ConstantRange.cpp revision de2d8694e25a814696358e95141f4b1aa4d8847e
1//===-- ConstantRange.cpp - ConstantRange implementation ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Represent a range of possible values that may occur when the program is run
11// for an integral value.  This keeps track of a lower and upper bound for the
12// constant, which MAY wrap around the end of the numeric range.  To do this, it
13// keeps track of a [lower, upper) bound, which specifies an interval just like
14// STL iterators.  When used with boolean values, the following are important
15// ranges (other integral ranges use min/max values for special range values):
16//
17//  [F, F) = {}     = Empty set
18//  [T, F) = {T}
19//  [F, T) = {F}
20//  [T, T) = {F, T} = Full set
21//
22//===----------------------------------------------------------------------===//
23
24#include "llvm/IR/Instruction.h"
25#include "llvm/IR/InstrTypes.h"
26#include "llvm/IR/Operator.h"
27#include "llvm/IR/ConstantRange.h"
28#include "llvm/Support/Debug.h"
29#include "llvm/Support/raw_ostream.h"
30using namespace llvm;
31
32/// Initialize a full (the default) or empty set for the specified type.
33///
34ConstantRange::ConstantRange(uint32_t BitWidth, bool Full) {
35  if (Full)
36    Lower = Upper = APInt::getMaxValue(BitWidth);
37  else
38    Lower = Upper = APInt::getMinValue(BitWidth);
39}
40
41/// Initialize a range to hold the single specified value.
42///
43ConstantRange::ConstantRange(APIntMoveTy V)
44    : Lower(std::move(V)), Upper(Lower + 1) {}
45
46ConstantRange::ConstantRange(APIntMoveTy L, APIntMoveTy U)
47    : Lower(std::move(L)), Upper(std::move(U)) {
48  assert(Lower.getBitWidth() == Upper.getBitWidth() &&
49         "ConstantRange with unequal bit widths");
50  assert((Lower != Upper || (Lower.isMaxValue() || Lower.isMinValue())) &&
51         "Lower == Upper, but they aren't min or max value!");
52}
53
54ConstantRange ConstantRange::makeAllowedICmpRegion(CmpInst::Predicate Pred,
55                                                   const ConstantRange &CR) {
56  if (CR.isEmptySet())
57    return CR;
58
59  uint32_t W = CR.getBitWidth();
60  switch (Pred) {
61  default:
62    llvm_unreachable("Invalid ICmp predicate to makeAllowedICmpRegion()");
63  case CmpInst::ICMP_EQ:
64    return CR;
65  case CmpInst::ICMP_NE:
66    if (CR.isSingleElement())
67      return ConstantRange(CR.getUpper(), CR.getLower());
68    return ConstantRange(W);
69  case CmpInst::ICMP_ULT: {
70    APInt UMax(CR.getUnsignedMax());
71    if (UMax.isMinValue())
72      return ConstantRange(W, /* empty */ false);
73    return ConstantRange(APInt::getMinValue(W), UMax);
74  }
75  case CmpInst::ICMP_SLT: {
76    APInt SMax(CR.getSignedMax());
77    if (SMax.isMinSignedValue())
78      return ConstantRange(W, /* empty */ false);
79    return ConstantRange(APInt::getSignedMinValue(W), SMax);
80  }
81  case CmpInst::ICMP_ULE: {
82    APInt UMax(CR.getUnsignedMax());
83    if (UMax.isMaxValue())
84      return ConstantRange(W);
85    return ConstantRange(APInt::getMinValue(W), UMax + 1);
86  }
87  case CmpInst::ICMP_SLE: {
88    APInt SMax(CR.getSignedMax());
89    if (SMax.isMaxSignedValue())
90      return ConstantRange(W);
91    return ConstantRange(APInt::getSignedMinValue(W), SMax + 1);
92  }
93  case CmpInst::ICMP_UGT: {
94    APInt UMin(CR.getUnsignedMin());
95    if (UMin.isMaxValue())
96      return ConstantRange(W, /* empty */ false);
97    return ConstantRange(UMin + 1, APInt::getNullValue(W));
98  }
99  case CmpInst::ICMP_SGT: {
100    APInt SMin(CR.getSignedMin());
101    if (SMin.isMaxSignedValue())
102      return ConstantRange(W, /* empty */ false);
103    return ConstantRange(SMin + 1, APInt::getSignedMinValue(W));
104  }
105  case CmpInst::ICMP_UGE: {
106    APInt UMin(CR.getUnsignedMin());
107    if (UMin.isMinValue())
108      return ConstantRange(W);
109    return ConstantRange(UMin, APInt::getNullValue(W));
110  }
111  case CmpInst::ICMP_SGE: {
112    APInt SMin(CR.getSignedMin());
113    if (SMin.isMinSignedValue())
114      return ConstantRange(W);
115    return ConstantRange(SMin, APInt::getSignedMinValue(W));
116  }
117  }
118}
119
120ConstantRange ConstantRange::makeSatisfyingICmpRegion(CmpInst::Predicate Pred,
121                                                      const ConstantRange &CR) {
122  // Follows from De-Morgan's laws:
123  //
124  // ~(~A union ~B) == A intersect B.
