SelectionDAG.cpp revision a901129169194881a78b7fd8953e09f55b846d10
1748dfac7788e3cbc2fc6d36196a81d3f002669f6Jason Evans//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2748dfac7788e3cbc2fc6d36196a81d3f002669f6Jason Evans//
3748dfac7788e3cbc2fc6d36196a81d3f002669f6Jason Evans//                     The LLVM Compiler Infrastructure
4748dfac7788e3cbc2fc6d36196a81d3f002669f6Jason Evans//
5748dfac7788e3cbc2fc6d36196a81d3f002669f6Jason Evans// This file is distributed under the University of Illinois Open Source
6748dfac7788e3cbc2fc6d36196a81d3f002669f6Jason Evans// License. See LICENSE.TXT for details.
7748dfac7788e3cbc2fc6d36196a81d3f002669f6Jason Evans//
8748dfac7788e3cbc2fc6d36196a81d3f002669f6Jason Evans//===----------------------------------------------------------------------===//
9748dfac7788e3cbc2fc6d36196a81d3f002669f6Jason Evans//
10748dfac7788e3cbc2fc6d36196a81d3f002669f6Jason Evans// This implements the SelectionDAG class.
11748dfac7788e3cbc2fc6d36196a81d3f002669f6Jason Evans//
12748dfac7788e3cbc2fc6d36196a81d3f002669f6Jason Evans//===----------------------------------------------------------------------===//
13748dfac7788e3cbc2fc6d36196a81d3f002669f6Jason Evans
14748dfac7788e3cbc2fc6d36196a81d3f002669f6Jason Evans#include "llvm/CodeGen/SelectionDAG.h"
15748dfac7788e3cbc2fc6d36196a81d3f002669f6Jason Evans#include "SDNodeOrdering.h"
16748dfac7788e3cbc2fc6d36196a81d3f002669f6Jason Evans#include "SDNodeDbgValue.h"
17#include "llvm/Constants.h"
18#include "llvm/Analysis/DebugInfo.h"
19#include "llvm/Analysis/ValueTracking.h"
20#include "llvm/Function.h"
21#include "llvm/GlobalAlias.h"
22#include "llvm/GlobalVariable.h"
23#include "llvm/Intrinsics.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Assembly/Writer.h"
26#include "llvm/CallingConv.h"
27#include "llvm/CodeGen/MachineBasicBlock.h"
28#include "llvm/CodeGen/MachineConstantPool.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineModuleInfo.h"
31#include "llvm/CodeGen/PseudoSourceValue.h"
32#include "llvm/Target/TargetRegisterInfo.h"
33#include "llvm/Target/TargetData.h"
34#include "llvm/Target/TargetLowering.h"
35#include "llvm/Target/TargetSelectionDAGInfo.h"
36#include "llvm/Target/TargetOptions.h"
37#include "llvm/Target/TargetInstrInfo.h"
38#include "llvm/Target/TargetIntrinsicInfo.h"
39#include "llvm/Target/TargetMachine.h"
40#include "llvm/Support/CommandLine.h"
41#include "llvm/Support/Debug.h"
42#include "llvm/Support/ErrorHandling.h"
43#include "llvm/Support/ManagedStatic.h"
44#include "llvm/Support/MathExtras.h"
45#include "llvm/Support/raw_ostream.h"
46#include "llvm/Support/Mutex.h"
47#include "llvm/ADT/SetVector.h"
48#include "llvm/ADT/SmallPtrSet.h"
49#include "llvm/ADT/SmallSet.h"
50#include "llvm/ADT/SmallVector.h"
51#include "llvm/ADT/StringExtras.h"
52#include <algorithm>
53#include <cmath>
54using namespace llvm;
55
56/// makeVTList - Return an instance of the SDVTList struct initialized with the
57/// specified members.
58static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
59  SDVTList Res = {VTs, NumVTs};
60  return Res;
61}
62
63static const fltSemantics *EVTToAPFloatSemantics(EVT VT) {
64  switch (VT.getSimpleVT().SimpleTy) {
65  default: llvm_unreachable("Unknown FP format");
66  case MVT::f32:     return &APFloat::IEEEsingle;
67  case MVT::f64:     return &APFloat::IEEEdouble;
68  case MVT::f80:     return &APFloat::x87DoubleExtended;
69  case MVT::f128:    return &APFloat::IEEEquad;
70  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
71  }
72}
73
74SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
75
76//===----------------------------------------------------------------------===//
77//                              ConstantFPSDNode Class
78//===----------------------------------------------------------------------===//
79
80/// isExactlyValue - We don't rely on operator== working on double values, as
81/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
82/// As such, this method can be used to do an exact bit-for-bit comparison of
83/// two floating point values.
84bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
85  return getValueAPF().bitwiseIsEqual(V);
86}
87
88bool ConstantFPSDNode::isValueValidForType(EVT VT,
89                                           const APFloat& Val) {
90  assert(VT.isFloatingPoint() && "Can only convert between FP types");
91
92  // PPC long double cannot be converted to any other type.
93  if (VT == MVT::ppcf128 ||
94      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
95    return false;
96
97  // convert modifies in place, so make a copy.
98  APFloat Val2 = APFloat(Val);
99  bool losesInfo;
100  (void) Val2.convert(*EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
101                      &losesInfo);
102  return !losesInfo;
103}
104
105//===----------------------------------------------------------------------===//
106//                              ISD Namespace
107//===----------------------------------------------------------------------===//
108
109/// isBuildVectorAllOnes - Return true if the specified node is a
110/// BUILD_VECTOR where all of the elements are ~0 or undef.
111bool ISD::isBuildVectorAllOnes(const SDNode *N) {
112  // Look through a bit convert.
113  if (N->getOpcode() == ISD::BITCAST)
114    N = N->getOperand(0).getNode();
115
116  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
117
118  unsigned i = 0, e = N->getNumOperands();
119
120  // Skip over all of the undef values.
121  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
122    ++i;
123
124  // Do not accept an all-undef vector.
125  if (i == e) return false;
126
127  // Do not accept build_vectors that aren't all constants or which have non-~0
128  // elements.
129  SDValue NotZero = N->getOperand(i);
130  if (isa<ConstantSDNode>(NotZero)) {
131    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
132      return false;
133  } else if (isa<ConstantFPSDNode>(NotZero)) {
134    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
135                bitcastToAPInt().isAllOnesValue())
136      return false;
137  } else
138    return false;
139
140  // Okay, we have at least one ~0 value, check to see if the rest match or are
141  // undefs.
142  for (++i; i != e; ++i)
143    if (N->getOperand(i) != NotZero &&
144        N->getOperand(i).getOpcode() != ISD::UNDEF)
145      return false;
146  return true;
147}
148
149
150/// isBuildVectorAllZeros - Return true if the specified node is a
151/// BUILD_VECTOR where all of the elements are 0 or undef.
152bool ISD::isBuildVectorAllZeros(const SDNode *N) {
153  // Look through a bit convert.
154  if (N->getOpcode() == ISD::BITCAST)
155    N = N->getOperand(0).getNode();
156
157  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
158
159  unsigned i = 0, e = N->getNumOperands();
160
161  // Skip over all of the undef values.
162  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
163    ++i;
164
165  // Do not accept an all-undef vector.
166  if (i == e) return false;
167
168  // Do not accept build_vectors that aren't all constants or which have non-0
169  // elements.
170  SDValue Zero = N->getOperand(i);
171  if (isa<ConstantSDNode>(Zero)) {
172    if (!cast<ConstantSDNode>(Zero)->isNullValue())
173      return false;
174  } else if (isa<ConstantFPSDNode>(Zero)) {
175    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
176      return false;
177  } else
178    return false;
179
180  // Okay, we have at least one 0 value, check to see if the rest match or are
181  // undefs.
182  for (++i; i != e; ++i)
183    if (N->getOperand(i) != Zero &&
184        N->getOperand(i).getOpcode() != ISD::UNDEF)
185      return false;
186  return true;
187}
188
189/// isScalarToVector - Return true if the specified node is a
190/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
191/// element is not an undef.
192bool ISD::isScalarToVector(const SDNode *N) {
193  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
194    return true;
195
196  if (N->getOpcode() != ISD::BUILD_VECTOR)
197    return false;
198  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
199    return false;
200  unsigned NumElems = N->getNumOperands();
201  if (NumElems == 1)
202    return false;
203  for (unsigned i = 1; i < NumElems; ++i) {
204    SDValue V = N->getOperand(i);
205    if (V.getOpcode() != ISD::UNDEF)
206      return false;
207  }
208  return true;
209}
210
211/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
212/// when given the operation for (X op Y).
213ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
214  // To perform this operation, we just need to swap the L and G bits of the
215  // operation.
216  unsigned OldL = (Operation >> 2) & 1;
217  unsigned OldG = (Operation >> 1) & 1;
218  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
219                       (OldL << 1) |       // New G bit
220                       (OldG << 2));       // New L bit.
221}
222
223/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
224/// 'op' is a valid SetCC operation.
225ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
226  unsigned Operation = Op;
227  if (isInteger)
228    Operation ^= 7;   // Flip L, G, E bits, but not U.
229  else
230    Operation ^= 15;  // Flip all of the condition bits.
231
232  if (Operation > ISD::SETTRUE2)
233    Operation &= ~8;  // Don't let N and U bits get set.
234
235  return ISD::CondCode(Operation);
236}
237
238
239/// isSignedOp - For an integer comparison, return 1 if the comparison is a
240/// signed operation and 2 if the result is an unsigned comparison.  Return zero
241/// if the operation does not depend on the sign of the input (setne and seteq).
242static int isSignedOp(ISD::CondCode Opcode) {
243  switch (Opcode) {
244  default: llvm_unreachable("Illegal integer setcc operation!");
245  case ISD::SETEQ:
246  case ISD::SETNE: return 0;
247  case ISD::SETLT:
248  case ISD::SETLE:
249  case ISD::SETGT:
250  case ISD::SETGE: return 1;
251  case ISD::SETULT:
252  case ISD::SETULE:
253  case ISD::SETUGT:
254  case ISD::SETUGE: return 2;
255  }
256}
257
258/// getSetCCOrOperation - Return the result of a logical OR between different
259/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
260/// returns SETCC_INVALID if it is not possible to represent the resultant
261/// comparison.
262ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
263                                       bool isInteger) {
264  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
265    // Cannot fold a signed integer setcc with an unsigned integer setcc.
266    return ISD::SETCC_INVALID;
267
268  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
269
270  // If the N and U bits get set then the resultant comparison DOES suddenly
271  // care about orderedness, and is true when ordered.
272  if (Op > ISD::SETTRUE2)
273    Op &= ~16;     // Clear the U bit if the N bit is set.
274
275  // Canonicalize illegal integer setcc's.
276  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
277    Op = ISD::SETNE;
278
279  return ISD::CondCode(Op);
280}
281
282/// getSetCCAndOperation - Return the result of a logical AND between different
283/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
284/// function returns zero if it is not possible to represent the resultant
285/// comparison.
286ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
287                                        bool isInteger) {
288  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
289    // Cannot fold a signed setcc with an unsigned setcc.
290    return ISD::SETCC_INVALID;
291
292  // Combine all of the condition bits.
293  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
294
295  // Canonicalize illegal integer setcc's.
296  if (isInteger) {
297    switch (Result) {
298    default: break;
299    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
300    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
301    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
302    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
303    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
304    }
305  }
306
307  return Result;
308}
309
310//===----------------------------------------------------------------------===//
311//                           SDNode Profile Support
312//===----------------------------------------------------------------------===//
313
314/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
315///
316static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
317  ID.AddInteger(OpC);
318}
319
320/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
321/// solely with their pointer.
322static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
323  ID.AddPointer(VTList.VTs);
324}
325
326/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
327///
328static void AddNodeIDOperands(FoldingSetNodeID &ID,
329                              const SDValue *Ops, unsigned NumOps) {
330  for (; NumOps; --NumOps, ++Ops) {
331    ID.AddPointer(Ops->getNode());
332    ID.AddInteger(Ops->getResNo());
333  }
334}
335
336/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
337///
338static void AddNodeIDOperands(FoldingSetNodeID &ID,
339                              const SDUse *Ops, unsigned NumOps) {
340  for (; NumOps; --NumOps, ++Ops) {
341    ID.AddPointer(Ops->getNode());
342    ID.AddInteger(Ops->getResNo());
343  }
344}
345
346static void AddNodeIDNode(FoldingSetNodeID &ID,
347                          unsigned short OpC, SDVTList VTList,
348                          const SDValue *OpList, unsigned N) {
349  AddNodeIDOpcode(ID, OpC);
350  AddNodeIDValueTypes(ID, VTList);
351  AddNodeIDOperands(ID, OpList, N);
352}
353
354/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
355/// the NodeID data.
356static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
357  switch (N->getOpcode()) {
358  case ISD::TargetExternalSymbol:
359  case ISD::ExternalSymbol:
360    llvm_unreachable("Should only be used on nodes with operands");
361  default: break;  // Normal nodes don't need extra info.
362  case ISD::TargetConstant:
363  case ISD::Constant:
364    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
365    break;
366  case ISD::TargetConstantFP:
367  case ISD::ConstantFP: {
368    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
369    break;
370  }
371  case ISD::TargetGlobalAddress:
372  case ISD::GlobalAddress:
373  case ISD::TargetGlobalTLSAddress:
374  case ISD::GlobalTLSAddress: {
375    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
376    ID.AddPointer(GA->getGlobal());
377    ID.AddInteger(GA->getOffset());
378    ID.AddInteger(GA->getTargetFlags());
379    break;
380  }
381  case ISD::BasicBlock:
382    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
383    break;
384  case ISD::Register:
385    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
386    break;
387
388  case ISD::SRCVALUE:
389    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
390    break;
391  case ISD::FrameIndex:
392  case ISD::TargetFrameIndex:
393    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
394    break;
395  case ISD::JumpTable:
396  case ISD::TargetJumpTable:
397    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
398    ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
399    break;
400  case ISD::ConstantPool:
401  case ISD::TargetConstantPool: {
402    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
403    ID.AddInteger(CP->getAlignment());
404    ID.AddInteger(CP->getOffset());
405    if (CP->isMachineConstantPoolEntry())
406      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
407    else
408      ID.AddPointer(CP->getConstVal());
409    ID.AddInteger(CP->getTargetFlags());
410    break;
411  }
412  case ISD::LOAD: {
413    const LoadSDNode *LD = cast<LoadSDNode>(N);
414    ID.AddInteger(LD->getMemoryVT().getRawBits());
415    ID.AddInteger(LD->getRawSubclassData());
416    break;
417  }
418  case ISD::STORE: {
419    const StoreSDNode *ST = cast<StoreSDNode>(N);
420    ID.AddInteger(ST->getMemoryVT().getRawBits());
421    ID.AddInteger(ST->getRawSubclassData());
422    break;
423  }
424  case ISD::ATOMIC_CMP_SWAP:
425  case ISD::ATOMIC_SWAP:
426  case ISD::ATOMIC_LOAD_ADD:
427  case ISD::ATOMIC_LOAD_SUB:
428  case ISD::ATOMIC_LOAD_AND:
429  case ISD::ATOMIC_LOAD_OR:
430  case ISD::ATOMIC_LOAD_XOR:
431  case ISD::ATOMIC_LOAD_NAND:
432  case ISD::ATOMIC_LOAD_MIN:
433  case ISD::ATOMIC_LOAD_MAX:
434  case ISD::ATOMIC_LOAD_UMIN:
435  case ISD::ATOMIC_LOAD_UMAX: {
436    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
437    ID.AddInteger(AT->getMemoryVT().getRawBits());
438    ID.AddInteger(AT->getRawSubclassData());
439    break;
440  }
441  case ISD::VECTOR_SHUFFLE: {
442    const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
443    for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
444         i != e; ++i)
445      ID.AddInteger(SVN->getMaskElt(i));
446    break;
447  }
448  case ISD::TargetBlockAddress:
449  case ISD::BlockAddress: {
450    ID.AddPointer(cast<BlockAddressSDNode>(N)->getBlockAddress());
451    ID.AddInteger(cast<BlockAddressSDNode>(N)->getTargetFlags());
452    break;
453  }
454  } // end switch (N->getOpcode())
455}
456
457/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
458/// data.
459static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
460  AddNodeIDOpcode(ID, N->getOpcode());
461  // Add the return value info.
462  AddNodeIDValueTypes(ID, N->getVTList());
463  // Add the operand info.
464  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
465
466  // Handle SDNode leafs with special info.
467  AddNodeIDCustom(ID, N);
468}
469
470/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
471/// the CSE map that carries volatility, temporalness, indexing mode, and
472/// extension/truncation information.
473///
474static inline unsigned
475encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM, bool isVolatile,
476                     bool isNonTemporal) {
477  assert((ConvType & 3) == ConvType &&
478         "ConvType may not require more than 2 bits!");
479  assert((AM & 7) == AM &&
480         "AM may not require more than 3 bits!");
481  return ConvType |
482         (AM << 2) |
483         (isVolatile << 5) |
484         (isNonTemporal << 6);
485}
486
487//===----------------------------------------------------------------------===//
488//                              SelectionDAG Class
489//===----------------------------------------------------------------------===//
490
491/// doNotCSE - Return true if CSE should not be performed for this node.
492static bool doNotCSE(SDNode *N) {
493  if (N->getValueType(0) == MVT::Glue)
494    return true; // Never CSE anything that produces a flag.
495
496  switch (N->getOpcode()) {
497  default: break;
498  case ISD::HANDLENODE:
499  case ISD::EH_LABEL:
500    return true;   // Never CSE these nodes.
501  }
502
503  // Check that remaining values produced are not flags.
504  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
505    if (N->getValueType(i) == MVT::Glue)
506      return true; // Never CSE anything that produces a flag.
507
508  return false;
509}
510
511/// RemoveDeadNodes - This method deletes all unreachable nodes in the
512/// SelectionDAG.
513void SelectionDAG::RemoveDeadNodes() {
514  // Create a dummy node (which is not added to allnodes), that adds a reference
515  // to the root node, preventing it from being deleted.
516  HandleSDNode Dummy(getRoot());
517
518  SmallVector<SDNode*, 128> DeadNodes;
519
520  // Add all obviously-dead nodes to the DeadNodes worklist.
521  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
522    if (I->use_empty())
523      DeadNodes.push_back(I);
524
525  RemoveDeadNodes(DeadNodes);
526
527  // If the root changed (e.g. it was a dead load, update the root).
528  setRoot(Dummy.getValue());
529}
530
531/// RemoveDeadNodes - This method deletes the unreachable nodes in the
532/// given list, and any nodes that become unreachable as a result.
533void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
534                                   DAGUpdateListener *UpdateListener) {
535
536  // Process the worklist, deleting the nodes and adding their uses to the
537  // worklist.
538  while (!DeadNodes.empty()) {
539    SDNode *N = DeadNodes.pop_back_val();
540
541    if (UpdateListener)
542      UpdateListener->NodeDeleted(N, 0);
543
544    // Take the node out of the appropriate CSE map.
545    RemoveNodeFromCSEMaps(N);
546
547    // Next, brutally remove the operand list.  This is safe to do, as there are
548    // no cycles in the graph.
549    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
550      SDUse &Use = *I++;
551      SDNode *Operand = Use.getNode();
552      Use.set(SDValue());
553
554      // Now that we removed this operand, see if there are no uses of it left.
555      if (Operand->use_empty())
556        DeadNodes.push_back(Operand);
557    }
558
559    DeallocateNode(N);
560  }
561}
562
563void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
564  SmallVector<SDNode*, 16> DeadNodes(1, N);
565  RemoveDeadNodes(DeadNodes, UpdateListener);
566}
567
568void SelectionDAG::DeleteNode(SDNode *N) {
569  // First take this out of the appropriate CSE map.
570  RemoveNodeFromCSEMaps(N);
571
572  // Finally, remove uses due to operands of this node, remove from the
573  // AllNodes list, and delete the node.
574  DeleteNodeNotInCSEMaps(N);
575}
576
577void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
578  assert(N != AllNodes.begin() && "Cannot delete the entry node!");
579  assert(N->use_empty() && "Cannot delete a node that is not dead!");
580
581  // Drop all of the operands and decrement used node's use counts.
582  N->DropOperands();
583
584  DeallocateNode(N);
585}
586
587void SelectionDAG::DeallocateNode(SDNode *N) {
588  if (N->OperandsNeedDelete)
589    delete[] N->OperandList;
590
591  // Set the opcode to DELETED_NODE to help catch bugs when node
592  // memory is reallocated.
593  N->NodeType = ISD::DELETED_NODE;
594
595  NodeAllocator.Deallocate(AllNodes.remove(N));
596
597  // Remove the ordering of this node.
598  Ordering->remove(N);
599
600  // If any of the SDDbgValue nodes refer to this SDNode, invalidate them.
601  SmallVector<SDDbgValue*, 2> &DbgVals = DbgInfo->getSDDbgValues(N);
602  for (unsigned i = 0, e = DbgVals.size(); i != e; ++i)
603    DbgVals[i]->setIsInvalidated();
604}
605
606/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
607/// correspond to it.  This is useful when we're about to delete or repurpose
608/// the node.  We don't want future request for structurally identical nodes
609/// to return N anymore.
610bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
611  bool Erased = false;
612  switch (N->getOpcode()) {
613  case ISD::HANDLENODE: return false;  // noop.
614  case ISD::CONDCODE:
615    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
616           "Cond code doesn't exist!");
617    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
618    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
619    break;
620  case ISD::ExternalSymbol:
621    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
622    break;
623  case ISD::TargetExternalSymbol: {
624    ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
625    Erased = TargetExternalSymbols.erase(
626               std::pair<std::string,unsigned char>(ESN->getSymbol(),
627                                                    ESN->getTargetFlags()));
628    break;
629  }
630  case ISD::VALUETYPE: {
631    EVT VT = cast<VTSDNode>(N)->getVT();
632    if (VT.isExtended()) {
633      Erased = ExtendedValueTypeNodes.erase(VT);
634    } else {
635      Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != 0;
636      ValueTypeNodes[VT.getSimpleVT().SimpleTy] = 0;
637    }
638    break;
639  }
640  default:
641    // Remove it from the CSE Map.
642    assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
643    assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
644    Erased = CSEMap.RemoveNode(N);
645    break;
646  }
647#ifndef NDEBUG
648  // Verify that the node was actually in one of the CSE maps, unless it has a
649  // flag result (which cannot be CSE'd) or is one of the special cases that are
650  // not subject to CSE.
651  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
652      !N->isMachineOpcode() && !doNotCSE(N)) {
653    N->dump(this);
654    dbgs() << "\n";
655    llvm_unreachable("Node is not in map!");
656  }
657#endif
658  return Erased;
659}
660
661/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
662/// maps and modified in place. Add it back to the CSE maps, unless an identical
663/// node already exists, in which case transfer all its users to the existing
664/// node. This transfer can potentially trigger recursive merging.
665///
666void
667SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
668                                       DAGUpdateListener *UpdateListener) {
669  // For node types that aren't CSE'd, just act as if no identical node
670  // already exists.
671  if (!doNotCSE(N)) {
672    SDNode *Existing = CSEMap.GetOrInsertNode(N);
673    if (Existing != N) {
674      // If there was already an existing matching node, use ReplaceAllUsesWith
675      // to replace the dead one with the existing one.  This can cause
676      // recursive merging of other unrelated nodes down the line.
677      ReplaceAllUsesWith(N, Existing, UpdateListener);
678
679      // N is now dead.  Inform the listener if it exists and delete it.
680      if (UpdateListener)
681        UpdateListener->NodeDeleted(N, Existing);
682      DeleteNodeNotInCSEMaps(N);
683      return;
684    }
685  }
686
687  // If the node doesn't already exist, we updated it.  Inform a listener if
688  // it exists.
689  if (UpdateListener)
690    UpdateListener->NodeUpdated(N);
691}
692
693/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
694/// were replaced with those specified.  If this node is never memoized,
695/// return null, otherwise return a pointer to the slot it would take.  If a
696/// node already exists with these operands, the slot will be non-null.
697SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
698                                           void *&InsertPos) {
699  if (doNotCSE(N))
700    return 0;
701
702  SDValue Ops[] = { Op };
703  FoldingSetNodeID ID;
704  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
705  AddNodeIDCustom(ID, N);
706  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
707  return Node;
708}
709
710/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
711/// were replaced with those specified.  If this node is never memoized,
712/// return null, otherwise return a pointer to the slot it would take.  If a
713/// node already exists with these operands, the slot will be non-null.
714SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
715                                           SDValue Op1, SDValue Op2,
716                                           void *&InsertPos) {
717  if (doNotCSE(N))
718    return 0;
719
720  SDValue Ops[] = { Op1, Op2 };
721  FoldingSetNodeID ID;
722  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
723  AddNodeIDCustom(ID, N);
724  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
725  return Node;
726}
727
728
729/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
730/// were replaced with those specified.  If this node is never memoized,
731/// return null, otherwise return a pointer to the slot it would take.  If a
732/// node already exists with these operands, the slot will be non-null.
733SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
734                                           const SDValue *Ops,unsigned NumOps,
735                                           void *&InsertPos) {
736  if (doNotCSE(N))
737    return 0;
738
739  FoldingSetNodeID ID;
740  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
741  AddNodeIDCustom(ID, N);
742  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
743  return Node;
744}
745
746#ifndef NDEBUG
747/// VerifyNodeCommon - Sanity check the given node.  Aborts if it is invalid.
748static void VerifyNodeCommon(SDNode *N) {
749  switch (N->getOpcode()) {
750  default:
751    break;
752  case ISD::BUILD_PAIR: {
753    EVT VT = N->getValueType(0);
754    assert(N->getNumValues() == 1 && "Too many results!");
755    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
756           "Wrong return type!");
757    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
758    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
759           "Mismatched operand types!");
760    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
761           "Wrong operand type!");
762    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
763           "Wrong return type size");
764    break;
765  }
766  case ISD::BUILD_VECTOR: {
767    assert(N->getNumValues() == 1 && "Too many results!");
768    assert(N->getValueType(0).isVector() && "Wrong return type!");
769    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
770           "Wrong number of operands!");
771    EVT EltVT = N->getValueType(0).getVectorElementType();
772    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
773      assert((I->getValueType() == EltVT ||
774             (EltVT.isInteger() && I->getValueType().isInteger() &&
775              EltVT.bitsLE(I->getValueType()))) &&
776            "Wrong operand type!");
777    break;
778  }
779  }
780}
781
782/// VerifySDNode - Sanity check the given SDNode.  Aborts if it is invalid.
783static void VerifySDNode(SDNode *N) {
784  // The SDNode allocators cannot be used to allocate nodes with fields that are
785  // not present in an SDNode!
786  assert(!isa<MemSDNode>(N) && "Bad MemSDNode!");
787  assert(!isa<ShuffleVectorSDNode>(N) && "Bad ShuffleVectorSDNode!");
788  assert(!isa<ConstantSDNode>(N) && "Bad ConstantSDNode!");
789  assert(!isa<ConstantFPSDNode>(N) && "Bad ConstantFPSDNode!");
790  assert(!isa<GlobalAddressSDNode>(N) && "Bad GlobalAddressSDNode!");
791  assert(!isa<FrameIndexSDNode>(N) && "Bad FrameIndexSDNode!");
792  assert(!isa<JumpTableSDNode>(N) && "Bad JumpTableSDNode!");
793  assert(!isa<ConstantPoolSDNode>(N) && "Bad ConstantPoolSDNode!");
794  assert(!isa<BasicBlockSDNode>(N) && "Bad BasicBlockSDNode!");
795  assert(!isa<SrcValueSDNode>(N) && "Bad SrcValueSDNode!");
796  assert(!isa<MDNodeSDNode>(N) && "Bad MDNodeSDNode!");
797  assert(!isa<RegisterSDNode>(N) && "Bad RegisterSDNode!");
798  assert(!isa<BlockAddressSDNode>(N) && "Bad BlockAddressSDNode!");
799  assert(!isa<EHLabelSDNode>(N) && "Bad EHLabelSDNode!");
800  assert(!isa<ExternalSymbolSDNode>(N) && "Bad ExternalSymbolSDNode!");
801  assert(!isa<CondCodeSDNode>(N) && "Bad CondCodeSDNode!");
802  assert(!isa<CvtRndSatSDNode>(N) && "Bad CvtRndSatSDNode!");
803  assert(!isa<VTSDNode>(N) && "Bad VTSDNode!");
804  assert(!isa<MachineSDNode>(N) && "Bad MachineSDNode!");
805
806  VerifyNodeCommon(N);
807}
808
809/// VerifyMachineNode - Sanity check the given MachineNode.  Aborts if it is
810/// invalid.
