNo() != N0.getResNo())
4282      continue;
4283    // FIXME: Only extend SETCC N, N and SETCC N, c for now.
4284    if (ExtOpc != ISD::ANY_EXTEND && User->getOpcode() == ISD::SETCC) {
4285      ISD::CondCode CC = cast<CondCodeSDNode>(User->getOperand(2))->get();
4286      if (ExtOpc == ISD::ZERO_EXTEND && ISD::isSignedIntSetCC(CC))
4287        // Sign bits will be lost after a zext.
4288        return false;
4289      bool Add = false;
4290      for (unsigned i = 0; i != 2; ++i) {
4291        SDValue UseOp = User->getOperand(i);
4292        if (UseOp == N0)
4293          continue;
4294        if (!isa<ConstantSDNode>(UseOp))
4295          return false;
4296        Add = true;
4297      }
4298      if (Add)
4299        ExtendNodes.push_back(User);
4300      continue;
4301    }
4302    // If truncates aren't free and there are users we can't
4303    // extend, it isn't worthwhile.
4304    if (!isTruncFree)
4305      return false;
4306    // Remember if this value is live-out.
4307    if (User->getOpcode() == ISD::CopyToReg)
4308      HasCopyToRegUses = true;
4309  }
4310
4311  if (HasCopyToRegUses) {
4312    bool BothLiveOut = false;
4313    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
4314         UI != UE; ++UI) {
4315      SDUse &Use = UI.getUse();
4316      if (Use.getResNo() == 0 && Use.getUser()->getOpcode() == ISD::CopyToReg) {
4317        BothLiveOut = true;
4318        break;
4319      }
4320    }
4321    if (BothLiveOut)
4322      // Both unextended and extended values are live out. There had better be
4323      // a good reason for the transformation.
4324      return ExtendNodes.size();
4325  }
4326  return true;
4327}
4328
4329void DAGCombiner::ExtendSetCCUses(SmallVector<SDNode*, 4> SetCCs,
4330                                  SDValue Trunc, SDValue ExtLoad, SDLoc DL,
4331                                  ISD::NodeType ExtType) {
4332  // Extend SetCC uses if necessary.
4333  for (unsigned i = 0, e = SetCCs.size(); i != e; ++i) {
4334    SDNode *SetCC = SetCCs[i];
4335    SmallVector<SDValue, 4> Ops;
4336
4337    for (unsigned j = 0; j != 2; ++j) {
4338      SDValue SOp = SetCC->getOperand(j);
4339      if (SOp == Trunc)
4340        Ops.push_back(ExtLoad);
4341      else
4342        Ops.push_back(DAG.getNode(ExtType, DL, ExtLoad->getValueType(0), SOp));
4343    }
4344
4345    Ops.push_back(SetCC->getOperand(2));
4346    CombineTo(SetCC, DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0),
4347                                 &Ops[0], Ops.size()));
4348  }
4349}
4350
4351SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) {
4352  SDValue N0 = N->getOperand(0);
4353  EVT VT = N->getValueType(0);
4354
4355  // fold (sext c1) -> c1
4356  if (isa<ConstantSDNode>(N0))
4357    return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N0);
4358
4359  // fold (sext (sext x)) -> (sext x)
4360  // fold (sext (aext x)) -> (sext x)
4361  if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
4362    return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT,
4363                       N0.getOperand(0));
4364
4365  if (N0.getOpcode() == ISD::TRUNCATE) {
4366    // fold (sext (truncate (load x))) -> (sext (smaller load x))
4367    // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n)))
4368    SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
4369    if (NarrowLoad.getNode()) {
4370      SDNode* oye = N0.getNode()->getOperand(0).getNode();
4371      if (NarrowLoad.getNode() != N0.getNode()) {
4372        CombineTo(N0.getNode(), NarrowLoad);
4373        // CombineTo deleted the truncate, if needed, but not what's under it.
4374        AddToWorkList(oye);
4375      }
4376      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4377    }
4378
4379    // See if the value being truncated is already sign extended.  If so, just
4380    // eliminate the trunc/sext pair.
4381    SDValue Op = N0.getOperand(0);
4382    unsigned OpBits   = Op.getValueType().getScalarType().getSizeInBits();
4383    unsigned MidBits  = N0.getValueType().getScalarType().getSizeInBits();
4384    unsigned DestBits = VT.getScalarType().getSizeInBits();
4385    unsigned NumSignBits = DAG.ComputeNumSignBits(Op);
4386
4387    if (OpBits == DestBits) {
4388      // Op is i32, Mid is i8, and Dest is i32.  If Op has more than 24 sign
4389      // bits, it is already ready.
4390      if (NumSignBits > DestBits-MidBits)
4391        return Op;
4392    } else if (OpBits < DestBits) {
4393      // Op is i32, Mid is i8, and Dest is i64.  If Op has more than 24 sign
4394      // bits, just sext from i32.
4395      if (NumSignBits > OpBits-MidBits)
4396        return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, Op);
4397    } else {
4398      // Op is i64, Mid is i8, and Dest is i32.  If Op has more than 56 sign
4399      // bits, just truncate to i32.
4400      if (NumSignBits > OpBits-MidBits)
4401        return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Op);
4402    }
4403
4404    // fold (sext (truncate x)) -> (sextinreg x).
4405    if (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG,
4406                                                 N0.getValueType())) {
4407      if (OpBits < DestBits)
4408        Op = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N0), VT, Op);
4409      else if (OpBits > DestBits)
4410        Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), VT, Op);
4411      return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, Op,
4412                         DAG.getValueType(N0.getValueType()));
4413    }
4414  }
4415
4416  // fold (sext (load x)) -> (sext (truncate (sextload x)))
4417  // None of the supported targets knows how to perform load and sign extend
4418  // on vectors in one instruction.  We only perform this transformation on
4419  // scalars.
4420  if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() &&
4421      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
4422       TLI.isLoadExtLegal(ISD::SEXTLOAD, N0.getValueType()))) {
4423    bool DoXform = true;
4424    SmallVector<SDNode*, 4> SetCCs;
4425    if (!N0.hasOneUse())
4426      DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::SIGN_EXTEND, SetCCs, TLI);
4427    if (DoXform) {
4428      LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4429      SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
4430                                       LN0->getChain(),
4431                                       LN0->getBasePtr(), LN0->getPointerInfo(),
4432                                       N0.getValueType(),
4433                                       LN0->isVolatile(), LN0->isNonTemporal(),
4434                                       LN0->getAlignment());
4435      CombineTo(N, ExtLoad);
4436      SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0),
4437                                  N0.getValueType(), ExtLoad);
4438      CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1));
4439      ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N),
4440                      ISD::SIGN_EXTEND);
4441      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4442    }
4443  }
4444
4445  // fold (sext (sextload x)) -> (sext (truncate (sextload x)))
4446  // fold (sext ( extload x)) -> (sext (truncate (sextload x)))
4447  if ((ISD::isSEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) &&
4448      ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) {
4449    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4450    EVT MemVT = LN0->getMemoryVT();
4451    if ((!LegalOperations && !LN0->isVolatile()) ||
4452        TLI.isLoadExtLegal(ISD::SEXTLOAD, MemVT)) {
4453      SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
4454                                       LN0->getChain(),
4455                                       LN0->getBasePtr(), LN0->getPointerInfo(),
4456                                       MemVT,
4457                                       LN0->isVolatile(), LN0->isNonTemporal(),
4458                                       LN0->getAlignment());
4459      CombineTo(N, ExtLoad);
4460      CombineTo(N0.getNode(),
4461                DAG.getNode(ISD::TRUNCATE, SDLoc(N0),
4462                            N0.getValueType(), ExtLoad),
4463                ExtLoad.getValue(1));
4464      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4465    }
4466  }
4467
4468  // fold (sext (and/or/xor (load x), cst)) ->
4469  //      (and/or/xor (sextload x), (sext cst))
4470  if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR ||
4471       N0.getOpcode() == ISD::XOR) &&
4472      isa<LoadSDNode>(N0.getOperand(0)) &&
4473      N0.getOperand(1).getOpcode() == ISD::Constant &&
4474      TLI.isLoadExtLegal(ISD::SEXTLOAD, N0.getValueType()) &&
4475      (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) {
4476    LoadSDNode *LN0 = cast<LoadSDNode>(N0.getOperand(0));
4477    if (LN0->getExtensionType() != ISD::ZEXTLOAD) {
4478      bool DoXform = true;
4479      SmallVector<SDNode*, 4> SetCCs;
4480      if (!N0.hasOneUse())
4481        DoXform = ExtendUsesToFormExtLoad(N, N0.getOperand(0), ISD::SIGN_EXTEND,
4482                                          SetCCs, TLI);
4483      if (DoXform) {
4484        SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(LN0), VT,
4485                                         LN0->getChain(), LN0->getBasePtr(),
4486                                         LN0->getPointerInfo(),
4487                                         LN0->getMemoryVT(),
4488                                         LN0->isVolatile(),
4489                                         LN0->isNonTemporal(),
4490                                         LN0->getAlignment());
4491        APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
4492        Mask = Mask.sext(VT.getSizeInBits());
4493        SDValue And = DAG.getNode(N0.getOpcode(), SDLoc(N), VT,
4494                                  ExtLoad, DAG.getConstant(Mask, VT));
4495        SDValue Trunc = DAG.getNode(ISD::TRUNCATE,
4496                                    SDLoc(N0.getOperand(0)),
4497                                    N0.getOperand(0).getValueType(), ExtLoad);
4498        CombineTo(N, And);
4499        CombineTo(N0.getOperand(0).getNode(), Trunc, ExtLoad.getValue(1));
4500        ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N),
4501                        ISD::SIGN_EXTEND);
4502        return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4503      }
4504    }
4505  }
4506
4507  if (N0.getOpcode() == ISD::SETCC) {
4508    // sext(setcc) -> sext_in_reg(vsetcc) for vectors.
4509    // Only do this before legalize for now.
4510    if (VT.isVector() && !LegalOperations &&
4511        TLI.getBooleanContents(true) ==
4512          TargetLowering::ZeroOrNegativeOneBooleanContent) {
4513      EVT N0VT = N0.getOperand(0).getValueType();
4514      // On some architectures (such as SSE/NEON/etc) the SETCC result type is
4515      // of the same size as the compared operands. Only optimize sext(setcc())
4516      // if this is the case.
4517      EVT SVT = getSetCCResultType(N0VT);
4518
4519      // We know that the # elements of the results is the same as the
4520      // # elements of the compare (and the # elements of the compare result
4521      // for that matter).  Check to see that they are the same size.  If so,
4522      // we know that the element size of the sext'd result matches the
4523      // element size of the compare operands.
4524      if (VT.getSizeInBits() == SVT.getSizeInBits())
4525        return DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0),
4526                             N0.getOperand(1),
4527                             cast<CondCodeSDNode>(N0.getOperand(2))->get());
4528
4529      // If the desired elements are smaller or larger than the source
4530      // elements we can use a matching integer vector type and then
4531      // truncate/sign extend
4532      EVT MatchingVectorType = N0VT.changeVectorElementTypeToInteger();
4533      if (SVT == MatchingVectorType) {
4534        SDValue VsetCC = DAG.getSetCC(SDLoc(N), MatchingVectorType,
4535                               N0.getOperand(0), N0.getOperand(1),
4536                               cast<CondCodeSDNode>(N0.getOperand(2))->get());
4537        return DAG.getSExtOrTrunc(VsetCC, SDLoc(N), VT);
4538      }
4539    }
4540
4541    // sext(setcc x, y, cc) -> (select_cc x, y, -1, 0, cc)
4542    unsigned ElementWidth = VT.getScalarType().getSizeInBits();
4543    SDValue NegOne =
4544      DAG.getConstant(APInt::getAllOnesValue(ElementWidth), VT);
4545    SDValue SCC =
4546      SimplifySelectCC(SDLoc(N), N0.getOperand(0), N0.getOperand(1),
4547                       NegOne, DAG.getConstant(0, VT),
4548                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
4549    if (SCC.getNode()) return SCC;
4550    if (!VT.isVector() &&
4551        (!LegalOperations ||
4552         TLI.isOperationLegal(ISD::SETCC, getSetCCResultType(VT)))) {
4553      return DAG.getSelect(SDLoc(N), VT,
4554                           DAG.getSetCC(SDLoc(N),
4555                                        getSetCCResultType(VT),
4556                                        N0.getOperand(0), N0.getOperand(1),
4557                                        cast<CondCodeSDNode>(N0.getOperand(2))->get()),
4558                           NegOne, DAG.getConstant(0, VT));
4559    }
4560  }
4561
4562  // fold (sext x) -> (zext x) if the sign bit is known zero.
4563  if ((!LegalOperations || TLI.isOperationLegal(ISD::ZERO_EXTEND, VT)) &&
4564      DAG.SignBitIsZero(N0))
4565    return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, N0);
4566
4567  return SDValue();
4568}
4569
4570// isTruncateOf - If N is a truncate of some other value, return true, record
4571// the value being truncated in Op and which of Op's bits are zero in KnownZero.
4572// This function computes KnownZero to avoid a duplicated call to
4573// ComputeMaskedBits in the caller.
4574static bool isTruncateOf(SelectionDAG &DAG, SDValue N, SDValue &Op,
4575                         APInt &KnownZero) {
4576  APInt KnownOne;
4577  if (N->getOpcode() == ISD::TRUNCATE) {
4578    Op = N->getOperand(0);
4579    DAG.ComputeMaskedBits(Op, KnownZero, KnownOne);
4580    return true;
4581  }
4582
4583  if (N->getOpcode() != ISD::SETCC || N->getValueType(0) != MVT::i1 ||
4584      cast<CondCodeSDNode>(N->getOperand(2))->get() != ISD::SETNE)
4585    return false;
4586
4587  SDValue Op0 = N->getOperand(0);
4588  SDValue Op1 = N->getOperand(1);
4589  assert(Op0.getValueType() == Op1.getValueType());
4590
4591  ConstantSDNode *COp0 = dyn_cast<ConstantSDNode>(Op0);
4592  ConstantSDNode *COp1 = dyn_cast<ConstantSDNode>(Op1);
4593  if (COp0 && COp0->isNullValue())
4594    Op = Op1;
4595  else if (COp1 && COp1->isNullValue())
4596    Op = Op0;
4597  else
4598    return false;
4599
4600  DAG.ComputeMaskedBits(Op, KnownZero, KnownOne);
4601
4602  if (!(KnownZero | APInt(Op.getValueSizeInBits(), 1)).isAllOnesValue())
4603    return false;
4604
4605  return true;
4606}
4607
4608SDValue DAGCombiner::visitZERO_EXTEND(SDNode *N) {
4609  SDValue N0 = N->getOperand(0);
4610  EVT VT = N->getValueType(0);
4611
4612  // fold (zext c1) -> c1
4613  if (isa<ConstantSDNode>(N0))
4614    return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, N0);
4615  // fold (zext (zext x)) -> (zext x)
4616  // fold (zext (aext x)) -> (zext x)
4617  if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
4618    return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT,
4619                       N0.getOperand(0));
4620
4621  // fold (zext (truncate x)) -> (zext x) or
4622  //      (zext (truncate x)) -> (truncate x)
4623  // This is valid when the truncated bits of x are already zero.
4624  // FIXME: We should extend this to work for vectors too.
4625  SDValue Op;
4626  APInt KnownZero;
4627  if (!VT.isVector() && isTruncateOf(DAG, N0, Op, KnownZero)) {
4628    APInt TruncatedBits =
4629      (Op.getValueSizeInBits() == N0.getValueSizeInBits()) ?
4630      APInt(Op.getValueSizeInBits(), 0) :
4631      APInt::getBitsSet(Op.getValueSizeInBits(),
4632                        N0.getValueSizeInBits(),
4633                        std::min(Op.getValueSizeInBits(),
4634                                 VT.getSizeInBits()));
4635    if (TruncatedBits == (KnownZero & TruncatedBits)) {
4636      if (VT.bitsGT(Op.getValueType()))
4637        return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, Op);
4638      if (VT.bitsLT(Op.getValueType()))
4639        return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Op);
4640
4641      return Op;
4642    }
4643  }
4644
4645  // fold (zext (truncate (load x))) -> (zext (smaller load x))
4646  // fold (zext (truncate (srl (load x), c))) -> (zext (small load (x+c/n)))
4647  if (N0.getOpcode() == ISD::TRUNCATE) {
4648    SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
4649    if (NarrowLoad.getNode()) {
4650      SDNode* oye = N0.getNode()->getOperand(0).getNode();
4651      if (NarrowLoad.getNode() != N0.getNode()) {
4652        CombineTo(N0.getNode(), NarrowLoad);
4653        // CombineTo deleted the truncate, if needed, but not what's under it.
4654        AddToWorkList(oye);
4655      }
4656      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4657    }
4658  }
4659
4660  // fold (zext (truncate x)) -> (and x, mask)
4661  if (N0.getOpcode() == ISD::TRUNCATE &&
4662      (!LegalOperations || TLI.isOperationLegal(ISD::AND, VT))) {
4663
4664    // fold (zext (truncate (load x))) -> (zext (smaller load x))
4665    // fold (zext (truncate (srl (load x), c))) -> (zext (smaller load (x+c/n)))
4666    SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
4667    if (NarrowLoad.getNode()) {
4668      SDNode* oye = N0.getNode()->getOperand(0).getNode();
4669      if (NarrowLoad.getNode() != N0.getNode()) {
4670        CombineTo(N0.getNode(), NarrowLoad);
4671        // CombineTo deleted the truncate, if needed, but not what's under it.
4672        AddToWorkList(oye);
4673      }
4674      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4675    }
4676
4677    SDValue Op = N0.getOperand(0);
4678    if (Op.getValueType().bitsLT(VT)) {
4679      Op = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, Op);
4680      AddToWorkList(Op.getNode());
4681    } else if (Op.getValueType().bitsGT(VT)) {
4682      Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Op);
4683      AddToWorkList(Op.getNode());
4684    }
4685    return DAG.getZeroExtendInReg(Op, SDLoc(N),
4686                                  N0.getValueType().getScalarType());
4687  }
4688
4689  // Fold (zext (and (trunc x), cst)) -> (and x, cst),
4690  // if either of the casts is not free.
4691  if (N0.getOpcode() == ISD::AND &&
4692      N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
4693      N0.getOperand(1).getOpcode() == ISD::Constant &&
4694      (!TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(),
4695                           N0.getValueType()) ||
4696       !TLI.isZExtFree(N0.getValueType(), VT))) {
4697    SDValue X = N0.getOperand(0).getOperand(0);
4698    if (X.getValueType().bitsLT(VT)) {
4699      X = DAG.getNode(ISD::ANY_EXTEND, SDLoc(X), VT, X);
4700    } else if (X.getValueType().bitsGT(VT)) {
4701      X = DAG.getNode(ISD::TRUNCATE, SDLoc(X), VT, X);
4702    }
4703    APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
4704    Mask = Mask.zext(VT.getSizeInBits());
4705    return DAG.getNode(ISD::AND, SDLoc(N), VT,
4706                       X, DAG.getConstant(Mask, VT));
4707  }
4708
4709  // fold (zext (load x)) -> (zext (truncate (zextload x)))
4710  // None of the supported targets knows how to perform load and vector_zext
4711  // on vectors in one instruction.  We only perform this transformation on
4712  // scalars.
4713  if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() &&
4714      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
4715       TLI.isLoadExtLegal(ISD::ZEXTLOAD, N0.getValueType()))) {
4716    bool DoXform = true;
4717    SmallVector<SDNode*, 4> SetCCs;
4718    if (!N0.hasOneUse())
4719      DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ZERO_EXTEND, SetCCs, TLI);
4720    if (DoXform) {
4721      LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4722      SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N), VT,
4723                                       LN0->getChain(),
4724                                       LN0->getBasePtr(), LN0->getPointerInfo(),
4725                                       N0.getValueType(),
4726                                       LN0->isVolatile(), LN0->isNonTemporal(),
4727                                       LN0->getAlignment());
4728      CombineTo(N, ExtLoad);
4729      SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0),
4730                                  N0.getValueType(), ExtLoad);
4731      CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1));
4732
4733      ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N),
4734                      ISD::ZERO_EXTEND);
4735      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4736    }
4737  }
4738
4739  // fold (zext (and/or/xor (load x), cst)) ->
4740  //      (and/or/xor (zextload x), (zext cst))
4741  if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR ||
4742       N0.getOpcode() == ISD::XOR) &&
4743      isa<LoadSDNode>(N0.getOperand(0)) &&
4744      N0.getOperand(1).getOpcode() == ISD::Constant &&
4745      TLI.isLoadExtLegal(ISD::ZEXTLOAD, N0.getValueType()) &&
4746      (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) {
4747    LoadSDNode *LN0 = cast<LoadSDNode>(N0.getOperand(0));
4748    if (LN0->getExtensionType() != ISD::SEXTLOAD) {
4749      bool DoXform = true;
4750      SmallVector<SDNode*, 4> SetCCs;
4751      if (!N0.hasOneUse())
4752        DoXform = ExtendUsesToFormExtLoad(N, N0.getOperand(0), ISD::ZERO_EXTEND,
4753                                          SetCCs, TLI);
4754      if (DoXform) {
4755        SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN0), VT,
4756                                         LN0->getChain(), LN0->getBasePtr(),
4757                                         LN0->getPointerInfo(),
4758                                         LN0->getMemoryVT(),
4759                                         LN0->isVolatile(),
4760                                         LN0->isNonTemporal(),
4761                                         LN0->getAlignment());
4762        APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
4763        Mask = Mask.zext(VT.getSizeInBits());
4764        SDValue And = DAG.getNode(N0.getOpcode(), SDLoc(N), VT,
4765                                  ExtLoad, DAG.getConstant(Mask, VT));
4766        SDValue Trunc = DAG.getNode(ISD::TRUNCATE,
4767                                    SDLoc(N0.getOperand(0)),
4768                                    N0.getOperand(0).getValueType(), ExtLoad);
4769        CombineTo(N, And);
4770        CombineTo(N0.getOperand(0).getNode(), Trunc, ExtLoad.getValue(1));
4771        ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N),
4772                        ISD::ZERO_EXTEND);
4773        return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4774      }
4775    }
4776  }
4777
4778  // fold (zext (zextload x)) -> (zext (truncate (zextload x)))
4779  // fold (zext ( extload x)) -> (zext (truncate (zextload x)))
4780  if ((ISD::isZEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) &&
4781      ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) {
4782    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4783    EVT MemVT = LN0->getMemoryVT();
4784    if ((!LegalOperations && !LN0->isVolatile()) ||
4785        TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT)) {
4786      SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N), VT,
4787                                       LN0->getChain(),
4788                                       LN0->getBasePtr(), LN0->getPointerInfo(),
4789                                       MemVT,
4790                                       LN0->isVolatile(), LN0->isNonTemporal(),
4791                                       LN0->getAlignment());
4792      CombineTo(N, ExtLoad);
4793      CombineTo(N0.getNode(),
4794                DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(),
4795                            ExtLoad),
4796                ExtLoad.getValue(1));
4797      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4798    }
4799  }
4800
4801  if (N0.getOpcode() == ISD::SETCC) {
4802    if (!LegalOperations && VT.isVector()) {
4803      // zext(setcc) -> (and (vsetcc), (1, 1, ...) for vectors.
4804      // Only do this before legalize for now.
4805      EVT N0VT = N0.getOperand(0).getValueType();
4806      EVT EltVT = VT.getVectorElementType();
4807      SmallVector<SDValue,8> OneOps(VT.getVectorNumElements(),
4808                                    DAG.getConstant(1, EltVT));
4809      if (VT.getSizeInBits() == N0VT.getSizeInBits())
4810        // We know that the # elements of the results is the same as the
4811        // # elements of the compare (and the # elements of the compare result
4812        // for that matter).  Check to see that they are the same size.  If so,
4813        // we know that the element size of the sext'd result matches the
4814        // element size of the compare operands.
4815        return DAG.getNode(ISD::AND, SDLoc(N), VT,
4816                           DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0),
4817                                         N0.getOperand(1),
4818                                 cast<CondCodeSDNode>(N0.getOperand(2))->get()),
4819                           DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), VT,
4820                                       &OneOps[0], OneOps.size()));
4821
4822      // If the desired elements are smaller or larger than the source
4823      // elements we can use a matching integer vector type and then
4824      // truncate/sign extend
4825      EVT MatchingElementType =
4826        EVT::getIntegerVT(*DAG.getContext(),
4827                          N0VT.getScalarType().getSizeInBits());
4828      EVT MatchingVectorType =
4829        EVT::getVectorVT(*DAG.getContext(), MatchingElementType,
4830                         N0VT.getVectorNumElements());
4831      SDValue VsetCC =
4832        DAG.getSetCC(SDLoc(N), MatchingVectorType, N0.getOperand(0),
4833                      N0.getOperand(1),
4834                      cast<CondCodeSDNode>(N0.getOperand(2))->get());
4835      return DAG.getNode(ISD::AND, SDLoc(N), VT,
4836                         DAG.getSExtOrTrunc(VsetCC, SDLoc(N), VT),
4837                         DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), VT,
4838                                     &OneOps[0], OneOps.size()));
4839    }
4840
4841    // zext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
4842    SDValue SCC =
4843      SimplifySelectCC(SDLoc(N), N0.getOperand(0), N0.getOperand(1),
4844                       DAG.getConstant(1, VT), DAG.getConstant(0, VT),
4845                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
4846    if (SCC.getNode()) return SCC;
4847  }
4848
4849  // (zext (shl (zext x), cst)) -> (shl (zext x), cst)
4850  if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL) &&
4851      isa<ConstantSDNode>(N0.getOperand(1)) &&
4852      N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND &&
4853      N0.hasOneUse()) {
4854    SDValue ShAmt = N0.getOperand(1);
4855    unsigned ShAmtVal = cast<ConstantSDNode>(ShAmt)->getZExtValue();
4856    if (N0.getOpcode() == ISD::SHL) {
4857      SDValue InnerZExt = N0.getOperand(0);
4858      // If the original shl may be shifting out bits, do not perform this
4859      // transformation.
4860      unsigned KnownZeroBits = InnerZExt.getValueType().getSizeInBits() -
4861        InnerZExt.getOperand(0).getValueType().getSizeInBits();
4862      if (ShAmtVal > KnownZeroBits)
4863        return SDValue();
4864    }
4865
4866    SDLoc DL(N);
4867
4868    // Ensure that the shift amount is wide enough for the shifted value.
4869    if (VT.getSizeInBits() >= 256)
4870      ShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, ShAmt);
4871
4872    return DAG.getNode(N0.getOpcode(), DL, VT,
4873                       DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)),
4874                       ShAmt);
4875  }
4876
4877  return SDValue();
4878}
4879
4880SDValue DAGCombiner::visitANY_EXTEND(SDNode *N) {
4881  SDValue N0 = N->getOperand(0);
4882  EVT VT = N->getValueType(0);
4883
4884  // fold (aext c1) -> c1
4885  if (isa<ConstantSDNode>(N0))
4886    return DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, N0);
4887  // fold (aext (aext x)) -> (aext x)
4888  // fold (aext (zext x)) -> (zext x)
4889  // fold (aext (sext x)) -> (sext x)
4890  if (N0.getOpcode() == ISD::ANY_EXTEND  ||
4891      N0.getOpcode() == ISD::ZERO_EXTEND ||
4892      N0.getOpcode() == ISD::SIGN_EXTEND)
4893    return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, N0.getOperand(0));
4894
4895  // fold (aext (truncate (load x))) -> (aext (smaller load x))
4896  // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n)))
4897  if (N0.getOpcode() == ISD::TRUNCATE) {
4898    SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
4899    if (NarrowLoad.getNode()) {
4900      SDNode* oye = N0.getNode()->getOperand(0).getNode();
4901      if (NarrowLoad.getNode() != N0.getNode()) {
4902        CombineTo(N0.getNode(), NarrowLoad);
4903        // CombineTo deleted the truncate, if needed, but not what's under it.
4904        AddToWorkList(oye);
4905      }
4906      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4907    }
4908  }
4909
4910  // fold (aext (truncate x))
4911  if (N0.getOpcode() == ISD::TRUNCATE) {
4912    SDValue TruncOp = N0.getOperand(0);
4913    if (TruncOp.getValueType() == VT)
4914      return TruncOp; // x iff x size == zext size.
4915    if (TruncOp.getValueType().bitsGT(VT))
4916      return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, TruncOp);
4917    return DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, TruncOp);
4918  }
4919
4920  // Fold (aext (and (trunc x), cst)) -> (and x, cst)
4921  // if the trunc is not free.
4922  if (N0.getOpcode() == ISD::AND &&
4923      N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
4924      N0.getOperand(1).getOpcode() == ISD::Constant &&
4925      !TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(),
4926                          N0.getValueType())) {
4927    SDValue X = N0.getOperand(0).getOperand(0);
4928    if (X.getValueType().bitsLT(VT)) {
4929      X = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, X);
4930    } else if (X.getValueType().bitsGT(VT)) {
4931      X = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, X);
4932    }
4933    APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
4934    Mask = Mask.zext(VT.getSizeInBits());
4935    return DAG.getNode(ISD::AND, SDLoc(N), VT,
4936                       X, DAG.getConstant(Mask, VT));
4937  }
4938
4939  // fold (aext (load x)) -> (aext (truncate (extload x)))
4940  // None of the supported targets knows how to perform load and any_ext
4941  // on vectors in one instruction.  We only perform this transformation on
4942  // scalars.
4943  if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() &&
4944      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
4945       TLI.isLoadExtLegal(ISD::EXTLOAD, N0.getValueType()))) {
4946    bool DoXform = true;
4947    SmallVector<SDNode*, 4> SetCCs;
4948    if (!N0.hasOneUse())
4949      DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ANY_EXTEND, SetCCs, TLI);
4950    if (DoXform) {
4951      LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4952      SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT,
4953                                       LN0->getChain(),
4954                                       LN0->getBasePtr(), LN0->getPointerInfo(),
4955                                       N0.getValueType(),
4956                                       LN0->isVolatile(), LN0->isNonTemporal(),
4957                                       LN0->getAlignment());
4958      CombineTo(N, ExtLoad);
4959      SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0),
4960                                  N0.getValueType(), ExtLoad);
4961      CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1));
4962      ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N),
4963                      ISD::ANY_EXTEND);
4964      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4965    }
4966  }
4967
4968  // fold (aext (zextload x)) -> (aext (truncate (zextload x)))
4969  // fold (aext (sextload x)) -> (aext (truncate (sextload x)))
4970  // fold (aext ( extload x)) -> (aext (truncate (extload  x)))
4971  if (N0.getOpcode() == ISD::LOAD &&
4972      !ISD::isNON_EXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
4973      N0.hasOneUse()) {
4974    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4975    EVT MemVT = LN0->getMemoryVT();
4976    SDValue ExtLoad = DAG.getExtLoad(LN0->getExtensionType(), SDLoc(N),
4977                                     VT, LN0->getChain(), LN0->getBasePtr(),
4978                                     LN0->getPointerInfo(), MemVT,
4979                                     LN0->isVolatile(), LN0->isNonTemporal(),
4980                                     LN0->getAlignment());
4981    CombineTo(N, ExtLoad);
4982    CombineTo(N0.getNode(),
4983              DAG.getNode(ISD::TRUNCATE, SDLoc(N0),
4984                          N0.getValueType(), ExtLoad),
4985              ExtLoad.getValue(1));
4986    return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4987  }
4988
4989  if (N0.getOpcode() == ISD::SETCC) {
4990    // aext(setcc) -> sext_in_reg(vsetcc) for vectors.
4991    // Only do this before legalize for now.
4992    if (VT.isVector() && !LegalOperations) {
4993      EVT N0VT = N0.getOperand(0).getValueType();
4994        // We know that the # elements of the results is the same as the
4995        // # elements of the compare (and the # elements of the compare result
4996        // for that matter).  Check to see that they are the same size.  If so,
4997        // we know that the element size of the sext'd result matches the
4998        // element size of the compare operands.
4999      if (VT.getSizeInBits() == N0VT.getSizeInBits())
5000        return DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0),
5001                             N0.getOperand(1),
5002                             cast<CondCodeSDNode>(N0.getOperand(2))->get());
5003      // If the desired elements are smaller or larger than the source
5004      // elements we can use a matching integer vector type and then
5005      // truncate/sign extend
5006      else {
5007        EVT MatchingElementType =
5008          EVT::getIntegerVT(*DAG.getContext(),
5009                            N0VT.getScalarType().getSizeInBits());
5010        EVT MatchingVectorType =
5011          EVT::getVectorVT(*DAG.getContext(), MatchingElementType,
5012                           N0VT.getVectorNumElements());
5013        SDValue VsetCC =
5014          DAG.getSetCC(SDLoc(N), MatchingVectorType, N0.getOperand(0),
5015                        N0.getOperand(1),
5016                        cast<CondCodeSDNode>(N0.getOperand(2))->get());
5017        return DAG.getSExtOrTrunc(VsetCC, SDLoc(N), VT);
5018      }
5019    }
5020
5021    // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
5022    SDValue SCC =
5023      SimplifySelectCC(SDLoc(N), N0.getOperand(0), N0.getOperand(1),
5024                       DAG.getConstant(1, VT), DAG.getConstant(0, VT),
5025                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
5026    if (SCC.getNode())
5027      return SCC;
5028  }
5029
5030  return SDValue();
5031}
5032
5033/// GetDemandedBits - See if the specified operand can be simplified with the
5034/// knowledge that only the bits specified by Mask are used.  If so, return the
5035/// simpler operand, otherwise return a null SDValue.
5036SDValue DAGCombiner::GetDemandedBits(SDValue V, const APInt &Mask) {
5037  switch (V.getOpcode()) {
5038  default: break;
5039  case ISD::Constant: {
5040    const ConstantSDNode *CV = cast<ConstantSDNode>(V.getNode());
5041    assert(CV != 0 && "Const value should be ConstSDNode.");
5042    const APInt &CVal = CV->getAPIntValue();
5043    APInt NewVal = CVal & Mask;
5044    if (NewVal != CVal) {
5045      return DAG.getConstant(NewVal, V.getValueType());
5046    }
5047    break;
5048  }
5049  case ISD::OR:
5050  case ISD::XOR:
5051    // If the LHS or RHS don't contribute bits to the or, drop them.
