1//===- FuzzerTraceState.cpp - Trace-based fuzzer mutator ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9// This file implements a mutation algorithm based on instruction traces and
10// on taint analysis feedback from DFSan.
11//
12// Instruction traces are special hooks inserted by the compiler around
13// interesting instructions. Currently supported traces:
14//   * __sanitizer_cov_trace_cmp -- inserted before every ICMP instruction,
15//    receives the type, size and arguments of ICMP.
16//
17// Every time a traced event is intercepted we analyse the data involved
18// in the event and suggest a mutation for future executions.
19// For example if 4 bytes of data that derive from input bytes {4,5,6,7}
20// are compared with a constant 12345,
21// we try to insert 12345, 12344, 12346 into bytes
22// {4,5,6,7} of the next fuzzed inputs.
23//
24// The fuzzer can work only with the traces, or with both traces and DFSan.
25//
26// DataFlowSanitizer (DFSan) is a tool for
27// generalised dynamic data flow (taint) analysis:
28// http://clang.llvm.org/docs/DataFlowSanitizer.html .
29//
30// The approach with DFSan-based fuzzing has some similarity to
31// "Taint-based Directed Whitebox Fuzzing"
32// by Vijay Ganesh & Tim Leek & Martin Rinard:
33// http://dspace.mit.edu/openaccess-disseminate/1721.1/59320,
34// but it uses a full blown LLVM IR taint analysis and separate instrumentation
35// to analyze all of the "attack points" at once.
36//
37// Workflow with DFSan:
38//   * lib/Fuzzer/Fuzzer*.cpp is compiled w/o any instrumentation.
39//   * The code under test is compiled with DFSan *and* with instruction traces.
40//   * Every call to HOOK(a,b) is replaced by DFSan with
41//     __dfsw_HOOK(a, b, label(a), label(b)) so that __dfsw_HOOK
42//     gets all the taint labels for the arguments.
43//   * At the Fuzzer startup we assign a unique DFSan label
44//     to every byte of the input string (Fuzzer::CurrentUnitData) so that
45//     for any chunk of data we know which input bytes it has derived from.
46//   * The __dfsw_* functions (implemented in this file) record the
47//     parameters (i.e. the application data and the corresponding taint labels)
48//     in a global state.
49//
50// Parts of this code will not function when DFSan is not linked in.
51// Instead of using ifdefs and thus requiring a separate build of lib/Fuzzer
52// we redeclare the dfsan_* interface functions as weak and check if they
53// are nullptr before calling.
54// If this approach proves to be useful we may add attribute(weak) to the
55// dfsan declarations in dfsan_interface.h
56//
57// This module is in the "proof of concept" stage.
58// It is capable of solving only the simplest puzzles
59// like test/dfsan/DFSanSimpleCmpTest.cpp.
60//===----------------------------------------------------------------------===//
61
62/* Example of manual usage (-fsanitize=dataflow is optional):
63(
64  cd $LLVM/lib/Fuzzer/
65  clang  -fPIC -c -g -O2 -std=c++11 Fuzzer*.cpp
66  clang++ -O0 -std=c++11 -fsanitize-coverage=edge,trace-cmp \
67    -fsanitize=dataflow \
68    test/SimpleCmpTest.cpp Fuzzer*.o
69  ./a.out -use_traces=1
70)
71*/
72
73#include "FuzzerDFSan.h"
74#include "FuzzerInternal.h"
75
76#include <algorithm>
77#include <cstring>
78#include <thread>
79#include <map>
80
81#if !LLVM_FUZZER_SUPPORTS_DFSAN
82// Stubs for dfsan for platforms where dfsan does not exist and weak
83// functions don't work.
84extern "C" {
85dfsan_label dfsan_create_label(const char *desc, void *userdata) { return 0; }
86void dfsan_set_label(dfsan_label label, void *addr, size_t size) {}
87void dfsan_add_label(dfsan_label label, void *addr, size_t size) {}
88const struct dfsan_label_info *dfsan_get_label_info(dfsan_label label) {
89  return nullptr;
90}
91dfsan_label dfsan_read_label(const void *addr, size_t size) { return 0; }
92}  // extern "C"
93#endif  // !LLVM_FUZZER_SUPPORTS_DFSAN
94
95namespace fuzzer {
96
97// These values are copied from include/llvm/IR/InstrTypes.h.
98// We do not include the LLVM headers here to remain independent.
