X86InstrInfo.cpp revision f9b2dc66c87256b55f9bdfe037d1fa6f705200e8
1//===- X86InstrInfo.cpp - X86 Instruction Information -----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the X86 implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "X86InstrInfo.h"
15#include "X86.h"
16#include "X86GenInstrInfo.inc"
17#include "X86InstrBuilder.h"
18#include "X86MachineFunctionInfo.h"
19#include "X86Subtarget.h"
20#include "X86TargetMachine.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/LLVMContext.h"
23#include "llvm/ADT/STLExtras.h"
24#include "llvm/CodeGen/MachineConstantPool.h"
25#include "llvm/CodeGen/MachineFrameInfo.h"
26#include "llvm/CodeGen/MachineInstrBuilder.h"
27#include "llvm/CodeGen/MachineRegisterInfo.h"
28#include "llvm/CodeGen/LiveVariables.h"
29#include "llvm/CodeGen/PseudoSourceValue.h"
30#include "llvm/MC/MCInst.h"
31#include "llvm/Support/CommandLine.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/Support/ErrorHandling.h"
34#include "llvm/Support/raw_ostream.h"
35#include "llvm/Target/TargetOptions.h"
36#include "llvm/MC/MCAsmInfo.h"
37#include <limits>
38
39using namespace llvm;
40
41static cl::opt<bool>
42NoFusing("disable-spill-fusing",
43         cl::desc("Disable fusing of spill code into instructions"));
44static cl::opt<bool>
45PrintFailedFusing("print-failed-fuse-candidates",
46                  cl::desc("Print instructions that the allocator wants to"
47                           " fuse, but the X86 backend currently can't"),
48                  cl::Hidden);
49static cl::opt<bool>
50ReMatPICStubLoad("remat-pic-stub-load",
51                 cl::desc("Re-materialize load from stub in PIC mode"),
52                 cl::init(false), cl::Hidden);
53
54X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
55  : TargetInstrInfoImpl(X86Insts, array_lengthof(X86Insts)),
56    TM(tm), RI(tm, *this) {
57  enum {
58    TB_NOT_REVERSABLE = 1U << 31,
59    TB_FLAGS = TB_NOT_REVERSABLE
60  };
61
62  static const unsigned OpTbl2Addr[][2] = {
63    { X86::ADC32ri,     X86::ADC32mi },
64    { X86::ADC32ri8,    X86::ADC32mi8 },
65    { X86::ADC32rr,     X86::ADC32mr },
66    { X86::ADC64ri32,   X86::ADC64mi32 },
67    { X86::ADC64ri8,    X86::ADC64mi8 },
68    { X86::ADC64rr,     X86::ADC64mr },
69    { X86::ADD16ri,     X86::ADD16mi },
70    { X86::ADD16ri8,    X86::ADD16mi8 },
71    { X86::ADD16ri_DB,  X86::ADD16mi  | TB_NOT_REVERSABLE },
72    { X86::ADD16ri8_DB, X86::ADD16mi8 | TB_NOT_REVERSABLE },
73    { X86::ADD16rr,     X86::ADD16mr },
74    { X86::ADD16rr_DB,  X86::ADD16mr | TB_NOT_REVERSABLE },
75    { X86::ADD32ri,     X86::ADD32mi },
76    { X86::ADD32ri8,    X86::ADD32mi8 },
77    { X86::ADD32ri_DB,  X86::ADD32mi | TB_NOT_REVERSABLE },
78    { X86::ADD32ri8_DB, X86::ADD32mi8 | TB_NOT_REVERSABLE },
79    { X86::ADD32rr,     X86::ADD32mr },
80    { X86::ADD32rr_DB,  X86::ADD32mr | TB_NOT_REVERSABLE },
81    { X86::ADD64ri32,   X86::ADD64mi32 },
82    { X86::ADD64ri8,    X86::ADD64mi8 },
83    { X86::ADD64ri32_DB,X86::ADD64mi32 | TB_NOT_REVERSABLE },
84    { X86::ADD64ri8_DB, X86::ADD64mi8 | TB_NOT_REVERSABLE },
85    { X86::ADD64rr,     X86::ADD64mr },
86    { X86::ADD64rr_DB,  X86::ADD64mr | TB_NOT_REVERSABLE },
87    { X86::ADD8ri,      X86::ADD8mi },
88    { X86::ADD8rr,      X86::ADD8mr },
89    { X86::AND16ri,     X86::AND16mi },
90    { X86::AND16ri8,    X86::AND16mi8 },
91    { X86::AND16rr,     X86::AND16mr },
92    { X86::AND32ri,     X86::AND32mi },
93    { X86::AND32ri8,    X86::AND32mi8 },
94    { X86::AND32rr,     X86::AND32mr },
95    { X86::AND64ri32,   X86::AND64mi32 },
96    { X86::AND64ri8,    X86::AND64mi8 },
97    { X86::AND64rr,     X86::AND64mr },
98    { X86::AND8ri,      X86::AND8mi },
99    { X86::AND8rr,      X86::AND8mr },
100    { X86::DEC16r,      X86::DEC16m },
101    { X86::DEC32r,      X86::DEC32m },
102    { X86::DEC64_16r,   X86::DEC64_16m },
103    { X86::DEC64_32r,   X86::DEC64_32m },
104    { X86::DEC64r,      X86::DEC64m },
105    { X86::DEC8r,       X86::DEC8m },
106    { X86::INC16r,      X86::INC16m },
107    { X86::INC32r,      X86::INC32m },
108    { X86::INC64_16r,   X86::INC64_16m },
109    { X86::INC64_32r,   X86::INC64_32m },
110    { X86::INC64r,      X86::INC64m },
111    { X86::INC8r,       X86::INC8m },
112    { X86::NEG16r,      X86::NEG16m },
113    { X86::NEG32r,      X86::NEG32m },
114    { X86::NEG64r,      X86::NEG64m },
115    { X86::NEG8r,       X86::NEG8m },
116    { X86::NOT16r,      X86::NOT16m },
117    { X86::NOT32r,      X86::NOT32m },
118    { X86::NOT64r,      X86::NOT64m },
119    { X86::NOT8r,       X86::NOT8m },
120    { X86::OR16ri,      X86::OR16mi },
121    { X86::OR16ri8,     X86::OR16mi8 },
122    { X86::OR16rr,      X86::OR16mr },
123    { X86::OR32ri,      X86::OR32mi },
124    { X86::OR32ri8,     X86::OR32mi8 },
125    { X86::OR32rr,      X86::OR32mr },
126    { X86::OR64ri32,    X86::OR64mi32 },
127    { X86::OR64ri8,     X86::OR64mi8 },
128    { X86::OR64rr,      X86::OR64mr },
129    { X86::OR8ri,       X86::OR8mi },
130    { X86::OR8rr,       X86::OR8mr },
131    { X86::ROL16r1,     X86::ROL16m1 },
132    { X86::ROL16rCL,    X86::ROL16mCL },
133    { X86::ROL16ri,     X86::ROL16mi },
134    { X86::ROL32r1,     X86::ROL32m1 },
135    { X86::ROL32rCL,    X86::ROL32mCL },
136    { X86::ROL32ri,     X86::ROL32mi },
137    { X86::ROL64r1,     X86::ROL64m1 },
138    { X86::ROL64rCL,    X86::ROL64mCL },
139    { X86::ROL64ri,     X86::ROL64mi },
140    { X86::ROL8r1,      X86::ROL8m1 },
141    { X86::ROL8rCL,     X86::ROL8mCL },
142    { X86::ROL8ri,      X86::ROL8mi },
143    { X86::ROR16r1,     X86::ROR16m1 },
144    { X86::ROR16rCL,    X86::ROR16mCL },
145    { X86::ROR16ri,     X86::ROR16mi },
146    { X86::ROR32r1,     X86::ROR32m1 },
147    { X86::ROR32rCL,    X86::ROR32mCL },
148    { X86::ROR32ri,     X86::ROR32mi },
149    { X86::ROR64r1,     X86::ROR64m1 },
150    { X86::ROR64rCL,    X86::ROR64mCL },
151    { X86::ROR64ri,     X86::ROR64mi },
152    { X86::ROR8r1,      X86::ROR8m1 },
153    { X86::ROR8rCL,     X86::ROR8mCL },
154    { X86::ROR8ri,      X86::ROR8mi },
155    { X86::SAR16r1,     X86::SAR16m1 },
156    { X86::SAR16rCL,    X86::SAR16mCL },
157    { X86::SAR16ri,     X86::SAR16mi },
158    { X86::SAR32r1,     X86::SAR32m1 },
159    { X86::SAR32rCL,    X86::SAR32mCL },
160    { X86::SAR32ri,     X86::SAR32mi },
161    { X86::SAR64r1,     X86::SAR64m1 },
162    { X86::SAR64rCL,    X86::SAR64mCL },
163    { X86::SAR64ri,     X86::SAR64mi },
164    { X86::SAR8r1,      X86::SAR8m1 },
165    { X86::SAR8rCL,     X86::SAR8mCL },
166    { X86::SAR8ri,      X86::SAR8mi },
167    { X86::SBB32ri,     X86::SBB32mi },
168    { X86::SBB32ri8,    X86::SBB32mi8 },
169    { X86::SBB32rr,     X86::SBB32mr },
170    { X86::SBB64ri32,   X86::SBB64mi32 },
171    { X86::SBB64ri8,    X86::SBB64mi8 },
172    { X86::SBB64rr,     X86::SBB64mr },
173    { X86::SHL16rCL,    X86::SHL16mCL },
174    { X86::SHL16ri,     X86::SHL16mi },
175    { X86::SHL32rCL,    X86::SHL32mCL },
176    { X86::SHL32ri,     X86::SHL32mi },
177    { X86::SHL64rCL,    X86::SHL64mCL },
178    { X86::SHL64ri,     X86::SHL64mi },
179    { X86::SHL8rCL,     X86::SHL8mCL },
180    { X86::SHL8ri,      X86::SHL8mi },
181    { X86::SHLD16rrCL,  X86::SHLD16mrCL },
182    { X86::SHLD16rri8,  X86::SHLD16mri8 },
183    { X86::SHLD32rrCL,  X86::SHLD32mrCL },
184    { X86::SHLD32rri8,  X86::SHLD32mri8 },
185    { X86::SHLD64rrCL,  X86::SHLD64mrCL },
186    { X86::SHLD64rri8,  X86::SHLD64mri8 },
187    { X86::SHR16r1,     X86::SHR16m1 },
188    { X86::SHR16rCL,    X86::SHR16mCL },
189    { X86::SHR16ri,     X86::SHR16mi },
190    { X86::SHR32r1,     X86::SHR32m1 },
191    { X86::SHR32rCL,    X86::SHR32mCL },
192    { X86::SHR32ri,     X86::SHR32mi },
193    { X86::SHR64r1,     X86::SHR64m1 },
194    { X86::SHR64rCL,    X86::SHR64mCL },
195    { X86::SHR64ri,     X86::SHR64mi },
196    { X86::SHR8r1,      X86::SHR8m1 },
197    { X86::SHR8rCL,     X86::SHR8mCL },
198    { X86::SHR8ri,      X86::SHR8mi },
199    { X86::SHRD16rrCL,  X86::SHRD16mrCL },
200    { X86::SHRD16rri8,  X86::SHRD16mri8 },
201    { X86::SHRD32rrCL,  X86::SHRD32mrCL },
202    { X86::SHRD32rri8,  X86::SHRD32mri8 },
203    { X86::SHRD64rrCL,  X86::SHRD64mrCL },
204    { X86::SHRD64rri8,  X86::SHRD64mri8 },
205    { X86::SUB16ri,     X86::SUB16mi },
206    { X86::SUB16ri8,    X86::SUB16mi8 },
207    { X86::SUB16rr,     X86::SUB16mr },
208    { X86::SUB32ri,     X86::SUB32mi },
209    { X86::SUB32ri8,    X86::SUB32mi8 },
210    { X86::SUB32rr,     X86::SUB32mr },
211    { X86::SUB64ri32,   X86::SUB64mi32 },
212    { X86::SUB64ri8,    X86::SUB64mi8 },
213    { X86::SUB64rr,     X86::SUB64mr },
214    { X86::SUB8ri,      X86::SUB8mi },
215    { X86::SUB8rr,      X86::SUB8mr },
216    { X86::XOR16ri,     X86::XOR16mi },
217    { X86::XOR16ri8,    X86::XOR16mi8 },
218    { X86::XOR16rr,     X86::XOR16mr },
219    { X86::XOR32ri,     X86::XOR32mi },
220    { X86::XOR32ri8,    X86::XOR32mi8 },
221    { X86::XOR32rr,     X86::XOR32mr },
222    { X86::XOR64ri32,   X86::XOR64mi32 },
223    { X86::XOR64ri8,    X86::XOR64mi8 },
224    { X86::XOR64rr,     X86::XOR64mr },
225    { X86::XOR8ri,      X86::XOR8mi },
226    { X86::XOR8rr,      X86::XOR8mr }
227  };
228
229  for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) {
230    unsigned RegOp = OpTbl2Addr[i][0];
231    unsigned MemOp = OpTbl2Addr[i][1] & ~TB_FLAGS;
232    assert(!RegOp2MemOpTable2Addr.count(RegOp) && "Duplicated entries?");
233    RegOp2MemOpTable2Addr[RegOp] = std::make_pair(MemOp, 0U);
234
235    // If this is not a reversable operation (because there is a many->one)
236    // mapping, don't insert the reverse of the operation into MemOp2RegOpTable.
237    if (OpTbl2Addr[i][1] & TB_NOT_REVERSABLE)
238      continue;
239
240    // Index 0, folded load and store, no alignment requirement.
241    unsigned AuxInfo = 0 | (1 << 4) | (1 << 5);
242
243    assert(!MemOp2RegOpTable.count(MemOp) &&
244            "Duplicated entries in unfolding maps?");
245    MemOp2RegOpTable[MemOp] = std::make_pair(RegOp, AuxInfo);
246  }
247
248  // If the third value is 1, then it's folding either a load or a store.
249  static const unsigned OpTbl0[][4] = {
250    { X86::BT16ri8,     X86::BT16mi8, 1, 0 },
251    { X86::BT32ri8,     X86::BT32mi8, 1, 0 },
252    { X86::BT64ri8,     X86::BT64mi8, 1, 0 },
253    { X86::CALL32r,     X86::CALL32m, 1, 0 },
254    { X86::CALL64r,     X86::CALL64m, 1, 0 },
255    { X86::WINCALL64r,  X86::WINCALL64m, 1, 0 },
256    { X86::CMP16ri,     X86::CMP16mi, 1, 0 },
257    { X86::CMP16ri8,    X86::CMP16mi8, 1, 0 },
258    { X86::CMP16rr,     X86::CMP16mr, 1, 0 },
259    { X86::CMP32ri,     X86::CMP32mi, 1, 0 },
260    { X86::CMP32ri8,    X86::CMP32mi8, 1, 0 },
261    { X86::CMP32rr,     X86::CMP32mr, 1, 0 },
262    { X86::CMP64ri32,   X86::CMP64mi32, 1, 0 },
263    { X86::CMP64ri8,    X86::CMP64mi8, 1, 0 },
264    { X86::CMP64rr,     X86::CMP64mr, 1, 0 },
265    { X86::CMP8ri,      X86::CMP8mi, 1, 0 },
266    { X86::CMP8rr,      X86::CMP8mr, 1, 0 },
267    { X86::DIV16r,      X86::DIV16m, 1, 0 },
268    { X86::DIV32r,      X86::DIV32m, 1, 0 },
269    { X86::DIV64r,      X86::DIV64m, 1, 0 },
270    { X86::DIV8r,       X86::DIV8m, 1, 0 },
271    { X86::EXTRACTPSrr, X86::EXTRACTPSmr, 0, 16 },
272    { X86::FsMOVAPDrr,  X86::MOVSDmr | TB_NOT_REVERSABLE , 0, 0 },
273    { X86::FsMOVAPSrr,  X86::MOVSSmr | TB_NOT_REVERSABLE , 0, 0 },
274    { X86::IDIV16r,     X86::IDIV16m, 1, 0 },
275    { X86::IDIV32r,     X86::IDIV32m, 1, 0 },
276    { X86::IDIV64r,     X86::IDIV64m, 1, 0 },
277    { X86::IDIV8r,      X86::IDIV8m, 1, 0 },
278    { X86::IMUL16r,     X86::IMUL16m, 1, 0 },
279    { X86::IMUL32r,     X86::IMUL32m, 1, 0 },
280    { X86::IMUL64r,     X86::IMUL64m, 1, 0 },
281    { X86::IMUL8r,      X86::IMUL8m, 1, 0 },
282    { X86::JMP32r,      X86::JMP32m, 1, 0 },
283    { X86::JMP64r,      X86::JMP64m, 1, 0 },
284    { X86::MOV16ri,     X86::MOV16mi, 0, 0 },
285    { X86::MOV16rr,     X86::MOV16mr, 0, 0 },
286    { X86::MOV32ri,     X86::MOV32mi, 0, 0 },
287    { X86::MOV32rr,     X86::MOV32mr, 0, 0 },
288    { X86::MOV64ri32,   X86::MOV64mi32, 0, 0 },
289    { X86::MOV64rr,     X86::MOV64mr, 0, 0 },
290    { X86::MOV8ri,      X86::MOV8mi, 0, 0 },
291    { X86::MOV8rr,      X86::MOV8mr, 0, 0 },
292    { X86::MOV8rr_NOREX, X86::MOV8mr_NOREX, 0, 0 },
293    { X86::MOVAPDrr,    X86::MOVAPDmr, 0, 16 },
294    { X86::MOVAPSrr,    X86::MOVAPSmr, 0, 16 },
295    { X86::MOVDQArr,    X86::MOVDQAmr, 0, 16 },
296    { X86::MOVPDI2DIrr, X86::MOVPDI2DImr, 0, 0 },
297    { X86::MOVPQIto64rr,X86::MOVPQI2QImr, 0, 0 },
298    { X86::MOVSDto64rr, X86::MOVSDto64mr, 0, 0 },
299    { X86::MOVSS2DIrr,  X86::MOVSS2DImr, 0, 0 },
300    { X86::MOVUPDrr,    X86::MOVUPDmr, 0, 0 },
301    { X86::MOVUPSrr,    X86::MOVUPSmr, 0, 0 },
302    { X86::MUL16r,      X86::MUL16m, 1, 0 },
303    { X86::MUL32r,      X86::MUL32m, 1, 0 },
304    { X86::MUL64r,      X86::MUL64m, 1, 0 },
305    { X86::MUL8r,       X86::MUL8m, 1, 0 },
306    { X86::SETAEr,      X86::SETAEm, 0, 0 },
307    { X86::SETAr,       X86::SETAm, 0, 0 },
308    { X86::SETBEr,      X86::SETBEm, 0, 0 },
309    { X86::SETBr,       X86::SETBm, 0, 0 },
310    { X86::SETEr,       X86::SETEm, 0, 0 },
311    { X86::SETGEr,      X86::SETGEm, 0, 0 },
312    { X86::SETGr,       X86::SETGm, 0, 0 },
313    { X86::SETLEr,      X86::SETLEm, 0, 0 },
314    { X86::SETLr,       X86::SETLm, 0, 0 },
315    { X86::SETNEr,      X86::SETNEm, 0, 0 },
316    { X86::SETNOr,      X86::SETNOm, 0, 0 },
317    { X86::SETNPr,      X86::SETNPm, 0, 0 },
318    { X86::SETNSr,      X86::SETNSm, 0, 0 },
319    { X86::SETOr,       X86::SETOm, 0, 0 },
320    { X86::SETPr,       X86::SETPm, 0, 0 },
321    { X86::SETSr,       X86::SETSm, 0, 0 },
322    { X86::TAILJMPr,    X86::TAILJMPm, 1, 0 },
323    { X86::TAILJMPr64,  X86::TAILJMPm64, 1, 0 },
324    { X86::TEST16ri,    X86::TEST16mi, 1, 0 },
325    { X86::TEST32ri,    X86::TEST32mi, 1, 0 },
326    { X86::TEST64ri32,  X86::TEST64mi32, 1, 0 },
327    { X86::TEST8ri,     X86::TEST8mi, 1, 0 }
328  };
329
330  for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) {
331    unsigned RegOp      = OpTbl0[i][0];
332    unsigned MemOp      = OpTbl0[i][1] & ~TB_FLAGS;
333    unsigned FoldedLoad = OpTbl0[i][2];
334    unsigned Align      = OpTbl0[i][3];
335    assert(!RegOp2MemOpTable0.count(RegOp) && "Duplicated entries?");
336    RegOp2MemOpTable0[RegOp] = std::make_pair(MemOp, Align);
337
338    // If this is not a reversable operation (because there is a many->one)
339    // mapping, don't insert the reverse of the operation into MemOp2RegOpTable.