5052    if (DAG.MaskedValueIsZero(V.getOperand(0), Mask))
5053      return V.getOperand(1);
5054    if (DAG.MaskedValueIsZero(V.getOperand(1), Mask))
5055      return V.getOperand(0);
5056    break;
5057  case ISD::SRL:
5058    // Only look at single-use SRLs.
5059    if (!V.getNode()->hasOneUse())
5060      break;
5061    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
5062      // See if we can recursively simplify the LHS.
5063      unsigned Amt = RHSC->getZExtValue();
5064
5065      // Watch out for shift count overflow though.
5066      if (Amt >= Mask.getBitWidth()) break;
5067      APInt NewMask = Mask << Amt;
5068      SDValue SimplifyLHS = GetDemandedBits(V.getOperand(0), NewMask);
5069      if (SimplifyLHS.getNode())
5070        return DAG.getNode(ISD::SRL, SDLoc(V), V.getValueType(),
5071                           SimplifyLHS, V.getOperand(1));
5072    }
5073  }
5074  return SDValue();
5075}
5076
5077/// ReduceLoadWidth - If the result of a wider load is shifted to right of N
5078/// bits and then truncated to a narrower type and where N is a multiple
5079/// of number of bits of the narrower type, transform it to a narrower load
5080/// from address + N / num of bits of new type. If the result is to be
5081/// extended, also fold the extension to form a extending load.
5082SDValue DAGCombiner::ReduceLoadWidth(SDNode *N) {
5083  unsigned Opc = N->getOpcode();
5084
5085  ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
5086  SDValue N0 = N->getOperand(0);
5087  EVT VT = N->getValueType(0);
5088  EVT ExtVT = VT;
5089
5090  // This transformation isn't valid for vector loads.
5091  if (VT.isVector())
5092    return SDValue();
5093
5094  // Special case: SIGN_EXTEND_INREG is basically truncating to ExtVT then
5095  // extended to VT.
5096  if (Opc == ISD::SIGN_EXTEND_INREG) {
5097    ExtType = ISD::SEXTLOAD;
5098    ExtVT = cast<VTSDNode>(N->getOperand(1))->getVT();
5099  } else if (Opc == ISD::SRL) {
5100    // Another special-case: SRL is basically zero-extending a narrower value.
5101    ExtType = ISD::ZEXTLOAD;
5102    N0 = SDValue(N, 0);
5103    ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5104    if (!N01) return SDValue();
5105    ExtVT = EVT::getIntegerVT(*DAG.getContext(),
5106                              VT.getSizeInBits() - N01->getZExtValue());
5107  }
5108  if (LegalOperations && !TLI.isLoadExtLegal(ExtType, ExtVT))
5109    return SDValue();
5110
5111  unsigned EVTBits = ExtVT.getSizeInBits();
5112
5113  // Do not generate loads of non-round integer types since these can
5114  // be expensive (and would be wrong if the type is not byte sized).
5115  if (!ExtVT.isRound())
5116    return SDValue();
5117
5118  unsigned ShAmt = 0;
5119  if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) {
5120    if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
5121      ShAmt = N01->getZExtValue();
5122      // Is the shift amount a multiple of size of VT?
5123      if ((ShAmt & (EVTBits-1)) == 0) {
5124        N0 = N0.getOperand(0);
5125        // Is the load width a multiple of size of VT?
5126        if ((N0.getValueType().getSizeInBits() & (EVTBits-1)) != 0)
5127          return SDValue();
5128      }
5129
5130      // At this point, we must have a load or else we can't do the transform.
5131      if (!isa<LoadSDNode>(N0)) return SDValue();
5132
5133      // Because a SRL must be assumed to *need* to zero-extend the high bits
5134      // (as opposed to anyext the high bits), we can't combine the zextload
5135      // lowering of SRL and an sextload.
5136      if (cast<LoadSDNode>(N0)->getExtensionType() == ISD::SEXTLOAD)
5137        return SDValue();
5138
5139      // If the shift amount is larger than the input type then we're not
5140      // accessing any of the loaded bytes.  If the load was a zextload/extload
5141      // then the result of the shift+trunc is zero/undef (handled elsewhere).
5142      if (ShAmt >= cast<LoadSDNode>(N0)->getMemoryVT().getSizeInBits())
5143        return SDValue();
5144    }
5145  }
5146
5147  // If the load is shifted left (and the result isn't shifted back right),
5148  // we can fold the truncate through the shift.
5149  unsigned ShLeftAmt = 0;
5150  if (ShAmt == 0 && N0.getOpcode() == ISD::SHL && N0.hasOneUse() &&
5151      ExtVT == VT && TLI.isNarrowingProfitable(N0.getValueType(), VT)) {
5152    if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
5153      ShLeftAmt = N01->getZExtValue();
5154      N0 = N0.getOperand(0);
5155    }
5156  }
5157
5158  // If we haven't found a load, we can't narrow it.  Don't transform one with
5159  // multiple uses, this would require adding a new load.
5160  if (!isa<LoadSDNode>(N0) || !N0.hasOneUse())
5161    return SDValue();
5162
5163  // Don't change the width of a volatile load.
5164  LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5165  if (LN0->isVolatile())
5166    return SDValue();
5167
5168  // Verify that we are actually reducing a load width here.
5169  if (LN0->getMemoryVT().getSizeInBits() < EVTBits)
5170    return SDValue();
5171
5172  // For the transform to be legal, the load must produce only two values
5173  // (the value loaded and the chain).  Don't transform a pre-increment
5174  // load, for example, which produces an extra value.  Otherwise the
5175  // transformation is not equivalent, and the downstream logic to replace
5176  // uses gets things wrong.
5177  if (LN0->getNumValues() > 2)
5178    return SDValue();
5179
5180  EVT PtrType = N0.getOperand(1).getValueType();
5181
5182  if (PtrType == MVT::Untyped || PtrType.isExtended())
5183    // It's not possible to generate a constant of extended or untyped type.
5184    return SDValue();
5185
5186  // For big endian targets, we need to adjust the offset to the pointer to
5187  // load the correct bytes.
5188  if (TLI.isBigEndian()) {
5189    unsigned LVTStoreBits = LN0->getMemoryVT().getStoreSizeInBits();
5190    unsigned EVTStoreBits = ExtVT.getStoreSizeInBits();
5191    ShAmt = LVTStoreBits - EVTStoreBits - ShAmt;
5192  }
5193
5194  uint64_t PtrOff = ShAmt / 8;
5195  unsigned NewAlign = MinAlign(LN0->getAlignment(), PtrOff);
5196  SDValue NewPtr = DAG.getNode(ISD::ADD, SDLoc(LN0),
5197                               PtrType, LN0->getBasePtr(),
5198                               DAG.getConstant(PtrOff, PtrType));
5199  AddToWorkList(NewPtr.getNode());
5200
5201  SDValue Load;
5202  if (ExtType == ISD::NON_EXTLOAD)
5203    Load =  DAG.getLoad(VT, SDLoc(N0), LN0->getChain(), NewPtr,
5204                        LN0->getPointerInfo().getWithOffset(PtrOff),
5205                        LN0->isVolatile(), LN0->isNonTemporal(),
5206                        LN0->isInvariant(), NewAlign);
5207  else
5208    Load = DAG.getExtLoad(ExtType, SDLoc(N0), VT, LN0->getChain(),NewPtr,
5209                          LN0->getPointerInfo().getWithOffset(PtrOff),
5210                          ExtVT, LN0->isVolatile(), LN0->isNonTemporal(),
5211                          NewAlign);
5212
5213  // Replace the old load's chain with the new load's chain.
5214  WorkListRemover DeadNodes(*this);
5215  DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1));
5216
5217  // Shift the result left, if we've swallowed a left shift.
5218  SDValue Result = Load;
5219  if (ShLeftAmt != 0) {
5220    EVT ShImmTy = getShiftAmountTy(Result.getValueType());
5221    if (!isUIntN(ShImmTy.getSizeInBits(), ShLeftAmt))
5222      ShImmTy = VT;
5223    // If the shift amount is as large as the result size (but, presumably,
5224    // no larger than the source) then the useful bits of the result are
5225    // zero; we can't simply return the shortened shift, because the result
5226    // of that operation is undefined.
5227    if (ShLeftAmt >= VT.getSizeInBits())
5228      Result = DAG.getConstant(0, VT);
5229    else
5230      Result = DAG.getNode(ISD::SHL, SDLoc(N0), VT,
5231                          Result, DAG.getConstant(ShLeftAmt, ShImmTy));
5232  }
5233
5234  // Return the new loaded value.
5235  return Result;
5236}
5237
5238SDValue DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) {
5239  SDValue N0 = N->getOperand(0);
5240  SDValue N1 = N->getOperand(1);
5241  EVT VT = N->getValueType(0);
5242  EVT EVT = cast<VTSDNode>(N1)->getVT();
5243  unsigned VTBits = VT.getScalarType().getSizeInBits();
5244  unsigned EVTBits = EVT.getScalarType().getSizeInBits();
5245
5246  // fold (sext_in_reg c1) -> c1
5247  if (isa<ConstantSDNode>(N0) || N0.getOpcode() == ISD::UNDEF)
5248    return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, N0, N1);
5249
5250  // If the input is already sign extended, just drop the extension.
5251  if (DAG.ComputeNumSignBits(N0) >= VTBits-EVTBits+1)
5252    return N0;
5253
5254  // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2
5255  if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
5256      EVT.bitsLT(cast<VTSDNode>(N0.getOperand(1))->getVT())) {
5257    return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT,
5258                       N0.getOperand(0), N1);
5259  }
5260
5261  // fold (sext_in_reg (sext x)) -> (sext x)
5262  // fold (sext_in_reg (aext x)) -> (sext x)
5263  // if x is small enough.
5264  if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) {
5265    SDValue N00 = N0.getOperand(0);
5266    if (N00.getValueType().getScalarType().getSizeInBits() <= EVTBits &&
5267        (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT)))
5268      return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N00, N1);
5269  }
5270
5271  // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero.
5272  if (DAG.MaskedValueIsZero(N0, APInt::getBitsSet(VTBits, EVTBits-1, EVTBits)))
5273    return DAG.getZeroExtendInReg(N0, SDLoc(N), EVT);
5274
5275  // fold operands of sext_in_reg based on knowledge that the top bits are not
5276  // demanded.
5277  if (SimplifyDemandedBits(SDValue(N, 0)))
5278    return SDValue(N, 0);
5279
5280  // fold (sext_in_reg (load x)) -> (smaller sextload x)
5281  // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits))
5282  SDValue NarrowLoad = ReduceLoadWidth(N);
5283  if (NarrowLoad.getNode())
5284    return NarrowLoad;
5285
5286  // fold (sext_in_reg (srl X, 24), i8) -> (sra X, 24)
5287  // fold (sext_in_reg (srl X, 23), i8) -> (sra X, 23) iff possible.
5288  // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above.
5289  if (N0.getOpcode() == ISD::SRL) {
5290    if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
5291      if (ShAmt->getZExtValue()+EVTBits <= VTBits) {
5292        // We can turn this into an SRA iff the input to the SRL is already sign
5293        // extended enough.
5294        unsigned InSignBits = DAG.ComputeNumSignBits(N0.getOperand(0));
5295        if (VTBits-(ShAmt->getZExtValue()+EVTBits) < InSignBits)
5296          return DAG.getNode(ISD::SRA, SDLoc(N), VT,
5297                             N0.getOperand(0), N0.getOperand(1));
5298      }
5299  }
5300
5301  // fold (sext_inreg (extload x)) -> (sextload x)
5302  if (ISD::isEXTLoad(N0.getNode()) &&
5303      ISD::isUNINDEXEDLoad(N0.getNode()) &&
5304      EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
5305      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
5306       TLI.isLoadExtLegal(ISD::SEXTLOAD, EVT))) {
5307    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5308    SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
5309                                     LN0->getChain(),
5310                                     LN0->getBasePtr(), LN0->getPointerInfo(),
5311                                     EVT,
5312                                     LN0->isVolatile(), LN0->isNonTemporal(),
5313                                     LN0->getAlignment());
5314    CombineTo(N, ExtLoad);
5315    CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
5316    AddToWorkList(ExtLoad.getNode());
5317    return SDValue(N, 0);   // Return N so it doesn't get rechecked!
5318  }
5319  // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use
5320  if (ISD::isZEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
5321      N0.hasOneUse() &&
5322      EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
5323      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
5324       TLI.isLoadExtLegal(ISD::SEXTLOAD, EVT))) {
5325    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5326    SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
5327                                     LN0->getChain(),
5328                                     LN0->getBasePtr(), LN0->getPointerInfo(),
5329                                     EVT,
5330                                     LN0->isVolatile(), LN0->isNonTemporal(),
5331                                     LN0->getAlignment());
5332    CombineTo(N, ExtLoad);
5333    CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
5334    return SDValue(N, 0);   // Return N so it doesn't get rechecked!
5335  }
5336
5337  // Form (sext_inreg (bswap >> 16)) or (sext_inreg (rotl (bswap) 16))
5338  if (EVTBits <= 16 && N0.getOpcode() == ISD::OR) {
5339    SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0),
5340                                       N0.getOperand(1), false);
5341    if (BSwap.getNode() != 0)
5342      return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT,
5343                         BSwap, N1);
5344  }
5345
5346  return SDValue();
5347}
5348
5349SDValue DAGCombiner::visitTRUNCATE(SDNode *N) {
5350  SDValue N0 = N->getOperand(0);
5351  EVT VT = N->getValueType(0);
5352  bool isLE = TLI.isLittleEndian();
5353
5354  // noop truncate
5355  if (N0.getValueType() == N->getValueType(0))
5356    return N0;
5357  // fold (truncate c1) -> c1
5358  if (isa<ConstantSDNode>(N0))
5359    return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0);
5360  // fold (truncate (truncate x)) -> (truncate x)
5361  if (N0.getOpcode() == ISD::TRUNCATE)
5362    return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0));
5363  // fold (truncate (ext x)) -> (ext x) or (truncate x) or x
5364  if (N0.getOpcode() == ISD::ZERO_EXTEND ||
5365      N0.getOpcode() == ISD::SIGN_EXTEND ||
5366      N0.getOpcode() == ISD::ANY_EXTEND) {
5367    if (N0.getOperand(0).getValueType().bitsLT(VT))
5368      // if the source is smaller than the dest, we still need an extend
5369      return DAG.getNode(N0.getOpcode(), SDLoc(N), VT,
5370                         N0.getOperand(0));
5371    if (N0.getOperand(0).getValueType().bitsGT(VT))
5372      // if the source is larger than the dest, than we just need the truncate
5373      return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0));
5374    // if the source and dest are the same type, we can drop both the extend
5375    // and the truncate.
5376    return N0.getOperand(0);
5377  }
5378
5379  // Fold extract-and-trunc into a narrow extract. For example:
5380  //   i64 x = EXTRACT_VECTOR_ELT(v2i64 val, i32 1)
5381  //   i32 y = TRUNCATE(i64 x)
5382  //        -- becomes --
5383  //   v16i8 b = BITCAST (v2i64 val)
5384  //   i8 x = EXTRACT_VECTOR_ELT(v16i8 b, i32 8)
5385  //
5386  // Note: We only run this optimization after type legalization (which often
5387  // creates this pattern) and before operation legalization after which
5388  // we need to be more careful about the vector instructions that we generate.
5389  if (N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5390      LegalTypes && !LegalOperations && N0->hasOneUse()) {
5391
5392    EVT VecTy = N0.getOperand(0).getValueType();
5393    EVT ExTy = N0.getValueType();
5394    EVT TrTy = N->getValueType(0);
5395
5396    unsigned NumElem = VecTy.getVectorNumElements();
5397    unsigned SizeRatio = ExTy.getSizeInBits()/TrTy.getSizeInBits();
5398
5399    EVT NVT = EVT::getVectorVT(*DAG.getContext(), TrTy, SizeRatio * NumElem);
5400    assert(NVT.getSizeInBits() == VecTy.getSizeInBits() && "Invalid Size");
5401
5402    SDValue EltNo = N0->getOperand(1);
5403    if (isa<ConstantSDNode>(EltNo) && isTypeLegal(NVT)) {
5404      int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
5405      EVT IndexTy = N0->getOperand(1).getValueType();
5406      int Index = isLE ? (Elt*SizeRatio) : (Elt*SizeRatio + (SizeRatio-1));
5407
5408      SDValue V = DAG.getNode(ISD::BITCAST, SDLoc(N),
5409                              NVT, N0.getOperand(0));
5410
5411      return DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
5412                         SDLoc(N), TrTy, V,
5413                         DAG.getConstant(Index, IndexTy));
5414    }
5415  }
5416
5417  // Fold a series of buildvector, bitcast, and truncate if possible.
5418  // For example fold
5419  //   (2xi32 trunc (bitcast ((4xi32)buildvector x, x, y, y) 2xi64)) to
5420  //   (2xi32 (buildvector x, y)).
5421  if (Level == AfterLegalizeVectorOps && VT.isVector() &&
5422      N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() &&
5423      N0.getOperand(0).getOpcode() == ISD::BUILD_VECTOR &&
5424      N0.getOperand(0).hasOneUse()) {
5425
5426    SDValue BuildVect = N0.getOperand(0);
5427    EVT BuildVectEltTy = BuildVect.getValueType().getVectorElementType();
5428    EVT TruncVecEltTy = VT.getVectorElementType();
5429
5430    // Check that the element types match.
5431    if (BuildVectEltTy == TruncVecEltTy) {
5432      // Now we only need to compute the offset of the truncated elements.
5433      unsigned BuildVecNumElts =  BuildVect.getNumOperands();
5434      unsigned TruncVecNumElts = VT.getVectorNumElements();
5435      unsigned TruncEltOffset = BuildVecNumElts / TruncVecNumElts;
5436
5437      assert((BuildVecNumElts % TruncVecNumElts) == 0 &&
5438             "Invalid number of elements");
5439
5440      SmallVector<SDValue, 8> Opnds;
5441      for (unsigned i = 0, e = BuildVecNumElts; i != e; i += TruncEltOffset)
5442        Opnds.push_back(BuildVect.getOperand(i));
5443
5444      return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), VT, &Opnds[0],
5445                         Opnds.size());
5446    }
5447  }
5448
5449  // See if we can simplify the input to this truncate through knowledge that
5450  // only the low bits are being used.
5451  // For example "trunc (or (shl x, 8), y)" // -> trunc y
5452  // Currently we only perform this optimization on scalars because vectors
5453  // may have different active low bits.
5454  if (!VT.isVector()) {
5455    SDValue Shorter =
5456      GetDemandedBits(N0, APInt::getLowBitsSet(N0.getValueSizeInBits(),
5457                                               VT.getSizeInBits()));
5458    if (Shorter.getNode())
5459      return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Shorter);
5460  }
5461  // fold (truncate (load x)) -> (smaller load x)
5462  // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits))
5463  if (!LegalTypes || TLI.isTypeDesirableForOp(N0.getOpcode(), VT)) {
5464    SDValue Reduced = ReduceLoadWidth(N);
5465    if (Reduced.getNode())
5466      return Reduced;
5467  }
5468  // fold (trunc (concat ... x ...)) -> (concat ..., (trunc x), ...)),
5469  // where ... are all 'undef'.
5470  if (N0.getOpcode() == ISD::CONCAT_VECTORS && !LegalTypes) {
5471    SmallVector<EVT, 8> VTs;
5472    SDValue V;
5473    unsigned Idx = 0;
5474    unsigned NumDefs = 0;
5475
5476    for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i) {
5477      SDValue X = N0.getOperand(i);
5478      if (X.getOpcode() != ISD::UNDEF) {
5479        V = X;
5480        Idx = i;
5481        NumDefs++;
5482      }
5483      // Stop if more than one members are non-undef.
5484      if (NumDefs > 1)
5485        break;
5486      VTs.push_back(EVT::getVectorVT(*DAG.getContext(),
5487                                     VT.getVectorElementType(),
5488                                     X.getValueType().getVectorNumElements()));
5489    }
5490
5491    if (NumDefs == 0)
5492      return DAG.getUNDEF(VT);
5493
5494    if (NumDefs == 1) {
5495      assert(V.getNode() && "The single defined operand is empty!");
5496      SmallVector<SDValue, 8> Opnds;
5497      for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
5498        if (i != Idx) {
5499          Opnds.push_back(DAG.getUNDEF(VTs[i]));
5500          continue;
5501        }
5502        SDValue NV = DAG.getNode(ISD::TRUNCATE, SDLoc(V), VTs[i], V);
5503        AddToWorkList(NV.getNode());
5504        Opnds.push_back(NV);
5505      }
5506      return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT,
5507                         &Opnds[0], Opnds.size());
5508    }
5509  }
5510
5511  // Simplify the operands using demanded-bits information.
5512  if (!VT.isVector() &&
5513      SimplifyDemandedBits(SDValue(N, 0)))
5514    return SDValue(N, 0);
5515
5516  return SDValue();
5517}
5518
5519static SDNode *getBuildPairElt(SDNode *N, unsigned i) {
5520  SDValue Elt = N->getOperand(i);
5521  if (Elt.getOpcode() != ISD::MERGE_VALUES)
5522    return Elt.getNode();
5523  return Elt.getOperand(Elt.getResNo()).getNode();
5524}
5525
5526/// CombineConsecutiveLoads - build_pair (load, load) -> load
5527/// if load locations are consecutive.
5528SDValue DAGCombiner::CombineConsecutiveLoads(SDNode *N, EVT VT) {
5529  assert(N->getOpcode() == ISD::BUILD_PAIR);
5530
5531  LoadSDNode *LD1 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 0));
5532  LoadSDNode *LD2 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 1));
5533  if (!LD1 || !LD2 || !ISD::isNON_EXTLoad(LD1) || !LD1->hasOneUse() ||
5534      LD1->getPointerInfo().getAddrSpace() !=
5535         LD2->getPointerInfo().getAddrSpace())
5536    return SDValue();
5537  EVT LD1VT = LD1->getValueType(0);
5538
5539  if (ISD::isNON_EXTLoad(LD2) &&
5540      LD2->hasOneUse() &&
5541      // If both are volatile this would reduce the number of volatile loads.
5542      // If one is volatile it might be ok, but play conservative and bail out.
5543      !LD1->isVolatile() &&
5544      !LD2->isVolatile() &&
5545      DAG.isConsecutiveLoad(LD2, LD1, LD1VT.getSizeInBits()/8, 1)) {
5546    unsigned Align = LD1->getAlignment();
5547    unsigned NewAlign = TLI.getDataLayout()->
5548      getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
5549
5550    if (NewAlign <= Align &&
5551        (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT)))
5552      return DAG.getLoad(VT, SDLoc(N), LD1->getChain(),
5553                         LD1->getBasePtr(), LD1->getPointerInfo(),
5554                         false, false, false, Align);
5555  }
5556
5557  return SDValue();
5558}
5559
5560SDValue DAGCombiner::visitBITCAST(SDNode *N) {
5561  SDValue N0 = N->getOperand(0);
5562  EVT VT = N->getValueType(0);
5563
5564  // If the input is a BUILD_VECTOR with all constant elements, fold this now.
5565  // Only do this before legalize, since afterward the target may be depending
5566  // on the bitconvert.
5567  // First check to see if this is all constant.
5568  if (!LegalTypes &&
5569      N0.getOpcode() == ISD::BUILD_VECTOR && N0.getNode()->hasOneUse() &&
5570      VT.isVector()) {
5571    bool isSimple = true;
5572    for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i)
5573      if (N0.getOperand(i).getOpcode() != ISD::UNDEF &&
5574          N0.getOperand(i).getOpcode() != ISD::Constant &&
5575          N0.getOperand(i).getOpcode() != ISD::ConstantFP) {
5576        isSimple = false;
5577        break;
5578      }
5579
5580    EVT DestEltVT = N->getValueType(0).getVectorElementType();
5581    assert(!DestEltVT.isVector() &&
5582           "Element type of vector ValueType must not be vector!");
5583    if (isSimple)
5584      return ConstantFoldBITCASTofBUILD_VECTOR(N0.getNode(), DestEltVT);
5585  }
5586
5587  // If the input is a constant, let getNode fold it.
5588  if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0)) {
5589    SDValue Res = DAG.getNode(ISD::BITCAST, SDLoc(N), VT, N0);
5590    if (Res.getNode() != N) {
5591      if (!LegalOperations ||
5592          TLI.isOperationLegal(Res.getNode()->getOpcode(), VT))
5593        return Res;
5594
5595      // Folding it resulted in an illegal node, and it's too late to
5596      // do that. Clean up the old node and forego the transformation.
5597      // Ideally this won't happen very often, because instcombine
5598      // and the earlier dagcombine runs (where illegal nodes are
5599      // permitted) should have folded most of them already.
5600      DAG.DeleteNode(Res.getNode());
5601    }
5602  }
5603
5604  // (conv (conv x, t1), t2) -> (conv x, t2)
5605  if (N0.getOpcode() == ISD::BITCAST)
5606    return DAG.getNode(ISD::BITCAST, SDLoc(N), VT,
5607                       N0.getOperand(0));
5608
5609  // fold (conv (load x)) -> (load (conv*)x)
5610  // If the resultant load doesn't need a higher alignment than the original!
5611  if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
5612      // Do not change the width of a volatile load.
5613      !cast<LoadSDNode>(N0)->isVolatile() &&
5614      (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT))) {
5615    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5616    unsigned Align = TLI.getDataLayout()->
5617      getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
5618    unsigned OrigAlign = LN0->getAlignment();
5619
5620    if (Align <= OrigAlign) {
5621      SDValue Load = DAG.getLoad(VT, SDLoc(N), LN0->getChain(),
5622                                 LN0->getBasePtr(), LN0->getPointerInfo(),
5623                                 LN0->isVolatile(), LN0->isNonTemporal(),
5624                                 LN0->isInvariant(), OrigAlign);
5625      AddToWorkList(N);
5626      CombineTo(N0.getNode(),
5627                DAG.getNode(ISD::BITCAST, SDLoc(N0),
5628                            N0.getValueType(), Load),
5629                Load.getValue(1));
5630      return Load;
5631    }
5632  }
5633
5634  // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
5635  // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
5636  // This often reduces constant pool loads.
5637  if (((N0.getOpcode() == ISD::FNEG && !TLI.isFNegFree(VT)) ||
5638       (N0.getOpcode() == ISD::FABS && !TLI.isFAbsFree(VT))) &&
5639      N0.getNode()->hasOneUse() && VT.isInteger() &&
5640      !VT.isVector() && !N0.getValueType().isVector()) {
5641    SDValue NewConv = DAG.getNode(ISD::BITCAST, SDLoc(N0), VT,
5642                                  N0.getOperand(0));
5643    AddToWorkList(NewConv.getNode());
5644
5645    APInt SignBit = APInt::getSignBit(VT.getSizeInBits());
5646    if (N0.getOpcode() == ISD::FNEG)
5647      return DAG.getNode(ISD::XOR, SDLoc(N), VT,
5648                         NewConv, DAG.getConstant(SignBit, VT));
5649    assert(N0.getOpcode() == ISD::FABS);
5650    return DAG.getNode(ISD::AND, SDLoc(N), VT,
5651                       NewConv, DAG.getConstant(~SignBit, VT));
5652  }
5653
5654  // fold (bitconvert (fcopysign cst, x)) ->
5655  //         (or (and (bitconvert x), sign), (and cst, (not sign)))
5656  // Note that we don't handle (copysign x, cst) because this can always be
5657  // folded to an fneg or fabs.
5658  if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse() &&
5659      isa<ConstantFPSDNode>(N0.getOperand(0)) &&
5660      VT.isInteger() && !VT.isVector()) {
5661    unsigned OrigXWidth = N0.getOperand(1).getValueType().getSizeInBits();
5662    EVT IntXVT = EVT::getIntegerVT(*DAG.getContext(), OrigXWidth);
5663    if (isTypeLegal(IntXVT)) {
5664      SDValue X = DAG.getNode(ISD::BITCAST, SDLoc(N0),
5665                              IntXVT, N0.getOperand(1));
5666      AddToWorkList(X.getNode());
5667
5668      // If X has a different width than the result/lhs, sext it or truncate it.
5669      unsigned VTWidth = VT.getSizeInBits();
5670      if (OrigXWidth < VTWidth) {
5671        X = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, X);
5672        AddToWorkList(X.getNode());
5673      } else if (OrigXWidth > VTWidth) {
5674        // To get the sign bit in the right place, we have to shift it right
5675        // before truncating.
5676        X = DAG.getNode(ISD::SRL, SDLoc(X),
5677                        X.getValueType(), X,
5678                        DAG.getConstant(OrigXWidth-VTWidth, X.getValueType()));
5679        AddToWorkList(X.getNode());
5680        X = DAG.getNode(ISD::TRUNCATE, SDLoc(X), VT, X);
5681        AddToWorkList(X.getNode());
5682      }
5683
5684      APInt SignBit = APInt::getSignBit(VT.getSizeInBits());
5685      X = DAG.getNode(ISD::AND, SDLoc(X), VT,
5686                      X, DAG.getConstant(SignBit, VT));
5687      AddToWorkList(X.getNode());
5688
5689      SDValue Cst = DAG.getNode(ISD::BITCAST, SDLoc(N0),
5690                                VT, N0.getOperand(0));
5691      Cst = DAG.getNode(ISD::AND, SDLoc(Cst), VT,
5692                        Cst, DAG.getConstant(~SignBit, VT));
5693      AddToWorkList(Cst.getNode());
5694
5695      return DAG.getNode(ISD::OR, SDLoc(N), VT, X, Cst);
5696    }
5697  }
5698
5699  // bitconvert(build_pair(ld, ld)) -> ld iff load locations are consecutive.
5700  if (N0.getOpcode() == ISD::BUILD_PAIR) {
5701    SDValue CombineLD = CombineConsecutiveLoads(N0.getNode(), VT);
5702    if (CombineLD.getNode())
5703      return CombineLD;
5704  }
5705
5706  return SDValue();
5707}
5708
5709SDValue DAGCombiner::visitBUILD_PAIR(SDNode *N) {
5710  EVT VT = N->getValueType(0);
5711  return CombineConsecutiveLoads(N, VT);
5712}
5713
5714/// ConstantFoldBITCASTofBUILD_VECTOR - We know that BV is a build_vector
5715/// node with Constant, ConstantFP or Undef operands.  DstEltVT indicates the
5716/// destination element value type.
5717SDValue DAGCombiner::
5718ConstantFoldBITCASTofBUILD_VECTOR(SDNode *BV, EVT DstEltVT) {
5719  EVT SrcEltVT = BV->getValueType(0).getVectorElementType();
5720
5721  // If this is already the right type, we're done.
5722  if (SrcEltVT == DstEltVT) return SDValue(BV, 0);
5723
5724  unsigned SrcBitSize = SrcEltVT.getSizeInBits();
5725  unsigned DstBitSize = DstEltVT.getSizeInBits();
5726
5727  // If this is a conversion of N elements of one type to N elements of another
5728  // type, convert each element.  This handles FP<->INT cases.
5729  if (SrcBitSize == DstBitSize) {
5730    EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT,
5731                              BV->getValueType(0).getVectorNumElements());
5732
5733    // Due to the FP element handling below calling this routine recursively,
5734    // we can end up with a scalar-to-vector node here.
5735    if (BV->getOpcode() == ISD::SCALAR_TO_VECTOR)
5736      return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(BV), VT,
5737                         DAG.getNode(ISD::BITCAST, SDLoc(BV),
5738                                     DstEltVT, BV->getOperand(0)));
5739
5740    SmallVector<SDValue, 8> Ops;
5741    for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
5742      SDValue Op = BV->getOperand(i);
5743      // If the vector element type is not legal, the BUILD_VECTOR operands
5744      // are promoted and implicitly truncated.  Make that explicit here.
5745      if (Op.getValueType() != SrcEltVT)
5746        Op = DAG.getNode(ISD::TRUNCATE, SDLoc(BV), SrcEltVT, Op);
5747      Ops.push_back(DAG.getNode(ISD::BITCAST, SDLoc(BV),
5748                                DstEltVT, Op));
5749      AddToWorkList(Ops.back().getNode());
5750    }
5751    return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(BV), VT,
5752                       &Ops[0], Ops.size());
5753  }
5754
5755  // Otherwise, we're growing or shrinking the elements.  To avoid having to
5756  // handle annoying details of growing/shrinking FP values, we convert them to
5757  // int first.
5758  if (SrcEltVT.isFloatingPoint()) {
5759    // Convert the input float vector to a int vector where the elements are the
5760    // same sizes.
5761    assert((SrcEltVT == MVT::f32 || SrcEltVT == MVT::f64) && "Unknown FP VT!");
5762    EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), SrcEltVT.getSizeInBits());
5763    BV = ConstantFoldBITCASTofBUILD_VECTOR(BV, IntVT).getNode();
5764    SrcEltVT = IntVT;
5765  }
5766
5767  // Now we know the input is an integer vector.  If the output is a FP type,
5768  // convert to integer first, then to FP of the right size.
5769  if (DstEltVT.isFloatingPoint()) {
5770    assert((DstEltVT == MVT::f32 || DstEltVT == MVT::f64) && "Unknown FP VT!");
5771    EVT TmpVT = EVT::getIntegerVT(*DAG.getContext(), DstEltVT.getSizeInBits());
5772    SDNode *Tmp = ConstantFoldBITCASTofBUILD_VECTOR(BV, TmpVT).getNode();
5773
5774    // Next, convert to FP elements of the same size.
5775    return ConstantFoldBITCASTofBUILD_VECTOR(Tmp, DstEltVT);
5776  }
5777
5778  // Okay, we know the src/dst types are both integers of differing types.
5779  // Handling growing first.
5780  assert(SrcEltVT.isInteger() && DstEltVT.isInteger());
5781  if (SrcBitSize < DstBitSize) {
5782    unsigned NumInputsPerOutput = DstBitSize/SrcBitSize;
5783
5784    SmallVector<SDValue, 8> Ops;
5785    for (unsigned i = 0, e = BV->getNumOperands(); i != e;
5786         i += NumInputsPerOutput) {
5787      bool isLE = TLI.isLittleEndian();
5788      APInt NewBits = APInt(DstBitSize, 0);
5789      bool EltIsUndef = true;
5790      for (unsigned j = 0; j != NumInputsPerOutput; ++j) {
5791        // Shift the previously computed bits over.