99// If these values ever change, an assertion in ComputeCmp will fail.
100enum Predicate {
101  ICMP_EQ = 32,  ///< equal
102  ICMP_NE = 33,  ///< not equal
103  ICMP_UGT = 34, ///< unsigned greater than
104  ICMP_UGE = 35, ///< unsigned greater or equal
105  ICMP_ULT = 36, ///< unsigned less than
106  ICMP_ULE = 37, ///< unsigned less or equal
107  ICMP_SGT = 38, ///< signed greater than
108  ICMP_SGE = 39, ///< signed greater or equal
109  ICMP_SLT = 40, ///< signed less than
110  ICMP_SLE = 41, ///< signed less or equal
111};
112
113template <class U, class S>
114bool ComputeCmp(size_t CmpType, U Arg1, U Arg2) {
115  switch(CmpType) {
116    case ICMP_EQ : return Arg1 == Arg2;
117    case ICMP_NE : return Arg1 != Arg2;
118    case ICMP_UGT: return Arg1 > Arg2;
119    case ICMP_UGE: return Arg1 >= Arg2;
120    case ICMP_ULT: return Arg1 < Arg2;
121    case ICMP_ULE: return Arg1 <= Arg2;
122    case ICMP_SGT: return (S)Arg1 > (S)Arg2;
123    case ICMP_SGE: return (S)Arg1 >= (S)Arg2;
124    case ICMP_SLT: return (S)Arg1 < (S)Arg2;
125    case ICMP_SLE: return (S)Arg1 <= (S)Arg2;
126    default: assert(0 && "unsupported CmpType");
127  }
128  return false;
129}
130
131static bool ComputeCmp(size_t CmpSize, size_t CmpType, uint64_t Arg1,
132                       uint64_t Arg2) {
133  if (CmpSize == 8) return ComputeCmp<uint64_t, int64_t>(CmpType, Arg1, Arg2);
134  if (CmpSize == 4) return ComputeCmp<uint32_t, int32_t>(CmpType, Arg1, Arg2);
135  if (CmpSize == 2) return ComputeCmp<uint16_t, int16_t>(CmpType, Arg1, Arg2);
136  if (CmpSize == 1) return ComputeCmp<uint8_t, int8_t>(CmpType, Arg1, Arg2);
137  // Other size, ==
138  if (CmpType == ICMP_EQ) return Arg1 == Arg2;
139  // assert(0 && "unsupported cmp and type size combination");
140  return true;
141}
142
143// As a simplification we use the range of input bytes instead of a set of input
144// bytes.
145struct LabelRange {
146  uint16_t Beg, End;  // Range is [Beg, End), thus Beg==End is an empty range.
147
148  LabelRange(uint16_t Beg = 0, uint16_t End = 0) : Beg(Beg), End(End) {}
149
150  static LabelRange Join(LabelRange LR1, LabelRange LR2) {
151    if (LR1.Beg == LR1.End) return LR2;
152    if (LR2.Beg == LR2.End) return LR1;
153    return {std::min(LR1.Beg, LR2.Beg), std::max(LR1.End, LR2.End)};
154  }
155  LabelRange &Join(LabelRange LR) {
156    return *this = Join(*this, LR);
157  }
158  static LabelRange Singleton(const dfsan_label_info *LI) {
159    uint16_t Idx = (uint16_t)(uintptr_t)LI->userdata;
160    assert(Idx > 0);
161    return {(uint16_t)(Idx - 1), Idx};
162  }
163};
164
165// For now, very simple: put Size bytes of Data at position Pos.
166struct TraceBasedMutation {
167  uint32_t Pos;
168  Word W;
169};
170
171// Declared as static globals for faster checks inside the hooks.
