X86InstrInfo.cpp revision d10a4ce5825d0981107c0106c49089b9e5792e40
1//===- X86InstrInfo.cpp - X86 Instruction Information -----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the X86 implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "X86InstrInfo.h"
15#include "X86.h"
16#include "X86GenInstrInfo.inc"
17#include "X86InstrBuilder.h"
18#include "X86MachineFunctionInfo.h"
19#include "X86Subtarget.h"
20#include "X86TargetMachine.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/ADT/STLExtras.h"
23#include "llvm/CodeGen/MachineConstantPool.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineInstrBuilder.h"
26#include "llvm/CodeGen/MachineRegisterInfo.h"
27#include "llvm/CodeGen/LiveVariables.h"
28#include "llvm/Support/CommandLine.h"
29#include "llvm/Target/TargetOptions.h"
30#include "llvm/Target/TargetAsmInfo.h"
31
32using namespace llvm;
33
34namespace {
35  cl::opt<bool>
36  NoFusing("disable-spill-fusing",
37           cl::desc("Disable fusing of spill code into instructions"));
38  cl::opt<bool>
39  PrintFailedFusing("print-failed-fuse-candidates",
40                    cl::desc("Print instructions that the allocator wants to"
41                             " fuse, but the X86 backend currently can't"),
42                    cl::Hidden);
43  cl::opt<bool>
44  ReMatPICStubLoad("remat-pic-stub-load",
45                   cl::desc("Re-materialize load from stub in PIC mode"),
46                   cl::init(false), cl::Hidden);
47}
48
49X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
50  : TargetInstrInfoImpl(X86Insts, array_lengthof(X86Insts)),
51    TM(tm), RI(tm, *this) {
52  SmallVector<unsigned,16> AmbEntries;
53  static const unsigned OpTbl2Addr[][2] = {
54    { X86::ADC32ri,     X86::ADC32mi },
55    { X86::ADC32ri8,    X86::ADC32mi8 },
56    { X86::ADC32rr,     X86::ADC32mr },
57    { X86::ADC64ri32,   X86::ADC64mi32 },
58    { X86::ADC64ri8,    X86::ADC64mi8 },
59    { X86::ADC64rr,     X86::ADC64mr },
60    { X86::ADD16ri,     X86::ADD16mi },
61    { X86::ADD16ri8,    X86::ADD16mi8 },
62    { X86::ADD16rr,     X86::ADD16mr },
63    { X86::ADD32ri,     X86::ADD32mi },
64    { X86::ADD32ri8,    X86::ADD32mi8 },
65    { X86::ADD32rr,     X86::ADD32mr },
66    { X86::ADD64ri32,   X86::ADD64mi32 },
67    { X86::ADD64ri8,    X86::ADD64mi8 },
68    { X86::ADD64rr,     X86::ADD64mr },
69    { X86::ADD8ri,      X86::ADD8mi },
70    { X86::ADD8rr,      X86::ADD8mr },
71    { X86::AND16ri,     X86::AND16mi },
72    { X86::AND16ri8,    X86::AND16mi8 },
73    { X86::AND16rr,     X86::AND16mr },
74    { X86::AND32ri,     X86::AND32mi },
75    { X86::AND32ri8,    X86::AND32mi8 },
76    { X86::AND32rr,     X86::AND32mr },
77    { X86::AND64ri32,   X86::AND64mi32 },
78    { X86::AND64ri8,    X86::AND64mi8 },
79    { X86::AND64rr,     X86::AND64mr },
80    { X86::AND8ri,      X86::AND8mi },
81    { X86::AND8rr,      X86::AND8mr },
82    { X86::DEC16r,      X86::DEC16m },
83    { X86::DEC32r,      X86::DEC32m },
84    { X86::DEC64_16r,   X86::DEC64_16m },
85    { X86::DEC64_32r,   X86::DEC64_32m },
86    { X86::DEC64r,      X86::DEC64m },
87    { X86::DEC8r,       X86::DEC8m },
88    { X86::INC16r,      X86::INC16m },
89    { X86::INC32r,      X86::INC32m },
90    { X86::INC64_16r,   X86::INC64_16m },
91    { X86::INC64_32r,   X86::INC64_32m },
92    { X86::INC64r,      X86::INC64m },
93    { X86::INC8r,       X86::INC8m },
94    { X86::NEG16r,      X86::NEG16m },
95    { X86::NEG32r,      X86::NEG32m },
96    { X86::NEG64r,      X86::NEG64m },
97    { X86::NEG8r,       X86::NEG8m },
98    { X86::NOT16r,      X86::NOT16m },
99    { X86::NOT32r,      X86::NOT32m },
100    { X86::NOT64r,      X86::NOT64m },
101    { X86::NOT8r,       X86::NOT8m },
102    { X86::OR16ri,      X86::OR16mi },
103    { X86::OR16ri8,     X86::OR16mi8 },
104    { X86::OR16rr,      X86::OR16mr },
105    { X86::OR32ri,      X86::OR32mi },
106    { X86::OR32ri8,     X86::OR32mi8 },
107    { X86::OR32rr,      X86::OR32mr },
108    { X86::OR64ri32,    X86::OR64mi32 },
109    { X86::OR64ri8,     X86::OR64mi8 },
110    { X86::OR64rr,      X86::OR64mr },
111    { X86::OR8ri,       X86::OR8mi },
112    { X86::OR8rr,       X86::OR8mr },
113    { X86::ROL16r1,     X86::ROL16m1 },
114    { X86::ROL16rCL,    X86::ROL16mCL },
115    { X86::ROL16ri,     X86::ROL16mi },
116    { X86::ROL32r1,     X86::ROL32m1 },
117    { X86::ROL32rCL,    X86::ROL32mCL },
118    { X86::ROL32ri,     X86::ROL32mi },
119    { X86::ROL64r1,     X86::ROL64m1 },
120    { X86::ROL64rCL,    X86::ROL64mCL },
121    { X86::ROL64ri,     X86::ROL64mi },
122    { X86::ROL8r1,      X86::ROL8m1 },
123    { X86::ROL8rCL,     X86::ROL8mCL },
124    { X86::ROL8ri,      X86::ROL8mi },
125    { X86::ROR16r1,     X86::ROR16m1 },
126    { X86::ROR16rCL,    X86::ROR16mCL },
127    { X86::ROR16ri,     X86::ROR16mi },
128    { X86::ROR32r1,     X86::ROR32m1 },
129    { X86::ROR32rCL,    X86::ROR32mCL },
130    { X86::ROR32ri,     X86::ROR32mi },
131    { X86::ROR64r1,     X86::ROR64m1 },
132    { X86::ROR64rCL,    X86::ROR64mCL },
133    { X86::ROR64ri,     X86::ROR64mi },
134    { X86::ROR8r1,      X86::ROR8m1 },
135    { X86::ROR8rCL,     X86::ROR8mCL },
136    { X86::ROR8ri,      X86::ROR8mi },
137    { X86::SAR16r1,     X86::SAR16m1 },
138    { X86::SAR16rCL,    X86::SAR16mCL },
139    { X86::SAR16ri,     X86::SAR16mi },
140    { X86::SAR32r1,     X86::SAR32m1 },
141    { X86::SAR32rCL,    X86::SAR32mCL },
142    { X86::SAR32ri,     X86::SAR32mi },
143    { X86::SAR64r1,     X86::SAR64m1 },
144    { X86::SAR64rCL,    X86::SAR64mCL },
145    { X86::SAR64ri,     X86::SAR64mi },
146    { X86::SAR8r1,      X86::SAR8m1 },
147    { X86::SAR8rCL,     X86::SAR8mCL },
148    { X86::SAR8ri,      X86::SAR8mi },
149    { X86::SBB32ri,     X86::SBB32mi },
150    { X86::SBB32ri8,    X86::SBB32mi8 },
151    { X86::SBB32rr,     X86::SBB32mr },
152    { X86::SBB64ri32,   X86::SBB64mi32 },
153    { X86::SBB64ri8,    X86::SBB64mi8 },
154    { X86::SBB64rr,     X86::SBB64mr },
155    { X86::SHL16rCL,    X86::SHL16mCL },
156    { X86::SHL16ri,     X86::SHL16mi },
157    { X86::SHL32rCL,    X86::SHL32mCL },
158    { X86::SHL32ri,     X86::SHL32mi },
159    { X86::SHL64rCL,    X86::SHL64mCL },
160    { X86::SHL64ri,     X86::SHL64mi },
161    { X86::SHL8rCL,     X86::SHL8mCL },
162    { X86::SHL8ri,      X86::SHL8mi },
163    { X86::SHLD16rrCL,  X86::SHLD16mrCL },
164    { X86::SHLD16rri8,  X86::SHLD16mri8 },
165    { X86::SHLD32rrCL,  X86::SHLD32mrCL },
166    { X86::SHLD32rri8,  X86::SHLD32mri8 },
167    { X86::SHLD64rrCL,  X86::SHLD64mrCL },
168    { X86::SHLD64rri8,  X86::SHLD64mri8 },
169    { X86::SHR16r1,     X86::SHR16m1 },
170    { X86::SHR16rCL,    X86::SHR16mCL },
171    { X86::SHR16ri,     X86::SHR16mi },
172    { X86::SHR32r1,     X86::SHR32m1 },
173    { X86::SHR32rCL,    X86::SHR32mCL },
174    { X86::SHR32ri,     X86::SHR32mi },
175    { X86::SHR64r1,     X86::SHR64m1 },
176    { X86::SHR64rCL,    X86::SHR64mCL },
177    { X86::SHR64ri,     X86::SHR64mi },
178    { X86::SHR8r1,      X86::SHR8m1 },
179    { X86::SHR8rCL,     X86::SHR8mCL },
180    { X86::SHR8ri,      X86::SHR8mi },
181    { X86::SHRD16rrCL,  X86::SHRD16mrCL },
182    { X86::SHRD16rri8,  X86::SHRD16mri8 },
183    { X86::SHRD32rrCL,  X86::SHRD32mrCL },
184    { X86::SHRD32rri8,  X86::SHRD32mri8 },
185    { X86::SHRD64rrCL,  X86::SHRD64mrCL },
186    { X86::SHRD64rri8,  X86::SHRD64mri8 },
187    { X86::SUB16ri,     X86::SUB16mi },
188    { X86::SUB16ri8,    X86::SUB16mi8 },
189    { X86::SUB16rr,     X86::SUB16mr },
190    { X86::SUB32ri,     X86::SUB32mi },
191    { X86::SUB32ri8,    X86::SUB32mi8 },
192    { X86::SUB32rr,     X86::SUB32mr },
193    { X86::SUB64ri32,   X86::SUB64mi32 },
194    { X86::SUB64ri8,    X86::SUB64mi8 },
195    { X86::SUB64rr,     X86::SUB64mr },
196    { X86::SUB8ri,      X86::SUB8mi },
197    { X86::SUB8rr,      X86::SUB8mr },
198    { X86::XOR16ri,     X86::XOR16mi },
199    { X86::XOR16ri8,    X86::XOR16mi8 },
200    { X86::XOR16rr,     X86::XOR16mr },
201    { X86::XOR32ri,     X86::XOR32mi },
202    { X86::XOR32ri8,    X86::XOR32mi8 },
203    { X86::XOR32rr,     X86::XOR32mr },
204    { X86::XOR64ri32,   X86::XOR64mi32 },
205    { X86::XOR64ri8,    X86::XOR64mi8 },
206    { X86::XOR64rr,     X86::XOR64mr },
207    { X86::XOR8ri,      X86::XOR8mi },
208    { X86::XOR8rr,      X86::XOR8mr }
209  };
210
211  for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) {
212    unsigned RegOp = OpTbl2Addr[i][0];
213    unsigned MemOp = OpTbl2Addr[i][1];
214    if (!RegOp2MemOpTable2Addr.insert(std::make_pair((unsigned*)RegOp,
215                                                     MemOp)).second)
216      assert(false && "Duplicated entries?");
217    unsigned AuxInfo = 0 | (1 << 4) | (1 << 5); // Index 0,folded load and store
218    if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
219                                                std::make_pair(RegOp,
220                                                              AuxInfo))).second)
221      AmbEntries.push_back(MemOp);
222  }
223
224  // If the third value is 1, then it's folding either a load or a store.
225  static const unsigned OpTbl0[][3] = {
226    { X86::BT16ri8,     X86::BT16mi8, 1 },
227    { X86::BT32ri8,     X86::BT32mi8, 1 },
228    { X86::BT64ri8,     X86::BT64mi8, 1 },
229    { X86::CALL32r,     X86::CALL32m, 1 },
230    { X86::CALL64r,     X86::CALL64m, 1 },
231    { X86::CMP16ri,     X86::CMP16mi, 1 },
232    { X86::CMP16ri8,    X86::CMP16mi8, 1 },
233    { X86::CMP16rr,     X86::CMP16mr, 1 },
234    { X86::CMP32ri,     X86::CMP32mi, 1 },
235    { X86::CMP32ri8,    X86::CMP32mi8, 1 },
236    { X86::CMP32rr,     X86::CMP32mr, 1 },
237    { X86::CMP64ri32,   X86::CMP64mi32, 1 },
238    { X86::CMP64ri8,    X86::CMP64mi8, 1 },
239    { X86::CMP64rr,     X86::CMP64mr, 1 },
240    { X86::CMP8ri,      X86::CMP8mi, 1 },
241    { X86::CMP8rr,      X86::CMP8mr, 1 },
242    { X86::DIV16r,      X86::DIV16m, 1 },
243    { X86::DIV32r,      X86::DIV32m, 1 },
244    { X86::DIV64r,      X86::DIV64m, 1 },
245    { X86::DIV8r,       X86::DIV8m, 1 },
246    { X86::EXTRACTPSrr, X86::EXTRACTPSmr, 0 },
247    { X86::FsMOVAPDrr,  X86::MOVSDmr, 0 },
248    { X86::FsMOVAPSrr,  X86::MOVSSmr, 0 },
249    { X86::IDIV16r,     X86::IDIV16m, 1 },
250    { X86::IDIV32r,     X86::IDIV32m, 1 },
251    { X86::IDIV64r,     X86::IDIV64m, 1 },
252    { X86::IDIV8r,      X86::IDIV8m, 1 },
253    { X86::IMUL16r,     X86::IMUL16m, 1 },
254    { X86::IMUL32r,     X86::IMUL32m, 1 },
255    { X86::IMUL64r,     X86::IMUL64m, 1 },
256    { X86::IMUL8r,      X86::IMUL8m, 1 },
257    { X86::JMP32r,      X86::JMP32m, 1 },
258    { X86::JMP64r,      X86::JMP64m, 1 },
259    { X86::MOV16ri,     X86::MOV16mi, 0 },
260    { X86::MOV16rr,     X86::MOV16mr, 0 },
261    { X86::MOV32ri,     X86::MOV32mi, 0 },
262    { X86::MOV32rr,     X86::MOV32mr, 0 },
263    { X86::MOV64ri32,   X86::MOV64mi32, 0 },
264    { X86::MOV64rr,     X86::MOV64mr, 0 },
265    { X86::MOV8ri,      X86::MOV8mi, 0 },
266    { X86::MOV8rr,      X86::MOV8mr, 0 },
267    { X86::MOV8rr_NOREX, X86::MOV8mr_NOREX, 0 },
268    { X86::MOVAPDrr,    X86::MOVAPDmr, 0 },
269    { X86::MOVAPSrr,    X86::MOVAPSmr, 0 },
270    { X86::MOVDQArr,    X86::MOVDQAmr, 0 },
271    { X86::MOVPDI2DIrr, X86::MOVPDI2DImr, 0 },
272    { X86::MOVPQIto64rr,X86::MOVPQI2QImr, 0 },
273    { X86::MOVPS2SSrr,  X86::MOVPS2SSmr, 0 },
274    { X86::MOVSDrr,     X86::MOVSDmr, 0 },
275    { X86::MOVSDto64rr, X86::MOVSDto64mr, 0 },
276    { X86::MOVSS2DIrr,  X86::MOVSS2DImr, 0 },
277    { X86::MOVSSrr,     X86::MOVSSmr, 0 },
278    { X86::MOVUPDrr,    X86::MOVUPDmr, 0 },
279    { X86::MOVUPSrr,    X86::MOVUPSmr, 0 },
280    { X86::MUL16r,      X86::MUL16m, 1 },
281    { X86::MUL32r,      X86::MUL32m, 1 },
282    { X86::MUL64r,      X86::MUL64m, 1 },
283    { X86::MUL8r,       X86::MUL8m, 1 },
284    { X86::SETAEr,      X86::SETAEm, 0 },
285    { X86::SETAr,       X86::SETAm, 0 },
286    { X86::SETBEr,      X86::SETBEm, 0 },
287    { X86::SETBr,       X86::SETBm, 0 },
288    { X86::SETEr,       X86::SETEm, 0 },
289    { X86::SETGEr,      X86::SETGEm, 0 },
290    { X86::SETGr,       X86::SETGm, 0 },
291    { X86::SETLEr,      X86::SETLEm, 0 },
292    { X86::SETLr,       X86::SETLm, 0 },
293    { X86::SETNEr,      X86::SETNEm, 0 },
294    { X86::SETNOr,      X86::SETNOm, 0 },
295    { X86::SETNPr,      X86::SETNPm, 0 },
296    { X86::SETNSr,      X86::SETNSm, 0 },
297    { X86::SETOr,       X86::SETOm, 0 },
298    { X86::SETPr,       X86::SETPm, 0 },
299    { X86::SETSr,       X86::SETSm, 0 },
300    { X86::TAILJMPr,    X86::TAILJMPm, 1 },
301    { X86::TEST16ri,    X86::TEST16mi, 1 },
302    { X86::TEST32ri,    X86::TEST32mi, 1 },
303    { X86::TEST64ri32,  X86::TEST64mi32, 1 },
304    { X86::TEST8ri,     X86::TEST8mi, 1 }
305  };
306
307  for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) {
308    unsigned RegOp = OpTbl0[i][0];
309    unsigned MemOp = OpTbl0[i][1];
310    if (!RegOp2MemOpTable0.insert(std::make_pair((unsigned*)RegOp,
311                                                 MemOp)).second)
312      assert(false && "Duplicated entries?");
313    unsigned FoldedLoad = OpTbl0[i][2];
314    // Index 0, folded load or store.
