X86InstrInfo.cpp revision e8b4a4a9d173d67e35e4b1d32e20140381db6bde
1//===-- X86InstrInfo.cpp - X86 Instruction Information --------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the X86 implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "X86InstrInfo.h"
15#include "X86.h"
16#include "X86InstrBuilder.h"
17#include "X86MachineFunctionInfo.h"
18#include "X86Subtarget.h"
19#include "X86TargetMachine.h"
20#include "llvm/DerivedTypes.h"
21#include "llvm/LLVMContext.h"
22#include "llvm/ADT/STLExtras.h"
23#include "llvm/CodeGen/MachineConstantPool.h"
24#include "llvm/CodeGen/MachineDominators.h"
25#include "llvm/CodeGen/MachineFrameInfo.h"
26#include "llvm/CodeGen/MachineInstrBuilder.h"
27#include "llvm/CodeGen/MachineRegisterInfo.h"
28#include "llvm/CodeGen/LiveVariables.h"
29#include "llvm/MC/MCAsmInfo.h"
30#include "llvm/MC/MCInst.h"
31#include "llvm/Support/CommandLine.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/Support/ErrorHandling.h"
34#include "llvm/Support/raw_ostream.h"
35#include "llvm/Target/TargetOptions.h"
36#include <limits>
37
38#define GET_INSTRINFO_CTOR
39#include "X86GenInstrInfo.inc"
40
41using namespace llvm;
42
43static cl::opt<bool>
44NoFusing("disable-spill-fusing",
45         cl::desc("Disable fusing of spill code into instructions"));
46static cl::opt<bool>
47PrintFailedFusing("print-failed-fuse-candidates",
48                  cl::desc("Print instructions that the allocator wants to"
49                           " fuse, but the X86 backend currently can't"),
50                  cl::Hidden);
51static cl::opt<bool>
52ReMatPICStubLoad("remat-pic-stub-load",
53                 cl::desc("Re-materialize load from stub in PIC mode"),
54                 cl::init(false), cl::Hidden);
55
56enum {
57  // Select which memory operand is being unfolded.
58  // (stored in bits 0 - 3)
59  TB_INDEX_0    = 0,
60  TB_INDEX_1    = 1,
61  TB_INDEX_2    = 2,
62  TB_INDEX_3    = 3,
63  TB_INDEX_MASK = 0xf,
64
65  // Do not insert the reverse map (MemOp -> RegOp) into the table.
66  // This may be needed because there is a many -> one mapping.
67  TB_NO_REVERSE   = 1 << 4,
68
69  // Do not insert the forward map (RegOp -> MemOp) into the table.
70  // This is needed for Native Client, which prohibits branch
71  // instructions from using a memory operand.
72  TB_NO_FORWARD   = 1 << 5,
73
74  TB_FOLDED_LOAD  = 1 << 6,
75  TB_FOLDED_STORE = 1 << 7,
76
77  // Minimum alignment required for load/store.
78  // Used for RegOp->MemOp conversion.
79  // (stored in bits 8 - 15)
80  TB_ALIGN_SHIFT = 8,
81  TB_ALIGN_NONE  =    0 << TB_ALIGN_SHIFT,
82  TB_ALIGN_16    =   16 << TB_ALIGN_SHIFT,
83  TB_ALIGN_32    =   32 << TB_ALIGN_SHIFT,
84  TB_ALIGN_MASK  = 0xff << TB_ALIGN_SHIFT
85};
86
87struct X86OpTblEntry {
88  uint16_t RegOp;
89  uint16_t MemOp;
90  uint16_t Flags;
91};
92
93X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
94  : X86GenInstrInfo((tm.getSubtarget<X86Subtarget>().is64Bit()
95                     ? X86::ADJCALLSTACKDOWN64
96                     : X86::ADJCALLSTACKDOWN32),
97                    (tm.getSubtarget<X86Subtarget>().is64Bit()
98                     ? X86::ADJCALLSTACKUP64
99                     : X86::ADJCALLSTACKUP32)),
100    TM(tm), RI(tm, *this) {
101
102  static const X86OpTblEntry OpTbl2Addr[] = {
103    { X86::ADC32ri,     X86::ADC32mi,    0 },
104    { X86::ADC32ri8,    X86::ADC32mi8,   0 },
105    { X86::ADC32rr,     X86::ADC32mr,    0 },
106    { X86::ADC64ri32,   X86::ADC64mi32,  0 },
107    { X86::ADC64ri8,    X86::ADC64mi8,   0 },
108    { X86::ADC64rr,     X86::ADC64mr,    0 },
109    { X86::ADD16ri,     X86::ADD16mi,    0 },
110    { X86::ADD16ri8,    X86::ADD16mi8,   0 },
111    { X86::ADD16ri_DB,  X86::ADD16mi,    TB_NO_REVERSE },
112    { X86::ADD16ri8_DB, X86::ADD16mi8,   TB_NO_REVERSE },
113    { X86::ADD16rr,     X86::ADD16mr,    0 },
114    { X86::ADD16rr_DB,  X86::ADD16mr,    TB_NO_REVERSE },
115    { X86::ADD32ri,     X86::ADD32mi,    0 },
116    { X86::ADD32ri8,    X86::ADD32mi8,   0 },
117    { X86::ADD32ri_DB,  X86::ADD32mi,    TB_NO_REVERSE },
118    { X86::ADD32ri8_DB, X86::ADD32mi8,   TB_NO_REVERSE },
119    { X86::ADD32rr,     X86::ADD32mr,    0 },
120    { X86::ADD32rr_DB,  X86::ADD32mr,    TB_NO_REVERSE },
121    { X86::ADD64ri32,   X86::ADD64mi32,  0 },
122    { X86::ADD64ri8,    X86::ADD64mi8,   0 },
123    { X86::ADD64ri32_DB,X86::ADD64mi32,  TB_NO_REVERSE },
124    { X86::ADD64ri8_DB, X86::ADD64mi8,   TB_NO_REVERSE },
125    { X86::ADD64rr,     X86::ADD64mr,    0 },
126    { X86::ADD64rr_DB,  X86::ADD64mr,    TB_NO_REVERSE },
127    { X86::ADD8ri,      X86::ADD8mi,     0 },
128    { X86::ADD8rr,      X86::ADD8mr,     0 },
129    { X86::AND16ri,     X86::AND16mi,    0 },
130    { X86::AND16ri8,    X86::AND16mi8,   0 },
131    { X86::AND16rr,     X86::AND16mr,    0 },
132    { X86::AND32ri,     X86::AND32mi,    0 },
133    { X86::AND32ri8,    X86::AND32mi8,   0 },
134    { X86::AND32rr,     X86::AND32mr,    0 },
135    { X86::AND64ri32,   X86::AND64mi32,  0 },
136    { X86::AND64ri8,    X86::AND64mi8,   0 },
137    { X86::AND64rr,     X86::AND64mr,    0 },
138    { X86::AND8ri,      X86::AND8mi,     0 },
139    { X86::AND8rr,      X86::AND8mr,     0 },
140    { X86::DEC16r,      X86::DEC16m,     0 },
141    { X86::DEC32r,      X86::DEC32m,     0 },
142    { X86::DEC64_16r,   X86::DEC64_16m,  0 },
143    { X86::DEC64_32r,   X86::DEC64_32m,  0 },
144    { X86::DEC64r,      X86::DEC64m,     0 },
145    { X86::DEC8r,       X86::DEC8m,      0 },
146    { X86::INC16r,      X86::INC16m,     0 },
147    { X86::INC32r,      X86::INC32m,     0 },
148    { X86::INC64_16r,   X86::INC64_16m,  0 },
149    { X86::INC64_32r,   X86::INC64_32m,  0 },
150    { X86::INC64r,      X86::INC64m,     0 },
151    { X86::INC8r,       X86::INC8m,      0 },
152    { X86::NEG16r,      X86::NEG16m,     0 },
153    { X86::NEG32r,      X86::NEG32m,     0 },
154    { X86::NEG64r,      X86::NEG64m,     0 },
155    { X86::NEG8r,       X86::NEG8m,      0 },
156    { X86::NOT16r,      X86::NOT16m,     0 },
157    { X86::NOT32r,      X86::NOT32m,     0 },
158    { X86::NOT64r,      X86::NOT64m,     0 },
159    { X86::NOT8r,       X86::NOT8m,      0 },
160    { X86::OR16ri,      X86::OR16mi,     0 },
161    { X86::OR16ri8,     X86::OR16mi8,    0 },
162    { X86::OR16rr,      X86::OR16mr,     0 },
163    { X86::OR32ri,      X86::OR32mi,     0 },
164    { X86::OR32ri8,     X86::OR32mi8,    0 },
165    { X86::OR32rr,      X86::OR32mr,     0 },
166    { X86::OR64ri32,    X86::OR64mi32,   0 },
167    { X86::OR64ri8,     X86::OR64mi8,    0 },
168    { X86::OR64rr,      X86::OR64mr,     0 },
169    { X86::OR8ri,       X86::OR8mi,      0 },
170    { X86::OR8rr,       X86::OR8mr,      0 },
171    { X86::ROL16r1,     X86::ROL16m1,    0 },
172    { X86::ROL16rCL,    X86::ROL16mCL,   0 },
173    { X86::ROL16ri,     X86::ROL16mi,    0 },
174    { X86::ROL32r1,     X86::ROL32m1,    0 },
175    { X86::ROL32rCL,    X86::ROL32mCL,   0 },
176    { X86::ROL32ri,     X86::ROL32mi,    0 },
177    { X86::ROL64r1,     X86::ROL64m1,    0 },
178    { X86::ROL64rCL,    X86::ROL64mCL,   0 },
179    { X86::ROL64ri,     X86::ROL64mi,    0 },
180    { X86::ROL8r1,      X86::ROL8m1,     0 },
181    { X86::ROL8rCL,     X86::ROL8mCL,    0 },
182    { X86::ROL8ri,      X86::ROL8mi,     0 },
183    { X86::ROR16r1,     X86::ROR16m1,    0 },
184    { X86::ROR16rCL,    X86::ROR16mCL,   0 },
185    { X86::ROR16ri,     X86::ROR16mi,    0 },
186    { X86::ROR32r1,     X86::ROR32m1,    0 },
187    { X86::ROR32rCL,    X86::ROR32mCL,   0 },
188    { X86::ROR32ri,     X86::ROR32mi,    0 },
189    { X86::ROR64r1,     X86::ROR64m1,    0 },
190    { X86::ROR64rCL,    X86::ROR64mCL,   0 },
191    { X86::ROR64ri,     X86::ROR64mi,    0 },
192    { X86::ROR8r1,      X86::ROR8m1,     0 },
193    { X86::ROR8rCL,     X86::ROR8mCL,    0 },
194    { X86::ROR8ri,      X86::ROR8mi,     0 },
195    { X86::SAR16r1,     X86::SAR16m1,    0 },
196    { X86::SAR16rCL,    X86::SAR16mCL,   0 },
197    { X86::SAR16ri,     X86::SAR16mi,    0 },
198    { X86::SAR32r1,     X86::SAR32m1,    0 },
199    { X86::SAR32rCL,    X86::SAR32mCL,   0 },
200    { X86::SAR32ri,     X86::SAR32mi,    0 },
201    { X86::SAR64r1,     X86::SAR64m1,    0 },
202    { X86::SAR64rCL,    X86::SAR64mCL,   0 },
203    { X86::SAR64ri,     X86::SAR64mi,    0 },
204    { X86::SAR8r1,      X86::SAR8m1,     0 },
205    { X86::SAR8rCL,     X86::SAR8mCL,    0 },
206    { X86::SAR8ri,      X86::SAR8mi,     0 },
207    { X86::SBB32ri,     X86::SBB32mi,    0 },
208    { X86::SBB32ri8,    X86::SBB32mi8,   0 },
209    { X86::SBB32rr,     X86::SBB32mr,    0 },
210    { X86::SBB64ri32,   X86::SBB64mi32,  0 },
211    { X86::SBB64ri8,    X86::SBB64mi8,   0 },
212    { X86::SBB64rr,     X86::SBB64mr,    0 },
213    { X86::SHL16rCL,    X86::SHL16mCL,   0 },
214    { X86::SHL16ri,     X86::SHL16mi,    0 },
215    { X86::SHL32rCL,    X86::SHL32mCL,   0 },
216    { X86::SHL32ri,     X86::SHL32mi,    0 },
217    { X86::SHL64rCL,    X86::SHL64mCL,   0 },
218    { X86::SHL64ri,     X86::SHL64mi,    0 },
219    { X86::SHL8rCL,     X86::SHL8mCL,    0 },
220    { X86::SHL8ri,      X86::SHL8mi,     0 },
221    { X86::SHLD16rrCL,  X86::SHLD16mrCL, 0 },
222    { X86::SHLD16rri8,  X86::SHLD16mri8, 0 },
223    { X86::SHLD32rrCL,  X86::SHLD32mrCL, 0 },
224    { X86::SHLD32rri8,  X86::SHLD32mri8, 0 },
225    { X86::SHLD64rrCL,  X86::SHLD64mrCL, 0 },
226    { X86::SHLD64rri8,  X86::SHLD64mri8, 0 },
227    { X86::SHR16r1,     X86::SHR16m1,    0 },
228    { X86::SHR16rCL,    X86::SHR16mCL,   0 },
229    { X86::SHR16ri,     X86::SHR16mi,    0 },
230    { X86::SHR32r1,     X86::SHR32m1,    0 },
231    { X86::SHR32rCL,    X86::SHR32mCL,   0 },
232    { X86::SHR32ri,     X86::SHR32mi,    0 },
233    { X86::SHR64r1,     X86::SHR64m1,    0 },
234    { X86::SHR64rCL,    X86::SHR64mCL,   0 },
235    { X86::SHR64ri,     X86::SHR64mi,    0 },
236    { X86::SHR8r1,      X86::SHR8m1,     0 },
237    { X86::SHR8rCL,     X86::SHR8mCL,    0 },
238    { X86::SHR8ri,      X86::SHR8mi,     0 },
239    { X86::SHRD16rrCL,  X86::SHRD16mrCL, 0 },
240    { X86::SHRD16rri8,  X86::SHRD16mri8, 0 },
241    { X86::SHRD32rrCL,  X86::SHRD32mrCL, 0 },
242    { X86::SHRD32rri8,  X86::SHRD32mri8, 0 },
243    { X86::SHRD64rrCL,  X86::SHRD64mrCL, 0 },
244    { X86::SHRD64rri8,  X86::SHRD64mri8, 0 },
245    { X86::SUB16ri,     X86::SUB16mi,    0 },
246    { X86::SUB16ri8,    X86::SUB16mi8,   0 },
247    { X86::SUB16rr,     X86::SUB16mr,    0 },
248    { X86::SUB32ri,     X86::SUB32mi,    0 },
249    { X86::SUB32ri8,    X86::SUB32mi8,   0 },
250    { X86::SUB32rr,     X86::SUB32mr,    0 },
251    { X86::SUB64ri32,   X86::SUB64mi32,  0 },
252    { X86::SUB64ri8,    X86::SUB64mi8,   0 },
253    { X86::SUB64rr,     X86::SUB64mr,    0 },
254    { X86::SUB8ri,      X86::SUB8mi,     0 },
255    { X86::SUB8rr,      X86::SUB8mr,     0 },
256    { X86::XOR16ri,     X86::XOR16mi,    0 },
257    { X86::XOR16ri8,    X86::XOR16mi8,   0 },
258    { X86::XOR16rr,     X86::XOR16mr,    0 },
259    { X86::XOR32ri,     X86::XOR32mi,    0 },
260    { X86::XOR32ri8,    X86::XOR32mi8,   0 },
261    { X86::XOR32rr,     X86::XOR32mr,    0 },
262    { X86::XOR64ri32,   X86::XOR64mi32,  0 },
263    { X86::XOR64ri8,    X86::XOR64mi8,   0 },
264    { X86::XOR64rr,     X86::XOR64mr,    0 },
265    { X86::XOR8ri,      X86::XOR8mi,     0 },
266    { X86::XOR8rr,      X86::XOR8mr,     0 }
267  };
268
269  for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) {
270    unsigned RegOp = OpTbl2Addr[i].RegOp;
271    unsigned MemOp = OpTbl2Addr[i].MemOp;
272    unsigned Flags = OpTbl2Addr[i].Flags;
273    AddTableEntry(RegOp2MemOpTable2Addr, MemOp2RegOpTable,
274                  RegOp, MemOp,
275                  // Index 0, folded load and store, no alignment requirement.
276                  Flags | TB_INDEX_0 | TB_FOLDED_LOAD | TB_FOLDED_STORE);
277  }
278
279  static const X86OpTblEntry OpTbl0[] = {
280    { X86::BT16ri8,     X86::BT16mi8,       TB_FOLDED_LOAD },
281    { X86::BT32ri8,     X86::BT32mi8,       TB_FOLDED_LOAD },
282    { X86::BT64ri8,     X86::BT64mi8,       TB_FOLDED_LOAD },
283    { X86::CALL32r,     X86::CALL32m,       TB_FOLDED_LOAD },
284    { X86::CALL64r,     X86::CALL64m,       TB_FOLDED_LOAD },
285    { X86::CMP16ri,     X86::CMP16mi,       TB_FOLDED_LOAD },
286    { X86::CMP16ri8,    X86::CMP16mi8,      TB_FOLDED_LOAD },
287    { X86::CMP16rr,     X86::CMP16mr,       TB_FOLDED_LOAD },
288    { X86::CMP32ri,     X86::CMP32mi,       TB_FOLDED_LOAD },
289    { X86::CMP32ri8,    X86::CMP32mi8,      TB_FOLDED_LOAD },
290    { X86::CMP32rr,     X86::CMP32mr,       TB_FOLDED_LOAD },
291    { X86::CMP64ri32,   X86::CMP64mi32,     TB_FOLDED_LOAD },
292    { X86::CMP64ri8,    X86::CMP64mi8,      TB_FOLDED_LOAD },
293    { X86::CMP64rr,     X86::CMP64mr,       TB_FOLDED_LOAD },
294    { X86::CMP8ri,      X86::CMP8mi,        TB_FOLDED_LOAD },
295    { X86::CMP8rr,      X86::CMP8mr,        TB_FOLDED_LOAD },
296    { X86::DIV16r,      X86::DIV16m,        TB_FOLDED_LOAD },
297    { X86::DIV32r,      X86::DIV32m,        TB_FOLDED_LOAD },
298    { X86::DIV64r,      X86::DIV64m,        TB_FOLDED_LOAD },
299    { X86::DIV8r,       X86::DIV8m,         TB_FOLDED_LOAD },
300    { X86::EXTRACTPSrr, X86::EXTRACTPSmr,   TB_FOLDED_STORE | TB_ALIGN_16 },
301    { X86::FsMOVAPDrr,  X86::MOVSDmr,       TB_FOLDED_STORE | TB_NO_REVERSE },
302    { X86::FsMOVAPSrr,  X86::MOVSSmr,       TB_FOLDED_STORE | TB_NO_REVERSE },
303    { X86::IDIV16r,     X86::IDIV16m,       TB_FOLDED_LOAD },
304    { X86::IDIV32r,     X86::IDIV32m,       TB_FOLDED_LOAD },
305    { X86::IDIV64r,     X86::IDIV64m,       TB_FOLDED_LOAD },
306    { X86::IDIV8r,      X86::IDIV8m,        TB_FOLDED_LOAD },
307    { X86::IMUL16r,     X86::IMUL16m,       TB_FOLDED_LOAD },
308    { X86::IMUL32r,     X86::IMUL32m,       TB_FOLDED_LOAD },
309    { X86::IMUL64r,     X86::IMUL64m,       TB_FOLDED_LOAD },
310    { X86::IMUL8r,      X86::IMUL8m,        TB_FOLDED_LOAD },
311    { X86::JMP32r,      X86::JMP32m,        TB_FOLDED_LOAD },
312    { X86::JMP64r,      X86::JMP64m,        TB_FOLDED_LOAD },
313    { X86::MOV16ri,     X86::MOV16mi,       TB_FOLDED_STORE },
314    { X86::MOV16rr,     X86::MOV16mr,       TB_FOLDED_STORE },
315    { X86::MOV32ri,     X86::MOV32mi,       TB_FOLDED_STORE },
316    { X86::MOV32rr,     X86::MOV32mr,       TB_FOLDED_STORE },
317    { X86::MOV64ri32,   X86::MOV64mi32,     TB_FOLDED_STORE },
318    { X86::MOV64rr,     X86::MOV64mr,       TB_FOLDED_STORE },
319    { X86::MOV8ri,      X86::MOV8mi,        TB_FOLDED_STORE },
320    { X86::MOV8rr,      X86::MOV8mr,        TB_FOLDED_STORE },
321    { X86::MOV8rr_NOREX, X86::MOV8mr_NOREX, TB_FOLDED_STORE },
322    { X86::MOVAPDrr,    X86::MOVAPDmr,      TB_FOLDED_STORE | TB_ALIGN_16 },
323    { X86::MOVAPSrr,    X86::MOVAPSmr,      TB_FOLDED_STORE | TB_ALIGN_16 },
324    { X86::MOVDQArr,    X86::MOVDQAmr,      TB_FOLDED_STORE | TB_ALIGN_16 },
325    { X86::MOVPDI2DIrr, X86::MOVPDI2DImr,   TB_FOLDED_STORE },
326    { X86::MOVPQIto64rr,X86::MOVPQI2QImr,   TB_FOLDED_STORE },
327    { X86::MOVSDto64rr, X86::MOVSDto64mr,   TB_FOLDED_STORE },
328    { X86::MOVSS2DIrr,  X86::MOVSS2DImr,    TB_FOLDED_STORE },
329    { X86::MOVUPDrr,    X86::MOVUPDmr,      TB_FOLDED_STORE },
330    { X86::MOVUPSrr,    X86::MOVUPSmr,      TB_FOLDED_STORE },
331    { X86::MUL16r,      X86::MUL16m,        TB_FOLDED_LOAD },
332    { X86::MUL32r,      X86::MUL32m,        TB_FOLDED_LOAD },
333    { X86::MUL64r,      X86::MUL64m,        TB_FOLDED_LOAD },
334    { X86::MUL8r,       X86::MUL8m,         TB_FOLDED_LOAD },
335    { X86::SETAEr,      X86::SETAEm,        TB_FOLDED_STORE },
336    { X86::SETAr,       X86::SETAm,         TB_FOLDED_STORE },
337    { X86::SETBEr,      X86::SETBEm,        TB_FOLDED_STORE },
338    { X86::SETBr,       X86::SETBm,         TB_FOLDED_STORE },
339    { X86::SETEr,       X86::SETEm,         TB_FOLDED_STORE },
340    { X86::SETGEr,      X86::SETGEm,        TB_FOLDED_STORE },
341    { X86::SETGr,       X86::SETGm,         TB_FOLDED_STORE },
342    { X86::SETLEr,      X86::SETLEm,        TB_FOLDED_STORE },
343    { X86::SETLr,       X86::SETLm,         TB_FOLDED_STORE },
344    { X86::SETNEr,      X86::SETNEm,        TB_FOLDED_STORE },
345    { X86::SETNOr,      X86::SETNOm,        TB_FOLDED_STORE },
346    { X86::SETNPr,      X86::SETNPm,        TB_FOLDED_STORE },
347    { X86::SETNSr,      X86::SETNSm,        TB_FOLDED_STORE },
348    { X86::SETOr,       X86::SETOm,         TB_FOLDED_STORE },
349    { X86::SETPr,       X86::SETPm,         TB_FOLDED_STORE },
350    { X86::SETSr,       X86::SETSm,         TB_FOLDED_STORE },
351    { X86::TAILJMPr,    X86::TAILJMPm,      TB_FOLDED_LOAD },
352    { X86::TAILJMPr64,  X86::TAILJMPm64,    TB_FOLDED_LOAD },
353    { X86::TEST16ri,    X86::TEST16mi,      TB_FOLDED_LOAD },
354    { X86::TEST32ri,    X86::TEST32mi,      TB_FOLDED_LOAD },
355    { X86::TEST64ri32,  X86::TEST64mi32,    TB_FOLDED_LOAD },
356    { X86::TEST8ri,     X86::TEST8mi,       TB_FOLDED_LOAD },
357    // AVX 128-bit versions of foldable instructions
358    { X86::VEXTRACTPSrr,X86::VEXTRACTPSmr,  TB_FOLDED_STORE | TB_ALIGN_16 },
359    { X86::FsVMOVAPDrr, X86::VMOVSDmr,      TB_FOLDED_STORE | TB_NO_REVERSE },
360    { X86::FsVMOVAPSrr, X86::VMOVSSmr,      TB_FOLDED_STORE | TB_NO_REVERSE },
361    { X86::VEXTRACTF128rr, X86::VEXTRACTF128mr, TB_FOLDED_STORE | TB_ALIGN_16 },
362    { X86::VMOVAPDrr,   X86::VMOVAPDmr,     TB_FOLDED_STORE | TB_ALIGN_16 },
363    { X86::VMOVAPSrr,   X86::VMOVAPSmr,     TB_FOLDED_STORE | TB_ALIGN_16 },
364    { X86::VMOVDQArr,   X86::VMOVDQAmr,     TB_FOLDED_STORE | TB_ALIGN_16 },
365    { X86::VMOVPDI2DIrr,X86::VMOVPDI2DImr,  TB_FOLDED_STORE },
366    { X86::VMOVPQIto64rr, X86::VMOVPQI2QImr,TB_FOLDED_STORE },
367    { X86::VMOVSDto64rr,X86::VMOVSDto64mr,  TB_FOLDED_STORE },
368    { X86::VMOVSS2DIrr, X86::VMOVSS2DImr,   TB_FOLDED_STORE },
369    { X86::VMOVUPDrr,   X86::VMOVUPDmr,     TB_FOLDED_STORE },
370    { X86::VMOVUPSrr,   X86::VMOVUPSmr,     TB_FOLDED_STORE },
371    // AVX 256-bit foldable instructions
372    { X86::VEXTRACTI128rr, X86::VEXTRACTI128mr, TB_FOLDED_STORE | TB_ALIGN_16 },
373    { X86::VMOVAPDYrr,  X86::VMOVAPDYmr,    TB_FOLDED_STORE | TB_ALIGN_32 },
374    { X86::VMOVAPSYrr,  X86::VMOVAPSYmr,    TB_FOLDED_STORE | TB_ALIGN_32 },
375    { X86::VMOVDQAYrr,  X86::VMOVDQAYmr,    TB_FOLDED_STORE | TB_ALIGN_32 },
376    { X86::VMOVUPDYrr,  X86::VMOVUPDYmr,    TB_FOLDED_STORE },
377    { X86::VMOVUPSYrr,  X86::VMOVUPSYmr,    TB_FOLDED_STORE }
378  };
379
380  for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) {
381    unsigned RegOp      = OpTbl0[i].RegOp;
382    unsigned MemOp      = OpTbl0[i].MemOp;
383    unsigned Flags      = OpTbl0[i].Flags;
384    AddTableEntry(RegOp2MemOpTable0, MemOp2RegOpTable,
385                  RegOp, MemOp, TB_INDEX_0 | Flags);
386  }
387
388  static const X86OpTblEntry OpTbl1[] = {
389    { X86::CMP16rr,         X86::CMP16rm,             0 },
390    { X86::CMP32rr,         X86::CMP32rm,             0 },
391    { X86::CMP64rr,         X86::CMP64rm,             0 },
392    { X86::CMP8rr,          X86::CMP8rm,              0 },
393    { X86::CVTSD2SSrr,      X86::CVTSD2SSrm,          0 },
394    { X86::CVTSI2SD64rr,    X86::CVTSI2SD64rm,        0 },
395    { X86::CVTSI2SDrr,      X86::CVTSI2SDrm,          0 },
396    { X86::CVTSI2SS64rr,    X86::CVTSI2SS64rm,        0 },
397    { X86::CVTSI2SSrr,      X86::CVTSI2SSrm,          0 },
398    { X86::CVTSS2SDrr,      X86::CVTSS2SDrm,          0 },
399    { X86::CVTTSD2SI64rr,   X86::CVTTSD2SI64rm,       0 },
400    { X86::CVTTSD2SIrr,     X86::CVTTSD2SIrm,         0 },
401    { X86::CVTTSS2SI64rr,   X86::CVTTSS2SI64rm,       0 },
402    { X86::CVTTSS2SIrr,     X86::CVTTSS2SIrm,         0 },
403    { X86::FsMOVAPDrr,      X86::MOVSDrm,             TB_NO_REVERSE },
404    { X86::FsMOVAPSrr,      X86::MOVSSrm,             TB_NO_REVERSE },
405    { X86::IMUL16rri,       X86::IMUL16rmi,           0 },
406    { X86::IMUL16rri8,      X86::IMUL16rmi8,          0 },
407    { X86::IMUL32rri,       X86::IMUL32rmi,           0 },
408    { X86::IMUL32rri8,      X86::IMUL32rmi8,          0 },
409    { X86::IMUL64rri32,     X86::IMUL64rmi32,         0 },
410    { X86::IMUL64rri8,      X86::IMUL64rmi8,          0 },
411    { X86::Int_COMISDrr,    X86::Int_COMISDrm,        0 },
412    { X86::Int_COMISSrr,    X86::Int_COMISSrm,        0 },
413    { X86::CVTSD2SI64rr,    X86::CVTSD2SI64rm,        0 },
414    { X86::CVTSD2SIrr,      X86::CVTSD2SIrm,          0 },
415    { X86::CVTSS2SI64rr,    X86::CVTSS2SI64rm,        0 },
416    { X86::CVTSS2SIrr,      X86::CVTSS2SIrm,          0 },
417    { X86::Int_CVTSD2SSrr,  X86::Int_CVTSD2SSrm,      0 },
418    { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm,    0 },
419    { X86::Int_CVTSI2SDrr,  X86::Int_CVTSI2SDrm,      0 },
420    { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm,    0 },
421    { X86::Int_CVTSI2SSrr,  X86::Int_CVTSI2SSrm,      0 },
422    { X86::Int_CVTSS2SDrr,  X86::Int_CVTSS2SDrm,      0 },
423    { X86::CVTTPD2DQrr,     X86::CVTTPD2DQrm,         TB_ALIGN_16 },
424    { X86::CVTTPS2DQrr,     X86::CVTTPS2DQrm,         TB_ALIGN_16 },
425    { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm,  0 },
426    { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm,     0 },
427    { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm,  0 },
428    { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm,     0 },
429    { X86::Int_UCOMISDrr,   X86::Int_UCOMISDrm,       0 },
430    { X86::Int_UCOMISSrr,   X86::Int_UCOMISSrm,       0 },
431    { X86::MOV16rr,         X86::MOV16rm,             0 },
432    { X86::MOV32rr,         X86::MOV32rm,             0 },
433    { X86::MOV64rr,         X86::MOV64rm,             0 },
434    { X86::MOV64toPQIrr,    X86::MOVQI2PQIrm,         0 },
435    { X86::MOV64toSDrr,     X86::MOV64toSDrm,         0 },
436    { X86::MOV8rr,          X86::MOV8rm,              0 },
437    { X86::MOVAPDrr,        X86::MOVAPDrm,            TB_ALIGN_16 },
438    { X86::MOVAPSrr,        X86::MOVAPSrm,            TB_ALIGN_16 },
439    { X86::MOVDDUPrr,       X86::MOVDDUPrm,           0 },
