X86InstrInfo.cpp revision 014278e6a11fa0767853b831e5bf51b95bf541c5
1//===- X86InstrInfo.cpp - X86 Instruction Information -----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the X86 implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "X86InstrInfo.h"
15#include "X86.h"
16#include "X86GenInstrInfo.inc"
17#include "X86InstrBuilder.h"
18#include "X86MachineFunctionInfo.h"
19#include "X86Subtarget.h"
20#include "X86TargetMachine.h"
21#include "llvm/ADT/STLExtras.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineInstrBuilder.h"
24#include "llvm/CodeGen/MachineRegisterInfo.h"
25#include "llvm/CodeGen/LiveVariables.h"
26#include "llvm/Support/CommandLine.h"
27#include "llvm/Target/TargetOptions.h"
28#include "llvm/Target/TargetAsmInfo.h"
29
30using namespace llvm;
31
32namespace {
33  cl::opt<bool>
34  NoFusing("disable-spill-fusing",
35           cl::desc("Disable fusing of spill code into instructions"));
36  cl::opt<bool>
37  PrintFailedFusing("print-failed-fuse-candidates",
38                    cl::desc("Print instructions that the allocator wants to"
39                             " fuse, but the X86 backend currently can't"),
40                    cl::Hidden);
41  cl::opt<bool>
42  ReMatPICStubLoad("remat-pic-stub-load",
43                   cl::desc("Re-materialize load from stub in PIC mode"),
44                   cl::init(false), cl::Hidden);
45}
46
47X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
48  : TargetInstrInfoImpl(X86Insts, array_lengthof(X86Insts)),
49    TM(tm), RI(tm, *this) {
50  SmallVector<unsigned,16> AmbEntries;
51  static const unsigned OpTbl2Addr[][2] = {
52    { X86::ADC32ri,     X86::ADC32mi },
53    { X86::ADC32ri8,    X86::ADC32mi8 },
54    { X86::ADC32rr,     X86::ADC32mr },
55    { X86::ADC64ri32,   X86::ADC64mi32 },
56    { X86::ADC64ri8,    X86::ADC64mi8 },
57    { X86::ADC64rr,     X86::ADC64mr },
58    { X86::ADD16ri,     X86::ADD16mi },
59    { X86::ADD16ri8,    X86::ADD16mi8 },
60    { X86::ADD16rr,     X86::ADD16mr },
61    { X86::ADD32ri,     X86::ADD32mi },
62    { X86::ADD32ri8,    X86::ADD32mi8 },
63    { X86::ADD32rr,     X86::ADD32mr },
64    { X86::ADD64ri32,   X86::ADD64mi32 },
65    { X86::ADD64ri8,    X86::ADD64mi8 },
66    { X86::ADD64rr,     X86::ADD64mr },
67    { X86::ADD8ri,      X86::ADD8mi },
68    { X86::ADD8rr,      X86::ADD8mr },
69    { X86::AND16ri,     X86::AND16mi },
70    { X86::AND16ri8,    X86::AND16mi8 },
71    { X86::AND16rr,     X86::AND16mr },
72    { X86::AND32ri,     X86::AND32mi },
73    { X86::AND32ri8,    X86::AND32mi8 },
74    { X86::AND32rr,     X86::AND32mr },
75    { X86::AND64ri32,   X86::AND64mi32 },
76    { X86::AND64ri8,    X86::AND64mi8 },
77    { X86::AND64rr,     X86::AND64mr },
78    { X86::AND8ri,      X86::AND8mi },
79    { X86::AND8rr,      X86::AND8mr },
80    { X86::DEC16r,      X86::DEC16m },
81    { X86::DEC32r,      X86::DEC32m },
82    { X86::DEC64_16r,   X86::DEC64_16m },
83    { X86::DEC64_32r,   X86::DEC64_32m },
84    { X86::DEC64r,      X86::DEC64m },
85    { X86::DEC8r,       X86::DEC8m },
86    { X86::INC16r,      X86::INC16m },
87    { X86::INC32r,      X86::INC32m },
88    { X86::INC64_16r,   X86::INC64_16m },
89    { X86::INC64_32r,   X86::INC64_32m },
90    { X86::INC64r,      X86::INC64m },
91    { X86::INC8r,       X86::INC8m },
92    { X86::NEG16r,      X86::NEG16m },
93    { X86::NEG32r,      X86::NEG32m },
94    { X86::NEG64r,      X86::NEG64m },
95    { X86::NEG8r,       X86::NEG8m },
96    { X86::NOT16r,      X86::NOT16m },
97    { X86::NOT32r,      X86::NOT32m },
98    { X86::NOT64r,      X86::NOT64m },
99    { X86::NOT8r,       X86::NOT8m },
100    { X86::OR16ri,      X86::OR16mi },
101    { X86::OR16ri8,     X86::OR16mi8 },
102    { X86::OR16rr,      X86::OR16mr },
103    { X86::OR32ri,      X86::OR32mi },
104    { X86::OR32ri8,     X86::OR32mi8 },
105    { X86::OR32rr,      X86::OR32mr },
106    { X86::OR64ri32,    X86::OR64mi32 },
107    { X86::OR64ri8,     X86::OR64mi8 },
108    { X86::OR64rr,      X86::OR64mr },
109    { X86::OR8ri,       X86::OR8mi },
110    { X86::OR8rr,       X86::OR8mr },
111    { X86::ROL16r1,     X86::ROL16m1 },
112    { X86::ROL16rCL,    X86::ROL16mCL },
113    { X86::ROL16ri,     X86::ROL16mi },
114    { X86::ROL32r1,     X86::ROL32m1 },
115    { X86::ROL32rCL,    X86::ROL32mCL },
116    { X86::ROL32ri,     X86::ROL32mi },
117    { X86::ROL64r1,     X86::ROL64m1 },
118    { X86::ROL64rCL,    X86::ROL64mCL },
119    { X86::ROL64ri,     X86::ROL64mi },
120    { X86::ROL8r1,      X86::ROL8m1 },
121    { X86::ROL8rCL,     X86::ROL8mCL },
122    { X86::ROL8ri,      X86::ROL8mi },
123    { X86::ROR16r1,     X86::ROR16m1 },
124    { X86::ROR16rCL,    X86::ROR16mCL },
125    { X86::ROR16ri,     X86::ROR16mi },
126    { X86::ROR32r1,     X86::ROR32m1 },
127    { X86::ROR32rCL,    X86::ROR32mCL },
128    { X86::ROR32ri,     X86::ROR32mi },
129    { X86::ROR64r1,     X86::ROR64m1 },
130    { X86::ROR64rCL,    X86::ROR64mCL },
131    { X86::ROR64ri,     X86::ROR64mi },
132    { X86::ROR8r1,      X86::ROR8m1 },
133    { X86::ROR8rCL,     X86::ROR8mCL },
134    { X86::ROR8ri,      X86::ROR8mi },
135    { X86::SAR16r1,     X86::SAR16m1 },
136    { X86::SAR16rCL,    X86::SAR16mCL },
137    { X86::SAR16ri,     X86::SAR16mi },
138    { X86::SAR32r1,     X86::SAR32m1 },
139    { X86::SAR32rCL,    X86::SAR32mCL },
140    { X86::SAR32ri,     X86::SAR32mi },
141    { X86::SAR64r1,     X86::SAR64m1 },
142    { X86::SAR64rCL,    X86::SAR64mCL },
143    { X86::SAR64ri,     X86::SAR64mi },
144    { X86::SAR8r1,      X86::SAR8m1 },
145    { X86::SAR8rCL,     X86::SAR8mCL },
146    { X86::SAR8ri,      X86::SAR8mi },
147    { X86::SBB32ri,     X86::SBB32mi },
148    { X86::SBB32ri8,    X86::SBB32mi8 },
149    { X86::SBB32rr,     X86::SBB32mr },
150    { X86::SBB64ri32,   X86::SBB64mi32 },
151    { X86::SBB64ri8,    X86::SBB64mi8 },
152    { X86::SBB64rr,     X86::SBB64mr },
153    { X86::SHL16rCL,    X86::SHL16mCL },
154    { X86::SHL16ri,     X86::SHL16mi },
155    { X86::SHL32rCL,    X86::SHL32mCL },
156    { X86::SHL32ri,     X86::SHL32mi },
157    { X86::SHL64rCL,    X86::SHL64mCL },
158    { X86::SHL64ri,     X86::SHL64mi },
159    { X86::SHL8rCL,     X86::SHL8mCL },
160    { X86::SHL8ri,      X86::SHL8mi },
161    { X86::SHLD16rrCL,  X86::SHLD16mrCL },
162    { X86::SHLD16rri8,  X86::SHLD16mri8 },
163    { X86::SHLD32rrCL,  X86::SHLD32mrCL },
164    { X86::SHLD32rri8,  X86::SHLD32mri8 },
165    { X86::SHLD64rrCL,  X86::SHLD64mrCL },
166    { X86::SHLD64rri8,  X86::SHLD64mri8 },
167    { X86::SHR16r1,     X86::SHR16m1 },
168    { X86::SHR16rCL,    X86::SHR16mCL },
169    { X86::SHR16ri,     X86::SHR16mi },
170    { X86::SHR32r1,     X86::SHR32m1 },
171    { X86::SHR32rCL,    X86::SHR32mCL },
172    { X86::SHR32ri,     X86::SHR32mi },
173    { X86::SHR64r1,     X86::SHR64m1 },
174    { X86::SHR64rCL,    X86::SHR64mCL },
175    { X86::SHR64ri,     X86::SHR64mi },
176    { X86::SHR8r1,      X86::SHR8m1 },
177    { X86::SHR8rCL,     X86::SHR8mCL },
178    { X86::SHR8ri,      X86::SHR8mi },
179    { X86::SHRD16rrCL,  X86::SHRD16mrCL },
180    { X86::SHRD16rri8,  X86::SHRD16mri8 },
181    { X86::SHRD32rrCL,  X86::SHRD32mrCL },
182    { X86::SHRD32rri8,  X86::SHRD32mri8 },
183    { X86::SHRD64rrCL,  X86::SHRD64mrCL },
184    { X86::SHRD64rri8,  X86::SHRD64mri8 },
185    { X86::SUB16ri,     X86::SUB16mi },
186    { X86::SUB16ri8,    X86::SUB16mi8 },
187    { X86::SUB16rr,     X86::SUB16mr },
188    { X86::SUB32ri,     X86::SUB32mi },
189    { X86::SUB32ri8,    X86::SUB32mi8 },
190    { X86::SUB32rr,     X86::SUB32mr },
191    { X86::SUB64ri32,   X86::SUB64mi32 },
192    { X86::SUB64ri8,    X86::SUB64mi8 },
193    { X86::SUB64rr,     X86::SUB64mr },
194    { X86::SUB8ri,      X86::SUB8mi },
195    { X86::SUB8rr,      X86::SUB8mr },
196    { X86::XOR16ri,     X86::XOR16mi },
197    { X86::XOR16ri8,    X86::XOR16mi8 },
198    { X86::XOR16rr,     X86::XOR16mr },
199    { X86::XOR32ri,     X86::XOR32mi },
200    { X86::XOR32ri8,    X86::XOR32mi8 },
201    { X86::XOR32rr,     X86::XOR32mr },
202    { X86::XOR64ri32,   X86::XOR64mi32 },
203    { X86::XOR64ri8,    X86::XOR64mi8 },
204    { X86::XOR64rr,     X86::XOR64mr },
205    { X86::XOR8ri,      X86::XOR8mi },
206    { X86::XOR8rr,      X86::XOR8mr }
207  };
208
209  for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) {
210    unsigned RegOp = OpTbl2Addr[i][0];
211    unsigned MemOp = OpTbl2Addr[i][1];
212    if (!RegOp2MemOpTable2Addr.insert(std::make_pair((unsigned*)RegOp,
213                                                     MemOp)).second)
214      assert(false && "Duplicated entries?");
215    unsigned AuxInfo = 0 | (1 << 4) | (1 << 5); // Index 0,folded load and store
216    if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
217                                                std::make_pair(RegOp,
218                                                              AuxInfo))).second)
219      AmbEntries.push_back(MemOp);
220  }
221
222  // If the third value is 1, then it's folding either a load or a store.
223  static const unsigned OpTbl0[][3] = {
224    { X86::CALL32r,     X86::CALL32m, 1 },
225    { X86::CALL64r,     X86::CALL64m, 1 },
226    { X86::CMP16ri,     X86::CMP16mi, 1 },
227    { X86::CMP16ri8,    X86::CMP16mi8, 1 },
228    { X86::CMP16rr,     X86::CMP16mr, 1 },
229    { X86::CMP32ri,     X86::CMP32mi, 1 },
230    { X86::CMP32ri8,    X86::CMP32mi8, 1 },
231    { X86::CMP32rr,     X86::CMP32mr, 1 },
232    { X86::CMP64ri32,   X86::CMP64mi32, 1 },
233    { X86::CMP64ri8,    X86::CMP64mi8, 1 },
234    { X86::CMP64rr,     X86::CMP64mr, 1 },
235    { X86::CMP8ri,      X86::CMP8mi, 1 },
236    { X86::CMP8rr,      X86::CMP8mr, 1 },
237    { X86::DIV16r,      X86::DIV16m, 1 },
238    { X86::DIV32r,      X86::DIV32m, 1 },
239    { X86::DIV64r,      X86::DIV64m, 1 },
240    { X86::DIV8r,       X86::DIV8m, 1 },
241    { X86::EXTRACTPSrr, X86::EXTRACTPSmr, 0 },
242    { X86::FsMOVAPDrr,  X86::MOVSDmr, 0 },
243    { X86::FsMOVAPSrr,  X86::MOVSSmr, 0 },
244    { X86::IDIV16r,     X86::IDIV16m, 1 },
245    { X86::IDIV32r,     X86::IDIV32m, 1 },
246    { X86::IDIV64r,     X86::IDIV64m, 1 },
247    { X86::IDIV8r,      X86::IDIV8m, 1 },
248    { X86::IMUL16r,     X86::IMUL16m, 1 },
249    { X86::IMUL32r,     X86::IMUL32m, 1 },
250    { X86::IMUL64r,     X86::IMUL64m, 1 },
251    { X86::IMUL8r,      X86::IMUL8m, 1 },
252    { X86::JMP32r,      X86::JMP32m, 1 },
253    { X86::JMP64r,      X86::JMP64m, 1 },
254    { X86::MOV16ri,     X86::MOV16mi, 0 },
255    { X86::MOV16rr,     X86::MOV16mr, 0 },
256    { X86::MOV16to16_,  X86::MOV16_mr, 0 },
257    { X86::MOV32ri,     X86::MOV32mi, 0 },
258    { X86::MOV32rr,     X86::MOV32mr, 0 },
259    { X86::MOV32to32_,  X86::MOV32_mr, 0 },
260    { X86::MOV64ri32,   X86::MOV64mi32, 0 },
261    { X86::MOV64rr,     X86::MOV64mr, 0 },
262    { X86::MOV8ri,      X86::MOV8mi, 0 },
263    { X86::MOV8rr,      X86::MOV8mr, 0 },
264    { X86::MOVAPDrr,    X86::MOVAPDmr, 0 },
265    { X86::MOVAPSrr,    X86::MOVAPSmr, 0 },
266    { X86::MOVPDI2DIrr, X86::MOVPDI2DImr, 0 },
267    { X86::MOVPQIto64rr,X86::MOVPQI2QImr, 0 },
268    { X86::MOVPS2SSrr,  X86::MOVPS2SSmr, 0 },
269    { X86::MOVSDrr,     X86::MOVSDmr, 0 },
270    { X86::MOVSDto64rr, X86::MOVSDto64mr, 0 },
271    { X86::MOVSS2DIrr,  X86::MOVSS2DImr, 0 },
272    { X86::MOVSSrr,     X86::MOVSSmr, 0 },
273    { X86::MOVUPDrr,    X86::MOVUPDmr, 0 },
274    { X86::MOVUPSrr,    X86::MOVUPSmr, 0 },
275    { X86::MUL16r,      X86::MUL16m, 1 },
276    { X86::MUL32r,      X86::MUL32m, 1 },
277    { X86::MUL64r,      X86::MUL64m, 1 },
278    { X86::MUL8r,       X86::MUL8m, 1 },
279    { X86::SETAEr,      X86::SETAEm, 0 },
280    { X86::SETAr,       X86::SETAm, 0 },
281    { X86::SETBEr,      X86::SETBEm, 0 },
282    { X86::SETBr,       X86::SETBm, 0 },
283    { X86::SETEr,       X86::SETEm, 0 },
284    { X86::SETGEr,      X86::SETGEm, 0 },
285    { X86::SETGr,       X86::SETGm, 0 },
286    { X86::SETLEr,      X86::SETLEm, 0 },
287    { X86::SETLr,       X86::SETLm, 0 },
288    { X86::SETNEr,      X86::SETNEm, 0 },
289    { X86::SETNPr,      X86::SETNPm, 0 },
290    { X86::SETNSr,      X86::SETNSm, 0 },
291    { X86::SETPr,       X86::SETPm, 0 },
292    { X86::SETSr,       X86::SETSm, 0 },
293    { X86::TAILJMPr,    X86::TAILJMPm, 1 },
294    { X86::TEST16ri,    X86::TEST16mi, 1 },
295    { X86::TEST32ri,    X86::TEST32mi, 1 },
296    { X86::TEST64ri32,  X86::TEST64mi32, 1 },
297    { X86::TEST8ri,     X86::TEST8mi, 1 }
298  };
299
300  for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) {
301    unsigned RegOp = OpTbl0[i][0];
302    unsigned MemOp = OpTbl0[i][1];
303    if (!RegOp2MemOpTable0.insert(std::make_pair((unsigned*)RegOp,
304                                                 MemOp)).second)
305      assert(false && "Duplicated entries?");
306    unsigned FoldedLoad = OpTbl0[i][2];
307    // Index 0, folded load or store.
