X86InstrInfo.cpp revision 5c00e077952d14899c3fc26709c7b2dfd36d0209
1cc49f813b0d7bf6664102b30b5513fd21c362e0dNeil Fuller//===- X86InstrInfo.cpp - X86 Instruction Information -----------*- C++ -*-===//
2cc49f813b0d7bf6664102b30b5513fd21c362e0dNeil Fuller//
3cc49f813b0d7bf6664102b30b5513fd21c362e0dNeil Fuller//                     The LLVM Compiler Infrastructure
4cc49f813b0d7bf6664102b30b5513fd21c362e0dNeil Fuller//
5cc49f813b0d7bf6664102b30b5513fd21c362e0dNeil Fuller// This file is distributed under the University of Illinois Open Source
6cc49f813b0d7bf6664102b30b5513fd21c362e0dNeil Fuller// License. See LICENSE.TXT for details.
7cc49f813b0d7bf6664102b30b5513fd21c362e0dNeil Fuller//
8cc49f813b0d7bf6664102b30b5513fd21c362e0dNeil Fuller//===----------------------------------------------------------------------===//
9cc49f813b0d7bf6664102b30b5513fd21c362e0dNeil Fuller//
10cc49f813b0d7bf6664102b30b5513fd21c362e0dNeil Fuller// This file contains the X86 implementation of the TargetInstrInfo class.
11cc49f813b0d7bf6664102b30b5513fd21c362e0dNeil Fuller//
12cc49f813b0d7bf6664102b30b5513fd21c362e0dNeil Fuller//===----------------------------------------------------------------------===//
13cc49f813b0d7bf6664102b30b5513fd21c362e0dNeil Fuller
14cc49f813b0d7bf6664102b30b5513fd21c362e0dNeil Fuller#include "X86InstrInfo.h"
15cc49f813b0d7bf6664102b30b5513fd21c362e0dNeil Fuller#include "X86.h"
16cc49f813b0d7bf6664102b30b5513fd21c362e0dNeil Fuller#include "X86GenInstrInfo.inc"
17cc49f813b0d7bf6664102b30b5513fd21c362e0dNeil Fuller#include "X86InstrBuilder.h"
18cc49f813b0d7bf6664102b30b5513fd21c362e0dNeil Fuller#include "X86MachineFunctionInfo.h"
19cc49f813b0d7bf6664102b30b5513fd21c362e0dNeil Fuller#include "X86Subtarget.h"
20cc49f813b0d7bf6664102b30b5513fd21c362e0dNeil Fuller#include "X86TargetMachine.h"
21ac1c676b1256aaa85c5cc22494ea56bd2d276b9fNeil Fuller#include "llvm/DerivedTypes.h"
22cc49f813b0d7bf6664102b30b5513fd21c362e0dNeil Fuller#include "llvm/LLVMContext.h"
23cc49f813b0d7bf6664102b30b5513fd21c362e0dNeil Fuller#include "llvm/ADT/STLExtras.h"
24ac1c676b1256aaa85c5cc22494ea56bd2d276b9fNeil Fuller#include "llvm/CodeGen/MachineConstantPool.h"
25ac1c676b1256aaa85c5cc22494ea56bd2d276b9fNeil Fuller#include "llvm/CodeGen/MachineFrameInfo.h"
26cc49f813b0d7bf6664102b30b5513fd21c362e0dNeil Fuller#include "llvm/CodeGen/MachineInstrBuilder.h"
27cc49f813b0d7bf6664102b30b5513fd21c362e0dNeil Fuller#include "llvm/CodeGen/MachineRegisterInfo.h"
28cc49f813b0d7bf6664102b30b5513fd21c362e0dNeil Fuller#include "llvm/CodeGen/LiveVariables.h"
29cc49f813b0d7bf6664102b30b5513fd21c362e0dNeil Fuller#include "llvm/CodeGen/PseudoSourceValue.h"
30cc49f813b0d7bf6664102b30b5513fd21c362e0dNeil Fuller#include "llvm/MC/MCInst.h"
31cc49f813b0d7bf6664102b30b5513fd21c362e0dNeil Fuller#include "llvm/Support/CommandLine.h"
32cc49f813b0d7bf6664102b30b5513fd21c362e0dNeil Fuller#include "llvm/Support/Debug.h"
33cc49f813b0d7bf6664102b30b5513fd21c362e0dNeil Fuller#include "llvm/Support/ErrorHandling.h"
346a016ebfcb5009b380a656ed29d81c16f382c379Neil Fuller#include "llvm/Support/raw_ostream.h"
35cc49f813b0d7bf6664102b30b5513fd21c362e0dNeil Fuller#include "llvm/Target/TargetOptions.h"
36cc49f813b0d7bf6664102b30b5513fd21c362e0dNeil Fuller#include "llvm/MC/MCAsmInfo.h"
376a016ebfcb5009b380a656ed29d81c16f382c379Neil Fuller
3893cf604e9dd0525f15bc0a7450b2a35f3884c298Neil Fuller#include <limits>
3993cf604e9dd0525f15bc0a7450b2a35f3884c298Neil Fuller
4093cf604e9dd0525f15bc0a7450b2a35f3884c298Neil Fullerusing namespace llvm;
41cc49f813b0d7bf6664102b30b5513fd21c362e0dNeil Fuller
42cc49f813b0d7bf6664102b30b5513fd21c362e0dNeil Fullerstatic cl::opt<bool>
43cc49f813b0d7bf6664102b30b5513fd21c362e0dNeil FullerNoFusing("disable-spill-fusing",
44cc49f813b0d7bf6664102b30b5513fd21c362e0dNeil Fuller         cl::desc("Disable fusing of spill code into instructions"));
45cc49f813b0d7bf6664102b30b5513fd21c362e0dNeil Fullerstatic cl::opt<bool>
46cc49f813b0d7bf6664102b30b5513fd21c362e0dNeil FullerPrintFailedFusing("print-failed-fuse-candidates",
47cc49f813b0d7bf6664102b30b5513fd21c362e0dNeil Fuller                  cl::desc("Print instructions that the allocator wants to"
48cc49f813b0d7bf6664102b30b5513fd21c362e0dNeil Fuller                           " fuse, but the X86 backend currently can't"),
49cc49f813b0d7bf6664102b30b5513fd21c362e0dNeil Fuller                  cl::Hidden);
50cc49f813b0d7bf6664102b30b5513fd21c362e0dNeil Fullerstatic cl::opt<bool>
51cc49f813b0d7bf6664102b30b5513fd21c362e0dNeil FullerReMatPICStubLoad("remat-pic-stub-load",
52cc49f813b0d7bf6664102b30b5513fd21c362e0dNeil Fuller                 cl::desc("Re-materialize load from stub in PIC mode"),
53cc49f813b0d7bf6664102b30b5513fd21c362e0dNeil Fuller                 cl::init(false), cl::Hidden);
546a016ebfcb5009b380a656ed29d81c16f382c379Neil Fuller
55cc49f813b0d7bf6664102b30b5513fd21c362e0dNeil FullerX86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
56cc49f813b0d7bf6664102b30b5513fd21c362e0dNeil Fuller  : TargetInstrInfoImpl(X86Insts, array_lengthof(X86Insts)),
57cc49f813b0d7bf6664102b30b5513fd21c362e0dNeil Fuller    TM(tm), RI(tm, *this) {
58cc49f813b0d7bf6664102b30b5513fd21c362e0dNeil Fuller  SmallVector<unsigned,16> AmbEntries;
59cc49f813b0d7bf6664102b30b5513fd21c362e0dNeil Fuller  static const unsigned OpTbl2Addr[][2] = {
60cc49f813b0d7bf6664102b30b5513fd21c362e0dNeil Fuller    { X86::ADC32ri,     X86::ADC32mi },
61cc49f813b0d7bf6664102b30b5513fd21c362e0dNeil Fuller    { X86::ADC32ri8,    X86::ADC32mi8 },
626a016ebfcb5009b380a656ed29d81c16f382c379Neil Fuller    { X86::ADC32rr,     X86::ADC32mr },
63ac1c676b1256aaa85c5cc22494ea56bd2d276b9fNeil Fuller    { X86::ADC64ri32,   X86::ADC64mi32 },
64cc49f813b0d7bf6664102b30b5513fd21c362e0dNeil Fuller    { X86::ADC64ri8,    X86::ADC64mi8 },
65cc49f813b0d7bf6664102b30b5513fd21c362e0dNeil Fuller    { X86::ADC64rr,     X86::ADC64mr },
666a016ebfcb5009b380a656ed29d81c16f382c379Neil Fuller    { X86::ADD16ri,     X86::ADD16mi },
67ac1c676b1256aaa85c5cc22494ea56bd2d276b9fNeil Fuller    { X86::ADD16ri8,    X86::ADD16mi8 },
68cc49f813b0d7bf6664102b30b5513fd21c362e0dNeil Fuller    { X86::ADD16rr,     X86::ADD16mr },
69cc49f813b0d7bf6664102b30b5513fd21c362e0dNeil Fuller    { X86::ADD32ri,     X86::ADD32mi },
70cc49f813b0d7bf6664102b30b5513fd21c362e0dNeil Fuller    { X86::ADD32ri8,    X86::ADD32mi8 },
71cc49f813b0d7bf6664102b30b5513fd21c362e0dNeil Fuller    { X86::ADD32rr,     X86::ADD32mr },
72cc49f813b0d7bf6664102b30b5513fd21c362e0dNeil Fuller    { X86::ADD64ri32,   X86::ADD64mi32 },
73cc49f813b0d7bf6664102b30b5513fd21c362e0dNeil Fuller    { X86::ADD64ri8,    X86::ADD64mi8 },
74cc49f813b0d7bf6664102b30b5513fd21c362e0dNeil Fuller    { X86::ADD64rr,     X86::ADD64mr },
75cc49f813b0d7bf6664102b30b5513fd21c362e0dNeil Fuller    { X86::ADD8ri,      X86::ADD8mi },
76cc49f813b0d7bf6664102b30b5513fd21c362e0dNeil Fuller    { X86::ADD8rr,      X86::ADD8mr },
77cc49f813b0d7bf6664102b30b5513fd21c362e0dNeil Fuller    { X86::AND16ri,     X86::AND16mi },
78cc49f813b0d7bf6664102b30b5513fd21c362e0dNeil Fuller    { X86::AND16ri8,    X86::AND16mi8 },
79    { X86::AND16rr,     X86::AND16mr },
80    { X86::AND32ri,     X86::AND32mi },
81    { X86::AND32ri8,    X86::AND32mi8 },
82    { X86::AND32rr,     X86::AND32mr },
83    { X86::AND64ri32,   X86::AND64mi32 },
84    { X86::AND64ri8,    X86::AND64mi8 },
85    { X86::AND64rr,     X86::AND64mr },
86    { X86::AND8ri,      X86::AND8mi },
87    { X86::AND8rr,      X86::AND8mr },
88    { X86::DEC16r,      X86::DEC16m },
89    { X86::DEC32r,      X86::DEC32m },
90    { X86::DEC64_16r,   X86::DEC64_16m },
91    { X86::DEC64_32r,   X86::DEC64_32m },
92    { X86::DEC64r,      X86::DEC64m },
93    { X86::DEC8r,       X86::DEC8m },
94    { X86::INC16r,      X86::INC16m },
95    { X86::INC32r,      X86::INC32m },
96    { X86::INC64_16r,   X86::INC64_16m },
97    { X86::INC64_32r,   X86::INC64_32m },
98    { X86::INC64r,      X86::INC64m },
99    { X86::INC8r,       X86::INC8m },
100    { X86::NEG16r,      X86::NEG16m },
101    { X86::NEG32r,      X86::NEG32m },
102    { X86::NEG64r,      X86::NEG64m },
103    { X86::NEG8r,       X86::NEG8m },
104    { X86::NOT16r,      X86::NOT16m },
105    { X86::NOT32r,      X86::NOT32m },
106    { X86::NOT64r,      X86::NOT64m },
107    { X86::NOT8r,       X86::NOT8m },
108    { X86::OR16ri,      X86::OR16mi },
109    { X86::OR16ri8,     X86::OR16mi8 },
110    { X86::OR16rr,      X86::OR16mr },
111    { X86::OR32ri,      X86::OR32mi },
112    { X86::OR32ri8,     X86::OR32mi8 },
113    { X86::OR32rr,      X86::OR32mr },
114    { X86::OR64ri32,    X86::OR64mi32 },
115    { X86::OR64ri8,     X86::OR64mi8 },
116    { X86::OR64rr,      X86::OR64mr },
117    { X86::OR8ri,       X86::OR8mi },
118    { X86::OR8rr,       X86::OR8mr },
119    { X86::ROL16r1,     X86::ROL16m1 },
120    { X86::ROL16rCL,    X86::ROL16mCL },
121    { X86::ROL16ri,     X86::ROL16mi },
122    { X86::ROL32r1,     X86::ROL32m1 },
123    { X86::ROL32rCL,    X86::ROL32mCL },
124    { X86::ROL32ri,     X86::ROL32mi },
125    { X86::ROL64r1,     X86::ROL64m1 },
126    { X86::ROL64rCL,    X86::ROL64mCL },
127    { X86::ROL64ri,     X86::ROL64mi },
128    { X86::ROL8r1,      X86::ROL8m1 },
129    { X86::ROL8rCL,     X86::ROL8mCL },
130    { X86::ROL8ri,      X86::ROL8mi },
131    { X86::ROR16r1,     X86::ROR16m1 },
132    { X86::ROR16rCL,    X86::ROR16mCL },
133    { X86::ROR16ri,     X86::ROR16mi },
134    { X86::ROR32r1,     X86::ROR32m1 },
135    { X86::ROR32rCL,    X86::ROR32mCL },
136    { X86::ROR32ri,     X86::ROR32mi },
137    { X86::ROR64r1,     X86::ROR64m1 },
138    { X86::ROR64rCL,    X86::ROR64mCL },
139    { X86::ROR64ri,     X86::ROR64mi },
140    { X86::ROR8r1,      X86::ROR8m1 },
141    { X86::ROR8rCL,     X86::ROR8mCL },
142    { X86::ROR8ri,      X86::ROR8mi },
143    { X86::SAR16r1,     X86::SAR16m1 },
144    { X86::SAR16rCL,    X86::SAR16mCL },
145    { X86::SAR16ri,     X86::SAR16mi },
146    { X86::SAR32r1,     X86::SAR32m1 },
147    { X86::SAR32rCL,    X86::SAR32mCL },
148    { X86::SAR32ri,     X86::SAR32mi },
149    { X86::SAR64r1,     X86::SAR64m1 },
150    { X86::SAR64rCL,    X86::SAR64mCL },
151    { X86::SAR64ri,     X86::SAR64mi },
152    { X86::SAR8r1,      X86::SAR8m1 },
153    { X86::SAR8rCL,     X86::SAR8mCL },
154    { X86::SAR8ri,      X86::SAR8mi },
155    { X86::SBB32ri,     X86::SBB32mi },
156    { X86::SBB32ri8,    X86::SBB32mi8 },
157    { X86::SBB32rr,     X86::SBB32mr },
158    { X86::SBB64ri32,   X86::SBB64mi32 },
159    { X86::SBB64ri8,    X86::SBB64mi8 },
160    { X86::SBB64rr,     X86::SBB64mr },
161    { X86::SHL16rCL,    X86::SHL16mCL },
162    { X86::SHL16ri,     X86::SHL16mi },
163    { X86::SHL32rCL,    X86::SHL32mCL },
164    { X86::SHL32ri,     X86::SHL32mi },
165    { X86::SHL64rCL,    X86::SHL64mCL },
166    { X86::SHL64ri,     X86::SHL64mi },
167    { X86::SHL8rCL,     X86::SHL8mCL },
168    { X86::SHL8ri,      X86::SHL8mi },
169    { X86::SHLD16rrCL,  X86::SHLD16mrCL },
170    { X86::SHLD16rri8,  X86::SHLD16mri8 },
171    { X86::SHLD32rrCL,  X86::SHLD32mrCL },
172    { X86::SHLD32rri8,  X86::SHLD32mri8 },
173    { X86::SHLD64rrCL,  X86::SHLD64mrCL },
174    { X86::SHLD64rri8,  X86::SHLD64mri8 },
175    { X86::SHR16r1,     X86::SHR16m1 },
176    { X86::SHR16rCL,    X86::SHR16mCL },
177    { X86::SHR16ri,     X86::SHR16mi },
178    { X86::SHR32r1,     X86::SHR32m1 },
179    { X86::SHR32rCL,    X86::SHR32mCL },
180    { X86::SHR32ri,     X86::SHR32mi },
181    { X86::SHR64r1,     X86::SHR64m1 },
182    { X86::SHR64rCL,    X86::SHR64mCL },
183    { X86::SHR64ri,     X86::SHR64mi },
184    { X86::SHR8r1,      X86::SHR8m1 },
185    { X86::SHR8rCL,     X86::SHR8mCL },
186    { X86::SHR8ri,      X86::SHR8mi },
187    { X86::SHRD16rrCL,  X86::SHRD16mrCL },
188    { X86::SHRD16rri8,  X86::SHRD16mri8 },
189    { X86::SHRD32rrCL,  X86::SHRD32mrCL },
190    { X86::SHRD32rri8,  X86::SHRD32mri8 },
191    { X86::SHRD64rrCL,  X86::SHRD64mrCL },
192    { X86::SHRD64rri8,  X86::SHRD64mri8 },
193    { X86::SUB16ri,     X86::SUB16mi },
194    { X86::SUB16ri8,    X86::SUB16mi8 },
195    { X86::SUB16rr,     X86::SUB16mr },
196    { X86::SUB32ri,     X86::SUB32mi },
197    { X86::SUB32ri8,    X86::SUB32mi8 },
198    { X86::SUB32rr,     X86::SUB32mr },
199    { X86::SUB64ri32,   X86::SUB64mi32 },
200    { X86::SUB64ri8,    X86::SUB64mi8 },
201    { X86::SUB64rr,     X86::SUB64mr },
202    { X86::SUB8ri,      X86::SUB8mi },
203    { X86::SUB8rr,      X86::SUB8mr },
204    { X86::XOR16ri,     X86::XOR16mi },
205    { X86::XOR16ri8,    X86::XOR16mi8 },
206    { X86::XOR16rr,     X86::XOR16mr },
207    { X86::XOR32ri,     X86::XOR32mi },
208    { X86::XOR32ri8,    X86::XOR32mi8 },
209    { X86::XOR32rr,     X86::XOR32mr },
210    { X86::XOR64ri32,   X86::XOR64mi32 },
211    { X86::XOR64ri8,    X86::XOR64mi8 },
212    { X86::XOR64rr,     X86::XOR64mr },
213    { X86::XOR8ri,      X86::XOR8mi },
214    { X86::XOR8rr,      X86::XOR8mr }
215  };
216
217  for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) {
218    unsigned RegOp = OpTbl2Addr[i][0];
219    unsigned MemOp = OpTbl2Addr[i][1];
220    if (!RegOp2MemOpTable2Addr.insert(std::make_pair((unsigned*)RegOp,
221                                               std::make_pair(MemOp,0))).second)
222      assert(false && "Duplicated entries?");
223    // Index 0, folded load and store, no alignment requirement.
224    unsigned AuxInfo = 0 | (1 << 4) | (1 << 5);
225    if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
226                                                std::make_pair(RegOp,
227                                                              AuxInfo))).second)
228      AmbEntries.push_back(MemOp);
229  }
230
231  // If the third value is 1, then it's folding either a load or a store.