440    { X86::MOVDI2PDIrr,     X86::MOVDI2PDIrm,         0 },
441    { X86::MOVDI2SSrr,      X86::MOVDI2SSrm,          0 },
442    { X86::MOVDQArr,        X86::MOVDQArm,            TB_ALIGN_16 },
443    { X86::MOVSHDUPrr,      X86::MOVSHDUPrm,          TB_ALIGN_16 },
444    { X86::MOVSLDUPrr,      X86::MOVSLDUPrm,          TB_ALIGN_16 },
445    { X86::MOVSX16rr8,      X86::MOVSX16rm8,          0 },
446    { X86::MOVSX32rr16,     X86::MOVSX32rm16,         0 },
447    { X86::MOVSX32rr8,      X86::MOVSX32rm8,          0 },
448    { X86::MOVSX64rr16,     X86::MOVSX64rm16,         0 },
449    { X86::MOVSX64rr32,     X86::MOVSX64rm32,         0 },
450    { X86::MOVSX64rr8,      X86::MOVSX64rm8,          0 },
451    { X86::MOVUPDrr,        X86::MOVUPDrm,            TB_ALIGN_16 },
452    { X86::MOVUPSrr,        X86::MOVUPSrm,            0 },
453    { X86::MOVZDI2PDIrr,    X86::MOVZDI2PDIrm,        0 },
454    { X86::MOVZQI2PQIrr,    X86::MOVZQI2PQIrm,        0 },
455    { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm,     TB_ALIGN_16 },
456    { X86::MOVZX16rr8,      X86::MOVZX16rm8,          0 },
457    { X86::MOVZX32rr16,     X86::MOVZX32rm16,         0 },
458    { X86::MOVZX32_NOREXrr8, X86::MOVZX32_NOREXrm8,   0 },
459    { X86::MOVZX32rr8,      X86::MOVZX32rm8,          0 },
460    { X86::MOVZX64rr16,     X86::MOVZX64rm16,         0 },
461    { X86::MOVZX64rr32,     X86::MOVZX64rm32,         0 },
462    { X86::MOVZX64rr8,      X86::MOVZX64rm8,          0 },
463    { X86::PABSBrr128,      X86::PABSBrm128,          TB_ALIGN_16 },
464    { X86::PABSDrr128,      X86::PABSDrm128,          TB_ALIGN_16 },
465    { X86::PABSWrr128,      X86::PABSWrm128,          TB_ALIGN_16 },
466    { X86::PSHUFDri,        X86::PSHUFDmi,            TB_ALIGN_16 },
467    { X86::PSHUFHWri,       X86::PSHUFHWmi,           TB_ALIGN_16 },
468    { X86::PSHUFLWri,       X86::PSHUFLWmi,           TB_ALIGN_16 },
469    { X86::RCPPSr,          X86::RCPPSm,              TB_ALIGN_16 },
470    { X86::RCPPSr_Int,      X86::RCPPSm_Int,          TB_ALIGN_16 },
471    { X86::RSQRTPSr,        X86::RSQRTPSm,            TB_ALIGN_16 },
472    { X86::RSQRTPSr_Int,    X86::RSQRTPSm_Int,        TB_ALIGN_16 },
473    { X86::RSQRTSSr,        X86::RSQRTSSm,            0 },
474    { X86::RSQRTSSr_Int,    X86::RSQRTSSm_Int,        0 },
475    { X86::SQRTPDr,         X86::SQRTPDm,             TB_ALIGN_16 },
476    { X86::SQRTPDr_Int,     X86::SQRTPDm_Int,         TB_ALIGN_16 },
477    { X86::SQRTPSr,         X86::SQRTPSm,             TB_ALIGN_16 },
478    { X86::SQRTPSr_Int,     X86::SQRTPSm_Int,         TB_ALIGN_16 },
479    { X86::SQRTSDr,         X86::SQRTSDm,             0 },
480    { X86::SQRTSDr_Int,     X86::SQRTSDm_Int,         0 },
481    { X86::SQRTSSr,         X86::SQRTSSm,             0 },
482    { X86::SQRTSSr_Int,     X86::SQRTSSm_Int,         0 },
483    { X86::TEST16rr,        X86::TEST16rm,            0 },
484    { X86::TEST32rr,        X86::TEST32rm,            0 },
485    { X86::TEST64rr,        X86::TEST64rm,            0 },
486    { X86::TEST8rr,         X86::TEST8rm,             0 },
487    // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
488    { X86::UCOMISDrr,       X86::UCOMISDrm,           0 },
489    { X86::UCOMISSrr,       X86::UCOMISSrm,           0 },
490    // AVX 128-bit versions of foldable instructions
491    { X86::Int_VCOMISDrr,   X86::Int_VCOMISDrm,       0 },
492    { X86::Int_VCOMISSrr,   X86::Int_VCOMISSrm,       0 },
493    { X86::Int_VUCOMISDrr,  X86::Int_VUCOMISDrm,      0 },
494    { X86::Int_VUCOMISSrr,  X86::Int_VUCOMISSrm,      0 },
495    { X86::VCVTTSD2SI64rr,  X86::VCVTTSD2SI64rm,      0 },
496    { X86::Int_VCVTTSD2SI64rr,X86::Int_VCVTTSD2SI64rm,0 },
497    { X86::VCVTTSD2SIrr,    X86::VCVTTSD2SIrm,        0 },
498    { X86::Int_VCVTTSD2SIrr,X86::Int_VCVTTSD2SIrm,    0 },
499    { X86::VCVTTSS2SI64rr,  X86::VCVTTSS2SI64rm,      0 },
500    { X86::Int_VCVTTSS2SI64rr,X86::Int_VCVTTSS2SI64rm,0 },
501    { X86::VCVTTSS2SIrr,    X86::VCVTTSS2SIrm,        0 },
502    { X86::Int_VCVTTSS2SIrr,X86::Int_VCVTTSS2SIrm,    0 },
503    { X86::VCVTSD2SI64rr,   X86::VCVTSD2SI64rm,       0 },
504    { X86::VCVTSD2SIrr,     X86::VCVTSD2SIrm,         0 },
505    { X86::VCVTSS2SI64rr,   X86::VCVTSS2SI64rm,       0 },
506    { X86::VCVTSS2SIrr,     X86::VCVTSS2SIrm,         0 },
507    { X86::FsVMOVAPDrr,     X86::VMOVSDrm,            TB_NO_REVERSE },
508    { X86::FsVMOVAPSrr,     X86::VMOVSSrm,            TB_NO_REVERSE },
509    { X86::VMOV64toPQIrr,   X86::VMOVQI2PQIrm,        0 },
510    { X86::VMOV64toSDrr,    X86::VMOV64toSDrm,        0 },
511    { X86::VMOVAPDrr,       X86::VMOVAPDrm,           TB_ALIGN_16 },
512    { X86::VMOVAPSrr,       X86::VMOVAPSrm,           TB_ALIGN_16 },
513    { X86::VMOVDDUPrr,      X86::VMOVDDUPrm,          0 },
514    { X86::VMOVDI2PDIrr,    X86::VMOVDI2PDIrm,        0 },
515    { X86::VMOVDI2SSrr,     X86::VMOVDI2SSrm,         0 },
516    { X86::VMOVDQArr,       X86::VMOVDQArm,           TB_ALIGN_16 },
517    { X86::VMOVSLDUPrr,     X86::VMOVSLDUPrm,         TB_ALIGN_16 },
518    { X86::VMOVSHDUPrr,     X86::VMOVSHDUPrm,         TB_ALIGN_16 },
519    { X86::VMOVUPDrr,       X86::VMOVUPDrm,           TB_ALIGN_16 },
520    { X86::VMOVUPSrr,       X86::VMOVUPSrm,           0 },
521    { X86::VMOVZDI2PDIrr,   X86::VMOVZDI2PDIrm,       0 },
522    { X86::VMOVZQI2PQIrr,   X86::VMOVZQI2PQIrm,       0 },
523    { X86::VMOVZPQILo2PQIrr,X86::VMOVZPQILo2PQIrm,    TB_ALIGN_16 },
524    { X86::VPABSBrr128,     X86::VPABSBrm128,         TB_ALIGN_16 },
525    { X86::VPABSDrr128,     X86::VPABSDrm128,         TB_ALIGN_16 },
526    { X86::VPABSWrr128,     X86::VPABSWrm128,         TB_ALIGN_16 },
527    { X86::VPERMILPDri,     X86::VPERMILPDmi,         TB_ALIGN_16 },
528    { X86::VPERMILPSri,     X86::VPERMILPSmi,         TB_ALIGN_16 },
529    { X86::VPSHUFDri,       X86::VPSHUFDmi,           TB_ALIGN_16 },
530    { X86::VPSHUFHWri,      X86::VPSHUFHWmi,          TB_ALIGN_16 },
531    { X86::VPSHUFLWri,      X86::VPSHUFLWmi,          TB_ALIGN_16 },
532    { X86::VRCPPSr,         X86::VRCPPSm,             TB_ALIGN_16 },
533    { X86::VRCPPSr_Int,     X86::VRCPPSm_Int,         TB_ALIGN_16 },
534    { X86::VRSQRTPSr,       X86::VRSQRTPSm,           TB_ALIGN_16 },
535    { X86::VRSQRTPSr_Int,   X86::VRSQRTPSm_Int,       TB_ALIGN_16 },
536    { X86::VSQRTPDr,        X86::VSQRTPDm,            TB_ALIGN_16 },
537    { X86::VSQRTPDr_Int,    X86::VSQRTPDm_Int,        TB_ALIGN_16 },
538    { X86::VSQRTPSr,        X86::VSQRTPSm,            TB_ALIGN_16 },
539    { X86::VSQRTPSr_Int,    X86::VSQRTPSm_Int,        TB_ALIGN_16 },
540    { X86::VUCOMISDrr,      X86::VUCOMISDrm,          0 },
541    { X86::VUCOMISSrr,      X86::VUCOMISSrm,          0 },
542    { X86::VBROADCASTSSrr,  X86::VBROADCASTSSrm,      TB_NO_REVERSE },
543
544    // AVX 256-bit foldable instructions
545    { X86::VMOVAPDYrr,      X86::VMOVAPDYrm,          TB_ALIGN_32 },
546    { X86::VMOVAPSYrr,      X86::VMOVAPSYrm,          TB_ALIGN_32 },
547    { X86::VMOVDQAYrr,      X86::VMOVDQAYrm,          TB_ALIGN_32 },
548    { X86::VMOVUPDYrr,      X86::VMOVUPDYrm,          0 },
549    { X86::VMOVUPSYrr,      X86::VMOVUPSYrm,          0 },
550    { X86::VPERMILPDYri,    X86::VPERMILPDYmi,        TB_ALIGN_32 },
551    { X86::VPERMILPSYri,    X86::VPERMILPSYmi,        TB_ALIGN_32 },
552
553    // AVX2 foldable instructions
554    { X86::VPABSBrr256,     X86::VPABSBrm256,         TB_ALIGN_32 },
555    { X86::VPABSDrr256,     X86::VPABSDrm256,         TB_ALIGN_32 },
556    { X86::VPABSWrr256,     X86::VPABSWrm256,         TB_ALIGN_32 },
557    { X86::VPSHUFDYri,      X86::VPSHUFDYmi,          TB_ALIGN_32 },
558    { X86::VPSHUFHWYri,     X86::VPSHUFHWYmi,         TB_ALIGN_32 },
559    { X86::VPSHUFLWYri,     X86::VPSHUFLWYmi,         TB_ALIGN_32 },
560    { X86::VRCPPSYr,        X86::VRCPPSYm,            TB_ALIGN_32 },
561    { X86::VRCPPSYr_Int,    X86::VRCPPSYm_Int,        TB_ALIGN_32 },
562    { X86::VRSQRTPSYr,      X86::VRSQRTPSYm,          TB_ALIGN_32 },
563    { X86::VRSQRTPSYr_Int,  X86::VRSQRTPSYm_Int,      TB_ALIGN_32 },
564    { X86::VSQRTPDYr,       X86::VSQRTPDYm,           TB_ALIGN_32 },
565    { X86::VSQRTPDYr_Int,   X86::VSQRTPDYm_Int,       TB_ALIGN_32 },
566    { X86::VSQRTPSYr,       X86::VSQRTPSYm,           TB_ALIGN_32 },
567    { X86::VSQRTPSYr_Int,   X86::VSQRTPSYm_Int,       TB_ALIGN_32 },
568    { X86::VBROADCASTSSYrr, X86::VBROADCASTSSYrm,     TB_NO_REVERSE },
569    { X86::VBROADCASTSDYrr, X86::VBROADCASTSDYrm,     TB_NO_REVERSE },
570  };
571
572  for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) {
573    unsigned RegOp = OpTbl1[i].RegOp;
574    unsigned MemOp = OpTbl1[i].MemOp;
575    unsigned Flags = OpTbl1[i].Flags;
576    AddTableEntry(RegOp2MemOpTable1, MemOp2RegOpTable,
577                  RegOp, MemOp,
578                  // Index 1, folded load
579                  Flags | TB_INDEX_1 | TB_FOLDED_LOAD);
580  }
581
582  static const X86OpTblEntry OpTbl2[] = {
583    { X86::ADC32rr,         X86::ADC32rm,       0 },
584    { X86::ADC64rr,         X86::ADC64rm,       0 },
585    { X86::ADD16rr,         X86::ADD16rm,       0 },
586    { X86::ADD16rr_DB,      X86::ADD16rm,       TB_NO_REVERSE },
587    { X86::ADD32rr,         X86::ADD32rm,       0 },
588    { X86::ADD32rr_DB,      X86::ADD32rm,       TB_NO_REVERSE },
589    { X86::ADD64rr,         X86::ADD64rm,       0 },
590    { X86::ADD64rr_DB,      X86::ADD64rm,       TB_NO_REVERSE },
591    { X86::ADD8rr,          X86::ADD8rm,        0 },
592    { X86::ADDPDrr,         X86::ADDPDrm,       TB_ALIGN_16 },
593    { X86::ADDPSrr,         X86::ADDPSrm,       TB_ALIGN_16 },
594    { X86::ADDSDrr,         X86::ADDSDrm,       0 },
595    { X86::ADDSSrr,         X86::ADDSSrm,       0 },
596    { X86::ADDSUBPDrr,      X86::ADDSUBPDrm,    TB_ALIGN_16 },
597    { X86::ADDSUBPSrr,      X86::ADDSUBPSrm,    TB_ALIGN_16 },
598    { X86::AND16rr,         X86::AND16rm,       0 },
599    { X86::AND32rr,         X86::AND32rm,       0 },
600    { X86::AND64rr,         X86::AND64rm,       0 },
601    { X86::AND8rr,          X86::AND8rm,        0 },
602    { X86::ANDNPDrr,        X86::ANDNPDrm,      TB_ALIGN_16 },
603    { X86::ANDNPSrr,        X86::ANDNPSrm,      TB_ALIGN_16 },
604    { X86::ANDPDrr,         X86::ANDPDrm,       TB_ALIGN_16 },
605    { X86::ANDPSrr,         X86::ANDPSrm,       TB_ALIGN_16 },
606    { X86::BLENDPDrri,      X86::BLENDPDrmi,    TB_ALIGN_16 },
607    { X86::BLENDPSrri,      X86::BLENDPSrmi,    TB_ALIGN_16 },
608    { X86::BLENDVPDrr0,     X86::BLENDVPDrm0,   TB_ALIGN_16 },
609    { X86::BLENDVPSrr0,     X86::BLENDVPSrm0,   TB_ALIGN_16 },
610    { X86::CMOVA16rr,       X86::CMOVA16rm,     0 },
611    { X86::CMOVA32rr,       X86::CMOVA32rm,     0 },
612    { X86::CMOVA64rr,       X86::CMOVA64rm,     0 },
613    { X86::CMOVAE16rr,      X86::CMOVAE16rm,    0 },
614    { X86::CMOVAE32rr,      X86::CMOVAE32rm,    0 },
615    { X86::CMOVAE64rr,      X86::CMOVAE64rm,    0 },
616    { X86::CMOVB16rr,       X86::CMOVB16rm,     0 },
617    { X86::CMOVB32rr,       X86::CMOVB32rm,     0 },
618    { X86::CMOVB64rr,       X86::CMOVB64rm,     0 },
619    { X86::CMOVBE16rr,      X86::CMOVBE16rm,    0 },
620    { X86::CMOVBE32rr,      X86::CMOVBE32rm,    0 },
621    { X86::CMOVBE64rr,      X86::CMOVBE64rm,    0 },
622    { X86::CMOVE16rr,       X86::CMOVE16rm,     0 },
623    { X86::CMOVE32rr,       X86::CMOVE32rm,     0 },
624    { X86::CMOVE64rr,       X86::CMOVE64rm,     0 },
625    { X86::CMOVG16rr,       X86::CMOVG16rm,     0 },
626    { X86::CMOVG32rr,       X86::CMOVG32rm,     0 },
627    { X86::CMOVG64rr,       X86::CMOVG64rm,     0 },
628    { X86::CMOVGE16rr,      X86::CMOVGE16rm,    0 },
629    { X86::CMOVGE32rr,      X86::CMOVGE32rm,    0 },
630    { X86::CMOVGE64rr,      X86::CMOVGE64rm,    0 },
631    { X86::CMOVL16rr,       X86::CMOVL16rm,     0 },
632    { X86::CMOVL32rr,       X86::CMOVL32rm,     0 },
633    { X86::CMOVL64rr,       X86::CMOVL64rm,     0 },
634    { X86::CMOVLE16rr,      X86::CMOVLE16rm,    0 },
635    { X86::CMOVLE32rr,      X86::CMOVLE32rm,    0 },
636    { X86::CMOVLE64rr,      X86::CMOVLE64rm,    0 },
637    { X86::CMOVNE16rr,      X86::CMOVNE16rm,    0 },
638    { X86::CMOVNE32rr,      X86::CMOVNE32rm,    0 },
639    { X86::CMOVNE64rr,      X86::CMOVNE64rm,    0 },
640    { X86::CMOVNO16rr,      X86::CMOVNO16rm,    0 },
641    { X86::CMOVNO32rr,      X86::CMOVNO32rm,    0 },
642    { X86::CMOVNO64rr,      X86::CMOVNO64rm,    0 },
643    { X86::CMOVNP16rr,      X86::CMOVNP16rm,    0 },
644    { X86::CMOVNP32rr,      X86::CMOVNP32rm,    0 },
645    { X86::CMOVNP64rr,      X86::CMOVNP64rm,    0 },
646    { X86::CMOVNS16rr,      X86::CMOVNS16rm,    0 },
647    { X86::CMOVNS32rr,      X86::CMOVNS32rm,    0 },
648    { X86::CMOVNS64rr,      X86::CMOVNS64rm,    0 },
649    { X86::CMOVO16rr,       X86::CMOVO16rm,     0 },
650    { X86::CMOVO32rr,       X86::CMOVO32rm,     0 },
651    { X86::CMOVO64rr,       X86::CMOVO64rm,     0 },
652    { X86::CMOVP16rr,       X86::CMOVP16rm,     0 },
653    { X86::CMOVP32rr,       X86::CMOVP32rm,     0 },
654    { X86::CMOVP64rr,       X86::CMOVP64rm,     0 },
655    { X86::CMOVS16rr,       X86::CMOVS16rm,     0 },
656    { X86::CMOVS32rr,       X86::CMOVS32rm,     0 },
657    { X86::CMOVS64rr,       X86::CMOVS64rm,     0 },
658    { X86::CMPPDrri,        X86::CMPPDrmi,      TB_ALIGN_16 },
659    { X86::CMPPSrri,        X86::CMPPSrmi,      TB_ALIGN_16 },
660    { X86::CMPSDrr,         X86::CMPSDrm,       0 },
661    { X86::CMPSSrr,         X86::CMPSSrm,       0 },
662    { X86::DIVPDrr,         X86::DIVPDrm,       TB_ALIGN_16 },
663    { X86::DIVPSrr,         X86::DIVPSrm,       TB_ALIGN_16 },
664    { X86::DIVSDrr,         X86::DIVSDrm,       0 },
665    { X86::DIVSSrr,         X86::DIVSSrm,       0 },
666    { X86::FsANDNPDrr,      X86::FsANDNPDrm,    TB_ALIGN_16 },
667    { X86::FsANDNPSrr,      X86::FsANDNPSrm,    TB_ALIGN_16 },
668    { X86::FsANDPDrr,       X86::FsANDPDrm,     TB_ALIGN_16 },
669    { X86::FsANDPSrr,       X86::FsANDPSrm,     TB_ALIGN_16 },
670    { X86::FsORPDrr,        X86::FsORPDrm,      TB_ALIGN_16 },
671    { X86::FsORPSrr,        X86::FsORPSrm,      TB_ALIGN_16 },
672    { X86::FsXORPDrr,       X86::FsXORPDrm,     TB_ALIGN_16 },
673    { X86::FsXORPSrr,       X86::FsXORPSrm,     TB_ALIGN_16 },
674    { X86::HADDPDrr,        X86::HADDPDrm,      TB_ALIGN_16 },
675    { X86::HADDPSrr,        X86::HADDPSrm,      TB_ALIGN_16 },
676    { X86::HSUBPDrr,        X86::HSUBPDrm,      TB_ALIGN_16 },
677    { X86::HSUBPSrr,        X86::HSUBPSrm,      TB_ALIGN_16 },
678    { X86::IMUL16rr,        X86::IMUL16rm,      0 },
679    { X86::IMUL32rr,        X86::IMUL32rm,      0 },
680    { X86::IMUL64rr,        X86::IMUL64rm,      0 },
681    { X86::Int_CMPSDrr,     X86::Int_CMPSDrm,   0 },
682    { X86::Int_CMPSSrr,     X86::Int_CMPSSrm,   0 },
683    { X86::MAXPDrr,         X86::MAXPDrm,       TB_ALIGN_16 },
684    { X86::MAXPDrr_Int,     X86::MAXPDrm_Int,   TB_ALIGN_16 },
685    { X86::MAXPSrr,         X86::MAXPSrm,       TB_ALIGN_16 },
686    { X86::MAXPSrr_Int,     X86::MAXPSrm_Int,   TB_ALIGN_16 },
687    { X86::MAXSDrr,         X86::MAXSDrm,       0 },
688    { X86::MAXSDrr_Int,     X86::MAXSDrm_Int,   0 },
689    { X86::MAXSSrr,         X86::MAXSSrm,       0 },
690    { X86::MAXSSrr_Int,     X86::MAXSSrm_Int,   0 },
691    { X86::MINPDrr,         X86::MINPDrm,       TB_ALIGN_16 },
692    { X86::MINPDrr_Int,     X86::MINPDrm_Int,   TB_ALIGN_16 },
693    { X86::MINPSrr,         X86::MINPSrm,       TB_ALIGN_16 },
694    { X86::MINPSrr_Int,     X86::MINPSrm_Int,   TB_ALIGN_16 },
695    { X86::MINSDrr,         X86::MINSDrm,       0 },
696    { X86::MINSDrr_Int,     X86::MINSDrm_Int,   0 },
697    { X86::MINSSrr,         X86::MINSSrm,       0 },
698    { X86::MINSSrr_Int,     X86::MINSSrm_Int,   0 },
699    { X86::MPSADBWrri,      X86::MPSADBWrmi,    TB_ALIGN_16 },
700    { X86::MULPDrr,         X86::MULPDrm,       TB_ALIGN_16 },
701    { X86::MULPSrr,         X86::MULPSrm,       TB_ALIGN_16 },
702    { X86::MULSDrr,         X86::MULSDrm,       0 },
703    { X86::MULSSrr,         X86::MULSSrm,       0 },
704    { X86::OR16rr,          X86::OR16rm,        0 },
705    { X86::OR32rr,          X86::OR32rm,        0 },
706    { X86::OR64rr,          X86::OR64rm,        0 },
707    { X86::OR8rr,           X86::OR8rm,         0 },
708    { X86::ORPDrr,          X86::ORPDrm,        TB_ALIGN_16 },
709    { X86::ORPSrr,          X86::ORPSrm,        TB_ALIGN_16 },
710    { X86::PACKSSDWrr,      X86::PACKSSDWrm,    TB_ALIGN_16 },
711    { X86::PACKSSWBrr,      X86::PACKSSWBrm,    TB_ALIGN_16 },
712    { X86::PACKUSDWrr,      X86::PACKUSDWrm,    TB_ALIGN_16 },
713    { X86::PACKUSWBrr,      X86::PACKUSWBrm,    TB_ALIGN_16 },
714    { X86::PADDBrr,         X86::PADDBrm,       TB_ALIGN_16 },
715    { X86::PADDDrr,         X86::PADDDrm,       TB_ALIGN_16 },
716    { X86::PADDQrr,         X86::PADDQrm,       TB_ALIGN_16 },
717    { X86::PADDSBrr,        X86::PADDSBrm,      TB_ALIGN_16 },
718    { X86::PADDSWrr,        X86::PADDSWrm,      TB_ALIGN_16 },
719    { X86::PADDUSBrr,       X86::PADDUSBrm,     TB_ALIGN_16 },
720    { X86::PADDUSWrr,       X86::PADDUSWrm,     TB_ALIGN_16 },
721    { X86::PADDWrr,         X86::PADDWrm,       TB_ALIGN_16 },
722    { X86::PALIGNR128rr,    X86::PALIGNR128rm,  TB_ALIGN_16 },
723    { X86::PANDNrr,         X86::PANDNrm,       TB_ALIGN_16 },
724    { X86::PANDrr,          X86::PANDrm,        TB_ALIGN_16 },
725    { X86::PAVGBrr,         X86::PAVGBrm,       TB_ALIGN_16 },
726    { X86::PAVGWrr,         X86::PAVGWrm,       TB_ALIGN_16 },
727    { X86::PBLENDWrri,      X86::PBLENDWrmi,    TB_ALIGN_16 },
728    { X86::PCMPEQBrr,       X86::PCMPEQBrm,     TB_ALIGN_16 },
729    { X86::PCMPEQDrr,       X86::PCMPEQDrm,     TB_ALIGN_16 },
730    { X86::PCMPEQQrr,       X86::PCMPEQQrm,     TB_ALIGN_16 },
731    { X86::PCMPEQWrr,       X86::PCMPEQWrm,     TB_ALIGN_16 },
732    { X86::PCMPGTBrr,       X86::PCMPGTBrm,     TB_ALIGN_16 },
733    { X86::PCMPGTDrr,       X86::PCMPGTDrm,     TB_ALIGN_16 },
734    { X86::PCMPGTQrr,       X86::PCMPGTQrm,     TB_ALIGN_16 },
735    { X86::PCMPGTWrr,       X86::PCMPGTWrm,     TB_ALIGN_16 },
736    { X86::PHADDDrr,        X86::PHADDDrm,      TB_ALIGN_16 },
737    { X86::PHADDWrr,        X86::PHADDWrm,      TB_ALIGN_16 },
738    { X86::PHADDSWrr128,    X86::PHADDSWrm128,  TB_ALIGN_16 },
739    { X86::PHSUBDrr,        X86::PHSUBDrm,      TB_ALIGN_16 },
740    { X86::PHSUBSWrr128,    X86::PHSUBSWrm128,  TB_ALIGN_16 },
741    { X86::PHSUBWrr,        X86::PHSUBWrm,      TB_ALIGN_16 },
742    { X86::PINSRWrri,       X86::PINSRWrmi,     TB_ALIGN_16 },
743    { X86::PMADDUBSWrr128,  X86::PMADDUBSWrm128, TB_ALIGN_16 },
744    { X86::PMADDWDrr,       X86::PMADDWDrm,     TB_ALIGN_16 },
745    { X86::PMAXSWrr,        X86::PMAXSWrm,      TB_ALIGN_16 },
746    { X86::PMAXUBrr,        X86::PMAXUBrm,      TB_ALIGN_16 },
747    { X86::PMINSWrr,        X86::PMINSWrm,      TB_ALIGN_16 },
748    { X86::PMINUBrr,        X86::PMINUBrm,      TB_ALIGN_16 },
749    { X86::PMULDQrr,        X86::PMULDQrm,      TB_ALIGN_16 },
750    { X86::PMULHRSWrr128,   X86::PMULHRSWrm128, TB_ALIGN_16 },
751    { X86::PMULHUWrr,       X86::PMULHUWrm,     TB_ALIGN_16 },
752    { X86::PMULHWrr,        X86::PMULHWrm,      TB_ALIGN_16 },
753    { X86::PMULLDrr,        X86::PMULLDrm,      TB_ALIGN_16 },
754    { X86::PMULLWrr,        X86::PMULLWrm,      TB_ALIGN_16 },
755    { X86::PMULUDQrr,       X86::PMULUDQrm,     TB_ALIGN_16 },
756    { X86::PORrr,           X86::PORrm,         TB_ALIGN_16 },
757    { X86::PSADBWrr,        X86::PSADBWrm,      TB_ALIGN_16 },
758    { X86::PSHUFBrr,        X86::PSHUFBrm,      TB_ALIGN_16 },
759    { X86::PSIGNBrr,        X86::PSIGNBrm,      TB_ALIGN_16 },
760    { X86::PSIGNWrr,        X86::PSIGNWrm,      TB_ALIGN_16 },
761    { X86::PSIGNDrr,        X86::PSIGNDrm,      TB_ALIGN_16 },
762    { X86::PSLLDrr,         X86::PSLLDrm,       TB_ALIGN_16 },
763    { X86::PSLLQrr,         X86::PSLLQrm,       TB_ALIGN_16 },
764    { X86::PSLLWrr,         X86::PSLLWrm,       TB_ALIGN_16 },
765    { X86::PSRADrr,         X86::PSRADrm,       TB_ALIGN_16 },
766    { X86::PSRAWrr,         X86::PSRAWrm,       TB_ALIGN_16 },
767    { X86::PSRLDrr,         X86::PSRLDrm,       TB_ALIGN_16 },
768    { X86::PSRLQrr,         X86::PSRLQrm,       TB_ALIGN_16 },
769    { X86::PSRLWrr,         X86::PSRLWrm,       TB_ALIGN_16 },
770    { X86::PSUBBrr,         X86::PSUBBrm,       TB_ALIGN_16 },
771    { X86::PSUBDrr,         X86::PSUBDrm,       TB_ALIGN_16 },
772    { X86::PSUBSBrr,        X86::PSUBSBrm,      TB_ALIGN_16 },
773    { X86::PSUBSWrr,        X86::PSUBSWrm,      TB_ALIGN_16 },
774    { X86::PSUBWrr,         X86::PSUBWrm,       TB_ALIGN_16 },
775    { X86::PUNPCKHBWrr,     X86::PUNPCKHBWrm,   TB_ALIGN_16 },
776    { X86::PUNPCKHDQrr,     X86::PUNPCKHDQrm,   TB_ALIGN_16 },
777    { X86::PUNPCKHQDQrr,    X86::PUNPCKHQDQrm,  TB_ALIGN_16 },
778    { X86::PUNPCKHWDrr,     X86::PUNPCKHWDrm,   TB_ALIGN_16 },
779    { X86::PUNPCKLBWrr,     X86::PUNPCKLBWrm,   TB_ALIGN_16 },
780    { X86::PUNPCKLDQrr,     X86::PUNPCKLDQrm,   TB_ALIGN_16 },
781    { X86::PUNPCKLQDQrr,    X86::PUNPCKLQDQrm,  TB_ALIGN_16 },
782    { X86::PUNPCKLWDrr,     X86::PUNPCKLWDrm,   TB_ALIGN_16 },
783    { X86::PXORrr,          X86::PXORrm,        TB_ALIGN_16 },
784    { X86::SBB32rr,         X86::SBB32rm,       0 },
785    { X86::SBB64rr,         X86::SBB64rm,       0 },
786    { X86::SHUFPDrri,       X86::SHUFPDrmi,     TB_ALIGN_16 },
787    { X86::SHUFPSrri,       X86::SHUFPSrmi,     TB_ALIGN_16 },
788    { X86::SUB16rr,         X86::SUB16rm,       0 },
789    { X86::SUB32rr,         X86::SUB32rm,       0 },
790    { X86::SUB64rr,         X86::SUB64rm,       0 },
791    { X86::SUB8rr,          X86::SUB8rm,        0 },
792    { X86::SUBPDrr,         X86::SUBPDrm,       TB_ALIGN_16 },
793    { X86::SUBPSrr,         X86::SUBPSrm,       TB_ALIGN_16 },
794    { X86::SUBSDrr,         X86::SUBSDrm,       0 },
795    { X86::SUBSSrr,         X86::SUBSSrm,       0 },
796    // FIXME: TEST*rr -> swapped operand of TEST*mr.