340    if (OpTbl0[i][1] & TB_NOT_REVERSABLE)
341      continue;
342
343    // Index 0, folded load or store.
344    unsigned AuxInfo = 0 | (FoldedLoad << 4) | ((FoldedLoad^1) << 5);
345    assert(!MemOp2RegOpTable.count(MemOp) && "Duplicated entries?");
346    MemOp2RegOpTable[MemOp] = std::make_pair(RegOp, AuxInfo);
347  }
348
349  static const unsigned OpTbl1[][3] = {
350    { X86::CMP16rr,         X86::CMP16rm, 0 },
351    { X86::CMP32rr,         X86::CMP32rm, 0 },
352    { X86::CMP64rr,         X86::CMP64rm, 0 },
353    { X86::CMP8rr,          X86::CMP8rm, 0 },
354    { X86::CVTSD2SSrr,      X86::CVTSD2SSrm, 0 },
355    { X86::CVTSI2SD64rr,    X86::CVTSI2SD64rm, 0 },
356    { X86::CVTSI2SDrr,      X86::CVTSI2SDrm, 0 },
357    { X86::CVTSI2SS64rr,    X86::CVTSI2SS64rm, 0 },
358    { X86::CVTSI2SSrr,      X86::CVTSI2SSrm, 0 },
359    { X86::CVTSS2SDrr,      X86::CVTSS2SDrm, 0 },
360    { X86::CVTTSD2SI64rr,   X86::CVTTSD2SI64rm, 0 },
361    { X86::CVTTSD2SIrr,     X86::CVTTSD2SIrm, 0 },
362    { X86::CVTTSS2SI64rr,   X86::CVTTSS2SI64rm, 0 },
363    { X86::CVTTSS2SIrr,     X86::CVTTSS2SIrm, 0 },
364    { X86::FsMOVAPDrr,      X86::MOVSDrm | TB_NOT_REVERSABLE , 0 },
365    { X86::FsMOVAPSrr,      X86::MOVSSrm | TB_NOT_REVERSABLE , 0 },
366    { X86::IMUL16rri,       X86::IMUL16rmi, 0 },
367    { X86::IMUL16rri8,      X86::IMUL16rmi8, 0 },
368    { X86::IMUL32rri,       X86::IMUL32rmi, 0 },
369    { X86::IMUL32rri8,      X86::IMUL32rmi8, 0 },
370    { X86::IMUL64rri32,     X86::IMUL64rmi32, 0 },
371    { X86::IMUL64rri8,      X86::IMUL64rmi8, 0 },
372    { X86::Int_COMISDrr,    X86::Int_COMISDrm, 0 },
373    { X86::Int_COMISSrr,    X86::Int_COMISSrm, 0 },
374    { X86::Int_CVTDQ2PDrr,  X86::Int_CVTDQ2PDrm, 16 },
375    { X86::Int_CVTDQ2PSrr,  X86::Int_CVTDQ2PSrm, 16 },
376    { X86::Int_CVTPD2DQrr,  X86::Int_CVTPD2DQrm, 16 },
377    { X86::Int_CVTPD2PSrr,  X86::Int_CVTPD2PSrm, 16 },
378    { X86::Int_CVTPS2DQrr,  X86::Int_CVTPS2DQrm, 16 },
379    { X86::Int_CVTPS2PDrr,  X86::Int_CVTPS2PDrm, 0 },
380    { X86::CVTSD2SI64rr,    X86::CVTSD2SI64rm, 0 },
381    { X86::CVTSD2SIrr,      X86::CVTSD2SIrm, 0 },
382    { X86::Int_CVTSD2SSrr,  X86::Int_CVTSD2SSrm, 0 },
383    { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm, 0 },
384    { X86::Int_CVTSI2SDrr,  X86::Int_CVTSI2SDrm, 0 },
385    { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm, 0 },
386    { X86::Int_CVTSI2SSrr,  X86::Int_CVTSI2SSrm, 0 },
387    { X86::Int_CVTSS2SDrr,  X86::Int_CVTSS2SDrm, 0 },
388    { X86::Int_CVTSS2SI64rr,X86::Int_CVTSS2SI64rm, 0 },
389    { X86::Int_CVTSS2SIrr,  X86::Int_CVTSS2SIrm, 0 },
390    { X86::CVTTPD2DQrr,     X86::CVTTPD2DQrm, 16 },
391    { X86::CVTTPS2DQrr,     X86::CVTTPS2DQrm, 16 },
392    { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm, 0 },
393    { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm, 0 },
394    { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm, 0 },
395    { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm, 0 },
396    { X86::Int_UCOMISDrr,   X86::Int_UCOMISDrm, 0 },
397    { X86::Int_UCOMISSrr,   X86::Int_UCOMISSrm, 0 },
398    { X86::MOV16rr,         X86::MOV16rm, 0 },
399    { X86::MOV32rr,         X86::MOV32rm, 0 },
400    { X86::MOV64rr,         X86::MOV64rm, 0 },
401    { X86::MOV64toPQIrr,    X86::MOVQI2PQIrm, 0 },
402    { X86::MOV64toSDrr,     X86::MOV64toSDrm, 0 },
403    { X86::MOV8rr,          X86::MOV8rm, 0 },
404    { X86::MOVAPDrr,        X86::MOVAPDrm, 16 },
405    { X86::MOVAPSrr,        X86::MOVAPSrm, 16 },
406    { X86::MOVDDUPrr,       X86::MOVDDUPrm, 0 },
407    { X86::MOVDI2PDIrr,     X86::MOVDI2PDIrm, 0 },
408    { X86::MOVDI2SSrr,      X86::MOVDI2SSrm, 0 },
409    { X86::MOVDQArr,        X86::MOVDQArm, 16 },
410    { X86::MOVSHDUPrr,      X86::MOVSHDUPrm, 16 },
411    { X86::MOVSLDUPrr,      X86::MOVSLDUPrm, 16 },
412    { X86::MOVSX16rr8,      X86::MOVSX16rm8, 0 },
413    { X86::MOVSX32rr16,     X86::MOVSX32rm16, 0 },
414    { X86::MOVSX32rr8,      X86::MOVSX32rm8, 0 },
415    { X86::MOVSX64rr16,     X86::MOVSX64rm16, 0 },
416    { X86::MOVSX64rr32,     X86::MOVSX64rm32, 0 },
417    { X86::MOVSX64rr8,      X86::MOVSX64rm8, 0 },
418    { X86::MOVUPDrr,        X86::MOVUPDrm, 16 },
419    { X86::MOVUPSrr,        X86::MOVUPSrm, 0 },
420    { X86::MOVZDI2PDIrr,    X86::MOVZDI2PDIrm, 0 },
421    { X86::MOVZQI2PQIrr,    X86::MOVZQI2PQIrm, 0 },
422    { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm, 16 },
423    { X86::MOVZX16rr8,      X86::MOVZX16rm8, 0 },
424    { X86::MOVZX32rr16,     X86::MOVZX32rm16, 0 },
425    { X86::MOVZX32_NOREXrr8, X86::MOVZX32_NOREXrm8, 0 },
426    { X86::MOVZX32rr8,      X86::MOVZX32rm8, 0 },
427    { X86::MOVZX64rr16,     X86::MOVZX64rm16, 0 },
428    { X86::MOVZX64rr32,     X86::MOVZX64rm32, 0 },
429    { X86::MOVZX64rr8,      X86::MOVZX64rm8, 0 },
430    { X86::PSHUFDri,        X86::PSHUFDmi, 16 },
431    { X86::PSHUFHWri,       X86::PSHUFHWmi, 16 },
432    { X86::PSHUFLWri,       X86::PSHUFLWmi, 16 },
433    { X86::RCPPSr,          X86::RCPPSm, 16 },
434    { X86::RCPPSr_Int,      X86::RCPPSm_Int, 16 },
435    { X86::RSQRTPSr,        X86::RSQRTPSm, 16 },
436    { X86::RSQRTPSr_Int,    X86::RSQRTPSm_Int, 16 },
437    { X86::RSQRTSSr,        X86::RSQRTSSm, 0 },
438    { X86::RSQRTSSr_Int,    X86::RSQRTSSm_Int, 0 },
439    { X86::SQRTPDr,         X86::SQRTPDm, 16 },
440    { X86::SQRTPDr_Int,     X86::SQRTPDm_Int, 16 },
441    { X86::SQRTPSr,         X86::SQRTPSm, 16 },
442    { X86::SQRTPSr_Int,     X86::SQRTPSm_Int, 16 },
443    { X86::SQRTSDr,         X86::SQRTSDm, 0 },
444    { X86::SQRTSDr_Int,     X86::SQRTSDm_Int, 0 },
445    { X86::SQRTSSr,         X86::SQRTSSm, 0 },
446    { X86::SQRTSSr_Int,     X86::SQRTSSm_Int, 0 },
447    { X86::TEST16rr,        X86::TEST16rm, 0 },
448    { X86::TEST32rr,        X86::TEST32rm, 0 },
449    { X86::TEST64rr,        X86::TEST64rm, 0 },
450    { X86::TEST8rr,         X86::TEST8rm, 0 },
451    // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
452    { X86::UCOMISDrr,       X86::UCOMISDrm, 0 },
453    { X86::UCOMISSrr,       X86::UCOMISSrm, 0 }
454  };
455
456  for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) {
457    unsigned RegOp = OpTbl1[i][0];
458    unsigned MemOp = OpTbl1[i][1] & ~TB_FLAGS;
459    unsigned Align = OpTbl1[i][2];
460    assert(!RegOp2MemOpTable1.count(RegOp) && "Duplicate entries");
461    RegOp2MemOpTable1[RegOp] = std::make_pair(MemOp, Align);
462
463    // If this is not a reversable operation (because there is a many->one)
464    // mapping, don't insert the reverse of the operation into MemOp2RegOpTable.
465    if (OpTbl1[i][1] & TB_NOT_REVERSABLE)
466      continue;
467
468    // Index 1, folded load
469    unsigned AuxInfo = 1 | (1 << 4);
470    assert(!MemOp2RegOpTable.count(MemOp) && "Duplicate entries");
471    MemOp2RegOpTable[MemOp] = std::make_pair(RegOp, AuxInfo);
472  }
473
474  static const unsigned OpTbl2[][3] = {
475    { X86::ADC32rr,         X86::ADC32rm, 0 },
476    { X86::ADC64rr,         X86::ADC64rm, 0 },
477    { X86::ADD16rr,         X86::ADD16rm, 0 },
478    { X86::ADD16rr_DB,      X86::ADD16rm | TB_NOT_REVERSABLE, 0 },
479    { X86::ADD32rr,         X86::ADD32rm, 0 },
480    { X86::ADD32rr_DB,      X86::ADD32rm | TB_NOT_REVERSABLE, 0 },
481    { X86::ADD64rr,         X86::ADD64rm, 0 },
482    { X86::ADD64rr_DB,      X86::ADD64rm | TB_NOT_REVERSABLE, 0 },
483    { X86::ADD8rr,          X86::ADD8rm, 0 },
484    { X86::ADDPDrr,         X86::ADDPDrm, 16 },
485    { X86::ADDPSrr,         X86::ADDPSrm, 16 },
486    { X86::ADDSDrr,         X86::ADDSDrm, 0 },
487    { X86::ADDSSrr,         X86::ADDSSrm, 0 },
488    { X86::ADDSUBPDrr,      X86::ADDSUBPDrm, 16 },
489    { X86::ADDSUBPSrr,      X86::ADDSUBPSrm, 16 },
490    { X86::AND16rr,         X86::AND16rm, 0 },
491    { X86::AND32rr,         X86::AND32rm, 0 },
492    { X86::AND64rr,         X86::AND64rm, 0 },
493    { X86::AND8rr,          X86::AND8rm, 0 },
494    { X86::ANDNPDrr,        X86::ANDNPDrm, 16 },
495    { X86::ANDNPSrr,        X86::ANDNPSrm, 16 },
496    { X86::ANDPDrr,         X86::ANDPDrm, 16 },
497    { X86::ANDPSrr,         X86::ANDPSrm, 16 },
498    { X86::CMOVA16rr,       X86::CMOVA16rm, 0 },
499    { X86::CMOVA32rr,       X86::CMOVA32rm, 0 },
500    { X86::CMOVA64rr,       X86::CMOVA64rm, 0 },
501    { X86::CMOVAE16rr,      X86::CMOVAE16rm, 0 },
502    { X86::CMOVAE32rr,      X86::CMOVAE32rm, 0 },
503    { X86::CMOVAE64rr,      X86::CMOVAE64rm, 0 },
504    { X86::CMOVB16rr,       X86::CMOVB16rm, 0 },
505    { X86::CMOVB32rr,       X86::CMOVB32rm, 0 },
506    { X86::CMOVB64rr,       X86::CMOVB64rm, 0 },
507    { X86::CMOVBE16rr,      X86::CMOVBE16rm, 0 },
508    { X86::CMOVBE32rr,      X86::CMOVBE32rm, 0 },
509    { X86::CMOVBE64rr,      X86::CMOVBE64rm, 0 },
510    { X86::CMOVE16rr,       X86::CMOVE16rm, 0 },
511    { X86::CMOVE32rr,       X86::CMOVE32rm, 0 },
512    { X86::CMOVE64rr,       X86::CMOVE64rm, 0 },
513    { X86::CMOVG16rr,       X86::CMOVG16rm, 0 },
514    { X86::CMOVG32rr,       X86::CMOVG32rm, 0 },
515    { X86::CMOVG64rr,       X86::CMOVG64rm, 0 },
516    { X86::CMOVGE16rr,      X86::CMOVGE16rm, 0 },
517    { X86::CMOVGE32rr,      X86::CMOVGE32rm, 0 },
518    { X86::CMOVGE64rr,      X86::CMOVGE64rm, 0 },
519    { X86::CMOVL16rr,       X86::CMOVL16rm, 0 },
520    { X86::CMOVL32rr,       X86::CMOVL32rm, 0 },
521    { X86::CMOVL64rr,       X86::CMOVL64rm, 0 },
522    { X86::CMOVLE16rr,      X86::CMOVLE16rm, 0 },
523    { X86::CMOVLE32rr,      X86::CMOVLE32rm, 0 },
524    { X86::CMOVLE64rr,      X86::CMOVLE64rm, 0 },
525    { X86::CMOVNE16rr,      X86::CMOVNE16rm, 0 },
526    { X86::CMOVNE32rr,      X86::CMOVNE32rm, 0 },
527    { X86::CMOVNE64rr,      X86::CMOVNE64rm, 0 },
528    { X86::CMOVNO16rr,      X86::CMOVNO16rm, 0 },
529    { X86::CMOVNO32rr,      X86::CMOVNO32rm, 0 },
530    { X86::CMOVNO64rr,      X86::CMOVNO64rm, 0 },
531    { X86::CMOVNP16rr,      X86::CMOVNP16rm, 0 },
532    { X86::CMOVNP32rr,      X86::CMOVNP32rm, 0 },
533    { X86::CMOVNP64rr,      X86::CMOVNP64rm, 0 },
534    { X86::CMOVNS16rr,      X86::CMOVNS16rm, 0 },
535    { X86::CMOVNS32rr,      X86::CMOVNS32rm, 0 },
536    { X86::CMOVNS64rr,      X86::CMOVNS64rm, 0 },
537    { X86::CMOVO16rr,       X86::CMOVO16rm, 0 },
538    { X86::CMOVO32rr,       X86::CMOVO32rm, 0 },
539    { X86::CMOVO64rr,       X86::CMOVO64rm, 0 },
540    { X86::CMOVP16rr,       X86::CMOVP16rm, 0 },
541    { X86::CMOVP32rr,       X86::CMOVP32rm, 0 },
542    { X86::CMOVP64rr,       X86::CMOVP64rm, 0 },
543    { X86::CMOVS16rr,       X86::CMOVS16rm, 0 },
544    { X86::CMOVS32rr,       X86::CMOVS32rm, 0 },
545    { X86::CMOVS64rr,       X86::CMOVS64rm, 0 },
546    { X86::CMPPDrri,        X86::CMPPDrmi, 16 },
547    { X86::CMPPSrri,        X86::CMPPSrmi, 16 },
548    { X86::CMPSDrr,         X86::CMPSDrm, 0 },
549    { X86::CMPSSrr,         X86::CMPSSrm, 0 },
550    { X86::DIVPDrr,         X86::DIVPDrm, 16 },
551    { X86::DIVPSrr,         X86::DIVPSrm, 16 },
552    { X86::DIVSDrr,         X86::DIVSDrm, 0 },
553    { X86::DIVSSrr,         X86::DIVSSrm, 0 },
554    { X86::FsANDNPDrr,      X86::FsANDNPDrm, 16 },
555    { X86::FsANDNPSrr,      X86::FsANDNPSrm, 16 },
556    { X86::FsANDPDrr,       X86::FsANDPDrm, 16 },
557    { X86::FsANDPSrr,       X86::FsANDPSrm, 16 },
558    { X86::FsORPDrr,        X86::FsORPDrm, 16 },
559    { X86::FsORPSrr,        X86::FsORPSrm, 16 },
560    { X86::FsXORPDrr,       X86::FsXORPDrm, 16 },
561    { X86::FsXORPSrr,       X86::FsXORPSrm, 16 },
562    { X86::HADDPDrr,        X86::HADDPDrm, 16 },
563    { X86::HADDPSrr,        X86::HADDPSrm, 16 },
564    { X86::HSUBPDrr,        X86::HSUBPDrm, 16 },
565    { X86::HSUBPSrr,        X86::HSUBPSrm, 16 },
566    { X86::IMUL16rr,        X86::IMUL16rm, 0 },
567    { X86::IMUL32rr,        X86::IMUL32rm, 0 },
568    { X86::IMUL64rr,        X86::IMUL64rm, 0 },
569    { X86::Int_CMPSDrr,     X86::Int_CMPSDrm, 0 },
570    { X86::Int_CMPSSrr,     X86::Int_CMPSSrm, 0 },
571    { X86::MAXPDrr,         X86::MAXPDrm, 16 },
572    { X86::MAXPDrr_Int,     X86::MAXPDrm_Int, 16 },
573    { X86::MAXPSrr,         X86::MAXPSrm, 16 },
574    { X86::MAXPSrr_Int,     X86::MAXPSrm_Int, 16 },
575    { X86::MAXSDrr,         X86::MAXSDrm, 0 },
576    { X86::MAXSDrr_Int,     X86::MAXSDrm_Int, 0 },