811static void VerifyMachineNode(SDNode *N) {
812  // The MachineNode allocators cannot be used to allocate nodes with fields
813  // that are not present in a MachineNode!
814  // Currently there are no such nodes.
815
816  VerifyNodeCommon(N);
817}
818#endif // NDEBUG
819
820/// getEVTAlignment - Compute the default alignment value for the
821/// given type.
822///
823unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
824  const Type *Ty = VT == MVT::iPTR ?
825                   PointerType::get(Type::getInt8Ty(*getContext()), 0) :
826                   VT.getTypeForEVT(*getContext());
827
828  return TLI.getTargetData()->getABITypeAlignment(Ty);
829}
830
831// EntryNode could meaningfully have debug info if we can find it...
832SelectionDAG::SelectionDAG(const TargetMachine &tm)
833  : TM(tm), TLI(*tm.getTargetLowering()), TSI(*tm.getSelectionDAGInfo()),
834    EntryNode(ISD::EntryToken, DebugLoc(), getVTList(MVT::Other)),
835    Root(getEntryNode()), Ordering(0) {
836  AllNodes.push_back(&EntryNode);
837  Ordering = new SDNodeOrdering();
838  DbgInfo = new SDDbgInfo();
839}
840
841void SelectionDAG::init(MachineFunction &mf) {
842  MF = &mf;
843  Context = &mf.getFunction()->getContext();
844}
845
846SelectionDAG::~SelectionDAG() {
847  allnodes_clear();
848  delete Ordering;
849  delete DbgInfo;
850}
851
852void SelectionDAG::allnodes_clear() {
853  assert(&*AllNodes.begin() == &EntryNode);
854  AllNodes.remove(AllNodes.begin());
855  while (!AllNodes.empty())
856    DeallocateNode(AllNodes.begin());
857}
858
859void SelectionDAG::clear() {
860  allnodes_clear();
861  OperandAllocator.Reset();
862  CSEMap.clear();
863
864  ExtendedValueTypeNodes.clear();
865  ExternalSymbols.clear();
866  TargetExternalSymbols.clear();
867  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
868            static_cast<CondCodeSDNode*>(0));
869  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
870            static_cast<SDNode*>(0));
871
872  EntryNode.UseList = 0;
873  AllNodes.push_back(&EntryNode);
874  Root = getEntryNode();
875  Ordering->clear();
876  DbgInfo->clear();
877}
878
879SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
880  return VT.bitsGT(Op.getValueType()) ?
881    getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
882    getNode(ISD::TRUNCATE, DL, VT, Op);
883}
884
885SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
886  return VT.bitsGT(Op.getValueType()) ?
887    getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
888    getNode(ISD::TRUNCATE, DL, VT, Op);
889}
890
891SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, EVT VT) {
892  assert(!VT.isVector() &&
893         "getZeroExtendInReg should use the vector element type instead of "
894         "the vector type!");
895  if (Op.getValueType() == VT) return Op;
896  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
897  APInt Imm = APInt::getLowBitsSet(BitWidth,
898                                   VT.getSizeInBits());
899  return getNode(ISD::AND, DL, Op.getValueType(), Op,
900                 getConstant(Imm, Op.getValueType()));
901}
902
903/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
904///
905SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, EVT VT) {
906  EVT EltVT = VT.getScalarType();
907  SDValue NegOne =
908    getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
909  return getNode(ISD::XOR, DL, VT, Val, NegOne);
910}
911
912SDValue SelectionDAG::getConstant(uint64_t Val, EVT VT, bool isT) {
913  EVT EltVT = VT.getScalarType();
914  assert((EltVT.getSizeInBits() >= 64 ||
915         (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
916         "getConstant with a uint64_t value that doesn't fit in the type!");
917  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
918}
919
920SDValue SelectionDAG::getConstant(const APInt &Val, EVT VT, bool isT) {
921  return getConstant(*ConstantInt::get(*Context, Val), VT, isT);
922}
923
924SDValue SelectionDAG::getConstant(const ConstantInt &Val, EVT VT, bool isT) {
925  assert(VT.isInteger() && "Cannot create FP integer constant!");
926
927  EVT EltVT = VT.getScalarType();
928  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
929         "APInt size does not match type size!");
930
931  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
932  FoldingSetNodeID ID;
933  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
934  ID.AddPointer(&Val);
935  void *IP = 0;
936  SDNode *N = NULL;
937  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
938    if (!VT.isVector())
939      return SDValue(N, 0);
940
941  if (!N) {
942    N = new (NodeAllocator) ConstantSDNode(isT, &Val, EltVT);
943    CSEMap.InsertNode(N, IP);
944    AllNodes.push_back(N);
945  }
946
947  SDValue Result(N, 0);
948  if (VT.isVector()) {
949    SmallVector<SDValue, 8> Ops;
950    Ops.assign(VT.getVectorNumElements(), Result);
951    Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
952  }
953  return Result;
954}
955
956SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
957  return getConstant(Val, TLI.getPointerTy(), isTarget);
958}
959
960
961SDValue SelectionDAG::getConstantFP(const APFloat& V, EVT VT, bool isTarget) {
962  return getConstantFP(*ConstantFP::get(*getContext(), V), VT, isTarget);
963}
964
965SDValue SelectionDAG::getConstantFP(const ConstantFP& V, EVT VT, bool isTarget){
966  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
967
968  EVT EltVT = VT.getScalarType();
969
970  // Do the map lookup using the actual bit pattern for the floating point
971  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
972  // we don't have issues with SNANs.
973  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
974  FoldingSetNodeID ID;
975  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
976  ID.AddPointer(&V);
977  void *IP = 0;
978  SDNode *N = NULL;
979  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
980    if (!VT.isVector())
981      return SDValue(N, 0);
982
983  if (!N) {
984    N = new (NodeAllocator) ConstantFPSDNode(isTarget, &V, EltVT);
985    CSEMap.InsertNode(N, IP);
986    AllNodes.push_back(N);
987  }
988
989  SDValue Result(N, 0);
990  if (VT.isVector()) {
991    SmallVector<SDValue, 8> Ops;
992    Ops.assign(VT.getVectorNumElements(), Result);
993    // FIXME DebugLoc info might be appropriate here
994    Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
995  }
996  return Result;
997}
998
999SDValue SelectionDAG::getConstantFP(double Val, EVT VT, bool isTarget) {
1000  EVT EltVT = VT.getScalarType();
1001  if (EltVT==MVT::f32)
1002    return getConstantFP(APFloat((float)Val), VT, isTarget);
1003  else if (EltVT==MVT::f64)
1004    return getConstantFP(APFloat(Val), VT, isTarget);
1005  else if (EltVT==MVT::f80 || EltVT==MVT::f128) {
1006    bool ignored;
1007    APFloat apf = APFloat(Val);
1008    apf.convert(*EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1009                &ignored);
1010    return getConstantFP(apf, VT, isTarget);
1011  } else {
1012    assert(0 && "Unsupported type in getConstantFP");
1013    return SDValue();
1014  }
1015}
1016
1017SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, DebugLoc DL,
1018                                       EVT VT, int64_t Offset,
1019                                       bool isTargetGA,
1020                                       unsigned char TargetFlags) {
1021  assert((TargetFlags == 0 || isTargetGA) &&
1022         "Cannot set target flags on target-independent globals");
1023
1024  // Truncate (with sign-extension) the offset value to the pointer size.
1025  EVT PTy = TLI.getPointerTy();
1026  unsigned BitWidth = PTy.getSizeInBits();
1027  if (BitWidth < 64)
1028    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
1029
1030  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
1031  if (!GVar) {
1032    // If GV is an alias then use the aliasee for determining thread-localness.
1033    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
1034      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
1035  }
1036
1037  unsigned Opc;
1038  if (GVar && GVar->isThreadLocal())
1039    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1040  else
1041    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1042
1043  FoldingSetNodeID ID;
1044  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1045  ID.AddPointer(GV);
1046  ID.AddInteger(Offset);
1047  ID.AddInteger(TargetFlags);
1048  void *IP = 0;
1049  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1050    return SDValue(E, 0);
1051
1052  SDNode *N = new (NodeAllocator) GlobalAddressSDNode(Opc, DL, GV, VT,
1053                                                      Offset, TargetFlags);
1054  CSEMap.InsertNode(N, IP);
1055  AllNodes.push_back(N);
1056  return SDValue(N, 0);
1057}
1058
1059SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1060  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1061  FoldingSetNodeID ID;
1062  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1063  ID.AddInteger(FI);
1064  void *IP = 0;
1065  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1066    return SDValue(E, 0);
1067
1068  SDNode *N = new (NodeAllocator) FrameIndexSDNode(FI, VT, isTarget);
1069  CSEMap.InsertNode(N, IP);
1070  AllNodes.push_back(N);
1071  return SDValue(N, 0);
1072}
1073
1074SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1075                                   unsigned char TargetFlags) {
1076  assert((TargetFlags == 0 || isTarget) &&
1077         "Cannot set target flags on target-independent jump tables");
1078  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1079  FoldingSetNodeID ID;
1080  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1081  ID.AddInteger(JTI);
1082  ID.AddInteger(TargetFlags);
1083  void *IP = 0;
1084  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1085    return SDValue(E, 0);
1086
1087  SDNode *N = new (NodeAllocator) JumpTableSDNode(JTI, VT, isTarget,
1088                                                  TargetFlags);
1089  CSEMap.InsertNode(N, IP);
1090  AllNodes.push_back(N);
1091  return SDValue(N, 0);
1092}
1093
1094SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1095                                      unsigned Alignment, int Offset,
1096                                      bool isTarget,
1097                                      unsigned char TargetFlags) {
1098  assert((TargetFlags == 0 || isTarget) &&
1099         "Cannot set target flags on target-independent globals");
1100  if (Alignment == 0)
1101    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1102  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1103  FoldingSetNodeID ID;
1104  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1105  ID.AddInteger(Alignment);
1106  ID.AddInteger(Offset);
1107  ID.AddPointer(C);
1108  ID.AddInteger(TargetFlags);
1109  void *IP = 0;
1110  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1111    return SDValue(E, 0);
1112
1113  SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1114                                                     Alignment, TargetFlags);
1115  CSEMap.InsertNode(N, IP);
1116  AllNodes.push_back(N);
1117  return SDValue(N, 0);
1118}
1119
1120
1121SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1122                                      unsigned Alignment, int Offset,
1123                                      bool isTarget,
1124                                      unsigned char TargetFlags) {
1125  assert((TargetFlags == 0 || isTarget) &&
1126         "Cannot set target flags on target-independent globals");
1127  if (Alignment == 0)
1128    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1129  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1130  FoldingSetNodeID ID;
1131  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1132  ID.AddInteger(Alignment);
1133  ID.AddInteger(Offset);
1134  C->AddSelectionDAGCSEId(ID);
1135  ID.AddInteger(TargetFlags);
1136  void *IP = 0;
1137  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1138    return SDValue(E, 0);
1139
1140  SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1141                                                     Alignment, TargetFlags);
1142  CSEMap.InsertNode(N, IP);
1143  AllNodes.push_back(N);
1144  return SDValue(N, 0);
1145}
1146
1147SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1148  FoldingSetNodeID ID;
1149  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1150  ID.AddPointer(MBB);
1151  void *IP = 0;
1152  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1153    return SDValue(E, 0);
1154
1155  SDNode *N = new (NodeAllocator) BasicBlockSDNode(MBB);
1156  CSEMap.InsertNode(N, IP);
1157  AllNodes.push_back(N);
1158  return SDValue(N, 0);
1159}
1160
1161SDValue SelectionDAG::getValueType(EVT VT) {
1162  if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1163      ValueTypeNodes.size())
1164    ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1165
1166  SDNode *&N = VT.isExtended() ?
1167    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1168
1169  if (N) return SDValue(N, 0);
1170  N = new (NodeAllocator) VTSDNode(VT);
1171  AllNodes.push_back(N);
1172  return SDValue(N, 0);
1173}
1174
1175SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1176  SDNode *&N = ExternalSymbols[Sym];
1177  if (N) return SDValue(N, 0);
1178  N = new (NodeAllocator) ExternalSymbolSDNode(false, Sym, 0, VT);
1179  AllNodes.push_back(N);
1180  return SDValue(N, 0);
1181}
1182
1183SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1184                                              unsigned char TargetFlags) {
1185  SDNode *&N =
1186    TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1187                                                               TargetFlags)];
1188  if (N) return SDValue(N, 0);
1189  N = new (NodeAllocator) ExternalSymbolSDNode(true, Sym, TargetFlags, VT);
1190  AllNodes.push_back(N);
1191  return SDValue(N, 0);
1192}
1193
1194SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1195  if ((unsigned)Cond >= CondCodeNodes.size())
1196    CondCodeNodes.resize(Cond+1);
1197
1198  if (CondCodeNodes[Cond] == 0) {
1199    CondCodeSDNode *N = new (NodeAllocator) CondCodeSDNode(Cond);
1200    CondCodeNodes[Cond] = N;
1201    AllNodes.push_back(N);
1202  }
1203
1204  return SDValue(CondCodeNodes[Cond], 0);
1205}
1206
1207// commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
1208// the shuffle mask M that point at N1 to point at N2, and indices that point
1209// N2 to point at N1.
1210static void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
1211  std::swap(N1, N2);
1212  int NElts = M.size();
1213  for (int i = 0; i != NElts; ++i) {
1214    if (M[i] >= NElts)
1215      M[i] -= NElts;
1216    else if (M[i] >= 0)
1217      M[i] += NElts;
1218  }
1219}
1220
1221SDValue SelectionDAG::getVectorShuffle(EVT VT, DebugLoc dl, SDValue N1,
1222                                       SDValue N2, const int *Mask) {
1223  assert(N1.getValueType() == N2.getValueType() && "Invalid VECTOR_SHUFFLE");
1224  assert(VT.isVector() && N1.getValueType().isVector() &&
1225         "Vector Shuffle VTs must be a vectors");
1226  assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType()
1227         && "Vector Shuffle VTs must have same element type");
1228
1229  // Canonicalize shuffle undef, undef -> undef
1230  if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
1231    return getUNDEF(VT);
1232
1233  // Validate that all indices in Mask are within the range of the elements
1234  // input to the shuffle.
1235  unsigned NElts = VT.getVectorNumElements();
1236  SmallVector<int, 8> MaskVec;
1237  for (unsigned i = 0; i != NElts; ++i) {
1238    assert(Mask[i] < (int)(NElts * 2) && "Index out of range");
1239    MaskVec.push_back(Mask[i]);
1240  }
1241
1242  // Canonicalize shuffle v, v -> v, undef
1243  if (N1 == N2) {
1244    N2 = getUNDEF(VT);
1245    for (unsigned i = 0; i != NElts; ++i)
1246      if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts;
1247  }
1248
1249  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1250  if (N1.getOpcode() == ISD::UNDEF)
1251    commuteShuffle(N1, N2, MaskVec);
1252
1253  // Canonicalize all index into lhs, -> shuffle lhs, undef
1254  // Canonicalize all index into rhs, -> shuffle rhs, undef
1255  bool AllLHS = true, AllRHS = true;
1256  bool N2Undef = N2.getOpcode() == ISD::UNDEF;
1257  for (unsigned i = 0; i != NElts; ++i) {
1258    if (MaskVec[i] >= (int)NElts) {
1259      if (N2Undef)
1260        MaskVec[i] = -1;
1261      else
1262        AllLHS = false;
1263    } else if (MaskVec[i] >= 0) {
1264      AllRHS = false;
1265    }
1266  }
1267  if (AllLHS && AllRHS)
1268    return getUNDEF(VT);
1269  if (AllLHS && !N2Undef)
1270    N2 = getUNDEF(VT);
1271  if (AllRHS) {
1272    N1 = getUNDEF(VT);
1273    commuteShuffle(N1, N2, MaskVec);
1274  }
1275
1276  // If Identity shuffle, or all shuffle in to undef, return that node.
1277  bool AllUndef = true;
1278  bool Identity = true;
1279  for (unsigned i = 0; i != NElts; ++i) {
1280    if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false;
1281    if (MaskVec[i] >= 0) AllUndef = false;
1282  }
1283  if (Identity && NElts == N1.getValueType().getVectorNumElements())
1284    return N1;
1285  if (AllUndef)
1286    return getUNDEF(VT);
1287
1288  FoldingSetNodeID ID;
1289  SDValue Ops[2] = { N1, N2 };
1290  AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops, 2);
1291  for (unsigned i = 0; i != NElts; ++i)
1292    ID.AddInteger(MaskVec[i]);
1293
1294  void* IP = 0;
1295  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1296    return SDValue(E, 0);
1297
1298  // Allocate the mask array for the node out of the BumpPtrAllocator, since
1299  // SDNode doesn't have access to it.  This memory will be "leaked" when
1300  // the node is deallocated, but recovered when the NodeAllocator is released.
1301  int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1302  memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));
1303
1304  ShuffleVectorSDNode *N =
1305    new (NodeAllocator) ShuffleVectorSDNode(VT, dl, N1, N2, MaskAlloc);
1306  CSEMap.InsertNode(N, IP);
1307  AllNodes.push_back(N);
1308  return SDValue(N, 0);
1309}
1310
1311SDValue SelectionDAG::getConvertRndSat(EVT VT, DebugLoc dl,
1312                                       SDValue Val, SDValue DTy,
1313                                       SDValue STy, SDValue Rnd, SDValue Sat,
1314                                       ISD::CvtCode Code) {
1315  // If the src and dest types are the same and the conversion is between
1316  // integer types of the same sign or two floats, no conversion is necessary.
1317  if (DTy == STy &&
1318      (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1319    return Val;
1320
1321  FoldingSetNodeID ID;
1322  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1323  AddNodeIDNode(ID, ISD::CONVERT_RNDSAT, getVTList(VT), &Ops[0], 5);
1324  void* IP = 0;
1325  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1326    return SDValue(E, 0);
1327
1328  CvtRndSatSDNode *N = new (NodeAllocator) CvtRndSatSDNode(VT, dl, Ops, 5,
1329                                                           Code);
1330  CSEMap.InsertNode(N, IP);
1331  AllNodes.push_back(N);
1332  return SDValue(N, 0);
1333}
1334
1335SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1336  FoldingSetNodeID ID;
1337  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1338  ID.AddInteger(RegNo);
1339  void *IP = 0;
1340  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1341    return SDValue(E, 0);
1342
1343  SDNode *N = new (NodeAllocator) RegisterSDNode(RegNo, VT);
1344  CSEMap.InsertNode(N, IP);
1345  AllNodes.push_back(N);
1346  return SDValue(N, 0);
1347}
1348
1349SDValue SelectionDAG::getEHLabel(DebugLoc dl, SDValue Root, MCSymbol *Label) {
1350  FoldingSetNodeID ID;
1351  SDValue Ops[] = { Root };
1352  AddNodeIDNode(ID, ISD::EH_LABEL, getVTList(MVT::Other), &Ops[0], 1);
1353  ID.AddPointer(Label);
1354  void *IP = 0;
1355  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1356    return SDValue(E, 0);
1357
1358  SDNode *N = new (NodeAllocator) EHLabelSDNode(dl, Root, Label);
1359  CSEMap.InsertNode(N, IP);
1360  AllNodes.push_back(N);
1361  return SDValue(N, 0);
1362}
1363
1364
1365SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
1366                                      bool isTarget,
1367                                      unsigned char TargetFlags) {
1368  unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1369
1370  FoldingSetNodeID ID;
1371  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1372  ID.AddPointer(BA);
1373  ID.AddInteger(TargetFlags);
1374  void *IP = 0;
1375  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1376    return SDValue(E, 0);
1377
1378  SDNode *N = new (NodeAllocator) BlockAddressSDNode(Opc, VT, BA, TargetFlags);
1379  CSEMap.InsertNode(N, IP);
1380  AllNodes.push_back(N);
1381  return SDValue(N, 0);
1382}
1383
1384SDValue SelectionDAG::getSrcValue(const Value *V) {
1385  assert((!V || V->getType()->isPointerTy()) &&
1386         "SrcValue is not a pointer?");
1387
1388  FoldingSetNodeID ID;
1389  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1390  ID.AddPointer(V);
1391
1392  void *IP = 0;
1393  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1394    return SDValue(E, 0);
1395
1396  SDNode *N = new (NodeAllocator) SrcValueSDNode(V);
1397  CSEMap.InsertNode(N, IP);
1398  AllNodes.push_back(N);
1399  return SDValue(N, 0);
1400}
1401
1402/// getMDNode - Return an MDNodeSDNode which holds an MDNode.
1403SDValue SelectionDAG::getMDNode(const MDNode *MD) {
1404  FoldingSetNodeID ID;
1405  AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), 0, 0);
1406  ID.AddPointer(MD);
1407
1408  void *IP = 0;
1409  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1410    return SDValue(E, 0);
1411
1412  SDNode *N = new (NodeAllocator) MDNodeSDNode(MD);
1413  CSEMap.InsertNode(N, IP);
1414  AllNodes.push_back(N);
1415  return SDValue(N, 0);
1416}
1417
1418
1419/// getShiftAmountOperand - Return the specified value casted to
1420/// the target's desired shift amount type.
1421SDValue SelectionDAG::getShiftAmountOperand(SDValue Op) {
1422  EVT OpTy = Op.getValueType();
1423  MVT ShTy = TLI.getShiftAmountTy();
1424  if (OpTy == ShTy || OpTy.isVector()) return Op;
1425
1426  ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ?  ISD::TRUNCATE : ISD::ZERO_EXTEND;
1427  return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
1428}
1429
1430/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1431/// specified value type.
1432SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1433  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1434  unsigned ByteSize = VT.getStoreSize();
1435  const Type *Ty = VT.getTypeForEVT(*getContext());
1436  unsigned StackAlign =
1437  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1438
1439  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false);
1440  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1441}
1442
1443/// CreateStackTemporary - Create a stack temporary suitable for holding
1444/// either of the specified value types.
1445SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1446  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1447                            VT2.getStoreSizeInBits())/8;
1448  const Type *Ty1 = VT1.getTypeForEVT(*getContext());
1449  const Type *Ty2 = VT2.getTypeForEVT(*getContext());
1450  const TargetData *TD = TLI.getTargetData();
1451  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1452                            TD->getPrefTypeAlignment(Ty2));
1453
1454  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1455  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align, false);
1456  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1457}
1458
1459SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1,
1460                                SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
1461  // These setcc operations always fold.
1462  switch (Cond) {
1463  default: break;
1464  case ISD::SETFALSE:
1465  case ISD::SETFALSE2: return getConstant(0, VT);
1466  case ISD::SETTRUE:
1467  case ISD::SETTRUE2:  return getConstant(1, VT);
1468
1469  case ISD::SETOEQ:
1470  case ISD::SETOGT:
1471  case ISD::SETOGE:
1472  case ISD::SETOLT:
1473  case ISD::SETOLE:
1474  case ISD::SETONE:
1475  case ISD::SETO:
1476  case ISD::SETUO:
1477  case ISD::SETUEQ:
1478  case ISD::SETUNE:
1479    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1480    break;
1481  }
1482
1483  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1484    const APInt &C2 = N2C->getAPIntValue();
1485    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1486      const APInt &C1 = N1C->getAPIntValue();
1487
1488      switch (Cond) {
1489      default: llvm_unreachable("Unknown integer setcc!");
1490      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1491      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1492      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1493      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1494      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1495      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1496      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1497      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1498      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1499      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1500      }
1501    }
1502  }
1503  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1504    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1505      // No compile time operations on this type yet.
1506      if (N1C->getValueType(0) == MVT::ppcf128)
1507        return SDValue();
1508
1509      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1510      switch (Cond) {
1511      default: break;
1512      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1513                          return getUNDEF(VT);
1514                        // fall through
1515      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1516      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1517                          return getUNDEF(VT);
1518                        // fall through
1519      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1520                                           R==APFloat::cmpLessThan, VT);
1521      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1522                          return getUNDEF(VT);
1523                        // fall through
1524      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1525      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1526                          return getUNDEF(VT);
1527                        // fall through
1528      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1529      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1530                          return getUNDEF(VT);
1531                        // fall through
1532      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1533                                           R==APFloat::cmpEqual, VT);
1534      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1535                          return getUNDEF(VT);
1536                        // fall through
1537      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1538                                           R==APFloat::cmpEqual, VT);
1539      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1540      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1541      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1542                                           R==APFloat::cmpEqual, VT);
1543      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1544      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1545                                           R==APFloat::cmpLessThan, VT);
1546      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1547                                           R==APFloat::cmpUnordered, VT);
1548      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1549      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1550      }
1551    } else {
1552      // Ensure that the constant occurs on the RHS.
1553      return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1554    }
1555  }
1556
1557  // Could not fold it.
1558  return SDValue();
1559}
1560
1561/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1562/// use this predicate to simplify operations downstream.
1563bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1564  // This predicate is not safe for vector operations.
1565  if (Op.getValueType().isVector())
1566    return false;
1567
1568  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
1569  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1570}
1571
1572/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1573/// this predicate to simplify operations downstream.  Mask is known to be zero
1574/// for bits that V cannot have.
1575bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1576                                     unsigned Depth) const {
1577  APInt KnownZero, KnownOne;
1578  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1579  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1580  return (KnownZero & Mask) == Mask;
1581}
1582
1583/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1584/// known to be either zero or one and return them in the KnownZero/KnownOne
1585/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1586/// processing.
1587void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1588                                     APInt &KnownZero, APInt &KnownOne,
1589                                     unsigned Depth) const {
1590  unsigned BitWidth = Mask.getBitWidth();
1591  assert(BitWidth == Op.getValueType().getScalarType().getSizeInBits() &&
1592         "Mask size mismatches value type size!");
1593
1594  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1595  if (Depth == 6 || Mask == 0)
1596    return;  // Limit search depth.
1597
1598  APInt KnownZero2, KnownOne2;
1599
1600  switch (Op.getOpcode()) {
1601  case ISD::Constant:
1602    // We know all of the bits for a constant!
1603    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1604    KnownZero = ~KnownOne & Mask;
1605    return;
1606  case ISD::AND:
1607    // If either the LHS or the RHS are Zero, the result is zero.
1608    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1609    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1610                      KnownZero2, KnownOne2, Depth+1);
1611    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1612    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1613
1614    // Output known-1 bits are only known if set in both the LHS & RHS.
1615    KnownOne &= KnownOne2;
1616    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1617    KnownZero |= KnownZero2;
1618    return;
1619  case ISD::OR:
1620    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1621    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1622                      KnownZero2, KnownOne2, Depth+1);
1623    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1624    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1625
1626    // Output known-0 bits are only known if clear in both the LHS & RHS.
1627    KnownZero &= KnownZero2;
1628    // Output known-1 are known to be set if set in either the LHS | RHS.
1629    KnownOne |= KnownOne2;
1630    return;
1631  case ISD::XOR: {
1632    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1633    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1634    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1635    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1636
1637    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1638    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1639    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1640    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1641    KnownZero = KnownZeroOut;
1642    return;
1643  }
1644  case ISD::MUL: {
1645    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1646    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1647    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1648    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1649    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1650
1651    // If low bits are zero in either operand, output low known-0 bits.
1652    // Also compute a conserative estimate for high known-0 bits.
1653    // More trickiness is possible, but this is sufficient for the
1654    // interesting case of alignment computation.
1655    KnownOne.clearAllBits();
1656    unsigned TrailZ = KnownZero.countTrailingOnes() +
1657                      KnownZero2.countTrailingOnes();
1658    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1659                               KnownZero2.countLeadingOnes(),
1660                               BitWidth) - BitWidth;
1661
1662    TrailZ = std::min(TrailZ, BitWidth);
1663    LeadZ = std::min(LeadZ, BitWidth);
1664    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1665                APInt::getHighBitsSet(BitWidth, LeadZ);
1666    KnownZero &= Mask;
1667    return;
1668  }
1669  case ISD::UDIV: {
1670    // For the purposes of computing leading zeros we can conservatively
1671    // treat a udiv as a logical right shift by the power of 2 known to
1672    // be less than the denominator.
1673    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1674    ComputeMaskedBits(Op.getOperand(0),
1675                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1676    unsigned LeadZ = KnownZero2.countLeadingOnes();
1677
1678    KnownOne2.clearAllBits();
1679    KnownZero2.clearAllBits();
1680    ComputeMaskedBits(Op.getOperand(1),
1681                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1682    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1683    if (RHSUnknownLeadingOnes != BitWidth)
1684      LeadZ = std::min(BitWidth,
1685                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1686
1687    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1688    return;
1689  }
1690  case ISD::SELECT:
1691    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1692    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1693    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1694    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1695
1696    // Only known if known in both the LHS and RHS.