797    { X86::UNPCKHPDrr,      X86::UNPCKHPDrm,    TB_ALIGN_16 },
798    { X86::UNPCKHPSrr,      X86::UNPCKHPSrm,    TB_ALIGN_16 },
799    { X86::UNPCKLPDrr,      X86::UNPCKLPDrm,    TB_ALIGN_16 },
800    { X86::UNPCKLPSrr,      X86::UNPCKLPSrm,    TB_ALIGN_16 },
801    { X86::XOR16rr,         X86::XOR16rm,       0 },
802    { X86::XOR32rr,         X86::XOR32rm,       0 },
803    { X86::XOR64rr,         X86::XOR64rm,       0 },
804    { X86::XOR8rr,          X86::XOR8rm,        0 },
805    { X86::XORPDrr,         X86::XORPDrm,       TB_ALIGN_16 },
806    { X86::XORPSrr,         X86::XORPSrm,       TB_ALIGN_16 },
807    // AVX 128-bit versions of foldable instructions
808    { X86::VCVTSD2SSrr,       X86::VCVTSD2SSrm,        0 },
809    { X86::Int_VCVTSD2SSrr,   X86::Int_VCVTSD2SSrm,    0 },
810    { X86::VCVTSI2SD64rr,     X86::VCVTSI2SD64rm,      0 },
811    { X86::Int_VCVTSI2SD64rr, X86::Int_VCVTSI2SD64rm,  0 },
812    { X86::VCVTSI2SDrr,       X86::VCVTSI2SDrm,        0 },
813    { X86::Int_VCVTSI2SDrr,   X86::Int_VCVTSI2SDrm,    0 },
814    { X86::VCVTSI2SS64rr,     X86::VCVTSI2SS64rm,      0 },
815    { X86::Int_VCVTSI2SS64rr, X86::Int_VCVTSI2SS64rm,  0 },
816    { X86::VCVTSI2SSrr,       X86::VCVTSI2SSrm,        0 },
817    { X86::Int_VCVTSI2SSrr,   X86::Int_VCVTSI2SSrm,    0 },
818    { X86::VCVTSS2SDrr,       X86::VCVTSS2SDrm,        0 },
819    { X86::Int_VCVTSS2SDrr,   X86::Int_VCVTSS2SDrm,    0 },
820    { X86::VCVTTPD2DQrr,      X86::VCVTTPD2DQXrm,      TB_ALIGN_16 },
821    { X86::VCVTTPS2DQrr,      X86::VCVTTPS2DQrm,       TB_ALIGN_16 },
822    { X86::VRSQRTSSr,         X86::VRSQRTSSm,          0 },
823    { X86::VSQRTSDr,          X86::VSQRTSDm,           0 },
824    { X86::VSQRTSSr,          X86::VSQRTSSm,           0 },
825    { X86::VADDPDrr,          X86::VADDPDrm,           TB_ALIGN_16 },
826    { X86::VADDPSrr,          X86::VADDPSrm,           TB_ALIGN_16 },
827    { X86::VADDSDrr,          X86::VADDSDrm,           0 },
828    { X86::VADDSSrr,          X86::VADDSSrm,           0 },
829    { X86::VADDSUBPDrr,       X86::VADDSUBPDrm,        TB_ALIGN_16 },
830    { X86::VADDSUBPSrr,       X86::VADDSUBPSrm,        TB_ALIGN_16 },
831    { X86::VANDNPDrr,         X86::VANDNPDrm,          TB_ALIGN_16 },
832    { X86::VANDNPSrr,         X86::VANDNPSrm,          TB_ALIGN_16 },
833    { X86::VANDPDrr,          X86::VANDPDrm,           TB_ALIGN_16 },
834    { X86::VANDPSrr,          X86::VANDPSrm,           TB_ALIGN_16 },
835    { X86::VBLENDPDrri,       X86::VBLENDPDrmi,        TB_ALIGN_16 },
836    { X86::VBLENDPSrri,       X86::VBLENDPSrmi,        TB_ALIGN_16 },
837    { X86::VBLENDVPDrr,       X86::VBLENDVPDrm,        TB_ALIGN_16 },
838    { X86::VBLENDVPSrr,       X86::VBLENDVPSrm,        TB_ALIGN_16 },
839    { X86::VCMPPDrri,         X86::VCMPPDrmi,          TB_ALIGN_16 },
840    { X86::VCMPPSrri,         X86::VCMPPSrmi,          TB_ALIGN_16 },
841    { X86::VCMPSDrr,          X86::VCMPSDrm,           0 },
842    { X86::VCMPSSrr,          X86::VCMPSSrm,           0 },
843    { X86::VDIVPDrr,          X86::VDIVPDrm,           TB_ALIGN_16 },
844    { X86::VDIVPSrr,          X86::VDIVPSrm,           TB_ALIGN_16 },
845    { X86::VDIVSDrr,          X86::VDIVSDrm,           0 },
846    { X86::VDIVSSrr,          X86::VDIVSSrm,           0 },
847    { X86::VFsANDNPDrr,       X86::VFsANDNPDrm,        TB_ALIGN_16 },
848    { X86::VFsANDNPSrr,       X86::VFsANDNPSrm,        TB_ALIGN_16 },
849    { X86::VFsANDPDrr,        X86::VFsANDPDrm,         TB_ALIGN_16 },
850    { X86::VFsANDPSrr,        X86::VFsANDPSrm,         TB_ALIGN_16 },
851    { X86::VFsORPDrr,         X86::VFsORPDrm,          TB_ALIGN_16 },
852    { X86::VFsORPSrr,         X86::VFsORPSrm,          TB_ALIGN_16 },
853    { X86::VFsXORPDrr,        X86::VFsXORPDrm,         TB_ALIGN_16 },
854    { X86::VFsXORPSrr,        X86::VFsXORPSrm,         TB_ALIGN_16 },
855    { X86::VHADDPDrr,         X86::VHADDPDrm,          TB_ALIGN_16 },
856    { X86::VHADDPSrr,         X86::VHADDPSrm,          TB_ALIGN_16 },
857    { X86::VHSUBPDrr,         X86::VHSUBPDrm,          TB_ALIGN_16 },
858    { X86::VHSUBPSrr,         X86::VHSUBPSrm,          TB_ALIGN_16 },
859    { X86::Int_VCMPSDrr,      X86::Int_VCMPSDrm,       0 },
860    { X86::Int_VCMPSSrr,      X86::Int_VCMPSSrm,       0 },
861    { X86::VMAXPDrr,          X86::VMAXPDrm,           TB_ALIGN_16 },
862    { X86::VMAXPDrr_Int,      X86::VMAXPDrm_Int,       TB_ALIGN_16 },
863    { X86::VMAXPSrr,          X86::VMAXPSrm,           TB_ALIGN_16 },
864    { X86::VMAXPSrr_Int,      X86::VMAXPSrm_Int,       TB_ALIGN_16 },
865    { X86::VMAXSDrr,          X86::VMAXSDrm,           0 },
866    { X86::VMAXSDrr_Int,      X86::VMAXSDrm_Int,       0 },
867    { X86::VMAXSSrr,          X86::VMAXSSrm,           0 },
868    { X86::VMAXSSrr_Int,      X86::VMAXSSrm_Int,       0 },
869    { X86::VMINPDrr,          X86::VMINPDrm,           TB_ALIGN_16 },
870    { X86::VMINPDrr_Int,      X86::VMINPDrm_Int,       TB_ALIGN_16 },
871    { X86::VMINPSrr,          X86::VMINPSrm,           TB_ALIGN_16 },
872    { X86::VMINPSrr_Int,      X86::VMINPSrm_Int,       TB_ALIGN_16 },
873    { X86::VMINSDrr,          X86::VMINSDrm,           0 },
874    { X86::VMINSDrr_Int,      X86::VMINSDrm_Int,       0 },
875    { X86::VMINSSrr,          X86::VMINSSrm,           0 },
876    { X86::VMINSSrr_Int,      X86::VMINSSrm_Int,       0 },
877    { X86::VMPSADBWrri,       X86::VMPSADBWrmi,        TB_ALIGN_16 },
878    { X86::VMULPDrr,          X86::VMULPDrm,           TB_ALIGN_16 },
879    { X86::VMULPSrr,          X86::VMULPSrm,           TB_ALIGN_16 },
880    { X86::VMULSDrr,          X86::VMULSDrm,           0 },
881    { X86::VMULSSrr,          X86::VMULSSrm,           0 },
882    { X86::VORPDrr,           X86::VORPDrm,            TB_ALIGN_16 },
883    { X86::VORPSrr,           X86::VORPSrm,            TB_ALIGN_16 },
884    { X86::VPACKSSDWrr,       X86::VPACKSSDWrm,        TB_ALIGN_16 },
885    { X86::VPACKSSWBrr,       X86::VPACKSSWBrm,        TB_ALIGN_16 },
886    { X86::VPACKUSDWrr,       X86::VPACKUSDWrm,        TB_ALIGN_16 },
887    { X86::VPACKUSWBrr,       X86::VPACKUSWBrm,        TB_ALIGN_16 },
888    { X86::VPADDBrr,          X86::VPADDBrm,           TB_ALIGN_16 },
889    { X86::VPADDDrr,          X86::VPADDDrm,           TB_ALIGN_16 },
890    { X86::VPADDQrr,          X86::VPADDQrm,           TB_ALIGN_16 },
891    { X86::VPADDSBrr,         X86::VPADDSBrm,          TB_ALIGN_16 },
892    { X86::VPADDSWrr,         X86::VPADDSWrm,          TB_ALIGN_16 },
893    { X86::VPADDUSBrr,        X86::VPADDUSBrm,         TB_ALIGN_16 },
894    { X86::VPADDUSWrr,        X86::VPADDUSWrm,         TB_ALIGN_16 },
895    { X86::VPADDWrr,          X86::VPADDWrm,           TB_ALIGN_16 },
896    { X86::VPALIGNR128rr,     X86::VPALIGNR128rm,      TB_ALIGN_16 },
897    { X86::VPANDNrr,          X86::VPANDNrm,           TB_ALIGN_16 },
898    { X86::VPANDrr,           X86::VPANDrm,            TB_ALIGN_16 },
899    { X86::VPAVGBrr,          X86::VPAVGBrm,           TB_ALIGN_16 },
900    { X86::VPAVGWrr,          X86::VPAVGWrm,           TB_ALIGN_16 },
901    { X86::VPBLENDWrri,       X86::VPBLENDWrmi,        TB_ALIGN_16 },
902    { X86::VPCMPEQBrr,        X86::VPCMPEQBrm,         TB_ALIGN_16 },
903    { X86::VPCMPEQDrr,        X86::VPCMPEQDrm,         TB_ALIGN_16 },
904    { X86::VPCMPEQQrr,        X86::VPCMPEQQrm,         TB_ALIGN_16 },
905    { X86::VPCMPEQWrr,        X86::VPCMPEQWrm,         TB_ALIGN_16 },
906    { X86::VPCMPGTBrr,        X86::VPCMPGTBrm,         TB_ALIGN_16 },
907    { X86::VPCMPGTDrr,        X86::VPCMPGTDrm,         TB_ALIGN_16 },
908    { X86::VPCMPGTQrr,        X86::VPCMPGTQrm,         TB_ALIGN_16 },
909    { X86::VPCMPGTWrr,        X86::VPCMPGTWrm,         TB_ALIGN_16 },
910    { X86::VPHADDDrr,         X86::VPHADDDrm,          TB_ALIGN_16 },
911    { X86::VPHADDSWrr128,     X86::VPHADDSWrm128,      TB_ALIGN_16 },
912    { X86::VPHADDWrr,         X86::VPHADDWrm,          TB_ALIGN_16 },
913    { X86::VPHSUBDrr,         X86::VPHSUBDrm,          TB_ALIGN_16 },
914    { X86::VPHSUBSWrr128,     X86::VPHSUBSWrm128,      TB_ALIGN_16 },
915    { X86::VPHSUBWrr,         X86::VPHSUBWrm,          TB_ALIGN_16 },
916    { X86::VPERMILPDrr,       X86::VPERMILPDrm,        TB_ALIGN_16 },
917    { X86::VPERMILPSrr,       X86::VPERMILPSrm,        TB_ALIGN_16 },
918    { X86::VPINSRWrri,        X86::VPINSRWrmi,         TB_ALIGN_16 },
919    { X86::VPMADDUBSWrr128,   X86::VPMADDUBSWrm128,    TB_ALIGN_16 },
920    { X86::VPMADDWDrr,        X86::VPMADDWDrm,         TB_ALIGN_16 },
921    { X86::VPMAXSWrr,         X86::VPMAXSWrm,          TB_ALIGN_16 },
922    { X86::VPMAXUBrr,         X86::VPMAXUBrm,          TB_ALIGN_16 },
923    { X86::VPMINSWrr,         X86::VPMINSWrm,          TB_ALIGN_16 },
924    { X86::VPMINUBrr,         X86::VPMINUBrm,          TB_ALIGN_16 },
925    { X86::VPMULDQrr,         X86::VPMULDQrm,          TB_ALIGN_16 },
926    { X86::VPMULHRSWrr128,    X86::VPMULHRSWrm128,     TB_ALIGN_16 },
927    { X86::VPMULHUWrr,        X86::VPMULHUWrm,         TB_ALIGN_16 },
928    { X86::VPMULHWrr,         X86::VPMULHWrm,          TB_ALIGN_16 },
929    { X86::VPMULLDrr,         X86::VPMULLDrm,          TB_ALIGN_16 },
930    { X86::VPMULLWrr,         X86::VPMULLWrm,          TB_ALIGN_16 },
931    { X86::VPMULUDQrr,        X86::VPMULUDQrm,         TB_ALIGN_16 },
932    { X86::VPORrr,            X86::VPORrm,             TB_ALIGN_16 },
933    { X86::VPSADBWrr,         X86::VPSADBWrm,          TB_ALIGN_16 },
934    { X86::VPSHUFBrr,         X86::VPSHUFBrm,          TB_ALIGN_16 },
935    { X86::VPSIGNBrr,         X86::VPSIGNBrm,          TB_ALIGN_16 },
936    { X86::VPSIGNWrr,         X86::VPSIGNWrm,          TB_ALIGN_16 },
937    { X86::VPSIGNDrr,         X86::VPSIGNDrm,          TB_ALIGN_16 },
938    { X86::VPSLLDrr,          X86::VPSLLDrm,           TB_ALIGN_16 },
939    { X86::VPSLLQrr,          X86::VPSLLQrm,           TB_ALIGN_16 },
940    { X86::VPSLLWrr,          X86::VPSLLWrm,           TB_ALIGN_16 },
941    { X86::VPSRADrr,          X86::VPSRADrm,           TB_ALIGN_16 },
942    { X86::VPSRAWrr,          X86::VPSRAWrm,           TB_ALIGN_16 },
943    { X86::VPSRLDrr,          X86::VPSRLDrm,           TB_ALIGN_16 },
944    { X86::VPSRLQrr,          X86::VPSRLQrm,           TB_ALIGN_16 },
945    { X86::VPSRLWrr,          X86::VPSRLWrm,           TB_ALIGN_16 },
946    { X86::VPSUBBrr,          X86::VPSUBBrm,           TB_ALIGN_16 },
947    { X86::VPSUBDrr,          X86::VPSUBDrm,           TB_ALIGN_16 },
948    { X86::VPSUBSBrr,         X86::VPSUBSBrm,          TB_ALIGN_16 },
949    { X86::VPSUBSWrr,         X86::VPSUBSWrm,          TB_ALIGN_16 },
950    { X86::VPSUBWrr,          X86::VPSUBWrm,           TB_ALIGN_16 },
951    { X86::VPUNPCKHBWrr,      X86::VPUNPCKHBWrm,       TB_ALIGN_16 },
952    { X86::VPUNPCKHDQrr,      X86::VPUNPCKHDQrm,       TB_ALIGN_16 },
953    { X86::VPUNPCKHQDQrr,     X86::VPUNPCKHQDQrm,      TB_ALIGN_16 },
954    { X86::VPUNPCKHWDrr,      X86::VPUNPCKHWDrm,       TB_ALIGN_16 },
955    { X86::VPUNPCKLBWrr,      X86::VPUNPCKLBWrm,       TB_ALIGN_16 },
956    { X86::VPUNPCKLDQrr,      X86::VPUNPCKLDQrm,       TB_ALIGN_16 },
957    { X86::VPUNPCKLQDQrr,     X86::VPUNPCKLQDQrm,      TB_ALIGN_16 },
958    { X86::VPUNPCKLWDrr,      X86::VPUNPCKLWDrm,       TB_ALIGN_16 },
959    { X86::VPXORrr,           X86::VPXORrm,            TB_ALIGN_16 },
960    { X86::VSHUFPDrri,        X86::VSHUFPDrmi,         TB_ALIGN_16 },
961    { X86::VSHUFPSrri,        X86::VSHUFPSrmi,         TB_ALIGN_16 },
962    { X86::VSUBPDrr,          X86::VSUBPDrm,           TB_ALIGN_16 },
963    { X86::VSUBPSrr,          X86::VSUBPSrm,           TB_ALIGN_16 },
964    { X86::VSUBSDrr,          X86::VSUBSDrm,           0 },
965    { X86::VSUBSSrr,          X86::VSUBSSrm,           0 },
966    { X86::VUNPCKHPDrr,       X86::VUNPCKHPDrm,        TB_ALIGN_16 },
967    { X86::VUNPCKHPSrr,       X86::VUNPCKHPSrm,        TB_ALIGN_16 },
968    { X86::VUNPCKLPDrr,       X86::VUNPCKLPDrm,        TB_ALIGN_16 },
969    { X86::VUNPCKLPSrr,       X86::VUNPCKLPSrm,        TB_ALIGN_16 },
970    { X86::VXORPDrr,          X86::VXORPDrm,           TB_ALIGN_16 },
971    { X86::VXORPSrr,          X86::VXORPSrm,           TB_ALIGN_16 },
972    // AVX 256-bit foldable instructions
973    { X86::VADDPDYrr,         X86::VADDPDYrm,          TB_ALIGN_32 },
974    { X86::VADDPSYrr,         X86::VADDPSYrm,          TB_ALIGN_32 },
975    { X86::VADDSUBPDYrr,      X86::VADDSUBPDYrm,       TB_ALIGN_32 },
976    { X86::VADDSUBPSYrr,      X86::VADDSUBPSYrm,       TB_ALIGN_32 },
977    { X86::VANDNPDYrr,        X86::VANDNPDYrm,         TB_ALIGN_32 },
978    { X86::VANDNPSYrr,        X86::VANDNPSYrm,         TB_ALIGN_32 },
979    { X86::VANDPDYrr,         X86::VANDPDYrm,          TB_ALIGN_32 },
980    { X86::VANDPSYrr,         X86::VANDPSYrm,          TB_ALIGN_32 },
981    { X86::VBLENDPDYrri,      X86::VBLENDPDYrmi,       TB_ALIGN_32 },
982    { X86::VBLENDPSYrri,      X86::VBLENDPSYrmi,       TB_ALIGN_32 },
983    { X86::VBLENDVPDYrr,      X86::VBLENDVPDYrm,       TB_ALIGN_32 },
984    { X86::VBLENDVPSYrr,      X86::VBLENDVPSYrm,       TB_ALIGN_32 },
985    { X86::VCMPPDYrri,        X86::VCMPPDYrmi,         TB_ALIGN_32 },
986    { X86::VCMPPSYrri,        X86::VCMPPSYrmi,         TB_ALIGN_32 },
987    { X86::VDIVPDYrr,         X86::VDIVPDYrm,          TB_ALIGN_32 },
988    { X86::VDIVPSYrr,         X86::VDIVPSYrm,          TB_ALIGN_32 },
989    { X86::VHADDPDYrr,        X86::VHADDPDYrm,         TB_ALIGN_32 },
990    { X86::VHADDPSYrr,        X86::VHADDPSYrm,         TB_ALIGN_32 },
991    { X86::VHSUBPDYrr,        X86::VHSUBPDYrm,         TB_ALIGN_32 },
992    { X86::VHSUBPSYrr,        X86::VHSUBPSYrm,         TB_ALIGN_32 },
993    { X86::VINSERTF128rr,     X86::VINSERTF128rm,      TB_ALIGN_32 },
994    { X86::VMAXPDYrr,         X86::VMAXPDYrm,          TB_ALIGN_32 },
995    { X86::VMAXPDYrr_Int,     X86::VMAXPDYrm_Int,      TB_ALIGN_32 },
996    { X86::VMAXPSYrr,         X86::VMAXPSYrm,          TB_ALIGN_32 },
997    { X86::VMAXPSYrr_Int,     X86::VMAXPSYrm_Int,      TB_ALIGN_32 },
998    { X86::VMINPDYrr,         X86::VMINPDYrm,          TB_ALIGN_32 },
999    { X86::VMINPDYrr_Int,     X86::VMINPDYrm_Int,      TB_ALIGN_32 },
1000    { X86::VMINPSYrr,         X86::VMINPSYrm,          TB_ALIGN_32 },
1001    { X86::VMINPSYrr_Int,     X86::VMINPSYrm_Int,      TB_ALIGN_32 },
1002    { X86::VMULPDYrr,         X86::VMULPDYrm,          TB_ALIGN_32 },
1003    { X86::VMULPSYrr,         X86::VMULPSYrm,          TB_ALIGN_32 },
1004    { X86::VORPDYrr,          X86::VORPDYrm,           TB_ALIGN_32 },
1005    { X86::VORPSYrr,          X86::VORPSYrm,           TB_ALIGN_32 },
1006    { X86::VPERM2F128rr,      X86::VPERM2F128rm,       TB_ALIGN_32 },
1007    { X86::VPERMILPDYrr,      X86::VPERMILPDYrm,       TB_ALIGN_32 },
1008    { X86::VPERMILPSYrr,      X86::VPERMILPSYrm,       TB_ALIGN_32 },
1009    { X86::VSHUFPDYrri,       X86::VSHUFPDYrmi,        TB_ALIGN_32 },
1010    { X86::VSHUFPSYrri,       X86::VSHUFPSYrmi,        TB_ALIGN_32 },
1011    { X86::VSUBPDYrr,         X86::VSUBPDYrm,          TB_ALIGN_32 },
1012    { X86::VSUBPSYrr,         X86::VSUBPSYrm,          TB_ALIGN_32 },
1013    { X86::VUNPCKHPDYrr,      X86::VUNPCKHPDYrm,       TB_ALIGN_32 },
1014    { X86::VUNPCKHPSYrr,      X86::VUNPCKHPSYrm,       TB_ALIGN_32 },
1015    { X86::VUNPCKLPDYrr,      X86::VUNPCKLPDYrm,       TB_ALIGN_32 },
1016    { X86::VUNPCKLPSYrr,      X86::VUNPCKLPSYrm,       TB_ALIGN_32 },
1017    { X86::VXORPDYrr,         X86::VXORPDYrm,          TB_ALIGN_32 },
1018    { X86::VXORPSYrr,         X86::VXORPSYrm,          TB_ALIGN_32 },
1019    // AVX2 foldable instructions
1020    { X86::VINSERTI128rr,     X86::VINSERTI128rm,      TB_ALIGN_16 },
1021    { X86::VPACKSSDWYrr,      X86::VPACKSSDWYrm,       TB_ALIGN_32 },
1022    { X86::VPACKSSWBYrr,      X86::VPACKSSWBYrm,       TB_ALIGN_32 },
1023    { X86::VPACKUSDWYrr,      X86::VPACKUSDWYrm,       TB_ALIGN_32 },
1024    { X86::VPACKUSWBYrr,      X86::VPACKUSWBYrm,       TB_ALIGN_32 },
1025    { X86::VPADDBYrr,         X86::VPADDBYrm,          TB_ALIGN_32 },
1026    { X86::VPADDDYrr,         X86::VPADDDYrm,          TB_ALIGN_32 },
1027    { X86::VPADDQYrr,         X86::VPADDQYrm,          TB_ALIGN_32 },
1028    { X86::VPADDSBYrr,        X86::VPADDSBYrm,         TB_ALIGN_32 },
1029    { X86::VPADDSWYrr,        X86::VPADDSWYrm,         TB_ALIGN_32 },
1030    { X86::VPADDUSBYrr,       X86::VPADDUSBYrm,        TB_ALIGN_32 },
1031    { X86::VPADDUSWYrr,       X86::VPADDUSWYrm,        TB_ALIGN_32 },
1032    { X86::VPADDWYrr,         X86::VPADDWYrm,          TB_ALIGN_32 },
1033    { X86::VPALIGNR256rr,     X86::VPALIGNR256rm,      TB_ALIGN_32 },
1034    { X86::VPANDNYrr,         X86::VPANDNYrm,          TB_ALIGN_32 },
1035    { X86::VPANDYrr,          X86::VPANDYrm,           TB_ALIGN_32 },
1036    { X86::VPAVGBYrr,         X86::VPAVGBYrm,          TB_ALIGN_32 },
1037    { X86::VPAVGWYrr,         X86::VPAVGWYrm,          TB_ALIGN_32 },
1038    { X86::VPBLENDDrri,       X86::VPBLENDDrmi,        TB_ALIGN_32 },
1039    { X86::VPBLENDDYrri,      X86::VPBLENDDYrmi,       TB_ALIGN_32 },
1040    { X86::VPBLENDWYrri,      X86::VPBLENDWYrmi,       TB_ALIGN_32 },
1041    { X86::VPCMPEQBYrr,       X86::VPCMPEQBYrm,        TB_ALIGN_32 },
1042    { X86::VPCMPEQDYrr,       X86::VPCMPEQDYrm,        TB_ALIGN_32 },
1043    { X86::VPCMPEQQYrr,       X86::VPCMPEQQYrm,        TB_ALIGN_32 },
1044    { X86::VPCMPEQWYrr,       X86::VPCMPEQWYrm,        TB_ALIGN_32 },
1045    { X86::VPCMPGTBYrr,       X86::VPCMPGTBYrm,        TB_ALIGN_32 },
1046    { X86::VPCMPGTDYrr,       X86::VPCMPGTDYrm,        TB_ALIGN_32 },
1047    { X86::VPCMPGTQYrr,       X86::VPCMPGTQYrm,        TB_ALIGN_32 },
1048    { X86::VPCMPGTWYrr,       X86::VPCMPGTWYrm,        TB_ALIGN_32 },
1049    { X86::VPERM2I128rr,      X86::VPERM2I128rm,       TB_ALIGN_32 },
1050    { X86::VPERMDYrr,         X86::VPERMDYrm,          TB_ALIGN_32 },
1051    { X86::VPERMPDYri,        X86::VPERMPDYmi,         TB_ALIGN_32 },
1052    { X86::VPERMPSYrr,        X86::VPERMPSYrm,         TB_ALIGN_32 },
1053    { X86::VPERMQYri,         X86::VPERMQYmi,          TB_ALIGN_32 },
1054    { X86::VPHADDDYrr,        X86::VPHADDDYrm,         TB_ALIGN_32 },
1055    { X86::VPHADDSWrr256,     X86::VPHADDSWrm256,      TB_ALIGN_32 },
1056    { X86::VPHADDWYrr,        X86::VPHADDWYrm,         TB_ALIGN_32 },
1057    { X86::VPHSUBDYrr,        X86::VPHSUBDYrm,         TB_ALIGN_32 },
1058    { X86::VPHSUBSWrr256,     X86::VPHSUBSWrm256,      TB_ALIGN_32 },
1059    { X86::VPHSUBWYrr,        X86::VPHSUBWYrm,         TB_ALIGN_32 },
1060    { X86::VPMADDUBSWrr256,   X86::VPMADDUBSWrm256,    TB_ALIGN_32 },
1061    { X86::VPMADDWDYrr,       X86::VPMADDWDYrm,        TB_ALIGN_32 },
1062    { X86::VPMAXSWYrr,        X86::VPMAXSWYrm,         TB_ALIGN_32 },
1063    { X86::VPMAXUBYrr,        X86::VPMAXUBYrm,         TB_ALIGN_32 },
1064    { X86::VPMINSWYrr,        X86::VPMINSWYrm,         TB_ALIGN_32 },
1065    { X86::VPMINUBYrr,        X86::VPMINUBYrm,         TB_ALIGN_32 },
1066    { X86::VMPSADBWYrri,      X86::VMPSADBWYrmi,       TB_ALIGN_32 },
1067    { X86::VPMULDQYrr,        X86::VPMULDQYrm,         TB_ALIGN_32 },
1068    { X86::VPMULHRSWrr256,    X86::VPMULHRSWrm256,     TB_ALIGN_32 },
1069    { X86::VPMULHUWYrr,       X86::VPMULHUWYrm,        TB_ALIGN_32 },
1070    { X86::VPMULHWYrr,        X86::VPMULHWYrm,         TB_ALIGN_32 },
1071    { X86::VPMULLDYrr,        X86::VPMULLDYrm,         TB_ALIGN_32 },
1072    { X86::VPMULLWYrr,        X86::VPMULLWYrm,         TB_ALIGN_32 },
1073    { X86::VPMULUDQYrr,       X86::VPMULUDQYrm,        TB_ALIGN_32 },
1074    { X86::VPORYrr,           X86::VPORYrm,            TB_ALIGN_32 },
1075    { X86::VPSADBWYrr,        X86::VPSADBWYrm,         TB_ALIGN_32 },
1076    { X86::VPSHUFBYrr,        X86::VPSHUFBYrm,         TB_ALIGN_32 },
1077    { X86::VPSIGNBYrr,        X86::VPSIGNBYrm,         TB_ALIGN_32 },
1078    { X86::VPSIGNWYrr,        X86::VPSIGNWYrm,         TB_ALIGN_32 },
1079    { X86::VPSIGNDYrr,        X86::VPSIGNDYrm,         TB_ALIGN_32 },
1080    { X86::VPSLLDYrr,         X86::VPSLLDYrm,          TB_ALIGN_16 },
1081    { X86::VPSLLQYrr,         X86::VPSLLQYrm,          TB_ALIGN_16 },
1082    { X86::VPSLLWYrr,         X86::VPSLLWYrm,          TB_ALIGN_16 },
1083    { X86::VPSLLVDrr,         X86::VPSLLVDrm,          TB_ALIGN_16 },
1084    { X86::VPSLLVDYrr,        X86::VPSLLVDYrm,         TB_ALIGN_32 },
1085    { X86::VPSLLVQrr,         X86::VPSLLVQrm,          TB_ALIGN_16 },
1086    { X86::VPSLLVQYrr,        X86::VPSLLVQYrm,         TB_ALIGN_32 },
1087    { X86::VPSRADYrr,         X86::VPSRADYrm,          TB_ALIGN_16 },
1088    { X86::VPSRAWYrr,         X86::VPSRAWYrm,          TB_ALIGN_16 },
1089    { X86::VPSRAVDrr,         X86::VPSRAVDrm,          TB_ALIGN_16 },
1090    { X86::VPSRAVDYrr,        X86::VPSRAVDYrm,         TB_ALIGN_32 },
1091    { X86::VPSRLDYrr,         X86::VPSRLDYrm,          TB_ALIGN_16 },
1092    { X86::VPSRLQYrr,         X86::VPSRLQYrm,          TB_ALIGN_16 },
1093    { X86::VPSRLWYrr,         X86::VPSRLWYrm,          TB_ALIGN_16 },
1094    { X86::VPSRLVDrr,         X86::VPSRLVDrm,          TB_ALIGN_16 },
1095    { X86::VPSRLVDYrr,        X86::VPSRLVDYrm,         TB_ALIGN_32 },
1096    { X86::VPSRLVQrr,         X86::VPSRLVQrm,          TB_ALIGN_16 },
1097    { X86::VPSRLVQYrr,        X86::VPSRLVQYrm,         TB_ALIGN_32 },
1098    { X86::VPSUBBYrr,         X86::VPSUBBYrm,          TB_ALIGN_32 },
1099    { X86::VPSUBDYrr,         X86::VPSUBDYrm,          TB_ALIGN_32 },
1100    { X86::VPSUBSBYrr,        X86::VPSUBSBYrm,         TB_ALIGN_32 },
1101    { X86::VPSUBSWYrr,        X86::VPSUBSWYrm,         TB_ALIGN_32 },
1102    { X86::VPSUBWYrr,         X86::VPSUBWYrm,          TB_ALIGN_32 },
1103    { X86::VPUNPCKHBWYrr,     X86::VPUNPCKHBWYrm,      TB_ALIGN_32 },
1104    { X86::VPUNPCKHDQYrr,     X86::VPUNPCKHDQYrm,      TB_ALIGN_32 },
1105    { X86::VPUNPCKHQDQYrr,    X86::VPUNPCKHQDQYrm,     TB_ALIGN_16 },
1106    { X86::VPUNPCKHWDYrr,     X86::VPUNPCKHWDYrm,      TB_ALIGN_32 },
1107    { X86::VPUNPCKLBWYrr,     X86::VPUNPCKLBWYrm,      TB_ALIGN_32 },
1108    { X86::VPUNPCKLDQYrr,     X86::VPUNPCKLDQYrm,      TB_ALIGN_32 },
1109    { X86::VPUNPCKLQDQYrr,    X86::VPUNPCKLQDQYrm,     TB_ALIGN_32 },
1110    { X86::VPUNPCKLWDYrr,     X86::VPUNPCKLWDYrm,      TB_ALIGN_32 },
1111    { X86::VPXORYrr,          X86::VPXORYrm,           TB_ALIGN_32 },
1112    // FIXME: add AVX 256-bit foldable instructions
1113  };
1114
1115  for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) {
1116    unsigned RegOp = OpTbl2[i].RegOp;
1117    unsigned MemOp = OpTbl2[i].MemOp;
1118    unsigned Flags = OpTbl2[i].Flags;
1119    AddTableEntry(RegOp2MemOpTable2, MemOp2RegOpTable,
1120                  RegOp, MemOp,
1121                  // Index 2, folded load
1122                  Flags | TB_INDEX_2 | TB_FOLDED_LOAD);
1123  }
1124
1125  static const X86OpTblEntry OpTbl3[] = {
1126    // FMA foldable instructions
1127    { X86::VFMADDSSr231r,         X86::VFMADDSSr231m,         0 },
1128    { X86::VFMADDSDr231r,         X86::VFMADDSDr231m,         0 },
1129    { X86::VFMADDSSr132r,         X86::VFMADDSSr132m,         0 },
1130    { X86::VFMADDSDr132r,         X86::VFMADDSDr132m,         0 },
1131    { X86::VFMADDSSr213r,         X86::VFMADDSSr213m,         0 },
1132    { X86::VFMADDSDr213r,         X86::VFMADDSDr213m,         0 },
1133    { X86::VFMADDSSr132r_Int,     X86::VFMADDSSr132m_Int,     0 },
1134    { X86::VFMADDSDr132r_Int,     X86::VFMADDSDr132m_Int,     0 },
1135
1136    { X86::VFMADDPSr231r,         X86::VFMADDPSr231m,         TB_ALIGN_16 },
1137    { X86::VFMADDPDr231r,         X86::VFMADDPDr231m,         TB_ALIGN_16 },
1138    { X86::VFMADDPSr132r,         X86::VFMADDPSr132m,         TB_ALIGN_16 },
1139    { X86::VFMADDPDr132r,         X86::VFMADDPDr132m,         TB_ALIGN_16 },
1140    { X86::VFMADDPSr213r,         X86::VFMADDPSr213m,         TB_ALIGN_16 },
1141    { X86::VFMADDPDr213r,         X86::VFMADDPDr213m,         TB_ALIGN_16 },
1142    { X86::VFMADDPSr231rY,        X86::VFMADDPSr231mY,        TB_ALIGN_32 },
1143    { X86::VFMADDPDr231rY,        X86::VFMADDPDr231mY,        TB_ALIGN_32 },
1144    { X86::VFMADDPSr132rY,        X86::VFMADDPSr132mY,        TB_ALIGN_32 },
1145    { X86::VFMADDPDr132rY,        X86::VFMADDPDr132mY,        TB_ALIGN_32 },
1146    { X86::VFMADDPSr213rY,        X86::VFMADDPSr213mY,        TB_ALIGN_32 },
1147    { X86::VFMADDPDr213rY,        X86::VFMADDPDr213mY,        TB_ALIGN_32 },
1148    { X86::VFMADDPSr132r_Int,     X86::VFMADDPSr132m_Int,     TB_ALIGN_16 },
1149    { X86::VFMADDPDr132r_Int,     X86::VFMADDPDr132m_Int,     TB_ALIGN_16 },
1150    { X86::VFMADDPSr132rY_Int,    X86::VFMADDPSr132mY_Int,    TB_ALIGN_32 },
1151    { X86::VFMADDPDr132rY_Int,    X86::VFMADDPDr132mY_Int,    TB_ALIGN_32 },
1152
1153    { X86::VFNMADDSSr231r,        X86::VFNMADDSSr231m,        0 },
1154    { X86::VFNMADDSDr231r,        X86::VFNMADDSDr231m,        0 },
1155    { X86::VFNMADDSSr132r,        X86::VFNMADDSSr132m,        0 },
1156    { X86::VFNMADDSDr132r,        X86::VFNMADDSDr132m,        0 },
1157    { X86::VFNMADDSSr213r,        X86::VFNMADDSSr213m,        0 },
1158    { X86::VFNMADDSDr213r,        X86::VFNMADDSDr213m,        0 },
1159    { X86::VFNMADDSSr132r_Int,    X86::VFNMADDSSr132m_Int,    0 },
1160    { X86::VFNMADDSDr132r_Int,    X86::VFNMADDSDr132m_Int,    0 },
1161
1162    { X86::VFNMADDPSr231r,        X86::VFNMADDPSr231m,        TB_ALIGN_16 },