577    { X86::MAXSSrr,         X86::MAXSSrm, 0 },
578    { X86::MAXSSrr_Int,     X86::MAXSSrm_Int, 0 },
579    { X86::MINPDrr,         X86::MINPDrm, 16 },
580    { X86::MINPDrr_Int,     X86::MINPDrm_Int, 16 },
581    { X86::MINPSrr,         X86::MINPSrm, 16 },
582    { X86::MINPSrr_Int,     X86::MINPSrm_Int, 16 },
583    { X86::MINSDrr,         X86::MINSDrm, 0 },
584    { X86::MINSDrr_Int,     X86::MINSDrm_Int, 0 },
585    { X86::MINSSrr,         X86::MINSSrm, 0 },
586    { X86::MINSSrr_Int,     X86::MINSSrm_Int, 0 },
587    { X86::MULPDrr,         X86::MULPDrm, 16 },
588    { X86::MULPSrr,         X86::MULPSrm, 16 },
589    { X86::MULSDrr,         X86::MULSDrm, 0 },
590    { X86::MULSSrr,         X86::MULSSrm, 0 },
591    { X86::OR16rr,          X86::OR16rm, 0 },
592    { X86::OR32rr,          X86::OR32rm, 0 },
593    { X86::OR64rr,          X86::OR64rm, 0 },
594    { X86::OR8rr,           X86::OR8rm, 0 },
595    { X86::ORPDrr,          X86::ORPDrm, 16 },
596    { X86::ORPSrr,          X86::ORPSrm, 16 },
597    { X86::PACKSSDWrr,      X86::PACKSSDWrm, 16 },
598    { X86::PACKSSWBrr,      X86::PACKSSWBrm, 16 },
599    { X86::PACKUSWBrr,      X86::PACKUSWBrm, 16 },
600    { X86::PADDBrr,         X86::PADDBrm, 16 },
601    { X86::PADDDrr,         X86::PADDDrm, 16 },
602    { X86::PADDQrr,         X86::PADDQrm, 16 },
603    { X86::PADDSBrr,        X86::PADDSBrm, 16 },
604    { X86::PADDSWrr,        X86::PADDSWrm, 16 },
605    { X86::PADDWrr,         X86::PADDWrm, 16 },
606    { X86::PANDNrr,         X86::PANDNrm, 16 },
607    { X86::PANDrr,          X86::PANDrm, 16 },
608    { X86::PAVGBrr,         X86::PAVGBrm, 16 },
609    { X86::PAVGWrr,         X86::PAVGWrm, 16 },
610    { X86::PCMPEQBrr,       X86::PCMPEQBrm, 16 },
611    { X86::PCMPEQDrr,       X86::PCMPEQDrm, 16 },
612    { X86::PCMPEQWrr,       X86::PCMPEQWrm, 16 },
613    { X86::PCMPGTBrr,       X86::PCMPGTBrm, 16 },
614    { X86::PCMPGTDrr,       X86::PCMPGTDrm, 16 },
615    { X86::PCMPGTWrr,       X86::PCMPGTWrm, 16 },
616    { X86::PINSRWrri,       X86::PINSRWrmi, 16 },
617    { X86::PMADDWDrr,       X86::PMADDWDrm, 16 },
618    { X86::PMAXSWrr,        X86::PMAXSWrm, 16 },
619    { X86::PMAXUBrr,        X86::PMAXUBrm, 16 },
620    { X86::PMINSWrr,        X86::PMINSWrm, 16 },
621    { X86::PMINUBrr,        X86::PMINUBrm, 16 },
622    { X86::PMULDQrr,        X86::PMULDQrm, 16 },
623    { X86::PMULHUWrr,       X86::PMULHUWrm, 16 },
624    { X86::PMULHWrr,        X86::PMULHWrm, 16 },
625    { X86::PMULLDrr,        X86::PMULLDrm, 16 },
626    { X86::PMULLWrr,        X86::PMULLWrm, 16 },
627    { X86::PMULUDQrr,       X86::PMULUDQrm, 16 },
628    { X86::PORrr,           X86::PORrm, 16 },
629    { X86::PSADBWrr,        X86::PSADBWrm, 16 },
630    { X86::PSLLDrr,         X86::PSLLDrm, 16 },
631    { X86::PSLLQrr,         X86::PSLLQrm, 16 },
632    { X86::PSLLWrr,         X86::PSLLWrm, 16 },
633    { X86::PSRADrr,         X86::PSRADrm, 16 },
634    { X86::PSRAWrr,         X86::PSRAWrm, 16 },
635    { X86::PSRLDrr,         X86::PSRLDrm, 16 },
636    { X86::PSRLQrr,         X86::PSRLQrm, 16 },
637    { X86::PSRLWrr,         X86::PSRLWrm, 16 },
638    { X86::PSUBBrr,         X86::PSUBBrm, 16 },
639    { X86::PSUBDrr,         X86::PSUBDrm, 16 },
640    { X86::PSUBSBrr,        X86::PSUBSBrm, 16 },
641    { X86::PSUBSWrr,        X86::PSUBSWrm, 16 },
642    { X86::PSUBWrr,         X86::PSUBWrm, 16 },
643    { X86::PUNPCKHBWrr,     X86::PUNPCKHBWrm, 16 },
644    { X86::PUNPCKHDQrr,     X86::PUNPCKHDQrm, 16 },
645    { X86::PUNPCKHQDQrr,    X86::PUNPCKHQDQrm, 16 },
646    { X86::PUNPCKHWDrr,     X86::PUNPCKHWDrm, 16 },
647    { X86::PUNPCKLBWrr,     X86::PUNPCKLBWrm, 16 },
648    { X86::PUNPCKLDQrr,     X86::PUNPCKLDQrm, 16 },
649    { X86::PUNPCKLQDQrr,    X86::PUNPCKLQDQrm, 16 },
650    { X86::PUNPCKLWDrr,     X86::PUNPCKLWDrm, 16 },
651    { X86::PXORrr,          X86::PXORrm, 16 },
652    { X86::SBB32rr,         X86::SBB32rm, 0 },
653    { X86::SBB64rr,         X86::SBB64rm, 0 },
654    { X86::SHUFPDrri,       X86::SHUFPDrmi, 16 },
655    { X86::SHUFPSrri,       X86::SHUFPSrmi, 16 },
656    { X86::SUB16rr,         X86::SUB16rm, 0 },
657    { X86::SUB32rr,         X86::SUB32rm, 0 },
658    { X86::SUB64rr,         X86::SUB64rm, 0 },
659    { X86::SUB8rr,          X86::SUB8rm, 0 },
660    { X86::SUBPDrr,         X86::SUBPDrm, 16 },
661    { X86::SUBPSrr,         X86::SUBPSrm, 16 },
662    { X86::SUBSDrr,         X86::SUBSDrm, 0 },
663    { X86::SUBSSrr,         X86::SUBSSrm, 0 },
664    // FIXME: TEST*rr -> swapped operand of TEST*mr.
665    { X86::UNPCKHPDrr,      X86::UNPCKHPDrm, 16 },
666    { X86::UNPCKHPSrr,      X86::UNPCKHPSrm, 16 },
667    { X86::UNPCKLPDrr,      X86::UNPCKLPDrm, 16 },
668    { X86::UNPCKLPSrr,      X86::UNPCKLPSrm, 16 },
669    { X86::XOR16rr,         X86::XOR16rm, 0 },
670    { X86::XOR32rr,         X86::XOR32rm, 0 },
671    { X86::XOR64rr,         X86::XOR64rm, 0 },
672    { X86::XOR8rr,          X86::XOR8rm, 0 },
673    { X86::XORPDrr,         X86::XORPDrm, 16 },
674    { X86::XORPSrr,         X86::XORPSrm, 16 }
675  };
676
677  for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) {
678    unsigned RegOp = OpTbl2[i][0];
679    unsigned MemOp = OpTbl2[i][1] & ~TB_FLAGS;
680    unsigned Align = OpTbl2[i][2];
681
682    assert(!RegOp2MemOpTable2.count(RegOp) && "Duplicate entry!");
683    RegOp2MemOpTable2[RegOp] = std::make_pair(MemOp, Align);
684
685    // If this is not a reversable operation (because there is a many->one)
686    // mapping, don't insert the reverse of the operation into MemOp2RegOpTable.
687    if (OpTbl2[i][1] & TB_NOT_REVERSABLE)
688      continue;
689
690    // Index 2, folded load
691    unsigned AuxInfo = 2 | (1 << 4);
692    assert(!MemOp2RegOpTable.count(MemOp) &&
693           "Duplicated entries in unfolding maps?");
694    MemOp2RegOpTable[MemOp] = std::make_pair(RegOp, AuxInfo);
695  }
696}
697
698bool
699X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
700                                    unsigned &SrcReg, unsigned &DstReg,
701                                    unsigned &SubIdx) const {
702  switch (MI.getOpcode()) {
703  default: break;
704  case X86::MOVSX16rr8:
705  case X86::MOVZX16rr8:
706  case X86::MOVSX32rr8:
707  case X86::MOVZX32rr8:
708  case X86::MOVSX64rr8:
709  case X86::MOVZX64rr8:
710    if (!TM.getSubtarget<X86Subtarget>().is64Bit())
711      // It's not always legal to reference the low 8-bit of the larger
712      // register in 32-bit mode.
713      return false;
714  case X86::MOVSX32rr16:
715  case X86::MOVZX32rr16:
716  case X86::MOVSX64rr16:
717  case X86::MOVZX64rr16:
718  case X86::MOVSX64rr32:
719  case X86::MOVZX64rr32: {
720    if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
721      // Be conservative.
722      return false;
723    SrcReg = MI.getOperand(1).getReg();
724    DstReg = MI.getOperand(0).getReg();
725    switch (MI.getOpcode()) {
726    default:
727      llvm_unreachable(0);
728      break;
729    case X86::MOVSX16rr8:
730    case X86::MOVZX16rr8:
731    case X86::MOVSX32rr8:
732    case X86::MOVZX32rr8:
733    case X86::MOVSX64rr8:
734    case X86::MOVZX64rr8:
735      SubIdx = X86::sub_8bit;
736      break;
737    case X86::MOVSX32rr16:
738    case X86::MOVZX32rr16:
739    case X86::MOVSX64rr16:
740    case X86::MOVZX64rr16:
741      SubIdx = X86::sub_16bit;
742      break;
743    case X86::MOVSX64rr32:
744    case X86::MOVZX64rr32:
745      SubIdx = X86::sub_32bit;
746      break;
747    }
748    return true;
749  }
750  }
751  return false;
752}
753
754/// isFrameOperand - Return true and the FrameIndex if the specified
755/// operand and follow operands form a reference to the stack frame.
756bool X86InstrInfo::isFrameOperand(const MachineInstr *MI, unsigned int Op,
757                                  int &FrameIndex) const {
758  if (MI->getOperand(Op).isFI() && MI->getOperand(Op+1).isImm() &&
759      MI->getOperand(Op+2).isReg() && MI->getOperand(Op+3).isImm() &&
760      MI->getOperand(Op+1).getImm() == 1 &&
761      MI->getOperand(Op+2).getReg() == 0 &&
762      MI->getOperand(Op+3).getImm() == 0) {
763    FrameIndex = MI->getOperand(Op).getIndex();
764    return true;
765  }
766  return false;
767}
768
769static bool isFrameLoadOpcode(int Opcode) {
770  switch (Opcode) {
771  default: break;
772  case X86::MOV8rm:
773  case X86::MOV16rm:
774  case X86::MOV32rm:
775  case X86::MOV64rm:
776  case X86::LD_Fp64m:
777  case X86::MOVSSrm:
778  case X86::MOVSDrm:
779  case X86::MOVAPSrm:
780  case X86::MOVAPDrm:
781  case X86::MOVDQArm:
782  case X86::MMX_MOVD64rm:
783  case X86::MMX_MOVQ64rm:
784    return true;
785    break;
786  }
787  return false;
788}
789
790static bool isFrameStoreOpcode(int Opcode) {
791  switch (Opcode) {
792  default: break;
793  case X86::MOV8mr:
794  case X86::MOV16mr:
795  case X86::MOV32mr:
796  case X86::MOV64mr:
797  case X86::ST_FpP64m:
798  case X86::MOVSSmr:
799  case X86::MOVSDmr:
800  case X86::MOVAPSmr:
801  case X86::MOVAPDmr:
802  case X86::MOVDQAmr:
803  case X86::MMX_MOVD64mr:
804  case X86::MMX_MOVQ64mr:
805  case X86::MMX_MOVNTQmr:
806    return true;
807  }
808  return false;
809}
810
811unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
812                                           int &FrameIndex) const {
813  if (isFrameLoadOpcode(MI->getOpcode()))
814    if (MI->getOperand(0).getSubReg() == 0 && isFrameOperand(MI, 1, FrameIndex))
815      return MI->getOperand(0).getReg();
816  return 0;
817}
818
819unsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr *MI,
820                                                 int &FrameIndex) const {
821  if (isFrameLoadOpcode(MI->getOpcode())) {
822    unsigned Reg;
823    if ((Reg = isLoadFromStackSlot(MI, FrameIndex)))
824      return Reg;
825    // Check for post-frame index elimination operations
826    const MachineMemOperand *Dummy;
827    return hasLoadFromStackSlot(MI, Dummy, FrameIndex);
828  }
829  return 0;
830}
831
832bool X86InstrInfo::hasLoadFromStackSlot(const MachineInstr *MI,
833                                        const MachineMemOperand *&MMO,
834                                        int &FrameIndex) const {
835  for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
836         oe = MI->memoperands_end();
837       o != oe;
838       ++o) {
839    if ((*o)->isLoad() && (*o)->getValue())
840      if (const FixedStackPseudoSourceValue *Value =
841          dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) {
842        FrameIndex = Value->getFrameIndex();
843        MMO = *o;
844        return true;
845      }
846  }
847  return false;
848}
849
850unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr *MI,
851                                          int &FrameIndex) const {
852  if (isFrameStoreOpcode(MI->getOpcode()))
853    if (MI->getOperand(X86::AddrNumOperands).getSubReg() == 0 &&
854        isFrameOperand(MI, 0, FrameIndex))
855      return MI->getOperand(X86::AddrNumOperands).getReg();
856  return 0;
857}
858
859unsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr *MI,
860                                                int &FrameIndex) const {
861  if (isFrameStoreOpcode(MI->getOpcode())) {
862    unsigned Reg;
863    if ((Reg = isStoreToStackSlot(MI, FrameIndex)))
864      return Reg;
865    // Check for post-frame index elimination operations
866    const MachineMemOperand *Dummy;
867    return hasStoreToStackSlot(MI, Dummy, FrameIndex);
868  }
869  return 0;
870}
871
872bool X86InstrInfo::hasStoreToStackSlot(const MachineInstr *MI,
873                                       const MachineMemOperand *&MMO,
874                                       int &FrameIndex) const {
875  for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
876         oe = MI->memoperands_end();
877       o != oe;
878       ++o) {
879    if ((*o)->isStore() && (*o)->getValue())
880      if (const FixedStackPseudoSourceValue *Value =
881          dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) {
882        FrameIndex = Value->getFrameIndex();
883        MMO = *o;
884        return true;
885      }
886  }
887  return false;
888}
889
890/// regIsPICBase - Return true if register is PIC base (i.e.g defined by
891/// X86::MOVPC32r.