172static bool RecordingTraces = false;
173static bool RecordingMemcmp = false;
174
175class TraceState {
176public:
177  TraceState(MutationDispatcher &MD, const FuzzingOptions &Options,
178             const Fuzzer *F)
179      : MD(MD), Options(Options), F(F) {}
180
181  LabelRange GetLabelRange(dfsan_label L);
182  void DFSanCmpCallback(uintptr_t PC, size_t CmpSize, size_t CmpType,
183                        uint64_t Arg1, uint64_t Arg2, dfsan_label L1,
184                        dfsan_label L2);
185  void DFSanMemcmpCallback(size_t CmpSize, const uint8_t *Data1,
186                           const uint8_t *Data2, dfsan_label L1,
187                           dfsan_label L2);
188  void DFSanSwitchCallback(uint64_t PC, size_t ValSizeInBits, uint64_t Val,
189                           size_t NumCases, uint64_t *Cases, dfsan_label L);
190  void TraceCmpCallback(uintptr_t PC, size_t CmpSize, size_t CmpType,
191                        uint64_t Arg1, uint64_t Arg2);
192  void TraceMemcmpCallback(size_t CmpSize, const uint8_t *Data1,
193                           const uint8_t *Data2);
194
195  void TraceSwitchCallback(uintptr_t PC, size_t ValSizeInBits, uint64_t Val,
196                           size_t NumCases, uint64_t *Cases);
197  int TryToAddDesiredData(uint64_t PresentData, uint64_t DesiredData,
198                          size_t DataSize);
199  int TryToAddDesiredData(const uint8_t *PresentData,
200                          const uint8_t *DesiredData, size_t DataSize);
201
202  void StartTraceRecording() {
203    if (!Options.UseTraces && !Options.UseMemcmp)
204      return;
205    RecordingTraces = Options.UseTraces;
206    RecordingMemcmp = Options.UseMemcmp;
207    NumMutations = 0;
208    MD.ClearAutoDictionary();
209  }
210
211  void StopTraceRecording() {
212    if (!RecordingTraces && !RecordingMemcmp)
213      return;
214    RecordingTraces = false;
215    RecordingMemcmp = false;
216    for (size_t i = 0; i < NumMutations; i++) {
217      auto &M = Mutations[i];
218      if (Options.Verbosity >= 2) {
219        AutoDictUnitCounts[M.W]++;
220        AutoDictAdds++;
221        if ((AutoDictAdds & (AutoDictAdds - 1)) == 0) {
222          typedef std::pair<size_t, Word> CU;
223          std::vector<CU> CountedUnits;
224          for (auto &I : AutoDictUnitCounts)
225            CountedUnits.push_back(std::make_pair(I.second, I.first));
226          std::sort(CountedUnits.begin(), CountedUnits.end(),
227                    [](const CU &a, const CU &b) { return a.first > b.first; });
228          Printf("AutoDict:\n");
229          for (auto &I : CountedUnits) {
230            Printf("   %zd ", I.first);
231            PrintASCII(I.second);
232            Printf("\n");
233          }
234        }
235      }
236      MD.AddWordToAutoDictionary(M.W, M.Pos);
237    }
238  }
239
240  void AddMutation(uint32_t Pos, uint32_t Size, const uint8_t *Data) {
241    if (NumMutations >= kMaxMutations) return;
242    auto &M = Mutations[NumMutations++];
243    M.Pos = Pos;
244    M.W.Set(Data, Size);
245  }
246
247  void AddMutation(uint32_t Pos, uint32_t Size, uint64_t Data) {
248    assert(Size <= sizeof(Data));
249    AddMutation(Pos, Size, reinterpret_cast<uint8_t*>(&Data));
250  }
251
252  void EnsureDfsanLabels(size_t Size) {
253    for (; LastDfsanLabel < Size; LastDfsanLabel++) {
254      dfsan_label L = dfsan_create_label("input", (void *)(LastDfsanLabel + 1));
255      // We assume that no one else has called dfsan_create_label before.
256      if (L != LastDfsanLabel + 1) {
257        Printf("DFSan labels are not starting from 1, exiting\n");
258        exit(1);
259      }
260    }
261  }
262
263 private:
264  bool IsTwoByteData(uint64_t Data) {
265    int64_t Signed = static_cast<int64_t>(Data);
266    Signed >>= 16;
267    return Signed == 0 || Signed == -1L;
268  }
269
270  // We don't want to create too many trace-based mutations as it is both
271  // expensive and useless. So after some number of mutations is collected,
272  // start rejecting some of them. The more there are mutations the more we
273  // reject.
274  bool WantToHandleOneMoreMutation() {
275    const size_t FirstN = 64;
276    // Gladly handle first N mutations.
277    if (NumMutations <= FirstN) return true;
278    size_t Diff = NumMutations - FirstN;
279    size_t DiffLog = sizeof(long) * 8 - __builtin_clzl((long)Diff);
280    assert(DiffLog > 0 && DiffLog < 64);
281    bool WantThisOne = MD.GetRand()(1 << DiffLog) == 0;  // 1 out of DiffLog.