1163    { X86::VFNMADDPDr231r,        X86::VFNMADDPDr231m,        TB_ALIGN_16 },
1164    { X86::VFNMADDPSr132r,        X86::VFNMADDPSr132m,        TB_ALIGN_16 },
1165    { X86::VFNMADDPDr132r,        X86::VFNMADDPDr132m,        TB_ALIGN_16 },
1166    { X86::VFNMADDPSr213r,        X86::VFNMADDPSr213m,        TB_ALIGN_16 },
1167    { X86::VFNMADDPDr213r,        X86::VFNMADDPDr213m,        TB_ALIGN_16 },
1168    { X86::VFNMADDPSr231rY,       X86::VFNMADDPSr231mY,       TB_ALIGN_32 },
1169    { X86::VFNMADDPDr231rY,       X86::VFNMADDPDr231mY,       TB_ALIGN_32 },
1170    { X86::VFNMADDPSr132rY,       X86::VFNMADDPSr132mY,       TB_ALIGN_32 },
1171    { X86::VFNMADDPDr132rY,       X86::VFNMADDPDr132mY,       TB_ALIGN_32 },
1172    { X86::VFNMADDPSr213rY,       X86::VFNMADDPSr213mY,       TB_ALIGN_32 },
1173    { X86::VFNMADDPDr213rY,       X86::VFNMADDPDr213mY,       TB_ALIGN_32 },
1174    { X86::VFNMADDPSr132r_Int,    X86::VFNMADDPSr132m_Int,    TB_ALIGN_16 },
1175    { X86::VFNMADDPDr132r_Int,    X86::VFNMADDPDr132m_Int,    TB_ALIGN_16 },
1176    { X86::VFNMADDPSr132rY_Int,   X86::VFNMADDPSr132mY_Int,   TB_ALIGN_32 },
1177    { X86::VFNMADDPDr132rY_Int,   X86::VFNMADDPDr132mY_Int,   TB_ALIGN_32 },
1178
1179    { X86::VFMSUBSSr231r,         X86::VFMSUBSSr231m,         0 },
1180    { X86::VFMSUBSDr231r,         X86::VFMSUBSDr231m,         0 },
1181    { X86::VFMSUBSSr132r,         X86::VFMSUBSSr132m,         0 },
1182    { X86::VFMSUBSDr132r,         X86::VFMSUBSDr132m,         0 },
1183    { X86::VFMSUBSSr213r,         X86::VFMSUBSSr213m,         0 },
1184    { X86::VFMSUBSDr213r,         X86::VFMSUBSDr213m,         0 },
1185    { X86::VFMSUBSSr132r_Int,     X86::VFMSUBSSr132m_Int,     0 },
1186    { X86::VFMSUBSDr132r_Int,     X86::VFMSUBSDr132m_Int,     0 },
1187
1188    { X86::VFMSUBPSr231r,         X86::VFMSUBPSr231m,         TB_ALIGN_16 },
1189    { X86::VFMSUBPDr231r,         X86::VFMSUBPDr231m,         TB_ALIGN_16 },
1190    { X86::VFMSUBPSr132r,         X86::VFMSUBPSr132m,         TB_ALIGN_16 },
1191    { X86::VFMSUBPDr132r,         X86::VFMSUBPDr132m,         TB_ALIGN_16 },
1192    { X86::VFMSUBPSr213r,         X86::VFMSUBPSr213m,         TB_ALIGN_16 },
1193    { X86::VFMSUBPDr213r,         X86::VFMSUBPDr213m,         TB_ALIGN_16 },
1194    { X86::VFMSUBPSr231rY,        X86::VFMSUBPSr231mY,        TB_ALIGN_32 },
1195    { X86::VFMSUBPDr231rY,        X86::VFMSUBPDr231mY,        TB_ALIGN_32 },
1196    { X86::VFMSUBPSr132rY,        X86::VFMSUBPSr132mY,        TB_ALIGN_32 },
1197    { X86::VFMSUBPDr132rY,        X86::VFMSUBPDr132mY,        TB_ALIGN_32 },
1198    { X86::VFMSUBPSr213rY,        X86::VFMSUBPSr213mY,        TB_ALIGN_32 },
1199    { X86::VFMSUBPDr213rY,        X86::VFMSUBPDr213mY,        TB_ALIGN_32 },
1200    { X86::VFMSUBPSr132r_Int,     X86::VFMSUBPSr132m_Int,     TB_ALIGN_16 },
1201    { X86::VFMSUBPDr132r_Int,     X86::VFMSUBPDr132m_Int,     TB_ALIGN_16 },
1202    { X86::VFMSUBPSr132rY_Int,    X86::VFMSUBPSr132mY_Int,    TB_ALIGN_32 },
1203    { X86::VFMSUBPDr132rY_Int,    X86::VFMSUBPDr132mY_Int,    TB_ALIGN_32 },
1204
1205    { X86::VFNMSUBSSr231r,        X86::VFNMSUBSSr231m,        0 },
1206    { X86::VFNMSUBSDr231r,        X86::VFNMSUBSDr231m,        0 },
1207    { X86::VFNMSUBSSr132r,        X86::VFNMSUBSSr132m,        0 },
1208    { X86::VFNMSUBSDr132r,        X86::VFNMSUBSDr132m,        0 },
1209    { X86::VFNMSUBSSr213r,        X86::VFNMSUBSSr213m,        0 },
1210    { X86::VFNMSUBSDr213r,        X86::VFNMSUBSDr213m,        0 },
1211    { X86::VFNMSUBSSr132r_Int,    X86::VFNMSUBSSr132m_Int,    0 },
1212    { X86::VFNMSUBSDr132r_Int,    X86::VFNMSUBSDr132m_Int,    0 },
1213
1214    { X86::VFNMSUBPSr231r,        X86::VFNMSUBPSr231m,        TB_ALIGN_16 },
1215    { X86::VFNMSUBPDr231r,        X86::VFNMSUBPDr231m,        TB_ALIGN_16 },
1216    { X86::VFNMSUBPSr132r,        X86::VFNMSUBPSr132m,        TB_ALIGN_16 },
1217    { X86::VFNMSUBPDr132r,        X86::VFNMSUBPDr132m,        TB_ALIGN_16 },
1218    { X86::VFNMSUBPSr213r,        X86::VFNMSUBPSr213m,        TB_ALIGN_16 },
1219    { X86::VFNMSUBPDr213r,        X86::VFNMSUBPDr213m,        TB_ALIGN_16 },
1220    { X86::VFNMSUBPSr231rY,       X86::VFNMSUBPSr231mY,       TB_ALIGN_32 },
1221    { X86::VFNMSUBPDr231rY,       X86::VFNMSUBPDr231mY,       TB_ALIGN_32 },
1222    { X86::VFNMSUBPSr132rY,       X86::VFNMSUBPSr132mY,       TB_ALIGN_32 },
1223    { X86::VFNMSUBPDr132rY,       X86::VFNMSUBPDr132mY,       TB_ALIGN_32 },
1224    { X86::VFNMSUBPSr213rY,       X86::VFNMSUBPSr213mY,       TB_ALIGN_32 },
1225    { X86::VFNMSUBPDr213rY,       X86::VFNMSUBPDr213mY,       TB_ALIGN_32 },
1226    { X86::VFNMSUBPSr132r_Int,    X86::VFNMSUBPSr132m_Int,    TB_ALIGN_16 },
1227    { X86::VFNMSUBPDr132r_Int,    X86::VFNMSUBPDr132m_Int,    TB_ALIGN_16 },
1228    { X86::VFNMSUBPSr132rY_Int,   X86::VFNMSUBPSr132mY_Int,   TB_ALIGN_32 },
1229    { X86::VFNMSUBPDr132rY_Int,   X86::VFNMSUBPDr132mY_Int,   TB_ALIGN_32 },
1230
1231    { X86::VFMADDSUBPSr231r,      X86::VFMADDSUBPSr231m,      TB_ALIGN_16 },
1232    { X86::VFMADDSUBPDr231r,      X86::VFMADDSUBPDr231m,      TB_ALIGN_16 },
1233    { X86::VFMADDSUBPSr132r,      X86::VFMADDSUBPSr132m,      TB_ALIGN_16 },
1234    { X86::VFMADDSUBPDr132r,      X86::VFMADDSUBPDr132m,      TB_ALIGN_16 },
1235    { X86::VFMADDSUBPSr213r,      X86::VFMADDSUBPSr213m,      TB_ALIGN_16 },
1236    { X86::VFMADDSUBPDr213r,      X86::VFMADDSUBPDr213m,      TB_ALIGN_16 },
1237    { X86::VFMADDSUBPSr231rY,     X86::VFMADDSUBPSr231mY,     TB_ALIGN_32 },
1238    { X86::VFMADDSUBPDr231rY,     X86::VFMADDSUBPDr231mY,     TB_ALIGN_32 },
1239    { X86::VFMADDSUBPSr132rY,     X86::VFMADDSUBPSr132mY,     TB_ALIGN_32 },
1240    { X86::VFMADDSUBPDr132rY,     X86::VFMADDSUBPDr132mY,     TB_ALIGN_32 },
1241    { X86::VFMADDSUBPSr213rY,     X86::VFMADDSUBPSr213mY,     TB_ALIGN_32 },
1242    { X86::VFMADDSUBPDr213rY,     X86::VFMADDSUBPDr213mY,     TB_ALIGN_32 },
1243    { X86::VFMADDSUBPSr132r_Int,  X86::VFMADDSUBPSr132m_Int,  TB_ALIGN_16 },
1244    { X86::VFMADDSUBPDr132r_Int,  X86::VFMADDSUBPDr132m_Int,  TB_ALIGN_16 },
1245    { X86::VFMADDSUBPSr132rY_Int, X86::VFMADDSUBPSr132mY_Int, TB_ALIGN_32 },
1246    { X86::VFMADDSUBPDr132rY_Int, X86::VFMADDSUBPDr132mY_Int, TB_ALIGN_32 },
1247
1248    { X86::VFMSUBADDPSr231r,      X86::VFMSUBADDPSr231m,      TB_ALIGN_16 },
1249    { X86::VFMSUBADDPDr231r,      X86::VFMSUBADDPDr231m,      TB_ALIGN_16 },
1250    { X86::VFMSUBADDPSr132r,      X86::VFMSUBADDPSr132m,      TB_ALIGN_16 },
1251    { X86::VFMSUBADDPDr132r,      X86::VFMSUBADDPDr132m,      TB_ALIGN_16 },
1252    { X86::VFMSUBADDPSr213r,      X86::VFMSUBADDPSr213m,      TB_ALIGN_16 },
1253    { X86::VFMSUBADDPDr213r,      X86::VFMSUBADDPDr213m,      TB_ALIGN_16 },
1254    { X86::VFMSUBADDPSr231rY,     X86::VFMSUBADDPSr231mY,     TB_ALIGN_32 },
1255    { X86::VFMSUBADDPDr231rY,     X86::VFMSUBADDPDr231mY,     TB_ALIGN_32 },
1256    { X86::VFMSUBADDPSr132rY,     X86::VFMSUBADDPSr132mY,     TB_ALIGN_32 },
1257    { X86::VFMSUBADDPDr132rY,     X86::VFMSUBADDPDr132mY,     TB_ALIGN_32 },
1258    { X86::VFMSUBADDPSr213rY,     X86::VFMSUBADDPSr213mY,     TB_ALIGN_32 },
1259    { X86::VFMSUBADDPDr213rY,     X86::VFMSUBADDPDr213mY,     TB_ALIGN_32 },
1260    { X86::VFMSUBADDPSr132r_Int,  X86::VFMSUBADDPSr132m_Int,  TB_ALIGN_16 },
1261    { X86::VFMSUBADDPDr132r_Int,  X86::VFMSUBADDPDr132m_Int,  TB_ALIGN_16 },
1262    { X86::VFMSUBADDPSr132rY_Int, X86::VFMSUBADDPSr132mY_Int, TB_ALIGN_32 },
1263    { X86::VFMSUBADDPDr132rY_Int, X86::VFMSUBADDPDr132mY_Int, TB_ALIGN_32 },
1264  };
1265
1266  for (unsigned i = 0, e = array_lengthof(OpTbl3); i != e; ++i) {
1267    unsigned RegOp = OpTbl3[i].RegOp;
1268    unsigned MemOp = OpTbl3[i].MemOp;
1269    unsigned Flags = OpTbl3[i].Flags;
1270    AddTableEntry(RegOp2MemOpTable3, MemOp2RegOpTable,
1271                  RegOp, MemOp,
1272                  // Index 3, folded load
1273                  Flags | TB_INDEX_3 | TB_FOLDED_LOAD);
1274  }
1275
1276}
1277
1278void
1279X86InstrInfo::AddTableEntry(RegOp2MemOpTableType &R2MTable,
1280                            MemOp2RegOpTableType &M2RTable,
1281                            unsigned RegOp, unsigned MemOp, unsigned Flags) {
1282    if ((Flags & TB_NO_FORWARD) == 0) {
1283      assert(!R2MTable.count(RegOp) && "Duplicate entry!");
1284      R2MTable[RegOp] = std::make_pair(MemOp, Flags);
1285    }
1286    if ((Flags & TB_NO_REVERSE) == 0) {
1287      assert(!M2RTable.count(MemOp) &&
1288           "Duplicated entries in unfolding maps?");
1289      M2RTable[MemOp] = std::make_pair(RegOp, Flags);
1290    }
1291}
1292
1293bool
1294X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
1295                                    unsigned &SrcReg, unsigned &DstReg,
1296                                    unsigned &SubIdx) const {
1297  switch (MI.getOpcode()) {
1298  default: break;
1299  case X86::MOVSX16rr8:
1300  case X86::MOVZX16rr8:
1301  case X86::MOVSX32rr8:
1302  case X86::MOVZX32rr8:
1303  case X86::MOVSX64rr8:
1304  case X86::MOVZX64rr8:
1305    if (!TM.getSubtarget<X86Subtarget>().is64Bit())
1306      // It's not always legal to reference the low 8-bit of the larger
1307      // register in 32-bit mode.
1308      return false;
1309  case X86::MOVSX32rr16:
1310  case X86::MOVZX32rr16:
1311  case X86::MOVSX64rr16:
1312  case X86::MOVZX64rr16:
1313  case X86::MOVSX64rr32:
1314  case X86::MOVZX64rr32: {
1315    if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
1316      // Be conservative.
1317      return false;
1318    SrcReg = MI.getOperand(1).getReg();
1319    DstReg = MI.getOperand(0).getReg();
1320    switch (MI.getOpcode()) {
1321    default:
1322      llvm_unreachable(0);
1323    case X86::MOVSX16rr8:
1324    case X86::MOVZX16rr8:
1325    case X86::MOVSX32rr8:
1326    case X86::MOVZX32rr8:
1327    case X86::MOVSX64rr8:
1328    case X86::MOVZX64rr8:
1329      SubIdx = X86::sub_8bit;
1330      break;
1331    case X86::MOVSX32rr16:
1332    case X86::MOVZX32rr16:
1333    case X86::MOVSX64rr16:
1334    case X86::MOVZX64rr16:
1335      SubIdx = X86::sub_16bit;
1336      break;
1337    case X86::MOVSX64rr32:
1338    case X86::MOVZX64rr32:
1339      SubIdx = X86::sub_32bit;
1340      break;
1341    }
1342    return true;
1343  }
1344  }
1345  return false;
1346}
1347
1348/// isFrameOperand - Return true and the FrameIndex if the specified
1349/// operand and follow operands form a reference to the stack frame.
1350bool X86InstrInfo::isFrameOperand(const MachineInstr *MI, unsigned int Op,
1351                                  int &FrameIndex) const {
1352  if (MI->getOperand(Op).isFI() && MI->getOperand(Op+1).isImm() &&
1353      MI->getOperand(Op+2).isReg() && MI->getOperand(Op+3).isImm() &&
1354      MI->getOperand(Op+1).getImm() == 1 &&
1355      MI->getOperand(Op+2).getReg() == 0 &&
1356      MI->getOperand(Op+3).getImm() == 0) {
1357    FrameIndex = MI->getOperand(Op).getIndex();
1358    return true;
1359  }
1360  return false;
1361}
1362
1363static bool isFrameLoadOpcode(int Opcode) {
1364  switch (Opcode) {
1365  default:
1366    return false;
1367  case X86::MOV8rm:
1368  case X86::MOV16rm:
1369  case X86::MOV32rm:
1370  case X86::MOV64rm:
1371  case X86::LD_Fp64m:
1372  case X86::MOVSSrm:
1373  case X86::MOVSDrm:
1374  case X86::MOVAPSrm:
1375  case X86::MOVAPDrm:
1376  case X86::MOVDQArm:
1377  case X86::VMOVSSrm:
1378  case X86::VMOVSDrm:
1379  case X86::VMOVAPSrm:
1380  case X86::VMOVAPDrm:
1381  case X86::VMOVDQArm:
1382  case X86::VMOVAPSYrm:
1383  case X86::VMOVAPDYrm:
1384  case X86::VMOVDQAYrm:
1385  case X86::MMX_MOVD64rm:
1386  case X86::MMX_MOVQ64rm:
1387    return true;
1388  }
1389}
1390
1391static bool isFrameStoreOpcode(int Opcode) {
1392  switch (Opcode) {
1393  default: break;
1394  case X86::MOV8mr:
1395  case X86::MOV16mr:
1396  case X86::MOV32mr:
1397  case X86::MOV64mr:
1398  case X86::ST_FpP64m:
1399  case X86::MOVSSmr:
1400  case X86::MOVSDmr:
1401  case X86::MOVAPSmr:
1402  case X86::MOVAPDmr:
1403  case X86::MOVDQAmr:
1404  case X86::VMOVSSmr:
1405  case X86::VMOVSDmr:
1406  case X86::VMOVAPSmr:
1407  case X86::VMOVAPDmr:
1408  case X86::VMOVDQAmr:
1409  case X86::VMOVAPSYmr:
1410  case X86::VMOVAPDYmr:
1411  case X86::VMOVDQAYmr:
1412  case X86::MMX_MOVD64mr:
1413  case X86::MMX_MOVQ64mr:
1414  case X86::MMX_MOVNTQmr:
1415    return true;
1416  }
1417  return false;
1418}
1419
1420unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
1421                                           int &FrameIndex) const {
1422  if (isFrameLoadOpcode(MI->getOpcode()))
1423    if (MI->getOperand(0).getSubReg() == 0 && isFrameOperand(MI, 1, FrameIndex))
1424      return MI->getOperand(0).getReg();
1425  return 0;
1426}
1427
1428unsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr *MI,
1429                                                 int &FrameIndex) const {
1430  if (isFrameLoadOpcode(MI->getOpcode())) {
1431    unsigned Reg;
1432    if ((Reg = isLoadFromStackSlot(MI, FrameIndex)))
1433      return Reg;
1434    // Check for post-frame index elimination operations
1435    const MachineMemOperand *Dummy;
1436    return hasLoadFromStackSlot(MI, Dummy, FrameIndex);
1437  }
1438  return 0;
1439}
1440
1441unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr *MI,
1442                                          int &FrameIndex) const {
1443  if (isFrameStoreOpcode(MI->getOpcode()))
1444    if (MI->getOperand(X86::AddrNumOperands).getSubReg() == 0 &&
1445        isFrameOperand(MI, 0, FrameIndex))
1446      return MI->getOperand(X86::AddrNumOperands).getReg();
1447  return 0;
1448}
1449
1450unsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr *MI,
1451                                                int &FrameIndex) const {
1452  if (isFrameStoreOpcode(MI->getOpcode())) {
1453    unsigned Reg;
1454    if ((Reg = isStoreToStackSlot(MI, FrameIndex)))
1455      return Reg;
1456    // Check for post-frame index elimination operations
1457    const MachineMemOperand *Dummy;
1458    return hasStoreToStackSlot(MI, Dummy, FrameIndex);
1459  }
1460  return 0;
1461}
1462
1463/// regIsPICBase - Return true if register is PIC base (i.e.g defined by
1464/// X86::MOVPC32r.
1465static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) {
1466  bool isPICBase = false;
1467  for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
1468         E = MRI.def_end(); I != E; ++I) {
1469    MachineInstr *DefMI = I.getOperand().getParent();
1470    if (DefMI->getOpcode() != X86::MOVPC32r)
1471      return false;
1472    assert(!isPICBase && "More than one PIC base?");
1473    isPICBase = true;
1474  }
1475  return isPICBase;
1476}
1477
1478bool
1479X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI,
1480                                                AliasAnalysis *AA) const {
1481  switch (MI->getOpcode()) {
1482  default: break;
1483    case X86::MOV8rm:
1484    case X86::MOV16rm:
1485    case X86::MOV32rm:
1486    case X86::MOV64rm:
1487    case X86::LD_Fp64m:
1488    case X86::MOVSSrm:
1489    case X86::MOVSDrm:
1490    case X86::MOVAPSrm:
1491    case X86::MOVUPSrm:
1492    case X86::MOVAPDrm:
1493    case X86::MOVDQArm:
1494    case X86::VMOVSSrm:
1495    case X86::VMOVSDrm:
1496    case X86::VMOVAPSrm:
1497    case X86::VMOVUPSrm:
1498    case X86::VMOVAPDrm:
1499    case X86::VMOVDQArm:
1500    case X86::VMOVAPSYrm:
1501    case X86::VMOVUPSYrm:
1502    case X86::VMOVAPDYrm:
1503    case X86::VMOVDQAYrm:
1504    case X86::MMX_MOVD64rm:
1505    case X86::MMX_MOVQ64rm:
1506    case X86::FsVMOVAPSrm:
1507    case X86::FsVMOVAPDrm:
1508    case X86::FsMOVAPSrm:
1509    case X86::FsMOVAPDrm: {
1510      // Loads from constant pools are trivially rematerializable.
1511      if (MI->getOperand(1).isReg() &&
1512          MI->getOperand(2).isImm() &&
1513          MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
1514          MI->isInvariantLoad(AA)) {
1515        unsigned BaseReg = MI->getOperand(1).getReg();
1516        if (BaseReg == 0 || BaseReg == X86::RIP)
1517          return true;
1518        // Allow re-materialization of PIC load.
1519        if (!ReMatPICStubLoad && MI->getOperand(4).isGlobal())
1520          return false;
1521        const MachineFunction &MF = *MI->getParent()->getParent();
1522        const MachineRegisterInfo &MRI = MF.getRegInfo();
1523        bool isPICBase = false;
1524        for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
1525               E = MRI.def_end(); I != E; ++I) {
1526          MachineInstr *DefMI = I.getOperand().getParent();
1527          if (DefMI->getOpcode() != X86::MOVPC32r)
1528            return false;
1529          assert(!isPICBase && "More than one PIC base?");
1530          isPICBase = true;
1531        }
1532        return isPICBase;
1533      }
1534      return false;
1535    }
1536
1537     case X86::LEA32r:
1538     case X86::LEA64r: {
1539       if (MI->getOperand(2).isImm() &&
1540           MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
1541           !MI->getOperand(4).isReg()) {
1542         // lea fi#, lea GV, etc. are all rematerializable.
1543         if (!MI->getOperand(1).isReg())
1544           return true;
1545         unsigned BaseReg = MI->getOperand(1).getReg();
1546         if (BaseReg == 0)
1547           return true;
1548         // Allow re-materialization of lea PICBase + x.
1549         const MachineFunction &MF = *MI->getParent()->getParent();
1550         const MachineRegisterInfo &MRI = MF.getRegInfo();
1551         return regIsPICBase(BaseReg, MRI);
1552       }
1553       return false;
1554     }
1555  }
1556
1557  // All other instructions marked M_REMATERIALIZABLE are always trivially
1558  // rematerializable.
1559  return true;
1560}
1561
1562/// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction that
1563/// would clobber the EFLAGS condition register. Note the result may be
1564/// conservative. If it cannot definitely determine the safety after visiting
1565/// a few instructions in each direction it assumes it's not safe.
1566static bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
1567                                  MachineBasicBlock::iterator I) {
1568  MachineBasicBlock::iterator E = MBB.end();
1569
1570  // For compile time consideration, if we are not able to determine the
1571  // safety after visiting 4 instructions in each direction, we will assume
1572  // it's not safe.
1573  MachineBasicBlock::iterator Iter = I;
1574  for (unsigned i = 0; Iter != E && i < 4; ++i) {
1575    bool SeenDef = false;
1576    for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
1577      MachineOperand &MO = Iter->getOperand(j);
1578      if (MO.isRegMask() && MO.clobbersPhysReg(X86::EFLAGS))
1579        SeenDef = true;
1580      if (!MO.isReg())
1581        continue;
1582      if (MO.getReg() == X86::EFLAGS) {
1583        if (MO.isUse())
1584          return false;
1585        SeenDef = true;
1586      }
1587    }
1588
1589    if (SeenDef)
1590      // This instruction defines EFLAGS, no need to look any further.
1591      return true;
1592    ++Iter;
1593    // Skip over DBG_VALUE.
1594    while (Iter != E && Iter->isDebugValue())
1595      ++Iter;
1596  }
1597
1598  // It is safe to clobber EFLAGS at the end of a block of no successor has it
1599  // live in.
1600  if (Iter == E) {
1601    for (MachineBasicBlock::succ_iterator SI = MBB.succ_begin(),
1602           SE = MBB.succ_end(); SI != SE; ++SI)
1603      if ((*SI)->isLiveIn(X86::EFLAGS))
1604        return false;
1605    return true;
1606  }
1607
1608  MachineBasicBlock::iterator B = MBB.begin();
1609  Iter = I;
1610  for (unsigned i = 0; i < 4; ++i) {
1611    // If we make it to the beginning of the block, it's safe to clobber
1612    // EFLAGS iff EFLAGS is not live-in.
1613    if (Iter == B)
1614      return !MBB.isLiveIn(X86::EFLAGS);
1615
1616    --Iter;
1617    // Skip over DBG_VALUE.
1618    while (Iter != B && Iter->isDebugValue())
1619      --Iter;
1620
1621    bool SawKill = false;
1622    for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
1623      MachineOperand &MO = Iter->getOperand(j);
1624      // A register mask may clobber EFLAGS, but we should still look for a
1625      // live EFLAGS def.
1626      if (MO.isRegMask() && MO.clobbersPhysReg(X86::EFLAGS))
1627        SawKill = true;
1628      if (MO.isReg() && MO.getReg() == X86::EFLAGS) {
1629        if (MO.isDef()) return MO.isDead();
1630        if (MO.isKill()) SawKill = true;
1631      }
1632    }
1633
1634    if (SawKill)
1635      // This instruction kills EFLAGS and doesn't redefine it, so
1636      // there's no need to look further.
1637      return true;
1638  }
1639
1640  // Conservative answer.
1641  return false;
1642}
1643
1644void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
1645                                 MachineBasicBlock::iterator I,
1646                                 unsigned DestReg, unsigned SubIdx,
1647                                 const MachineInstr *Orig,
1648                                 const TargetRegisterInfo &TRI) const {
1649  DebugLoc DL = Orig->getDebugLoc();
1650
1651  // MOV32r0 etc. are implemented with xor which clobbers condition code.
1652  // Re-materialize them as movri instructions to avoid side effects.
1653  bool Clone = true;
1654  unsigned Opc = Orig->getOpcode();
1655  switch (Opc) {
1656  default: break;
1657  case X86::MOV8r0:
1658  case X86::MOV16r0:
1659  case X86::MOV32r0:
1660  case X86::MOV64r0: {
1661    if (!isSafeToClobberEFLAGS(MBB, I)) {
1662      switch (Opc) {
1663      default: break;
1664      case X86::MOV8r0:  Opc = X86::MOV8ri;  break;
1665      case X86::MOV16r0: Opc = X86::MOV16ri; break;
1666      case X86::MOV32r0: Opc = X86::MOV32ri; break;
1667      case X86::MOV64r0: Opc = X86::MOV64ri64i32; break;
1668      }
1669      Clone = false;
1670    }
1671    break;
1672  }
1673  }
1674
1675  if (Clone) {
1676    MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
1677    MBB.insert(I, MI);
1678  } else {
1679    BuildMI(MBB, I, DL, get(Opc)).addOperand(Orig->getOperand(0)).addImm(0);
1680  }
1681
1682  MachineInstr *NewMI = prior(I);
1683  NewMI->substituteRegister(Orig->getOperand(0).getReg(), DestReg, SubIdx, TRI);
1684}
1685
1686/// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that
1687/// is not marked dead.
1688static bool hasLiveCondCodeDef(MachineInstr *MI) {
1689  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1690    MachineOperand &MO = MI->getOperand(i);
1691    if (MO.isReg() && MO.isDef() &&
1692        MO.getReg() == X86::EFLAGS && !MO.isDead()) {
1693      return true;
1694    }
1695  }
1696  return false;
1697}
1698
1699/// convertToThreeAddressWithLEA - Helper for convertToThreeAddress when
1700/// 16-bit LEA is disabled, use 32-bit LEA to form 3-address code by promoting
1701/// to a 32-bit superregister and then truncating back down to a 16-bit
1702/// subregister.
1703MachineInstr *
1704X86InstrInfo::convertToThreeAddressWithLEA(unsigned MIOpc,
1705                                           MachineFunction::iterator &MFI,
1706                                           MachineBasicBlock::iterator &MBBI,
1707                                           LiveVariables *LV) const {
1708  MachineInstr *MI = MBBI;
1709  unsigned Dest = MI->getOperand(0).getReg();
1710  unsigned Src = MI->getOperand(1).getReg();
1711  bool isDead = MI->getOperand(0).isDead();
1712  bool isKill = MI->getOperand(1).isKill();
1713
1714  unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit()
1715    ? X86::LEA64_32r : X86::LEA32r;
1716  MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
1717  unsigned leaInReg = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
1718  unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
1719
1720  // Build and insert into an implicit UNDEF value. This is OK because
1721  // well be shifting and then extracting the lower 16-bits.
1722  // This has the potential to cause partial register stall. e.g.
1723  //   movw    (%rbp,%rcx,2), %dx
1724  //   leal    -65(%rdx), %esi
1725  // But testing has shown this *does* help performance in 64-bit mode (at
1726  // least on modern x86 machines).
1727  BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg);
1728  MachineInstr *InsMI =
1729    BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY))
1730    .addReg(leaInReg, RegState::Define, X86::sub_16bit)
1731    .addReg(Src, getKillRegState(isKill));
1732
1733  MachineInstrBuilder MIB = BuildMI(*MFI, MBBI, MI->getDebugLoc(),
1734                                    get(Opc), leaOutReg);
1735  switch (MIOpc) {
1736  default:
1737    llvm_unreachable(0);
1738  case X86::SHL16ri: {
1739    unsigned ShAmt = MI->getOperand(2).getImm();
1740    MIB.addReg(0).addImm(1 << ShAmt)
1741       .addReg(leaInReg, RegState::Kill).addImm(0).addReg(0);
1742    break;
1743  }
1744  case X86::INC16r:
1745  case X86::INC64_16r:
1746    addRegOffset(MIB, leaInReg, true, 1);
1747    break;
1748  case X86::DEC16r:
1749  case X86::DEC64_16r:
1750    addRegOffset(MIB, leaInReg, true, -1);
1751    break;
1752  case X86::ADD16ri:
1753  case X86::ADD16ri8:
1754  case X86::ADD16ri_DB:
1755  case X86::ADD16ri8_DB:
1756    addRegOffset(MIB, leaInReg, true, MI->getOperand(2).getImm());
1757    break;
1758  case X86::ADD16rr:
1759  case X86::ADD16rr_DB: {
1760    unsigned Src2 = MI->getOperand(2).getReg();
1761    bool isKill2 = MI->getOperand(2).isKill();
1762    unsigned leaInReg2 = 0;
1763    MachineInstr *InsMI2 = 0;
1764    if (Src == Src2) {
1765      // ADD16rr %reg1028<kill>, %reg1028
1766      // just a single insert_subreg.