232  static const unsigned OpTbl0[][4] = {
233    { X86::BT16ri8,     X86::BT16mi8, 1, 0 },
234    { X86::BT32ri8,     X86::BT32mi8, 1, 0 },
235    { X86::BT64ri8,     X86::BT64mi8, 1, 0 },
236    { X86::CALL32r,     X86::CALL32m, 1, 0 },
237    { X86::CALL64r,     X86::CALL64m, 1, 0 },
238    { X86::CMP16ri,     X86::CMP16mi, 1, 0 },
239    { X86::CMP16ri8,    X86::CMP16mi8, 1, 0 },
240    { X86::CMP16rr,     X86::CMP16mr, 1, 0 },
241    { X86::CMP32ri,     X86::CMP32mi, 1, 0 },
242    { X86::CMP32ri8,    X86::CMP32mi8, 1, 0 },
243    { X86::CMP32rr,     X86::CMP32mr, 1, 0 },
244    { X86::CMP64ri32,   X86::CMP64mi32, 1, 0 },
245    { X86::CMP64ri8,    X86::CMP64mi8, 1, 0 },
246    { X86::CMP64rr,     X86::CMP64mr, 1, 0 },
247    { X86::CMP8ri,      X86::CMP8mi, 1, 0 },
248    { X86::CMP8rr,      X86::CMP8mr, 1, 0 },
249    { X86::DIV16r,      X86::DIV16m, 1, 0 },
250    { X86::DIV32r,      X86::DIV32m, 1, 0 },
251    { X86::DIV64r,      X86::DIV64m, 1, 0 },
252    { X86::DIV8r,       X86::DIV8m, 1, 0 },
253    { X86::EXTRACTPSrr, X86::EXTRACTPSmr, 0, 16 },
254    { X86::FsMOVAPDrr,  X86::MOVSDmr, 0, 0 },
255    { X86::FsMOVAPSrr,  X86::MOVSSmr, 0, 0 },
256    { X86::IDIV16r,     X86::IDIV16m, 1, 0 },
257    { X86::IDIV32r,     X86::IDIV32m, 1, 0 },
258    { X86::IDIV64r,     X86::IDIV64m, 1, 0 },
259    { X86::IDIV8r,      X86::IDIV8m, 1, 0 },
260    { X86::IMUL16r,     X86::IMUL16m, 1, 0 },
261    { X86::IMUL32r,     X86::IMUL32m, 1, 0 },
262    { X86::IMUL64r,     X86::IMUL64m, 1, 0 },
263    { X86::IMUL8r,      X86::IMUL8m, 1, 0 },
264    { X86::JMP32r,      X86::JMP32m, 1, 0 },
265    { X86::JMP64r,      X86::JMP64m, 1, 0 },
266    { X86::MOV16ri,     X86::MOV16mi, 0, 0 },
267    { X86::MOV16rr,     X86::MOV16mr, 0, 0 },
268    { X86::MOV32ri,     X86::MOV32mi, 0, 0 },
269    { X86::MOV32rr,     X86::MOV32mr, 0, 0 },
270    { X86::MOV32rr_TC,  X86::MOV32mr_TC, 0, 0 },
271    { X86::MOV64ri32,   X86::MOV64mi32, 0, 0 },
272    { X86::MOV64rr,     X86::MOV64mr, 0, 0 },
273    { X86::MOV8ri,      X86::MOV8mi, 0, 0 },
274    { X86::MOV8rr,      X86::MOV8mr, 0, 0 },
275    { X86::MOV8rr_NOREX, X86::MOV8mr_NOREX, 0, 0 },
276    { X86::MOVAPDrr,    X86::MOVAPDmr, 0, 16 },
277    { X86::MOVAPSrr,    X86::MOVAPSmr, 0, 16 },
278    { X86::MOVDQArr,    X86::MOVDQAmr, 0, 16 },
279    { X86::MOVPDI2DIrr, X86::MOVPDI2DImr, 0, 0 },
280    { X86::MOVPQIto64rr,X86::MOVPQI2QImr, 0, 0 },
281    { X86::MOVSDto64rr, X86::MOVSDto64mr, 0, 0 },
282    { X86::MOVSS2DIrr,  X86::MOVSS2DImr, 0, 0 },
283    { X86::MOVUPDrr,    X86::MOVUPDmr, 0, 0 },
284    { X86::MOVUPSrr,    X86::MOVUPSmr, 0, 0 },
285    { X86::MUL16r,      X86::MUL16m, 1, 0 },
286    { X86::MUL32r,      X86::MUL32m, 1, 0 },
287    { X86::MUL64r,      X86::MUL64m, 1, 0 },
288    { X86::MUL8r,       X86::MUL8m, 1, 0 },
289    { X86::SETAEr,      X86::SETAEm, 0, 0 },
290    { X86::SETAr,       X86::SETAm, 0, 0 },
291    { X86::SETBEr,      X86::SETBEm, 0, 0 },
292    { X86::SETBr,       X86::SETBm, 0, 0 },
293    { X86::SETEr,       X86::SETEm, 0, 0 },
294    { X86::SETGEr,      X86::SETGEm, 0, 0 },
295    { X86::SETGr,       X86::SETGm, 0, 0 },
296    { X86::SETLEr,      X86::SETLEm, 0, 0 },
297    { X86::SETLr,       X86::SETLm, 0, 0 },
298    { X86::SETNEr,      X86::SETNEm, 0, 0 },
299    { X86::SETNOr,      X86::SETNOm, 0, 0 },
300    { X86::SETNPr,      X86::SETNPm, 0, 0 },
301    { X86::SETNSr,      X86::SETNSm, 0, 0 },
302    { X86::SETOr,       X86::SETOm, 0, 0 },
303    { X86::SETPr,       X86::SETPm, 0, 0 },
304    { X86::SETSr,       X86::SETSm, 0, 0 },
305    { X86::TAILJMPr,    X86::TAILJMPm, 1, 0 },
306    { X86::TAILJMPr64,  X86::TAILJMPm64, 1, 0 },
307    { X86::TEST16ri,    X86::TEST16mi, 1, 0 },
308    { X86::TEST32ri,    X86::TEST32mi, 1, 0 },
309    { X86::TEST64ri32,  X86::TEST64mi32, 1, 0 },
310    { X86::TEST8ri,     X86::TEST8mi, 1, 0 }
311  };
312
313  for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) {
314    unsigned RegOp = OpTbl0[i][0];
315    unsigned MemOp = OpTbl0[i][1];
316    unsigned Align = OpTbl0[i][3];
317    if (!RegOp2MemOpTable0.insert(std::make_pair((unsigned*)RegOp,
318                                           std::make_pair(MemOp,Align))).second)
319      assert(false && "Duplicated entries?");
320    unsigned FoldedLoad = OpTbl0[i][2];
321    // Index 0, folded load or store.
322    unsigned AuxInfo = 0 | (FoldedLoad << 4) | ((FoldedLoad^1) << 5);
323    if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
324      if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
325                                     std::make_pair(RegOp, AuxInfo))).second)
326        AmbEntries.push_back(MemOp);
327  }
328
329  static const unsigned OpTbl1[][3] = {
330    { X86::CMP16rr,         X86::CMP16rm, 0 },
331    { X86::CMP32rr,         X86::CMP32rm, 0 },
332    { X86::CMP64rr,         X86::CMP64rm, 0 },
333    { X86::CMP8rr,          X86::CMP8rm, 0 },
334    { X86::CVTSD2SSrr,      X86::CVTSD2SSrm, 0 },
335    { X86::CVTSI2SD64rr,    X86::CVTSI2SD64rm, 0 },
336    { X86::CVTSI2SDrr,      X86::CVTSI2SDrm, 0 },
337    { X86::CVTSI2SS64rr,    X86::CVTSI2SS64rm, 0 },
338    { X86::CVTSI2SSrr,      X86::CVTSI2SSrm, 0 },
339    { X86::CVTSS2SDrr,      X86::CVTSS2SDrm, 0 },
340    { X86::CVTTSD2SI64rr,   X86::CVTTSD2SI64rm, 0 },
341    { X86::CVTTSD2SIrr,     X86::CVTTSD2SIrm, 0 },
342    { X86::CVTTSS2SI64rr,   X86::CVTTSS2SI64rm, 0 },
343    { X86::CVTTSS2SIrr,     X86::CVTTSS2SIrm, 0 },
344    { X86::FsMOVAPDrr,      X86::MOVSDrm, 0 },
345    { X86::FsMOVAPSrr,      X86::MOVSSrm, 0 },
346    { X86::IMUL16rri,       X86::IMUL16rmi, 0 },
347    { X86::IMUL16rri8,      X86::IMUL16rmi8, 0 },
348    { X86::IMUL32rri,       X86::IMUL32rmi, 0 },
349    { X86::IMUL32rri8,      X86::IMUL32rmi8, 0 },
350    { X86::IMUL64rri32,     X86::IMUL64rmi32, 0 },
351    { X86::IMUL64rri8,      X86::IMUL64rmi8, 0 },
352    { X86::Int_CMPSDrr,     X86::Int_CMPSDrm, 0 },
353    { X86::Int_CMPSSrr,     X86::Int_CMPSSrm, 0 },
354    { X86::Int_COMISDrr,    X86::Int_COMISDrm, 0 },
355    { X86::Int_COMISSrr,    X86::Int_COMISSrm, 0 },
356    { X86::Int_CVTDQ2PDrr,  X86::Int_CVTDQ2PDrm, 16 },
357    { X86::Int_CVTDQ2PSrr,  X86::Int_CVTDQ2PSrm, 16 },
358    { X86::Int_CVTPD2DQrr,  X86::Int_CVTPD2DQrm, 16 },
359    { X86::Int_CVTPD2PSrr,  X86::Int_CVTPD2PSrm, 16 },
360    { X86::Int_CVTPS2DQrr,  X86::Int_CVTPS2DQrm, 16 },
361    { X86::Int_CVTPS2PDrr,  X86::Int_CVTPS2PDrm, 0 },
362    { X86::Int_CVTSD2SI64rr,X86::Int_CVTSD2SI64rm, 0 },
363    { X86::Int_CVTSD2SIrr,  X86::Int_CVTSD2SIrm, 0 },
364    { X86::Int_CVTSD2SSrr,  X86::Int_CVTSD2SSrm, 0 },
365    { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm, 0 },
366    { X86::Int_CVTSI2SDrr,  X86::Int_CVTSI2SDrm, 0 },
367    { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm, 0 },
368    { X86::Int_CVTSI2SSrr,  X86::Int_CVTSI2SSrm, 0 },
369    { X86::Int_CVTSS2SDrr,  X86::Int_CVTSS2SDrm, 0 },
370    { X86::Int_CVTSS2SI64rr,X86::Int_CVTSS2SI64rm, 0 },
371    { X86::Int_CVTSS2SIrr,  X86::Int_CVTSS2SIrm, 0 },
372    { X86::Int_CVTTPD2DQrr, X86::Int_CVTTPD2DQrm, 16 },
373    { X86::Int_CVTTPS2DQrr, X86::Int_CVTTPS2DQrm, 16 },
374    { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm, 0 },
375    { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm, 0 },
376    { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm, 0 },
377    { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm, 0 },
378    { X86::Int_UCOMISDrr,   X86::Int_UCOMISDrm, 0 },
379    { X86::Int_UCOMISSrr,   X86::Int_UCOMISSrm, 0 },
380    { X86::MOV16rr,         X86::MOV16rm, 0 },
381    { X86::MOV32rr,         X86::MOV32rm, 0 },
382    { X86::MOV32rr_TC,      X86::MOV32rm_TC, 0 },
383    { X86::MOV64rr,         X86::MOV64rm, 0 },
384    { X86::MOV64toPQIrr,    X86::MOVQI2PQIrm, 0 },
385    { X86::MOV64toSDrr,     X86::MOV64toSDrm, 0 },
386    { X86::MOV8rr,          X86::MOV8rm, 0 },
387    { X86::MOVAPDrr,        X86::MOVAPDrm, 16 },
388    { X86::MOVAPSrr,        X86::MOVAPSrm, 16 },
389    { X86::MOVDDUPrr,       X86::MOVDDUPrm, 0 },
390    { X86::MOVDI2PDIrr,     X86::MOVDI2PDIrm, 0 },
391    { X86::MOVDI2SSrr,      X86::MOVDI2SSrm, 0 },
392    { X86::MOVDQArr,        X86::MOVDQArm, 16 },
393    { X86::MOVSHDUPrr,      X86::MOVSHDUPrm, 16 },
394    { X86::MOVSLDUPrr,      X86::MOVSLDUPrm, 16 },
395    { X86::MOVSX16rr8,      X86::MOVSX16rm8, 0 },
396    { X86::MOVSX32rr16,     X86::MOVSX32rm16, 0 },
397    { X86::MOVSX32rr8,      X86::MOVSX32rm8, 0 },
398    { X86::MOVSX64rr16,     X86::MOVSX64rm16, 0 },
399    { X86::MOVSX64rr32,     X86::MOVSX64rm32, 0 },
400    { X86::MOVSX64rr8,      X86::MOVSX64rm8, 0 },
401    { X86::MOVUPDrr,        X86::MOVUPDrm, 16 },
402    { X86::MOVUPSrr,        X86::MOVUPSrm, 0 },
403    { X86::MOVZDI2PDIrr,    X86::MOVZDI2PDIrm, 0 },
404    { X86::MOVZQI2PQIrr,    X86::MOVZQI2PQIrm, 0 },
405    { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm, 16 },
406    { X86::MOVZX16rr8,      X86::MOVZX16rm8, 0 },
407    { X86::MOVZX32rr16,     X86::MOVZX32rm16, 0 },
408    { X86::MOVZX32_NOREXrr8, X86::MOVZX32_NOREXrm8, 0 },
409    { X86::MOVZX32rr8,      X86::MOVZX32rm8, 0 },
410    { X86::MOVZX64rr16,     X86::MOVZX64rm16, 0 },
411    { X86::MOVZX64rr32,     X86::MOVZX64rm32, 0 },
412    { X86::MOVZX64rr8,      X86::MOVZX64rm8, 0 },
413    { X86::PSHUFDri,        X86::PSHUFDmi, 16 },
414    { X86::PSHUFHWri,       X86::PSHUFHWmi, 16 },
415    { X86::PSHUFLWri,       X86::PSHUFLWmi, 16 },
416    { X86::RCPPSr,          X86::RCPPSm, 16 },
417    { X86::RCPPSr_Int,      X86::RCPPSm_Int, 16 },
418    { X86::RSQRTPSr,        X86::RSQRTPSm, 16 },
419    { X86::RSQRTPSr_Int,    X86::RSQRTPSm_Int, 16 },
420    { X86::RSQRTSSr,        X86::RSQRTSSm, 0 },
421    { X86::RSQRTSSr_Int,    X86::RSQRTSSm_Int, 0 },
422    { X86::SQRTPDr,         X86::SQRTPDm, 16 },
423    { X86::SQRTPDr_Int,     X86::SQRTPDm_Int, 16 },
424    { X86::SQRTPSr,         X86::SQRTPSm, 16 },
425    { X86::SQRTPSr_Int,     X86::SQRTPSm_Int, 16 },
426    { X86::SQRTSDr,         X86::SQRTSDm, 0 },
427    { X86::SQRTSDr_Int,     X86::SQRTSDm_Int, 0 },
428    { X86::SQRTSSr,         X86::SQRTSSm, 0 },
429    { X86::SQRTSSr_Int,     X86::SQRTSSm_Int, 0 },
430    { X86::TEST16rr,        X86::TEST16rm, 0 },
431    { X86::TEST32rr,        X86::TEST32rm, 0 },
432    { X86::TEST64rr,        X86::TEST64rm, 0 },
433    { X86::TEST8rr,         X86::TEST8rm, 0 },
434    // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
435    { X86::UCOMISDrr,       X86::UCOMISDrm, 0 },
436    { X86::UCOMISSrr,       X86::UCOMISSrm, 0 }
437  };
438
439  for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) {
440    unsigned RegOp = OpTbl1[i][0];
441    unsigned MemOp = OpTbl1[i][1];
442    unsigned Align = OpTbl1[i][2];
443    if (!RegOp2MemOpTable1.insert(std::make_pair((unsigned*)RegOp,
444                                           std::make_pair(MemOp,Align))).second)
445      assert(false && "Duplicated entries?");
446    // Index 1, folded load
447    unsigned AuxInfo = 1 | (1 << 4);
448    if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
449      if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
450                                     std::make_pair(RegOp, AuxInfo))).second)
451        AmbEntries.push_back(MemOp);
452  }
453
454  static const unsigned OpTbl2[][3] = {
455    { X86::ADC32rr,         X86::ADC32rm, 0 },
456    { X86::ADC64rr,         X86::ADC64rm, 0 },
457    { X86::ADD16rr,         X86::ADD16rm, 0 },
458    { X86::ADD32rr,         X86::ADD32rm, 0 },
459    { X86::ADD64rr,         X86::ADD64rm, 0 },
460    { X86::ADD8rr,          X86::ADD8rm, 0 },
461    { X86::ADDPDrr,         X86::ADDPDrm, 16 },
462    { X86::ADDPSrr,         X86::ADDPSrm, 16 },
463    { X86::ADDSDrr,         X86::ADDSDrm, 0 },
464    { X86::ADDSSrr,         X86::ADDSSrm, 0 },
465    { X86::ADDSUBPDrr,      X86::ADDSUBPDrm, 16 },
466    { X86::ADDSUBPSrr,      X86::ADDSUBPSrm, 16 },
467    { X86::AND16rr,         X86::AND16rm, 0 },
468    { X86::AND32rr,         X86::AND32rm, 0 },
469    { X86::AND64rr,         X86::AND64rm, 0 },
470    { X86::AND8rr,          X86::AND8rm, 0 },
471    { X86::ANDNPDrr,        X86::ANDNPDrm, 16 },
472    { X86::ANDNPSrr,        X86::ANDNPSrm, 16 },
473    { X86::ANDPDrr,         X86::ANDPDrm, 16 },
474    { X86::ANDPSrr,         X86::ANDPSrm, 16 },
475    { X86::CMOVA16rr,       X86::CMOVA16rm, 0 },
476    { X86::CMOVA32rr,       X86::CMOVA32rm, 0 },
477    { X86::CMOVA64rr,       X86::CMOVA64rm, 0 },
478    { X86::CMOVAE16rr,      X86::CMOVAE16rm, 0 },
479    { X86::CMOVAE32rr,      X86::CMOVAE32rm, 0 },
480    { X86::CMOVAE64rr,      X86::CMOVAE64rm, 0 },
481    { X86::CMOVB16rr,       X86::CMOVB16rm, 0 },
482    { X86::CMOVB32rr,       X86::CMOVB32rm, 0 },
483    { X86::CMOVB64rr,       X86::CMOVB64rm, 0 },
484    { X86::CMOVBE16rr,      X86::CMOVBE16rm, 0 },
485    { X86::CMOVBE32rr,      X86::CMOVBE32rm, 0 },
486    { X86::CMOVBE64rr,      X86::CMOVBE64rm, 0 },
487    { X86::CMOVE16rr,       X86::CMOVE16rm, 0 },
488    { X86::CMOVE32rr,       X86::CMOVE32rm, 0 },
489    { X86::CMOVE64rr,       X86::CMOVE64rm, 0 },
490    { X86::CMOVG16rr,       X86::CMOVG16rm, 0 },
491    { X86::CMOVG32rr,       X86::CMOVG32rm, 0 },
492    { X86::CMOVG64rr,       X86::CMOVG64rm, 0 },
493    { X86::CMOVGE16rr,      X86::CMOVGE16rm, 0 },
494    { X86::CMOVGE32rr,      X86::CMOVGE32rm, 0 },
495    { X86::CMOVGE64rr,      X86::CMOVGE64rm, 0 },
496    { X86::CMOVL16rr,       X86::CMOVL16rm, 0 },
497    { X86::CMOVL32rr,       X86::CMOVL32rm, 0 },
498    { X86::CMOVL64rr,       X86::CMOVL64rm, 0 },
499    { X86::CMOVLE16rr,      X86::CMOVLE16rm, 0 },
500    { X86::CMOVLE32rr,      X86::CMOVLE32rm, 0 },
501    { X86::CMOVLE64rr,      X86::CMOVLE64rm, 0 },
502    { X86::CMOVNE16rr,      X86::CMOVNE16rm, 0 },
503    { X86::CMOVNE32rr,      X86::CMOVNE32rm, 0 },
504    { X86::CMOVNE64rr,      X86::CMOVNE64rm, 0 },
505    { X86::CMOVNO16rr,      X86::CMOVNO16rm, 0 },
506    { X86::CMOVNO32rr,      X86::CMOVNO32rm, 0 },
507    { X86::CMOVNO64rr,      X86::CMOVNO64rm, 0 },
508    { X86::CMOVNP16rr,      X86::CMOVNP16rm, 0 },
509    { X86::CMOVNP32rr,      X86::CMOVNP32rm, 0 },
510    { X86::CMOVNP64rr,      X86::CMOVNP64rm, 0 },
511    { X86::CMOVNS16rr,      X86::CMOVNS16rm, 0 },
512    { X86::CMOVNS32rr,      X86::CMOVNS32rm, 0 },
513    { X86::CMOVNS64rr,      X86::CMOVNS64rm, 0 },
514    { X86::CMOVO16rr,       X86::CMOVO16rm, 0 },
515    { X86::CMOVO32rr,       X86::CMOVO32rm, 0 },
516    { X86::CMOVO64rr,       X86::CMOVO64rm, 0 },
517    { X86::CMOVP16rr,       X86::CMOVP16rm, 0 },
518    { X86::CMOVP32rr,       X86::CMOVP32rm, 0 },
519    { X86::CMOVP64rr,       X86::CMOVP64rm, 0 },
520    { X86::CMOVS16rr,       X86::CMOVS16rm, 0 },
521    { X86::CMOVS32rr,       X86::CMOVS32rm, 0 },
522    { X86::CMOVS64rr,       X86::CMOVS64rm, 0 },
523    { X86::CMPPDrri,        X86::CMPPDrmi, 16 },
524    { X86::CMPPSrri,        X86::CMPPSrmi, 16 },
525    { X86::CMPSDrr,         X86::CMPSDrm, 0 },
526    { X86::CMPSSrr,         X86::CMPSSrm, 0 },
527    { X86::DIVPDrr,         X86::DIVPDrm, 16 },
528    { X86::DIVPSrr,         X86::DIVPSrm, 16 },
529    { X86::DIVSDrr,         X86::DIVSDrm, 0 },
530    { X86::DIVSSrr,         X86::DIVSSrm, 0 },
531    { X86::FsANDNPDrr,      X86::FsANDNPDrm, 16 },
532    { X86::FsANDNPSrr,      X86::FsANDNPSrm, 16 },
533    { X86::FsANDPDrr,       X86::FsANDPDrm, 16 },
534    { X86::FsANDPSrr,       X86::FsANDPSrm, 16 },
535    { X86::FsORPDrr,        X86::FsORPDrm, 16 },
536    { X86::FsORPSrr,        X86::FsORPSrm, 16 },
537    { X86::FsXORPDrr,       X86::FsXORPDrm, 16 },
538    { X86::FsXORPSrr,       X86::FsXORPSrm, 16 },
539    { X86::HADDPDrr,        X86::HADDPDrm, 16 },
540    { X86::HADDPSrr,        X86::HADDPSrm, 16 },
541    { X86::HSUBPDrr,        X86::HSUBPDrm, 16 },
542    { X86::HSUBPSrr,        X86::HSUBPSrm, 16 },
543    { X86::IMUL16rr,        X86::IMUL16rm, 0 },
544    { X86::IMUL32rr,        X86::IMUL32rm, 0 },
545    { X86::IMUL64rr,        X86::IMUL64rm, 0 },
546    { X86::MAXPDrr,         X86::MAXPDrm, 16 },
547    { X86::MAXPDrr_Int,     X86::MAXPDrm_Int, 16 },
548    { X86::MAXPSrr,         X86::MAXPSrm, 16 },
549    { X86::MAXPSrr_Int,     X86::MAXPSrm_Int, 16 },
550    { X86::MAXSDrr,         X86::MAXSDrm, 0 },
551    { X86::MAXSDrr_Int,     X86::MAXSDrm_Int, 0 },
552    { X86::MAXSSrr,         X86::MAXSSrm, 0 },
553    { X86::MAXSSrr_Int,     X86::MAXSSrm_Int, 0 },
554    { X86::MINPDrr,         X86::MINPDrm, 16 },
555    { X86::MINPDrr_Int,     X86::MINPDrm_Int, 16 },
556    { X86::MINPSrr,         X86::MINPSrm, 16 },
557    { X86::MINPSrr_Int,     X86::MINPSrm_Int, 16 },
558    { X86::MINSDrr,         X86::MINSDrm, 0 },
559    { X86::MINSDrr_Int,     X86::MINSDrm_Int, 0 },
560    { X86::MINSSrr,         X86::MINSSrm, 0 },
561    { X86::MINSSrr_Int,     X86::MINSSrm_Int, 0 },
562    { X86::MULPDrr,         X86::MULPDrm, 16 },
563    { X86::MULPSrr,         X86::MULPSrm, 16 },
564    { X86::MULSDrr,         X86::MULSDrm, 0 },
565    { X86::MULSSrr,         X86::MULSSrm, 0 },
566    { X86::OR16rr,          X86::OR16rm, 0 },
567    { X86::OR32rr,          X86::OR32rm, 0 },
568    { X86::OR64rr,          X86::OR64rm, 0 },
569    { X86::OR8rr,           X86::OR8rm, 0 },
570    { X86::ORPDrr,          X86::ORPDrm, 16 },
571    { X86::ORPSrr,          X86::ORPSrm, 16 },
572    { X86::PACKSSDWrr,      X86::PACKSSDWrm, 16 },
573    { X86::PACKSSWBrr,      X86::PACKSSWBrm, 16 },
574    { X86::PACKUSWBrr,      X86::PACKUSWBrm, 16 },
575    { X86::PADDBrr,         X86::PADDBrm, 16 },
576    { X86::PADDDrr,         X86::PADDDrm, 16 },
577    { X86::PADDQrr,         X86::PADDQrm, 16 },
578    { X86::PADDSBrr,        X86::PADDSBrm, 16 },
579    { X86::PADDSWrr,        X86::PADDSWrm, 16 },
580    { X86::PADDWrr,         X86::PADDWrm, 16 },
581    { X86::PANDNrr,         X86::PANDNrm, 16 },
582    { X86::PANDrr,          X86::PANDrm, 16 },
583    { X86::PAVGBrr,         X86::PAVGBrm, 16 },
584    { X86::PAVGWrr,         X86::PAVGWrm, 16 },
585    { X86::PCMPEQBrr,       X86::PCMPEQBrm, 16 },
586    { X86::PCMPEQDrr,       X86::PCMPEQDrm, 16 },
587    { X86::PCMPEQWrr,       X86::PCMPEQWrm, 16 },
588    { X86::PCMPGTBrr,       X86::PCMPGTBrm, 16 },
589    { X86::PCMPGTDrr,       X86::PCMPGTDrm, 16 },
590    { X86::PCMPGTWrr,       X86::PCMPGTWrm, 16 },
591    { X86::PINSRWrri,       X86::PINSRWrmi, 16 },
592    { X86::PMADDWDrr,       X86::PMADDWDrm, 16 },
593    { X86::PMAXSWrr,        X86::PMAXSWrm, 16 },
594    { X86::PMAXUBrr,        X86::PMAXUBrm, 16 },
595    { X86::PMINSWrr,        X86::PMINSWrm, 16 },
596    { X86::PMINUBrr,        X86::PMINUBrm, 16 },
597    { X86::PMULDQrr,        X86::PMULDQrm, 16 },
598    { X86::PMULHUWrr,       X86::PMULHUWrm, 16 },
599    { X86::PMULHWrr,        X86::PMULHWrm, 16 },
600    { X86::PMULLDrr,        X86::PMULLDrm, 16 },
601    { X86::PMULLWrr,        X86::PMULLWrm, 16 },
602    { X86::PMULUDQrr,       X86::PMULUDQrm, 16 },
603    { X86::PORrr,           X86::PORrm, 16 },
604    { X86::PSADBWrr,        X86::PSADBWrm, 16 },
605    { X86::PSLLDrr,         X86::PSLLDrm, 16 },
606    { X86::PSLLQrr,         X86::PSLLQrm, 16 },
607    { X86::PSLLWrr,         X86::PSLLWrm, 16 },
608    { X86::PSRADrr,         X86::PSRADrm, 16 },
609    { X86::PSRAWrr,         X86::PSRAWrm, 16 },
610    { X86::PSRLDrr,         X86::PSRLDrm, 16 },
611    { X86::PSRLQrr,         X86::PSRLQrm, 16 },
612    { X86::PSRLWrr,         X86::PSRLWrm, 16 },
613    { X86::PSUBBrr,         X86::PSUBBrm, 16 },
614    { X86::PSUBDrr,         X86::PSUBDrm, 16 },
615    { X86::PSUBSBrr,        X86::PSUBSBrm, 16 },
616    { X86::PSUBSWrr,        X86::PSUBSWrm, 16 },
617    { X86::PSUBWrr,         X86::PSUBWrm, 16 },
618    { X86::PUNPCKHBWrr,     X86::PUNPCKHBWrm, 16 },
619    { X86::PUNPCKHDQrr,     X86::PUNPCKHDQrm, 16 },
620    { X86::PUNPCKHQDQrr,    X86::PUNPCKHQDQrm, 16 },
621    { X86::PUNPCKHWDrr,     X86::PUNPCKHWDrm, 16 },
622    { X86::PUNPCKLBWrr,     X86::PUNPCKLBWrm, 16 },
623    { X86::PUNPCKLDQrr,     X86::PUNPCKLDQrm, 16 },
624    { X86::PUNPCKLQDQrr,    X86::PUNPCKLQDQrm, 16 },
625    { X86::PUNPCKLWDrr,     X86::PUNPCKLWDrm, 16 },
626    { X86::PXORrr,          X86::PXORrm, 16 },
627    { X86::SBB32rr,         X86::SBB32rm, 0 },
628    { X86::SBB64rr,         X86::SBB64rm, 0 },
629    { X86::SHUFPDrri,       X86::SHUFPDrmi, 16 },
630    { X86::SHUFPSrri,       X86::SHUFPSrmi, 16 },
631    { X86::SUB16rr,         X86::SUB16rm, 0 },
632    { X86::SUB32rr,         X86::SUB32rm, 0 },
633    { X86::SUB64rr,         X86::SUB64rm, 0 },
634    { X86::SUB8rr,          X86::SUB8rm, 0 },
635    { X86::SUBPDrr,         X86::SUBPDrm, 16 },
636    { X86::SUBPSrr,         X86::SUBPSrm, 16 },
637    { X86::SUBSDrr,         X86::SUBSDrm, 0 },
638    { X86::SUBSSrr,         X86::SUBSSrm, 0 },
639    // FIXME: TEST*rr -> swapped operand of TEST*mr.