315    unsigned AuxInfo = 0 | (FoldedLoad << 4) | ((FoldedLoad^1) << 5);
316    if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
317      if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
318                                     std::make_pair(RegOp, AuxInfo))).second)
319        AmbEntries.push_back(MemOp);
320  }
321
322  static const unsigned OpTbl1[][2] = {
323    { X86::CMP16rr,         X86::CMP16rm },
324    { X86::CMP32rr,         X86::CMP32rm },
325    { X86::CMP64rr,         X86::CMP64rm },
326    { X86::CMP8rr,          X86::CMP8rm },
327    { X86::CVTSD2SSrr,      X86::CVTSD2SSrm },
328    { X86::CVTSI2SD64rr,    X86::CVTSI2SD64rm },
329    { X86::CVTSI2SDrr,      X86::CVTSI2SDrm },
330    { X86::CVTSI2SS64rr,    X86::CVTSI2SS64rm },
331    { X86::CVTSI2SSrr,      X86::CVTSI2SSrm },
332    { X86::CVTSS2SDrr,      X86::CVTSS2SDrm },
333    { X86::CVTTSD2SI64rr,   X86::CVTTSD2SI64rm },
334    { X86::CVTTSD2SIrr,     X86::CVTTSD2SIrm },
335    { X86::CVTTSS2SI64rr,   X86::CVTTSS2SI64rm },
336    { X86::CVTTSS2SIrr,     X86::CVTTSS2SIrm },
337    { X86::FsMOVAPDrr,      X86::MOVSDrm },
338    { X86::FsMOVAPSrr,      X86::MOVSSrm },
339    { X86::IMUL16rri,       X86::IMUL16rmi },
340    { X86::IMUL16rri8,      X86::IMUL16rmi8 },
341    { X86::IMUL32rri,       X86::IMUL32rmi },
342    { X86::IMUL32rri8,      X86::IMUL32rmi8 },
343    { X86::IMUL64rri32,     X86::IMUL64rmi32 },
344    { X86::IMUL64rri8,      X86::IMUL64rmi8 },
345    { X86::Int_CMPSDrr,     X86::Int_CMPSDrm },
346    { X86::Int_CMPSSrr,     X86::Int_CMPSSrm },
347    { X86::Int_COMISDrr,    X86::Int_COMISDrm },
348    { X86::Int_COMISSrr,    X86::Int_COMISSrm },
349    { X86::Int_CVTDQ2PDrr,  X86::Int_CVTDQ2PDrm },
350    { X86::Int_CVTDQ2PSrr,  X86::Int_CVTDQ2PSrm },
351    { X86::Int_CVTPD2DQrr,  X86::Int_CVTPD2DQrm },
352    { X86::Int_CVTPD2PSrr,  X86::Int_CVTPD2PSrm },
353    { X86::Int_CVTPS2DQrr,  X86::Int_CVTPS2DQrm },
354    { X86::Int_CVTPS2PDrr,  X86::Int_CVTPS2PDrm },
355    { X86::Int_CVTSD2SI64rr,X86::Int_CVTSD2SI64rm },
356    { X86::Int_CVTSD2SIrr,  X86::Int_CVTSD2SIrm },
357    { X86::Int_CVTSD2SSrr,  X86::Int_CVTSD2SSrm },
358    { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm },
359    { X86::Int_CVTSI2SDrr,  X86::Int_CVTSI2SDrm },
360    { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm },
361    { X86::Int_CVTSI2SSrr,  X86::Int_CVTSI2SSrm },
362    { X86::Int_CVTSS2SDrr,  X86::Int_CVTSS2SDrm },
363    { X86::Int_CVTSS2SI64rr,X86::Int_CVTSS2SI64rm },
364    { X86::Int_CVTSS2SIrr,  X86::Int_CVTSS2SIrm },
365    { X86::Int_CVTTPD2DQrr, X86::Int_CVTTPD2DQrm },
366    { X86::Int_CVTTPS2DQrr, X86::Int_CVTTPS2DQrm },
367    { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm },
368    { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm },
369    { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm },
370    { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm },
371    { X86::Int_UCOMISDrr,   X86::Int_UCOMISDrm },
372    { X86::Int_UCOMISSrr,   X86::Int_UCOMISSrm },
373    { X86::MOV16rr,         X86::MOV16rm },
374    { X86::MOV32rr,         X86::MOV32rm },
375    { X86::MOV64rr,         X86::MOV64rm },
376    { X86::MOV64toPQIrr,    X86::MOVQI2PQIrm },
377    { X86::MOV64toSDrr,     X86::MOV64toSDrm },
378    { X86::MOV8rr,          X86::MOV8rm },
379    { X86::MOVAPDrr,        X86::MOVAPDrm },
380    { X86::MOVAPSrr,        X86::MOVAPSrm },
381    { X86::MOVDDUPrr,       X86::MOVDDUPrm },
382    { X86::MOVDI2PDIrr,     X86::MOVDI2PDIrm },
383    { X86::MOVDI2SSrr,      X86::MOVDI2SSrm },
384    { X86::MOVDQArr,        X86::MOVDQArm },
385    { X86::MOVSD2PDrr,      X86::MOVSD2PDrm },
386    { X86::MOVSDrr,         X86::MOVSDrm },
387    { X86::MOVSHDUPrr,      X86::MOVSHDUPrm },
388    { X86::MOVSLDUPrr,      X86::MOVSLDUPrm },
389    { X86::MOVSS2PSrr,      X86::MOVSS2PSrm },
390    { X86::MOVSSrr,         X86::MOVSSrm },
391    { X86::MOVSX16rr8,      X86::MOVSX16rm8 },
392    { X86::MOVSX32rr16,     X86::MOVSX32rm16 },
393    { X86::MOVSX32rr8,      X86::MOVSX32rm8 },
394    { X86::MOVSX64rr16,     X86::MOVSX64rm16 },
395    { X86::MOVSX64rr32,     X86::MOVSX64rm32 },
396    { X86::MOVSX64rr8,      X86::MOVSX64rm8 },
397    { X86::MOVUPDrr,        X86::MOVUPDrm },
398    { X86::MOVUPSrr,        X86::MOVUPSrm },
399    { X86::MOVZDI2PDIrr,    X86::MOVZDI2PDIrm },
400    { X86::MOVZQI2PQIrr,    X86::MOVZQI2PQIrm },
401    { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm },
402    { X86::MOVZX16rr8,      X86::MOVZX16rm8 },
403    { X86::MOVZX32rr16,     X86::MOVZX32rm16 },
404    { X86::MOVZX32_NOREXrr8, X86::MOVZX32_NOREXrm8 },
405    { X86::MOVZX32rr8,      X86::MOVZX32rm8 },
406    { X86::MOVZX64rr16,     X86::MOVZX64rm16 },
407    { X86::MOVZX64rr32,     X86::MOVZX64rm32 },
408    { X86::MOVZX64rr8,      X86::MOVZX64rm8 },
409    { X86::PSHUFDri,        X86::PSHUFDmi },
410    { X86::PSHUFHWri,       X86::PSHUFHWmi },
411    { X86::PSHUFLWri,       X86::PSHUFLWmi },
412    { X86::RCPPSr,          X86::RCPPSm },
413    { X86::RCPPSr_Int,      X86::RCPPSm_Int },
414    { X86::RSQRTPSr,        X86::RSQRTPSm },
415    { X86::RSQRTPSr_Int,    X86::RSQRTPSm_Int },
416    { X86::RSQRTSSr,        X86::RSQRTSSm },
417    { X86::RSQRTSSr_Int,    X86::RSQRTSSm_Int },
418    { X86::SQRTPDr,         X86::SQRTPDm },
419    { X86::SQRTPDr_Int,     X86::SQRTPDm_Int },
420    { X86::SQRTPSr,         X86::SQRTPSm },
421    { X86::SQRTPSr_Int,     X86::SQRTPSm_Int },
422    { X86::SQRTSDr,         X86::SQRTSDm },
423    { X86::SQRTSDr_Int,     X86::SQRTSDm_Int },
424    { X86::SQRTSSr,         X86::SQRTSSm },
425    { X86::SQRTSSr_Int,     X86::SQRTSSm_Int },
426    { X86::TEST16rr,        X86::TEST16rm },
427    { X86::TEST32rr,        X86::TEST32rm },
428    { X86::TEST64rr,        X86::TEST64rm },
429    { X86::TEST8rr,         X86::TEST8rm },
430    // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
431    { X86::UCOMISDrr,       X86::UCOMISDrm },
432    { X86::UCOMISSrr,       X86::UCOMISSrm }
433  };
434
435  for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) {
436    unsigned RegOp = OpTbl1[i][0];
437    unsigned MemOp = OpTbl1[i][1];
438    if (!RegOp2MemOpTable1.insert(std::make_pair((unsigned*)RegOp,
439                                                 MemOp)).second)
440      assert(false && "Duplicated entries?");
441    unsigned AuxInfo = 1 | (1 << 4); // Index 1, folded load
442    if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
443      if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
444                                     std::make_pair(RegOp, AuxInfo))).second)
445        AmbEntries.push_back(MemOp);
446  }
447
448  static const unsigned OpTbl2[][2] = {
449    { X86::ADC32rr,         X86::ADC32rm },
450    { X86::ADC64rr,         X86::ADC64rm },
451    { X86::ADD16rr,         X86::ADD16rm },
452    { X86::ADD32rr,         X86::ADD32rm },
453    { X86::ADD64rr,         X86::ADD64rm },
454    { X86::ADD8rr,          X86::ADD8rm },
455    { X86::ADDPDrr,         X86::ADDPDrm },
456    { X86::ADDPSrr,         X86::ADDPSrm },
457    { X86::ADDSDrr,         X86::ADDSDrm },
458    { X86::ADDSSrr,         X86::ADDSSrm },
459    { X86::ADDSUBPDrr,      X86::ADDSUBPDrm },
460    { X86::ADDSUBPSrr,      X86::ADDSUBPSrm },
461    { X86::AND16rr,         X86::AND16rm },
462    { X86::AND32rr,         X86::AND32rm },
463    { X86::AND64rr,         X86::AND64rm },
464    { X86::AND8rr,          X86::AND8rm },
465    { X86::ANDNPDrr,        X86::ANDNPDrm },
466    { X86::ANDNPSrr,        X86::ANDNPSrm },
467    { X86::ANDPDrr,         X86::ANDPDrm },
468    { X86::ANDPSrr,         X86::ANDPSrm },
469    { X86::CMOVA16rr,       X86::CMOVA16rm },
470    { X86::CMOVA32rr,       X86::CMOVA32rm },
471    { X86::CMOVA64rr,       X86::CMOVA64rm },
472    { X86::CMOVAE16rr,      X86::CMOVAE16rm },
473    { X86::CMOVAE32rr,      X86::CMOVAE32rm },
474    { X86::CMOVAE64rr,      X86::CMOVAE64rm },
475    { X86::CMOVB16rr,       X86::CMOVB16rm },
476    { X86::CMOVB32rr,       X86::CMOVB32rm },
477    { X86::CMOVB64rr,       X86::CMOVB64rm },
478    { X86::CMOVBE16rr,      X86::CMOVBE16rm },
479    { X86::CMOVBE32rr,      X86::CMOVBE32rm },
480    { X86::CMOVBE64rr,      X86::CMOVBE64rm },
481    { X86::CMOVE16rr,       X86::CMOVE16rm },
482    { X86::CMOVE32rr,       X86::CMOVE32rm },
483    { X86::CMOVE64rr,       X86::CMOVE64rm },
484    { X86::CMOVG16rr,       X86::CMOVG16rm },
485    { X86::CMOVG32rr,       X86::CMOVG32rm },
486    { X86::CMOVG64rr,       X86::CMOVG64rm },
487    { X86::CMOVGE16rr,      X86::CMOVGE16rm },
488    { X86::CMOVGE32rr,      X86::CMOVGE32rm },
489    { X86::CMOVGE64rr,      X86::CMOVGE64rm },
490    { X86::CMOVL16rr,       X86::CMOVL16rm },
491    { X86::CMOVL32rr,       X86::CMOVL32rm },
492    { X86::CMOVL64rr,       X86::CMOVL64rm },
493    { X86::CMOVLE16rr,      X86::CMOVLE16rm },
494    { X86::CMOVLE32rr,      X86::CMOVLE32rm },
495    { X86::CMOVLE64rr,      X86::CMOVLE64rm },
496    { X86::CMOVNE16rr,      X86::CMOVNE16rm },
497    { X86::CMOVNE32rr,      X86::CMOVNE32rm },
498    { X86::CMOVNE64rr,      X86::CMOVNE64rm },
499    { X86::CMOVNO16rr,      X86::CMOVNO16rm },
500    { X86::CMOVNO32rr,      X86::CMOVNO32rm },
501    { X86::CMOVNO64rr,      X86::CMOVNO64rm },
502    { X86::CMOVNP16rr,      X86::CMOVNP16rm },
503    { X86::CMOVNP32rr,      X86::CMOVNP32rm },
504    { X86::CMOVNP64rr,      X86::CMOVNP64rm },
505    { X86::CMOVNS16rr,      X86::CMOVNS16rm },
506    { X86::CMOVNS32rr,      X86::CMOVNS32rm },
507    { X86::CMOVNS64rr,      X86::CMOVNS64rm },
508    { X86::CMOVO16rr,       X86::CMOVO16rm },
509    { X86::CMOVO32rr,       X86::CMOVO32rm },
510    { X86::CMOVO64rr,       X86::CMOVO64rm },
511    { X86::CMOVP16rr,       X86::CMOVP16rm },
512    { X86::CMOVP32rr,       X86::CMOVP32rm },
513    { X86::CMOVP64rr,       X86::CMOVP64rm },
514    { X86::CMOVS16rr,       X86::CMOVS16rm },
515    { X86::CMOVS32rr,       X86::CMOVS32rm },
516    { X86::CMOVS64rr,       X86::CMOVS64rm },
517    { X86::CMPPDrri,        X86::CMPPDrmi },
518    { X86::CMPPSrri,        X86::CMPPSrmi },
519    { X86::CMPSDrr,         X86::CMPSDrm },
520    { X86::CMPSSrr,         X86::CMPSSrm },
521    { X86::DIVPDrr,         X86::DIVPDrm },
522    { X86::DIVPSrr,         X86::DIVPSrm },
523    { X86::DIVSDrr,         X86::DIVSDrm },
524    { X86::DIVSSrr,         X86::DIVSSrm },
525    { X86::FsANDNPDrr,      X86::FsANDNPDrm },
526    { X86::FsANDNPSrr,      X86::FsANDNPSrm },
527    { X86::FsANDPDrr,       X86::FsANDPDrm },
528    { X86::FsANDPSrr,       X86::FsANDPSrm },
529    { X86::FsORPDrr,        X86::FsORPDrm },
530    { X86::FsORPSrr,        X86::FsORPSrm },
531    { X86::FsXORPDrr,       X86::FsXORPDrm },
532    { X86::FsXORPSrr,       X86::FsXORPSrm },
533    { X86::HADDPDrr,        X86::HADDPDrm },
534    { X86::HADDPSrr,        X86::HADDPSrm },
535    { X86::HSUBPDrr,        X86::HSUBPDrm },
536    { X86::HSUBPSrr,        X86::HSUBPSrm },
537    { X86::IMUL16rr,        X86::IMUL16rm },
538    { X86::IMUL32rr,        X86::IMUL32rm },
539    { X86::IMUL64rr,        X86::IMUL64rm },
540    { X86::MAXPDrr,         X86::MAXPDrm },
541    { X86::MAXPDrr_Int,     X86::MAXPDrm_Int },
542    { X86::MAXPSrr,         X86::MAXPSrm },
543    { X86::MAXPSrr_Int,     X86::MAXPSrm_Int },
544    { X86::MAXSDrr,         X86::MAXSDrm },
545    { X86::MAXSDrr_Int,     X86::MAXSDrm_Int },
546    { X86::MAXSSrr,         X86::MAXSSrm },
547    { X86::MAXSSrr_Int,     X86::MAXSSrm_Int },
548    { X86::MINPDrr,         X86::MINPDrm },
549    { X86::MINPDrr_Int,     X86::MINPDrm_Int },
550    { X86::MINPSrr,         X86::MINPSrm },
551    { X86::MINPSrr_Int,     X86::MINPSrm_Int },
552    { X86::MINSDrr,         X86::MINSDrm },
553    { X86::MINSDrr_Int,     X86::MINSDrm_Int },
554    { X86::MINSSrr,         X86::MINSSrm },
555    { X86::MINSSrr_Int,     X86::MINSSrm_Int },
556    { X86::MULPDrr,         X86::MULPDrm },
557    { X86::MULPSrr,         X86::MULPSrm },
558    { X86::MULSDrr,         X86::MULSDrm },
559    { X86::MULSSrr,         X86::MULSSrm },
560    { X86::OR16rr,          X86::OR16rm },
561    { X86::OR32rr,          X86::OR32rm },
562    { X86::OR64rr,          X86::OR64rm },
563    { X86::OR8rr,           X86::OR8rm },
564    { X86::ORPDrr,          X86::ORPDrm },
565    { X86::ORPSrr,          X86::ORPSrm },
566    { X86::PACKSSDWrr,      X86::PACKSSDWrm },
567    { X86::PACKSSWBrr,      X86::PACKSSWBrm },
568    { X86::PACKUSWBrr,      X86::PACKUSWBrm },
569    { X86::PADDBrr,         X86::PADDBrm },
570    { X86::PADDDrr,         X86::PADDDrm },
571    { X86::PADDQrr,         X86::PADDQrm },
572    { X86::PADDSBrr,        X86::PADDSBrm },
573    { X86::PADDSWrr,        X86::PADDSWrm },
574    { X86::PADDWrr,         X86::PADDWrm },
575    { X86::PANDNrr,         X86::PANDNrm },
576    { X86::PANDrr,          X86::PANDrm },
577    { X86::PAVGBrr,         X86::PAVGBrm },
578    { X86::PAVGWrr,         X86::PAVGWrm },
579    { X86::PCMPEQBrr,       X86::PCMPEQBrm },
580    { X86::PCMPEQDrr,       X86::PCMPEQDrm },
581    { X86::PCMPEQWrr,       X86::PCMPEQWrm },
582    { X86::PCMPGTBrr,       X86::PCMPGTBrm },
583    { X86::PCMPGTDrr,       X86::PCMPGTDrm },
584    { X86::PCMPGTWrr,       X86::PCMPGTWrm },
585    { X86::PINSRWrri,       X86::PINSRWrmi },
586    { X86::PMADDWDrr,       X86::PMADDWDrm },
587    { X86::PMAXSWrr,        X86::PMAXSWrm },
588    { X86::PMAXUBrr,        X86::PMAXUBrm },
589    { X86::PMINSWrr,        X86::PMINSWrm },
590    { X86::PMINUBrr,        X86::PMINUBrm },
591    { X86::PMULDQrr,        X86::PMULDQrm },
592    { X86::PMULHUWrr,       X86::PMULHUWrm },
593    { X86::PMULHWrr,        X86::PMULHWrm },
594    { X86::PMULLDrr,        X86::PMULLDrm },
595    { X86::PMULLDrr_int,    X86::PMULLDrm_int },
596    { X86::PMULLWrr,        X86::PMULLWrm },
597    { X86::PMULUDQrr,       X86::PMULUDQrm },
598    { X86::PORrr,           X86::PORrm },
599    { X86::PSADBWrr,        X86::PSADBWrm },
600    { X86::PSLLDrr,         X86::PSLLDrm },
601    { X86::PSLLQrr,         X86::PSLLQrm },
602    { X86::PSLLWrr,         X86::PSLLWrm },
603    { X86::PSRADrr,         X86::PSRADrm },
604    { X86::PSRAWrr,         X86::PSRAWrm },
605    { X86::PSRLDrr,         X86::PSRLDrm },
606    { X86::PSRLQrr,         X86::PSRLQrm },
607    { X86::PSRLWrr,         X86::PSRLWrm },
608    { X86::PSUBBrr,         X86::PSUBBrm },
609    { X86::PSUBDrr,         X86::PSUBDrm },
610    { X86::PSUBSBrr,        X86::PSUBSBrm },
611    { X86::PSUBSWrr,        X86::PSUBSWrm },
612    { X86::PSUBWrr,         X86::PSUBWrm },
613    { X86::PUNPCKHBWrr,     X86::PUNPCKHBWrm },
614    { X86::PUNPCKHDQrr,     X86::PUNPCKHDQrm },
615    { X86::PUNPCKHQDQrr,    X86::PUNPCKHQDQrm },
616    { X86::PUNPCKHWDrr,     X86::PUNPCKHWDrm },
617    { X86::PUNPCKLBWrr,     X86::PUNPCKLBWrm },
618    { X86::PUNPCKLDQrr,     X86::PUNPCKLDQrm },
619    { X86::PUNPCKLQDQrr,    X86::PUNPCKLQDQrm },
620    { X86::PUNPCKLWDrr,     X86::PUNPCKLWDrm },
621    { X86::PXORrr,          X86::PXORrm },
622    { X86::SBB32rr,         X86::SBB32rm },
623    { X86::SBB64rr,         X86::SBB64rm },
624    { X86::SHUFPDrri,       X86::SHUFPDrmi },
625    { X86::SHUFPSrri,       X86::SHUFPSrmi },
626    { X86::SUB16rr,         X86::SUB16rm },
627    { X86::SUB32rr,         X86::SUB32rm },
628    { X86::SUB64rr,         X86::SUB64rm },
629    { X86::SUB8rr,          X86::SUB8rm },
630    { X86::SUBPDrr,         X86::SUBPDrm },
631    { X86::SUBPSrr,         X86::SUBPSrm },
632    { X86::SUBSDrr,         X86::SUBSDrm },
633    { X86::SUBSSrr,         X86::SUBSSrm },
634    // FIXME: TEST*rr -> swapped operand of TEST*mr.