892static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) {
893  bool isPICBase = false;
894  for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
895         E = MRI.def_end(); I != E; ++I) {
896    MachineInstr *DefMI = I.getOperand().getParent();
897    if (DefMI->getOpcode() != X86::MOVPC32r)
898      return false;
899    assert(!isPICBase && "More than one PIC base?");
900    isPICBase = true;
901  }
902  return isPICBase;
903}
904
905bool
906X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI,
907                                                AliasAnalysis *AA) const {
908  switch (MI->getOpcode()) {
909  default: break;
910    case X86::MOV8rm:
911    case X86::MOV16rm:
912    case X86::MOV32rm:
913    case X86::MOV64rm:
914    case X86::LD_Fp64m:
915    case X86::MOVSSrm:
916    case X86::MOVSDrm:
917    case X86::MOVAPSrm:
918    case X86::MOVUPSrm:
919    case X86::MOVUPSrm_Int:
920    case X86::MOVAPDrm:
921    case X86::MOVDQArm:
922    case X86::MMX_MOVD64rm:
923    case X86::MMX_MOVQ64rm:
924    case X86::FsMOVAPSrm:
925    case X86::FsMOVAPDrm: {
926      // Loads from constant pools are trivially rematerializable.
927      if (MI->getOperand(1).isReg() &&
928          MI->getOperand(2).isImm() &&
929          MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
930          MI->isInvariantLoad(AA)) {
931        unsigned BaseReg = MI->getOperand(1).getReg();
932        if (BaseReg == 0 || BaseReg == X86::RIP)
933          return true;
934        // Allow re-materialization of PIC load.
935        if (!ReMatPICStubLoad && MI->getOperand(4).isGlobal())
936          return false;
937        const MachineFunction &MF = *MI->getParent()->getParent();
938        const MachineRegisterInfo &MRI = MF.getRegInfo();
939        bool isPICBase = false;
940        for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
941               E = MRI.def_end(); I != E; ++I) {
942          MachineInstr *DefMI = I.getOperand().getParent();
943          if (DefMI->getOpcode() != X86::MOVPC32r)
944            return false;
945          assert(!isPICBase && "More than one PIC base?");
946          isPICBase = true;
947        }
948        return isPICBase;
949      }
950      return false;
951    }
952
953     case X86::LEA32r:
954     case X86::LEA64r: {
955       if (MI->getOperand(2).isImm() &&
956           MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
957           !MI->getOperand(4).isReg()) {
958         // lea fi#, lea GV, etc. are all rematerializable.
959         if (!MI->getOperand(1).isReg())
960           return true;
961         unsigned BaseReg = MI->getOperand(1).getReg();
962         if (BaseReg == 0)
963           return true;
964         // Allow re-materialization of lea PICBase + x.
965         const MachineFunction &MF = *MI->getParent()->getParent();
966         const MachineRegisterInfo &MRI = MF.getRegInfo();
967         return regIsPICBase(BaseReg, MRI);
968       }
969       return false;
970     }
971  }
972
973  // All other instructions marked M_REMATERIALIZABLE are always trivially
974  // rematerializable.
975  return true;
976}
977
978/// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction that
979/// would clobber the EFLAGS condition register. Note the result may be
980/// conservative. If it cannot definitely determine the safety after visiting
981/// a few instructions in each direction it assumes it's not safe.
982static bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
983                                  MachineBasicBlock::iterator I) {
984  MachineBasicBlock::iterator E = MBB.end();
985
986  // It's always safe to clobber EFLAGS at the end of a block.
987  if (I == E)
988    return true;
989
990  // For compile time consideration, if we are not able to determine the
991  // safety after visiting 4 instructions in each direction, we will assume
992  // it's not safe.
993  MachineBasicBlock::iterator Iter = I;
994  for (unsigned i = 0; i < 4; ++i) {
995    bool SeenDef = false;
996    for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
997      MachineOperand &MO = Iter->getOperand(j);
998      if (!MO.isReg())
999        continue;
1000      if (MO.getReg() == X86::EFLAGS) {
1001        if (MO.isUse())
1002          return false;
1003        SeenDef = true;
1004      }
1005    }
1006
1007    if (SeenDef)
1008      // This instruction defines EFLAGS, no need to look any further.
1009      return true;
1010    ++Iter;
1011    // Skip over DBG_VALUE.
1012    while (Iter != E && Iter->isDebugValue())
1013      ++Iter;
1014
1015    // If we make it to the end of the block, it's safe to clobber EFLAGS.
1016    if (Iter == E)
1017      return true;
1018  }
1019
1020  MachineBasicBlock::iterator B = MBB.begin();
1021  Iter = I;
1022  for (unsigned i = 0; i < 4; ++i) {
1023    // If we make it to the beginning of the block, it's safe to clobber
1024    // EFLAGS iff EFLAGS is not live-in.
1025    if (Iter == B)
1026      return !MBB.isLiveIn(X86::EFLAGS);
1027
1028    --Iter;
1029    // Skip over DBG_VALUE.
1030    while (Iter != B && Iter->isDebugValue())
1031      --Iter;
1032
1033    bool SawKill = false;
1034    for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
1035      MachineOperand &MO = Iter->getOperand(j);
1036      if (MO.isReg() && MO.getReg() == X86::EFLAGS) {
1037        if (MO.isDef()) return MO.isDead();
1038        if (MO.isKill()) SawKill = true;
1039      }
1040    }
1041
1042    if (SawKill)
1043      // This instruction kills EFLAGS and doesn't redefine it, so
1044      // there's no need to look further.
1045      return true;
1046  }
1047
1048  // Conservative answer.
1049  return false;
1050}
1051
1052void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
1053                                 MachineBasicBlock::iterator I,
1054                                 unsigned DestReg, unsigned SubIdx,
1055                                 const MachineInstr *Orig,
1056                                 const TargetRegisterInfo &TRI) const {
1057  DebugLoc DL = Orig->getDebugLoc();
1058
1059  // MOV32r0 etc. are implemented with xor which clobbers condition code.
1060  // Re-materialize them as movri instructions to avoid side effects.
1061  bool Clone = true;
1062  unsigned Opc = Orig->getOpcode();
1063  switch (Opc) {
1064  default: break;
1065  case X86::MOV8r0:
1066  case X86::MOV16r0:
1067  case X86::MOV32r0:
1068  case X86::MOV64r0: {
1069    if (!isSafeToClobberEFLAGS(MBB, I)) {
1070      switch (Opc) {
1071      default: break;
1072      case X86::MOV8r0:  Opc = X86::MOV8ri;  break;
1073      case X86::MOV16r0: Opc = X86::MOV16ri; break;
1074      case X86::MOV32r0: Opc = X86::MOV32ri; break;
1075      case X86::MOV64r0: Opc = X86::MOV64ri64i32; break;
1076      }
1077      Clone = false;
1078    }
1079    break;
1080  }
1081  }
1082
1083  if (Clone) {
1084    MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
1085    MBB.insert(I, MI);
1086  } else {
1087    BuildMI(MBB, I, DL, get(Opc)).addOperand(Orig->getOperand(0)).addImm(0);
1088  }
1089
1090  MachineInstr *NewMI = prior(I);
1091  NewMI->substituteRegister(Orig->getOperand(0).getReg(), DestReg, SubIdx, TRI);
1092}
1093
1094/// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that
1095/// is not marked dead.
1096static bool hasLiveCondCodeDef(MachineInstr *MI) {
1097  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1098    MachineOperand &MO = MI->getOperand(i);
1099    if (MO.isReg() && MO.isDef() &&
1100        MO.getReg() == X86::EFLAGS && !MO.isDead()) {
1101      return true;
1102    }
1103  }
1104  return false;
1105}
1106
1107/// convertToThreeAddressWithLEA - Helper for convertToThreeAddress when
1108/// 16-bit LEA is disabled, use 32-bit LEA to form 3-address code by promoting
1109/// to a 32-bit superregister and then truncating back down to a 16-bit
1110/// subregister.
1111MachineInstr *
1112X86InstrInfo::convertToThreeAddressWithLEA(unsigned MIOpc,
1113                                           MachineFunction::iterator &MFI,
1114                                           MachineBasicBlock::iterator &MBBI,
1115                                           LiveVariables *LV) const {
1116  MachineInstr *MI = MBBI;
1117  unsigned Dest = MI->getOperand(0).getReg();
1118  unsigned Src = MI->getOperand(1).getReg();
1119  bool isDead = MI->getOperand(0).isDead();
1120  bool isKill = MI->getOperand(1).isKill();
1121
1122  unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit()
1123    ? X86::LEA64_32r : X86::LEA32r;
1124  MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
1125  unsigned leaInReg = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
1126  unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
1127
1128  // Build and insert into an implicit UNDEF value. This is OK because
1129  // well be shifting and then extracting the lower 16-bits.
1130  // This has the potential to cause partial register stall. e.g.
1131  //   movw    (%rbp,%rcx,2), %dx
1132  //   leal    -65(%rdx), %esi
1133  // But testing has shown this *does* help performance in 64-bit mode (at
1134  // least on modern x86 machines).
1135  BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg);
1136  MachineInstr *InsMI =
1137    BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY))
1138    .addReg(leaInReg, RegState::Define, X86::sub_16bit)
1139    .addReg(Src, getKillRegState(isKill));
1140
1141  MachineInstrBuilder MIB = BuildMI(*MFI, MBBI, MI->getDebugLoc(),
1142                                    get(Opc), leaOutReg);
1143  switch (MIOpc) {
1144  default:
1145    llvm_unreachable(0);
1146    break;
1147  case X86::SHL16ri: {
1148    unsigned ShAmt = MI->getOperand(2).getImm();
1149    MIB.addReg(0).addImm(1 << ShAmt)
1150       .addReg(leaInReg, RegState::Kill).addImm(0).addReg(0);
1151    break;
1152  }
1153  case X86::INC16r:
1154  case X86::INC64_16r:
1155    addRegOffset(MIB, leaInReg, true, 1);
1156    break;
1157  case X86::DEC16r:
1158  case X86::DEC64_16r:
1159    addRegOffset(MIB, leaInReg, true, -1);
1160    break;
1161  case X86::ADD16ri:
1162  case X86::ADD16ri8:
1163  case X86::ADD16ri_DB:
1164  case X86::ADD16ri8_DB:
1165    addRegOffset(MIB, leaInReg, true, MI->getOperand(2).getImm());
1166    break;
1167  case X86::ADD16rr:
1168  case X86::ADD16rr_DB: {
1169    unsigned Src2 = MI->getOperand(2).getReg();
1170    bool isKill2 = MI->getOperand(2).isKill();
1171    unsigned leaInReg2 = 0;
1172    MachineInstr *InsMI2 = 0;
1173    if (Src == Src2) {
1174      // ADD16rr %reg1028<kill>, %reg1028
1175      // just a single insert_subreg.
1176      addRegReg(MIB, leaInReg, true, leaInReg, false);
1177    } else {
1178      leaInReg2 = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
1179      // Build and insert into an implicit UNDEF value. This is OK because
1180      // well be shifting and then extracting the lower 16-bits.
1181      BuildMI(*MFI, MIB, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg2);
1182      InsMI2 =
1183        BuildMI(*MFI, MIB, MI->getDebugLoc(), get(TargetOpcode::COPY))
1184        .addReg(leaInReg2, RegState::Define, X86::sub_16bit)
1185        .addReg(Src2, getKillRegState(isKill2));
1186      addRegReg(MIB, leaInReg, true, leaInReg2, true);
1187    }
1188    if (LV && isKill2 && InsMI2)
1189      LV->replaceKillInstruction(Src2, MI, InsMI2);
1190    break;
1191  }
1192  }
1193
1194  MachineInstr *NewMI = MIB;
1195  MachineInstr *ExtMI =
1196    BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY))
1197    .addReg(Dest, RegState::Define | getDeadRegState(isDead))
1198    .addReg(leaOutReg, RegState::Kill, X86::sub_16bit);
1199
1200  if (LV) {
1201    // Update live variables
1202    LV->getVarInfo(leaInReg).Kills.push_back(NewMI);
1203    LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI);
1204    if (isKill)
1205      LV->replaceKillInstruction(Src, MI, InsMI);
1206    if (isDead)
1207      LV->replaceKillInstruction(Dest, MI, ExtMI);
1208  }
1209
1210  return ExtMI;
1211}
1212
1213/// convertToThreeAddress - This method must be implemented by targets that
1214/// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
1215/// may be able to convert a two-address instruction into a true
1216/// three-address instruction on demand.  This allows the X86 target (for
1217/// example) to convert ADD and SHL instructions into LEA instructions if they
1218/// would require register copies due to two-addressness.
1219///
1220/// This method returns a null pointer if the transformation cannot be
1221/// performed, otherwise it returns the new instruction.
1222///
1223MachineInstr *
1224X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
1225                                    MachineBasicBlock::iterator &MBBI,
1226                                    LiveVariables *LV) const {
1227  MachineInstr *MI = MBBI;
1228  MachineFunction &MF = *MI->getParent()->getParent();
1229  // All instructions input are two-addr instructions.  Get the known operands.
1230  unsigned Dest = MI->getOperand(0).getReg();
1231  unsigned Src = MI->getOperand(1).getReg();
1232  bool isDead = MI->getOperand(0).isDead();
1233  bool isKill = MI->getOperand(1).isKill();
1234
1235  MachineInstr *NewMI = NULL;
1236  // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's.  When
1237  // we have better subtarget support, enable the 16-bit LEA generation here.
1238  // 16-bit LEA is also slow on Core2.
1239  bool DisableLEA16 = true;
1240  bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
1241
1242  unsigned MIOpc = MI->getOpcode();
1243  switch (MIOpc) {
1244  case X86::SHUFPSrri: {
1245    assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!");
1246    if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
1247
1248    unsigned B = MI->getOperand(1).getReg();
1249    unsigned C = MI->getOperand(2).getReg();
1250    if (B != C) return 0;
1251    unsigned A = MI->getOperand(0).getReg();
1252    unsigned M = MI->getOperand(3).getImm();
1253    NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::PSHUFDri))
1254      .addReg(A, RegState::Define | getDeadRegState(isDead))
1255      .addReg(B, getKillRegState(isKill)).addImm(M);
1256    break;
1257  }
1258  case X86::SHL64ri: {
1259    assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
1260    // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1261    // the flags produced by a shift yet, so this is safe.
1262    unsigned ShAmt = MI->getOperand(2).getImm();
1263    if (ShAmt == 0 || ShAmt >= 4) return 0;
1264
1265    // LEA can't handle RSP.
1266    if (TargetRegisterInfo::isVirtualRegister(Src) &&
1267        !MF.getRegInfo().constrainRegClass(Src, &X86::GR64_NOSPRegClass))
1268      return 0;
1269
1270    NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
1271      .addReg(Dest, RegState::Define | getDeadRegState(isDead))
1272      .addReg(0).addImm(1 << ShAmt)
1273      .addReg(Src, getKillRegState(isKill))
1274      .addImm(0).addReg(0);
1275    break;
1276  }
1277  case X86::SHL32ri: {
1278    assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
1279    // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1280    // the flags produced by a shift yet, so this is safe.
1281    unsigned ShAmt = MI->getOperand(2).getImm();
1282    if (ShAmt == 0 || ShAmt >= 4) return 0;
1283
1284    // LEA can't handle ESP.
1285    if (TargetRegisterInfo::isVirtualRegister(Src) &&
1286        !MF.getRegInfo().constrainRegClass(Src, &X86::GR32_NOSPRegClass))
1287      return 0;
1288
1289    unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
1290    NewMI = BuildMI(MF, MI->getDebugLoc(), get(Opc))
1291      .addReg(Dest, RegState::Define | getDeadRegState(isDead))
1292      .addReg(0).addImm(1 << ShAmt)
1293      .addReg(Src, getKillRegState(isKill)).addImm(0).addReg(0);
1294    break;
1295  }
1296  case X86::SHL16ri: {
1297    assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
1298    // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1299    // the flags produced by a shift yet, so this is safe.
1300    unsigned ShAmt = MI->getOperand(2).getImm();
1301    if (ShAmt == 0 || ShAmt >= 4) return 0;
1302
1303    if (DisableLEA16)
1304      return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
1305    NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1306      .addReg(Dest, RegState::Define | getDeadRegState(isDead))
1307      .addReg(0).addImm(1 << ShAmt)
1308      .addReg(Src, getKillRegState(isKill))
1309      .addImm(0).addReg(0);
1310    break;
1311  }
1312  default: {
1313    // The following opcodes also sets the condition code register(s). Only
1314    // convert them to equivalent lea if the condition code register def's
1315    // are dead!
1316    if (hasLiveCondCodeDef(MI))
1317      return 0;
1318
1319    switch (MIOpc) {
1320    default: return 0;
1321    case X86::INC64r:
1322    case X86::INC32r:
1323    case X86::INC64_32r: {
1324      assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
1325      unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
1326        : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
1327
1328      // LEA can't handle RSP.
1329      if (TargetRegisterInfo::isVirtualRegister(Src) &&
1330          !MF.getRegInfo().constrainRegClass(Src,
1331                            MIOpc == X86::INC64r ? X86::GR64_NOSPRegisterClass :
1332                                                   X86::GR32_NOSPRegisterClass))
1333        return 0;
1334
1335      NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
1336                              .addReg(Dest, RegState::Define |
1337                                      getDeadRegState(isDead)),
1338                              Src, isKill, 1);
1339      break;
1340    }
1341    case X86::INC16r:
1342    case X86::INC64_16r:
1343      if (DisableLEA16)
1344        return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
1345      assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
1346      NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1347                           .addReg(Dest, RegState::Define |
1348                                   getDeadRegState(isDead)),
1349                           Src, isKill, 1);
1350      break;
1351    case X86::DEC64r:
1352    case X86::DEC32r:
1353    case X86::DEC64_32r: {
1354      assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
1355      unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
1356        : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
1357      // LEA can't handle RSP.