125  //
126  return makeAllowedICmpRegion(CmpInst::getInversePredicate(Pred), CR)
127      .inverse();
128}
129
130ConstantRange ConstantRange::makeExactICmpRegion(CmpInst::Predicate Pred,
131                                                 const APInt &C) {
132  // Computes the exact range that is equal to both the constant ranges returned
133  // by makeAllowedICmpRegion and makeSatisfyingICmpRegion. This is always true
134  // when RHS is a singleton such as an APInt and so the assert is valid.
135  // However for non-singleton RHS, for example ult [2,5) makeAllowedICmpRegion
136  // returns [0,4) but makeSatisfyICmpRegion returns [0,2).
137  //
138  assert(makeAllowedICmpRegion(Pred, C) == makeSatisfyingICmpRegion(Pred, C));
139  return makeAllowedICmpRegion(Pred, C);
140}
141
142bool ConstantRange::getEquivalentICmp(CmpInst::Predicate &Pred,
143                                      APInt &RHS) const {
144  bool Success = false;
145
146  if (isFullSet() || isEmptySet()) {
147    Pred = isEmptySet() ? CmpInst::ICMP_ULT : CmpInst::ICMP_UGE;
148    RHS = APInt(getBitWidth(), 0);
149    Success = true;
150  } else if (getLower().isMinSignedValue() || getLower().isMinValue()) {
151    Pred =
152        getLower().isMinSignedValue() ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT;
153    RHS = getUpper();
154    Success = true;
155  } else if (getUpper().isMinSignedValue() || getUpper().isMinValue()) {
156    Pred =
157        getUpper().isMinSignedValue() ? CmpInst::ICMP_SGE : CmpInst::ICMP_UGE;
158    RHS = getLower();
159    Success = true;
160  }
161
162  assert((!Success || ConstantRange::makeExactICmpRegion(Pred, RHS) == *this) &&
163         "Bad result!");
164
165  return Success;
166}
167
168ConstantRange
169ConstantRange::makeGuaranteedNoWrapRegion(Instruction::BinaryOps BinOp,
170                                          const ConstantRange &Other,
171                                          unsigned NoWrapKind) {
172  typedef OverflowingBinaryOperator OBO;
173
174  // Computes the intersection of CR0 and CR1.  It is different from
175  // intersectWith in that the ConstantRange returned will only contain elements
176  // in both CR0 and CR1 (i.e. SubsetIntersect(X, Y) is a *subset*, proper or
177  // not, of both X and Y).
178  auto SubsetIntersect =
179      [](const ConstantRange &CR0, const ConstantRange &CR1) {
180    return CR0.inverse().unionWith(CR1.inverse()).inverse();
181  };
182
183  assert(BinOp >= Instruction::BinaryOpsBegin &&
184         BinOp < Instruction::BinaryOpsEnd && "Binary operators only!");
185
186  assert((NoWrapKind == OBO::NoSignedWrap ||
187          NoWrapKind == OBO::NoUnsignedWrap ||
188          NoWrapKind == (OBO::NoUnsignedWrap | OBO::NoSignedWrap)) &&
189         "NoWrapKind invalid!");
190
191  unsigned BitWidth = Other.getBitWidth();
192  if (BinOp != Instruction::Add)
193    // Conservative answer: empty set
194    return ConstantRange(BitWidth, false);
195
196  if (auto *C = Other.getSingleElement())
197    if (C->isMinValue())
198      // Full set: nothing signed / unsigned wraps when added to 0.
199      return ConstantRange(BitWidth);
200
201  ConstantRange Result(BitWidth);
202
203  if (NoWrapKind & OBO::NoUnsignedWrap)
204    Result =
205        SubsetIntersect(Result, ConstantRange(APInt::getNullValue(BitWidth),
206                                              -Other.getUnsignedMax()));
207
208  if (NoWrapKind & OBO::NoSignedWrap) {
209    APInt SignedMin = Other.getSignedMin();
210    APInt SignedMax = Other.getSignedMax();
211
212    if (SignedMax.isStrictlyPositive())
213      Result = SubsetIntersect(
214          Result,
215          ConstantRange(APInt::getSignedMinValue(BitWidth),
216                        APInt::getSignedMinValue(BitWidth) - SignedMax));
217
218    if (SignedMin.isNegative())
219      Result = SubsetIntersect(
220          Result, ConstantRange(APInt::getSignedMinValue(BitWidth) - SignedMin,
221                                APInt::getSignedMinValue(BitWidth)));
222  }
223
224  return Result;
225}
226
227/// isFullSet - Return true if this set contains all of the elements possible
228/// for this data-type
229bool ConstantRange::isFullSet() const {
230  return Lower == Upper && Lower.isMaxValue();
231}
232
233/// isEmptySet - Return true if this set contains no members.