1767      addRegReg(MIB, leaInReg, true, leaInReg, false);
1768    } else {
1769      leaInReg2 = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
1770      // Build and insert into an implicit UNDEF value. This is OK because
1771      // well be shifting and then extracting the lower 16-bits.
1772      BuildMI(*MFI, &*MIB, MI->getDebugLoc(), get(X86::IMPLICIT_DEF),leaInReg2);
1773      InsMI2 =
1774        BuildMI(*MFI, &*MIB, MI->getDebugLoc(), get(TargetOpcode::COPY))
1775        .addReg(leaInReg2, RegState::Define, X86::sub_16bit)
1776        .addReg(Src2, getKillRegState(isKill2));
1777      addRegReg(MIB, leaInReg, true, leaInReg2, true);
1778    }
1779    if (LV && isKill2 && InsMI2)
1780      LV->replaceKillInstruction(Src2, MI, InsMI2);
1781    break;
1782  }
1783  }
1784
1785  MachineInstr *NewMI = MIB;
1786  MachineInstr *ExtMI =
1787    BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY))
1788    .addReg(Dest, RegState::Define | getDeadRegState(isDead))
1789    .addReg(leaOutReg, RegState::Kill, X86::sub_16bit);
1790
1791  if (LV) {
1792    // Update live variables
1793    LV->getVarInfo(leaInReg).Kills.push_back(NewMI);
1794    LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI);
1795    if (isKill)
1796      LV->replaceKillInstruction(Src, MI, InsMI);
1797    if (isDead)
1798      LV->replaceKillInstruction(Dest, MI, ExtMI);
1799  }
1800
1801  return ExtMI;
1802}
1803
1804/// convertToThreeAddress - This method must be implemented by targets that
1805/// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
1806/// may be able to convert a two-address instruction into a true
1807/// three-address instruction on demand.  This allows the X86 target (for
1808/// example) to convert ADD and SHL instructions into LEA instructions if they
1809/// would require register copies due to two-addressness.
1810///
1811/// This method returns a null pointer if the transformation cannot be
1812/// performed, otherwise it returns the new instruction.
1813///
1814MachineInstr *
1815X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
1816                                    MachineBasicBlock::iterator &MBBI,
1817                                    LiveVariables *LV) const {
1818  MachineInstr *MI = MBBI;
1819  MachineFunction &MF = *MI->getParent()->getParent();
1820  // All instructions input are two-addr instructions.  Get the known operands.
1821  unsigned Dest = MI->getOperand(0).getReg();
1822  unsigned Src = MI->getOperand(1).getReg();
1823  bool isDead = MI->getOperand(0).isDead();
1824  bool isKill = MI->getOperand(1).isKill();
1825
1826  MachineInstr *NewMI = NULL;
1827  // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's.  When
1828  // we have better subtarget support, enable the 16-bit LEA generation here.
1829  // 16-bit LEA is also slow on Core2.
1830  bool DisableLEA16 = true;
1831  bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
1832
1833  unsigned MIOpc = MI->getOpcode();
1834  switch (MIOpc) {
1835  case X86::SHUFPSrri: {
1836    assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!");
1837    if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
1838
1839    unsigned B = MI->getOperand(1).getReg();
1840    unsigned C = MI->getOperand(2).getReg();
1841    if (B != C) return 0;
1842    unsigned A = MI->getOperand(0).getReg();
1843    unsigned M = MI->getOperand(3).getImm();
1844    NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::PSHUFDri))
1845      .addReg(A, RegState::Define | getDeadRegState(isDead))
1846      .addReg(B, getKillRegState(isKill)).addImm(M);
1847    break;
1848  }
1849  case X86::SHUFPDrri: {
1850    assert(MI->getNumOperands() == 4 && "Unknown shufpd instruction!");
1851    if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
1852
1853    unsigned B = MI->getOperand(1).getReg();
1854    unsigned C = MI->getOperand(2).getReg();
1855    if (B != C) return 0;
1856    unsigned A = MI->getOperand(0).getReg();
1857    unsigned M = MI->getOperand(3).getImm();
1858
1859    // Convert to PSHUFD mask.
1860    M = ((M & 1) << 1) | ((M & 1) << 3) | ((M & 2) << 4) | ((M & 2) << 6)| 0x44;
1861
1862    NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::PSHUFDri))
1863      .addReg(A, RegState::Define | getDeadRegState(isDead))
1864      .addReg(B, getKillRegState(isKill)).addImm(M);
1865    break;
1866  }
1867  case X86::SHL64ri: {
1868    assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
1869    // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1870    // the flags produced by a shift yet, so this is safe.
1871    unsigned ShAmt = MI->getOperand(2).getImm();
1872    if (ShAmt == 0 || ShAmt >= 4) return 0;
1873
1874    // LEA can't handle RSP.
1875    if (TargetRegisterInfo::isVirtualRegister(Src) &&
1876        !MF.getRegInfo().constrainRegClass(Src, &X86::GR64_NOSPRegClass))
1877      return 0;
1878
1879    NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
1880      .addReg(Dest, RegState::Define | getDeadRegState(isDead))
1881      .addReg(0).addImm(1 << ShAmt)
1882      .addReg(Src, getKillRegState(isKill))
1883      .addImm(0).addReg(0);
1884    break;
1885  }
1886  case X86::SHL32ri: {
1887    assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
1888    // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1889    // the flags produced by a shift yet, so this is safe.
1890    unsigned ShAmt = MI->getOperand(2).getImm();
1891    if (ShAmt == 0 || ShAmt >= 4) return 0;
1892
1893    // LEA can't handle ESP.
1894    if (TargetRegisterInfo::isVirtualRegister(Src) &&
1895        !MF.getRegInfo().constrainRegClass(Src, &X86::GR32_NOSPRegClass))
1896      return 0;
1897
1898    unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
1899    NewMI = BuildMI(MF, MI->getDebugLoc(), get(Opc))
1900      .addReg(Dest, RegState::Define | getDeadRegState(isDead))
1901      .addReg(0).addImm(1 << ShAmt)
1902      .addReg(Src, getKillRegState(isKill)).addImm(0).addReg(0);
1903    break;
1904  }
1905  case X86::SHL16ri: {
1906    assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
1907    // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1908    // the flags produced by a shift yet, so this is safe.
1909    unsigned ShAmt = MI->getOperand(2).getImm();
1910    if (ShAmt == 0 || ShAmt >= 4) return 0;
1911
1912    if (DisableLEA16)
1913      return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
1914    NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1915      .addReg(Dest, RegState::Define | getDeadRegState(isDead))
1916      .addReg(0).addImm(1 << ShAmt)
1917      .addReg(Src, getKillRegState(isKill))
1918      .addImm(0).addReg(0);
1919    break;
1920  }
1921  default: {
1922    // The following opcodes also sets the condition code register(s). Only
1923    // convert them to equivalent lea if the condition code register def's
1924    // are dead!
1925    if (hasLiveCondCodeDef(MI))
1926      return 0;
1927
1928    switch (MIOpc) {
1929    default: return 0;
1930    case X86::INC64r:
1931    case X86::INC32r:
1932    case X86::INC64_32r: {
1933      assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
1934      unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
1935        : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
1936      const TargetRegisterClass *RC = MIOpc == X86::INC64r ?
1937        (const TargetRegisterClass*)&X86::GR64_NOSPRegClass :
1938        (const TargetRegisterClass*)&X86::GR32_NOSPRegClass;
1939
1940      // LEA can't handle RSP.
1941      if (TargetRegisterInfo::isVirtualRegister(Src) &&
1942          !MF.getRegInfo().constrainRegClass(Src, RC))
1943        return 0;
1944
1945      NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
1946                              .addReg(Dest, RegState::Define |
1947                                      getDeadRegState(isDead)),
1948                              Src, isKill, 1);
1949      break;
1950    }
1951    case X86::INC16r:
1952    case X86::INC64_16r:
1953      if (DisableLEA16)
1954        return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
1955      assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
1956      NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1957                           .addReg(Dest, RegState::Define |
1958                                   getDeadRegState(isDead)),
1959                           Src, isKill, 1);
1960      break;
1961    case X86::DEC64r:
1962    case X86::DEC32r:
1963    case X86::DEC64_32r: {
1964      assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
1965      unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
1966        : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
1967      const TargetRegisterClass *RC = MIOpc == X86::DEC64r ?
1968        (const TargetRegisterClass*)&X86::GR64_NOSPRegClass :
1969        (const TargetRegisterClass*)&X86::GR32_NOSPRegClass;
1970      // LEA can't handle RSP.
1971      if (TargetRegisterInfo::isVirtualRegister(Src) &&
1972          !MF.getRegInfo().constrainRegClass(Src, RC))
1973        return 0;
1974
1975      NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
1976                              .addReg(Dest, RegState::Define |
1977                                      getDeadRegState(isDead)),
1978                              Src, isKill, -1);
1979      break;
1980    }
1981    case X86::DEC16r:
1982    case X86::DEC64_16r:
1983      if (DisableLEA16)
1984        return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
1985      assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
1986      NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1987                           .addReg(Dest, RegState::Define |
1988                                   getDeadRegState(isDead)),
1989                           Src, isKill, -1);
1990      break;
1991    case X86::ADD64rr:
1992    case X86::ADD64rr_DB:
1993    case X86::ADD32rr:
1994    case X86::ADD32rr_DB: {
1995      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1996      unsigned Opc;
1997      const TargetRegisterClass *RC;
1998      if (MIOpc == X86::ADD64rr || MIOpc == X86::ADD64rr_DB) {
1999        Opc = X86::LEA64r;
2000        RC = &X86::GR64_NOSPRegClass;
2001      } else {
2002        Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
2003        RC = &X86::GR32_NOSPRegClass;
2004      }
2005
2006
2007      unsigned Src2 = MI->getOperand(2).getReg();
2008      bool isKill2 = MI->getOperand(2).isKill();
2009
2010      // LEA can't handle RSP.
2011      if (TargetRegisterInfo::isVirtualRegister(Src2) &&
2012          !MF.getRegInfo().constrainRegClass(Src2, RC))
2013        return 0;
2014
2015      NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(Opc))
2016                        .addReg(Dest, RegState::Define |
2017                                getDeadRegState(isDead)),
2018                        Src, isKill, Src2, isKill2);
2019
2020      // Preserve undefness of the operands.
2021      bool isUndef = MI->getOperand(1).isUndef();
2022      bool isUndef2 = MI->getOperand(2).isUndef();
2023      NewMI->getOperand(1).setIsUndef(isUndef);
2024      NewMI->getOperand(3).setIsUndef(isUndef2);
2025
2026      if (LV && isKill2)
2027        LV->replaceKillInstruction(Src2, MI, NewMI);
2028      break;
2029    }
2030    case X86::ADD16rr:
2031    case X86::ADD16rr_DB: {
2032      if (DisableLEA16)
2033        return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
2034      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
2035      unsigned Src2 = MI->getOperand(2).getReg();
2036      bool isKill2 = MI->getOperand(2).isKill();
2037      NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
2038                        .addReg(Dest, RegState::Define |
2039                                getDeadRegState(isDead)),
2040                        Src, isKill, Src2, isKill2);
2041      if (LV && isKill2)
2042        LV->replaceKillInstruction(Src2, MI, NewMI);
2043      break;
2044    }
2045    case X86::ADD64ri32:
2046    case X86::ADD64ri8:
2047    case X86::ADD64ri32_DB:
2048    case X86::ADD64ri8_DB:
2049      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
2050      NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
2051                              .addReg(Dest, RegState::Define |
2052                                      getDeadRegState(isDead)),
2053                              Src, isKill, MI->getOperand(2).getImm());
2054      break;
2055    case X86::ADD32ri:
2056    case X86::ADD32ri8:
2057    case X86::ADD32ri_DB:
2058    case X86::ADD32ri8_DB: {
2059      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
2060      unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
2061      NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
2062                              .addReg(Dest, RegState::Define |
2063                                      getDeadRegState(isDead)),
2064                                Src, isKill, MI->getOperand(2).getImm());
2065      break;
2066    }
2067    case X86::ADD16ri:
2068    case X86::ADD16ri8:
2069    case X86::ADD16ri_DB:
2070    case X86::ADD16ri8_DB:
2071      if (DisableLEA16)
2072        return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
2073      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
2074      NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
2075                              .addReg(Dest, RegState::Define |
2076                                      getDeadRegState(isDead)),
2077                              Src, isKill, MI->getOperand(2).getImm());
2078      break;
2079    }
2080  }
2081  }
2082
2083  if (!NewMI) return 0;
2084
2085  if (LV) {  // Update live variables
2086    if (isKill)
2087      LV->replaceKillInstruction(Src, MI, NewMI);
2088    if (isDead)
2089      LV->replaceKillInstruction(Dest, MI, NewMI);
2090  }
2091
2092  MFI->insert(MBBI, NewMI);          // Insert the new inst
2093  return NewMI;
2094}
2095
2096/// commuteInstruction - We have a few instructions that must be hacked on to
2097/// commute them.
2098///
2099MachineInstr *
2100X86InstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
2101  switch (MI->getOpcode()) {
2102  case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
2103  case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
2104  case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
2105  case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
2106  case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
2107  case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
2108    unsigned Opc;
2109    unsigned Size;
2110    switch (MI->getOpcode()) {
2111    default: llvm_unreachable("Unreachable!");
2112    case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
2113    case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
2114    case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
2115    case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
2116    case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
2117    case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
2118    }
2119    unsigned Amt = MI->getOperand(3).getImm();
2120    if (NewMI) {
2121      MachineFunction &MF = *MI->getParent()->getParent();
2122      MI = MF.CloneMachineInstr(MI);
2123      NewMI = false;
2124    }
2125    MI->setDesc(get(Opc));
2126    MI->getOperand(3).setImm(Size-Amt);
2127    return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
2128  }
2129  case X86::CMOVB16rr:
2130  case X86::CMOVB32rr:
2131  case X86::CMOVB64rr:
2132  case X86::CMOVAE16rr:
2133  case X86::CMOVAE32rr:
2134  case X86::CMOVAE64rr:
2135  case X86::CMOVE16rr:
2136  case X86::CMOVE32rr:
2137  case X86::CMOVE64rr:
2138  case X86::CMOVNE16rr:
2139  case X86::CMOVNE32rr:
2140  case X86::CMOVNE64rr:
2141  case X86::CMOVBE16rr:
2142  case X86::CMOVBE32rr:
2143  case X86::CMOVBE64rr:
2144  case X86::CMOVA16rr:
2145  case X86::CMOVA32rr:
2146  case X86::CMOVA64rr:
2147  case X86::CMOVL16rr:
2148  case X86::CMOVL32rr:
2149  case X86::CMOVL64rr:
2150  case X86::CMOVGE16rr:
2151  case X86::CMOVGE32rr:
2152  case X86::CMOVGE64rr:
2153  case X86::CMOVLE16rr:
2154  case X86::CMOVLE32rr:
2155  case X86::CMOVLE64rr:
2156  case X86::CMOVG16rr:
2157  case X86::CMOVG32rr:
2158  case X86::CMOVG64rr:
2159  case X86::CMOVS16rr:
2160  case X86::CMOVS32rr:
2161  case X86::CMOVS64rr:
2162  case X86::CMOVNS16rr:
2163  case X86::CMOVNS32rr:
2164  case X86::CMOVNS64rr:
2165  case X86::CMOVP16rr:
2166  case X86::CMOVP32rr:
2167  case X86::CMOVP64rr:
2168  case X86::CMOVNP16rr:
2169  case X86::CMOVNP32rr:
2170  case X86::CMOVNP64rr:
2171  case X86::CMOVO16rr:
2172  case X86::CMOVO32rr:
2173  case X86::CMOVO64rr:
2174  case X86::CMOVNO16rr:
2175  case X86::CMOVNO32rr:
2176  case X86::CMOVNO64rr: {
2177    unsigned Opc = 0;
2178    switch (MI->getOpcode()) {
2179    default: break;
2180    case X86::CMOVB16rr:  Opc = X86::CMOVAE16rr; break;
2181    case X86::CMOVB32rr:  Opc = X86::CMOVAE32rr; break;
2182    case X86::CMOVB64rr:  Opc = X86::CMOVAE64rr; break;
2183    case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break;
2184    case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break;
2185    case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break;
2186    case X86::CMOVE16rr:  Opc = X86::CMOVNE16rr; break;
2187    case X86::CMOVE32rr:  Opc = X86::CMOVNE32rr; break;
2188    case X86::CMOVE64rr:  Opc = X86::CMOVNE64rr; break;
2189    case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break;
2190    case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break;
2191    case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break;
2192    case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break;
2193    case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break;
2194    case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break;
2195    case X86::CMOVA16rr:  Opc = X86::CMOVBE16rr; break;
2196    case X86::CMOVA32rr:  Opc = X86::CMOVBE32rr; break;
2197    case X86::CMOVA64rr:  Opc = X86::CMOVBE64rr; break;
2198    case X86::CMOVL16rr:  Opc = X86::CMOVGE16rr; break;
2199    case X86::CMOVL32rr:  Opc = X86::CMOVGE32rr; break;
2200    case X86::CMOVL64rr:  Opc = X86::CMOVGE64rr; break;
2201    case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break;
2202    case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break;
2203    case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break;
2204    case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break;
2205    case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break;
2206    case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break;
2207    case X86::CMOVG16rr:  Opc = X86::CMOVLE16rr; break;
2208    case X86::CMOVG32rr:  Opc = X86::CMOVLE32rr; break;
2209    case X86::CMOVG64rr:  Opc = X86::CMOVLE64rr; break;
2210    case X86::CMOVS16rr:  Opc = X86::CMOVNS16rr; break;
2211    case X86::CMOVS32rr:  Opc = X86::CMOVNS32rr; break;
2212    case X86::CMOVS64rr:  Opc = X86::CMOVNS64rr; break;
2213    case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break;
2214    case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break;
2215    case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break;
2216    case X86::CMOVP16rr:  Opc = X86::CMOVNP16rr; break;
2217    case X86::CMOVP32rr:  Opc = X86::CMOVNP32rr; break;
2218    case X86::CMOVP64rr:  Opc = X86::CMOVNP64rr; break;
2219    case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break;
2220    case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break;
2221    case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break;
2222    case X86::CMOVO16rr:  Opc = X86::CMOVNO16rr; break;
2223    case X86::CMOVO32rr:  Opc = X86::CMOVNO32rr; break;
2224    case X86::CMOVO64rr:  Opc = X86::CMOVNO64rr; break;
2225    case X86::CMOVNO16rr: Opc = X86::CMOVO16rr; break;
2226    case X86::CMOVNO32rr: Opc = X86::CMOVO32rr; break;
2227    case X86::CMOVNO64rr: Opc = X86::CMOVO64rr; break;
2228    }
2229    if (NewMI) {
2230      MachineFunction &MF = *MI->getParent()->getParent();
2231      MI = MF.CloneMachineInstr(MI);
2232      NewMI = false;
2233    }
2234    MI->setDesc(get(Opc));
2235    // Fallthrough intended.
2236  }
2237  default:
2238    return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
2239  }
2240}
2241
2242static X86::CondCode getCondFromBranchOpc(unsigned BrOpc) {
2243  switch (BrOpc) {
2244  default: return X86::COND_INVALID;
2245  case X86::JE_4:  return X86::COND_E;
2246  case X86::JNE_4: return X86::COND_NE;
2247  case X86::JL_4:  return X86::COND_L;
2248  case X86::JLE_4: return X86::COND_LE;
2249  case X86::JG_4:  return X86::COND_G;
2250  case X86::JGE_4: return X86::COND_GE;
2251  case X86::JB_4:  return X86::COND_B;
2252  case X86::JBE_4: return X86::COND_BE;
2253  case X86::JA_4:  return X86::COND_A;
2254  case X86::JAE_4: return X86::COND_AE;
2255  case X86::JS_4:  return X86::COND_S;
2256  case X86::JNS_4: return X86::COND_NS;
2257  case X86::JP_4:  return X86::COND_P;
2258  case X86::JNP_4: return X86::COND_NP;
2259  case X86::JO_4:  return X86::COND_O;
2260  case X86::JNO_4: return X86::COND_NO;
2261  }
2262}
2263
2264/// getCondFromSETOpc - return condition code of a SET opcode.
2265static X86::CondCode getCondFromSETOpc(unsigned Opc) {
2266  switch (Opc) {
2267  default: return X86::COND_INVALID;
2268  case X86::SETAr:  case X86::SETAm:  return X86::COND_A;
2269  case X86::SETAEr: case X86::SETAEm: return X86::COND_AE;
2270  case X86::SETBr:  case X86::SETBm:  return X86::COND_B;
2271  case X86::SETBEr: case X86::SETBEm: return X86::COND_BE;
2272  case X86::SETEr:  case X86::SETEm:  return X86::COND_E;
2273  case X86::SETGr:  case X86::SETGm:  return X86::COND_G;
2274  case X86::SETGEr: case X86::SETGEm: return X86::COND_GE;
2275  case X86::SETLr:  case X86::SETLm:  return X86::COND_L;
2276  case X86::SETLEr: case X86::SETLEm: return X86::COND_LE;
2277  case X86::SETNEr: case X86::SETNEm: return X86::COND_NE;
2278  case X86::SETNOr: case X86::SETNOm: return X86::COND_NO;
2279  case X86::SETNPr: case X86::SETNPm: return X86::COND_NP;
2280  case X86::SETNSr: case X86::SETNSm: return X86::COND_NS;
2281  case X86::SETOr:  case X86::SETOm:  return X86::COND_O;
2282  case X86::SETPr:  case X86::SETPm:  return X86::COND_P;
2283  case X86::SETSr:  case X86::SETSm:  return X86::COND_S;
2284  }
2285}
2286
2287/// getCondFromCmovOpc - return condition code of a CMov opcode.
2288static X86::CondCode getCondFromCMovOpc(unsigned Opc) {
2289  switch (Opc) {
2290  default: return X86::COND_INVALID;
2291  case X86::CMOVA16rm:  case X86::CMOVA16rr:  case X86::CMOVA32rm:
2292  case X86::CMOVA32rr:  case X86::CMOVA64rm:  case X86::CMOVA64rr:
2293    return X86::COND_A;
2294  case X86::CMOVAE16rm: case X86::CMOVAE16rr: case X86::CMOVAE32rm:
2295  case X86::CMOVAE32rr: case X86::CMOVAE64rm: case X86::CMOVAE64rr:
2296    return X86::COND_AE;
2297  case X86::CMOVB16rm:  case X86::CMOVB16rr:  case X86::CMOVB32rm:
2298  case X86::CMOVB32rr:  case X86::CMOVB64rm:  case X86::CMOVB64rr:
2299    return X86::COND_B;
2300  case X86::CMOVBE16rm: case X86::CMOVBE16rr: case X86::CMOVBE32rm:
2301  case X86::CMOVBE32rr: case X86::CMOVBE64rm: case X86::CMOVBE64rr:
2302    return X86::COND_BE;
2303  case X86::CMOVE16rm:  case X86::CMOVE16rr:  case X86::CMOVE32rm:
2304  case X86::CMOVE32rr:  case X86::CMOVE64rm:  case X86::CMOVE64rr:
2305    return X86::COND_E;
2306  case X86::CMOVG16rm:  case X86::CMOVG16rr:  case X86::CMOVG32rm:
2307  case X86::CMOVG32rr:  case X86::CMOVG64rm:  case X86::CMOVG64rr:
2308    return X86::COND_G;
2309  case X86::CMOVGE16rm: case X86::CMOVGE16rr: case X86::CMOVGE32rm:
2310  case X86::CMOVGE32rr: case X86::CMOVGE64rm: case X86::CMOVGE64rr:
2311    return X86::COND_GE;
2312  case X86::CMOVL16rm:  case X86::CMOVL16rr:  case X86::CMOVL32rm:
2313  case X86::CMOVL32rr:  case X86::CMOVL64rm:  case X86::CMOVL64rr:
2314    return X86::COND_L;
2315  case X86::CMOVLE16rm: case X86::CMOVLE16rr: case X86::CMOVLE32rm:
2316  case X86::CMOVLE32rr: case X86::CMOVLE64rm: case X86::CMOVLE64rr:
2317    return X86::COND_LE;
2318  case X86::CMOVNE16rm: case X86::CMOVNE16rr: case X86::CMOVNE32rm:
2319  case X86::CMOVNE32rr: case X86::CMOVNE64rm: case X86::CMOVNE64rr:
2320    return X86::COND_NE;
2321  case X86::CMOVNO16rm: case X86::CMOVNO16rr: case X86::CMOVNO32rm:
2322  case X86::CMOVNO32rr: case X86::CMOVNO64rm: case X86::CMOVNO64rr:
2323    return X86::COND_NO;
2324  case X86::CMOVNP16rm: case X86::CMOVNP16rr: case X86::CMOVNP32rm:
2325  case X86::CMOVNP32rr: case X86::CMOVNP64rm: case X86::CMOVNP64rr:
2326    return X86::COND_NP;
2327  case X86::CMOVNS16rm: case X86::CMOVNS16rr: case X86::CMOVNS32rm:
2328  case X86::CMOVNS32rr: case X86::CMOVNS64rm: case X86::CMOVNS64rr:
2329    return X86::COND_NS;
2330  case X86::CMOVO16rm:  case X86::CMOVO16rr:  case X86::CMOVO32rm:
2331  case X86::CMOVO32rr:  case X86::CMOVO64rm:  case X86::CMOVO64rr:
2332    return X86::COND_O;
2333  case X86::CMOVP16rm:  case X86::CMOVP16rr:  case X86::CMOVP32rm:
2334  case X86::CMOVP32rr:  case X86::CMOVP64rm:  case X86::CMOVP64rr:
2335    return X86::COND_P;
2336  case X86::CMOVS16rm:  case X86::CMOVS16rr:  case X86::CMOVS32rm:
2337  case X86::CMOVS32rr:  case X86::CMOVS64rm:  case X86::CMOVS64rr:
2338    return X86::COND_S;
2339  }
2340}
2341
2342unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
2343  switch (CC) {
2344  default: llvm_unreachable("Illegal condition code!");
2345  case X86::COND_E:  return X86::JE_4;
2346  case X86::COND_NE: return X86::JNE_4;
2347  case X86::COND_L:  return X86::JL_4;
2348  case X86::COND_LE: return X86::JLE_4;
2349  case X86::COND_G:  return X86::JG_4;
2350  case X86::COND_GE: return X86::JGE_4;
2351  case X86::COND_B:  return X86::JB_4;
2352  case X86::COND_BE: return X86::JBE_4;
2353  case X86::COND_A:  return X86::JA_4;
2354  case X86::COND_AE: return X86::JAE_4;
2355  case X86::COND_S:  return X86::JS_4;
2356  case X86::COND_NS: return X86::JNS_4;
2357  case X86::COND_P:  return X86::JP_4;
2358  case X86::COND_NP: return X86::JNP_4;
2359  case X86::COND_O:  return X86::JO_4;
2360  case X86::COND_NO: return X86::JNO_4;
2361  }
2362}
2363
2364/// GetOppositeBranchCondition - Return the inverse of the specified condition,
2365/// e.g. turning COND_E to COND_NE.
2366X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
2367  switch (CC) {
2368  default: llvm_unreachable("Illegal condition code!");
2369  case X86::COND_E:  return X86::COND_NE;
2370  case X86::COND_NE: return X86::COND_E;
2371  case X86::COND_L:  return X86::COND_GE;
2372  case X86::COND_LE: return X86::COND_G;
2373  case X86::COND_G:  return X86::COND_LE;
2374  case X86::COND_GE: return X86::COND_L;
2375  case X86::COND_B:  return X86::COND_AE;
2376  case X86::COND_BE: return X86::COND_A;
2377  case X86::COND_A:  return X86::COND_BE;
2378  case X86::COND_AE: return X86::COND_B;
2379  case X86::COND_S:  return X86::COND_NS;
2380  case X86::COND_NS: return X86::COND_S;
2381  case X86::COND_P:  return X86::COND_NP;
2382  case X86::COND_NP: return X86::COND_P;
2383  case X86::COND_O:  return X86::COND_NO;
2384  case X86::COND_NO: return X86::COND_O;
2385  }
2386}
2387
2388/// getSwappedCondition - assume the flags are set by MI(a,b), return
2389/// the condition code if we modify the instructions such that flags are
2390/// set by MI(b,a).
2391static X86::CondCode getSwappedCondition(X86::CondCode CC) {
2392  switch (CC) {
2393  default: return X86::COND_INVALID;
2394  case X86::COND_E:  return X86::COND_E;
2395  case X86::COND_NE: return X86::COND_NE;
2396  case X86::COND_L:  return X86::COND_G;
2397  case X86::COND_LE: return X86::COND_GE;
2398  case X86::COND_G:  return X86::COND_L;
2399  case X86::COND_GE: return X86::COND_LE;
2400  case X86::COND_B:  return X86::COND_A;
2401  case X86::COND_BE: return X86::COND_AE;
2402  case X86::COND_A:  return X86::COND_B;
2403  case X86::COND_AE: return X86::COND_BE;
2404  }
2405}
2406
2407/// getSETFromCond - Return a set opcode for the given condition and
2408/// whether it has memory operand.
2409static unsigned getSETFromCond(X86::CondCode CC,
2410                               bool HasMemoryOperand) {
2411  static const unsigned Opc[16][2] = {
2412    { X86::SETAr,  X86::SETAm  },
2413    { X86::SETAEr, X86::SETAEm },
2414    { X86::SETBr,  X86::SETBm  },
2415    { X86::SETBEr, X86::SETBEm },
2416    { X86::SETEr,  X86::SETEm  },
2417    { X86::SETGr,  X86::SETGm  },
2418    { X86::SETGEr, X86::SETGEm },
2419    { X86::SETLr,  X86::SETLm  },
2420    { X86::SETLEr, X86::SETLEm },
2421    { X86::SETNEr, X86::SETNEm },
2422    { X86::SETNOr, X86::SETNOm },
2423    { X86::SETNPr, X86::SETNPm },
2424    { X86::SETNSr, X86::SETNSm },
2425    { X86::SETOr,  X86::SETOm  },
2426    { X86::SETPr,  X86::SETPm  },
2427    { X86::SETSr,  X86::SETSm  }
2428  };
2429
2430  assert(CC < 16 && "Can only handle standard cond codes");
2431  return Opc[CC][HasMemoryOperand ? 1 : 0];
2432}
2433
2434/// getCMovFromCond - Return a cmov opcode for the given condition,
2435/// register size in bytes, and operand type.
2436static unsigned getCMovFromCond(X86::CondCode CC, unsigned RegBytes,
2437                                bool HasMemoryOperand) {
2438  static const unsigned Opc[32][3] = {
2439    { X86::CMOVA16rr,  X86::CMOVA32rr,  X86::CMOVA64rr  },
2440    { X86::CMOVAE16rr, X86::CMOVAE32rr, X86::CMOVAE64rr },
2441    { X86::CMOVB16rr,  X86::CMOVB32rr,  X86::CMOVB64rr  },
2442    { X86::CMOVBE16rr, X86::CMOVBE32rr, X86::CMOVBE64rr },
2443    { X86::CMOVE16rr,  X86::CMOVE32rr,  X86::CMOVE64rr  },
2444    { X86::CMOVG16rr,  X86::CMOVG32rr,  X86::CMOVG64rr  },
2445    { X86::CMOVGE16rr, X86::CMOVGE32rr, X86::CMOVGE64rr },
2446    { X86::CMOVL16rr,  X86::CMOVL32rr,  X86::CMOVL64rr  },
2447    { X86::CMOVLE16rr, X86::CMOVLE32rr, X86::CMOVLE64rr },
2448    { X86::CMOVNE16rr, X86::CMOVNE32rr, X86::CMOVNE64rr },
2449    { X86::CMOVNO16rr, X86::CMOVNO32rr, X86::CMOVNO64rr },
2450    { X86::CMOVNP16rr, X86::CMOVNP32rr, X86::CMOVNP64rr },
2451    { X86::CMOVNS16rr, X86::CMOVNS32rr, X86::CMOVNS64rr },
2452    { X86::CMOVO16rr,  X86::CMOVO32rr,  X86::CMOVO64rr  },
2453    { X86::CMOVP16rr,  X86::CMOVP32rr,  X86::CMOVP64rr  },
2454    { X86::CMOVS16rr,  X86::CMOVS32rr,  X86::CMOVS64rr  },
2455    { X86::CMOVA16rm,  X86::CMOVA32rm,  X86::CMOVA64rm  },
2456    { X86::CMOVAE16rm, X86::CMOVAE32rm, X86::CMOVAE64rm },
2457    { X86::CMOVB16rm,  X86::CMOVB32rm,  X86::CMOVB64rm  },
2458    { X86::CMOVBE16rm, X86::CMOVBE32rm, X86::CMOVBE64rm },
2459    { X86::CMOVE16rm,  X86::CMOVE32rm,  X86::CMOVE64rm  },
2460    { X86::CMOVG16rm,  X86::CMOVG32rm,  X86::CMOVG64rm  },
2461    { X86::CMOVGE16rm, X86::CMOVGE32rm, X86::CMOVGE64rm },
2462    { X86::CMOVL16rm,  X86::CMOVL32rm,  X86::CMOVL64rm  },
2463    { X86::CMOVLE16rm, X86::CMOVLE32rm, X86::CMOVLE64rm },
2464    { X86::CMOVNE16rm, X86::CMOVNE32rm, X86::CMOVNE64rm },
2465    { X86::CMOVNO16rm, X86::CMOVNO32rm, X86::CMOVNO64rm },
2466    { X86::CMOVNP16rm, X86::CMOVNP32rm, X86::CMOVNP64rm },
2467    { X86::CMOVNS16rm, X86::CMOVNS32rm, X86::CMOVNS64rm },
2468    { X86::CMOVO16rm,  X86::CMOVO32rm,  X86::CMOVO64rm  },
2469    { X86::CMOVP16rm,  X86::CMOVP32rm,  X86::CMOVP64rm  },
2470    { X86::CMOVS16rm,  X86::CMOVS32rm,  X86::CMOVS64rm  }
2471  };
2472
2473  assert(CC < 16 && "Can only handle standard cond codes");
2474  unsigned Idx = HasMemoryOperand ? 16+CC : CC;
2475  switch(RegBytes) {
2476  default: llvm_unreachable("Illegal register size!");
2477  case 2: return Opc[Idx][0];
2478  case 4: return Opc[Idx][1];
2479  case 8: return Opc[Idx][2];
2480  }
2481}
2482
2483bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
2484  if (!MI->isTerminator()) return false;
2485
2486  // Conditional branch is a special case.
