X86InstrInfo.cpp revision 126f17a17625876adb63f06d043fc1b1e4f0361c
1//===- X86InstrInfo.cpp - X86 Instruction Information -----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the X86 implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "X86InstrInfo.h"
15#include "X86.h"
16#include "X86GenInstrInfo.inc"
17#include "X86InstrBuilder.h"
18#include "X86Subtarget.h"
19#include "X86TargetMachine.h"
20#include "llvm/CodeGen/MachineInstrBuilder.h"
21#include "llvm/CodeGen/LiveVariables.h"
22using namespace llvm;
23
24X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
25  : TargetInstrInfo(X86Insts, sizeof(X86Insts)/sizeof(X86Insts[0])),
26    TM(tm), RI(tm, *this) {
27}
28
29bool X86InstrInfo::isMoveInstr(const MachineInstr& MI,
30                               unsigned& sourceReg,
31                               unsigned& destReg) const {
32  MachineOpCode oc = MI.getOpcode();
33  if (oc == X86::MOV8rr || oc == X86::MOV16rr ||
34      oc == X86::MOV32rr || oc == X86::MOV64rr ||
35      oc == X86::MOV16to16_ || oc == X86::MOV32to32_ ||
36      oc == X86::FpMOV  || oc == X86::MOVSSrr || oc == X86::MOVSDrr ||
37      oc == X86::FsMOVAPSrr || oc == X86::FsMOVAPDrr ||
38      oc == X86::MOVAPSrr || oc == X86::MOVAPDrr ||
39      oc == X86::MOVSS2PSrr || oc == X86::MOVSD2PDrr ||
40      oc == X86::MOVPS2SSrr || oc == X86::MOVPD2SDrr ||
41      oc == X86::MMX_MOVD64rr || oc == X86::MMX_MOVQ64rr) {
42      assert(MI.getNumOperands() >= 2 &&
43             MI.getOperand(0).isRegister() &&
44             MI.getOperand(1).isRegister() &&
45             "invalid register-register move instruction");
46      sourceReg = MI.getOperand(1).getReg();
47      destReg = MI.getOperand(0).getReg();
48      return true;
49  }
50  return false;
51}
52
53unsigned X86InstrInfo::isLoadFromStackSlot(MachineInstr *MI,
54                                           int &FrameIndex) const {
55  switch (MI->getOpcode()) {
56  default: break;
57  case X86::MOV8rm:
58  case X86::MOV16rm:
59  case X86::MOV16_rm:
60  case X86::MOV32rm:
61  case X86::MOV32_rm:
62  case X86::MOV64rm:
63  case X86::FpLD64m:
64  case X86::MOVSSrm:
65  case X86::MOVSDrm:
66  case X86::MOVAPSrm:
67  case X86::MOVAPDrm:
68  case X86::MMX_MOVD64rm:
69  case X86::MMX_MOVQ64rm:
70    if (MI->getOperand(1).isFrameIndex() && MI->getOperand(2).isImmediate() &&
71        MI->getOperand(3).isRegister() && MI->getOperand(4).isImmediate() &&
72        MI->getOperand(2).getImmedValue() == 1 &&
73        MI->getOperand(3).getReg() == 0 &&
74        MI->getOperand(4).getImmedValue() == 0) {
75      FrameIndex = MI->getOperand(1).getFrameIndex();
76      return MI->getOperand(0).getReg();
77    }
78    break;
79  }
80  return 0;
81}
82
83unsigned X86InstrInfo::isStoreToStackSlot(MachineInstr *MI,
84                                          int &FrameIndex) const {
85  switch (MI->getOpcode()) {
86  default: break;
87  case X86::MOV8mr:
88  case X86::MOV16mr:
89  case X86::MOV16_mr:
90  case X86::MOV32mr:
91  case X86::MOV32_mr:
92  case X86::MOV64mr:
93  case X86::FpSTP64m:
94  case X86::MOVSSmr:
95  case X86::MOVSDmr:
96  case X86::MOVAPSmr:
97  case X86::MOVAPDmr:
98  case X86::MMX_MOVD64mr:
99  case X86::MMX_MOVQ64mr:
100  case X86::MMX_MOVNTQmr:
101    if (MI->getOperand(0).isFrameIndex() && MI->getOperand(1).isImmediate() &&
102        MI->getOperand(2).isRegister() && MI->getOperand(3).isImmediate() &&
103        MI->getOperand(1).getImmedValue() == 1 &&
104        MI->getOperand(2).getReg() == 0 &&
105        MI->getOperand(3).getImmedValue() == 0) {
106      FrameIndex = MI->getOperand(0).getFrameIndex();
107      return MI->getOperand(4).getReg();
108    }
109    break;
110  }
111  return 0;
112}
113
114
115/// convertToThreeAddress - This method must be implemented by targets that
116/// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
117/// may be able to convert a two-address instruction into a true
118/// three-address instruction on demand.  This allows the X86 target (for
119/// example) to convert ADD and SHL instructions into LEA instructions if they
120/// would require register copies due to two-addressness.