5792        NewBits <<= SrcBitSize;
5793        SDValue Op = BV->getOperand(i+ (isLE ? (NumInputsPerOutput-j-1) : j));
5794        if (Op.getOpcode() == ISD::UNDEF) continue;
5795        EltIsUndef = false;
5796
5797        NewBits |= cast<ConstantSDNode>(Op)->getAPIntValue().
5798                   zextOrTrunc(SrcBitSize).zext(DstBitSize);
5799      }
5800
5801      if (EltIsUndef)
5802        Ops.push_back(DAG.getUNDEF(DstEltVT));
5803      else
5804        Ops.push_back(DAG.getConstant(NewBits, DstEltVT));
5805    }
5806
5807    EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, Ops.size());
5808    return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(BV), VT,
5809                       &Ops[0], Ops.size());
5810  }
5811
5812  // Finally, this must be the case where we are shrinking elements: each input
5813  // turns into multiple outputs.
5814  bool isS2V = ISD::isScalarToVector(BV);
5815  unsigned NumOutputsPerInput = SrcBitSize/DstBitSize;
5816  EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT,
5817                            NumOutputsPerInput*BV->getNumOperands());
5818  SmallVector<SDValue, 8> Ops;
5819
5820  for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
5821    if (BV->getOperand(i).getOpcode() == ISD::UNDEF) {
5822      for (unsigned j = 0; j != NumOutputsPerInput; ++j)
5823        Ops.push_back(DAG.getUNDEF(DstEltVT));
5824      continue;
5825    }
5826
5827    APInt OpVal = cast<ConstantSDNode>(BV->getOperand(i))->
5828                  getAPIntValue().zextOrTrunc(SrcBitSize);
5829
5830    for (unsigned j = 0; j != NumOutputsPerInput; ++j) {
5831      APInt ThisVal = OpVal.trunc(DstBitSize);
5832      Ops.push_back(DAG.getConstant(ThisVal, DstEltVT));
5833      if (isS2V && i == 0 && j == 0 && ThisVal.zext(SrcBitSize) == OpVal)
5834        // Simply turn this into a SCALAR_TO_VECTOR of the new type.
5835        return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(BV), VT,
5836                           Ops[0]);
5837      OpVal = OpVal.lshr(DstBitSize);
5838    }
5839
5840    // For big endian targets, swap the order of the pieces of each element.
5841    if (TLI.isBigEndian())
5842      std::reverse(Ops.end()-NumOutputsPerInput, Ops.end());
5843  }
5844
5845  return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(BV), VT,
5846                     &Ops[0], Ops.size());
5847}
5848
5849SDValue DAGCombiner::visitFADD(SDNode *N) {
5850  SDValue N0 = N->getOperand(0);
5851  SDValue N1 = N->getOperand(1);
5852  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
5853  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5854  EVT VT = N->getValueType(0);
5855
5856  // fold vector ops
5857  if (VT.isVector()) {
5858    SDValue FoldedVOp = SimplifyVBinOp(N);
5859    if (FoldedVOp.getNode()) return FoldedVOp;
5860  }
5861
5862  // fold (fadd c1, c2) -> c1 + c2
5863  if (N0CFP && N1CFP)
5864    return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0, N1);
5865  // canonicalize constant to RHS
5866  if (N0CFP && !N1CFP)
5867    return DAG.getNode(ISD::FADD, SDLoc(N), VT, N1, N0);
5868  // fold (fadd A, 0) -> A
5869  if (DAG.getTarget().Options.UnsafeFPMath && N1CFP &&
5870      N1CFP->getValueAPF().isZero())
5871    return N0;
5872  // fold (fadd A, (fneg B)) -> (fsub A, B)
5873  if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) &&
5874    isNegatibleForFree(N1, LegalOperations, TLI, &DAG.getTarget().Options) == 2)
5875    return DAG.getNode(ISD::FSUB, SDLoc(N), VT, N0,
5876                       GetNegatedExpression(N1, DAG, LegalOperations));
5877  // fold (fadd (fneg A), B) -> (fsub B, A)
5878  if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) &&
5879    isNegatibleForFree(N0, LegalOperations, TLI, &DAG.getTarget().Options) == 2)
5880    return DAG.getNode(ISD::FSUB, SDLoc(N), VT, N1,
5881                       GetNegatedExpression(N0, DAG, LegalOperations));
5882
5883  // If allowed, fold (fadd (fadd x, c1), c2) -> (fadd x, (fadd c1, c2))
5884  if (DAG.getTarget().Options.UnsafeFPMath && N1CFP &&
5885      N0.getOpcode() == ISD::FADD && N0.getNode()->hasOneUse() &&
5886      isa<ConstantFPSDNode>(N0.getOperand(1)))
5887    return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0.getOperand(0),
5888                       DAG.getNode(ISD::FADD, SDLoc(N), VT,
5889                                   N0.getOperand(1), N1));
5890
5891  // No FP constant should be created after legalization as Instruction
5892  // Selection pass has hard time in dealing with FP constant.
5893  //
5894  // We don't need test this condition for transformation like following, as
5895  // the DAG being transformed implies it is legal to take FP constant as
5896  // operand.
5897  //
5898  //  (fadd (fmul c, x), x) -> (fmul c+1, x)
5899  //
5900  bool AllowNewFpConst = (Level < AfterLegalizeDAG);
5901
5902  // If allow, fold (fadd (fneg x), x) -> 0.0
5903  if (AllowNewFpConst && DAG.getTarget().Options.UnsafeFPMath &&
5904      N0.getOpcode() == ISD::FNEG && N0.getOperand(0) == N1) {
5905    return DAG.getConstantFP(0.0, VT);
5906  }
5907
5908    // If allow, fold (fadd x, (fneg x)) -> 0.0
5909  if (AllowNewFpConst && DAG.getTarget().Options.UnsafeFPMath &&
5910      N1.getOpcode() == ISD::FNEG && N1.getOperand(0) == N0) {
5911    return DAG.getConstantFP(0.0, VT);
5912  }
5913
5914  // In unsafe math mode, we can fold chains of FADD's of the same value
5915  // into multiplications.  This transform is not safe in general because
5916  // we are reducing the number of rounding steps.
5917  if (DAG.getTarget().Options.UnsafeFPMath &&
5918      TLI.isOperationLegalOrCustom(ISD::FMUL, VT) &&
5919      !N0CFP && !N1CFP) {
5920    if (N0.getOpcode() == ISD::FMUL) {
5921      ConstantFPSDNode *CFP00 = dyn_cast<ConstantFPSDNode>(N0.getOperand(0));
5922      ConstantFPSDNode *CFP01 = dyn_cast<ConstantFPSDNode>(N0.getOperand(1));
5923
5924      // (fadd (fmul c, x), x) -> (fmul x, c+1)
5925      if (CFP00 && !CFP01 && N0.getOperand(1) == N1) {
5926        SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
5927                                     SDValue(CFP00, 0),
5928                                     DAG.getConstantFP(1.0, VT));
5929        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
5930                           N1, NewCFP);
5931      }
5932
5933      // (fadd (fmul x, c), x) -> (fmul x, c+1)
5934      if (CFP01 && !CFP00 && N0.getOperand(0) == N1) {
5935        SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
5936                                     SDValue(CFP01, 0),
5937                                     DAG.getConstantFP(1.0, VT));
5938        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
5939                           N1, NewCFP);
5940      }
5941
5942      // (fadd (fmul c, x), (fadd x, x)) -> (fmul x, c+2)
5943      if (CFP00 && !CFP01 && N1.getOpcode() == ISD::FADD &&
5944          N1.getOperand(0) == N1.getOperand(1) &&
5945          N0.getOperand(1) == N1.getOperand(0)) {
5946        SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
5947                                     SDValue(CFP00, 0),
5948                                     DAG.getConstantFP(2.0, VT));
5949        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
5950                           N0.getOperand(1), NewCFP);
5951      }
5952
5953      // (fadd (fmul x, c), (fadd x, x)) -> (fmul x, c+2)
5954      if (CFP01 && !CFP00 && N1.getOpcode() == ISD::FADD &&
5955          N1.getOperand(0) == N1.getOperand(1) &&
5956          N0.getOperand(0) == N1.getOperand(0)) {
5957        SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
5958                                     SDValue(CFP01, 0),
5959                                     DAG.getConstantFP(2.0, VT));
5960        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
5961                           N0.getOperand(0), NewCFP);
5962      }
5963    }
5964
5965    if (N1.getOpcode() == ISD::FMUL) {
5966      ConstantFPSDNode *CFP10 = dyn_cast<ConstantFPSDNode>(N1.getOperand(0));
5967      ConstantFPSDNode *CFP11 = dyn_cast<ConstantFPSDNode>(N1.getOperand(1));
5968
5969      // (fadd x, (fmul c, x)) -> (fmul x, c+1)
5970      if (CFP10 && !CFP11 && N1.getOperand(1) == N0) {
5971        SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
5972                                     SDValue(CFP10, 0),
5973                                     DAG.getConstantFP(1.0, VT));
5974        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
5975                           N0, NewCFP);
5976      }
5977
5978      // (fadd x, (fmul x, c)) -> (fmul x, c+1)
5979      if (CFP11 && !CFP10 && N1.getOperand(0) == N0) {
5980        SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
5981                                     SDValue(CFP11, 0),
5982                                     DAG.getConstantFP(1.0, VT));
5983        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
5984                           N0, NewCFP);
5985      }
5986
5987
5988      // (fadd (fadd x, x), (fmul c, x)) -> (fmul x, c+2)
5989      if (CFP10 && !CFP11 && N0.getOpcode() == ISD::FADD &&
5990          N0.getOperand(0) == N0.getOperand(1) &&
5991          N1.getOperand(1) == N0.getOperand(0)) {
5992        SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
5993                                     SDValue(CFP10, 0),
5994                                     DAG.getConstantFP(2.0, VT));
5995        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
5996                           N1.getOperand(1), NewCFP);
5997      }
5998
5999      // (fadd (fadd x, x), (fmul x, c)) -> (fmul x, c+2)
6000      if (CFP11 && !CFP10 && N0.getOpcode() == ISD::FADD &&
6001          N0.getOperand(0) == N0.getOperand(1) &&
6002          N1.getOperand(0) == N0.getOperand(0)) {
6003        SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
6004                                     SDValue(CFP11, 0),
6005                                     DAG.getConstantFP(2.0, VT));
6006        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6007                           N1.getOperand(0), NewCFP);
6008      }
6009    }
6010
6011    if (N0.getOpcode() == ISD::FADD && AllowNewFpConst) {
6012      ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N0.getOperand(0));
6013      // (fadd (fadd x, x), x) -> (fmul x, 3.0)
6014      if (!CFP && N0.getOperand(0) == N0.getOperand(1) &&
6015          (N0.getOperand(0) == N1)) {
6016        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6017                           N1, DAG.getConstantFP(3.0, VT));
6018      }
6019    }
6020
6021    if (N1.getOpcode() == ISD::FADD && AllowNewFpConst) {
6022      ConstantFPSDNode *CFP10 = dyn_cast<ConstantFPSDNode>(N1.getOperand(0));
6023      // (fadd x, (fadd x, x)) -> (fmul x, 3.0)
6024      if (!CFP10 && N1.getOperand(0) == N1.getOperand(1) &&
6025          N1.getOperand(0) == N0) {
6026        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6027                           N0, DAG.getConstantFP(3.0, VT));
6028      }
6029    }
6030
6031    // (fadd (fadd x, x), (fadd x, x)) -> (fmul x, 4.0)
6032    if (AllowNewFpConst &&
6033        N0.getOpcode() == ISD::FADD && N1.getOpcode() == ISD::FADD &&
6034        N0.getOperand(0) == N0.getOperand(1) &&
6035        N1.getOperand(0) == N1.getOperand(1) &&
6036        N0.getOperand(0) == N1.getOperand(0)) {
6037      return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6038                         N0.getOperand(0),
6039                         DAG.getConstantFP(4.0, VT));
6040    }
6041  }
6042
6043  // FADD -> FMA combines:
6044  if ((DAG.getTarget().Options.AllowFPOpFusion == FPOpFusion::Fast ||
6045       DAG.getTarget().Options.UnsafeFPMath) &&
6046      DAG.getTarget().getTargetLowering()->isFMAFasterThanMulAndAdd(VT) &&
6047      TLI.isOperationLegalOrCustom(ISD::FMA, VT)) {
6048
6049    // fold (fadd (fmul x, y), z) -> (fma x, y, z)
6050    if (N0.getOpcode() == ISD::FMUL && N0->hasOneUse()) {
6051      return DAG.getNode(ISD::FMA, SDLoc(N), VT,
6052                         N0.getOperand(0), N0.getOperand(1), N1);
6053    }
6054
6055    // fold (fadd x, (fmul y, z)) -> (fma y, z, x)
6056    // Note: Commutes FADD operands.
6057    if (N1.getOpcode() == ISD::FMUL && N1->hasOneUse()) {
6058      return DAG.getNode(ISD::FMA, SDLoc(N), VT,
6059                         N1.getOperand(0), N1.getOperand(1), N0);
6060    }
6061  }
6062
6063  return SDValue();
6064}
6065
6066SDValue DAGCombiner::visitFSUB(SDNode *N) {
6067  SDValue N0 = N->getOperand(0);
6068  SDValue N1 = N->getOperand(1);
6069  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6070  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6071  EVT VT = N->getValueType(0);
6072  SDLoc dl(N);
6073
6074  // fold vector ops
6075  if (VT.isVector()) {
6076    SDValue FoldedVOp = SimplifyVBinOp(N);
6077    if (FoldedVOp.getNode()) return FoldedVOp;
6078  }
6079
6080  // fold (fsub c1, c2) -> c1-c2
6081  if (N0CFP && N1CFP)
6082    return DAG.getNode(ISD::FSUB, SDLoc(N), VT, N0, N1);
6083  // fold (fsub A, 0) -> A
6084  if (DAG.getTarget().Options.UnsafeFPMath &&
6085      N1CFP && N1CFP->getValueAPF().isZero())
6086    return N0;
6087  // fold (fsub 0, B) -> -B
6088  if (DAG.getTarget().Options.UnsafeFPMath &&
6089      N0CFP && N0CFP->getValueAPF().isZero()) {
6090    if (isNegatibleForFree(N1, LegalOperations, TLI, &DAG.getTarget().Options))
6091      return GetNegatedExpression(N1, DAG, LegalOperations);
6092    if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
6093      return DAG.getNode(ISD::FNEG, dl, VT, N1);
6094  }
6095  // fold (fsub A, (fneg B)) -> (fadd A, B)
6096  if (isNegatibleForFree(N1, LegalOperations, TLI, &DAG.getTarget().Options))
6097    return DAG.getNode(ISD::FADD, dl, VT, N0,
6098                       GetNegatedExpression(N1, DAG, LegalOperations));
6099
6100  // If 'unsafe math' is enabled, fold
6101  //    (fsub x, x) -> 0.0 &
6102  //    (fsub x, (fadd x, y)) -> (fneg y) &
6103  //    (fsub x, (fadd y, x)) -> (fneg y)
6104  if (DAG.getTarget().Options.UnsafeFPMath) {
6105    if (N0 == N1)
6106      return DAG.getConstantFP(0.0f, VT);
6107
6108    if (N1.getOpcode() == ISD::FADD) {
6109      SDValue N10 = N1->getOperand(0);
6110      SDValue N11 = N1->getOperand(1);
6111
6112      if (N10 == N0 && isNegatibleForFree(N11, LegalOperations, TLI,
6113                                          &DAG.getTarget().Options))
6114        return GetNegatedExpression(N11, DAG, LegalOperations);
6115      else if (N11 == N0 && isNegatibleForFree(N10, LegalOperations, TLI,
6116                                               &DAG.getTarget().Options))
6117        return GetNegatedExpression(N10, DAG, LegalOperations);
6118    }
6119  }
6120
6121  // FSUB -> FMA combines:
6122  if ((DAG.getTarget().Options.AllowFPOpFusion == FPOpFusion::Fast ||
6123       DAG.getTarget().Options.UnsafeFPMath) &&
6124      DAG.getTarget().getTargetLowering()->isFMAFasterThanMulAndAdd(VT) &&
6125      TLI.isOperationLegalOrCustom(ISD::FMA, VT)) {
6126
6127    // fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z))
6128    if (N0.getOpcode() == ISD::FMUL && N0->hasOneUse()) {
6129      return DAG.getNode(ISD::FMA, dl, VT,
6130                         N0.getOperand(0), N0.getOperand(1),
6131                         DAG.getNode(ISD::FNEG, dl, VT, N1));
6132    }
6133
6134    // fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x)
6135    // Note: Commutes FSUB operands.
6136    if (N1.getOpcode() == ISD::FMUL && N1->hasOneUse()) {
6137      return DAG.getNode(ISD::FMA, dl, VT,
6138                         DAG.getNode(ISD::FNEG, dl, VT,
6139                         N1.getOperand(0)),
6140                         N1.getOperand(1), N0);
6141    }
6142
6143    // fold (fsub (-(fmul, x, y)), z) -> (fma (fneg x), y, (fneg z))
6144    if (N0.getOpcode() == ISD::FNEG &&
6145        N0.getOperand(0).getOpcode() == ISD::FMUL &&
6146        N0->hasOneUse() && N0.getOperand(0).hasOneUse()) {
6147      SDValue N00 = N0.getOperand(0).getOperand(0);
6148      SDValue N01 = N0.getOperand(0).getOperand(1);
6149      return DAG.getNode(ISD::FMA, dl, VT,
6150                         DAG.getNode(ISD::FNEG, dl, VT, N00), N01,
6151                         DAG.getNode(ISD::FNEG, dl, VT, N1));
6152    }
6153  }
6154
6155  return SDValue();
6156}
6157
6158SDValue DAGCombiner::visitFMUL(SDNode *N) {
6159  SDValue N0 = N->getOperand(0);
6160  SDValue N1 = N->getOperand(1);
6161  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6162  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6163  EVT VT = N->getValueType(0);
6164  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6165
6166  // fold vector ops
6167  if (VT.isVector()) {
6168    SDValue FoldedVOp = SimplifyVBinOp(N);
6169    if (FoldedVOp.getNode()) return FoldedVOp;
6170  }
6171
6172  // fold (fmul c1, c2) -> c1*c2
6173  if (N0CFP && N1CFP)
6174    return DAG.getNode(ISD::FMUL, SDLoc(N), VT, N0, N1);
6175  // canonicalize constant to RHS
6176  if (N0CFP && !N1CFP)
6177    return DAG.getNode(ISD::FMUL, SDLoc(N), VT, N1, N0);
6178  // fold (fmul A, 0) -> 0
6179  if (DAG.getTarget().Options.UnsafeFPMath &&
6180      N1CFP && N1CFP->getValueAPF().isZero())
6181    return N1;
6182  // fold (fmul A, 0) -> 0, vector edition.
6183  if (DAG.getTarget().Options.UnsafeFPMath &&
6184      ISD::isBuildVectorAllZeros(N1.getNode()))
6185    return N1;
6186  // fold (fmul A, 1.0) -> A
6187  if (N1CFP && N1CFP->isExactlyValue(1.0))
6188    return N0;
6189  // fold (fmul X, 2.0) -> (fadd X, X)
6190  if (N1CFP && N1CFP->isExactlyValue(+2.0))
6191    return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0, N0);
6192  // fold (fmul X, -1.0) -> (fneg X)
6193  if (N1CFP && N1CFP->isExactlyValue(-1.0))
6194    if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
6195      return DAG.getNode(ISD::FNEG, SDLoc(N), VT, N0);
6196
6197  // fold (fmul (fneg X), (fneg Y)) -> (fmul X, Y)
6198  if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, TLI,
6199                                       &DAG.getTarget().Options)) {
6200    if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, TLI,
6201                                         &DAG.getTarget().Options)) {
6202      // Both can be negated for free, check to see if at least one is cheaper
6203      // negated.
6204      if (LHSNeg == 2 || RHSNeg == 2)
6205        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6206                           GetNegatedExpression(N0, DAG, LegalOperations),
6207                           GetNegatedExpression(N1, DAG, LegalOperations));
6208    }
6209  }
6210
6211  // If allowed, fold (fmul (fmul x, c1), c2) -> (fmul x, (fmul c1, c2))
6212  if (DAG.getTarget().Options.UnsafeFPMath &&
6213      N1CFP && N0.getOpcode() == ISD::FMUL &&
6214      N0.getNode()->hasOneUse() && isa<ConstantFPSDNode>(N0.getOperand(1)))
6215    return DAG.getNode(ISD::FMUL, SDLoc(N), VT, N0.getOperand(0),
6216                       DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6217                                   N0.getOperand(1), N1));
6218
6219  return SDValue();
6220}
6221
6222SDValue DAGCombiner::visitFMA(SDNode *N) {
6223  SDValue N0 = N->getOperand(0);
6224  SDValue N1 = N->getOperand(1);
6225  SDValue N2 = N->getOperand(2);
6226  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6227  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6228  EVT VT = N->getValueType(0);
6229  SDLoc dl(N);
6230
6231  if (DAG.getTarget().Options.UnsafeFPMath) {
6232    if (N0CFP && N0CFP->isZero())
6233      return N2;
6234    if (N1CFP && N1CFP->isZero())
6235      return N2;
6236  }
6237  if (N0CFP && N0CFP->isExactlyValue(1.0))
6238    return DAG.getNode(ISD::FADD, SDLoc(N), VT, N1, N2);
6239  if (N1CFP && N1CFP->isExactlyValue(1.0))
6240    return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0, N2);
6241
6242  // Canonicalize (fma c, x, y) -> (fma x, c, y)
6243  if (N0CFP && !N1CFP)
6244    return DAG.getNode(ISD::FMA, SDLoc(N), VT, N1, N0, N2);
6245
6246  // (fma x, c1, (fmul x, c2)) -> (fmul x, c1+c2)
6247  if (DAG.getTarget().Options.UnsafeFPMath && N1CFP &&
6248      N2.getOpcode() == ISD::FMUL &&
6249      N0 == N2.getOperand(0) &&
6250      N2.getOperand(1).getOpcode() == ISD::ConstantFP) {
6251    return DAG.getNode(ISD::FMUL, dl, VT, N0,
6252                       DAG.getNode(ISD::FADD, dl, VT, N1, N2.getOperand(1)));
6253  }
6254
6255
6256  // (fma (fmul x, c1), c2, y) -> (fma x, c1*c2, y)
6257  if (DAG.getTarget().Options.UnsafeFPMath &&
6258      N0.getOpcode() == ISD::FMUL && N1CFP &&
6259      N0.getOperand(1).getOpcode() == ISD::ConstantFP) {
6260    return DAG.getNode(ISD::FMA, dl, VT,
6261                       N0.getOperand(0),
6262                       DAG.getNode(ISD::FMUL, dl, VT, N1, N0.getOperand(1)),
6263                       N2);
6264  }
6265
6266  // (fma x, 1, y) -> (fadd x, y)
6267  // (fma x, -1, y) -> (fadd (fneg x), y)
6268  if (N1CFP) {
6269    if (N1CFP->isExactlyValue(1.0))
6270      return DAG.getNode(ISD::FADD, dl, VT, N0, N2);
6271
6272    if (N1CFP->isExactlyValue(-1.0) &&
6273        (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))) {
6274      SDValue RHSNeg = DAG.getNode(ISD::FNEG, dl, VT, N0);
6275      AddToWorkList(RHSNeg.getNode());
6276      return DAG.getNode(ISD::FADD, dl, VT, N2, RHSNeg);
6277    }
6278  }
6279
6280  // (fma x, c, x) -> (fmul x, (c+1))
6281  if (DAG.getTarget().Options.UnsafeFPMath && N1CFP && N0 == N2) {
6282    return DAG.getNode(ISD::FMUL, dl, VT,
6283                       N0,
6284                       DAG.getNode(ISD::FADD, dl, VT,
6285                                   N1, DAG.getConstantFP(1.0, VT)));
6286  }
6287
6288  // (fma x, c, (fneg x)) -> (fmul x, (c-1))
6289  if (DAG.getTarget().Options.UnsafeFPMath && N1CFP &&
6290      N2.getOpcode() == ISD::FNEG && N2.getOperand(0) == N0) {
6291    return DAG.getNode(ISD::FMUL, dl, VT,
6292                       N0,
6293                       DAG.getNode(ISD::FADD, dl, VT,
6294                                   N1, DAG.getConstantFP(-1.0, VT)));
6295  }
6296
6297
6298  return SDValue();
6299}
6300
6301SDValue DAGCombiner::visitFDIV(SDNode *N) {
6302  SDValue N0 = N->getOperand(0);
6303  SDValue N1 = N->getOperand(1);
6304  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6305  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6306  EVT VT = N->getValueType(0);
6307  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6308
6309  // fold vector ops
6310  if (VT.isVector()) {
6311    SDValue FoldedVOp = SimplifyVBinOp(N);
6312    if (FoldedVOp.getNode()) return FoldedVOp;
6313  }
6314
6315  // fold (fdiv c1, c2) -> c1/c2
6316  if (N0CFP && N1CFP)
6317    return DAG.getNode(ISD::FDIV, SDLoc(N), VT, N0, N1);
6318
6319  // fold (fdiv X, c2) -> fmul X, 1/c2 if losing precision is acceptable.
6320  if (N1CFP && DAG.getTarget().Options.UnsafeFPMath) {
6321    // Compute the reciprocal 1.0 / c2.
6322    APFloat N1APF = N1CFP->getValueAPF();
6323    APFloat Recip(N1APF.getSemantics(), 1); // 1.0
6324    APFloat::opStatus st = Recip.divide(N1APF, APFloat::rmNearestTiesToEven);
6325    // Only do the transform if the reciprocal is a legal fp immediate that
6326    // isn't too nasty (eg NaN, denormal, ...).
6327    if ((st == APFloat::opOK || st == APFloat::opInexact) && // Not too nasty
6328        (!LegalOperations ||
6329         // FIXME: custom lowering of ConstantFP might fail (see e.g. ARM
6330         // backend)... we should handle this gracefully after Legalize.
6331         // TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT) ||
6332         TLI.isOperationLegal(llvm::ISD::ConstantFP, VT) ||
6333         TLI.isFPImmLegal(Recip, VT)))
6334      return DAG.getNode(ISD::FMUL, SDLoc(N), VT, N0,
6335                         DAG.getConstantFP(Recip, VT));
6336  }
6337
6338  // (fdiv (fneg X), (fneg Y)) -> (fdiv X, Y)
6339  if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, TLI,
6340                                       &DAG.getTarget().Options)) {
6341    if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, TLI,
6342                                         &DAG.getTarget().Options)) {
6343      // Both can be negated for free, check to see if at least one is cheaper
6344      // negated.
6345      if (LHSNeg == 2 || RHSNeg == 2)
6346        return DAG.getNode(ISD::FDIV, SDLoc(N), VT,
6347                           GetNegatedExpression(N0, DAG, LegalOperations),
6348                           GetNegatedExpression(N1, DAG, LegalOperations));
6349    }
6350  }
6351
6352  return SDValue();
6353}
6354
6355SDValue DAGCombiner::visitFREM(SDNode *N) {
6356  SDValue N0 = N->getOperand(0);
6357  SDValue N1 = N->getOperand(1);
6358  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6359  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6360  EVT VT = N->getValueType(0);
6361
6362  // fold (frem c1, c2) -> fmod(c1,c2)
6363  if (N0CFP && N1CFP)
6364    return DAG.getNode(ISD::FREM, SDLoc(N), VT, N0, N1);
6365
6366  return SDValue();
6367}
6368
6369SDValue DAGCombiner::visitFCOPYSIGN(SDNode *N) {
6370  SDValue N0 = N->getOperand(0);
6371  SDValue N1 = N->getOperand(1);
6372  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6373  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6374  EVT VT = N->getValueType(0);
6375
6376  if (N0CFP && N1CFP)  // Constant fold
6377    return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1);
6378
6379  if (N1CFP) {
6380    const APFloat& V = N1CFP->getValueAPF();
6381    // copysign(x, c1) -> fabs(x)       iff ispos(c1)
6382    // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1)
6383    if (!V.isNegative()) {
6384      if (!LegalOperations || TLI.isOperationLegal(ISD::FABS, VT))
6385        return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0);
6386    } else {
6387      if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
6388        return DAG.getNode(ISD::FNEG, SDLoc(N), VT,
6389                           DAG.getNode(ISD::FABS, SDLoc(N0), VT, N0));
6390    }
6391  }
6392
6393  // copysign(fabs(x), y) -> copysign(x, y)
6394  // copysign(fneg(x), y) -> copysign(x, y)
6395  // copysign(copysign(x,z), y) -> copysign(x, y)
6396  if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG ||
6397      N0.getOpcode() == ISD::FCOPYSIGN)
6398    return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT,
6399                       N0.getOperand(0), N1);
6400
6401  // copysign(x, abs(y)) -> abs(x)
6402  if (N1.getOpcode() == ISD::FABS)
6403    return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0);
6404
6405  // copysign(x, copysign(y,z)) -> copysign(x, z)
6406  if (N1.getOpcode() == ISD::FCOPYSIGN)
6407    return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT,
6408                       N0, N1.getOperand(1));
6409
6410  // copysign(x, fp_extend(y)) -> copysign(x, y)
6411  // copysign(x, fp_round(y)) -> copysign(x, y)
6412  if (N1.getOpcode() == ISD::FP_EXTEND || N1.getOpcode() == ISD::FP_ROUND)
6413    return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT,
6414                       N0, N1.getOperand(0));
6415
6416  return SDValue();
6417}
6418
6419SDValue DAGCombiner::visitSINT_TO_FP(SDNode *N) {
6420  SDValue N0 = N->getOperand(0);
6421  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
6422  EVT VT = N->getValueType(0);
6423  EVT OpVT = N0.getValueType();
6424
6425  // fold (sint_to_fp c1) -> c1fp
6426  if (N0C &&
6427      // ...but only if the target supports immediate floating-point values
6428      (!LegalOperations ||
6429       TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT)))
6430    return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0);
6431
6432  // If the input is a legal type, and SINT_TO_FP is not legal on this target,
6433  // but UINT_TO_FP is legal on this target, try to convert.
6434  if (!TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, OpVT) &&
6435      TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, OpVT)) {
6436    // If the sign bit is known to be zero, we can change this to UINT_TO_FP.
6437    if (DAG.SignBitIsZero(N0))
6438      return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0);
6439  }
6440
6441  // The next optimizations are desireable only if SELECT_CC can be lowered.
6442  // Check against MVT::Other for SELECT_CC, which is a workaround for targets
6443  // having to say they don't support SELECT_CC on every type the DAG knows
6444  // about, since there is no way to mark an opcode illegal at all value types
6445  // (See also visitSELECT)
6446  if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, MVT::Other)) {
6447    // fold (sint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc)
6448    if (N0.getOpcode() == ISD::SETCC && N0.getValueType() == MVT::i1 &&
6449        !VT.isVector() &&
6450        (!LegalOperations ||
6451         TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) {
6452      SDValue Ops[] =
6453        { N0.getOperand(0), N0.getOperand(1),
6454          DAG.getConstantFP(-1.0, VT) , DAG.getConstantFP(0.0, VT),
6455          N0.getOperand(2) };
6456      return DAG.getNode(ISD::SELECT_CC, SDLoc(N), VT, Ops, 5);
6457    }
6458
6459    // fold (sint_to_fp (zext (setcc x, y, cc))) ->
6460    //      (select_cc x, y, 1.0, 0.0,, cc)
6461    if (N0.getOpcode() == ISD::ZERO_EXTEND &&
6462        N0.getOperand(0).getOpcode() == ISD::SETCC &&!VT.isVector() &&
6463        (!LegalOperations ||
6464         TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) {
6465      SDValue Ops[] =
6466        { N0.getOperand(0).getOperand(0), N0.getOperand(0).getOperand(1),
6467          DAG.getConstantFP(1.0, VT) , DAG.getConstantFP(0.0, VT),
6468          N0.getOperand(0).getOperand(2) };
6469      return DAG.getNode(ISD::SELECT_CC, SDLoc(N), VT, Ops, 5);
6470    }
6471  }
6472
6473  return SDValue();
6474}
6475
6476SDValue DAGCombiner::visitUINT_TO_FP(SDNode *N) {
6477  SDValue N0 = N->getOperand(0);
6478  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
6479  EVT VT = N->getValueType(0);
6480  EVT OpVT = N0.getValueType();
6481
6482  // fold (uint_to_fp c1) -> c1fp
6483  if (N0C &&
6484      // ...but only if the target supports immediate floating-point values
6485      (!LegalOperations ||
6486       TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT)))
6487    return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0);
6488
6489  // If the input is a legal type, and UINT_TO_FP is not legal on this target,
6490  // but SINT_TO_FP is legal on this target, try to convert.
6491  if (!TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, OpVT) &&
6492      TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, OpVT)) {
6493    // If the sign bit is known to be zero, we can change this to SINT_TO_FP.
6494    if (DAG.SignBitIsZero(N0))
6495      return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0);
6496  }
6497
6498  // The next optimizations are desireable only if SELECT_CC can be lowered.