640    { X86::UNPCKHPDrr,      X86::UNPCKHPDrm, 16 },
641    { X86::UNPCKHPSrr,      X86::UNPCKHPSrm, 16 },
642    { X86::UNPCKLPDrr,      X86::UNPCKLPDrm, 16 },
643    { X86::UNPCKLPSrr,      X86::UNPCKLPSrm, 16 },
644    { X86::XOR16rr,         X86::XOR16rm, 0 },
645    { X86::XOR32rr,         X86::XOR32rm, 0 },
646    { X86::XOR64rr,         X86::XOR64rm, 0 },
647    { X86::XOR8rr,          X86::XOR8rm, 0 },
648    { X86::XORPDrr,         X86::XORPDrm, 16 },
649    { X86::XORPSrr,         X86::XORPSrm, 16 }
650  };
651
652  for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) {
653    unsigned RegOp = OpTbl2[i][0];
654    unsigned MemOp = OpTbl2[i][1];
655    unsigned Align = OpTbl2[i][2];
656    if (!RegOp2MemOpTable2.insert(std::make_pair((unsigned*)RegOp,
657                                           std::make_pair(MemOp,Align))).second)
658      assert(false && "Duplicated entries?");
659    // Index 2, folded load
660    unsigned AuxInfo = 2 | (1 << 4);
661    if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
662                                   std::make_pair(RegOp, AuxInfo))).second)
663      AmbEntries.push_back(MemOp);
664  }
665
666  // Remove ambiguous entries.
667  assert(AmbEntries.empty() && "Duplicated entries in unfolding maps?");
668}
669
670bool X86InstrInfo::isMoveInstr(const MachineInstr& MI,
671                               unsigned &SrcReg, unsigned &DstReg,
672                               unsigned &SrcSubIdx, unsigned &DstSubIdx) const {
673  switch (MI.getOpcode()) {
674  default:
675    return false;
676  case X86::MOV8rr:
677  case X86::MOV8rr_NOREX:
678  case X86::MOV16rr:
679  case X86::MOV32rr:
680  case X86::MOV64rr:
681  case X86::MOV32rr_TC:
682  case X86::MOV64rr_TC:
683
684  // FP Stack register class copies
685  case X86::MOV_Fp3232: case X86::MOV_Fp6464: case X86::MOV_Fp8080:
686  case X86::MOV_Fp3264: case X86::MOV_Fp3280:
687  case X86::MOV_Fp6432: case X86::MOV_Fp8032:
688
689  // Note that MOVSSrr and MOVSDrr are not considered copies. FR32 and FR64
690  // copies are done with FsMOVAPSrr and FsMOVAPDrr.
691
692  case X86::FsMOVAPSrr:
693  case X86::FsMOVAPDrr:
694  case X86::MOVAPSrr:
695  case X86::MOVAPDrr:
696  case X86::MOVDQArr:
697  case X86::MMX_MOVQ64rr:
698    assert(MI.getNumOperands() >= 2 &&
699           MI.getOperand(0).isReg() &&
700           MI.getOperand(1).isReg() &&
701           "invalid register-register move instruction");
702    SrcReg = MI.getOperand(1).getReg();
703    DstReg = MI.getOperand(0).getReg();
704    SrcSubIdx = MI.getOperand(1).getSubReg();
705    DstSubIdx = MI.getOperand(0).getSubReg();
706    return true;
707  }
708}
709
710bool
711X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
712                                    unsigned &SrcReg, unsigned &DstReg,
713                                    unsigned &SubIdx) const {
714  switch (MI.getOpcode()) {
715  default: break;
716  case X86::MOVSX16rr8:
717  case X86::MOVZX16rr8:
718  case X86::MOVSX32rr8:
719  case X86::MOVZX32rr8:
720  case X86::MOVSX64rr8:
721  case X86::MOVZX64rr8:
722    if (!TM.getSubtarget<X86Subtarget>().is64Bit())
723      // It's not always legal to reference the low 8-bit of the larger
724      // register in 32-bit mode.
725      return false;
726  case X86::MOVSX32rr16:
727  case X86::MOVZX32rr16:
728  case X86::MOVSX64rr16:
729  case X86::MOVZX64rr16:
730  case X86::MOVSX64rr32:
731  case X86::MOVZX64rr32: {
732    if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
733      // Be conservative.
734      return false;
735    SrcReg = MI.getOperand(1).getReg();
736    DstReg = MI.getOperand(0).getReg();
737    switch (MI.getOpcode()) {
738    default:
739      llvm_unreachable(0);
740      break;
741    case X86::MOVSX16rr8:
742    case X86::MOVZX16rr8:
743    case X86::MOVSX32rr8:
744    case X86::MOVZX32rr8:
745    case X86::MOVSX64rr8:
746    case X86::MOVZX64rr8:
747      SubIdx = X86::sub_8bit;
748      break;
749    case X86::MOVSX32rr16:
750    case X86::MOVZX32rr16:
751    case X86::MOVSX64rr16:
752    case X86::MOVZX64rr16:
753      SubIdx = X86::sub_16bit;
754      break;
755    case X86::MOVSX64rr32:
756    case X86::MOVZX64rr32:
757      SubIdx = X86::sub_32bit;
758      break;
759    }
760    return true;
761  }
762  }
763  return false;
764}
765
766/// isFrameOperand - Return true and the FrameIndex if the specified
767/// operand and follow operands form a reference to the stack frame.
768bool X86InstrInfo::isFrameOperand(const MachineInstr *MI, unsigned int Op,
769                                  int &FrameIndex) const {
770  if (MI->getOperand(Op).isFI() && MI->getOperand(Op+1).isImm() &&
771      MI->getOperand(Op+2).isReg() && MI->getOperand(Op+3).isImm() &&
772      MI->getOperand(Op+1).getImm() == 1 &&
773      MI->getOperand(Op+2).getReg() == 0 &&
774      MI->getOperand(Op+3).getImm() == 0) {
775    FrameIndex = MI->getOperand(Op).getIndex();
776    return true;
777  }
778  return false;
779}
780
781static bool isFrameLoadOpcode(int Opcode) {
782  switch (Opcode) {
783  default: break;
784  case X86::MOV8rm:
785  case X86::MOV16rm:
786  case X86::MOV32rm:
787  case X86::MOV64rm:
788  case X86::LD_Fp64m:
789  case X86::MOVSSrm:
790  case X86::MOVSDrm:
791  case X86::MOVAPSrm:
792  case X86::MOVAPDrm:
793  case X86::MOVDQArm:
794  case X86::MMX_MOVD64rm:
795  case X86::MMX_MOVQ64rm:
796    return true;
797    break;
798  }
799  return false;
800}
801
802static bool isFrameStoreOpcode(int Opcode) {
803  switch (Opcode) {
804  default: break;
805  case X86::MOV8mr:
806  case X86::MOV16mr:
807  case X86::MOV32mr:
808  case X86::MOV64mr:
809  case X86::ST_FpP64m:
810  case X86::MOVSSmr:
811  case X86::MOVSDmr:
812  case X86::MOVAPSmr:
813  case X86::MOVAPDmr:
814  case X86::MOVDQAmr:
815  case X86::MMX_MOVD64mr:
816  case X86::MMX_MOVQ64mr:
817  case X86::MMX_MOVNTQmr:
818    return true;
819  }
820  return false;
821}
822
823unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
824                                           int &FrameIndex) const {
825  if (isFrameLoadOpcode(MI->getOpcode()))
826    if (isFrameOperand(MI, 1, FrameIndex))
827      return MI->getOperand(0).getReg();
828  return 0;
829}
830
831unsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr *MI,
832                                                 int &FrameIndex) const {
833  if (isFrameLoadOpcode(MI->getOpcode())) {
834    unsigned Reg;
835    if ((Reg = isLoadFromStackSlot(MI, FrameIndex)))
836      return Reg;
837    // Check for post-frame index elimination operations
838    const MachineMemOperand *Dummy;
839    return hasLoadFromStackSlot(MI, Dummy, FrameIndex);
840  }
841  return 0;
842}
843
844bool X86InstrInfo::hasLoadFromStackSlot(const MachineInstr *MI,
845                                        const MachineMemOperand *&MMO,
846                                        int &FrameIndex) const {
847  for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
848         oe = MI->memoperands_end();
849       o != oe;
850       ++o) {
851    if ((*o)->isLoad() && (*o)->getValue())
852      if (const FixedStackPseudoSourceValue *Value =
853          dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) {
854        FrameIndex = Value->getFrameIndex();
855        MMO = *o;
856        return true;
857      }
858  }
859  return false;
860}
861
862unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr *MI,
863                                          int &FrameIndex) const {
864  if (isFrameStoreOpcode(MI->getOpcode()))
865    if (isFrameOperand(MI, 0, FrameIndex))
866      return MI->getOperand(X86AddrNumOperands).getReg();
867  return 0;
868}
869
870unsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr *MI,
871                                                int &FrameIndex) const {
872  if (isFrameStoreOpcode(MI->getOpcode())) {
873    unsigned Reg;
874    if ((Reg = isStoreToStackSlot(MI, FrameIndex)))
875      return Reg;
876    // Check for post-frame index elimination operations
877    const MachineMemOperand *Dummy;
878    return hasStoreToStackSlot(MI, Dummy, FrameIndex);
879  }
880  return 0;
881}
882
883bool X86InstrInfo::hasStoreToStackSlot(const MachineInstr *MI,
884                                       const MachineMemOperand *&MMO,
885                                       int &FrameIndex) const {
886  for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
887         oe = MI->memoperands_end();
888       o != oe;
889       ++o) {
890    if ((*o)->isStore() && (*o)->getValue())
891      if (const FixedStackPseudoSourceValue *Value =
892          dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) {
893        FrameIndex = Value->getFrameIndex();
894        MMO = *o;
895        return true;
896      }
897  }
898  return false;
899}
900
901/// regIsPICBase - Return true if register is PIC base (i.e.g defined by
902/// X86::MOVPC32r.
903static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) {
904  bool isPICBase = false;
905  for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
906         E = MRI.def_end(); I != E; ++I) {
907    MachineInstr *DefMI = I.getOperand().getParent();
908    if (DefMI->getOpcode() != X86::MOVPC32r)
909      return false;
910    assert(!isPICBase && "More than one PIC base?");
911    isPICBase = true;
912  }
913  return isPICBase;
914}
915
916bool
917X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI,
918                                                AliasAnalysis *AA) const {
919  switch (MI->getOpcode()) {
920  default: break;
921    case X86::MOV8rm:
922    case X86::MOV16rm:
923    case X86::MOV32rm:
924    case X86::MOV64rm:
925    case X86::LD_Fp64m:
926    case X86::MOVSSrm:
927    case X86::MOVSDrm:
928    case X86::MOVAPSrm:
929    case X86::MOVUPSrm:
930    case X86::MOVUPSrm_Int:
931    case X86::MOVAPDrm:
932    case X86::MOVDQArm:
933    case X86::MMX_MOVD64rm:
934    case X86::MMX_MOVQ64rm:
935    case X86::FsMOVAPSrm:
936    case X86::FsMOVAPDrm: {
937      // Loads from constant pools are trivially rematerializable.
938      if (MI->getOperand(1).isReg() &&
939          MI->getOperand(2).isImm() &&
940          MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
941          MI->isInvariantLoad(AA)) {
942        unsigned BaseReg = MI->getOperand(1).getReg();
943        if (BaseReg == 0 || BaseReg == X86::RIP)
944          return true;
945        // Allow re-materialization of PIC load.
946        if (!ReMatPICStubLoad && MI->getOperand(4).isGlobal())
947          return false;
948        const MachineFunction &MF = *MI->getParent()->getParent();
949        const MachineRegisterInfo &MRI = MF.getRegInfo();
950        bool isPICBase = false;
951        for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
952               E = MRI.def_end(); I != E; ++I) {
953          MachineInstr *DefMI = I.getOperand().getParent();
954          if (DefMI->getOpcode() != X86::MOVPC32r)
955            return false;
956          assert(!isPICBase && "More than one PIC base?");
957          isPICBase = true;
958        }
959        return isPICBase;
960      }
961      return false;
962    }
963
964     case X86::LEA32r:
965     case X86::LEA64r: {
966       if (MI->getOperand(2).isImm() &&
967           MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
968           !MI->getOperand(4).isReg()) {
969         // lea fi#, lea GV, etc. are all rematerializable.
970         if (!MI->getOperand(1).isReg())
971           return true;
972         unsigned BaseReg = MI->getOperand(1).getReg();
973         if (BaseReg == 0)
974           return true;
975         // Allow re-materialization of lea PICBase + x.
976         const MachineFunction &MF = *MI->getParent()->getParent();
977         const MachineRegisterInfo &MRI = MF.getRegInfo();
978         return regIsPICBase(BaseReg, MRI);
979       }
980       return false;
981     }
982  }
983
984  // All other instructions marked M_REMATERIALIZABLE are always trivially
985  // rematerializable.
986  return true;
987}
988
989/// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction that
990/// would clobber the EFLAGS condition register. Note the result may be
991/// conservative. If it cannot definitely determine the safety after visiting
992/// a few instructions in each direction it assumes it's not safe.
993static bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
994                                  MachineBasicBlock::iterator I) {
995  MachineBasicBlock::iterator E = MBB.end();
996
997  // It's always safe to clobber EFLAGS at the end of a block.
998  if (I == E)
999    return true;
1000
1001  // For compile time consideration, if we are not able to determine the
1002  // safety after visiting 4 instructions in each direction, we will assume
1003  // it's not safe.
1004  MachineBasicBlock::iterator Iter = I;
1005  for (unsigned i = 0; i < 4; ++i) {
1006    bool SeenDef = false;
1007    for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
1008      MachineOperand &MO = Iter->getOperand(j);
1009      if (!MO.isReg())
1010        continue;
1011      if (MO.getReg() == X86::EFLAGS) {
1012        if (MO.isUse())
1013          return false;
1014        SeenDef = true;
1015      }
1016    }
1017
1018    if (SeenDef)
1019      // This instruction defines EFLAGS, no need to look any further.
1020      return true;
1021    ++Iter;
1022    // Skip over DBG_VALUE.
1023    while (Iter != E && Iter->isDebugValue())
1024      ++Iter;
1025
1026    // If we make it to the end of the block, it's safe to clobber EFLAGS.
1027    if (Iter == E)
1028      return true;
1029  }
1030
1031  MachineBasicBlock::iterator B = MBB.begin();
1032  Iter = I;
1033  for (unsigned i = 0; i < 4; ++i) {
1034    // If we make it to the beginning of the block, it's safe to clobber
1035    // EFLAGS iff EFLAGS is not live-in.
1036    if (Iter == B)
1037      return !MBB.isLiveIn(X86::EFLAGS);
1038
1039    --Iter;
1040    // Skip over DBG_VALUE.
1041    while (Iter != B && Iter->isDebugValue())
1042      --Iter;
1043
1044    bool SawKill = false;
1045    for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
1046      MachineOperand &MO = Iter->getOperand(j);
1047      if (MO.isReg() && MO.getReg() == X86::EFLAGS) {
1048        if (MO.isDef()) return MO.isDead();
1049        if (MO.isKill()) SawKill = true;
1050      }
1051    }
1052
1053    if (SawKill)
1054      // This instruction kills EFLAGS and doesn't redefine it, so
1055      // there's no need to look further.
1056      return true;
1057  }
1058
1059  // Conservative answer.
1060  return false;
1061}
1062
1063void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
1064                                 MachineBasicBlock::iterator I,
1065                                 unsigned DestReg, unsigned SubIdx,
1066                                 const MachineInstr *Orig,
1067                                 const TargetRegisterInfo &TRI) const {
1068  DebugLoc DL = Orig->getDebugLoc();
1069
1070  // MOV32r0 etc. are implemented with xor which clobbers condition code.
1071  // Re-materialize them as movri instructions to avoid side effects.
1072  bool Clone = true;
1073  unsigned Opc = Orig->getOpcode();
1074  switch (Opc) {
1075  default: break;
1076  case X86::MOV8r0:
1077  case X86::MOV16r0:
1078  case X86::MOV32r0:
1079  case X86::MOV64r0: {
1080    if (!isSafeToClobberEFLAGS(MBB, I)) {
1081      switch (Opc) {
1082      default: break;
1083      case X86::MOV8r0:  Opc = X86::MOV8ri;  break;
1084      case X86::MOV16r0: Opc = X86::MOV16ri; break;
1085      case X86::MOV32r0: Opc = X86::MOV32ri; break;
1086      case X86::MOV64r0: Opc = X86::MOV64ri64i32; break;
1087      }
1088      Clone = false;
1089    }
1090    break;
1091  }
1092  }
1093
1094  if (Clone) {
1095    MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
1096    MBB.insert(I, MI);
1097  } else {
1098    BuildMI(MBB, I, DL, get(Opc)).addOperand(Orig->getOperand(0)).addImm(0);
1099  }
1100
1101  MachineInstr *NewMI = prior(I);
1102  NewMI->substituteRegister(Orig->getOperand(0).getReg(), DestReg, SubIdx, TRI);
1103}
1104
1105/// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that
1106/// is not marked dead.