308    unsigned AuxInfo = 0 | (FoldedLoad << 4) | ((FoldedLoad^1) << 5);
309    if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
310      if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
311                                     std::make_pair(RegOp, AuxInfo))).second)
312        AmbEntries.push_back(MemOp);
313  }
314
315  static const unsigned OpTbl1[][2] = {
316    { X86::CMP16rr,         X86::CMP16rm },
317    { X86::CMP32rr,         X86::CMP32rm },
318    { X86::CMP64rr,         X86::CMP64rm },
319    { X86::CMP8rr,          X86::CMP8rm },
320    { X86::CVTSD2SSrr,      X86::CVTSD2SSrm },
321    { X86::CVTSI2SD64rr,    X86::CVTSI2SD64rm },
322    { X86::CVTSI2SDrr,      X86::CVTSI2SDrm },
323    { X86::CVTSI2SS64rr,    X86::CVTSI2SS64rm },
324    { X86::CVTSI2SSrr,      X86::CVTSI2SSrm },
325    { X86::CVTSS2SDrr,      X86::CVTSS2SDrm },
326    { X86::CVTTSD2SI64rr,   X86::CVTTSD2SI64rm },
327    { X86::CVTTSD2SIrr,     X86::CVTTSD2SIrm },
328    { X86::CVTTSS2SI64rr,   X86::CVTTSS2SI64rm },
329    { X86::CVTTSS2SIrr,     X86::CVTTSS2SIrm },
330    { X86::FsMOVAPDrr,      X86::MOVSDrm },
331    { X86::FsMOVAPSrr,      X86::MOVSSrm },
332    { X86::IMUL16rri,       X86::IMUL16rmi },
333    { X86::IMUL16rri8,      X86::IMUL16rmi8 },
334    { X86::IMUL32rri,       X86::IMUL32rmi },
335    { X86::IMUL32rri8,      X86::IMUL32rmi8 },
336    { X86::IMUL64rri32,     X86::IMUL64rmi32 },
337    { X86::IMUL64rri8,      X86::IMUL64rmi8 },
338    { X86::Int_CMPSDrr,     X86::Int_CMPSDrm },
339    { X86::Int_CMPSSrr,     X86::Int_CMPSSrm },
340    { X86::Int_COMISDrr,    X86::Int_COMISDrm },
341    { X86::Int_COMISSrr,    X86::Int_COMISSrm },
342    { X86::Int_CVTDQ2PDrr,  X86::Int_CVTDQ2PDrm },
343    { X86::Int_CVTDQ2PSrr,  X86::Int_CVTDQ2PSrm },
344    { X86::Int_CVTPD2DQrr,  X86::Int_CVTPD2DQrm },
345    { X86::Int_CVTPD2PSrr,  X86::Int_CVTPD2PSrm },
346    { X86::Int_CVTPS2DQrr,  X86::Int_CVTPS2DQrm },
347    { X86::Int_CVTPS2PDrr,  X86::Int_CVTPS2PDrm },
348    { X86::Int_CVTSD2SI64rr,X86::Int_CVTSD2SI64rm },
349    { X86::Int_CVTSD2SIrr,  X86::Int_CVTSD2SIrm },
350    { X86::Int_CVTSD2SSrr,  X86::Int_CVTSD2SSrm },
351    { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm },
352    { X86::Int_CVTSI2SDrr,  X86::Int_CVTSI2SDrm },
353    { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm },
354    { X86::Int_CVTSI2SSrr,  X86::Int_CVTSI2SSrm },
355    { X86::Int_CVTSS2SDrr,  X86::Int_CVTSS2SDrm },
356    { X86::Int_CVTSS2SI64rr,X86::Int_CVTSS2SI64rm },
357    { X86::Int_CVTSS2SIrr,  X86::Int_CVTSS2SIrm },
358    { X86::Int_CVTTPD2DQrr, X86::Int_CVTTPD2DQrm },
359    { X86::Int_CVTTPS2DQrr, X86::Int_CVTTPS2DQrm },
360    { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm },
361    { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm },
362    { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm },
363    { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm },
364    { X86::Int_UCOMISDrr,   X86::Int_UCOMISDrm },
365    { X86::Int_UCOMISSrr,   X86::Int_UCOMISSrm },
366    { X86::MOV16rr,         X86::MOV16rm },
367    { X86::MOV16to16_,      X86::MOV16_rm },
368    { X86::MOV32rr,         X86::MOV32rm },
369    { X86::MOV32to32_,      X86::MOV32_rm },
370    { X86::MOV64rr,         X86::MOV64rm },
371    { X86::MOV64toPQIrr,    X86::MOVQI2PQIrm },
372    { X86::MOV64toSDrr,     X86::MOV64toSDrm },
373    { X86::MOV8rr,          X86::MOV8rm },
374    { X86::MOVAPDrr,        X86::MOVAPDrm },
375    { X86::MOVAPSrr,        X86::MOVAPSrm },
376    { X86::MOVDDUPrr,       X86::MOVDDUPrm },
377    { X86::MOVDI2PDIrr,     X86::MOVDI2PDIrm },
378    { X86::MOVDI2SSrr,      X86::MOVDI2SSrm },
379    { X86::MOVSD2PDrr,      X86::MOVSD2PDrm },
380    { X86::MOVSDrr,         X86::MOVSDrm },
381    { X86::MOVSHDUPrr,      X86::MOVSHDUPrm },
382    { X86::MOVSLDUPrr,      X86::MOVSLDUPrm },
383    { X86::MOVSS2PSrr,      X86::MOVSS2PSrm },
384    { X86::MOVSSrr,         X86::MOVSSrm },
385    { X86::MOVSX16rr8,      X86::MOVSX16rm8 },
386    { X86::MOVSX32rr16,     X86::MOVSX32rm16 },
387    { X86::MOVSX32rr8,      X86::MOVSX32rm8 },
388    { X86::MOVSX64rr16,     X86::MOVSX64rm16 },
389    { X86::MOVSX64rr32,     X86::MOVSX64rm32 },
390    { X86::MOVSX64rr8,      X86::MOVSX64rm8 },
391    { X86::MOVUPDrr,        X86::MOVUPDrm },
392    { X86::MOVUPSrr,        X86::MOVUPSrm },
393    { X86::MOVZDI2PDIrr,    X86::MOVZDI2PDIrm },
394    { X86::MOVZQI2PQIrr,    X86::MOVZQI2PQIrm },
395    { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm },
396    { X86::MOVZX16rr8,      X86::MOVZX16rm8 },
397    { X86::MOVZX32rr16,     X86::MOVZX32rm16 },
398    { X86::MOVZX32rr8,      X86::MOVZX32rm8 },
399    { X86::MOVZX64rr16,     X86::MOVZX64rm16 },
400    { X86::MOVZX64rr32,     X86::MOVZX64rm32 },
401    { X86::MOVZX64rr8,      X86::MOVZX64rm8 },
402    { X86::PSHUFDri,        X86::PSHUFDmi },
403    { X86::PSHUFHWri,       X86::PSHUFHWmi },
404    { X86::PSHUFLWri,       X86::PSHUFLWmi },
405    { X86::RCPPSr,          X86::RCPPSm },
406    { X86::RCPPSr_Int,      X86::RCPPSm_Int },
407    { X86::RSQRTPSr,        X86::RSQRTPSm },
408    { X86::RSQRTPSr_Int,    X86::RSQRTPSm_Int },
409    { X86::RSQRTSSr,        X86::RSQRTSSm },
410    { X86::RSQRTSSr_Int,    X86::RSQRTSSm_Int },
411    { X86::SQRTPDr,         X86::SQRTPDm },
412    { X86::SQRTPDr_Int,     X86::SQRTPDm_Int },
413    { X86::SQRTPSr,         X86::SQRTPSm },
414    { X86::SQRTPSr_Int,     X86::SQRTPSm_Int },
415    { X86::SQRTSDr,         X86::SQRTSDm },
416    { X86::SQRTSDr_Int,     X86::SQRTSDm_Int },
417    { X86::SQRTSSr,         X86::SQRTSSm },
418    { X86::SQRTSSr_Int,     X86::SQRTSSm_Int },
419    { X86::TEST16rr,        X86::TEST16rm },
420    { X86::TEST32rr,        X86::TEST32rm },
421    { X86::TEST64rr,        X86::TEST64rm },
422    { X86::TEST8rr,         X86::TEST8rm },
423    // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
424    { X86::UCOMISDrr,       X86::UCOMISDrm },
425    { X86::UCOMISSrr,       X86::UCOMISSrm }
426  };
427
428  for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) {
429    unsigned RegOp = OpTbl1[i][0];
430    unsigned MemOp = OpTbl1[i][1];
431    if (!RegOp2MemOpTable1.insert(std::make_pair((unsigned*)RegOp,
432                                                 MemOp)).second)
433      assert(false && "Duplicated entries?");
434    unsigned AuxInfo = 1 | (1 << 4); // Index 1, folded load
435    if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
436      if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
437                                     std::make_pair(RegOp, AuxInfo))).second)
438        AmbEntries.push_back(MemOp);
439  }
440
441  static const unsigned OpTbl2[][2] = {
442    { X86::ADC32rr,         X86::ADC32rm },
443    { X86::ADC64rr,         X86::ADC64rm },
444    { X86::ADD16rr,         X86::ADD16rm },
445    { X86::ADD32rr,         X86::ADD32rm },
446    { X86::ADD64rr,         X86::ADD64rm },
447    { X86::ADD8rr,          X86::ADD8rm },
448    { X86::ADDPDrr,         X86::ADDPDrm },
449    { X86::ADDPSrr,         X86::ADDPSrm },
450    { X86::ADDSDrr,         X86::ADDSDrm },
451    { X86::ADDSSrr,         X86::ADDSSrm },
452    { X86::ADDSUBPDrr,      X86::ADDSUBPDrm },
453    { X86::ADDSUBPSrr,      X86::ADDSUBPSrm },
454    { X86::AND16rr,         X86::AND16rm },
455    { X86::AND32rr,         X86::AND32rm },
456    { X86::AND64rr,         X86::AND64rm },
457    { X86::AND8rr,          X86::AND8rm },
458    { X86::ANDNPDrr,        X86::ANDNPDrm },
459    { X86::ANDNPSrr,        X86::ANDNPSrm },
460    { X86::ANDPDrr,         X86::ANDPDrm },
461    { X86::ANDPSrr,         X86::ANDPSrm },
462    { X86::CMOVA16rr,       X86::CMOVA16rm },
463    { X86::CMOVA32rr,       X86::CMOVA32rm },
464    { X86::CMOVA64rr,       X86::CMOVA64rm },
465    { X86::CMOVAE16rr,      X86::CMOVAE16rm },
466    { X86::CMOVAE32rr,      X86::CMOVAE32rm },
467    { X86::CMOVAE64rr,      X86::CMOVAE64rm },
468    { X86::CMOVB16rr,       X86::CMOVB16rm },
469    { X86::CMOVB32rr,       X86::CMOVB32rm },
470    { X86::CMOVB64rr,       X86::CMOVB64rm },
471    { X86::CMOVBE16rr,      X86::CMOVBE16rm },
472    { X86::CMOVBE32rr,      X86::CMOVBE32rm },
473    { X86::CMOVBE64rr,      X86::CMOVBE64rm },
474    { X86::CMOVE16rr,       X86::CMOVE16rm },
475    { X86::CMOVE32rr,       X86::CMOVE32rm },
476    { X86::CMOVE64rr,       X86::CMOVE64rm },
477    { X86::CMOVG16rr,       X86::CMOVG16rm },
478    { X86::CMOVG32rr,       X86::CMOVG32rm },
479    { X86::CMOVG64rr,       X86::CMOVG64rm },
480    { X86::CMOVGE16rr,      X86::CMOVGE16rm },
481    { X86::CMOVGE32rr,      X86::CMOVGE32rm },
482    { X86::CMOVGE64rr,      X86::CMOVGE64rm },
483    { X86::CMOVL16rr,       X86::CMOVL16rm },
484    { X86::CMOVL32rr,       X86::CMOVL32rm },
485    { X86::CMOVL64rr,       X86::CMOVL64rm },
486    { X86::CMOVLE16rr,      X86::CMOVLE16rm },
487    { X86::CMOVLE32rr,      X86::CMOVLE32rm },
488    { X86::CMOVLE64rr,      X86::CMOVLE64rm },
489    { X86::CMOVNE16rr,      X86::CMOVNE16rm },
490    { X86::CMOVNE32rr,      X86::CMOVNE32rm },
491    { X86::CMOVNE64rr,      X86::CMOVNE64rm },
492    { X86::CMOVNP16rr,      X86::CMOVNP16rm },
493    { X86::CMOVNP32rr,      X86::CMOVNP32rm },
494    { X86::CMOVNP64rr,      X86::CMOVNP64rm },
495    { X86::CMOVNS16rr,      X86::CMOVNS16rm },
496    { X86::CMOVNS32rr,      X86::CMOVNS32rm },
497    { X86::CMOVNS64rr,      X86::CMOVNS64rm },
498    { X86::CMOVP16rr,       X86::CMOVP16rm },
499    { X86::CMOVP32rr,       X86::CMOVP32rm },
500    { X86::CMOVP64rr,       X86::CMOVP64rm },
501    { X86::CMOVS16rr,       X86::CMOVS16rm },
502    { X86::CMOVS32rr,       X86::CMOVS32rm },
503    { X86::CMOVS64rr,       X86::CMOVS64rm },
504    { X86::CMPPDrri,        X86::CMPPDrmi },
505    { X86::CMPPSrri,        X86::CMPPSrmi },
506    { X86::CMPSDrr,         X86::CMPSDrm },
507    { X86::CMPSSrr,         X86::CMPSSrm },
508    { X86::DIVPDrr,         X86::DIVPDrm },
509    { X86::DIVPSrr,         X86::DIVPSrm },
510    { X86::DIVSDrr,         X86::DIVSDrm },
511    { X86::DIVSSrr,         X86::DIVSSrm },
512    { X86::FsANDNPDrr,      X86::FsANDNPDrm },
513    { X86::FsANDNPSrr,      X86::FsANDNPSrm },
514    { X86::FsANDPDrr,       X86::FsANDPDrm },
515    { X86::FsANDPSrr,       X86::FsANDPSrm },
516    { X86::FsORPDrr,        X86::FsORPDrm },
517    { X86::FsORPSrr,        X86::FsORPSrm },
518    { X86::FsXORPDrr,       X86::FsXORPDrm },
519    { X86::FsXORPSrr,       X86::FsXORPSrm },
520    { X86::HADDPDrr,        X86::HADDPDrm },
521    { X86::HADDPSrr,        X86::HADDPSrm },
522    { X86::HSUBPDrr,        X86::HSUBPDrm },
523    { X86::HSUBPSrr,        X86::HSUBPSrm },
524    { X86::IMUL16rr,        X86::IMUL16rm },
525    { X86::IMUL32rr,        X86::IMUL32rm },
526    { X86::IMUL64rr,        X86::IMUL64rm },
527    { X86::MAXPDrr,         X86::MAXPDrm },
528    { X86::MAXPDrr_Int,     X86::MAXPDrm_Int },
529    { X86::MAXPSrr,         X86::MAXPSrm },
530    { X86::MAXPSrr_Int,     X86::MAXPSrm_Int },
531    { X86::MAXSDrr,         X86::MAXSDrm },
532    { X86::MAXSDrr_Int,     X86::MAXSDrm_Int },
533    { X86::MAXSSrr,         X86::MAXSSrm },
534    { X86::MAXSSrr_Int,     X86::MAXSSrm_Int },
535    { X86::MINPDrr,         X86::MINPDrm },
536    { X86::MINPDrr_Int,     X86::MINPDrm_Int },
537    { X86::MINPSrr,         X86::MINPSrm },
538    { X86::MINPSrr_Int,     X86::MINPSrm_Int },
539    { X86::MINSDrr,         X86::MINSDrm },
540    { X86::MINSDrr_Int,     X86::MINSDrm_Int },
541    { X86::MINSSrr,         X86::MINSSrm },
542    { X86::MINSSrr_Int,     X86::MINSSrm_Int },
543    { X86::MULPDrr,         X86::MULPDrm },
544    { X86::MULPSrr,         X86::MULPSrm },
545    { X86::MULSDrr,         X86::MULSDrm },
546    { X86::MULSSrr,         X86::MULSSrm },
547    { X86::OR16rr,          X86::OR16rm },
548    { X86::OR32rr,          X86::OR32rm },
549    { X86::OR64rr,          X86::OR64rm },
550    { X86::OR8rr,           X86::OR8rm },
551    { X86::ORPDrr,          X86::ORPDrm },
552    { X86::ORPSrr,          X86::ORPSrm },
553    { X86::PACKSSDWrr,      X86::PACKSSDWrm },
554    { X86::PACKSSWBrr,      X86::PACKSSWBrm },
555    { X86::PACKUSWBrr,      X86::PACKUSWBrm },
556    { X86::PADDBrr,         X86::PADDBrm },
557    { X86::PADDDrr,         X86::PADDDrm },
558    { X86::PADDQrr,         X86::PADDQrm },
559    { X86::PADDSBrr,        X86::PADDSBrm },
560    { X86::PADDSWrr,        X86::PADDSWrm },
561    { X86::PADDWrr,         X86::PADDWrm },
562    { X86::PANDNrr,         X86::PANDNrm },
563    { X86::PANDrr,          X86::PANDrm },
564    { X86::PAVGBrr,         X86::PAVGBrm },
565    { X86::PAVGWrr,         X86::PAVGWrm },
566    { X86::PCMPEQBrr,       X86::PCMPEQBrm },
567    { X86::PCMPEQDrr,       X86::PCMPEQDrm },
568    { X86::PCMPEQWrr,       X86::PCMPEQWrm },
569    { X86::PCMPGTBrr,       X86::PCMPGTBrm },
570    { X86::PCMPGTDrr,       X86::PCMPGTDrm },
571    { X86::PCMPGTWrr,       X86::PCMPGTWrm },
572    { X86::PINSRWrri,       X86::PINSRWrmi },
573    { X86::PMADDWDrr,       X86::PMADDWDrm },
574    { X86::PMAXSWrr,        X86::PMAXSWrm },
575    { X86::PMAXUBrr,        X86::PMAXUBrm },
576    { X86::PMINSWrr,        X86::PMINSWrm },
577    { X86::PMINUBrr,        X86::PMINUBrm },
578    { X86::PMULDQrr,        X86::PMULDQrm },