234///
235bool ConstantRange::isEmptySet() const {
236  return Lower == Upper && Lower.isMinValue();
237}
238
239/// isWrappedSet - Return true if this set wraps around the top of the range,
240/// for example: [100, 8)
241///
242bool ConstantRange::isWrappedSet() const {
243  return Lower.ugt(Upper);
244}
245
246/// isSignWrappedSet - Return true if this set wraps around the INT_MIN of
247/// its bitwidth, for example: i8 [120, 140).
248///
249bool ConstantRange::isSignWrappedSet() const {
250  return contains(APInt::getSignedMaxValue(getBitWidth())) &&
251         contains(APInt::getSignedMinValue(getBitWidth()));
252}
253
254/// getSetSize - Return the number of elements in this set.
255///
256APInt ConstantRange::getSetSize() const {
257  if (isFullSet()) {
258    APInt Size(getBitWidth()+1, 0);
259    Size.setBit(getBitWidth());
260    return Size;
261  }
262
263  // This is also correct for wrapped sets.
264  return (Upper - Lower).zext(getBitWidth()+1);
265}
266
267/// getUnsignedMax - Return the largest unsigned value contained in the
268/// ConstantRange.
269///
270APInt ConstantRange::getUnsignedMax() const {
271  if (isFullSet() || isWrappedSet())
272    return APInt::getMaxValue(getBitWidth());
273  return getUpper() - 1;
274}
275
276/// getUnsignedMin - Return the smallest unsigned value contained in the
277/// ConstantRange.
278///
279APInt ConstantRange::getUnsignedMin() const {
280  if (isFullSet() || (isWrappedSet() && getUpper() != 0))
281    return APInt::getMinValue(getBitWidth());
282  return getLower();
283}
284
285/// getSignedMax - Return the largest signed value contained in the
286/// ConstantRange.
287///
288APInt ConstantRange::getSignedMax() const {
289  APInt SignedMax(APInt::getSignedMaxValue(getBitWidth()));
290  if (!isWrappedSet()) {
291    if (getLower().sle(getUpper() - 1))
292      return getUpper() - 1;
293    return SignedMax;
294  }
295  if (getLower().isNegative() == getUpper().isNegative())
296    return SignedMax;
297  return getUpper() - 1;
298}
299
300/// getSignedMin - Return the smallest signed value contained in the
301/// ConstantRange.
302///
303APInt ConstantRange::getSignedMin() const {
304  APInt SignedMin(APInt::getSignedMinValue(getBitWidth()));
305  if (!isWrappedSet()) {
306    if (getLower().sle(getUpper() - 1))
307      return getLower();
308    return SignedMin;
309  }
310  if ((getUpper() - 1).slt(getLower())) {
311    if (getUpper() != SignedMin)
312      return SignedMin;
313  }
314  return getLower();
315}
316
317/// contains - Return true if the specified value is in the set.
318///
319bool ConstantRange::contains(const APInt &V) const {
320  if (Lower == Upper)
321    return isFullSet();
322
323  if (!isWrappedSet())
324    return Lower.ule(V) && V.ult(Upper);
325  return Lower.ule(V) || V.ult(Upper);
326}
327
328/// contains - Return true if the argument is a subset of this range.
329/// Two equal sets contain each other. The empty set contained by all other
330/// sets.
331///
332bool ConstantRange::contains(const ConstantRange &Other) const {
333  if (isFullSet() || Other.isEmptySet()) return true;
334  if (isEmptySet() || Other.isFullSet()) return false;
335
336  if (!isWrappedSet()) {
337    if (Other.isWrappedSet())
338      return false;
339
340    return Lower.ule(Other.getLower()) && Other.getUpper().ule(Upper);
341  }
342
343  if (!Other.isWrappedSet())
344    return Other.getUpper().ule(Upper) ||
345           Lower.ule(Other.getLower());
346
347  return Other.getUpper().ule(Upper) && Lower.ule(Other.getLower());
348}
349
350/// subtract - Subtract the specified constant from the endpoints of this
351/// constant range.
352ConstantRange ConstantRange::subtract(const APInt &Val) const {
353  assert(Val.getBitWidth() == getBitWidth() && "Wrong bit width");
354  // If the set is empty or full, don't modify the endpoints.
355  if (Lower == Upper)
356    return *this;
357  return ConstantRange(Lower - Val, Upper - Val);
358}
359
360/// \brief Subtract the specified range from this range (aka relative complement
361/// of the sets).