6499  // Check against MVT::Other for SELECT_CC, which is a workaround for targets
6500  // having to say they don't support SELECT_CC on every type the DAG knows
6501  // about, since there is no way to mark an opcode illegal at all value types
6502  // (See also visitSELECT)
6503  if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, MVT::Other)) {
6504    // fold (uint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc)
6505
6506    if (N0.getOpcode() == ISD::SETCC && !VT.isVector() &&
6507        (!LegalOperations ||
6508         TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) {
6509      SDValue Ops[] =
6510        { N0.getOperand(0), N0.getOperand(1),
6511          DAG.getConstantFP(1.0, VT),  DAG.getConstantFP(0.0, VT),
6512          N0.getOperand(2) };
6513      return DAG.getNode(ISD::SELECT_CC, SDLoc(N), VT, Ops, 5);
6514    }
6515  }
6516
6517  return SDValue();
6518}
6519
6520SDValue DAGCombiner::visitFP_TO_SINT(SDNode *N) {
6521  SDValue N0 = N->getOperand(0);
6522  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6523  EVT VT = N->getValueType(0);
6524
6525  // fold (fp_to_sint c1fp) -> c1
6526  if (N0CFP)
6527    return DAG.getNode(ISD::FP_TO_SINT, SDLoc(N), VT, N0);
6528
6529  return SDValue();
6530}
6531
6532SDValue DAGCombiner::visitFP_TO_UINT(SDNode *N) {
6533  SDValue N0 = N->getOperand(0);
6534  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6535  EVT VT = N->getValueType(0);
6536
6537  // fold (fp_to_uint c1fp) -> c1
6538  if (N0CFP)
6539    return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), VT, N0);
6540
6541  return SDValue();
6542}
6543
6544SDValue DAGCombiner::visitFP_ROUND(SDNode *N) {
6545  SDValue N0 = N->getOperand(0);
6546  SDValue N1 = N->getOperand(1);
6547  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6548  EVT VT = N->getValueType(0);
6549
6550  // fold (fp_round c1fp) -> c1fp
6551  if (N0CFP)
6552    return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT, N0, N1);
6553
6554  // fold (fp_round (fp_extend x)) -> x
6555  if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType())
6556    return N0.getOperand(0);
6557
6558  // fold (fp_round (fp_round x)) -> (fp_round x)
6559  if (N0.getOpcode() == ISD::FP_ROUND) {
6560    // This is a value preserving truncation if both round's are.
6561    bool IsTrunc = N->getConstantOperandVal(1) == 1 &&
6562                   N0.getNode()->getConstantOperandVal(1) == 1;
6563    return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT, N0.getOperand(0),
6564                       DAG.getIntPtrConstant(IsTrunc));
6565  }
6566
6567  // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y)
6568  if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse()) {
6569    SDValue Tmp = DAG.getNode(ISD::FP_ROUND, SDLoc(N0), VT,
6570                              N0.getOperand(0), N1);
6571    AddToWorkList(Tmp.getNode());
6572    return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT,
6573                       Tmp, N0.getOperand(1));
6574  }
6575
6576  return SDValue();
6577}
6578
6579SDValue DAGCombiner::visitFP_ROUND_INREG(SDNode *N) {
6580  SDValue N0 = N->getOperand(0);
6581  EVT VT = N->getValueType(0);
6582  EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
6583  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6584
6585  // fold (fp_round_inreg c1fp) -> c1fp
6586  if (N0CFP && isTypeLegal(EVT)) {
6587    SDValue Round = DAG.getConstantFP(*N0CFP->getConstantFPValue(), EVT);
6588    return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, Round);
6589  }
6590
6591  return SDValue();
6592}
6593
6594SDValue DAGCombiner::visitFP_EXTEND(SDNode *N) {
6595  SDValue N0 = N->getOperand(0);
6596  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6597  EVT VT = N->getValueType(0);
6598
6599  // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded.
6600  if (N->hasOneUse() &&
6601      N->use_begin()->getOpcode() == ISD::FP_ROUND)
6602    return SDValue();
6603
6604  // fold (fp_extend c1fp) -> c1fp
6605  if (N0CFP)
6606    return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, N0);
6607
6608  // Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the
6609  // value of X.
6610  if (N0.getOpcode() == ISD::FP_ROUND
6611      && N0.getNode()->getConstantOperandVal(1) == 1) {
6612    SDValue In = N0.getOperand(0);
6613    if (In.getValueType() == VT) return In;
6614    if (VT.bitsLT(In.getValueType()))
6615      return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT,
6616                         In, N0.getOperand(1));
6617    return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, In);
6618  }
6619
6620  // fold (fpext (load x)) -> (fpext (fptrunc (extload x)))
6621  if (ISD::isNON_EXTLoad(N0.getNode()) && N0.hasOneUse() &&
6622      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
6623       TLI.isLoadExtLegal(ISD::EXTLOAD, N0.getValueType()))) {
6624    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
6625    SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT,
6626                                     LN0->getChain(),
6627                                     LN0->getBasePtr(), LN0->getPointerInfo(),
6628                                     N0.getValueType(),
6629                                     LN0->isVolatile(), LN0->isNonTemporal(),
6630                                     LN0->getAlignment());
6631    CombineTo(N, ExtLoad);
6632    CombineTo(N0.getNode(),
6633              DAG.getNode(ISD::FP_ROUND, SDLoc(N0),
6634                          N0.getValueType(), ExtLoad, DAG.getIntPtrConstant(1)),
6635              ExtLoad.getValue(1));
6636    return SDValue(N, 0);   // Return N so it doesn't get rechecked!
6637  }
6638
6639  return SDValue();
6640}
6641
6642SDValue DAGCombiner::visitFNEG(SDNode *N) {
6643  SDValue N0 = N->getOperand(0);
6644  EVT VT = N->getValueType(0);
6645
6646  if (VT.isVector()) {
6647    SDValue FoldedVOp = SimplifyVUnaryOp(N);
6648    if (FoldedVOp.getNode()) return FoldedVOp;
6649  }
6650
6651  if (isNegatibleForFree(N0, LegalOperations, DAG.getTargetLoweringInfo(),
6652                         &DAG.getTarget().Options))
6653    return GetNegatedExpression(N0, DAG, LegalOperations);
6654
6655  // Transform fneg(bitconvert(x)) -> bitconvert(x^sign) to avoid loading
6656  // constant pool values.
6657  if (!TLI.isFNegFree(VT) && N0.getOpcode() == ISD::BITCAST &&
6658      !VT.isVector() &&
6659      N0.getNode()->hasOneUse() &&
6660      N0.getOperand(0).getValueType().isInteger()) {
6661    SDValue Int = N0.getOperand(0);
6662    EVT IntVT = Int.getValueType();
6663    if (IntVT.isInteger() && !IntVT.isVector()) {
6664      Int = DAG.getNode(ISD::XOR, SDLoc(N0), IntVT, Int,
6665              DAG.getConstant(APInt::getSignBit(IntVT.getSizeInBits()), IntVT));
6666      AddToWorkList(Int.getNode());
6667      return DAG.getNode(ISD::BITCAST, SDLoc(N),
6668                         VT, Int);
6669    }
6670  }
6671
6672  // (fneg (fmul c, x)) -> (fmul -c, x)
6673  if (N0.getOpcode() == ISD::FMUL) {
6674    ConstantFPSDNode *CFP1 = dyn_cast<ConstantFPSDNode>(N0.getOperand(1));
6675    if (CFP1) {
6676      return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6677                         N0.getOperand(0),
6678                         DAG.getNode(ISD::FNEG, SDLoc(N), VT,
6679                                     N0.getOperand(1)));
6680    }
6681  }
6682
6683  return SDValue();
6684}
6685
6686SDValue DAGCombiner::visitFCEIL(SDNode *N) {
6687  SDValue N0 = N->getOperand(0);
6688  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6689  EVT VT = N->getValueType(0);
6690
6691  // fold (fceil c1) -> fceil(c1)
6692  if (N0CFP)
6693    return DAG.getNode(ISD::FCEIL, SDLoc(N), VT, N0);
6694
6695  return SDValue();
6696}
6697
6698SDValue DAGCombiner::visitFTRUNC(SDNode *N) {
6699  SDValue N0 = N->getOperand(0);
6700  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6701  EVT VT = N->getValueType(0);
6702
6703  // fold (ftrunc c1) -> ftrunc(c1)
6704  if (N0CFP)
6705    return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0);
6706
6707  return SDValue();
6708}
6709
6710SDValue DAGCombiner::visitFFLOOR(SDNode *N) {
6711  SDValue N0 = N->getOperand(0);
6712  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6713  EVT VT = N->getValueType(0);
6714
6715  // fold (ffloor c1) -> ffloor(c1)
6716  if (N0CFP)
6717    return DAG.getNode(ISD::FFLOOR, SDLoc(N), VT, N0);
6718
6719  return SDValue();
6720}
6721
6722SDValue DAGCombiner::visitFABS(SDNode *N) {
6723  SDValue N0 = N->getOperand(0);
6724  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6725  EVT VT = N->getValueType(0);
6726
6727  if (VT.isVector()) {
6728    SDValue FoldedVOp = SimplifyVUnaryOp(N);
6729    if (FoldedVOp.getNode()) return FoldedVOp;
6730  }
6731
6732  // fold (fabs c1) -> fabs(c1)
6733  if (N0CFP)
6734    return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0);
6735  // fold (fabs (fabs x)) -> (fabs x)
6736  if (N0.getOpcode() == ISD::FABS)
6737    return N->getOperand(0);
6738  // fold (fabs (fneg x)) -> (fabs x)
6739  // fold (fabs (fcopysign x, y)) -> (fabs x)
6740  if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN)
6741    return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0.getOperand(0));
6742
6743  // Transform fabs(bitconvert(x)) -> bitconvert(x&~sign) to avoid loading
6744  // constant pool values.
6745  if (!TLI.isFAbsFree(VT) &&
6746      N0.getOpcode() == ISD::BITCAST && N0.getNode()->hasOneUse() &&
6747      N0.getOperand(0).getValueType().isInteger() &&
6748      !N0.getOperand(0).getValueType().isVector()) {
6749    SDValue Int = N0.getOperand(0);
6750    EVT IntVT = Int.getValueType();
6751    if (IntVT.isInteger() && !IntVT.isVector()) {
6752      Int = DAG.getNode(ISD::AND, SDLoc(N0), IntVT, Int,
6753             DAG.getConstant(~APInt::getSignBit(IntVT.getSizeInBits()), IntVT));
6754      AddToWorkList(Int.getNode());
6755      return DAG.getNode(ISD::BITCAST, SDLoc(N),
6756                         N->getValueType(0), Int);
6757    }
6758  }
6759
6760  return SDValue();
6761}
6762
6763SDValue DAGCombiner::visitBRCOND(SDNode *N) {
6764  SDValue Chain = N->getOperand(0);
6765  SDValue N1 = N->getOperand(1);
6766  SDValue N2 = N->getOperand(2);
6767
6768  // If N is a constant we could fold this into a fallthrough or unconditional
6769  // branch. However that doesn't happen very often in normal code, because
6770  // Instcombine/SimplifyCFG should have handled the available opportunities.
6771  // If we did this folding here, it would be necessary to update the
6772  // MachineBasicBlock CFG, which is awkward.
6773
6774  // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal
6775  // on the target.
6776  if (N1.getOpcode() == ISD::SETCC &&
6777      TLI.isOperationLegalOrCustom(ISD::BR_CC,
6778                                   N1.getOperand(0).getValueType())) {
6779    return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other,
6780                       Chain, N1.getOperand(2),
6781                       N1.getOperand(0), N1.getOperand(1), N2);
6782  }
6783
6784  if ((N1.hasOneUse() && N1.getOpcode() == ISD::SRL) ||
6785      ((N1.getOpcode() == ISD::TRUNCATE && N1.hasOneUse()) &&
6786       (N1.getOperand(0).hasOneUse() &&
6787        N1.getOperand(0).getOpcode() == ISD::SRL))) {
6788    SDNode *Trunc = 0;
6789    if (N1.getOpcode() == ISD::TRUNCATE) {
6790      // Look pass the truncate.
6791      Trunc = N1.getNode();
6792      N1 = N1.getOperand(0);
6793    }
6794
6795    // Match this pattern so that we can generate simpler code:
6796    //
6797    //   %a = ...
6798    //   %b = and i32 %a, 2
6799    //   %c = srl i32 %b, 1
6800    //   brcond i32 %c ...
6801    //
6802    // into
6803    //
6804    //   %a = ...
6805    //   %b = and i32 %a, 2
6806    //   %c = setcc eq %b, 0
6807    //   brcond %c ...
6808    //
6809    // This applies only when the AND constant value has one bit set and the
6810    // SRL constant is equal to the log2 of the AND constant. The back-end is
6811    // smart enough to convert the result into a TEST/JMP sequence.
6812    SDValue Op0 = N1.getOperand(0);
6813    SDValue Op1 = N1.getOperand(1);
6814
6815    if (Op0.getOpcode() == ISD::AND &&
6816        Op1.getOpcode() == ISD::Constant) {
6817      SDValue AndOp1 = Op0.getOperand(1);
6818
6819      if (AndOp1.getOpcode() == ISD::Constant) {
6820        const APInt &AndConst = cast<ConstantSDNode>(AndOp1)->getAPIntValue();
6821
6822        if (AndConst.isPowerOf2() &&
6823            cast<ConstantSDNode>(Op1)->getAPIntValue()==AndConst.logBase2()) {
6824          SDValue SetCC =
6825            DAG.getSetCC(SDLoc(N),
6826                         getSetCCResultType(Op0.getValueType()),
6827                         Op0, DAG.getConstant(0, Op0.getValueType()),
6828                         ISD::SETNE);
6829
6830          SDValue NewBRCond = DAG.getNode(ISD::BRCOND, SDLoc(N),
6831                                          MVT::Other, Chain, SetCC, N2);
6832          // Don't add the new BRCond into the worklist or else SimplifySelectCC
6833          // will convert it back to (X & C1) >> C2.
6834          CombineTo(N, NewBRCond, false);
6835          // Truncate is dead.
6836          if (Trunc) {
6837            removeFromWorkList(Trunc);
6838            DAG.DeleteNode(Trunc);
6839          }
6840          // Replace the uses of SRL with SETCC
6841          WorkListRemover DeadNodes(*this);
6842          DAG.ReplaceAllUsesOfValueWith(N1, SetCC);
6843          removeFromWorkList(N1.getNode());
6844          DAG.DeleteNode(N1.getNode());
6845          return SDValue(N, 0);   // Return N so it doesn't get rechecked!
6846        }
6847      }
6848    }
6849
6850    if (Trunc)
6851      // Restore N1 if the above transformation doesn't match.
6852      N1 = N->getOperand(1);
6853  }
6854
6855  // Transform br(xor(x, y)) -> br(x != y)
6856  // Transform br(xor(xor(x,y), 1)) -> br (x == y)
6857  if (N1.hasOneUse() && N1.getOpcode() == ISD::XOR) {
6858    SDNode *TheXor = N1.getNode();
6859    SDValue Op0 = TheXor->getOperand(0);
6860    SDValue Op1 = TheXor->getOperand(1);
6861    if (Op0.getOpcode() == Op1.getOpcode()) {
6862      // Avoid missing important xor optimizations.
6863      SDValue Tmp = visitXOR(TheXor);
6864      if (Tmp.getNode()) {
6865        if (Tmp.getNode() != TheXor) {
6866          DEBUG(dbgs() << "\nReplacing.8 ";
6867                TheXor->dump(&DAG);
6868                dbgs() << "\nWith: ";
6869                Tmp.getNode()->dump(&DAG);
6870                dbgs() << '\n');
6871          WorkListRemover DeadNodes(*this);
6872          DAG.ReplaceAllUsesOfValueWith(N1, Tmp);
6873          removeFromWorkList(TheXor);
6874          DAG.DeleteNode(TheXor);
6875          return DAG.getNode(ISD::BRCOND, SDLoc(N),
6876                             MVT::Other, Chain, Tmp, N2);
6877        }
6878
6879        // visitXOR has changed XOR's operands or replaced the XOR completely,
6880        // bail out.
6881        return SDValue(N, 0);
6882      }
6883    }
6884
6885    if (Op0.getOpcode() != ISD::SETCC && Op1.getOpcode() != ISD::SETCC) {
6886      bool Equal = false;
6887      if (ConstantSDNode *RHSCI = dyn_cast<ConstantSDNode>(Op0))
6888        if (RHSCI->getAPIntValue() == 1 && Op0.hasOneUse() &&
6889            Op0.getOpcode() == ISD::XOR) {
6890          TheXor = Op0.getNode();
6891          Equal = true;
6892        }
6893
6894      EVT SetCCVT = N1.getValueType();
6895      if (LegalTypes)
6896        SetCCVT = getSetCCResultType(SetCCVT);
6897      SDValue SetCC = DAG.getSetCC(SDLoc(TheXor),
6898                                   SetCCVT,
6899                                   Op0, Op1,
6900                                   Equal ? ISD::SETEQ : ISD::SETNE);
6901      // Replace the uses of XOR with SETCC
6902      WorkListRemover DeadNodes(*this);
6903      DAG.ReplaceAllUsesOfValueWith(N1, SetCC);
6904      removeFromWorkList(N1.getNode());
6905      DAG.DeleteNode(N1.getNode());
6906      return DAG.getNode(ISD::BRCOND, SDLoc(N),
6907                         MVT::Other, Chain, SetCC, N2);
6908    }
6909  }
6910
6911  return SDValue();
6912}
6913
6914// Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB.
6915//
6916SDValue DAGCombiner::visitBR_CC(SDNode *N) {
6917  CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1));
6918  SDValue CondLHS = N->getOperand(2), CondRHS = N->getOperand(3);
6919
6920  // If N is a constant we could fold this into a fallthrough or unconditional
6921  // branch. However that doesn't happen very often in normal code, because
6922  // Instcombine/SimplifyCFG should have handled the available opportunities.
6923  // If we did this folding here, it would be necessary to update the
6924  // MachineBasicBlock CFG, which is awkward.
6925
6926  // Use SimplifySetCC to simplify SETCC's.
6927  SDValue Simp = SimplifySetCC(getSetCCResultType(CondLHS.getValueType()),
6928                               CondLHS, CondRHS, CC->get(), SDLoc(N),
6929                               false);
6930  if (Simp.getNode()) AddToWorkList(Simp.getNode());
6931
6932  // fold to a simpler setcc
6933  if (Simp.getNode() && Simp.getOpcode() == ISD::SETCC)
6934    return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other,
6935                       N->getOperand(0), Simp.getOperand(2),
6936                       Simp.getOperand(0), Simp.getOperand(1),
6937                       N->getOperand(4));
6938
6939  return SDValue();
6940}
6941
6942/// canFoldInAddressingMode - Return true if 'Use' is a load or a store that
6943/// uses N as its base pointer and that N may be folded in the load / store
6944/// addressing mode.
6945static bool canFoldInAddressingMode(SDNode *N, SDNode *Use,
6946                                    SelectionDAG &DAG,
6947                                    const TargetLowering &TLI) {
6948  EVT VT;
6949  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(Use)) {
6950    if (LD->isIndexed() || LD->getBasePtr().getNode() != N)
6951      return false;
6952    VT = Use->getValueType(0);
6953  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(Use)) {
6954    if (ST->isIndexed() || ST->getBasePtr().getNode() != N)
6955      return false;
6956    VT = ST->getValue().getValueType();
6957  } else
6958    return false;
6959
6960  TargetLowering::AddrMode AM;
6961  if (N->getOpcode() == ISD::ADD) {
6962    ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
6963    if (Offset)
6964      // [reg +/- imm]
6965      AM.BaseOffs = Offset->getSExtValue();
6966    else
6967      // [reg +/- reg]
6968      AM.Scale = 1;
6969  } else if (N->getOpcode() == ISD::SUB) {
6970    ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
6971    if (Offset)
6972      // [reg +/- imm]
6973      AM.BaseOffs = -Offset->getSExtValue();
6974    else
6975      // [reg +/- reg]
6976      AM.Scale = 1;
6977  } else
6978    return false;
6979
6980  return TLI.isLegalAddressingMode(AM, VT.getTypeForEVT(*DAG.getContext()));
6981}
6982
6983/// CombineToPreIndexedLoadStore - Try turning a load / store into a
6984/// pre-indexed load / store when the base pointer is an add or subtract
6985/// and it has other uses besides the load / store. After the
6986/// transformation, the new indexed load / store has effectively folded
6987/// the add / subtract in and all of its other uses are redirected to the
6988/// new load / store.
6989bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) {
6990  if (Level < AfterLegalizeDAG)
6991    return false;
6992
6993  bool isLoad = true;
6994  SDValue Ptr;
6995  EVT VT;
6996  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(N)) {
6997    if (LD->isIndexed())
6998      return false;
6999    VT = LD->getMemoryVT();
7000    if (!TLI.isIndexedLoadLegal(ISD::PRE_INC, VT) &&
7001        !TLI.isIndexedLoadLegal(ISD::PRE_DEC, VT))
7002      return false;
7003    Ptr = LD->getBasePtr();
7004  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(N)) {
7005    if (ST->isIndexed())
7006      return false;
7007    VT = ST->getMemoryVT();
7008    if (!TLI.isIndexedStoreLegal(ISD::PRE_INC, VT) &&
7009        !TLI.isIndexedStoreLegal(ISD::PRE_DEC, VT))
7010      return false;
7011    Ptr = ST->getBasePtr();
7012    isLoad = false;
7013  } else {
7014    return false;
7015  }
7016
7017  // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail
7018  // out.  There is no reason to make this a preinc/predec.
7019  if ((Ptr.getOpcode() != ISD::ADD && Ptr.getOpcode() != ISD::SUB) ||
7020      Ptr.getNode()->hasOneUse())
7021    return false;
7022
7023  // Ask the target to do addressing mode selection.
7024  SDValue BasePtr;
7025  SDValue Offset;
7026  ISD::MemIndexedMode AM = ISD::UNINDEXED;
7027  if (!TLI.getPreIndexedAddressParts(N, BasePtr, Offset, AM, DAG))
7028    return false;
7029
7030  // Backends without true r+i pre-indexed forms may need to pass a
7031  // constant base with a variable offset so that constant coercion
7032  // will work with the patterns in canonical form.
7033  bool Swapped = false;
7034  if (isa<ConstantSDNode>(BasePtr)) {
7035    std::swap(BasePtr, Offset);
7036    Swapped = true;
7037  }
7038
7039  // Don't create a indexed load / store with zero offset.
7040  if (isa<ConstantSDNode>(Offset) &&
7041      cast<ConstantSDNode>(Offset)->isNullValue())
7042    return false;
7043
7044  // Try turning it into a pre-indexed load / store except when:
7045  // 1) The new base ptr is a frame index.
7046  // 2) If N is a store and the new base ptr is either the same as or is a
7047  //    predecessor of the value being stored.
7048  // 3) Another use of old base ptr is a predecessor of N. If ptr is folded
7049  //    that would create a cycle.
7050  // 4) All uses are load / store ops that use it as old base ptr.
7051
7052  // Check #1.  Preinc'ing a frame index would require copying the stack pointer
7053  // (plus the implicit offset) to a register to preinc anyway.
7054  if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr))
7055    return false;
7056
7057  // Check #2.
7058  if (!isLoad) {
7059    SDValue Val = cast<StoreSDNode>(N)->getValue();
7060    if (Val == BasePtr || BasePtr.getNode()->isPredecessorOf(Val.getNode()))
7061      return false;
7062  }
7063
7064  // If the offset is a constant, there may be other adds of constants that
7065  // can be folded with this one. We should do this to avoid having to keep
7066  // a copy of the original base pointer.
7067  SmallVector<SDNode *, 16> OtherUses;
7068  if (isa<ConstantSDNode>(Offset))
7069    for (SDNode::use_iterator I = BasePtr.getNode()->use_begin(),
7070         E = BasePtr.getNode()->use_end(); I != E; ++I) {
7071      SDNode *Use = *I;
7072      if (Use == Ptr.getNode())
7073        continue;
7074
7075      if (Use->isPredecessorOf(N))
7076        continue;
7077
7078      if (Use->getOpcode() != ISD::ADD && Use->getOpcode() != ISD::SUB) {
7079        OtherUses.clear();
7080        break;
7081      }
7082
7083      SDValue Op0 = Use->getOperand(0), Op1 = Use->getOperand(1);
7084      if (Op1.getNode() == BasePtr.getNode())
7085        std::swap(Op0, Op1);
7086      assert(Op0.getNode() == BasePtr.getNode() &&
7087             "Use of ADD/SUB but not an operand");
7088
7089      if (!isa<ConstantSDNode>(Op1)) {
7090        OtherUses.clear();
7091        break;
7092      }
7093
7094      // FIXME: In some cases, we can be smarter about this.
7095      if (Op1.getValueType() != Offset.getValueType()) {
7096        OtherUses.clear();
7097        break;
7098      }
7099
7100      OtherUses.push_back(Use);
7101    }
7102
7103  if (Swapped)
7104    std::swap(BasePtr, Offset);
7105
7106  // Now check for #3 and #4.
7107  bool RealUse = false;
7108
7109  // Caches for hasPredecessorHelper
7110  SmallPtrSet<const SDNode *, 32> Visited;
7111  SmallVector<const SDNode *, 16> Worklist;
7112
7113  for (SDNode::use_iterator I = Ptr.getNode()->use_begin(),
7114         E = Ptr.getNode()->use_end(); I != E; ++I) {
7115    SDNode *Use = *I;
7116    if (Use == N)
7117      continue;
7118    if (N->hasPredecessorHelper(Use, Visited, Worklist))
7119      return false;
7120
7121    // If Ptr may be folded in addressing mode of other use, then it's
7122    // not profitable to do this transformation.
7123    if (!canFoldInAddressingMode(Ptr.getNode(), Use, DAG, TLI))
7124      RealUse = true;
7125  }
7126
7127  if (!RealUse)
7128    return false;
7129
7130  SDValue Result;
7131  if (isLoad)
7132    Result = DAG.getIndexedLoad(SDValue(N,0), SDLoc(N),
7133                                BasePtr, Offset, AM);
7134  else
7135    Result = DAG.getIndexedStore(SDValue(N,0), SDLoc(N),
7136                                 BasePtr, Offset, AM);
7137  ++PreIndexedNodes;
7138  ++NodesCombined;
7139  DEBUG(dbgs() << "\nReplacing.4 ";
7140        N->dump(&DAG);
7141        dbgs() << "\nWith: ";
7142        Result.getNode()->dump(&DAG);
7143        dbgs() << '\n');
7144  WorkListRemover DeadNodes(*this);
7145  if (isLoad) {
7146    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0));
7147    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2));
7148  } else {
7149    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1));
7150  }
7151
7152  // Finally, since the node is now dead, remove it from the graph.
7153  DAG.DeleteNode(N);
7154
7155  if (Swapped)
7156    std::swap(BasePtr, Offset);
7157
7158  // Replace other uses of BasePtr that can be updated to use Ptr
7159  for (unsigned i = 0, e = OtherUses.size(); i != e; ++i) {
7160    unsigned OffsetIdx = 1;
7161    if (OtherUses[i]->getOperand(OffsetIdx).getNode() == BasePtr.getNode())
7162      OffsetIdx = 0;
7163    assert(OtherUses[i]->getOperand(!OffsetIdx).getNode() ==
7164           BasePtr.getNode() && "Expected BasePtr operand");
7165
7166    // We need to replace ptr0 in the following expression:
7167    //   x0 * offset0 + y0 * ptr0 = t0
7168    // knowing that
7169    //   x1 * offset1 + y1 * ptr0 = t1 (the indexed load/store)
7170    //
7171    // where x0, x1, y0 and y1 in {-1, 1} are given by the types of the
7172    // indexed load/store and the expresion that needs to be re-written.
7173    //
7174    // Therefore, we have:
7175    //   t0 = (x0 * offset0 - x1 * y0 * y1 *offset1) + (y0 * y1) * t1
7176
7177    ConstantSDNode *CN =
7178      cast<ConstantSDNode>(OtherUses[i]->getOperand(OffsetIdx));
7179    int X0, X1, Y0, Y1;
7180    APInt Offset0 = CN->getAPIntValue();
7181    APInt Offset1 = cast<ConstantSDNode>(Offset)->getAPIntValue();
7182
7183    X0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 1) ? -1 : 1;
7184    Y0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 0) ? -1 : 1;
7185    X1 = (AM == ISD::PRE_DEC && !Swapped) ? -1 : 1;
7186    Y1 = (AM == ISD::PRE_DEC && Swapped) ? -1 : 1;
7187
7188    unsigned Opcode = (Y0 * Y1 < 0) ? ISD::SUB : ISD::ADD;
7189
7190    APInt CNV = Offset0;
7191    if (X0 < 0) CNV = -CNV;
7192    if (X1 * Y0 * Y1 < 0) CNV = CNV + Offset1;
7193    else CNV = CNV - Offset1;
7194
7195    // We can now generate the new expression.
7196    SDValue NewOp1 = DAG.getConstant(CNV, CN->getValueType(0));
7197    SDValue NewOp2 = Result.getValue(isLoad ? 1 : 0);
7198
7199    SDValue NewUse = DAG.getNode(Opcode,
7200                                 SDLoc(OtherUses[i]),
7201                                 OtherUses[i]->getValueType(0), NewOp1, NewOp2);
7202    DAG.ReplaceAllUsesOfValueWith(SDValue(OtherUses[i], 0), NewUse);
7203    removeFromWorkList(OtherUses[i]);
7204    DAG.DeleteNode(OtherUses[i]);
7205  }
7206
7207  // Replace the uses of Ptr with uses of the updated base value.
7208  DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(isLoad ? 1 : 0));
7209  removeFromWorkList(Ptr.getNode());
7210  DAG.DeleteNode(Ptr.getNode());
7211
7212  return true;
7213}
7214
7215/// CombineToPostIndexedLoadStore - Try to combine a load / store with a
7216/// add / sub of the base pointer node into a post-indexed load / store.
7217/// The transformation folded the add / subtract into the new indexed
7218/// load / store effectively and all of its uses are redirected to the
7219/// new load / store.
7220bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) {
7221  if (Level < AfterLegalizeDAG)
7222    return false;
7223
7224  bool isLoad = true;
7225  SDValue Ptr;
7226  EVT VT;
7227  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(N)) {
7228    if (LD->isIndexed())
7229      return false;
7230    VT = LD->getMemoryVT();
7231    if (!TLI.isIndexedLoadLegal(ISD::POST_INC, VT) &&
7232        !TLI.isIndexedLoadLegal(ISD::POST_DEC, VT))
7233      return false;
7234    Ptr = LD->getBasePtr();
7235  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(N)) {
7236    if (ST->isIndexed())
7237      return false;
7238    VT = ST->getMemoryVT();
7239    if (!TLI.isIndexedStoreLegal(ISD::POST_INC, VT) &&
7240        !TLI.isIndexedStoreLegal(ISD::POST_DEC, VT))
7241      return false;
7242    Ptr = ST->getBasePtr();
7243    isLoad = false;
7244  } else {
7245    return false;
7246  }
7247
7248  if (Ptr.getNode()->hasOneUse())
7249    return false;
7250
7251  for (SDNode::use_iterator I = Ptr.getNode()->use_begin(),
7252         E = Ptr.getNode()->use_end(); I != E; ++I) {
7253    SDNode *Op = *I;
7254    if (Op == N ||
7255        (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB))
7256      continue;
7257
7258    SDValue BasePtr;
7259    SDValue Offset;
7260    ISD::MemIndexedMode AM = ISD::UNINDEXED;
7261    if (TLI.getPostIndexedAddressParts(N, Op, BasePtr, Offset, AM, DAG)) {
7262      // Don't create a indexed load / store with zero offset.
7263      if (isa<ConstantSDNode>(Offset) &&
7264          cast<ConstantSDNode>(Offset)->isNullValue())
7265        continue;
7266
7267      // Try turning it into a post-indexed load / store except when
7268      // 1) All uses are load / store ops that use it as base ptr (and
7269      //    it may be folded as addressing mmode).
7270      // 2) Op must be independent of N, i.e. Op is neither a predecessor
7271      //    nor a successor of N. Otherwise, if Op is folded that would
7272      //    create a cycle.
7273
7274      if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr))
7275        continue;
7276
7277      // Check for #1.
7278      bool TryNext = false;
7279      for (SDNode::use_iterator II = BasePtr.getNode()->use_begin(),
7280             EE = BasePtr.getNode()->use_end(); II != EE; ++II) {
7281        SDNode *Use = *II;
7282        if (Use == Ptr.getNode())
7283          continue;
7284
7285        // If all the uses are load / store addresses, then don't do the
7286        // transformation.
7287        if (Use->getOpcode() == ISD::ADD || Use->getOpcode() == ISD::SUB){
7288          bool RealUse = false;
7289          for (SDNode::use_iterator III = Use->use_begin(),
7290                 EEE = Use->use_end(); III != EEE; ++III) {
7291            SDNode *UseUse = *III;
7292            if (!canFoldInAddressingMode(Use, UseUse, DAG, TLI))
7293              RealUse = true;
7294          }
7295
7296          if (!RealUse) {
7297            TryNext = true;
7298            break;
7299          }
7300        }
7301      }
7302
7303      if (TryNext)
7304        continue;
7305
7306      // Check for #2
7307      if (!Op->isPredecessorOf(N) && !N->isPredecessorOf(Op)) {
7308        SDValue Result = isLoad
7309          ? DAG.getIndexedLoad(SDValue(N,0), SDLoc(N),
7310                               BasePtr, Offset, AM)
7311          : DAG.getIndexedStore(SDValue(N,0), SDLoc(N),
7312                                BasePtr, Offset, AM);
7313        ++PostIndexedNodes;
7314        ++NodesCombined;
7315        DEBUG(dbgs() << "\nReplacing.5 ";
7316              N->dump(&DAG);
7317              dbgs() << "\nWith: ";
7318              Result.getNode()->dump(&DAG);
7319              dbgs() << '\n');
7320        WorkListRemover DeadNodes(*this);
7321        if (isLoad) {
7322          DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0));
7323          DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2));
7324        } else {
7325          DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1));
7326        }
7327
7328        // Finally, since the node is now dead, remove it from the graph.
7329        DAG.DeleteNode(N);
7330
7331        // Replace the uses of Use with uses of the updated base value.
7332        DAG.ReplaceAllUsesOfValueWith(SDValue(Op, 0),
7333                                      Result.getValue(isLoad ? 1 : 0));
7334        removeFromWorkList(Op);
7335        DAG.DeleteNode(Op);
7336        return true;
7337      }
7338    }
7339  }
7340
7341  return false;
7342}
7343
7344SDValue DAGCombiner::visitLOAD(SDNode *N) {
7345  LoadSDNode *LD  = cast<LoadSDNode>(N);
7346  SDValue Chain = LD->getChain();
7347  SDValue Ptr   = LD->getBasePtr();
7348
7349  // If load is not volatile and there are no uses of the loaded value (and
7350  // the updated indexed value in case of indexed loads), change uses of the
7351  // chain value into uses of the chain input (i.e. delete the dead load).
7352  if (!LD->isVolatile()) {
7353    if (N->getValueType(1) == MVT::Other) {
7354      // Unindexed loads.
7355      if (!N->hasAnyUseOfValue(0)) {
7356        // It's not safe to use the two value CombineTo variant here. e.g.