579    { X86::PMULDQrr_int,    X86::PMULDQrm_int },
580    { X86::PMULHUWrr,       X86::PMULHUWrm },
581    { X86::PMULHWrr,        X86::PMULHWrm },
582    { X86::PMULLDrr,        X86::PMULLDrm },
583    { X86::PMULLDrr_int,    X86::PMULLDrm_int },
584    { X86::PMULLWrr,        X86::PMULLWrm },
585    { X86::PMULUDQrr,       X86::PMULUDQrm },
586    { X86::PORrr,           X86::PORrm },
587    { X86::PSADBWrr,        X86::PSADBWrm },
588    { X86::PSLLDrr,         X86::PSLLDrm },
589    { X86::PSLLQrr,         X86::PSLLQrm },
590    { X86::PSLLWrr,         X86::PSLLWrm },
591    { X86::PSRADrr,         X86::PSRADrm },
592    { X86::PSRAWrr,         X86::PSRAWrm },
593    { X86::PSRLDrr,         X86::PSRLDrm },
594    { X86::PSRLQrr,         X86::PSRLQrm },
595    { X86::PSRLWrr,         X86::PSRLWrm },
596    { X86::PSUBBrr,         X86::PSUBBrm },
597    { X86::PSUBDrr,         X86::PSUBDrm },
598    { X86::PSUBSBrr,        X86::PSUBSBrm },
599    { X86::PSUBSWrr,        X86::PSUBSWrm },
600    { X86::PSUBWrr,         X86::PSUBWrm },
601    { X86::PUNPCKHBWrr,     X86::PUNPCKHBWrm },
602    { X86::PUNPCKHDQrr,     X86::PUNPCKHDQrm },
603    { X86::PUNPCKHQDQrr,    X86::PUNPCKHQDQrm },
604    { X86::PUNPCKHWDrr,     X86::PUNPCKHWDrm },
605    { X86::PUNPCKLBWrr,     X86::PUNPCKLBWrm },
606    { X86::PUNPCKLDQrr,     X86::PUNPCKLDQrm },
607    { X86::PUNPCKLQDQrr,    X86::PUNPCKLQDQrm },
608    { X86::PUNPCKLWDrr,     X86::PUNPCKLWDrm },
609    { X86::PXORrr,          X86::PXORrm },
610    { X86::SBB32rr,         X86::SBB32rm },
611    { X86::SBB64rr,         X86::SBB64rm },
612    { X86::SHUFPDrri,       X86::SHUFPDrmi },
613    { X86::SHUFPSrri,       X86::SHUFPSrmi },
614    { X86::SUB16rr,         X86::SUB16rm },
615    { X86::SUB32rr,         X86::SUB32rm },
616    { X86::SUB64rr,         X86::SUB64rm },
617    { X86::SUB8rr,          X86::SUB8rm },
618    { X86::SUBPDrr,         X86::SUBPDrm },
619    { X86::SUBPSrr,         X86::SUBPSrm },
620    { X86::SUBSDrr,         X86::SUBSDrm },
621    { X86::SUBSSrr,         X86::SUBSSrm },
622    // FIXME: TEST*rr -> swapped operand of TEST*mr.
623    { X86::UNPCKHPDrr,      X86::UNPCKHPDrm },
624    { X86::UNPCKHPSrr,      X86::UNPCKHPSrm },
625    { X86::UNPCKLPDrr,      X86::UNPCKLPDrm },
626    { X86::UNPCKLPSrr,      X86::UNPCKLPSrm },
627    { X86::XOR16rr,         X86::XOR16rm },
628    { X86::XOR32rr,         X86::XOR32rm },
629    { X86::XOR64rr,         X86::XOR64rm },
630    { X86::XOR8rr,          X86::XOR8rm },
631    { X86::XORPDrr,         X86::XORPDrm },
632    { X86::XORPSrr,         X86::XORPSrm }
633  };
634
635  for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) {
636    unsigned RegOp = OpTbl2[i][0];
637    unsigned MemOp = OpTbl2[i][1];
638    if (!RegOp2MemOpTable2.insert(std::make_pair((unsigned*)RegOp,
639                                                 MemOp)).second)
640      assert(false && "Duplicated entries?");
641    unsigned AuxInfo = 2 | (1 << 4); // Index 1, folded load
642    if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
643                                   std::make_pair(RegOp, AuxInfo))).second)
644      AmbEntries.push_back(MemOp);
645  }
646
647  // Remove ambiguous entries.
648  assert(AmbEntries.empty() && "Duplicated entries in unfolding maps?");
649}
650
651bool X86InstrInfo::isMoveInstr(const MachineInstr& MI,
652                               unsigned& sourceReg,
653                               unsigned& destReg) const {
654  switch (MI.getOpcode()) {
655  default:
656    return false;
657  case X86::MOV8rr:
658  case X86::MOV16rr:
659  case X86::MOV32rr:
660  case X86::MOV64rr:
661  case X86::MOV16to16_:
662  case X86::MOV32to32_:
663  case X86::MOVSSrr:
664  case X86::MOVSDrr:
665
666  // FP Stack register class copies
667  case X86::MOV_Fp3232: case X86::MOV_Fp6464: case X86::MOV_Fp8080:
668  case X86::MOV_Fp3264: case X86::MOV_Fp3280:
669  case X86::MOV_Fp6432: case X86::MOV_Fp8032:
670
671  case X86::FsMOVAPSrr:
672  case X86::FsMOVAPDrr:
673  case X86::MOVAPSrr:
674  case X86::MOVAPDrr:
675  case X86::MOVSS2PSrr:
676  case X86::MOVSD2PDrr:
677  case X86::MOVPS2SSrr:
678  case X86::MOVPD2SDrr:
679  case X86::MMX_MOVD64rr:
680  case X86::MMX_MOVQ64rr:
681    assert(MI.getNumOperands() >= 2 &&
682           MI.getOperand(0).isRegister() &&
683           MI.getOperand(1).isRegister() &&
684           "invalid register-register move instruction");
685    sourceReg = MI.getOperand(1).getReg();
686    destReg = MI.getOperand(0).getReg();
687    return true;
688  }
689}
690
691unsigned X86InstrInfo::isLoadFromStackSlot(MachineInstr *MI,
692                                           int &FrameIndex) const {
693  switch (MI->getOpcode()) {
694  default: break;
695  case X86::MOV8rm:
696  case X86::MOV16rm:
697  case X86::MOV16_rm:
698  case X86::MOV32rm:
699  case X86::MOV32_rm:
700  case X86::MOV64rm:
701  case X86::LD_Fp64m:
702  case X86::MOVSSrm:
703  case X86::MOVSDrm:
704  case X86::MOVAPSrm:
705  case X86::MOVAPDrm:
706  case X86::MMX_MOVD64rm:
707  case X86::MMX_MOVQ64rm:
708    if (MI->getOperand(1).isFrameIndex() && MI->getOperand(2).isImmediate() &&
709        MI->getOperand(3).isRegister() && MI->getOperand(4).isImmediate() &&
710        MI->getOperand(2).getImm() == 1 &&
711        MI->getOperand(3).getReg() == 0 &&
712        MI->getOperand(4).getImm() == 0) {
713      FrameIndex = MI->getOperand(1).getIndex();
714      return MI->getOperand(0).getReg();
715    }
716    break;
717  }
718  return 0;
719}
720
721unsigned X86InstrInfo::isStoreToStackSlot(MachineInstr *MI,
722                                          int &FrameIndex) const {
723  switch (MI->getOpcode()) {
724  default: break;
725  case X86::MOV8mr:
726  case X86::MOV16mr:
727  case X86::MOV16_mr:
728  case X86::MOV32mr:
729  case X86::MOV32_mr:
730  case X86::MOV64mr:
731  case X86::ST_FpP64m:
732  case X86::MOVSSmr:
733  case X86::MOVSDmr:
734  case X86::MOVAPSmr:
735  case X86::MOVAPDmr:
736  case X86::MMX_MOVD64mr:
737  case X86::MMX_MOVQ64mr:
738  case X86::MMX_MOVNTQmr:
739    if (MI->getOperand(0).isFrameIndex() && MI->getOperand(1).isImmediate() &&
740        MI->getOperand(2).isRegister() && MI->getOperand(3).isImmediate() &&
741        MI->getOperand(1).getImm() == 1 &&
742        MI->getOperand(2).getReg() == 0 &&
743        MI->getOperand(3).getImm() == 0) {
744      FrameIndex = MI->getOperand(0).getIndex();
745      return MI->getOperand(4).getReg();
746    }
747    break;
748  }
749  return 0;
750}
751
752
753/// regIsPICBase - Return true if register is PIC base (i.e.g defined by
754/// X86::MOVPC32r.
755static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) {
756  bool isPICBase = false;
757  for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
758         E = MRI.def_end(); I != E; ++I) {
759    MachineInstr *DefMI = I.getOperand().getParent();
760    if (DefMI->getOpcode() != X86::MOVPC32r)
761      return false;
762    assert(!isPICBase && "More than one PIC base?");
763    isPICBase = true;
764  }
765  return isPICBase;
766}
767
768/// isGVStub - Return true if the GV requires an extra load to get the
769/// real address.
770static inline bool isGVStub(GlobalValue *GV, X86TargetMachine &TM) {
771  return TM.getSubtarget<X86Subtarget>().GVRequiresExtraLoad(GV, TM, false);
772}
773
774bool
775X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI) const {
776  switch (MI->getOpcode()) {
777  default: break;
778    case X86::MOV8rm:
779    case X86::MOV16rm:
780    case X86::MOV16_rm:
781    case X86::MOV32rm:
782    case X86::MOV32_rm:
783    case X86::MOV64rm:
784    case X86::LD_Fp64m:
785    case X86::MOVSSrm:
786    case X86::MOVSDrm:
787    case X86::MOVAPSrm:
788    case X86::MOVAPDrm:
789    case X86::MMX_MOVD64rm:
790    case X86::MMX_MOVQ64rm: {
791      // Loads from constant pools are trivially rematerializable.
792      if (MI->getOperand(1).isRegister() &&
793          MI->getOperand(2).isImmediate() &&
794          MI->getOperand(3).isRegister() && MI->getOperand(3).getReg() == 0 &&
795          (MI->getOperand(4).isConstantPoolIndex() ||
796           (MI->getOperand(4).isGlobalAddress() &&
797            isGVStub(MI->getOperand(4).getGlobal(), TM)))) {
798        unsigned BaseReg = MI->getOperand(1).getReg();
799        if (BaseReg == 0)
800          return true;
801        // Allow re-materialization of PIC load.
802        if (!ReMatPICStubLoad && MI->getOperand(4).isGlobalAddress())
803          return false;
804        const MachineFunction &MF = *MI->getParent()->getParent();
805        const MachineRegisterInfo &MRI = MF.getRegInfo();
806        bool isPICBase = false;
807        for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
808               E = MRI.def_end(); I != E; ++I) {
809          MachineInstr *DefMI = I.getOperand().getParent();
810          if (DefMI->getOpcode() != X86::MOVPC32r)
811            return false;
812          assert(!isPICBase && "More than one PIC base?");
813          isPICBase = true;
814        }
815        return isPICBase;
816      }
817      return false;
818    }
819
820     case X86::LEA32r:
821     case X86::LEA64r: {
822       if (MI->getOperand(1).isRegister() &&
823           MI->getOperand(2).isImmediate() &&
824           MI->getOperand(3).isRegister() && MI->getOperand(3).getReg() == 0 &&
825           !MI->getOperand(4).isRegister()) {
826         // lea fi#, lea GV, etc. are all rematerializable.
827         unsigned BaseReg = MI->getOperand(1).getReg();
828         if (BaseReg == 0)
829           return true;
830         // Allow re-materialization of lea PICBase + x.
831         const MachineFunction &MF = *MI->getParent()->getParent();
832         const MachineRegisterInfo &MRI = MF.getRegInfo();
833         return regIsPICBase(BaseReg, MRI);
834       }
835       return false;
836     }
837  }
838
839  // All other instructions marked M_REMATERIALIZABLE are always trivially
840  // rematerializable.
841  return true;
842}
843
844/// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction that
845/// would clobber the EFLAGS condition register. Note the result may be
846/// conservative. If it cannot definitely determine the safety after visiting
847/// two instructions it assumes it's not safe.
848static bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
849                                  MachineBasicBlock::iterator I) {
850  // For compile time consideration, if we are not able to determine the
851  // safety after visiting 2 instructions, we will assume it's not safe.
852  for (unsigned i = 0; i < 2; ++i) {
853    if (I == MBB.end())
854      // Reached end of block, it's safe.
855      return true;
856    bool SeenDef = false;
857    for (unsigned j = 0, e = I->getNumOperands(); j != e; ++j) {
858      MachineOperand &MO = I->getOperand(j);
859      if (!MO.isRegister())
860        continue;
861      if (MO.getReg() == X86::EFLAGS) {
862        if (MO.isUse())
863          return false;
864        SeenDef = true;
865      }
866    }
867
868    if (SeenDef)
869      // This instruction defines EFLAGS, no need to look any further.
870      return true;
871    ++I;
872  }
873
874  // Conservative answer.
875  return false;
876}
877
878void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
879                                 MachineBasicBlock::iterator I,
880                                 unsigned DestReg,
881                                 const MachineInstr *Orig) const {
882  unsigned SubIdx = Orig->getOperand(0).isRegister()
883    ? Orig->getOperand(0).getSubReg() : 0;
884  bool ChangeSubIdx = SubIdx != 0;
885  if (SubIdx && TargetRegisterInfo::isPhysicalRegister(DestReg)) {
886    DestReg = RI.getSubReg(DestReg, SubIdx);
887    SubIdx = 0;
888  }
889
890  // MOV32r0 etc. are implemented with xor which clobbers condition code.
891  // Re-materialize them as movri instructions to avoid side effects.
892  bool Emitted = false;
893  switch (Orig->getOpcode()) {
894  default: break;
895  case X86::MOV8r0:
896  case X86::MOV16r0:
897  case X86::MOV32r0:
898  case X86::MOV64r0: {
899    if (!isSafeToClobberEFLAGS(MBB, I)) {
900      unsigned Opc = 0;
901      switch (Orig->getOpcode()) {
902      default: break;
903      case X86::MOV8r0:  Opc = X86::MOV8ri;  break;
904      case X86::MOV16r0: Opc = X86::MOV16ri; break;
905      case X86::MOV32r0: Opc = X86::MOV32ri; break;
906      case X86::MOV64r0: Opc = X86::MOV64ri32; break;
907      }
908      BuildMI(MBB, I, get(Opc), DestReg).addImm(0);
909      Emitted = true;
910    }
911    break;
912  }
913  }
914
915  if (!Emitted) {
916    MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
917    MI->getOperand(0).setReg(DestReg);
918    MBB.insert(I, MI);
919  }
920
921  if (ChangeSubIdx) {
922    MachineInstr *NewMI = prior(I);
923    NewMI->getOperand(0).setSubReg(SubIdx);
924  }
925}
926
927/// isInvariantLoad - Return true if the specified instruction (which is marked
928/// mayLoad) is loading from a location whose value is invariant across the
929/// function.  For example, loading a value from the constant pool or from
930/// from the argument area of a function if it does not change.  This should
931/// only return true of *all* loads the instruction does are invariant (if it
932/// does multiple loads).