1697    KnownOne &= KnownOne2;
1698    KnownZero &= KnownZero2;
1699    return;
1700  case ISD::SELECT_CC:
1701    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1702    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1703    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1704    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1705
1706    // Only known if known in both the LHS and RHS.
1707    KnownOne &= KnownOne2;
1708    KnownZero &= KnownZero2;
1709    return;
1710  case ISD::SADDO:
1711  case ISD::UADDO:
1712  case ISD::SSUBO:
1713  case ISD::USUBO:
1714  case ISD::SMULO:
1715  case ISD::UMULO:
1716    if (Op.getResNo() != 1)
1717      return;
1718    // The boolean result conforms to getBooleanContents.  Fall through.
1719  case ISD::SETCC:
1720    // If we know the result of a setcc has the top bits zero, use this info.
1721    if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1722        BitWidth > 1)
1723      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1724    return;
1725  case ISD::SHL:
1726    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1727    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1728      unsigned ShAmt = SA->getZExtValue();
1729
1730      // If the shift count is an invalid immediate, don't do anything.
1731      if (ShAmt >= BitWidth)
1732        return;
1733
1734      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1735                        KnownZero, KnownOne, Depth+1);
1736      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1737      KnownZero <<= ShAmt;
1738      KnownOne  <<= ShAmt;
1739      // low bits known zero.
1740      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1741    }
1742    return;
1743  case ISD::SRL:
1744    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1745    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1746      unsigned ShAmt = SA->getZExtValue();
1747
1748      // If the shift count is an invalid immediate, don't do anything.
1749      if (ShAmt >= BitWidth)
1750        return;
1751
1752      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1753                        KnownZero, KnownOne, Depth+1);
1754      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1755      KnownZero = KnownZero.lshr(ShAmt);
1756      KnownOne  = KnownOne.lshr(ShAmt);
1757
1758      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1759      KnownZero |= HighBits;  // High bits known zero.
1760    }
1761    return;
1762  case ISD::SRA:
1763    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1764      unsigned ShAmt = SA->getZExtValue();
1765
1766      // If the shift count is an invalid immediate, don't do anything.
1767      if (ShAmt >= BitWidth)
1768        return;
1769
1770      APInt InDemandedMask = (Mask << ShAmt);
1771      // If any of the demanded bits are produced by the sign extension, we also
1772      // demand the input sign bit.
1773      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1774      if (HighBits.getBoolValue())
1775        InDemandedMask |= APInt::getSignBit(BitWidth);
1776
1777      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1778                        Depth+1);
1779      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1780      KnownZero = KnownZero.lshr(ShAmt);
1781      KnownOne  = KnownOne.lshr(ShAmt);
1782
1783      // Handle the sign bits.
1784      APInt SignBit = APInt::getSignBit(BitWidth);
1785      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1786
1787      if (KnownZero.intersects(SignBit)) {
1788        KnownZero |= HighBits;  // New bits are known zero.
1789      } else if (KnownOne.intersects(SignBit)) {
1790        KnownOne  |= HighBits;  // New bits are known one.
1791      }
1792    }
1793    return;
1794  case ISD::SIGN_EXTEND_INREG: {
1795    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1796    unsigned EBits = EVT.getScalarType().getSizeInBits();
1797
1798    // Sign extension.  Compute the demanded bits in the result that are not
1799    // present in the input.
1800    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1801
1802    APInt InSignBit = APInt::getSignBit(EBits);
1803    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1804
1805    // If the sign extended bits are demanded, we know that the sign
1806    // bit is demanded.
1807    InSignBit = InSignBit.zext(BitWidth);
1808    if (NewBits.getBoolValue())
1809      InputDemandedBits |= InSignBit;
1810
1811    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1812                      KnownZero, KnownOne, Depth+1);
1813    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1814
1815    // If the sign bit of the input is known set or clear, then we know the
1816    // top bits of the result.
1817    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1818      KnownZero |= NewBits;
1819      KnownOne  &= ~NewBits;
1820    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1821      KnownOne  |= NewBits;
1822      KnownZero &= ~NewBits;
1823    } else {                              // Input sign bit unknown
1824      KnownZero &= ~NewBits;
1825      KnownOne  &= ~NewBits;
1826    }
1827    return;
1828  }
1829  case ISD::CTTZ:
1830  case ISD::CTLZ:
1831  case ISD::CTPOP: {
1832    unsigned LowBits = Log2_32(BitWidth)+1;
1833    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1834    KnownOne.clearAllBits();
1835    return;
1836  }
1837  case ISD::LOAD: {
1838    if (ISD::isZEXTLoad(Op.getNode())) {
1839      LoadSDNode *LD = cast<LoadSDNode>(Op);
1840      EVT VT = LD->getMemoryVT();
1841      unsigned MemBits = VT.getScalarType().getSizeInBits();
1842      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1843    }
1844    return;
1845  }
1846  case ISD::ZERO_EXTEND: {
1847    EVT InVT = Op.getOperand(0).getValueType();
1848    unsigned InBits = InVT.getScalarType().getSizeInBits();
1849    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1850    APInt InMask    = Mask.trunc(InBits);
1851    KnownZero = KnownZero.trunc(InBits);
1852    KnownOne = KnownOne.trunc(InBits);
1853    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1854    KnownZero = KnownZero.zext(BitWidth);
1855    KnownOne = KnownOne.zext(BitWidth);
1856    KnownZero |= NewBits;
1857    return;
1858  }
1859  case ISD::SIGN_EXTEND: {
1860    EVT InVT = Op.getOperand(0).getValueType();
1861    unsigned InBits = InVT.getScalarType().getSizeInBits();
1862    APInt InSignBit = APInt::getSignBit(InBits);
1863    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1864    APInt InMask = Mask.trunc(InBits);
1865
1866    // If any of the sign extended bits are demanded, we know that the sign
1867    // bit is demanded. Temporarily set this bit in the mask for our callee.
1868    if (NewBits.getBoolValue())
1869      InMask |= InSignBit;
1870
1871    KnownZero = KnownZero.trunc(InBits);
1872    KnownOne = KnownOne.trunc(InBits);
1873    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1874
1875    // Note if the sign bit is known to be zero or one.
1876    bool SignBitKnownZero = KnownZero.isNegative();
1877    bool SignBitKnownOne  = KnownOne.isNegative();
1878    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1879           "Sign bit can't be known to be both zero and one!");
1880
1881    // If the sign bit wasn't actually demanded by our caller, we don't
1882    // want it set in the KnownZero and KnownOne result values. Reset the
1883    // mask and reapply it to the result values.
1884    InMask = Mask.trunc(InBits);
1885    KnownZero &= InMask;
1886    KnownOne  &= InMask;
1887
1888    KnownZero = KnownZero.zext(BitWidth);
1889    KnownOne = KnownOne.zext(BitWidth);
1890
1891    // If the sign bit is known zero or one, the top bits match.
1892    if (SignBitKnownZero)
1893      KnownZero |= NewBits;
1894    else if (SignBitKnownOne)
1895      KnownOne  |= NewBits;
1896    return;
1897  }
1898  case ISD::ANY_EXTEND: {
1899    EVT InVT = Op.getOperand(0).getValueType();
1900    unsigned InBits = InVT.getScalarType().getSizeInBits();
1901    APInt InMask = Mask.trunc(InBits);
1902    KnownZero = KnownZero.trunc(InBits);
1903    KnownOne = KnownOne.trunc(InBits);
1904    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1905    KnownZero = KnownZero.zext(BitWidth);
1906    KnownOne = KnownOne.zext(BitWidth);
1907    return;
1908  }
1909  case ISD::TRUNCATE: {
1910    EVT InVT = Op.getOperand(0).getValueType();
1911    unsigned InBits = InVT.getScalarType().getSizeInBits();
1912    APInt InMask = Mask.zext(InBits);
1913    KnownZero = KnownZero.zext(InBits);
1914    KnownOne = KnownOne.zext(InBits);
1915    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1916    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1917    KnownZero = KnownZero.trunc(BitWidth);
1918    KnownOne = KnownOne.trunc(BitWidth);
1919    break;
1920  }
1921  case ISD::AssertZext: {
1922    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1923    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1924    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1925                      KnownOne, Depth+1);
1926    KnownZero |= (~InMask) & Mask;
1927    return;
1928  }
1929  case ISD::FGETSIGN:
1930    // All bits are zero except the low bit.
1931    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1932    return;
1933
1934  case ISD::SUB: {
1935    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1936      // We know that the top bits of C-X are clear if X contains less bits
1937      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1938      // positive if we can prove that X is >= 0 and < 16.
1939      if (CLHS->getAPIntValue().isNonNegative()) {
1940        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1941        // NLZ can't be BitWidth with no sign bit
1942        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1943        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1944                          Depth+1);
1945
1946        // If all of the MaskV bits are known to be zero, then we know the
1947        // output top bits are zero, because we now know that the output is
1948        // from [0-C].
1949        if ((KnownZero2 & MaskV) == MaskV) {
1950          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1951          // Top bits known zero.
1952          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1953        }
1954      }
1955    }
1956  }
1957  // fall through
1958  case ISD::ADD:
1959  case ISD::ADDE: {
1960    // Output known-0 bits are known if clear or set in both the low clear bits
1961    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1962    // low 3 bits clear.
1963    APInt Mask2 = APInt::getLowBitsSet(BitWidth,
1964                                       BitWidth - Mask.countLeadingZeros());
1965    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1966    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1967    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1968
1969    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1970    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1971    KnownZeroOut = std::min(KnownZeroOut,
1972                            KnownZero2.countTrailingOnes());
1973
1974    if (Op.getOpcode() == ISD::ADD) {
1975      KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1976      return;
1977    }
1978
1979    // With ADDE, a carry bit may be added in, so we can only use this
1980    // information if we know (at least) that the low two bits are clear.  We
1981    // then return to the caller that the low bit is unknown but that other bits
1982    // are known zero.
1983    if (KnownZeroOut >= 2) // ADDE
1984      KnownZero |= APInt::getBitsSet(BitWidth, 1, KnownZeroOut);
1985    return;
1986  }
1987  case ISD::SREM:
1988    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1989      const APInt &RA = Rem->getAPIntValue().abs();
1990      if (RA.isPowerOf2()) {
1991        APInt LowBits = RA - 1;
1992        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1993        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1994
1995        // The low bits of the first operand are unchanged by the srem.
1996        KnownZero = KnownZero2 & LowBits;
1997        KnownOne = KnownOne2 & LowBits;
1998
1999        // If the first operand is non-negative or has all low bits zero, then
2000        // the upper bits are all zero.
2001        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
2002          KnownZero |= ~LowBits;
2003
2004        // If the first operand is negative and not all low bits are zero, then
2005        // the upper bits are all one.
2006        if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
2007          KnownOne |= ~LowBits;
2008
2009        KnownZero &= Mask;
2010        KnownOne &= Mask;
2011
2012        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
2013      }
2014    }
2015    return;
2016  case ISD::UREM: {
2017    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2018      const APInt &RA = Rem->getAPIntValue();
2019      if (RA.isPowerOf2()) {
2020        APInt LowBits = (RA - 1);
2021        APInt Mask2 = LowBits & Mask;
2022        KnownZero |= ~LowBits & Mask;
2023        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
2024        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
2025        break;
2026      }
2027    }
2028
2029    // Since the result is less than or equal to either operand, any leading
2030    // zero bits in either operand must also exist in the result.
2031    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
2032    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
2033                      Depth+1);
2034    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
2035                      Depth+1);
2036
2037    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
2038                                KnownZero2.countLeadingOnes());
2039    KnownOne.clearAllBits();
2040    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
2041    return;
2042  }
2043  case ISD::FrameIndex:
2044  case ISD::TargetFrameIndex:
2045    if (unsigned Align = InferPtrAlignment(Op)) {
2046      // The low bits are known zero if the pointer is aligned.
2047      KnownZero = APInt::getLowBitsSet(BitWidth, Log2_32(Align));
2048      return;
2049    }
2050    break;
2051
2052  default:
2053    // Allow the target to implement this method for its nodes.
2054    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2055  case ISD::INTRINSIC_WO_CHAIN:
2056  case ISD::INTRINSIC_W_CHAIN:
2057  case ISD::INTRINSIC_VOID:
2058      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this,
2059                                         Depth);
2060    }
2061    return;
2062  }
2063}
2064
2065/// ComputeNumSignBits - Return the number of times the sign bit of the
2066/// register is replicated into the other bits.  We know that at least 1 bit
2067/// is always equal to the sign bit (itself), but other cases can give us
2068/// information.  For example, immediately after an "SRA X, 2", we know that
2069/// the top 3 bits are all equal to each other, so we return 3.
2070unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
2071  EVT VT = Op.getValueType();
2072  assert(VT.isInteger() && "Invalid VT!");
2073  unsigned VTBits = VT.getScalarType().getSizeInBits();
2074  unsigned Tmp, Tmp2;
2075  unsigned FirstAnswer = 1;
2076
2077  if (Depth == 6)
2078    return 1;  // Limit search depth.
2079
2080  switch (Op.getOpcode()) {
2081  default: break;
2082  case ISD::AssertSext:
2083    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2084    return VTBits-Tmp+1;
2085  case ISD::AssertZext:
2086    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2087    return VTBits-Tmp;
2088
2089  case ISD::Constant: {
2090    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
2091    // If negative, return # leading ones.
2092    if (Val.isNegative())
2093      return Val.countLeadingOnes();
2094
2095    // Return # leading zeros.
2096    return Val.countLeadingZeros();
2097  }
2098
2099  case ISD::SIGN_EXTEND:
2100    Tmp = VTBits-Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
2101    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
2102
2103  case ISD::SIGN_EXTEND_INREG:
2104    // Max of the input and what this extends.
2105    Tmp =
2106      cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarType().getSizeInBits();
2107    Tmp = VTBits-Tmp+1;
2108
2109    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2110    return std::max(Tmp, Tmp2);
2111
2112  case ISD::SRA:
2113    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2114    // SRA X, C   -> adds C sign bits.
2115    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2116      Tmp += C->getZExtValue();
2117      if (Tmp > VTBits) Tmp = VTBits;
2118    }
2119    return Tmp;
2120  case ISD::SHL:
2121    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2122      // shl destroys sign bits.
2123      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2124      if (C->getZExtValue() >= VTBits ||      // Bad shift.
2125          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
2126      return Tmp - C->getZExtValue();
2127    }
2128    break;
2129  case ISD::AND:
2130  case ISD::OR:
2131  case ISD::XOR:    // NOT is handled here.
2132    // Logical binary ops preserve the number of sign bits at the worst.
2133    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2134    if (Tmp != 1) {
2135      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2136      FirstAnswer = std::min(Tmp, Tmp2);
2137      // We computed what we know about the sign bits as our first
2138      // answer. Now proceed to the generic code that uses
2139      // ComputeMaskedBits, and pick whichever answer is better.
2140    }
2141    break;
2142
2143  case ISD::SELECT:
2144    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2145    if (Tmp == 1) return 1;  // Early out.
2146    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2147    return std::min(Tmp, Tmp2);
2148
2149  case ISD::SADDO:
2150  case ISD::UADDO:
2151  case ISD::SSUBO:
2152  case ISD::USUBO:
2153  case ISD::SMULO:
2154  case ISD::UMULO:
2155    if (Op.getResNo() != 1)
2156      break;
2157    // The boolean result conforms to getBooleanContents.  Fall through.
2158  case ISD::SETCC:
2159    // If setcc returns 0/-1, all bits are sign bits.
2160    if (TLI.getBooleanContents() ==
2161        TargetLowering::ZeroOrNegativeOneBooleanContent)
2162      return VTBits;
2163    break;
2164  case ISD::ROTL:
2165  case ISD::ROTR:
2166    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2167      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
2168
2169      // Handle rotate right by N like a rotate left by 32-N.
2170      if (Op.getOpcode() == ISD::ROTR)
2171        RotAmt = (VTBits-RotAmt) & (VTBits-1);
2172
2173      // If we aren't rotating out all of the known-in sign bits, return the
2174      // number that are left.  This handles rotl(sext(x), 1) for example.
2175      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2176      if (Tmp > RotAmt+1) return Tmp-RotAmt;
2177    }
2178    break;
2179  case ISD::ADD:
2180    // Add can have at most one carry bit.  Thus we know that the output
2181    // is, at worst, one more bit than the inputs.
2182    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2183    if (Tmp == 1) return 1;  // Early out.
2184
2185    // Special case decrementing a value (ADD X, -1):
2186    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2187      if (CRHS->isAllOnesValue()) {
2188        APInt KnownZero, KnownOne;
2189        APInt Mask = APInt::getAllOnesValue(VTBits);
2190        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
2191
2192        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2193        // sign bits set.
2194        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2195          return VTBits;
2196
2197        // If we are subtracting one from a positive number, there is no carry
2198        // out of the result.
2199        if (KnownZero.isNegative())
2200          return Tmp;
2201      }
2202
2203    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2204    if (Tmp2 == 1) return 1;
2205      return std::min(Tmp, Tmp2)-1;
2206    break;
2207
2208  case ISD::SUB:
2209    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2210    if (Tmp2 == 1) return 1;
2211
2212    // Handle NEG.
2213    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2214      if (CLHS->isNullValue()) {
2215        APInt KnownZero, KnownOne;
2216        APInt Mask = APInt::getAllOnesValue(VTBits);
2217        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2218        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2219        // sign bits set.
2220        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2221          return VTBits;
2222
2223        // If the input is known to be positive (the sign bit is known clear),
2224        // the output of the NEG has the same number of sign bits as the input.
2225        if (KnownZero.isNegative())
2226          return Tmp2;
2227
2228        // Otherwise, we treat this like a SUB.
2229      }
2230
2231    // Sub can have at most one carry bit.  Thus we know that the output
2232    // is, at worst, one more bit than the inputs.
2233    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2234    if (Tmp == 1) return 1;  // Early out.
2235      return std::min(Tmp, Tmp2)-1;
2236    break;
2237  case ISD::TRUNCATE:
2238    // FIXME: it's tricky to do anything useful for this, but it is an important
2239    // case for targets like X86.
2240    break;
2241  }
2242
2243  // Handle LOADX separately here. EXTLOAD case will fallthrough.
2244  if (Op.getOpcode() == ISD::LOAD) {
2245    LoadSDNode *LD = cast<LoadSDNode>(Op);
2246    unsigned ExtType = LD->getExtensionType();
2247    switch (ExtType) {
2248    default: break;
2249    case ISD::SEXTLOAD:    // '17' bits known
2250      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2251      return VTBits-Tmp+1;
2252    case ISD::ZEXTLOAD:    // '16' bits known
2253      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2254      return VTBits-Tmp;
2255    }
2256  }
2257
2258  // Allow the target to implement this method for its nodes.
2259  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2260      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2261      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2262      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2263    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2264    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2265  }
2266
2267  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2268  // use this information.
2269  APInt KnownZero, KnownOne;
2270  APInt Mask = APInt::getAllOnesValue(VTBits);
2271  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2272
2273  if (KnownZero.isNegative()) {        // sign bit is 0
2274    Mask = KnownZero;
2275  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2276    Mask = KnownOne;
2277  } else {
2278    // Nothing known.
2279    return FirstAnswer;
2280  }
2281
2282  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2283  // the number of identical bits in the top of the input value.
2284  Mask = ~Mask;
2285  Mask <<= Mask.getBitWidth()-VTBits;
2286  // Return # leading zeros.  We use 'min' here in case Val was zero before
2287  // shifting.  We don't want to return '64' as for an i32 "0".
2288  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2289}
2290
2291/// isBaseWithConstantOffset - Return true if the specified operand is an
2292/// ISD::ADD with a ConstantSDNode on the right-hand side, or if it is an
2293/// ISD::OR with a ConstantSDNode that is guaranteed to have the same
2294/// semantics as an ADD.  This handles the equivalence:
2295///     X|Cst == X+Cst iff X&Cst = 0.
2296bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
2297  if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
2298      !isa<ConstantSDNode>(Op.getOperand(1)))
2299    return false;
2300
2301  if (Op.getOpcode() == ISD::OR &&
2302      !MaskedValueIsZero(Op.getOperand(0),
2303                     cast<ConstantSDNode>(Op.getOperand(1))->getAPIntValue()))
2304    return false;
2305
2306  return true;
2307}
2308
2309
2310bool SelectionDAG::isKnownNeverNaN(SDValue Op) const {
2311  // If we're told that NaNs won't happen, assume they won't.
2312  if (NoNaNsFPMath)
2313    return true;
2314
2315  // If the value is a constant, we can obviously see if it is a NaN or not.
2316  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2317    return !C->getValueAPF().isNaN();
2318
2319  // TODO: Recognize more cases here.
2320
2321  return false;
2322}
2323
2324bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
2325  // If the value is a constant, we can obviously see if it is a zero or not.
2326  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2327    return !C->isZero();
2328
2329  // TODO: Recognize more cases here.
2330
2331  return false;
2332}
2333
2334bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
2335  // Check the obvious case.
2336  if (A == B) return true;
2337
2338  // For for negative and positive zero.
2339  if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
2340    if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
2341      if (CA->isZero() && CB->isZero()) return true;
2342
2343  // Otherwise they may not be equal.
2344  return false;
2345}
2346
2347bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2348  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2349  if (!GA) return false;
2350  if (GA->getOffset() != 0) return false;
2351  const GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2352  if (!GV) return false;
2353  return MF->getMMI().hasDebugInfo();
2354}
2355
2356
2357/// getNode - Gets or creates the specified node.
2358///
2359SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT) {
2360  FoldingSetNodeID ID;
2361  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2362  void *IP = 0;
2363  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2364    return SDValue(E, 0);
2365
2366  SDNode *N = new (NodeAllocator) SDNode(Opcode, DL, getVTList(VT));
2367  CSEMap.InsertNode(N, IP);
2368
2369  AllNodes.push_back(N);
2370#ifndef NDEBUG
2371  VerifySDNode(N);
2372#endif
2373  return SDValue(N, 0);
2374}
2375
2376SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2377                              EVT VT, SDValue Operand) {
2378  // Constant fold unary operations with an integer constant operand.
2379  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2380    const APInt &Val = C->getAPIntValue();
2381    switch (Opcode) {
2382    default: break;
2383    case ISD::SIGN_EXTEND:
2384      return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), VT);
2385    case ISD::ANY_EXTEND:
2386    case ISD::ZERO_EXTEND:
2387    case ISD::TRUNCATE:
2388      return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), VT);
2389    case ISD::UINT_TO_FP:
2390    case ISD::SINT_TO_FP: {
2391      // No compile time operations on ppcf128.
2392      if (VT == MVT::ppcf128) break;
2393      APFloat apf(APInt::getNullValue(VT.getSizeInBits()));
2394      (void)apf.convertFromAPInt(Val,
2395                                 Opcode==ISD::SINT_TO_FP,
2396                                 APFloat::rmNearestTiesToEven);
2397      return getConstantFP(apf, VT);
2398    }
2399    case ISD::BITCAST:
2400      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2401        return getConstantFP(Val.bitsToFloat(), VT);
2402      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2403        return getConstantFP(Val.bitsToDouble(), VT);
2404      break;
2405    case ISD::BSWAP:
2406      return getConstant(Val.byteSwap(), VT);
2407    case ISD::CTPOP:
2408      return getConstant(Val.countPopulation(), VT);
2409    case ISD::CTLZ:
2410      return getConstant(Val.countLeadingZeros(), VT);
2411    case ISD::CTTZ:
2412      return getConstant(Val.countTrailingZeros(), VT);
2413    }
2414  }
2415
2416  // Constant fold unary operations with a floating point constant operand.
2417  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2418    APFloat V = C->getValueAPF();    // make copy
2419    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2420      switch (Opcode) {
2421      case ISD::FNEG:
2422        V.changeSign();
2423        return getConstantFP(V, VT);
2424      case ISD::FABS:
2425        V.clearSign();
2426        return getConstantFP(V, VT);
2427      case ISD::FP_ROUND:
2428      case ISD::FP_EXTEND: {
2429        bool ignored;
2430        // This can return overflow, underflow, or inexact; we don't care.
2431        // FIXME need to be more flexible about rounding mode.
2432        (void)V.convert(*EVTToAPFloatSemantics(VT),
2433                        APFloat::rmNearestTiesToEven, &ignored);
2434        return getConstantFP(V, VT);
2435      }
2436      case ISD::FP_TO_SINT:
2437      case ISD::FP_TO_UINT: {
2438        integerPart x[2];
2439        bool ignored;
2440        assert(integerPartWidth >= 64);
2441        // FIXME need to be more flexible about rounding mode.
2442        APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
2443                              Opcode==ISD::FP_TO_SINT,
2444                              APFloat::rmTowardZero, &ignored);
2445        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2446          break;
2447        APInt api(VT.getSizeInBits(), 2, x);
2448        return getConstant(api, VT);
2449      }
2450      case ISD::BITCAST:
2451        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2452          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2453        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2454          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2455        break;
2456      }
2457    }
2458  }
2459
2460  unsigned OpOpcode = Operand.getNode()->getOpcode();
2461  switch (Opcode) {
2462  case ISD::TokenFactor:
2463  case ISD::MERGE_VALUES:
2464  case ISD::CONCAT_VECTORS:
2465    return Operand;         // Factor, merge or concat of one node?  No need.
2466  case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
2467  case ISD::FP_EXTEND:
2468    assert(VT.isFloatingPoint() &&
2469           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2470    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2471    assert((!VT.isVector() ||
2472            VT.getVectorNumElements() ==
2473            Operand.getValueType().getVectorNumElements()) &&
2474           "Vector element count mismatch!");
2475    if (Operand.getOpcode() == ISD::UNDEF)
2476      return getUNDEF(VT);
2477    break;
2478  case ISD::SIGN_EXTEND:
2479    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2480           "Invalid SIGN_EXTEND!");
2481    if (Operand.getValueType() == VT) return Operand;   // noop extension
2482    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2483           "Invalid sext node, dst < src!");
2484    assert((!VT.isVector() ||
2485            VT.getVectorNumElements() ==
2486            Operand.getValueType().getVectorNumElements()) &&
2487           "Vector element count mismatch!");
2488    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2489      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2490    break;
2491  case ISD::ZERO_EXTEND:
2492    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2493           "Invalid ZERO_EXTEND!");
2494    if (Operand.getValueType() == VT) return Operand;   // noop extension
2495    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2496           "Invalid zext node, dst < src!");
2497    assert((!VT.isVector() ||
2498            VT.getVectorNumElements() ==
2499            Operand.getValueType().getVectorNumElements()) &&
2500           "Vector element count mismatch!");
2501    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2502      return getNode(ISD::ZERO_EXTEND, DL, VT,
2503                     Operand.getNode()->getOperand(0));
2504    break;
2505  case ISD::ANY_EXTEND:
2506    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2507           "Invalid ANY_EXTEND!");
2508    if (Operand.getValueType() == VT) return Operand;   // noop extension
2509    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2510           "Invalid anyext node, dst < src!");
2511    assert((!VT.isVector() ||
2512            VT.getVectorNumElements() ==
2513            Operand.getValueType().getVectorNumElements()) &&
2514           "Vector element count mismatch!");
2515
2516    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2517        OpOpcode == ISD::ANY_EXTEND)
2518      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2519      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2520
2521    // (ext (trunx x)) -> x
2522    if (OpOpcode == ISD::TRUNCATE) {
2523      SDValue OpOp = Operand.getNode()->getOperand(0);
2524      if (OpOp.getValueType() == VT)
2525        return OpOp;
2526    }
2527    break;
2528  case ISD::TRUNCATE:
2529    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2530           "Invalid TRUNCATE!");
2531    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2532    assert(Operand.getValueType().getScalarType().bitsGT(VT.getScalarType()) &&
2533           "Invalid truncate node, src < dst!");
2534    assert((!VT.isVector() ||
2535            VT.getVectorNumElements() ==
2536            Operand.getValueType().getVectorNumElements()) &&
2537           "Vector element count mismatch!");
2538    if (OpOpcode == ISD::TRUNCATE)
2539      return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2540    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2541             OpOpcode == ISD::ANY_EXTEND) {
2542      // If the source is smaller than the dest, we still need an extend.
2543      if (Operand.getNode()->getOperand(0).getValueType().getScalarType()
2544            .bitsLT(VT.getScalarType()))
2545        return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2546      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2547        return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2548      else
2549        return Operand.getNode()->getOperand(0);
2550    }
2551    break;
2552  case ISD::BITCAST:
2553    // Basic sanity checking.