635    { X86::UNPCKHPDrr,      X86::UNPCKHPDrm },
636    { X86::UNPCKHPSrr,      X86::UNPCKHPSrm },
637    { X86::UNPCKLPDrr,      X86::UNPCKLPDrm },
638    { X86::UNPCKLPSrr,      X86::UNPCKLPSrm },
639    { X86::XOR16rr,         X86::XOR16rm },
640    { X86::XOR32rr,         X86::XOR32rm },
641    { X86::XOR64rr,         X86::XOR64rm },
642    { X86::XOR8rr,          X86::XOR8rm },
643    { X86::XORPDrr,         X86::XORPDrm },
644    { X86::XORPSrr,         X86::XORPSrm }
645  };
646
647  for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) {
648    unsigned RegOp = OpTbl2[i][0];
649    unsigned MemOp = OpTbl2[i][1];
650    if (!RegOp2MemOpTable2.insert(std::make_pair((unsigned*)RegOp,
651                                                 MemOp)).second)
652      assert(false && "Duplicated entries?");
653    unsigned AuxInfo = 2 | (1 << 4); // Index 2, folded load
654    if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
655                                   std::make_pair(RegOp, AuxInfo))).second)
656      AmbEntries.push_back(MemOp);
657  }
658
659  // Remove ambiguous entries.
660  assert(AmbEntries.empty() && "Duplicated entries in unfolding maps?");
661}
662
663bool X86InstrInfo::isMoveInstr(const MachineInstr& MI,
664                               unsigned &SrcReg, unsigned &DstReg,
665                               unsigned &SrcSubIdx, unsigned &DstSubIdx) const {
666  switch (MI.getOpcode()) {
667  default:
668    return false;
669  case X86::MOV8rr:
670  case X86::MOV8rr_NOREX:
671  case X86::MOV16rr:
672  case X86::MOV32rr:
673  case X86::MOV64rr:
674  case X86::MOVSSrr:
675  case X86::MOVSDrr:
676
677  // FP Stack register class copies
678  case X86::MOV_Fp3232: case X86::MOV_Fp6464: case X86::MOV_Fp8080:
679  case X86::MOV_Fp3264: case X86::MOV_Fp3280:
680  case X86::MOV_Fp6432: case X86::MOV_Fp8032:
681
682  case X86::FsMOVAPSrr:
683  case X86::FsMOVAPDrr:
684  case X86::MOVAPSrr:
685  case X86::MOVAPDrr:
686  case X86::MOVDQArr:
687  case X86::MOVSS2PSrr:
688  case X86::MOVSD2PDrr:
689  case X86::MOVPS2SSrr:
690  case X86::MOVPD2SDrr:
691  case X86::MMX_MOVQ64rr:
692    assert(MI.getNumOperands() >= 2 &&
693           MI.getOperand(0).isReg() &&
694           MI.getOperand(1).isReg() &&
695           "invalid register-register move instruction");
696    SrcReg = MI.getOperand(1).getReg();
697    DstReg = MI.getOperand(0).getReg();
698    SrcSubIdx = MI.getOperand(1).getSubReg();
699    DstSubIdx = MI.getOperand(0).getSubReg();
700    return true;
701  }
702}
703
704unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
705                                           int &FrameIndex) const {
706  switch (MI->getOpcode()) {
707  default: break;
708  case X86::MOV8rm:
709  case X86::MOV16rm:
710  case X86::MOV32rm:
711  case X86::MOV64rm:
712  case X86::LD_Fp64m:
713  case X86::MOVSSrm:
714  case X86::MOVSDrm:
715  case X86::MOVAPSrm:
716  case X86::MOVAPDrm:
717  case X86::MOVDQArm:
718  case X86::MMX_MOVD64rm:
719  case X86::MMX_MOVQ64rm:
720    if (MI->getOperand(1).isFI() && MI->getOperand(2).isImm() &&
721        MI->getOperand(3).isReg() && MI->getOperand(4).isImm() &&
722        MI->getOperand(2).getImm() == 1 &&
723        MI->getOperand(3).getReg() == 0 &&
724        MI->getOperand(4).getImm() == 0) {
725      FrameIndex = MI->getOperand(1).getIndex();
726      return MI->getOperand(0).getReg();
727    }
728    break;
729  }
730  return 0;
731}
732
733unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr *MI,
734                                          int &FrameIndex) const {
735  switch (MI->getOpcode()) {
736  default: break;
737  case X86::MOV8mr:
738  case X86::MOV16mr:
739  case X86::MOV32mr:
740  case X86::MOV64mr:
741  case X86::ST_FpP64m:
742  case X86::MOVSSmr:
743  case X86::MOVSDmr:
744  case X86::MOVAPSmr:
745  case X86::MOVAPDmr:
746  case X86::MOVDQAmr:
747  case X86::MMX_MOVD64mr:
748  case X86::MMX_MOVQ64mr:
749  case X86::MMX_MOVNTQmr:
750    if (MI->getOperand(0).isFI() && MI->getOperand(1).isImm() &&
751        MI->getOperand(2).isReg() && MI->getOperand(3).isImm() &&
752        MI->getOperand(1).getImm() == 1 &&
753        MI->getOperand(2).getReg() == 0 &&
754        MI->getOperand(3).getImm() == 0) {
755      FrameIndex = MI->getOperand(0).getIndex();
756      return MI->getOperand(X86AddrNumOperands).getReg();
757    }
758    break;
759  }
760  return 0;
761}
762
763
764/// regIsPICBase - Return true if register is PIC base (i.e.g defined by
765/// X86::MOVPC32r.
766static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) {
767  bool isPICBase = false;
768  for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
769         E = MRI.def_end(); I != E; ++I) {
770    MachineInstr *DefMI = I.getOperand().getParent();
771    if (DefMI->getOpcode() != X86::MOVPC32r)
772      return false;
773    assert(!isPICBase && "More than one PIC base?");
774    isPICBase = true;
775  }
776  return isPICBase;
777}
778
779/// isGVStub - Return true if the GV requires an extra load to get the
780/// real address.
781static inline bool isGVStub(GlobalValue *GV, X86TargetMachine &TM) {
782  return TM.getSubtarget<X86Subtarget>().GVRequiresExtraLoad(GV, TM, false);
783}
784
785bool
786X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI) const {
787  switch (MI->getOpcode()) {
788  default: break;
789    case X86::MOV8rm:
790    case X86::MOV16rm:
791    case X86::MOV32rm:
792    case X86::MOV64rm:
793    case X86::LD_Fp64m:
794    case X86::MOVSSrm:
795    case X86::MOVSDrm:
796    case X86::MOVAPSrm:
797    case X86::MOVAPDrm:
798    case X86::MOVDQArm:
799    case X86::MMX_MOVD64rm:
800    case X86::MMX_MOVQ64rm: {
801      // Loads from constant pools are trivially rematerializable.
802      if (MI->getOperand(1).isReg() &&
803          MI->getOperand(2).isImm() &&
804          MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
805          (MI->getOperand(4).isCPI() ||
806           (MI->getOperand(4).isGlobal() &&
807            isGVStub(MI->getOperand(4).getGlobal(), TM)))) {
808        unsigned BaseReg = MI->getOperand(1).getReg();
809        if (BaseReg == 0)
810          return true;
811        // Allow re-materialization of PIC load.
812        if (!ReMatPICStubLoad && MI->getOperand(4).isGlobal())
813          return false;
814        const MachineFunction &MF = *MI->getParent()->getParent();
815        const MachineRegisterInfo &MRI = MF.getRegInfo();
816        bool isPICBase = false;
817        for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
818               E = MRI.def_end(); I != E; ++I) {
819          MachineInstr *DefMI = I.getOperand().getParent();
820          if (DefMI->getOpcode() != X86::MOVPC32r)
821            return false;
822          assert(!isPICBase && "More than one PIC base?");
823          isPICBase = true;
824        }
825        return isPICBase;
826      }
827      return false;
828    }
829
830     case X86::LEA32r:
831     case X86::LEA64r: {
832       if (MI->getOperand(2).isImm() &&
833           MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
834           !MI->getOperand(4).isReg()) {
835         // lea fi#, lea GV, etc. are all rematerializable.
836         if (!MI->getOperand(1).isReg())
837           return true;
838         unsigned BaseReg = MI->getOperand(1).getReg();
839         if (BaseReg == 0)
840           return true;
841         // Allow re-materialization of lea PICBase + x.
842         const MachineFunction &MF = *MI->getParent()->getParent();
843         const MachineRegisterInfo &MRI = MF.getRegInfo();
844         return regIsPICBase(BaseReg, MRI);
845       }
846       return false;
847     }
848  }
849
850  // All other instructions marked M_REMATERIALIZABLE are always trivially
851  // rematerializable.
852  return true;
853}
854
855/// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction that
856/// would clobber the EFLAGS condition register. Note the result may be
857/// conservative. If it cannot definitely determine the safety after visiting
858/// two instructions it assumes it's not safe.
859static bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
860                                  MachineBasicBlock::iterator I) {
861  // It's always safe to clobber EFLAGS at the end of a block.
862  if (I == MBB.end())
863    return true;
864
865  // For compile time consideration, if we are not able to determine the
866  // safety after visiting 2 instructions, we will assume it's not safe.
867  for (unsigned i = 0; i < 2; ++i) {
868    bool SeenDef = false;
869    for (unsigned j = 0, e = I->getNumOperands(); j != e; ++j) {
870      MachineOperand &MO = I->getOperand(j);
871      if (!MO.isReg())
872        continue;
873      if (MO.getReg() == X86::EFLAGS) {
874        if (MO.isUse())
875          return false;
876        SeenDef = true;
877      }
878    }
879
880    if (SeenDef)
881      // This instruction defines EFLAGS, no need to look any further.
882      return true;
883    ++I;
884
885    // If we make it to the end of the block, it's safe to clobber EFLAGS.
886    if (I == MBB.end())
887      return true;
888  }
889
890  // Conservative answer.
891  return false;
892}
893
894void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
895                                 MachineBasicBlock::iterator I,
896                                 unsigned DestReg,
897                                 const MachineInstr *Orig) const {
898  DebugLoc DL = DebugLoc::getUnknownLoc();
899  if (I != MBB.end()) DL = I->getDebugLoc();
900
901  unsigned SubIdx = Orig->getOperand(0).isReg()
902    ? Orig->getOperand(0).getSubReg() : 0;
903  bool ChangeSubIdx = SubIdx != 0;
904  if (SubIdx && TargetRegisterInfo::isPhysicalRegister(DestReg)) {
905    DestReg = RI.getSubReg(DestReg, SubIdx);
906    SubIdx = 0;
907  }
908
909  // MOV32r0 etc. are implemented with xor which clobbers condition code.
910  // Re-materialize them as movri instructions to avoid side effects.
911  bool Emitted = false;
912  switch (Orig->getOpcode()) {
913  default: break;
914  case X86::MOV8r0:
915  case X86::MOV16r0:
916  case X86::MOV32r0:
917  case X86::MOV64r0: {
918    if (!isSafeToClobberEFLAGS(MBB, I)) {
919      unsigned Opc = 0;
920      switch (Orig->getOpcode()) {
921      default: break;
922      case X86::MOV8r0:  Opc = X86::MOV8ri;  break;
923      case X86::MOV16r0: Opc = X86::MOV16ri; break;
924      case X86::MOV32r0: Opc = X86::MOV32ri; break;
925      case X86::MOV64r0: Opc = X86::MOV64ri32; break;
926      }
927      BuildMI(MBB, I, DL, get(Opc), DestReg).addImm(0);
928      Emitted = true;
929    }
930    break;
931  }
932  }
933
934  if (!Emitted) {
935    MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
936    MI->getOperand(0).setReg(DestReg);
937    MBB.insert(I, MI);
938  }
939
940  if (ChangeSubIdx) {
941    MachineInstr *NewMI = prior(I);
942    NewMI->getOperand(0).setSubReg(SubIdx);
943  }
944}
945
946/// isInvariantLoad - Return true if the specified instruction (which is marked
947/// mayLoad) is loading from a location whose value is invariant across the
948/// function.  For example, loading a value from the constant pool or from
949/// from the argument area of a function if it does not change.  This should
950/// only return true of *all* loads the instruction does are invariant (if it
951/// does multiple loads).
952bool X86InstrInfo::isInvariantLoad(const MachineInstr *MI) const {
953  // This code cares about loads from three cases: constant pool entries,
954  // invariant argument slots, and global stubs.  In order to handle these cases
955  // for all of the myriad of X86 instructions, we just scan for a CP/FI/GV
956  // operand and base our analysis on it.  This is safe because the address of
957  // none of these three cases is ever used as anything other than a load base
958  // and X86 doesn't have any instructions that load from multiple places.
959
960  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
961    const MachineOperand &MO = MI->getOperand(i);
962    // Loads from constant pools are trivially invariant.
963    if (MO.isCPI())
964      return true;
965
966    if (MO.isGlobal())
967      return isGVStub(MO.getGlobal(), TM);
968
969    // If this is a load from an invariant stack slot, the load is a constant.
970    if (MO.isFI()) {
971      const MachineFrameInfo &MFI =
972        *MI->getParent()->getParent()->getFrameInfo();
973      int Idx = MO.getIndex();
974      return MFI.isFixedObjectIndex(Idx) && MFI.isImmutableObjectIndex(Idx);
975    }
976  }
977
978  // All other instances of these instructions are presumed to have other
979  // issues.
980  return false;
981}
982
983/// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that
984/// is not marked dead.
985static bool hasLiveCondCodeDef(MachineInstr *MI) {
986  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
987    MachineOperand &MO = MI->getOperand(i);
988    if (MO.isReg() && MO.isDef() &&
989        MO.getReg() == X86::EFLAGS && !MO.isDead()) {
990      return true;
991    }
992  }
993  return false;
994}
995
996/// convertToThreeAddress - This method must be implemented by targets that
997/// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
998/// may be able to convert a two-address instruction into a true
999/// three-address instruction on demand.  This allows the X86 target (for
1000/// example) to convert ADD and SHL instructions into LEA instructions if they
1001/// would require register copies due to two-addressness.