933bool X86InstrInfo::isInvariantLoad(MachineInstr *MI) const {
934  // This code cares about loads from three cases: constant pool entries,
935  // invariant argument slots, and global stubs.  In order to handle these cases
936  // for all of the myriad of X86 instructions, we just scan for a CP/FI/GV
937  // operand and base our analysis on it.  This is safe because the address of
938  // none of these three cases is ever used as anything other than a load base
939  // and X86 doesn't have any instructions that load from multiple places.
940
941  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
942    const MachineOperand &MO = MI->getOperand(i);
943    // Loads from constant pools are trivially invariant.
944    if (MO.isConstantPoolIndex())
945      return true;
946
947    if (MO.isGlobalAddress())
948      return isGVStub(MO.getGlobal(), TM);
949
950    // If this is a load from an invariant stack slot, the load is a constant.
951    if (MO.isFrameIndex()) {
952      const MachineFrameInfo &MFI =
953        *MI->getParent()->getParent()->getFrameInfo();
954      int Idx = MO.getIndex();
955      return MFI.isFixedObjectIndex(Idx) && MFI.isImmutableObjectIndex(Idx);
956    }
957  }
958
959  // All other instances of these instructions are presumed to have other
960  // issues.
961  return false;
962}
963
964/// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that
965/// is not marked dead.
966static bool hasLiveCondCodeDef(MachineInstr *MI) {
967  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
968    MachineOperand &MO = MI->getOperand(i);
969    if (MO.isRegister() && MO.isDef() &&
970        MO.getReg() == X86::EFLAGS && !MO.isDead()) {
971      return true;
972    }
973  }
974  return false;
975}
976
977/// convertToThreeAddress - This method must be implemented by targets that
978/// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
979/// may be able to convert a two-address instruction into a true
980/// three-address instruction on demand.  This allows the X86 target (for
981/// example) to convert ADD and SHL instructions into LEA instructions if they
982/// would require register copies due to two-addressness.
983///
984/// This method returns a null pointer if the transformation cannot be
985/// performed, otherwise it returns the new instruction.
986///
987MachineInstr *
988X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
989                                    MachineBasicBlock::iterator &MBBI,
990                                    LiveVariables *LV) const {
991  MachineInstr *MI = MBBI;
992  MachineFunction &MF = *MI->getParent()->getParent();
993  // All instructions input are two-addr instructions.  Get the known operands.
994  unsigned Dest = MI->getOperand(0).getReg();
995  unsigned Src = MI->getOperand(1).getReg();
996  bool isDead = MI->getOperand(0).isDead();
997  bool isKill = MI->getOperand(1).isKill();
998
999  MachineInstr *NewMI = NULL;
1000  // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's.  When
1001  // we have better subtarget support, enable the 16-bit LEA generation here.
1002  bool DisableLEA16 = true;
1003
1004  unsigned MIOpc = MI->getOpcode();
1005  switch (MIOpc) {
1006  case X86::SHUFPSrri: {
1007    assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!");
1008    if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
1009
1010    unsigned B = MI->getOperand(1).getReg();
1011    unsigned C = MI->getOperand(2).getReg();
1012    if (B != C) return 0;
1013    unsigned A = MI->getOperand(0).getReg();
1014    unsigned M = MI->getOperand(3).getImm();
1015    NewMI = BuildMI(MF, get(X86::PSHUFDri)).addReg(A, true, false, false, isDead)
1016      .addReg(B, false, false, isKill).addImm(M);
1017    break;
1018  }
1019  case X86::SHL64ri: {
1020    assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
1021    // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1022    // the flags produced by a shift yet, so this is safe.
1023    unsigned ShAmt = MI->getOperand(2).getImm();
1024    if (ShAmt == 0 || ShAmt >= 4) return 0;
1025
1026    NewMI = BuildMI(MF, get(X86::LEA64r)).addReg(Dest, true, false, false, isDead)
1027      .addReg(0).addImm(1 << ShAmt).addReg(Src, false, false, isKill).addImm(0);
1028    break;
1029  }
1030  case X86::SHL32ri: {
1031    assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
1032    // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1033    // the flags produced by a shift yet, so this is safe.
1034    unsigned ShAmt = MI->getOperand(2).getImm();
1035    if (ShAmt == 0 || ShAmt >= 4) return 0;
1036
1037    unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit() ?
1038      X86::LEA64_32r : X86::LEA32r;
1039    NewMI = BuildMI(MF, get(Opc)).addReg(Dest, true, false, false, isDead)
1040      .addReg(0).addImm(1 << ShAmt)
1041      .addReg(Src, false, false, isKill).addImm(0);
1042    break;
1043  }
1044  case X86::SHL16ri: {
1045    assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
1046    // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1047    // the flags produced by a shift yet, so this is safe.
1048    unsigned ShAmt = MI->getOperand(2).getImm();
1049    if (ShAmt == 0 || ShAmt >= 4) return 0;
1050
1051    if (DisableLEA16) {
1052      // If 16-bit LEA is disabled, use 32-bit LEA via subregisters.
1053      MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
1054      unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit()
1055        ? X86::LEA64_32r : X86::LEA32r;
1056      unsigned leaInReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
1057      unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
1058
1059      // Build and insert into an implicit UNDEF value. This is OK because
1060      // well be shifting and then extracting the lower 16-bits.
1061      BuildMI(*MFI, MBBI, get(X86::IMPLICIT_DEF), leaInReg);
1062      MachineInstr *InsMI =  BuildMI(*MFI, MBBI, get(X86::INSERT_SUBREG),leaInReg)
1063        .addReg(leaInReg).addReg(Src, false, false, isKill)
1064        .addImm(X86::SUBREG_16BIT);
1065
1066      NewMI = BuildMI(*MFI, MBBI, get(Opc), leaOutReg).addReg(0).addImm(1 << ShAmt)
1067        .addReg(leaInReg, false, false, true).addImm(0);
1068
1069      MachineInstr *ExtMI = BuildMI(*MFI, MBBI, get(X86::EXTRACT_SUBREG))
1070        .addReg(Dest, true, false, false, isDead)
1071        .addReg(leaOutReg, false, false, true).addImm(X86::SUBREG_16BIT);
1072      if (LV) {
1073        // Update live variables
1074        LV->getVarInfo(leaInReg).Kills.push_back(NewMI);
1075        LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI);
1076        if (isKill)
1077          LV->replaceKillInstruction(Src, MI, InsMI);
1078        if (isDead)
1079          LV->replaceKillInstruction(Dest, MI, ExtMI);
1080      }
1081      return ExtMI;
1082    } else {
1083      NewMI = BuildMI(MF, get(X86::LEA16r)).addReg(Dest, true, false, false, isDead)
1084        .addReg(0).addImm(1 << ShAmt)
1085        .addReg(Src, false, false, isKill).addImm(0);
1086    }
1087    break;
1088  }
1089  default: {
1090    // The following opcodes also sets the condition code register(s). Only
1091    // convert them to equivalent lea if the condition code register def's
1092    // are dead!
1093    if (hasLiveCondCodeDef(MI))
1094      return 0;
1095
1096    bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
1097    switch (MIOpc) {
1098    default: return 0;
1099    case X86::INC64r:
1100    case X86::INC32r: {
1101      assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
1102      unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
1103        : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
1104      NewMI = addRegOffset(BuildMI(MF, get(Opc))
1105                           .addReg(Dest, true, false, false, isDead),
1106                           Src, isKill, 1);
1107      break;
1108    }
1109    case X86::INC16r:
1110    case X86::INC64_16r:
1111      if (DisableLEA16) return 0;
1112      assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
1113      NewMI = addRegOffset(BuildMI(MF, get(X86::LEA16r))
1114                           .addReg(Dest, true, false, false, isDead),
1115                           Src, isKill, 1);
1116      break;
1117    case X86::DEC64r:
1118    case X86::DEC32r: {
1119      assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
1120      unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
1121        : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
1122      NewMI = addRegOffset(BuildMI(MF, get(Opc))
1123                           .addReg(Dest, true, false, false, isDead),
1124                           Src, isKill, -1);
1125      break;
1126    }
1127    case X86::DEC16r:
1128    case X86::DEC64_16r:
1129      if (DisableLEA16) return 0;
1130      assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
1131      NewMI = addRegOffset(BuildMI(MF, get(X86::LEA16r))
1132                           .addReg(Dest, true, false, false, isDead),
1133                           Src, isKill, -1);
1134      break;
1135    case X86::ADD64rr:
1136    case X86::ADD32rr: {
1137      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1138      unsigned Opc = MIOpc == X86::ADD64rr ? X86::LEA64r
1139        : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
1140      unsigned Src2 = MI->getOperand(2).getReg();
1141      bool isKill2 = MI->getOperand(2).isKill();
1142      NewMI = addRegReg(BuildMI(MF, get(Opc))
1143                        .addReg(Dest, true, false, false, isDead),
1144                        Src, isKill, Src2, isKill2);
1145      if (LV && isKill2)
1146        LV->replaceKillInstruction(Src2, MI, NewMI);
1147      break;
1148    }
1149    case X86::ADD16rr: {
1150      if (DisableLEA16) return 0;
1151      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1152      unsigned Src2 = MI->getOperand(2).getReg();
1153      bool isKill2 = MI->getOperand(2).isKill();
1154      NewMI = addRegReg(BuildMI(MF, get(X86::LEA16r))
1155                        .addReg(Dest, true, false, false, isDead),
1156                        Src, isKill, Src2, isKill2);
1157      if (LV && isKill2)
1158        LV->replaceKillInstruction(Src2, MI, NewMI);
1159      break;
1160    }
1161    case X86::ADD64ri32:
1162    case X86::ADD64ri8:
1163      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1164      if (MI->getOperand(2).isImmediate())
1165        NewMI = addRegOffset(BuildMI(MF, get(X86::LEA64r))
1166                             .addReg(Dest, true, false, false, isDead),
1167                             Src, isKill, MI->getOperand(2).getImm());
1168      break;
1169    case X86::ADD32ri:
1170    case X86::ADD32ri8:
1171      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1172      if (MI->getOperand(2).isImmediate()) {
1173        unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
1174        NewMI = addRegOffset(BuildMI(MF, get(Opc))
1175                             .addReg(Dest, true, false, false, isDead),
1176                             Src, isKill, MI->getOperand(2).getImm());
1177      }
1178      break;
1179    case X86::ADD16ri:
1180    case X86::ADD16ri8:
1181      if (DisableLEA16) return 0;
1182      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1183      if (MI->getOperand(2).isImmediate())
1184        NewMI = addRegOffset(BuildMI(MF, get(X86::LEA16r))
1185                             .addReg(Dest, true, false, false, isDead),
1186                             Src, isKill, MI->getOperand(2).getImm());
1187      break;
1188    case X86::SHL16ri:
1189      if (DisableLEA16) return 0;
1190    case X86::SHL32ri:
1191    case X86::SHL64ri: {
1192      assert(MI->getNumOperands() >= 3 && MI->getOperand(2).isImmediate() &&
1193             "Unknown shl instruction!");
1194      unsigned ShAmt = MI->getOperand(2).getImm();
1195      if (ShAmt == 1 || ShAmt == 2 || ShAmt == 3) {
1196        X86AddressMode AM;
1197        AM.Scale = 1 << ShAmt;
1198        AM.IndexReg = Src;
1199        unsigned Opc = MIOpc == X86::SHL64ri ? X86::LEA64r
1200          : (MIOpc == X86::SHL32ri
1201             ? (is64Bit ? X86::LEA64_32r : X86::LEA32r) : X86::LEA16r);
1202        NewMI = addFullAddress(BuildMI(MF, get(Opc))
1203                               .addReg(Dest, true, false, false, isDead), AM);
1204        if (isKill)
1205          NewMI->getOperand(3).setIsKill(true);
1206      }
1207      break;
1208    }
1209    }
1210  }
1211  }
1212
1213  if (!NewMI) return 0;
1214
1215  if (LV) {  // Update live variables
1216    if (isKill)
1217      LV->replaceKillInstruction(Src, MI, NewMI);
1218    if (isDead)
1219      LV->replaceKillInstruction(Dest, MI, NewMI);
1220  }
1221
1222  MFI->insert(MBBI, NewMI);          // Insert the new inst
1223  return NewMI;
1224}
1225
1226/// commuteInstruction - We have a few instructions that must be hacked on to
1227/// commute them.
1228///
1229MachineInstr *
1230X86InstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
1231  switch (MI->getOpcode()) {
1232  case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
1233  case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
1234  case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
1235  case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
1236  case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
1237  case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
1238    unsigned Opc;
1239    unsigned Size;
1240    switch (MI->getOpcode()) {
1241    default: assert(0 && "Unreachable!");
1242    case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
1243    case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
1244    case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
1245    case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
1246    case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
1247    case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
1248    }
1249    unsigned Amt = MI->getOperand(3).getImm();
1250    unsigned A = MI->getOperand(0).getReg();
1251    unsigned B = MI->getOperand(1).getReg();
1252    unsigned C = MI->getOperand(2).getReg();
1253    bool AisDead = MI->getOperand(0).isDead();
1254    bool BisKill = MI->getOperand(1).isKill();
1255    bool CisKill = MI->getOperand(2).isKill();
1256    // If machine instrs are no longer in two-address forms, update
1257    // destination register as well.
1258    if (A == B) {
1259      // Must be two address instruction!
1260      assert(MI->getDesc().getOperandConstraint(0, TOI::TIED_TO) &&
1261             "Expecting a two-address instruction!");
1262      A = C;
1263      CisKill = false;
1264    }
1265    MachineFunction &MF = *MI->getParent()->getParent();
1266    return BuildMI(MF, get(Opc))
1267      .addReg(A, true, false, false, AisDead)
1268      .addReg(C, false, false, CisKill)
1269      .addReg(B, false, false, BisKill).addImm(Size-Amt);
1270  }
1271  case X86::CMOVB16rr:
1272  case X86::CMOVB32rr:
1273  case X86::CMOVB64rr:
1274  case X86::CMOVAE16rr:
1275  case X86::CMOVAE32rr:
1276  case X86::CMOVAE64rr:
1277  case X86::CMOVE16rr:
1278  case X86::CMOVE32rr:
1279  case X86::CMOVE64rr:
1280  case X86::CMOVNE16rr:
1281  case X86::CMOVNE32rr:
1282  case X86::CMOVNE64rr:
1283  case X86::CMOVBE16rr:
1284  case X86::CMOVBE32rr:
1285  case X86::CMOVBE64rr:
1286  case X86::CMOVA16rr:
1287  case X86::CMOVA32rr:
1288  case X86::CMOVA64rr:
1289  case X86::CMOVL16rr:
1290  case X86::CMOVL32rr:
1291  case X86::CMOVL64rr:
1292  case X86::CMOVGE16rr:
1293  case X86::CMOVGE32rr:
1294  case X86::CMOVGE64rr:
1295  case X86::CMOVLE16rr:
1296  case X86::CMOVLE32rr:
1297  case X86::CMOVLE64rr:
1298  case X86::CMOVG16rr:
1299  case X86::CMOVG32rr:
1300  case X86::CMOVG64rr:
1301  case X86::CMOVS16rr:
1302  case X86::CMOVS32rr:
1303  case X86::CMOVS64rr:
1304  case X86::CMOVNS16rr:
1305  case X86::CMOVNS32rr:
1306  case X86::CMOVNS64rr:
1307  case X86::CMOVP16rr:
1308  case X86::CMOVP32rr:
1309  case X86::CMOVP64rr:
1310  case X86::CMOVNP16rr:
1311  case X86::CMOVNP32rr:
1312  case X86::CMOVNP64rr: {
1313    unsigned Opc = 0;
1314    switch (MI->getOpcode()) {
1315    default: break;
1316    case X86::CMOVB16rr:  Opc = X86::CMOVAE16rr; break;
1317    case X86::CMOVB32rr:  Opc = X86::CMOVAE32rr; break;
1318    case X86::CMOVB64rr:  Opc = X86::CMOVAE64rr; break;
1319    case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break;
1320    case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break;
1321    case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break;
1322    case X86::CMOVE16rr:  Opc = X86::CMOVNE16rr; break;
1323    case X86::CMOVE32rr:  Opc = X86::CMOVNE32rr; break;
1324    case X86::CMOVE64rr:  Opc = X86::CMOVNE64rr; break;
1325    case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break;
1326    case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break;
1327    case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break;
1328    case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break;
1329    case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break;
1330    case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break;
1331    case X86::CMOVA16rr:  Opc = X86::CMOVBE16rr; break;
1332    case X86::CMOVA32rr:  Opc = X86::CMOVBE32rr; break;
1333    case X86::CMOVA64rr:  Opc = X86::CMOVBE64rr; break;
1334    case X86::CMOVL16rr:  Opc = X86::CMOVGE16rr; break;
1335    case X86::CMOVL32rr:  Opc = X86::CMOVGE32rr; break;
1336    case X86::CMOVL64rr:  Opc = X86::CMOVGE64rr; break;
1337    case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break;
1338    case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break;
1339    case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break;
1340    case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break;
1341    case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break;
1342    case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break;
1343    case X86::CMOVG16rr:  Opc = X86::CMOVLE16rr; break;
1344    case X86::CMOVG32rr:  Opc = X86::CMOVLE32rr; break;
1345    case X86::CMOVG64rr:  Opc = X86::CMOVLE64rr; break;
1346    case X86::CMOVS16rr:  Opc = X86::CMOVNS16rr; break;
1347    case X86::CMOVS32rr:  Opc = X86::CMOVNS32rr; break;
1348    case X86::CMOVS64rr:  Opc = X86::CMOVNS32rr; break;
1349    case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break;
1350    case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break;
1351    case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break;
1352    case X86::CMOVP16rr:  Opc = X86::CMOVNP16rr; break;
1353    case X86::CMOVP32rr:  Opc = X86::CMOVNP32rr; break;
1354    case X86::CMOVP64rr:  Opc = X86::CMOVNP32rr; break;
1355    case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break;
1356    case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break;
1357    case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break;
1358    }
1359
1360    MI->setDesc(get(Opc));
1361    // Fallthrough intended.