1107static bool hasLiveCondCodeDef(MachineInstr *MI) {
1108  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1109    MachineOperand &MO = MI->getOperand(i);
1110    if (MO.isReg() && MO.isDef() &&
1111        MO.getReg() == X86::EFLAGS && !MO.isDead()) {
1112      return true;
1113    }
1114  }
1115  return false;
1116}
1117
1118/// convertToThreeAddressWithLEA - Helper for convertToThreeAddress when
1119/// 16-bit LEA is disabled, use 32-bit LEA to form 3-address code by promoting
1120/// to a 32-bit superregister and then truncating back down to a 16-bit
1121/// subregister.
1122MachineInstr *
1123X86InstrInfo::convertToThreeAddressWithLEA(unsigned MIOpc,
1124                                           MachineFunction::iterator &MFI,
1125                                           MachineBasicBlock::iterator &MBBI,
1126                                           LiveVariables *LV) const {
1127  MachineInstr *MI = MBBI;
1128  unsigned Dest = MI->getOperand(0).getReg();
1129  unsigned Src = MI->getOperand(1).getReg();
1130  bool isDead = MI->getOperand(0).isDead();
1131  bool isKill = MI->getOperand(1).isKill();
1132
1133  unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit()
1134    ? X86::LEA64_32r : X86::LEA32r;
1135  MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
1136  unsigned leaInReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
1137  unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
1138
1139  // Build and insert into an implicit UNDEF value. This is OK because
1140  // well be shifting and then extracting the lower 16-bits.
1141  // This has the potential to cause partial register stall. e.g.
1142  //   movw    (%rbp,%rcx,2), %dx
1143  //   leal    -65(%rdx), %esi
1144  // But testing has shown this *does* help performance in 64-bit mode (at
1145  // least on modern x86 machines).
1146  BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg);
1147  MachineInstr *InsMI =
1148    BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY))
1149    .addReg(leaInReg, RegState::Define, X86::sub_16bit)
1150    .addReg(Src, getKillRegState(isKill));
1151
1152  MachineInstrBuilder MIB = BuildMI(*MFI, MBBI, MI->getDebugLoc(),
1153                                    get(Opc), leaOutReg);
1154  switch (MIOpc) {
1155  default:
1156    llvm_unreachable(0);
1157    break;
1158  case X86::SHL16ri: {
1159    unsigned ShAmt = MI->getOperand(2).getImm();
1160    MIB.addReg(0).addImm(1 << ShAmt)
1161       .addReg(leaInReg, RegState::Kill).addImm(0);
1162    break;
1163  }
1164  case X86::INC16r:
1165  case X86::INC64_16r:
1166    addLeaRegOffset(MIB, leaInReg, true, 1);
1167    break;
1168  case X86::DEC16r:
1169  case X86::DEC64_16r:
1170    addLeaRegOffset(MIB, leaInReg, true, -1);
1171    break;
1172  case X86::ADD16ri:
1173  case X86::ADD16ri8:
1174    addLeaRegOffset(MIB, leaInReg, true, MI->getOperand(2).getImm());
1175    break;
1176  case X86::ADD16rr: {
1177    unsigned Src2 = MI->getOperand(2).getReg();
1178    bool isKill2 = MI->getOperand(2).isKill();
1179    unsigned leaInReg2 = 0;
1180    MachineInstr *InsMI2 = 0;
1181    if (Src == Src2) {
1182      // ADD16rr %reg1028<kill>, %reg1028
1183      // just a single insert_subreg.
1184      addRegReg(MIB, leaInReg, true, leaInReg, false);
1185    } else {
1186      leaInReg2 = RegInfo.createVirtualRegister(&X86::GR32RegClass);
1187      // Build and insert into an implicit UNDEF value. This is OK because
1188      // well be shifting and then extracting the lower 16-bits.
1189      BuildMI(*MFI, MIB, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg2);
1190      InsMI2 =
1191        BuildMI(*MFI, MIB, MI->getDebugLoc(), get(TargetOpcode::COPY))
1192        .addReg(leaInReg2, RegState::Define, X86::sub_16bit)
1193        .addReg(Src2, getKillRegState(isKill2));
1194      addRegReg(MIB, leaInReg, true, leaInReg2, true);
1195    }
1196    if (LV && isKill2 && InsMI2)
1197      LV->replaceKillInstruction(Src2, MI, InsMI2);
1198    break;
1199  }
1200  }
1201
1202  MachineInstr *NewMI = MIB;
1203  MachineInstr *ExtMI =
1204    BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::EXTRACT_SUBREG))
1205    .addReg(Dest, RegState::Define | getDeadRegState(isDead))
1206    .addReg(leaOutReg, RegState::Kill)
1207    .addImm(X86::sub_16bit);
1208
1209  if (LV) {
1210    // Update live variables
1211    LV->getVarInfo(leaInReg).Kills.push_back(NewMI);
1212    LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI);
1213    if (isKill)
1214      LV->replaceKillInstruction(Src, MI, InsMI);
1215    if (isDead)
1216      LV->replaceKillInstruction(Dest, MI, ExtMI);
1217  }
1218
1219  return ExtMI;
1220}
1221
1222/// convertToThreeAddress - This method must be implemented by targets that
1223/// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
1224/// may be able to convert a two-address instruction into a true
1225/// three-address instruction on demand.  This allows the X86 target (for
1226/// example) to convert ADD and SHL instructions into LEA instructions if they
1227/// would require register copies due to two-addressness.
1228///
1229/// This method returns a null pointer if the transformation cannot be
1230/// performed, otherwise it returns the new instruction.
1231///
1232MachineInstr *
1233X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
1234                                    MachineBasicBlock::iterator &MBBI,
1235                                    LiveVariables *LV) const {
1236  MachineInstr *MI = MBBI;
1237  MachineFunction &MF = *MI->getParent()->getParent();
1238  // All instructions input are two-addr instructions.  Get the known operands.
1239  unsigned Dest = MI->getOperand(0).getReg();
1240  unsigned Src = MI->getOperand(1).getReg();
1241  bool isDead = MI->getOperand(0).isDead();
1242  bool isKill = MI->getOperand(1).isKill();
1243
1244  MachineInstr *NewMI = NULL;
1245  // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's.  When
1246  // we have better subtarget support, enable the 16-bit LEA generation here.
1247  // 16-bit LEA is also slow on Core2.
1248  bool DisableLEA16 = true;
1249  bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
1250
1251  unsigned MIOpc = MI->getOpcode();
1252  switch (MIOpc) {
1253  case X86::SHUFPSrri: {
1254    assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!");
1255    if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
1256
1257    unsigned B = MI->getOperand(1).getReg();
1258    unsigned C = MI->getOperand(2).getReg();
1259    if (B != C) return 0;
1260    unsigned A = MI->getOperand(0).getReg();
1261    unsigned M = MI->getOperand(3).getImm();
1262    NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::PSHUFDri))
1263      .addReg(A, RegState::Define | getDeadRegState(isDead))
1264      .addReg(B, getKillRegState(isKill)).addImm(M);
1265    break;
1266  }
1267  case X86::SHL64ri: {
1268    assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
1269    // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1270    // the flags produced by a shift yet, so this is safe.
1271    unsigned ShAmt = MI->getOperand(2).getImm();
1272    if (ShAmt == 0 || ShAmt >= 4) return 0;
1273
1274    NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
1275      .addReg(Dest, RegState::Define | getDeadRegState(isDead))
1276      .addReg(0).addImm(1 << ShAmt)
1277      .addReg(Src, getKillRegState(isKill))
1278      .addImm(0);
1279    break;
1280  }
1281  case X86::SHL32ri: {
1282    assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
1283    // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1284    // the flags produced by a shift yet, so this is safe.
1285    unsigned ShAmt = MI->getOperand(2).getImm();
1286    if (ShAmt == 0 || ShAmt >= 4) return 0;
1287
1288    unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
1289    NewMI = BuildMI(MF, MI->getDebugLoc(), get(Opc))
1290      .addReg(Dest, RegState::Define | getDeadRegState(isDead))
1291      .addReg(0).addImm(1 << ShAmt)
1292      .addReg(Src, getKillRegState(isKill)).addImm(0);
1293    break;
1294  }
1295  case X86::SHL16ri: {
1296    assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
1297    // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1298    // the flags produced by a shift yet, so this is safe.
1299    unsigned ShAmt = MI->getOperand(2).getImm();
1300    if (ShAmt == 0 || ShAmt >= 4) return 0;
1301
1302    if (DisableLEA16)
1303      return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
1304    NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1305      .addReg(Dest, RegState::Define | getDeadRegState(isDead))
1306      .addReg(0).addImm(1 << ShAmt)
1307      .addReg(Src, getKillRegState(isKill))
1308      .addImm(0);
1309    break;
1310  }
1311  default: {
1312    // The following opcodes also sets the condition code register(s). Only
1313    // convert them to equivalent lea if the condition code register def's
1314    // are dead!
1315    if (hasLiveCondCodeDef(MI))
1316      return 0;
1317
1318    switch (MIOpc) {
1319    default: return 0;
1320    case X86::INC64r:
1321    case X86::INC32r:
1322    case X86::INC64_32r: {
1323      assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
1324      unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
1325        : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
1326      NewMI = addLeaRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
1327                              .addReg(Dest, RegState::Define |
1328                                      getDeadRegState(isDead)),
1329                              Src, isKill, 1);
1330      break;
1331    }
1332    case X86::INC16r:
1333    case X86::INC64_16r:
1334      if (DisableLEA16)
1335        return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
1336      assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
1337      NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1338                           .addReg(Dest, RegState::Define |
1339                                   getDeadRegState(isDead)),
1340                           Src, isKill, 1);
1341      break;
1342    case X86::DEC64r:
1343    case X86::DEC32r:
1344    case X86::DEC64_32r: {
1345      assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
1346      unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
1347        : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
1348      NewMI = addLeaRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
1349                              .addReg(Dest, RegState::Define |
1350                                      getDeadRegState(isDead)),
1351                              Src, isKill, -1);
1352      break;
1353    }
1354    case X86::DEC16r:
1355    case X86::DEC64_16r:
1356      if (DisableLEA16)
1357        return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
1358      assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
1359      NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1360                           .addReg(Dest, RegState::Define |
1361                                   getDeadRegState(isDead)),
1362                           Src, isKill, -1);
1363      break;
1364    case X86::ADD64rr:
1365    case X86::ADD32rr: {
1366      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1367      unsigned Opc = MIOpc == X86::ADD64rr ? X86::LEA64r
1368        : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
1369      unsigned Src2 = MI->getOperand(2).getReg();
1370      bool isKill2 = MI->getOperand(2).isKill();
1371      NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(Opc))
1372                        .addReg(Dest, RegState::Define |
1373                                getDeadRegState(isDead)),
1374                        Src, isKill, Src2, isKill2);
1375      if (LV && isKill2)
1376        LV->replaceKillInstruction(Src2, MI, NewMI);
1377      break;
1378    }
1379    case X86::ADD16rr: {
1380      if (DisableLEA16)
1381        return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
1382      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1383      unsigned Src2 = MI->getOperand(2).getReg();
1384      bool isKill2 = MI->getOperand(2).isKill();
1385      NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1386                        .addReg(Dest, RegState::Define |
1387                                getDeadRegState(isDead)),
1388                        Src, isKill, Src2, isKill2);
1389      if (LV && isKill2)
1390        LV->replaceKillInstruction(Src2, MI, NewMI);
1391      break;
1392    }
1393    case X86::ADD64ri32:
1394    case X86::ADD64ri8:
1395      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1396      NewMI = addLeaRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
1397                              .addReg(Dest, RegState::Define |
1398                                      getDeadRegState(isDead)),
1399                              Src, isKill, MI->getOperand(2).getImm());
1400      break;
1401    case X86::ADD32ri:
1402    case X86::ADD32ri8: {
1403      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1404      unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
1405      NewMI = addLeaRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
1406                              .addReg(Dest, RegState::Define |
1407                                      getDeadRegState(isDead)),
1408                                Src, isKill, MI->getOperand(2).getImm());
1409      break;
1410    }
1411    case X86::ADD16ri:
1412    case X86::ADD16ri8:
1413      if (DisableLEA16)
1414        return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
1415      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1416      NewMI = addLeaRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1417                              .addReg(Dest, RegState::Define |
1418                                      getDeadRegState(isDead)),
1419                              Src, isKill, MI->getOperand(2).getImm());
1420      break;
1421    }
1422  }
1423  }
1424
1425  if (!NewMI) return 0;
1426
1427  if (LV) {  // Update live variables
1428    if (isKill)
1429      LV->replaceKillInstruction(Src, MI, NewMI);
1430    if (isDead)
1431      LV->replaceKillInstruction(Dest, MI, NewMI);
1432  }
1433
1434  MFI->insert(MBBI, NewMI);          // Insert the new inst
1435  return NewMI;
1436}
1437
1438/// commuteInstruction - We have a few instructions that must be hacked on to
1439/// commute them.
1440///
1441MachineInstr *
1442X86InstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
1443  switch (MI->getOpcode()) {
1444  case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
1445  case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
1446  case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
1447  case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
1448  case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
1449  case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
1450    unsigned Opc;
1451    unsigned Size;
1452    switch (MI->getOpcode()) {
1453    default: llvm_unreachable("Unreachable!");
1454    case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
1455    case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
1456    case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
1457    case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
1458    case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
1459    case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
1460    }
1461    unsigned Amt = MI->getOperand(3).getImm();
1462    if (NewMI) {
1463      MachineFunction &MF = *MI->getParent()->getParent();
1464      MI = MF.CloneMachineInstr(MI);
1465      NewMI = false;
1466    }
1467    MI->setDesc(get(Opc));
1468    MI->getOperand(3).setImm(Size-Amt);
1469    return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
1470  }
1471  case X86::CMOVB16rr:
1472  case X86::CMOVB32rr:
1473  case X86::CMOVB64rr:
1474  case X86::CMOVAE16rr:
1475  case X86::CMOVAE32rr:
1476  case X86::CMOVAE64rr:
1477  case X86::CMOVE16rr:
1478  case X86::CMOVE32rr:
1479  case X86::CMOVE64rr:
1480  case X86::CMOVNE16rr:
1481  case X86::CMOVNE32rr:
1482  case X86::CMOVNE64rr:
1483  case X86::CMOVBE16rr:
1484  case X86::CMOVBE32rr:
1485  case X86::CMOVBE64rr:
1486  case X86::CMOVA16rr:
1487  case X86::CMOVA32rr:
1488  case X86::CMOVA64rr:
1489  case X86::CMOVL16rr:
1490  case X86::CMOVL32rr:
1491  case X86::CMOVL64rr:
1492  case X86::CMOVGE16rr:
1493  case X86::CMOVGE32rr:
1494  case X86::CMOVGE64rr:
1495  case X86::CMOVLE16rr:
1496  case X86::CMOVLE32rr:
1497  case X86::CMOVLE64rr:
1498  case X86::CMOVG16rr:
1499  case X86::CMOVG32rr:
1500  case X86::CMOVG64rr:
1501  case X86::CMOVS16rr:
1502  case X86::CMOVS32rr:
1503  case X86::CMOVS64rr:
1504  case X86::CMOVNS16rr:
1505  case X86::CMOVNS32rr:
1506  case X86::CMOVNS64rr:
1507  case X86::CMOVP16rr:
1508  case X86::CMOVP32rr:
1509  case X86::CMOVP64rr:
1510  case X86::CMOVNP16rr:
1511  case X86::CMOVNP32rr:
1512  case X86::CMOVNP64rr:
1513  case X86::CMOVO16rr:
1514  case X86::CMOVO32rr:
1515  case X86::CMOVO64rr:
1516  case X86::CMOVNO16rr:
1517  case X86::CMOVNO32rr:
1518  case X86::CMOVNO64rr: {
1519    unsigned Opc = 0;
1520    switch (MI->getOpcode()) {
1521    default: break;
1522    case X86::CMOVB16rr:  Opc = X86::CMOVAE16rr; break;
1523    case X86::CMOVB32rr:  Opc = X86::CMOVAE32rr; break;
1524    case X86::CMOVB64rr:  Opc = X86::CMOVAE64rr; break;
1525    case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break;
1526    case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break;
1527    case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break;
1528    case X86::CMOVE16rr:  Opc = X86::CMOVNE16rr; break;
1529    case X86::CMOVE32rr:  Opc = X86::CMOVNE32rr; break;
1530    case X86::CMOVE64rr:  Opc = X86::CMOVNE64rr; break;
1531    case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break;
1532    case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break;
1533    case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break;
1534    case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break;
1535    case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break;
1536    case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break;
1537    case X86::CMOVA16rr:  Opc = X86::CMOVBE16rr; break;
1538    case X86::CMOVA32rr:  Opc = X86::CMOVBE32rr; break;
1539    case X86::CMOVA64rr:  Opc = X86::CMOVBE64rr; break;
1540    case X86::CMOVL16rr:  Opc = X86::CMOVGE16rr; break;
1541    case X86::CMOVL32rr:  Opc = X86::CMOVGE32rr; break;
1542    case X86::CMOVL64rr:  Opc = X86::CMOVGE64rr; break;
1543    case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break;
1544    case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break;
1545    case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break;
1546    case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break;
1547    case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break;
1548    case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break;
1549    case X86::CMOVG16rr:  Opc = X86::CMOVLE16rr; break;
1550    case X86::CMOVG32rr:  Opc = X86::CMOVLE32rr; break;
1551    case X86::CMOVG64rr:  Opc = X86::CMOVLE64rr; break;
1552    case X86::CMOVS16rr:  Opc = X86::CMOVNS16rr; break;
1553    case X86::CMOVS32rr:  Opc = X86::CMOVNS32rr; break;
1554    case X86::CMOVS64rr:  Opc = X86::CMOVNS64rr; break;
1555    case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break;
1556    case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break;
1557    case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break;
1558    case X86::CMOVP16rr:  Opc = X86::CMOVNP16rr; break;
1559    case X86::CMOVP32rr:  Opc = X86::CMOVNP32rr; break;
1560    case X86::CMOVP64rr:  Opc = X86::CMOVNP64rr; break;
1561    case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break;
1562    case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break;
1563    case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break;
1564    case X86::CMOVO16rr:  Opc = X86::CMOVNO16rr; break;
1565    case X86::CMOVO32rr:  Opc = X86::CMOVNO32rr; break;
1566    case X86::CMOVO64rr:  Opc = X86::CMOVNO64rr; break;
1567    case X86::CMOVNO16rr: Opc = X86::CMOVO16rr; break;
1568    case X86::CMOVNO32rr: Opc = X86::CMOVO32rr; break;
1569    case X86::CMOVNO64rr: Opc = X86::CMOVO64rr; break;
1570    }
1571    if (NewMI) {
1572      MachineFunction &MF = *MI->getParent()->getParent();
1573      MI = MF.CloneMachineInstr(MI);
1574      NewMI = false;
1575    }
1576    MI->setDesc(get(Opc));
1577    // Fallthrough intended.
1578  }
1579  default:
1580    return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
1581  }
1582}
1583
1584static X86::CondCode GetCondFromBranchOpc(unsigned BrOpc) {
1585  switch (BrOpc) {
1586  default: return X86::COND_INVALID;
1587  case X86::JE_4:  return X86::COND_E;
1588  case X86::JNE_4: return X86::COND_NE;
1589  case X86::JL_4:  return X86::COND_L;
1590  case X86::JLE_4: return X86::COND_LE;
1591  case X86::JG_4:  return X86::COND_G;
1592  case X86::JGE_4: return X86::COND_GE;
1593  case X86::JB_4:  return X86::COND_B;
1594  case X86::JBE_4: return X86::COND_BE;
1595  case X86::JA_4:  return X86::COND_A;
1596  case X86::JAE_4: return X86::COND_AE;
1597  case X86::JS_4:  return X86::COND_S;
1598  case X86::JNS_4: return X86::COND_NS;
1599  case X86::JP_4:  return X86::COND_P;
1600  case X86::JNP_4: return X86::COND_NP;
1601  case X86::JO_4:  return X86::COND_O;
1602  case X86::JNO_4: return X86::COND_NO;
1603  }
1604}
1605
1606unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
1607  switch (CC) {
1608  default: llvm_unreachable("Illegal condition code!");
1609  case X86::COND_E:  return X86::JE_4;
1610  case X86::COND_NE: return X86::JNE_4;
1611  case X86::COND_L:  return X86::JL_4;
1612  case X86::COND_LE: return X86::JLE_4;
1613  case X86::COND_G:  return X86::JG_4;
1614  case X86::COND_GE: return X86::JGE_4;
1615  case X86::COND_B:  return X86::JB_4;
1616  case X86::COND_BE: return X86::JBE_4;
1617  case X86::COND_A:  return X86::JA_4;
1618  case X86::COND_AE: return X86::JAE_4;
1619  case X86::COND_S:  return X86::JS_4;
1620  case X86::COND_NS: return X86::JNS_4;
1621  case X86::COND_P:  return X86::JP_4;
1622  case X86::COND_NP: return X86::JNP_4;
1623  case X86::COND_O:  return X86::JO_4;
1624  case X86::COND_NO: return X86::JNO_4;
1625  }
1626}
1627
1628/// GetOppositeBranchCondition - Return the inverse of the specified condition,
1629/// e.g. turning COND_E to COND_NE.
1630X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
1631  switch (CC) {
1632  default: llvm_unreachable("Illegal condition code!");
1633  case X86::COND_E:  return X86::COND_NE;
1634  case X86::COND_NE: return X86::COND_E;
1635  case X86::COND_L:  return X86::COND_GE;
1636  case X86::COND_LE: return X86::COND_G;
1637  case X86::COND_G:  return X86::COND_LE;
1638  case X86::COND_GE: return X86::COND_L;
1639  case X86::COND_B:  return X86::COND_AE;
1640  case X86::COND_BE: return X86::COND_A;
1641  case X86::COND_A:  return X86::COND_BE;
1642  case X86::COND_AE: return X86::COND_B;
1643  case X86::COND_S:  return X86::COND_NS;
1644  case X86::COND_NS: return X86::COND_S;
1645  case X86::COND_P:  return X86::COND_NP;
1646  case X86::COND_NP: return X86::COND_P;
1647  case X86::COND_O:  return X86::COND_NO;
1648  case X86::COND_NO: return X86::COND_O;
1649  }
1650}
1651
1652bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
1653  const TargetInstrDesc &TID = MI->getDesc();
1654  if (!TID.isTerminator()) return false;
1655
1656  // Conditional branch is a special case.