2554    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2555           && "Cannot BITCAST between types of different sizes!");
2556    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2557    if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
2558      return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
2559    if (OpOpcode == ISD::UNDEF)
2560      return getUNDEF(VT);
2561    break;
2562  case ISD::SCALAR_TO_VECTOR:
2563    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2564           (VT.getVectorElementType() == Operand.getValueType() ||
2565            (VT.getVectorElementType().isInteger() &&
2566             Operand.getValueType().isInteger() &&
2567             VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
2568           "Illegal SCALAR_TO_VECTOR node!");
2569    if (OpOpcode == ISD::UNDEF)
2570      return getUNDEF(VT);
2571    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2572    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2573        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2574        Operand.getConstantOperandVal(1) == 0 &&
2575        Operand.getOperand(0).getValueType() == VT)
2576      return Operand.getOperand(0);
2577    break;
2578  case ISD::FNEG:
2579    // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2580    if (UnsafeFPMath && OpOpcode == ISD::FSUB)
2581      return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2582                     Operand.getNode()->getOperand(0));
2583    if (OpOpcode == ISD::FNEG)  // --X -> X
2584      return Operand.getNode()->getOperand(0);
2585    break;
2586  case ISD::FABS:
2587    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2588      return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2589    break;
2590  }
2591
2592  SDNode *N;
2593  SDVTList VTs = getVTList(VT);
2594  if (VT != MVT::Glue) { // Don't CSE flag producing nodes
2595    FoldingSetNodeID ID;
2596    SDValue Ops[1] = { Operand };
2597    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2598    void *IP = 0;
2599    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2600      return SDValue(E, 0);
2601
2602    N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2603    CSEMap.InsertNode(N, IP);
2604  } else {
2605    N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2606  }
2607
2608  AllNodes.push_back(N);
2609#ifndef NDEBUG
2610  VerifySDNode(N);
2611#endif
2612  return SDValue(N, 0);
2613}
2614
2615SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2616                                             EVT VT,
2617                                             ConstantSDNode *Cst1,
2618                                             ConstantSDNode *Cst2) {
2619  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2620
2621  switch (Opcode) {
2622  case ISD::ADD:  return getConstant(C1 + C2, VT);
2623  case ISD::SUB:  return getConstant(C1 - C2, VT);
2624  case ISD::MUL:  return getConstant(C1 * C2, VT);
2625  case ISD::UDIV:
2626    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2627    break;
2628  case ISD::UREM:
2629    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2630    break;
2631  case ISD::SDIV:
2632    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2633    break;
2634  case ISD::SREM:
2635    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2636    break;
2637  case ISD::AND:  return getConstant(C1 & C2, VT);
2638  case ISD::OR:   return getConstant(C1 | C2, VT);
2639  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2640  case ISD::SHL:  return getConstant(C1 << C2, VT);
2641  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2642  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2643  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2644  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2645  default: break;
2646  }
2647
2648  return SDValue();
2649}
2650
2651SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2652                              SDValue N1, SDValue N2) {
2653  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2654  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2655  switch (Opcode) {
2656  default: break;
2657  case ISD::TokenFactor:
2658    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2659           N2.getValueType() == MVT::Other && "Invalid token factor!");
2660    // Fold trivial token factors.
2661    if (N1.getOpcode() == ISD::EntryToken) return N2;
2662    if (N2.getOpcode() == ISD::EntryToken) return N1;
2663    if (N1 == N2) return N1;
2664    break;
2665  case ISD::CONCAT_VECTORS:
2666    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2667    // one big BUILD_VECTOR.
2668    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2669        N2.getOpcode() == ISD::BUILD_VECTOR) {
2670      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(),
2671                                    N1.getNode()->op_end());
2672      Elts.append(N2.getNode()->op_begin(), N2.getNode()->op_end());
2673      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2674    }
2675    break;
2676  case ISD::AND:
2677    assert(VT.isInteger() && "This operator does not apply to FP types!");
2678    assert(N1.getValueType() == N2.getValueType() &&
2679           N1.getValueType() == VT && "Binary operator types must match!");
2680    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2681    // worth handling here.
2682    if (N2C && N2C->isNullValue())
2683      return N2;
2684    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2685      return N1;
2686    break;
2687  case ISD::OR:
2688  case ISD::XOR:
2689  case ISD::ADD:
2690  case ISD::SUB:
2691    assert(VT.isInteger() && "This operator does not apply to FP types!");
2692    assert(N1.getValueType() == N2.getValueType() &&
2693           N1.getValueType() == VT && "Binary operator types must match!");
2694    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2695    // it's worth handling here.
2696    if (N2C && N2C->isNullValue())
2697      return N1;
2698    break;
2699  case ISD::UDIV:
2700  case ISD::UREM:
2701  case ISD::MULHU:
2702  case ISD::MULHS:
2703  case ISD::MUL:
2704  case ISD::SDIV:
2705  case ISD::SREM:
2706    assert(VT.isInteger() && "This operator does not apply to FP types!");
2707    assert(N1.getValueType() == N2.getValueType() &&
2708           N1.getValueType() == VT && "Binary operator types must match!");
2709    break;
2710  case ISD::FADD:
2711  case ISD::FSUB:
2712  case ISD::FMUL:
2713  case ISD::FDIV:
2714  case ISD::FREM:
2715    if (UnsafeFPMath) {
2716      if (Opcode == ISD::FADD) {
2717        // 0+x --> x
2718        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2719          if (CFP->getValueAPF().isZero())
2720            return N2;
2721        // x+0 --> x
2722        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2723          if (CFP->getValueAPF().isZero())
2724            return N1;
2725      } else if (Opcode == ISD::FSUB) {
2726        // x-0 --> x
2727        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2728          if (CFP->getValueAPF().isZero())
2729            return N1;
2730      }
2731    }
2732    assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
2733    assert(N1.getValueType() == N2.getValueType() &&
2734           N1.getValueType() == VT && "Binary operator types must match!");
2735    break;
2736  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2737    assert(N1.getValueType() == VT &&
2738           N1.getValueType().isFloatingPoint() &&
2739           N2.getValueType().isFloatingPoint() &&
2740           "Invalid FCOPYSIGN!");
2741    break;
2742  case ISD::SHL:
2743  case ISD::SRA:
2744  case ISD::SRL:
2745  case ISD::ROTL:
2746  case ISD::ROTR:
2747    assert(VT == N1.getValueType() &&
2748           "Shift operators return type must be the same as their first arg");
2749    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2750           "Shifts only work on integers");
2751    // Verify that the shift amount VT is bit enough to hold valid shift
2752    // amounts.  This catches things like trying to shift an i1024 value by an
2753    // i8, which is easy to fall into in generic code that uses
2754    // TLI.getShiftAmount().
2755    assert(N2.getValueType().getSizeInBits() >=
2756                   Log2_32_Ceil(N1.getValueType().getSizeInBits()) &&
2757           "Invalid use of small shift amount with oversized value!");
2758
2759    // Always fold shifts of i1 values so the code generator doesn't need to
2760    // handle them.  Since we know the size of the shift has to be less than the
2761    // size of the value, the shift/rotate count is guaranteed to be zero.
2762    if (VT == MVT::i1)
2763      return N1;
2764    if (N2C && N2C->isNullValue())
2765      return N1;
2766    break;
2767  case ISD::FP_ROUND_INREG: {
2768    EVT EVT = cast<VTSDNode>(N2)->getVT();
2769    assert(VT == N1.getValueType() && "Not an inreg round!");
2770    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2771           "Cannot FP_ROUND_INREG integer types");
2772    assert(EVT.isVector() == VT.isVector() &&
2773           "FP_ROUND_INREG type should be vector iff the operand "
2774           "type is vector!");
2775    assert((!EVT.isVector() ||
2776            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2777           "Vector element counts must match in FP_ROUND_INREG");
2778    assert(EVT.bitsLE(VT) && "Not rounding down!");
2779    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2780    break;
2781  }
2782  case ISD::FP_ROUND:
2783    assert(VT.isFloatingPoint() &&
2784           N1.getValueType().isFloatingPoint() &&
2785           VT.bitsLE(N1.getValueType()) &&
2786           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2787    if (N1.getValueType() == VT) return N1;  // noop conversion.
2788    break;
2789  case ISD::AssertSext:
2790  case ISD::AssertZext: {
2791    EVT EVT = cast<VTSDNode>(N2)->getVT();
2792    assert(VT == N1.getValueType() && "Not an inreg extend!");
2793    assert(VT.isInteger() && EVT.isInteger() &&
2794           "Cannot *_EXTEND_INREG FP types");
2795    assert(!EVT.isVector() &&
2796           "AssertSExt/AssertZExt type should be the vector element type "
2797           "rather than the vector type!");
2798    assert(EVT.bitsLE(VT) && "Not extending!");
2799    if (VT == EVT) return N1; // noop assertion.
2800    break;
2801  }
2802  case ISD::SIGN_EXTEND_INREG: {
2803    EVT EVT = cast<VTSDNode>(N2)->getVT();
2804    assert(VT == N1.getValueType() && "Not an inreg extend!");
2805    assert(VT.isInteger() && EVT.isInteger() &&
2806           "Cannot *_EXTEND_INREG FP types");
2807    assert(EVT.isVector() == VT.isVector() &&
2808           "SIGN_EXTEND_INREG type should be vector iff the operand "
2809           "type is vector!");
2810    assert((!EVT.isVector() ||
2811            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2812           "Vector element counts must match in SIGN_EXTEND_INREG");
2813    assert(EVT.bitsLE(VT) && "Not extending!");
2814    if (EVT == VT) return N1;  // Not actually extending
2815
2816    if (N1C) {
2817      APInt Val = N1C->getAPIntValue();
2818      unsigned FromBits = EVT.getScalarType().getSizeInBits();
2819      Val <<= Val.getBitWidth()-FromBits;
2820      Val = Val.ashr(Val.getBitWidth()-FromBits);
2821      return getConstant(Val, VT);
2822    }
2823    break;
2824  }
2825  case ISD::EXTRACT_VECTOR_ELT:
2826    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2827    if (N1.getOpcode() == ISD::UNDEF)
2828      return getUNDEF(VT);
2829
2830    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2831    // expanding copies of large vectors from registers.
2832    if (N2C &&
2833        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2834        N1.getNumOperands() > 0) {
2835      unsigned Factor =
2836        N1.getOperand(0).getValueType().getVectorNumElements();
2837      return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
2838                     N1.getOperand(N2C->getZExtValue() / Factor),
2839                     getConstant(N2C->getZExtValue() % Factor,
2840                                 N2.getValueType()));
2841    }
2842
2843    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2844    // expanding large vector constants.
2845    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
2846      SDValue Elt = N1.getOperand(N2C->getZExtValue());
2847      EVT VEltTy = N1.getValueType().getVectorElementType();
2848      if (Elt.getValueType() != VEltTy) {
2849        // If the vector element type is not legal, the BUILD_VECTOR operands
2850        // are promoted and implicitly truncated.  Make that explicit here.
2851        Elt = getNode(ISD::TRUNCATE, DL, VEltTy, Elt);
2852      }
2853      if (VT != VEltTy) {
2854        // If the vector element type is not legal, the EXTRACT_VECTOR_ELT
2855        // result is implicitly extended.
2856        Elt = getNode(ISD::ANY_EXTEND, DL, VT, Elt);
2857      }
2858      return Elt;
2859    }
2860
2861    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2862    // operations are lowered to scalars.
2863    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2864      // If the indices are the same, return the inserted element else
2865      // if the indices are known different, extract the element from
2866      // the original vector.
2867      SDValue N1Op2 = N1.getOperand(2);
2868      ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2.getNode());
2869
2870      if (N1Op2C && N2C) {
2871        if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
2872          if (VT == N1.getOperand(1).getValueType())
2873            return N1.getOperand(1);
2874          else
2875            return getSExtOrTrunc(N1.getOperand(1), DL, VT);
2876        }
2877
2878        return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
2879      }
2880    }
2881    break;
2882  case ISD::EXTRACT_ELEMENT:
2883    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2884    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2885           (N1.getValueType().isInteger() == VT.isInteger()) &&
2886           "Wrong types for EXTRACT_ELEMENT!");
2887
2888    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2889    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2890    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2891    if (N1.getOpcode() == ISD::BUILD_PAIR)
2892      return N1.getOperand(N2C->getZExtValue());
2893
2894    // EXTRACT_ELEMENT of a constant int is also very common.
2895    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2896      unsigned ElementSize = VT.getSizeInBits();
2897      unsigned Shift = ElementSize * N2C->getZExtValue();
2898      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2899      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2900    }
2901    break;
2902  case ISD::EXTRACT_SUBVECTOR: {
2903    SDValue Index = N2;
2904    if (VT.isSimple() && N1.getValueType().isSimple()) {
2905      assert(VT.isVector() && N1.getValueType().isVector() &&
2906             "Extract subvector VTs must be a vectors!");
2907      assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType() &&
2908             "Extract subvector VTs must have the same element type!");
2909      assert(VT.getSimpleVT() <= N1.getValueType().getSimpleVT() &&
2910             "Extract subvector must be from larger vector to smaller vector!");
2911
2912      if (isa<ConstantSDNode>(Index.getNode())) {
2913        assert((VT.getVectorNumElements() +
2914                cast<ConstantSDNode>(Index.getNode())->getZExtValue()
2915                <= N1.getValueType().getVectorNumElements())
2916               && "Extract subvector overflow!");
2917      }
2918
2919      // Trivial extraction.
2920      if (VT.getSimpleVT() == N1.getValueType().getSimpleVT())
2921        return N1;
2922    }
2923    break;
2924  }
2925  }
2926
2927  if (N1C) {
2928    if (N2C) {
2929      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2930      if (SV.getNode()) return SV;
2931    } else {      // Cannonicalize constant to RHS if commutative
2932      if (isCommutativeBinOp(Opcode)) {
2933        std::swap(N1C, N2C);
2934        std::swap(N1, N2);
2935      }
2936    }
2937  }
2938
2939  // Constant fold FP operations.
2940  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2941  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2942  if (N1CFP) {
2943    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2944      // Cannonicalize constant to RHS if commutative
2945      std::swap(N1CFP, N2CFP);
2946      std::swap(N1, N2);
2947    } else if (N2CFP && VT != MVT::ppcf128) {
2948      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2949      APFloat::opStatus s;
2950      switch (Opcode) {
2951      case ISD::FADD:
2952        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2953        if (s != APFloat::opInvalidOp)
2954          return getConstantFP(V1, VT);
2955        break;
2956      case ISD::FSUB:
2957        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2958        if (s!=APFloat::opInvalidOp)
2959          return getConstantFP(V1, VT);
2960        break;
2961      case ISD::FMUL:
2962        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2963        if (s!=APFloat::opInvalidOp)
2964          return getConstantFP(V1, VT);
2965        break;
2966      case ISD::FDIV:
2967        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2968        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2969          return getConstantFP(V1, VT);
2970        break;
2971      case ISD::FREM :
2972        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2973        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2974          return getConstantFP(V1, VT);
2975        break;
2976      case ISD::FCOPYSIGN:
2977        V1.copySign(V2);
2978        return getConstantFP(V1, VT);
2979      default: break;
2980      }
2981    }
2982  }
2983
2984  // Canonicalize an UNDEF to the RHS, even over a constant.
2985  if (N1.getOpcode() == ISD::UNDEF) {
2986    if (isCommutativeBinOp(Opcode)) {
2987      std::swap(N1, N2);
2988    } else {
2989      switch (Opcode) {
2990      case ISD::FP_ROUND_INREG:
2991      case ISD::SIGN_EXTEND_INREG:
2992      case ISD::SUB:
2993      case ISD::FSUB:
2994      case ISD::FDIV:
2995      case ISD::FREM:
2996      case ISD::SRA:
2997        return N1;     // fold op(undef, arg2) -> undef
2998      case ISD::UDIV:
2999      case ISD::SDIV:
3000      case ISD::UREM:
3001      case ISD::SREM:
3002      case ISD::SRL:
3003      case ISD::SHL:
3004        if (!VT.isVector())
3005          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
3006        // For vectors, we can't easily build an all zero vector, just return
3007        // the LHS.
3008        return N2;
3009      }
3010    }
3011  }
3012
3013  // Fold a bunch of operators when the RHS is undef.
3014  if (N2.getOpcode() == ISD::UNDEF) {
3015    switch (Opcode) {
3016    case ISD::XOR:
3017      if (N1.getOpcode() == ISD::UNDEF)
3018        // Handle undef ^ undef -> 0 special case. This is a common
3019        // idiom (misuse).
3020        return getConstant(0, VT);
3021      // fallthrough
3022    case ISD::ADD:
3023    case ISD::ADDC:
3024    case ISD::ADDE:
3025    case ISD::SUB:
3026    case ISD::UDIV:
3027    case ISD::SDIV:
3028    case ISD::UREM:
3029    case ISD::SREM:
3030      return N2;       // fold op(arg1, undef) -> undef
3031    case ISD::FADD:
3032    case ISD::FSUB:
3033    case ISD::FMUL:
3034    case ISD::FDIV:
3035    case ISD::FREM:
3036      if (UnsafeFPMath)
3037        return N2;
3038      break;
3039    case ISD::MUL:
3040    case ISD::AND:
3041    case ISD::SRL:
3042    case ISD::SHL:
3043      if (!VT.isVector())
3044        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
3045      // For vectors, we can't easily build an all zero vector, just return
3046      // the LHS.
3047      return N1;
3048    case ISD::OR:
3049      if (!VT.isVector())
3050        return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
3051      // For vectors, we can't easily build an all one vector, just return
3052      // the LHS.
3053      return N1;
3054    case ISD::SRA:
3055      return N1;
3056    }
3057  }
3058
3059  // Memoize this node if possible.
3060  SDNode *N;
3061  SDVTList VTs = getVTList(VT);
3062  if (VT != MVT::Glue) {
3063    SDValue Ops[] = { N1, N2 };
3064    FoldingSetNodeID ID;
3065    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
3066    void *IP = 0;
3067    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3068      return SDValue(E, 0);
3069
3070    N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
3071    CSEMap.InsertNode(N, IP);
3072  } else {
3073    N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
3074  }
3075
3076  AllNodes.push_back(N);
3077#ifndef NDEBUG
3078  VerifySDNode(N);
3079#endif
3080  return SDValue(N, 0);
3081}
3082
3083SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3084                              SDValue N1, SDValue N2, SDValue N3) {
3085  // Perform various simplifications.
3086  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
3087  switch (Opcode) {
3088  case ISD::CONCAT_VECTORS:
3089    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
3090    // one big BUILD_VECTOR.
3091    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
3092        N2.getOpcode() == ISD::BUILD_VECTOR &&
3093        N3.getOpcode() == ISD::BUILD_VECTOR) {
3094      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(),
3095                                    N1.getNode()->op_end());
3096      Elts.append(N2.getNode()->op_begin(), N2.getNode()->op_end());
3097      Elts.append(N3.getNode()->op_begin(), N3.getNode()->op_end());
3098      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
3099    }
3100    break;
3101  case ISD::SETCC: {
3102    // Use FoldSetCC to simplify SETCC's.
3103    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
3104    if (Simp.getNode()) return Simp;
3105    break;
3106  }
3107  case ISD::SELECT:
3108    if (N1C) {
3109     if (N1C->getZExtValue())
3110        return N2;             // select true, X, Y -> X
3111      else
3112        return N3;             // select false, X, Y -> Y
3113    }
3114
3115    if (N2 == N3) return N2;   // select C, X, X -> X
3116    break;
3117  case ISD::VECTOR_SHUFFLE:
3118    llvm_unreachable("should use getVectorShuffle constructor!");
3119    break;
3120  case ISD::INSERT_SUBVECTOR: {
3121    SDValue Index = N3;
3122    if (VT.isSimple() && N1.getValueType().isSimple()
3123        && N2.getValueType().isSimple()) {
3124      assert(VT.isVector() && N1.getValueType().isVector() &&
3125             N2.getValueType().isVector() &&
3126             "Insert subvector VTs must be a vectors");
3127      assert(VT == N1.getValueType() &&
3128             "Dest and insert subvector source types must match!");
3129      assert(N2.getValueType().getSimpleVT() <= N1.getValueType().getSimpleVT() &&
3130             "Insert subvector must be from smaller vector to larger vector!");
3131      if (isa<ConstantSDNode>(Index.getNode())) {
3132        assert((N2.getValueType().getVectorNumElements() +
3133                cast<ConstantSDNode>(Index.getNode())->getZExtValue()
3134                <= VT.getVectorNumElements())
3135               && "Insert subvector overflow!");
3136      }
3137
3138      // Trivial insertion.
3139      if (VT.getSimpleVT() == N2.getValueType().getSimpleVT())
3140        return N2;
3141    }
3142    break;
3143  }
3144  case ISD::BITCAST:
3145    // Fold bit_convert nodes from a type to themselves.
3146    if (N1.getValueType() == VT)
3147      return N1;
3148    break;
3149  }
3150
3151  // Memoize node if it doesn't produce a flag.
3152  SDNode *N;
3153  SDVTList VTs = getVTList(VT);
3154  if (VT != MVT::Glue) {
3155    SDValue Ops[] = { N1, N2, N3 };
3156    FoldingSetNodeID ID;
3157    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3158    void *IP = 0;
3159    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3160      return SDValue(E, 0);
3161
3162    N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3163    CSEMap.InsertNode(N, IP);
3164  } else {
3165    N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3166  }
3167
3168  AllNodes.push_back(N);
3169#ifndef NDEBUG
3170  VerifySDNode(N);
3171#endif
3172  return SDValue(N, 0);
3173}
3174
3175SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3176                              SDValue N1, SDValue N2, SDValue N3,
3177                              SDValue N4) {
3178  SDValue Ops[] = { N1, N2, N3, N4 };
3179  return getNode(Opcode, DL, VT, Ops, 4);
3180}
3181
3182SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3183                              SDValue N1, SDValue N2, SDValue N3,
3184                              SDValue N4, SDValue N5) {
3185  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3186  return getNode(Opcode, DL, VT, Ops, 5);
3187}
3188
3189/// getStackArgumentTokenFactor - Compute a TokenFactor to force all
3190/// the incoming stack arguments to be loaded from the stack.
3191SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
3192  SmallVector<SDValue, 8> ArgChains;
3193
3194  // Include the original chain at the beginning of the list. When this is
3195  // used by target LowerCall hooks, this helps legalize find the
3196  // CALLSEQ_BEGIN node.
3197  ArgChains.push_back(Chain);
3198
3199  // Add a chain value for each stack argument.
3200  for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
3201       UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
3202    if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
3203      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
3204        if (FI->getIndex() < 0)
3205          ArgChains.push_back(SDValue(L, 1));
3206
3207  // Build a tokenfactor for all the chains.
3208  return getNode(ISD::TokenFactor, Chain.getDebugLoc(), MVT::Other,
3209                 &ArgChains[0], ArgChains.size());
3210}
3211
3212/// SplatByte - Distribute ByteVal over NumBits bits.
3213static APInt SplatByte(unsigned NumBits, uint8_t ByteVal) {
3214  APInt Val = APInt(NumBits, ByteVal);
3215  unsigned Shift = 8;
3216  for (unsigned i = NumBits; i > 8; i >>= 1) {
3217    Val = (Val << Shift) | Val;
3218    Shift <<= 1;
3219  }
3220  return Val;
3221}
3222
3223/// getMemsetValue - Vectorized representation of the memset value
3224/// operand.
3225static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
3226                              DebugLoc dl) {
3227  assert(Value.getOpcode() != ISD::UNDEF);
3228
3229  unsigned NumBits = VT.getScalarType().getSizeInBits();
3230  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
3231    APInt Val = SplatByte(NumBits, C->getZExtValue() & 255);
3232    if (VT.isInteger())
3233      return DAG.getConstant(Val, VT);
3234    return DAG.getConstantFP(APFloat(Val), VT);
3235  }
3236
3237  Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
3238  if (NumBits > 8) {
3239    // Use a multiplication with 0x010101... to extend the input to the
3240    // required length.
3241    APInt Magic = SplatByte(NumBits, 0x01);
3242    Value = DAG.getNode(ISD::MUL, dl, VT, Value, DAG.getConstant(Magic, VT));
3243  }
3244
3245  return Value;
3246}
3247
3248/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
3249/// used when a memcpy is turned into a memset when the source is a constant
3250/// string ptr.
3251static SDValue getMemsetStringVal(EVT VT, DebugLoc dl, SelectionDAG &DAG,
3252                                  const TargetLowering &TLI,
3253                                  std::string &Str, unsigned Offset) {
3254  // Handle vector with all elements zero.
3255  if (Str.empty()) {
3256    if (VT.isInteger())
3257      return DAG.getConstant(0, VT);
3258    else if (VT == MVT::f32 || VT == MVT::f64)
3259      return DAG.getConstantFP(0.0, VT);
3260    else if (VT.isVector()) {
3261      unsigned NumElts = VT.getVectorNumElements();
3262      MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
3263      return DAG.getNode(ISD::BITCAST, dl, VT,
3264                         DAG.getConstant(0, EVT::getVectorVT(*DAG.getContext(),
3265                                                             EltVT, NumElts)));
3266    } else
3267      llvm_unreachable("Expected type!");
3268  }
3269
3270  assert(!VT.isVector() && "Can't handle vector type here!");
3271  unsigned NumBits = VT.getSizeInBits();
3272  unsigned MSB = NumBits / 8;
3273  uint64_t Val = 0;
3274  if (TLI.isLittleEndian())
3275    Offset = Offset + MSB - 1;
3276  for (unsigned i = 0; i != MSB; ++i) {
3277    Val = (Val << 8) | (unsigned char)Str[Offset];
3278    Offset += TLI.isLittleEndian() ? -1 : 1;
3279  }
3280  return DAG.getConstant(Val, VT);
3281}
3282
3283/// getMemBasePlusOffset - Returns base and offset node for the
3284///
3285static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
3286                                      SelectionDAG &DAG) {
3287  EVT VT = Base.getValueType();
3288  return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
3289                     VT, Base, DAG.getConstant(Offset, VT));
3290}
3291
3292/// isMemSrcFromString - Returns true if memcpy source is a string constant.
3293///
3294static bool isMemSrcFromString(SDValue Src, std::string &Str) {
3295  unsigned SrcDelta = 0;
3296  GlobalAddressSDNode *G = NULL;
3297  if (Src.getOpcode() == ISD::GlobalAddress)
3298    G = cast<GlobalAddressSDNode>(Src);
3299  else if (Src.getOpcode() == ISD::ADD &&
3300           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3301           Src.getOperand(1).getOpcode() == ISD::Constant) {
3302    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
3303    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
3304  }
3305  if (!G)
3306    return false;
3307
3308  const GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
3309  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
3310    return true;
3311
3312  return false;
3313}
3314
3315/// FindOptimalMemOpLowering - Determines the optimial series memory ops
3316/// to replace the memset / memcpy. Return true if the number of memory ops
3317/// is below the threshold. It returns the types of the sequence of
3318/// memory ops to perform memset / memcpy by reference.
3319static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps,
3320                                     unsigned Limit, uint64_t Size,
3321                                     unsigned DstAlign, unsigned SrcAlign,
3322                                     bool NonScalarIntSafe,
3323                                     bool MemcpyStrSrc,
3324                                     SelectionDAG &DAG,
3325                                     const TargetLowering &TLI) {
3326  assert((SrcAlign == 0 || SrcAlign >= DstAlign) &&
3327         "Expecting memcpy / memset source to meet alignment requirement!");
3328  // If 'SrcAlign' is zero, that means the memory operation does not need load
3329  // the value, i.e. memset or memcpy from constant string. Otherwise, it's
3330  // the inferred alignment of the source. 'DstAlign', on the other hand, is the
3331  // specified alignment of the memory operation. If it is zero, that means
3332  // it's possible to change the alignment of the destination. 'MemcpyStrSrc'
3333  // indicates whether the memcpy source is constant so it does not need to be
3334  // loaded.
3335  EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign,
3336                                   NonScalarIntSafe, MemcpyStrSrc,
3337                                   DAG.getMachineFunction());
3338
3339  if (VT == MVT::Other) {
3340    if (DstAlign >= TLI.getTargetData()->getPointerPrefAlignment() ||
3341        TLI.allowsUnalignedMemoryAccesses(VT)) {
3342      VT = TLI.getPointerTy();
3343    } else {
3344      switch (DstAlign & 7) {
3345      case 0:  VT = MVT::i64; break;
3346      case 4:  VT = MVT::i32; break;
3347      case 2:  VT = MVT::i16; break;
3348      default: VT = MVT::i8;  break;
3349      }
3350    }
3351
3352    MVT LVT = MVT::i64;
3353    while (!TLI.isTypeLegal(LVT))
3354      LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
3355    assert(LVT.isInteger());
3356
3357    if (VT.bitsGT(LVT))
3358      VT = LVT;
3359  }
3360
3361  unsigned NumMemOps = 0;
3362  while (Size != 0) {
3363    unsigned VTSize = VT.getSizeInBits() / 8;
3364    while (VTSize > Size) {
3365      // For now, only use non-vector load / store's for the left-over pieces.