121///
122/// This method returns a null pointer if the transformation cannot be
123/// performed, otherwise it returns the new instruction.
124///
125MachineInstr *
126X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
127                                    MachineBasicBlock::iterator &MBBI,
128                                    LiveVariables &LV) const {
129  MachineInstr *MI = MBBI;
130  // All instructions input are two-addr instructions.  Get the known operands.
131  unsigned Dest = MI->getOperand(0).getReg();
132  unsigned Src = MI->getOperand(1).getReg();
133
134  MachineInstr *NewMI = NULL;
135  // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's.  When
136  // we have better subtarget support, enable the 16-bit LEA generation here.
137  bool DisableLEA16 = true;
138
139  switch (MI->getOpcode()) {
140  default: return 0;
141  case X86::SHUFPSrri: {
142    assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!");
143    if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
144
145    unsigned A = MI->getOperand(0).getReg();
146    unsigned B = MI->getOperand(1).getReg();
147    unsigned C = MI->getOperand(2).getReg();
148    unsigned M = MI->getOperand(3).getImm();
149    if (B != C) return 0;
150    NewMI = BuildMI(get(X86::PSHUFDri), A).addReg(B).addImm(M);
151    break;
152  }
153  case X86::SHL64ri: {
154    assert(MI->getNumOperands() == 3 && "Unknown shift instruction!");
155    // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
156    // the flags produced by a shift yet, so this is safe.
157    unsigned Dest = MI->getOperand(0).getReg();
158    unsigned Src = MI->getOperand(1).getReg();
159    unsigned ShAmt = MI->getOperand(2).getImm();
160    if (ShAmt == 0 || ShAmt >= 4) return 0;
161
162    NewMI = BuildMI(get(X86::LEA64r), Dest)
163      .addReg(0).addImm(1 << ShAmt).addReg(Src).addImm(0);
164    break;
165  }
166  case X86::SHL32ri: {
167    assert(MI->getNumOperands() == 3 && "Unknown shift instruction!");
168    // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
169    // the flags produced by a shift yet, so this is safe.
170    unsigned Dest = MI->getOperand(0).getReg();
171    unsigned Src = MI->getOperand(1).getReg();
172    unsigned ShAmt = MI->getOperand(2).getImm();
173    if (ShAmt == 0 || ShAmt >= 4) return 0;
174
175    unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit() ?
176      X86::LEA64_32r : X86::LEA32r;
177    NewMI = BuildMI(get(Opc), Dest)
178      .addReg(0).addImm(1 << ShAmt).addReg(Src).addImm(0);
179    break;
180  }
181  case X86::SHL16ri: {
182    assert(MI->getNumOperands() == 3 && "Unknown shift instruction!");
183    if (DisableLEA16) return 0;
184
185    // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
186    // the flags produced by a shift yet, so this is safe.