7357        // v1, chain2 = load chain1, loc
7358        // v2, chain3 = load chain2, loc
7359        // v3         = add v2, c
7360        // Now we replace use of chain2 with chain1.  This makes the second load
7361        // isomorphic to the one we are deleting, and thus makes this load live.
7362        DEBUG(dbgs() << "\nReplacing.6 ";
7363              N->dump(&DAG);
7364              dbgs() << "\nWith chain: ";
7365              Chain.getNode()->dump(&DAG);
7366              dbgs() << "\n");
7367        WorkListRemover DeadNodes(*this);
7368        DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain);
7369
7370        if (N->use_empty()) {
7371          removeFromWorkList(N);
7372          DAG.DeleteNode(N);
7373        }
7374
7375        return SDValue(N, 0);   // Return N so it doesn't get rechecked!
7376      }
7377    } else {
7378      // Indexed loads.
7379      assert(N->getValueType(2) == MVT::Other && "Malformed indexed loads?");
7380      if (!N->hasAnyUseOfValue(0) && !N->hasAnyUseOfValue(1)) {
7381        SDValue Undef = DAG.getUNDEF(N->getValueType(0));
7382        DEBUG(dbgs() << "\nReplacing.7 ";
7383              N->dump(&DAG);
7384              dbgs() << "\nWith: ";
7385              Undef.getNode()->dump(&DAG);
7386              dbgs() << " and 2 other values\n");
7387        WorkListRemover DeadNodes(*this);
7388        DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Undef);
7389        DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1),
7390                                      DAG.getUNDEF(N->getValueType(1)));
7391        DAG.ReplaceAllUsesOfValueWith(SDValue(N, 2), Chain);
7392        removeFromWorkList(N);
7393        DAG.DeleteNode(N);
7394        return SDValue(N, 0);   // Return N so it doesn't get rechecked!
7395      }
7396    }
7397  }
7398
7399  // If this load is directly stored, replace the load value with the stored
7400  // value.
7401  // TODO: Handle store large -> read small portion.
7402  // TODO: Handle TRUNCSTORE/LOADEXT
7403  if (ISD::isNormalLoad(N) && !LD->isVolatile()) {
7404    if (ISD::isNON_TRUNCStore(Chain.getNode())) {
7405      StoreSDNode *PrevST = cast<StoreSDNode>(Chain);
7406      if (PrevST->getBasePtr() == Ptr &&
7407          PrevST->getValue().getValueType() == N->getValueType(0))
7408      return CombineTo(N, Chain.getOperand(1), Chain);
7409    }
7410  }
7411
7412  // Try to infer better alignment information than the load already has.
7413  if (OptLevel != CodeGenOpt::None && LD->isUnindexed()) {
7414    if (unsigned Align = DAG.InferPtrAlignment(Ptr)) {
7415      if (Align > LD->getMemOperand()->getBaseAlignment()) {
7416        SDValue NewLoad =
7417               DAG.getExtLoad(LD->getExtensionType(), SDLoc(N),
7418                              LD->getValueType(0),
7419                              Chain, Ptr, LD->getPointerInfo(),
7420                              LD->getMemoryVT(),
7421                              LD->isVolatile(), LD->isNonTemporal(), Align);
7422        return CombineTo(N, NewLoad, SDValue(NewLoad.getNode(), 1), true);
7423      }
7424    }
7425  }
7426
7427  if (CombinerAA) {
7428    // Walk up chain skipping non-aliasing memory nodes.
7429    SDValue BetterChain = FindBetterChain(N, Chain);
7430
7431    // If there is a better chain.
7432    if (Chain != BetterChain) {
7433      SDValue ReplLoad;
7434
7435      // Replace the chain to void dependency.
7436      if (LD->getExtensionType() == ISD::NON_EXTLOAD) {
7437        ReplLoad = DAG.getLoad(N->getValueType(0), SDLoc(LD),
7438                               BetterChain, Ptr, LD->getPointerInfo(),
7439                               LD->isVolatile(), LD->isNonTemporal(),
7440                               LD->isInvariant(), LD->getAlignment());
7441      } else {
7442        ReplLoad = DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD),
7443                                  LD->getValueType(0),
7444                                  BetterChain, Ptr, LD->getPointerInfo(),
7445                                  LD->getMemoryVT(),
7446                                  LD->isVolatile(),
7447                                  LD->isNonTemporal(),
7448                                  LD->getAlignment());
7449      }
7450
7451      // Create token factor to keep old chain connected.
7452      SDValue Token = DAG.getNode(ISD::TokenFactor, SDLoc(N),
7453                                  MVT::Other, Chain, ReplLoad.getValue(1));
7454
7455      // Make sure the new and old chains are cleaned up.
7456      AddToWorkList(Token.getNode());
7457
7458      // Replace uses with load result and token factor. Don't add users
7459      // to work list.
7460      return CombineTo(N, ReplLoad.getValue(0), Token, false);
7461    }
7462  }
7463
7464  // Try transforming N to an indexed load.
7465  if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
7466    return SDValue(N, 0);
7467
7468  return SDValue();
7469}
7470
7471/// CheckForMaskedLoad - Check to see if V is (and load (ptr), imm), where the
7472/// load is having specific bytes cleared out.  If so, return the byte size
7473/// being masked out and the shift amount.
7474static std::pair<unsigned, unsigned>
7475CheckForMaskedLoad(SDValue V, SDValue Ptr, SDValue Chain) {
7476  std::pair<unsigned, unsigned> Result(0, 0);
7477
7478  // Check for the structure we're looking for.
7479  if (V->getOpcode() != ISD::AND ||
7480      !isa<ConstantSDNode>(V->getOperand(1)) ||
7481      !ISD::isNormalLoad(V->getOperand(0).getNode()))
7482    return Result;
7483
7484  // Check the chain and pointer.
7485  LoadSDNode *LD = cast<LoadSDNode>(V->getOperand(0));
7486  if (LD->getBasePtr() != Ptr) return Result;  // Not from same pointer.
7487
7488  // The store should be chained directly to the load or be an operand of a
7489  // tokenfactor.
7490  if (LD == Chain.getNode())
7491    ; // ok.
7492  else if (Chain->getOpcode() != ISD::TokenFactor)
7493    return Result; // Fail.
7494  else {
7495    bool isOk = false;
7496    for (unsigned i = 0, e = Chain->getNumOperands(); i != e; ++i)
7497      if (Chain->getOperand(i).getNode() == LD) {
7498        isOk = true;
7499        break;
7500      }
7501    if (!isOk) return Result;
7502  }
7503
7504  // This only handles simple types.
7505  if (V.getValueType() != MVT::i16 &&
7506      V.getValueType() != MVT::i32 &&
7507      V.getValueType() != MVT::i64)
7508    return Result;
7509
7510  // Check the constant mask.  Invert it so that the bits being masked out are
7511  // 0 and the bits being kept are 1.  Use getSExtValue so that leading bits
7512  // follow the sign bit for uniformity.
7513  uint64_t NotMask = ~cast<ConstantSDNode>(V->getOperand(1))->getSExtValue();
7514  unsigned NotMaskLZ = countLeadingZeros(NotMask);
7515  if (NotMaskLZ & 7) return Result;  // Must be multiple of a byte.
7516  unsigned NotMaskTZ = countTrailingZeros(NotMask);
7517  if (NotMaskTZ & 7) return Result;  // Must be multiple of a byte.
7518  if (NotMaskLZ == 64) return Result;  // All zero mask.
7519
7520  // See if we have a continuous run of bits.  If so, we have 0*1+0*
7521  if (CountTrailingOnes_64(NotMask >> NotMaskTZ)+NotMaskTZ+NotMaskLZ != 64)
7522    return Result;
7523
7524  // Adjust NotMaskLZ down to be from the actual size of the int instead of i64.
7525  if (V.getValueType() != MVT::i64 && NotMaskLZ)
7526    NotMaskLZ -= 64-V.getValueSizeInBits();
7527
7528  unsigned MaskedBytes = (V.getValueSizeInBits()-NotMaskLZ-NotMaskTZ)/8;
7529  switch (MaskedBytes) {
7530  case 1:
7531  case 2:
7532  case 4: break;
7533  default: return Result; // All one mask, or 5-byte mask.
7534  }
7535
7536  // Verify that the first bit starts at a multiple of mask so that the access
7537  // is aligned the same as the access width.
7538  if (NotMaskTZ && NotMaskTZ/8 % MaskedBytes) return Result;
7539
7540  Result.first = MaskedBytes;
7541  Result.second = NotMaskTZ/8;
7542  return Result;
7543}
7544
7545
7546/// ShrinkLoadReplaceStoreWithStore - Check to see if IVal is something that
7547/// provides a value as specified by MaskInfo.  If so, replace the specified
7548/// store with a narrower store of truncated IVal.
7549static SDNode *
7550ShrinkLoadReplaceStoreWithStore(const std::pair<unsigned, unsigned> &MaskInfo,
7551                                SDValue IVal, StoreSDNode *St,
7552                                DAGCombiner *DC) {
7553  unsigned NumBytes = MaskInfo.first;
7554  unsigned ByteShift = MaskInfo.second;
7555  SelectionDAG &DAG = DC->getDAG();
7556
7557  // Check to see if IVal is all zeros in the part being masked in by the 'or'
7558  // that uses this.  If not, this is not a replacement.
7559  APInt Mask = ~APInt::getBitsSet(IVal.getValueSizeInBits(),
7560                                  ByteShift*8, (ByteShift+NumBytes)*8);
7561  if (!DAG.MaskedValueIsZero(IVal, Mask)) return 0;
7562
7563  // Check that it is legal on the target to do this.  It is legal if the new
7564  // VT we're shrinking to (i8/i16/i32) is legal or we're still before type
7565  // legalization.
7566  MVT VT = MVT::getIntegerVT(NumBytes*8);
7567  if (!DC->isTypeLegal(VT))
7568    return 0;
7569
7570  // Okay, we can do this!  Replace the 'St' store with a store of IVal that is
7571  // shifted by ByteShift and truncated down to NumBytes.
7572  if (ByteShift)
7573    IVal = DAG.getNode(ISD::SRL, SDLoc(IVal), IVal.getValueType(), IVal,
7574                       DAG.getConstant(ByteShift*8,
7575                                    DC->getShiftAmountTy(IVal.getValueType())));
7576
7577  // Figure out the offset for the store and the alignment of the access.
7578  unsigned StOffset;
7579  unsigned NewAlign = St->getAlignment();
7580
7581  if (DAG.getTargetLoweringInfo().isLittleEndian())
7582    StOffset = ByteShift;
7583  else
7584    StOffset = IVal.getValueType().getStoreSize() - ByteShift - NumBytes;
7585
7586  SDValue Ptr = St->getBasePtr();
7587  if (StOffset) {
7588    Ptr = DAG.getNode(ISD::ADD, SDLoc(IVal), Ptr.getValueType(),
7589                      Ptr, DAG.getConstant(StOffset, Ptr.getValueType()));
7590    NewAlign = MinAlign(NewAlign, StOffset);
7591  }
7592
7593  // Truncate down to the new size.
7594  IVal = DAG.getNode(ISD::TRUNCATE, SDLoc(IVal), VT, IVal);
7595
7596  ++OpsNarrowed;
7597  return DAG.getStore(St->getChain(), SDLoc(St), IVal, Ptr,
7598                      St->getPointerInfo().getWithOffset(StOffset),
7599                      false, false, NewAlign).getNode();
7600}
7601
7602
7603/// ReduceLoadOpStoreWidth - Look for sequence of load / op / store where op is
7604/// one of 'or', 'xor', and 'and' of immediates. If 'op' is only touching some
7605/// of the loaded bits, try narrowing the load and store if it would end up
7606/// being a win for performance or code size.
7607SDValue DAGCombiner::ReduceLoadOpStoreWidth(SDNode *N) {
7608  StoreSDNode *ST  = cast<StoreSDNode>(N);
7609  if (ST->isVolatile())
7610    return SDValue();
7611
7612  SDValue Chain = ST->getChain();
7613  SDValue Value = ST->getValue();
7614  SDValue Ptr   = ST->getBasePtr();
7615  EVT VT = Value.getValueType();
7616
7617  if (ST->isTruncatingStore() || VT.isVector() || !Value.hasOneUse())
7618    return SDValue();
7619
7620  unsigned Opc = Value.getOpcode();
7621
7622  // If this is "store (or X, Y), P" and X is "(and (load P), cst)", where cst
7623  // is a byte mask indicating a consecutive number of bytes, check to see if
7624  // Y is known to provide just those bytes.  If so, we try to replace the
7625  // load + replace + store sequence with a single (narrower) store, which makes
7626  // the load dead.
7627  if (Opc == ISD::OR) {
7628    std::pair<unsigned, unsigned> MaskedLoad;
7629    MaskedLoad = CheckForMaskedLoad(Value.getOperand(0), Ptr, Chain);
7630    if (MaskedLoad.first)
7631      if (SDNode *NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad,
7632                                                  Value.getOperand(1), ST,this))
7633        return SDValue(NewST, 0);
7634
7635    // Or is commutative, so try swapping X and Y.
7636    MaskedLoad = CheckForMaskedLoad(Value.getOperand(1), Ptr, Chain);
7637    if (MaskedLoad.first)
7638      if (SDNode *NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad,
7639                                                  Value.getOperand(0), ST,this))
7640        return SDValue(NewST, 0);
7641  }
7642
7643  if ((Opc != ISD::OR && Opc != ISD::XOR && Opc != ISD::AND) ||
7644      Value.getOperand(1).getOpcode() != ISD::Constant)
7645    return SDValue();
7646
7647  SDValue N0 = Value.getOperand(0);
7648  if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
7649      Chain == SDValue(N0.getNode(), 1)) {
7650    LoadSDNode *LD = cast<LoadSDNode>(N0);
7651    if (LD->getBasePtr() != Ptr ||
7652        LD->getPointerInfo().getAddrSpace() !=
7653        ST->getPointerInfo().getAddrSpace())
7654      return SDValue();
7655
7656    // Find the type to narrow it the load / op / store to.
7657    SDValue N1 = Value.getOperand(1);
7658    unsigned BitWidth = N1.getValueSizeInBits();
7659    APInt Imm = cast<ConstantSDNode>(N1)->getAPIntValue();
7660    if (Opc == ISD::AND)
7661      Imm ^= APInt::getAllOnesValue(BitWidth);
7662    if (Imm == 0 || Imm.isAllOnesValue())
7663      return SDValue();
7664    unsigned ShAmt = Imm.countTrailingZeros();
7665    unsigned MSB = BitWidth - Imm.countLeadingZeros() - 1;
7666    unsigned NewBW = NextPowerOf2(MSB - ShAmt);
7667    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW);
7668    while (NewBW < BitWidth &&
7669           !(TLI.isOperationLegalOrCustom(Opc, NewVT) &&
7670             TLI.isNarrowingProfitable(VT, NewVT))) {
7671      NewBW = NextPowerOf2(NewBW);
7672      NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW);
7673    }
7674    if (NewBW >= BitWidth)
7675      return SDValue();
7676
7677    // If the lsb changed does not start at the type bitwidth boundary,
7678    // start at the previous one.
7679    if (ShAmt % NewBW)
7680      ShAmt = (((ShAmt + NewBW - 1) / NewBW) * NewBW) - NewBW;
7681    APInt Mask = APInt::getBitsSet(BitWidth, ShAmt,
7682                                   std::min(BitWidth, ShAmt + NewBW));
7683    if ((Imm & Mask) == Imm) {
7684      APInt NewImm = (Imm & Mask).lshr(ShAmt).trunc(NewBW);
7685      if (Opc == ISD::AND)
7686        NewImm ^= APInt::getAllOnesValue(NewBW);
7687      uint64_t PtrOff = ShAmt / 8;
7688      // For big endian targets, we need to adjust the offset to the pointer to
7689      // load the correct bytes.
7690      if (TLI.isBigEndian())
7691        PtrOff = (BitWidth + 7 - NewBW) / 8 - PtrOff;
7692
7693      unsigned NewAlign = MinAlign(LD->getAlignment(), PtrOff);
7694      Type *NewVTTy = NewVT.getTypeForEVT(*DAG.getContext());
7695      if (NewAlign < TLI.getDataLayout()->getABITypeAlignment(NewVTTy))
7696        return SDValue();
7697
7698      SDValue NewPtr = DAG.getNode(ISD::ADD, SDLoc(LD),
7699                                   Ptr.getValueType(), Ptr,
7700                                   DAG.getConstant(PtrOff, Ptr.getValueType()));
7701      SDValue NewLD = DAG.getLoad(NewVT, SDLoc(N0),
7702                                  LD->getChain(), NewPtr,
7703                                  LD->getPointerInfo().getWithOffset(PtrOff),
7704                                  LD->isVolatile(), LD->isNonTemporal(),
7705                                  LD->isInvariant(), NewAlign);
7706      SDValue NewVal = DAG.getNode(Opc, SDLoc(Value), NewVT, NewLD,
7707                                   DAG.getConstant(NewImm, NewVT));
7708      SDValue NewST = DAG.getStore(Chain, SDLoc(N),
7709                                   NewVal, NewPtr,
7710                                   ST->getPointerInfo().getWithOffset(PtrOff),
7711                                   false, false, NewAlign);
7712
7713      AddToWorkList(NewPtr.getNode());
7714      AddToWorkList(NewLD.getNode());
7715      AddToWorkList(NewVal.getNode());
7716      WorkListRemover DeadNodes(*this);
7717      DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLD.getValue(1));
7718      ++OpsNarrowed;
7719      return NewST;
7720    }
7721  }
7722
7723  return SDValue();
7724}
7725
7726/// TransformFPLoadStorePair - For a given floating point load / store pair,
7727/// if the load value isn't used by any other operations, then consider
7728/// transforming the pair to integer load / store operations if the target
7729/// deems the transformation profitable.
7730SDValue DAGCombiner::TransformFPLoadStorePair(SDNode *N) {
7731  StoreSDNode *ST  = cast<StoreSDNode>(N);
7732  SDValue Chain = ST->getChain();
7733  SDValue Value = ST->getValue();
7734  if (ISD::isNormalStore(ST) && ISD::isNormalLoad(Value.getNode()) &&
7735      Value.hasOneUse() &&
7736      Chain == SDValue(Value.getNode(), 1)) {
7737    LoadSDNode *LD = cast<LoadSDNode>(Value);
7738    EVT VT = LD->getMemoryVT();
7739    if (!VT.isFloatingPoint() ||
7740        VT != ST->getMemoryVT() ||
7741        LD->isNonTemporal() ||
7742        ST->isNonTemporal() ||
7743        LD->getPointerInfo().getAddrSpace() != 0 ||
7744        ST->getPointerInfo().getAddrSpace() != 0)
7745      return SDValue();
7746
7747    EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
7748    if (!TLI.isOperationLegal(ISD::LOAD, IntVT) ||
7749        !TLI.isOperationLegal(ISD::STORE, IntVT) ||
7750        !TLI.isDesirableToTransformToIntegerOp(ISD::LOAD, VT) ||
7751        !TLI.isDesirableToTransformToIntegerOp(ISD::STORE, VT))
7752      return SDValue();
7753
7754    unsigned LDAlign = LD->getAlignment();
7755    unsigned STAlign = ST->getAlignment();
7756    Type *IntVTTy = IntVT.getTypeForEVT(*DAG.getContext());
7757    unsigned ABIAlign = TLI.getDataLayout()->getABITypeAlignment(IntVTTy);
7758    if (LDAlign < ABIAlign || STAlign < ABIAlign)
7759      return SDValue();
7760
7761    SDValue NewLD = DAG.getLoad(IntVT, SDLoc(Value),
7762                                LD->getChain(), LD->getBasePtr(),
7763                                LD->getPointerInfo(),
7764                                false, false, false, LDAlign);
7765
7766    SDValue NewST = DAG.getStore(NewLD.getValue(1), SDLoc(N),
7767                                 NewLD, ST->getBasePtr(),
7768                                 ST->getPointerInfo(),
7769                                 false, false, STAlign);
7770
7771    AddToWorkList(NewLD.getNode());
7772    AddToWorkList(NewST.getNode());
7773    WorkListRemover DeadNodes(*this);
7774    DAG.ReplaceAllUsesOfValueWith(Value.getValue(1), NewLD.getValue(1));
7775    ++LdStFP2Int;
7776    return NewST;
7777  }
7778
7779  return SDValue();
7780}
7781
7782/// Helper struct to parse and store a memory address as base + index + offset.
7783/// We ignore sign extensions when it is safe to do so.
7784/// The following two expressions are not equivalent. To differentiate we need
7785/// to store whether there was a sign extension involved in the index
7786/// computation.
7787///  (load (i64 add (i64 copyfromreg %c)
7788///                 (i64 signextend (add (i8 load %index)
7789///                                      (i8 1))))
7790/// vs
7791///
7792/// (load (i64 add (i64 copyfromreg %c)
7793///                (i64 signextend (i32 add (i32 signextend (i8 load %index))
7794///                                         (i32 1)))))
7795struct BaseIndexOffset {
7796  SDValue Base;
7797  SDValue Index;
7798  int64_t Offset;
7799  bool IsIndexSignExt;
7800
7801  BaseIndexOffset() : Offset(0), IsIndexSignExt(false) {}
7802
7803  BaseIndexOffset(SDValue Base, SDValue Index, int64_t Offset,
7804                  bool IsIndexSignExt) :
7805    Base(Base), Index(Index), Offset(Offset), IsIndexSignExt(IsIndexSignExt) {}
7806
7807  bool equalBaseIndex(const BaseIndexOffset &Other) {
7808    return Other.Base == Base && Other.Index == Index &&
7809      Other.IsIndexSignExt == IsIndexSignExt;
7810  }
7811
7812  /// Parses tree in Ptr for base, index, offset addresses.
7813  static BaseIndexOffset match(SDValue Ptr) {
7814    bool IsIndexSignExt = false;
7815
7816    // Just Base or possibly anything else.
7817    if (Ptr->getOpcode() != ISD::ADD)
7818      return BaseIndexOffset(Ptr, SDValue(), 0, IsIndexSignExt);
7819
7820    // Base + offset.
7821    if (isa<ConstantSDNode>(Ptr->getOperand(1))) {
7822      int64_t Offset = cast<ConstantSDNode>(Ptr->getOperand(1))->getSExtValue();
7823      return  BaseIndexOffset(Ptr->getOperand(0), SDValue(), Offset,
7824                              IsIndexSignExt);
7825    }
7826
7827    // Look at Base + Index + Offset cases.
7828    SDValue Base = Ptr->getOperand(0);
7829    SDValue IndexOffset = Ptr->getOperand(1);
7830
7831    // Skip signextends.
7832    if (IndexOffset->getOpcode() == ISD::SIGN_EXTEND) {
7833      IndexOffset = IndexOffset->getOperand(0);
7834      IsIndexSignExt = true;
7835    }
7836
7837    // Either the case of Base + Index (no offset) or something else.
7838    if (IndexOffset->getOpcode() != ISD::ADD)
7839      return BaseIndexOffset(Base, IndexOffset, 0, IsIndexSignExt);
7840
7841    // Now we have the case of Base + Index + offset.
7842    SDValue Index = IndexOffset->getOperand(0);
7843    SDValue Offset = IndexOffset->getOperand(1);
7844
7845    if (!isa<ConstantSDNode>(Offset))
7846      return BaseIndexOffset(Ptr, SDValue(), 0, IsIndexSignExt);
7847
7848    // Ignore signextends.
7849    if (Index->getOpcode() == ISD::SIGN_EXTEND) {
7850      Index = Index->getOperand(0);
7851      IsIndexSignExt = true;
7852    } else IsIndexSignExt = false;
7853
7854    int64_t Off = cast<ConstantSDNode>(Offset)->getSExtValue();
7855    return BaseIndexOffset(Base, Index, Off, IsIndexSignExt);
7856  }
7857};
7858
7859/// Holds a pointer to an LSBaseSDNode as well as information on where it
7860/// is located in a sequence of memory operations connected by a chain.
7861struct MemOpLink {
7862  MemOpLink (LSBaseSDNode *N, int64_t Offset, unsigned Seq):
7863    MemNode(N), OffsetFromBase(Offset), SequenceNum(Seq) { }
7864  // Ptr to the mem node.
7865  LSBaseSDNode *MemNode;
7866  // Offset from the base ptr.
7867  int64_t OffsetFromBase;
7868  // What is the sequence number of this mem node.
7869  // Lowest mem operand in the DAG starts at zero.
7870  unsigned SequenceNum;
7871};
7872
7873/// Sorts store nodes in a link according to their offset from a shared
7874// base ptr.
7875struct ConsecutiveMemoryChainSorter {
7876  bool operator()(MemOpLink LHS, MemOpLink RHS) {
7877    return LHS.OffsetFromBase < RHS.OffsetFromBase;
7878  }
7879};
7880
7881bool DAGCombiner::MergeConsecutiveStores(StoreSDNode* St) {
7882  EVT MemVT = St->getMemoryVT();
7883  int64_t ElementSizeBytes = MemVT.getSizeInBits()/8;
7884  bool NoVectors = DAG.getMachineFunction().getFunction()->getAttributes().
7885    hasAttribute(AttributeSet::FunctionIndex, Attribute::NoImplicitFloat);
7886
7887  // Don't merge vectors into wider inputs.
7888  if (MemVT.isVector() || !MemVT.isSimple())
7889    return false;
7890
7891  // Perform an early exit check. Do not bother looking at stored values that
7892  // are not constants or loads.
7893  SDValue StoredVal = St->getValue();
7894  bool IsLoadSrc = isa<LoadSDNode>(StoredVal);
7895  if (!isa<ConstantSDNode>(StoredVal) && !isa<ConstantFPSDNode>(StoredVal) &&
7896      !IsLoadSrc)
7897    return false;
7898
7899  // Only look at ends of store sequences.
7900  SDValue Chain = SDValue(St, 1);
7901  if (Chain->hasOneUse() && Chain->use_begin()->getOpcode() == ISD::STORE)
7902    return false;
7903
7904  // This holds the base pointer, index, and the offset in bytes from the base
7905  // pointer.
7906  BaseIndexOffset BasePtr = BaseIndexOffset::match(St->getBasePtr());
7907
7908  // We must have a base and an offset.
7909  if (!BasePtr.Base.getNode())
7910    return false;
7911
7912  // Do not handle stores to undef base pointers.
7913  if (BasePtr.Base.getOpcode() == ISD::UNDEF)
7914    return false;
7915
7916  // Save the LoadSDNodes that we find in the chain.
7917  // We need to make sure that these nodes do not interfere with
7918  // any of the store nodes.
7919  SmallVector<LSBaseSDNode*, 8> AliasLoadNodes;
7920
7921  // Save the StoreSDNodes that we find in the chain.
7922  SmallVector<MemOpLink, 8> StoreNodes;
7923
7924  // Walk up the chain and look for nodes with offsets from the same
7925  // base pointer. Stop when reaching an instruction with a different kind
7926  // or instruction which has a different base pointer.
7927  unsigned Seq = 0;
7928  StoreSDNode *Index = St;
7929  while (Index) {
7930    // If the chain has more than one use, then we can't reorder the mem ops.
7931    if (Index != St && !SDValue(Index, 1)->hasOneUse())
7932      break;
7933
7934    // Find the base pointer and offset for this memory node.
7935    BaseIndexOffset Ptr = BaseIndexOffset::match(Index->getBasePtr());
7936
7937    // Check that the base pointer is the same as the original one.
7938    if (!Ptr.equalBaseIndex(BasePtr))
7939      break;
7940
7941    // Check that the alignment is the same.
7942    if (Index->getAlignment() != St->getAlignment())
7943      break;
7944
7945    // The memory operands must not be volatile.
7946    if (Index->isVolatile() || Index->isIndexed())
7947      break;
7948
7949    // No truncation.
7950    if (StoreSDNode *St = dyn_cast<StoreSDNode>(Index))
7951      if (St->isTruncatingStore())
7952        break;
7953
7954    // The stored memory type must be the same.
7955    if (Index->getMemoryVT() != MemVT)
7956      break;
7957
7958    // We do not allow unaligned stores because we want to prevent overriding
7959    // stores.
7960    if (Index->getAlignment()*8 != MemVT.getSizeInBits())
7961      break;
7962
7963    // We found a potential memory operand to merge.
7964    StoreNodes.push_back(MemOpLink(Index, Ptr.Offset, Seq++));
7965
7966    // Find the next memory operand in the chain. If the next operand in the
7967    // chain is a store then move up and continue the scan with the next
7968    // memory operand. If the next operand is a load save it and use alias
7969    // information to check if it interferes with anything.
7970    SDNode *NextInChain = Index->getChain().getNode();
7971    while (1) {
7972      if (StoreSDNode *STn = dyn_cast<StoreSDNode>(NextInChain)) {
7973        // We found a store node. Use it for the next iteration.
7974        Index = STn;
7975        break;
7976      } else if (LoadSDNode *Ldn = dyn_cast<LoadSDNode>(NextInChain)) {
7977        // Save the load node for later. Continue the scan.
7978        AliasLoadNodes.push_back(Ldn);
7979        NextInChain = Ldn->getChain().getNode();
7980        continue;
7981      } else {
7982        Index = NULL;
7983        break;
7984      }
7985    }
7986  }
7987
7988  // Check if there is anything to merge.
7989  if (StoreNodes.size() < 2)
7990    return false;
7991
7992  // Sort the memory operands according to their distance from the base pointer.
7993  std::sort(StoreNodes.begin(), StoreNodes.end(),
7994            ConsecutiveMemoryChainSorter());
7995
7996  // Scan the memory operations on the chain and find the first non-consecutive
7997  // store memory address.
7998  unsigned LastConsecutiveStore = 0;
7999  int64_t StartAddress = StoreNodes[0].OffsetFromBase;
8000  for (unsigned i = 0, e = StoreNodes.size(); i < e; ++i) {
8001
8002    // Check that the addresses are consecutive starting from the second
8003    // element in the list of stores.
8004    if (i > 0) {
8005      int64_t CurrAddress = StoreNodes[i].OffsetFromBase;
8006      if (CurrAddress - StartAddress != (ElementSizeBytes * i))
8007        break;
8008    }
8009
8010    bool Alias = false;
8011    // Check if this store interferes with any of the loads that we found.
8012    for (unsigned ld = 0, lde = AliasLoadNodes.size(); ld < lde; ++ld)
8013      if (isAlias(AliasLoadNodes[ld], StoreNodes[i].MemNode)) {
8014        Alias = true;
8015        break;
8016      }
8017    // We found a load that alias with this store. Stop the sequence.
8018    if (Alias)
8019      break;
8020
8021    // Mark this node as useful.
8022    LastConsecutiveStore = i;
8023  }
8024
8025  // The node with the lowest store address.
8026  LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode;
8027
8028  // Store the constants into memory as one consecutive store.
8029  if (!IsLoadSrc) {
8030    unsigned LastLegalType = 0;
8031    unsigned LastLegalVectorType = 0;
8032    bool NonZero = false;
8033    for (unsigned i=0; i<LastConsecutiveStore+1; ++i) {
8034      StoreSDNode *St  = cast<StoreSDNode>(StoreNodes[i].MemNode);
8035      SDValue StoredVal = St->getValue();
8036
8037      if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(StoredVal)) {
8038        NonZero |= !C->isNullValue();
8039      } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(StoredVal)) {
8040        NonZero |= !C->getConstantFPValue()->isNullValue();
8041      } else {
8042        // Non constant.
8043        break;
8044      }
8045
8046      // Find a legal type for the constant store.
8047      unsigned StoreBW = (i+1) * ElementSizeBytes * 8;
8048      EVT StoreTy = EVT::getIntegerVT(*DAG.getContext(), StoreBW);
8049      if (TLI.isTypeLegal(StoreTy))
8050        LastLegalType = i+1;
8051      // Or check whether a truncstore is legal.
8052      else if (TLI.getTypeAction(*DAG.getContext(), StoreTy) ==
8053               TargetLowering::TypePromoteInteger) {
8054        EVT LegalizedStoredValueTy =
8055          TLI.getTypeToTransformTo(*DAG.getContext(), StoredVal.getValueType());
8056        if (TLI.isTruncStoreLegal(LegalizedStoredValueTy, StoreTy))
8057          LastLegalType = i+1;
8058      }
8059
8060      // Find a legal type for the vector store.
8061      EVT Ty = EVT::getVectorVT(*DAG.getContext(), MemVT, i+1);
8062      if (TLI.isTypeLegal(Ty))
8063        LastLegalVectorType = i + 1;
8064    }
8065
8066    // We only use vectors if the constant is known to be zero and the
8067    // function is not marked with the noimplicitfloat attribute.
8068    if (NonZero || NoVectors)
8069      LastLegalVectorType = 0;
8070
8071    // Check if we found a legal integer type to store.
8072    if (LastLegalType == 0 && LastLegalVectorType == 0)
8073      return false;
8074
8075    bool UseVector = (LastLegalVectorType > LastLegalType) && !NoVectors;
8076    unsigned NumElem = UseVector ? LastLegalVectorType : LastLegalType;
8077
8078    // Make sure we have something to merge.
8079    if (NumElem < 2)
8080      return false;
8081
8082    unsigned EarliestNodeUsed = 0;
8083    for (unsigned i=0; i < NumElem; ++i) {
8084      // Find a chain for the new wide-store operand. Notice that some
8085      // of the store nodes that we found may not be selected for inclusion
8086      // in the wide store. The chain we use needs to be the chain of the
8087      // earliest store node which is *used* and replaced by the wide store.
8088      if (StoreNodes[i].SequenceNum > StoreNodes[EarliestNodeUsed].SequenceNum)
8089        EarliestNodeUsed = i;
8090    }
8091
8092    // The earliest Node in the DAG.
8093    LSBaseSDNode *EarliestOp = StoreNodes[EarliestNodeUsed].MemNode;
8094    SDLoc DL(StoreNodes[0].MemNode);
8095
8096    SDValue StoredVal;
8097    if (UseVector) {
8098      // Find a legal type for the vector store.