1002///
1003/// This method returns a null pointer if the transformation cannot be
1004/// performed, otherwise it returns the new instruction.
1005///
1006MachineInstr *
1007X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
1008                                    MachineBasicBlock::iterator &MBBI,
1009                                    LiveVariables *LV) const {
1010  MachineInstr *MI = MBBI;
1011  MachineFunction &MF = *MI->getParent()->getParent();
1012  // All instructions input are two-addr instructions.  Get the known operands.
1013  unsigned Dest = MI->getOperand(0).getReg();
1014  unsigned Src = MI->getOperand(1).getReg();
1015  bool isDead = MI->getOperand(0).isDead();
1016  bool isKill = MI->getOperand(1).isKill();
1017
1018  MachineInstr *NewMI = NULL;
1019  // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's.  When
1020  // we have better subtarget support, enable the 16-bit LEA generation here.
1021  bool DisableLEA16 = true;
1022
1023  unsigned MIOpc = MI->getOpcode();
1024  switch (MIOpc) {
1025  case X86::SHUFPSrri: {
1026    assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!");
1027    if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
1028
1029    unsigned B = MI->getOperand(1).getReg();
1030    unsigned C = MI->getOperand(2).getReg();
1031    if (B != C) return 0;
1032    unsigned A = MI->getOperand(0).getReg();
1033    unsigned M = MI->getOperand(3).getImm();
1034    NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::PSHUFDri))
1035      .addReg(A, true, false, false, isDead)
1036      .addReg(B, false, false, isKill).addImm(M);
1037    break;
1038  }
1039  case X86::SHL64ri: {
1040    assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
1041    // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1042    // the flags produced by a shift yet, so this is safe.
1043    unsigned ShAmt = MI->getOperand(2).getImm();
1044    if (ShAmt == 0 || ShAmt >= 4) return 0;
1045
1046    NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
1047      .addReg(Dest, true, false, false, isDead)
1048      .addReg(0).addImm(1 << ShAmt).addReg(Src, false, false, isKill).addImm(0);
1049    break;
1050  }
1051  case X86::SHL32ri: {
1052    assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
1053    // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1054    // the flags produced by a shift yet, so this is safe.
1055    unsigned ShAmt = MI->getOperand(2).getImm();
1056    if (ShAmt == 0 || ShAmt >= 4) return 0;
1057
1058    unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit() ?
1059      X86::LEA64_32r : X86::LEA32r;
1060    NewMI = BuildMI(MF, MI->getDebugLoc(), get(Opc))
1061      .addReg(Dest, true, false, false, isDead)
1062      .addReg(0).addImm(1 << ShAmt)
1063      .addReg(Src, false, false, isKill).addImm(0);
1064    break;
1065  }
1066  case X86::SHL16ri: {
1067    assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
1068    // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1069    // the flags produced by a shift yet, so this is safe.
1070    unsigned ShAmt = MI->getOperand(2).getImm();
1071    if (ShAmt == 0 || ShAmt >= 4) return 0;
1072
1073    if (DisableLEA16) {
1074      // If 16-bit LEA is disabled, use 32-bit LEA via subregisters.
1075      MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
1076      unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit()
1077        ? X86::LEA64_32r : X86::LEA32r;
1078      unsigned leaInReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
1079      unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
1080
1081      // Build and insert into an implicit UNDEF value. This is OK because
1082      // well be shifting and then extracting the lower 16-bits.
1083      BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg);
1084      MachineInstr *InsMI =
1085        BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::INSERT_SUBREG),leaInReg)
1086        .addReg(leaInReg).addReg(Src, false, false, isKill)
1087        .addImm(X86::SUBREG_16BIT);
1088
1089      NewMI = BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(Opc), leaOutReg)
1090        .addReg(0).addImm(1 << ShAmt)
1091        .addReg(leaInReg, false, false, true).addImm(0);
1092
1093      MachineInstr *ExtMI =
1094        BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::EXTRACT_SUBREG))
1095        .addReg(Dest, true, false, false, isDead)
1096        .addReg(leaOutReg, false, false, true).addImm(X86::SUBREG_16BIT);
1097
1098      if (LV) {
1099        // Update live variables
1100        LV->getVarInfo(leaInReg).Kills.push_back(NewMI);
1101        LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI);
1102        if (isKill)
1103          LV->replaceKillInstruction(Src, MI, InsMI);
1104        if (isDead)
1105          LV->replaceKillInstruction(Dest, MI, ExtMI);
1106      }
1107      return ExtMI;
1108    } else {
1109      NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1110        .addReg(Dest, true, false, false, isDead)
1111        .addReg(0).addImm(1 << ShAmt)
1112        .addReg(Src, false, false, isKill).addImm(0);
1113    }
1114    break;
1115  }
1116  default: {
1117    // The following opcodes also sets the condition code register(s). Only
1118    // convert them to equivalent lea if the condition code register def's
1119    // are dead!
1120    if (hasLiveCondCodeDef(MI))
1121      return 0;
1122
1123    bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
1124    switch (MIOpc) {
1125    default: return 0;
1126    case X86::INC64r:
1127    case X86::INC32r:
1128    case X86::INC64_32r: {
1129      assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
1130      unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
1131        : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
1132      NewMI = addLeaRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
1133                              .addReg(Dest, true, false, false, isDead),
1134                              Src, isKill, 1);
1135      break;
1136    }
1137    case X86::INC16r:
1138    case X86::INC64_16r:
1139      if (DisableLEA16) return 0;
1140      assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
1141      NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1142                           .addReg(Dest, true, false, false, isDead),
1143                           Src, isKill, 1);
1144      break;
1145    case X86::DEC64r:
1146    case X86::DEC32r:
1147    case X86::DEC64_32r: {
1148      assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
1149      unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
1150        : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
1151      NewMI = addLeaRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
1152                              .addReg(Dest, true, false, false, isDead),
1153                              Src, isKill, -1);
1154      break;
1155    }
1156    case X86::DEC16r:
1157    case X86::DEC64_16r:
1158      if (DisableLEA16) return 0;
1159      assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
1160      NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1161                           .addReg(Dest, true, false, false, isDead),
1162                           Src, isKill, -1);
1163      break;
1164    case X86::ADD64rr:
1165    case X86::ADD32rr: {
1166      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1167      unsigned Opc = MIOpc == X86::ADD64rr ? X86::LEA64r
1168        : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
1169      unsigned Src2 = MI->getOperand(2).getReg();
1170      bool isKill2 = MI->getOperand(2).isKill();
1171      NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(Opc))
1172                        .addReg(Dest, true, false, false, isDead),
1173                        Src, isKill, Src2, isKill2);
1174      if (LV && isKill2)
1175        LV->replaceKillInstruction(Src2, MI, NewMI);
1176      break;
1177    }
1178    case X86::ADD16rr: {
1179      if (DisableLEA16) return 0;
1180      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1181      unsigned Src2 = MI->getOperand(2).getReg();
1182      bool isKill2 = MI->getOperand(2).isKill();
1183      NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1184                        .addReg(Dest, true, false, false, isDead),
1185                        Src, isKill, Src2, isKill2);
1186      if (LV && isKill2)
1187        LV->replaceKillInstruction(Src2, MI, NewMI);
1188      break;
1189    }
1190    case X86::ADD64ri32:
1191    case X86::ADD64ri8:
1192      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1193      if (MI->getOperand(2).isImm())
1194        NewMI = addLeaRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
1195                                .addReg(Dest, true, false, false, isDead),
1196                                Src, isKill, MI->getOperand(2).getImm());
1197      break;
1198    case X86::ADD32ri:
1199    case X86::ADD32ri8:
1200      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1201      if (MI->getOperand(2).isImm()) {
1202        unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
1203        NewMI = addLeaRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
1204                                .addReg(Dest, true, false, false, isDead),
1205                                Src, isKill, MI->getOperand(2).getImm());
1206      }
1207      break;
1208    case X86::ADD16ri:
1209    case X86::ADD16ri8:
1210      if (DisableLEA16) return 0;
1211      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1212      if (MI->getOperand(2).isImm())
1213        NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1214                             .addReg(Dest, true, false, false, isDead),
1215                             Src, isKill, MI->getOperand(2).getImm());
1216      break;
1217    case X86::SHL16ri:
1218      if (DisableLEA16) return 0;
1219    case X86::SHL32ri:
1220    case X86::SHL64ri: {
1221      assert(MI->getNumOperands() >= 3 && MI->getOperand(2).isImm() &&
1222             "Unknown shl instruction!");
1223      unsigned ShAmt = MI->getOperand(2).getImm();
1224      if (ShAmt == 1 || ShAmt == 2 || ShAmt == 3) {
1225        X86AddressMode AM;
1226        AM.Scale = 1 << ShAmt;
1227        AM.IndexReg = Src;
1228        unsigned Opc = MIOpc == X86::SHL64ri ? X86::LEA64r
1229          : (MIOpc == X86::SHL32ri
1230             ? (is64Bit ? X86::LEA64_32r : X86::LEA32r) : X86::LEA16r);
1231        NewMI = addFullAddress(BuildMI(MF, MI->getDebugLoc(), get(Opc))
1232                               .addReg(Dest, true, false, false, isDead), AM);
1233        if (isKill)
1234          NewMI->getOperand(3).setIsKill(true);
1235      }
1236      break;
1237    }
1238    }
1239  }
1240  }
1241
1242  if (!NewMI) return 0;
1243
1244  if (LV) {  // Update live variables
1245    if (isKill)
1246      LV->replaceKillInstruction(Src, MI, NewMI);
1247    if (isDead)
1248      LV->replaceKillInstruction(Dest, MI, NewMI);
1249  }
1250
1251  MFI->insert(MBBI, NewMI);          // Insert the new inst
1252  return NewMI;
1253}
1254
1255/// commuteInstruction - We have a few instructions that must be hacked on to
1256/// commute them.
1257///
1258MachineInstr *
1259X86InstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
1260  switch (MI->getOpcode()) {
1261  case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
1262  case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
1263  case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
1264  case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
1265  case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
1266  case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
1267    unsigned Opc;
1268    unsigned Size;
1269    switch (MI->getOpcode()) {
1270    default: assert(0 && "Unreachable!");
1271    case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
1272    case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
1273    case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
1274    case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
1275    case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
1276    case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
1277    }
1278    unsigned Amt = MI->getOperand(3).getImm();
1279    if (NewMI) {
1280      MachineFunction &MF = *MI->getParent()->getParent();
1281      MI = MF.CloneMachineInstr(MI);
1282      NewMI = false;
1283    }
1284    MI->setDesc(get(Opc));
1285    MI->getOperand(3).setImm(Size-Amt);
1286    return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
1287  }
1288  case X86::CMOVB16rr:
1289  case X86::CMOVB32rr:
1290  case X86::CMOVB64rr:
1291  case X86::CMOVAE16rr:
1292  case X86::CMOVAE32rr:
1293  case X86::CMOVAE64rr:
1294  case X86::CMOVE16rr:
1295  case X86::CMOVE32rr:
1296  case X86::CMOVE64rr:
1297  case X86::CMOVNE16rr:
1298  case X86::CMOVNE32rr:
1299  case X86::CMOVNE64rr:
1300  case X86::CMOVBE16rr:
1301  case X86::CMOVBE32rr:
1302  case X86::CMOVBE64rr:
1303  case X86::CMOVA16rr:
1304  case X86::CMOVA32rr:
1305  case X86::CMOVA64rr:
1306  case X86::CMOVL16rr:
1307  case X86::CMOVL32rr:
1308  case X86::CMOVL64rr:
1309  case X86::CMOVGE16rr:
1310  case X86::CMOVGE32rr:
1311  case X86::CMOVGE64rr:
1312  case X86::CMOVLE16rr:
1313  case X86::CMOVLE32rr:
1314  case X86::CMOVLE64rr:
1315  case X86::CMOVG16rr:
1316  case X86::CMOVG32rr:
1317  case X86::CMOVG64rr:
1318  case X86::CMOVS16rr:
1319  case X86::CMOVS32rr:
1320  case X86::CMOVS64rr:
1321  case X86::CMOVNS16rr:
1322  case X86::CMOVNS32rr:
1323  case X86::CMOVNS64rr:
1324  case X86::CMOVP16rr:
1325  case X86::CMOVP32rr:
1326  case X86::CMOVP64rr:
1327  case X86::CMOVNP16rr:
1328  case X86::CMOVNP32rr:
1329  case X86::CMOVNP64rr:
1330  case X86::CMOVO16rr:
1331  case X86::CMOVO32rr:
1332  case X86::CMOVO64rr:
1333  case X86::CMOVNO16rr:
1334  case X86::CMOVNO32rr:
1335  case X86::CMOVNO64rr: {
1336    unsigned Opc = 0;
1337    switch (MI->getOpcode()) {
1338    default: break;
1339    case X86::CMOVB16rr:  Opc = X86::CMOVAE16rr; break;
1340    case X86::CMOVB32rr:  Opc = X86::CMOVAE32rr; break;
1341    case X86::CMOVB64rr:  Opc = X86::CMOVAE64rr; break;
1342    case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break;
1343    case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break;
1344    case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break;
1345    case X86::CMOVE16rr:  Opc = X86::CMOVNE16rr; break;
1346    case X86::CMOVE32rr:  Opc = X86::CMOVNE32rr; break;
1347    case X86::CMOVE64rr:  Opc = X86::CMOVNE64rr; break;
1348    case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break;
1349    case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break;
1350    case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break;
1351    case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break;
1352    case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break;
1353    case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break;
1354    case X86::CMOVA16rr:  Opc = X86::CMOVBE16rr; break;
1355    case X86::CMOVA32rr:  Opc = X86::CMOVBE32rr; break;
1356    case X86::CMOVA64rr:  Opc = X86::CMOVBE64rr; break;
1357    case X86::CMOVL16rr:  Opc = X86::CMOVGE16rr; break;
1358    case X86::CMOVL32rr:  Opc = X86::CMOVGE32rr; break;
1359    case X86::CMOVL64rr:  Opc = X86::CMOVGE64rr; break;
1360    case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break;
1361    case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break;
1362    case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break;
1363    case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break;
1364    case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break;
1365    case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break;
1366    case X86::CMOVG16rr:  Opc = X86::CMOVLE16rr; break;
1367    case X86::CMOVG32rr:  Opc = X86::CMOVLE32rr; break;
1368    case X86::CMOVG64rr:  Opc = X86::CMOVLE64rr; break;
1369    case X86::CMOVS16rr:  Opc = X86::CMOVNS16rr; break;
1370    case X86::CMOVS32rr:  Opc = X86::CMOVNS32rr; break;
1371    case X86::CMOVS64rr:  Opc = X86::CMOVNS32rr; break;
1372    case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break;
1373    case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break;
1374    case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break;
1375    case X86::CMOVP16rr:  Opc = X86::CMOVNP16rr; break;
1376    case X86::CMOVP32rr:  Opc = X86::CMOVNP32rr; break;
1377    case X86::CMOVP64rr:  Opc = X86::CMOVNP32rr; break;
1378    case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break;
1379    case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break;
1380    case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break;
1381    case X86::CMOVO16rr:  Opc = X86::CMOVNO16rr; break;
1382    case X86::CMOVO32rr:  Opc = X86::CMOVNO32rr; break;
1383    case X86::CMOVO64rr:  Opc = X86::CMOVNO32rr; break;
1384    case X86::CMOVNO16rr: Opc = X86::CMOVO16rr; break;
1385    case X86::CMOVNO32rr: Opc = X86::CMOVO32rr; break;
1386    case X86::CMOVNO64rr: Opc = X86::CMOVO64rr; break;
1387    }
1388    if (NewMI) {
1389      MachineFunction &MF = *MI->getParent()->getParent();
1390      MI = MF.CloneMachineInstr(MI);
1391      NewMI = false;
1392    }
1393    MI->setDesc(get(Opc));
1394    // Fallthrough intended.
1395  }
1396  default:
1397    return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
1398  }
1399}
1400
1401static X86::CondCode GetCondFromBranchOpc(unsigned BrOpc) {
1402  switch (BrOpc) {
1403  default: return X86::COND_INVALID;
1404  case X86::JE:  return X86::COND_E;
1405  case X86::JNE: return X86::COND_NE;
1406  case X86::JL:  return X86::COND_L;
1407  case X86::JLE: return X86::COND_LE;
1408  case X86::JG:  return X86::COND_G;
1409  case X86::JGE: return X86::COND_GE;
1410  case X86::JB:  return X86::COND_B;
1411  case X86::JBE: return X86::COND_BE;
1412  case X86::JA:  return X86::COND_A;
1413  case X86::JAE: return X86::COND_AE;
1414  case X86::JS:  return X86::COND_S;
1415  case X86::JNS: return X86::COND_NS;
1416  case X86::JP:  return X86::COND_P;
1417  case X86::JNP: return X86::COND_NP;
1418  case X86::JO:  return X86::COND_O;
1419  case X86::JNO: return X86::COND_NO;
1420  }
1421}
1422
1423unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
1424  switch (CC) {
1425  default: assert(0 && "Illegal condition code!");
1426  case X86::COND_E:  return X86::JE;
1427  case X86::COND_NE: return X86::JNE;
1428  case X86::COND_L:  return X86::JL;
1429  case X86::COND_LE: return X86::JLE;
1430  case X86::COND_G:  return X86::JG;
1431  case X86::COND_GE: return X86::JGE;
1432  case X86::COND_B:  return X86::JB;
1433  case X86::COND_BE: return X86::JBE;
1434  case X86::COND_A:  return X86::JA;
1435  case X86::COND_AE: return X86::JAE;
1436  case X86::COND_S:  return X86::JS;
1437  case X86::COND_NS: return X86::JNS;
1438  case X86::COND_P:  return X86::JP;
1439  case X86::COND_NP: return X86::JNP;
1440  case X86::COND_O:  return X86::JO;
1441  case X86::COND_NO: return X86::JNO;
1442  }
1443}
1444
1445/// GetOppositeBranchCondition - Return the inverse of the specified condition,
1446/// e.g. turning COND_E to COND_NE.