187    unsigned Dest = MI->getOperand(0).getReg();
188    unsigned Src = MI->getOperand(1).getReg();
189    unsigned ShAmt = MI->getOperand(2).getImm();
190    if (ShAmt == 0 || ShAmt >= 4) return 0;
191
192    NewMI = BuildMI(get(X86::LEA16r), Dest)
193      .addReg(0).addImm(1 << ShAmt).addReg(Src).addImm(0);
194    break;
195  }
196  }
197
198  // FIXME: None of these instructions are promotable to LEAs without
199  // additional information.  In particular, LEA doesn't set the flags that
200  // add and inc do.  :(
201  if (0)
202  switch (MI->getOpcode()) {
203  case X86::INC32r:
204  case X86::INC64_32r:
205    assert(MI->getNumOperands() == 2 && "Unknown inc instruction!");
206    NewMI = addRegOffset(BuildMI(get(X86::LEA32r), Dest), Src, 1);
207    break;
208  case X86::INC16r:
209  case X86::INC64_16r:
210    if (DisableLEA16) return 0;
211    assert(MI->getNumOperands() == 2 && "Unknown inc instruction!");
212    NewMI = addRegOffset(BuildMI(get(X86::LEA16r), Dest), Src, 1);
213    break;
214  case X86::DEC32r:
215  case X86::DEC64_32r:
216    assert(MI->getNumOperands() == 2 && "Unknown dec instruction!");
217    NewMI = addRegOffset(BuildMI(get(X86::LEA32r), Dest), Src, -1);
218    break;
219  case X86::DEC16r:
220  case X86::DEC64_16r:
221    if (DisableLEA16) return 0;
222    assert(MI->getNumOperands() == 2 && "Unknown dec instruction!");
223    NewMI = addRegOffset(BuildMI(get(X86::LEA16r), Dest), Src, -1);
224    break;
225  case X86::ADD32rr:
226    assert(MI->getNumOperands() == 3 && "Unknown add instruction!");
227    NewMI = addRegReg(BuildMI(get(X86::LEA32r), Dest), Src,
228                     MI->getOperand(2).getReg());
229    break;
230  case X86::ADD16rr:
231    if (DisableLEA16) return 0;
232    assert(MI->getNumOperands() == 3 && "Unknown add instruction!");
233    NewMI = addRegReg(BuildMI(get(X86::LEA16r), Dest), Src,
234                     MI->getOperand(2).getReg());
235    break;
236  case X86::ADD32ri:
237  case X86::ADD32ri8:
238    assert(MI->getNumOperands() == 3 && "Unknown add instruction!");
239    if (MI->getOperand(2).isImmediate())
240      NewMI = addRegOffset(BuildMI(get(X86::LEA32r), Dest), Src,
241                          MI->getOperand(2).getImmedValue());
242    break;
243  case X86::ADD16ri:
244  case X86::ADD16ri8:
245    if (DisableLEA16) return 0;
246    assert(MI->getNumOperands() == 3 && "Unknown add instruction!");
247    if (MI->getOperand(2).isImmediate())
248      NewMI = addRegOffset(BuildMI(get(X86::LEA16r), Dest), Src,
249                          MI->getOperand(2).getImmedValue());
250    break;
251  case X86::SHL16ri:
252    if (DisableLEA16) return 0;
253  case X86::SHL32ri:
254    assert(MI->getNumOperands() == 3 && MI->getOperand(2).isImmediate() &&
255           "Unknown shl instruction!");
256    unsigned ShAmt = MI->getOperand(2).getImmedValue();
257    if (ShAmt == 1 || ShAmt == 2 || ShAmt == 3) {
258      X86AddressMode AM;
259      AM.Scale = 1 << ShAmt;
260      AM.IndexReg = Src;
261      unsigned Opc = MI->getOpcode() == X86::SHL32ri ? X86::LEA32r :X86::LEA16r;
262      NewMI = addFullAddress(BuildMI(get(Opc), Dest), AM);
263    }
264    break;
265  }
266
267  if (NewMI) {
268    NewMI->copyKillDeadInfo(MI);
269    LV.instructionChanged(MI, NewMI);  // Update live variables
270    MFI->insert(MBBI, NewMI);          // Insert the new inst
271  }
272  return NewMI;
273}
274
275/// commuteInstruction - We have a few instructions that must be hacked on to
276/// commute them.
277///
278MachineInstr *X86InstrInfo::commuteInstruction(MachineInstr *MI) const {
279  // FIXME: Can commute cmoves by changing the condition!