282    return WantThisOne;
283  }
284
285  static const size_t kMaxMutations = 1 << 16;
286  size_t NumMutations;
287  TraceBasedMutation Mutations[kMaxMutations];
288  LabelRange LabelRanges[1 << (sizeof(dfsan_label) * 8)];
289  size_t LastDfsanLabel = 0;
290  MutationDispatcher &MD;
291  const FuzzingOptions Options;
292  const Fuzzer *F;
293  std::map<Word, size_t> AutoDictUnitCounts;
294  size_t AutoDictAdds = 0;
295};
296
297
298LabelRange TraceState::GetLabelRange(dfsan_label L) {
299  LabelRange &LR = LabelRanges[L];
300  if (LR.Beg < LR.End || L == 0)
301    return LR;
302  const dfsan_label_info *LI = dfsan_get_label_info(L);
303  if (LI->l1 || LI->l2)
304    return LR = LabelRange::Join(GetLabelRange(LI->l1), GetLabelRange(LI->l2));
305  return LR = LabelRange::Singleton(LI);
306}
307
308void TraceState::DFSanCmpCallback(uintptr_t PC, size_t CmpSize, size_t CmpType,
309                                  uint64_t Arg1, uint64_t Arg2, dfsan_label L1,
310                                  dfsan_label L2) {
311  assert(ReallyHaveDFSan());
312  if (!RecordingTraces || !F->InFuzzingThread()) return;
313  if (L1 == 0 && L2 == 0)
314    return;  // Not actionable.
315  if (L1 != 0 && L2 != 0)
316    return;  // Probably still actionable.
317  bool Res = ComputeCmp(CmpSize, CmpType, Arg1, Arg2);
318  uint64_t Data = L1 ? Arg2 : Arg1;
319  LabelRange LR = L1 ? GetLabelRange(L1) : GetLabelRange(L2);
320
321  for (size_t Pos = LR.Beg; Pos + CmpSize <= LR.End; Pos++) {
322    AddMutation(Pos, CmpSize, Data);
323    AddMutation(Pos, CmpSize, Data + 1);
324    AddMutation(Pos, CmpSize, Data - 1);
325  }
326
327  if (CmpSize > (size_t)(LR.End - LR.Beg))
328    AddMutation(LR.Beg, (unsigned)(LR.End - LR.Beg), Data);
329
330
331  if (Options.Verbosity >= 3)
332    Printf("DFSanCmpCallback: PC %lx S %zd T %zd A1 %llx A2 %llx R %d L1 %d L2 "
333           "%d MU %zd\n",
334           PC, CmpSize, CmpType, Arg1, Arg2, Res, L1, L2, NumMutations);
335}
336
337void TraceState::DFSanMemcmpCallback(size_t CmpSize, const uint8_t *Data1,
338                                     const uint8_t *Data2, dfsan_label L1,
339                                     dfsan_label L2) {
340
341  assert(ReallyHaveDFSan());
342  if (!RecordingMemcmp || !F->InFuzzingThread()) return;
343  if (L1 == 0 && L2 == 0)
344    return;  // Not actionable.
345  if (L1 != 0 && L2 != 0)
346    return;  // Probably still actionable.
347
348  const uint8_t *Data = L1 ? Data2 : Data1;
349  LabelRange LR = L1 ? GetLabelRange(L1) : GetLabelRange(L2);
350  for (size_t Pos = LR.Beg; Pos + CmpSize <= LR.End; Pos++) {
351    AddMutation(Pos, CmpSize, Data);
352    if (Options.Verbosity >= 3)
353      Printf("DFSanMemcmpCallback: Pos %d Size %d\n", Pos, CmpSize);
354  }
355}
356
357void TraceState::DFSanSwitchCallback(uint64_t PC, size_t ValSizeInBits,
358                                     uint64_t Val, size_t NumCases,
359                                     uint64_t *Cases, dfsan_label L) {
360  assert(ReallyHaveDFSan());
361  if (!RecordingTraces || !F->InFuzzingThread()) return;
362  if (!L) return;  // Not actionable.