1657  if (TID.isBranch() && !TID.isBarrier())
1658    return true;
1659  if (!TID.isPredicable())
1660    return true;
1661  return !isPredicated(MI);
1662}
1663
1664// For purposes of branch analysis do not count FP_REG_KILL as a terminator.
1665static bool isBrAnalysisUnpredicatedTerminator(const MachineInstr *MI,
1666                                               const X86InstrInfo &TII) {
1667  if (MI->getOpcode() == X86::FP_REG_KILL)
1668    return false;
1669  return TII.isUnpredicatedTerminator(MI);
1670}
1671
1672bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
1673                                 MachineBasicBlock *&TBB,
1674                                 MachineBasicBlock *&FBB,
1675                                 SmallVectorImpl<MachineOperand> &Cond,
1676                                 bool AllowModify) const {
1677  // Start from the bottom of the block and work up, examining the
1678  // terminator instructions.
1679  MachineBasicBlock::iterator I = MBB.end();
1680  MachineBasicBlock::iterator UnCondBrIter = MBB.end();
1681  while (I != MBB.begin()) {
1682    --I;
1683    if (I->isDebugValue())
1684      continue;
1685
1686    // Working from the bottom, when we see a non-terminator instruction, we're
1687    // done.
1688    if (!isBrAnalysisUnpredicatedTerminator(I, *this))
1689      break;
1690
1691    // A terminator that isn't a branch can't easily be handled by this
1692    // analysis.
1693    if (!I->getDesc().isBranch())
1694      return true;
1695
1696    // Handle unconditional branches.
1697    if (I->getOpcode() == X86::JMP_4) {
1698      UnCondBrIter = I;
1699
1700      if (!AllowModify) {
1701        TBB = I->getOperand(0).getMBB();
1702        continue;
1703      }
1704
1705      // If the block has any instructions after a JMP, delete them.
1706      while (llvm::next(I) != MBB.end())
1707        llvm::next(I)->eraseFromParent();
1708
1709      Cond.clear();
1710      FBB = 0;
1711
1712      // Delete the JMP if it's equivalent to a fall-through.
1713      if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
1714        TBB = 0;
1715        I->eraseFromParent();
1716        I = MBB.end();
1717        UnCondBrIter = MBB.end();
1718        continue;
1719      }
1720
1721      // TBB is used to indicate the unconditional destination.
1722      TBB = I->getOperand(0).getMBB();
1723      continue;
1724    }
1725
1726    // Handle conditional branches.
1727    X86::CondCode BranchCode = GetCondFromBranchOpc(I->getOpcode());
1728    if (BranchCode == X86::COND_INVALID)
1729      return true;  // Can't handle indirect branch.
1730
1731    // Working from the bottom, handle the first conditional branch.
1732    if (Cond.empty()) {
1733      MachineBasicBlock *TargetBB = I->getOperand(0).getMBB();
1734      if (AllowModify && UnCondBrIter != MBB.end() &&
1735          MBB.isLayoutSuccessor(TargetBB)) {
1736        // If we can modify the code and it ends in something like:
1737        //
1738        //     jCC L1
1739        //     jmp L2
1740        //   L1:
1741        //     ...
1742        //   L2:
1743        //
1744        // Then we can change this to:
1745        //
1746        //     jnCC L2
1747        //   L1:
1748        //     ...
1749        //   L2:
1750        //
1751        // Which is a bit more efficient.
1752        // We conditionally jump to the fall-through block.
1753        BranchCode = GetOppositeBranchCondition(BranchCode);
1754        unsigned JNCC = GetCondBranchFromCond(BranchCode);
1755        MachineBasicBlock::iterator OldInst = I;
1756
1757        BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(JNCC))
1758          .addMBB(UnCondBrIter->getOperand(0).getMBB());
1759        BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JMP_4))
1760          .addMBB(TargetBB);
1761        MBB.addSuccessor(TargetBB);
1762
1763        OldInst->eraseFromParent();
1764        UnCondBrIter->eraseFromParent();
1765
1766        // Restart the analysis.
1767        UnCondBrIter = MBB.end();
1768        I = MBB.end();
1769        continue;
1770      }
1771
1772      FBB = TBB;
1773      TBB = I->getOperand(0).getMBB();
1774      Cond.push_back(MachineOperand::CreateImm(BranchCode));
1775      continue;
1776    }
1777
1778    // Handle subsequent conditional branches. Only handle the case where all
1779    // conditional branches branch to the same destination and their condition
1780    // opcodes fit one of the special multi-branch idioms.
1781    assert(Cond.size() == 1);
1782    assert(TBB);
1783
1784    // Only handle the case where all conditional branches branch to the same
1785    // destination.
1786    if (TBB != I->getOperand(0).getMBB())
1787      return true;
1788
1789    // If the conditions are the same, we can leave them alone.
1790    X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
1791    if (OldBranchCode == BranchCode)
1792      continue;
1793
1794    // If they differ, see if they fit one of the known patterns. Theoretically,
1795    // we could handle more patterns here, but we shouldn't expect to see them
1796    // if instruction selection has done a reasonable job.
1797    if ((OldBranchCode == X86::COND_NP &&
1798         BranchCode == X86::COND_E) ||
1799        (OldBranchCode == X86::COND_E &&
1800         BranchCode == X86::COND_NP))
1801      BranchCode = X86::COND_NP_OR_E;
1802    else if ((OldBranchCode == X86::COND_P &&
1803              BranchCode == X86::COND_NE) ||
1804             (OldBranchCode == X86::COND_NE &&
1805              BranchCode == X86::COND_P))
1806      BranchCode = X86::COND_NE_OR_P;
1807    else
1808      return true;
1809
1810    // Update the MachineOperand.
1811    Cond[0].setImm(BranchCode);
1812  }
1813
1814  return false;
1815}
1816
1817unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
1818  MachineBasicBlock::iterator I = MBB.end();
1819  unsigned Count = 0;
1820
1821  while (I != MBB.begin()) {
1822    --I;
1823    if (I->isDebugValue())
1824      continue;
1825    if (I->getOpcode() != X86::JMP_4 &&
1826        GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
1827      break;
1828    // Remove the branch.
1829    I->eraseFromParent();
1830    I = MBB.end();
1831    ++Count;
1832  }
1833
1834  return Count;
1835}
1836
1837unsigned
1838X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
1839                           MachineBasicBlock *FBB,
1840                           const SmallVectorImpl<MachineOperand> &Cond,
1841                           DebugLoc DL) const {
1842  // Shouldn't be a fall through.
1843  assert(TBB && "InsertBranch must not be told to insert a fallthrough");
1844  assert((Cond.size() == 1 || Cond.size() == 0) &&
1845         "X86 branch conditions have one component!");
1846
1847  if (Cond.empty()) {
1848    // Unconditional branch?
1849    assert(!FBB && "Unconditional branch with multiple successors!");
1850    BuildMI(&MBB, DL, get(X86::JMP_4)).addMBB(TBB);
1851    return 1;
1852  }
1853
1854  // Conditional branch.
1855  unsigned Count = 0;
1856  X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
1857  switch (CC) {
1858  case X86::COND_NP_OR_E:
1859    // Synthesize NP_OR_E with two branches.
1860    BuildMI(&MBB, DL, get(X86::JNP_4)).addMBB(TBB);
1861    ++Count;
1862    BuildMI(&MBB, DL, get(X86::JE_4)).addMBB(TBB);
1863    ++Count;
1864    break;
1865  case X86::COND_NE_OR_P:
1866    // Synthesize NE_OR_P with two branches.
1867    BuildMI(&MBB, DL, get(X86::JNE_4)).addMBB(TBB);
1868    ++Count;
1869    BuildMI(&MBB, DL, get(X86::JP_4)).addMBB(TBB);
1870    ++Count;
1871    break;
1872  default: {
1873    unsigned Opc = GetCondBranchFromCond(CC);
1874    BuildMI(&MBB, DL, get(Opc)).addMBB(TBB);
1875    ++Count;
1876  }
1877  }
1878  if (FBB) {
1879    // Two-way Conditional branch. Insert the second branch.
1880    BuildMI(&MBB, DL, get(X86::JMP_4)).addMBB(FBB);
1881    ++Count;
1882  }
1883  return Count;
1884}
1885
1886/// isHReg - Test if the given register is a physical h register.
1887static bool isHReg(unsigned Reg) {
1888  return X86::GR8_ABCD_HRegClass.contains(Reg);
1889}
1890
1891bool X86InstrInfo::copyRegToReg(MachineBasicBlock &MBB,
1892                                MachineBasicBlock::iterator MI,
1893                                unsigned DestReg, unsigned SrcReg,
1894                                const TargetRegisterClass *DestRC,
1895                                const TargetRegisterClass *SrcRC,
1896                                DebugLoc DL) const {
1897
1898  // Determine if DstRC and SrcRC have a common superclass in common.
1899  const TargetRegisterClass *CommonRC = DestRC;
1900  if (DestRC == SrcRC)
1901    /* Source and destination have the same register class. */;
1902  else if (CommonRC->hasSuperClass(SrcRC))
1903    CommonRC = SrcRC;
1904  else if (!DestRC->hasSubClass(SrcRC)) {
1905    // Neither of GR64_NOREX or GR64_NOSP is a superclass of the other,
1906    // but we want to copy them as GR64. Similarly, for GR32_NOREX and
1907    // GR32_NOSP, copy as GR32.
1908    if (SrcRC->hasSuperClass(&X86::GR64RegClass) &&
1909        DestRC->hasSuperClass(&X86::GR64RegClass))
1910      CommonRC = &X86::GR64RegClass;
1911    else if (SrcRC->hasSuperClass(&X86::GR32RegClass) &&
1912             DestRC->hasSuperClass(&X86::GR32RegClass))
1913      CommonRC = &X86::GR32RegClass;
1914    else if (SrcRC->hasSuperClass(&X86::GR8RegClass) &&
1915             DestRC->hasSuperClass(&X86::GR8RegClass))
1916      CommonRC = &X86::GR8RegClass;
1917    else
1918      CommonRC = 0;
1919  }
1920
1921  if (CommonRC) {
1922    unsigned Opc;
1923    if (CommonRC == &X86::GR64RegClass || CommonRC == &X86::GR64_NOSPRegClass) {
1924      Opc = X86::MOV64rr;
1925    } else if (CommonRC == &X86::GR32RegClass ||
1926               CommonRC == &X86::GR32_NOSPRegClass) {
1927      Opc = X86::MOV32rr;
1928    } else if (CommonRC == &X86::GR16RegClass) {
1929      Opc = X86::MOV16rr;
1930    } else if (CommonRC == &X86::GR8RegClass) {
1931      // Copying to or from a physical H register on x86-64 requires a NOREX
1932      // move.  Otherwise use a normal move.
1933      if ((isHReg(DestReg) || isHReg(SrcReg) ||
1934           SrcRC == &X86::GR8_ABCD_HRegClass ||
1935           DestRC == &X86::GR8_ABCD_HRegClass) &&
1936          TM.getSubtarget<X86Subtarget>().is64Bit())
1937        Opc = X86::MOV8rr_NOREX;
1938      else
1939        Opc = X86::MOV8rr;
1940    } else if (CommonRC == &X86::GR64_ABCDRegClass) {
1941      Opc = X86::MOV64rr;
1942    } else if (CommonRC == &X86::GR32_ABCDRegClass) {
1943      Opc = X86::MOV32rr;
1944    } else if (CommonRC == &X86::GR16_ABCDRegClass) {
1945      Opc = X86::MOV16rr;
1946    } else if (CommonRC == &X86::GR8_ABCD_LRegClass) {
1947      Opc = X86::MOV8rr;
1948    } else if (CommonRC == &X86::GR8_ABCD_HRegClass) {
1949      if (TM.getSubtarget<X86Subtarget>().is64Bit())
1950        Opc = X86::MOV8rr_NOREX;
1951      else
1952        Opc = X86::MOV8rr;
1953    } else if (CommonRC == &X86::GR64_NOREXRegClass ||
1954               CommonRC == &X86::GR64_NOREX_NOSPRegClass) {
1955      Opc = X86::MOV64rr;
1956    } else if (CommonRC == &X86::GR32_NOREXRegClass) {
1957      Opc = X86::MOV32rr;
1958    } else if (CommonRC == &X86::GR16_NOREXRegClass) {
1959      Opc = X86::MOV16rr;
1960    } else if (CommonRC == &X86::GR8_NOREXRegClass) {
1961      Opc = X86::MOV8rr;
1962    } else if (CommonRC == &X86::GR64_TCRegClass) {
1963      Opc = X86::MOV64rr_TC;
1964    } else if (CommonRC == &X86::GR32_TCRegClass) {
1965      Opc = X86::MOV32rr_TC;
1966    } else if (CommonRC == &X86::RFP32RegClass) {
1967      Opc = X86::MOV_Fp3232;
1968    } else if (CommonRC == &X86::RFP64RegClass || CommonRC == &X86::RSTRegClass) {
1969      Opc = X86::MOV_Fp6464;
1970    } else if (CommonRC == &X86::RFP80RegClass) {
1971      Opc = X86::MOV_Fp8080;
1972    } else if (CommonRC == &X86::FR32RegClass) {
1973      Opc = X86::FsMOVAPSrr;
1974    } else if (CommonRC == &X86::FR64RegClass) {
1975      Opc = X86::FsMOVAPDrr;
1976    } else if (CommonRC == &X86::VR128RegClass) {
1977      Opc = X86::MOVAPSrr;
1978    } else if (CommonRC == &X86::VR64RegClass) {
1979      Opc = X86::MMX_MOVQ64rr;
1980    } else {
1981      return false;
1982    }
1983    BuildMI(MBB, MI, DL, get(Opc), DestReg).addReg(SrcReg);
1984    return true;
1985  }
1986
1987  // Moving EFLAGS to / from another register requires a push and a pop.
1988  if (SrcRC == &X86::CCRRegClass) {
1989    if (SrcReg != X86::EFLAGS)
1990      return false;
1991    if (DestRC == &X86::GR64RegClass || DestRC == &X86::GR64_NOSPRegClass) {
1992      BuildMI(MBB, MI, DL, get(X86::PUSHF64));
1993      BuildMI(MBB, MI, DL, get(X86::POP64r), DestReg);
1994      return true;
1995    } else if (DestRC == &X86::GR32RegClass ||
1996               DestRC == &X86::GR32_NOSPRegClass) {
1997      BuildMI(MBB, MI, DL, get(X86::PUSHF32));
1998      BuildMI(MBB, MI, DL, get(X86::POP32r), DestReg);
1999      return true;
2000    }
2001  } else if (DestRC == &X86::CCRRegClass) {
2002    if (DestReg != X86::EFLAGS)
2003      return false;
2004    if (SrcRC == &X86::GR64RegClass || DestRC == &X86::GR64_NOSPRegClass) {
2005      BuildMI(MBB, MI, DL, get(X86::PUSH64r)).addReg(SrcReg);
2006      BuildMI(MBB, MI, DL, get(X86::POPF64));
2007      return true;
2008    } else if (SrcRC == &X86::GR32RegClass ||
2009               DestRC == &X86::GR32_NOSPRegClass) {
2010      BuildMI(MBB, MI, DL, get(X86::PUSH32r)).addReg(SrcReg);
2011      BuildMI(MBB, MI, DL, get(X86::POPF32));
2012      return true;
2013    }
2014  }
2015
2016  // Moving from ST(0) turns into FpGET_ST0_32 etc.
2017  if (SrcRC == &X86::RSTRegClass) {
2018    // Copying from ST(0)/ST(1).
2019    if (SrcReg != X86::ST0 && SrcReg != X86::ST1)
2020      // Can only copy from ST(0)/ST(1) right now
2021      return false;
2022    bool isST0 = SrcReg == X86::ST0;
2023    unsigned Opc;
2024    if (DestRC == &X86::RFP32RegClass)
2025      Opc = isST0 ? X86::FpGET_ST0_32 : X86::FpGET_ST1_32;
2026    else if (DestRC == &X86::RFP64RegClass)
2027      Opc = isST0 ? X86::FpGET_ST0_64 : X86::FpGET_ST1_64;
2028    else {
2029      if (DestRC != &X86::RFP80RegClass)
2030        return false;
2031      Opc = isST0 ? X86::FpGET_ST0_80 : X86::FpGET_ST1_80;
2032    }
2033    BuildMI(MBB, MI, DL, get(Opc), DestReg);
2034    return true;
2035  }
2036
2037  // Moving to ST(0) turns into FpSET_ST0_32 etc.
2038  if (DestRC == &X86::RSTRegClass) {
2039    // Copying to ST(0) / ST(1).
2040    if (DestReg != X86::ST0 && DestReg != X86::ST1)
2041      // Can only copy to TOS right now
2042      return false;
2043    bool isST0 = DestReg == X86::ST0;
2044    unsigned Opc;
2045    if (SrcRC == &X86::RFP32RegClass)
2046      Opc = isST0 ? X86::FpSET_ST0_32 : X86::FpSET_ST1_32;
2047    else if (SrcRC == &X86::RFP64RegClass)
2048      Opc = isST0 ? X86::FpSET_ST0_64 : X86::FpSET_ST1_64;
2049    else {
2050      if (SrcRC != &X86::RFP80RegClass)
2051        return false;
2052      Opc = isST0 ? X86::FpSET_ST0_80 : X86::FpSET_ST1_80;
2053    }
2054    BuildMI(MBB, MI, DL, get(Opc)).addReg(SrcReg);
2055    return true;
2056  }
2057
2058  // Not yet supported!
2059  return false;
2060}
2061
2062static unsigned getLoadStoreRegOpcode(unsigned Reg,
2063                                      const TargetRegisterClass *RC,
2064                                      bool isStackAligned,
2065                                      const TargetMachine &TM,
2066                                      bool load) {
2067  if (RC == &X86::GR64RegClass || RC == &X86::GR64_NOSPRegClass) {
2068    return load ? X86::MOV64rm : X86::MOV64mr;
2069  } else if (RC == &X86::GR32RegClass || RC == &X86::GR32_NOSPRegClass) {
2070    return load ? X86::MOV32rm : X86::MOV32mr;
2071  } else if (RC == &X86::GR16RegClass) {
2072    return load ? X86::MOV16rm : X86::MOV16mr;
2073  } else if (RC == &X86::GR8RegClass) {
2074    // Copying to or from a physical H register on x86-64 requires a NOREX
2075    // move.  Otherwise use a normal move.
2076    if (isHReg(Reg) &&
2077        TM.getSubtarget<X86Subtarget>().is64Bit())
2078      return load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX;
2079    else
2080      return load ? X86::MOV8rm : X86::MOV8mr;
2081  } else if (RC == &X86::GR64_ABCDRegClass) {
2082    return load ? X86::MOV64rm : X86::MOV64mr;
2083  } else if (RC == &X86::GR32_ABCDRegClass) {
2084    return load ? X86::MOV32rm : X86::MOV32mr;
2085  } else if (RC == &X86::GR16_ABCDRegClass) {
2086    return load ? X86::MOV16rm : X86::MOV16mr;
2087  } else if (RC == &X86::GR8_ABCD_LRegClass) {
2088    return load ? X86::MOV8rm :X86::MOV8mr;
2089  } else if (RC == &X86::GR8_ABCD_HRegClass) {
2090    if (TM.getSubtarget<X86Subtarget>().is64Bit())
2091      return load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX;
2092    else
2093      return load ? X86::MOV8rm : X86::MOV8mr;
2094  } else if (RC == &X86::GR64_NOREXRegClass ||
2095             RC == &X86::GR64_NOREX_NOSPRegClass) {
2096    return load ? X86::MOV64rm : X86::MOV64mr;
2097  } else if (RC == &X86::GR32_NOREXRegClass) {
2098    return load ? X86::MOV32rm : X86::MOV32mr;
2099  } else if (RC == &X86::GR16_NOREXRegClass) {
2100    return load ? X86::MOV16rm : X86::MOV16mr;
2101  } else if (RC == &X86::GR8_NOREXRegClass) {
2102    return load ? X86::MOV8rm : X86::MOV8mr;
2103  } else if (RC == &X86::GR64_TCRegClass) {
2104    return load ? X86::MOV64rm_TC : X86::MOV64mr_TC;
2105  } else if (RC == &X86::GR32_TCRegClass) {
2106    return load ? X86::MOV32rm_TC : X86::MOV32mr_TC;
2107  } else if (RC == &X86::RFP80RegClass) {
2108    return load ? X86::LD_Fp80m : X86::ST_FpP80m;
2109  } else if (RC == &X86::RFP64RegClass) {
2110    return load ? X86::LD_Fp64m : X86::ST_Fp64m;
2111  } else if (RC == &X86::RFP32RegClass) {
2112    return load ? X86::LD_Fp32m : X86::ST_Fp32m;
2113  } else if (RC == &X86::FR32RegClass) {
2114    return load ? X86::MOVSSrm : X86::MOVSSmr;
2115  } else if (RC == &X86::FR64RegClass) {
2116    return load ? X86::MOVSDrm : X86::MOVSDmr;
2117  } else if (RC == &X86::VR128RegClass) {
2118    // If stack is realigned we can use aligned stores.