280  switch (MI->getOpcode()) {
281  case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
282  case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
283  case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
284  case X86::SHLD32rri8:{// A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
285    unsigned Opc;
286    unsigned Size;
287    switch (MI->getOpcode()) {
288    default: assert(0 && "Unreachable!");
289    case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
290    case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
291    case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
292    case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
293    }
294    unsigned Amt = MI->getOperand(3).getImmedValue();
295    unsigned A = MI->getOperand(0).getReg();
296    unsigned B = MI->getOperand(1).getReg();
297    unsigned C = MI->getOperand(2).getReg();
298    bool BisKill = MI->getOperand(1).isKill();
299    bool CisKill = MI->getOperand(2).isKill();
300    return BuildMI(get(Opc), A).addReg(C, false, false, CisKill)
301      .addReg(B, false, false, BisKill).addImm(Size-Amt);
302  }
303  default:
304    return TargetInstrInfo::commuteInstruction(MI);
305  }
306}
307
308static X86::CondCode GetCondFromBranchOpc(unsigned BrOpc) {
309  switch (BrOpc) {
310  default: return X86::COND_INVALID;
311  case X86::JE:  return X86::COND_E;
312  case X86::JNE: return X86::COND_NE;
313  case X86::JL:  return X86::COND_L;
314  case X86::JLE: return X86::COND_LE;
315  case X86::JG:  return X86::COND_G;
316  case X86::JGE: return X86::COND_GE;
317  case X86::JB:  return X86::COND_B;
318  case X86::JBE: return X86::COND_BE;
319  case X86::JA:  return X86::COND_A;
320  case X86::JAE: return X86::COND_AE;
321  case X86::JS:  return X86::COND_S;
322  case X86::JNS: return X86::COND_NS;
323  case X86::JP:  return X86::COND_P;
324  case X86::JNP: return X86::COND_NP;
325  case X86::JO:  return X86::COND_O;
326  case X86::JNO: return X86::COND_NO;
327  }
328}
329
330unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
331  switch (CC) {
332  default: assert(0 && "Illegal condition code!");
333  case X86::COND_E:  return X86::JE;
334  case X86::COND_NE: return X86::JNE;
335  case X86::COND_L:  return X86::JL;
336  case X86::COND_LE: return X86::JLE;
337  case X86::COND_G:  return X86::JG;
338  case X86::COND_GE: return X86::JGE;
339  case X86::COND_B:  return X86::JB;
340  case X86::COND_BE: return X86::JBE;
341  case X86::COND_A:  return X86::JA;
342  case X86::COND_AE: return X86::JAE;
343  case X86::COND_S:  return X86::JS;
344  case X86::COND_NS: return X86::JNS;
345  case X86::COND_P:  return X86::JP;
346  case X86::COND_NP: return X86::JNP;
347  case X86::COND_O:  return X86::JO;
348  case X86::COND_NO: return X86::JNO;
349  }
350}
351
352/// GetOppositeBranchCondition - Return the inverse of the specified condition,
353/// e.g. turning COND_E to COND_NE.
354X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
355  switch (CC) {
356  default: assert(0 && "Illegal condition code!");
357  case X86::COND_E:  return X86::COND_NE;
358  case X86::COND_NE: return X86::COND_E;
359  case X86::COND_L:  return X86::COND_GE;
360  case X86::COND_LE: return X86::COND_G;
361  case X86::COND_G:  return X86::COND_LE;
362  case X86::COND_GE: return X86::COND_L;
363  case X86::COND_B:  return X86::COND_AE;
364  case X86::COND_BE: return X86::COND_A;
365  case X86::COND_A:  return X86::COND_BE;
366  case X86::COND_AE: return X86::COND_B;
367  case X86::COND_S:  return X86::COND_NS;
368  case X86::COND_NS: return X86::COND_S;
369  case X86::COND_P:  return X86::COND_NP;
370  case X86::COND_NP: return X86::COND_P;
371  case X86::COND_O:  return X86::COND_NO;
372  case X86::COND_NO: return X86::COND_O;
373  }
374}
375
376
377bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
378                                 MachineBasicBlock *&TBB,
379                                 MachineBasicBlock *&FBB,
380                                 std::vector<MachineOperand> &Cond) const {
381  // TODO: If FP_REG_KILL is around, ignore it.
382
383  // If the block has no terminators, it just falls into the block after it.
384  MachineBasicBlock::iterator I = MBB.end();
385  if (I == MBB.begin() || !isTerminatorInstr((--I)->getOpcode()))
386    return false;
387
388  // Get the last instruction in the block.
389  MachineInstr *LastInst = I;
390
391  // If there is only one terminator instruction, process it.
392  if (I == MBB.begin() || !isTerminatorInstr((--I)->getOpcode())) {
393    if (!isBranch(LastInst->getOpcode()))
394      return true;
395
396    // If the block ends with a branch there are 3 possibilities:
397    // it's an unconditional, conditional, or indirect branch.