2487  if (MI->isBranch() && !MI->isBarrier())
2488    return true;
2489  if (!MI->isPredicable())
2490    return true;
2491  return !isPredicated(MI);
2492}
2493
2494bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
2495                                 MachineBasicBlock *&TBB,
2496                                 MachineBasicBlock *&FBB,
2497                                 SmallVectorImpl<MachineOperand> &Cond,
2498                                 bool AllowModify) const {
2499  // Start from the bottom of the block and work up, examining the
2500  // terminator instructions.
2501  MachineBasicBlock::iterator I = MBB.end();
2502  MachineBasicBlock::iterator UnCondBrIter = MBB.end();
2503  while (I != MBB.begin()) {
2504    --I;
2505    if (I->isDebugValue())
2506      continue;
2507
2508    // Working from the bottom, when we see a non-terminator instruction, we're
2509    // done.
2510    if (!isUnpredicatedTerminator(I))
2511      break;
2512
2513    // A terminator that isn't a branch can't easily be handled by this
2514    // analysis.
2515    if (!I->isBranch())
2516      return true;
2517
2518    // Handle unconditional branches.
2519    if (I->getOpcode() == X86::JMP_4) {
2520      UnCondBrIter = I;
2521
2522      if (!AllowModify) {
2523        TBB = I->getOperand(0).getMBB();
2524        continue;
2525      }
2526
2527      // If the block has any instructions after a JMP, delete them.
2528      while (llvm::next(I) != MBB.end())
2529        llvm::next(I)->eraseFromParent();
2530
2531      Cond.clear();
2532      FBB = 0;
2533
2534      // Delete the JMP if it's equivalent to a fall-through.
2535      if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
2536        TBB = 0;
2537        I->eraseFromParent();
2538        I = MBB.end();
2539        UnCondBrIter = MBB.end();
2540        continue;
2541      }
2542
2543      // TBB is used to indicate the unconditional destination.
2544      TBB = I->getOperand(0).getMBB();
2545      continue;
2546    }
2547
2548    // Handle conditional branches.
2549    X86::CondCode BranchCode = getCondFromBranchOpc(I->getOpcode());
2550    if (BranchCode == X86::COND_INVALID)
2551      return true;  // Can't handle indirect branch.
2552
2553    // Working from the bottom, handle the first conditional branch.
2554    if (Cond.empty()) {
2555      MachineBasicBlock *TargetBB = I->getOperand(0).getMBB();
2556      if (AllowModify && UnCondBrIter != MBB.end() &&
2557          MBB.isLayoutSuccessor(TargetBB)) {
2558        // If we can modify the code and it ends in something like:
2559        //
2560        //     jCC L1
2561        //     jmp L2
2562        //   L1:
2563        //     ...
2564        //   L2:
2565        //
2566        // Then we can change this to:
2567        //
2568        //     jnCC L2
2569        //   L1:
2570        //     ...
2571        //   L2:
2572        //
2573        // Which is a bit more efficient.
2574        // We conditionally jump to the fall-through block.
2575        BranchCode = GetOppositeBranchCondition(BranchCode);
2576        unsigned JNCC = GetCondBranchFromCond(BranchCode);
2577        MachineBasicBlock::iterator OldInst = I;
2578
2579        BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(JNCC))
2580          .addMBB(UnCondBrIter->getOperand(0).getMBB());
2581        BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JMP_4))
2582          .addMBB(TargetBB);
2583
2584        OldInst->eraseFromParent();
2585        UnCondBrIter->eraseFromParent();
2586
2587        // Restart the analysis.
2588        UnCondBrIter = MBB.end();
2589        I = MBB.end();
2590        continue;
2591      }
2592
2593      FBB = TBB;
2594      TBB = I->getOperand(0).getMBB();
2595      Cond.push_back(MachineOperand::CreateImm(BranchCode));
2596      continue;
2597    }
2598
2599    // Handle subsequent conditional branches. Only handle the case where all
2600    // conditional branches branch to the same destination and their condition
2601    // opcodes fit one of the special multi-branch idioms.
2602    assert(Cond.size() == 1);
2603    assert(TBB);
2604
2605    // Only handle the case where all conditional branches branch to the same
2606    // destination.
2607    if (TBB != I->getOperand(0).getMBB())
2608      return true;
2609
2610    // If the conditions are the same, we can leave them alone.
2611    X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
2612    if (OldBranchCode == BranchCode)
2613      continue;
2614
2615    // If they differ, see if they fit one of the known patterns. Theoretically,
2616    // we could handle more patterns here, but we shouldn't expect to see them
2617    // if instruction selection has done a reasonable job.
2618    if ((OldBranchCode == X86::COND_NP &&
2619         BranchCode == X86::COND_E) ||
2620        (OldBranchCode == X86::COND_E &&
2621         BranchCode == X86::COND_NP))
2622      BranchCode = X86::COND_NP_OR_E;
2623    else if ((OldBranchCode == X86::COND_P &&
2624              BranchCode == X86::COND_NE) ||
2625             (OldBranchCode == X86::COND_NE &&
2626              BranchCode == X86::COND_P))
2627      BranchCode = X86::COND_NE_OR_P;
2628    else
2629      return true;
2630
2631    // Update the MachineOperand.
2632    Cond[0].setImm(BranchCode);
2633  }
2634
2635  return false;
2636}
2637
2638unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
2639  MachineBasicBlock::iterator I = MBB.end();
2640  unsigned Count = 0;
2641
2642  while (I != MBB.begin()) {
2643    --I;
2644    if (I->isDebugValue())
2645      continue;
2646    if (I->getOpcode() != X86::JMP_4 &&
2647        getCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
2648      break;
2649    // Remove the branch.
2650    I->eraseFromParent();
2651    I = MBB.end();
2652    ++Count;
2653  }
2654
2655  return Count;
2656}
2657
2658unsigned
2659X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
2660                           MachineBasicBlock *FBB,
2661                           const SmallVectorImpl<MachineOperand> &Cond,
2662                           DebugLoc DL) const {
2663  // Shouldn't be a fall through.
2664  assert(TBB && "InsertBranch must not be told to insert a fallthrough");
2665  assert((Cond.size() == 1 || Cond.size() == 0) &&
2666         "X86 branch conditions have one component!");
2667
2668  if (Cond.empty()) {
2669    // Unconditional branch?
2670    assert(!FBB && "Unconditional branch with multiple successors!");
2671    BuildMI(&MBB, DL, get(X86::JMP_4)).addMBB(TBB);
2672    return 1;
2673  }
2674
2675  // Conditional branch.
2676  unsigned Count = 0;
2677  X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
2678  switch (CC) {
2679  case X86::COND_NP_OR_E:
2680    // Synthesize NP_OR_E with two branches.
2681    BuildMI(&MBB, DL, get(X86::JNP_4)).addMBB(TBB);
2682    ++Count;
2683    BuildMI(&MBB, DL, get(X86::JE_4)).addMBB(TBB);
2684    ++Count;
2685    break;
2686  case X86::COND_NE_OR_P:
2687    // Synthesize NE_OR_P with two branches.
2688    BuildMI(&MBB, DL, get(X86::JNE_4)).addMBB(TBB);
2689    ++Count;
2690    BuildMI(&MBB, DL, get(X86::JP_4)).addMBB(TBB);
2691    ++Count;
2692    break;
2693  default: {
2694    unsigned Opc = GetCondBranchFromCond(CC);
2695    BuildMI(&MBB, DL, get(Opc)).addMBB(TBB);
2696    ++Count;
2697  }
2698  }
2699  if (FBB) {
2700    // Two-way Conditional branch. Insert the second branch.
2701    BuildMI(&MBB, DL, get(X86::JMP_4)).addMBB(FBB);
2702    ++Count;
2703  }
2704  return Count;
2705}
2706
2707bool X86InstrInfo::
2708canInsertSelect(const MachineBasicBlock &MBB,
2709                const SmallVectorImpl<MachineOperand> &Cond,
2710                unsigned TrueReg, unsigned FalseReg,
2711                int &CondCycles, int &TrueCycles, int &FalseCycles) const {
2712  // Not all subtargets have cmov instructions.
2713  if (!TM.getSubtarget<X86Subtarget>().hasCMov())
2714    return false;
2715  if (Cond.size() != 1)
2716    return false;
2717  // We cannot do the composite conditions, at least not in SSA form.
2718  if ((X86::CondCode)Cond[0].getImm() > X86::COND_S)
2719    return false;
2720
2721  // Check register classes.
2722  const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
2723  const TargetRegisterClass *RC =
2724    RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
2725  if (!RC)
2726    return false;
2727
2728  // We have cmov instructions for 16, 32, and 64 bit general purpose registers.
2729  if (X86::GR16RegClass.hasSubClassEq(RC) ||
2730      X86::GR32RegClass.hasSubClassEq(RC) ||
2731      X86::GR64RegClass.hasSubClassEq(RC)) {
2732    // This latency applies to Pentium M, Merom, Wolfdale, Nehalem, and Sandy
2733    // Bridge. Probably Ivy Bridge as well.
2734    CondCycles = 2;
2735    TrueCycles = 2;
2736    FalseCycles = 2;
2737    return true;
2738  }
2739
2740  // Can't do vectors.
2741  return false;
2742}
2743
2744void X86InstrInfo::insertSelect(MachineBasicBlock &MBB,
2745                                MachineBasicBlock::iterator I, DebugLoc DL,
2746                                unsigned DstReg,
2747                                const SmallVectorImpl<MachineOperand> &Cond,
2748                                unsigned TrueReg, unsigned FalseReg) const {
2749   MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
2750   assert(Cond.size() == 1 && "Invalid Cond array");
2751   unsigned Opc = getCMovFromCond((X86::CondCode)Cond[0].getImm(),
2752                                  MRI.getRegClass(DstReg)->getSize(),
2753                                  false/*HasMemoryOperand*/);
2754   BuildMI(MBB, I, DL, get(Opc), DstReg).addReg(FalseReg).addReg(TrueReg);
2755}
2756
2757/// isHReg - Test if the given register is a physical h register.
2758static bool isHReg(unsigned Reg) {
2759  return X86::GR8_ABCD_HRegClass.contains(Reg);
2760}
2761
2762// Try and copy between VR128/VR64 and GR64 registers.
2763static unsigned CopyToFromAsymmetricReg(unsigned DestReg, unsigned SrcReg,
2764                                        bool HasAVX) {
2765  // SrcReg(VR128) -> DestReg(GR64)
2766  // SrcReg(VR64)  -> DestReg(GR64)
2767  // SrcReg(GR64)  -> DestReg(VR128)
2768  // SrcReg(GR64)  -> DestReg(VR64)
2769
2770  if (X86::GR64RegClass.contains(DestReg)) {
2771    if (X86::VR128RegClass.contains(SrcReg)) {
2772      // Copy from a VR128 register to a GR64 register.
2773      return HasAVX ? X86::VMOVPQIto64rr : X86::MOVPQIto64rr;
2774    } else if (X86::VR64RegClass.contains(SrcReg)) {
2775      // Copy from a VR64 register to a GR64 register.
2776      return X86::MOVSDto64rr;
2777    }
2778  } else if (X86::GR64RegClass.contains(SrcReg)) {
2779    // Copy from a GR64 register to a VR128 register.
2780    if (X86::VR128RegClass.contains(DestReg))
2781      return HasAVX ? X86::VMOV64toPQIrr : X86::MOV64toPQIrr;
2782    // Copy from a GR64 register to a VR64 register.
2783    else if (X86::VR64RegClass.contains(DestReg))
2784      return X86::MOV64toSDrr;
2785  }
2786
2787  // SrcReg(FR32) -> DestReg(GR32)
2788  // SrcReg(GR32) -> DestReg(FR32)
2789
2790  if (X86::GR32RegClass.contains(DestReg) && X86::FR32RegClass.contains(SrcReg))
2791      // Copy from a FR32 register to a GR32 register.
2792      return HasAVX ? X86::VMOVSS2DIrr : X86::MOVSS2DIrr;
2793
2794  if (X86::FR32RegClass.contains(DestReg) && X86::GR32RegClass.contains(SrcReg))
2795      // Copy from a GR32 register to a FR32 register.
2796      return HasAVX ? X86::VMOVDI2SSrr : X86::MOVDI2SSrr;
2797
2798  return 0;
2799}
2800
2801void X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
2802                               MachineBasicBlock::iterator MI, DebugLoc DL,
2803                               unsigned DestReg, unsigned SrcReg,
2804                               bool KillSrc) const {
2805  // First deal with the normal symmetric copies.
2806  bool HasAVX = TM.getSubtarget<X86Subtarget>().hasAVX();
2807  unsigned Opc = 0;
2808  if (X86::GR64RegClass.contains(DestReg, SrcReg))
2809    Opc = X86::MOV64rr;
2810  else if (X86::GR32RegClass.contains(DestReg, SrcReg))
2811    Opc = X86::MOV32rr;
2812  else if (X86::GR16RegClass.contains(DestReg, SrcReg))
2813    Opc = X86::MOV16rr;
2814  else if (X86::GR8RegClass.contains(DestReg, SrcReg)) {
2815    // Copying to or from a physical H register on x86-64 requires a NOREX
2816    // move.  Otherwise use a normal move.
2817    if ((isHReg(DestReg) || isHReg(SrcReg)) &&
2818        TM.getSubtarget<X86Subtarget>().is64Bit()) {
2819      Opc = X86::MOV8rr_NOREX;
2820      // Both operands must be encodable without an REX prefix.
2821      assert(X86::GR8_NOREXRegClass.contains(SrcReg, DestReg) &&
2822             "8-bit H register can not be copied outside GR8_NOREX");
2823    } else
2824      Opc = X86::MOV8rr;
2825  } else if (X86::VR128RegClass.contains(DestReg, SrcReg))
2826    Opc = HasAVX ? X86::VMOVAPSrr : X86::MOVAPSrr;
2827  else if (X86::VR256RegClass.contains(DestReg, SrcReg))
2828    Opc = X86::VMOVAPSYrr;
2829  else if (X86::VR64RegClass.contains(DestReg, SrcReg))
2830    Opc = X86::MMX_MOVQ64rr;
2831  else
2832    Opc = CopyToFromAsymmetricReg(DestReg, SrcReg, HasAVX);
2833
2834  if (Opc) {
2835    BuildMI(MBB, MI, DL, get(Opc), DestReg)
2836      .addReg(SrcReg, getKillRegState(KillSrc));
2837    return;
2838  }
2839
2840  // Moving EFLAGS to / from another register requires a push and a pop.
2841  if (SrcReg == X86::EFLAGS) {
2842    if (X86::GR64RegClass.contains(DestReg)) {
2843      BuildMI(MBB, MI, DL, get(X86::PUSHF64));
2844      BuildMI(MBB, MI, DL, get(X86::POP64r), DestReg);
2845      return;
2846    } else if (X86::GR32RegClass.contains(DestReg)) {
2847      BuildMI(MBB, MI, DL, get(X86::PUSHF32));
2848      BuildMI(MBB, MI, DL, get(X86::POP32r), DestReg);
2849      return;
2850    }
2851  }
2852  if (DestReg == X86::EFLAGS) {
2853    if (X86::GR64RegClass.contains(SrcReg)) {
2854      BuildMI(MBB, MI, DL, get(X86::PUSH64r))
2855        .addReg(SrcReg, getKillRegState(KillSrc));
2856      BuildMI(MBB, MI, DL, get(X86::POPF64));
2857      return;
2858    } else if (X86::GR32RegClass.contains(SrcReg)) {
2859      BuildMI(MBB, MI, DL, get(X86::PUSH32r))
2860        .addReg(SrcReg, getKillRegState(KillSrc));
2861      BuildMI(MBB, MI, DL, get(X86::POPF32));
2862      return;
2863    }
2864  }
2865
2866  DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg)
2867               << " to " << RI.getName(DestReg) << '\n');
2868  llvm_unreachable("Cannot emit physreg copy instruction");
2869}
2870
2871static unsigned getLoadStoreRegOpcode(unsigned Reg,
2872                                      const TargetRegisterClass *RC,
2873                                      bool isStackAligned,
2874                                      const TargetMachine &TM,
2875                                      bool load) {
2876  bool HasAVX = TM.getSubtarget<X86Subtarget>().hasAVX();
2877  switch (RC->getSize()) {
2878  default:
2879    llvm_unreachable("Unknown spill size");
2880  case 1:
2881    assert(X86::GR8RegClass.hasSubClassEq(RC) && "Unknown 1-byte regclass");
2882    if (TM.getSubtarget<X86Subtarget>().is64Bit())
2883      // Copying to or from a physical H register on x86-64 requires a NOREX
2884      // move.  Otherwise use a normal move.
2885      if (isHReg(Reg) || X86::GR8_ABCD_HRegClass.hasSubClassEq(RC))
2886        return load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX;
2887    return load ? X86::MOV8rm : X86::MOV8mr;
2888  case 2:
2889    assert(X86::GR16RegClass.hasSubClassEq(RC) && "Unknown 2-byte regclass");
2890    return load ? X86::MOV16rm : X86::MOV16mr;
2891  case 4:
2892    if (X86::GR32RegClass.hasSubClassEq(RC))
2893      return load ? X86::MOV32rm : X86::MOV32mr;
2894    if (X86::FR32RegClass.hasSubClassEq(RC))
2895      return load ?
2896        (HasAVX ? X86::VMOVSSrm : X86::MOVSSrm) :
2897        (HasAVX ? X86::VMOVSSmr : X86::MOVSSmr);
2898    if (X86::RFP32RegClass.hasSubClassEq(RC))
2899      return load ? X86::LD_Fp32m : X86::ST_Fp32m;
2900    llvm_unreachable("Unknown 4-byte regclass");
2901  case 8:
2902    if (X86::GR64RegClass.hasSubClassEq(RC))
2903      return load ? X86::MOV64rm : X86::MOV64mr;
2904    if (X86::FR64RegClass.hasSubClassEq(RC))
2905      return load ?
2906        (HasAVX ? X86::VMOVSDrm : X86::MOVSDrm) :
2907        (HasAVX ? X86::VMOVSDmr : X86::MOVSDmr);
2908    if (X86::VR64RegClass.hasSubClassEq(RC))
2909      return load ? X86::MMX_MOVQ64rm : X86::MMX_MOVQ64mr;
2910    if (X86::RFP64RegClass.hasSubClassEq(RC))
2911      return load ? X86::LD_Fp64m : X86::ST_Fp64m;
2912    llvm_unreachable("Unknown 8-byte regclass");
2913  case 10:
2914    assert(X86::RFP80RegClass.hasSubClassEq(RC) && "Unknown 10-byte regclass");
2915    return load ? X86::LD_Fp80m : X86::ST_FpP80m;
2916  case 16: {
2917    assert(X86::VR128RegClass.hasSubClassEq(RC) && "Unknown 16-byte regclass");
2918    // If stack is realigned we can use aligned stores.
2919    if (isStackAligned)
2920      return load ?
2921        (HasAVX ? X86::VMOVAPSrm : X86::MOVAPSrm) :
2922        (HasAVX ? X86::VMOVAPSmr : X86::MOVAPSmr);
2923    else
2924      return load ?
2925        (HasAVX ? X86::VMOVUPSrm : X86::MOVUPSrm) :
2926        (HasAVX ? X86::VMOVUPSmr : X86::MOVUPSmr);
2927  }
2928  case 32:
2929    assert(X86::VR256RegClass.hasSubClassEq(RC) && "Unknown 32-byte regclass");
2930    // If stack is realigned we can use aligned stores.
2931    if (isStackAligned)
2932      return load ? X86::VMOVAPSYrm : X86::VMOVAPSYmr;
2933    else
2934      return load ? X86::VMOVUPSYrm : X86::VMOVUPSYmr;
2935  }
2936}
2937
2938static unsigned getStoreRegOpcode(unsigned SrcReg,
2939                                  const TargetRegisterClass *RC,
2940                                  bool isStackAligned,
2941                                  TargetMachine &TM) {
2942  return getLoadStoreRegOpcode(SrcReg, RC, isStackAligned, TM, false);
2943}
2944
2945
2946static unsigned getLoadRegOpcode(unsigned DestReg,
2947                                 const TargetRegisterClass *RC,
2948                                 bool isStackAligned,
2949                                 const TargetMachine &TM) {
2950  return getLoadStoreRegOpcode(DestReg, RC, isStackAligned, TM, true);
2951}
2952
2953void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
2954                                       MachineBasicBlock::iterator MI,
2955                                       unsigned SrcReg, bool isKill, int FrameIdx,
2956                                       const TargetRegisterClass *RC,
2957                                       const TargetRegisterInfo *TRI) const {
2958  const MachineFunction &MF = *MBB.getParent();
2959  assert(MF.getFrameInfo()->getObjectSize(FrameIdx) >= RC->getSize() &&
2960         "Stack slot too small for store");
2961  unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
2962  bool isAligned = (TM.getFrameLowering()->getStackAlignment() >= Alignment) ||
2963    RI.canRealignStack(MF);
2964  unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM);
2965  DebugLoc DL = MBB.findDebugLoc(MI);
2966  addFrameReference(BuildMI(MBB, MI, DL, get(Opc)), FrameIdx)
2967    .addReg(SrcReg, getKillRegState(isKill));
2968}
2969
2970void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
2971                                  bool isKill,
2972                                  SmallVectorImpl<MachineOperand> &Addr,
2973                                  const TargetRegisterClass *RC,
2974                                  MachineInstr::mmo_iterator MMOBegin,
2975                                  MachineInstr::mmo_iterator MMOEnd,
2976                                  SmallVectorImpl<MachineInstr*> &NewMIs) const {
2977  unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
2978  bool isAligned = MMOBegin != MMOEnd &&
2979                   (*MMOBegin)->getAlignment() >= Alignment;
2980  unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM);
2981  DebugLoc DL;
2982  MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc));
2983  for (unsigned i = 0, e = Addr.size(); i != e; ++i)
2984    MIB.addOperand(Addr[i]);
2985  MIB.addReg(SrcReg, getKillRegState(isKill));
2986  (*MIB).setMemRefs(MMOBegin, MMOEnd);
2987  NewMIs.push_back(MIB);
2988}
2989
2990
2991void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
2992                                        MachineBasicBlock::iterator MI,
2993                                        unsigned DestReg, int FrameIdx,
2994                                        const TargetRegisterClass *RC,
2995                                        const TargetRegisterInfo *TRI) const {
2996  const MachineFunction &MF = *MBB.getParent();
2997  unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
2998  bool isAligned = (TM.getFrameLowering()->getStackAlignment() >= Alignment) ||
2999    RI.canRealignStack(MF);
3000  unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM);
3001  DebugLoc DL = MBB.findDebugLoc(MI);
3002  addFrameReference(BuildMI(MBB, MI, DL, get(Opc), DestReg), FrameIdx);
3003}
3004
3005void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
3006                                 SmallVectorImpl<MachineOperand> &Addr,
3007                                 const TargetRegisterClass *RC,
3008                                 MachineInstr::mmo_iterator MMOBegin,
3009                                 MachineInstr::mmo_iterator MMOEnd,
3010                                 SmallVectorImpl<MachineInstr*> &NewMIs) const {
3011  unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
3012  bool isAligned = MMOBegin != MMOEnd &&
3013                   (*MMOBegin)->getAlignment() >= Alignment;
3014  unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM);
3015  DebugLoc DL;
3016  MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), DestReg);
3017  for (unsigned i = 0, e = Addr.size(); i != e; ++i)
3018    MIB.addOperand(Addr[i]);
3019  (*MIB).setMemRefs(MMOBegin, MMOEnd);
3020  NewMIs.push_back(MIB);
3021}
3022
3023bool X86InstrInfo::
3024analyzeCompare(const MachineInstr *MI, unsigned &SrcReg, unsigned &SrcReg2,
3025               int &CmpMask, int &CmpValue) const {
3026  switch (MI->getOpcode()) {
3027  default: break;
3028  case X86::CMP64ri32:
3029  case X86::CMP64ri8:
3030  case X86::CMP32ri:
3031  case X86::CMP32ri8:
3032  case X86::CMP16ri:
3033  case X86::CMP16ri8:
3034  case X86::CMP8ri:
3035    SrcReg = MI->getOperand(0).getReg();
3036    SrcReg2 = 0;
3037    CmpMask = ~0;
3038    CmpValue = MI->getOperand(1).getImm();
3039    return true;
3040  case X86::CMP64rr:
3041  case X86::CMP32rr:
3042  case X86::CMP16rr:
3043  case X86::CMP8rr:
3044    SrcReg = MI->getOperand(0).getReg();
3045    SrcReg2 = MI->getOperand(1).getReg();
3046    CmpMask = ~0;
3047    CmpValue = 0;
3048    return true;
3049  case X86::TEST8rr:
3050  case X86::TEST16rr:
3051  case X86::TEST32rr:
3052  case X86::TEST64rr:
3053    SrcReg = MI->getOperand(0).getReg();
3054    if (MI->getOperand(1).getReg() != SrcReg) return false;
3055    // Compare against zero.
3056    SrcReg2 = 0;
3057    CmpMask = ~0;
3058    CmpValue = 0;
3059    return true;
3060  }
3061  return false;
3062}
3063
3064/// isRedundantFlagInstr - check whether the first instruction, whose only
3065/// purpose is to update flags, can be made redundant.
3066/// CMPrr can be made redundant by SUBrr if the operands are the same.
3067/// This function can be extended later on.
3068/// SrcReg, SrcRegs: register operands for FlagI.
3069/// ImmValue: immediate for FlagI if it takes an immediate.
3070inline static bool isRedundantFlagInstr(MachineInstr *FlagI, unsigned SrcReg,
3071                                        unsigned SrcReg2, int ImmValue,
3072                                        MachineInstr *OI) {
3073  if (((FlagI->getOpcode() == X86::CMP64rr &&
3074        OI->getOpcode() == X86::SUB64rr) ||
3075       (FlagI->getOpcode() == X86::CMP32rr &&
3076        OI->getOpcode() == X86::SUB32rr)||
3077       (FlagI->getOpcode() == X86::CMP16rr &&
3078        OI->getOpcode() == X86::SUB16rr)||
3079       (FlagI->getOpcode() == X86::CMP8rr &&
3080        OI->getOpcode() == X86::SUB8rr)) &&
3081      ((OI->getOperand(1).getReg() == SrcReg &&
3082        OI->getOperand(2).getReg() == SrcReg2) ||
3083       (OI->getOperand(1).getReg() == SrcReg2 &&
3084        OI->getOperand(2).getReg() == SrcReg)))
3085    return true;
3086
3087  if (((FlagI->getOpcode() == X86::CMP64ri32 &&
3088        OI->getOpcode() == X86::SUB64ri32) ||
3089       (FlagI->getOpcode() == X86::CMP64ri8 &&
3090        OI->getOpcode() == X86::SUB64ri8) ||
3091       (FlagI->getOpcode() == X86::CMP32ri &&
3092        OI->getOpcode() == X86::SUB32ri) ||
3093       (FlagI->getOpcode() == X86::CMP32ri8 &&
3094        OI->getOpcode() == X86::SUB32ri8) ||
3095       (FlagI->getOpcode() == X86::CMP16ri &&
3096        OI->getOpcode() == X86::SUB16ri) ||
3097       (FlagI->getOpcode() == X86::CMP16ri8 &&
3098        OI->getOpcode() == X86::SUB16ri8) ||
3099       (FlagI->getOpcode() == X86::CMP8ri &&
3100        OI->getOpcode() == X86::SUB8ri)) &&
3101      OI->getOperand(1).getReg() == SrcReg &&
3102      OI->getOperand(2).getImm() == ImmValue)
3103    return true;
3104  return false;
3105}
3106
3107/// isDefConvertible - check whether the definition can be converted
3108/// to remove a comparison against zero.
3109inline static bool isDefConvertible(MachineInstr *MI) {
3110  switch (MI->getOpcode()) {
3111  default: return false;
3112  case X86::SUB64ri32: case X86::SUB64ri8: case X86::SUB32ri:
3113  case X86::SUB32ri8:  case X86::SUB16ri:  case X86::SUB16ri8:
3114  case X86::SUB8ri:    case X86::SUB64rr:  case X86::SUB32rr:
3115  case X86::SUB16rr:   case X86::SUB8rr:   case X86::SUB64rm:
3116  case X86::SUB32rm:   case X86::SUB16rm:  case X86::SUB8rm:
3117  case X86::ADD64ri32: case X86::ADD64ri8: case X86::ADD32ri:
3118  case X86::ADD32ri8:  case X86::ADD16ri:  case X86::ADD16ri8:
3119  case X86::ADD8ri:    case X86::ADD64rr:  case X86::ADD32rr:
3120  case X86::ADD16rr:   case X86::ADD8rr:   case X86::ADD64rm:
3121  case X86::ADD32rm:   case X86::ADD16rm:  case X86::ADD8rm:
3122  case X86::AND64ri32: case X86::AND64ri8: case X86::AND32ri:
3123  case X86::AND32ri8:  case X86::AND16ri:  case X86::AND16ri8:
3124  case X86::AND8ri:    case X86::AND64rr:  case X86::AND32rr:
3125  case X86::AND16rr:   case X86::AND8rr:   case X86::AND64rm:
3126  case X86::AND32rm:   case X86::AND16rm:  case X86::AND8rm:
3127  case X86::XOR64ri32: case X86::XOR64ri8: case X86::XOR32ri:
3128  case X86::XOR32ri8:  case X86::XOR16ri:  case X86::XOR16ri8:
3129  case X86::XOR8ri:    case X86::XOR64rr:  case X86::XOR32rr:
3130  case X86::XOR16rr:   case X86::XOR8rr:   case X86::XOR64rm:
3131  case X86::XOR32rm:   case X86::XOR16rm:  case X86::XOR8rm:
3132  case X86::OR64ri32:  case X86::OR64ri8:  case X86::OR32ri:
3133  case X86::OR32ri8:   case X86::OR16ri:   case X86::OR16ri8:
3134  case X86::OR8ri:     case X86::OR64rr:   case X86::OR32rr:
3135  case X86::OR16rr:    case X86::OR8rr:    case X86::OR64rm:
3136  case X86::OR32rm:    case X86::OR16rm:   case X86::OR8rm:
3137    return true;
3138  }
3139}
3140
3141/// optimizeCompareInstr - Check if there exists an earlier instruction that
3142/// operates on the same source operands and sets flags in the same way as
3143/// Compare; remove Compare if possible.
3144bool X86InstrInfo::
3145optimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg, unsigned SrcReg2,
3146                     int CmpMask, int CmpValue,
3147                     const MachineRegisterInfo *MRI) const {
3148  // Get the unique definition of SrcReg.
3149  MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
3150  if (!MI) return false;
3151
3152  // CmpInstr is the first instruction of the BB.
3153  MachineBasicBlock::iterator I = CmpInstr, Def = MI;
3154
3155  // If we are comparing against zero, check whether we can use MI to update
3156  // EFLAGS. If MI is not in the same BB as CmpInstr, do not optimize.
3157  bool IsCmpZero = (SrcReg2 == 0 && CmpValue == 0);
3158  if (IsCmpZero && (MI->getParent() != CmpInstr->getParent() ||
3159      !isDefConvertible(MI)))
3160    return false;
3161
3162  // We are searching for an earlier instruction that can make CmpInstr
3163  // redundant and that instruction will be saved in Sub.
3164  MachineInstr *Sub = NULL;
3165  const TargetRegisterInfo *TRI = &getRegisterInfo();
3166
3167  // We iterate backward, starting from the instruction before CmpInstr and
3168  // stop when reaching the definition of a source register or done with the BB.
3169  // RI points to the instruction before CmpInstr.
3170  // If the definition is in this basic block, RE points to the definition;
3171  // otherwise, RE is the rend of the basic block.
3172  MachineBasicBlock::reverse_iterator
3173      RI = MachineBasicBlock::reverse_iterator(I),
3174      RE = CmpInstr->getParent() == MI->getParent() ?
3175           MachineBasicBlock::reverse_iterator(++Def) /* points to MI */ :
3176           CmpInstr->getParent()->rend();
3177  MachineInstr *Movr0Inst = 0;
3178  for (; RI != RE; ++RI) {
3179    MachineInstr *Instr = &*RI;
3180    // Check whether CmpInstr can be made redundant by the current instruction.