2119    if (isStackAligned)
2120      return load ? X86::MOVAPSrm : X86::MOVAPSmr;
2121    else
2122      return load ? X86::MOVUPSrm : X86::MOVUPSmr;
2123  } else if (RC == &X86::VR64RegClass) {
2124    return load ? X86::MMX_MOVQ64rm : X86::MMX_MOVQ64mr;
2125  } else {
2126    llvm_unreachable("Unknown regclass");
2127  }
2128}
2129
2130static unsigned getStoreRegOpcode(unsigned SrcReg,
2131                                  const TargetRegisterClass *RC,
2132                                  bool isStackAligned,
2133                                  TargetMachine &TM) {
2134  return getLoadStoreRegOpcode(SrcReg, RC, isStackAligned, TM, false);
2135}
2136
2137
2138static unsigned getLoadRegOpcode(unsigned DestReg,
2139                                 const TargetRegisterClass *RC,
2140                                 bool isStackAligned,
2141                                 const TargetMachine &TM) {
2142  return getLoadStoreRegOpcode(DestReg, RC, isStackAligned, TM, true);
2143}
2144
2145void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
2146                                       MachineBasicBlock::iterator MI,
2147                                       unsigned SrcReg, bool isKill, int FrameIdx,
2148                                       const TargetRegisterClass *RC,
2149                                       const TargetRegisterInfo *TRI) const {
2150  const MachineFunction &MF = *MBB.getParent();
2151  bool isAligned = (RI.getStackAlignment() >= 16) || RI.canRealignStack(MF);
2152  unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM);
2153  DebugLoc DL = MBB.findDebugLoc(MI);
2154  addFrameReference(BuildMI(MBB, MI, DL, get(Opc)), FrameIdx)
2155    .addReg(SrcReg, getKillRegState(isKill));
2156}
2157
2158void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
2159                                  bool isKill,
2160                                  SmallVectorImpl<MachineOperand> &Addr,
2161                                  const TargetRegisterClass *RC,
2162                                  MachineInstr::mmo_iterator MMOBegin,
2163                                  MachineInstr::mmo_iterator MMOEnd,
2164                                  SmallVectorImpl<MachineInstr*> &NewMIs) const {
2165  bool isAligned = *MMOBegin && (*MMOBegin)->getAlignment() >= 16;
2166  unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM);
2167  DebugLoc DL;
2168  MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc));
2169  for (unsigned i = 0, e = Addr.size(); i != e; ++i)
2170    MIB.addOperand(Addr[i]);
2171  MIB.addReg(SrcReg, getKillRegState(isKill));
2172  (*MIB).setMemRefs(MMOBegin, MMOEnd);
2173  NewMIs.push_back(MIB);
2174}
2175
2176
2177void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
2178                                        MachineBasicBlock::iterator MI,
2179                                        unsigned DestReg, int FrameIdx,
2180                                        const TargetRegisterClass *RC,
2181                                        const TargetRegisterInfo *TRI) const {
2182  const MachineFunction &MF = *MBB.getParent();
2183  bool isAligned = (RI.getStackAlignment() >= 16) || RI.canRealignStack(MF);
2184  unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM);
2185  DebugLoc DL = MBB.findDebugLoc(MI);
2186  addFrameReference(BuildMI(MBB, MI, DL, get(Opc), DestReg), FrameIdx);
2187}
2188
2189void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
2190                                 SmallVectorImpl<MachineOperand> &Addr,
2191                                 const TargetRegisterClass *RC,
2192                                 MachineInstr::mmo_iterator MMOBegin,
2193                                 MachineInstr::mmo_iterator MMOEnd,
2194                                 SmallVectorImpl<MachineInstr*> &NewMIs) const {
2195  bool isAligned = *MMOBegin && (*MMOBegin)->getAlignment() >= 16;
2196  unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM);
2197  DebugLoc DL;
2198  MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), DestReg);
2199  for (unsigned i = 0, e = Addr.size(); i != e; ++i)
2200    MIB.addOperand(Addr[i]);
2201  (*MIB).setMemRefs(MMOBegin, MMOEnd);
2202  NewMIs.push_back(MIB);
2203}
2204
2205bool X86InstrInfo::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
2206                                             MachineBasicBlock::iterator MI,
2207                                        const std::vector<CalleeSavedInfo> &CSI,
2208                                          const TargetRegisterInfo *TRI) const {
2209  if (CSI.empty())
2210    return false;
2211
2212  DebugLoc DL = MBB.findDebugLoc(MI);
2213
2214  bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
2215  bool isWin64 = TM.getSubtarget<X86Subtarget>().isTargetWin64();
2216  unsigned SlotSize = is64Bit ? 8 : 4;
2217
2218  MachineFunction &MF = *MBB.getParent();
2219  unsigned FPReg = RI.getFrameRegister(MF);
2220  X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2221  unsigned CalleeFrameSize = 0;
2222
2223  unsigned Opc = is64Bit ? X86::PUSH64r : X86::PUSH32r;
2224  for (unsigned i = CSI.size(); i != 0; --i) {
2225    unsigned Reg = CSI[i-1].getReg();
2226    // Add the callee-saved register as live-in. It's killed at the spill.
2227    MBB.addLiveIn(Reg);
2228    if (Reg == FPReg)
2229      // X86RegisterInfo::emitPrologue will handle spilling of frame register.
2230      continue;
2231    if (!X86::VR128RegClass.contains(Reg) && !isWin64) {
2232      CalleeFrameSize += SlotSize;
2233      BuildMI(MBB, MI, DL, get(Opc)).addReg(Reg, RegState::Kill);
2234    } else {
2235      storeRegToStackSlot(MBB, MI, Reg, true, CSI[i-1].getFrameIdx(),
2236                          &X86::VR128RegClass, &RI);
2237    }
2238  }
2239
2240  X86FI->setCalleeSavedFrameSize(CalleeFrameSize);
2241  return true;
2242}
2243
2244bool X86InstrInfo::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
2245                                               MachineBasicBlock::iterator MI,
2246                                        const std::vector<CalleeSavedInfo> &CSI,
2247                                          const TargetRegisterInfo *TRI) const {
2248  if (CSI.empty())
2249    return false;
2250
2251  DebugLoc DL = MBB.findDebugLoc(MI);
2252
2253  MachineFunction &MF = *MBB.getParent();
2254  unsigned FPReg = RI.getFrameRegister(MF);
2255  bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
2256  bool isWin64 = TM.getSubtarget<X86Subtarget>().isTargetWin64();
2257  unsigned Opc = is64Bit ? X86::POP64r : X86::POP32r;
2258  for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
2259    unsigned Reg = CSI[i].getReg();
2260    if (Reg == FPReg)
2261      // X86RegisterInfo::emitEpilogue will handle restoring of frame register.
2262      continue;
2263    if (!X86::VR128RegClass.contains(Reg) && !isWin64) {
2264      BuildMI(MBB, MI, DL, get(Opc), Reg);
2265    } else {
2266      loadRegFromStackSlot(MBB, MI, Reg, CSI[i].getFrameIdx(),
2267                           &X86::VR128RegClass, &RI);
2268    }
2269  }
2270  return true;
2271}
2272
2273MachineInstr*
2274X86InstrInfo::emitFrameIndexDebugValue(MachineFunction &MF,
2275                                       int FrameIx, uint64_t Offset,
2276                                       const MDNode *MDPtr,
2277                                       DebugLoc DL) const {
2278  X86AddressMode AM;
2279  AM.BaseType = X86AddressMode::FrameIndexBase;
2280  AM.Base.FrameIndex = FrameIx;
2281  MachineInstrBuilder MIB = BuildMI(MF, DL, get(X86::DBG_VALUE));
2282  addFullAddress(MIB, AM).addImm(Offset).addMetadata(MDPtr);
2283  return &*MIB;
2284}
2285
2286static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
2287                                     const SmallVectorImpl<MachineOperand> &MOs,
2288                                     MachineInstr *MI,
2289                                     const TargetInstrInfo &TII) {
2290  // Create the base instruction with the memory operand as the first part.
2291  MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
2292                                              MI->getDebugLoc(), true);
2293  MachineInstrBuilder MIB(NewMI);
2294  unsigned NumAddrOps = MOs.size();
2295  for (unsigned i = 0; i != NumAddrOps; ++i)
2296    MIB.addOperand(MOs[i]);
2297  if (NumAddrOps < 4)  // FrameIndex only
2298    addOffset(MIB, 0);
2299
2300  // Loop over the rest of the ri operands, converting them over.
2301  unsigned NumOps = MI->getDesc().getNumOperands()-2;
2302  for (unsigned i = 0; i != NumOps; ++i) {
2303    MachineOperand &MO = MI->getOperand(i+2);
2304    MIB.addOperand(MO);
2305  }
2306  for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) {
2307    MachineOperand &MO = MI->getOperand(i);
2308    MIB.addOperand(MO);
2309  }
2310  return MIB;
2311}
2312
2313static MachineInstr *FuseInst(MachineFunction &MF,
2314                              unsigned Opcode, unsigned OpNo,
2315                              const SmallVectorImpl<MachineOperand> &MOs,
2316                              MachineInstr *MI, const TargetInstrInfo &TII) {
2317  MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
2318                                              MI->getDebugLoc(), true);
2319  MachineInstrBuilder MIB(NewMI);
2320
2321  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2322    MachineOperand &MO = MI->getOperand(i);
2323    if (i == OpNo) {
2324      assert(MO.isReg() && "Expected to fold into reg operand!");
2325      unsigned NumAddrOps = MOs.size();
2326      for (unsigned i = 0; i != NumAddrOps; ++i)
2327        MIB.addOperand(MOs[i]);
2328      if (NumAddrOps < 4)  // FrameIndex only
2329        addOffset(MIB, 0);
2330    } else {
2331      MIB.addOperand(MO);
2332    }
2333  }
2334  return MIB;
2335}
2336
2337static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
2338                                const SmallVectorImpl<MachineOperand> &MOs,
2339                                MachineInstr *MI) {
2340  MachineFunction &MF = *MI->getParent()->getParent();
2341  MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), TII.get(Opcode));
2342
2343  unsigned NumAddrOps = MOs.size();
2344  for (unsigned i = 0; i != NumAddrOps; ++i)
2345    MIB.addOperand(MOs[i]);
2346  if (NumAddrOps < 4)  // FrameIndex only
2347    addOffset(MIB, 0);
2348  return MIB.addImm(0);
2349}
2350
2351MachineInstr*
2352X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2353                                    MachineInstr *MI, unsigned i,
2354                                    const SmallVectorImpl<MachineOperand> &MOs,
2355                                    unsigned Size, unsigned Align) const {
2356  const DenseMap<unsigned*, std::pair<unsigned,unsigned> > *OpcodeTablePtr=NULL;
2357  bool isTwoAddrFold = false;
2358  unsigned NumOps = MI->getDesc().getNumOperands();
2359  bool isTwoAddr = NumOps > 1 &&
2360    MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
2361
2362  MachineInstr *NewMI = NULL;
2363  // Folding a memory location into the two-address part of a two-address
2364  // instruction is different than folding it other places.  It requires
2365  // replacing the *two* registers with the memory location.
2366  if (isTwoAddr && NumOps >= 2 && i < 2 &&
2367      MI->getOperand(0).isReg() &&
2368      MI->getOperand(1).isReg() &&
2369      MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
2370    OpcodeTablePtr = &RegOp2MemOpTable2Addr;
2371    isTwoAddrFold = true;
2372  } else if (i == 0) { // If operand 0
2373    if (MI->getOpcode() == X86::MOV64r0)
2374      NewMI = MakeM0Inst(*this, X86::MOV64mi32, MOs, MI);
2375    else if (MI->getOpcode() == X86::MOV32r0)
2376      NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI);
2377    else if (MI->getOpcode() == X86::MOV16r0)
2378      NewMI = MakeM0Inst(*this, X86::MOV16mi, MOs, MI);
2379    else if (MI->getOpcode() == X86::MOV8r0)
2380      NewMI = MakeM0Inst(*this, X86::MOV8mi, MOs, MI);
2381    if (NewMI)
2382      return NewMI;
2383
2384    OpcodeTablePtr = &RegOp2MemOpTable0;
2385  } else if (i == 1) {
2386    OpcodeTablePtr = &RegOp2MemOpTable1;
2387  } else if (i == 2) {
2388    OpcodeTablePtr = &RegOp2MemOpTable2;
2389  }
2390
2391  // If table selected...
2392  if (OpcodeTablePtr) {
2393    // Find the Opcode to fuse
2394    DenseMap<unsigned*, std::pair<unsigned,unsigned> >::const_iterator I =
2395      OpcodeTablePtr->find((unsigned*)MI->getOpcode());
2396    if (I != OpcodeTablePtr->end()) {
2397      unsigned Opcode = I->second.first;
2398      unsigned MinAlign = I->second.second;
2399      if (Align < MinAlign)
2400        return NULL;
2401      bool NarrowToMOV32rm = false;
2402      if (Size) {
2403        unsigned RCSize =  MI->getDesc().OpInfo[i].getRegClass(&RI)->getSize();
2404        if (Size < RCSize) {
2405          // Check if it's safe to fold the load. If the size of the object is
2406          // narrower than the load width, then it's not.
2407          if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4)
2408            return NULL;
2409          // If this is a 64-bit load, but the spill slot is 32, then we can do
2410          // a 32-bit load which is implicitly zero-extended. This likely is due
2411          // to liveintervalanalysis remat'ing a load from stack slot.
2412          if (MI->getOperand(0).getSubReg() || MI->getOperand(1).getSubReg())
2413            return NULL;
2414          Opcode = X86::MOV32rm;
2415          NarrowToMOV32rm = true;
2416        }
2417      }
2418
2419      if (isTwoAddrFold)
2420        NewMI = FuseTwoAddrInst(MF, Opcode, MOs, MI, *this);
2421      else
2422        NewMI = FuseInst(MF, Opcode, i, MOs, MI, *this);
2423
2424      if (NarrowToMOV32rm) {
2425        // If this is the special case where we use a MOV32rm to load a 32-bit
2426        // value and zero-extend the top bits. Change the destination register
2427        // to a 32-bit one.
2428        unsigned DstReg = NewMI->getOperand(0).getReg();
2429        if (TargetRegisterInfo::isPhysicalRegister(DstReg))
2430          NewMI->getOperand(0).setReg(RI.getSubReg(DstReg,
2431                                                   X86::sub_32bit));
2432        else
2433          NewMI->getOperand(0).setSubReg(X86::sub_32bit);
2434      }
2435      return NewMI;
2436    }
2437  }
2438
2439  // No fusion
2440  if (PrintFailedFusing)
2441    dbgs() << "We failed to fuse operand " << i << " in " << *MI;
2442  return NULL;
2443}
2444
2445
2446MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2447                                                  MachineInstr *MI,
2448                                           const SmallVectorImpl<unsigned> &Ops,
2449                                                  int FrameIndex) const {
2450  // Check switch flag
2451  if (NoFusing) return NULL;
2452
2453  if (!MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize))
2454    switch (MI->getOpcode()) {
2455    case X86::CVTSD2SSrr:
2456    case X86::Int_CVTSD2SSrr:
2457    case X86::CVTSS2SDrr:
2458    case X86::Int_CVTSS2SDrr:
2459    case X86::RCPSSr:
2460    case X86::RCPSSr_Int:
2461    case X86::ROUNDSDr_Int:
2462    case X86::ROUNDSSr_Int:
2463    case X86::RSQRTSSr:
2464    case X86::RSQRTSSr_Int:
2465    case X86::SQRTSSr:
2466    case X86::SQRTSSr_Int:
2467      return 0;
2468    }
2469
2470  const MachineFrameInfo *MFI = MF.getFrameInfo();
2471  unsigned Size = MFI->getObjectSize(FrameIndex);
2472  unsigned Alignment = MFI->getObjectAlignment(FrameIndex);
2473  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2474    unsigned NewOpc = 0;
2475    unsigned RCSize = 0;
2476    switch (MI->getOpcode()) {
2477    default: return NULL;
2478    case X86::TEST8rr:  NewOpc = X86::CMP8ri; RCSize = 1; break;
2479    case X86::TEST16rr: NewOpc = X86::CMP16ri8; RCSize = 2; break;
2480    case X86::TEST32rr: NewOpc = X86::CMP32ri8; RCSize = 4; break;
2481    case X86::TEST64rr: NewOpc = X86::CMP64ri8; RCSize = 8; break;
2482    }
2483    // Check if it's safe to fold the load. If the size of the object is
2484    // narrower than the load width, then it's not.
2485    if (Size < RCSize)
2486      return NULL;
2487    // Change to CMPXXri r, 0 first.
2488    MI->setDesc(get(NewOpc));
2489    MI->getOperand(1).ChangeToImmediate(0);
2490  } else if (Ops.size() != 1)
2491    return NULL;
2492
2493  SmallVector<MachineOperand,4> MOs;
2494  MOs.push_back(MachineOperand::CreateFI(FrameIndex));
2495  return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, Size, Alignment);
2496}
2497
2498MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2499                                                  MachineInstr *MI,
2500                                           const SmallVectorImpl<unsigned> &Ops,
2501                                                  MachineInstr *LoadMI) const {
2502  // Check switch flag
2503  if (NoFusing) return NULL;
2504
2505  if (!MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize))
2506    switch (MI->getOpcode()) {
2507    case X86::CVTSD2SSrr:
2508    case X86::Int_CVTSD2SSrr:
2509    case X86::CVTSS2SDrr:
2510    case X86::Int_CVTSS2SDrr:
2511    case X86::RCPSSr:
2512    case X86::RCPSSr_Int:
2513    case X86::ROUNDSDr_Int:
2514    case X86::ROUNDSSr_Int:
2515    case X86::RSQRTSSr:
2516    case X86::RSQRTSSr_Int:
2517    case X86::SQRTSSr:
2518    case X86::SQRTSSr_Int:
2519      return 0;
2520    }
2521
2522  // Determine the alignment of the load.
2523  unsigned Alignment = 0;
2524  if (LoadMI->hasOneMemOperand())
2525    Alignment = (*LoadMI->memoperands_begin())->getAlignment();
2526  else
2527    switch (LoadMI->getOpcode()) {
2528    case X86::V_SET0PS:
2529    case X86::V_SET0PD:
2530    case X86::V_SET0PI:
2531    case X86::V_SETALLONES:
2532      Alignment = 16;
2533      break;
2534    case X86::FsFLD0SD:
2535      Alignment = 8;
2536      break;
2537    case X86::FsFLD0SS:
2538      Alignment = 4;
2539      break;
2540    default:
2541      llvm_unreachable("Don't know how to fold this instruction!");
2542    }
2543  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2544    unsigned NewOpc = 0;
2545    switch (MI->getOpcode()) {
2546    default: return NULL;
2547    case X86::TEST8rr:  NewOpc = X86::CMP8ri; break;
2548    case X86::TEST16rr: NewOpc = X86::CMP16ri8; break;
2549    case X86::TEST32rr: NewOpc = X86::CMP32ri8; break;
2550    case X86::TEST64rr: NewOpc = X86::CMP64ri8; break;
2551    }
2552    // Change to CMPXXri r, 0 first.
2553    MI->setDesc(get(NewOpc));
2554    MI->getOperand(1).ChangeToImmediate(0);
2555  } else if (Ops.size() != 1)
2556    return NULL;
2557
2558  SmallVector<MachineOperand,X86AddrNumOperands> MOs;
2559  switch (LoadMI->getOpcode()) {
2560  case X86::V_SET0PS:
2561  case X86::V_SET0PD:
2562  case X86::V_SET0PI:
2563  case X86::V_SETALLONES:
2564  case X86::FsFLD0SD:
2565  case X86::FsFLD0SS: {
2566    // Folding a V_SET0P? or V_SETALLONES as a load, to ease register pressure.
2567    // Create a constant-pool entry and operands to load from it.
2568
2569    // Medium and large mode can't fold loads this way.
2570    if (TM.getCodeModel() != CodeModel::Small &&
2571        TM.getCodeModel() != CodeModel::Kernel)
2572      return NULL;
2573
2574    // x86-32 PIC requires a PIC base register for constant pools.
2575    unsigned PICBase = 0;
2576    if (TM.getRelocationModel() == Reloc::PIC_) {
2577      if (TM.getSubtarget<X86Subtarget>().is64Bit())
2578        PICBase = X86::RIP;
2579      else
2580        // FIXME: PICBase = TM.getInstrInfo()->getGlobalBaseReg(&MF);
2581        // This doesn't work for several reasons.
2582        // 1. GlobalBaseReg may have been spilled.
2583        // 2. It may not be live at MI.
2584        return NULL;
2585    }
2586
2587    // Create a constant-pool entry.
2588    MachineConstantPool &MCP = *MF.getConstantPool();
2589    const Type *Ty;
2590    if (LoadMI->getOpcode() == X86::FsFLD0SS)
2591      Ty = Type::getFloatTy(MF.getFunction()->getContext());
2592    else if (LoadMI->getOpcode() == X86::FsFLD0SD)
2593      Ty = Type::getDoubleTy(MF.getFunction()->getContext());
2594    else
2595      Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 4);
2596    const Constant *C = LoadMI->getOpcode() == X86::V_SETALLONES ?
2597                    Constant::getAllOnesValue(Ty) :
2598                    Constant::getNullValue(Ty);
2599    unsigned CPI = MCP.getConstantPoolIndex(C, Alignment);
2600
2601    // Create operands to load from the constant pool entry.
2602    MOs.push_back(MachineOperand::CreateReg(PICBase, false));
2603    MOs.push_back(MachineOperand::CreateImm(1));
2604    MOs.push_back(MachineOperand::CreateReg(0, false));
2605    MOs.push_back(MachineOperand::CreateCPI(CPI, 0));
2606    MOs.push_back(MachineOperand::CreateReg(0, false));
2607    break;
2608  }
2609  default: {
2610    // Folding a normal load. Just copy the load's address operands.
2611    unsigned NumOps = LoadMI->getDesc().getNumOperands();
2612    for (unsigned i = NumOps - X86AddrNumOperands; i != NumOps; ++i)
2613      MOs.push_back(LoadMI->getOperand(i));
2614    break;
2615  }
2616  }
2617  return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, 0, Alignment);
2618}
2619
2620
2621bool X86InstrInfo::canFoldMemoryOperand(const MachineInstr *MI,
2622                                  const SmallVectorImpl<unsigned> &Ops) const {
2623  // Check switch flag
2624  if (NoFusing) return 0;
2625
2626  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2627    switch (MI->getOpcode()) {
2628    default: return false;
2629    case X86::TEST8rr:
2630    case X86::TEST16rr:
2631    case X86::TEST32rr:
2632    case X86::TEST64rr:
2633      return true;
2634    }
2635  }
2636
2637  if (Ops.size() != 1)
2638    return false;
2639
2640  unsigned OpNum = Ops[0];
2641  unsigned Opc = MI->getOpcode();
2642  unsigned NumOps = MI->getDesc().getNumOperands();
2643  bool isTwoAddr = NumOps > 1 &&
2644    MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
2645
2646  // Folding a memory location into the two-address part of a two-address
2647  // instruction is different than folding it other places.  It requires
2648  // replacing the *two* registers with the memory location.