3366      if (VT.isVector() || VT.isFloatingPoint()) {
3367        VT = MVT::i64;
3368        while (!TLI.isTypeLegal(VT))
3369          VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3370        VTSize = VT.getSizeInBits() / 8;
3371      } else {
3372        // This can result in a type that is not legal on the target, e.g.
3373        // 1 or 2 bytes on PPC.
3374        VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3375        VTSize >>= 1;
3376      }
3377    }
3378
3379    if (++NumMemOps > Limit)
3380      return false;
3381    MemOps.push_back(VT);
3382    Size -= VTSize;
3383  }
3384
3385  return true;
3386}
3387
3388static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3389                                       SDValue Chain, SDValue Dst,
3390                                       SDValue Src, uint64_t Size,
3391                                       unsigned Align, bool isVol,
3392                                       bool AlwaysInline,
3393                                       MachinePointerInfo DstPtrInfo,
3394                                       MachinePointerInfo SrcPtrInfo) {
3395  // Turn a memcpy of undef to nop.
3396  if (Src.getOpcode() == ISD::UNDEF)
3397    return Chain;
3398
3399  // Expand memcpy to a series of load and store ops if the size operand falls
3400  // below a certain threshold.
3401  // TODO: In the AlwaysInline case, if the size is big then generate a loop
3402  // rather than maybe a humongous number of loads and stores.
3403  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3404  std::vector<EVT> MemOps;
3405  bool DstAlignCanChange = false;
3406  MachineFunction &MF = DAG.getMachineFunction();
3407  MachineFrameInfo *MFI = MF.getFrameInfo();
3408  bool OptSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
3409  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3410  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3411    DstAlignCanChange = true;
3412  unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3413  if (Align > SrcAlign)
3414    SrcAlign = Align;
3415  std::string Str;
3416  bool CopyFromStr = isMemSrcFromString(Src, Str);
3417  bool isZeroStr = CopyFromStr && Str.empty();
3418  unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
3419
3420  if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3421                                (DstAlignCanChange ? 0 : Align),
3422                                (isZeroStr ? 0 : SrcAlign),
3423                                true, CopyFromStr, DAG, TLI))
3424    return SDValue();
3425
3426  if (DstAlignCanChange) {
3427    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3428    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3429    if (NewAlign > Align) {
3430      // Give the stack frame object a larger alignment if needed.
3431      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3432        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3433      Align = NewAlign;
3434    }
3435  }
3436
3437  SmallVector<SDValue, 8> OutChains;
3438  unsigned NumMemOps = MemOps.size();
3439  uint64_t SrcOff = 0, DstOff = 0;
3440  for (unsigned i = 0; i != NumMemOps; ++i) {
3441    EVT VT = MemOps[i];
3442    unsigned VTSize = VT.getSizeInBits() / 8;
3443    SDValue Value, Store;
3444
3445    if (CopyFromStr &&
3446        (isZeroStr || (VT.isInteger() && !VT.isVector()))) {
3447      // It's unlikely a store of a vector immediate can be done in a single
3448      // instruction. It would require a load from a constantpool first.
3449      // We only handle zero vectors here.
3450      // FIXME: Handle other cases where store of vector immediate is done in
3451      // a single instruction.
3452      Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
3453      Store = DAG.getStore(Chain, dl, Value,
3454                           getMemBasePlusOffset(Dst, DstOff, DAG),
3455                           DstPtrInfo.getWithOffset(DstOff), isVol,
3456                           false, Align);
3457    } else {
3458      // The type might not be legal for the target.  This should only happen
3459      // if the type is smaller than a legal type, as on PPC, so the right
3460      // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
3461      // to Load/Store if NVT==VT.
3462      // FIXME does the case above also need this?
3463      EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
3464      assert(NVT.bitsGE(VT));
3465      Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
3466                             getMemBasePlusOffset(Src, SrcOff, DAG),
3467                             SrcPtrInfo.getWithOffset(SrcOff), VT, isVol, false,
3468                             MinAlign(SrcAlign, SrcOff));
3469      Store = DAG.getTruncStore(Chain, dl, Value,
3470                                getMemBasePlusOffset(Dst, DstOff, DAG),
3471                                DstPtrInfo.getWithOffset(DstOff), VT, isVol,
3472                                false, Align);
3473    }
3474    OutChains.push_back(Store);
3475    SrcOff += VTSize;
3476    DstOff += VTSize;
3477  }
3478
3479  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3480                     &OutChains[0], OutChains.size());
3481}
3482
3483static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3484                                        SDValue Chain, SDValue Dst,
3485                                        SDValue Src, uint64_t Size,
3486                                        unsigned Align,  bool isVol,
3487                                        bool AlwaysInline,
3488                                        MachinePointerInfo DstPtrInfo,
3489                                        MachinePointerInfo SrcPtrInfo) {
3490  // Turn a memmove of undef to nop.
3491  if (Src.getOpcode() == ISD::UNDEF)
3492    return Chain;
3493
3494  // Expand memmove to a series of load and store ops if the size operand falls
3495  // below a certain threshold.
3496  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3497  std::vector<EVT> MemOps;
3498  bool DstAlignCanChange = false;
3499  MachineFunction &MF = DAG.getMachineFunction();
3500  MachineFrameInfo *MFI = MF.getFrameInfo();
3501  bool OptSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
3502  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3503  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3504    DstAlignCanChange = true;
3505  unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3506  if (Align > SrcAlign)
3507    SrcAlign = Align;
3508  unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
3509
3510  if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3511                                (DstAlignCanChange ? 0 : Align),
3512                                SrcAlign, true, false, DAG, TLI))
3513    return SDValue();
3514
3515  if (DstAlignCanChange) {
3516    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3517    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3518    if (NewAlign > Align) {
3519      // Give the stack frame object a larger alignment if needed.
3520      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3521        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3522      Align = NewAlign;
3523    }
3524  }
3525
3526  uint64_t SrcOff = 0, DstOff = 0;
3527  SmallVector<SDValue, 8> LoadValues;
3528  SmallVector<SDValue, 8> LoadChains;
3529  SmallVector<SDValue, 8> OutChains;
3530  unsigned NumMemOps = MemOps.size();
3531  for (unsigned i = 0; i < NumMemOps; i++) {
3532    EVT VT = MemOps[i];
3533    unsigned VTSize = VT.getSizeInBits() / 8;
3534    SDValue Value, Store;
3535
3536    Value = DAG.getLoad(VT, dl, Chain,
3537                        getMemBasePlusOffset(Src, SrcOff, DAG),
3538                        SrcPtrInfo.getWithOffset(SrcOff), isVol,
3539                        false, SrcAlign);
3540    LoadValues.push_back(Value);
3541    LoadChains.push_back(Value.getValue(1));
3542    SrcOff += VTSize;
3543  }
3544  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3545                      &LoadChains[0], LoadChains.size());
3546  OutChains.clear();
3547  for (unsigned i = 0; i < NumMemOps; i++) {
3548    EVT VT = MemOps[i];
3549    unsigned VTSize = VT.getSizeInBits() / 8;
3550    SDValue Value, Store;
3551
3552    Store = DAG.getStore(Chain, dl, LoadValues[i],
3553                         getMemBasePlusOffset(Dst, DstOff, DAG),
3554                         DstPtrInfo.getWithOffset(DstOff), isVol, false, Align);
3555    OutChains.push_back(Store);
3556    DstOff += VTSize;
3557  }
3558
3559  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3560                     &OutChains[0], OutChains.size());
3561}
3562
3563static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
3564                               SDValue Chain, SDValue Dst,
3565                               SDValue Src, uint64_t Size,
3566                               unsigned Align, bool isVol,
3567                               MachinePointerInfo DstPtrInfo) {
3568  // Turn a memset of undef to nop.
3569  if (Src.getOpcode() == ISD::UNDEF)
3570    return Chain;
3571
3572  // Expand memset to a series of load/store ops if the size operand
3573  // falls below a certain threshold.
3574  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3575  std::vector<EVT> MemOps;
3576  bool DstAlignCanChange = false;
3577  MachineFunction &MF = DAG.getMachineFunction();
3578  MachineFrameInfo *MFI = MF.getFrameInfo();
3579  bool OptSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
3580  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3581  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3582    DstAlignCanChange = true;
3583  bool NonScalarIntSafe =
3584    isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
3585  if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(OptSize),
3586                                Size, (DstAlignCanChange ? 0 : Align), 0,
3587                                NonScalarIntSafe, false, DAG, TLI))
3588    return SDValue();
3589
3590  if (DstAlignCanChange) {
3591    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3592    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3593    if (NewAlign > Align) {
3594      // Give the stack frame object a larger alignment if needed.
3595      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3596        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3597      Align = NewAlign;
3598    }
3599  }
3600
3601  SmallVector<SDValue, 8> OutChains;
3602  uint64_t DstOff = 0;
3603  unsigned NumMemOps = MemOps.size();
3604
3605  // Find the largest store and generate the bit pattern for it.
3606  EVT LargestVT = MemOps[0];
3607  for (unsigned i = 1; i < NumMemOps; i++)
3608    if (MemOps[i].bitsGT(LargestVT))
3609      LargestVT = MemOps[i];
3610  SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
3611
3612  for (unsigned i = 0; i < NumMemOps; i++) {
3613    EVT VT = MemOps[i];
3614
3615    // If this store is smaller than the largest store see whether we can get
3616    // the smaller value for free with a truncate.
3617    SDValue Value = MemSetValue;
3618    if (VT.bitsLT(LargestVT)) {
3619      if (!LargestVT.isVector() && !VT.isVector() &&
3620          TLI.isTruncateFree(LargestVT, VT))
3621        Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
3622      else
3623        Value = getMemsetValue(Src, VT, DAG, dl);
3624    }
3625    assert(Value.getValueType() == VT && "Value with wrong type.");
3626    SDValue Store = DAG.getStore(Chain, dl, Value,
3627                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3628                                 DstPtrInfo.getWithOffset(DstOff),
3629                                 isVol, false, Align);
3630    OutChains.push_back(Store);
3631    DstOff += VT.getSizeInBits() / 8;
3632  }
3633
3634  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3635                     &OutChains[0], OutChains.size());
3636}
3637
3638SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
3639                                SDValue Src, SDValue Size,
3640                                unsigned Align, bool isVol, bool AlwaysInline,
3641                                MachinePointerInfo DstPtrInfo,
3642                                MachinePointerInfo SrcPtrInfo) {
3643
3644  // Check to see if we should lower the memcpy to loads and stores first.
3645  // For cases within the target-specified limits, this is the best choice.
3646  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3647  if (ConstantSize) {
3648    // Memcpy with size zero? Just return the original chain.
3649    if (ConstantSize->isNullValue())
3650      return Chain;
3651
3652    SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3653                                             ConstantSize->getZExtValue(),Align,
3654                                isVol, false, DstPtrInfo, SrcPtrInfo);
3655    if (Result.getNode())
3656      return Result;
3657  }
3658
3659  // Then check to see if we should lower the memcpy with target-specific
3660  // code. If the target chooses to do this, this is the next best.
3661  SDValue Result =
3662    TSI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
3663                                isVol, AlwaysInline,
3664                                DstPtrInfo, SrcPtrInfo);
3665  if (Result.getNode())
3666    return Result;
3667
3668  // If we really need inline code and the target declined to provide it,
3669  // use a (potentially long) sequence of loads and stores.
3670  if (AlwaysInline) {
3671    assert(ConstantSize && "AlwaysInline requires a constant size!");
3672    return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3673                                   ConstantSize->getZExtValue(), Align, isVol,
3674                                   true, DstPtrInfo, SrcPtrInfo);
3675  }
3676
3677  // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
3678  // memcpy is not guaranteed to be safe. libc memcpys aren't required to
3679  // respect volatile, so they may do things like read or write memory
3680  // beyond the given memory regions. But fixing this isn't easy, and most
3681  // people don't care.
3682
3683  // Emit a library call.
3684  TargetLowering::ArgListTy Args;
3685  TargetLowering::ArgListEntry Entry;
3686  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3687  Entry.Node = Dst; Args.push_back(Entry);
3688  Entry.Node = Src; Args.push_back(Entry);
3689  Entry.Node = Size; Args.push_back(Entry);
3690  // FIXME: pass in DebugLoc
3691  std::pair<SDValue,SDValue> CallResult =
3692    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3693                    false, false, false, false, 0,
3694                    TLI.getLibcallCallingConv(RTLIB::MEMCPY), false,
3695                    /*isReturnValueUsed=*/false,
3696                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMCPY),
3697                                      TLI.getPointerTy()),
3698                    Args, *this, dl);
3699  return CallResult.second;
3700}
3701
3702SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
3703                                 SDValue Src, SDValue Size,
3704                                 unsigned Align, bool isVol,
3705                                 MachinePointerInfo DstPtrInfo,
3706                                 MachinePointerInfo SrcPtrInfo) {
3707
3708  // Check to see if we should lower the memmove to loads and stores first.
3709  // For cases within the target-specified limits, this is the best choice.
3710  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3711  if (ConstantSize) {
3712    // Memmove with size zero? Just return the original chain.
3713    if (ConstantSize->isNullValue())
3714      return Chain;
3715
3716    SDValue Result =
3717      getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
3718                               ConstantSize->getZExtValue(), Align, isVol,
3719                               false, DstPtrInfo, SrcPtrInfo);
3720    if (Result.getNode())
3721      return Result;
3722  }
3723
3724  // Then check to see if we should lower the memmove with target-specific
3725  // code. If the target chooses to do this, this is the next best.
3726  SDValue Result =
3727    TSI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align, isVol,
3728                                 DstPtrInfo, SrcPtrInfo);
3729  if (Result.getNode())
3730    return Result;
3731
3732  // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
3733  // not be safe.  See memcpy above for more details.
3734
3735  // Emit a library call.
3736  TargetLowering::ArgListTy Args;
3737  TargetLowering::ArgListEntry Entry;
3738  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3739  Entry.Node = Dst; Args.push_back(Entry);
3740  Entry.Node = Src; Args.push_back(Entry);
3741  Entry.Node = Size; Args.push_back(Entry);
3742  // FIXME:  pass in DebugLoc
3743  std::pair<SDValue,SDValue> CallResult =
3744    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3745                    false, false, false, false, 0,
3746                    TLI.getLibcallCallingConv(RTLIB::MEMMOVE), false,
3747                    /*isReturnValueUsed=*/false,
3748                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMMOVE),
3749                                      TLI.getPointerTy()),
3750                    Args, *this, dl);
3751  return CallResult.second;
3752}
3753
3754SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
3755                                SDValue Src, SDValue Size,
3756                                unsigned Align, bool isVol,
3757                                MachinePointerInfo DstPtrInfo) {
3758
3759  // Check to see if we should lower the memset to stores first.
3760  // For cases within the target-specified limits, this is the best choice.
3761  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3762  if (ConstantSize) {
3763    // Memset with size zero? Just return the original chain.
3764    if (ConstantSize->isNullValue())
3765      return Chain;
3766
3767    SDValue Result =
3768      getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
3769                      Align, isVol, DstPtrInfo);
3770
3771    if (Result.getNode())
3772      return Result;
3773  }
3774
3775  // Then check to see if we should lower the memset with target-specific
3776  // code. If the target chooses to do this, this is the next best.
3777  SDValue Result =
3778    TSI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align, isVol,
3779                                DstPtrInfo);
3780  if (Result.getNode())
3781    return Result;
3782
3783  // Emit a library call.
3784  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType(*getContext());
3785  TargetLowering::ArgListTy Args;
3786  TargetLowering::ArgListEntry Entry;
3787  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3788  Args.push_back(Entry);
3789  // Extend or truncate the argument to be an i32 value for the call.
3790  if (Src.getValueType().bitsGT(MVT::i32))
3791    Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
3792  else
3793    Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
3794  Entry.Node = Src;
3795  Entry.Ty = Type::getInt32Ty(*getContext());
3796  Entry.isSExt = true;
3797  Args.push_back(Entry);
3798  Entry.Node = Size;
3799  Entry.Ty = IntPtrTy;
3800  Entry.isSExt = false;
3801  Args.push_back(Entry);
3802  // FIXME: pass in DebugLoc
3803  std::pair<SDValue,SDValue> CallResult =
3804    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3805                    false, false, false, false, 0,
3806                    TLI.getLibcallCallingConv(RTLIB::MEMSET), false,
3807                    /*isReturnValueUsed=*/false,
3808                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMSET),
3809                                      TLI.getPointerTy()),
3810                    Args, *this, dl);
3811  return CallResult.second;
3812}
3813
3814SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3815                                SDValue Chain, SDValue Ptr, SDValue Cmp,
3816                                SDValue Swp, MachinePointerInfo PtrInfo,
3817                                unsigned Alignment) {
3818  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3819    Alignment = getEVTAlignment(MemVT);
3820
3821  MachineFunction &MF = getMachineFunction();
3822  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3823
3824  // For now, atomics are considered to be volatile always.
3825  Flags |= MachineMemOperand::MOVolatile;
3826
3827  MachineMemOperand *MMO =
3828    MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment);
3829
3830  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Cmp, Swp, MMO);
3831}
3832
3833SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3834                                SDValue Chain,
3835                                SDValue Ptr, SDValue Cmp,
3836                                SDValue Swp, MachineMemOperand *MMO) {
3837  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3838  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3839
3840  EVT VT = Cmp.getValueType();
3841
3842  SDVTList VTs = getVTList(VT, MVT::Other);
3843  FoldingSetNodeID ID;
3844  ID.AddInteger(MemVT.getRawBits());
3845  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3846  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3847  void* IP = 0;
3848  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3849    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3850    return SDValue(E, 0);
3851  }
3852  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
3853                                               Ptr, Cmp, Swp, MMO);
3854  CSEMap.InsertNode(N, IP);
3855  AllNodes.push_back(N);
3856  return SDValue(N, 0);
3857}
3858
3859SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3860                                SDValue Chain,
3861                                SDValue Ptr, SDValue Val,
3862                                const Value* PtrVal,
3863                                unsigned Alignment) {
3864  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3865    Alignment = getEVTAlignment(MemVT);
3866
3867  MachineFunction &MF = getMachineFunction();
3868  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3869
3870  // For now, atomics are considered to be volatile always.
3871  Flags |= MachineMemOperand::MOVolatile;
3872
3873  MachineMemOperand *MMO =
3874    MF.getMachineMemOperand(MachinePointerInfo(PtrVal), Flags,
3875                            MemVT.getStoreSize(), Alignment);
3876
3877  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO);
3878}
3879
3880SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3881                                SDValue Chain,
3882                                SDValue Ptr, SDValue Val,
3883                                MachineMemOperand *MMO) {
3884  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3885          Opcode == ISD::ATOMIC_LOAD_SUB ||
3886          Opcode == ISD::ATOMIC_LOAD_AND ||
3887          Opcode == ISD::ATOMIC_LOAD_OR ||
3888          Opcode == ISD::ATOMIC_LOAD_XOR ||
3889          Opcode == ISD::ATOMIC_LOAD_NAND ||
3890          Opcode == ISD::ATOMIC_LOAD_MIN ||
3891          Opcode == ISD::ATOMIC_LOAD_MAX ||
3892          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3893          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3894          Opcode == ISD::ATOMIC_SWAP) &&
3895         "Invalid Atomic Op");
3896
3897  EVT VT = Val.getValueType();
3898
3899  SDVTList VTs = getVTList(VT, MVT::Other);
3900  FoldingSetNodeID ID;
3901  ID.AddInteger(MemVT.getRawBits());
3902  SDValue Ops[] = {Chain, Ptr, Val};
3903  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3904  void* IP = 0;
3905  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3906    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3907    return SDValue(E, 0);
3908  }
3909  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
3910                                               Ptr, Val, MMO);
3911  CSEMap.InsertNode(N, IP);
3912  AllNodes.push_back(N);
3913  return SDValue(N, 0);
3914}
3915
3916/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3917SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3918                                     DebugLoc dl) {
3919  if (NumOps == 1)
3920    return Ops[0];
3921
3922  SmallVector<EVT, 4> VTs;
3923  VTs.reserve(NumOps);
3924  for (unsigned i = 0; i < NumOps; ++i)
3925    VTs.push_back(Ops[i].getValueType());
3926  return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
3927                 Ops, NumOps);
3928}
3929
3930SDValue
3931SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
3932                                  const EVT *VTs, unsigned NumVTs,
3933                                  const SDValue *Ops, unsigned NumOps,
3934                                  EVT MemVT, MachinePointerInfo PtrInfo,
3935                                  unsigned Align, bool Vol,
3936                                  bool ReadMem, bool WriteMem) {
3937  return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
3938                             MemVT, PtrInfo, Align, Vol,
3939                             ReadMem, WriteMem);
3940}
3941
3942SDValue
3943SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3944                                  const SDValue *Ops, unsigned NumOps,
3945                                  EVT MemVT, MachinePointerInfo PtrInfo,
3946                                  unsigned Align, bool Vol,
3947                                  bool ReadMem, bool WriteMem) {
3948  if (Align == 0)  // Ensure that codegen never sees alignment 0
3949    Align = getEVTAlignment(MemVT);
3950
3951  MachineFunction &MF = getMachineFunction();
3952  unsigned Flags = 0;
3953  if (WriteMem)
3954    Flags |= MachineMemOperand::MOStore;
3955  if (ReadMem)
3956    Flags |= MachineMemOperand::MOLoad;
3957  if (Vol)
3958    Flags |= MachineMemOperand::MOVolatile;
3959  MachineMemOperand *MMO =
3960    MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Align);
3961
3962  return getMemIntrinsicNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3963}
3964
3965SDValue
3966SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3967                                  const SDValue *Ops, unsigned NumOps,
3968                                  EVT MemVT, MachineMemOperand *MMO) {
3969  assert((Opcode == ISD::INTRINSIC_VOID ||
3970          Opcode == ISD::INTRINSIC_W_CHAIN ||
3971          Opcode == ISD::PREFETCH ||
3972          (Opcode <= INT_MAX &&
3973           (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
3974         "Opcode is not a memory-accessing opcode!");
3975
3976  // Memoize the node unless it returns a flag.
3977  MemIntrinsicSDNode *N;
3978  if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
3979    FoldingSetNodeID ID;
3980    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3981    void *IP = 0;
3982    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3983      cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
3984      return SDValue(E, 0);
3985    }
3986
3987    N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
3988                                               MemVT, MMO);
3989    CSEMap.InsertNode(N, IP);
3990  } else {
3991    N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
3992                                               MemVT, MMO);
3993  }
3994  AllNodes.push_back(N);
3995  return SDValue(N, 0);
3996}
3997
3998/// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
3999/// MachinePointerInfo record from it.  This is particularly useful because the
4000/// code generator has many cases where it doesn't bother passing in a
4001/// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
4002static MachinePointerInfo InferPointerInfo(SDValue Ptr, int64_t Offset = 0) {
4003  // If this is FI+Offset, we can model it.
4004  if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
4005    return MachinePointerInfo::getFixedStack(FI->getIndex(), Offset);
4006
4007  // If this is (FI+Offset1)+Offset2, we can model it.
4008  if (Ptr.getOpcode() != ISD::ADD ||
4009      !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
4010      !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
4011    return MachinePointerInfo();
4012
4013  int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4014  return MachinePointerInfo::getFixedStack(FI, Offset+
4015                       cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
4016}
4017
4018/// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
4019/// MachinePointerInfo record from it.  This is particularly useful because the
4020/// code generator has many cases where it doesn't bother passing in a
4021/// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
4022static MachinePointerInfo InferPointerInfo(SDValue Ptr, SDValue OffsetOp) {
4023  // If the 'Offset' value isn't a constant, we can't handle this.
4024  if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
4025    return InferPointerInfo(Ptr, OffsetNode->getSExtValue());
4026  if (OffsetOp.getOpcode() == ISD::UNDEF)
4027    return InferPointerInfo(Ptr);
4028  return MachinePointerInfo();
4029}
4030
4031
4032SDValue
4033SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
4034                      EVT VT, DebugLoc dl, SDValue Chain,
4035                      SDValue Ptr, SDValue Offset,
4036                      MachinePointerInfo PtrInfo, EVT MemVT,
4037                      bool isVolatile, bool isNonTemporal,
4038                      unsigned Alignment, const MDNode *TBAAInfo) {
4039  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4040    Alignment = getEVTAlignment(VT);
4041
4042  unsigned Flags = MachineMemOperand::MOLoad;
4043  if (isVolatile)
4044    Flags |= MachineMemOperand::MOVolatile;
4045  if (isNonTemporal)
4046    Flags |= MachineMemOperand::MONonTemporal;
4047
4048  // If we don't have a PtrInfo, infer the trivial frame index case to simplify
4049  // clients.
4050  if (PtrInfo.V == 0)
4051    PtrInfo = InferPointerInfo(Ptr, Offset);
4052
4053  MachineFunction &MF = getMachineFunction();
4054  MachineMemOperand *MMO =
4055    MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment,
4056                            TBAAInfo);
4057  return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
4058}
4059
4060SDValue
4061SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
4062                      EVT VT, DebugLoc dl, SDValue Chain,
4063                      SDValue Ptr, SDValue Offset, EVT MemVT,
4064                      MachineMemOperand *MMO) {
4065  if (VT == MemVT) {
4066    ExtType = ISD::NON_EXTLOAD;
4067  } else if (ExtType == ISD::NON_EXTLOAD) {
4068    assert(VT == MemVT && "Non-extending load from different memory type!");
4069  } else {
4070    // Extending load.