1358      if (TargetRegisterInfo::isVirtualRegister(Src) &&
1359          !MF.getRegInfo().constrainRegClass(Src,
1360                            MIOpc == X86::DEC64r ? X86::GR64_NOSPRegisterClass :
1361                                                   X86::GR32_NOSPRegisterClass))
1362        return 0;
1363
1364      NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
1365                              .addReg(Dest, RegState::Define |
1366                                      getDeadRegState(isDead)),
1367                              Src, isKill, -1);
1368      break;
1369    }
1370    case X86::DEC16r:
1371    case X86::DEC64_16r:
1372      if (DisableLEA16)
1373        return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
1374      assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
1375      NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1376                           .addReg(Dest, RegState::Define |
1377                                   getDeadRegState(isDead)),
1378                           Src, isKill, -1);
1379      break;
1380    case X86::ADD64rr:
1381    case X86::ADD64rr_DB:
1382    case X86::ADD32rr:
1383    case X86::ADD32rr_DB: {
1384      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1385      unsigned Opc;
1386      TargetRegisterClass *RC;
1387      if (MIOpc == X86::ADD64rr || MIOpc == X86::ADD64rr_DB) {
1388        Opc = X86::LEA64r;
1389        RC = X86::GR64_NOSPRegisterClass;
1390      } else {
1391        Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
1392        RC = X86::GR32_NOSPRegisterClass;
1393      }
1394
1395
1396      unsigned Src2 = MI->getOperand(2).getReg();
1397      bool isKill2 = MI->getOperand(2).isKill();
1398
1399      // LEA can't handle RSP.
1400      if (TargetRegisterInfo::isVirtualRegister(Src2) &&
1401          !MF.getRegInfo().constrainRegClass(Src2, RC))
1402        return 0;
1403
1404      NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(Opc))
1405                        .addReg(Dest, RegState::Define |
1406                                getDeadRegState(isDead)),
1407                        Src, isKill, Src2, isKill2);
1408      if (LV && isKill2)
1409        LV->replaceKillInstruction(Src2, MI, NewMI);
1410      break;
1411    }
1412    case X86::ADD16rr:
1413    case X86::ADD16rr_DB: {
1414      if (DisableLEA16)
1415        return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
1416      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1417      unsigned Src2 = MI->getOperand(2).getReg();
1418      bool isKill2 = MI->getOperand(2).isKill();
1419      NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1420                        .addReg(Dest, RegState::Define |
1421                                getDeadRegState(isDead)),
1422                        Src, isKill, Src2, isKill2);
1423      if (LV && isKill2)
1424        LV->replaceKillInstruction(Src2, MI, NewMI);
1425      break;
1426    }
1427    case X86::ADD64ri32:
1428    case X86::ADD64ri8:
1429    case X86::ADD64ri32_DB:
1430    case X86::ADD64ri8_DB:
1431      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1432      NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
1433                              .addReg(Dest, RegState::Define |
1434                                      getDeadRegState(isDead)),
1435                              Src, isKill, MI->getOperand(2).getImm());
1436      break;
1437    case X86::ADD32ri:
1438    case X86::ADD32ri8:
1439    case X86::ADD32ri_DB:
1440    case X86::ADD32ri8_DB: {
1441      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1442      unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
1443      NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
1444                              .addReg(Dest, RegState::Define |
1445                                      getDeadRegState(isDead)),
1446                                Src, isKill, MI->getOperand(2).getImm());
1447      break;
1448    }
1449    case X86::ADD16ri:
1450    case X86::ADD16ri8:
1451    case X86::ADD16ri_DB:
1452    case X86::ADD16ri8_DB:
1453      if (DisableLEA16)
1454        return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
1455      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1456      NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1457                              .addReg(Dest, RegState::Define |
1458                                      getDeadRegState(isDead)),
1459                              Src, isKill, MI->getOperand(2).getImm());
1460      break;
1461    }
1462  }
1463  }
1464
1465  if (!NewMI) return 0;
1466
1467  if (LV) {  // Update live variables
1468    if (isKill)
1469      LV->replaceKillInstruction(Src, MI, NewMI);
1470    if (isDead)
1471      LV->replaceKillInstruction(Dest, MI, NewMI);
1472  }
1473
1474  MFI->insert(MBBI, NewMI);          // Insert the new inst
1475  return NewMI;
1476}
1477
1478/// commuteInstruction - We have a few instructions that must be hacked on to
1479/// commute them.
1480///
1481MachineInstr *
1482X86InstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
1483  switch (MI->getOpcode()) {
1484  case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
1485  case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
1486  case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
1487  case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
1488  case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
1489  case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
1490    unsigned Opc;
1491    unsigned Size;
1492    switch (MI->getOpcode()) {
1493    default: llvm_unreachable("Unreachable!");
1494    case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
1495    case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
1496    case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
1497    case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
1498    case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
1499    case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
1500    }
1501    unsigned Amt = MI->getOperand(3).getImm();
1502    if (NewMI) {
1503      MachineFunction &MF = *MI->getParent()->getParent();
1504      MI = MF.CloneMachineInstr(MI);
1505      NewMI = false;
1506    }
1507    MI->setDesc(get(Opc));
1508    MI->getOperand(3).setImm(Size-Amt);
1509    return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
1510  }
1511  case X86::CMOVB16rr:
1512  case X86::CMOVB32rr:
1513  case X86::CMOVB64rr:
1514  case X86::CMOVAE16rr:
1515  case X86::CMOVAE32rr:
1516  case X86::CMOVAE64rr:
1517  case X86::CMOVE16rr:
1518  case X86::CMOVE32rr:
1519  case X86::CMOVE64rr:
1520  case X86::CMOVNE16rr:
1521  case X86::CMOVNE32rr:
1522  case X86::CMOVNE64rr:
1523  case X86::CMOVBE16rr:
1524  case X86::CMOVBE32rr:
1525  case X86::CMOVBE64rr:
1526  case X86::CMOVA16rr:
1527  case X86::CMOVA32rr:
1528  case X86::CMOVA64rr:
1529  case X86::CMOVL16rr:
1530  case X86::CMOVL32rr:
1531  case X86::CMOVL64rr:
1532  case X86::CMOVGE16rr:
1533  case X86::CMOVGE32rr:
1534  case X86::CMOVGE64rr:
1535  case X86::CMOVLE16rr:
1536  case X86::CMOVLE32rr:
1537  case X86::CMOVLE64rr:
1538  case X86::CMOVG16rr:
1539  case X86::CMOVG32rr:
1540  case X86::CMOVG64rr:
1541  case X86::CMOVS16rr:
1542  case X86::CMOVS32rr:
1543  case X86::CMOVS64rr:
1544  case X86::CMOVNS16rr:
1545  case X86::CMOVNS32rr:
1546  case X86::CMOVNS64rr:
1547  case X86::CMOVP16rr:
1548  case X86::CMOVP32rr:
1549  case X86::CMOVP64rr:
1550  case X86::CMOVNP16rr:
1551  case X86::CMOVNP32rr:
1552  case X86::CMOVNP64rr:
1553  case X86::CMOVO16rr:
1554  case X86::CMOVO32rr:
1555  case X86::CMOVO64rr:
1556  case X86::CMOVNO16rr:
1557  case X86::CMOVNO32rr:
1558  case X86::CMOVNO64rr: {
1559    unsigned Opc = 0;
1560    switch (MI->getOpcode()) {
1561    default: break;
1562    case X86::CMOVB16rr:  Opc = X86::CMOVAE16rr; break;
1563    case X86::CMOVB32rr:  Opc = X86::CMOVAE32rr; break;
1564    case X86::CMOVB64rr:  Opc = X86::CMOVAE64rr; break;
1565    case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break;
1566    case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break;
1567    case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break;
1568    case X86::CMOVE16rr:  Opc = X86::CMOVNE16rr; break;
1569    case X86::CMOVE32rr:  Opc = X86::CMOVNE32rr; break;
1570    case X86::CMOVE64rr:  Opc = X86::CMOVNE64rr; break;
1571    case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break;
1572    case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break;
1573    case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break;
1574    case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break;
1575    case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break;
1576    case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break;
1577    case X86::CMOVA16rr:  Opc = X86::CMOVBE16rr; break;
1578    case X86::CMOVA32rr:  Opc = X86::CMOVBE32rr; break;
1579    case X86::CMOVA64rr:  Opc = X86::CMOVBE64rr; break;
1580    case X86::CMOVL16rr:  Opc = X86::CMOVGE16rr; break;
1581    case X86::CMOVL32rr:  Opc = X86::CMOVGE32rr; break;
1582    case X86::CMOVL64rr:  Opc = X86::CMOVGE64rr; break;
1583    case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break;
1584    case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break;
1585    case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break;
1586    case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break;
1587    case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break;
1588    case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break;
1589    case X86::CMOVG16rr:  Opc = X86::CMOVLE16rr; break;
1590    case X86::CMOVG32rr:  Opc = X86::CMOVLE32rr; break;
1591    case X86::CMOVG64rr:  Opc = X86::CMOVLE64rr; break;
1592    case X86::CMOVS16rr:  Opc = X86::CMOVNS16rr; break;
1593    case X86::CMOVS32rr:  Opc = X86::CMOVNS32rr; break;
1594    case X86::CMOVS64rr:  Opc = X86::CMOVNS64rr; break;
1595    case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break;
1596    case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break;
1597    case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break;
1598    case X86::CMOVP16rr:  Opc = X86::CMOVNP16rr; break;
1599    case X86::CMOVP32rr:  Opc = X86::CMOVNP32rr; break;
1600    case X86::CMOVP64rr:  Opc = X86::CMOVNP64rr; break;
1601    case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break;
1602    case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break;
1603    case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break;
1604    case X86::CMOVO16rr:  Opc = X86::CMOVNO16rr; break;
1605    case X86::CMOVO32rr:  Opc = X86::CMOVNO32rr; break;
1606    case X86::CMOVO64rr:  Opc = X86::CMOVNO64rr; break;
1607    case X86::CMOVNO16rr: Opc = X86::CMOVO16rr; break;
1608    case X86::CMOVNO32rr: Opc = X86::CMOVO32rr; break;
1609    case X86::CMOVNO64rr: Opc = X86::CMOVO64rr; break;
1610    }
1611    if (NewMI) {
1612      MachineFunction &MF = *MI->getParent()->getParent();
1613      MI = MF.CloneMachineInstr(MI);
1614      NewMI = false;
1615    }
1616    MI->setDesc(get(Opc));
1617    // Fallthrough intended.
1618  }
1619  default:
1620    return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
1621  }
1622}
1623
1624static X86::CondCode GetCondFromBranchOpc(unsigned BrOpc) {
1625  switch (BrOpc) {
1626  default: return X86::COND_INVALID;
1627  case X86::JE_4:  return X86::COND_E;
1628  case X86::JNE_4: return X86::COND_NE;
1629  case X86::JL_4:  return X86::COND_L;
1630  case X86::JLE_4: return X86::COND_LE;
1631  case X86::JG_4:  return X86::COND_G;
1632  case X86::JGE_4: return X86::COND_GE;
1633  case X86::JB_4:  return X86::COND_B;
1634  case X86::JBE_4: return X86::COND_BE;
1635  case X86::JA_4:  return X86::COND_A;
1636  case X86::JAE_4: return X86::COND_AE;
1637  case X86::JS_4:  return X86::COND_S;
1638  case X86::JNS_4: return X86::COND_NS;
1639  case X86::JP_4:  return X86::COND_P;
1640  case X86::JNP_4: return X86::COND_NP;
1641  case X86::JO_4:  return X86::COND_O;
1642  case X86::JNO_4: return X86::COND_NO;
1643  }
1644}
1645
1646unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
1647  switch (CC) {
1648  default: llvm_unreachable("Illegal condition code!");
1649  case X86::COND_E:  return X86::JE_4;
1650  case X86::COND_NE: return X86::JNE_4;
1651  case X86::COND_L:  return X86::JL_4;
1652  case X86::COND_LE: return X86::JLE_4;
1653  case X86::COND_G:  return X86::JG_4;
1654  case X86::COND_GE: return X86::JGE_4;
1655  case X86::COND_B:  return X86::JB_4;
1656  case X86::COND_BE: return X86::JBE_4;
1657  case X86::COND_A:  return X86::JA_4;
1658  case X86::COND_AE: return X86::JAE_4;
1659  case X86::COND_S:  return X86::JS_4;
1660  case X86::COND_NS: return X86::JNS_4;
1661  case X86::COND_P:  return X86::JP_4;
1662  case X86::COND_NP: return X86::JNP_4;
1663  case X86::COND_O:  return X86::JO_4;
1664  case X86::COND_NO: return X86::JNO_4;
1665  }
1666}
1667
1668/// GetOppositeBranchCondition - Return the inverse of the specified condition,
1669/// e.g. turning COND_E to COND_NE.
1670X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
1671  switch (CC) {
1672  default: llvm_unreachable("Illegal condition code!");
1673  case X86::COND_E:  return X86::COND_NE;
1674  case X86::COND_NE: return X86::COND_E;
1675  case X86::COND_L:  return X86::COND_GE;
1676  case X86::COND_LE: return X86::COND_G;
1677  case X86::COND_G:  return X86::COND_LE;
1678  case X86::COND_GE: return X86::COND_L;
1679  case X86::COND_B:  return X86::COND_AE;
1680  case X86::COND_BE: return X86::COND_A;
1681  case X86::COND_A:  return X86::COND_BE;
1682  case X86::COND_AE: return X86::COND_B;
1683  case X86::COND_S:  return X86::COND_NS;
1684  case X86::COND_NS: return X86::COND_S;
1685  case X86::COND_P:  return X86::COND_NP;
1686  case X86::COND_NP: return X86::COND_P;
1687  case X86::COND_O:  return X86::COND_NO;
1688  case X86::COND_NO: return X86::COND_O;
1689  }
1690}
1691
1692bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
1693  const TargetInstrDesc &TID = MI->getDesc();
1694  if (!TID.isTerminator()) return false;
1695
1696  // Conditional branch is a special case.
1697  if (TID.isBranch() && !TID.isBarrier())
1698    return true;
1699  if (!TID.isPredicable())
1700    return true;
1701  return !isPredicated(MI);
1702}
1703
1704bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
1705                                 MachineBasicBlock *&TBB,
1706                                 MachineBasicBlock *&FBB,
1707                                 SmallVectorImpl<MachineOperand> &Cond,
1708                                 bool AllowModify) const {
1709  // Start from the bottom of the block and work up, examining the
1710  // terminator instructions.
1711  MachineBasicBlock::iterator I = MBB.end();
1712  MachineBasicBlock::iterator UnCondBrIter = MBB.end();
1713  while (I != MBB.begin()) {
1714    --I;
1715    if (I->isDebugValue())
1716      continue;
1717
1718    // Working from the bottom, when we see a non-terminator instruction, we're
1719    // done.
1720    if (!isUnpredicatedTerminator(I))
1721      break;
1722
1723    // A terminator that isn't a branch can't easily be handled by this
1724    // analysis.
1725    if (!I->getDesc().isBranch())
1726      return true;
1727
1728    // Handle unconditional branches.
1729    if (I->getOpcode() == X86::JMP_4) {
1730      UnCondBrIter = I;
1731
1732      if (!AllowModify) {
1733        TBB = I->getOperand(0).getMBB();
1734        continue;
1735      }
1736
1737      // If the block has any instructions after a JMP, delete them.
1738      while (llvm::next(I) != MBB.end())
1739        llvm::next(I)->eraseFromParent();
1740
1741      Cond.clear();
1742      FBB = 0;
1743
1744      // Delete the JMP if it's equivalent to a fall-through.
1745      if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
1746        TBB = 0;
1747        I->eraseFromParent();
1748        I = MBB.end();
1749        UnCondBrIter = MBB.end();
1750        continue;
1751      }
1752
1753      // TBB is used to indicate the unconditional destination.
1754      TBB = I->getOperand(0).getMBB();
1755      continue;
1756    }
1757
1758    // Handle conditional branches.
1759    X86::CondCode BranchCode = GetCondFromBranchOpc(I->getOpcode());
1760    if (BranchCode == X86::COND_INVALID)
1761      return true;  // Can't handle indirect branch.
1762
1763    // Working from the bottom, handle the first conditional branch.
1764    if (Cond.empty()) {
1765      MachineBasicBlock *TargetBB = I->getOperand(0).getMBB();
1766      if (AllowModify && UnCondBrIter != MBB.end() &&
1767          MBB.isLayoutSuccessor(TargetBB)) {
1768        // If we can modify the code and it ends in something like:
1769        //
1770        //     jCC L1
1771        //     jmp L2
1772        //   L1:
1773        //     ...
1774        //   L2:
1775        //
1776        // Then we can change this to:
1777        //
1778        //     jnCC L2
1779        //   L1:
1780        //     ...
1781        //   L2:
1782        //
1783        // Which is a bit more efficient.
1784        // We conditionally jump to the fall-through block.
1785        BranchCode = GetOppositeBranchCondition(BranchCode);
1786        unsigned JNCC = GetCondBranchFromCond(BranchCode);
1787        MachineBasicBlock::iterator OldInst = I;
1788
1789        BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(JNCC))
1790          .addMBB(UnCondBrIter->getOperand(0).getMBB());
1791        BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JMP_4))
1792          .addMBB(TargetBB);
1793        MBB.addSuccessor(TargetBB);
1794
1795        OldInst->eraseFromParent();
1796        UnCondBrIter->eraseFromParent();
1797
1798        // Restart the analysis.
1799        UnCondBrIter = MBB.end();
1800        I = MBB.end();
1801        continue;
1802      }
1803
1804      FBB = TBB;
1805      TBB = I->getOperand(0).getMBB();
1806      Cond.push_back(MachineOperand::CreateImm(BranchCode));
1807      continue;
1808    }
1809
1810    // Handle subsequent conditional branches. Only handle the case where all
1811    // conditional branches branch to the same destination and their condition
1812    // opcodes fit one of the special multi-branch idioms.
1813    assert(Cond.size() == 1);
1814    assert(TBB);
1815
1816    // Only handle the case where all conditional branches branch to the same
1817    // destination.
1818    if (TBB != I->getOperand(0).getMBB())
1819      return true;
1820
1821    // If the conditions are the same, we can leave them alone.
1822    X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
1823    if (OldBranchCode == BranchCode)
1824      continue;
1825
1826    // If they differ, see if they fit one of the known patterns. Theoretically,
1827    // we could handle more patterns here, but we shouldn't expect to see them
1828    // if instruction selection has done a reasonable job.