2649  const DenseMap<unsigned*, std::pair<unsigned,unsigned> > *OpcodeTablePtr=NULL;
2650  if (isTwoAddr && NumOps >= 2 && OpNum < 2) {
2651    OpcodeTablePtr = &RegOp2MemOpTable2Addr;
2652  } else if (OpNum == 0) { // If operand 0
2653    switch (Opc) {
2654    case X86::MOV8r0:
2655    case X86::MOV16r0:
2656    case X86::MOV32r0:
2657    case X86::MOV64r0:
2658      return true;
2659    default: break;
2660    }
2661    OpcodeTablePtr = &RegOp2MemOpTable0;
2662  } else if (OpNum == 1) {
2663    OpcodeTablePtr = &RegOp2MemOpTable1;
2664  } else if (OpNum == 2) {
2665    OpcodeTablePtr = &RegOp2MemOpTable2;
2666  }
2667
2668  if (OpcodeTablePtr) {
2669    // Find the Opcode to fuse
2670    DenseMap<unsigned*, std::pair<unsigned,unsigned> >::const_iterator I =
2671      OpcodeTablePtr->find((unsigned*)Opc);
2672    if (I != OpcodeTablePtr->end())
2673      return true;
2674  }
2675  return false;
2676}
2677
2678bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
2679                                unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
2680                                SmallVectorImpl<MachineInstr*> &NewMIs) const {
2681  DenseMap<unsigned*, std::pair<unsigned,unsigned> >::const_iterator I =
2682    MemOp2RegOpTable.find((unsigned*)MI->getOpcode());
2683  if (I == MemOp2RegOpTable.end())
2684    return false;
2685  unsigned Opc = I->second.first;
2686  unsigned Index = I->second.second & 0xf;
2687  bool FoldedLoad = I->second.second & (1 << 4);
2688  bool FoldedStore = I->second.second & (1 << 5);
2689  if (UnfoldLoad && !FoldedLoad)
2690    return false;
2691  UnfoldLoad &= FoldedLoad;
2692  if (UnfoldStore && !FoldedStore)
2693    return false;
2694  UnfoldStore &= FoldedStore;
2695
2696  const TargetInstrDesc &TID = get(Opc);
2697  const TargetOperandInfo &TOI = TID.OpInfo[Index];
2698  const TargetRegisterClass *RC = TOI.getRegClass(&RI);
2699  if (!MI->hasOneMemOperand() &&
2700      RC == &X86::VR128RegClass &&
2701      !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast())
2702    // Without memoperands, loadRegFromAddr and storeRegToStackSlot will
2703    // conservatively assume the address is unaligned. That's bad for
2704    // performance.
2705    return false;
2706  SmallVector<MachineOperand, X86AddrNumOperands> AddrOps;
2707  SmallVector<MachineOperand,2> BeforeOps;
2708  SmallVector<MachineOperand,2> AfterOps;
2709  SmallVector<MachineOperand,4> ImpOps;
2710  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2711    MachineOperand &Op = MI->getOperand(i);
2712    if (i >= Index && i < Index + X86AddrNumOperands)
2713      AddrOps.push_back(Op);
2714    else if (Op.isReg() && Op.isImplicit())
2715      ImpOps.push_back(Op);
2716    else if (i < Index)
2717      BeforeOps.push_back(Op);
2718    else if (i > Index)
2719      AfterOps.push_back(Op);
2720  }
2721
2722  // Emit the load instruction.
2723  if (UnfoldLoad) {
2724    std::pair<MachineInstr::mmo_iterator,
2725              MachineInstr::mmo_iterator> MMOs =
2726      MF.extractLoadMemRefs(MI->memoperands_begin(),
2727                            MI->memoperands_end());
2728    loadRegFromAddr(MF, Reg, AddrOps, RC, MMOs.first, MMOs.second, NewMIs);
2729    if (UnfoldStore) {
2730      // Address operands cannot be marked isKill.
2731      for (unsigned i = 1; i != 1 + X86AddrNumOperands; ++i) {
2732        MachineOperand &MO = NewMIs[0]->getOperand(i);
2733        if (MO.isReg())
2734          MO.setIsKill(false);
2735      }
2736    }
2737  }
2738
2739  // Emit the data processing instruction.
2740  MachineInstr *DataMI = MF.CreateMachineInstr(TID, MI->getDebugLoc(), true);
2741  MachineInstrBuilder MIB(DataMI);
2742
2743  if (FoldedStore)
2744    MIB.addReg(Reg, RegState::Define);
2745  for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i)
2746    MIB.addOperand(BeforeOps[i]);
2747  if (FoldedLoad)
2748    MIB.addReg(Reg);
2749  for (unsigned i = 0, e = AfterOps.size(); i != e; ++i)
2750    MIB.addOperand(AfterOps[i]);
2751  for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) {
2752    MachineOperand &MO = ImpOps[i];
2753    MIB.addReg(MO.getReg(),
2754               getDefRegState(MO.isDef()) |
2755               RegState::Implicit |
2756               getKillRegState(MO.isKill()) |
2757               getDeadRegState(MO.isDead()) |
2758               getUndefRegState(MO.isUndef()));
2759  }
2760  // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
2761  unsigned NewOpc = 0;
2762  switch (DataMI->getOpcode()) {
2763  default: break;
2764  case X86::CMP64ri32:
2765  case X86::CMP64ri8:
2766  case X86::CMP32ri:
2767  case X86::CMP32ri8:
2768  case X86::CMP16ri:
2769  case X86::CMP16ri8:
2770  case X86::CMP8ri: {
2771    MachineOperand &MO0 = DataMI->getOperand(0);
2772    MachineOperand &MO1 = DataMI->getOperand(1);
2773    if (MO1.getImm() == 0) {
2774      switch (DataMI->getOpcode()) {
2775      default: break;
2776      case X86::CMP64ri8:
2777      case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
2778      case X86::CMP32ri8:
2779      case X86::CMP32ri:   NewOpc = X86::TEST32rr; break;
2780      case X86::CMP16ri8:
2781      case X86::CMP16ri:   NewOpc = X86::TEST16rr; break;
2782      case X86::CMP8ri:    NewOpc = X86::TEST8rr; break;
2783      }
2784      DataMI->setDesc(get(NewOpc));
2785      MO1.ChangeToRegister(MO0.getReg(), false);
2786    }
2787  }
2788  }
2789  NewMIs.push_back(DataMI);
2790
2791  // Emit the store instruction.
2792  if (UnfoldStore) {
2793    const TargetRegisterClass *DstRC = TID.OpInfo[0].getRegClass(&RI);
2794    std::pair<MachineInstr::mmo_iterator,
2795              MachineInstr::mmo_iterator> MMOs =
2796      MF.extractStoreMemRefs(MI->memoperands_begin(),
2797                             MI->memoperands_end());
2798    storeRegToAddr(MF, Reg, true, AddrOps, DstRC, MMOs.first, MMOs.second, NewMIs);
2799  }
2800
2801  return true;
2802}
2803
2804bool
2805X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
2806                                  SmallVectorImpl<SDNode*> &NewNodes) const {
2807  if (!N->isMachineOpcode())
2808    return false;
2809
2810  DenseMap<unsigned*, std::pair<unsigned,unsigned> >::const_iterator I =
2811    MemOp2RegOpTable.find((unsigned*)N->getMachineOpcode());
2812  if (I == MemOp2RegOpTable.end())
2813    return false;
2814  unsigned Opc = I->second.first;
2815  unsigned Index = I->second.second & 0xf;
2816  bool FoldedLoad = I->second.second & (1 << 4);
2817  bool FoldedStore = I->second.second & (1 << 5);
2818  const TargetInstrDesc &TID = get(Opc);
2819  const TargetRegisterClass *RC = TID.OpInfo[Index].getRegClass(&RI);
2820  unsigned NumDefs = TID.NumDefs;
2821  std::vector<SDValue> AddrOps;
2822  std::vector<SDValue> BeforeOps;
2823  std::vector<SDValue> AfterOps;
2824  DebugLoc dl = N->getDebugLoc();
2825  unsigned NumOps = N->getNumOperands();
2826  for (unsigned i = 0; i != NumOps-1; ++i) {
2827    SDValue Op = N->getOperand(i);
2828    if (i >= Index-NumDefs && i < Index-NumDefs + X86AddrNumOperands)
2829      AddrOps.push_back(Op);
2830    else if (i < Index-NumDefs)
2831      BeforeOps.push_back(Op);
2832    else if (i > Index-NumDefs)
2833      AfterOps.push_back(Op);
2834  }
2835  SDValue Chain = N->getOperand(NumOps-1);
2836  AddrOps.push_back(Chain);
2837
2838  // Emit the load instruction.
2839  SDNode *Load = 0;
2840  MachineFunction &MF = DAG.getMachineFunction();
2841  if (FoldedLoad) {
2842    EVT VT = *RC->vt_begin();
2843    std::pair<MachineInstr::mmo_iterator,
2844              MachineInstr::mmo_iterator> MMOs =
2845      MF.extractLoadMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
2846                            cast<MachineSDNode>(N)->memoperands_end());
2847    if (!(*MMOs.first) &&
2848        RC == &X86::VR128RegClass &&
2849        !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast())
2850      // Do not introduce a slow unaligned load.
2851      return false;
2852    bool isAligned = (*MMOs.first) && (*MMOs.first)->getAlignment() >= 16;
2853    Load = DAG.getMachineNode(getLoadRegOpcode(0, RC, isAligned, TM), dl,
2854                              VT, MVT::Other, &AddrOps[0], AddrOps.size());
2855    NewNodes.push_back(Load);
2856
2857    // Preserve memory reference information.
2858    cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second);
2859  }
2860
2861  // Emit the data processing instruction.
2862  std::vector<EVT> VTs;
2863  const TargetRegisterClass *DstRC = 0;
2864  if (TID.getNumDefs() > 0) {
2865    DstRC = TID.OpInfo[0].getRegClass(&RI);
2866    VTs.push_back(*DstRC->vt_begin());
2867  }
2868  for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
2869    EVT VT = N->getValueType(i);
2870    if (VT != MVT::Other && i >= (unsigned)TID.getNumDefs())
2871      VTs.push_back(VT);
2872  }
2873  if (Load)
2874    BeforeOps.push_back(SDValue(Load, 0));
2875  std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps));
2876  SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, &BeforeOps[0],
2877                                      BeforeOps.size());
2878  NewNodes.push_back(NewNode);
2879
2880  // Emit the store instruction.
2881  if (FoldedStore) {
2882    AddrOps.pop_back();
2883    AddrOps.push_back(SDValue(NewNode, 0));
2884    AddrOps.push_back(Chain);
2885    std::pair<MachineInstr::mmo_iterator,
2886              MachineInstr::mmo_iterator> MMOs =
2887      MF.extractStoreMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
2888                             cast<MachineSDNode>(N)->memoperands_end());
2889    if (!(*MMOs.first) &&
2890        RC == &X86::VR128RegClass &&
2891        !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast())
2892      // Do not introduce a slow unaligned store.
2893      return false;
2894    bool isAligned = (*MMOs.first) && (*MMOs.first)->getAlignment() >= 16;
2895    SDNode *Store = DAG.getMachineNode(getStoreRegOpcode(0, DstRC,
2896                                                         isAligned, TM),
2897                                       dl, MVT::Other,
2898                                       &AddrOps[0], AddrOps.size());
2899    NewNodes.push_back(Store);
2900
2901    // Preserve memory reference information.
2902    cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second);
2903  }
2904
2905  return true;
2906}
2907
2908unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
2909                                      bool UnfoldLoad, bool UnfoldStore,
2910                                      unsigned *LoadRegIndex) const {
2911  DenseMap<unsigned*, std::pair<unsigned,unsigned> >::const_iterator I =
2912    MemOp2RegOpTable.find((unsigned*)Opc);
2913  if (I == MemOp2RegOpTable.end())
2914    return 0;
2915  bool FoldedLoad = I->second.second & (1 << 4);
2916  bool FoldedStore = I->second.second & (1 << 5);
2917  if (UnfoldLoad && !FoldedLoad)
2918    return 0;
2919  if (UnfoldStore && !FoldedStore)
2920    return 0;
2921  if (LoadRegIndex)
2922    *LoadRegIndex = I->second.second & 0xf;
2923  return I->second.first;
2924}
2925
2926bool
2927X86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
2928                                     int64_t &Offset1, int64_t &Offset2) const {
2929  if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
2930    return false;
2931  unsigned Opc1 = Load1->getMachineOpcode();
2932  unsigned Opc2 = Load2->getMachineOpcode();
2933  switch (Opc1) {
2934  default: return false;
2935  case X86::MOV8rm:
2936  case X86::MOV16rm:
2937  case X86::MOV32rm:
2938  case X86::MOV64rm:
2939  case X86::LD_Fp32m:
2940  case X86::LD_Fp64m:
2941  case X86::LD_Fp80m:
2942  case X86::MOVSSrm:
2943  case X86::MOVSDrm:
2944  case X86::MMX_MOVD64rm:
2945  case X86::MMX_MOVQ64rm:
2946  case X86::FsMOVAPSrm:
2947  case X86::FsMOVAPDrm:
2948  case X86::MOVAPSrm:
2949  case X86::MOVUPSrm:
2950  case X86::MOVUPSrm_Int:
2951  case X86::MOVAPDrm:
2952  case X86::MOVDQArm:
2953  case X86::MOVDQUrm:
2954  case X86::MOVDQUrm_Int:
2955    break;
2956  }
2957  switch (Opc2) {
2958  default: return false;
2959  case X86::MOV8rm:
2960  case X86::MOV16rm:
2961  case X86::MOV32rm:
2962  case X86::MOV64rm:
2963  case X86::LD_Fp32m:
2964  case X86::LD_Fp64m:
2965  case X86::LD_Fp80m:
2966  case X86::MOVSSrm:
2967  case X86::MOVSDrm:
2968  case X86::MMX_MOVD64rm:
2969  case X86::MMX_MOVQ64rm:
2970  case X86::FsMOVAPSrm:
2971  case X86::FsMOVAPDrm:
2972  case X86::MOVAPSrm:
2973  case X86::MOVUPSrm:
2974  case X86::MOVUPSrm_Int:
2975  case X86::MOVAPDrm:
2976  case X86::MOVDQArm:
2977  case X86::MOVDQUrm:
2978  case X86::MOVDQUrm_Int:
2979    break;
2980  }
2981
2982  // Check if chain operands and base addresses match.
2983  if (Load1->getOperand(0) != Load2->getOperand(0) ||
2984      Load1->getOperand(5) != Load2->getOperand(5))
2985    return false;
2986  // Segment operands should match as well.
2987  if (Load1->getOperand(4) != Load2->getOperand(4))
2988    return false;
2989  // Scale should be 1, Index should be Reg0.
2990  if (Load1->getOperand(1) == Load2->getOperand(1) &&
2991      Load1->getOperand(2) == Load2->getOperand(2)) {
2992    if (cast<ConstantSDNode>(Load1->getOperand(1))->getZExtValue() != 1)
2993      return false;
2994
2995    // Now let's examine the displacements.
2996    if (isa<ConstantSDNode>(Load1->getOperand(3)) &&
2997        isa<ConstantSDNode>(Load2->getOperand(3))) {
2998      Offset1 = cast<ConstantSDNode>(Load1->getOperand(3))->getSExtValue();
2999      Offset2 = cast<ConstantSDNode>(Load2->getOperand(3))->getSExtValue();
3000      return true;
3001    }
3002  }
3003  return false;
3004}
3005
3006bool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
3007                                           int64_t Offset1, int64_t Offset2,
3008                                           unsigned NumLoads) const {
3009  assert(Offset2 > Offset1);
3010  if ((Offset2 - Offset1) / 8 > 64)
3011    return false;
3012
3013  unsigned Opc1 = Load1->getMachineOpcode();
3014  unsigned Opc2 = Load2->getMachineOpcode();
3015  if (Opc1 != Opc2)
3016    return false;  // FIXME: overly conservative?
3017
3018  switch (Opc1) {
3019  default: break;
3020  case X86::LD_Fp32m:
3021  case X86::LD_Fp64m:
3022  case X86::LD_Fp80m:
3023  case X86::MMX_MOVD64rm:
3024  case X86::MMX_MOVQ64rm:
3025    return false;
3026  }
3027
3028  EVT VT = Load1->getValueType(0);
3029  switch (VT.getSimpleVT().SimpleTy) {
3030  default:
3031    // XMM registers. In 64-bit mode we can be a bit more aggressive since we
3032    // have 16 of them to play with.
3033    if (TM.getSubtargetImpl()->is64Bit()) {
3034      if (NumLoads >= 3)
3035        return false;
3036    } else if (NumLoads) {
3037      return false;
3038    }
3039    break;
3040  case MVT::i8:
3041  case MVT::i16:
3042  case MVT::i32:
3043  case MVT::i64:
3044  case MVT::f32:
3045  case MVT::f64:
3046    if (NumLoads)
3047      return false;
3048    break;
3049  }
3050
3051  return true;
3052}
3053
3054
3055bool X86InstrInfo::
3056ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
3057  assert(Cond.size() == 1 && "Invalid X86 branch condition!");
3058  X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
3059  if (CC == X86::COND_NE_OR_P || CC == X86::COND_NP_OR_E)
3060    return true;
3061  Cond[0].setImm(GetOppositeBranchCondition(CC));
3062  return false;
3063}
3064
3065bool X86InstrInfo::
3066isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
3067  // FIXME: Return false for x87 stack register classes for now. We can't
3068  // allow any loads of these registers before FpGet_ST0_80.
3069  return !(RC == &X86::CCRRegClass || RC == &X86::RFP32RegClass ||
3070           RC == &X86::RFP64RegClass || RC == &X86::RFP80RegClass);
3071}
3072
3073
3074/// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended (r8 or higher)
3075/// register?  e.g. r8, xmm8, xmm13, etc.
3076bool X86InstrInfo::isX86_64ExtendedReg(unsigned RegNo) {
3077  switch (RegNo) {
3078  default: break;
3079  case X86::R8:    case X86::R9:    case X86::R10:   case X86::R11:
3080  case X86::R12:   case X86::R13:   case X86::R14:   case X86::R15:
3081  case X86::R8D:   case X86::R9D:   case X86::R10D:  case X86::R11D:
3082  case X86::R12D:  case X86::R13D:  case X86::R14D:  case X86::R15D:
3083  case X86::R8W:   case X86::R9W:   case X86::R10W:  case X86::R11W:
3084  case X86::R12W:  case X86::R13W:  case X86::R14W:  case X86::R15W:
3085  case X86::R8B:   case X86::R9B:   case X86::R10B:  case X86::R11B:
3086  case X86::R12B:  case X86::R13B:  case X86::R14B:  case X86::R15B:
3087  case X86::XMM8:  case X86::XMM9:  case X86::XMM10: case X86::XMM11:
3088  case X86::XMM12: case X86::XMM13: case X86::XMM14: case X86::XMM15:
3089    return true;
3090  }
3091  return false;
3092}
3093
3094
3095/// determineREX - Determine if the MachineInstr has to be encoded with a X86-64
3096/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
3097/// size, and 3) use of X86-64 extended registers.
3098unsigned X86InstrInfo::determineREX(const MachineInstr &MI) {
3099  unsigned REX = 0;
3100  const TargetInstrDesc &Desc = MI.getDesc();
3101
3102  // Pseudo instructions do not need REX prefix byte.
3103  if ((Desc.TSFlags & X86II::FormMask) == X86II::Pseudo)
3104    return 0;
3105  if (Desc.TSFlags & X86II::REX_W)
3106    REX |= 1 << 3;
3107
3108  unsigned NumOps = Desc.getNumOperands();
3109  if (NumOps) {
3110    bool isTwoAddr = NumOps > 1 &&
3111      Desc.getOperandConstraint(1, TOI::TIED_TO) != -1;
3112
3113    // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
3114    unsigned i = isTwoAddr ? 1 : 0;
3115    for (unsigned e = NumOps; i != e; ++i) {
3116      const MachineOperand& MO = MI.getOperand(i);
3117      if (MO.isReg()) {
3118        unsigned Reg = MO.getReg();
3119        if (isX86_64NonExtLowByteReg(Reg))
3120          REX |= 0x40;
3121      }
3122    }
3123
3124    switch (Desc.TSFlags & X86II::FormMask) {
3125    case X86II::MRMInitReg:
3126      if (isX86_64ExtendedReg(MI.getOperand(0)))
3127        REX |= (1 << 0) | (1 << 2);
3128      break;
3129    case X86II::MRMSrcReg: {
3130      if (isX86_64ExtendedReg(MI.getOperand(0)))
3131        REX |= 1 << 2;
3132      i = isTwoAddr ? 2 : 1;
3133      for (unsigned e = NumOps; i != e; ++i) {
3134        const MachineOperand& MO = MI.getOperand(i);
3135        if (isX86_64ExtendedReg(MO))
3136          REX |= 1 << 0;
3137      }
3138      break;
3139    }
3140    case X86II::MRMSrcMem: {
3141      if (isX86_64ExtendedReg(MI.getOperand(0)))
3142        REX |= 1 << 2;
3143      unsigned Bit = 0;
3144      i = isTwoAddr ? 2 : 1;
3145      for (; i != NumOps; ++i) {
3146        const MachineOperand& MO = MI.getOperand(i);
3147        if (MO.isReg()) {
3148          if (isX86_64ExtendedReg(MO))
3149            REX |= 1 << Bit;
3150          Bit++;
3151        }
3152      }
3153      break;
3154    }
3155    case X86II::MRM0m: case X86II::MRM1m:
3156    case X86II::MRM2m: case X86II::MRM3m:
3157    case X86II::MRM4m: case X86II::MRM5m:
3158    case X86II::MRM6m: case X86II::MRM7m:
3159    case X86II::MRMDestMem: {
3160      unsigned e = (isTwoAddr ? X86AddrNumOperands+1 : X86AddrNumOperands);
3161      i = isTwoAddr ? 1 : 0;
3162      if (NumOps > e && isX86_64ExtendedReg(MI.getOperand(e)))
3163        REX |= 1 << 2;
3164      unsigned Bit = 0;
3165      for (; i != e; ++i) {
3166        const MachineOperand& MO = MI.getOperand(i);
3167        if (MO.isReg()) {
3168          if (isX86_64ExtendedReg(MO))
3169            REX |= 1 << Bit;
3170          Bit++;
3171        }
3172      }
3173      break;
3174    }
3175    default: {
3176      if (isX86_64ExtendedReg(MI.getOperand(0)))
3177        REX |= 1 << 0;
3178      i = isTwoAddr ? 2 : 1;
3179      for (unsigned e = NumOps; i != e; ++i) {
3180        const MachineOperand& MO = MI.getOperand(i);
3181        if (isX86_64ExtendedReg(MO))
3182          REX |= 1 << 2;
3183      }
3184      break;
3185    }
3186    }
3187  }
3188  return REX;
3189}
3190
3191/// sizePCRelativeBlockAddress - This method returns the size of a PC
3192/// relative block address instruction
3193///
3194static unsigned sizePCRelativeBlockAddress() {
3195  return 4;
3196}
3197
3198/// sizeGlobalAddress - Give the size of the emission of this global address
3199///
3200static unsigned sizeGlobalAddress(bool dword) {
3201  return dword ? 8 : 4;
3202}
3203
3204/// sizeConstPoolAddress - Give the size of the emission of this constant
3205/// pool address
3206///
3207static unsigned sizeConstPoolAddress(bool dword) {
3208  return dword ? 8 : 4;
3209}
3210
3211/// sizeExternalSymbolAddress - Give the size of the emission of this external
3212/// symbol
3213///
3214static unsigned sizeExternalSymbolAddress(bool dword) {
3215  return dword ? 8 : 4;
3216}
3217
3218/// sizeJumpTableAddress - Give the size of the emission of this jump
3219/// table address
3220///
3221static unsigned sizeJumpTableAddress(bool dword) {
3222  return dword ? 8 : 4;
3223}
3224
3225static unsigned sizeConstant(unsigned Size) {
3226  return Size;
3227}
3228
3229static unsigned sizeRegModRMByte(){
3230  return 1;
3231}
3232
3233static unsigned sizeSIBByte(){
3234  return 1;
3235}
3236
3237static unsigned getDisplacementFieldSize(const MachineOperand *RelocOp) {
3238  unsigned FinalSize = 0;
3239  // If this is a simple integer displacement that doesn't require a relocation.