3181    if (!IsCmpZero &&
3182        isRedundantFlagInstr(CmpInstr, SrcReg, SrcReg2, CmpValue, Instr)) {
3183      Sub = Instr;
3184      break;
3185    }
3186
3187    if (Instr->modifiesRegister(X86::EFLAGS, TRI) ||
3188        Instr->readsRegister(X86::EFLAGS, TRI)) {
3189      // This instruction modifies or uses EFLAGS.
3190
3191      // MOV32r0 etc. are implemented with xor which clobbers condition code.
3192      // They are safe to move up, if the definition to EFLAGS is dead and
3193      // earlier instructions do not read or write EFLAGS.
3194      if (!Movr0Inst && (Instr->getOpcode() == X86::MOV8r0 ||
3195           Instr->getOpcode() == X86::MOV16r0 ||
3196           Instr->getOpcode() == X86::MOV32r0 ||
3197           Instr->getOpcode() == X86::MOV64r0) &&
3198          Instr->registerDefIsDead(X86::EFLAGS, TRI)) {
3199        Movr0Inst = Instr;
3200        continue;
3201      }
3202
3203      // We can't remove CmpInstr.
3204      return false;
3205    }
3206  }
3207
3208  // Return false if no candidates exist.
3209  if (!IsCmpZero && !Sub)
3210    return false;
3211
3212  bool IsSwapped = (SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
3213                    Sub->getOperand(2).getReg() == SrcReg);
3214
3215  // Scan forward from the instruction after CmpInstr for uses of EFLAGS.
3216  // It is safe to remove CmpInstr if EFLAGS is redefined or killed.
3217  // If we are done with the basic block, we need to check whether EFLAGS is
3218  // live-out.
3219  bool IsSafe = false;
3220  SmallVector<std::pair<MachineInstr*, unsigned /*NewOpc*/>, 4> OpsToUpdate;
3221  MachineBasicBlock::iterator E = CmpInstr->getParent()->end();
3222  for (++I; I != E; ++I) {
3223    const MachineInstr &Instr = *I;
3224    bool ModifyEFLAGS = Instr.modifiesRegister(X86::EFLAGS, TRI);
3225    bool UseEFLAGS = Instr.readsRegister(X86::EFLAGS, TRI);
3226    // We should check the usage if this instruction uses and updates EFLAGS.
3227    if (!UseEFLAGS && ModifyEFLAGS) {
3228      // It is safe to remove CmpInstr if EFLAGS is updated again.
3229      IsSafe = true;
3230      break;
3231    }
3232    if (!UseEFLAGS && !ModifyEFLAGS)
3233      continue;
3234
3235    // EFLAGS is used by this instruction.
3236    X86::CondCode OldCC;
3237    bool OpcIsSET = false;
3238    if (IsCmpZero || IsSwapped) {
3239      // We decode the condition code from opcode.
3240      if (Instr.isBranch())
3241        OldCC = getCondFromBranchOpc(Instr.getOpcode());
3242      else {
3243        OldCC = getCondFromSETOpc(Instr.getOpcode());
3244        if (OldCC != X86::COND_INVALID)
3245          OpcIsSET = true;
3246        else
3247          OldCC = getCondFromCMovOpc(Instr.getOpcode());
3248      }
3249      if (OldCC == X86::COND_INVALID) return false;
3250    }
3251    if (IsCmpZero) {
3252      switch (OldCC) {
3253      default: break;
3254      case X86::COND_A: case X86::COND_AE:
3255      case X86::COND_B: case X86::COND_BE:
3256      case X86::COND_G: case X86::COND_GE:
3257      case X86::COND_L: case X86::COND_LE:
3258      case X86::COND_O: case X86::COND_NO:
3259        // CF and OF are used, we can't perform this optimization.
3260        return false;
3261      }
3262    } else if (IsSwapped) {
3263      // If we have SUB(r1, r2) and CMP(r2, r1), the condition code needs
3264      // to be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
3265      // We swap the condition code and synthesize the new opcode.
3266      X86::CondCode NewCC = getSwappedCondition(OldCC);
3267      if (NewCC == X86::COND_INVALID) return false;
3268
3269      // Synthesize the new opcode.
3270      bool HasMemoryOperand = Instr.hasOneMemOperand();
3271      unsigned NewOpc;
3272      if (Instr.isBranch())
3273        NewOpc = GetCondBranchFromCond(NewCC);
3274      else if(OpcIsSET)
3275        NewOpc = getSETFromCond(NewCC, HasMemoryOperand);
3276      else {
3277        unsigned DstReg = Instr.getOperand(0).getReg();
3278        NewOpc = getCMovFromCond(NewCC, MRI->getRegClass(DstReg)->getSize(),
3279                                 HasMemoryOperand);
3280      }
3281
3282      // Push the MachineInstr to OpsToUpdate.
3283      // If it is safe to remove CmpInstr, the condition code of these
3284      // instructions will be modified.
3285      OpsToUpdate.push_back(std::make_pair(&*I, NewOpc));
3286    }
3287    if (ModifyEFLAGS || Instr.killsRegister(X86::EFLAGS, TRI)) {
3288      // It is safe to remove CmpInstr if EFLAGS is updated again or killed.
3289      IsSafe = true;
3290      break;
3291    }
3292  }
3293
3294  // If EFLAGS is not killed nor re-defined, we should check whether it is
3295  // live-out. If it is live-out, do not optimize.
3296  if ((IsCmpZero || IsSwapped) && !IsSafe) {
3297    MachineBasicBlock *MBB = CmpInstr->getParent();
3298    for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
3299             SE = MBB->succ_end(); SI != SE; ++SI)
3300      if ((*SI)->isLiveIn(X86::EFLAGS))
3301        return false;
3302  }
3303
3304  // The instruction to be updated is either Sub or MI.
3305  Sub = IsCmpZero ? MI : Sub;
3306  // Move Movr0Inst to the place right before Sub.
3307  if (Movr0Inst) {
3308    Sub->getParent()->remove(Movr0Inst);
3309    Sub->getParent()->insert(MachineBasicBlock::iterator(Sub), Movr0Inst);
3310  }
3311
3312  // Make sure Sub instruction defines EFLAGS.
3313  assert(Sub->getNumOperands() >= 2 &&
3314         Sub->getOperand(Sub->getNumOperands()-1).isReg() &&
3315         Sub->getOperand(Sub->getNumOperands()-1).getReg() == X86::EFLAGS &&
3316         "EFLAGS should be the last operand of SUB, ADD, OR, XOR, AND");
3317  Sub->getOperand(Sub->getNumOperands()-1).setIsDef(true);
3318  CmpInstr->eraseFromParent();
3319
3320  // Modify the condition code of instructions in OpsToUpdate.
3321  for (unsigned i = 0, e = OpsToUpdate.size(); i < e; i++)
3322    OpsToUpdate[i].first->setDesc(get(OpsToUpdate[i].second));
3323  return true;
3324}
3325
3326/// Expand2AddrUndef - Expand a single-def pseudo instruction to a two-addr
3327/// instruction with two undef reads of the register being defined.  This is
3328/// used for mapping:
3329///   %xmm4 = V_SET0
3330/// to:
3331///   %xmm4 = PXORrr %xmm4<undef>, %xmm4<undef>
3332///
3333static bool Expand2AddrUndef(MachineInstr *MI, const MCInstrDesc &Desc) {
3334  assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction.");
3335  unsigned Reg = MI->getOperand(0).getReg();
3336  MI->setDesc(Desc);
3337
3338  // MachineInstr::addOperand() will insert explicit operands before any
3339  // implicit operands.
3340  MachineInstrBuilder(MI).addReg(Reg, RegState::Undef)
3341                         .addReg(Reg, RegState::Undef);
3342  // But we don't trust that.
3343  assert(MI->getOperand(1).getReg() == Reg &&
3344         MI->getOperand(2).getReg() == Reg && "Misplaced operand");
3345  return true;
3346}
3347
3348bool X86InstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
3349  bool HasAVX = TM.getSubtarget<X86Subtarget>().hasAVX();
3350  switch (MI->getOpcode()) {
3351  case X86::V_SET0:
3352  case X86::FsFLD0SS:
3353  case X86::FsFLD0SD:
3354    return Expand2AddrUndef(MI, get(HasAVX ? X86::VXORPSrr : X86::XORPSrr));
3355  case X86::TEST8ri_NOREX:
3356    MI->setDesc(get(X86::TEST8ri));
3357    return true;
3358  }
3359  return false;
3360}
3361
3362MachineInstr*
3363X86InstrInfo::emitFrameIndexDebugValue(MachineFunction &MF,
3364                                       int FrameIx, uint64_t Offset,
3365                                       const MDNode *MDPtr,
3366                                       DebugLoc DL) const {
3367  X86AddressMode AM;
3368  AM.BaseType = X86AddressMode::FrameIndexBase;
3369  AM.Base.FrameIndex = FrameIx;
3370  MachineInstrBuilder MIB = BuildMI(MF, DL, get(X86::DBG_VALUE));
3371  addFullAddress(MIB, AM).addImm(Offset).addMetadata(MDPtr);
3372  return &*MIB;
3373}
3374
3375static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
3376                                     const SmallVectorImpl<MachineOperand> &MOs,
3377                                     MachineInstr *MI,
3378                                     const TargetInstrInfo &TII) {
3379  // Create the base instruction with the memory operand as the first part.
3380  MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
3381                                              MI->getDebugLoc(), true);
3382  MachineInstrBuilder MIB(NewMI);
3383  unsigned NumAddrOps = MOs.size();
3384  for (unsigned i = 0; i != NumAddrOps; ++i)
3385    MIB.addOperand(MOs[i]);
3386  if (NumAddrOps < 4)  // FrameIndex only
3387    addOffset(MIB, 0);
3388
3389  // Loop over the rest of the ri operands, converting them over.
3390  unsigned NumOps = MI->getDesc().getNumOperands()-2;
3391  for (unsigned i = 0; i != NumOps; ++i) {
3392    MachineOperand &MO = MI->getOperand(i+2);
3393    MIB.addOperand(MO);
3394  }
3395  for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) {
3396    MachineOperand &MO = MI->getOperand(i);
3397    MIB.addOperand(MO);
3398  }
3399  return MIB;
3400}
3401
3402static MachineInstr *FuseInst(MachineFunction &MF,
3403                              unsigned Opcode, unsigned OpNo,
3404                              const SmallVectorImpl<MachineOperand> &MOs,
3405                              MachineInstr *MI, const TargetInstrInfo &TII) {
3406  MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
3407                                              MI->getDebugLoc(), true);
3408  MachineInstrBuilder MIB(NewMI);
3409
3410  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
3411    MachineOperand &MO = MI->getOperand(i);
3412    if (i == OpNo) {
3413      assert(MO.isReg() && "Expected to fold into reg operand!");
3414      unsigned NumAddrOps = MOs.size();
3415      for (unsigned i = 0; i != NumAddrOps; ++i)
3416        MIB.addOperand(MOs[i]);
3417      if (NumAddrOps < 4)  // FrameIndex only
3418        addOffset(MIB, 0);
3419    } else {
3420      MIB.addOperand(MO);
3421    }
3422  }
3423  return MIB;
3424}
3425
3426static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
3427                                const SmallVectorImpl<MachineOperand> &MOs,
3428                                MachineInstr *MI) {
3429  MachineFunction &MF = *MI->getParent()->getParent();
3430  MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), TII.get(Opcode));
3431
3432  unsigned NumAddrOps = MOs.size();
3433  for (unsigned i = 0; i != NumAddrOps; ++i)
3434    MIB.addOperand(MOs[i]);
3435  if (NumAddrOps < 4)  // FrameIndex only
3436    addOffset(MIB, 0);
3437  return MIB.addImm(0);
3438}
3439
3440MachineInstr*
3441X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
3442                                    MachineInstr *MI, unsigned i,
3443                                    const SmallVectorImpl<MachineOperand> &MOs,
3444                                    unsigned Size, unsigned Align) const {
3445  const DenseMap<unsigned, std::pair<unsigned,unsigned> > *OpcodeTablePtr = 0;
3446  bool isTwoAddrFold = false;
3447  unsigned NumOps = MI->getDesc().getNumOperands();
3448  bool isTwoAddr = NumOps > 1 &&
3449    MI->getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1;
3450
3451  // FIXME: AsmPrinter doesn't know how to handle
3452  // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
3453  if (MI->getOpcode() == X86::ADD32ri &&
3454      MI->getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS)
3455    return NULL;
3456
3457  MachineInstr *NewMI = NULL;
3458  // Folding a memory location into the two-address part of a two-address
3459  // instruction is different than folding it other places.  It requires
3460  // replacing the *two* registers with the memory location.
3461  if (isTwoAddr && NumOps >= 2 && i < 2 &&
3462      MI->getOperand(0).isReg() &&
3463      MI->getOperand(1).isReg() &&
3464      MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
3465    OpcodeTablePtr = &RegOp2MemOpTable2Addr;
3466    isTwoAddrFold = true;
3467  } else if (i == 0) { // If operand 0
3468    if (MI->getOpcode() == X86::MOV64r0)
3469      NewMI = MakeM0Inst(*this, X86::MOV64mi32, MOs, MI);
3470    else if (MI->getOpcode() == X86::MOV32r0)
3471      NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI);
3472    else if (MI->getOpcode() == X86::MOV16r0)
3473      NewMI = MakeM0Inst(*this, X86::MOV16mi, MOs, MI);
3474    else if (MI->getOpcode() == X86::MOV8r0)
3475      NewMI = MakeM0Inst(*this, X86::MOV8mi, MOs, MI);
3476    if (NewMI)
3477      return NewMI;
3478
3479    OpcodeTablePtr = &RegOp2MemOpTable0;
3480  } else if (i == 1) {
3481    OpcodeTablePtr = &RegOp2MemOpTable1;
3482  } else if (i == 2) {
3483    OpcodeTablePtr = &RegOp2MemOpTable2;
3484  }
3485
3486  // If table selected...
3487  if (OpcodeTablePtr) {
3488    // Find the Opcode to fuse
3489    DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
3490      OpcodeTablePtr->find(MI->getOpcode());
3491    if (I != OpcodeTablePtr->end()) {
3492      unsigned Opcode = I->second.first;
3493      unsigned MinAlign = (I->second.second & TB_ALIGN_MASK) >> TB_ALIGN_SHIFT;
3494      if (Align < MinAlign)
3495        return NULL;
3496      bool NarrowToMOV32rm = false;
3497      if (Size) {
3498        unsigned RCSize = getRegClass(MI->getDesc(), i, &RI, MF)->getSize();
3499        if (Size < RCSize) {
3500          // Check if it's safe to fold the load. If the size of the object is
3501          // narrower than the load width, then it's not.
3502          if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4)
3503            return NULL;
3504          // If this is a 64-bit load, but the spill slot is 32, then we can do
3505          // a 32-bit load which is implicitly zero-extended. This likely is due
3506          // to liveintervalanalysis remat'ing a load from stack slot.
3507          if (MI->getOperand(0).getSubReg() || MI->getOperand(1).getSubReg())
3508            return NULL;
3509          Opcode = X86::MOV32rm;
3510          NarrowToMOV32rm = true;
3511        }
3512      }
3513
3514      if (isTwoAddrFold)
3515        NewMI = FuseTwoAddrInst(MF, Opcode, MOs, MI, *this);
3516      else
3517        NewMI = FuseInst(MF, Opcode, i, MOs, MI, *this);
3518
3519      if (NarrowToMOV32rm) {
3520        // If this is the special case where we use a MOV32rm to load a 32-bit
3521        // value and zero-extend the top bits. Change the destination register
3522        // to a 32-bit one.
3523        unsigned DstReg = NewMI->getOperand(0).getReg();
3524        if (TargetRegisterInfo::isPhysicalRegister(DstReg))
3525          NewMI->getOperand(0).setReg(RI.getSubReg(DstReg,
3526                                                   X86::sub_32bit));
3527        else
3528          NewMI->getOperand(0).setSubReg(X86::sub_32bit);
3529      }
3530      return NewMI;
3531    }
3532  }
3533
3534  // No fusion
3535  if (PrintFailedFusing && !MI->isCopy())
3536    dbgs() << "We failed to fuse operand " << i << " in " << *MI;
3537  return NULL;
3538}
3539
3540/// hasPartialRegUpdate - Return true for all instructions that only update
3541/// the first 32 or 64-bits of the destination register and leave the rest
3542/// unmodified. This can be used to avoid folding loads if the instructions
3543/// only update part of the destination register, and the non-updated part is
3544/// not needed. e.g. cvtss2sd, sqrtss. Unfolding the load from these
3545/// instructions breaks the partial register dependency and it can improve
3546/// performance. e.g.:
3547///
3548///   movss (%rdi), %xmm0
3549///   cvtss2sd %xmm0, %xmm0
3550///
3551/// Instead of
3552///   cvtss2sd (%rdi), %xmm0
3553///
3554/// FIXME: This should be turned into a TSFlags.
3555///
3556static bool hasPartialRegUpdate(unsigned Opcode) {
3557  switch (Opcode) {
3558  case X86::CVTSI2SSrr:
3559  case X86::CVTSI2SS64rr:
3560  case X86::CVTSI2SDrr:
3561  case X86::CVTSI2SD64rr:
3562  case X86::CVTSD2SSrr:
3563  case X86::Int_CVTSD2SSrr:
3564  case X86::CVTSS2SDrr:
3565  case X86::Int_CVTSS2SDrr:
3566  case X86::RCPSSr:
3567  case X86::RCPSSr_Int:
3568  case X86::ROUNDSDr:
3569  case X86::ROUNDSDr_Int:
3570  case X86::ROUNDSSr:
3571  case X86::ROUNDSSr_Int:
3572  case X86::RSQRTSSr:
3573  case X86::RSQRTSSr_Int:
3574  case X86::SQRTSSr:
3575  case X86::SQRTSSr_Int:
3576  // AVX encoded versions
3577  case X86::VCVTSD2SSrr:
3578  case X86::Int_VCVTSD2SSrr:
3579  case X86::VCVTSS2SDrr:
3580  case X86::Int_VCVTSS2SDrr:
3581  case X86::VRCPSSr:
3582  case X86::VROUNDSDr:
3583  case X86::VROUNDSDr_Int:
3584  case X86::VROUNDSSr:
3585  case X86::VROUNDSSr_Int:
3586  case X86::VRSQRTSSr:
3587  case X86::VSQRTSSr:
3588    return true;
3589  }
3590
3591  return false;
3592}
3593
3594/// getPartialRegUpdateClearance - Inform the ExeDepsFix pass how many idle
3595/// instructions we would like before a partial register update.
3596unsigned X86InstrInfo::
3597getPartialRegUpdateClearance(const MachineInstr *MI, unsigned OpNum,
3598                             const TargetRegisterInfo *TRI) const {
3599  if (OpNum != 0 || !hasPartialRegUpdate(MI->getOpcode()))
3600    return 0;
3601
3602  // If MI is marked as reading Reg, the partial register update is wanted.
3603  const MachineOperand &MO = MI->getOperand(0);
3604  unsigned Reg = MO.getReg();
3605  if (TargetRegisterInfo::isVirtualRegister(Reg)) {
3606    if (MO.readsReg() || MI->readsVirtualRegister(Reg))
3607      return 0;
3608  } else {
3609    if (MI->readsRegister(Reg, TRI))
3610      return 0;
3611  }
3612
3613  // If any of the preceding 16 instructions are reading Reg, insert a
3614  // dependency breaking instruction.  The magic number is based on a few
3615  // Nehalem experiments.
3616  return 16;
3617}
3618
3619void X86InstrInfo::
3620breakPartialRegDependency(MachineBasicBlock::iterator MI, unsigned OpNum,
3621                          const TargetRegisterInfo *TRI) const {
3622  unsigned Reg = MI->getOperand(OpNum).getReg();
3623  if (X86::VR128RegClass.contains(Reg)) {
3624    // These instructions are all floating point domain, so xorps is the best
3625    // choice.
3626    bool HasAVX = TM.getSubtarget<X86Subtarget>().hasAVX();
3627    unsigned Opc = HasAVX ? X86::VXORPSrr : X86::XORPSrr;
3628    BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), get(Opc), Reg)
3629      .addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
3630  } else if (X86::VR256RegClass.contains(Reg)) {
3631    // Use vxorps to clear the full ymm register.
3632    // It wants to read and write the xmm sub-register.
3633    unsigned XReg = TRI->getSubReg(Reg, X86::sub_xmm);
3634    BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), get(X86::VXORPSrr), XReg)
3635      .addReg(XReg, RegState::Undef).addReg(XReg, RegState::Undef)
3636      .addReg(Reg, RegState::ImplicitDefine);
3637  } else
3638    return;
3639  MI->addRegisterKilled(Reg, TRI, true);
3640}
3641
3642MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
3643                                                  MachineInstr *MI,
3644                                           const SmallVectorImpl<unsigned> &Ops,
3645                                                  int FrameIndex) const {
3646  // Check switch flag
3647  if (NoFusing) return NULL;
3648
3649  // Unless optimizing for size, don't fold to avoid partial
3650  // register update stalls
3651  if (!MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize) &&
3652      hasPartialRegUpdate(MI->getOpcode()))
3653    return 0;
3654
3655  const MachineFrameInfo *MFI = MF.getFrameInfo();
3656  unsigned Size = MFI->getObjectSize(FrameIndex);
3657  unsigned Alignment = MFI->getObjectAlignment(FrameIndex);
3658  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
3659    unsigned NewOpc = 0;
3660    unsigned RCSize = 0;
3661    switch (MI->getOpcode()) {
3662    default: return NULL;
3663    case X86::TEST8rr:  NewOpc = X86::CMP8ri; RCSize = 1; break;
3664    case X86::TEST16rr: NewOpc = X86::CMP16ri8; RCSize = 2; break;
3665    case X86::TEST32rr: NewOpc = X86::CMP32ri8; RCSize = 4; break;
3666    case X86::TEST64rr: NewOpc = X86::CMP64ri8; RCSize = 8; break;
3667    }
3668    // Check if it's safe to fold the load. If the size of the object is
3669    // narrower than the load width, then it's not.
3670    if (Size < RCSize)
3671      return NULL;
3672    // Change to CMPXXri r, 0 first.
3673    MI->setDesc(get(NewOpc));
3674    MI->getOperand(1).ChangeToImmediate(0);
3675  } else if (Ops.size() != 1)
3676    return NULL;
3677
3678  SmallVector<MachineOperand,4> MOs;
3679  MOs.push_back(MachineOperand::CreateFI(FrameIndex));
3680  return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, Size, Alignment);
3681}
3682
3683MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
3684                                                  MachineInstr *MI,
3685                                           const SmallVectorImpl<unsigned> &Ops,
3686                                                  MachineInstr *LoadMI) const {
3687  // Check switch flag
3688  if (NoFusing) return NULL;
3689
3690  // Unless optimizing for size, don't fold to avoid partial
3691  // register update stalls
3692  if (!MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize) &&
3693      hasPartialRegUpdate(MI->getOpcode()))
3694    return 0;
3695
3696  // Determine the alignment of the load.
3697  unsigned Alignment = 0;
3698  if (LoadMI->hasOneMemOperand())
3699    Alignment = (*LoadMI->memoperands_begin())->getAlignment();
3700  else
3701    switch (LoadMI->getOpcode()) {
3702    case X86::AVX_SET0PSY:
3703    case X86::AVX_SET0PDY:
3704    case X86::AVX2_SETALLONES:
3705    case X86::AVX2_SET0:
3706      Alignment = 32;
3707      break;
3708    case X86::V_SET0:
3709    case X86::V_SETALLONES:
3710    case X86::AVX_SETALLONES:
3711      Alignment = 16;
3712      break;
3713    case X86::FsFLD0SD:
3714      Alignment = 8;
3715      break;
3716    case X86::FsFLD0SS:
3717      Alignment = 4;
3718      break;
3719    default:
3720      return 0;
3721    }
3722  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
3723    unsigned NewOpc = 0;
3724    switch (MI->getOpcode()) {
3725    default: return NULL;
3726    case X86::TEST8rr:  NewOpc = X86::CMP8ri; break;
3727    case X86::TEST16rr: NewOpc = X86::CMP16ri8; break;
3728    case X86::TEST32rr: NewOpc = X86::CMP32ri8; break;
3729    case X86::TEST64rr: NewOpc = X86::CMP64ri8; break;
3730    }
3731    // Change to CMPXXri r, 0 first.
3732    MI->setDesc(get(NewOpc));
3733    MI->getOperand(1).ChangeToImmediate(0);
3734  } else if (Ops.size() != 1)
3735    return NULL;
3736
3737  // Make sure the subregisters match.
3738  // Otherwise we risk changing the size of the load.
3739  if (LoadMI->getOperand(0).getSubReg() != MI->getOperand(Ops[0]).getSubReg())
3740    return NULL;
3741
3742  SmallVector<MachineOperand,X86::AddrNumOperands> MOs;
3743  switch (LoadMI->getOpcode()) {
3744  case X86::V_SET0:
3745  case X86::V_SETALLONES:
3746  case X86::AVX_SET0PSY:
3747  case X86::AVX_SET0PDY:
3748  case X86::AVX_SETALLONES:
3749  case X86::AVX2_SETALLONES:
3750  case X86::AVX2_SET0:
3751  case X86::FsFLD0SD:
3752  case X86::FsFLD0SS: {
3753    // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure.
3754    // Create a constant-pool entry and operands to load from it.
3755
3756    // Medium and large mode can't fold loads this way.
3757    if (TM.getCodeModel() != CodeModel::Small &&
3758        TM.getCodeModel() != CodeModel::Kernel)
3759      return NULL;
3760
3761    // x86-32 PIC requires a PIC base register for constant pools.
3762    unsigned PICBase = 0;
3763    if (TM.getRelocationModel() == Reloc::PIC_) {
3764      if (TM.getSubtarget<X86Subtarget>().is64Bit())
3765        PICBase = X86::RIP;
3766      else
3767        // FIXME: PICBase = getGlobalBaseReg(&MF);
3768        // This doesn't work for several reasons.
3769        // 1. GlobalBaseReg may have been spilled.
3770        // 2. It may not be live at MI.
3771        return NULL;
3772    }
3773
3774    // Create a constant-pool entry.
3775    MachineConstantPool &MCP = *MF.getConstantPool();
3776    Type *Ty;
3777    unsigned Opc = LoadMI->getOpcode();
3778    if (Opc == X86::FsFLD0SS)
3779      Ty = Type::getFloatTy(MF.getFunction()->getContext());
3780    else if (Opc == X86::FsFLD0SD)
3781      Ty = Type::getDoubleTy(MF.getFunction()->getContext());
3782    else if (Opc == X86::AVX_SET0PSY || Opc == X86::AVX_SET0PDY)
3783      Ty = VectorType::get(Type::getFloatTy(MF.getFunction()->getContext()), 8);
3784    else if (Opc == X86::AVX2_SETALLONES || Opc == X86::AVX2_SET0)
3785      Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 8);
3786    else
3787      Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 4);
3788
3789    bool IsAllOnes = (Opc == X86::V_SETALLONES || Opc == X86::AVX_SETALLONES ||
3790                      Opc == X86::AVX2_SETALLONES);
3791    const Constant *C = IsAllOnes ? Constant::getAllOnesValue(Ty) :
3792                                    Constant::getNullValue(Ty);
3793    unsigned CPI = MCP.getConstantPoolIndex(C, Alignment);
3794
3795    // Create operands to load from the constant pool entry.
3796    MOs.push_back(MachineOperand::CreateReg(PICBase, false));
3797    MOs.push_back(MachineOperand::CreateImm(1));
3798    MOs.push_back(MachineOperand::CreateReg(0, false));
3799    MOs.push_back(MachineOperand::CreateCPI(CPI, 0));
3800    MOs.push_back(MachineOperand::CreateReg(0, false));
3801    break;
3802  }
3803  default: {
3804    // Folding a normal load. Just copy the load's address operands.
3805    unsigned NumOps = LoadMI->getDesc().getNumOperands();
3806    for (unsigned i = NumOps - X86::AddrNumOperands; i != NumOps; ++i)
3807      MOs.push_back(LoadMI->getOperand(i));
3808    break;
3809  }
3810  }
3811  return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, 0, Alignment);
3812}
3813
3814
3815bool X86InstrInfo::canFoldMemoryOperand(const MachineInstr *MI,
3816                                  const SmallVectorImpl<unsigned> &Ops) const {
3817  // Check switch flag
3818  if (NoFusing) return 0;
3819
3820  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
3821    switch (MI->getOpcode()) {
3822    default: return false;
3823    case X86::TEST8rr:
3824    case X86::TEST16rr:
3825    case X86::TEST32rr:
3826    case X86::TEST64rr:
3827      return true;
3828    case X86::ADD32ri:
3829      // FIXME: AsmPrinter doesn't know how to handle
3830      // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
3831      if (MI->getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS)
3832        return false;
3833      break;
3834    }
3835  }
3836
3837  if (Ops.size() != 1)
3838    return false;
3839
3840  unsigned OpNum = Ops[0];
3841  unsigned Opc = MI->getOpcode();
3842  unsigned NumOps = MI->getDesc().getNumOperands();
3843  bool isTwoAddr = NumOps > 1 &&
3844    MI->getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1;
3845
3846  // Folding a memory location into the two-address part of a two-address
3847  // instruction is different than folding it other places.  It requires
3848  // replacing the *two* registers with the memory location.
3849  const DenseMap<unsigned, std::pair<unsigned,unsigned> > *OpcodeTablePtr = 0;
3850  if (isTwoAddr && NumOps >= 2 && OpNum < 2) {
3851    OpcodeTablePtr = &RegOp2MemOpTable2Addr;
3852  } else if (OpNum == 0) { // If operand 0
3853    switch (Opc) {
3854    case X86::MOV8r0:
3855    case X86::MOV16r0:
3856    case X86::MOV32r0:
3857    case X86::MOV64r0: return true;
3858    default: break;
3859    }
3860    OpcodeTablePtr = &RegOp2MemOpTable0;
3861  } else if (OpNum == 1) {
3862    OpcodeTablePtr = &RegOp2MemOpTable1;
3863  } else if (OpNum == 2) {
3864    OpcodeTablePtr = &RegOp2MemOpTable2;
3865  }
3866
3867  if (OpcodeTablePtr && OpcodeTablePtr->count(Opc))
3868    return true;
3869  return TargetInstrInfoImpl::canFoldMemoryOperand(MI, Ops);
3870}
3871
3872bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
3873                                unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
3874                                SmallVectorImpl<MachineInstr*> &NewMIs) const {
3875  DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
3876    MemOp2RegOpTable.find(MI->getOpcode());
3877  if (I == MemOp2RegOpTable.end())
3878    return false;
3879  unsigned Opc = I->second.first;
3880  unsigned Index = I->second.second & TB_INDEX_MASK;
3881  bool FoldedLoad = I->second.second & TB_FOLDED_LOAD;
3882  bool FoldedStore = I->second.second & TB_FOLDED_STORE;
3883  if (UnfoldLoad && !FoldedLoad)
3884    return false;
3885  UnfoldLoad &= FoldedLoad;
3886  if (UnfoldStore && !FoldedStore)
3887    return false;
3888  UnfoldStore &= FoldedStore;
3889
3890  const MCInstrDesc &MCID = get(Opc);
3891  const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
3892  if (!MI->hasOneMemOperand() &&
3893      RC == &X86::VR128RegClass &&
3894      !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast())
3895    // Without memoperands, loadRegFromAddr and storeRegToStackSlot will
3896    // conservatively assume the address is unaligned. That's bad for
3897    // performance.
3898    return false;
3899  SmallVector<MachineOperand, X86::AddrNumOperands> AddrOps;
3900  SmallVector<MachineOperand,2> BeforeOps;
3901  SmallVector<MachineOperand,2> AfterOps;
3902  SmallVector<MachineOperand,4> ImpOps;
3903  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
3904    MachineOperand &Op = MI->getOperand(i);
3905    if (i >= Index && i < Index + X86::AddrNumOperands)
3906      AddrOps.push_back(Op);
3907    else if (Op.isReg() && Op.isImplicit())
3908      ImpOps.push_back(Op);
3909    else if (i < Index)
3910      BeforeOps.push_back(Op);
3911    else if (i > Index)
3912      AfterOps.push_back(Op);
3913  }
3914
3915  // Emit the load instruction.
3916  if (UnfoldLoad) {
3917    std::pair<MachineInstr::mmo_iterator,
3918              MachineInstr::mmo_iterator> MMOs =
3919      MF.extractLoadMemRefs(MI->memoperands_begin(),
3920                            MI->memoperands_end());
3921    loadRegFromAddr(MF, Reg, AddrOps, RC, MMOs.first, MMOs.second, NewMIs);
3922    if (UnfoldStore) {
3923      // Address operands cannot be marked isKill.
3924      for (unsigned i = 1; i != 1 + X86::AddrNumOperands; ++i) {
3925        MachineOperand &MO = NewMIs[0]->getOperand(i);
3926        if (MO.isReg())
3927          MO.setIsKill(false);
3928      }
3929    }
3930  }
3931
3932  // Emit the data processing instruction.