1829    if ((OldBranchCode == X86::COND_NP &&
1830         BranchCode == X86::COND_E) ||
1831        (OldBranchCode == X86::COND_E &&
1832         BranchCode == X86::COND_NP))
1833      BranchCode = X86::COND_NP_OR_E;
1834    else if ((OldBranchCode == X86::COND_P &&
1835              BranchCode == X86::COND_NE) ||
1836             (OldBranchCode == X86::COND_NE &&
1837              BranchCode == X86::COND_P))
1838      BranchCode = X86::COND_NE_OR_P;
1839    else
1840      return true;
1841
1842    // Update the MachineOperand.
1843    Cond[0].setImm(BranchCode);
1844  }
1845
1846  return false;
1847}
1848
1849unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
1850  MachineBasicBlock::iterator I = MBB.end();
1851  unsigned Count = 0;
1852
1853  while (I != MBB.begin()) {
1854    --I;
1855    if (I->isDebugValue())
1856      continue;
1857    if (I->getOpcode() != X86::JMP_4 &&
1858        GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
1859      break;
1860    // Remove the branch.
1861    I->eraseFromParent();
1862    I = MBB.end();
1863    ++Count;
1864  }
1865
1866  return Count;
1867}
1868
1869unsigned
1870X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
1871                           MachineBasicBlock *FBB,
1872                           const SmallVectorImpl<MachineOperand> &Cond,
1873                           DebugLoc DL) const {
1874  // Shouldn't be a fall through.
1875  assert(TBB && "InsertBranch must not be told to insert a fallthrough");
1876  assert((Cond.size() == 1 || Cond.size() == 0) &&
1877         "X86 branch conditions have one component!");
1878
1879  if (Cond.empty()) {
1880    // Unconditional branch?
1881    assert(!FBB && "Unconditional branch with multiple successors!");
1882    BuildMI(&MBB, DL, get(X86::JMP_4)).addMBB(TBB);
1883    return 1;
1884  }
1885
1886  // Conditional branch.
1887  unsigned Count = 0;
1888  X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
1889  switch (CC) {
1890  case X86::COND_NP_OR_E:
1891    // Synthesize NP_OR_E with two branches.
1892    BuildMI(&MBB, DL, get(X86::JNP_4)).addMBB(TBB);
1893    ++Count;
1894    BuildMI(&MBB, DL, get(X86::JE_4)).addMBB(TBB);
1895    ++Count;
1896    break;
1897  case X86::COND_NE_OR_P:
1898    // Synthesize NE_OR_P with two branches.
1899    BuildMI(&MBB, DL, get(X86::JNE_4)).addMBB(TBB);
1900    ++Count;
1901    BuildMI(&MBB, DL, get(X86::JP_4)).addMBB(TBB);
1902    ++Count;
1903    break;
1904  default: {
1905    unsigned Opc = GetCondBranchFromCond(CC);
1906    BuildMI(&MBB, DL, get(Opc)).addMBB(TBB);
1907    ++Count;
1908  }
1909  }
1910  if (FBB) {
1911    // Two-way Conditional branch. Insert the second branch.
1912    BuildMI(&MBB, DL, get(X86::JMP_4)).addMBB(FBB);
1913    ++Count;
1914  }
1915  return Count;
1916}
1917
1918/// isHReg - Test if the given register is a physical h register.
1919static bool isHReg(unsigned Reg) {
1920  return X86::GR8_ABCD_HRegClass.contains(Reg);
1921}
1922
1923// Try and copy between VR128/VR64 and GR64 registers.
1924static unsigned CopyToFromAsymmetricReg(unsigned DestReg, unsigned SrcReg) {
1925  // SrcReg(VR128) -> DestReg(GR64)
1926  // SrcReg(VR64)  -> DestReg(GR64)
1927  // SrcReg(GR64)  -> DestReg(VR128)
1928  // SrcReg(GR64)  -> DestReg(VR64)
1929
1930  if (X86::GR64RegClass.contains(DestReg)) {
1931    if (X86::VR128RegClass.contains(SrcReg)) {
1932      // Copy from a VR128 register to a GR64 register.
1933      return X86::MOVPQIto64rr;
1934    } else if (X86::VR64RegClass.contains(SrcReg)) {
1935      // Copy from a VR64 register to a GR64 register.
1936      return X86::MOVSDto64rr;
1937    }
1938  } else if (X86::GR64RegClass.contains(SrcReg)) {
1939    // Copy from a GR64 register to a VR128 register.
1940    if (X86::VR128RegClass.contains(DestReg))
1941      return X86::MOV64toPQIrr;
1942    // Copy from a GR64 register to a VR64 register.
1943    else if (X86::VR64RegClass.contains(DestReg))
1944      return X86::MOV64toSDrr;
1945  }
1946
1947  return 0;
1948}
1949
1950void X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
1951                               MachineBasicBlock::iterator MI, DebugLoc DL,
1952                               unsigned DestReg, unsigned SrcReg,
1953                               bool KillSrc) const {
1954  // First deal with the normal symmetric copies.
1955  unsigned Opc = 0;
1956  if (X86::GR64RegClass.contains(DestReg, SrcReg))
1957    Opc = X86::MOV64rr;
1958  else if (X86::GR32RegClass.contains(DestReg, SrcReg))
1959    Opc = X86::MOV32rr;
1960  else if (X86::GR16RegClass.contains(DestReg, SrcReg))
1961    Opc = X86::MOV16rr;
1962  else if (X86::GR8RegClass.contains(DestReg, SrcReg)) {
1963    // Copying to or from a physical H register on x86-64 requires a NOREX
1964    // move.  Otherwise use a normal move.
1965    if ((isHReg(DestReg) || isHReg(SrcReg)) &&
1966        TM.getSubtarget<X86Subtarget>().is64Bit())
1967      Opc = X86::MOV8rr_NOREX;
1968    else
1969      Opc = X86::MOV8rr;
1970  } else if (X86::VR128RegClass.contains(DestReg, SrcReg))
1971    Opc = X86::MOVAPSrr;
1972  else if (X86::VR64RegClass.contains(DestReg, SrcReg))
1973    Opc = X86::MMX_MOVQ64rr;
1974  else
1975    Opc = CopyToFromAsymmetricReg(DestReg, SrcReg);
1976
1977  if (Opc) {
1978    BuildMI(MBB, MI, DL, get(Opc), DestReg)
1979      .addReg(SrcReg, getKillRegState(KillSrc));
1980    return;
1981  }
1982
1983  // Moving EFLAGS to / from another register requires a push and a pop.
1984  if (SrcReg == X86::EFLAGS) {
1985    if (X86::GR64RegClass.contains(DestReg)) {
1986      BuildMI(MBB, MI, DL, get(X86::PUSHF64));
1987      BuildMI(MBB, MI, DL, get(X86::POP64r), DestReg);
1988      return;
1989    } else if (X86::GR32RegClass.contains(DestReg)) {
1990      BuildMI(MBB, MI, DL, get(X86::PUSHF32));
1991      BuildMI(MBB, MI, DL, get(X86::POP32r), DestReg);
1992      return;
1993    }
1994  }
1995  if (DestReg == X86::EFLAGS) {
1996    if (X86::GR64RegClass.contains(SrcReg)) {
1997      BuildMI(MBB, MI, DL, get(X86::PUSH64r))
1998        .addReg(SrcReg, getKillRegState(KillSrc));
1999      BuildMI(MBB, MI, DL, get(X86::POPF64));
2000      return;
2001    } else if (X86::GR32RegClass.contains(SrcReg)) {
2002      BuildMI(MBB, MI, DL, get(X86::PUSH32r))
2003        .addReg(SrcReg, getKillRegState(KillSrc));
2004      BuildMI(MBB, MI, DL, get(X86::POPF32));
2005      return;
2006    }
2007  }
2008
2009  DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg)
2010               << " to " << RI.getName(DestReg) << '\n');
2011  llvm_unreachable("Cannot emit physreg copy instruction");
2012}
2013
2014static unsigned getLoadStoreRegOpcode(unsigned Reg,
2015                                      const TargetRegisterClass *RC,
2016                                      bool isStackAligned,
2017                                      const TargetMachine &TM,
2018                                      bool load) {
2019  switch (RC->getID()) {
2020  default:
2021    llvm_unreachable("Unknown regclass");
2022  case X86::GR64RegClassID:
2023  case X86::GR64_ABCDRegClassID:
2024  case X86::GR64_NOREXRegClassID:
2025  case X86::GR64_NOREX_NOSPRegClassID:
2026  case X86::GR64_NOSPRegClassID:
2027  case X86::GR64_TCRegClassID:
2028  case X86::GR64_TCW64RegClassID:
2029    return load ? X86::MOV64rm : X86::MOV64mr;
2030  case X86::GR32RegClassID:
2031  case X86::GR32_ABCDRegClassID:
2032  case X86::GR32_ADRegClassID:
2033  case X86::GR32_NOREXRegClassID:
2034  case X86::GR32_NOSPRegClassID:
2035  case X86::GR32_TCRegClassID:
2036    return load ? X86::MOV32rm : X86::MOV32mr;
2037  case X86::GR16RegClassID:
2038  case X86::GR16_ABCDRegClassID:
2039  case X86::GR16_NOREXRegClassID:
2040    return load ? X86::MOV16rm : X86::MOV16mr;
2041  case X86::GR8RegClassID:
2042    // Copying to or from a physical H register on x86-64 requires a NOREX
2043    // move.  Otherwise use a normal move.
2044    if (isHReg(Reg) &&
2045        TM.getSubtarget<X86Subtarget>().is64Bit())
2046      return load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX;
2047    else
2048      return load ? X86::MOV8rm : X86::MOV8mr;
2049  case X86::GR8_ABCD_LRegClassID:
2050  case X86::GR8_NOREXRegClassID:
2051    return load ? X86::MOV8rm :X86::MOV8mr;
2052  case X86::GR8_ABCD_HRegClassID:
2053    if (TM.getSubtarget<X86Subtarget>().is64Bit())
2054      return load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX;
2055    else
2056      return load ? X86::MOV8rm : X86::MOV8mr;
2057  case X86::RFP80RegClassID:
2058    return load ? X86::LD_Fp80m : X86::ST_FpP80m;
2059  case X86::RFP64RegClassID:
2060    return load ? X86::LD_Fp64m : X86::ST_Fp64m;
2061  case X86::RFP32RegClassID:
2062    return load ? X86::LD_Fp32m : X86::ST_Fp32m;
2063  case X86::FR32RegClassID:
2064    return load ? X86::MOVSSrm : X86::MOVSSmr;
2065  case X86::FR64RegClassID:
2066    return load ? X86::MOVSDrm : X86::MOVSDmr;
2067  case X86::VR128RegClassID:
2068    // If stack is realigned we can use aligned stores.
2069    if (isStackAligned)
2070      return load ? X86::MOVAPSrm : X86::MOVAPSmr;
2071    else
2072      return load ? X86::MOVUPSrm : X86::MOVUPSmr;
2073  case X86::VR64RegClassID:
2074    return load ? X86::MMX_MOVQ64rm : X86::MMX_MOVQ64mr;
2075  }
2076}
2077
2078static unsigned getStoreRegOpcode(unsigned SrcReg,
2079                                  const TargetRegisterClass *RC,
2080                                  bool isStackAligned,
2081                                  TargetMachine &TM) {
2082  return getLoadStoreRegOpcode(SrcReg, RC, isStackAligned, TM, false);
2083}
2084
2085
2086static unsigned getLoadRegOpcode(unsigned DestReg,
2087                                 const TargetRegisterClass *RC,
2088                                 bool isStackAligned,
2089                                 const TargetMachine &TM) {
2090  return getLoadStoreRegOpcode(DestReg, RC, isStackAligned, TM, true);
2091}
2092
2093void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
2094                                       MachineBasicBlock::iterator MI,
2095                                       unsigned SrcReg, bool isKill, int FrameIdx,
2096                                       const TargetRegisterClass *RC,
2097                                       const TargetRegisterInfo *TRI) const {
2098  const MachineFunction &MF = *MBB.getParent();
2099  assert(MF.getFrameInfo()->getObjectSize(FrameIdx) >= RC->getSize() &&
2100         "Stack slot too small for store");
2101  bool isAligned = (RI.getStackAlignment() >= 16) || RI.canRealignStack(MF);
2102  unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM);
2103  DebugLoc DL = MBB.findDebugLoc(MI);
2104  addFrameReference(BuildMI(MBB, MI, DL, get(Opc)), FrameIdx)
2105    .addReg(SrcReg, getKillRegState(isKill));
2106}
2107
2108void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
2109                                  bool isKill,
2110                                  SmallVectorImpl<MachineOperand> &Addr,
2111                                  const TargetRegisterClass *RC,
2112                                  MachineInstr::mmo_iterator MMOBegin,
2113                                  MachineInstr::mmo_iterator MMOEnd,
2114                                  SmallVectorImpl<MachineInstr*> &NewMIs) const {
2115  bool isAligned = MMOBegin != MMOEnd && (*MMOBegin)->getAlignment() >= 16;
2116  unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM);
2117  DebugLoc DL;
2118  MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc));
2119  for (unsigned i = 0, e = Addr.size(); i != e; ++i)
2120    MIB.addOperand(Addr[i]);
2121  MIB.addReg(SrcReg, getKillRegState(isKill));
2122  (*MIB).setMemRefs(MMOBegin, MMOEnd);
2123  NewMIs.push_back(MIB);
2124}
2125
2126
2127void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
2128                                        MachineBasicBlock::iterator MI,
2129                                        unsigned DestReg, int FrameIdx,
2130                                        const TargetRegisterClass *RC,
2131                                        const TargetRegisterInfo *TRI) const {
2132  const MachineFunction &MF = *MBB.getParent();
2133  bool isAligned = (RI.getStackAlignment() >= 16) || RI.canRealignStack(MF);
2134  unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM);
2135  DebugLoc DL = MBB.findDebugLoc(MI);
2136  addFrameReference(BuildMI(MBB, MI, DL, get(Opc), DestReg), FrameIdx);
2137}
2138
2139void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
2140                                 SmallVectorImpl<MachineOperand> &Addr,
2141                                 const TargetRegisterClass *RC,
2142                                 MachineInstr::mmo_iterator MMOBegin,
2143                                 MachineInstr::mmo_iterator MMOEnd,
2144                                 SmallVectorImpl<MachineInstr*> &NewMIs) const {
2145  bool isAligned = MMOBegin != MMOEnd && (*MMOBegin)->getAlignment() >= 16;
2146  unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM);
2147  DebugLoc DL;
2148  MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), DestReg);
2149  for (unsigned i = 0, e = Addr.size(); i != e; ++i)
2150    MIB.addOperand(Addr[i]);
2151  (*MIB).setMemRefs(MMOBegin, MMOEnd);
2152  NewMIs.push_back(MIB);
2153}
2154
2155MachineInstr*
2156X86InstrInfo::emitFrameIndexDebugValue(MachineFunction &MF,
2157                                       int FrameIx, uint64_t Offset,
2158                                       const MDNode *MDPtr,
2159                                       DebugLoc DL) const {
2160  X86AddressMode AM;
2161  AM.BaseType = X86AddressMode::FrameIndexBase;
2162  AM.Base.FrameIndex = FrameIx;
2163  MachineInstrBuilder MIB = BuildMI(MF, DL, get(X86::DBG_VALUE));
2164  addFullAddress(MIB, AM).addImm(Offset).addMetadata(MDPtr);
2165  return &*MIB;
2166}
2167
2168static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
2169                                     const SmallVectorImpl<MachineOperand> &MOs,
2170                                     MachineInstr *MI,
2171                                     const TargetInstrInfo &TII) {
2172  // Create the base instruction with the memory operand as the first part.
2173  MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
2174                                              MI->getDebugLoc(), true);
2175  MachineInstrBuilder MIB(NewMI);
2176  unsigned NumAddrOps = MOs.size();
2177  for (unsigned i = 0; i != NumAddrOps; ++i)
2178    MIB.addOperand(MOs[i]);
2179  if (NumAddrOps < 4)  // FrameIndex only
2180    addOffset(MIB, 0);
2181
2182  // Loop over the rest of the ri operands, converting them over.
2183  unsigned NumOps = MI->getDesc().getNumOperands()-2;
2184  for (unsigned i = 0; i != NumOps; ++i) {
2185    MachineOperand &MO = MI->getOperand(i+2);
2186    MIB.addOperand(MO);
2187  }
2188  for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) {
2189    MachineOperand &MO = MI->getOperand(i);
2190    MIB.addOperand(MO);
2191  }
2192  return MIB;
2193}
2194
2195static MachineInstr *FuseInst(MachineFunction &MF,
2196                              unsigned Opcode, unsigned OpNo,
2197                              const SmallVectorImpl<MachineOperand> &MOs,
2198                              MachineInstr *MI, const TargetInstrInfo &TII) {
2199  MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
2200                                              MI->getDebugLoc(), true);
2201  MachineInstrBuilder MIB(NewMI);
2202
2203  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2204    MachineOperand &MO = MI->getOperand(i);
2205    if (i == OpNo) {
2206      assert(MO.isReg() && "Expected to fold into reg operand!");
2207      unsigned NumAddrOps = MOs.size();
2208      for (unsigned i = 0; i != NumAddrOps; ++i)
2209        MIB.addOperand(MOs[i]);
2210      if (NumAddrOps < 4)  // FrameIndex only
2211        addOffset(MIB, 0);
2212    } else {
2213      MIB.addOperand(MO);
2214    }
2215  }
2216  return MIB;
2217}
2218
2219static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
2220                                const SmallVectorImpl<MachineOperand> &MOs,
2221                                MachineInstr *MI) {
2222  MachineFunction &MF = *MI->getParent()->getParent();
2223  MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), TII.get(Opcode));
2224
2225  unsigned NumAddrOps = MOs.size();
2226  for (unsigned i = 0; i != NumAddrOps; ++i)
2227    MIB.addOperand(MOs[i]);
2228  if (NumAddrOps < 4)  // FrameIndex only
2229    addOffset(MIB, 0);
2230  return MIB.addImm(0);
2231}
2232
2233MachineInstr*
2234X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2235                                    MachineInstr *MI, unsigned i,
2236                                    const SmallVectorImpl<MachineOperand> &MOs,
2237                                    unsigned Size, unsigned Align) const {
2238  const DenseMap<unsigned, std::pair<unsigned,unsigned> > *OpcodeTablePtr = 0;
2239  bool isTwoAddrFold = false;
2240  unsigned NumOps = MI->getDesc().getNumOperands();
2241  bool isTwoAddr = NumOps > 1 &&
2242    MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
2243
2244  MachineInstr *NewMI = NULL;
2245  // Folding a memory location into the two-address part of a two-address
2246  // instruction is different than folding it other places.  It requires
2247  // replacing the *two* registers with the memory location.