3240  if (!RelocOp) {
3241    FinalSize += sizeConstant(4);
3242    return FinalSize;
3243  }
3244
3245  // Otherwise, this is something that requires a relocation.
3246  if (RelocOp->isGlobal()) {
3247    FinalSize += sizeGlobalAddress(false);
3248  } else if (RelocOp->isCPI()) {
3249    FinalSize += sizeConstPoolAddress(false);
3250  } else if (RelocOp->isJTI()) {
3251    FinalSize += sizeJumpTableAddress(false);
3252  } else {
3253    llvm_unreachable("Unknown value to relocate!");
3254  }
3255  return FinalSize;
3256}
3257
3258static unsigned getMemModRMByteSize(const MachineInstr &MI, unsigned Op,
3259                                    bool IsPIC, bool Is64BitMode) {
3260  const MachineOperand &Op3 = MI.getOperand(Op+3);
3261  int DispVal = 0;
3262  const MachineOperand *DispForReloc = 0;
3263  unsigned FinalSize = 0;
3264
3265  // Figure out what sort of displacement we have to handle here.
3266  if (Op3.isGlobal()) {
3267    DispForReloc = &Op3;
3268  } else if (Op3.isCPI()) {
3269    if (Is64BitMode || IsPIC) {
3270      DispForReloc = &Op3;
3271    } else {
3272      DispVal = 1;
3273    }
3274  } else if (Op3.isJTI()) {
3275    if (Is64BitMode || IsPIC) {
3276      DispForReloc = &Op3;
3277    } else {
3278      DispVal = 1;
3279    }
3280  } else {
3281    DispVal = 1;
3282  }
3283
3284  const MachineOperand &Base     = MI.getOperand(Op);
3285  const MachineOperand &IndexReg = MI.getOperand(Op+2);
3286
3287  unsigned BaseReg = Base.getReg();
3288
3289  // Is a SIB byte needed?
3290  if ((!Is64BitMode || DispForReloc || BaseReg != 0) &&
3291      IndexReg.getReg() == 0 &&
3292      (BaseReg == 0 || X86RegisterInfo::getX86RegNum(BaseReg) != N86::ESP)) {
3293    if (BaseReg == 0) {  // Just a displacement?
3294      // Emit special case [disp32] encoding
3295      ++FinalSize;
3296      FinalSize += getDisplacementFieldSize(DispForReloc);
3297    } else {
3298      unsigned BaseRegNo = X86RegisterInfo::getX86RegNum(BaseReg);
3299      if (!DispForReloc && DispVal == 0 && BaseRegNo != N86::EBP) {
3300        // Emit simple indirect register encoding... [EAX] f.e.
3301        ++FinalSize;
3302      // Be pessimistic and assume it's a disp32, not a disp8
3303      } else {
3304        // Emit the most general non-SIB encoding: [REG+disp32]
3305        ++FinalSize;
3306        FinalSize += getDisplacementFieldSize(DispForReloc);
3307      }
3308    }
3309
3310  } else {  // We need a SIB byte, so start by outputting the ModR/M byte first
3311    assert(IndexReg.getReg() != X86::ESP &&
3312           IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
3313
3314    bool ForceDisp32 = false;
3315    if (BaseReg == 0 || DispForReloc) {
3316      // Emit the normal disp32 encoding.
3317      ++FinalSize;
3318      ForceDisp32 = true;
3319    } else {
3320      ++FinalSize;
3321    }
3322
3323    FinalSize += sizeSIBByte();
3324
3325    // Do we need to output a displacement?
3326    if (DispVal != 0 || ForceDisp32) {
3327      FinalSize += getDisplacementFieldSize(DispForReloc);
3328    }
3329  }
3330  return FinalSize;
3331}
3332
3333
3334static unsigned GetInstSizeWithDesc(const MachineInstr &MI,
3335                                    const TargetInstrDesc *Desc,
3336                                    bool IsPIC, bool Is64BitMode) {
3337
3338  unsigned Opcode = Desc->Opcode;
3339  unsigned FinalSize = 0;
3340
3341  // Emit the lock opcode prefix as needed.
3342  if (Desc->TSFlags & X86II::LOCK) ++FinalSize;
3343
3344  // Emit segment override opcode prefix as needed.
3345  switch (Desc->TSFlags & X86II::SegOvrMask) {
3346  case X86II::FS:
3347  case X86II::GS:
3348   ++FinalSize;
3349   break;
3350  default: llvm_unreachable("Invalid segment!");
3351  case 0: break;  // No segment override!
3352  }
3353
3354  // Emit the repeat opcode prefix as needed.
3355  if ((Desc->TSFlags & X86II::Op0Mask) == X86II::REP) ++FinalSize;
3356
3357  // Emit the operand size opcode prefix as needed.
3358  if (Desc->TSFlags & X86II::OpSize) ++FinalSize;
3359
3360  // Emit the address size opcode prefix as needed.
3361  if (Desc->TSFlags & X86II::AdSize) ++FinalSize;
3362
3363  bool Need0FPrefix = false;
3364  switch (Desc->TSFlags & X86II::Op0Mask) {
3365  case X86II::TB:  // Two-byte opcode prefix
3366  case X86II::T8:  // 0F 38
3367  case X86II::TA:  // 0F 3A
3368    Need0FPrefix = true;
3369    break;
3370  case X86II::TF: // F2 0F 38
3371    ++FinalSize;
3372    Need0FPrefix = true;
3373    break;
3374  case X86II::REP: break; // already handled.
3375  case X86II::XS:   // F3 0F
3376    ++FinalSize;
3377    Need0FPrefix = true;
3378    break;
3379  case X86II::XD:   // F2 0F
3380    ++FinalSize;
3381    Need0FPrefix = true;
3382    break;
3383  case X86II::D8: case X86II::D9: case X86II::DA: case X86II::DB:
3384  case X86II::DC: case X86II::DD: case X86II::DE: case X86II::DF:
3385    ++FinalSize;
3386    break; // Two-byte opcode prefix
3387  default: llvm_unreachable("Invalid prefix!");
3388  case 0: break;  // No prefix!
3389  }
3390
3391  if (Is64BitMode) {
3392    // REX prefix
3393    unsigned REX = X86InstrInfo::determineREX(MI);
3394    if (REX)
3395      ++FinalSize;
3396  }
3397
3398  // 0x0F escape code must be emitted just before the opcode.
3399  if (Need0FPrefix)
3400    ++FinalSize;
3401
3402  switch (Desc->TSFlags & X86II::Op0Mask) {
3403  case X86II::T8:  // 0F 38
3404    ++FinalSize;
3405    break;
3406  case X86II::TA:  // 0F 3A
3407    ++FinalSize;
3408    break;
3409  case X86II::TF: // F2 0F 38
3410    ++FinalSize;
3411    break;
3412  }
3413
3414  // If this is a two-address instruction, skip one of the register operands.
3415  unsigned NumOps = Desc->getNumOperands();
3416  unsigned CurOp = 0;
3417  if (NumOps > 1 && Desc->getOperandConstraint(1, TOI::TIED_TO) != -1)
3418    CurOp++;
3419  else if (NumOps > 2 && Desc->getOperandConstraint(NumOps-1, TOI::TIED_TO)== 0)
3420    // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32
3421    --NumOps;
3422
3423  switch (Desc->TSFlags & X86II::FormMask) {
3424  default: llvm_unreachable("Unknown FormMask value in X86 MachineCodeEmitter!");
3425  case X86II::Pseudo:
3426    // Remember the current PC offset, this is the PIC relocation
3427    // base address.
3428    switch (Opcode) {
3429    default:
3430      break;
3431    case TargetOpcode::INLINEASM: {
3432      const MachineFunction *MF = MI.getParent()->getParent();
3433      const TargetInstrInfo &TII = *MF->getTarget().getInstrInfo();
3434      FinalSize += TII.getInlineAsmLength(MI.getOperand(0).getSymbolName(),
3435                                          *MF->getTarget().getMCAsmInfo());
3436      break;
3437    }
3438    case TargetOpcode::DBG_LABEL:
3439    case TargetOpcode::EH_LABEL:
3440    case TargetOpcode::DBG_VALUE:
3441      break;
3442    case TargetOpcode::IMPLICIT_DEF:
3443    case TargetOpcode::KILL:
3444    case X86::FP_REG_KILL:
3445      break;
3446    case X86::MOVPC32r: {
3447      // This emits the "call" portion of this pseudo instruction.
3448      ++FinalSize;
3449      FinalSize += sizeConstant(X86II::getSizeOfImm(Desc->TSFlags));
3450      break;
3451    }
3452    }
3453    CurOp = NumOps;
3454    break;
3455  case X86II::RawFrm:
3456    ++FinalSize;
3457
3458    if (CurOp != NumOps) {
3459      const MachineOperand &MO = MI.getOperand(CurOp++);
3460      if (MO.isMBB()) {
3461        FinalSize += sizePCRelativeBlockAddress();
3462      } else if (MO.isGlobal()) {
3463        FinalSize += sizeGlobalAddress(false);
3464      } else if (MO.isSymbol()) {
3465        FinalSize += sizeExternalSymbolAddress(false);
3466      } else if (MO.isImm()) {
3467        FinalSize += sizeConstant(X86II::getSizeOfImm(Desc->TSFlags));
3468      } else {
3469        llvm_unreachable("Unknown RawFrm operand!");
3470      }
3471    }
3472    break;
3473
3474  case X86II::AddRegFrm:
3475    ++FinalSize;
3476    ++CurOp;
3477
3478    if (CurOp != NumOps) {
3479      const MachineOperand &MO1 = MI.getOperand(CurOp++);
3480      unsigned Size = X86II::getSizeOfImm(Desc->TSFlags);
3481      if (MO1.isImm())
3482        FinalSize += sizeConstant(Size);
3483      else {
3484        bool dword = false;
3485        if (Opcode == X86::MOV64ri)
3486          dword = true;
3487        if (MO1.isGlobal()) {
3488          FinalSize += sizeGlobalAddress(dword);
3489        } else if (MO1.isSymbol())
3490          FinalSize += sizeExternalSymbolAddress(dword);
3491        else if (MO1.isCPI())
3492          FinalSize += sizeConstPoolAddress(dword);
3493        else if (MO1.isJTI())
3494          FinalSize += sizeJumpTableAddress(dword);
3495      }
3496    }
3497    break;
3498
3499  case X86II::MRMDestReg: {
3500    ++FinalSize;
3501    FinalSize += sizeRegModRMByte();
3502    CurOp += 2;
3503    if (CurOp != NumOps) {
3504      ++CurOp;
3505      FinalSize += sizeConstant(X86II::getSizeOfImm(Desc->TSFlags));
3506    }
3507    break;
3508  }
3509  case X86II::MRMDestMem: {
3510    ++FinalSize;
3511    FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode);
3512    CurOp +=  X86AddrNumOperands + 1;
3513    if (CurOp != NumOps) {
3514      ++CurOp;
3515      FinalSize += sizeConstant(X86II::getSizeOfImm(Desc->TSFlags));
3516    }
3517    break;
3518  }
3519
3520  case X86II::MRMSrcReg:
3521    ++FinalSize;
3522    FinalSize += sizeRegModRMByte();
3523    CurOp += 2;
3524    if (CurOp != NumOps) {
3525      ++CurOp;
3526      FinalSize += sizeConstant(X86II::getSizeOfImm(Desc->TSFlags));
3527    }
3528    break;
3529
3530  case X86II::MRMSrcMem: {
3531    int AddrOperands;
3532    if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r ||
3533        Opcode == X86::LEA16r || Opcode == X86::LEA32r)
3534      AddrOperands = X86AddrNumOperands - 1; // No segment register
3535    else
3536      AddrOperands = X86AddrNumOperands;
3537
3538    ++FinalSize;
3539    FinalSize += getMemModRMByteSize(MI, CurOp+1, IsPIC, Is64BitMode);
3540    CurOp += AddrOperands + 1;
3541    if (CurOp != NumOps) {
3542      ++CurOp;
3543      FinalSize += sizeConstant(X86II::getSizeOfImm(Desc->TSFlags));
3544    }
3545    break;
3546  }
3547
3548  case X86II::MRM0r: case X86II::MRM1r:
3549  case X86II::MRM2r: case X86II::MRM3r:
3550  case X86II::MRM4r: case X86II::MRM5r:
3551  case X86II::MRM6r: case X86II::MRM7r:
3552    ++FinalSize;
3553    if (Desc->getOpcode() == X86::LFENCE ||
3554        Desc->getOpcode() == X86::MFENCE) {
3555      // Special handling of lfence and mfence;
3556      FinalSize += sizeRegModRMByte();
3557    } else if (Desc->getOpcode() == X86::MONITOR ||
3558               Desc->getOpcode() == X86::MWAIT) {
3559      // Special handling of monitor and mwait.
3560      FinalSize += sizeRegModRMByte() + 1; // +1 for the opcode.
3561    } else {
3562      ++CurOp;
3563      FinalSize += sizeRegModRMByte();
3564    }
3565
3566    if (CurOp != NumOps) {
3567      const MachineOperand &MO1 = MI.getOperand(CurOp++);
3568      unsigned Size = X86II::getSizeOfImm(Desc->TSFlags);
3569      if (MO1.isImm())
3570        FinalSize += sizeConstant(Size);
3571      else {
3572        bool dword = false;
3573        if (Opcode == X86::MOV64ri32)
3574          dword = true;
3575        if (MO1.isGlobal()) {
3576          FinalSize += sizeGlobalAddress(dword);
3577        } else if (MO1.isSymbol())
3578          FinalSize += sizeExternalSymbolAddress(dword);
3579        else if (MO1.isCPI())
3580          FinalSize += sizeConstPoolAddress(dword);
3581        else if (MO1.isJTI())
3582          FinalSize += sizeJumpTableAddress(dword);
3583      }
3584    }
3585    break;
3586
3587  case X86II::MRM0m: case X86II::MRM1m:
3588  case X86II::MRM2m: case X86II::MRM3m:
3589  case X86II::MRM4m: case X86II::MRM5m:
3590  case X86II::MRM6m: case X86II::MRM7m: {
3591
3592    ++FinalSize;
3593    FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode);
3594    CurOp += X86AddrNumOperands;
3595
3596    if (CurOp != NumOps) {
3597      const MachineOperand &MO = MI.getOperand(CurOp++);
3598      unsigned Size = X86II::getSizeOfImm(Desc->TSFlags);
3599      if (MO.isImm())
3600        FinalSize += sizeConstant(Size);
3601      else {
3602        bool dword = false;
3603        if (Opcode == X86::MOV64mi32)
3604          dword = true;
3605        if (MO.isGlobal()) {
3606          FinalSize += sizeGlobalAddress(dword);
3607        } else if (MO.isSymbol())
3608          FinalSize += sizeExternalSymbolAddress(dword);
3609        else if (MO.isCPI())
3610          FinalSize += sizeConstPoolAddress(dword);
3611        else if (MO.isJTI())
3612          FinalSize += sizeJumpTableAddress(dword);
3613      }
3614    }
3615    break;
3616
3617  case X86II::MRM_C1:
3618  case X86II::MRM_C8:
3619  case X86II::MRM_C9:
3620  case X86II::MRM_E8:
3621  case X86II::MRM_F0:
3622    FinalSize += 2;
3623    break;
3624  }
3625
3626  case X86II::MRMInitReg:
3627    ++FinalSize;
3628    // Duplicate register, used by things like MOV8r0 (aka xor reg,reg).
3629    FinalSize += sizeRegModRMByte();
3630    ++CurOp;
3631    break;
3632  }
3633
3634  if (!Desc->isVariadic() && CurOp != NumOps) {
3635    std::string msg;
3636    raw_string_ostream Msg(msg);
3637    Msg << "Cannot determine size: " << MI;
3638    report_fatal_error(Msg.str());
3639  }
3640
3641
3642  return FinalSize;
3643}
3644
3645
3646unsigned X86InstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
3647  const TargetInstrDesc &Desc = MI->getDesc();
3648  bool IsPIC = TM.getRelocationModel() == Reloc::PIC_;
3649  bool Is64BitMode = TM.getSubtargetImpl()->is64Bit();
3650  unsigned Size = GetInstSizeWithDesc(*MI, &Desc, IsPIC, Is64BitMode);
3651  if (Desc.getOpcode() == X86::MOVPC32r)
3652    Size += GetInstSizeWithDesc(*MI, &get(X86::POP32r), IsPIC, Is64BitMode);
3653  return Size;
3654}
3655
3656/// getGlobalBaseReg - Return a virtual register initialized with the
3657/// the global base register value. Output instructions required to
3658/// initialize the register in the function entry block, if necessary.
3659///
3660unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
3661  assert(!TM.getSubtarget<X86Subtarget>().is64Bit() &&
3662         "X86-64 PIC uses RIP relative addressing");
3663
3664  X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
3665  unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
3666  if (GlobalBaseReg != 0)
3667    return GlobalBaseReg;
3668
3669  // Insert the set of GlobalBaseReg into the first MBB of the function
3670  MachineBasicBlock &FirstMBB = MF->front();
3671  MachineBasicBlock::iterator MBBI = FirstMBB.begin();
3672  DebugLoc DL = FirstMBB.findDebugLoc(MBBI);
3673  MachineRegisterInfo &RegInfo = MF->getRegInfo();
3674  unsigned PC = RegInfo.createVirtualRegister(X86::GR32RegisterClass);
3675
3676  const TargetInstrInfo *TII = TM.getInstrInfo();
3677  // Operand of MovePCtoStack is completely ignored by asm printer. It's
3678  // only used in JIT code emission as displacement to pc.
3679  BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0);
3680
3681  // If we're using vanilla 'GOT' PIC style, we should use relative addressing
3682  // not to pc, but to _GLOBAL_OFFSET_TABLE_ external.
3683  if (TM.getSubtarget<X86Subtarget>().isPICStyleGOT()) {
3684    GlobalBaseReg = RegInfo.createVirtualRegister(X86::GR32RegisterClass);
3685    // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel], %some_register
3686    BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg)
3687      .addReg(PC).addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
3688                                    X86II::MO_GOT_ABSOLUTE_ADDRESS);
3689  } else {
3690    GlobalBaseReg = PC;
3691  }
3692
3693  X86FI->setGlobalBaseReg(GlobalBaseReg);
3694  return GlobalBaseReg;
3695}
3696
3697// These are the replaceable SSE instructions. Some of these have Int variants
3698// that we don't include here. We don't want to replace instructions selected
3699// by intrinsics.
3700static const unsigned ReplaceableInstrs[][3] = {
3701  //PackedInt       PackedSingle     PackedDouble
3702  { X86::MOVAPSmr,   X86::MOVAPDmr,  X86::MOVDQAmr  },
3703  { X86::MOVAPSrm,   X86::MOVAPDrm,  X86::MOVDQArm  },
3704  { X86::MOVAPSrr,   X86::MOVAPDrr,  X86::MOVDQArr  },
3705  { X86::MOVUPSmr,   X86::MOVUPDmr,  X86::MOVDQUmr  },
3706  { X86::MOVUPSrm,   X86::MOVUPDrm,  X86::MOVDQUrm  },
3707  { X86::MOVNTPSmr,  X86::MOVNTPDmr, X86::MOVNTDQmr },
3708  { X86::ANDNPSrm,   X86::ANDNPDrm,  X86::PANDNrm   },
3709  { X86::ANDNPSrr,   X86::ANDNPDrr,  X86::PANDNrr   },
3710  { X86::ANDPSrm,    X86::ANDPDrm,   X86::PANDrm    },
3711  { X86::ANDPSrr,    X86::ANDPDrr,   X86::PANDrr    },
3712  { X86::ORPSrm,     X86::ORPDrm,    X86::PORrm     },
3713  { X86::ORPSrr,     X86::ORPDrr,    X86::PORrr     },
3714  { X86::V_SET0PS,   X86::V_SET0PD,  X86::V_SET0PI  },
3715  { X86::XORPSrm,    X86::XORPDrm,   X86::PXORrm    },
3716  { X86::XORPSrr,    X86::XORPDrr,   X86::PXORrr    },
3717};
3718
3719// FIXME: Some shuffle and unpack instructions have equivalents in different
3720// domains, but they require a bit more work than just switching opcodes.
3721
3722static const unsigned *lookup(unsigned opcode, unsigned domain) {
3723  for (unsigned i = 0, e = array_lengthof(ReplaceableInstrs); i != e; ++i)
3724    if (ReplaceableInstrs[i][domain-1] == opcode)
3725      return ReplaceableInstrs[i];
3726  return 0;
3727}
3728
3729std::pair<uint16_t, uint16_t>
3730X86InstrInfo::GetSSEDomain(const MachineInstr *MI) const {
3731  uint16_t domain = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
3732  return std::make_pair(domain,
3733                        domain && lookup(MI->getOpcode(), domain) ? 0xe : 0);
3734}
3735
3736void X86InstrInfo::SetSSEDomain(MachineInstr *MI, unsigned Domain) const {
3737  assert(Domain>0 && Domain<4 && "Invalid execution domain");
3738  uint16_t dom = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
3739  assert(dom && "Not an SSE instruction");
3740  const unsigned *table = lookup(MI->getOpcode(), dom);
3741  assert(table && "Cannot change domain");
3742  MI->setDesc(get(table[Domain-1]));
3743}
3744
3745/// getNoopForMachoTarget - Return the noop instruction to use for a noop.
3746void X86InstrInfo::getNoopForMachoTarget(MCInst &NopInst) const {
3747  NopInst.setOpcode(X86::NOOP);
3748}
3749