8099      EVT Ty = EVT::getVectorVT(*DAG.getContext(), MemVT, NumElem);
8100      assert(TLI.isTypeLegal(Ty) && "Illegal vector store");
8101      StoredVal = DAG.getConstant(0, Ty);
8102    } else {
8103      unsigned StoreBW = NumElem * ElementSizeBytes * 8;
8104      APInt StoreInt(StoreBW, 0);
8105
8106      // Construct a single integer constant which is made of the smaller
8107      // constant inputs.
8108      bool IsLE = TLI.isLittleEndian();
8109      for (unsigned i = 0; i < NumElem ; ++i) {
8110        unsigned Idx = IsLE ?(NumElem - 1 - i) : i;
8111        StoreSDNode *St  = cast<StoreSDNode>(StoreNodes[Idx].MemNode);
8112        SDValue Val = St->getValue();
8113        StoreInt<<=ElementSizeBytes*8;
8114        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) {
8115          StoreInt|=C->getAPIntValue().zext(StoreBW);
8116        } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Val)) {
8117          StoreInt|= C->getValueAPF().bitcastToAPInt().zext(StoreBW);
8118        } else {
8119          assert(false && "Invalid constant element type");
8120        }
8121      }
8122
8123      // Create the new Load and Store operations.
8124      EVT StoreTy = EVT::getIntegerVT(*DAG.getContext(), StoreBW);
8125      StoredVal = DAG.getConstant(StoreInt, StoreTy);
8126    }
8127
8128    SDValue NewStore = DAG.getStore(EarliestOp->getChain(), DL, StoredVal,
8129                                    FirstInChain->getBasePtr(),
8130                                    FirstInChain->getPointerInfo(),
8131                                    false, false,
8132                                    FirstInChain->getAlignment());
8133
8134    // Replace the first store with the new store
8135    CombineTo(EarliestOp, NewStore);
8136    // Erase all other stores.
8137    for (unsigned i = 0; i < NumElem ; ++i) {
8138      if (StoreNodes[i].MemNode == EarliestOp)
8139        continue;
8140      StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode);
8141      // ReplaceAllUsesWith will replace all uses that existed when it was
8142      // called, but graph optimizations may cause new ones to appear. For
8143      // example, the case in pr14333 looks like
8144      //
8145      //  St's chain -> St -> another store -> X
8146      //
8147      // And the only difference from St to the other store is the chain.
8148      // When we change it's chain to be St's chain they become identical,
8149      // get CSEed and the net result is that X is now a use of St.
8150      // Since we know that St is redundant, just iterate.
8151      while (!St->use_empty())
8152        DAG.ReplaceAllUsesWith(SDValue(St, 0), St->getChain());
8153      removeFromWorkList(St);
8154      DAG.DeleteNode(St);
8155    }
8156
8157    return true;
8158  }
8159
8160  // Below we handle the case of multiple consecutive stores that
8161  // come from multiple consecutive loads. We merge them into a single
8162  // wide load and a single wide store.
8163
8164  // Look for load nodes which are used by the stored values.
8165  SmallVector<MemOpLink, 8> LoadNodes;
8166
8167  // Find acceptable loads. Loads need to have the same chain (token factor),
8168  // must not be zext, volatile, indexed, and they must be consecutive.
8169  BaseIndexOffset LdBasePtr;
8170  for (unsigned i=0; i<LastConsecutiveStore+1; ++i) {
8171    StoreSDNode *St  = cast<StoreSDNode>(StoreNodes[i].MemNode);
8172    LoadSDNode *Ld = dyn_cast<LoadSDNode>(St->getValue());
8173    if (!Ld) break;
8174
8175    // Loads must only have one use.
8176    if (!Ld->hasNUsesOfValue(1, 0))
8177      break;
8178
8179    // Check that the alignment is the same as the stores.
8180    if (Ld->getAlignment() != St->getAlignment())
8181      break;
8182
8183    // The memory operands must not be volatile.
8184    if (Ld->isVolatile() || Ld->isIndexed())
8185      break;
8186
8187    // We do not accept ext loads.
8188    if (Ld->getExtensionType() != ISD::NON_EXTLOAD)
8189      break;
8190
8191    // The stored memory type must be the same.
8192    if (Ld->getMemoryVT() != MemVT)
8193      break;
8194
8195    BaseIndexOffset LdPtr = BaseIndexOffset::match(Ld->getBasePtr());
8196    // If this is not the first ptr that we check.
8197    if (LdBasePtr.Base.getNode()) {
8198      // The base ptr must be the same.
8199      if (!LdPtr.equalBaseIndex(LdBasePtr))
8200        break;
8201    } else {
8202      // Check that all other base pointers are the same as this one.
8203      LdBasePtr = LdPtr;
8204    }
8205
8206    // We found a potential memory operand to merge.
8207    LoadNodes.push_back(MemOpLink(Ld, LdPtr.Offset, 0));
8208  }
8209
8210  if (LoadNodes.size() < 2)
8211    return false;
8212
8213  // Scan the memory operations on the chain and find the first non-consecutive
8214  // load memory address. These variables hold the index in the store node
8215  // array.
8216  unsigned LastConsecutiveLoad = 0;
8217  // This variable refers to the size and not index in the array.
8218  unsigned LastLegalVectorType = 0;
8219  unsigned LastLegalIntegerType = 0;
8220  StartAddress = LoadNodes[0].OffsetFromBase;
8221  SDValue FirstChain = LoadNodes[0].MemNode->getChain();
8222  for (unsigned i = 1; i < LoadNodes.size(); ++i) {
8223    // All loads much share the same chain.
8224    if (LoadNodes[i].MemNode->getChain() != FirstChain)
8225      break;
8226
8227    int64_t CurrAddress = LoadNodes[i].OffsetFromBase;
8228    if (CurrAddress - StartAddress != (ElementSizeBytes * i))
8229      break;
8230    LastConsecutiveLoad = i;
8231
8232    // Find a legal type for the vector store.
8233    EVT StoreTy = EVT::getVectorVT(*DAG.getContext(), MemVT, i+1);
8234    if (TLI.isTypeLegal(StoreTy))
8235      LastLegalVectorType = i + 1;
8236
8237    // Find a legal type for the integer store.
8238    unsigned StoreBW = (i+1) * ElementSizeBytes * 8;
8239    StoreTy = EVT::getIntegerVT(*DAG.getContext(), StoreBW);
8240    if (TLI.isTypeLegal(StoreTy))
8241      LastLegalIntegerType = i + 1;
8242    // Or check whether a truncstore and extload is legal.
8243    else if (TLI.getTypeAction(*DAG.getContext(), StoreTy) ==
8244             TargetLowering::TypePromoteInteger) {
8245      EVT LegalizedStoredValueTy =
8246        TLI.getTypeToTransformTo(*DAG.getContext(), StoreTy);
8247      if (TLI.isTruncStoreLegal(LegalizedStoredValueTy, StoreTy) &&
8248          TLI.isLoadExtLegal(ISD::ZEXTLOAD, StoreTy) &&
8249          TLI.isLoadExtLegal(ISD::SEXTLOAD, StoreTy) &&
8250          TLI.isLoadExtLegal(ISD::EXTLOAD, StoreTy))
8251        LastLegalIntegerType = i+1;
8252    }
8253  }
8254
8255  // Only use vector types if the vector type is larger than the integer type.
8256  // If they are the same, use integers.
8257  bool UseVectorTy = LastLegalVectorType > LastLegalIntegerType && !NoVectors;
8258  unsigned LastLegalType = std::max(LastLegalVectorType, LastLegalIntegerType);
8259
8260  // We add +1 here because the LastXXX variables refer to location while
8261  // the NumElem refers to array/index size.
8262  unsigned NumElem = std::min(LastConsecutiveStore, LastConsecutiveLoad) + 1;
8263  NumElem = std::min(LastLegalType, NumElem);
8264
8265  if (NumElem < 2)
8266    return false;
8267
8268  // The earliest Node in the DAG.
8269  unsigned EarliestNodeUsed = 0;
8270  LSBaseSDNode *EarliestOp = StoreNodes[EarliestNodeUsed].MemNode;
8271  for (unsigned i=1; i<NumElem; ++i) {
8272    // Find a chain for the new wide-store operand. Notice that some
8273    // of the store nodes that we found may not be selected for inclusion
8274    // in the wide store. The chain we use needs to be the chain of the
8275    // earliest store node which is *used* and replaced by the wide store.
8276    if (StoreNodes[i].SequenceNum > StoreNodes[EarliestNodeUsed].SequenceNum)
8277      EarliestNodeUsed = i;
8278  }
8279
8280  // Find if it is better to use vectors or integers to load and store
8281  // to memory.
8282  EVT JointMemOpVT;
8283  if (UseVectorTy) {
8284    JointMemOpVT = EVT::getVectorVT(*DAG.getContext(), MemVT, NumElem);
8285  } else {
8286    unsigned StoreBW = NumElem * ElementSizeBytes * 8;
8287    JointMemOpVT = EVT::getIntegerVT(*DAG.getContext(), StoreBW);
8288  }
8289
8290  SDLoc LoadDL(LoadNodes[0].MemNode);
8291  SDLoc StoreDL(StoreNodes[0].MemNode);
8292
8293  LoadSDNode *FirstLoad = cast<LoadSDNode>(LoadNodes[0].MemNode);
8294  SDValue NewLoad = DAG.getLoad(JointMemOpVT, LoadDL,
8295                                FirstLoad->getChain(),
8296                                FirstLoad->getBasePtr(),
8297                                FirstLoad->getPointerInfo(),
8298                                false, false, false,
8299                                FirstLoad->getAlignment());
8300
8301  SDValue NewStore = DAG.getStore(EarliestOp->getChain(), StoreDL, NewLoad,
8302                                  FirstInChain->getBasePtr(),
8303                                  FirstInChain->getPointerInfo(), false, false,
8304                                  FirstInChain->getAlignment());
8305
8306  // Replace one of the loads with the new load.
8307  LoadSDNode *Ld = cast<LoadSDNode>(LoadNodes[0].MemNode);
8308  DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1),
8309                                SDValue(NewLoad.getNode(), 1));
8310
8311  // Remove the rest of the load chains.
8312  for (unsigned i = 1; i < NumElem ; ++i) {
8313    // Replace all chain users of the old load nodes with the chain of the new
8314    // load node.
8315    LoadSDNode *Ld = cast<LoadSDNode>(LoadNodes[i].MemNode);
8316    DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), Ld->getChain());
8317  }
8318
8319  // Replace the first store with the new store.
8320  CombineTo(EarliestOp, NewStore);
8321  // Erase all other stores.
8322  for (unsigned i = 0; i < NumElem ; ++i) {
8323    // Remove all Store nodes.
8324    if (StoreNodes[i].MemNode == EarliestOp)
8325      continue;
8326    StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode);
8327    DAG.ReplaceAllUsesOfValueWith(SDValue(St, 0), St->getChain());
8328    removeFromWorkList(St);
8329    DAG.DeleteNode(St);
8330  }
8331
8332  return true;
8333}
8334
8335SDValue DAGCombiner::visitSTORE(SDNode *N) {
8336  StoreSDNode *ST  = cast<StoreSDNode>(N);
8337  SDValue Chain = ST->getChain();
8338  SDValue Value = ST->getValue();
8339  SDValue Ptr   = ST->getBasePtr();
8340
8341  // If this is a store of a bit convert, store the input value if the
8342  // resultant store does not need a higher alignment than the original.
8343  if (Value.getOpcode() == ISD::BITCAST && !ST->isTruncatingStore() &&
8344      ST->isUnindexed()) {
8345    unsigned OrigAlign = ST->getAlignment();
8346    EVT SVT = Value.getOperand(0).getValueType();
8347    unsigned Align = TLI.getDataLayout()->
8348      getABITypeAlignment(SVT.getTypeForEVT(*DAG.getContext()));
8349    if (Align <= OrigAlign &&
8350        ((!LegalOperations && !ST->isVolatile()) ||
8351         TLI.isOperationLegalOrCustom(ISD::STORE, SVT)))
8352      return DAG.getStore(Chain, SDLoc(N), Value.getOperand(0),
8353                          Ptr, ST->getPointerInfo(), ST->isVolatile(),
8354                          ST->isNonTemporal(), OrigAlign);
8355  }
8356
8357  // Turn 'store undef, Ptr' -> nothing.
8358  if (Value.getOpcode() == ISD::UNDEF && ST->isUnindexed())
8359    return Chain;
8360
8361  // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
8362  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Value)) {
8363    // NOTE: If the original store is volatile, this transform must not increase
8364    // the number of stores.  For example, on x86-32 an f64 can be stored in one
8365    // processor operation but an i64 (which is not legal) requires two.  So the
8366    // transform should not be done in this case.
8367    if (Value.getOpcode() != ISD::TargetConstantFP) {
8368      SDValue Tmp;
8369      switch (CFP->getValueType(0).getSimpleVT().SimpleTy) {
8370      default: llvm_unreachable("Unknown FP type");
8371      case MVT::f16:    // We don't do this for these yet.
8372      case MVT::f80:
8373      case MVT::f128:
8374      case MVT::ppcf128:
8375        break;
8376      case MVT::f32:
8377        if ((isTypeLegal(MVT::i32) && !LegalOperations && !ST->isVolatile()) ||
8378            TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) {
8379          Tmp = DAG.getConstant((uint32_t)CFP->getValueAPF().
8380                              bitcastToAPInt().getZExtValue(), MVT::i32);
8381          return DAG.getStore(Chain, SDLoc(N), Tmp,
8382                              Ptr, ST->getPointerInfo(), ST->isVolatile(),
8383                              ST->isNonTemporal(), ST->getAlignment());
8384        }
8385        break;
8386      case MVT::f64:
8387        if ((TLI.isTypeLegal(MVT::i64) && !LegalOperations &&
8388             !ST->isVolatile()) ||
8389            TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i64)) {
8390          Tmp = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
8391                                getZExtValue(), MVT::i64);
8392          return DAG.getStore(Chain, SDLoc(N), Tmp,
8393                              Ptr, ST->getPointerInfo(), ST->isVolatile(),
8394                              ST->isNonTemporal(), ST->getAlignment());
8395        }
8396
8397        if (!ST->isVolatile() &&
8398            TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) {
8399          // Many FP stores are not made apparent until after legalize, e.g. for
8400          // argument passing.  Since this is so common, custom legalize the
8401          // 64-bit integer store into two 32-bit stores.
8402          uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
8403          SDValue Lo = DAG.getConstant(Val & 0xFFFFFFFF, MVT::i32);
8404          SDValue Hi = DAG.getConstant(Val >> 32, MVT::i32);
8405          if (TLI.isBigEndian()) std::swap(Lo, Hi);
8406
8407          unsigned Alignment = ST->getAlignment();
8408          bool isVolatile = ST->isVolatile();
8409          bool isNonTemporal = ST->isNonTemporal();
8410
8411          SDValue St0 = DAG.getStore(Chain, SDLoc(ST), Lo,
8412                                     Ptr, ST->getPointerInfo(),
8413                                     isVolatile, isNonTemporal,
8414                                     ST->getAlignment());
8415          Ptr = DAG.getNode(ISD::ADD, SDLoc(N), Ptr.getValueType(), Ptr,
8416                            DAG.getConstant(4, Ptr.getValueType()));
8417          Alignment = MinAlign(Alignment, 4U);
8418          SDValue St1 = DAG.getStore(Chain, SDLoc(ST), Hi,
8419                                     Ptr, ST->getPointerInfo().getWithOffset(4),
8420                                     isVolatile, isNonTemporal,
8421                                     Alignment);
8422          return DAG.getNode(ISD::TokenFactor, SDLoc(N), MVT::Other,
8423                             St0, St1);
8424        }
8425
8426        break;
8427      }
8428    }
8429  }
8430
8431  // Try to infer better alignment information than the store already has.
8432  if (OptLevel != CodeGenOpt::None && ST->isUnindexed()) {
8433    if (unsigned Align = DAG.InferPtrAlignment(Ptr)) {
8434      if (Align > ST->getAlignment())
8435        return DAG.getTruncStore(Chain, SDLoc(N), Value,
8436                                 Ptr, ST->getPointerInfo(), ST->getMemoryVT(),
8437                                 ST->isVolatile(), ST->isNonTemporal(), Align);
8438    }
8439  }
8440
8441  // Try transforming a pair floating point load / store ops to integer
8442  // load / store ops.
8443  SDValue NewST = TransformFPLoadStorePair(N);
8444  if (NewST.getNode())
8445    return NewST;
8446
8447  if (CombinerAA) {
8448    // Walk up chain skipping non-aliasing memory nodes.
8449    SDValue BetterChain = FindBetterChain(N, Chain);
8450
8451    // If there is a better chain.
8452    if (Chain != BetterChain) {
8453      SDValue ReplStore;
8454
8455      // Replace the chain to avoid dependency.
8456      if (ST->isTruncatingStore()) {
8457        ReplStore = DAG.getTruncStore(BetterChain, SDLoc(N), Value, Ptr,
8458                                      ST->getPointerInfo(),
8459                                      ST->getMemoryVT(), ST->isVolatile(),
8460                                      ST->isNonTemporal(), ST->getAlignment());
8461      } else {
8462        ReplStore = DAG.getStore(BetterChain, SDLoc(N), Value, Ptr,
8463                                 ST->getPointerInfo(),
8464                                 ST->isVolatile(), ST->isNonTemporal(),
8465                                 ST->getAlignment());
8466      }
8467
8468      // Create token to keep both nodes around.
8469      SDValue Token = DAG.getNode(ISD::TokenFactor, SDLoc(N),
8470                                  MVT::Other, Chain, ReplStore);
8471
8472      // Make sure the new and old chains are cleaned up.
8473      AddToWorkList(Token.getNode());
8474
8475      // Don't add users to work list.
8476      return CombineTo(N, Token, false);
8477    }
8478  }
8479
8480  // Try transforming N to an indexed store.
8481  if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
8482    return SDValue(N, 0);
8483
8484  // FIXME: is there such a thing as a truncating indexed store?
8485  if (ST->isTruncatingStore() && ST->isUnindexed() &&
8486      Value.getValueType().isInteger()) {
8487    // See if we can simplify the input to this truncstore with knowledge that
8488    // only the low bits are being used.  For example:
8489    // "truncstore (or (shl x, 8), y), i8"  -> "truncstore y, i8"
8490    SDValue Shorter =
8491      GetDemandedBits(Value,
8492                      APInt::getLowBitsSet(
8493                        Value.getValueType().getScalarType().getSizeInBits(),
8494                        ST->getMemoryVT().getScalarType().getSizeInBits()));
8495    AddToWorkList(Value.getNode());
8496    if (Shorter.getNode())
8497      return DAG.getTruncStore(Chain, SDLoc(N), Shorter,
8498                               Ptr, ST->getPointerInfo(), ST->getMemoryVT(),
8499                               ST->isVolatile(), ST->isNonTemporal(),
8500                               ST->getAlignment());
8501
8502    // Otherwise, see if we can simplify the operation with
8503    // SimplifyDemandedBits, which only works if the value has a single use.
8504    if (SimplifyDemandedBits(Value,
8505                        APInt::getLowBitsSet(
8506                          Value.getValueType().getScalarType().getSizeInBits(),
8507                          ST->getMemoryVT().getScalarType().getSizeInBits())))
8508      return SDValue(N, 0);
8509  }
8510
8511  // If this is a load followed by a store to the same location, then the store
8512  // is dead/noop.
8513  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Value)) {
8514    if (Ld->getBasePtr() == Ptr && ST->getMemoryVT() == Ld->getMemoryVT() &&
8515        ST->isUnindexed() && !ST->isVolatile() &&
8516        // There can't be any side effects between the load and store, such as
8517        // a call or store.
8518        Chain.reachesChainWithoutSideEffects(SDValue(Ld, 1))) {
8519      // The store is dead, remove it.
8520      return Chain;
8521    }
8522  }
8523
8524  // If this is an FP_ROUND or TRUNC followed by a store, fold this into a
8525  // truncating store.  We can do this even if this is already a truncstore.
8526  if ((Value.getOpcode() == ISD::FP_ROUND || Value.getOpcode() == ISD::TRUNCATE)
8527      && Value.getNode()->hasOneUse() && ST->isUnindexed() &&
8528      TLI.isTruncStoreLegal(Value.getOperand(0).getValueType(),
8529                            ST->getMemoryVT())) {
8530    return DAG.getTruncStore(Chain, SDLoc(N), Value.getOperand(0),
8531                             Ptr, ST->getPointerInfo(), ST->getMemoryVT(),
8532                             ST->isVolatile(), ST->isNonTemporal(),
8533                             ST->getAlignment());
8534  }
8535
8536  // Only perform this optimization before the types are legal, because we
8537  // don't want to perform this optimization on every DAGCombine invocation.
8538  if (!LegalTypes) {
8539    bool EverChanged = false;
8540
8541    do {
8542      // There can be multiple store sequences on the same chain.
8543      // Keep trying to merge store sequences until we are unable to do so
8544      // or until we merge the last store on the chain.
8545      bool Changed = MergeConsecutiveStores(ST);
8546      EverChanged |= Changed;
8547      if (!Changed) break;
8548    } while (ST->getOpcode() != ISD::DELETED_NODE);
8549
8550    if (EverChanged)
8551      return SDValue(N, 0);
8552  }
8553
8554  return ReduceLoadOpStoreWidth(N);
8555}
8556
8557SDValue DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) {
8558  SDValue InVec = N->getOperand(0);
8559  SDValue InVal = N->getOperand(1);
8560  SDValue EltNo = N->getOperand(2);
8561  SDLoc dl(N);
8562
8563  // If the inserted element is an UNDEF, just use the input vector.
8564  if (InVal.getOpcode() == ISD::UNDEF)
8565    return InVec;
8566
8567  EVT VT = InVec.getValueType();
8568
8569  // If we can't generate a legal BUILD_VECTOR, exit
8570  if (LegalOperations && !TLI.isOperationLegal(ISD::BUILD_VECTOR, VT))
8571    return SDValue();
8572
8573  // Check that we know which element is being inserted
8574  if (!isa<ConstantSDNode>(EltNo))
8575    return SDValue();
8576  unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
8577
8578  // Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially
8579  // be converted to a BUILD_VECTOR).  Fill in the Ops vector with the
8580  // vector elements.
8581  SmallVector<SDValue, 8> Ops;
8582  if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
8583    Ops.append(InVec.getNode()->op_begin(),
8584               InVec.getNode()->op_end());
8585  } else if (InVec.getOpcode() == ISD::UNDEF) {
8586    unsigned NElts = VT.getVectorNumElements();
8587    Ops.append(NElts, DAG.getUNDEF(InVal.getValueType()));
8588  } else {
8589    return SDValue();
8590  }
8591
8592  // Insert the element
8593  if (Elt < Ops.size()) {
8594    // All the operands of BUILD_VECTOR must have the same type;
8595    // we enforce that here.
8596    EVT OpVT = Ops[0].getValueType();
8597    if (InVal.getValueType() != OpVT)
8598      InVal = OpVT.bitsGT(InVal.getValueType()) ?
8599                DAG.getNode(ISD::ANY_EXTEND, dl, OpVT, InVal) :
8600                DAG.getNode(ISD::TRUNCATE, dl, OpVT, InVal);
8601    Ops[Elt] = InVal;
8602  }
8603
8604  // Return the new vector
8605  return DAG.getNode(ISD::BUILD_VECTOR, dl,
8606                     VT, &Ops[0], Ops.size());
8607}
8608
8609SDValue DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) {
8610  // (vextract (scalar_to_vector val, 0) -> val
8611  SDValue InVec = N->getOperand(0);
8612  EVT VT = InVec.getValueType();
8613  EVT NVT = N->getValueType(0);
8614
8615  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
8616    // Check if the result type doesn't match the inserted element type. A
8617    // SCALAR_TO_VECTOR may truncate the inserted element and the
8618    // EXTRACT_VECTOR_ELT may widen the extracted vector.
8619    SDValue InOp = InVec.getOperand(0);
8620    if (InOp.getValueType() != NVT) {
8621      assert(InOp.getValueType().isInteger() && NVT.isInteger());
8622      return DAG.getSExtOrTrunc(InOp, SDLoc(InVec), NVT);
8623    }
8624    return InOp;
8625  }
8626
8627  SDValue EltNo = N->getOperand(1);
8628  bool ConstEltNo = isa<ConstantSDNode>(EltNo);
8629
8630  // Transform: (EXTRACT_VECTOR_ELT( VECTOR_SHUFFLE )) -> EXTRACT_VECTOR_ELT.
8631  // We only perform this optimization before the op legalization phase because
8632  // we may introduce new vector instructions which are not backed by TD
8633  // patterns. For example on AVX, extracting elements from a wide vector
8634  // without using extract_subvector.
8635  if (InVec.getOpcode() == ISD::VECTOR_SHUFFLE
8636      && ConstEltNo && !LegalOperations) {
8637    int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
8638    int NumElem = VT.getVectorNumElements();
8639    ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(InVec);
8640    // Find the new index to extract from.
8641    int OrigElt = SVOp->getMaskElt(Elt);
8642
8643    // Extracting an undef index is undef.
8644    if (OrigElt == -1)
8645      return DAG.getUNDEF(NVT);
8646
8647    // Select the right vector half to extract from.
8648    if (OrigElt < NumElem) {
8649      InVec = InVec->getOperand(0);
8650    } else {
8651      InVec = InVec->getOperand(1);
8652      OrigElt -= NumElem;
8653    }
8654
8655    EVT IndexTy = N->getOperand(1).getValueType();
8656    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), NVT,
8657                       InVec, DAG.getConstant(OrigElt, IndexTy));
8658  }
8659
8660  // Perform only after legalization to ensure build_vector / vector_shuffle
8661  // optimizations have already been done.
8662  if (!LegalOperations) return SDValue();
8663
8664  // (vextract (v4f32 load $addr), c) -> (f32 load $addr+c*size)
8665  // (vextract (v4f32 s2v (f32 load $addr)), c) -> (f32 load $addr+c*size)
8666  // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), 0) -> (f32 load $addr)
8667
8668  if (ConstEltNo) {
8669    int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
8670    bool NewLoad = false;
8671    bool BCNumEltsChanged = false;
8672    EVT ExtVT = VT.getVectorElementType();
8673    EVT LVT = ExtVT;
8674
8675    // If the result of load has to be truncated, then it's not necessarily
8676    // profitable.
8677    if (NVT.bitsLT(LVT) && !TLI.isTruncateFree(LVT, NVT))
8678      return SDValue();
8679
8680    if (InVec.getOpcode() == ISD::BITCAST) {
8681      // Don't duplicate a load with other uses.
8682      if (!InVec.hasOneUse())
8683        return SDValue();
8684
8685      EVT BCVT = InVec.getOperand(0).getValueType();
8686      if (!BCVT.isVector() || ExtVT.bitsGT(BCVT.getVectorElementType()))
8687        return SDValue();
8688      if (VT.getVectorNumElements() != BCVT.getVectorNumElements())
8689        BCNumEltsChanged = true;
8690      InVec = InVec.getOperand(0);
8691      ExtVT = BCVT.getVectorElementType();
8692      NewLoad = true;
8693    }
8694
8695    LoadSDNode *LN0 = NULL;
8696    const ShuffleVectorSDNode *SVN = NULL;
8697    if (ISD::isNormalLoad(InVec.getNode())) {
8698      LN0 = cast<LoadSDNode>(InVec);
8699    } else if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR &&
8700               InVec.getOperand(0).getValueType() == ExtVT &&
8701               ISD::isNormalLoad(InVec.getOperand(0).getNode())) {
8702      // Don't duplicate a load with other uses.
8703      if (!InVec.hasOneUse())
8704        return SDValue();
8705
8706      LN0 = cast<LoadSDNode>(InVec.getOperand(0));
8707    } else if ((SVN = dyn_cast<ShuffleVectorSDNode>(InVec))) {
8708      // (vextract (vector_shuffle (load $addr), v2, <1, u, u, u>), 1)
8709      // =>
8710      // (load $addr+1*size)
8711
8712      // Don't duplicate a load with other uses.
8713      if (!InVec.hasOneUse())
8714        return SDValue();
8715
8716      // If the bit convert changed the number of elements, it is unsafe
8717      // to examine the mask.
8718      if (BCNumEltsChanged)
8719        return SDValue();
8720
8721      // Select the input vector, guarding against out of range extract vector.
8722      unsigned NumElems = VT.getVectorNumElements();
8723      int Idx = (Elt > (int)NumElems) ? -1 : SVN->getMaskElt(Elt);
8724      InVec = (Idx < (int)NumElems) ? InVec.getOperand(0) : InVec.getOperand(1);
8725
8726      if (InVec.getOpcode() == ISD::BITCAST) {
8727        // Don't duplicate a load with other uses.
8728        if (!InVec.hasOneUse())
8729          return SDValue();
8730
8731        InVec = InVec.getOperand(0);
8732      }
8733      if (ISD::isNormalLoad(InVec.getNode())) {
8734        LN0 = cast<LoadSDNode>(InVec);
8735        Elt = (Idx < (int)NumElems) ? Idx : Idx - (int)NumElems;
8736      }
8737    }
8738
8739    // Make sure we found a non-volatile load and the extractelement is
8740    // the only use.
8741    if (!LN0 || !LN0->hasNUsesOfValue(1,0) || LN0->isVolatile())
8742      return SDValue();
8743
8744    // If Idx was -1 above, Elt is going to be -1, so just return undef.
8745    if (Elt == -1)
8746      return DAG.getUNDEF(LVT);
8747
8748    unsigned Align = LN0->getAlignment();
8749    if (NewLoad) {
8750      // Check the resultant load doesn't need a higher alignment than the
8751      // original load.
8752      unsigned NewAlign =
8753        TLI.getDataLayout()
8754            ->getABITypeAlignment(LVT.getTypeForEVT(*DAG.getContext()));
8755
8756      if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, LVT))
8757        return SDValue();
8758
8759      Align = NewAlign;
8760    }
8761
8762    SDValue NewPtr = LN0->getBasePtr();
8763    unsigned PtrOff = 0;
8764
8765    if (Elt) {
8766      PtrOff = LVT.getSizeInBits() * Elt / 8;
8767      EVT PtrType = NewPtr.getValueType();
8768      if (TLI.isBigEndian())
8769        PtrOff = VT.getSizeInBits() / 8 - PtrOff;
8770      NewPtr = DAG.getNode(ISD::ADD, SDLoc(N), PtrType, NewPtr,
8771                           DAG.getConstant(PtrOff, PtrType));
8772    }
8773
8774    // The replacement we need to do here is a little tricky: we need to
8775    // replace an extractelement of a load with a load.
8776    // Use ReplaceAllUsesOfValuesWith to do the replacement.
8777    // Note that this replacement assumes that the extractvalue is the only
8778    // use of the load; that's okay because we don't want to perform this
8779    // transformation in other cases anyway.
8780    SDValue Load;
8781    SDValue Chain;
8782    if (NVT.bitsGT(LVT)) {
8783      // If the result type of vextract is wider than the load, then issue an
8784      // extending load instead.
8785      ISD::LoadExtType ExtType = TLI.isLoadExtLegal(ISD::ZEXTLOAD, LVT)
8786        ? ISD::ZEXTLOAD : ISD::EXTLOAD;
8787      Load = DAG.getExtLoad(ExtType, SDLoc(N), NVT, LN0->getChain(),
8788                            NewPtr, LN0->getPointerInfo().getWithOffset(PtrOff),
8789                            LVT, LN0->isVolatile(), LN0->isNonTemporal(),Align);
8790      Chain = Load.getValue(1);
8791    } else {
8792      Load = DAG.getLoad(LVT, SDLoc(N), LN0->getChain(), NewPtr,
8793                         LN0->getPointerInfo().getWithOffset(PtrOff),
8794                         LN0->isVolatile(), LN0->isNonTemporal(),
8795                         LN0->isInvariant(), Align);
8796      Chain = Load.getValue(1);
8797      if (NVT.bitsLT(LVT))
8798        Load = DAG.getNode(ISD::TRUNCATE, SDLoc(N), NVT, Load);
8799      else
8800        Load = DAG.getNode(ISD::BITCAST, SDLoc(N), NVT, Load);
8801    }
8802    WorkListRemover DeadNodes(*this);
8803    SDValue From[] = { SDValue(N, 0), SDValue(LN0,1) };
8804    SDValue To[] = { Load, Chain };
8805    DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
8806    // Since we're explcitly calling ReplaceAllUses, add the new node to the
8807    // worklist explicitly as well.
8808    AddToWorkList(Load.getNode());
8809    AddUsersToWorkList(Load.getNode()); // Add users too
8810    // Make sure to revisit this node to clean it up; it will usually be dead.
8811    AddToWorkList(N);
8812    return SDValue(N, 0);
8813  }
8814
8815  return SDValue();
8816}
8817
8818// Simplify (build_vec (ext )) to (bitcast (build_vec ))
8819SDValue DAGCombiner::reduceBuildVecExtToExtBuildVec(SDNode *N) {
8820  // We perform this optimization post type-legalization because
8821  // the type-legalizer often scalarizes integer-promoted vectors.
8822  // Performing this optimization before may create bit-casts which
8823  // will be type-legalized to complex code sequences.
8824  // We perform this optimization only before the operation legalizer because we
8825  // may introduce illegal operations.
8826  if (Level != AfterLegalizeVectorOps && Level != AfterLegalizeTypes)
8827    return SDValue();
8828
8829  unsigned NumInScalars = N->getNumOperands();
8830  SDLoc dl(N);
8831  EVT VT = N->getValueType(0);
8832
8833  // Check to see if this is a BUILD_VECTOR of a bunch of values
8834  // which come from any_extend or zero_extend nodes. If so, we can create
8835  // a new BUILD_VECTOR using bit-casts which may enable other BUILD_VECTOR
8836  // optimizations. We do not handle sign-extend because we can't fill the sign
8837  // using shuffles.
8838  EVT SourceType = MVT::Other;
8839  bool AllAnyExt = true;
8840
8841  for (unsigned i = 0; i != NumInScalars; ++i) {
8842    SDValue In = N->getOperand(i);
8843    // Ignore undef inputs.
8844    if (In.getOpcode() == ISD::UNDEF) continue;
8845
8846    bool AnyExt  = In.getOpcode() == ISD::ANY_EXTEND;
8847    bool ZeroExt = In.getOpcode() == ISD::ZERO_EXTEND;
8848
8849    // Abort if the element is not an extension.