4071    assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
4072           "Should only be an extending load, not truncating!");
4073    assert(VT.isInteger() == MemVT.isInteger() &&
4074           "Cannot convert from FP to Int or Int -> FP!");
4075    assert(VT.isVector() == MemVT.isVector() &&
4076           "Cannot use trunc store to convert to or from a vector!");
4077    assert((!VT.isVector() ||
4078            VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
4079           "Cannot use trunc store to change the number of vector elements!");
4080  }
4081
4082  bool Indexed = AM != ISD::UNINDEXED;
4083  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
4084         "Unindexed load with an offset!");
4085
4086  SDVTList VTs = Indexed ?
4087    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
4088  SDValue Ops[] = { Chain, Ptr, Offset };
4089  FoldingSetNodeID ID;
4090  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
4091  ID.AddInteger(MemVT.getRawBits());
4092  ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, MMO->isVolatile(),
4093                                     MMO->isNonTemporal()));
4094  void *IP = 0;
4095  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4096    cast<LoadSDNode>(E)->refineAlignment(MMO);
4097    return SDValue(E, 0);
4098  }
4099  SDNode *N = new (NodeAllocator) LoadSDNode(Ops, dl, VTs, AM, ExtType,
4100                                             MemVT, MMO);
4101  CSEMap.InsertNode(N, IP);
4102  AllNodes.push_back(N);
4103  return SDValue(N, 0);
4104}
4105
4106SDValue SelectionDAG::getLoad(EVT VT, DebugLoc dl,
4107                              SDValue Chain, SDValue Ptr,
4108                              MachinePointerInfo PtrInfo,
4109                              bool isVolatile, bool isNonTemporal,
4110                              unsigned Alignment, const MDNode *TBAAInfo) {
4111  SDValue Undef = getUNDEF(Ptr.getValueType());
4112  return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
4113                 PtrInfo, VT, isVolatile, isNonTemporal, Alignment, TBAAInfo);
4114}
4115
4116SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, EVT VT,
4117                                 SDValue Chain, SDValue Ptr,
4118                                 MachinePointerInfo PtrInfo, EVT MemVT,
4119                                 bool isVolatile, bool isNonTemporal,
4120                                 unsigned Alignment, const MDNode *TBAAInfo) {
4121  SDValue Undef = getUNDEF(Ptr.getValueType());
4122  return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
4123                 PtrInfo, MemVT, isVolatile, isNonTemporal, Alignment,
4124                 TBAAInfo);
4125}
4126
4127
4128SDValue
4129SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
4130                             SDValue Offset, ISD::MemIndexedMode AM) {
4131  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
4132  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
4133         "Load is already a indexed load!");
4134  return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
4135                 LD->getChain(), Base, Offset, LD->getPointerInfo(),
4136                 LD->getMemoryVT(),
4137                 LD->isVolatile(), LD->isNonTemporal(), LD->getAlignment());
4138}
4139
4140SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
4141                               SDValue Ptr, MachinePointerInfo PtrInfo,
4142                               bool isVolatile, bool isNonTemporal,
4143                               unsigned Alignment, const MDNode *TBAAInfo) {
4144  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4145    Alignment = getEVTAlignment(Val.getValueType());
4146
4147  unsigned Flags = MachineMemOperand::MOStore;
4148  if (isVolatile)
4149    Flags |= MachineMemOperand::MOVolatile;
4150  if (isNonTemporal)
4151    Flags |= MachineMemOperand::MONonTemporal;
4152
4153  if (PtrInfo.V == 0)
4154    PtrInfo = InferPointerInfo(Ptr);
4155
4156  MachineFunction &MF = getMachineFunction();
4157  MachineMemOperand *MMO =
4158    MF.getMachineMemOperand(PtrInfo, Flags,
4159                            Val.getValueType().getStoreSize(), Alignment,
4160                            TBAAInfo);
4161
4162  return getStore(Chain, dl, Val, Ptr, MMO);
4163}
4164
4165SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
4166                               SDValue Ptr, MachineMemOperand *MMO) {
4167  EVT VT = Val.getValueType();
4168  SDVTList VTs = getVTList(MVT::Other);
4169  SDValue Undef = getUNDEF(Ptr.getValueType());
4170  SDValue Ops[] = { Chain, Val, Ptr, Undef };
4171  FoldingSetNodeID ID;
4172  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4173  ID.AddInteger(VT.getRawBits());
4174  ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile(),
4175                                     MMO->isNonTemporal()));
4176  void *IP = 0;
4177  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4178    cast<StoreSDNode>(E)->refineAlignment(MMO);
4179    return SDValue(E, 0);
4180  }
4181  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4182                                              false, VT, MMO);
4183  CSEMap.InsertNode(N, IP);
4184  AllNodes.push_back(N);
4185  return SDValue(N, 0);
4186}
4187
4188SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4189                                    SDValue Ptr, MachinePointerInfo PtrInfo,
4190                                    EVT SVT,bool isVolatile, bool isNonTemporal,
4191                                    unsigned Alignment,
4192                                    const MDNode *TBAAInfo) {
4193  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4194    Alignment = getEVTAlignment(SVT);
4195
4196  unsigned Flags = MachineMemOperand::MOStore;
4197  if (isVolatile)
4198    Flags |= MachineMemOperand::MOVolatile;
4199  if (isNonTemporal)
4200    Flags |= MachineMemOperand::MONonTemporal;
4201
4202  if (PtrInfo.V == 0)
4203    PtrInfo = InferPointerInfo(Ptr);
4204
4205  MachineFunction &MF = getMachineFunction();
4206  MachineMemOperand *MMO =
4207    MF.getMachineMemOperand(PtrInfo, Flags, SVT.getStoreSize(), Alignment,
4208                            TBAAInfo);
4209
4210  return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
4211}
4212
4213SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4214                                    SDValue Ptr, EVT SVT,
4215                                    MachineMemOperand *MMO) {
4216  EVT VT = Val.getValueType();
4217
4218  if (VT == SVT)
4219    return getStore(Chain, dl, Val, Ptr, MMO);
4220
4221  assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
4222         "Should only be a truncating store, not extending!");
4223  assert(VT.isInteger() == SVT.isInteger() &&
4224         "Can't do FP-INT conversion!");
4225  assert(VT.isVector() == SVT.isVector() &&
4226         "Cannot use trunc store to convert to or from a vector!");
4227  assert((!VT.isVector() ||
4228          VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
4229         "Cannot use trunc store to change the number of vector elements!");
4230
4231  SDVTList VTs = getVTList(MVT::Other);
4232  SDValue Undef = getUNDEF(Ptr.getValueType());
4233  SDValue Ops[] = { Chain, Val, Ptr, Undef };
4234  FoldingSetNodeID ID;
4235  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4236  ID.AddInteger(SVT.getRawBits());
4237  ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED, MMO->isVolatile(),
4238                                     MMO->isNonTemporal()));
4239  void *IP = 0;
4240  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4241    cast<StoreSDNode>(E)->refineAlignment(MMO);
4242    return SDValue(E, 0);
4243  }
4244  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4245                                              true, SVT, MMO);
4246  CSEMap.InsertNode(N, IP);
4247  AllNodes.push_back(N);
4248  return SDValue(N, 0);
4249}
4250
4251SDValue
4252SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
4253                              SDValue Offset, ISD::MemIndexedMode AM) {
4254  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
4255  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
4256         "Store is already a indexed store!");
4257  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
4258  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
4259  FoldingSetNodeID ID;
4260  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4261  ID.AddInteger(ST->getMemoryVT().getRawBits());
4262  ID.AddInteger(ST->getRawSubclassData());
4263  void *IP = 0;
4264  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4265    return SDValue(E, 0);
4266
4267  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, AM,
4268                                              ST->isTruncatingStore(),
4269                                              ST->getMemoryVT(),
4270                                              ST->getMemOperand());
4271  CSEMap.InsertNode(N, IP);
4272  AllNodes.push_back(N);
4273  return SDValue(N, 0);
4274}
4275
4276SDValue SelectionDAG::getVAArg(EVT VT, DebugLoc dl,
4277                               SDValue Chain, SDValue Ptr,
4278                               SDValue SV,
4279                               unsigned Align) {
4280  SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, MVT::i32) };
4281  return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 4);
4282}
4283
4284SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4285                              const SDUse *Ops, unsigned NumOps) {
4286  switch (NumOps) {
4287  case 0: return getNode(Opcode, DL, VT);
4288  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4289  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4290  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4291  default: break;
4292  }
4293
4294  // Copy from an SDUse array into an SDValue array for use with
4295  // the regular getNode logic.
4296  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
4297  return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
4298}
4299
4300SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4301                              const SDValue *Ops, unsigned NumOps) {
4302  switch (NumOps) {
4303  case 0: return getNode(Opcode, DL, VT);
4304  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4305  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4306  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4307  default: break;
4308  }
4309
4310  switch (Opcode) {
4311  default: break;
4312  case ISD::SELECT_CC: {
4313    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
4314    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
4315           "LHS and RHS of condition must have same type!");
4316    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4317           "True and False arms of SelectCC must have same type!");
4318    assert(Ops[2].getValueType() == VT &&
4319           "select_cc node must be of same type as true and false value!");
4320    break;
4321  }
4322  case ISD::BR_CC: {
4323    assert(NumOps == 5 && "BR_CC takes 5 operands!");
4324    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4325           "LHS/RHS of comparison should match types!");
4326    break;
4327  }
4328  }
4329
4330  // Memoize nodes.
4331  SDNode *N;
4332  SDVTList VTs = getVTList(VT);
4333
4334  if (VT != MVT::Glue) {
4335    FoldingSetNodeID ID;
4336    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
4337    void *IP = 0;
4338
4339    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4340      return SDValue(E, 0);
4341
4342    N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4343    CSEMap.InsertNode(N, IP);
4344  } else {
4345    N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4346  }
4347
4348  AllNodes.push_back(N);
4349#ifndef NDEBUG
4350  VerifySDNode(N);
4351#endif
4352  return SDValue(N, 0);
4353}
4354
4355SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4356                              const std::vector<EVT> &ResultTys,
4357                              const SDValue *Ops, unsigned NumOps) {
4358  return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
4359                 Ops, NumOps);
4360}
4361
4362SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4363                              const EVT *VTs, unsigned NumVTs,
4364                              const SDValue *Ops, unsigned NumOps) {
4365  if (NumVTs == 1)
4366    return getNode(Opcode, DL, VTs[0], Ops, NumOps);
4367  return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
4368}
4369
4370SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4371                              const SDValue *Ops, unsigned NumOps) {
4372  if (VTList.NumVTs == 1)
4373    return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
4374
4375#if 0
4376  switch (Opcode) {
4377  // FIXME: figure out how to safely handle things like
4378  // int foo(int x) { return 1 << (x & 255); }
4379  // int bar() { return foo(256); }
4380  case ISD::SRA_PARTS:
4381  case ISD::SRL_PARTS:
4382  case ISD::SHL_PARTS:
4383    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4384        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
4385      return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4386    else if (N3.getOpcode() == ISD::AND)
4387      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
4388        // If the and is only masking out bits that cannot effect the shift,
4389        // eliminate the and.
4390        unsigned NumBits = VT.getScalarType().getSizeInBits()*2;
4391        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
4392          return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4393      }
4394    break;
4395  }
4396#endif
4397
4398  // Memoize the node unless it returns a flag.
4399  SDNode *N;
4400  if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
4401    FoldingSetNodeID ID;
4402    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4403    void *IP = 0;
4404    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4405      return SDValue(E, 0);
4406
4407    if (NumOps == 1) {
4408      N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4409    } else if (NumOps == 2) {
4410      N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4411    } else if (NumOps == 3) {
4412      N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4413                                            Ops[2]);
4414    } else {
4415      N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4416    }
4417    CSEMap.InsertNode(N, IP);
4418  } else {
4419    if (NumOps == 1) {
4420      N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4421    } else if (NumOps == 2) {
4422      N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4423    } else if (NumOps == 3) {
4424      N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4425                                            Ops[2]);
4426    } else {
4427      N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4428    }
4429  }
4430  AllNodes.push_back(N);
4431#ifndef NDEBUG
4432  VerifySDNode(N);
4433#endif
4434  return SDValue(N, 0);
4435}
4436
4437SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
4438  return getNode(Opcode, DL, VTList, 0, 0);
4439}
4440
4441SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4442                              SDValue N1) {
4443  SDValue Ops[] = { N1 };
4444  return getNode(Opcode, DL, VTList, Ops, 1);
4445}
4446
4447SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4448                              SDValue N1, SDValue N2) {
4449  SDValue Ops[] = { N1, N2 };
4450  return getNode(Opcode, DL, VTList, Ops, 2);
4451}
4452
4453SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4454                              SDValue N1, SDValue N2, SDValue N3) {
4455  SDValue Ops[] = { N1, N2, N3 };
4456  return getNode(Opcode, DL, VTList, Ops, 3);
4457}
4458
4459SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4460                              SDValue N1, SDValue N2, SDValue N3,
4461                              SDValue N4) {
4462  SDValue Ops[] = { N1, N2, N3, N4 };
4463  return getNode(Opcode, DL, VTList, Ops, 4);
4464}
4465
4466SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4467                              SDValue N1, SDValue N2, SDValue N3,
4468                              SDValue N4, SDValue N5) {
4469  SDValue Ops[] = { N1, N2, N3, N4, N5 };
4470  return getNode(Opcode, DL, VTList, Ops, 5);
4471}
4472
4473SDVTList SelectionDAG::getVTList(EVT VT) {
4474  return makeVTList(SDNode::getValueTypeList(VT), 1);
4475}
4476
4477SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
4478  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4479       E = VTList.rend(); I != E; ++I)
4480    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
4481      return *I;
4482
4483  EVT *Array = Allocator.Allocate<EVT>(2);
4484  Array[0] = VT1;
4485  Array[1] = VT2;
4486  SDVTList Result = makeVTList(Array, 2);
4487  VTList.push_back(Result);
4488  return Result;
4489}
4490
4491SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
4492  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4493       E = VTList.rend(); I != E; ++I)
4494    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4495                          I->VTs[2] == VT3)
4496      return *I;
4497
4498  EVT *Array = Allocator.Allocate<EVT>(3);
4499  Array[0] = VT1;
4500  Array[1] = VT2;
4501  Array[2] = VT3;
4502  SDVTList Result = makeVTList(Array, 3);
4503  VTList.push_back(Result);
4504  return Result;
4505}
4506
4507SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
4508  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4509       E = VTList.rend(); I != E; ++I)
4510    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4511                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
4512      return *I;
4513
4514  EVT *Array = Allocator.Allocate<EVT>(4);
4515  Array[0] = VT1;
4516  Array[1] = VT2;
4517  Array[2] = VT3;
4518  Array[3] = VT4;
4519  SDVTList Result = makeVTList(Array, 4);
4520  VTList.push_back(Result);
4521  return Result;
4522}
4523
4524SDVTList SelectionDAG::getVTList(const EVT *VTs, unsigned NumVTs) {
4525  switch (NumVTs) {
4526    case 0: llvm_unreachable("Cannot have nodes without results!");
4527    case 1: return getVTList(VTs[0]);
4528    case 2: return getVTList(VTs[0], VTs[1]);
4529    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
4530    case 4: return getVTList(VTs[0], VTs[1], VTs[2], VTs[3]);
4531    default: break;
4532  }
4533
4534  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4535       E = VTList.rend(); I != E; ++I) {
4536    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
4537      continue;
4538
4539    bool NoMatch = false;
4540    for (unsigned i = 2; i != NumVTs; ++i)
4541      if (VTs[i] != I->VTs[i]) {
4542        NoMatch = true;
4543        break;
4544      }
4545    if (!NoMatch)
4546      return *I;
4547  }
4548
4549  EVT *Array = Allocator.Allocate<EVT>(NumVTs);
4550  std::copy(VTs, VTs+NumVTs, Array);
4551  SDVTList Result = makeVTList(Array, NumVTs);
4552  VTList.push_back(Result);
4553  return Result;
4554}
4555
4556
4557/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4558/// specified operands.  If the resultant node already exists in the DAG,
4559/// this does not modify the specified node, instead it returns the node that
4560/// already exists.  If the resultant node does not exist in the DAG, the
4561/// input node is returned.  As a degenerate case, if you specify the same
4562/// input operands as the node already has, the input node is returned.
4563SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
4564  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
4565
4566  // Check to see if there is no change.
4567  if (Op == N->getOperand(0)) return N;
4568
4569  // See if the modified node already exists.
4570  void *InsertPos = 0;
4571  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
4572    return Existing;
4573
4574  // Nope it doesn't.  Remove the node from its current place in the maps.
4575  if (InsertPos)
4576    if (!RemoveNodeFromCSEMaps(N))
4577      InsertPos = 0;
4578
4579  // Now we update the operands.
4580  N->OperandList[0].set(Op);
4581
4582  // If this gets put into a CSE map, add it.
4583  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4584  return N;
4585}
4586
4587SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
4588  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
4589
4590  // Check to see if there is no change.
4591  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
4592    return N;   // No operands changed, just return the input node.
4593
4594  // See if the modified node already exists.
4595  void *InsertPos = 0;
4596  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
4597    return Existing;
4598
4599  // Nope it doesn't.  Remove the node from its current place in the maps.
4600  if (InsertPos)
4601    if (!RemoveNodeFromCSEMaps(N))
4602      InsertPos = 0;
4603
4604  // Now we update the operands.
4605  if (N->OperandList[0] != Op1)
4606    N->OperandList[0].set(Op1);
4607  if (N->OperandList[1] != Op2)
4608    N->OperandList[1].set(Op2);
4609
4610  // If this gets put into a CSE map, add it.
4611  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4612  return N;
4613}
4614
4615SDNode *SelectionDAG::
4616UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
4617  SDValue Ops[] = { Op1, Op2, Op3 };
4618  return UpdateNodeOperands(N, Ops, 3);
4619}
4620
4621SDNode *SelectionDAG::
4622UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
4623                   SDValue Op3, SDValue Op4) {
4624  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4625  return UpdateNodeOperands(N, Ops, 4);
4626}
4627
4628SDNode *SelectionDAG::
4629UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
4630                   SDValue Op3, SDValue Op4, SDValue Op5) {
4631  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4632  return UpdateNodeOperands(N, Ops, 5);
4633}
4634
4635SDNode *SelectionDAG::
4636UpdateNodeOperands(SDNode *N, const SDValue *Ops, unsigned NumOps) {
4637  assert(N->getNumOperands() == NumOps &&
4638         "Update with wrong number of operands");
4639
4640  // Check to see if there is no change.
4641  bool AnyChange = false;
4642  for (unsigned i = 0; i != NumOps; ++i) {
4643    if (Ops[i] != N->getOperand(i)) {
4644      AnyChange = true;
4645      break;
4646    }
4647  }
4648
4649  // No operands changed, just return the input node.
4650  if (!AnyChange) return N;
4651
4652  // See if the modified node already exists.
4653  void *InsertPos = 0;
4654  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4655    return Existing;
4656
4657  // Nope it doesn't.  Remove the node from its current place in the maps.
4658  if (InsertPos)
4659    if (!RemoveNodeFromCSEMaps(N))
4660      InsertPos = 0;
4661
4662  // Now we update the operands.
4663  for (unsigned i = 0; i != NumOps; ++i)
4664    if (N->OperandList[i] != Ops[i])
4665      N->OperandList[i].set(Ops[i]);
4666
4667  // If this gets put into a CSE map, add it.
4668  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4669  return N;
4670}
4671
4672/// DropOperands - Release the operands and set this node to have
4673/// zero operands.
4674void SDNode::DropOperands() {
4675  // Unlike the code in MorphNodeTo that does this, we don't need to
4676  // watch for dead nodes here.
4677  for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4678    SDUse &Use = *I++;
4679    Use.set(SDValue());
4680  }
4681}
4682
4683/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4684/// machine opcode.
4685///
4686SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4687                                   EVT VT) {
4688  SDVTList VTs = getVTList(VT);
4689  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4690}
4691
4692SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4693                                   EVT VT, SDValue Op1) {
4694  SDVTList VTs = getVTList(VT);
4695  SDValue Ops[] = { Op1 };
4696  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4697}
4698
4699SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4700                                   EVT VT, SDValue Op1,
4701                                   SDValue Op2) {
4702  SDVTList VTs = getVTList(VT);
4703  SDValue Ops[] = { Op1, Op2 };
4704  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4705}
4706
4707SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4708                                   EVT VT, SDValue Op1,
4709                                   SDValue Op2, SDValue Op3) {
4710  SDVTList VTs = getVTList(VT);
4711  SDValue Ops[] = { Op1, Op2, Op3 };
4712  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4713}
4714
4715SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4716                                   EVT VT, const SDValue *Ops,
4717                                   unsigned NumOps) {
4718  SDVTList VTs = getVTList(VT);
4719  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4720}
4721
4722SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4723                                   EVT VT1, EVT VT2, const SDValue *Ops,
4724                                   unsigned NumOps) {
4725  SDVTList VTs = getVTList(VT1, VT2);
4726  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4727}
4728
4729SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4730                                   EVT VT1, EVT VT2) {
4731  SDVTList VTs = getVTList(VT1, VT2);
4732  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4733}
4734
4735SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4736                                   EVT VT1, EVT VT2, EVT VT3,
4737                                   const SDValue *Ops, unsigned NumOps) {
4738  SDVTList VTs = getVTList(VT1, VT2, VT3);
4739  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4740}
4741
4742SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4743                                   EVT VT1, EVT VT2, EVT VT3, EVT VT4,
4744                                   const SDValue *Ops, unsigned NumOps) {
4745  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4746  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4747}
4748
4749SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4750                                   EVT VT1, EVT VT2,
4751                                   SDValue Op1) {
4752  SDVTList VTs = getVTList(VT1, VT2);
4753  SDValue Ops[] = { Op1 };
4754  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4755}
4756
4757SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4758                                   EVT VT1, EVT VT2,
4759                                   SDValue Op1, SDValue Op2) {
4760  SDVTList VTs = getVTList(VT1, VT2);
4761  SDValue Ops[] = { Op1, Op2 };
4762  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4763}
4764
4765SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4766                                   EVT VT1, EVT VT2,
4767                                   SDValue Op1, SDValue Op2,
4768                                   SDValue Op3) {
4769  SDVTList VTs = getVTList(VT1, VT2);
4770  SDValue Ops[] = { Op1, Op2, Op3 };
4771  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4772}
4773
4774SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4775                                   EVT VT1, EVT VT2, EVT VT3,
4776                                   SDValue Op1, SDValue Op2,
4777                                   SDValue Op3) {
4778  SDVTList VTs = getVTList(VT1, VT2, VT3);
4779  SDValue Ops[] = { Op1, Op2, Op3 };
4780  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4781}
4782
4783SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4784                                   SDVTList VTs, const SDValue *Ops,
4785                                   unsigned NumOps) {
4786  N = MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4787  // Reset the NodeID to -1.
4788  N->setNodeId(-1);
4789  return N;
4790}
4791
4792/// MorphNodeTo - This *mutates* the specified node to have the specified
4793/// return type, opcode, and operands.
4794///
4795/// Note that MorphNodeTo returns the resultant node.  If there is already a
4796/// node of the specified opcode and operands, it returns that node instead of
4797/// the current one.  Note that the DebugLoc need not be the same.
4798///
4799/// Using MorphNodeTo is faster than creating a new node and swapping it in
4800/// with ReplaceAllUsesWith both because it often avoids allocating a new
4801/// node, and because it doesn't require CSE recalculation for any of
4802/// the node's users.
4803///
4804SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4805                                  SDVTList VTs, const SDValue *Ops,
4806                                  unsigned NumOps) {
4807  // If an identical node already exists, use it.
4808  void *IP = 0;
4809  if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
4810    FoldingSetNodeID ID;
4811    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4812    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4813      return ON;
4814  }
4815
4816  if (!RemoveNodeFromCSEMaps(N))
4817    IP = 0;
4818
4819  // Start the morphing.
4820  N->NodeType = Opc;
4821  N->ValueList = VTs.VTs;
4822  N->NumValues = VTs.NumVTs;
4823
4824  // Clear the operands list, updating used nodes to remove this from their
4825  // use list.  Keep track of any operands that become dead as a result.
4826  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4827  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4828    SDUse &Use = *I++;
4829    SDNode *Used = Use.getNode();
4830    Use.set(SDValue());
4831    if (Used->use_empty())
4832      DeadNodeSet.insert(Used);
4833  }
4834
4835  if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) {
4836    // Initialize the memory references information.
4837    MN->setMemRefs(0, 0);
4838    // If NumOps is larger than the # of operands we can have in a
4839    // MachineSDNode, reallocate the operand list.
4840    if (NumOps > MN->NumOperands || !MN->OperandsNeedDelete) {
4841      if (MN->OperandsNeedDelete)
4842        delete[] MN->OperandList;
4843      if (NumOps > array_lengthof(MN->LocalOperands))
4844        // We're creating a final node that will live unmorphed for the
4845        // remainder of the current SelectionDAG iteration, so we can allocate
4846        // the operands directly out of a pool with no recycling metadata.
4847        MN->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4848                         Ops, NumOps);
4849      else
4850        MN->InitOperands(MN->LocalOperands, Ops, NumOps);
4851      MN->OperandsNeedDelete = false;
4852    } else
4853      MN->InitOperands(MN->OperandList, Ops, NumOps);
4854  } else {
4855    // If NumOps is larger than the # of operands we currently have, reallocate
4856    // the operand list.
4857    if (NumOps > N->NumOperands) {
4858      if (N->OperandsNeedDelete)
4859        delete[] N->OperandList;
4860      N->InitOperands(new SDUse[NumOps], Ops, NumOps);
4861      N->OperandsNeedDelete = true;
4862    } else
4863      N->InitOperands(N->OperandList, Ops, NumOps);
4864  }
4865
4866  // Delete any nodes that are still dead after adding the uses for the
4867  // new operands.
4868  if (!DeadNodeSet.empty()) {
4869    SmallVector<SDNode *, 16> DeadNodes;
4870    for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4871         E = DeadNodeSet.end(); I != E; ++I)
4872      if ((*I)->use_empty())
4873        DeadNodes.push_back(*I);
4874    RemoveDeadNodes(DeadNodes);
4875  }
4876
4877  if (IP)
4878    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4879  return N;
4880}
4881
4882
4883/// getMachineNode - These are used for target selectors to create a new node
4884/// with specified return type(s), MachineInstr opcode, and operands.
4885///
4886/// Note that getMachineNode returns the resultant node.  If there is already a
4887/// node of the specified opcode and operands, it returns that node instead of
4888/// the current one.
4889MachineSDNode *
4890SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT) {
4891  SDVTList VTs = getVTList(VT);
4892  return getMachineNode(Opcode, dl, VTs, 0, 0);
4893}
4894
4895MachineSDNode *
4896SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT, SDValue Op1) {
4897  SDVTList VTs = getVTList(VT);
4898  SDValue Ops[] = { Op1 };
4899  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4900}
4901
4902MachineSDNode *
4903SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4904                             SDValue Op1, SDValue Op2) {
4905  SDVTList VTs = getVTList(VT);
4906  SDValue Ops[] = { Op1, Op2 };
4907  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4908}
4909
4910MachineSDNode *
4911SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4912                             SDValue Op1, SDValue Op2, SDValue Op3) {
4913  SDVTList VTs = getVTList(VT);
4914  SDValue Ops[] = { Op1, Op2, Op3 };
4915  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4916}
4917
4918MachineSDNode *
4919SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4920                             const SDValue *Ops, unsigned NumOps) {
4921  SDVTList VTs = getVTList(VT);
4922  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4923}
4924
4925MachineSDNode *
4926SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1, EVT VT2) {
4927  SDVTList VTs = getVTList(VT1, VT2);
4928  return getMachineNode(Opcode, dl, VTs, 0, 0);
4929}
4930
4931MachineSDNode *
4932SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4933                             EVT VT1, EVT VT2, SDValue Op1) {
4934  SDVTList VTs = getVTList(VT1, VT2);
4935  SDValue Ops[] = { Op1 };
4936  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4937}
4938
4939MachineSDNode *
4940SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4941                             EVT VT1, EVT VT2, SDValue Op1, SDValue Op2) {
4942  SDVTList VTs = getVTList(VT1, VT2);
4943  SDValue Ops[] = { Op1, Op2 };
4944  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4945}
4946
4947MachineSDNode *
4948SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4949                             EVT VT1, EVT VT2, SDValue Op1,
4950                             SDValue Op2, SDValue Op3) {
4951  SDVTList VTs = getVTList(VT1, VT2);
4952  SDValue Ops[] = { Op1, Op2, Op3 };
4953  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4954}
4955
4956MachineSDNode *
4957SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4958                             EVT VT1, EVT VT2,
4959                             const SDValue *Ops, unsigned NumOps) {
4960  SDVTList VTs = getVTList(VT1, VT2);
4961  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4962}
4963
4964MachineSDNode *
4965SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4966                             EVT VT1, EVT VT2, EVT VT3,
4967                             SDValue Op1, SDValue Op2) {
4968  SDVTList VTs = getVTList(VT1, VT2, VT3);
4969  SDValue Ops[] = { Op1, Op2 };
4970  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4971}
4972
4973MachineSDNode *
4974SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4975                             EVT VT1, EVT VT2, EVT VT3,
4976                             SDValue Op1, SDValue Op2, SDValue Op3) {
4977  SDVTList VTs = getVTList(VT1, VT2, VT3);
4978  SDValue Ops[] = { Op1, Op2, Op3 };
4979  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4980}
4981
4982MachineSDNode *
4983SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4984                             EVT VT1, EVT VT2, EVT VT3,
4985                             const SDValue *Ops, unsigned NumOps) {
4986  SDVTList VTs = getVTList(VT1, VT2, VT3);
4987  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4988}
4989
4990MachineSDNode *
4991SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1,
4992                             EVT VT2, EVT VT3, EVT VT4,
4993                             const SDValue *Ops, unsigned NumOps) {
4994  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4995  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4996}
4997
4998MachineSDNode *
4999SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
5000                             const std::vector<EVT> &ResultTys,
5001                             const SDValue *Ops, unsigned NumOps) {
5002  SDVTList VTs = getVTList(&ResultTys[0], ResultTys.size());
5003  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
5004}
5005
5006MachineSDNode *
5007SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc DL, SDVTList VTs,
5008                             const SDValue *Ops, unsigned NumOps) {
5009  bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
5010  MachineSDNode *N;
5011  void *IP = 0;
5012
5013  if (DoCSE) {
5014    FoldingSetNodeID ID;
5015    AddNodeIDNode(ID, ~Opcode, VTs, Ops, NumOps);
5016    IP = 0;
5017    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
5018      return cast<MachineSDNode>(E);
5019  }
5020
5021  // Allocate a new MachineSDNode.
5022  N = new (NodeAllocator) MachineSDNode(~Opcode, DL, VTs);
5023
5024  // Initialize the operands list.
5025  if (NumOps > array_lengthof(N->LocalOperands))
5026    // We're creating a final node that will live unmorphed for the
5027    // remainder of the current SelectionDAG iteration, so we can allocate
5028    // the operands directly out of a pool with no recycling metadata.
5029    N->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
5030                    Ops, NumOps);
5031  else
5032    N->InitOperands(N->LocalOperands, Ops, NumOps);
5033  N->OperandsNeedDelete = false;
5034
5035  if (DoCSE)
5036    CSEMap.InsertNode(N, IP);
5037
5038  AllNodes.push_back(N);
5039#ifndef NDEBUG
5040  VerifyMachineNode(N);
5041#endif
5042  return N;
5043}
5044
5045/// getTargetExtractSubreg - A convenience function for creating
5046/// TargetOpcode::EXTRACT_SUBREG nodes.