362ConstantRange ConstantRange::difference(const ConstantRange &CR) const {
363  return intersectWith(CR.inverse());
364}
365
366/// intersectWith - Return the range that results from the intersection of this
367/// range with another range.  The resultant range is guaranteed to include all
368/// elements contained in both input ranges, and to have the smallest possible
369/// set size that does so.  Because there may be two intersections with the
370/// same set size, A.intersectWith(B) might not be equal to B.intersectWith(A).
371ConstantRange ConstantRange::intersectWith(const ConstantRange &CR) const {
372  assert(getBitWidth() == CR.getBitWidth() &&
373         "ConstantRange types don't agree!");
374
375  // Handle common cases.
376  if (   isEmptySet() || CR.isFullSet()) return *this;
377  if (CR.isEmptySet() ||    isFullSet()) return CR;
378
379  if (!isWrappedSet() && CR.isWrappedSet())
380    return CR.intersectWith(*this);
381
382  if (!isWrappedSet() && !CR.isWrappedSet()) {
383    if (Lower.ult(CR.Lower)) {
384      if (Upper.ule(CR.Lower))
385        return ConstantRange(getBitWidth(), false);
386
387      if (Upper.ult(CR.Upper))
388        return ConstantRange(CR.Lower, Upper);
389
390      return CR;
391    }
392    if (Upper.ult(CR.Upper))
393      return *this;
394
395    if (Lower.ult(CR.Upper))
396      return ConstantRange(Lower, CR.Upper);
397
398    return ConstantRange(getBitWidth(), false);
399  }
400
401  if (isWrappedSet() && !CR.isWrappedSet()) {
402    if (CR.Lower.ult(Upper)) {
403      if (CR.Upper.ult(Upper))
404        return CR;
405
406      if (CR.Upper.ule(Lower))
407        return ConstantRange(CR.Lower, Upper);
408
409      if (getSetSize().ult(CR.getSetSize()))
410        return *this;
411      return CR;
412    }
413    if (CR.Lower.ult(Lower)) {
414      if (CR.Upper.ule(Lower))
415        return ConstantRange(getBitWidth(), false);
416
417      return ConstantRange(Lower, CR.Upper);
418    }
419    return CR;
420  }
421
422  if (CR.Upper.ult(Upper)) {
423    if (CR.Lower.ult(Upper)) {
424      if (getSetSize().ult(CR.getSetSize()))
425        return *this;
426      return CR;
427    }
428
429    if (CR.Lower.ult(Lower))
430      return ConstantRange(Lower, CR.Upper);
431
432    return CR;
433  }
434  if (CR.Upper.ule(Lower)) {
435    if (CR.Lower.ult(Lower))
436      return *this;
437
438    return ConstantRange(CR.Lower, Upper);
439  }
440  if (getSetSize().ult(CR.getSetSize()))
441    return *this;
442  return CR;
443}
444
445
446/// unionWith - Return the range that results from the union of this range with
447/// another range.  The resultant range is guaranteed to include the elements of
448/// both sets, but may contain more.  For example, [3, 9) union [12,15) is
449/// [3, 15), which includes 9, 10, and 11, which were not included in either
450/// set before.
451///
452ConstantRange ConstantRange::unionWith(const ConstantRange &CR) const {
453  assert(getBitWidth() == CR.getBitWidth() &&
454         "ConstantRange types don't agree!");
455
456  if (   isFullSet() || CR.isEmptySet()) return *this;
457  if (CR.isFullSet() ||    isEmptySet()) return CR;
458
459  if (!isWrappedSet() && CR.isWrappedSet()) return CR.unionWith(*this);
460
461  if (!isWrappedSet() && !CR.isWrappedSet()) {
462    if (CR.Upper.ult(Lower) || Upper.ult(CR.Lower)) {
463      // If the two ranges are disjoint, find the smaller gap and bridge it.