2248  if (isTwoAddr && NumOps >= 2 && i < 2 &&
2249      MI->getOperand(0).isReg() &&
2250      MI->getOperand(1).isReg() &&
2251      MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
2252    OpcodeTablePtr = &RegOp2MemOpTable2Addr;
2253    isTwoAddrFold = true;
2254  } else if (i == 0) { // If operand 0
2255    if (MI->getOpcode() == X86::MOV64r0)
2256      NewMI = MakeM0Inst(*this, X86::MOV64mi32, MOs, MI);
2257    else if (MI->getOpcode() == X86::MOV32r0)
2258      NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI);
2259    else if (MI->getOpcode() == X86::MOV16r0)
2260      NewMI = MakeM0Inst(*this, X86::MOV16mi, MOs, MI);
2261    else if (MI->getOpcode() == X86::MOV8r0)
2262      NewMI = MakeM0Inst(*this, X86::MOV8mi, MOs, MI);
2263    if (NewMI)
2264      return NewMI;
2265
2266    OpcodeTablePtr = &RegOp2MemOpTable0;
2267  } else if (i == 1) {
2268    OpcodeTablePtr = &RegOp2MemOpTable1;
2269  } else if (i == 2) {
2270    OpcodeTablePtr = &RegOp2MemOpTable2;
2271  }
2272
2273  // If table selected...
2274  if (OpcodeTablePtr) {
2275    // Find the Opcode to fuse
2276    DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
2277      OpcodeTablePtr->find(MI->getOpcode());
2278    if (I != OpcodeTablePtr->end()) {
2279      unsigned Opcode = I->second.first;
2280      unsigned MinAlign = I->second.second;
2281      if (Align < MinAlign)
2282        return NULL;
2283      bool NarrowToMOV32rm = false;
2284      if (Size) {
2285        unsigned RCSize =  MI->getDesc().OpInfo[i].getRegClass(&RI)->getSize();
2286        if (Size < RCSize) {
2287          // Check if it's safe to fold the load. If the size of the object is
2288          // narrower than the load width, then it's not.
2289          if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4)
2290            return NULL;
2291          // If this is a 64-bit load, but the spill slot is 32, then we can do
2292          // a 32-bit load which is implicitly zero-extended. This likely is due
2293          // to liveintervalanalysis remat'ing a load from stack slot.
2294          if (MI->getOperand(0).getSubReg() || MI->getOperand(1).getSubReg())
2295            return NULL;
2296          Opcode = X86::MOV32rm;
2297          NarrowToMOV32rm = true;
2298        }
2299      }
2300
2301      if (isTwoAddrFold)
2302        NewMI = FuseTwoAddrInst(MF, Opcode, MOs, MI, *this);
2303      else
2304        NewMI = FuseInst(MF, Opcode, i, MOs, MI, *this);
2305
2306      if (NarrowToMOV32rm) {
2307        // If this is the special case where we use a MOV32rm to load a 32-bit
2308        // value and zero-extend the top bits. Change the destination register
2309        // to a 32-bit one.
2310        unsigned DstReg = NewMI->getOperand(0).getReg();
2311        if (TargetRegisterInfo::isPhysicalRegister(DstReg))
2312          NewMI->getOperand(0).setReg(RI.getSubReg(DstReg,
2313                                                   X86::sub_32bit));
2314        else
2315          NewMI->getOperand(0).setSubReg(X86::sub_32bit);
2316      }
2317      return NewMI;
2318    }
2319  }
2320
2321  // No fusion
2322  if (PrintFailedFusing && !MI->isCopy())
2323    dbgs() << "We failed to fuse operand " << i << " in " << *MI;
2324  return NULL;
2325}
2326
2327
2328MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2329                                                  MachineInstr *MI,
2330                                           const SmallVectorImpl<unsigned> &Ops,
2331                                                  int FrameIndex) const {
2332  // Check switch flag
2333  if (NoFusing) return NULL;
2334
2335  if (!MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize))
2336    switch (MI->getOpcode()) {
2337    case X86::CVTSD2SSrr:
2338    case X86::Int_CVTSD2SSrr:
2339    case X86::CVTSS2SDrr:
2340    case X86::Int_CVTSS2SDrr:
2341    case X86::RCPSSr:
2342    case X86::RCPSSr_Int:
2343    case X86::ROUNDSDr:
2344    case X86::ROUNDSSr:
2345    case X86::RSQRTSSr:
2346    case X86::RSQRTSSr_Int:
2347    case X86::SQRTSSr:
2348    case X86::SQRTSSr_Int:
2349      return 0;
2350    }
2351
2352  const MachineFrameInfo *MFI = MF.getFrameInfo();
2353  unsigned Size = MFI->getObjectSize(FrameIndex);
2354  unsigned Alignment = MFI->getObjectAlignment(FrameIndex);
2355  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2356    unsigned NewOpc = 0;
2357    unsigned RCSize = 0;
2358    switch (MI->getOpcode()) {
2359    default: return NULL;
2360    case X86::TEST8rr:  NewOpc = X86::CMP8ri; RCSize = 1; break;
2361    case X86::TEST16rr: NewOpc = X86::CMP16ri8; RCSize = 2; break;
2362    case X86::TEST32rr: NewOpc = X86::CMP32ri8; RCSize = 4; break;
2363    case X86::TEST64rr: NewOpc = X86::CMP64ri8; RCSize = 8; break;
2364    }
2365    // Check if it's safe to fold the load. If the size of the object is
2366    // narrower than the load width, then it's not.
2367    if (Size < RCSize)
2368      return NULL;
2369    // Change to CMPXXri r, 0 first.
2370    MI->setDesc(get(NewOpc));
2371    MI->getOperand(1).ChangeToImmediate(0);
2372  } else if (Ops.size() != 1)
2373    return NULL;
2374
2375  SmallVector<MachineOperand,4> MOs;
2376  MOs.push_back(MachineOperand::CreateFI(FrameIndex));
2377  return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, Size, Alignment);
2378}
2379
2380MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2381                                                  MachineInstr *MI,
2382                                           const SmallVectorImpl<unsigned> &Ops,
2383                                                  MachineInstr *LoadMI) const {
2384  // Check switch flag
2385  if (NoFusing) return NULL;
2386
2387  if (!MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize))
2388    switch (MI->getOpcode()) {
2389    case X86::CVTSD2SSrr:
2390    case X86::Int_CVTSD2SSrr:
2391    case X86::CVTSS2SDrr:
2392    case X86::Int_CVTSS2SDrr:
2393    case X86::RCPSSr:
2394    case X86::RCPSSr_Int:
2395    case X86::ROUNDSDr:
2396    case X86::ROUNDSSr:
2397    case X86::RSQRTSSr:
2398    case X86::RSQRTSSr_Int:
2399    case X86::SQRTSSr:
2400    case X86::SQRTSSr_Int:
2401      return 0;
2402    }
2403
2404  // Determine the alignment of the load.
2405  unsigned Alignment = 0;
2406  if (LoadMI->hasOneMemOperand())
2407    Alignment = (*LoadMI->memoperands_begin())->getAlignment();
2408  else
2409    switch (LoadMI->getOpcode()) {
2410    case X86::AVX_SET0PSY:
2411    case X86::AVX_SET0PDY:
2412      Alignment = 32;
2413      break;
2414    case X86::V_SET0PS:
2415    case X86::V_SET0PD:
2416    case X86::V_SET0PI:
2417    case X86::V_SETALLONES:
2418    case X86::AVX_SET0PS:
2419    case X86::AVX_SET0PD:
2420    case X86::AVX_SET0PI:
2421      Alignment = 16;
2422      break;
2423    case X86::FsFLD0SD:
2424    case X86::VFsFLD0SD:
2425      Alignment = 8;
2426      break;
2427    case X86::FsFLD0SS:
2428    case X86::VFsFLD0SS:
2429      Alignment = 4;
2430      break;
2431    default:
2432      llvm_unreachable("Don't know how to fold this instruction!");
2433    }
2434  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2435    unsigned NewOpc = 0;
2436    switch (MI->getOpcode()) {
2437    default: return NULL;
2438    case X86::TEST8rr:  NewOpc = X86::CMP8ri; break;
2439    case X86::TEST16rr: NewOpc = X86::CMP16ri8; break;
2440    case X86::TEST32rr: NewOpc = X86::CMP32ri8; break;
2441    case X86::TEST64rr: NewOpc = X86::CMP64ri8; break;
2442    }
2443    // Change to CMPXXri r, 0 first.
2444    MI->setDesc(get(NewOpc));
2445    MI->getOperand(1).ChangeToImmediate(0);
2446  } else if (Ops.size() != 1)
2447    return NULL;
2448
2449  // Make sure the subregisters match.
2450  // Otherwise we risk changing the size of the load.
2451  if (LoadMI->getOperand(0).getSubReg() != MI->getOperand(Ops[0]).getSubReg())
2452    return NULL;
2453
2454  SmallVector<MachineOperand,X86::AddrNumOperands> MOs;
2455  switch (LoadMI->getOpcode()) {
2456  case X86::V_SET0PS:
2457  case X86::V_SET0PD:
2458  case X86::V_SET0PI:
2459  case X86::V_SETALLONES:
2460  case X86::AVX_SET0PS:
2461  case X86::AVX_SET0PD:
2462  case X86::AVX_SET0PI:
2463  case X86::AVX_SET0PSY:
2464  case X86::AVX_SET0PDY:
2465  case X86::FsFLD0SD:
2466  case X86::FsFLD0SS: {
2467    // Folding a V_SET0P? or V_SETALLONES as a load, to ease register pressure.
2468    // Create a constant-pool entry and operands to load from it.
2469
2470    // Medium and large mode can't fold loads this way.
2471    if (TM.getCodeModel() != CodeModel::Small &&
2472        TM.getCodeModel() != CodeModel::Kernel)
2473      return NULL;
2474
2475    // x86-32 PIC requires a PIC base register for constant pools.
2476    unsigned PICBase = 0;
2477    if (TM.getRelocationModel() == Reloc::PIC_) {
2478      if (TM.getSubtarget<X86Subtarget>().is64Bit())
2479        PICBase = X86::RIP;
2480      else
2481        // FIXME: PICBase = getGlobalBaseReg(&MF);
2482        // This doesn't work for several reasons.
2483        // 1. GlobalBaseReg may have been spilled.
2484        // 2. It may not be live at MI.
2485        return NULL;
2486    }
2487
2488    // Create a constant-pool entry.
2489    MachineConstantPool &MCP = *MF.getConstantPool();
2490    const Type *Ty;
2491    unsigned Opc = LoadMI->getOpcode();
2492    if (Opc == X86::FsFLD0SS || Opc == X86::VFsFLD0SS)
2493      Ty = Type::getFloatTy(MF.getFunction()->getContext());
2494    else if (Opc == X86::FsFLD0SD || Opc == X86::VFsFLD0SD)
2495      Ty = Type::getDoubleTy(MF.getFunction()->getContext());
2496    else if (Opc == X86::AVX_SET0PSY || Opc == X86::AVX_SET0PDY)
2497      Ty = VectorType::get(Type::getFloatTy(MF.getFunction()->getContext()), 8);
2498    else
2499      Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 4);
2500    const Constant *C = LoadMI->getOpcode() == X86::V_SETALLONES ?
2501                    Constant::getAllOnesValue(Ty) :
2502                    Constant::getNullValue(Ty);
2503    unsigned CPI = MCP.getConstantPoolIndex(C, Alignment);
2504
2505    // Create operands to load from the constant pool entry.
2506    MOs.push_back(MachineOperand::CreateReg(PICBase, false));
2507    MOs.push_back(MachineOperand::CreateImm(1));
2508    MOs.push_back(MachineOperand::CreateReg(0, false));
2509    MOs.push_back(MachineOperand::CreateCPI(CPI, 0));
2510    MOs.push_back(MachineOperand::CreateReg(0, false));
2511    break;
2512  }
2513  default: {
2514    // Folding a normal load. Just copy the load's address operands.
2515    unsigned NumOps = LoadMI->getDesc().getNumOperands();
2516    for (unsigned i = NumOps - X86::AddrNumOperands; i != NumOps; ++i)
2517      MOs.push_back(LoadMI->getOperand(i));
2518    break;
2519  }
2520  }
2521  return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, 0, Alignment);
2522}
2523
2524
2525bool X86InstrInfo::canFoldMemoryOperand(const MachineInstr *MI,
2526                                  const SmallVectorImpl<unsigned> &Ops) const {
2527  // Check switch flag
2528  if (NoFusing) return 0;
2529
2530  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2531    switch (MI->getOpcode()) {
2532    default: return false;
2533    case X86::TEST8rr:
2534    case X86::TEST16rr:
2535    case X86::TEST32rr:
2536    case X86::TEST64rr:
2537      return true;
2538    }
2539  }
2540
2541  if (Ops.size() != 1)
2542    return false;
2543
2544  unsigned OpNum = Ops[0];
2545  unsigned Opc = MI->getOpcode();
2546  unsigned NumOps = MI->getDesc().getNumOperands();
2547  bool isTwoAddr = NumOps > 1 &&
2548    MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
2549
2550  // Folding a memory location into the two-address part of a two-address
2551  // instruction is different than folding it other places.  It requires
2552  // replacing the *two* registers with the memory location.
2553  const DenseMap<unsigned, std::pair<unsigned,unsigned> > *OpcodeTablePtr = 0;
2554  if (isTwoAddr && NumOps >= 2 && OpNum < 2) {
2555    OpcodeTablePtr = &RegOp2MemOpTable2Addr;
2556  } else if (OpNum == 0) { // If operand 0
2557    switch (Opc) {
2558    case X86::MOV8r0:
2559    case X86::MOV16r0:
2560    case X86::MOV32r0:
2561    case X86::MOV64r0: return true;
2562    default: break;
2563    }
2564    OpcodeTablePtr = &RegOp2MemOpTable0;
2565  } else if (OpNum == 1) {
2566    OpcodeTablePtr = &RegOp2MemOpTable1;
2567  } else if (OpNum == 2) {
2568    OpcodeTablePtr = &RegOp2MemOpTable2;
2569  }
2570
2571  if (OpcodeTablePtr && OpcodeTablePtr->count(Opc))
2572    return true;
2573  return TargetInstrInfoImpl::canFoldMemoryOperand(MI, Ops);
2574}
2575
2576bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
2577                                unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
2578                                SmallVectorImpl<MachineInstr*> &NewMIs) const {
2579  DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
2580    MemOp2RegOpTable.find(MI->getOpcode());
2581  if (I == MemOp2RegOpTable.end())
2582    return false;
2583  unsigned Opc = I->second.first;
2584  unsigned Index = I->second.second & 0xf;
2585  bool FoldedLoad = I->second.second & (1 << 4);
2586  bool FoldedStore = I->second.second & (1 << 5);
2587  if (UnfoldLoad && !FoldedLoad)
2588    return false;
2589  UnfoldLoad &= FoldedLoad;
2590  if (UnfoldStore && !FoldedStore)
2591    return false;
2592  UnfoldStore &= FoldedStore;
2593
2594  const TargetInstrDesc &TID = get(Opc);
2595  const TargetOperandInfo &TOI = TID.OpInfo[Index];
2596  const TargetRegisterClass *RC = TOI.getRegClass(&RI);
2597  if (!MI->hasOneMemOperand() &&
2598      RC == &X86::VR128RegClass &&
2599      !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast())
2600    // Without memoperands, loadRegFromAddr and storeRegToStackSlot will
2601    // conservatively assume the address is unaligned. That's bad for
2602    // performance.
2603    return false;
2604  SmallVector<MachineOperand, X86::AddrNumOperands> AddrOps;
2605  SmallVector<MachineOperand,2> BeforeOps;
2606  SmallVector<MachineOperand,2> AfterOps;
2607  SmallVector<MachineOperand,4> ImpOps;
2608  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2609    MachineOperand &Op = MI->getOperand(i);
2610    if (i >= Index && i < Index + X86::AddrNumOperands)
2611      AddrOps.push_back(Op);
2612    else if (Op.isReg() && Op.isImplicit())
2613      ImpOps.push_back(Op);
2614    else if (i < Index)
2615      BeforeOps.push_back(Op);
2616    else if (i > Index)
2617      AfterOps.push_back(Op);
2618  }
2619
2620  // Emit the load instruction.
2621  if (UnfoldLoad) {
2622    std::pair<MachineInstr::mmo_iterator,
2623              MachineInstr::mmo_iterator> MMOs =
2624      MF.extractLoadMemRefs(MI->memoperands_begin(),
2625                            MI->memoperands_end());
2626    loadRegFromAddr(MF, Reg, AddrOps, RC, MMOs.first, MMOs.second, NewMIs);
2627    if (UnfoldStore) {
2628      // Address operands cannot be marked isKill.
2629      for (unsigned i = 1; i != 1 + X86::AddrNumOperands; ++i) {
2630        MachineOperand &MO = NewMIs[0]->getOperand(i);
2631        if (MO.isReg())
2632          MO.setIsKill(false);
2633      }
2634    }
2635  }
2636
2637  // Emit the data processing instruction.