8850    if (!ZeroExt && !AnyExt) {
8851      SourceType = MVT::Other;
8852      break;
8853    }
8854
8855    // The input is a ZeroExt or AnyExt. Check the original type.
8856    EVT InTy = In.getOperand(0).getValueType();
8857
8858    // Check that all of the widened source types are the same.
8859    if (SourceType == MVT::Other)
8860      // First time.
8861      SourceType = InTy;
8862    else if (InTy != SourceType) {
8863      // Multiple income types. Abort.
8864      SourceType = MVT::Other;
8865      break;
8866    }
8867
8868    // Check if all of the extends are ANY_EXTENDs.
8869    AllAnyExt &= AnyExt;
8870  }
8871
8872  // In order to have valid types, all of the inputs must be extended from the
8873  // same source type and all of the inputs must be any or zero extend.
8874  // Scalar sizes must be a power of two.
8875  EVT OutScalarTy = VT.getScalarType();
8876  bool ValidTypes = SourceType != MVT::Other &&
8877                 isPowerOf2_32(OutScalarTy.getSizeInBits()) &&
8878                 isPowerOf2_32(SourceType.getSizeInBits());
8879
8880  // Create a new simpler BUILD_VECTOR sequence which other optimizations can
8881  // turn into a single shuffle instruction.
8882  if (!ValidTypes)
8883    return SDValue();
8884
8885  bool isLE = TLI.isLittleEndian();
8886  unsigned ElemRatio = OutScalarTy.getSizeInBits()/SourceType.getSizeInBits();
8887  assert(ElemRatio > 1 && "Invalid element size ratio");
8888  SDValue Filler = AllAnyExt ? DAG.getUNDEF(SourceType):
8889                               DAG.getConstant(0, SourceType);
8890
8891  unsigned NewBVElems = ElemRatio * VT.getVectorNumElements();
8892  SmallVector<SDValue, 8> Ops(NewBVElems, Filler);
8893
8894  // Populate the new build_vector
8895  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
8896    SDValue Cast = N->getOperand(i);
8897    assert((Cast.getOpcode() == ISD::ANY_EXTEND ||
8898            Cast.getOpcode() == ISD::ZERO_EXTEND ||
8899            Cast.getOpcode() == ISD::UNDEF) && "Invalid cast opcode");
8900    SDValue In;
8901    if (Cast.getOpcode() == ISD::UNDEF)
8902      In = DAG.getUNDEF(SourceType);
8903    else
8904      In = Cast->getOperand(0);
8905    unsigned Index = isLE ? (i * ElemRatio) :
8906                            (i * ElemRatio + (ElemRatio - 1));
8907
8908    assert(Index < Ops.size() && "Invalid index");
8909    Ops[Index] = In;
8910  }
8911
8912  // The type of the new BUILD_VECTOR node.
8913  EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SourceType, NewBVElems);
8914  assert(VecVT.getSizeInBits() == VT.getSizeInBits() &&
8915         "Invalid vector size");
8916  // Check if the new vector type is legal.
8917  if (!isTypeLegal(VecVT)) return SDValue();
8918
8919  // Make the new BUILD_VECTOR.
8920  SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, &Ops[0], Ops.size());
8921
8922  // The new BUILD_VECTOR node has the potential to be further optimized.
8923  AddToWorkList(BV.getNode());
8924  // Bitcast to the desired type.
8925  return DAG.getNode(ISD::BITCAST, dl, VT, BV);
8926}
8927
8928SDValue DAGCombiner::reduceBuildVecConvertToConvertBuildVec(SDNode *N) {
8929  EVT VT = N->getValueType(0);
8930
8931  unsigned NumInScalars = N->getNumOperands();
8932  SDLoc dl(N);
8933
8934  EVT SrcVT = MVT::Other;
8935  unsigned Opcode = ISD::DELETED_NODE;
8936  unsigned NumDefs = 0;
8937
8938  for (unsigned i = 0; i != NumInScalars; ++i) {
8939    SDValue In = N->getOperand(i);
8940    unsigned Opc = In.getOpcode();
8941
8942    if (Opc == ISD::UNDEF)
8943      continue;
8944
8945    // If all scalar values are floats and converted from integers.
8946    if (Opcode == ISD::DELETED_NODE &&
8947        (Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP)) {
8948      Opcode = Opc;
8949    }
8950
8951    if (Opc != Opcode)
8952      return SDValue();
8953
8954    EVT InVT = In.getOperand(0).getValueType();
8955
8956    // If all scalar values are typed differently, bail out. It's chosen to
8957    // simplify BUILD_VECTOR of integer types.
8958    if (SrcVT == MVT::Other)
8959      SrcVT = InVT;
8960    if (SrcVT != InVT)
8961      return SDValue();
8962    NumDefs++;
8963  }
8964
8965  // If the vector has just one element defined, it's not worth to fold it into
8966  // a vectorized one.
8967  if (NumDefs < 2)
8968    return SDValue();
8969
8970  assert((Opcode == ISD::UINT_TO_FP || Opcode == ISD::SINT_TO_FP)
8971         && "Should only handle conversion from integer to float.");
8972  assert(SrcVT != MVT::Other && "Cannot determine source type!");
8973
8974  EVT NVT = EVT::getVectorVT(*DAG.getContext(), SrcVT, NumInScalars);
8975
8976  if (!TLI.isOperationLegalOrCustom(Opcode, NVT))
8977    return SDValue();
8978
8979  SmallVector<SDValue, 8> Opnds;
8980  for (unsigned i = 0; i != NumInScalars; ++i) {
8981    SDValue In = N->getOperand(i);
8982
8983    if (In.getOpcode() == ISD::UNDEF)
8984      Opnds.push_back(DAG.getUNDEF(SrcVT));
8985    else
8986      Opnds.push_back(In.getOperand(0));
8987  }
8988  SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, NVT,
8989                           &Opnds[0], Opnds.size());
8990  AddToWorkList(BV.getNode());
8991
8992  return DAG.getNode(Opcode, dl, VT, BV);
8993}
8994
8995SDValue DAGCombiner::visitBUILD_VECTOR(SDNode *N) {
8996  unsigned NumInScalars = N->getNumOperands();
8997  SDLoc dl(N);
8998  EVT VT = N->getValueType(0);
8999
9000  // A vector built entirely of undefs is undef.
9001  if (ISD::allOperandsUndef(N))
9002    return DAG.getUNDEF(VT);
9003
9004  SDValue V = reduceBuildVecExtToExtBuildVec(N);
9005  if (V.getNode())
9006    return V;
9007
9008  V = reduceBuildVecConvertToConvertBuildVec(N);
9009  if (V.getNode())
9010    return V;
9011
9012  // Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT
9013  // operations.  If so, and if the EXTRACT_VECTOR_ELT vector inputs come from
9014  // at most two distinct vectors, turn this into a shuffle node.
9015
9016  // May only combine to shuffle after legalize if shuffle is legal.
9017  if (LegalOperations &&
9018      !TLI.isOperationLegalOrCustom(ISD::VECTOR_SHUFFLE, VT))
9019    return SDValue();
9020
9021  SDValue VecIn1, VecIn2;
9022  for (unsigned i = 0; i != NumInScalars; ++i) {
9023    // Ignore undef inputs.
9024    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
9025
9026    // If this input is something other than a EXTRACT_VECTOR_ELT with a
9027    // constant index, bail out.
9028    if (N->getOperand(i).getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
9029        !isa<ConstantSDNode>(N->getOperand(i).getOperand(1))) {
9030      VecIn1 = VecIn2 = SDValue(0, 0);
9031      break;
9032    }
9033
9034    // We allow up to two distinct input vectors.
9035    SDValue ExtractedFromVec = N->getOperand(i).getOperand(0);
9036    if (ExtractedFromVec == VecIn1 || ExtractedFromVec == VecIn2)
9037      continue;
9038
9039    if (VecIn1.getNode() == 0) {
9040      VecIn1 = ExtractedFromVec;
9041    } else if (VecIn2.getNode() == 0) {
9042      VecIn2 = ExtractedFromVec;
9043    } else {
9044      // Too many inputs.
9045      VecIn1 = VecIn2 = SDValue(0, 0);
9046      break;
9047    }
9048  }
9049
9050    // If everything is good, we can make a shuffle operation.
9051  if (VecIn1.getNode()) {
9052    SmallVector<int, 8> Mask;
9053    for (unsigned i = 0; i != NumInScalars; ++i) {
9054      if (N->getOperand(i).getOpcode() == ISD::UNDEF) {
9055        Mask.push_back(-1);
9056        continue;
9057      }
9058
9059      // If extracting from the first vector, just use the index directly.
9060      SDValue Extract = N->getOperand(i);
9061      SDValue ExtVal = Extract.getOperand(1);
9062      if (Extract.getOperand(0) == VecIn1) {
9063        unsigned ExtIndex = cast<ConstantSDNode>(ExtVal)->getZExtValue();
9064        if (ExtIndex > VT.getVectorNumElements())
9065          return SDValue();
9066
9067        Mask.push_back(ExtIndex);
9068        continue;
9069      }
9070
9071      // Otherwise, use InIdx + VecSize
9072      unsigned Idx = cast<ConstantSDNode>(ExtVal)->getZExtValue();
9073      Mask.push_back(Idx+NumInScalars);
9074    }
9075
9076    // We can't generate a shuffle node with mismatched input and output types.
9077    // Attempt to transform a single input vector to the correct type.
9078    if ((VT != VecIn1.getValueType())) {
9079      // We don't support shuffeling between TWO values of different types.
9080      if (VecIn2.getNode() != 0)
9081        return SDValue();
9082
9083      // We only support widening of vectors which are half the size of the
9084      // output registers. For example XMM->YMM widening on X86 with AVX.
9085      if (VecIn1.getValueType().getSizeInBits()*2 != VT.getSizeInBits())
9086        return SDValue();
9087
9088      // If the input vector type has a different base type to the output
9089      // vector type, bail out.
9090      if (VecIn1.getValueType().getVectorElementType() !=
9091          VT.getVectorElementType())
9092        return SDValue();
9093
9094      // Widen the input vector by adding undef values.
9095      VecIn1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
9096                           VecIn1, DAG.getUNDEF(VecIn1.getValueType()));
9097    }
9098
9099    // If VecIn2 is unused then change it to undef.
9100    VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(VT);
9101
9102    // Check that we were able to transform all incoming values to the same
9103    // type.
9104    if (VecIn2.getValueType() != VecIn1.getValueType() ||
9105        VecIn1.getValueType() != VT)
9106          return SDValue();
9107
9108    // Only type-legal BUILD_VECTOR nodes are converted to shuffle nodes.
9109    if (!isTypeLegal(VT))
9110      return SDValue();
9111
9112    // Return the new VECTOR_SHUFFLE node.
9113    SDValue Ops[2];
9114    Ops[0] = VecIn1;
9115    Ops[1] = VecIn2;
9116    return DAG.getVectorShuffle(VT, dl, Ops[0], Ops[1], &Mask[0]);
9117  }
9118
9119  return SDValue();
9120}
9121
9122SDValue DAGCombiner::visitCONCAT_VECTORS(SDNode *N) {
9123  // TODO: Check to see if this is a CONCAT_VECTORS of a bunch of
9124  // EXTRACT_SUBVECTOR operations.  If so, and if the EXTRACT_SUBVECTOR vector
9125  // inputs come from at most two distinct vectors, turn this into a shuffle
9126  // node.
9127
9128  // If we only have one input vector, we don't need to do any concatenation.
9129  if (N->getNumOperands() == 1)
9130    return N->getOperand(0);
9131
9132  // Check if all of the operands are undefs.
9133  if (ISD::allOperandsUndef(N))
9134    return DAG.getUNDEF(N->getValueType(0));
9135
9136  // Type legalization of vectors and DAG canonicalization of SHUFFLE_VECTOR
9137  // nodes often generate nop CONCAT_VECTOR nodes.
9138  // Scan the CONCAT_VECTOR operands and look for a CONCAT operations that
9139  // place the incoming vectors at the exact same location.
9140  SDValue SingleSource = SDValue();
9141  unsigned PartNumElem = N->getOperand(0).getValueType().getVectorNumElements();
9142
9143  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
9144    SDValue Op = N->getOperand(i);
9145
9146    if (Op.getOpcode() == ISD::UNDEF)
9147      continue;
9148
9149    // Check if this is the identity extract:
9150    if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR)
9151      return SDValue();
9152
9153    // Find the single incoming vector for the extract_subvector.
9154    if (SingleSource.getNode()) {
9155      if (Op.getOperand(0) != SingleSource)
9156        return SDValue();
9157    } else {
9158      SingleSource = Op.getOperand(0);
9159
9160      // Check the source type is the same as the type of the result.
9161      // If not, this concat may extend the vector, so we can not
9162      // optimize it away.
9163      if (SingleSource.getValueType() != N->getValueType(0))
9164        return SDValue();
9165    }
9166
9167    unsigned IdentityIndex = i * PartNumElem;
9168    ConstantSDNode *CS = dyn_cast<ConstantSDNode>(Op.getOperand(1));
9169    // The extract index must be constant.
9170    if (!CS)
9171      return SDValue();
9172
9173    // Check that we are reading from the identity index.
9174    if (CS->getZExtValue() != IdentityIndex)
9175      return SDValue();
9176  }
9177
9178  if (SingleSource.getNode())
9179    return SingleSource;
9180
9181  return SDValue();
9182}
9183
9184SDValue DAGCombiner::visitEXTRACT_SUBVECTOR(SDNode* N) {
9185  EVT NVT = N->getValueType(0);
9186  SDValue V = N->getOperand(0);
9187
9188  if (V->getOpcode() == ISD::CONCAT_VECTORS) {
9189    // Combine:
9190    //    (extract_subvec (concat V1, V2, ...), i)
9191    // Into:
9192    //    Vi if possible
9193    // Only operand 0 is checked as 'concat' assumes all inputs of the same type.
9194    if (V->getOperand(0).getValueType() != NVT)
9195      return SDValue();
9196    unsigned Idx = dyn_cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
9197    unsigned NumElems = NVT.getVectorNumElements();
9198    assert((Idx % NumElems) == 0 &&
9199           "IDX in concat is not a multiple of the result vector length.");
9200    return V->getOperand(Idx / NumElems);
9201  }
9202
9203  // Skip bitcasting
9204  if (V->getOpcode() == ISD::BITCAST)
9205    V = V.getOperand(0);
9206
9207  if (V->getOpcode() == ISD::INSERT_SUBVECTOR) {
9208    SDLoc dl(N);
9209    // Handle only simple case where vector being inserted and vector
9210    // being extracted are of same type, and are half size of larger vectors.
9211    EVT BigVT = V->getOperand(0).getValueType();
9212    EVT SmallVT = V->getOperand(1).getValueType();
9213    if (!NVT.bitsEq(SmallVT) || NVT.getSizeInBits()*2 != BigVT.getSizeInBits())
9214      return SDValue();
9215
9216    // Only handle cases where both indexes are constants with the same type.
9217    ConstantSDNode *ExtIdx = dyn_cast<ConstantSDNode>(N->getOperand(1));
9218    ConstantSDNode *InsIdx = dyn_cast<ConstantSDNode>(V->getOperand(2));
9219
9220    if (InsIdx && ExtIdx &&
9221        InsIdx->getValueType(0).getSizeInBits() <= 64 &&
9222        ExtIdx->getValueType(0).getSizeInBits() <= 64) {
9223      // Combine:
9224      //    (extract_subvec (insert_subvec V1, V2, InsIdx), ExtIdx)
9225      // Into:
9226      //    indices are equal or bit offsets are equal => V1
9227      //    otherwise => (extract_subvec V1, ExtIdx)
9228      if (InsIdx->getZExtValue() * SmallVT.getScalarType().getSizeInBits() ==
9229          ExtIdx->getZExtValue() * NVT.getScalarType().getSizeInBits())
9230        return DAG.getNode(ISD::BITCAST, dl, NVT, V->getOperand(1));
9231      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, NVT,
9232                         DAG.getNode(ISD::BITCAST, dl,
9233                                     N->getOperand(0).getValueType(),
9234                                     V->getOperand(0)), N->getOperand(1));
9235    }
9236  }
9237
9238  return SDValue();
9239}
9240
9241// Tries to turn a shuffle of two CONCAT_VECTORS into a single concat.
9242static SDValue partitionShuffleOfConcats(SDNode *N, SelectionDAG &DAG) {
9243  EVT VT = N->getValueType(0);
9244  unsigned NumElts = VT.getVectorNumElements();
9245
9246  SDValue N0 = N->getOperand(0);
9247  SDValue N1 = N->getOperand(1);
9248  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
9249
9250  SmallVector<SDValue, 4> Ops;
9251  EVT ConcatVT = N0.getOperand(0).getValueType();
9252  unsigned NumElemsPerConcat = ConcatVT.getVectorNumElements();
9253  unsigned NumConcats = NumElts / NumElemsPerConcat;
9254
9255  // Look at every vector that's inserted. We're looking for exact
9256  // subvector-sized copies from a concatenated vector
9257  for (unsigned I = 0; I != NumConcats; ++I) {
9258    // Make sure we're dealing with a copy.
9259    unsigned Begin = I * NumElemsPerConcat;
9260    bool AllUndef = true, NoUndef = true;
9261    for (unsigned J = Begin; J != Begin + NumElemsPerConcat; ++J) {
9262      if (SVN->getMaskElt(J) >= 0)
9263        AllUndef = false;
9264      else
9265        NoUndef = false;
9266    }
9267
9268    if (NoUndef) {
9269      if (SVN->getMaskElt(Begin) % NumElemsPerConcat != 0)
9270        return SDValue();
9271
9272      for (unsigned J = 1; J != NumElemsPerConcat; ++J)
9273        if (SVN->getMaskElt(Begin + J - 1) + 1 != SVN->getMaskElt(Begin + J))
9274          return SDValue();
9275
9276      unsigned FirstElt = SVN->getMaskElt(Begin) / NumElemsPerConcat;
9277      if (FirstElt < N0.getNumOperands())
9278        Ops.push_back(N0.getOperand(FirstElt));
9279      else
9280        Ops.push_back(N1.getOperand(FirstElt - N0.getNumOperands()));
9281
9282    } else if (AllUndef) {
9283      Ops.push_back(DAG.getUNDEF(N0.getOperand(0).getValueType()));
9284    } else { // Mixed with general masks and undefs, can't do optimization.
9285      return SDValue();
9286    }
9287  }
9288
9289  return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops.data(),
9290                     Ops.size());
9291}
9292
9293SDValue DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) {
9294  EVT VT = N->getValueType(0);
9295  unsigned NumElts = VT.getVectorNumElements();
9296
9297  SDValue N0 = N->getOperand(0);
9298  SDValue N1 = N->getOperand(1);
9299
9300  assert(N0.getValueType() == VT && "Vector shuffle must be normalized in DAG");
9301
9302  // Canonicalize shuffle undef, undef -> undef
9303  if (N0.getOpcode() == ISD::UNDEF && N1.getOpcode() == ISD::UNDEF)
9304    return DAG.getUNDEF(VT);
9305
9306  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
9307
9308  // Canonicalize shuffle v, v -> v, undef
9309  if (N0 == N1) {
9310    SmallVector<int, 8> NewMask;
9311    for (unsigned i = 0; i != NumElts; ++i) {
9312      int Idx = SVN->getMaskElt(i);
9313      if (Idx >= (int)NumElts) Idx -= NumElts;
9314      NewMask.push_back(Idx);
9315    }
9316    return DAG.getVectorShuffle(VT, SDLoc(N), N0, DAG.getUNDEF(VT),
9317                                &NewMask[0]);
9318  }
9319
9320  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
9321  if (N0.getOpcode() == ISD::UNDEF) {
9322    SmallVector<int, 8> NewMask;
9323    for (unsigned i = 0; i != NumElts; ++i) {
9324      int Idx = SVN->getMaskElt(i);
9325      if (Idx >= 0) {
9326        if (Idx < (int)NumElts)
9327          Idx += NumElts;
9328        else
9329          Idx -= NumElts;
9330      }
9331      NewMask.push_back(Idx);
9332    }
9333    return DAG.getVectorShuffle(VT, SDLoc(N), N1, DAG.getUNDEF(VT),
9334                                &NewMask[0]);
9335  }
9336
9337  // Remove references to rhs if it is undef
9338  if (N1.getOpcode() == ISD::UNDEF) {
9339    bool Changed = false;
9340    SmallVector<int, 8> NewMask;
9341    for (unsigned i = 0; i != NumElts; ++i) {
9342      int Idx = SVN->getMaskElt(i);
9343      if (Idx >= (int)NumElts) {
9344        Idx = -1;
9345        Changed = true;
9346      }
9347      NewMask.push_back(Idx);
9348    }
9349    if (Changed)
9350      return DAG.getVectorShuffle(VT, SDLoc(N), N0, N1, &NewMask[0]);
9351  }
9352
9353  // If it is a splat, check if the argument vector is another splat or a
9354  // build_vector with all scalar elements the same.
9355  if (SVN->isSplat() && SVN->getSplatIndex() < (int)NumElts) {
9356    SDNode *V = N0.getNode();
9357
9358    // If this is a bit convert that changes the element type of the vector but
9359    // not the number of vector elements, look through it.  Be careful not to
9360    // look though conversions that change things like v4f32 to v2f64.
9361    if (V->getOpcode() == ISD::BITCAST) {
9362      SDValue ConvInput = V->getOperand(0);
9363      if (ConvInput.getValueType().isVector() &&
9364          ConvInput.getValueType().getVectorNumElements() == NumElts)
9365        V = ConvInput.getNode();
9366    }
9367
9368    if (V->getOpcode() == ISD::BUILD_VECTOR) {
9369      assert(V->getNumOperands() == NumElts &&
9370             "BUILD_VECTOR has wrong number of operands");
9371      SDValue Base;
9372      bool AllSame = true;
9373      for (unsigned i = 0; i != NumElts; ++i) {
9374        if (V->getOperand(i).getOpcode() != ISD::UNDEF) {
9375          Base = V->getOperand(i);
9376          break;
9377        }
9378      }
9379      // Splat of <u, u, u, u>, return <u, u, u, u>
9380      if (!Base.getNode())
9381        return N0;
9382      for (unsigned i = 0; i != NumElts; ++i) {
9383        if (V->getOperand(i) != Base) {
9384          AllSame = false;
9385          break;
9386        }
9387      }
9388      // Splat of <x, x, x, x>, return <x, x, x, x>
9389      if (AllSame)
9390        return N0;
9391    }
9392  }
9393
9394  if (N0.getOpcode() == ISD::CONCAT_VECTORS &&
9395      Level < AfterLegalizeVectorOps &&
9396      (N1.getOpcode() == ISD::UNDEF ||
9397      (N1.getOpcode() == ISD::CONCAT_VECTORS &&
9398       N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()))) {
9399    SDValue V = partitionShuffleOfConcats(N, DAG);
9400
9401    if (V.getNode())
9402      return V;
9403  }
9404
9405  // If this shuffle node is simply a swizzle of another shuffle node,
9406  // and it reverses the swizzle of the previous shuffle then we can
9407  // optimize shuffle(shuffle(x, undef), undef) -> x.
9408  if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG &&
9409      N1.getOpcode() == ISD::UNDEF) {
9410
9411    ShuffleVectorSDNode *OtherSV = cast<ShuffleVectorSDNode>(N0);
9412
9413    // Shuffle nodes can only reverse shuffles with a single non-undef value.
9414    if (N0.getOperand(1).getOpcode() != ISD::UNDEF)
9415      return SDValue();
9416
9417    // The incoming shuffle must be of the same type as the result of the
9418    // current shuffle.
9419    assert(OtherSV->getOperand(0).getValueType() == VT &&
9420           "Shuffle types don't match");
9421
9422    for (unsigned i = 0; i != NumElts; ++i) {
9423      int Idx = SVN->getMaskElt(i);
9424      assert(Idx < (int)NumElts && "Index references undef operand");
9425      // Next, this index comes from the first value, which is the incoming
9426      // shuffle. Adopt the incoming index.
9427      if (Idx >= 0)
9428        Idx = OtherSV->getMaskElt(Idx);
9429
9430      // The combined shuffle must map each index to itself.
9431      if (Idx >= 0 && (unsigned)Idx != i)
9432        return SDValue();
9433    }
9434
9435    return OtherSV->getOperand(0);
9436  }
9437
9438  return SDValue();
9439}
9440
9441/// XformToShuffleWithZero - Returns a vector_shuffle if it able to transform
9442/// an AND to a vector_shuffle with the destination vector and a zero vector.
9443/// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==>
9444///      vector_shuffle V, Zero, <0, 4, 2, 4>
9445SDValue DAGCombiner::XformToShuffleWithZero(SDNode *N) {
9446  EVT VT = N->getValueType(0);
9447  SDLoc dl(N);
9448  SDValue LHS = N->getOperand(0);
9449  SDValue RHS = N->getOperand(1);
9450  if (N->getOpcode() == ISD::AND) {
9451    if (RHS.getOpcode() == ISD::BITCAST)
9452      RHS = RHS.getOperand(0);
9453    if (RHS.getOpcode() == ISD::BUILD_VECTOR) {
9454      SmallVector<int, 8> Indices;
9455      unsigned NumElts = RHS.getNumOperands();
9456      for (unsigned i = 0; i != NumElts; ++i) {
9457        SDValue Elt = RHS.getOperand(i);
9458        if (!isa<ConstantSDNode>(Elt))
9459          return SDValue();
9460
9461        if (cast<ConstantSDNode>(Elt)->isAllOnesValue())
9462          Indices.push_back(i);
9463        else if (cast<ConstantSDNode>(Elt)->isNullValue())
9464          Indices.push_back(NumElts);
9465        else
9466          return SDValue();
9467      }
9468
9469      // Let's see if the target supports this vector_shuffle.
9470      EVT RVT = RHS.getValueType();
9471      if (!TLI.isVectorClearMaskLegal(Indices, RVT))
9472        return SDValue();
9473
9474      // Return the new VECTOR_SHUFFLE node.
9475      EVT EltVT = RVT.getVectorElementType();
9476      SmallVector<SDValue,8> ZeroOps(RVT.getVectorNumElements(),
9477                                     DAG.getConstant(0, EltVT));
9478      SDValue Zero = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N),
9479                                 RVT, &ZeroOps[0], ZeroOps.size());
9480      LHS = DAG.getNode(ISD::BITCAST, dl, RVT, LHS);
9481      SDValue Shuf = DAG.getVectorShuffle(RVT, dl, LHS, Zero, &Indices[0]);
9482      return DAG.getNode(ISD::BITCAST, dl, VT, Shuf);
9483    }
9484  }
9485
9486  return SDValue();
9487}
9488
9489/// SimplifyVBinOp - Visit a binary vector operation, like ADD.
9490SDValue DAGCombiner::SimplifyVBinOp(SDNode *N) {
9491  assert(N->getValueType(0).isVector() &&
9492         "SimplifyVBinOp only works on vectors!");
9493
9494  SDValue LHS = N->getOperand(0);
9495  SDValue RHS = N->getOperand(1);
9496  SDValue Shuffle = XformToShuffleWithZero(N);
9497  if (Shuffle.getNode()) return Shuffle;
9498
9499  // If the LHS and RHS are BUILD_VECTOR nodes, see if we can constant fold
9500  // this operation.
9501  if (LHS.getOpcode() == ISD::BUILD_VECTOR &&
9502      RHS.getOpcode() == ISD::BUILD_VECTOR) {
9503    SmallVector<SDValue, 8> Ops;
9504    for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
9505      SDValue LHSOp = LHS.getOperand(i);
9506      SDValue RHSOp = RHS.getOperand(i);
9507      // If these two elements can't be folded, bail out.
9508      if ((LHSOp.getOpcode() != ISD::UNDEF &&
9509           LHSOp.getOpcode() != ISD::Constant &&
9510           LHSOp.getOpcode() != ISD::ConstantFP) ||
9511          (RHSOp.getOpcode() != ISD::UNDEF &&
9512           RHSOp.getOpcode() != ISD::Constant &&
9513           RHSOp.getOpcode() != ISD::ConstantFP))
9514        break;
9515
9516      // Can't fold divide by zero.
9517      if (N->getOpcode() == ISD::SDIV || N->getOpcode() == ISD::UDIV ||
9518          N->getOpcode() == ISD::FDIV) {
9519        if ((RHSOp.getOpcode() == ISD::Constant &&
9520             cast<ConstantSDNode>(RHSOp.getNode())->isNullValue()) ||
9521            (RHSOp.getOpcode() == ISD::ConstantFP &&
9522             cast<ConstantFPSDNode>(RHSOp.getNode())->getValueAPF().isZero()))
9523          break;
9524      }
9525
9526      EVT VT = LHSOp.getValueType();
9527      EVT RVT = RHSOp.getValueType();
9528      if (RVT != VT) {
9529        // Integer BUILD_VECTOR operands may have types larger than the element
9530        // size (e.g., when the element type is not legal).  Prior to type
9531        // legalization, the types may not match between the two BUILD_VECTORS.
9532        // Truncate one of the operands to make them match.
9533        if (RVT.getSizeInBits() > VT.getSizeInBits()) {
9534          RHSOp = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, RHSOp);
9535        } else {
9536          LHSOp = DAG.getNode(ISD::TRUNCATE, SDLoc(N), RVT, LHSOp);
9537          VT = RVT;
9538        }
9539      }
9540      SDValue FoldOp = DAG.getNode(N->getOpcode(), SDLoc(LHS), VT,
9541                                   LHSOp, RHSOp);
9542      if (FoldOp.getOpcode() != ISD::UNDEF &&
9543          FoldOp.getOpcode() != ISD::Constant &&
9544          FoldOp.getOpcode() != ISD::ConstantFP)
9545        break;
9546      Ops.push_back(FoldOp);
9547      AddToWorkList(FoldOp.getNode());
9548    }
9549
9550    if (Ops.size() == LHS.getNumOperands())
9551      return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N),
9552                         LHS.getValueType(), &Ops[0], Ops.size());
9553  }
9554
9555  return SDValue();
9556}
9557
9558/// SimplifyVUnaryOp - Visit a binary vector operation, like FABS/FNEG.
9559SDValue DAGCombiner::SimplifyVUnaryOp(SDNode *N) {
9560  assert(N->getValueType(0).isVector() &&
9561         "SimplifyVUnaryOp only works on vectors!");
9562
9563  SDValue N0 = N->getOperand(0);
9564
9565  if (N0.getOpcode() != ISD::BUILD_VECTOR)
9566    return SDValue();
9567
9568  // Operand is a BUILD_VECTOR node, see if we can constant fold it.
9569  SmallVector<SDValue, 8> Ops;
9570  for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i) {
9571    SDValue Op = N0.getOperand(i);
9572    if (Op.getOpcode() != ISD::UNDEF &&
9573        Op.getOpcode() != ISD::ConstantFP)
9574      break;
9575    EVT EltVT = Op.getValueType();
9576    SDValue FoldOp = DAG.getNode(N->getOpcode(), SDLoc(N0), EltVT, Op);
9577    if (FoldOp.getOpcode() != ISD::UNDEF &&
9578        FoldOp.getOpcode() != ISD::ConstantFP)
9579      break;
9580    Ops.push_back(FoldOp);
9581    AddToWorkList(FoldOp.getNode());
9582  }
9583
9584  if (Ops.size() != N0.getNumOperands())
9585    return SDValue();
9586
9587  return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N),
9588                     N0.getValueType(), &Ops[0], Ops.size());
9589}
9590
9591SDValue DAGCombiner::SimplifySelect(SDLoc DL, SDValue N0,
9592                                    SDValue N1, SDValue N2){
9593  assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!");
9594
9595  SDValue SCC = SimplifySelectCC(DL, N0.getOperand(0), N0.getOperand(1), N1, N2,
9596                                 cast<CondCodeSDNode>(N0.getOperand(2))->get());
9597
9598  // If we got a simplified select_cc node back from SimplifySelectCC, then
9599  // break it down into a new SETCC node, and a new SELECT node, and then return
9600  // the SELECT node, since we were called with a SELECT node.
9601  if (SCC.getNode()) {
9602    // Check to see if we got a select_cc back (to turn into setcc/select).
9603    // Otherwise, just return whatever node we got back, like fabs.
9604    if (SCC.getOpcode() == ISD::SELECT_CC) {
9605      SDValue SETCC = DAG.getNode(ISD::SETCC, SDLoc(N0),
9606                                  N0.getValueType(),
9607                                  SCC.getOperand(0), SCC.getOperand(1),
9608                                  SCC.getOperand(4));
9609      AddToWorkList(SETCC.getNode());
9610      return DAG.getSelect(SDLoc(SCC), SCC.getValueType(),
9611                           SCC.getOperand(2), SCC.getOperand(3), SETCC);
9612    }
9613
9614    return SCC;
9615  }
9616  return SDValue();
9617}
9618
9619/// SimplifySelectOps - Given a SELECT or a SELECT_CC node, where LHS and RHS
9620/// are the two values being selected between, see if we can simplify the
9621/// select.  Callers of this should assume that TheSelect is deleted if this
9622/// returns true.  As such, they should return the appropriate thing (e.g. the
9623/// node) back to the top-level of the DAG combiner loop to avoid it being
9624/// looked at.
9625bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDValue LHS,
9626                                    SDValue RHS) {
9627
9628  // Cannot simplify select with vector condition
9629  if (TheSelect->getOperand(0).getValueType().isVector()) return false;
9630
9631  // If this is a select from two identical things, try to pull the operation
9632  // through the select.
9633  if (LHS.getOpcode() != RHS.getOpcode() ||
9634      !LHS.hasOneUse() || !RHS.hasOneUse())
9635    return false;
9636
9637  // If this is a load and the token chain is identical, replace the select
9638  // of two loads with a load through a select of the address to load from.
9639  // This triggers in things like "select bool X, 10.0, 123.0" after the FP
9640  // constants have been dropped into the constant pool.
9641  if (LHS.getOpcode() == ISD::LOAD) {
9642    LoadSDNode *LLD = cast<LoadSDNode>(LHS);
9643    LoadSDNode *RLD = cast<LoadSDNode>(RHS);
9644
9645    // Token chains must be identical.
9646    if (LHS.getOperand(0) != RHS.getOperand(0) ||
9647        // Do not let this transformation reduce the number of volatile loads.