1362  }
1363  default:
1364    return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
1365  }
1366}
1367
1368static X86::CondCode GetCondFromBranchOpc(unsigned BrOpc) {
1369  switch (BrOpc) {
1370  default: return X86::COND_INVALID;
1371  case X86::JE:  return X86::COND_E;
1372  case X86::JNE: return X86::COND_NE;
1373  case X86::JL:  return X86::COND_L;
1374  case X86::JLE: return X86::COND_LE;
1375  case X86::JG:  return X86::COND_G;
1376  case X86::JGE: return X86::COND_GE;
1377  case X86::JB:  return X86::COND_B;
1378  case X86::JBE: return X86::COND_BE;
1379  case X86::JA:  return X86::COND_A;
1380  case X86::JAE: return X86::COND_AE;
1381  case X86::JS:  return X86::COND_S;
1382  case X86::JNS: return X86::COND_NS;
1383  case X86::JP:  return X86::COND_P;
1384  case X86::JNP: return X86::COND_NP;
1385  case X86::JO:  return X86::COND_O;
1386  case X86::JNO: return X86::COND_NO;
1387  }
1388}
1389
1390unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
1391  switch (CC) {
1392  default: assert(0 && "Illegal condition code!");
1393  case X86::COND_E:  return X86::JE;
1394  case X86::COND_NE: return X86::JNE;
1395  case X86::COND_L:  return X86::JL;
1396  case X86::COND_LE: return X86::JLE;
1397  case X86::COND_G:  return X86::JG;
1398  case X86::COND_GE: return X86::JGE;
1399  case X86::COND_B:  return X86::JB;
1400  case X86::COND_BE: return X86::JBE;
1401  case X86::COND_A:  return X86::JA;
1402  case X86::COND_AE: return X86::JAE;
1403  case X86::COND_S:  return X86::JS;
1404  case X86::COND_NS: return X86::JNS;
1405  case X86::COND_P:  return X86::JP;
1406  case X86::COND_NP: return X86::JNP;
1407  case X86::COND_O:  return X86::JO;
1408  case X86::COND_NO: return X86::JNO;
1409  }
1410}
1411
1412/// GetOppositeBranchCondition - Return the inverse of the specified condition,
1413/// e.g. turning COND_E to COND_NE.
1414X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
1415  switch (CC) {
1416  default: assert(0 && "Illegal condition code!");
1417  case X86::COND_E:  return X86::COND_NE;
1418  case X86::COND_NE: return X86::COND_E;
1419  case X86::COND_L:  return X86::COND_GE;
1420  case X86::COND_LE: return X86::COND_G;
1421  case X86::COND_G:  return X86::COND_LE;
1422  case X86::COND_GE: return X86::COND_L;
1423  case X86::COND_B:  return X86::COND_AE;
1424  case X86::COND_BE: return X86::COND_A;
1425  case X86::COND_A:  return X86::COND_BE;
1426  case X86::COND_AE: return X86::COND_B;
1427  case X86::COND_S:  return X86::COND_NS;
1428  case X86::COND_NS: return X86::COND_S;
1429  case X86::COND_P:  return X86::COND_NP;
1430  case X86::COND_NP: return X86::COND_P;
1431  case X86::COND_O:  return X86::COND_NO;
1432  case X86::COND_NO: return X86::COND_O;
1433  }
1434}
1435
1436bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
1437  const TargetInstrDesc &TID = MI->getDesc();
1438  if (!TID.isTerminator()) return false;
1439
1440  // Conditional branch is a special case.
1441  if (TID.isBranch() && !TID.isBarrier())
1442    return true;
1443  if (!TID.isPredicable())
1444    return true;
1445  return !isPredicated(MI);
1446}
1447
1448// For purposes of branch analysis do not count FP_REG_KILL as a terminator.
1449static bool isBrAnalysisUnpredicatedTerminator(const MachineInstr *MI,
1450                                               const X86InstrInfo &TII) {
1451  if (MI->getOpcode() == X86::FP_REG_KILL)
1452    return false;
1453  return TII.isUnpredicatedTerminator(MI);
1454}
1455
1456bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
1457                                 MachineBasicBlock *&TBB,
1458                                 MachineBasicBlock *&FBB,
1459                                 SmallVectorImpl<MachineOperand> &Cond) const {
1460  // If the block has no terminators, it just falls into the block after it.
1461  MachineBasicBlock::iterator I = MBB.end();
1462  if (I == MBB.begin() || !isBrAnalysisUnpredicatedTerminator(--I, *this))
1463    return false;
1464
1465  // Get the last instruction in the block.
1466  MachineInstr *LastInst = I;
1467
1468  // If there is only one terminator instruction, process it.
1469  if (I == MBB.begin() || !isBrAnalysisUnpredicatedTerminator(--I, *this)) {
1470    if (!LastInst->getDesc().isBranch())
1471      return true;
1472
1473    // If the block ends with a branch there are 3 possibilities:
1474    // it's an unconditional, conditional, or indirect branch.
1475
1476    if (LastInst->getOpcode() == X86::JMP) {
1477      TBB = LastInst->getOperand(0).getMBB();
1478      return false;
1479    }
1480    X86::CondCode BranchCode = GetCondFromBranchOpc(LastInst->getOpcode());
1481    if (BranchCode == X86::COND_INVALID)
1482      return true;  // Can't handle indirect branch.
1483
1484    // Otherwise, block ends with fall-through condbranch.
1485    TBB = LastInst->getOperand(0).getMBB();
1486    Cond.push_back(MachineOperand::CreateImm(BranchCode));
1487    return false;
1488  }
1489
1490  // Get the instruction before it if it's a terminator.
1491  MachineInstr *SecondLastInst = I;
1492
1493  // If there are three terminators, we don't know what sort of block this is.
1494  if (SecondLastInst && I != MBB.begin() &&
1495      isBrAnalysisUnpredicatedTerminator(--I, *this))
1496    return true;
1497
1498  // If the block ends with X86::JMP and a conditional branch, handle it.
1499  X86::CondCode BranchCode = GetCondFromBranchOpc(SecondLastInst->getOpcode());
1500  if (BranchCode != X86::COND_INVALID && LastInst->getOpcode() == X86::JMP) {
1501    TBB = SecondLastInst->getOperand(0).getMBB();
1502    Cond.push_back(MachineOperand::CreateImm(BranchCode));
1503    FBB = LastInst->getOperand(0).getMBB();
1504    return false;
1505  }
1506
1507  // If the block ends with two X86::JMPs, handle it.  The second one is not
1508  // executed, so remove it.
1509  if (SecondLastInst->getOpcode() == X86::JMP &&
1510      LastInst->getOpcode() == X86::JMP) {
1511    TBB = SecondLastInst->getOperand(0).getMBB();
1512    I = LastInst;
1513    I->eraseFromParent();
1514    return false;
1515  }
1516
1517  // Otherwise, can't handle this.
1518  return true;
1519}
1520
1521unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
1522  MachineBasicBlock::iterator I = MBB.end();
1523  if (I == MBB.begin()) return 0;
1524  --I;
1525  if (I->getOpcode() != X86::JMP &&
1526      GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
1527    return 0;
1528
1529  // Remove the branch.
1530  I->eraseFromParent();
1531
1532  I = MBB.end();
1533
1534  if (I == MBB.begin()) return 1;
1535  --I;
1536  if (GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
1537    return 1;
1538
1539  // Remove the branch.
1540  I->eraseFromParent();
1541  return 2;
1542}
1543
1544static const MachineInstrBuilder &X86InstrAddOperand(MachineInstrBuilder &MIB,
1545                                                     MachineOperand &MO) {
1546  if (MO.isRegister())
1547    MIB = MIB.addReg(MO.getReg(), MO.isDef(), MO.isImplicit(),
1548                     MO.isKill(), MO.isDead(), MO.getSubReg());
1549  else if (MO.isImmediate())
1550    MIB = MIB.addImm(MO.getImm());
1551  else if (MO.isFrameIndex())
1552    MIB = MIB.addFrameIndex(MO.getIndex());
1553  else if (MO.isGlobalAddress())
1554    MIB = MIB.addGlobalAddress(MO.getGlobal(), MO.getOffset());
1555  else if (MO.isConstantPoolIndex())
1556    MIB = MIB.addConstantPoolIndex(MO.getIndex(), MO.getOffset());
1557  else if (MO.isJumpTableIndex())
1558    MIB = MIB.addJumpTableIndex(MO.getIndex());
1559  else if (MO.isExternalSymbol())
1560    MIB = MIB.addExternalSymbol(MO.getSymbolName());
1561  else
1562    assert(0 && "Unknown operand for X86InstrAddOperand!");
1563
1564  return MIB;
1565}
1566
1567unsigned
1568X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
1569                           MachineBasicBlock *FBB,
1570                           const SmallVectorImpl<MachineOperand> &Cond) const {
1571  // Shouldn't be a fall through.
1572  assert(TBB && "InsertBranch must not be told to insert a fallthrough");
1573  assert((Cond.size() == 1 || Cond.size() == 0) &&
1574         "X86 branch conditions have one component!");
1575
1576  if (FBB == 0) { // One way branch.
1577    if (Cond.empty()) {
1578      // Unconditional branch?
1579      BuildMI(&MBB, get(X86::JMP)).addMBB(TBB);
1580    } else {
1581      // Conditional branch.
1582      unsigned Opc = GetCondBranchFromCond((X86::CondCode)Cond[0].getImm());
1583      BuildMI(&MBB, get(Opc)).addMBB(TBB);
1584    }
1585    return 1;
1586  }
1587
1588  // Two-way Conditional branch.
1589  unsigned Opc = GetCondBranchFromCond((X86::CondCode)Cond[0].getImm());
1590  BuildMI(&MBB, get(Opc)).addMBB(TBB);
1591  BuildMI(&MBB, get(X86::JMP)).addMBB(FBB);
1592  return 2;
1593}
1594
1595bool X86InstrInfo::copyRegToReg(MachineBasicBlock &MBB,
1596                                MachineBasicBlock::iterator MI,
1597                                unsigned DestReg, unsigned SrcReg,
1598                                const TargetRegisterClass *DestRC,
1599                                const TargetRegisterClass *SrcRC) const {
1600  if (DestRC == SrcRC) {
1601    unsigned Opc;
1602    if (DestRC == &X86::GR64RegClass) {
1603      Opc = X86::MOV64rr;
1604    } else if (DestRC == &X86::GR32RegClass) {
1605      Opc = X86::MOV32rr;
1606    } else if (DestRC == &X86::GR16RegClass) {
1607      Opc = X86::MOV16rr;
1608    } else if (DestRC == &X86::GR8RegClass) {
1609      Opc = X86::MOV8rr;
1610    } else if (DestRC == &X86::GR32_RegClass) {
1611      Opc = X86::MOV32_rr;
1612    } else if (DestRC == &X86::GR16_RegClass) {
1613      Opc = X86::MOV16_rr;
1614    } else if (DestRC == &X86::RFP32RegClass) {
1615      Opc = X86::MOV_Fp3232;
1616    } else if (DestRC == &X86::RFP64RegClass || DestRC == &X86::RSTRegClass) {
1617      Opc = X86::MOV_Fp6464;
1618    } else if (DestRC == &X86::RFP80RegClass) {
1619      Opc = X86::MOV_Fp8080;
1620    } else if (DestRC == &X86::FR32RegClass) {
1621      Opc = X86::FsMOVAPSrr;
1622    } else if (DestRC == &X86::FR64RegClass) {
1623      Opc = X86::FsMOVAPDrr;
1624    } else if (DestRC == &X86::VR128RegClass) {
1625      Opc = X86::MOVAPSrr;
1626    } else if (DestRC == &X86::VR64RegClass) {
1627      Opc = X86::MMX_MOVQ64rr;
1628    } else {
1629      return false;
1630    }
1631    BuildMI(MBB, MI, get(Opc), DestReg).addReg(SrcReg);
1632    return true;
1633  }
1634
1635  // Moving EFLAGS to / from another register requires a push and a pop.
1636  if (SrcRC == &X86::CCRRegClass) {
1637    if (SrcReg != X86::EFLAGS)
1638      return false;
1639    if (DestRC == &X86::GR64RegClass) {
1640      BuildMI(MBB, MI, get(X86::PUSHFQ));
1641      BuildMI(MBB, MI, get(X86::POP64r), DestReg);
1642      return true;
1643    } else if (DestRC == &X86::GR32RegClass) {
1644      BuildMI(MBB, MI, get(X86::PUSHFD));
1645      BuildMI(MBB, MI, get(X86::POP32r), DestReg);
1646      return true;
1647    }
1648  } else if (DestRC == &X86::CCRRegClass) {
1649    if (DestReg != X86::EFLAGS)
1650      return false;
1651    if (SrcRC == &X86::GR64RegClass) {
1652      BuildMI(MBB, MI, get(X86::PUSH64r)).addReg(SrcReg);
1653      BuildMI(MBB, MI, get(X86::POPFQ));
1654      return true;
1655    } else if (SrcRC == &X86::GR32RegClass) {
1656      BuildMI(MBB, MI, get(X86::PUSH32r)).addReg(SrcReg);
1657      BuildMI(MBB, MI, get(X86::POPFD));
1658      return true;
1659    }
1660  }
1661
1662  // Moving from ST(0) turns into FpGET_ST0_32 etc.
1663  if (SrcRC == &X86::RSTRegClass) {
1664    // Copying from ST(0)/ST(1).
1665    if (SrcReg != X86::ST0 && SrcReg != X86::ST1)
1666      // Can only copy from ST(0)/ST(1) right now
1667      return false;
1668    bool isST0 = SrcReg == X86::ST0;
1669    unsigned Opc;
1670    if (DestRC == &X86::RFP32RegClass)
1671      Opc = isST0 ? X86::FpGET_ST0_32 : X86::FpGET_ST1_32;
1672    else if (DestRC == &X86::RFP64RegClass)
1673      Opc = isST0 ? X86::FpGET_ST0_64 : X86::FpGET_ST1_64;
1674    else {
1675      if (DestRC != &X86::RFP80RegClass)
1676        return false;
1677      Opc = isST0 ? X86::FpGET_ST0_80 : X86::FpGET_ST1_80;
1678    }
1679    BuildMI(MBB, MI, get(Opc), DestReg);
1680    return true;
1681  }
1682
1683  // Moving to ST(0) turns into FpSET_ST0_32 etc.
1684  if (DestRC == &X86::RSTRegClass) {
1685    // Copying to ST(0).  FIXME: handle ST(1) also
1686    if (DestReg != X86::ST0)
1687      // Can only copy to TOS right now
1688      return false;
1689    unsigned Opc;
1690    if (SrcRC == &X86::RFP32RegClass)
1691      Opc = X86::FpSET_ST0_32;
1692    else if (SrcRC == &X86::RFP64RegClass)
1693      Opc = X86::FpSET_ST0_64;
1694    else {
1695      if (SrcRC != &X86::RFP80RegClass)
1696        return false;
1697      Opc = X86::FpSET_ST0_80;
1698    }
1699    BuildMI(MBB, MI, get(Opc)).addReg(SrcReg);
1700    return true;
1701  }
1702
1703  // Not yet supported!