1447X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
1448  switch (CC) {
1449  default: assert(0 && "Illegal condition code!");
1450  case X86::COND_E:  return X86::COND_NE;
1451  case X86::COND_NE: return X86::COND_E;
1452  case X86::COND_L:  return X86::COND_GE;
1453  case X86::COND_LE: return X86::COND_G;
1454  case X86::COND_G:  return X86::COND_LE;
1455  case X86::COND_GE: return X86::COND_L;
1456  case X86::COND_B:  return X86::COND_AE;
1457  case X86::COND_BE: return X86::COND_A;
1458  case X86::COND_A:  return X86::COND_BE;
1459  case X86::COND_AE: return X86::COND_B;
1460  case X86::COND_S:  return X86::COND_NS;
1461  case X86::COND_NS: return X86::COND_S;
1462  case X86::COND_P:  return X86::COND_NP;
1463  case X86::COND_NP: return X86::COND_P;
1464  case X86::COND_O:  return X86::COND_NO;
1465  case X86::COND_NO: return X86::COND_O;
1466  }
1467}
1468
1469bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
1470  const TargetInstrDesc &TID = MI->getDesc();
1471  if (!TID.isTerminator()) return false;
1472
1473  // Conditional branch is a special case.
1474  if (TID.isBranch() && !TID.isBarrier())
1475    return true;
1476  if (!TID.isPredicable())
1477    return true;
1478  return !isPredicated(MI);
1479}
1480
1481// For purposes of branch analysis do not count FP_REG_KILL as a terminator.
1482static bool isBrAnalysisUnpredicatedTerminator(const MachineInstr *MI,
1483                                               const X86InstrInfo &TII) {
1484  if (MI->getOpcode() == X86::FP_REG_KILL)
1485    return false;
1486  return TII.isUnpredicatedTerminator(MI);
1487}
1488
1489bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
1490                                 MachineBasicBlock *&TBB,
1491                                 MachineBasicBlock *&FBB,
1492                                 SmallVectorImpl<MachineOperand> &Cond,
1493                                 bool AllowModify) const {
1494  // Start from the bottom of the block and work up, examining the
1495  // terminator instructions.
1496  MachineBasicBlock::iterator I = MBB.end();
1497  while (I != MBB.begin()) {
1498    --I;
1499    // Working from the bottom, when we see a non-terminator
1500    // instruction, we're done.
1501    if (!isBrAnalysisUnpredicatedTerminator(I, *this))
1502      break;
1503    // A terminator that isn't a branch can't easily be handled
1504    // by this analysis.
1505    if (!I->getDesc().isBranch())
1506      return true;
1507    // Handle unconditional branches.
1508    if (I->getOpcode() == X86::JMP) {
1509      if (!AllowModify) {
1510        TBB = I->getOperand(0).getMBB();
1511        return false;
1512      }
1513
1514      // If the block has any instructions after a JMP, delete them.
1515      while (next(I) != MBB.end())
1516        next(I)->eraseFromParent();
1517      Cond.clear();
1518      FBB = 0;
1519      // Delete the JMP if it's equivalent to a fall-through.
1520      if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
1521        TBB = 0;
1522        I->eraseFromParent();
1523        I = MBB.end();
1524        continue;
1525      }
1526      // TBB is used to indicate the unconditinal destination.
1527      TBB = I->getOperand(0).getMBB();
1528      continue;
1529    }
1530    // Handle conditional branches.
1531    X86::CondCode BranchCode = GetCondFromBranchOpc(I->getOpcode());
1532    if (BranchCode == X86::COND_INVALID)
1533      return true;  // Can't handle indirect branch.
1534    // Working from the bottom, handle the first conditional branch.
1535    if (Cond.empty()) {
1536      FBB = TBB;
1537      TBB = I->getOperand(0).getMBB();
1538      Cond.push_back(MachineOperand::CreateImm(BranchCode));
1539      continue;
1540    }
1541    // Handle subsequent conditional branches. Only handle the case
1542    // where all conditional branches branch to the same destination
1543    // and their condition opcodes fit one of the special
1544    // multi-branch idioms.
1545    assert(Cond.size() == 1);
1546    assert(TBB);
1547    // Only handle the case where all conditional branches branch to
1548    // the same destination.
1549    if (TBB != I->getOperand(0).getMBB())
1550      return true;
1551    X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
1552    // If the conditions are the same, we can leave them alone.
1553    if (OldBranchCode == BranchCode)
1554      continue;
1555    // If they differ, see if they fit one of the known patterns.
1556    // Theoretically we could handle more patterns here, but
1557    // we shouldn't expect to see them if instruction selection
1558    // has done a reasonable job.
1559    if ((OldBranchCode == X86::COND_NP &&
1560         BranchCode == X86::COND_E) ||
1561        (OldBranchCode == X86::COND_E &&
1562         BranchCode == X86::COND_NP))
1563      BranchCode = X86::COND_NP_OR_E;
1564    else if ((OldBranchCode == X86::COND_P &&
1565              BranchCode == X86::COND_NE) ||
1566             (OldBranchCode == X86::COND_NE &&
1567              BranchCode == X86::COND_P))
1568      BranchCode = X86::COND_NE_OR_P;
1569    else
1570      return true;
1571    // Update the MachineOperand.
1572    Cond[0].setImm(BranchCode);
1573  }
1574
1575  return false;
1576}
1577
1578unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
1579  MachineBasicBlock::iterator I = MBB.end();
1580  unsigned Count = 0;
1581
1582  while (I != MBB.begin()) {
1583    --I;
1584    if (I->getOpcode() != X86::JMP &&
1585        GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
1586      break;
1587    // Remove the branch.
1588    I->eraseFromParent();
1589    I = MBB.end();
1590    ++Count;
1591  }
1592
1593  return Count;
1594}
1595
1596unsigned
1597X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
1598                           MachineBasicBlock *FBB,
1599                           const SmallVectorImpl<MachineOperand> &Cond) const {
1600  // FIXME this should probably have a DebugLoc operand
1601  DebugLoc dl = DebugLoc::getUnknownLoc();
1602  // Shouldn't be a fall through.
1603  assert(TBB && "InsertBranch must not be told to insert a fallthrough");
1604  assert((Cond.size() == 1 || Cond.size() == 0) &&
1605         "X86 branch conditions have one component!");
1606
1607  if (Cond.empty()) {
1608    // Unconditional branch?
1609    assert(!FBB && "Unconditional branch with multiple successors!");
1610    BuildMI(&MBB, dl, get(X86::JMP)).addMBB(TBB);
1611    return 1;
1612  }
1613
1614  // Conditional branch.
1615  unsigned Count = 0;
1616  X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
1617  switch (CC) {
1618  case X86::COND_NP_OR_E:
1619    // Synthesize NP_OR_E with two branches.
1620    BuildMI(&MBB, dl, get(X86::JNP)).addMBB(TBB);
1621    ++Count;
1622    BuildMI(&MBB, dl, get(X86::JE)).addMBB(TBB);
1623    ++Count;
1624    break;
1625  case X86::COND_NE_OR_P:
1626    // Synthesize NE_OR_P with two branches.
1627    BuildMI(&MBB, dl, get(X86::JNE)).addMBB(TBB);
1628    ++Count;
1629    BuildMI(&MBB, dl, get(X86::JP)).addMBB(TBB);
1630    ++Count;
1631    break;
1632  default: {
1633    unsigned Opc = GetCondBranchFromCond(CC);
1634    BuildMI(&MBB, dl, get(Opc)).addMBB(TBB);
1635    ++Count;
1636  }
1637  }
1638  if (FBB) {
1639    // Two-way Conditional branch. Insert the second branch.
1640    BuildMI(&MBB, dl, get(X86::JMP)).addMBB(FBB);
1641    ++Count;
1642  }
1643  return Count;
1644}
1645
1646/// isHReg - Test if the given register is a physical h register.
1647static bool isHReg(unsigned Reg) {
1648  return Reg == X86::AH || Reg == X86::BH || Reg == X86::CH || Reg == X86::DH;
1649}
1650
1651bool X86InstrInfo::copyRegToReg(MachineBasicBlock &MBB,
1652                                MachineBasicBlock::iterator MI,
1653                                unsigned DestReg, unsigned SrcReg,
1654                                const TargetRegisterClass *DestRC,
1655                                const TargetRegisterClass *SrcRC) const {
1656  DebugLoc DL = DebugLoc::getUnknownLoc();
1657  if (MI != MBB.end()) DL = MI->getDebugLoc();
1658
1659  if (DestRC == SrcRC) {
1660    unsigned Opc;
1661    if (DestRC == &X86::GR64RegClass) {
1662      Opc = X86::MOV64rr;
1663    } else if (DestRC == &X86::GR32RegClass) {
1664      Opc = X86::MOV32rr;
1665    } else if (DestRC == &X86::GR16RegClass) {
1666      Opc = X86::MOV16rr;
1667    } else if (DestRC == &X86::GR8RegClass) {
1668      // Copying two or from a physical H register on x86-64 requires a NOREX
1669      // move.  Otherwise use a normal move.
1670      if ((isHReg(DestReg) || isHReg(SrcReg)) &&
1671          TM.getSubtarget<X86Subtarget>().is64Bit())
1672        Opc = X86::MOV8rr_NOREX;
1673      else
1674        Opc = X86::MOV8rr;
1675    } else if (DestRC == &X86::GR64_RegClass) {
1676      Opc = X86::MOV64rr;
1677    } else if (DestRC == &X86::GR32_RegClass) {
1678      Opc = X86::MOV32rr;
1679    } else if (DestRC == &X86::GR16_RegClass) {
1680      Opc = X86::MOV16rr;
1681    } else if (DestRC == &X86::GR8_RegClass) {
1682      Opc = X86::MOV8rr;
1683    } else if (DestRC == &X86::GR64_NOREXRegClass) {
1684      Opc = X86::MOV64rr;
1685    } else if (DestRC == &X86::GR32_NOREXRegClass) {
1686      Opc = X86::MOV32rr;
1687    } else if (DestRC == &X86::GR16_NOREXRegClass) {
1688      Opc = X86::MOV16rr;
1689    } else if (DestRC == &X86::GR8_NOREXRegClass) {
1690      Opc = X86::MOV8rr;
1691    } else if (DestRC == &X86::RFP32RegClass) {
1692      Opc = X86::MOV_Fp3232;
1693    } else if (DestRC == &X86::RFP64RegClass || DestRC == &X86::RSTRegClass) {
1694      Opc = X86::MOV_Fp6464;
1695    } else if (DestRC == &X86::RFP80RegClass) {
1696      Opc = X86::MOV_Fp8080;
1697    } else if (DestRC == &X86::FR32RegClass) {
1698      Opc = X86::FsMOVAPSrr;
1699    } else if (DestRC == &X86::FR64RegClass) {
1700      Opc = X86::FsMOVAPDrr;
1701    } else if (DestRC == &X86::VR128RegClass) {
1702      Opc = X86::MOVAPSrr;
1703    } else if (DestRC == &X86::VR64RegClass) {
1704      Opc = X86::MMX_MOVQ64rr;
1705    } else {
1706      return false;
1707    }
1708    BuildMI(MBB, MI, DL, get(Opc), DestReg).addReg(SrcReg);
1709    return true;
1710  }
1711
1712  // Moving EFLAGS to / from another register requires a push and a pop.
1713  if (SrcRC == &X86::CCRRegClass) {
1714    if (SrcReg != X86::EFLAGS)
1715      return false;
1716    if (DestRC == &X86::GR64RegClass) {
1717      BuildMI(MBB, MI, DL, get(X86::PUSHFQ));
1718      BuildMI(MBB, MI, DL, get(X86::POP64r), DestReg);
1719      return true;
1720    } else if (DestRC == &X86::GR32RegClass) {
1721      BuildMI(MBB, MI, DL, get(X86::PUSHFD));
1722      BuildMI(MBB, MI, DL, get(X86::POP32r), DestReg);
1723      return true;
1724    }
1725  } else if (DestRC == &X86::CCRRegClass) {
1726    if (DestReg != X86::EFLAGS)
1727      return false;
1728    if (SrcRC == &X86::GR64RegClass) {
1729      BuildMI(MBB, MI, DL, get(X86::PUSH64r)).addReg(SrcReg);
1730      BuildMI(MBB, MI, DL, get(X86::POPFQ));
1731      return true;
1732    } else if (SrcRC == &X86::GR32RegClass) {
1733      BuildMI(MBB, MI, DL, get(X86::PUSH32r)).addReg(SrcReg);
1734      BuildMI(MBB, MI, DL, get(X86::POPFD));
1735      return true;
1736    }
1737  }
1738
1739  // Moving from ST(0) turns into FpGET_ST0_32 etc.
1740  if (SrcRC == &X86::RSTRegClass) {
1741    // Copying from ST(0)/ST(1).
1742    if (SrcReg != X86::ST0 && SrcReg != X86::ST1)
1743      // Can only copy from ST(0)/ST(1) right now
1744      return false;
1745    bool isST0 = SrcReg == X86::ST0;
1746    unsigned Opc;
1747    if (DestRC == &X86::RFP32RegClass)
1748      Opc = isST0 ? X86::FpGET_ST0_32 : X86::FpGET_ST1_32;
1749    else if (DestRC == &X86::RFP64RegClass)
1750      Opc = isST0 ? X86::FpGET_ST0_64 : X86::FpGET_ST1_64;
1751    else {
1752      if (DestRC != &X86::RFP80RegClass)
1753        return false;
1754      Opc = isST0 ? X86::FpGET_ST0_80 : X86::FpGET_ST1_80;
1755    }
1756    BuildMI(MBB, MI, DL, get(Opc), DestReg);
1757    return true;
1758  }
1759
1760  // Moving to ST(0) turns into FpSET_ST0_32 etc.
1761  if (DestRC == &X86::RSTRegClass) {
1762    // Copying to ST(0) / ST(1).
1763    if (DestReg != X86::ST0 && DestReg != X86::ST1)
1764      // Can only copy to TOS right now
1765      return false;
1766    bool isST0 = DestReg == X86::ST0;
1767    unsigned Opc;
1768    if (SrcRC == &X86::RFP32RegClass)
1769      Opc = isST0 ? X86::FpSET_ST0_32 : X86::FpSET_ST1_32;
1770    else if (SrcRC == &X86::RFP64RegClass)
1771      Opc = isST0 ? X86::FpSET_ST0_64 : X86::FpSET_ST1_64;
1772    else {
1773      if (SrcRC != &X86::RFP80RegClass)
1774        return false;
1775      Opc = isST0 ? X86::FpSET_ST0_80 : X86::FpSET_ST1_80;
1776    }
1777    BuildMI(MBB, MI, DL, get(Opc)).addReg(SrcReg);
1778    return true;
1779  }
1780
1781  // Not yet supported!
1782  return false;
1783}
1784
1785static unsigned getStoreRegOpcode(const TargetRegisterClass *RC,
1786                                  bool isStackAligned) {
1787  unsigned Opc = 0;
1788  if (RC == &X86::GR64RegClass) {
1789    Opc = X86::MOV64mr;
1790  } else if (RC == &X86::GR32RegClass) {
1791    Opc = X86::MOV32mr;
1792  } else if (RC == &X86::GR16RegClass) {
1793    Opc = X86::MOV16mr;
1794  } else if (RC == &X86::GR8RegClass) {
1795    Opc = X86::MOV8mr;
1796  } else if (RC == &X86::GR64_RegClass) {
1797    Opc = X86::MOV64mr;
1798  } else if (RC == &X86::GR32_RegClass) {
1799    Opc = X86::MOV32mr;
1800  } else if (RC == &X86::GR16_RegClass) {
1801    Opc = X86::MOV16mr;
1802  } else if (RC == &X86::GR8_RegClass) {
1803    Opc = X86::MOV8mr;
1804  } else if (RC == &X86::GR64_NOREXRegClass) {
1805    Opc = X86::MOV64mr;
1806  } else if (RC == &X86::GR32_NOREXRegClass) {
1807    Opc = X86::MOV32mr;
1808  } else if (RC == &X86::GR16_NOREXRegClass) {
1809    Opc = X86::MOV16mr;
1810  } else if (RC == &X86::GR8_NOREXRegClass) {
1811    Opc = X86::MOV8mr;
1812  } else if (RC == &X86::RFP80RegClass) {
1813    Opc = X86::ST_FpP80m;   // pops
1814  } else if (RC == &X86::RFP64RegClass) {
1815    Opc = X86::ST_Fp64m;
1816  } else if (RC == &X86::RFP32RegClass) {
1817    Opc = X86::ST_Fp32m;
1818  } else if (RC == &X86::FR32RegClass) {
1819    Opc = X86::MOVSSmr;
1820  } else if (RC == &X86::FR64RegClass) {
1821    Opc = X86::MOVSDmr;
1822  } else if (RC == &X86::VR128RegClass) {
1823    // If stack is realigned we can use aligned stores.