363  LabelRange LR = GetLabelRange(L);
364  size_t ValSize = ValSizeInBits / 8;
365  bool TryShort = IsTwoByteData(Val);
366  for (size_t i = 0; i < NumCases; i++)
367    TryShort &= IsTwoByteData(Cases[i]);
368
369  for (size_t Pos = LR.Beg; Pos + ValSize <= LR.End; Pos++)
370    for (size_t i = 0; i < NumCases; i++)
371      AddMutation(Pos, ValSize, Cases[i]);
372
373  if (TryShort)
374    for (size_t Pos = LR.Beg; Pos + 2 <= LR.End; Pos++)
375      for (size_t i = 0; i < NumCases; i++)
376        AddMutation(Pos, 2, Cases[i]);
377
378  if (Options.Verbosity >= 3)
379    Printf("DFSanSwitchCallback: PC %lx Val %zd SZ %zd # %zd L %d: {%d, %d} "
380           "TryShort %d\n",
381           PC, Val, ValSize, NumCases, L, LR.Beg, LR.End, TryShort);
382}
383
384int TraceState::TryToAddDesiredData(uint64_t PresentData, uint64_t DesiredData,
385                                    size_t DataSize) {
386  if (NumMutations >= kMaxMutations || !WantToHandleOneMoreMutation()) return 0;
387  const uint8_t *UnitData;
388  auto UnitSize = F->GetCurrentUnitInFuzzingThead(&UnitData);
389  int Res = 0;
390  const uint8_t *Beg = UnitData;
391  const uint8_t *End = Beg + UnitSize;
392  for (const uint8_t *Cur = Beg; Cur < End; Cur++) {
393    Cur = (uint8_t *)memmem(Cur, End - Cur, &PresentData, DataSize);
394    if (!Cur)
395      break;
396    size_t Pos = Cur - Beg;
397    assert(Pos < UnitSize);
398    AddMutation(Pos, DataSize, DesiredData);
399    AddMutation(Pos, DataSize, DesiredData + 1);
400    AddMutation(Pos, DataSize, DesiredData - 1);
401    Res++;
402  }
403  return Res;
404}
405
406int TraceState::TryToAddDesiredData(const uint8_t *PresentData,
407                                    const uint8_t *DesiredData,
408                                    size_t DataSize) {
409  if (NumMutations >= kMaxMutations || !WantToHandleOneMoreMutation()) return 0;
410  const uint8_t *UnitData;
411  auto UnitSize = F->GetCurrentUnitInFuzzingThead(&UnitData);
412  int Res = 0;
413  const uint8_t *Beg = UnitData;
414  const uint8_t *End = Beg + UnitSize;
415  for (const uint8_t *Cur = Beg; Cur < End; Cur++) {
416    Cur = (uint8_t *)memmem(Cur, End - Cur, PresentData, DataSize);
417    if (!Cur)
418      break;
419    size_t Pos = Cur - Beg;
420    assert(Pos < UnitSize);
421    AddMutation(Pos, DataSize, DesiredData);
422    Res++;
423  }
424  return Res;
425}
426
427void TraceState::TraceCmpCallback(uintptr_t PC, size_t CmpSize, size_t CmpType,
428                                  uint64_t Arg1, uint64_t Arg2) {
429  if (!RecordingTraces || !F->InFuzzingThread()) return;
430  if ((CmpType == ICMP_EQ || CmpType == ICMP_NE) && Arg1 == Arg2)
431    return;  // No reason to mutate.
432  int Added = 0;
433  Added += TryToAddDesiredData(Arg1, Arg2, CmpSize);
434  Added += TryToAddDesiredData(Arg2, Arg1, CmpSize);
435  if (!Added && CmpSize == 4 && IsTwoByteData(Arg1) && IsTwoByteData(Arg2)) {
436    Added += TryToAddDesiredData(Arg1, Arg2, 2);
437    Added += TryToAddDesiredData(Arg2, Arg1, 2);
438  }
439  if (Options.Verbosity >= 3 && Added)
440    Printf("TraceCmp %zd/%zd: %p %zd %zd\n", CmpSize, CmpType, PC, Arg1, Arg2);
441}
442
443void TraceState::TraceMemcmpCallback(size_t CmpSize, const uint8_t *Data1,
444                                     const uint8_t *Data2) {
445  if (!RecordingMemcmp || !F->InFuzzingThread()) return;
446  CmpSize = std::min(CmpSize, Word::GetMaxSize());
447  int Added2 = TryToAddDesiredData(Data1, Data2, CmpSize);
448  int Added1 = TryToAddDesiredData(Data2, Data1, CmpSize);
449  if ((Added1 || Added2) && Options.Verbosity >= 3) {
450    Printf("MemCmp Added %d%d: ", Added1, Added2);
451    if (Added1) PrintASCII(Data1, CmpSize);
452    if (Added2) PrintASCII(Data2, CmpSize);
453    Printf("\n");
454  }
455}
456
457void TraceState::TraceSwitchCallback(uintptr_t PC, size_t ValSizeInBits,
458                                     uint64_t Val, size_t NumCases,