1704  return false;
1705}
1706
1707static unsigned getStoreRegOpcode(const TargetRegisterClass *RC,
1708                                  bool isStackAligned) {
1709  unsigned Opc = 0;
1710  if (RC == &X86::GR64RegClass) {
1711    Opc = X86::MOV64mr;
1712  } else if (RC == &X86::GR32RegClass) {
1713    Opc = X86::MOV32mr;
1714  } else if (RC == &X86::GR16RegClass) {
1715    Opc = X86::MOV16mr;
1716  } else if (RC == &X86::GR8RegClass) {
1717    Opc = X86::MOV8mr;
1718  } else if (RC == &X86::GR32_RegClass) {
1719    Opc = X86::MOV32_mr;
1720  } else if (RC == &X86::GR16_RegClass) {
1721    Opc = X86::MOV16_mr;
1722  } else if (RC == &X86::RFP80RegClass) {
1723    Opc = X86::ST_FpP80m;   // pops
1724  } else if (RC == &X86::RFP64RegClass) {
1725    Opc = X86::ST_Fp64m;
1726  } else if (RC == &X86::RFP32RegClass) {
1727    Opc = X86::ST_Fp32m;
1728  } else if (RC == &X86::FR32RegClass) {
1729    Opc = X86::MOVSSmr;
1730  } else if (RC == &X86::FR64RegClass) {
1731    Opc = X86::MOVSDmr;
1732  } else if (RC == &X86::VR128RegClass) {
1733    // If stack is realigned we can use aligned stores.
1734    Opc = isStackAligned ? X86::MOVAPSmr : X86::MOVUPSmr;
1735  } else if (RC == &X86::VR64RegClass) {
1736    Opc = X86::MMX_MOVQ64mr;
1737  } else {
1738    assert(0 && "Unknown regclass");
1739    abort();
1740  }
1741
1742  return Opc;
1743}
1744
1745void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
1746                                       MachineBasicBlock::iterator MI,
1747                                       unsigned SrcReg, bool isKill, int FrameIdx,
1748                                       const TargetRegisterClass *RC) const {
1749  const MachineFunction &MF = *MBB.getParent();
1750  bool isAligned = (RI.getStackAlignment() >= 16) ||
1751    RI.needsStackRealignment(MF);
1752  unsigned Opc = getStoreRegOpcode(RC, isAligned);
1753  addFrameReference(BuildMI(MBB, MI, get(Opc)), FrameIdx)
1754    .addReg(SrcReg, false, false, isKill);
1755}
1756
1757void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
1758                                  bool isKill,
1759                                  SmallVectorImpl<MachineOperand> &Addr,
1760                                  const TargetRegisterClass *RC,
1761                                  SmallVectorImpl<MachineInstr*> &NewMIs) const {
1762  bool isAligned = (RI.getStackAlignment() >= 16) ||
1763    RI.needsStackRealignment(MF);
1764  unsigned Opc = getStoreRegOpcode(RC, isAligned);
1765  MachineInstrBuilder MIB = BuildMI(MF, get(Opc));
1766  for (unsigned i = 0, e = Addr.size(); i != e; ++i)
1767    MIB = X86InstrAddOperand(MIB, Addr[i]);
1768  MIB.addReg(SrcReg, false, false, isKill);
1769  NewMIs.push_back(MIB);
1770}
1771
1772static unsigned getLoadRegOpcode(const TargetRegisterClass *RC,
1773                                 bool isStackAligned) {
1774  unsigned Opc = 0;
1775  if (RC == &X86::GR64RegClass) {
1776    Opc = X86::MOV64rm;
1777  } else if (RC == &X86::GR32RegClass) {
1778    Opc = X86::MOV32rm;
1779  } else if (RC == &X86::GR16RegClass) {
1780    Opc = X86::MOV16rm;
1781  } else if (RC == &X86::GR8RegClass) {
1782    Opc = X86::MOV8rm;
1783  } else if (RC == &X86::GR32_RegClass) {
1784    Opc = X86::MOV32_rm;
1785  } else if (RC == &X86::GR16_RegClass) {
1786    Opc = X86::MOV16_rm;
1787  } else if (RC == &X86::RFP80RegClass) {
1788    Opc = X86::LD_Fp80m;
1789  } else if (RC == &X86::RFP64RegClass) {
1790    Opc = X86::LD_Fp64m;
1791  } else if (RC == &X86::RFP32RegClass) {
1792    Opc = X86::LD_Fp32m;
1793  } else if (RC == &X86::FR32RegClass) {
1794    Opc = X86::MOVSSrm;
1795  } else if (RC == &X86::FR64RegClass) {
1796    Opc = X86::MOVSDrm;
1797  } else if (RC == &X86::VR128RegClass) {
1798    // If stack is realigned we can use aligned loads.
1799    Opc = isStackAligned ? X86::MOVAPSrm : X86::MOVUPSrm;
1800  } else if (RC == &X86::VR64RegClass) {
1801    Opc = X86::MMX_MOVQ64rm;
1802  } else {
1803    assert(0 && "Unknown regclass");
1804    abort();
1805  }
1806
1807  return Opc;
1808}
1809
1810void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
1811                                        MachineBasicBlock::iterator MI,
1812                                        unsigned DestReg, int FrameIdx,
1813                                        const TargetRegisterClass *RC) const{
1814  const MachineFunction &MF = *MBB.getParent();
1815  bool isAligned = (RI.getStackAlignment() >= 16) ||
1816    RI.needsStackRealignment(MF);
1817  unsigned Opc = getLoadRegOpcode(RC, isAligned);
1818  addFrameReference(BuildMI(MBB, MI, get(Opc), DestReg), FrameIdx);
1819}
1820
1821void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
1822                                 SmallVectorImpl<MachineOperand> &Addr,
1823                                 const TargetRegisterClass *RC,
1824                                 SmallVectorImpl<MachineInstr*> &NewMIs) const {
1825  bool isAligned = (RI.getStackAlignment() >= 16) ||
1826    RI.needsStackRealignment(MF);
1827  unsigned Opc = getLoadRegOpcode(RC, isAligned);
1828  MachineInstrBuilder MIB = BuildMI(MF, get(Opc), DestReg);
1829  for (unsigned i = 0, e = Addr.size(); i != e; ++i)
1830    MIB = X86InstrAddOperand(MIB, Addr[i]);
1831  NewMIs.push_back(MIB);
1832}
1833
1834bool X86InstrInfo::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
1835                                                MachineBasicBlock::iterator MI,
1836                                const std::vector<CalleeSavedInfo> &CSI) const {
1837  if (CSI.empty())
1838    return false;
1839
1840  bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
1841  unsigned SlotSize = is64Bit ? 8 : 4;
1842
1843  MachineFunction &MF = *MBB.getParent();
1844  X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1845  X86FI->setCalleeSavedFrameSize(CSI.size() * SlotSize);
1846
1847  unsigned Opc = is64Bit ? X86::PUSH64r : X86::PUSH32r;
1848  for (unsigned i = CSI.size(); i != 0; --i) {
1849    unsigned Reg = CSI[i-1].getReg();
1850    // Add the callee-saved register as live-in. It's killed at the spill.
1851    MBB.addLiveIn(Reg);
1852    BuildMI(MBB, MI, get(Opc)).addReg(Reg);
1853  }
1854  return true;
1855}
1856
1857bool X86InstrInfo::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
1858                                                 MachineBasicBlock::iterator MI,
1859                                const std::vector<CalleeSavedInfo> &CSI) const {
1860  if (CSI.empty())
1861    return false;
1862
1863  bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
1864
1865  unsigned Opc = is64Bit ? X86::POP64r : X86::POP32r;
1866  for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
1867    unsigned Reg = CSI[i].getReg();
1868    BuildMI(MBB, MI, get(Opc), Reg);
1869  }
1870  return true;
1871}
1872
1873static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
1874                                     SmallVector<MachineOperand,4> &MOs,
1875                                 MachineInstr *MI, const TargetInstrInfo &TII) {
1876  // Create the base instruction with the memory operand as the first part.
1877  MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode), true);
1878  MachineInstrBuilder MIB(NewMI);
1879  unsigned NumAddrOps = MOs.size();
1880  for (unsigned i = 0; i != NumAddrOps; ++i)
1881    MIB = X86InstrAddOperand(MIB, MOs[i]);
1882  if (NumAddrOps < 4)  // FrameIndex only
1883    MIB.addImm(1).addReg(0).addImm(0);
1884
1885  // Loop over the rest of the ri operands, converting them over.
1886  unsigned NumOps = MI->getDesc().getNumOperands()-2;
1887  for (unsigned i = 0; i != NumOps; ++i) {
1888    MachineOperand &MO = MI->getOperand(i+2);
1889    MIB = X86InstrAddOperand(MIB, MO);
1890  }
1891  for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) {
1892    MachineOperand &MO = MI->getOperand(i);
1893    MIB = X86InstrAddOperand(MIB, MO);
1894  }
1895  return MIB;
1896}
1897
1898static MachineInstr *FuseInst(MachineFunction &MF,
1899                              unsigned Opcode, unsigned OpNo,
1900                              SmallVector<MachineOperand,4> &MOs,
1901                              MachineInstr *MI, const TargetInstrInfo &TII) {
1902  MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode), true);
1903  MachineInstrBuilder MIB(NewMI);
1904
1905  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1906    MachineOperand &MO = MI->getOperand(i);
1907    if (i == OpNo) {
1908      assert(MO.isRegister() && "Expected to fold into reg operand!");
1909      unsigned NumAddrOps = MOs.size();
1910      for (unsigned i = 0; i != NumAddrOps; ++i)
1911        MIB = X86InstrAddOperand(MIB, MOs[i]);
1912      if (NumAddrOps < 4)  // FrameIndex only
1913        MIB.addImm(1).addReg(0).addImm(0);
1914    } else {
1915      MIB = X86InstrAddOperand(MIB, MO);
1916    }
1917  }
1918  return MIB;
1919}
1920
1921static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
1922                                SmallVector<MachineOperand,4> &MOs,
1923                                MachineInstr *MI) {
1924  MachineFunction &MF = *MI->getParent()->getParent();
1925  MachineInstrBuilder MIB = BuildMI(MF, TII.get(Opcode));
1926
1927  unsigned NumAddrOps = MOs.size();
1928  for (unsigned i = 0; i != NumAddrOps; ++i)
1929    MIB = X86InstrAddOperand(MIB, MOs[i]);
1930  if (NumAddrOps < 4)  // FrameIndex only
1931    MIB.addImm(1).addReg(0).addImm(0);
1932  return MIB.addImm(0);
1933}
1934
1935MachineInstr*
1936X86InstrInfo::foldMemoryOperand(MachineFunction &MF,
1937                                MachineInstr *MI, unsigned i,
1938                                SmallVector<MachineOperand,4> &MOs) const {
1939  const DenseMap<unsigned*, unsigned> *OpcodeTablePtr = NULL;
1940  bool isTwoAddrFold = false;
1941  unsigned NumOps = MI->getDesc().getNumOperands();
1942  bool isTwoAddr = NumOps > 1 &&
1943    MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
1944
1945  MachineInstr *NewMI = NULL;
1946  // Folding a memory location into the two-address part of a two-address
1947  // instruction is different than folding it other places.  It requires
1948  // replacing the *two* registers with the memory location.
1949  if (isTwoAddr && NumOps >= 2 && i < 2 &&
1950      MI->getOperand(0).isRegister() &&
1951      MI->getOperand(1).isRegister() &&
1952      MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
1953    OpcodeTablePtr = &RegOp2MemOpTable2Addr;
1954    isTwoAddrFold = true;
1955  } else if (i == 0) { // If operand 0
1956    if (MI->getOpcode() == X86::MOV16r0)
1957      NewMI = MakeM0Inst(*this, X86::MOV16mi, MOs, MI);
1958    else if (MI->getOpcode() == X86::MOV32r0)
1959      NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI);
1960    else if (MI->getOpcode() == X86::MOV64r0)
1961      NewMI = MakeM0Inst(*this, X86::MOV64mi32, MOs, MI);
1962    else if (MI->getOpcode() == X86::MOV8r0)
1963      NewMI = MakeM0Inst(*this, X86::MOV8mi, MOs, MI);
1964    if (NewMI)
1965      return NewMI;
1966
1967    OpcodeTablePtr = &RegOp2MemOpTable0;
1968  } else if (i == 1) {
1969    OpcodeTablePtr = &RegOp2MemOpTable1;
1970  } else if (i == 2) {
1971    OpcodeTablePtr = &RegOp2MemOpTable2;
1972  }
1973
1974  // If table selected...
1975  if (OpcodeTablePtr) {
1976    // Find the Opcode to fuse
1977    DenseMap<unsigned*, unsigned>::iterator I =
1978      OpcodeTablePtr->find((unsigned*)MI->getOpcode());
1979    if (I != OpcodeTablePtr->end()) {
1980      if (isTwoAddrFold)
1981        NewMI = FuseTwoAddrInst(MF, I->second, MOs, MI, *this);
1982      else
1983        NewMI = FuseInst(MF, I->second, i, MOs, MI, *this);
1984      return NewMI;
1985    }
1986  }
1987
1988  // No fusion
1989  if (PrintFailedFusing)
1990    cerr << "We failed to fuse operand " << i << *MI;
1991  return NULL;
1992}
1993
1994
1995MachineInstr* X86InstrInfo::foldMemoryOperand(MachineFunction &MF,
1996                                              MachineInstr *MI,
1997                                              SmallVectorImpl<unsigned> &Ops,
1998                                              int FrameIndex) const {
1999  // Check switch flag
2000  if (NoFusing) return NULL;
2001
2002  const MachineFrameInfo *MFI = MF.getFrameInfo();
2003  unsigned Alignment = MFI->getObjectAlignment(FrameIndex);
2004  // FIXME: Move alignment requirement into tables?
2005  if (Alignment < 16) {
2006    switch (MI->getOpcode()) {
2007    default: break;
2008    // Not always safe to fold movsd into these instructions since their load
2009    // folding variants expects the address to be 16 byte aligned.
2010    case X86::FsANDNPDrr:
2011    case X86::FsANDNPSrr:
2012    case X86::FsANDPDrr:
2013    case X86::FsANDPSrr:
2014    case X86::FsORPDrr:
2015    case X86::FsORPSrr:
2016    case X86::FsXORPDrr:
2017    case X86::FsXORPSrr:
2018      return NULL;
2019    }
2020  }
2021
2022  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2023    unsigned NewOpc = 0;
2024    switch (MI->getOpcode()) {
2025    default: return NULL;
2026    case X86::TEST8rr:  NewOpc = X86::CMP8ri; break;
2027    case X86::TEST16rr: NewOpc = X86::CMP16ri; break;
2028    case X86::TEST32rr: NewOpc = X86::CMP32ri; break;
2029    case X86::TEST64rr: NewOpc = X86::CMP64ri32; break;
2030    }
2031    // Change to CMPXXri r, 0 first.
2032    MI->setDesc(get(NewOpc));
2033    MI->getOperand(1).ChangeToImmediate(0);
2034  } else if (Ops.size() != 1)
2035    return NULL;
2036
2037  SmallVector<MachineOperand,4> MOs;
2038  MOs.push_back(MachineOperand::CreateFI(FrameIndex));
2039  return foldMemoryOperand(MF, MI, Ops[0], MOs);
2040}
2041
2042MachineInstr* X86InstrInfo::foldMemoryOperand(MachineFunction &MF,
2043                                              MachineInstr *MI,
2044                                              SmallVectorImpl<unsigned> &Ops,
2045                                              MachineInstr *LoadMI) const {
2046  // Check switch flag
2047  if (NoFusing) return NULL;
2048
2049  // Determine the alignment of the load.
2050  unsigned Alignment = 0;
2051  if (LoadMI->hasOneMemOperand())
2052    Alignment = LoadMI->memoperands_begin()->getAlignment();
2053
2054  // FIXME: Move alignment requirement into tables?
2055  if (Alignment < 16) {
2056    switch (MI->getOpcode()) {
2057    default: break;
2058    // Not always safe to fold movsd into these instructions since their load
2059    // folding variants expects the address to be 16 byte aligned.
2060    case X86::FsANDNPDrr:
2061    case X86::FsANDNPSrr:
2062    case X86::FsANDPDrr:
2063    case X86::FsANDPSrr:
2064    case X86::FsORPDrr:
2065    case X86::FsORPSrr:
2066    case X86::FsXORPDrr:
2067    case X86::FsXORPSrr:
2068      return NULL;
2069    }
2070  }
2071
2072  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2073    unsigned NewOpc = 0;
2074    switch (MI->getOpcode()) {
2075    default: return NULL;
2076    case X86::TEST8rr:  NewOpc = X86::CMP8ri; break;
2077    case X86::TEST16rr: NewOpc = X86::CMP16ri; break;
2078    case X86::TEST32rr: NewOpc = X86::CMP32ri; break;
2079    case X86::TEST64rr: NewOpc = X86::CMP64ri32; break;
2080    }
2081    // Change to CMPXXri r, 0 first.