398
399    if (LastInst->getOpcode() == X86::JMP) {
400      TBB = LastInst->getOperand(0).getMachineBasicBlock();
401      return false;
402    }
403    X86::CondCode BranchCode = GetCondFromBranchOpc(LastInst->getOpcode());
404    if (BranchCode == X86::COND_INVALID)
405      return true;  // Can't handle indirect branch.
406
407    // Otherwise, block ends with fall-through condbranch.
408    TBB = LastInst->getOperand(0).getMachineBasicBlock();
409    Cond.push_back(MachineOperand::CreateImm(BranchCode));
410    return false;
411  }
412
413  // Get the instruction before it if it's a terminator.
414  MachineInstr *SecondLastInst = I;
415
416  // If there are three terminators, we don't know what sort of block this is.
417  if (SecondLastInst && I != MBB.begin() &&
418      isTerminatorInstr((--I)->getOpcode()))
419    return true;
420
421  // If the block ends with X86::JMP and a conditional branch, handle it.
422  X86::CondCode BranchCode = GetCondFromBranchOpc(SecondLastInst->getOpcode());
423  if (BranchCode != X86::COND_INVALID && LastInst->getOpcode() == X86::JMP) {
424    TBB = SecondLastInst->getOperand(0).getMachineBasicBlock();
425    Cond.push_back(MachineOperand::CreateImm(BranchCode));
426    FBB = LastInst->getOperand(0).getMachineBasicBlock();
427    return false;
428  }
429
430  // Otherwise, can't handle this.
431  return true;
432}
433
434unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
435  MachineBasicBlock::iterator I = MBB.end();
436  if (I == MBB.begin()) return 0;
437  --I;
438  if (I->getOpcode() != X86::JMP &&
439      GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
440    return 0;
441
442  // Remove the branch.
443  I->eraseFromParent();
444
445  I = MBB.end();
446
447  if (I == MBB.begin()) return 1;
448  --I;
449  if (GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
450    return 1;
451
452  // Remove the branch.
453  I->eraseFromParent();
454  return 2;
455}
456
457unsigned
458X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
459                           MachineBasicBlock *FBB,
460                           const std::vector<MachineOperand> &Cond) const {
461  // Shouldn't be a fall through.
462  assert(TBB && "InsertBranch must not be told to insert a fallthrough");
463  assert((Cond.size() == 1 || Cond.size() == 0) &&
464         "X86 branch conditions have one component!");
465
466  if (FBB == 0) { // One way branch.
467    if (Cond.empty()) {
468      // Unconditional branch?
469      BuildMI(&MBB, get(X86::JMP)).addMBB(TBB);
470    } else {
471      // Conditional branch.
472      unsigned Opc = GetCondBranchFromCond((X86::CondCode)Cond[0].getImm());
473      BuildMI(&MBB, get(Opc)).addMBB(TBB);
474    }
475    return 1;
476  }
477
478  // Two-way Conditional branch.
479  unsigned Opc = GetCondBranchFromCond((X86::CondCode)Cond[0].getImm());
480  BuildMI(&MBB, get(Opc)).addMBB(TBB);
481  BuildMI(&MBB, get(X86::JMP)).addMBB(FBB);
482  return 2;
483}
484
485bool X86InstrInfo::BlockHasNoFallThrough(MachineBasicBlock &MBB) const {
486  if (MBB.empty()) return false;
487
488  switch (MBB.back().getOpcode()) {
489  case X86::RET:     // Return.
490  case X86::RETI:
491  case X86::TAILJMPd:
492  case X86::TAILJMPr:
493  case X86::TAILJMPm:
494  case X86::JMP:     // Uncond branch.
495  case X86::JMP32r:  // Indirect branch.
496  case X86::JMP32m:  // Indirect branch through mem.
497    return true;
498  default: return false;
499  }
500}
501
502bool X86InstrInfo::
503ReverseBranchCondition(std::vector<MachineOperand> &Cond) const {
504  assert(Cond.size() == 1 && "Invalid X86 branch condition!");
505  Cond[0].setImm(GetOppositeBranchCondition((X86::CondCode)Cond[0].getImm()));
506  return false;
507}
508
509const TargetRegisterClass *X86InstrInfo::getPointerRegClass() const {
510  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
511  if (Subtarget->is64Bit())
512    return &X86::GR64RegClass;
513  else
514    return &X86::GR32RegClass;
515}
516