5047SDValue
5048SelectionDAG::getTargetExtractSubreg(int SRIdx, DebugLoc DL, EVT VT,
5049                                     SDValue Operand) {
5050  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
5051  SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
5052                                  VT, Operand, SRIdxVal);
5053  return SDValue(Subreg, 0);
5054}
5055
5056/// getTargetInsertSubreg - A convenience function for creating
5057/// TargetOpcode::INSERT_SUBREG nodes.
5058SDValue
5059SelectionDAG::getTargetInsertSubreg(int SRIdx, DebugLoc DL, EVT VT,
5060                                    SDValue Operand, SDValue Subreg) {
5061  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
5062  SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
5063                                  VT, Operand, Subreg, SRIdxVal);
5064  return SDValue(Result, 0);
5065}
5066
5067/// getNodeIfExists - Get the specified node if it's already available, or
5068/// else return NULL.
5069SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
5070                                      const SDValue *Ops, unsigned NumOps) {
5071  if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
5072    FoldingSetNodeID ID;
5073    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
5074    void *IP = 0;
5075    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
5076      return E;
5077  }
5078  return NULL;
5079}
5080
5081/// getDbgValue - Creates a SDDbgValue node.
5082///
5083SDDbgValue *
5084SelectionDAG::getDbgValue(MDNode *MDPtr, SDNode *N, unsigned R, uint64_t Off,
5085                          DebugLoc DL, unsigned O) {
5086  return new (Allocator) SDDbgValue(MDPtr, N, R, Off, DL, O);
5087}
5088
5089SDDbgValue *
5090SelectionDAG::getDbgValue(MDNode *MDPtr, const Value *C, uint64_t Off,
5091                          DebugLoc DL, unsigned O) {
5092  return new (Allocator) SDDbgValue(MDPtr, C, Off, DL, O);
5093}
5094
5095SDDbgValue *
5096SelectionDAG::getDbgValue(MDNode *MDPtr, unsigned FI, uint64_t Off,
5097                          DebugLoc DL, unsigned O) {
5098  return new (Allocator) SDDbgValue(MDPtr, FI, Off, DL, O);
5099}
5100
5101namespace {
5102
5103/// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
5104/// pointed to by a use iterator is deleted, increment the use iterator
5105/// so that it doesn't dangle.
5106///
5107/// This class also manages a "downlink" DAGUpdateListener, to forward
5108/// messages to ReplaceAllUsesWith's callers.
5109///
5110class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
5111  SelectionDAG::DAGUpdateListener *DownLink;
5112  SDNode::use_iterator &UI;
5113  SDNode::use_iterator &UE;
5114
5115  virtual void NodeDeleted(SDNode *N, SDNode *E) {
5116    // Increment the iterator as needed.
5117    while (UI != UE && N == *UI)
5118      ++UI;
5119
5120    // Then forward the message.
5121    if (DownLink) DownLink->NodeDeleted(N, E);
5122  }
5123
5124  virtual void NodeUpdated(SDNode *N) {
5125    // Just forward the message.
5126    if (DownLink) DownLink->NodeUpdated(N);
5127  }
5128
5129public:
5130  RAUWUpdateListener(SelectionDAG::DAGUpdateListener *dl,
5131                     SDNode::use_iterator &ui,
5132                     SDNode::use_iterator &ue)
5133    : DownLink(dl), UI(ui), UE(ue) {}
5134};
5135
5136}
5137
5138/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5139/// This can cause recursive merging of nodes in the DAG.
5140///
5141/// This version assumes From has a single result value.
5142///
5143void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
5144                                      DAGUpdateListener *UpdateListener) {
5145  SDNode *From = FromN.getNode();
5146  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
5147         "Cannot replace with this method!");
5148  assert(From != To.getNode() && "Cannot replace uses of with self");
5149
5150  // Iterate over all the existing uses of From. New uses will be added
5151  // to the beginning of the use list, which we avoid visiting.
5152  // This specifically avoids visiting uses of From that arise while the
5153  // replacement is happening, because any such uses would be the result
5154  // of CSE: If an existing node looks like From after one of its operands
5155  // is replaced by To, we don't want to replace of all its users with To
5156  // too. See PR3018 for more info.
5157  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5158  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5159  while (UI != UE) {
5160    SDNode *User = *UI;
5161
5162    // This node is about to morph, remove its old self from the CSE maps.
5163    RemoveNodeFromCSEMaps(User);
5164
5165    // A user can appear in a use list multiple times, and when this
5166    // happens the uses are usually next to each other in the list.
5167    // To help reduce the number of CSE recomputations, process all
5168    // the uses of this user that we can find this way.
5169    do {
5170      SDUse &Use = UI.getUse();
5171      ++UI;
5172      Use.set(To);
5173    } while (UI != UE && *UI == User);
5174
5175    // Now that we have modified User, add it back to the CSE maps.  If it
5176    // already exists there, recursively merge the results together.
5177    AddModifiedNodeToCSEMaps(User, &Listener);
5178  }
5179}
5180
5181/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5182/// This can cause recursive merging of nodes in the DAG.
5183///
5184/// This version assumes that for each value of From, there is a
5185/// corresponding value in To in the same position with the same type.
5186///
5187void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
5188                                      DAGUpdateListener *UpdateListener) {
5189#ifndef NDEBUG
5190  for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
5191    assert((!From->hasAnyUseOfValue(i) ||
5192            From->getValueType(i) == To->getValueType(i)) &&
5193           "Cannot use this version of ReplaceAllUsesWith!");
5194#endif
5195
5196  // Handle the trivial case.
5197  if (From == To)
5198    return;
5199
5200  // Iterate over just the existing users of From. See the comments in
5201  // the ReplaceAllUsesWith above.
5202  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5203  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5204  while (UI != UE) {
5205    SDNode *User = *UI;
5206
5207    // This node is about to morph, remove its old self from the CSE maps.
5208    RemoveNodeFromCSEMaps(User);
5209
5210    // A user can appear in a use list multiple times, and when this
5211    // happens the uses are usually next to each other in the list.
5212    // To help reduce the number of CSE recomputations, process all
5213    // the uses of this user that we can find this way.
5214    do {
5215      SDUse &Use = UI.getUse();
5216      ++UI;
5217      Use.setNode(To);
5218    } while (UI != UE && *UI == User);
5219
5220    // Now that we have modified User, add it back to the CSE maps.  If it
5221    // already exists there, recursively merge the results together.
5222    AddModifiedNodeToCSEMaps(User, &Listener);
5223  }
5224}
5225
5226/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5227/// This can cause recursive merging of nodes in the DAG.
5228///
5229/// This version can replace From with any result values.  To must match the
5230/// number and types of values returned by From.
5231void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
5232                                      const SDValue *To,
5233                                      DAGUpdateListener *UpdateListener) {
5234  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
5235    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
5236
5237  // Iterate over just the existing users of From. See the comments in
5238  // the ReplaceAllUsesWith above.
5239  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5240  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5241  while (UI != UE) {
5242    SDNode *User = *UI;
5243
5244    // This node is about to morph, remove its old self from the CSE maps.
5245    RemoveNodeFromCSEMaps(User);
5246
5247    // A user can appear in a use list multiple times, and when this
5248    // happens the uses are usually next to each other in the list.
5249    // To help reduce the number of CSE recomputations, process all
5250    // the uses of this user that we can find this way.
5251    do {
5252      SDUse &Use = UI.getUse();
5253      const SDValue &ToOp = To[Use.getResNo()];
5254      ++UI;
5255      Use.set(ToOp);
5256    } while (UI != UE && *UI == User);
5257
5258    // Now that we have modified User, add it back to the CSE maps.  If it
5259    // already exists there, recursively merge the results together.
5260    AddModifiedNodeToCSEMaps(User, &Listener);
5261  }
5262}
5263
5264/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
5265/// uses of other values produced by From.getNode() alone.  The Deleted
5266/// vector is handled the same way as for ReplaceAllUsesWith.
5267void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
5268                                             DAGUpdateListener *UpdateListener){
5269  // Handle the really simple, really trivial case efficiently.
5270  if (From == To) return;
5271
5272  // Handle the simple, trivial, case efficiently.
5273  if (From.getNode()->getNumValues() == 1) {
5274    ReplaceAllUsesWith(From, To, UpdateListener);
5275    return;
5276  }
5277
5278  // Iterate over just the existing users of From. See the comments in
5279  // the ReplaceAllUsesWith above.
5280  SDNode::use_iterator UI = From.getNode()->use_begin(),
5281                       UE = From.getNode()->use_end();
5282  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5283  while (UI != UE) {
5284    SDNode *User = *UI;
5285    bool UserRemovedFromCSEMaps = false;
5286
5287    // A user can appear in a use list multiple times, and when this
5288    // happens the uses are usually next to each other in the list.
5289    // To help reduce the number of CSE recomputations, process all
5290    // the uses of this user that we can find this way.
5291    do {
5292      SDUse &Use = UI.getUse();
5293
5294      // Skip uses of different values from the same node.
5295      if (Use.getResNo() != From.getResNo()) {
5296        ++UI;
5297        continue;
5298      }
5299
5300      // If this node hasn't been modified yet, it's still in the CSE maps,
5301      // so remove its old self from the CSE maps.
5302      if (!UserRemovedFromCSEMaps) {
5303        RemoveNodeFromCSEMaps(User);
5304        UserRemovedFromCSEMaps = true;
5305      }
5306
5307      ++UI;
5308      Use.set(To);
5309    } while (UI != UE && *UI == User);
5310
5311    // We are iterating over all uses of the From node, so if a use
5312    // doesn't use the specific value, no changes are made.
5313    if (!UserRemovedFromCSEMaps)
5314      continue;
5315
5316    // Now that we have modified User, add it back to the CSE maps.  If it
5317    // already exists there, recursively merge the results together.
5318    AddModifiedNodeToCSEMaps(User, &Listener);
5319  }
5320}
5321
5322namespace {
5323  /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
5324  /// to record information about a use.
5325  struct UseMemo {
5326    SDNode *User;
5327    unsigned Index;
5328    SDUse *Use;
5329  };
5330
5331  /// operator< - Sort Memos by User.
5332  bool operator<(const UseMemo &L, const UseMemo &R) {
5333    return (intptr_t)L.User < (intptr_t)R.User;
5334  }
5335}
5336
5337/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
5338/// uses of other values produced by From.getNode() alone.  The same value
5339/// may appear in both the From and To list.  The Deleted vector is
5340/// handled the same way as for ReplaceAllUsesWith.
5341void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
5342                                              const SDValue *To,
5343                                              unsigned Num,
5344                                              DAGUpdateListener *UpdateListener){
5345  // Handle the simple, trivial case efficiently.
5346  if (Num == 1)
5347    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
5348
5349  // Read up all the uses and make records of them. This helps
5350  // processing new uses that are introduced during the
5351  // replacement process.
5352  SmallVector<UseMemo, 4> Uses;
5353  for (unsigned i = 0; i != Num; ++i) {
5354    unsigned FromResNo = From[i].getResNo();
5355    SDNode *FromNode = From[i].getNode();
5356    for (SDNode::use_iterator UI = FromNode->use_begin(),
5357         E = FromNode->use_end(); UI != E; ++UI) {
5358      SDUse &Use = UI.getUse();
5359      if (Use.getResNo() == FromResNo) {
5360        UseMemo Memo = { *UI, i, &Use };
5361        Uses.push_back(Memo);
5362      }
5363    }
5364  }
5365
5366  // Sort the uses, so that all the uses from a given User are together.
5367  std::sort(Uses.begin(), Uses.end());
5368
5369  for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
5370       UseIndex != UseIndexEnd; ) {
5371    // We know that this user uses some value of From.  If it is the right
5372    // value, update it.
5373    SDNode *User = Uses[UseIndex].User;
5374
5375    // This node is about to morph, remove its old self from the CSE maps.
5376    RemoveNodeFromCSEMaps(User);
5377
5378    // The Uses array is sorted, so all the uses for a given User
5379    // are next to each other in the list.
5380    // To help reduce the number of CSE recomputations, process all
5381    // the uses of this user that we can find this way.
5382    do {
5383      unsigned i = Uses[UseIndex].Index;
5384      SDUse &Use = *Uses[UseIndex].Use;
5385      ++UseIndex;
5386
5387      Use.set(To[i]);
5388    } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
5389
5390    // Now that we have modified User, add it back to the CSE maps.  If it
5391    // already exists there, recursively merge the results together.
5392    AddModifiedNodeToCSEMaps(User, UpdateListener);
5393  }
5394}
5395
5396/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
5397/// based on their topological order. It returns the maximum id and a vector
5398/// of the SDNodes* in assigned order by reference.
5399unsigned SelectionDAG::AssignTopologicalOrder() {
5400
5401  unsigned DAGSize = 0;
5402
5403  // SortedPos tracks the progress of the algorithm. Nodes before it are
5404  // sorted, nodes after it are unsorted. When the algorithm completes
5405  // it is at the end of the list.
5406  allnodes_iterator SortedPos = allnodes_begin();
5407
5408  // Visit all the nodes. Move nodes with no operands to the front of
5409  // the list immediately. Annotate nodes that do have operands with their
5410  // operand count. Before we do this, the Node Id fields of the nodes
5411  // may contain arbitrary values. After, the Node Id fields for nodes
5412  // before SortedPos will contain the topological sort index, and the
5413  // Node Id fields for nodes At SortedPos and after will contain the
5414  // count of outstanding operands.
5415  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
5416    SDNode *N = I++;
5417    checkForCycles(N);
5418    unsigned Degree = N->getNumOperands();
5419    if (Degree == 0) {
5420      // A node with no uses, add it to the result array immediately.
5421      N->setNodeId(DAGSize++);
5422      allnodes_iterator Q = N;
5423      if (Q != SortedPos)
5424        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
5425      assert(SortedPos != AllNodes.end() && "Overran node list");
5426      ++SortedPos;
5427    } else {
5428      // Temporarily use the Node Id as scratch space for the degree count.
5429      N->setNodeId(Degree);
5430    }
5431  }
5432
5433  // Visit all the nodes. As we iterate, moves nodes into sorted order,
5434  // such that by the time the end is reached all nodes will be sorted.
5435  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
5436    SDNode *N = I;
5437    checkForCycles(N);
5438    // N is in sorted position, so all its uses have one less operand
5439    // that needs to be sorted.
5440    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5441         UI != UE; ++UI) {
5442      SDNode *P = *UI;
5443      unsigned Degree = P->getNodeId();
5444      assert(Degree != 0 && "Invalid node degree");
5445      --Degree;
5446      if (Degree == 0) {
5447        // All of P's operands are sorted, so P may sorted now.
5448        P->setNodeId(DAGSize++);
5449        if (P != SortedPos)
5450          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
5451        assert(SortedPos != AllNodes.end() && "Overran node list");
5452        ++SortedPos;
5453      } else {
5454        // Update P's outstanding operand count.
5455        P->setNodeId(Degree);
5456      }
5457    }
5458    if (I == SortedPos) {
5459#ifndef NDEBUG
5460      SDNode *S = ++I;
5461      dbgs() << "Overran sorted position:\n";
5462      S->dumprFull();
5463#endif
5464      llvm_unreachable(0);
5465    }
5466  }
5467
5468  assert(SortedPos == AllNodes.end() &&
5469         "Topological sort incomplete!");
5470  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
5471         "First node in topological sort is not the entry token!");
5472  assert(AllNodes.front().getNodeId() == 0 &&
5473         "First node in topological sort has non-zero id!");
5474  assert(AllNodes.front().getNumOperands() == 0 &&
5475         "First node in topological sort has operands!");
5476  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
5477         "Last node in topologic sort has unexpected id!");
5478  assert(AllNodes.back().use_empty() &&
5479         "Last node in topologic sort has users!");
5480  assert(DAGSize == allnodes_size() && "Node count mismatch!");
5481  return DAGSize;
5482}
5483
5484/// AssignOrdering - Assign an order to the SDNode.
5485void SelectionDAG::AssignOrdering(const SDNode *SD, unsigned Order) {
5486  assert(SD && "Trying to assign an order to a null node!");
5487  Ordering->add(SD, Order);
5488}
5489
5490/// GetOrdering - Get the order for the SDNode.
5491unsigned SelectionDAG::GetOrdering(const SDNode *SD) const {
5492  assert(SD && "Trying to get the order of a null node!");
5493  return Ordering->getOrder(SD);
5494}
5495
5496/// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
5497/// value is produced by SD.
5498void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
5499  DbgInfo->add(DB, SD, isParameter);
5500  if (SD)
5501    SD->setHasDebugValue(true);
5502}
5503
5504/// TransferDbgValues - Transfer SDDbgValues.
5505void SelectionDAG::TransferDbgValues(SDValue From, SDValue To) {
5506  if (From == To || !From.getNode()->getHasDebugValue())
5507    return;
5508  SDNode *FromNode = From.getNode();
5509  SDNode *ToNode = To.getNode();
5510  SmallVector<SDDbgValue*,2> &DVs = GetDbgValues(FromNode);
5511  DbgInfo->removeSDDbgValues(FromNode);
5512  for (SmallVector<SDDbgValue *, 2>::iterator I = DVs.begin(), E = DVs.end();
5513       I != E; ++I) {
5514    if ((*I)->getKind() == SDDbgValue::SDNODE) {
5515      AddDbgValue(*I, ToNode, false);
5516      (*I)->setSDNode(ToNode, To.getResNo());
5517    }
5518  }
5519}
5520
5521//===----------------------------------------------------------------------===//
5522//                              SDNode Class
5523//===----------------------------------------------------------------------===//
5524
5525HandleSDNode::~HandleSDNode() {
5526  DropOperands();
5527}
5528
5529GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, DebugLoc DL,
5530                                         const GlobalValue *GA,
5531                                         EVT VT, int64_t o, unsigned char TF)
5532  : SDNode(Opc, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
5533  TheGlobal = GA;
5534}
5535
5536MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT memvt,
5537                     MachineMemOperand *mmo)
5538 : SDNode(Opc, dl, VTs), MemoryVT(memvt), MMO(mmo) {
5539  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5540                                      MMO->isNonTemporal());
5541  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5542  assert(isNonTemporal() == MMO->isNonTemporal() &&
5543         "Non-temporal encoding error!");
5544  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5545}
5546
5547MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
5548                     const SDValue *Ops, unsigned NumOps, EVT memvt,
5549                     MachineMemOperand *mmo)
5550   : SDNode(Opc, dl, VTs, Ops, NumOps),
5551     MemoryVT(memvt), MMO(mmo) {
5552  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5553                                      MMO->isNonTemporal());
5554  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5555  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5556}
5557
5558/// Profile - Gather unique data for the node.
5559///
5560void SDNode::Profile(FoldingSetNodeID &ID) const {
5561  AddNodeIDNode(ID, this);
5562}
5563
5564namespace {
5565  struct EVTArray {
5566    std::vector<EVT> VTs;
5567
5568    EVTArray() {
5569      VTs.reserve(MVT::LAST_VALUETYPE);
5570      for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
5571        VTs.push_back(MVT((MVT::SimpleValueType)i));
5572    }
5573  };
5574}
5575
5576static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs;
5577static ManagedStatic<EVTArray> SimpleVTArray;
5578static ManagedStatic<sys::SmartMutex<true> > VTMutex;
5579
5580/// getValueTypeList - Return a pointer to the specified value type.
5581///
5582const EVT *SDNode::getValueTypeList(EVT VT) {
5583  if (VT.isExtended()) {
5584    sys::SmartScopedLock<true> Lock(*VTMutex);
5585    return &(*EVTs->insert(VT).first);
5586  } else {
5587    assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
5588           "Value type out of range!");
5589    return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
5590  }
5591}
5592
5593/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
5594/// indicated value.  This method ignores uses of other values defined by this
5595/// operation.
5596bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
5597  assert(Value < getNumValues() && "Bad value!");
5598
5599  // TODO: Only iterate over uses of a given value of the node
5600  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
5601    if (UI.getUse().getResNo() == Value) {
5602      if (NUses == 0)
5603        return false;
5604      --NUses;
5605    }
5606  }
5607
5608  // Found exactly the right number of uses?
5609  return NUses == 0;
5610}
5611
5612
5613/// hasAnyUseOfValue - Return true if there are any use of the indicated
5614/// value. This method ignores uses of other values defined by this operation.
5615bool SDNode::hasAnyUseOfValue(unsigned Value) const {
5616  assert(Value < getNumValues() && "Bad value!");
5617
5618  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
5619    if (UI.getUse().getResNo() == Value)
5620      return true;
5621
5622  return false;
5623}
5624
5625
5626/// isOnlyUserOf - Return true if this node is the only use of N.
5627///
5628bool SDNode::isOnlyUserOf(SDNode *N) const {
5629  bool Seen = false;
5630  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
5631    SDNode *User = *I;
5632    if (User == this)
5633      Seen = true;
5634    else
5635      return false;
5636  }
5637
5638  return Seen;
5639}
5640
5641/// isOperand - Return true if this node is an operand of N.
5642///
5643bool SDValue::isOperandOf(SDNode *N) const {
5644  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5645    if (*this == N->getOperand(i))
5646      return true;
5647  return false;
5648}
5649
5650bool SDNode::isOperandOf(SDNode *N) const {
5651  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
5652    if (this == N->OperandList[i].getNode())
5653      return true;
5654  return false;
5655}
5656
5657/// reachesChainWithoutSideEffects - Return true if this operand (which must
5658/// be a chain) reaches the specified operand without crossing any
5659/// side-effecting instructions on any chain path.  In practice, this looks
5660/// through token factors and non-volatile loads.  In order to remain efficient,
5661/// this only looks a couple of nodes in, it does not do an exhaustive search.
5662bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
5663                                               unsigned Depth) const {
5664  if (*this == Dest) return true;
5665
5666  // Don't search too deeply, we just want to be able to see through
5667  // TokenFactor's etc.
5668  if (Depth == 0) return false;
5669
5670  // If this is a token factor, all inputs to the TF happen in parallel.  If any
5671  // of the operands of the TF does not reach dest, then we cannot do the xform.
5672  if (getOpcode() == ISD::TokenFactor) {
5673    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5674      if (!getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
5675        return false;
5676    return true;
5677  }
5678
5679  // Loads don't have side effects, look through them.
5680  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
5681    if (!Ld->isVolatile())
5682      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
5683  }
5684  return false;
5685}
5686
5687/// isPredecessorOf - Return true if this node is a predecessor of N. This node
5688/// is either an operand of N or it can be reached by traversing up the operands.
5689/// NOTE: this is an expensive method. Use it carefully.
5690bool SDNode::isPredecessorOf(SDNode *N) const {
5691  SmallPtrSet<SDNode *, 32> Visited;
5692  SmallVector<SDNode *, 16> Worklist;
5693  Worklist.push_back(N);
5694
5695  do {
5696    N = Worklist.pop_back_val();
5697    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5698      SDNode *Op = N->getOperand(i).getNode();
5699      if (Op == this)
5700        return true;
5701      if (Visited.insert(Op))
5702        Worklist.push_back(Op);
5703    }
5704  } while (!Worklist.empty());
5705
5706  return false;
5707}
5708
5709uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
5710  assert(Num < NumOperands && "Invalid child # of SDNode!");
5711  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5712}
5713
5714std::string SDNode::getOperationName(const SelectionDAG *G) const {
5715  switch (getOpcode()) {
5716  default:
5717    if (getOpcode() < ISD::BUILTIN_OP_END)
5718      return "<<Unknown DAG Node>>";
5719    if (isMachineOpcode()) {
5720      if (G)
5721        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5722          if (getMachineOpcode() < TII->getNumOpcodes())
5723            return TII->get(getMachineOpcode()).getName();
5724      return "<<Unknown Machine Node #" + utostr(getOpcode()) + ">>";
5725    }
5726    if (G) {
5727      const TargetLowering &TLI = G->getTargetLoweringInfo();
5728      const char *Name = TLI.getTargetNodeName(getOpcode());
5729      if (Name) return Name;
5730      return "<<Unknown Target Node #" + utostr(getOpcode()) + ">>";
5731    }
5732    return "<<Unknown Node #" + utostr(getOpcode()) + ">>";
5733
5734#ifndef NDEBUG
5735  case ISD::DELETED_NODE:
5736    return "<<Deleted Node!>>";
5737#endif
5738  case ISD::PREFETCH:      return "Prefetch";
5739  case ISD::MEMBARRIER:    return "MemBarrier";
5740  case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
5741  case ISD::ATOMIC_SWAP:        return "AtomicSwap";
5742  case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
5743  case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
5744  case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
5745  case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
5746  case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
5747  case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
5748  case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
5749  case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
5750  case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
5751  case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
5752  case ISD::PCMARKER:      return "PCMarker";
5753  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5754  case ISD::SRCVALUE:      return "SrcValue";
5755  case ISD::MDNODE_SDNODE: return "MDNode";
5756  case ISD::EntryToken:    return "EntryToken";
5757  case ISD::TokenFactor:   return "TokenFactor";
5758  case ISD::AssertSext:    return "AssertSext";
5759  case ISD::AssertZext:    return "AssertZext";
5760
5761  case ISD::BasicBlock:    return "BasicBlock";
5762  case ISD::VALUETYPE:     return "ValueType";
5763  case ISD::Register:      return "Register";
5764
5765  case ISD::Constant:      return "Constant";
5766  case ISD::ConstantFP:    return "ConstantFP";
5767  case ISD::GlobalAddress: return "GlobalAddress";
5768  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5769  case ISD::FrameIndex:    return "FrameIndex";
5770  case ISD::JumpTable:     return "JumpTable";
5771  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5772  case ISD::RETURNADDR: return "RETURNADDR";
5773  case ISD::FRAMEADDR: return "FRAMEADDR";
5774  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5775  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5776  case ISD::LSDAADDR: return "LSDAADDR";
5777  case ISD::EHSELECTION: return "EHSELECTION";
5778  case ISD::EH_RETURN: return "EH_RETURN";
5779  case ISD::EH_SJLJ_SETJMP: return "EH_SJLJ_SETJMP";
5780  case ISD::EH_SJLJ_LONGJMP: return "EH_SJLJ_LONGJMP";
5781  case ISD::EH_SJLJ_DISPATCHSETUP: return "EH_SJLJ_DISPATCHSETUP";
5782  case ISD::ConstantPool:  return "ConstantPool";
5783  case ISD::ExternalSymbol: return "ExternalSymbol";
5784  case ISD::BlockAddress:  return "BlockAddress";
5785  case ISD::INTRINSIC_WO_CHAIN:
5786  case ISD::INTRINSIC_VOID:
5787  case ISD::INTRINSIC_W_CHAIN: {
5788    unsigned OpNo = getOpcode() == ISD::INTRINSIC_WO_CHAIN ? 0 : 1;
5789    unsigned IID = cast<ConstantSDNode>(getOperand(OpNo))->getZExtValue();
5790    if (IID < Intrinsic::num_intrinsics)
5791      return Intrinsic::getName((Intrinsic::ID)IID);
5792    else if (const TargetIntrinsicInfo *TII = G->getTarget().getIntrinsicInfo())
5793      return TII->getName(IID);
5794    llvm_unreachable("Invalid intrinsic ID");
5795  }
5796
5797  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5798  case ISD::TargetConstant: return "TargetConstant";
5799  case ISD::TargetConstantFP:return "TargetConstantFP";
5800  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5801  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5802  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5803  case ISD::TargetJumpTable:  return "TargetJumpTable";
5804  case ISD::TargetConstantPool:  return "TargetConstantPool";
5805  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5806  case ISD::TargetBlockAddress: return "TargetBlockAddress";
5807
5808  case ISD::CopyToReg:     return "CopyToReg";
5809  case ISD::CopyFromReg:   return "CopyFromReg";
5810  case ISD::UNDEF:         return "undef";
5811  case ISD::MERGE_VALUES:  return "merge_values";
5812  case ISD::INLINEASM:     return "inlineasm";
5813  case ISD::EH_LABEL:      return "eh_label";
5814  case ISD::HANDLENODE:    return "handlenode";
5815
5816  // Unary operators
5817  case ISD::FABS:   return "fabs";
5818  case ISD::FNEG:   return "fneg";
5819  case ISD::FSQRT:  return "fsqrt";
5820  case ISD::FSIN:   return "fsin";
5821  case ISD::FCOS:   return "fcos";
5822  case ISD::FTRUNC: return "ftrunc";
5823  case ISD::FFLOOR: return "ffloor";
5824  case ISD::FCEIL:  return "fceil";
5825  case ISD::FRINT:  return "frint";
5826  case ISD::FNEARBYINT: return "fnearbyint";
5827  case ISD::FEXP:   return "fexp";
5828  case ISD::FEXP2:  return "fexp2";
5829  case ISD::FLOG:   return "flog";
5830  case ISD::FLOG2:  return "flog2";
5831  case ISD::FLOG10: return "flog10";
5832
5833  // Binary operators
5834  case ISD::ADD:    return "add";
5835  case ISD::SUB:    return "sub";
5836  case ISD::MUL:    return "mul";
5837  case ISD::MULHU:  return "mulhu";
5838  case ISD::MULHS:  return "mulhs";
5839  case ISD::SDIV:   return "sdiv";
5840  case ISD::UDIV:   return "udiv";
5841  case ISD::SREM:   return "srem";
5842  case ISD::UREM:   return "urem";
5843  case ISD::SMUL_LOHI:  return "smul_lohi";
5844  case ISD::UMUL_LOHI:  return "umul_lohi";
5845  case ISD::SDIVREM:    return "sdivrem";
5846  case ISD::UDIVREM:    return "udivrem";
5847  case ISD::AND:    return "and";
5848  case ISD::OR:     return "or";
5849  case ISD::XOR:    return "xor";
5850  case ISD::SHL:    return "shl";
5851  case ISD::SRA:    return "sra";
5852  case ISD::SRL:    return "srl";
5853  case ISD::ROTL:   return "rotl";
5854  case ISD::ROTR:   return "rotr";
5855  case ISD::FADD:   return "fadd";
5856  case ISD::FSUB:   return "fsub";
5857  case ISD::FMUL:   return "fmul";
5858  case ISD::FDIV:   return "fdiv";
5859  case ISD::FREM:   return "frem";
5860  case ISD::FCOPYSIGN: return "fcopysign";
5861  case ISD::FGETSIGN:  return "fgetsign";
5862  case ISD::FPOW:   return "fpow";
5863
5864  case ISD::FPOWI:  return "fpowi";
5865  case ISD::SETCC:       return "setcc";
5866  case ISD::VSETCC:      return "vsetcc";
5867  case ISD::SELECT:      return "select";
5868  case ISD::SELECT_CC:   return "select_cc";
5869  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5870  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5871  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5872  case ISD::INSERT_SUBVECTOR:    return "insert_subvector";
5873  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5874  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5875  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5876  case ISD::CARRY_FALSE:         return "carry_false";
5877  case ISD::ADDC:        return "addc";
5878  case ISD::ADDE:        return "adde";
5879  case ISD::SADDO:       return "saddo";
5880  case ISD::UADDO:       return "uaddo";
5881  case ISD::SSUBO:       return "ssubo";
5882  case ISD::USUBO:       return "usubo";
5883  case ISD::SMULO:       return "smulo";
5884  case ISD::UMULO:       return "umulo";
5885  case ISD::SUBC:        return "subc";
5886  case ISD::SUBE:        return "sube";
5887  case ISD::SHL_PARTS:   return "shl_parts";
5888  case ISD::SRA_PARTS:   return "sra_parts";
5889  case ISD::SRL_PARTS:   return "srl_parts";
5890
5891  // Conversion operators.