2082    MI->setDesc(get(NewOpc));
2083    MI->getOperand(1).ChangeToImmediate(0);
2084  } else if (Ops.size() != 1)
2085    return NULL;
2086
2087  SmallVector<MachineOperand,4> MOs;
2088  unsigned NumOps = LoadMI->getDesc().getNumOperands();
2089  for (unsigned i = NumOps - 4; i != NumOps; ++i)
2090    MOs.push_back(LoadMI->getOperand(i));
2091  return foldMemoryOperand(MF, MI, Ops[0], MOs);
2092}
2093
2094
2095bool X86InstrInfo::canFoldMemoryOperand(MachineInstr *MI,
2096                                        SmallVectorImpl<unsigned> &Ops) const {
2097  // Check switch flag
2098  if (NoFusing) return 0;
2099
2100  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2101    switch (MI->getOpcode()) {
2102    default: return false;
2103    case X86::TEST8rr:
2104    case X86::TEST16rr:
2105    case X86::TEST32rr:
2106    case X86::TEST64rr:
2107      return true;
2108    }
2109  }
2110
2111  if (Ops.size() != 1)
2112    return false;
2113
2114  unsigned OpNum = Ops[0];
2115  unsigned Opc = MI->getOpcode();
2116  unsigned NumOps = MI->getDesc().getNumOperands();
2117  bool isTwoAddr = NumOps > 1 &&
2118    MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
2119
2120  // Folding a memory location into the two-address part of a two-address
2121  // instruction is different than folding it other places.  It requires
2122  // replacing the *two* registers with the memory location.
2123  const DenseMap<unsigned*, unsigned> *OpcodeTablePtr = NULL;
2124  if (isTwoAddr && NumOps >= 2 && OpNum < 2) {
2125    OpcodeTablePtr = &RegOp2MemOpTable2Addr;
2126  } else if (OpNum == 0) { // If operand 0
2127    switch (Opc) {
2128    case X86::MOV16r0:
2129    case X86::MOV32r0:
2130    case X86::MOV64r0:
2131    case X86::MOV8r0:
2132      return true;
2133    default: break;
2134    }
2135    OpcodeTablePtr = &RegOp2MemOpTable0;
2136  } else if (OpNum == 1) {
2137    OpcodeTablePtr = &RegOp2MemOpTable1;
2138  } else if (OpNum == 2) {
2139    OpcodeTablePtr = &RegOp2MemOpTable2;
2140  }
2141
2142  if (OpcodeTablePtr) {
2143    // Find the Opcode to fuse
2144    DenseMap<unsigned*, unsigned>::iterator I =
2145      OpcodeTablePtr->find((unsigned*)Opc);
2146    if (I != OpcodeTablePtr->end())
2147      return true;
2148  }
2149  return false;
2150}
2151
2152bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
2153                                unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
2154                                 SmallVectorImpl<MachineInstr*> &NewMIs) const {
2155  DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2156    MemOp2RegOpTable.find((unsigned*)MI->getOpcode());
2157  if (I == MemOp2RegOpTable.end())
2158    return false;
2159  unsigned Opc = I->second.first;
2160  unsigned Index = I->second.second & 0xf;
2161  bool FoldedLoad = I->second.second & (1 << 4);
2162  bool FoldedStore = I->second.second & (1 << 5);
2163  if (UnfoldLoad && !FoldedLoad)
2164    return false;
2165  UnfoldLoad &= FoldedLoad;
2166  if (UnfoldStore && !FoldedStore)
2167    return false;
2168  UnfoldStore &= FoldedStore;
2169
2170  const TargetInstrDesc &TID = get(Opc);
2171  const TargetOperandInfo &TOI = TID.OpInfo[Index];
2172  const TargetRegisterClass *RC = TOI.isLookupPtrRegClass()
2173    ? getPointerRegClass() : RI.getRegClass(TOI.RegClass);
2174  SmallVector<MachineOperand,4> AddrOps;
2175  SmallVector<MachineOperand,2> BeforeOps;
2176  SmallVector<MachineOperand,2> AfterOps;
2177  SmallVector<MachineOperand,4> ImpOps;
2178  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2179    MachineOperand &Op = MI->getOperand(i);
2180    if (i >= Index && i < Index+4)
2181      AddrOps.push_back(Op);
2182    else if (Op.isRegister() && Op.isImplicit())
2183      ImpOps.push_back(Op);
2184    else if (i < Index)
2185      BeforeOps.push_back(Op);
2186    else if (i > Index)
2187      AfterOps.push_back(Op);
2188  }
2189
2190  // Emit the load instruction.
2191  if (UnfoldLoad) {
2192    loadRegFromAddr(MF, Reg, AddrOps, RC, NewMIs);
2193    if (UnfoldStore) {
2194      // Address operands cannot be marked isKill.
2195      for (unsigned i = 1; i != 5; ++i) {
2196        MachineOperand &MO = NewMIs[0]->getOperand(i);
2197        if (MO.isRegister())
2198          MO.setIsKill(false);
2199      }
2200    }
2201  }
2202
2203  // Emit the data processing instruction.
2204  MachineInstr *DataMI = MF.CreateMachineInstr(TID, true);
2205  MachineInstrBuilder MIB(DataMI);
2206
2207  if (FoldedStore)
2208    MIB.addReg(Reg, true);
2209  for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i)
2210    MIB = X86InstrAddOperand(MIB, BeforeOps[i]);
2211  if (FoldedLoad)
2212    MIB.addReg(Reg);
2213  for (unsigned i = 0, e = AfterOps.size(); i != e; ++i)
2214    MIB = X86InstrAddOperand(MIB, AfterOps[i]);
2215  for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) {
2216    MachineOperand &MO = ImpOps[i];
2217    MIB.addReg(MO.getReg(), MO.isDef(), true, MO.isKill(), MO.isDead());
2218  }
2219  // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
2220  unsigned NewOpc = 0;
2221  switch (DataMI->getOpcode()) {
2222  default: break;
2223  case X86::CMP64ri32:
2224  case X86::CMP32ri:
2225  case X86::CMP16ri:
2226  case X86::CMP8ri: {
2227    MachineOperand &MO0 = DataMI->getOperand(0);
2228    MachineOperand &MO1 = DataMI->getOperand(1);
2229    if (MO1.getImm() == 0) {
2230      switch (DataMI->getOpcode()) {
2231      default: break;
2232      case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
2233      case X86::CMP32ri:   NewOpc = X86::TEST32rr; break;
2234      case X86::CMP16ri:   NewOpc = X86::TEST16rr; break;
2235      case X86::CMP8ri:    NewOpc = X86::TEST8rr; break;
2236      }
2237      DataMI->setDesc(get(NewOpc));
2238      MO1.ChangeToRegister(MO0.getReg(), false);
2239    }
2240  }
2241  }
2242  NewMIs.push_back(DataMI);
2243
2244  // Emit the store instruction.
2245  if (UnfoldStore) {
2246    const TargetOperandInfo &DstTOI = TID.OpInfo[0];
2247    const TargetRegisterClass *DstRC = DstTOI.isLookupPtrRegClass()
2248      ? getPointerRegClass() : RI.getRegClass(DstTOI.RegClass);
2249    storeRegToAddr(MF, Reg, true, AddrOps, DstRC, NewMIs);
2250  }
2251
2252  return true;
2253}
2254
2255bool
2256X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
2257                                     SmallVectorImpl<SDNode*> &NewNodes) const {
2258  if (!N->isMachineOpcode())
2259    return false;
2260
2261  DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2262    MemOp2RegOpTable.find((unsigned*)N->getMachineOpcode());
2263  if (I == MemOp2RegOpTable.end())
2264    return false;
2265  unsigned Opc = I->second.first;
2266  unsigned Index = I->second.second & 0xf;
2267  bool FoldedLoad = I->second.second & (1 << 4);
2268  bool FoldedStore = I->second.second & (1 << 5);
2269  const TargetInstrDesc &TID = get(Opc);
2270  const TargetOperandInfo &TOI = TID.OpInfo[Index];
2271  const TargetRegisterClass *RC = TOI.isLookupPtrRegClass()
2272    ? getPointerRegClass() : RI.getRegClass(TOI.RegClass);
2273  std::vector<SDValue> AddrOps;
2274  std::vector<SDValue> BeforeOps;
2275  std::vector<SDValue> AfterOps;
2276  unsigned NumOps = N->getNumOperands();
2277  for (unsigned i = 0; i != NumOps-1; ++i) {
2278    SDValue Op = N->getOperand(i);
2279    if (i >= Index && i < Index+4)
2280      AddrOps.push_back(Op);
2281    else if (i < Index)
2282      BeforeOps.push_back(Op);
2283    else if (i > Index)
2284      AfterOps.push_back(Op);
2285  }
2286  SDValue Chain = N->getOperand(NumOps-1);
2287  AddrOps.push_back(Chain);
2288
2289  // Emit the load instruction.
2290  SDNode *Load = 0;
2291  const MachineFunction &MF = DAG.getMachineFunction();
2292  if (FoldedLoad) {
2293    MVT VT = *RC->vt_begin();
2294    bool isAligned = (RI.getStackAlignment() >= 16) ||
2295      RI.needsStackRealignment(MF);
2296    Load = DAG.getTargetNode(getLoadRegOpcode(RC, isAligned),
2297                             VT, MVT::Other,
2298                             &AddrOps[0], AddrOps.size());
2299    NewNodes.push_back(Load);
2300  }
2301
2302  // Emit the data processing instruction.
2303  std::vector<MVT> VTs;
2304  const TargetRegisterClass *DstRC = 0;
2305  if (TID.getNumDefs() > 0) {
2306    const TargetOperandInfo &DstTOI = TID.OpInfo[0];
2307    DstRC = DstTOI.isLookupPtrRegClass()
2308      ? getPointerRegClass() : RI.getRegClass(DstTOI.RegClass);
2309    VTs.push_back(*DstRC->vt_begin());
2310  }
2311  for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
2312    MVT VT = N->getValueType(i);
2313    if (VT != MVT::Other && i >= (unsigned)TID.getNumDefs())
2314      VTs.push_back(VT);
2315  }
2316  if (Load)
2317    BeforeOps.push_back(SDValue(Load, 0));
2318  std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps));
2319  SDNode *NewNode= DAG.getTargetNode(Opc, VTs, &BeforeOps[0], BeforeOps.size());
2320  NewNodes.push_back(NewNode);
2321
2322  // Emit the store instruction.
2323  if (FoldedStore) {
2324    AddrOps.pop_back();
2325    AddrOps.push_back(SDValue(NewNode, 0));
2326    AddrOps.push_back(Chain);
2327    bool isAligned = (RI.getStackAlignment() >= 16) ||
2328      RI.needsStackRealignment(MF);
2329    SDNode *Store = DAG.getTargetNode(getStoreRegOpcode(DstRC, isAligned),
2330                                      MVT::Other, &AddrOps[0], AddrOps.size());
2331    NewNodes.push_back(Store);
2332  }
2333
2334  return true;
2335}
2336
2337unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
2338                                      bool UnfoldLoad, bool UnfoldStore) const {
2339  DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2340    MemOp2RegOpTable.find((unsigned*)Opc);
2341  if (I == MemOp2RegOpTable.end())
2342    return 0;
2343  bool FoldedLoad = I->second.second & (1 << 4);
2344  bool FoldedStore = I->second.second & (1 << 5);
2345  if (UnfoldLoad && !FoldedLoad)
2346    return 0;
2347  if (UnfoldStore && !FoldedStore)
2348    return 0;
2349  return I->second.first;
2350}
2351
2352bool X86InstrInfo::BlockHasNoFallThrough(MachineBasicBlock &MBB) const {
2353  if (MBB.empty()) return false;
2354
2355  switch (MBB.back().getOpcode()) {
2356  case X86::TCRETURNri:
2357  case X86::TCRETURNdi:
2358  case X86::RET:     // Return.
2359  case X86::RETI:
2360  case X86::TAILJMPd:
2361  case X86::TAILJMPr:
2362  case X86::TAILJMPm:
2363  case X86::JMP:     // Uncond branch.
2364  case X86::JMP32r:  // Indirect branch.
2365  case X86::JMP64r:  // Indirect branch (64-bit).
2366  case X86::JMP32m:  // Indirect branch through mem.
2367  case X86::JMP64m:  // Indirect branch through mem (64-bit).
2368    return true;
2369  default: return false;
2370  }
2371}
2372
2373bool X86InstrInfo::
2374ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
2375  assert(Cond.size() == 1 && "Invalid X86 branch condition!");
2376  X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
2377  Cond[0].setImm(GetOppositeBranchCondition(CC));
2378  return false;
2379}
2380
2381const TargetRegisterClass *X86InstrInfo::getPointerRegClass() const {
2382  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
2383  if (Subtarget->is64Bit())
2384    return &X86::GR64RegClass;
2385  else
2386    return &X86::GR32RegClass;
2387}
2388
2389unsigned X86InstrInfo::sizeOfImm(const TargetInstrDesc *Desc) {
2390  switch (Desc->TSFlags & X86II::ImmMask) {
2391  case X86II::Imm8:   return 1;
2392  case X86II::Imm16:  return 2;
2393  case X86II::Imm32:  return 4;
2394  case X86II::Imm64:  return 8;
2395  default: assert(0 && "Immediate size not set!");
2396    return 0;
2397  }
2398}
2399
2400/// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended register?
2401/// e.g. r8, xmm8, etc.
2402bool X86InstrInfo::isX86_64ExtendedReg(const MachineOperand &MO) {
2403  if (!MO.isRegister()) return false;
2404  switch (MO.getReg()) {
2405  default: break;
2406  case X86::R8:    case X86::R9:    case X86::R10:   case X86::R11:
2407  case X86::R12:   case X86::R13:   case X86::R14:   case X86::R15:
2408  case X86::R8D:   case X86::R9D:   case X86::R10D:  case X86::R11D:
2409  case X86::R12D:  case X86::R13D:  case X86::R14D:  case X86::R15D:
2410  case X86::R8W:   case X86::R9W:   case X86::R10W:  case X86::R11W:
2411  case X86::R12W:  case X86::R13W:  case X86::R14W:  case X86::R15W:
2412  case X86::R8B:   case X86::R9B:   case X86::R10B:  case X86::R11B:
2413  case X86::R12B:  case X86::R13B:  case X86::R14B:  case X86::R15B:
2414  case X86::XMM8:  case X86::XMM9:  case X86::XMM10: case X86::XMM11:
2415  case X86::XMM12: case X86::XMM13: case X86::XMM14: case X86::XMM15:
2416    return true;
2417  }
2418  return false;
2419}
2420
2421
2422/// determineREX - Determine if the MachineInstr has to be encoded with a X86-64
2423/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
2424/// size, and 3) use of X86-64 extended registers.
2425unsigned X86InstrInfo::determineREX(const MachineInstr &MI) {
2426  unsigned REX = 0;
2427  const TargetInstrDesc &Desc = MI.getDesc();
2428
2429  // Pseudo instructions do not need REX prefix byte.