459                                     uint64_t *Cases) {
460  if (!RecordingTraces || !F->InFuzzingThread()) return;
461  size_t ValSize = ValSizeInBits / 8;
462  bool TryShort = IsTwoByteData(Val);
463  for (size_t i = 0; i < NumCases; i++)
464    TryShort &= IsTwoByteData(Cases[i]);
465
466  if (Options.Verbosity >= 3)
467    Printf("TraceSwitch: %p %zd # %zd; TryShort %d\n", PC, Val, NumCases,
468           TryShort);
469
470  for (size_t i = 0; i < NumCases; i++) {
471    TryToAddDesiredData(Val, Cases[i], ValSize);
472    if (TryShort)
473      TryToAddDesiredData(Val, Cases[i], 2);
474  }
475}
476
477static TraceState *TS;
478
479void Fuzzer::StartTraceRecording() {
480  if (!TS) return;
481  TS->StartTraceRecording();
482}
483
484void Fuzzer::StopTraceRecording() {
485  if (!TS) return;
486  TS->StopTraceRecording();
487}
488
489void Fuzzer::AssignTaintLabels(uint8_t *Data, size_t Size) {
490  if (!Options.UseTraces && !Options.UseMemcmp) return;
491  if (!ReallyHaveDFSan()) return;
492  TS->EnsureDfsanLabels(Size);
493  for (size_t i = 0; i < Size; i++)
494    dfsan_set_label(i + 1, &Data[i], 1);
495}
496
497void Fuzzer::InitializeTraceState() {
498  if (!Options.UseTraces && !Options.UseMemcmp) return;
499  TS = new TraceState(MD, Options, this);
500}
501
502static size_t InternalStrnlen(const char *S, size_t MaxLen) {
503  size_t Len = 0;
504  for (; Len < MaxLen && S[Len]; Len++) {}
505  return Len;
506}
507
508}  // namespace fuzzer
509
510using fuzzer::TS;
511using fuzzer::RecordingTraces;
512using fuzzer::RecordingMemcmp;
513
514extern "C" {
515void __dfsw___sanitizer_cov_trace_cmp(uint64_t SizeAndType, uint64_t Arg1,
516                                      uint64_t Arg2, dfsan_label L0,
517                                      dfsan_label L1, dfsan_label L2) {
518  if (!RecordingTraces) return;
519  assert(L0 == 0);
520  uintptr_t PC = reinterpret_cast<uintptr_t>(__builtin_return_address(0));
521  uint64_t CmpSize = (SizeAndType >> 32) / 8;
522  uint64_t Type = (SizeAndType << 32) >> 32;
523  TS->DFSanCmpCallback(PC, CmpSize, Type, Arg1, Arg2, L1, L2);
524}
525
526void __dfsw___sanitizer_cov_trace_switch(uint64_t Val, uint64_t *Cases,
527                                         dfsan_label L1, dfsan_label L2) {
528  if (!RecordingTraces) return;
529  uintptr_t PC = reinterpret_cast<uintptr_t>(__builtin_return_address(0));
530  TS->DFSanSwitchCallback(PC, Cases[1], Val, Cases[0], Cases+2, L1);
531}
532
533void dfsan_weak_hook_memcmp(void *caller_pc, const void *s1, const void *s2,
534                            size_t n, dfsan_label s1_label,
535                            dfsan_label s2_label, dfsan_label n_label) {
536  if (!RecordingMemcmp) return;
537  dfsan_label L1 = dfsan_read_label(s1, n);
538  dfsan_label L2 = dfsan_read_label(s2, n);
539  TS->DFSanMemcmpCallback(n, reinterpret_cast<const uint8_t *>(s1),
540                          reinterpret_cast<const uint8_t *>(s2), L1, L2);
541}
542
543void dfsan_weak_hook_strncmp(void *caller_pc, const char *s1, const char *s2,
544                             size_t n, dfsan_label s1_label,
545                             dfsan_label s2_label, dfsan_label n_label) {
546  if (!RecordingMemcmp) return;
547  n = std::min(n, fuzzer::InternalStrnlen(s1, n));
548  n = std::min(n, fuzzer::InternalStrnlen(s2, n));
549  dfsan_label L1 = dfsan_read_label(s1, n);
550  dfsan_label L2 = dfsan_read_label(s2, n);
551  TS->DFSanMemcmpCallback(n, reinterpret_cast<const uint8_t *>(s1),
552                          reinterpret_cast<const uint8_t *>(s2), L1, L2);
553}
554
555void dfsan_weak_hook_strcmp(void *caller_pc, const char *s1, const char *s2,
556                            dfsan_label s1_label, dfsan_label s2_label) {
557  if (!RecordingMemcmp) return;
558  size_t Len1 = strlen(s1);
559  size_t Len2 = strlen(s2);
560  size_t N = std::min(Len1, Len2);
561  if (N <= 1) return;  // Not interesting.