1824    Opc = isStackAligned ? X86::MOVAPSmr : X86::MOVUPSmr;
1825  } else if (RC == &X86::VR64RegClass) {
1826    Opc = X86::MMX_MOVQ64mr;
1827  } else {
1828    assert(0 && "Unknown regclass");
1829    abort();
1830  }
1831
1832  return Opc;
1833}
1834
1835void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
1836                                       MachineBasicBlock::iterator MI,
1837                                       unsigned SrcReg, bool isKill, int FrameIdx,
1838                                       const TargetRegisterClass *RC) const {
1839  const MachineFunction &MF = *MBB.getParent();
1840  bool isAligned = (RI.getStackAlignment() >= 16) ||
1841    RI.needsStackRealignment(MF);
1842  unsigned Opc = getStoreRegOpcode(RC, isAligned);
1843  DebugLoc DL = DebugLoc::getUnknownLoc();
1844  if (MI != MBB.end()) DL = MI->getDebugLoc();
1845  addFrameReference(BuildMI(MBB, MI, DL, get(Opc)), FrameIdx)
1846                      .addReg(SrcReg, false, false, isKill);
1847}
1848
1849void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
1850                                  bool isKill,
1851                                  SmallVectorImpl<MachineOperand> &Addr,
1852                                  const TargetRegisterClass *RC,
1853                                  SmallVectorImpl<MachineInstr*> &NewMIs) const {
1854  bool isAligned = (RI.getStackAlignment() >= 16) ||
1855    RI.needsStackRealignment(MF);
1856  unsigned Opc = getStoreRegOpcode(RC, isAligned);
1857  DebugLoc DL = DebugLoc::getUnknownLoc();
1858  MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc));
1859  for (unsigned i = 0, e = Addr.size(); i != e; ++i)
1860    MIB.addOperand(Addr[i]);
1861  MIB.addReg(SrcReg, false, false, isKill);
1862  NewMIs.push_back(MIB);
1863}
1864
1865static unsigned getLoadRegOpcode(const TargetRegisterClass *RC,
1866                                 bool isStackAligned) {
1867  unsigned Opc = 0;
1868  if (RC == &X86::GR64RegClass) {
1869    Opc = X86::MOV64rm;
1870  } else if (RC == &X86::GR32RegClass) {
1871    Opc = X86::MOV32rm;
1872  } else if (RC == &X86::GR16RegClass) {
1873    Opc = X86::MOV16rm;
1874  } else if (RC == &X86::GR8RegClass) {
1875    Opc = X86::MOV8rm;
1876  } else if (RC == &X86::GR64_RegClass) {
1877    Opc = X86::MOV64rm;
1878  } else if (RC == &X86::GR32_RegClass) {
1879    Opc = X86::MOV32rm;
1880  } else if (RC == &X86::GR16_RegClass) {
1881    Opc = X86::MOV16rm;
1882  } else if (RC == &X86::GR8_RegClass) {
1883    Opc = X86::MOV8rm;
1884  } else if (RC == &X86::GR64_NOREXRegClass) {
1885    Opc = X86::MOV64rm;
1886  } else if (RC == &X86::GR32_NOREXRegClass) {
1887    Opc = X86::MOV32rm;
1888  } else if (RC == &X86::GR16_NOREXRegClass) {
1889    Opc = X86::MOV16rm;
1890  } else if (RC == &X86::GR8_NOREXRegClass) {
1891    Opc = X86::MOV8rm;
1892  } else if (RC == &X86::RFP80RegClass) {
1893    Opc = X86::LD_Fp80m;
1894  } else if (RC == &X86::RFP64RegClass) {
1895    Opc = X86::LD_Fp64m;
1896  } else if (RC == &X86::RFP32RegClass) {
1897    Opc = X86::LD_Fp32m;
1898  } else if (RC == &X86::FR32RegClass) {
1899    Opc = X86::MOVSSrm;
1900  } else if (RC == &X86::FR64RegClass) {
1901    Opc = X86::MOVSDrm;
1902  } else if (RC == &X86::VR128RegClass) {
1903    // If stack is realigned we can use aligned loads.
1904    Opc = isStackAligned ? X86::MOVAPSrm : X86::MOVUPSrm;
1905  } else if (RC == &X86::VR64RegClass) {
1906    Opc = X86::MMX_MOVQ64rm;
1907  } else {
1908    assert(0 && "Unknown regclass");
1909    abort();
1910  }
1911
1912  return Opc;
1913}
1914
1915void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
1916                                        MachineBasicBlock::iterator MI,
1917                                        unsigned DestReg, int FrameIdx,
1918                                        const TargetRegisterClass *RC) const{
1919  const MachineFunction &MF = *MBB.getParent();
1920  bool isAligned = (RI.getStackAlignment() >= 16) ||
1921    RI.needsStackRealignment(MF);
1922  unsigned Opc = getLoadRegOpcode(RC, isAligned);
1923  DebugLoc DL = DebugLoc::getUnknownLoc();
1924  if (MI != MBB.end()) DL = MI->getDebugLoc();
1925  addFrameReference(BuildMI(MBB, MI, DL, get(Opc), DestReg), FrameIdx);
1926}
1927
1928void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
1929                                 SmallVectorImpl<MachineOperand> &Addr,
1930                                 const TargetRegisterClass *RC,
1931                                 SmallVectorImpl<MachineInstr*> &NewMIs) const {
1932  bool isAligned = (RI.getStackAlignment() >= 16) ||
1933    RI.needsStackRealignment(MF);
1934  unsigned Opc = getLoadRegOpcode(RC, isAligned);
1935  DebugLoc DL = DebugLoc::getUnknownLoc();
1936  MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), DestReg);
1937  for (unsigned i = 0, e = Addr.size(); i != e; ++i)
1938    MIB.addOperand(Addr[i]);
1939  NewMIs.push_back(MIB);
1940}
1941
1942bool X86InstrInfo::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
1943                                             MachineBasicBlock::iterator MI,
1944                                const std::vector<CalleeSavedInfo> &CSI) const {
1945  if (CSI.empty())
1946    return false;
1947
1948  DebugLoc DL = DebugLoc::getUnknownLoc();
1949  if (MI != MBB.end()) DL = MI->getDebugLoc();
1950
1951  bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
1952  unsigned SlotSize = is64Bit ? 8 : 4;
1953
1954  MachineFunction &MF = *MBB.getParent();
1955  X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1956  X86FI->setCalleeSavedFrameSize(CSI.size() * SlotSize);
1957
1958  unsigned Opc = is64Bit ? X86::PUSH64r : X86::PUSH32r;
1959  for (unsigned i = CSI.size(); i != 0; --i) {
1960    unsigned Reg = CSI[i-1].getReg();
1961    // Add the callee-saved register as live-in. It's killed at the spill.
1962    MBB.addLiveIn(Reg);
1963    BuildMI(MBB, MI, DL, get(Opc))
1964      .addReg(Reg, /*isDef=*/false, /*isImp=*/false, /*isKill=*/true);
1965  }
1966  return true;
1967}
1968
1969bool X86InstrInfo::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
1970                                               MachineBasicBlock::iterator MI,
1971                                const std::vector<CalleeSavedInfo> &CSI) const {
1972  if (CSI.empty())
1973    return false;
1974
1975  DebugLoc DL = DebugLoc::getUnknownLoc();
1976  if (MI != MBB.end()) DL = MI->getDebugLoc();
1977
1978  bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
1979
1980  unsigned Opc = is64Bit ? X86::POP64r : X86::POP32r;
1981  for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
1982    unsigned Reg = CSI[i].getReg();
1983    BuildMI(MBB, MI, DL, get(Opc), Reg);
1984  }
1985  return true;
1986}
1987
1988static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
1989                                     const SmallVectorImpl<MachineOperand> &MOs,
1990                                     MachineInstr *MI,
1991                                     const TargetInstrInfo &TII) {
1992  // Create the base instruction with the memory operand as the first part.
1993  MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
1994                                              MI->getDebugLoc(), true);
1995  MachineInstrBuilder MIB(NewMI);
1996  unsigned NumAddrOps = MOs.size();
1997  for (unsigned i = 0; i != NumAddrOps; ++i)
1998    MIB.addOperand(MOs[i]);
1999  if (NumAddrOps < 4)  // FrameIndex only
2000    addOffset(MIB, 0);
2001
2002  // Loop over the rest of the ri operands, converting them over.
2003  unsigned NumOps = MI->getDesc().getNumOperands()-2;
2004  for (unsigned i = 0; i != NumOps; ++i) {
2005    MachineOperand &MO = MI->getOperand(i+2);
2006    MIB.addOperand(MO);
2007  }
2008  for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) {
2009    MachineOperand &MO = MI->getOperand(i);
2010    MIB.addOperand(MO);
2011  }
2012  return MIB;
2013}
2014
2015static MachineInstr *FuseInst(MachineFunction &MF,
2016                              unsigned Opcode, unsigned OpNo,
2017                              const SmallVectorImpl<MachineOperand> &MOs,
2018                              MachineInstr *MI, const TargetInstrInfo &TII) {
2019  MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
2020                                              MI->getDebugLoc(), true);
2021  MachineInstrBuilder MIB(NewMI);
2022
2023  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2024    MachineOperand &MO = MI->getOperand(i);
2025    if (i == OpNo) {
2026      assert(MO.isReg() && "Expected to fold into reg operand!");
2027      unsigned NumAddrOps = MOs.size();
2028      for (unsigned i = 0; i != NumAddrOps; ++i)
2029        MIB.addOperand(MOs[i]);
2030      if (NumAddrOps < 4)  // FrameIndex only
2031        addOffset(MIB, 0);
2032    } else {
2033      MIB.addOperand(MO);
2034    }
2035  }
2036  return MIB;
2037}
2038
2039static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
2040                                const SmallVectorImpl<MachineOperand> &MOs,
2041                                MachineInstr *MI) {
2042  MachineFunction &MF = *MI->getParent()->getParent();
2043  MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), TII.get(Opcode));
2044
2045  unsigned NumAddrOps = MOs.size();
2046  for (unsigned i = 0; i != NumAddrOps; ++i)
2047    MIB.addOperand(MOs[i]);
2048  if (NumAddrOps < 4)  // FrameIndex only
2049    addOffset(MIB, 0);
2050  return MIB.addImm(0);
2051}
2052
2053MachineInstr*
2054X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2055                                    MachineInstr *MI, unsigned i,
2056                                    const SmallVectorImpl<MachineOperand> &MOs) const{
2057  const DenseMap<unsigned*, unsigned> *OpcodeTablePtr = NULL;
2058  bool isTwoAddrFold = false;
2059  unsigned NumOps = MI->getDesc().getNumOperands();
2060  bool isTwoAddr = NumOps > 1 &&
2061    MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
2062
2063  MachineInstr *NewMI = NULL;
2064  // Folding a memory location into the two-address part of a two-address
2065  // instruction is different than folding it other places.  It requires
2066  // replacing the *two* registers with the memory location.
2067  if (isTwoAddr && NumOps >= 2 && i < 2 &&
2068      MI->getOperand(0).isReg() &&
2069      MI->getOperand(1).isReg() &&
2070      MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
2071    OpcodeTablePtr = &RegOp2MemOpTable2Addr;
2072    isTwoAddrFold = true;
2073  } else if (i == 0) { // If operand 0
2074    if (MI->getOpcode() == X86::MOV16r0)
2075      NewMI = MakeM0Inst(*this, X86::MOV16mi, MOs, MI);
2076    else if (MI->getOpcode() == X86::MOV32r0)
2077      NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI);
2078    else if (MI->getOpcode() == X86::MOV64r0)
2079      NewMI = MakeM0Inst(*this, X86::MOV64mi32, MOs, MI);
2080    else if (MI->getOpcode() == X86::MOV8r0)
2081      NewMI = MakeM0Inst(*this, X86::MOV8mi, MOs, MI);
2082    if (NewMI)
2083      return NewMI;
2084
2085    OpcodeTablePtr = &RegOp2MemOpTable0;
2086  } else if (i == 1) {
2087    OpcodeTablePtr = &RegOp2MemOpTable1;
2088  } else if (i == 2) {
2089    OpcodeTablePtr = &RegOp2MemOpTable2;
2090  }
2091
2092  // If table selected...
2093  if (OpcodeTablePtr) {
2094    // Find the Opcode to fuse
2095    DenseMap<unsigned*, unsigned>::iterator I =
2096      OpcodeTablePtr->find((unsigned*)MI->getOpcode());
2097    if (I != OpcodeTablePtr->end()) {
2098      if (isTwoAddrFold)
2099        NewMI = FuseTwoAddrInst(MF, I->second, MOs, MI, *this);
2100      else
2101        NewMI = FuseInst(MF, I->second, i, MOs, MI, *this);
2102      return NewMI;
2103    }
2104  }
2105
2106  // No fusion
2107  if (PrintFailedFusing)
2108    cerr << "We failed to fuse operand " << i << " in " << *MI;
2109  return NULL;
2110}
2111
2112
2113MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2114                                                  MachineInstr *MI,
2115                                                  const SmallVectorImpl<unsigned> &Ops,
2116                                                  int FrameIndex) const {
2117  // Check switch flag
2118  if (NoFusing) return NULL;
2119
2120  const MachineFrameInfo *MFI = MF.getFrameInfo();
2121  unsigned Alignment = MFI->getObjectAlignment(FrameIndex);
2122  // FIXME: Move alignment requirement into tables?
2123  if (Alignment < 16) {
2124    switch (MI->getOpcode()) {
2125    default: break;
2126    // Not always safe to fold movsd into these instructions since their load
2127    // folding variants expects the address to be 16 byte aligned.
2128    case X86::FsANDNPDrr:
2129    case X86::FsANDNPSrr:
2130    case X86::FsANDPDrr:
2131    case X86::FsANDPSrr:
2132    case X86::FsORPDrr:
2133    case X86::FsORPSrr:
2134    case X86::FsXORPDrr:
2135    case X86::FsXORPSrr:
2136      return NULL;
2137    }
2138  }
2139
2140  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2141    unsigned NewOpc = 0;
2142    switch (MI->getOpcode()) {
2143    default: return NULL;
2144    case X86::TEST8rr:  NewOpc = X86::CMP8ri; break;
2145    case X86::TEST16rr: NewOpc = X86::CMP16ri; break;
2146    case X86::TEST32rr: NewOpc = X86::CMP32ri; break;
2147    case X86::TEST64rr: NewOpc = X86::CMP64ri32; break;
2148    }
2149    // Change to CMPXXri r, 0 first.
2150    MI->setDesc(get(NewOpc));
2151    MI->getOperand(1).ChangeToImmediate(0);
2152  } else if (Ops.size() != 1)
2153    return NULL;
2154
2155  SmallVector<MachineOperand,4> MOs;
2156  MOs.push_back(MachineOperand::CreateFI(FrameIndex));
2157  return foldMemoryOperandImpl(MF, MI, Ops[0], MOs);
2158}
2159
2160MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2161                                                  MachineInstr *MI,
2162                                            const SmallVectorImpl<unsigned> &Ops,
2163                                                  MachineInstr *LoadMI) const {
2164  // Check switch flag
2165  if (NoFusing) return NULL;
2166
2167  // Determine the alignment of the load.
2168  unsigned Alignment = 0;
2169  if (LoadMI->hasOneMemOperand())
2170    Alignment = LoadMI->memoperands_begin()->getAlignment();
2171
2172  // FIXME: Move alignment requirement into tables?
2173  if (Alignment < 16) {
2174    switch (MI->getOpcode()) {
2175    default: break;
2176    // Not always safe to fold movsd into these instructions since their load
2177    // folding variants expects the address to be 16 byte aligned.
2178    case X86::FsANDNPDrr:
2179    case X86::FsANDNPSrr:
2180    case X86::FsANDPDrr:
2181    case X86::FsANDPSrr:
2182    case X86::FsORPDrr:
2183    case X86::FsORPSrr:
2184    case X86::FsXORPDrr:
2185    case X86::FsXORPSrr:
2186      return NULL;
2187    }
2188  }
2189
2190  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2191    unsigned NewOpc = 0;
2192    switch (MI->getOpcode()) {
2193    default: return NULL;
2194    case X86::TEST8rr:  NewOpc = X86::CMP8ri; break;
2195    case X86::TEST16rr: NewOpc = X86::CMP16ri; break;
2196    case X86::TEST32rr: NewOpc = X86::CMP32ri; break;
2197    case X86::TEST64rr: NewOpc = X86::CMP64ri32; break;
2198    }
2199    // Change to CMPXXri r, 0 first.
2200    MI->setDesc(get(NewOpc));
2201    MI->getOperand(1).ChangeToImmediate(0);
2202  } else if (Ops.size() != 1)
2203    return NULL;
2204
2205  SmallVector<MachineOperand,X86AddrNumOperands> MOs;
2206  if (LoadMI->getOpcode() == X86::V_SET0 ||
2207      LoadMI->getOpcode() == X86::V_SETALLONES) {
2208    // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure.
2209    // Create a constant-pool entry and operands to load from it.
2210
2211    // x86-32 PIC requires a PIC base register for constant pools.
2212    unsigned PICBase = 0;
2213    if (TM.getRelocationModel() == Reloc::PIC_ &&
2214        !TM.getSubtarget<X86Subtarget>().is64Bit())
2215      // FIXME: PICBase = TM.getInstrInfo()->getGlobalBaseReg(&MF);
2216      // This doesn't work for several reasons.
2217      // 1. GlobalBaseReg may have been spilled.
2218      // 2. It may not be live at MI.
2219      return false;
2220
2221    // Create a v4i32 constant-pool entry.
2222    MachineConstantPool &MCP = *MF.getConstantPool();
2223    const VectorType *Ty = VectorType::get(Type::Int32Ty, 4);
2224    Constant *C = LoadMI->getOpcode() == X86::V_SET0 ?
2225                    ConstantVector::getNullValue(Ty) :
2226                    ConstantVector::getAllOnesValue(Ty);
2227    unsigned CPI = MCP.getConstantPoolIndex(C, 16);
2228
2229    // Create operands to load from the constant pool entry.
2230    MOs.push_back(MachineOperand::CreateReg(PICBase, false));
2231    MOs.push_back(MachineOperand::CreateImm(1));
2232    MOs.push_back(MachineOperand::CreateReg(0, false));
2233    MOs.push_back(MachineOperand::CreateCPI(CPI, 0));
2234    MOs.push_back(MachineOperand::CreateReg(0, false));
2235  } else {
2236    // Folding a normal load. Just copy the load's address operands.
2237    unsigned NumOps = LoadMI->getDesc().getNumOperands();
2238    for (unsigned i = NumOps - X86AddrNumOperands; i != NumOps; ++i)
2239      MOs.push_back(LoadMI->getOperand(i));
2240  }
2241  return foldMemoryOperandImpl(MF, MI, Ops[0], MOs);
2242}
2243
2244
2245bool X86InstrInfo::canFoldMemoryOperand(const MachineInstr *MI,
2246                                  const SmallVectorImpl<unsigned> &Ops) const {
2247  // Check switch flag
2248  if (NoFusing) return 0;
2249
2250  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2251    switch (MI->getOpcode()) {
2252    default: return false;
2253    case X86::TEST8rr:
2254    case X86::TEST16rr:
2255    case X86::TEST32rr:
2256    case X86::TEST64rr:
2257      return true;
2258    }
2259  }
2260
2261  if (Ops.size() != 1)
2262    return false;
2263
2264  unsigned OpNum = Ops[0];
2265  unsigned Opc = MI->getOpcode();
2266  unsigned NumOps = MI->getDesc().getNumOperands();
2267  bool isTwoAddr = NumOps > 1 &&
2268    MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
2269
2270  // Folding a memory location into the two-address part of a two-address
2271  // instruction is different than folding it other places.  It requires
2272  // replacing the *two* registers with the memory location.