3933  MachineInstr *DataMI = MF.CreateMachineInstr(MCID, MI->getDebugLoc(), true);
3934  MachineInstrBuilder MIB(DataMI);
3935
3936  if (FoldedStore)
3937    MIB.addReg(Reg, RegState::Define);
3938  for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i)
3939    MIB.addOperand(BeforeOps[i]);
3940  if (FoldedLoad)
3941    MIB.addReg(Reg);
3942  for (unsigned i = 0, e = AfterOps.size(); i != e; ++i)
3943    MIB.addOperand(AfterOps[i]);
3944  for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) {
3945    MachineOperand &MO = ImpOps[i];
3946    MIB.addReg(MO.getReg(),
3947               getDefRegState(MO.isDef()) |
3948               RegState::Implicit |
3949               getKillRegState(MO.isKill()) |
3950               getDeadRegState(MO.isDead()) |
3951               getUndefRegState(MO.isUndef()));
3952  }
3953  // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
3954  unsigned NewOpc = 0;
3955  switch (DataMI->getOpcode()) {
3956  default: break;
3957  case X86::CMP64ri32:
3958  case X86::CMP64ri8:
3959  case X86::CMP32ri:
3960  case X86::CMP32ri8:
3961  case X86::CMP16ri:
3962  case X86::CMP16ri8:
3963  case X86::CMP8ri: {
3964    MachineOperand &MO0 = DataMI->getOperand(0);
3965    MachineOperand &MO1 = DataMI->getOperand(1);
3966    if (MO1.getImm() == 0) {
3967      switch (DataMI->getOpcode()) {
3968      default: break;
3969      case X86::CMP64ri8:
3970      case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
3971      case X86::CMP32ri8:
3972      case X86::CMP32ri:   NewOpc = X86::TEST32rr; break;
3973      case X86::CMP16ri8:
3974      case X86::CMP16ri:   NewOpc = X86::TEST16rr; break;
3975      case X86::CMP8ri:    NewOpc = X86::TEST8rr; break;
3976      }
3977      DataMI->setDesc(get(NewOpc));
3978      MO1.ChangeToRegister(MO0.getReg(), false);
3979    }
3980  }
3981  }
3982  NewMIs.push_back(DataMI);
3983
3984  // Emit the store instruction.
3985  if (UnfoldStore) {
3986    const TargetRegisterClass *DstRC = getRegClass(MCID, 0, &RI, MF);
3987    std::pair<MachineInstr::mmo_iterator,
3988              MachineInstr::mmo_iterator> MMOs =
3989      MF.extractStoreMemRefs(MI->memoperands_begin(),
3990                             MI->memoperands_end());
3991    storeRegToAddr(MF, Reg, true, AddrOps, DstRC, MMOs.first, MMOs.second, NewMIs);
3992  }
3993
3994  return true;
3995}
3996
3997bool
3998X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
3999                                  SmallVectorImpl<SDNode*> &NewNodes) const {
4000  if (!N->isMachineOpcode())
4001    return false;
4002
4003  DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
4004    MemOp2RegOpTable.find(N->getMachineOpcode());
4005  if (I == MemOp2RegOpTable.end())
4006    return false;
4007  unsigned Opc = I->second.first;
4008  unsigned Index = I->second.second & TB_INDEX_MASK;
4009  bool FoldedLoad = I->second.second & TB_FOLDED_LOAD;
4010  bool FoldedStore = I->second.second & TB_FOLDED_STORE;
4011  const MCInstrDesc &MCID = get(Opc);
4012  MachineFunction &MF = DAG.getMachineFunction();
4013  const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
4014  unsigned NumDefs = MCID.NumDefs;
4015  std::vector<SDValue> AddrOps;
4016  std::vector<SDValue> BeforeOps;
4017  std::vector<SDValue> AfterOps;
4018  DebugLoc dl = N->getDebugLoc();
4019  unsigned NumOps = N->getNumOperands();
4020  for (unsigned i = 0; i != NumOps-1; ++i) {
4021    SDValue Op = N->getOperand(i);
4022    if (i >= Index-NumDefs && i < Index-NumDefs + X86::AddrNumOperands)
4023      AddrOps.push_back(Op);
4024    else if (i < Index-NumDefs)
4025      BeforeOps.push_back(Op);
4026    else if (i > Index-NumDefs)
4027      AfterOps.push_back(Op);
4028  }
4029  SDValue Chain = N->getOperand(NumOps-1);
4030  AddrOps.push_back(Chain);
4031
4032  // Emit the load instruction.
4033  SDNode *Load = 0;
4034  if (FoldedLoad) {
4035    EVT VT = *RC->vt_begin();
4036    std::pair<MachineInstr::mmo_iterator,
4037              MachineInstr::mmo_iterator> MMOs =
4038      MF.extractLoadMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
4039                            cast<MachineSDNode>(N)->memoperands_end());
4040    if (!(*MMOs.first) &&
4041        RC == &X86::VR128RegClass &&
4042        !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast())
4043      // Do not introduce a slow unaligned load.
4044      return false;
4045    unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
4046    bool isAligned = (*MMOs.first) &&
4047                     (*MMOs.first)->getAlignment() >= Alignment;
4048    Load = DAG.getMachineNode(getLoadRegOpcode(0, RC, isAligned, TM), dl,
4049                              VT, MVT::Other, &AddrOps[0], AddrOps.size());
4050    NewNodes.push_back(Load);
4051
4052    // Preserve memory reference information.
4053    cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second);
4054  }
4055
4056  // Emit the data processing instruction.
4057  std::vector<EVT> VTs;
4058  const TargetRegisterClass *DstRC = 0;
4059  if (MCID.getNumDefs() > 0) {
4060    DstRC = getRegClass(MCID, 0, &RI, MF);
4061    VTs.push_back(*DstRC->vt_begin());
4062  }
4063  for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
4064    EVT VT = N->getValueType(i);
4065    if (VT != MVT::Other && i >= (unsigned)MCID.getNumDefs())
4066      VTs.push_back(VT);
4067  }
4068  if (Load)
4069    BeforeOps.push_back(SDValue(Load, 0));
4070  std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps));
4071  SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, &BeforeOps[0],
4072                                      BeforeOps.size());
4073  NewNodes.push_back(NewNode);
4074
4075  // Emit the store instruction.
4076  if (FoldedStore) {
4077    AddrOps.pop_back();
4078    AddrOps.push_back(SDValue(NewNode, 0));
4079    AddrOps.push_back(Chain);
4080    std::pair<MachineInstr::mmo_iterator,
4081              MachineInstr::mmo_iterator> MMOs =
4082      MF.extractStoreMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
4083                             cast<MachineSDNode>(N)->memoperands_end());
4084    if (!(*MMOs.first) &&
4085        RC == &X86::VR128RegClass &&
4086        !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast())
4087      // Do not introduce a slow unaligned store.
4088      return false;
4089    unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
4090    bool isAligned = (*MMOs.first) &&
4091                     (*MMOs.first)->getAlignment() >= Alignment;
4092    SDNode *Store = DAG.getMachineNode(getStoreRegOpcode(0, DstRC,
4093                                                         isAligned, TM),
4094                                       dl, MVT::Other,
4095                                       &AddrOps[0], AddrOps.size());
4096    NewNodes.push_back(Store);
4097
4098    // Preserve memory reference information.
4099    cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second);
4100  }
4101
4102  return true;
4103}
4104
4105unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
4106                                      bool UnfoldLoad, bool UnfoldStore,
4107                                      unsigned *LoadRegIndex) const {
4108  DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
4109    MemOp2RegOpTable.find(Opc);
4110  if (I == MemOp2RegOpTable.end())
4111    return 0;
4112  bool FoldedLoad = I->second.second & TB_FOLDED_LOAD;
4113  bool FoldedStore = I->second.second & TB_FOLDED_STORE;
4114  if (UnfoldLoad && !FoldedLoad)
4115    return 0;
4116  if (UnfoldStore && !FoldedStore)
4117    return 0;
4118  if (LoadRegIndex)
4119    *LoadRegIndex = I->second.second & TB_INDEX_MASK;
4120  return I->second.first;
4121}
4122
4123bool
4124X86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
4125                                     int64_t &Offset1, int64_t &Offset2) const {
4126  if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
4127    return false;
4128  unsigned Opc1 = Load1->getMachineOpcode();
4129  unsigned Opc2 = Load2->getMachineOpcode();
4130  switch (Opc1) {
4131  default: return false;
4132  case X86::MOV8rm:
4133  case X86::MOV16rm:
4134  case X86::MOV32rm:
4135  case X86::MOV64rm:
4136  case X86::LD_Fp32m:
4137  case X86::LD_Fp64m:
4138  case X86::LD_Fp80m:
4139  case X86::MOVSSrm:
4140  case X86::MOVSDrm:
4141  case X86::MMX_MOVD64rm:
4142  case X86::MMX_MOVQ64rm:
4143  case X86::FsMOVAPSrm:
4144  case X86::FsMOVAPDrm:
4145  case X86::MOVAPSrm:
4146  case X86::MOVUPSrm:
4147  case X86::MOVAPDrm:
4148  case X86::MOVDQArm:
4149  case X86::MOVDQUrm:
4150  // AVX load instructions
4151  case X86::VMOVSSrm:
4152  case X86::VMOVSDrm:
4153  case X86::FsVMOVAPSrm:
4154  case X86::FsVMOVAPDrm:
4155  case X86::VMOVAPSrm:
4156  case X86::VMOVUPSrm:
4157  case X86::VMOVAPDrm:
4158  case X86::VMOVDQArm:
4159  case X86::VMOVDQUrm:
4160  case X86::VMOVAPSYrm:
4161  case X86::VMOVUPSYrm:
4162  case X86::VMOVAPDYrm:
4163  case X86::VMOVDQAYrm:
4164  case X86::VMOVDQUYrm:
4165    break;
4166  }
4167  switch (Opc2) {
4168  default: return false;
4169  case X86::MOV8rm:
4170  case X86::MOV16rm:
4171  case X86::MOV32rm:
4172  case X86::MOV64rm:
4173  case X86::LD_Fp32m:
4174  case X86::LD_Fp64m:
4175  case X86::LD_Fp80m:
4176  case X86::MOVSSrm:
4177  case X86::MOVSDrm:
4178  case X86::MMX_MOVD64rm:
4179  case X86::MMX_MOVQ64rm:
4180  case X86::FsMOVAPSrm:
4181  case X86::FsMOVAPDrm:
4182  case X86::MOVAPSrm:
4183  case X86::MOVUPSrm:
4184  case X86::MOVAPDrm:
4185  case X86::MOVDQArm:
4186  case X86::MOVDQUrm:
4187  // AVX load instructions
4188  case X86::VMOVSSrm:
4189  case X86::VMOVSDrm:
4190  case X86::FsVMOVAPSrm:
4191  case X86::FsVMOVAPDrm:
4192  case X86::VMOVAPSrm:
4193  case X86::VMOVUPSrm:
4194  case X86::VMOVAPDrm:
4195  case X86::VMOVDQArm:
4196  case X86::VMOVDQUrm:
4197  case X86::VMOVAPSYrm:
4198  case X86::VMOVUPSYrm:
4199  case X86::VMOVAPDYrm:
4200  case X86::VMOVDQAYrm:
4201  case X86::VMOVDQUYrm:
4202    break;
4203  }
4204
4205  // Check if chain operands and base addresses match.
4206  if (Load1->getOperand(0) != Load2->getOperand(0) ||
4207      Load1->getOperand(5) != Load2->getOperand(5))
4208    return false;
4209  // Segment operands should match as well.
4210  if (Load1->getOperand(4) != Load2->getOperand(4))
4211    return false;
4212  // Scale should be 1, Index should be Reg0.
4213  if (Load1->getOperand(1) == Load2->getOperand(1) &&
4214      Load1->getOperand(2) == Load2->getOperand(2)) {
4215    if (cast<ConstantSDNode>(Load1->getOperand(1))->getZExtValue() != 1)
4216      return false;
4217
4218    // Now let's examine the displacements.
4219    if (isa<ConstantSDNode>(Load1->getOperand(3)) &&
4220        isa<ConstantSDNode>(Load2->getOperand(3))) {
4221      Offset1 = cast<ConstantSDNode>(Load1->getOperand(3))->getSExtValue();
4222      Offset2 = cast<ConstantSDNode>(Load2->getOperand(3))->getSExtValue();
4223      return true;
4224    }
4225  }
4226  return false;
4227}
4228
4229bool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
4230                                           int64_t Offset1, int64_t Offset2,
4231                                           unsigned NumLoads) const {
4232  assert(Offset2 > Offset1);
4233  if ((Offset2 - Offset1) / 8 > 64)
4234    return false;
4235
4236  unsigned Opc1 = Load1->getMachineOpcode();
4237  unsigned Opc2 = Load2->getMachineOpcode();
4238  if (Opc1 != Opc2)
4239    return false;  // FIXME: overly conservative?
4240
4241  switch (Opc1) {
4242  default: break;
4243  case X86::LD_Fp32m:
4244  case X86::LD_Fp64m:
4245  case X86::LD_Fp80m:
4246  case X86::MMX_MOVD64rm:
4247  case X86::MMX_MOVQ64rm:
4248    return false;
4249  }
4250
4251  EVT VT = Load1->getValueType(0);
4252  switch (VT.getSimpleVT().SimpleTy) {
4253  default:
4254    // XMM registers. In 64-bit mode we can be a bit more aggressive since we
4255    // have 16 of them to play with.
4256    if (TM.getSubtargetImpl()->is64Bit()) {
4257      if (NumLoads >= 3)
4258        return false;
4259    } else if (NumLoads) {
4260      return false;
4261    }
4262    break;
4263  case MVT::i8:
4264  case MVT::i16:
4265  case MVT::i32:
4266  case MVT::i64:
4267  case MVT::f32:
4268  case MVT::f64:
4269    if (NumLoads)
4270      return false;
4271    break;
4272  }
4273
4274  return true;
4275}
4276
4277
4278bool X86InstrInfo::
4279ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
4280  assert(Cond.size() == 1 && "Invalid X86 branch condition!");
4281  X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
4282  if (CC == X86::COND_NE_OR_P || CC == X86::COND_NP_OR_E)
4283    return true;
4284  Cond[0].setImm(GetOppositeBranchCondition(CC));
4285  return false;
4286}
4287
4288bool X86InstrInfo::
4289isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
4290  // FIXME: Return false for x87 stack register classes for now. We can't
4291  // allow any loads of these registers before FpGet_ST0_80.
4292  return !(RC == &X86::CCRRegClass || RC == &X86::RFP32RegClass ||
4293           RC == &X86::RFP64RegClass || RC == &X86::RFP80RegClass);
4294}
4295
4296/// getGlobalBaseReg - Return a virtual register initialized with the
4297/// the global base register value. Output instructions required to
4298/// initialize the register in the function entry block, if necessary.
4299///
4300/// TODO: Eliminate this and move the code to X86MachineFunctionInfo.
4301///
4302unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
4303  assert(!TM.getSubtarget<X86Subtarget>().is64Bit() &&
4304         "X86-64 PIC uses RIP relative addressing");
4305
4306  X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
4307  unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
4308  if (GlobalBaseReg != 0)
4309    return GlobalBaseReg;
4310
4311  // Create the register. The code to initialize it is inserted
4312  // later, by the CGBR pass (below).
4313  MachineRegisterInfo &RegInfo = MF->getRegInfo();
4314  GlobalBaseReg = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
4315  X86FI->setGlobalBaseReg(GlobalBaseReg);
4316  return GlobalBaseReg;
4317}
4318
4319// These are the replaceable SSE instructions. Some of these have Int variants
4320// that we don't include here. We don't want to replace instructions selected
4321// by intrinsics.
4322static const uint16_t ReplaceableInstrs[][3] = {
4323  //PackedSingle     PackedDouble    PackedInt
4324  { X86::MOVAPSmr,   X86::MOVAPDmr,  X86::MOVDQAmr  },
4325  { X86::MOVAPSrm,   X86::MOVAPDrm,  X86::MOVDQArm  },
4326  { X86::MOVAPSrr,   X86::MOVAPDrr,  X86::MOVDQArr  },
4327  { X86::MOVUPSmr,   X86::MOVUPDmr,  X86::MOVDQUmr  },
4328  { X86::MOVUPSrm,   X86::MOVUPDrm,  X86::MOVDQUrm  },
4329  { X86::MOVNTPSmr,  X86::MOVNTPDmr, X86::MOVNTDQmr },
4330  { X86::ANDNPSrm,   X86::ANDNPDrm,  X86::PANDNrm   },
4331  { X86::ANDNPSrr,   X86::ANDNPDrr,  X86::PANDNrr   },
4332  { X86::ANDPSrm,    X86::ANDPDrm,   X86::PANDrm    },
4333  { X86::ANDPSrr,    X86::ANDPDrr,   X86::PANDrr    },
4334  { X86::ORPSrm,     X86::ORPDrm,    X86::PORrm     },
4335  { X86::ORPSrr,     X86::ORPDrr,    X86::PORrr     },
4336  { X86::XORPSrm,    X86::XORPDrm,   X86::PXORrm    },
4337  { X86::XORPSrr,    X86::XORPDrr,   X86::PXORrr    },
4338  // AVX 128-bit support
4339  { X86::VMOVAPSmr,  X86::VMOVAPDmr,  X86::VMOVDQAmr  },
4340  { X86::VMOVAPSrm,  X86::VMOVAPDrm,  X86::VMOVDQArm  },
4341  { X86::VMOVAPSrr,  X86::VMOVAPDrr,  X86::VMOVDQArr  },
4342  { X86::VMOVUPSmr,  X86::VMOVUPDmr,  X86::VMOVDQUmr  },
4343  { X86::VMOVUPSrm,  X86::VMOVUPDrm,  X86::VMOVDQUrm  },
4344  { X86::VMOVNTPSmr, X86::VMOVNTPDmr, X86::VMOVNTDQmr },
4345  { X86::VANDNPSrm,  X86::VANDNPDrm,  X86::VPANDNrm   },
4346  { X86::VANDNPSrr,  X86::VANDNPDrr,  X86::VPANDNrr   },
4347  { X86::VANDPSrm,   X86::VANDPDrm,   X86::VPANDrm    },
4348  { X86::VANDPSrr,   X86::VANDPDrr,   X86::VPANDrr    },
4349  { X86::VORPSrm,    X86::VORPDrm,    X86::VPORrm     },
4350  { X86::VORPSrr,    X86::VORPDrr,    X86::VPORrr     },
4351  { X86::VXORPSrm,   X86::VXORPDrm,   X86::VPXORrm    },
4352  { X86::VXORPSrr,   X86::VXORPDrr,   X86::VPXORrr    },
4353  // AVX 256-bit support
4354  { X86::VMOVAPSYmr,   X86::VMOVAPDYmr,   X86::VMOVDQAYmr  },
4355  { X86::VMOVAPSYrm,   X86::VMOVAPDYrm,   X86::VMOVDQAYrm  },
4356  { X86::VMOVAPSYrr,   X86::VMOVAPDYrr,   X86::VMOVDQAYrr  },
4357  { X86::VMOVUPSYmr,   X86::VMOVUPDYmr,   X86::VMOVDQUYmr  },
4358  { X86::VMOVUPSYrm,   X86::VMOVUPDYrm,   X86::VMOVDQUYrm  },
4359  { X86::VMOVNTPSYmr,  X86::VMOVNTPDYmr,  X86::VMOVNTDQYmr }
4360};
4361
4362static const uint16_t ReplaceableInstrsAVX2[][3] = {
4363  //PackedSingle       PackedDouble       PackedInt
4364  { X86::VANDNPSYrm,   X86::VANDNPDYrm,   X86::VPANDNYrm   },
4365  { X86::VANDNPSYrr,   X86::VANDNPDYrr,   X86::VPANDNYrr   },
4366  { X86::VANDPSYrm,    X86::VANDPDYrm,    X86::VPANDYrm    },
4367  { X86::VANDPSYrr,    X86::VANDPDYrr,    X86::VPANDYrr    },
4368  { X86::VORPSYrm,     X86::VORPDYrm,     X86::VPORYrm     },
4369  { X86::VORPSYrr,     X86::VORPDYrr,     X86::VPORYrr     },
4370  { X86::VXORPSYrm,    X86::VXORPDYrm,    X86::VPXORYrm    },
4371  { X86::VXORPSYrr,    X86::VXORPDYrr,    X86::VPXORYrr    },
4372  { X86::VEXTRACTF128mr, X86::VEXTRACTF128mr, X86::VEXTRACTI128mr },
4373  { X86::VEXTRACTF128rr, X86::VEXTRACTF128rr, X86::VEXTRACTI128rr },
4374  { X86::VINSERTF128rm,  X86::VINSERTF128rm,  X86::VINSERTI128rm },
4375  { X86::VINSERTF128rr,  X86::VINSERTF128rr,  X86::VINSERTI128rr },
4376  { X86::VPERM2F128rm,   X86::VPERM2F128rm,   X86::VPERM2I128rm },
4377  { X86::VPERM2F128rr,   X86::VPERM2F128rr,   X86::VPERM2I128rr }
4378};
4379
4380// FIXME: Some shuffle and unpack instructions have equivalents in different
4381// domains, but they require a bit more work than just switching opcodes.
4382
4383static const uint16_t *lookup(unsigned opcode, unsigned domain) {
4384  for (unsigned i = 0, e = array_lengthof(ReplaceableInstrs); i != e; ++i)
4385    if (ReplaceableInstrs[i][domain-1] == opcode)
4386      return ReplaceableInstrs[i];
4387  return 0;
4388}
4389
4390static const uint16_t *lookupAVX2(unsigned opcode, unsigned domain) {
4391  for (unsigned i = 0, e = array_lengthof(ReplaceableInstrsAVX2); i != e; ++i)
4392    if (ReplaceableInstrsAVX2[i][domain-1] == opcode)
4393      return ReplaceableInstrsAVX2[i];
4394  return 0;
4395}
4396
4397std::pair<uint16_t, uint16_t>
4398X86InstrInfo::getExecutionDomain(const MachineInstr *MI) const {
4399  uint16_t domain = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
4400  bool hasAVX2 = TM.getSubtarget<X86Subtarget>().hasAVX2();
4401  uint16_t validDomains = 0;
4402  if (domain && lookup(MI->getOpcode(), domain))
4403    validDomains = 0xe;
4404  else if (domain && lookupAVX2(MI->getOpcode(), domain))
4405    validDomains = hasAVX2 ? 0xe : 0x6;
4406  return std::make_pair(domain, validDomains);
4407}
4408
4409void X86InstrInfo::setExecutionDomain(MachineInstr *MI, unsigned Domain) const {
4410  assert(Domain>0 && Domain<4 && "Invalid execution domain");
4411  uint16_t dom = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
4412  assert(dom && "Not an SSE instruction");
4413  const uint16_t *table = lookup(MI->getOpcode(), dom);
4414  if (!table) { // try the other table
4415    assert((TM.getSubtarget<X86Subtarget>().hasAVX2() || Domain < 3) &&
4416           "256-bit vector operations only available in AVX2");
4417    table = lookupAVX2(MI->getOpcode(), dom);
4418  }
4419  assert(table && "Cannot change domain");
4420  MI->setDesc(get(table[Domain-1]));
4421}
4422
4423/// getNoopForMachoTarget - Return the noop instruction to use for a noop.
4424void X86InstrInfo::getNoopForMachoTarget(MCInst &NopInst) const {
4425  NopInst.setOpcode(X86::NOOP);
4426}
4427
4428bool X86InstrInfo::isHighLatencyDef(int opc) const {
4429  switch (opc) {
4430  default: return false;
4431  case X86::DIVSDrm:
4432  case X86::DIVSDrm_Int:
4433  case X86::DIVSDrr:
4434  case X86::DIVSDrr_Int:
4435  case X86::DIVSSrm:
4436  case X86::DIVSSrm_Int:
4437  case X86::DIVSSrr:
4438  case X86::DIVSSrr_Int:
4439  case X86::SQRTPDm:
4440  case X86::SQRTPDm_Int:
4441  case X86::SQRTPDr:
4442  case X86::SQRTPDr_Int:
4443  case X86::SQRTPSm:
4444  case X86::SQRTPSm_Int:
4445  case X86::SQRTPSr:
4446  case X86::SQRTPSr_Int:
4447  case X86::SQRTSDm:
4448  case X86::SQRTSDm_Int:
4449  case X86::SQRTSDr:
4450  case X86::SQRTSDr_Int:
4451  case X86::SQRTSSm:
4452  case X86::SQRTSSm_Int:
4453  case X86::SQRTSSr:
4454  case X86::SQRTSSr_Int:
4455  // AVX instructions with high latency
4456  case X86::VDIVSDrm:
4457  case X86::VDIVSDrm_Int:
4458  case X86::VDIVSDrr:
4459  case X86::VDIVSDrr_Int:
4460  case X86::VDIVSSrm:
4461  case X86::VDIVSSrm_Int:
4462  case X86::VDIVSSrr:
4463  case X86::VDIVSSrr_Int:
4464  case X86::VSQRTPDm:
4465  case X86::VSQRTPDm_Int:
4466  case X86::VSQRTPDr:
4467  case X86::VSQRTPDr_Int:
4468  case X86::VSQRTPSm:
4469  case X86::VSQRTPSm_Int:
4470  case X86::VSQRTPSr:
4471  case X86::VSQRTPSr_Int:
4472  case X86::VSQRTSDm:
4473  case X86::VSQRTSDm_Int:
4474  case X86::VSQRTSDr:
4475  case X86::VSQRTSSm:
4476  case X86::VSQRTSSm_Int:
4477  case X86::VSQRTSSr:
4478    return true;
4479  }
4480}
4481
4482bool X86InstrInfo::
4483hasHighOperandLatency(const InstrItineraryData *ItinData,
4484                      const MachineRegisterInfo *MRI,
4485                      const MachineInstr *DefMI, unsigned DefIdx,
4486                      const MachineInstr *UseMI, unsigned UseIdx) const {
4487  return isHighLatencyDef(DefMI->getOpcode());
4488}
4489
4490namespace {
4491  /// CGBR - Create Global Base Reg pass. This initializes the PIC
4492  /// global base register for x86-32.
4493  struct CGBR : public MachineFunctionPass {
4494    static char ID;
4495    CGBR() : MachineFunctionPass(ID) {}
4496
4497    virtual bool runOnMachineFunction(MachineFunction &MF) {
4498      const X86TargetMachine *TM =
4499        static_cast<const X86TargetMachine *>(&MF.getTarget());
4500
4501      assert(!TM->getSubtarget<X86Subtarget>().is64Bit() &&
4502             "X86-64 PIC uses RIP relative addressing");
4503
4504      // Only emit a global base reg in PIC mode.
4505      if (TM->getRelocationModel() != Reloc::PIC_)
4506        return false;
4507
4508      X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
4509      unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
4510
4511      // If we didn't need a GlobalBaseReg, don't insert code.
4512      if (GlobalBaseReg == 0)
4513        return false;
4514
4515      // Insert the set of GlobalBaseReg into the first MBB of the function
4516      MachineBasicBlock &FirstMBB = MF.front();
4517      MachineBasicBlock::iterator MBBI = FirstMBB.begin();
4518      DebugLoc DL = FirstMBB.findDebugLoc(MBBI);
4519      MachineRegisterInfo &RegInfo = MF.getRegInfo();
4520      const X86InstrInfo *TII = TM->getInstrInfo();
4521
4522      unsigned PC;
4523      if (TM->getSubtarget<X86Subtarget>().isPICStyleGOT())
4524        PC = RegInfo.createVirtualRegister(&X86::GR32RegClass);
4525      else
4526        PC = GlobalBaseReg;
4527
4528      // Operand of MovePCtoStack is completely ignored by asm printer. It's
4529      // only used in JIT code emission as displacement to pc.
4530      BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0);
4531
4532      // If we're using vanilla 'GOT' PIC style, we should use relative addressing
4533      // not to pc, but to _GLOBAL_OFFSET_TABLE_ external.
4534      if (TM->getSubtarget<X86Subtarget>().isPICStyleGOT()) {
4535        // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel], %some_register
4536        BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg)
4537          .addReg(PC).addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
4538                                        X86II::MO_GOT_ABSOLUTE_ADDRESS);
4539      }
4540
4541      return true;
4542    }
4543
4544    virtual const char *getPassName() const {
4545      return "X86 PIC Global Base Reg Initialization";
4546    }
4547
4548    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
4549      AU.setPreservesCFG();
4550      MachineFunctionPass::getAnalysisUsage(AU);
4551    }
4552  };
4553}
4554
4555char CGBR::ID = 0;
4556FunctionPass*
4557llvm::createGlobalBaseRegPass() { return new CGBR(); }
4558
4559namespace {
4560  struct LDTLSCleanup : public MachineFunctionPass {
4561    static char ID;
4562    LDTLSCleanup() : MachineFunctionPass(ID) {}
4563
4564    virtual bool runOnMachineFunction(MachineFunction &MF) {
4565      X86MachineFunctionInfo* MFI = MF.getInfo<X86MachineFunctionInfo>();
4566      if (MFI->getNumLocalDynamicTLSAccesses() < 2) {
4567        // No point folding accesses if there isn't at least two.
4568        return false;
4569      }
4570
4571      MachineDominatorTree *DT = &getAnalysis<MachineDominatorTree>();
4572      return VisitNode(DT->getRootNode(), 0);
4573    }
4574
4575    // Visit the dominator subtree rooted at Node in pre-order.
4576    // If TLSBaseAddrReg is non-null, then use that to replace any
4577    // TLS_base_addr instructions. Otherwise, create the register
4578    // when the first such instruction is seen, and then use it
4579    // as we encounter more instructions.
4580    bool VisitNode(MachineDomTreeNode *Node, unsigned TLSBaseAddrReg) {
4581      MachineBasicBlock *BB = Node->getBlock();
4582      bool Changed = false;
4583
4584      // Traverse the current block.
4585      for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;
4586           ++I) {
4587        switch (I->getOpcode()) {
4588          case X86::TLS_base_addr32:
4589          case X86::TLS_base_addr64:
4590            if (TLSBaseAddrReg)
4591              I = ReplaceTLSBaseAddrCall(I, TLSBaseAddrReg);
4592            else
4593              I = SetRegister(I, &TLSBaseAddrReg);
4594            Changed = true;
4595            break;
4596          default:
4597            break;
4598        }
4599      }
4600
4601      // Visit the children of this block in the dominator tree.
4602      for (MachineDomTreeNode::iterator I = Node->begin(), E = Node->end();
4603           I != E; ++I) {
4604        Changed |= VisitNode(*I, TLSBaseAddrReg);
4605      }
4606
4607      return Changed;
4608    }
4609
4610    // Replace the TLS_base_addr instruction I with a copy from
4611    // TLSBaseAddrReg, returning the new instruction.
4612    MachineInstr *ReplaceTLSBaseAddrCall(MachineInstr *I,
4613                                         unsigned TLSBaseAddrReg) {
4614      MachineFunction *MF = I->getParent()->getParent();
4615      const X86TargetMachine *TM =
4616          static_cast<const X86TargetMachine *>(&MF->getTarget());
4617      const bool is64Bit = TM->getSubtarget<X86Subtarget>().is64Bit();
4618      const X86InstrInfo *TII = TM->getInstrInfo();
4619
4620      // Insert a Copy from TLSBaseAddrReg to RAX/EAX.
4621      MachineInstr *Copy = BuildMI(*I->getParent(), I, I->getDebugLoc(),
4622                                   TII->get(TargetOpcode::COPY),
4623                                   is64Bit ? X86::RAX : X86::EAX)
4624                                   .addReg(TLSBaseAddrReg);
4625
4626      // Erase the TLS_base_addr instruction.
4627      I->eraseFromParent();
4628
4629      return Copy;
4630    }
4631
4632    // Create a virtal register in *TLSBaseAddrReg, and populate it by
4633    // inserting a copy instruction after I. Returns the new instruction.
4634    MachineInstr *SetRegister(MachineInstr *I, unsigned *TLSBaseAddrReg) {
4635      MachineFunction *MF = I->getParent()->getParent();
4636      const X86TargetMachine *TM =
4637          static_cast<const X86TargetMachine *>(&MF->getTarget());
4638      const bool is64Bit = TM->getSubtarget<X86Subtarget>().is64Bit();
4639      const X86InstrInfo *TII = TM->getInstrInfo();
4640
4641      // Create a virtual register for the TLS base address.
4642      MachineRegisterInfo &RegInfo = MF->getRegInfo();
4643      *TLSBaseAddrReg = RegInfo.createVirtualRegister(is64Bit
4644                                                      ? &X86::GR64RegClass
4645                                                      : &X86::GR32RegClass);
4646
4647      // Insert a copy from RAX/EAX to TLSBaseAddrReg.
4648      MachineInstr *Next = I->getNextNode();
4649      MachineInstr *Copy = BuildMI(*I->getParent(), Next, I->getDebugLoc(),
4650                                   TII->get(TargetOpcode::COPY),
4651                                   *TLSBaseAddrReg)
4652                                   .addReg(is64Bit ? X86::RAX : X86::EAX);
4653
4654      return Copy;
4655    }
4656
4657    virtual const char *getPassName() const {
4658      return "Local Dynamic TLS Access Clean-up";
4659    }
4660
4661    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
4662      AU.setPreservesCFG();
4663      AU.addRequired<MachineDominatorTree>();
4664      MachineFunctionPass::getAnalysisUsage(AU);
4665    }
4666  };
4667}
4668
4669char LDTLSCleanup::ID = 0;
4670FunctionPass*
4671llvm::createCleanupLocalDynamicTLSPass() { return new LDTLSCleanup(); }
4672