464      APInt d1 = CR.Lower - Upper, d2 = Lower - CR.Upper;
465      if (d1.ult(d2))
466        return ConstantRange(Lower, CR.Upper);
467      return ConstantRange(CR.Lower, Upper);
468    }
469
470    APInt L = Lower, U = Upper;
471    if (CR.Lower.ult(L))
472      L = CR.Lower;
473    if ((CR.Upper - 1).ugt(U - 1))
474      U = CR.Upper;
475
476    if (L == 0 && U == 0)
477      return ConstantRange(getBitWidth());
478
479    return ConstantRange(L, U);
480  }
481
482  if (!CR.isWrappedSet()) {
483    // ------U   L-----  and  ------U   L----- : this
484    //   L--U                            L--U  : CR
485    if (CR.Upper.ule(Upper) || CR.Lower.uge(Lower))
486      return *this;
487
488    // ------U   L----- : this
489    //    L---------U   : CR
490    if (CR.Lower.ule(Upper) && Lower.ule(CR.Upper))
491      return ConstantRange(getBitWidth());
492
493    // ----U       L---- : this
494    //       L---U       : CR
495    //    <d1>  <d2>
496    if (Upper.ule(CR.Lower) && CR.Upper.ule(Lower)) {
497      APInt d1 = CR.Lower - Upper, d2 = Lower - CR.Upper;
498      if (d1.ult(d2))
499        return ConstantRange(Lower, CR.Upper);
500      return ConstantRange(CR.Lower, Upper);
501    }
502
503    // ----U     L----- : this
504    //        L----U    : CR
505    if (Upper.ult(CR.Lower) && Lower.ult(CR.Upper))
506      return ConstantRange(CR.Lower, Upper);
507
508    // ------U    L---- : this
509    //    L-----U       : CR
510    assert(CR.Lower.ult(Upper) && CR.Upper.ult(Lower) &&
511           "ConstantRange::unionWith missed a case with one range wrapped");
512    return ConstantRange(Lower, CR.Upper);
513  }
514
515  // ------U    L----  and  ------U    L---- : this
516  // -U  L-----------  and  ------------U  L : CR
517  if (CR.Lower.ule(Upper) || Lower.ule(CR.Upper))
518    return ConstantRange(getBitWidth());
519
520  APInt L = Lower, U = Upper;
521  if (CR.Upper.ugt(U))
522    U = CR.Upper;
523  if (CR.Lower.ult(L))
524    L = CR.Lower;
525
526  return ConstantRange(L, U);
527}
528
529/// zeroExtend - Return a new range in the specified integer type, which must
530/// be strictly larger than the current type.  The returned range will
531/// correspond to the possible range of values as if the source range had been
532/// zero extended.
533ConstantRange ConstantRange::zeroExtend(uint32_t DstTySize) const {
534  if (isEmptySet()) return ConstantRange(DstTySize, /*isFullSet=*/false);
535
536  unsigned SrcTySize = getBitWidth();
537  assert(SrcTySize < DstTySize && "Not a value extension");
538  if (isFullSet() || isWrappedSet()) {
539    // Change into [0, 1 << src bit width)
540    APInt LowerExt(DstTySize, 0);
541    if (!Upper) // special case: [X, 0) -- not really wrapping around
542      LowerExt = Lower.zext(DstTySize);
543    return ConstantRange(LowerExt, APInt::getOneBitSet(DstTySize, SrcTySize));
544  }
545
546  return ConstantRange(Lower.zext(DstTySize), Upper.zext(DstTySize));
547}
548
549/// signExtend - Return a new range in the specified integer type, which must
550/// be strictly larger than the current type.  The returned range will
551/// correspond to the possible range of values as if the source range had been
552/// sign extended.
553ConstantRange ConstantRange::signExtend(uint32_t DstTySize) const {
554  if (isEmptySet()) return ConstantRange(DstTySize, /*isFullSet=*/false);
555
556  unsigned SrcTySize = getBitWidth();
557  assert(SrcTySize < DstTySize && "Not a value extension");
558
559  // special case: [X, INT_MIN) -- not really wrapping around
560  if (Upper.isMinSignedValue())
561    return ConstantRange(Lower.sext(DstTySize), Upper.zext(DstTySize));
562
563  if (isFullSet() || isSignWrappedSet()) {
564    return ConstantRange(APInt::getHighBitsSet(DstTySize,DstTySize-SrcTySize+1),
565                         APInt::getLowBitsSet(DstTySize, SrcTySize-1) + 1);
566  }
567
568  return ConstantRange(Lower.sext(DstTySize), Upper.sext(DstTySize));
569}
570
571/// truncate - Return a new range in the specified integer type, which must be
572/// strictly smaller than the current type.  The returned range will
573/// correspond to the possible range of values as if the source range had been
574/// truncated to the specified type.
575ConstantRange ConstantRange::truncate(uint32_t DstTySize) const {
576  assert(getBitWidth() > DstTySize && "Not a value truncation");
577  if (isEmptySet())
578    return ConstantRange(DstTySize, /*isFullSet=*/false);
579  if (isFullSet())
580    return ConstantRange(DstTySize, /*isFullSet=*/true);
581
582  APInt MaxValue = APInt::getMaxValue(DstTySize).zext(getBitWidth());
583  APInt MaxBitValue(getBitWidth(), 0);
584  MaxBitValue.setBit(DstTySize);
585
586  APInt LowerDiv(Lower), UpperDiv(Upper);
587  ConstantRange Union(DstTySize, /*isFullSet=*/false);
588
589  // Analyze wrapped sets in their two parts: [0, Upper) \/ [Lower, MaxValue]
590  // We use the non-wrapped set code to analyze the [Lower, MaxValue) part, and
591  // then we do the union with [MaxValue, Upper)
592  if (isWrappedSet()) {
593    // If Upper is greater than Max Value, it covers the whole truncated range.