2273  const DenseMap<unsigned*, unsigned> *OpcodeTablePtr = NULL;
2274  if (isTwoAddr && NumOps >= 2 && OpNum < 2) {
2275    OpcodeTablePtr = &RegOp2MemOpTable2Addr;
2276  } else if (OpNum == 0) { // If operand 0
2277    switch (Opc) {
2278    case X86::MOV16r0:
2279    case X86::MOV32r0:
2280    case X86::MOV64r0:
2281    case X86::MOV8r0:
2282      return true;
2283    default: break;
2284    }
2285    OpcodeTablePtr = &RegOp2MemOpTable0;
2286  } else if (OpNum == 1) {
2287    OpcodeTablePtr = &RegOp2MemOpTable1;
2288  } else if (OpNum == 2) {
2289    OpcodeTablePtr = &RegOp2MemOpTable2;
2290  }
2291
2292  if (OpcodeTablePtr) {
2293    // Find the Opcode to fuse
2294    DenseMap<unsigned*, unsigned>::iterator I =
2295      OpcodeTablePtr->find((unsigned*)Opc);
2296    if (I != OpcodeTablePtr->end())
2297      return true;
2298  }
2299  return false;
2300}
2301
2302bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
2303                                unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
2304                                SmallVectorImpl<MachineInstr*> &NewMIs) const {
2305  DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2306    MemOp2RegOpTable.find((unsigned*)MI->getOpcode());
2307  if (I == MemOp2RegOpTable.end())
2308    return false;
2309  DebugLoc dl = MI->getDebugLoc();
2310  unsigned Opc = I->second.first;
2311  unsigned Index = I->second.second & 0xf;
2312  bool FoldedLoad = I->second.second & (1 << 4);
2313  bool FoldedStore = I->second.second & (1 << 5);
2314  if (UnfoldLoad && !FoldedLoad)
2315    return false;
2316  UnfoldLoad &= FoldedLoad;
2317  if (UnfoldStore && !FoldedStore)
2318    return false;
2319  UnfoldStore &= FoldedStore;
2320
2321  const TargetInstrDesc &TID = get(Opc);
2322  const TargetOperandInfo &TOI = TID.OpInfo[Index];
2323  const TargetRegisterClass *RC = TOI.isLookupPtrRegClass()
2324    ? RI.getPointerRegClass() : RI.getRegClass(TOI.RegClass);
2325  SmallVector<MachineOperand, X86AddrNumOperands> AddrOps;
2326  SmallVector<MachineOperand,2> BeforeOps;
2327  SmallVector<MachineOperand,2> AfterOps;
2328  SmallVector<MachineOperand,4> ImpOps;
2329  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2330    MachineOperand &Op = MI->getOperand(i);
2331    if (i >= Index && i < Index + X86AddrNumOperands)
2332      AddrOps.push_back(Op);
2333    else if (Op.isReg() && Op.isImplicit())
2334      ImpOps.push_back(Op);
2335    else if (i < Index)
2336      BeforeOps.push_back(Op);
2337    else if (i > Index)
2338      AfterOps.push_back(Op);
2339  }
2340
2341  // Emit the load instruction.
2342  if (UnfoldLoad) {
2343    loadRegFromAddr(MF, Reg, AddrOps, RC, NewMIs);
2344    if (UnfoldStore) {
2345      // Address operands cannot be marked isKill.
2346      for (unsigned i = 1; i != 1 + X86AddrNumOperands; ++i) {
2347        MachineOperand &MO = NewMIs[0]->getOperand(i);
2348        if (MO.isReg())
2349          MO.setIsKill(false);
2350      }
2351    }
2352  }
2353
2354  // Emit the data processing instruction.
2355  MachineInstr *DataMI = MF.CreateMachineInstr(TID, MI->getDebugLoc(), true);
2356  MachineInstrBuilder MIB(DataMI);
2357
2358  if (FoldedStore)
2359    MIB.addReg(Reg, true);
2360  for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i)
2361    MIB.addOperand(BeforeOps[i]);
2362  if (FoldedLoad)
2363    MIB.addReg(Reg);
2364  for (unsigned i = 0, e = AfterOps.size(); i != e; ++i)
2365    MIB.addOperand(AfterOps[i]);
2366  for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) {
2367    MachineOperand &MO = ImpOps[i];
2368    MIB.addReg(MO.getReg(), MO.isDef(), true, MO.isKill(), MO.isDead());
2369  }
2370  // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
2371  unsigned NewOpc = 0;
2372  switch (DataMI->getOpcode()) {
2373  default: break;
2374  case X86::CMP64ri32:
2375  case X86::CMP32ri:
2376  case X86::CMP16ri:
2377  case X86::CMP8ri: {
2378    MachineOperand &MO0 = DataMI->getOperand(0);
2379    MachineOperand &MO1 = DataMI->getOperand(1);
2380    if (MO1.getImm() == 0) {
2381      switch (DataMI->getOpcode()) {
2382      default: break;
2383      case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
2384      case X86::CMP32ri:   NewOpc = X86::TEST32rr; break;
2385      case X86::CMP16ri:   NewOpc = X86::TEST16rr; break;
2386      case X86::CMP8ri:    NewOpc = X86::TEST8rr; break;
2387      }
2388      DataMI->setDesc(get(NewOpc));
2389      MO1.ChangeToRegister(MO0.getReg(), false);
2390    }
2391  }
2392  }
2393  NewMIs.push_back(DataMI);
2394
2395  // Emit the store instruction.
2396  if (UnfoldStore) {
2397    const TargetOperandInfo &DstTOI = TID.OpInfo[0];
2398    const TargetRegisterClass *DstRC = DstTOI.isLookupPtrRegClass()
2399      ? RI.getPointerRegClass() : RI.getRegClass(DstTOI.RegClass);
2400    storeRegToAddr(MF, Reg, true, AddrOps, DstRC, NewMIs);
2401  }
2402
2403  return true;
2404}
2405
2406bool
2407X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
2408                                  SmallVectorImpl<SDNode*> &NewNodes) const {
2409  if (!N->isMachineOpcode())
2410    return false;
2411
2412  DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2413    MemOp2RegOpTable.find((unsigned*)N->getMachineOpcode());
2414  if (I == MemOp2RegOpTable.end())
2415    return false;
2416  unsigned Opc = I->second.first;
2417  unsigned Index = I->second.second & 0xf;
2418  bool FoldedLoad = I->second.second & (1 << 4);
2419  bool FoldedStore = I->second.second & (1 << 5);
2420  const TargetInstrDesc &TID = get(Opc);
2421  const TargetOperandInfo &TOI = TID.OpInfo[Index];
2422  const TargetRegisterClass *RC = TOI.isLookupPtrRegClass()
2423    ? RI.getPointerRegClass() : RI.getRegClass(TOI.RegClass);
2424  unsigned NumDefs = TID.NumDefs;
2425  std::vector<SDValue> AddrOps;
2426  std::vector<SDValue> BeforeOps;
2427  std::vector<SDValue> AfterOps;
2428  DebugLoc dl = N->getDebugLoc();
2429  unsigned NumOps = N->getNumOperands();
2430  for (unsigned i = 0; i != NumOps-1; ++i) {
2431    SDValue Op = N->getOperand(i);
2432    if (i >= Index-NumDefs && i < Index-NumDefs + X86AddrNumOperands)
2433      AddrOps.push_back(Op);
2434    else if (i < Index-NumDefs)
2435      BeforeOps.push_back(Op);
2436    else if (i > Index-NumDefs)
2437      AfterOps.push_back(Op);
2438  }
2439  SDValue Chain = N->getOperand(NumOps-1);
2440  AddrOps.push_back(Chain);
2441
2442  // Emit the load instruction.
2443  SDNode *Load = 0;
2444  const MachineFunction &MF = DAG.getMachineFunction();
2445  if (FoldedLoad) {
2446    MVT VT = *RC->vt_begin();
2447    bool isAligned = (RI.getStackAlignment() >= 16) ||
2448      RI.needsStackRealignment(MF);
2449    Load = DAG.getTargetNode(getLoadRegOpcode(RC, isAligned), dl,
2450                             VT, MVT::Other,
2451                             &AddrOps[0], AddrOps.size());
2452    NewNodes.push_back(Load);
2453  }
2454
2455  // Emit the data processing instruction.
2456  std::vector<MVT> VTs;
2457  const TargetRegisterClass *DstRC = 0;
2458  if (TID.getNumDefs() > 0) {
2459    const TargetOperandInfo &DstTOI = TID.OpInfo[0];
2460    DstRC = DstTOI.isLookupPtrRegClass()
2461      ? RI.getPointerRegClass() : RI.getRegClass(DstTOI.RegClass);
2462    VTs.push_back(*DstRC->vt_begin());
2463  }
2464  for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
2465    MVT VT = N->getValueType(i);
2466    if (VT != MVT::Other && i >= (unsigned)TID.getNumDefs())
2467      VTs.push_back(VT);
2468  }
2469  if (Load)
2470    BeforeOps.push_back(SDValue(Load, 0));
2471  std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps));
2472  SDNode *NewNode= DAG.getTargetNode(Opc, dl, VTs, &BeforeOps[0],
2473                                     BeforeOps.size());
2474  NewNodes.push_back(NewNode);
2475
2476  // Emit the store instruction.
2477  if (FoldedStore) {
2478    AddrOps.pop_back();
2479    AddrOps.push_back(SDValue(NewNode, 0));
2480    AddrOps.push_back(Chain);
2481    bool isAligned = (RI.getStackAlignment() >= 16) ||
2482      RI.needsStackRealignment(MF);
2483    SDNode *Store = DAG.getTargetNode(getStoreRegOpcode(DstRC, isAligned), dl,
2484                                      MVT::Other, &AddrOps[0], AddrOps.size());
2485    NewNodes.push_back(Store);
2486  }
2487
2488  return true;
2489}
2490
2491unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
2492                                      bool UnfoldLoad, bool UnfoldStore) const {
2493  DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2494    MemOp2RegOpTable.find((unsigned*)Opc);
2495  if (I == MemOp2RegOpTable.end())
2496    return 0;
2497  bool FoldedLoad = I->second.second & (1 << 4);
2498  bool FoldedStore = I->second.second & (1 << 5);
2499  if (UnfoldLoad && !FoldedLoad)
2500    return 0;
2501  if (UnfoldStore && !FoldedStore)
2502    return 0;
2503  return I->second.first;
2504}
2505
2506bool X86InstrInfo::BlockHasNoFallThrough(const MachineBasicBlock &MBB) const {
2507  if (MBB.empty()) return false;
2508
2509  switch (MBB.back().getOpcode()) {
2510  case X86::TCRETURNri:
2511  case X86::TCRETURNdi:
2512  case X86::RET:     // Return.
2513  case X86::RETI:
2514  case X86::TAILJMPd:
2515  case X86::TAILJMPr:
2516  case X86::TAILJMPm:
2517  case X86::JMP:     // Uncond branch.
2518  case X86::JMP32r:  // Indirect branch.
2519  case X86::JMP64r:  // Indirect branch (64-bit).
2520  case X86::JMP32m:  // Indirect branch through mem.
2521  case X86::JMP64m:  // Indirect branch through mem (64-bit).
2522    return true;
2523  default: return false;
2524  }
2525}
2526
2527bool X86InstrInfo::
2528ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
2529  assert(Cond.size() == 1 && "Invalid X86 branch condition!");
2530  X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
2531  if (CC == X86::COND_NE_OR_P || CC == X86::COND_NP_OR_E)
2532    return true;
2533  Cond[0].setImm(GetOppositeBranchCondition(CC));
2534  return false;
2535}
2536
2537bool X86InstrInfo::
2538isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
2539  // FIXME: Return false for x87 stack register classes for now. We can't
2540  // allow any loads of these registers before FpGet_ST0_80.
2541  return !(RC == &X86::CCRRegClass || RC == &X86::RFP32RegClass ||
2542           RC == &X86::RFP64RegClass || RC == &X86::RFP80RegClass);
2543}
2544
2545unsigned X86InstrInfo::sizeOfImm(const TargetInstrDesc *Desc) {
2546  switch (Desc->TSFlags & X86II::ImmMask) {
2547  case X86II::Imm8:   return 1;
2548  case X86II::Imm16:  return 2;
2549  case X86II::Imm32:  return 4;
2550  case X86II::Imm64:  return 8;
2551  default: assert(0 && "Immediate size not set!");
2552    return 0;
2553  }
2554}
2555
2556/// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended register?
2557/// e.g. r8, xmm8, etc.
2558bool X86InstrInfo::isX86_64ExtendedReg(const MachineOperand &MO) {
2559  if (!MO.isReg()) return false;
2560  switch (MO.getReg()) {
2561  default: break;
2562  case X86::R8:    case X86::R9:    case X86::R10:   case X86::R11:
2563  case X86::R12:   case X86::R13:   case X86::R14:   case X86::R15:
2564  case X86::R8D:   case X86::R9D:   case X86::R10D:  case X86::R11D:
2565  case X86::R12D:  case X86::R13D:  case X86::R14D:  case X86::R15D:
2566  case X86::R8W:   case X86::R9W:   case X86::R10W:  case X86::R11W:
2567  case X86::R12W:  case X86::R13W:  case X86::R14W:  case X86::R15W:
2568  case X86::R8B:   case X86::R9B:   case X86::R10B:  case X86::R11B:
2569  case X86::R12B:  case X86::R13B:  case X86::R14B:  case X86::R15B:
2570  case X86::XMM8:  case X86::XMM9:  case X86::XMM10: case X86::XMM11:
2571  case X86::XMM12: case X86::XMM13: case X86::XMM14: case X86::XMM15:
2572    return true;
2573  }
2574  return false;
2575}
2576
2577
2578/// determineREX - Determine if the MachineInstr has to be encoded with a X86-64
2579/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
2580/// size, and 3) use of X86-64 extended registers.
2581unsigned X86InstrInfo::determineREX(const MachineInstr &MI) {
2582  unsigned REX = 0;
2583  const TargetInstrDesc &Desc = MI.getDesc();
2584
2585  // Pseudo instructions do not need REX prefix byte.
2586  if ((Desc.TSFlags & X86II::FormMask) == X86II::Pseudo)
2587    return 0;
2588  if (Desc.TSFlags & X86II::REX_W)
2589    REX |= 1 << 3;
2590
2591  unsigned NumOps = Desc.getNumOperands();
2592  if (NumOps) {
2593    bool isTwoAddr = NumOps > 1 &&
2594      Desc.getOperandConstraint(1, TOI::TIED_TO) != -1;
2595
2596    // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
2597    unsigned i = isTwoAddr ? 1 : 0;
2598    for (unsigned e = NumOps; i != e; ++i) {
2599      const MachineOperand& MO = MI.getOperand(i);
2600      if (MO.isReg()) {
2601        unsigned Reg = MO.getReg();
2602        if (isX86_64NonExtLowByteReg(Reg))
2603          REX |= 0x40;
2604      }
2605    }
2606
2607    switch (Desc.TSFlags & X86II::FormMask) {
2608    case X86II::MRMInitReg:
2609      if (isX86_64ExtendedReg(MI.getOperand(0)))
2610        REX |= (1 << 0) | (1 << 2);
2611      break;
2612    case X86II::MRMSrcReg: {
2613      if (isX86_64ExtendedReg(MI.getOperand(0)))
2614        REX |= 1 << 2;
2615      i = isTwoAddr ? 2 : 1;
2616      for (unsigned e = NumOps; i != e; ++i) {
2617        const MachineOperand& MO = MI.getOperand(i);
2618        if (isX86_64ExtendedReg(MO))
2619          REX |= 1 << 0;
2620      }
2621      break;
2622    }
2623    case X86II::MRMSrcMem: {
2624      if (isX86_64ExtendedReg(MI.getOperand(0)))
2625        REX |= 1 << 2;
2626      unsigned Bit = 0;
2627      i = isTwoAddr ? 2 : 1;
2628      for (; i != NumOps; ++i) {
2629        const MachineOperand& MO = MI.getOperand(i);
2630        if (MO.isReg()) {
2631          if (isX86_64ExtendedReg(MO))
2632            REX |= 1 << Bit;
2633          Bit++;
2634        }
2635      }
2636      break;
2637    }
2638    case X86II::MRM0m: case X86II::MRM1m:
2639    case X86II::MRM2m: case X86II::MRM3m:
2640    case X86II::MRM4m: case X86II::MRM5m:
2641    case X86II::MRM6m: case X86II::MRM7m:
2642    case X86II::MRMDestMem: {
2643      unsigned e = (isTwoAddr ? X86AddrNumOperands+1 : X86AddrNumOperands);
2644      i = isTwoAddr ? 1 : 0;
2645      if (NumOps > e && isX86_64ExtendedReg(MI.getOperand(e)))
2646        REX |= 1 << 2;
2647      unsigned Bit = 0;
2648      for (; i != e; ++i) {
2649        const MachineOperand& MO = MI.getOperand(i);
2650        if (MO.isReg()) {
2651          if (isX86_64ExtendedReg(MO))
2652            REX |= 1 << Bit;
2653          Bit++;
2654        }
2655      }
2656      break;
2657    }
2658    default: {
2659      if (isX86_64ExtendedReg(MI.getOperand(0)))
2660        REX |= 1 << 0;
2661      i = isTwoAddr ? 2 : 1;
2662      for (unsigned e = NumOps; i != e; ++i) {
2663        const MachineOperand& MO = MI.getOperand(i);
2664        if (isX86_64ExtendedReg(MO))
2665          REX |= 1 << 2;
2666      }
2667      break;
2668    }
2669    }
2670  }
2671  return REX;
2672}
2673
2674/// sizePCRelativeBlockAddress - This method returns the size of a PC
2675/// relative block address instruction
2676///
2677static unsigned sizePCRelativeBlockAddress() {
2678  return 4;
2679}
2680
2681/// sizeGlobalAddress - Give the size of the emission of this global address
2682///
2683static unsigned sizeGlobalAddress(bool dword) {
2684  return dword ? 8 : 4;
2685}
2686
2687/// sizeConstPoolAddress - Give the size of the emission of this constant
2688/// pool address
2689///
2690static unsigned sizeConstPoolAddress(bool dword) {
2691  return dword ? 8 : 4;
2692}
2693
2694/// sizeExternalSymbolAddress - Give the size of the emission of this external
2695/// symbol
2696///
2697static unsigned sizeExternalSymbolAddress(bool dword) {
2698  return dword ? 8 : 4;
2699}
2700
2701/// sizeJumpTableAddress - Give the size of the emission of this jump
2702/// table address
2703///
2704static unsigned sizeJumpTableAddress(bool dword) {
2705  return dword ? 8 : 4;
2706}
2707
2708static unsigned sizeConstant(unsigned Size) {
2709  return Size;
2710}
2711
2712static unsigned sizeRegModRMByte(){
2713  return 1;
2714}
2715
2716static unsigned sizeSIBByte(){
2717  return 1;
2718}
2719
2720static unsigned getDisplacementFieldSize(const MachineOperand *RelocOp) {
2721  unsigned FinalSize = 0;
2722  // If this is a simple integer displacement that doesn't require a relocation.