2430  if ((Desc.TSFlags & X86II::FormMask) == X86II::Pseudo)
2431    return 0;
2432  if (Desc.TSFlags & X86II::REX_W)
2433    REX |= 1 << 3;
2434
2435  unsigned NumOps = Desc.getNumOperands();
2436  if (NumOps) {
2437    bool isTwoAddr = NumOps > 1 &&
2438      Desc.getOperandConstraint(1, TOI::TIED_TO) != -1;
2439
2440    // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
2441    unsigned i = isTwoAddr ? 1 : 0;
2442    for (unsigned e = NumOps; i != e; ++i) {
2443      const MachineOperand& MO = MI.getOperand(i);
2444      if (MO.isRegister()) {
2445        unsigned Reg = MO.getReg();
2446        if (isX86_64NonExtLowByteReg(Reg))
2447          REX |= 0x40;
2448      }
2449    }
2450
2451    switch (Desc.TSFlags & X86II::FormMask) {
2452    case X86II::MRMInitReg:
2453      if (isX86_64ExtendedReg(MI.getOperand(0)))
2454        REX |= (1 << 0) | (1 << 2);
2455      break;
2456    case X86II::MRMSrcReg: {
2457      if (isX86_64ExtendedReg(MI.getOperand(0)))
2458        REX |= 1 << 2;
2459      i = isTwoAddr ? 2 : 1;
2460      for (unsigned e = NumOps; i != e; ++i) {
2461        const MachineOperand& MO = MI.getOperand(i);
2462        if (isX86_64ExtendedReg(MO))
2463          REX |= 1 << 0;
2464      }
2465      break;
2466    }
2467    case X86II::MRMSrcMem: {
2468      if (isX86_64ExtendedReg(MI.getOperand(0)))
2469        REX |= 1 << 2;
2470      unsigned Bit = 0;
2471      i = isTwoAddr ? 2 : 1;
2472      for (; i != NumOps; ++i) {
2473        const MachineOperand& MO = MI.getOperand(i);
2474        if (MO.isRegister()) {
2475          if (isX86_64ExtendedReg(MO))
2476            REX |= 1 << Bit;
2477          Bit++;
2478        }
2479      }
2480      break;
2481    }
2482    case X86II::MRM0m: case X86II::MRM1m:
2483    case X86II::MRM2m: case X86II::MRM3m:
2484    case X86II::MRM4m: case X86II::MRM5m:
2485    case X86II::MRM6m: case X86II::MRM7m:
2486    case X86II::MRMDestMem: {
2487      unsigned e = isTwoAddr ? 5 : 4;
2488      i = isTwoAddr ? 1 : 0;
2489      if (NumOps > e && isX86_64ExtendedReg(MI.getOperand(e)))
2490        REX |= 1 << 2;
2491      unsigned Bit = 0;
2492      for (; i != e; ++i) {
2493        const MachineOperand& MO = MI.getOperand(i);
2494        if (MO.isRegister()) {
2495          if (isX86_64ExtendedReg(MO))
2496            REX |= 1 << Bit;
2497          Bit++;
2498        }
2499      }
2500      break;
2501    }
2502    default: {
2503      if (isX86_64ExtendedReg(MI.getOperand(0)))
2504        REX |= 1 << 0;
2505      i = isTwoAddr ? 2 : 1;
2506      for (unsigned e = NumOps; i != e; ++i) {
2507        const MachineOperand& MO = MI.getOperand(i);
2508        if (isX86_64ExtendedReg(MO))
2509          REX |= 1 << 2;
2510      }
2511      break;
2512    }
2513    }
2514  }
2515  return REX;
2516}
2517
2518/// sizePCRelativeBlockAddress - This method returns the size of a PC
2519/// relative block address instruction
2520///
2521static unsigned sizePCRelativeBlockAddress() {
2522  return 4;
2523}
2524
2525/// sizeGlobalAddress - Give the size of the emission of this global address
2526///
2527static unsigned sizeGlobalAddress(bool dword) {
2528  return dword ? 8 : 4;
2529}
2530
2531/// sizeConstPoolAddress - Give the size of the emission of this constant
2532/// pool address
2533///
2534static unsigned sizeConstPoolAddress(bool dword) {
2535  return dword ? 8 : 4;
2536}
2537
2538/// sizeExternalSymbolAddress - Give the size of the emission of this external
2539/// symbol
2540///
2541static unsigned sizeExternalSymbolAddress(bool dword) {
2542  return dword ? 8 : 4;
2543}
2544
2545/// sizeJumpTableAddress - Give the size of the emission of this jump
2546/// table address
2547///
2548static unsigned sizeJumpTableAddress(bool dword) {
2549  return dword ? 8 : 4;
2550}
2551
2552static unsigned sizeConstant(unsigned Size) {
2553  return Size;
2554}
2555
2556static unsigned sizeRegModRMByte(){
2557  return 1;
2558}
2559
2560static unsigned sizeSIBByte(){
2561  return 1;
2562}
2563
2564static unsigned getDisplacementFieldSize(const MachineOperand *RelocOp) {
2565  unsigned FinalSize = 0;
2566  // If this is a simple integer displacement that doesn't require a relocation.
2567  if (!RelocOp) {
2568    FinalSize += sizeConstant(4);
2569    return FinalSize;
2570  }
2571
2572  // Otherwise, this is something that requires a relocation.
2573  if (RelocOp->isGlobalAddress()) {
2574    FinalSize += sizeGlobalAddress(false);
2575  } else if (RelocOp->isConstantPoolIndex()) {
2576    FinalSize += sizeConstPoolAddress(false);
2577  } else if (RelocOp->isJumpTableIndex()) {
2578    FinalSize += sizeJumpTableAddress(false);
2579  } else {
2580    assert(0 && "Unknown value to relocate!");
2581  }
2582  return FinalSize;
2583}
2584
2585static unsigned getMemModRMByteSize(const MachineInstr &MI, unsigned Op,
2586                                    bool IsPIC, bool Is64BitMode) {
2587  const MachineOperand &Op3 = MI.getOperand(Op+3);
2588  int DispVal = 0;
2589  const MachineOperand *DispForReloc = 0;
2590  unsigned FinalSize = 0;
2591
2592  // Figure out what sort of displacement we have to handle here.
2593  if (Op3.isGlobalAddress()) {
2594    DispForReloc = &Op3;
2595  } else if (Op3.isConstantPoolIndex()) {
2596    if (Is64BitMode || IsPIC) {
2597      DispForReloc = &Op3;
2598    } else {
2599      DispVal = 1;
2600    }
2601  } else if (Op3.isJumpTableIndex()) {
2602    if (Is64BitMode || IsPIC) {
2603      DispForReloc = &Op3;
2604    } else {
2605      DispVal = 1;
2606    }
2607  } else {
2608    DispVal = 1;
2609  }
2610
2611  const MachineOperand &Base     = MI.getOperand(Op);
2612  const MachineOperand &IndexReg = MI.getOperand(Op+2);
2613
2614  unsigned BaseReg = Base.getReg();
2615
2616  // Is a SIB byte needed?
2617  if (IndexReg.getReg() == 0 &&
2618      (BaseReg == 0 || X86RegisterInfo::getX86RegNum(BaseReg) != N86::ESP)) {
2619    if (BaseReg == 0) {  // Just a displacement?
2620      // Emit special case [disp32] encoding
2621      ++FinalSize;
2622      FinalSize += getDisplacementFieldSize(DispForReloc);
2623    } else {
2624      unsigned BaseRegNo = X86RegisterInfo::getX86RegNum(BaseReg);
2625      if (!DispForReloc && DispVal == 0 && BaseRegNo != N86::EBP) {
2626        // Emit simple indirect register encoding... [EAX] f.e.
2627        ++FinalSize;
2628      // Be pessimistic and assume it's a disp32, not a disp8
2629      } else {
2630        // Emit the most general non-SIB encoding: [REG+disp32]
2631        ++FinalSize;
2632        FinalSize += getDisplacementFieldSize(DispForReloc);
2633      }
2634    }
2635
2636  } else {  // We need a SIB byte, so start by outputting the ModR/M byte first
2637    assert(IndexReg.getReg() != X86::ESP &&
2638           IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
2639
2640    bool ForceDisp32 = false;
2641    if (BaseReg == 0 || DispForReloc) {
2642      // Emit the normal disp32 encoding.
2643      ++FinalSize;
2644      ForceDisp32 = true;
2645    } else {
2646      ++FinalSize;
2647    }
2648
2649    FinalSize += sizeSIBByte();
2650
2651    // Do we need to output a displacement?
2652    if (DispVal != 0 || ForceDisp32) {
2653      FinalSize += getDisplacementFieldSize(DispForReloc);
2654    }
2655  }
2656  return FinalSize;
2657}
2658
2659
2660static unsigned GetInstSizeWithDesc(const MachineInstr &MI,
2661                                    const TargetInstrDesc *Desc,
2662                                    bool IsPIC, bool Is64BitMode) {
2663
2664  unsigned Opcode = Desc->Opcode;
2665  unsigned FinalSize = 0;
2666
2667  // Emit the lock opcode prefix as needed.
2668  if (Desc->TSFlags & X86II::LOCK) ++FinalSize;
2669
2670  // Emit the repeat opcode prefix as needed.
2671  if ((Desc->TSFlags & X86II::Op0Mask) == X86II::REP) ++FinalSize;
2672
2673  // Emit the operand size opcode prefix as needed.
2674  if (Desc->TSFlags & X86II::OpSize) ++FinalSize;
2675
2676  // Emit the address size opcode prefix as needed.
2677  if (Desc->TSFlags & X86II::AdSize) ++FinalSize;
2678
2679  bool Need0FPrefix = false;
2680  switch (Desc->TSFlags & X86II::Op0Mask) {
2681  case X86II::TB:  // Two-byte opcode prefix
2682  case X86II::T8:  // 0F 38
2683  case X86II::TA:  // 0F 3A
2684    Need0FPrefix = true;
2685    break;
2686  case X86II::REP: break; // already handled.
2687  case X86II::XS:   // F3 0F
2688    ++FinalSize;
2689    Need0FPrefix = true;
2690    break;
2691  case X86II::XD:   // F2 0F
2692    ++FinalSize;
2693    Need0FPrefix = true;
2694    break;
2695  case X86II::D8: case X86II::D9: case X86II::DA: case X86II::DB:
2696  case X86II::DC: case X86II::DD: case X86II::DE: case X86II::DF:
2697    ++FinalSize;
2698    break; // Two-byte opcode prefix
2699  default: assert(0 && "Invalid prefix!");
2700  case 0: break;  // No prefix!
2701  }
2702
2703  if (Is64BitMode) {
2704    // REX prefix
2705    unsigned REX = X86InstrInfo::determineREX(MI);
2706    if (REX)
2707      ++FinalSize;
2708  }
2709
2710  // 0x0F escape code must be emitted just before the opcode.
2711  if (Need0FPrefix)
2712    ++FinalSize;
2713
2714  switch (Desc->TSFlags & X86II::Op0Mask) {
2715  case X86II::T8:  // 0F 38
2716    ++FinalSize;
2717    break;
2718  case X86II::TA:    // 0F 3A
2719    ++FinalSize;
2720    break;
2721  }
2722
2723  // If this is a two-address instruction, skip one of the register operands.
2724  unsigned NumOps = Desc->getNumOperands();
2725  unsigned CurOp = 0;
2726  if (NumOps > 1 && Desc->getOperandConstraint(1, TOI::TIED_TO) != -1)
2727    CurOp++;
2728
2729  switch (Desc->TSFlags & X86II::FormMask) {
2730  default: assert(0 && "Unknown FormMask value in X86 MachineCodeEmitter!");
2731  case X86II::Pseudo:
2732    // Remember the current PC offset, this is the PIC relocation
2733    // base address.
2734    switch (Opcode) {
2735    default:
2736      break;
2737    case TargetInstrInfo::INLINEASM: {
2738      const MachineFunction *MF = MI.getParent()->getParent();
2739      const char *AsmStr = MI.getOperand(0).getSymbolName();
2740      const TargetAsmInfo* AI = MF->getTarget().getTargetAsmInfo();
2741      FinalSize += AI->getInlineAsmLength(AsmStr);
2742      break;
2743    }
2744    case TargetInstrInfo::DBG_LABEL:
2745    case TargetInstrInfo::EH_LABEL:
2746      break;
2747    case TargetInstrInfo::IMPLICIT_DEF:
2748    case TargetInstrInfo::DECLARE:
2749    case X86::DWARF_LOC:
2750    case X86::FP_REG_KILL:
2751      break;
2752    case X86::MOVPC32r: {
2753      // This emits the "call" portion of this pseudo instruction.
2754      ++FinalSize;
2755      FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
2756      break;
2757    }
2758    }
2759    CurOp = NumOps;
2760    break;
2761  case X86II::RawFrm:
2762    ++FinalSize;
2763
2764    if (CurOp != NumOps) {
2765      const MachineOperand &MO = MI.getOperand(CurOp++);
2766      if (MO.isMachineBasicBlock()) {
2767        FinalSize += sizePCRelativeBlockAddress();
2768      } else if (MO.isGlobalAddress()) {
2769        FinalSize += sizeGlobalAddress(false);
2770      } else if (MO.isExternalSymbol()) {
2771        FinalSize += sizeExternalSymbolAddress(false);
2772      } else if (MO.isImmediate()) {
2773        FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
2774      } else {
2775        assert(0 && "Unknown RawFrm operand!");
2776      }
2777    }
2778    break;
2779
2780  case X86II::AddRegFrm:
2781    ++FinalSize;
2782    ++CurOp;
2783
2784    if (CurOp != NumOps) {
2785      const MachineOperand &MO1 = MI.getOperand(CurOp++);
2786      unsigned Size = X86InstrInfo::sizeOfImm(Desc);
2787      if (MO1.isImmediate())
2788        FinalSize += sizeConstant(Size);
2789      else {
2790        bool dword = false;
2791        if (Opcode == X86::MOV64ri)
2792          dword = true;
2793        if (MO1.isGlobalAddress()) {
2794          FinalSize += sizeGlobalAddress(dword);
2795        } else if (MO1.isExternalSymbol())
2796          FinalSize += sizeExternalSymbolAddress(dword);
2797        else if (MO1.isConstantPoolIndex())
2798          FinalSize += sizeConstPoolAddress(dword);
2799        else if (MO1.isJumpTableIndex())
2800          FinalSize += sizeJumpTableAddress(dword);
2801      }
2802    }
2803    break;
2804
2805  case X86II::MRMDestReg: {
2806    ++FinalSize;
2807    FinalSize += sizeRegModRMByte();
2808    CurOp += 2;
2809    if (CurOp != NumOps) {
2810      ++CurOp;
2811      FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
2812    }
2813    break;
2814  }
2815  case X86II::MRMDestMem: {
2816    ++FinalSize;
2817    FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode);
2818    CurOp += 5;
2819    if (CurOp != NumOps) {
2820      ++CurOp;
2821      FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
2822    }
2823    break;
2824  }
2825
2826  case X86II::MRMSrcReg:
2827    ++FinalSize;
2828    FinalSize += sizeRegModRMByte();
2829    CurOp += 2;
2830    if (CurOp != NumOps) {
2831      ++CurOp;
2832      FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
2833    }
2834    break;
2835
2836  case X86II::MRMSrcMem: {
2837
2838    ++FinalSize;
2839    FinalSize += getMemModRMByteSize(MI, CurOp+1, IsPIC, Is64BitMode);
2840    CurOp += 5;
2841    if (CurOp != NumOps) {
2842      ++CurOp;
2843      FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
2844    }
2845    break;
2846  }
2847
2848  case X86II::MRM0r: case X86II::MRM1r:
2849  case X86II::MRM2r: case X86II::MRM3r:
2850  case X86II::MRM4r: case X86II::MRM5r:
2851  case X86II::MRM6r: case X86II::MRM7r:
2852    ++FinalSize;
2853    ++CurOp;
2854    FinalSize += sizeRegModRMByte();
2855
2856    if (CurOp != NumOps) {
2857      const MachineOperand &MO1 = MI.getOperand(CurOp++);
2858      unsigned Size = X86InstrInfo::sizeOfImm(Desc);
2859      if (MO1.isImmediate())
2860        FinalSize += sizeConstant(Size);
2861      else {
2862        bool dword = false;
2863        if (Opcode == X86::MOV64ri32)
2864          dword = true;
2865        if (MO1.isGlobalAddress()) {
2866          FinalSize += sizeGlobalAddress(dword);
2867        } else if (MO1.isExternalSymbol())
2868          FinalSize += sizeExternalSymbolAddress(dword);
2869        else if (MO1.isConstantPoolIndex())
2870          FinalSize += sizeConstPoolAddress(dword);
2871        else if (MO1.isJumpTableIndex())
2872          FinalSize += sizeJumpTableAddress(dword);
2873      }
2874    }
2875    break;
2876
2877  case X86II::MRM0m: case X86II::MRM1m:
2878  case X86II::MRM2m: case X86II::MRM3m:
2879  case X86II::MRM4m: case X86II::MRM5m:
2880  case X86II::MRM6m: case X86II::MRM7m: {
2881
2882    ++FinalSize;
2883    FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode);
2884    CurOp += 4;
2885
2886    if (CurOp != NumOps) {
2887      const MachineOperand &MO = MI.getOperand(CurOp++);
2888      unsigned Size = X86InstrInfo::sizeOfImm(Desc);
2889      if (MO.isImmediate())
2890        FinalSize += sizeConstant(Size);
2891      else {
2892        bool dword = false;
2893        if (Opcode == X86::MOV64mi32)
2894          dword = true;
2895        if (MO.isGlobalAddress()) {
2896          FinalSize += sizeGlobalAddress(dword);
2897        } else if (MO.isExternalSymbol())
2898          FinalSize += sizeExternalSymbolAddress(dword);
2899        else if (MO.isConstantPoolIndex())
2900          FinalSize += sizeConstPoolAddress(dword);
2901        else if (MO.isJumpTableIndex())
2902          FinalSize += sizeJumpTableAddress(dword);
2903      }
2904    }
2905    break;
2906  }
2907
2908  case X86II::MRMInitReg:
2909    ++FinalSize;
2910    // Duplicate register, used by things like MOV8r0 (aka xor reg,reg).
2911    FinalSize += sizeRegModRMByte();
2912    ++CurOp;
2913    break;
2914  }
2915
2916  if (!Desc->isVariadic() && CurOp != NumOps) {
2917    cerr << "Cannot determine size: ";
2918    MI.dump();
2919    cerr << '\n';
2920    abort();
2921  }
2922
2923
2924  return FinalSize;
2925}
2926
2927
2928unsigned X86InstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
2929  const TargetInstrDesc &Desc = MI->getDesc();
2930  bool IsPIC = (TM.getRelocationModel() == Reloc::PIC_);
2931  bool Is64BitMode = TM.getSubtargetImpl()->is64Bit();
2932  unsigned Size = GetInstSizeWithDesc(*MI, &Desc, IsPIC, Is64BitMode);
2933  if (Desc.getOpcode() == X86::MOVPC32r) {
2934    Size += GetInstSizeWithDesc(*MI, &get(X86::POP32r), IsPIC, Is64BitMode);
2935  }
2936  return Size;
2937}
2938