594    if (Upper.uge(MaxValue))
595      return ConstantRange(DstTySize, /*isFullSet=*/true);
596
597    Union = ConstantRange(APInt::getMaxValue(DstTySize),Upper.trunc(DstTySize));
598    UpperDiv = APInt::getMaxValue(getBitWidth());
599
600    // Union covers the MaxValue case, so return if the remaining range is just
601    // MaxValue.
602    if (LowerDiv == UpperDiv)
603      return Union;
604  }
605
606  // Chop off the most significant bits that are past the destination bitwidth.
607  if (LowerDiv.uge(MaxValue)) {
608    APInt Div(getBitWidth(), 0);
609    APInt::udivrem(LowerDiv, MaxBitValue, Div, LowerDiv);
610    UpperDiv = UpperDiv - MaxBitValue * Div;
611  }
612
613  if (UpperDiv.ule(MaxValue))
614    return ConstantRange(LowerDiv.trunc(DstTySize),
615                         UpperDiv.trunc(DstTySize)).unionWith(Union);
616
617  // The truncated value wraps around. Check if we can do better than fullset.
618  APInt UpperModulo = UpperDiv - MaxBitValue;
619  if (UpperModulo.ult(LowerDiv))
620    return ConstantRange(LowerDiv.trunc(DstTySize),
621                         UpperModulo.trunc(DstTySize)).unionWith(Union);
622
623  return ConstantRange(DstTySize, /*isFullSet=*/true);
624}
625
626/// zextOrTrunc - make this range have the bit width given by \p DstTySize. The
627/// value is zero extended, truncated, or left alone to make it that width.
628ConstantRange ConstantRange::zextOrTrunc(uint32_t DstTySize) const {
629  unsigned SrcTySize = getBitWidth();
630  if (SrcTySize > DstTySize)
631    return truncate(DstTySize);
632  if (SrcTySize < DstTySize)
633    return zeroExtend(DstTySize);
634  return *this;
635}
636
637/// sextOrTrunc - make this range have the bit width given by \p DstTySize. The
638/// value is sign extended, truncated, or left alone to make it that width.
639ConstantRange ConstantRange::sextOrTrunc(uint32_t DstTySize) const {
640  unsigned SrcTySize = getBitWidth();
641  if (SrcTySize > DstTySize)
642    return truncate(DstTySize);
643  if (SrcTySize < DstTySize)
644    return signExtend(DstTySize);
645  return *this;
646}
647
648ConstantRange
649ConstantRange::add(const ConstantRange &Other) const {
650  if (isEmptySet() || Other.isEmptySet())
651    return ConstantRange(getBitWidth(), /*isFullSet=*/false);
652  if (isFullSet() || Other.isFullSet())
653    return ConstantRange(getBitWidth(), /*isFullSet=*/true);
654
655  APInt Spread_X = getSetSize(), Spread_Y = Other.getSetSize();
656  APInt NewLower = getLower() + Other.getLower();
657  APInt NewUpper = getUpper() + Other.getUpper() - 1;
658  if (NewLower == NewUpper)
659    return ConstantRange(getBitWidth(), /*isFullSet=*/true);
660
661  ConstantRange X = ConstantRange(NewLower, NewUpper);
662  if (X.getSetSize().ult(Spread_X) || X.getSetSize().ult(Spread_Y))
663    // We've wrapped, therefore, full set.
664    return ConstantRange(getBitWidth(), /*isFullSet=*/true);
665
666  return X;
667}
668
669ConstantRange
670ConstantRange::sub(const ConstantRange &Other) const {
671  if (isEmptySet() || Other.isEmptySet())
672    return ConstantRange(getBitWidth(), /*isFullSet=*/false);
673  if (isFullSet() || Other.isFullSet())
674    return ConstantRange(getBitWidth(), /*isFullSet=*/true);
675
676  APInt Spread_X = getSetSize(), Spread_Y = Other.getSetSize();
677  APInt NewLower = getLower() - Other.getUpper() + 1;
678  APInt NewUpper = getUpper() - Other.getLower();
679  if (NewLower == NewUpper)
680    return ConstantRange(getBitWidth(), /*isFullSet=*/true);
681
682  ConstantRange X = ConstantRange(NewLower, NewUpper);
683  if (X.getSetSize().ult(Spread_X) || X.getSetSize().ult(Spread_Y))
684    // We've wrapped, therefore, full set.
685    return ConstantRange(getBitWidth(), /*isFullSet=*/true);
686
687  return X;
688}
689
690ConstantRange
691ConstantRange::multiply(const ConstantRange &Other) const {
692  // TODO: If either operand is a single element and the multiply is known to
693  // be non-wrapping, round the result min and max value to the appropriate
694  // multiple of that element. If wrapping is possible, at least adjust the
695  // range according to the greatest power-of-two factor of the single element.