5892  case ISD::SIGN_EXTEND: return "sign_extend";
5893  case ISD::ZERO_EXTEND: return "zero_extend";
5894  case ISD::ANY_EXTEND:  return "any_extend";
5895  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5896  case ISD::TRUNCATE:    return "truncate";
5897  case ISD::FP_ROUND:    return "fp_round";
5898  case ISD::FLT_ROUNDS_: return "flt_rounds";
5899  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5900  case ISD::FP_EXTEND:   return "fp_extend";
5901
5902  case ISD::SINT_TO_FP:  return "sint_to_fp";
5903  case ISD::UINT_TO_FP:  return "uint_to_fp";
5904  case ISD::FP_TO_SINT:  return "fp_to_sint";
5905  case ISD::FP_TO_UINT:  return "fp_to_uint";
5906  case ISD::BITCAST:     return "bit_convert";
5907  case ISD::FP16_TO_FP32: return "fp16_to_fp32";
5908  case ISD::FP32_TO_FP16: return "fp32_to_fp16";
5909
5910  case ISD::CONVERT_RNDSAT: {
5911    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5912    default: llvm_unreachable("Unknown cvt code!");
5913    case ISD::CVT_FF:  return "cvt_ff";
5914    case ISD::CVT_FS:  return "cvt_fs";
5915    case ISD::CVT_FU:  return "cvt_fu";
5916    case ISD::CVT_SF:  return "cvt_sf";
5917    case ISD::CVT_UF:  return "cvt_uf";
5918    case ISD::CVT_SS:  return "cvt_ss";
5919    case ISD::CVT_SU:  return "cvt_su";
5920    case ISD::CVT_US:  return "cvt_us";
5921    case ISD::CVT_UU:  return "cvt_uu";
5922    }
5923  }
5924
5925    // Control flow instructions
5926  case ISD::BR:      return "br";
5927  case ISD::BRIND:   return "brind";
5928  case ISD::BR_JT:   return "br_jt";
5929  case ISD::BRCOND:  return "brcond";
5930  case ISD::BR_CC:   return "br_cc";
5931  case ISD::CALLSEQ_START:  return "callseq_start";
5932  case ISD::CALLSEQ_END:    return "callseq_end";
5933
5934    // Other operators
5935  case ISD::LOAD:               return "load";
5936  case ISD::STORE:              return "store";
5937  case ISD::VAARG:              return "vaarg";
5938  case ISD::VACOPY:             return "vacopy";
5939  case ISD::VAEND:              return "vaend";
5940  case ISD::VASTART:            return "vastart";
5941  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5942  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5943  case ISD::BUILD_PAIR:         return "build_pair";
5944  case ISD::STACKSAVE:          return "stacksave";
5945  case ISD::STACKRESTORE:       return "stackrestore";
5946  case ISD::TRAP:               return "trap";
5947
5948  // Bit manipulation
5949  case ISD::BSWAP:   return "bswap";
5950  case ISD::CTPOP:   return "ctpop";
5951  case ISD::CTTZ:    return "cttz";
5952  case ISD::CTLZ:    return "ctlz";
5953
5954  // Trampolines
5955  case ISD::TRAMPOLINE: return "trampoline";
5956
5957  case ISD::CONDCODE:
5958    switch (cast<CondCodeSDNode>(this)->get()) {
5959    default: llvm_unreachable("Unknown setcc condition!");
5960    case ISD::SETOEQ:  return "setoeq";
5961    case ISD::SETOGT:  return "setogt";
5962    case ISD::SETOGE:  return "setoge";
5963    case ISD::SETOLT:  return "setolt";
5964    case ISD::SETOLE:  return "setole";
5965    case ISD::SETONE:  return "setone";
5966
5967    case ISD::SETO:    return "seto";
5968    case ISD::SETUO:   return "setuo";
5969    case ISD::SETUEQ:  return "setue";
5970    case ISD::SETUGT:  return "setugt";
5971    case ISD::SETUGE:  return "setuge";
5972    case ISD::SETULT:  return "setult";
5973    case ISD::SETULE:  return "setule";
5974    case ISD::SETUNE:  return "setune";
5975
5976    case ISD::SETEQ:   return "seteq";
5977    case ISD::SETGT:   return "setgt";
5978    case ISD::SETGE:   return "setge";
5979    case ISD::SETLT:   return "setlt";
5980    case ISD::SETLE:   return "setle";
5981    case ISD::SETNE:   return "setne";
5982    }
5983  }
5984}
5985
5986const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5987  switch (AM) {
5988  default:
5989    return "";
5990  case ISD::PRE_INC:
5991    return "<pre-inc>";
5992  case ISD::PRE_DEC:
5993    return "<pre-dec>";
5994  case ISD::POST_INC:
5995    return "<post-inc>";
5996  case ISD::POST_DEC:
5997    return "<post-dec>";
5998  }
5999}
6000
6001std::string ISD::ArgFlagsTy::getArgFlagsString() {
6002  std::string S = "< ";
6003
6004  if (isZExt())
6005    S += "zext ";
6006  if (isSExt())
6007    S += "sext ";
6008  if (isInReg())
6009    S += "inreg ";
6010  if (isSRet())
6011    S += "sret ";
6012  if (isByVal())
6013    S += "byval ";
6014  if (isNest())
6015    S += "nest ";
6016  if (getByValAlign())
6017    S += "byval-align:" + utostr(getByValAlign()) + " ";
6018  if (getOrigAlign())
6019    S += "orig-align:" + utostr(getOrigAlign()) + " ";
6020  if (getByValSize())
6021    S += "byval-size:" + utostr(getByValSize()) + " ";
6022  return S + ">";
6023}
6024
6025void SDNode::dump() const { dump(0); }
6026void SDNode::dump(const SelectionDAG *G) const {
6027  print(dbgs(), G);
6028  dbgs() << '\n';
6029}
6030
6031void SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
6032  OS << (void*)this << ": ";
6033
6034  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
6035    if (i) OS << ",";
6036    if (getValueType(i) == MVT::Other)
6037      OS << "ch";
6038    else
6039      OS << getValueType(i).getEVTString();
6040  }
6041  OS << " = " << getOperationName(G);
6042}
6043
6044void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
6045  if (const MachineSDNode *MN = dyn_cast<MachineSDNode>(this)) {
6046    if (!MN->memoperands_empty()) {
6047      OS << "<";
6048      OS << "Mem:";
6049      for (MachineSDNode::mmo_iterator i = MN->memoperands_begin(),
6050           e = MN->memoperands_end(); i != e; ++i) {
6051        OS << **i;
6052        if (llvm::next(i) != e)
6053          OS << " ";
6054      }
6055      OS << ">";
6056    }
6057  } else if (const ShuffleVectorSDNode *SVN =
6058               dyn_cast<ShuffleVectorSDNode>(this)) {
6059    OS << "<";
6060    for (unsigned i = 0, e = ValueList[0].getVectorNumElements(); i != e; ++i) {
6061      int Idx = SVN->getMaskElt(i);
6062      if (i) OS << ",";
6063      if (Idx < 0)
6064        OS << "u";
6065      else
6066        OS << Idx;
6067    }
6068    OS << ">";
6069  } else if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
6070    OS << '<' << CSDN->getAPIntValue() << '>';
6071  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
6072    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
6073      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
6074    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
6075      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
6076    else {
6077      OS << "<APFloat(";
6078      CSDN->getValueAPF().bitcastToAPInt().dump();
6079      OS << ")>";
6080    }
6081  } else if (const GlobalAddressSDNode *GADN =
6082             dyn_cast<GlobalAddressSDNode>(this)) {
6083    int64_t offset = GADN->getOffset();
6084    OS << '<';
6085    WriteAsOperand(OS, GADN->getGlobal());
6086    OS << '>';
6087    if (offset > 0)
6088      OS << " + " << offset;
6089    else
6090      OS << " " << offset;
6091    if (unsigned int TF = GADN->getTargetFlags())
6092      OS << " [TF=" << TF << ']';
6093  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
6094    OS << "<" << FIDN->getIndex() << ">";
6095  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
6096    OS << "<" << JTDN->getIndex() << ">";
6097    if (unsigned int TF = JTDN->getTargetFlags())
6098      OS << " [TF=" << TF << ']';
6099  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
6100    int offset = CP->getOffset();
6101    if (CP->isMachineConstantPoolEntry())
6102      OS << "<" << *CP->getMachineCPVal() << ">";
6103    else
6104      OS << "<" << *CP->getConstVal() << ">";
6105    if (offset > 0)
6106      OS << " + " << offset;
6107    else
6108      OS << " " << offset;
6109    if (unsigned int TF = CP->getTargetFlags())
6110      OS << " [TF=" << TF << ']';
6111  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
6112    OS << "<";
6113    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
6114    if (LBB)
6115      OS << LBB->getName() << " ";
6116    OS << (const void*)BBDN->getBasicBlock() << ">";
6117  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
6118    OS << ' ' << PrintReg(R->getReg(), G ? G->getTarget().getRegisterInfo() :0);
6119  } else if (const ExternalSymbolSDNode *ES =
6120             dyn_cast<ExternalSymbolSDNode>(this)) {
6121    OS << "'" << ES->getSymbol() << "'";
6122    if (unsigned int TF = ES->getTargetFlags())
6123      OS << " [TF=" << TF << ']';
6124  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
6125    if (M->getValue())
6126      OS << "<" << M->getValue() << ">";
6127    else
6128      OS << "<null>";
6129  } else if (const MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(this)) {
6130    if (MD->getMD())
6131      OS << "<" << MD->getMD() << ">";
6132    else
6133      OS << "<null>";
6134  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
6135    OS << ":" << N->getVT().getEVTString();
6136  }
6137  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
6138    OS << "<" << *LD->getMemOperand();
6139
6140    bool doExt = true;
6141    switch (LD->getExtensionType()) {
6142    default: doExt = false; break;
6143    case ISD::EXTLOAD: OS << ", anyext"; break;
6144    case ISD::SEXTLOAD: OS << ", sext"; break;
6145    case ISD::ZEXTLOAD: OS << ", zext"; break;
6146    }
6147    if (doExt)
6148      OS << " from " << LD->getMemoryVT().getEVTString();
6149
6150    const char *AM = getIndexedModeName(LD->getAddressingMode());
6151    if (*AM)
6152      OS << ", " << AM;
6153
6154    OS << ">";
6155  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
6156    OS << "<" << *ST->getMemOperand();
6157
6158    if (ST->isTruncatingStore())
6159      OS << ", trunc to " << ST->getMemoryVT().getEVTString();
6160
6161    const char *AM = getIndexedModeName(ST->getAddressingMode());
6162    if (*AM)
6163      OS << ", " << AM;
6164
6165    OS << ">";
6166  } else if (const MemSDNode* M = dyn_cast<MemSDNode>(this)) {
6167    OS << "<" << *M->getMemOperand() << ">";
6168  } else if (const BlockAddressSDNode *BA =
6169               dyn_cast<BlockAddressSDNode>(this)) {
6170    OS << "<";
6171    WriteAsOperand(OS, BA->getBlockAddress()->getFunction(), false);
6172    OS << ", ";
6173    WriteAsOperand(OS, BA->getBlockAddress()->getBasicBlock(), false);
6174    OS << ">";
6175    if (unsigned int TF = BA->getTargetFlags())
6176      OS << " [TF=" << TF << ']';
6177  }
6178
6179  if (G)
6180    if (unsigned Order = G->GetOrdering(this))
6181      OS << " [ORD=" << Order << ']';
6182
6183  if (getNodeId() != -1)
6184    OS << " [ID=" << getNodeId() << ']';
6185
6186  DebugLoc dl = getDebugLoc();
6187  if (G && !dl.isUnknown()) {
6188    DIScope
6189      Scope(dl.getScope(G->getMachineFunction().getFunction()->getContext()));
6190    OS << " dbg:";
6191    // Omit the directory, since it's usually long and uninteresting.
6192    if (Scope.Verify())
6193      OS << Scope.getFilename();
6194    else
6195      OS << "<unknown>";
6196    OS << ':' << dl.getLine();
6197    if (dl.getCol() != 0)
6198      OS << ':' << dl.getCol();
6199  }
6200}
6201
6202void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
6203  print_types(OS, G);
6204  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
6205    if (i) OS << ", "; else OS << " ";
6206    OS << (void*)getOperand(i).getNode();
6207    if (unsigned RN = getOperand(i).getResNo())
6208      OS << ":" << RN;
6209  }
6210  print_details(OS, G);
6211}
6212
6213static void printrWithDepthHelper(raw_ostream &OS, const SDNode *N,
6214                                  const SelectionDAG *G, unsigned depth,
6215                                  unsigned indent)
6216{
6217  if (depth == 0)
6218    return;
6219
6220  OS.indent(indent);
6221
6222  N->print(OS, G);
6223
6224  if (depth < 1)
6225    return;
6226
6227  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6228    OS << '\n';
6229    printrWithDepthHelper(OS, N->getOperand(i).getNode(), G, depth-1, indent+2);
6230  }
6231}
6232
6233void SDNode::printrWithDepth(raw_ostream &OS, const SelectionDAG *G,
6234                            unsigned depth) const {
6235  printrWithDepthHelper(OS, this, G, depth, 0);
6236}
6237
6238void SDNode::printrFull(raw_ostream &OS, const SelectionDAG *G) const {
6239  // Don't print impossibly deep things.
6240  printrWithDepth(OS, G, 100);
6241}
6242
6243void SDNode::dumprWithDepth(const SelectionDAG *G, unsigned depth) const {
6244  printrWithDepth(dbgs(), G, depth);
6245}
6246
6247void SDNode::dumprFull(const SelectionDAG *G) const {
6248  // Don't print impossibly deep things.
6249  dumprWithDepth(G, 100);
6250}
6251
6252static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
6253  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6254    if (N->getOperand(i).getNode()->hasOneUse())
6255      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
6256    else
6257      dbgs() << "\n" << std::string(indent+2, ' ')
6258           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
6259
6260
6261  dbgs() << "\n";
6262  dbgs().indent(indent);
6263  N->dump(G);
6264}
6265
6266SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
6267  assert(N->getNumValues() == 1 &&
6268         "Can't unroll a vector with multiple results!");
6269
6270  EVT VT = N->getValueType(0);
6271  unsigned NE = VT.getVectorNumElements();
6272  EVT EltVT = VT.getVectorElementType();
6273  DebugLoc dl = N->getDebugLoc();
6274
6275  SmallVector<SDValue, 8> Scalars;
6276  SmallVector<SDValue, 4> Operands(N->getNumOperands());
6277
6278  // If ResNE is 0, fully unroll the vector op.
6279  if (ResNE == 0)
6280    ResNE = NE;
6281  else if (NE > ResNE)
6282    NE = ResNE;
6283
6284  unsigned i;
6285  for (i= 0; i != NE; ++i) {
6286    for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
6287      SDValue Operand = N->getOperand(j);
6288      EVT OperandVT = Operand.getValueType();
6289      if (OperandVT.isVector()) {
6290        // A vector operand; extract a single element.
6291        EVT OperandEltVT = OperandVT.getVectorElementType();
6292        Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl,
6293                              OperandEltVT,
6294                              Operand,
6295                              getConstant(i, MVT::i32));
6296      } else {
6297        // A scalar operand; just use it as is.
6298        Operands[j] = Operand;
6299      }
6300    }
6301
6302    switch (N->getOpcode()) {
6303    default:
6304      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6305                                &Operands[0], Operands.size()));
6306      break;
6307    case ISD::SHL:
6308    case ISD::SRA:
6309    case ISD::SRL:
6310    case ISD::ROTL:
6311    case ISD::ROTR:
6312      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
6313                                getShiftAmountOperand(Operands[1])));
6314      break;
6315    case ISD::SIGN_EXTEND_INREG:
6316    case ISD::FP_ROUND_INREG: {
6317      EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
6318      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6319                                Operands[0],
6320                                getValueType(ExtVT)));
6321    }
6322    }
6323  }
6324
6325  for (; i < ResNE; ++i)
6326    Scalars.push_back(getUNDEF(EltVT));
6327
6328  return getNode(ISD::BUILD_VECTOR, dl,
6329                 EVT::getVectorVT(*getContext(), EltVT, ResNE),
6330                 &Scalars[0], Scalars.size());
6331}
6332
6333
6334/// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
6335/// location that is 'Dist' units away from the location that the 'Base' load
6336/// is loading from.
6337bool SelectionDAG::isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base,
6338                                     unsigned Bytes, int Dist) const {
6339  if (LD->getChain() != Base->getChain())
6340    return false;
6341  EVT VT = LD->getValueType(0);
6342  if (VT.getSizeInBits() / 8 != Bytes)
6343    return false;
6344
6345  SDValue Loc = LD->getOperand(1);
6346  SDValue BaseLoc = Base->getOperand(1);
6347  if (Loc.getOpcode() == ISD::FrameIndex) {
6348    if (BaseLoc.getOpcode() != ISD::FrameIndex)
6349      return false;
6350    const MachineFrameInfo *MFI = getMachineFunction().getFrameInfo();
6351    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
6352    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
6353    int FS  = MFI->getObjectSize(FI);
6354    int BFS = MFI->getObjectSize(BFI);
6355    if (FS != BFS || FS != (int)Bytes) return false;
6356    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
6357  }
6358
6359  // Handle X+C
6360  if (isBaseWithConstantOffset(Loc) && Loc.getOperand(0) == BaseLoc &&
6361      cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue() == Dist*Bytes)
6362    return true;
6363
6364  const GlobalValue *GV1 = NULL;
6365  const GlobalValue *GV2 = NULL;
6366  int64_t Offset1 = 0;
6367  int64_t Offset2 = 0;
6368  bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
6369  bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
6370  if (isGA1 && isGA2 && GV1 == GV2)
6371    return Offset1 == (Offset2 + Dist*Bytes);
6372  return false;
6373}
6374
6375
6376/// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
6377/// it cannot be inferred.
6378unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
6379  // If this is a GlobalAddress + cst, return the alignment.
6380  const GlobalValue *GV;
6381  int64_t GVOffset = 0;
6382  if (TLI.isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
6383    // If GV has specified alignment, then use it. Otherwise, use the preferred
6384    // alignment.
6385    unsigned Align = GV->getAlignment();
6386    if (!Align) {
6387      if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) {
6388        if (GVar->hasInitializer()) {
6389          const TargetData *TD = TLI.getTargetData();
6390          Align = TD->getPreferredAlignment(GVar);
6391        }
6392      }
6393    }
6394    return MinAlign(Align, GVOffset);
6395  }
6396
6397  // If this is a direct reference to a stack slot, use information about the
6398  // stack slot's alignment.
6399  int FrameIdx = 1 << 31;
6400  int64_t FrameOffset = 0;
6401  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
6402    FrameIdx = FI->getIndex();
6403  } else if (isBaseWithConstantOffset(Ptr) &&
6404             isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
6405    // Handle FI+Cst
6406    FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6407    FrameOffset = Ptr.getConstantOperandVal(1);
6408  }
6409
6410  if (FrameIdx != (1 << 31)) {
6411    const MachineFrameInfo &MFI = *getMachineFunction().getFrameInfo();
6412    unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
6413                                    FrameOffset);
6414    return FIInfoAlign;
6415  }
6416
6417  return 0;
6418}
6419
6420void SelectionDAG::dump() const {
6421  dbgs() << "SelectionDAG has " << AllNodes.size() << " nodes:";
6422
6423  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
6424       I != E; ++I) {
6425    const SDNode *N = I;
6426    if (!N->hasOneUse() && N != getRoot().getNode())
6427      DumpNodes(N, 2, this);
6428  }
6429
6430  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
6431
6432  dbgs() << "\n\n";
6433}
6434
6435void SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
6436  print_types(OS, G);
6437  print_details(OS, G);
6438}
6439
6440typedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
6441static void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
6442                       const SelectionDAG *G, VisitedSDNodeSet &once) {
6443  if (!once.insert(N))          // If we've been here before, return now.
6444    return;
6445
6446  // Dump the current SDNode, but don't end the line yet.
6447  OS << std::string(indent, ' ');
6448  N->printr(OS, G);
6449
6450  // Having printed this SDNode, walk the children:
6451  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6452    const SDNode *child = N->getOperand(i).getNode();
6453
6454    if (i) OS << ",";
6455    OS << " ";
6456
6457    if (child->getNumOperands() == 0) {
6458      // This child has no grandchildren; print it inline right here.
6459      child->printr(OS, G);
6460      once.insert(child);
6461    } else {         // Just the address. FIXME: also print the child's opcode.
6462      OS << (void*)child;
6463      if (unsigned RN = N->getOperand(i).getResNo())
6464        OS << ":" << RN;
6465    }
6466  }
6467
6468  OS << "\n";
6469
6470  // Dump children that have grandchildren on their own line(s).
6471  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6472    const SDNode *child = N->getOperand(i).getNode();
6473    DumpNodesr(OS, child, indent+2, G, once);
6474  }
6475}
6476
6477void SDNode::dumpr() const {
6478  VisitedSDNodeSet once;
6479  DumpNodesr(dbgs(), this, 0, 0, once);
6480}
6481
6482void SDNode::dumpr(const SelectionDAG *G) const {
6483  VisitedSDNodeSet once;
6484  DumpNodesr(dbgs(), this, 0, G, once);
6485}
6486
6487
6488// getAddressSpace - Return the address space this GlobalAddress belongs to.
6489unsigned GlobalAddressSDNode::getAddressSpace() const {
6490  return getGlobal()->getType()->getAddressSpace();
6491}
6492
6493
6494const Type *ConstantPoolSDNode::getType() const {
6495  if (isMachineConstantPoolEntry())
6496    return Val.MachineCPVal->getType();
6497  return Val.ConstVal->getType();
6498}
6499
6500bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
6501                                        APInt &SplatUndef,
6502                                        unsigned &SplatBitSize,
6503                                        bool &HasAnyUndefs,
6504                                        unsigned MinSplatBits,
6505                                        bool isBigEndian) {
6506  EVT VT = getValueType(0);
6507  assert(VT.isVector() && "Expected a vector type");
6508  unsigned sz = VT.getSizeInBits();
6509  if (MinSplatBits > sz)
6510    return false;
6511
6512  SplatValue = APInt(sz, 0);
6513  SplatUndef = APInt(sz, 0);
6514
6515  // Get the bits.  Bits with undefined values (when the corresponding element
6516  // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
6517  // in SplatValue.  If any of the values are not constant, give up and return
6518  // false.
6519  unsigned int nOps = getNumOperands();
6520  assert(nOps > 0 && "isConstantSplat has 0-size build vector");
6521  unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
6522
6523  for (unsigned j = 0; j < nOps; ++j) {
6524    unsigned i = isBigEndian ? nOps-1-j : j;
6525    SDValue OpVal = getOperand(i);
6526    unsigned BitPos = j * EltBitSize;
6527
6528    if (OpVal.getOpcode() == ISD::UNDEF)
6529      SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos + EltBitSize);
6530    else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
6531      SplatValue |= CN->getAPIntValue().zextOrTrunc(EltBitSize).
6532                    zextOrTrunc(sz) << BitPos;
6533    else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
6534      SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
6535     else
6536      return false;
6537  }
6538
6539  // The build_vector is all constants or undefs.  Find the smallest element
6540  // size that splats the vector.
6541
6542  HasAnyUndefs = (SplatUndef != 0);
6543  while (sz > 8) {
6544
6545    unsigned HalfSize = sz / 2;
6546    APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize);
6547    APInt LowValue = SplatValue.trunc(HalfSize);
6548    APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize);
6549    APInt LowUndef = SplatUndef.trunc(HalfSize);
6550
6551    // If the two halves do not match (ignoring undef bits), stop here.
6552    if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
6553        MinSplatBits > HalfSize)
6554      break;
6555
6556    SplatValue = HighValue | LowValue;
6557    SplatUndef = HighUndef & LowUndef;
6558
6559    sz = HalfSize;
6560  }
6561
6562  SplatBitSize = sz;
6563  return true;
6564}
6565
6566bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
6567  // Find the first non-undef value in the shuffle mask.
6568  unsigned i, e;
6569  for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
6570    /* search */;
6571
6572  assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
6573
6574  // Make sure all remaining elements are either undef or the same as the first
6575  // non-undef value.
6576  for (int Idx = Mask[i]; i != e; ++i)
6577    if (Mask[i] >= 0 && Mask[i] != Idx)
6578      return false;
6579  return true;
6580}
6581
6582#ifdef XDEBUG
6583static void checkForCyclesHelper(const SDNode *N,
6584                                 SmallPtrSet<const SDNode*, 32> &Visited,
6585                                 SmallPtrSet<const SDNode*, 32> &Checked) {
6586  // If this node has already been checked, don't check it again.
6587  if (Checked.count(N))
6588    return;
6589
6590  // If a node has already been visited on this depth-first walk, reject it as
6591  // a cycle.
6592  if (!Visited.insert(N)) {
6593    dbgs() << "Offending node:\n";
6594    N->dumprFull();
6595    errs() << "Detected cycle in SelectionDAG\n";
6596    abort();
6597  }
6598
6599  for(unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6600    checkForCyclesHelper(N->getOperand(i).getNode(), Visited, Checked);
6601
6602  Checked.insert(N);
6603  Visited.erase(N);
6604}
6605#endif
6606
6607void llvm::checkForCycles(const llvm::SDNode *N) {
6608#ifdef XDEBUG
6609  assert(N && "Checking nonexistant SDNode");
6610  SmallPtrSet<const SDNode*, 32> visited;
6611  SmallPtrSet<const SDNode*, 32> checked;
6612  checkForCyclesHelper(N, visited, checked);
6613#endif
6614}
6615
6616void llvm::checkForCycles(const llvm::SelectionDAG *DAG) {
6617  checkForCycles(DAG->getRoot().getNode());
6618}
6619