562  dfsan_label L1 = dfsan_read_label(s1, Len1);
563  dfsan_label L2 = dfsan_read_label(s2, Len2);
564  TS->DFSanMemcmpCallback(N, reinterpret_cast<const uint8_t *>(s1),
565                          reinterpret_cast<const uint8_t *>(s2), L1, L2);
566}
567
568// We may need to avoid defining weak hooks to stay compatible with older clang.
569#ifndef LLVM_FUZZER_DEFINES_SANITIZER_WEAK_HOOOKS
570# define LLVM_FUZZER_DEFINES_SANITIZER_WEAK_HOOOKS 1
571#endif
572
573#if LLVM_FUZZER_DEFINES_SANITIZER_WEAK_HOOOKS
574void __sanitizer_weak_hook_memcmp(void *caller_pc, const void *s1,
575                                  const void *s2, size_t n, int result) {
576  if (!RecordingMemcmp) return;
577  if (result == 0) return;  // No reason to mutate.
578  if (n <= 1) return;  // Not interesting.
579  TS->TraceMemcmpCallback(n, reinterpret_cast<const uint8_t *>(s1),
580                          reinterpret_cast<const uint8_t *>(s2));
581}
582
583void __sanitizer_weak_hook_strncmp(void *caller_pc, const char *s1,
584                                   const char *s2, size_t n, int result) {
585  if (!RecordingMemcmp) return;
586  if (result == 0) return;  // No reason to mutate.
587  size_t Len1 = fuzzer::InternalStrnlen(s1, n);
588  size_t Len2 = fuzzer::InternalStrnlen(s2, n);
589  n = std::min(n, Len1);
590  n = std::min(n, Len2);
591  if (n <= 1) return;  // Not interesting.
592  TS->TraceMemcmpCallback(n, reinterpret_cast<const uint8_t *>(s1),
593                          reinterpret_cast<const uint8_t *>(s2));
594}
595
596void __sanitizer_weak_hook_strcmp(void *caller_pc, const char *s1,
597                                   const char *s2, int result) {
598  if (!RecordingMemcmp) return;
599  if (result == 0) return;  // No reason to mutate.
600  size_t Len1 = strlen(s1);
601  size_t Len2 = strlen(s2);
602  size_t N = std::min(Len1, Len2);
603  if (N <= 1) return;  // Not interesting.
604  TS->TraceMemcmpCallback(N, reinterpret_cast<const uint8_t *>(s1),
605                          reinterpret_cast<const uint8_t *>(s2));
606}
607
608#endif  // LLVM_FUZZER_DEFINES_SANITIZER_WEAK_HOOOKS
609
610__attribute__((visibility("default")))
611void __sanitizer_cov_trace_cmp(uint64_t SizeAndType, uint64_t Arg1,
612                               uint64_t Arg2) {
613  if (!RecordingTraces) return;
614  uintptr_t PC = reinterpret_cast<uintptr_t>(__builtin_return_address(0));
615  uint64_t CmpSize = (SizeAndType >> 32) / 8;
616  uint64_t Type = (SizeAndType << 32) >> 32;
617  TS->TraceCmpCallback(PC, CmpSize, Type, Arg1, Arg2);
618}
619
620__attribute__((visibility("default")))
621void __sanitizer_cov_trace_switch(uint64_t Val, uint64_t *Cases) {
622  if (!RecordingTraces) return;
623  uintptr_t PC = reinterpret_cast<uintptr_t>(__builtin_return_address(0));
624  TS->TraceSwitchCallback(PC, Cases[1], Val, Cases[0], Cases + 2);
625}
626
627}  // extern "C"
628