696
697  if (isEmptySet() || Other.isEmptySet())
698    return ConstantRange(getBitWidth(), /*isFullSet=*/false);
699
700  // Multiplication is signedness-independent. However different ranges can be
701  // obtained depending on how the input ranges are treated. These different
702  // ranges are all conservatively correct, but one might be better than the
703  // other. We calculate two ranges; one treating the inputs as unsigned
704  // and the other signed, then return the smallest of these ranges.
705
706  // Unsigned range first.
707  APInt this_min = getUnsignedMin().zext(getBitWidth() * 2);
708  APInt this_max = getUnsignedMax().zext(getBitWidth() * 2);
709  APInt Other_min = Other.getUnsignedMin().zext(getBitWidth() * 2);
710  APInt Other_max = Other.getUnsignedMax().zext(getBitWidth() * 2);
711
712  ConstantRange Result_zext = ConstantRange(this_min * Other_min,
713                                            this_max * Other_max + 1);
714  ConstantRange UR = Result_zext.truncate(getBitWidth());
715
716  // If the unsigned range doesn't wrap, and isn't negative then it's a range
717  // from one positive number to another which is as good as we can generate.
718  // In this case, skip the extra work of generating signed ranges which aren't
719  // going to be better than this range.
720  if (!UR.isWrappedSet() && UR.getLower().isNonNegative())
721    return UR;
722
723  // Now the signed range. Because we could be dealing with negative numbers
724  // here, the lower bound is the smallest of the cartesian product of the
725  // lower and upper ranges; for example:
726  //   [-1,4) * [-2,3) = min(-1*-2, -1*2, 3*-2, 3*2) = -6.
727  // Similarly for the upper bound, swapping min for max.
728
729  this_min = getSignedMin().sext(getBitWidth() * 2);
730  this_max = getSignedMax().sext(getBitWidth() * 2);
731  Other_min = Other.getSignedMin().sext(getBitWidth() * 2);
732  Other_max = Other.getSignedMax().sext(getBitWidth() * 2);
733
734  auto L = {this_min * Other_min, this_min * Other_max,
735            this_max * Other_min, this_max * Other_max};
736  auto Compare = [](const APInt &A, const APInt &B) { return A.slt(B); };
737  ConstantRange Result_sext(std::min(L, Compare), std::max(L, Compare) + 1);
738  ConstantRange SR = Result_sext.truncate(getBitWidth());
739
740  return UR.getSetSize().ult(SR.getSetSize()) ? UR : SR;
741}
742
743ConstantRange
744ConstantRange::smax(const ConstantRange &Other) const {
745  // X smax Y is: range(smax(X_smin, Y_smin),
746  //                    smax(X_smax, Y_smax))
747  if (isEmptySet() || Other.isEmptySet())
748    return ConstantRange(getBitWidth(), /*isFullSet=*/false);
749  APInt NewL = APIntOps::smax(getSignedMin(), Other.getSignedMin());
750  APInt NewU = APIntOps::smax(getSignedMax(), Other.getSignedMax()) + 1;
751  if (NewU == NewL)
752    return ConstantRange(getBitWidth(), /*isFullSet=*/true);
753  return ConstantRange(NewL, NewU);
754}
755
756ConstantRange
757ConstantRange::umax(const ConstantRange &Other) const {
758  // X umax Y is: range(umax(X_umin, Y_umin),
759  //                    umax(X_umax, Y_umax))
760  if (isEmptySet() || Other.isEmptySet())
761    return ConstantRange(getBitWidth(), /*isFullSet=*/false);
762  APInt NewL = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin());
763  APInt NewU = APIntOps::umax(getUnsignedMax(), Other.getUnsignedMax()) + 1;
764  if (NewU == NewL)
765    return ConstantRange(getBitWidth(), /*isFullSet=*/true);
766  return ConstantRange(NewL, NewU);
767}
768
769ConstantRange
770ConstantRange::smin(const ConstantRange &Other) const {
771  // X smin Y is: range(smin(X_smin, Y_smin),
772  //                    smin(X_smax, Y_smax))
773  if (isEmptySet() || Other.isEmptySet())
774    return ConstantRange(getBitWidth(), /*isFullSet=*/false);
775  APInt NewL = APIntOps::smin(getSignedMin(), Other.getSignedMin());
776  APInt NewU = APIntOps::smin(getSignedMax(), Other.getSignedMax()) + 1;
777  if (NewU == NewL)
778    return ConstantRange(getBitWidth(), /*isFullSet=*/true);
779  return ConstantRange(NewL, NewU);
780}
781
782ConstantRange
783ConstantRange::umin(const ConstantRange &Other) const {
784  // X umin Y is: range(umin(X_umin, Y_umin),
785  //                    umin(X_umax, Y_umax))
786  if (isEmptySet() || Other.isEmptySet())
787    return ConstantRange(getBitWidth(), /*isFullSet=*/false);
788  APInt NewL = APIntOps::umin(getUnsignedMin(), Other.getUnsignedMin());
789  APInt NewU = APIntOps::umin(getUnsignedMax(), Other.getUnsignedMax()) + 1;
790  if (NewU == NewL)
791    return ConstantRange(getBitWidth(), /*isFullSet=*/true);
792  return ConstantRange(NewL, NewU);
793}
794
795ConstantRange
796ConstantRange::udiv(const ConstantRange &RHS) const {
797  if (isEmptySet() || RHS.isEmptySet() || RHS.getUnsignedMax() == 0)
798    return ConstantRange(getBitWidth(), /*isFullSet=*/false);
799  if (RHS.isFullSet())
800    return ConstantRange(getBitWidth(), /*isFullSet=*/true);
801
802  APInt Lower = getUnsignedMin().udiv(RHS.getUnsignedMax());
803
804  APInt RHS_umin = RHS.getUnsignedMin();
805  if (RHS_umin == 0) {
806    // We want the lowest value in RHS excluding zero. Usually that would be 1
807    // except for a range in the form of [X, 1) in which case it would be X.