2723  if (!RelocOp) {
2724    FinalSize += sizeConstant(4);
2725    return FinalSize;
2726  }
2727
2728  // Otherwise, this is something that requires a relocation.
2729  if (RelocOp->isGlobal()) {
2730    FinalSize += sizeGlobalAddress(false);
2731  } else if (RelocOp->isCPI()) {
2732    FinalSize += sizeConstPoolAddress(false);
2733  } else if (RelocOp->isJTI()) {
2734    FinalSize += sizeJumpTableAddress(false);
2735  } else {
2736    assert(0 && "Unknown value to relocate!");
2737  }
2738  return FinalSize;
2739}
2740
2741static unsigned getMemModRMByteSize(const MachineInstr &MI, unsigned Op,
2742                                    bool IsPIC, bool Is64BitMode) {
2743  const MachineOperand &Op3 = MI.getOperand(Op+3);
2744  int DispVal = 0;
2745  const MachineOperand *DispForReloc = 0;
2746  unsigned FinalSize = 0;
2747
2748  // Figure out what sort of displacement we have to handle here.
2749  if (Op3.isGlobal()) {
2750    DispForReloc = &Op3;
2751  } else if (Op3.isCPI()) {
2752    if (Is64BitMode || IsPIC) {
2753      DispForReloc = &Op3;
2754    } else {
2755      DispVal = 1;
2756    }
2757  } else if (Op3.isJTI()) {
2758    if (Is64BitMode || IsPIC) {
2759      DispForReloc = &Op3;
2760    } else {
2761      DispVal = 1;
2762    }
2763  } else {
2764    DispVal = 1;
2765  }
2766
2767  const MachineOperand &Base     = MI.getOperand(Op);
2768  const MachineOperand &IndexReg = MI.getOperand(Op+2);
2769
2770  unsigned BaseReg = Base.getReg();
2771
2772  // Is a SIB byte needed?
2773  if ((!Is64BitMode || DispForReloc) && IndexReg.getReg() == 0 &&
2774      (BaseReg == 0 || X86RegisterInfo::getX86RegNum(BaseReg) != N86::ESP)) {
2775    if (BaseReg == 0) {  // Just a displacement?
2776      // Emit special case [disp32] encoding
2777      ++FinalSize;
2778      FinalSize += getDisplacementFieldSize(DispForReloc);
2779    } else {
2780      unsigned BaseRegNo = X86RegisterInfo::getX86RegNum(BaseReg);
2781      if (!DispForReloc && DispVal == 0 && BaseRegNo != N86::EBP) {
2782        // Emit simple indirect register encoding... [EAX] f.e.
2783        ++FinalSize;
2784      // Be pessimistic and assume it's a disp32, not a disp8
2785      } else {
2786        // Emit the most general non-SIB encoding: [REG+disp32]
2787        ++FinalSize;
2788        FinalSize += getDisplacementFieldSize(DispForReloc);
2789      }
2790    }
2791
2792  } else {  // We need a SIB byte, so start by outputting the ModR/M byte first
2793    assert(IndexReg.getReg() != X86::ESP &&
2794           IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
2795
2796    bool ForceDisp32 = false;
2797    if (BaseReg == 0 || DispForReloc) {
2798      // Emit the normal disp32 encoding.
2799      ++FinalSize;
2800      ForceDisp32 = true;
2801    } else {
2802      ++FinalSize;
2803    }
2804
2805    FinalSize += sizeSIBByte();
2806
2807    // Do we need to output a displacement?
2808    if (DispVal != 0 || ForceDisp32) {
2809      FinalSize += getDisplacementFieldSize(DispForReloc);
2810    }
2811  }
2812  return FinalSize;
2813}
2814
2815
2816static unsigned GetInstSizeWithDesc(const MachineInstr &MI,
2817                                    const TargetInstrDesc *Desc,
2818                                    bool IsPIC, bool Is64BitMode) {
2819
2820  unsigned Opcode = Desc->Opcode;
2821  unsigned FinalSize = 0;
2822
2823  // Emit the lock opcode prefix as needed.
2824  if (Desc->TSFlags & X86II::LOCK) ++FinalSize;
2825
2826  // Emit segment overrid opcode prefix as needed.
2827  switch (Desc->TSFlags & X86II::SegOvrMask) {
2828  case X86II::FS:
2829  case X86II::GS:
2830   ++FinalSize;
2831   break;
2832  default: assert(0 && "Invalid segment!");
2833  case 0: break;  // No segment override!
2834  }
2835
2836  // Emit the repeat opcode prefix as needed.
2837  if ((Desc->TSFlags & X86II::Op0Mask) == X86II::REP) ++FinalSize;
2838
2839  // Emit the operand size opcode prefix as needed.
2840  if (Desc->TSFlags & X86II::OpSize) ++FinalSize;
2841
2842  // Emit the address size opcode prefix as needed.
2843  if (Desc->TSFlags & X86II::AdSize) ++FinalSize;
2844
2845  bool Need0FPrefix = false;
2846  switch (Desc->TSFlags & X86II::Op0Mask) {
2847  case X86II::TB:  // Two-byte opcode prefix
2848  case X86II::T8:  // 0F 38
2849  case X86II::TA:  // 0F 3A
2850    Need0FPrefix = true;
2851    break;
2852  case X86II::REP: break; // already handled.
2853  case X86II::XS:   // F3 0F
2854    ++FinalSize;
2855    Need0FPrefix = true;
2856    break;
2857  case X86II::XD:   // F2 0F
2858    ++FinalSize;
2859    Need0FPrefix = true;
2860    break;
2861  case X86II::D8: case X86II::D9: case X86II::DA: case X86II::DB:
2862  case X86II::DC: case X86II::DD: case X86II::DE: case X86II::DF:
2863    ++FinalSize;
2864    break; // Two-byte opcode prefix
2865  default: assert(0 && "Invalid prefix!");
2866  case 0: break;  // No prefix!
2867  }
2868
2869  if (Is64BitMode) {
2870    // REX prefix
2871    unsigned REX = X86InstrInfo::determineREX(MI);
2872    if (REX)
2873      ++FinalSize;
2874  }
2875
2876  // 0x0F escape code must be emitted just before the opcode.
2877  if (Need0FPrefix)
2878    ++FinalSize;
2879
2880  switch (Desc->TSFlags & X86II::Op0Mask) {
2881  case X86II::T8:  // 0F 38
2882    ++FinalSize;
2883    break;
2884  case X86II::TA:    // 0F 3A
2885    ++FinalSize;
2886    break;
2887  }
2888
2889  // If this is a two-address instruction, skip one of the register operands.
2890  unsigned NumOps = Desc->getNumOperands();
2891  unsigned CurOp = 0;
2892  if (NumOps > 1 && Desc->getOperandConstraint(1, TOI::TIED_TO) != -1)
2893    CurOp++;
2894
2895  switch (Desc->TSFlags & X86II::FormMask) {
2896  default: assert(0 && "Unknown FormMask value in X86 MachineCodeEmitter!");
2897  case X86II::Pseudo:
2898    // Remember the current PC offset, this is the PIC relocation
2899    // base address.
2900    switch (Opcode) {
2901    default:
2902      break;
2903    case TargetInstrInfo::INLINEASM: {
2904      const MachineFunction *MF = MI.getParent()->getParent();
2905      const char *AsmStr = MI.getOperand(0).getSymbolName();
2906      const TargetAsmInfo* AI = MF->getTarget().getTargetAsmInfo();
2907      FinalSize += AI->getInlineAsmLength(AsmStr);
2908      break;
2909    }
2910    case TargetInstrInfo::DBG_LABEL:
2911    case TargetInstrInfo::EH_LABEL:
2912      break;
2913    case TargetInstrInfo::IMPLICIT_DEF:
2914    case TargetInstrInfo::DECLARE:
2915    case X86::DWARF_LOC:
2916    case X86::FP_REG_KILL:
2917      break;
2918    case X86::MOVPC32r: {
2919      // This emits the "call" portion of this pseudo instruction.
2920      ++FinalSize;
2921      FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
2922      break;
2923    }
2924    }
2925    CurOp = NumOps;
2926    break;
2927  case X86II::RawFrm:
2928    ++FinalSize;
2929
2930    if (CurOp != NumOps) {
2931      const MachineOperand &MO = MI.getOperand(CurOp++);
2932      if (MO.isMBB()) {
2933        FinalSize += sizePCRelativeBlockAddress();
2934      } else if (MO.isGlobal()) {
2935        FinalSize += sizeGlobalAddress(false);
2936      } else if (MO.isSymbol()) {
2937        FinalSize += sizeExternalSymbolAddress(false);
2938      } else if (MO.isImm()) {
2939        FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
2940      } else {
2941        assert(0 && "Unknown RawFrm operand!");
2942      }
2943    }
2944    break;
2945
2946  case X86II::AddRegFrm:
2947    ++FinalSize;
2948    ++CurOp;
2949
2950    if (CurOp != NumOps) {
2951      const MachineOperand &MO1 = MI.getOperand(CurOp++);
2952      unsigned Size = X86InstrInfo::sizeOfImm(Desc);
2953      if (MO1.isImm())
2954        FinalSize += sizeConstant(Size);
2955      else {
2956        bool dword = false;
2957        if (Opcode == X86::MOV64ri)
2958          dword = true;
2959        if (MO1.isGlobal()) {
2960          FinalSize += sizeGlobalAddress(dword);
2961        } else if (MO1.isSymbol())
2962          FinalSize += sizeExternalSymbolAddress(dword);
2963        else if (MO1.isCPI())
2964          FinalSize += sizeConstPoolAddress(dword);
2965        else if (MO1.isJTI())
2966          FinalSize += sizeJumpTableAddress(dword);
2967      }
2968    }
2969    break;
2970
2971  case X86II::MRMDestReg: {
2972    ++FinalSize;
2973    FinalSize += sizeRegModRMByte();
2974    CurOp += 2;
2975    if (CurOp != NumOps) {
2976      ++CurOp;
2977      FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
2978    }
2979    break;
2980  }
2981  case X86II::MRMDestMem: {
2982    ++FinalSize;
2983    FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode);
2984    CurOp += 5;
2985    if (CurOp != NumOps) {
2986      ++CurOp;
2987      FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
2988    }
2989    break;
2990  }
2991
2992  case X86II::MRMSrcReg:
2993    ++FinalSize;
2994    FinalSize += sizeRegModRMByte();
2995    CurOp += 2;
2996    if (CurOp != NumOps) {
2997      ++CurOp;
2998      FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
2999    }
3000    break;
3001
3002  case X86II::MRMSrcMem: {
3003
3004    ++FinalSize;
3005    FinalSize += getMemModRMByteSize(MI, CurOp+1, IsPIC, Is64BitMode);
3006    CurOp += 5;
3007    if (CurOp != NumOps) {
3008      ++CurOp;
3009      FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
3010    }
3011    break;
3012  }
3013
3014  case X86II::MRM0r: case X86II::MRM1r:
3015  case X86II::MRM2r: case X86II::MRM3r:
3016  case X86II::MRM4r: case X86II::MRM5r:
3017  case X86II::MRM6r: case X86II::MRM7r:
3018    ++FinalSize;
3019    ++CurOp;
3020    FinalSize += sizeRegModRMByte();
3021
3022    if (CurOp != NumOps) {
3023      const MachineOperand &MO1 = MI.getOperand(CurOp++);
3024      unsigned Size = X86InstrInfo::sizeOfImm(Desc);
3025      if (MO1.isImm())
3026        FinalSize += sizeConstant(Size);
3027      else {
3028        bool dword = false;
3029        if (Opcode == X86::MOV64ri32)
3030          dword = true;
3031        if (MO1.isGlobal()) {
3032          FinalSize += sizeGlobalAddress(dword);
3033        } else if (MO1.isSymbol())
3034          FinalSize += sizeExternalSymbolAddress(dword);
3035        else if (MO1.isCPI())
3036          FinalSize += sizeConstPoolAddress(dword);
3037        else if (MO1.isJTI())
3038          FinalSize += sizeJumpTableAddress(dword);
3039      }
3040    }
3041    break;
3042
3043  case X86II::MRM0m: case X86II::MRM1m:
3044  case X86II::MRM2m: case X86II::MRM3m:
3045  case X86II::MRM4m: case X86II::MRM5m:
3046  case X86II::MRM6m: case X86II::MRM7m: {
3047
3048    ++FinalSize;
3049    FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode);
3050    CurOp += 4;
3051
3052    if (CurOp != NumOps) {
3053      const MachineOperand &MO = MI.getOperand(CurOp++);
3054      unsigned Size = X86InstrInfo::sizeOfImm(Desc);
3055      if (MO.isImm())
3056        FinalSize += sizeConstant(Size);
3057      else {
3058        bool dword = false;
3059        if (Opcode == X86::MOV64mi32)
3060          dword = true;
3061        if (MO.isGlobal()) {
3062          FinalSize += sizeGlobalAddress(dword);
3063        } else if (MO.isSymbol())
3064          FinalSize += sizeExternalSymbolAddress(dword);
3065        else if (MO.isCPI())
3066          FinalSize += sizeConstPoolAddress(dword);
3067        else if (MO.isJTI())
3068          FinalSize += sizeJumpTableAddress(dword);
3069      }
3070    }
3071    break;
3072  }
3073
3074  case X86II::MRMInitReg:
3075    ++FinalSize;
3076    // Duplicate register, used by things like MOV8r0 (aka xor reg,reg).
3077    FinalSize += sizeRegModRMByte();
3078    ++CurOp;
3079    break;
3080  }
3081
3082  if (!Desc->isVariadic() && CurOp != NumOps) {
3083    cerr << "Cannot determine size: ";
3084    MI.dump();
3085    cerr << '\n';
3086    abort();
3087  }
3088
3089
3090  return FinalSize;
3091}
3092
3093
3094unsigned X86InstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
3095  const TargetInstrDesc &Desc = MI->getDesc();
3096  bool IsPIC = (TM.getRelocationModel() == Reloc::PIC_);
3097  bool Is64BitMode = TM.getSubtargetImpl()->is64Bit();
3098  unsigned Size = GetInstSizeWithDesc(*MI, &Desc, IsPIC, Is64BitMode);
3099  if (Desc.getOpcode() == X86::MOVPC32r) {
3100    Size += GetInstSizeWithDesc(*MI, &get(X86::POP32r), IsPIC, Is64BitMode);
3101  }
3102  return Size;
3103}
3104
3105/// getGlobalBaseReg - Return a virtual register initialized with the
3106/// the global base register value. Output instructions required to
3107/// initialize the register in the function entry block, if necessary.
3108///
3109unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
3110  assert(!TM.getSubtarget<X86Subtarget>().is64Bit() &&
3111         "X86-64 PIC uses RIP relative addressing");
3112
3113  X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
3114  unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
3115  if (GlobalBaseReg != 0)
3116    return GlobalBaseReg;
3117
3118  // Insert the set of GlobalBaseReg into the first MBB of the function
3119  MachineBasicBlock &FirstMBB = MF->front();
3120  MachineBasicBlock::iterator MBBI = FirstMBB.begin();
3121  DebugLoc DL = DebugLoc::getUnknownLoc();
3122  if (MBBI != FirstMBB.end()) DL = MBBI->getDebugLoc();
3123  MachineRegisterInfo &RegInfo = MF->getRegInfo();
3124  unsigned PC = RegInfo.createVirtualRegister(X86::GR32RegisterClass);
3125
3126  const TargetInstrInfo *TII = TM.getInstrInfo();
3127  // Operand of MovePCtoStack is completely ignored by asm printer. It's
3128  // only used in JIT code emission as displacement to pc.
3129  BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC)
3130    .addImm(0);
3131
3132  // If we're using vanilla 'GOT' PIC style, we should use relative addressing
3133  // not to pc, but to _GLOBAL_ADDRESS_TABLE_ external
3134  if (TM.getRelocationModel() == Reloc::PIC_ &&
3135      TM.getSubtarget<X86Subtarget>().isPICStyleGOT()) {
3136    GlobalBaseReg =
3137      RegInfo.createVirtualRegister(X86::GR32RegisterClass);
3138    BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg)
3139      .addReg(PC).addExternalSymbol("_GLOBAL_OFFSET_TABLE_");
3140  } else {
3141    GlobalBaseReg = PC;
3142  }
3143
3144  X86FI->setGlobalBaseReg(GlobalBaseReg);
3145  return GlobalBaseReg;
3146}
3147