9648        LLD->isVolatile() || RLD->isVolatile() ||
9649        // If this is an EXTLOAD, the VT's must match.
9650        LLD->getMemoryVT() != RLD->getMemoryVT() ||
9651        // If this is an EXTLOAD, the kind of extension must match.
9652        (LLD->getExtensionType() != RLD->getExtensionType() &&
9653         // The only exception is if one of the extensions is anyext.
9654         LLD->getExtensionType() != ISD::EXTLOAD &&
9655         RLD->getExtensionType() != ISD::EXTLOAD) ||
9656        // FIXME: this discards src value information.  This is
9657        // over-conservative. It would be beneficial to be able to remember
9658        // both potential memory locations.  Since we are discarding
9659        // src value info, don't do the transformation if the memory
9660        // locations are not in the default address space.
9661        LLD->getPointerInfo().getAddrSpace() != 0 ||
9662        RLD->getPointerInfo().getAddrSpace() != 0 ||
9663        !TLI.isOperationLegalOrCustom(TheSelect->getOpcode(),
9664                                      LLD->getBasePtr().getValueType()))
9665      return false;
9666
9667    // Check that the select condition doesn't reach either load.  If so,
9668    // folding this will induce a cycle into the DAG.  If not, this is safe to
9669    // xform, so create a select of the addresses.
9670    SDValue Addr;
9671    if (TheSelect->getOpcode() == ISD::SELECT) {
9672      SDNode *CondNode = TheSelect->getOperand(0).getNode();
9673      if ((LLD->hasAnyUseOfValue(1) && LLD->isPredecessorOf(CondNode)) ||
9674          (RLD->hasAnyUseOfValue(1) && RLD->isPredecessorOf(CondNode)))
9675        return false;
9676      // The loads must not depend on one another.
9677      if (LLD->isPredecessorOf(RLD) ||
9678          RLD->isPredecessorOf(LLD))
9679        return false;
9680      Addr = DAG.getSelect(SDLoc(TheSelect),
9681                           LLD->getBasePtr().getValueType(),
9682                           TheSelect->getOperand(0), LLD->getBasePtr(),
9683                           RLD->getBasePtr());
9684    } else {  // Otherwise SELECT_CC
9685      SDNode *CondLHS = TheSelect->getOperand(0).getNode();
9686      SDNode *CondRHS = TheSelect->getOperand(1).getNode();
9687
9688      if ((LLD->hasAnyUseOfValue(1) &&
9689           (LLD->isPredecessorOf(CondLHS) || LLD->isPredecessorOf(CondRHS))) ||
9690          (RLD->hasAnyUseOfValue(1) &&
9691           (RLD->isPredecessorOf(CondLHS) || RLD->isPredecessorOf(CondRHS))))
9692        return false;
9693
9694      Addr = DAG.getNode(ISD::SELECT_CC, SDLoc(TheSelect),
9695                         LLD->getBasePtr().getValueType(),
9696                         TheSelect->getOperand(0),
9697                         TheSelect->getOperand(1),
9698                         LLD->getBasePtr(), RLD->getBasePtr(),
9699                         TheSelect->getOperand(4));
9700    }
9701
9702    SDValue Load;
9703    if (LLD->getExtensionType() == ISD::NON_EXTLOAD) {
9704      Load = DAG.getLoad(TheSelect->getValueType(0),
9705                         SDLoc(TheSelect),
9706                         // FIXME: Discards pointer info.
9707                         LLD->getChain(), Addr, MachinePointerInfo(),
9708                         LLD->isVolatile(), LLD->isNonTemporal(),
9709                         LLD->isInvariant(), LLD->getAlignment());
9710    } else {
9711      Load = DAG.getExtLoad(LLD->getExtensionType() == ISD::EXTLOAD ?
9712                            RLD->getExtensionType() : LLD->getExtensionType(),
9713                            SDLoc(TheSelect),
9714                            TheSelect->getValueType(0),
9715                            // FIXME: Discards pointer info.
9716                            LLD->getChain(), Addr, MachinePointerInfo(),
9717                            LLD->getMemoryVT(), LLD->isVolatile(),
9718                            LLD->isNonTemporal(), LLD->getAlignment());
9719    }
9720
9721    // Users of the select now use the result of the load.
9722    CombineTo(TheSelect, Load);
9723
9724    // Users of the old loads now use the new load's chain.  We know the
9725    // old-load value is dead now.
9726    CombineTo(LHS.getNode(), Load.getValue(0), Load.getValue(1));
9727    CombineTo(RHS.getNode(), Load.getValue(0), Load.getValue(1));
9728    return true;
9729  }
9730
9731  return false;
9732}
9733
9734/// SimplifySelectCC - Simplify an expression of the form (N0 cond N1) ? N2 : N3
9735/// where 'cond' is the comparison specified by CC.
9736SDValue DAGCombiner::SimplifySelectCC(SDLoc DL, SDValue N0, SDValue N1,
9737                                      SDValue N2, SDValue N3,
9738                                      ISD::CondCode CC, bool NotExtCompare) {
9739  // (x ? y : y) -> y.
9740  if (N2 == N3) return N2;
9741
9742  EVT VT = N2.getValueType();
9743  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
9744  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
9745  ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.getNode());
9746
9747  // Determine if the condition we're dealing with is constant
9748  SDValue SCC = SimplifySetCC(getSetCCResultType(N0.getValueType()),
9749                              N0, N1, CC, DL, false);
9750  if (SCC.getNode()) AddToWorkList(SCC.getNode());
9751  ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.getNode());
9752
9753  // fold select_cc true, x, y -> x
9754  if (SCCC && !SCCC->isNullValue())
9755    return N2;
9756  // fold select_cc false, x, y -> y
9757  if (SCCC && SCCC->isNullValue())
9758    return N3;
9759
9760  // Check to see if we can simplify the select into an fabs node
9761  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1)) {
9762    // Allow either -0.0 or 0.0
9763    if (CFP->getValueAPF().isZero()) {
9764      // select (setg[te] X, +/-0.0), X, fneg(X) -> fabs
9765      if ((CC == ISD::SETGE || CC == ISD::SETGT) &&
9766          N0 == N2 && N3.getOpcode() == ISD::FNEG &&
9767          N2 == N3.getOperand(0))
9768        return DAG.getNode(ISD::FABS, DL, VT, N0);
9769
9770      // select (setl[te] X, +/-0.0), fneg(X), X -> fabs
9771      if ((CC == ISD::SETLT || CC == ISD::SETLE) &&
9772          N0 == N3 && N2.getOpcode() == ISD::FNEG &&
9773          N2.getOperand(0) == N3)
9774        return DAG.getNode(ISD::FABS, DL, VT, N3);
9775    }
9776  }
9777
9778  // Turn "(a cond b) ? 1.0f : 2.0f" into "load (tmp + ((a cond b) ? 0 : 4)"
9779  // where "tmp" is a constant pool entry containing an array with 1.0 and 2.0
9780  // in it.  This is a win when the constant is not otherwise available because
9781  // it replaces two constant pool loads with one.  We only do this if the FP
9782  // type is known to be legal, because if it isn't, then we are before legalize
9783  // types an we want the other legalization to happen first (e.g. to avoid
9784  // messing with soft float) and if the ConstantFP is not legal, because if
9785  // it is legal, we may not need to store the FP constant in a constant pool.
9786  if (ConstantFPSDNode *TV = dyn_cast<ConstantFPSDNode>(N2))
9787    if (ConstantFPSDNode *FV = dyn_cast<ConstantFPSDNode>(N3)) {
9788      if (TLI.isTypeLegal(N2.getValueType()) &&
9789          (TLI.getOperationAction(ISD::ConstantFP, N2.getValueType()) !=
9790           TargetLowering::Legal) &&
9791          // If both constants have multiple uses, then we won't need to do an
9792          // extra load, they are likely around in registers for other users.
9793          (TV->hasOneUse() || FV->hasOneUse())) {
9794        Constant *Elts[] = {
9795          const_cast<ConstantFP*>(FV->getConstantFPValue()),
9796          const_cast<ConstantFP*>(TV->getConstantFPValue())
9797        };
9798        Type *FPTy = Elts[0]->getType();
9799        const DataLayout &TD = *TLI.getDataLayout();
9800
9801        // Create a ConstantArray of the two constants.
9802        Constant *CA = ConstantArray::get(ArrayType::get(FPTy, 2), Elts);
9803        SDValue CPIdx = DAG.getConstantPool(CA, TLI.getPointerTy(),
9804                                            TD.getPrefTypeAlignment(FPTy));
9805        unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
9806
9807        // Get the offsets to the 0 and 1 element of the array so that we can
9808        // select between them.
9809        SDValue Zero = DAG.getIntPtrConstant(0);
9810        unsigned EltSize = (unsigned)TD.getTypeAllocSize(Elts[0]->getType());
9811        SDValue One = DAG.getIntPtrConstant(EltSize);
9812
9813        SDValue Cond = DAG.getSetCC(DL,
9814                                    getSetCCResultType(N0.getValueType()),
9815                                    N0, N1, CC);
9816        AddToWorkList(Cond.getNode());
9817        SDValue CstOffset = DAG.getSelect(DL, Zero.getValueType(),
9818                                          Cond, One, Zero);
9819        AddToWorkList(CstOffset.getNode());
9820        CPIdx = DAG.getNode(ISD::ADD, DL, TLI.getPointerTy(), CPIdx,
9821                            CstOffset);
9822        AddToWorkList(CPIdx.getNode());
9823        return DAG.getLoad(TV->getValueType(0), DL, DAG.getEntryNode(), CPIdx,
9824                           MachinePointerInfo::getConstantPool(), false,
9825                           false, false, Alignment);
9826
9827      }
9828    }
9829
9830  // Check to see if we can perform the "gzip trick", transforming
9831  // (select_cc setlt X, 0, A, 0) -> (and (sra X, (sub size(X), 1), A)
9832  if (N1C && N3C && N3C->isNullValue() && CC == ISD::SETLT &&
9833      (N1C->isNullValue() ||                         // (a < 0) ? b : 0
9834       (N1C->getAPIntValue() == 1 && N0 == N2))) {   // (a < 1) ? a : 0
9835    EVT XType = N0.getValueType();
9836    EVT AType = N2.getValueType();
9837    if (XType.bitsGE(AType)) {
9838      // and (sra X, size(X)-1, A) -> "and (srl X, C2), A" iff A is a
9839      // single-bit constant.
9840      if (N2C && ((N2C->getAPIntValue() & (N2C->getAPIntValue()-1)) == 0)) {
9841        unsigned ShCtV = N2C->getAPIntValue().logBase2();
9842        ShCtV = XType.getSizeInBits()-ShCtV-1;
9843        SDValue ShCt = DAG.getConstant(ShCtV,
9844                                       getShiftAmountTy(N0.getValueType()));
9845        SDValue Shift = DAG.getNode(ISD::SRL, SDLoc(N0),
9846                                    XType, N0, ShCt);
9847        AddToWorkList(Shift.getNode());
9848
9849        if (XType.bitsGT(AType)) {
9850          Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift);
9851          AddToWorkList(Shift.getNode());
9852        }
9853
9854        return DAG.getNode(ISD::AND, DL, AType, Shift, N2);
9855      }
9856
9857      SDValue Shift = DAG.getNode(ISD::SRA, SDLoc(N0),
9858                                  XType, N0,
9859                                  DAG.getConstant(XType.getSizeInBits()-1,
9860                                         getShiftAmountTy(N0.getValueType())));
9861      AddToWorkList(Shift.getNode());
9862
9863      if (XType.bitsGT(AType)) {
9864        Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift);
9865        AddToWorkList(Shift.getNode());
9866      }
9867
9868      return DAG.getNode(ISD::AND, DL, AType, Shift, N2);
9869    }
9870  }
9871
9872  // fold (select_cc seteq (and x, y), 0, 0, A) -> (and (shr (shl x)) A)
9873  // where y is has a single bit set.
9874  // A plaintext description would be, we can turn the SELECT_CC into an AND
9875  // when the condition can be materialized as an all-ones register.  Any
9876  // single bit-test can be materialized as an all-ones register with
9877  // shift-left and shift-right-arith.
9878  if (CC == ISD::SETEQ && N0->getOpcode() == ISD::AND &&
9879      N0->getValueType(0) == VT &&
9880      N1C && N1C->isNullValue() &&
9881      N2C && N2C->isNullValue()) {
9882    SDValue AndLHS = N0->getOperand(0);
9883    ConstantSDNode *ConstAndRHS = dyn_cast<ConstantSDNode>(N0->getOperand(1));
9884    if (ConstAndRHS && ConstAndRHS->getAPIntValue().countPopulation() == 1) {
9885      // Shift the tested bit over the sign bit.
9886      APInt AndMask = ConstAndRHS->getAPIntValue();
9887      SDValue ShlAmt =
9888        DAG.getConstant(AndMask.countLeadingZeros(),
9889                        getShiftAmountTy(AndLHS.getValueType()));
9890      SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(N0), VT, AndLHS, ShlAmt);
9891
9892      // Now arithmetic right shift it all the way over, so the result is either
9893      // all-ones, or zero.
9894      SDValue ShrAmt =
9895        DAG.getConstant(AndMask.getBitWidth()-1,
9896                        getShiftAmountTy(Shl.getValueType()));
9897      SDValue Shr = DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, ShrAmt);
9898
9899      return DAG.getNode(ISD::AND, DL, VT, Shr, N3);
9900    }
9901  }
9902
9903  // fold select C, 16, 0 -> shl C, 4
9904  if (N2C && N3C && N3C->isNullValue() && N2C->getAPIntValue().isPowerOf2() &&
9905    TLI.getBooleanContents(N0.getValueType().isVector()) ==
9906      TargetLowering::ZeroOrOneBooleanContent) {
9907
9908    // If the caller doesn't want us to simplify this into a zext of a compare,
9909    // don't do it.
9910    if (NotExtCompare && N2C->getAPIntValue() == 1)
9911      return SDValue();
9912
9913    // Get a SetCC of the condition
9914    // NOTE: Don't create a SETCC if it's not legal on this target.
9915    if (!LegalOperations ||
9916        TLI.isOperationLegal(ISD::SETCC,
9917          LegalTypes ? getSetCCResultType(N0.getValueType()) : MVT::i1)) {
9918      SDValue Temp, SCC;
9919      // cast from setcc result type to select result type
9920      if (LegalTypes) {
9921        SCC  = DAG.getSetCC(DL, getSetCCResultType(N0.getValueType()),
9922                            N0, N1, CC);
9923        if (N2.getValueType().bitsLT(SCC.getValueType()))
9924          Temp = DAG.getZeroExtendInReg(SCC, SDLoc(N2),
9925                                        N2.getValueType());
9926        else
9927          Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2),
9928                             N2.getValueType(), SCC);
9929      } else {
9930        SCC  = DAG.getSetCC(SDLoc(N0), MVT::i1, N0, N1, CC);
9931        Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2),
9932                           N2.getValueType(), SCC);
9933      }
9934
9935      AddToWorkList(SCC.getNode());
9936      AddToWorkList(Temp.getNode());
9937
9938      if (N2C->getAPIntValue() == 1)
9939        return Temp;
9940
9941      // shl setcc result by log2 n2c
9942      return DAG.getNode(ISD::SHL, DL, N2.getValueType(), Temp,
9943                         DAG.getConstant(N2C->getAPIntValue().logBase2(),
9944                                         getShiftAmountTy(Temp.getValueType())));
9945    }
9946  }
9947
9948  // Check to see if this is the equivalent of setcc
9949  // FIXME: Turn all of these into setcc if setcc if setcc is legal
9950  // otherwise, go ahead with the folds.
9951  if (0 && N3C && N3C->isNullValue() && N2C && (N2C->getAPIntValue() == 1ULL)) {
9952    EVT XType = N0.getValueType();
9953    if (!LegalOperations ||
9954        TLI.isOperationLegal(ISD::SETCC, getSetCCResultType(XType))) {
9955      SDValue Res = DAG.getSetCC(DL, getSetCCResultType(XType), N0, N1, CC);
9956      if (Res.getValueType() != VT)
9957        Res = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Res);
9958      return Res;
9959    }
9960
9961    // fold (seteq X, 0) -> (srl (ctlz X, log2(size(X))))
9962    if (N1C && N1C->isNullValue() && CC == ISD::SETEQ &&
9963        (!LegalOperations ||
9964         TLI.isOperationLegal(ISD::CTLZ, XType))) {
9965      SDValue Ctlz = DAG.getNode(ISD::CTLZ, SDLoc(N0), XType, N0);
9966      return DAG.getNode(ISD::SRL, DL, XType, Ctlz,
9967                         DAG.getConstant(Log2_32(XType.getSizeInBits()),
9968                                       getShiftAmountTy(Ctlz.getValueType())));
9969    }
9970    // fold (setgt X, 0) -> (srl (and (-X, ~X), size(X)-1))
9971    if (N1C && N1C->isNullValue() && CC == ISD::SETGT) {
9972      SDValue NegN0 = DAG.getNode(ISD::SUB, SDLoc(N0),
9973                                  XType, DAG.getConstant(0, XType), N0);
9974      SDValue NotN0 = DAG.getNOT(SDLoc(N0), N0, XType);
9975      return DAG.getNode(ISD::SRL, DL, XType,
9976                         DAG.getNode(ISD::AND, DL, XType, NegN0, NotN0),
9977                         DAG.getConstant(XType.getSizeInBits()-1,
9978                                         getShiftAmountTy(XType)));
9979    }
9980    // fold (setgt X, -1) -> (xor (srl (X, size(X)-1), 1))
9981    if (N1C && N1C->isAllOnesValue() && CC == ISD::SETGT) {
9982      SDValue Sign = DAG.getNode(ISD::SRL, SDLoc(N0), XType, N0,
9983                                 DAG.getConstant(XType.getSizeInBits()-1,
9984                                         getShiftAmountTy(N0.getValueType())));
9985      return DAG.getNode(ISD::XOR, DL, XType, Sign, DAG.getConstant(1, XType));
9986    }
9987  }
9988
9989  // Check to see if this is an integer abs.
9990  // select_cc setg[te] X,  0,  X, -X ->
9991  // select_cc setgt    X, -1,  X, -X ->
9992  // select_cc setl[te] X,  0, -X,  X ->
9993  // select_cc setlt    X,  1, -X,  X ->
9994  // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
9995  if (N1C) {
9996    ConstantSDNode *SubC = NULL;
9997    if (((N1C->isNullValue() && (CC == ISD::SETGT || CC == ISD::SETGE)) ||
9998         (N1C->isAllOnesValue() && CC == ISD::SETGT)) &&
9999        N0 == N2 && N3.getOpcode() == ISD::SUB && N0 == N3.getOperand(1))
10000      SubC = dyn_cast<ConstantSDNode>(N3.getOperand(0));
10001    else if (((N1C->isNullValue() && (CC == ISD::SETLT || CC == ISD::SETLE)) ||
10002              (N1C->isOne() && CC == ISD::SETLT)) &&
10003             N0 == N3 && N2.getOpcode() == ISD::SUB && N0 == N2.getOperand(1))
10004      SubC = dyn_cast<ConstantSDNode>(N2.getOperand(0));
10005
10006    EVT XType = N0.getValueType();
10007    if (SubC && SubC->isNullValue() && XType.isInteger()) {
10008      SDValue Shift = DAG.getNode(ISD::SRA, SDLoc(N0), XType,
10009                                  N0,
10010                                  DAG.getConstant(XType.getSizeInBits()-1,
10011                                         getShiftAmountTy(N0.getValueType())));
10012      SDValue Add = DAG.getNode(ISD::ADD, SDLoc(N0),
10013                                XType, N0, Shift);
10014      AddToWorkList(Shift.getNode());
10015      AddToWorkList(Add.getNode());
10016      return DAG.getNode(ISD::XOR, DL, XType, Add, Shift);
10017    }
10018  }
10019
10020  return SDValue();
10021}
10022
10023/// SimplifySetCC - This is a stub for TargetLowering::SimplifySetCC.
10024SDValue DAGCombiner::SimplifySetCC(EVT VT, SDValue N0,
10025                                   SDValue N1, ISD::CondCode Cond,
10026                                   SDLoc DL, bool foldBooleans) {
10027  TargetLowering::DAGCombinerInfo
10028    DagCombineInfo(DAG, Level, false, this);
10029  return TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo, DL);
10030}
10031
10032/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
10033/// return a DAG expression to select that will generate the same value by
10034/// multiplying by a magic number.  See:
10035/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
10036SDValue DAGCombiner::BuildSDIV(SDNode *N) {
10037  std::vector<SDNode*> Built;
10038  SDValue S = TLI.BuildSDIV(N, DAG, LegalOperations, &Built);
10039
10040  for (std::vector<SDNode*>::iterator ii = Built.begin(), ee = Built.end();
10041       ii != ee; ++ii)
10042    AddToWorkList(*ii);
10043  return S;
10044}
10045
10046/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
10047/// return a DAG expression to select that will generate the same value by
10048/// multiplying by a magic number.  See:
10049/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
10050SDValue DAGCombiner::BuildUDIV(SDNode *N) {
10051  std::vector<SDNode*> Built;
10052  SDValue S = TLI.BuildUDIV(N, DAG, LegalOperations, &Built);
10053
10054  for (std::vector<SDNode*>::iterator ii = Built.begin(), ee = Built.end();
10055       ii != ee; ++ii)
10056    AddToWorkList(*ii);
10057  return S;
10058}
10059
10060/// FindBaseOffset - Return true if base is a frame index, which is known not
10061// to alias with anything but itself.  Provides base object and offset as
10062// results.
10063static bool FindBaseOffset(SDValue Ptr, SDValue &Base, int64_t &Offset,
10064                           const GlobalValue *&GV, const void *&CV) {
10065  // Assume it is a primitive operation.
10066  Base = Ptr; Offset = 0; GV = 0; CV = 0;
10067
10068  // If it's an adding a simple constant then integrate the offset.
10069  if (Base.getOpcode() == ISD::ADD) {
10070    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Base.getOperand(1))) {
10071      Base = Base.getOperand(0);
10072      Offset += C->getZExtValue();
10073    }
10074  }
10075
10076  // Return the underlying GlobalValue, and update the Offset.  Return false
10077  // for GlobalAddressSDNode since the same GlobalAddress may be represented
10078  // by multiple nodes with different offsets.
10079  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Base)) {
10080    GV = G->getGlobal();
10081    Offset += G->getOffset();
10082    return false;
10083  }
10084
10085  // Return the underlying Constant value, and update the Offset.  Return false
10086  // for ConstantSDNodes since the same constant pool entry may be represented
10087  // by multiple nodes with different offsets.
10088  if (ConstantPoolSDNode *C = dyn_cast<ConstantPoolSDNode>(Base)) {
10089    CV = C->isMachineConstantPoolEntry() ? (const void *)C->getMachineCPVal()
10090                                         : (const void *)C->getConstVal();
10091    Offset += C->getOffset();
10092    return false;
10093  }
10094  // If it's any of the following then it can't alias with anything but itself.
10095  return isa<FrameIndexSDNode>(Base);
10096}
10097
10098/// isAlias - Return true if there is any possibility that the two addresses
10099/// overlap.
10100bool DAGCombiner::isAlias(SDValue Ptr1, int64_t Size1,
10101                          const Value *SrcValue1, int SrcValueOffset1,
10102                          unsigned SrcValueAlign1,
10103                          const MDNode *TBAAInfo1,
10104                          SDValue Ptr2, int64_t Size2,
10105                          const Value *SrcValue2, int SrcValueOffset2,
10106                          unsigned SrcValueAlign2,
10107                          const MDNode *TBAAInfo2) const {
10108  // If they are the same then they must be aliases.
10109  if (Ptr1 == Ptr2) return true;
10110
10111  // Gather base node and offset information.
10112  SDValue Base1, Base2;
10113  int64_t Offset1, Offset2;
10114  const GlobalValue *GV1, *GV2;
10115  const void *CV1, *CV2;
10116  bool isFrameIndex1 = FindBaseOffset(Ptr1, Base1, Offset1, GV1, CV1);
10117  bool isFrameIndex2 = FindBaseOffset(Ptr2, Base2, Offset2, GV2, CV2);
10118
10119  // If they have a same base address then check to see if they overlap.
10120  if (Base1 == Base2 || (GV1 && (GV1 == GV2)) || (CV1 && (CV1 == CV2)))
10121    return !((Offset1 + Size1) <= Offset2 || (Offset2 + Size2) <= Offset1);
10122
10123  // It is possible for different frame indices to alias each other, mostly
10124  // when tail call optimization reuses return address slots for arguments.
10125  // To catch this case, look up the actual index of frame indices to compute
10126  // the real alias relationship.
10127  if (isFrameIndex1 && isFrameIndex2) {
10128    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
10129    Offset1 += MFI->getObjectOffset(cast<FrameIndexSDNode>(Base1)->getIndex());
10130    Offset2 += MFI->getObjectOffset(cast<FrameIndexSDNode>(Base2)->getIndex());
10131    return !((Offset1 + Size1) <= Offset2 || (Offset2 + Size2) <= Offset1);
10132  }
10133
10134  // Otherwise, if we know what the bases are, and they aren't identical, then
10135  // we know they cannot alias.
10136  if ((isFrameIndex1 || CV1 || GV1) && (isFrameIndex2 || CV2 || GV2))
10137    return false;
10138
10139  // If we know required SrcValue1 and SrcValue2 have relatively large alignment
10140  // compared to the size and offset of the access, we may be able to prove they
10141  // do not alias.  This check is conservative for now to catch cases created by
10142  // splitting vector types.
10143  if ((SrcValueAlign1 == SrcValueAlign2) &&
10144      (SrcValueOffset1 != SrcValueOffset2) &&
10145      (Size1 == Size2) && (SrcValueAlign1 > Size1)) {
10146    int64_t OffAlign1 = SrcValueOffset1 % SrcValueAlign1;
10147    int64_t OffAlign2 = SrcValueOffset2 % SrcValueAlign1;
10148
10149    // There is no overlap between these relatively aligned accesses of similar
10150    // size, return no alias.
10151    if ((OffAlign1 + Size1) <= OffAlign2 || (OffAlign2 + Size2) <= OffAlign1)
10152      return false;
10153  }
10154
10155  if (CombinerGlobalAA) {
10156    // Use alias analysis information.
10157    int64_t MinOffset = std::min(SrcValueOffset1, SrcValueOffset2);
10158    int64_t Overlap1 = Size1 + SrcValueOffset1 - MinOffset;
10159    int64_t Overlap2 = Size2 + SrcValueOffset2 - MinOffset;
10160    AliasAnalysis::AliasResult AAResult =
10161      AA.alias(AliasAnalysis::Location(SrcValue1, Overlap1, TBAAInfo1),
10162               AliasAnalysis::Location(SrcValue2, Overlap2, TBAAInfo2));
10163    if (AAResult == AliasAnalysis::NoAlias)
10164      return false;
10165  }
10166
10167  // Otherwise we have to assume they alias.
10168  return true;
10169}
10170
10171bool DAGCombiner::isAlias(LSBaseSDNode *Op0, LSBaseSDNode *Op1) {
10172  SDValue Ptr0, Ptr1;
10173  int64_t Size0, Size1;
10174  const Value *SrcValue0, *SrcValue1;
10175  int SrcValueOffset0, SrcValueOffset1;
10176  unsigned SrcValueAlign0, SrcValueAlign1;
10177  const MDNode *SrcTBAAInfo0, *SrcTBAAInfo1;
10178  FindAliasInfo(Op0, Ptr0, Size0, SrcValue0, SrcValueOffset0,
10179                SrcValueAlign0, SrcTBAAInfo0);
10180  FindAliasInfo(Op1, Ptr1, Size1, SrcValue1, SrcValueOffset1,
10181                SrcValueAlign1, SrcTBAAInfo1);
10182  return isAlias(Ptr0, Size0, SrcValue0, SrcValueOffset0,
10183                 SrcValueAlign0, SrcTBAAInfo0,
10184                 Ptr1, Size1, SrcValue1, SrcValueOffset1,
10185                 SrcValueAlign1, SrcTBAAInfo1);
10186}
10187
10188/// FindAliasInfo - Extracts the relevant alias information from the memory
10189/// node.  Returns true if the operand was a load.
10190bool DAGCombiner::FindAliasInfo(SDNode *N,
10191                                SDValue &Ptr, int64_t &Size,
10192                                const Value *&SrcValue,
10193                                int &SrcValueOffset,
10194                                unsigned &SrcValueAlign,
10195                                const MDNode *&TBAAInfo) const {
10196  LSBaseSDNode *LS = cast<LSBaseSDNode>(N);
10197
10198  Ptr = LS->getBasePtr();
10199  Size = LS->getMemoryVT().getSizeInBits() >> 3;
10200  SrcValue = LS->getSrcValue();
10201  SrcValueOffset = LS->getSrcValueOffset();
10202  SrcValueAlign = LS->getOriginalAlignment();
10203  TBAAInfo = LS->getTBAAInfo();
10204  return isa<LoadSDNode>(LS);
10205}
10206
10207/// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
10208/// looking for aliasing nodes and adding them to the Aliases vector.
10209void DAGCombiner::GatherAllAliases(SDNode *N, SDValue OriginalChain,
10210                                   SmallVector<SDValue, 8> &Aliases) {
10211  SmallVector<SDValue, 8> Chains;     // List of chains to visit.
10212  SmallPtrSet<SDNode *, 16> Visited;  // Visited node set.
10213
10214  // Get alias information for node.
10215  SDValue Ptr;
10216  int64_t Size;
10217  const Value *SrcValue;
10218  int SrcValueOffset;
10219  unsigned SrcValueAlign;
10220  const MDNode *SrcTBAAInfo;
10221  bool IsLoad = FindAliasInfo(N, Ptr, Size, SrcValue, SrcValueOffset,
10222                              SrcValueAlign, SrcTBAAInfo);
10223
10224  // Starting off.
10225  Chains.push_back(OriginalChain);
10226  unsigned Depth = 0;
10227
10228  // Look at each chain and determine if it is an alias.  If so, add it to the
10229  // aliases list.  If not, then continue up the chain looking for the next
10230  // candidate.
10231  while (!Chains.empty()) {
10232    SDValue Chain = Chains.back();
10233    Chains.pop_back();
10234
10235    // For TokenFactor nodes, look at each operand and only continue up the
10236    // chain until we find two aliases.  If we've seen two aliases, assume we'll
10237    // find more and revert to original chain since the xform is unlikely to be
10238    // profitable.
10239    //
10240    // FIXME: The depth check could be made to return the last non-aliasing
10241    // chain we found before we hit a tokenfactor rather than the original
10242    // chain.
10243    if (Depth > 6 || Aliases.size() == 2) {
10244      Aliases.clear();
10245      Aliases.push_back(OriginalChain);
10246      break;
10247    }
10248
10249    // Don't bother if we've been before.
10250    if (!Visited.insert(Chain.getNode()))
10251      continue;
10252
10253    switch (Chain.getOpcode()) {
10254    case ISD::EntryToken:
10255      // Entry token is ideal chain operand, but handled in FindBetterChain.
10256      break;
10257
10258    case ISD::LOAD:
10259    case ISD::STORE: {
10260      // Get alias information for Chain.
10261      SDValue OpPtr;
10262      int64_t OpSize;
10263      const Value *OpSrcValue;
10264      int OpSrcValueOffset;
10265      unsigned OpSrcValueAlign;
10266      const MDNode *OpSrcTBAAInfo;
10267      bool IsOpLoad = FindAliasInfo(Chain.getNode(), OpPtr, OpSize,
10268                                    OpSrcValue, OpSrcValueOffset,
10269                                    OpSrcValueAlign,
10270                                    OpSrcTBAAInfo);
10271
10272      // If chain is alias then stop here.
10273      if (!(IsLoad && IsOpLoad) &&
10274          isAlias(Ptr, Size, SrcValue, SrcValueOffset, SrcValueAlign,
10275                  SrcTBAAInfo,
10276                  OpPtr, OpSize, OpSrcValue, OpSrcValueOffset,
10277                  OpSrcValueAlign, OpSrcTBAAInfo)) {
10278        Aliases.push_back(Chain);
10279      } else {
10280        // Look further up the chain.
10281        Chains.push_back(Chain.getOperand(0));
10282        ++Depth;
10283      }
10284      break;
10285    }
10286
10287    case ISD::TokenFactor:
10288      // We have to check each of the operands of the token factor for "small"
10289      // token factors, so we queue them up.  Adding the operands to the queue
10290      // (stack) in reverse order maintains the original order and increases the
10291      // likelihood that getNode will find a matching token factor (CSE.)
10292      if (Chain.getNumOperands() > 16) {
10293        Aliases.push_back(Chain);
10294        break;
10295      }
10296      for (unsigned n = Chain.getNumOperands(); n;)
10297        Chains.push_back(Chain.getOperand(--n));
10298      ++Depth;
10299      break;
10300
10301    default:
10302      // For all other instructions we will just have to take what we can get.
10303      Aliases.push_back(Chain);
10304      break;
10305    }
10306  }
10307}
10308
10309/// FindBetterChain - Walk up chain skipping non-aliasing memory nodes, looking
10310/// for a better chain (aliasing node.)
10311SDValue DAGCombiner::FindBetterChain(SDNode *N, SDValue OldChain) {
10312  SmallVector<SDValue, 8> Aliases;  // Ops for replacing token factor.
10313
10314  // Accumulate all the aliases to this node.
10315  GatherAllAliases(N, OldChain, Aliases);
10316
10317  // If no operands then chain to entry token.
10318  if (Aliases.size() == 0)
10319    return DAG.getEntryNode();
10320
10321  // If a single operand then chain to it.  We don't need to revisit it.
10322  if (Aliases.size() == 1)
10323    return Aliases[0];
10324
10325  // Construct a custom tailored token factor.
10326  return DAG.getNode(ISD::TokenFactor, SDLoc(N), MVT::Other,
10327                     &Aliases[0], Aliases.size());
10328}
10329
10330// SelectionDAG::Combine - This is the entry point for the file.
10331//
10332void SelectionDAG::Combine(CombineLevel Level, AliasAnalysis &AA,
10333                           CodeGenOpt::Level OptLevel) {
10334  /// run - This is the main entry point to this class.
10335  ///
10336  DAGCombiner(*this, AA, OptLevel).Run(Level);
10337}
10338