808    if (RHS.getUpper() == 1)
809      RHS_umin = RHS.getLower();
810    else
811      RHS_umin = APInt(getBitWidth(), 1);
812  }
813
814  APInt Upper = getUnsignedMax().udiv(RHS_umin) + 1;
815
816  // If the LHS is Full and the RHS is a wrapped interval containing 1 then
817  // this could occur.
818  if (Lower == Upper)
819    return ConstantRange(getBitWidth(), /*isFullSet=*/true);
820
821  return ConstantRange(Lower, Upper);
822}
823
824ConstantRange
825ConstantRange::binaryAnd(const ConstantRange &Other) const {
826  if (isEmptySet() || Other.isEmptySet())
827    return ConstantRange(getBitWidth(), /*isFullSet=*/false);
828
829  // TODO: replace this with something less conservative
830
831  APInt umin = APIntOps::umin(Other.getUnsignedMax(), getUnsignedMax());
832  if (umin.isAllOnesValue())
833    return ConstantRange(getBitWidth(), /*isFullSet=*/true);
834  return ConstantRange(APInt::getNullValue(getBitWidth()), umin + 1);
835}
836
837ConstantRange
838ConstantRange::binaryOr(const ConstantRange &Other) const {
839  if (isEmptySet() || Other.isEmptySet())
840    return ConstantRange(getBitWidth(), /*isFullSet=*/false);
841
842  // TODO: replace this with something less conservative
843
844  APInt umax = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin());
845  if (umax.isMinValue())
846    return ConstantRange(getBitWidth(), /*isFullSet=*/true);
847  return ConstantRange(umax, APInt::getNullValue(getBitWidth()));
848}
849
850ConstantRange
851ConstantRange::shl(const ConstantRange &Other) const {
852  if (isEmptySet() || Other.isEmptySet())
853    return ConstantRange(getBitWidth(), /*isFullSet=*/false);
854
855  APInt min = getUnsignedMin().shl(Other.getUnsignedMin());
856  APInt max = getUnsignedMax().shl(Other.getUnsignedMax());
857
858  // there's no overflow!
859  APInt Zeros(getBitWidth(), getUnsignedMax().countLeadingZeros());
860  if (Zeros.ugt(Other.getUnsignedMax()))
861    return ConstantRange(min, max + 1);
862
863  // FIXME: implement the other tricky cases
864  return ConstantRange(getBitWidth(), /*isFullSet=*/true);
865}
866
867ConstantRange
868ConstantRange::lshr(const ConstantRange &Other) const {
869  if (isEmptySet() || Other.isEmptySet())
870    return ConstantRange(getBitWidth(), /*isFullSet=*/false);
871
872  APInt max = getUnsignedMax().lshr(Other.getUnsignedMin());
873  APInt min = getUnsignedMin().lshr(Other.getUnsignedMax());
874  if (min == max + 1)
875    return ConstantRange(getBitWidth(), /*isFullSet=*/true);
876
877  return ConstantRange(min, max + 1);
878}
879
880ConstantRange ConstantRange::inverse() const {
881  if (isFullSet())
882    return ConstantRange(getBitWidth(), /*isFullSet=*/false);
883  if (isEmptySet())
884    return ConstantRange(getBitWidth(), /*isFullSet=*/true);
885  return ConstantRange(Upper, Lower);
886}
887
888/// print - Print out the bounds to a stream...
889///
890void ConstantRange::print(raw_ostream &OS) const {
891  if (isFullSet())
892    OS << "full-set";
893  else if (isEmptySet())
894    OS << "empty-set";
895  else
896    OS << "[" << Lower << "," << Upper << ")";
897}
898
899/// dump - Allow printing from a debugger easily...
900///
901LLVM_DUMP_METHOD void ConstantRange::dump() const {
902  print(dbgs());
903}
904