2638  MachineInstr *DataMI = MF.CreateMachineInstr(TID, MI->getDebugLoc(), true);
2639  MachineInstrBuilder MIB(DataMI);
2640
2641  if (FoldedStore)
2642    MIB.addReg(Reg, RegState::Define);
2643  for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i)
2644    MIB.addOperand(BeforeOps[i]);
2645  if (FoldedLoad)
2646    MIB.addReg(Reg);
2647  for (unsigned i = 0, e = AfterOps.size(); i != e; ++i)
2648    MIB.addOperand(AfterOps[i]);
2649  for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) {
2650    MachineOperand &MO = ImpOps[i];
2651    MIB.addReg(MO.getReg(),
2652               getDefRegState(MO.isDef()) |
2653               RegState::Implicit |
2654               getKillRegState(MO.isKill()) |
2655               getDeadRegState(MO.isDead()) |
2656               getUndefRegState(MO.isUndef()));
2657  }
2658  // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
2659  unsigned NewOpc = 0;
2660  switch (DataMI->getOpcode()) {
2661  default: break;
2662  case X86::CMP64ri32:
2663  case X86::CMP64ri8:
2664  case X86::CMP32ri:
2665  case X86::CMP32ri8:
2666  case X86::CMP16ri:
2667  case X86::CMP16ri8:
2668  case X86::CMP8ri: {
2669    MachineOperand &MO0 = DataMI->getOperand(0);
2670    MachineOperand &MO1 = DataMI->getOperand(1);
2671    if (MO1.getImm() == 0) {
2672      switch (DataMI->getOpcode()) {
2673      default: break;
2674      case X86::CMP64ri8:
2675      case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
2676      case X86::CMP32ri8:
2677      case X86::CMP32ri:   NewOpc = X86::TEST32rr; break;
2678      case X86::CMP16ri8:
2679      case X86::CMP16ri:   NewOpc = X86::TEST16rr; break;
2680      case X86::CMP8ri:    NewOpc = X86::TEST8rr; break;
2681      }
2682      DataMI->setDesc(get(NewOpc));
2683      MO1.ChangeToRegister(MO0.getReg(), false);
2684    }
2685  }
2686  }
2687  NewMIs.push_back(DataMI);
2688
2689  // Emit the store instruction.
2690  if (UnfoldStore) {
2691    const TargetRegisterClass *DstRC = TID.OpInfo[0].getRegClass(&RI);
2692    std::pair<MachineInstr::mmo_iterator,
2693              MachineInstr::mmo_iterator> MMOs =
2694      MF.extractStoreMemRefs(MI->memoperands_begin(),
2695                             MI->memoperands_end());
2696    storeRegToAddr(MF, Reg, true, AddrOps, DstRC, MMOs.first, MMOs.second, NewMIs);
2697  }
2698
2699  return true;
2700}
2701
2702bool
2703X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
2704                                  SmallVectorImpl<SDNode*> &NewNodes) const {
2705  if (!N->isMachineOpcode())
2706    return false;
2707
2708  DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
2709    MemOp2RegOpTable.find(N->getMachineOpcode());
2710  if (I == MemOp2RegOpTable.end())
2711    return false;
2712  unsigned Opc = I->second.first;
2713  unsigned Index = I->second.second & 0xf;
2714  bool FoldedLoad = I->second.second & (1 << 4);
2715  bool FoldedStore = I->second.second & (1 << 5);
2716  const TargetInstrDesc &TID = get(Opc);
2717  const TargetRegisterClass *RC = TID.OpInfo[Index].getRegClass(&RI);
2718  unsigned NumDefs = TID.NumDefs;
2719  std::vector<SDValue> AddrOps;
2720  std::vector<SDValue> BeforeOps;
2721  std::vector<SDValue> AfterOps;
2722  DebugLoc dl = N->getDebugLoc();
2723  unsigned NumOps = N->getNumOperands();
2724  for (unsigned i = 0; i != NumOps-1; ++i) {
2725    SDValue Op = N->getOperand(i);
2726    if (i >= Index-NumDefs && i < Index-NumDefs + X86::AddrNumOperands)
2727      AddrOps.push_back(Op);
2728    else if (i < Index-NumDefs)
2729      BeforeOps.push_back(Op);
2730    else if (i > Index-NumDefs)
2731      AfterOps.push_back(Op);
2732  }
2733  SDValue Chain = N->getOperand(NumOps-1);
2734  AddrOps.push_back(Chain);
2735
2736  // Emit the load instruction.
2737  SDNode *Load = 0;
2738  MachineFunction &MF = DAG.getMachineFunction();
2739  if (FoldedLoad) {
2740    EVT VT = *RC->vt_begin();
2741    std::pair<MachineInstr::mmo_iterator,
2742              MachineInstr::mmo_iterator> MMOs =
2743      MF.extractLoadMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
2744                            cast<MachineSDNode>(N)->memoperands_end());
2745    if (!(*MMOs.first) &&
2746        RC == &X86::VR128RegClass &&
2747        !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast())
2748      // Do not introduce a slow unaligned load.
2749      return false;
2750    bool isAligned = (*MMOs.first) && (*MMOs.first)->getAlignment() >= 16;
2751    Load = DAG.getMachineNode(getLoadRegOpcode(0, RC, isAligned, TM), dl,
2752                              VT, MVT::Other, &AddrOps[0], AddrOps.size());
2753    NewNodes.push_back(Load);
2754
2755    // Preserve memory reference information.
2756    cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second);
2757  }
2758
2759  // Emit the data processing instruction.
2760  std::vector<EVT> VTs;
2761  const TargetRegisterClass *DstRC = 0;
2762  if (TID.getNumDefs() > 0) {
2763    DstRC = TID.OpInfo[0].getRegClass(&RI);
2764    VTs.push_back(*DstRC->vt_begin());
2765  }
2766  for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
2767    EVT VT = N->getValueType(i);
2768    if (VT != MVT::Other && i >= (unsigned)TID.getNumDefs())
2769      VTs.push_back(VT);
2770  }
2771  if (Load)
2772    BeforeOps.push_back(SDValue(Load, 0));
2773  std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps));
2774  SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, &BeforeOps[0],
2775                                      BeforeOps.size());
2776  NewNodes.push_back(NewNode);
2777
2778  // Emit the store instruction.
2779  if (FoldedStore) {
2780    AddrOps.pop_back();
2781    AddrOps.push_back(SDValue(NewNode, 0));
2782    AddrOps.push_back(Chain);
2783    std::pair<MachineInstr::mmo_iterator,
2784              MachineInstr::mmo_iterator> MMOs =
2785      MF.extractStoreMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
2786                             cast<MachineSDNode>(N)->memoperands_end());
2787    if (!(*MMOs.first) &&
2788        RC == &X86::VR128RegClass &&
2789        !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast())
2790      // Do not introduce a slow unaligned store.
2791      return false;
2792    bool isAligned = (*MMOs.first) && (*MMOs.first)->getAlignment() >= 16;
2793    SDNode *Store = DAG.getMachineNode(getStoreRegOpcode(0, DstRC,
2794                                                         isAligned, TM),
2795                                       dl, MVT::Other,
2796                                       &AddrOps[0], AddrOps.size());
2797    NewNodes.push_back(Store);
2798
2799    // Preserve memory reference information.
2800    cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second);
2801  }
2802
2803  return true;
2804}
2805
2806unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
2807                                      bool UnfoldLoad, bool UnfoldStore,
2808                                      unsigned *LoadRegIndex) const {
2809  DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
2810    MemOp2RegOpTable.find(Opc);
2811  if (I == MemOp2RegOpTable.end())
2812    return 0;
2813  bool FoldedLoad = I->second.second & (1 << 4);
2814  bool FoldedStore = I->second.second & (1 << 5);
2815  if (UnfoldLoad && !FoldedLoad)
2816    return 0;
2817  if (UnfoldStore && !FoldedStore)
2818    return 0;
2819  if (LoadRegIndex)
2820    *LoadRegIndex = I->second.second & 0xf;
2821  return I->second.first;
2822}
2823
2824bool
2825X86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
2826                                     int64_t &Offset1, int64_t &Offset2) const {
2827  if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
2828    return false;
2829  unsigned Opc1 = Load1->getMachineOpcode();
2830  unsigned Opc2 = Load2->getMachineOpcode();
2831  switch (Opc1) {
2832  default: return false;
2833  case X86::MOV8rm:
2834  case X86::MOV16rm:
2835  case X86::MOV32rm:
2836  case X86::MOV64rm:
2837  case X86::LD_Fp32m:
2838  case X86::LD_Fp64m:
2839  case X86::LD_Fp80m:
2840  case X86::MOVSSrm:
2841  case X86::MOVSDrm:
2842  case X86::MMX_MOVD64rm:
2843  case X86::MMX_MOVQ64rm:
2844  case X86::FsMOVAPSrm:
2845  case X86::FsMOVAPDrm:
2846  case X86::MOVAPSrm:
2847  case X86::MOVUPSrm:
2848  case X86::MOVUPSrm_Int:
2849  case X86::MOVAPDrm:
2850  case X86::MOVDQArm:
2851  case X86::MOVDQUrm:
2852  case X86::MOVDQUrm_Int:
2853    break;
2854  }
2855  switch (Opc2) {
2856  default: return false;
2857  case X86::MOV8rm:
2858  case X86::MOV16rm:
2859  case X86::MOV32rm:
2860  case X86::MOV64rm:
2861  case X86::LD_Fp32m:
2862  case X86::LD_Fp64m:
2863  case X86::LD_Fp80m:
2864  case X86::MOVSSrm:
2865  case X86::MOVSDrm:
2866  case X86::MMX_MOVD64rm:
2867  case X86::MMX_MOVQ64rm:
2868  case X86::FsMOVAPSrm:
2869  case X86::FsMOVAPDrm:
2870  case X86::MOVAPSrm:
2871  case X86::MOVUPSrm:
2872  case X86::MOVUPSrm_Int:
2873  case X86::MOVAPDrm:
2874  case X86::MOVDQArm:
2875  case X86::MOVDQUrm:
2876  case X86::MOVDQUrm_Int:
2877    break;
2878  }
2879
2880  // Check if chain operands and base addresses match.
2881  if (Load1->getOperand(0) != Load2->getOperand(0) ||
2882      Load1->getOperand(5) != Load2->getOperand(5))
2883    return false;
2884  // Segment operands should match as well.
2885  if (Load1->getOperand(4) != Load2->getOperand(4))
2886    return false;
2887  // Scale should be 1, Index should be Reg0.
2888  if (Load1->getOperand(1) == Load2->getOperand(1) &&
2889      Load1->getOperand(2) == Load2->getOperand(2)) {
2890    if (cast<ConstantSDNode>(Load1->getOperand(1))->getZExtValue() != 1)
2891      return false;
2892
2893    // Now let's examine the displacements.
2894    if (isa<ConstantSDNode>(Load1->getOperand(3)) &&
2895        isa<ConstantSDNode>(Load2->getOperand(3))) {
2896      Offset1 = cast<ConstantSDNode>(Load1->getOperand(3))->getSExtValue();
2897      Offset2 = cast<ConstantSDNode>(Load2->getOperand(3))->getSExtValue();
2898      return true;
2899    }
2900  }
2901  return false;
2902}
2903
2904bool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
2905                                           int64_t Offset1, int64_t Offset2,
2906                                           unsigned NumLoads) const {
2907  assert(Offset2 > Offset1);
2908  if ((Offset2 - Offset1) / 8 > 64)
2909    return false;
2910
2911  unsigned Opc1 = Load1->getMachineOpcode();
2912  unsigned Opc2 = Load2->getMachineOpcode();
2913  if (Opc1 != Opc2)
2914    return false;  // FIXME: overly conservative?
2915
2916  switch (Opc1) {
2917  default: break;
2918  case X86::LD_Fp32m:
2919  case X86::LD_Fp64m:
2920  case X86::LD_Fp80m:
2921  case X86::MMX_MOVD64rm:
2922  case X86::MMX_MOVQ64rm:
2923    return false;
2924  }
2925
2926  EVT VT = Load1->getValueType(0);
2927  switch (VT.getSimpleVT().SimpleTy) {
2928  default:
2929    // XMM registers. In 64-bit mode we can be a bit more aggressive since we
2930    // have 16 of them to play with.
2931    if (TM.getSubtargetImpl()->is64Bit()) {
2932      if (NumLoads >= 3)
2933        return false;
2934    } else if (NumLoads) {
2935      return false;
2936    }
2937    break;
2938  case MVT::i8:
2939  case MVT::i16:
2940  case MVT::i32:
2941  case MVT::i64:
2942  case MVT::f32:
2943  case MVT::f64:
2944    if (NumLoads)
2945      return false;
2946    break;
2947  }
2948
2949  return true;
2950}
2951
2952
2953bool X86InstrInfo::
2954ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
2955  assert(Cond.size() == 1 && "Invalid X86 branch condition!");
2956  X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
2957  if (CC == X86::COND_NE_OR_P || CC == X86::COND_NP_OR_E)
2958    return true;
2959  Cond[0].setImm(GetOppositeBranchCondition(CC));
2960  return false;
2961}
2962
2963bool X86InstrInfo::
2964isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
2965  // FIXME: Return false for x87 stack register classes for now. We can't
2966  // allow any loads of these registers before FpGet_ST0_80.
2967  return !(RC == &X86::CCRRegClass || RC == &X86::RFP32RegClass ||
2968           RC == &X86::RFP64RegClass || RC == &X86::RFP80RegClass);
2969}
2970
2971
2972/// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended (r8 or higher)
2973/// register?  e.g. r8, xmm8, xmm13, etc.
2974bool X86InstrInfo::isX86_64ExtendedReg(unsigned RegNo) {
2975  switch (RegNo) {
2976  default: break;
2977  case X86::R8:    case X86::R9:    case X86::R10:   case X86::R11:
2978  case X86::R12:   case X86::R13:   case X86::R14:   case X86::R15:
2979  case X86::R8D:   case X86::R9D:   case X86::R10D:  case X86::R11D:
2980  case X86::R12D:  case X86::R13D:  case X86::R14D:  case X86::R15D:
2981  case X86::R8W:   case X86::R9W:   case X86::R10W:  case X86::R11W:
2982  case X86::R12W:  case X86::R13W:  case X86::R14W:  case X86::R15W:
2983  case X86::R8B:   case X86::R9B:   case X86::R10B:  case X86::R11B:
2984  case X86::R12B:  case X86::R13B:  case X86::R14B:  case X86::R15B:
2985  case X86::XMM8:  case X86::XMM9:  case X86::XMM10: case X86::XMM11:
2986  case X86::XMM12: case X86::XMM13: case X86::XMM14: case X86::XMM15:
2987  case X86::YMM8:  case X86::YMM9:  case X86::YMM10: case X86::YMM11:
2988  case X86::YMM12: case X86::YMM13: case X86::YMM14: case X86::YMM15:
2989  case X86::CR8:   case X86::CR9:   case X86::CR10:  case X86::CR11:
2990  case X86::CR12:  case X86::CR13:  case X86::CR14:  case X86::CR15:
2991    return true;
2992  }
2993  return false;
2994}
2995
2996/// getGlobalBaseReg - Return a virtual register initialized with the
2997/// the global base register value. Output instructions required to
2998/// initialize the register in the function entry block, if necessary.
2999///
3000/// TODO: Eliminate this and move the code to X86MachineFunctionInfo.
3001///
3002unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
3003  assert(!TM.getSubtarget<X86Subtarget>().is64Bit() &&
3004         "X86-64 PIC uses RIP relative addressing");
3005
3006  X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
3007  unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
3008  if (GlobalBaseReg != 0)
3009    return GlobalBaseReg;
3010
3011  // Create the register. The code to initialize it is inserted
3012  // later, by the CGBR pass (below).
3013  MachineRegisterInfo &RegInfo = MF->getRegInfo();
3014  GlobalBaseReg = RegInfo.createVirtualRegister(X86::GR32RegisterClass);
3015  X86FI->setGlobalBaseReg(GlobalBaseReg);
3016  return GlobalBaseReg;
3017}
3018
3019// These are the replaceable SSE instructions. Some of these have Int variants
3020// that we don't include here. We don't want to replace instructions selected
3021// by intrinsics.
3022static const unsigned ReplaceableInstrs[][3] = {
3023  //PackedSingle     PackedDouble    PackedInt
3024  { X86::MOVAPSmr,   X86::MOVAPDmr,  X86::MOVDQAmr  },
3025  { X86::MOVAPSrm,   X86::MOVAPDrm,  X86::MOVDQArm  },
3026  { X86::MOVAPSrr,   X86::MOVAPDrr,  X86::MOVDQArr  },
3027  { X86::MOVUPSmr,   X86::MOVUPDmr,  X86::MOVDQUmr  },
3028  { X86::MOVUPSrm,   X86::MOVUPDrm,  X86::MOVDQUrm  },
3029  { X86::MOVNTPSmr,  X86::MOVNTPDmr, X86::MOVNTDQmr },
3030  { X86::ANDNPSrm,   X86::ANDNPDrm,  X86::PANDNrm   },
3031  { X86::ANDNPSrr,   X86::ANDNPDrr,  X86::PANDNrr   },
3032  { X86::ANDPSrm,    X86::ANDPDrm,   X86::PANDrm    },
3033  { X86::ANDPSrr,    X86::ANDPDrr,   X86::PANDrr    },
3034  { X86::ORPSrm,     X86::ORPDrm,    X86::PORrm     },
3035  { X86::ORPSrr,     X86::ORPDrr,    X86::PORrr     },
3036  { X86::V_SET0PS,   X86::V_SET0PD,  X86::V_SET0PI  },
3037  { X86::XORPSrm,    X86::XORPDrm,   X86::PXORrm    },
3038  { X86::XORPSrr,    X86::XORPDrr,   X86::PXORrr    },
3039  // AVX 128-bit support
3040  { X86::VMOVAPSmr,  X86::VMOVAPDmr,  X86::VMOVDQAmr  },
3041  { X86::VMOVAPSrm,  X86::VMOVAPDrm,  X86::VMOVDQArm  },
3042  { X86::VMOVAPSrr,  X86::VMOVAPDrr,  X86::VMOVDQArr  },
3043  { X86::VMOVUPSmr,  X86::VMOVUPDmr,  X86::VMOVDQUmr  },
3044  { X86::VMOVUPSrm,  X86::VMOVUPDrm,  X86::VMOVDQUrm  },
3045  { X86::VMOVNTPSmr, X86::VMOVNTPDmr, X86::VMOVNTDQmr },
3046  { X86::VANDNPSrm,  X86::VANDNPDrm,  X86::VPANDNrm   },
3047  { X86::VANDNPSrr,  X86::VANDNPDrr,  X86::VPANDNrr   },
3048  { X86::VANDPSrm,   X86::VANDPDrm,   X86::VPANDrm    },
3049  { X86::VANDPSrr,   X86::VANDPDrr,   X86::VPANDrr    },
3050  { X86::VORPSrm,    X86::VORPDrm,    X86::VPORrm     },
3051  { X86::VORPSrr,    X86::VORPDrr,    X86::VPORrr     },
3052  { X86::AVX_SET0PS, X86::AVX_SET0PD, X86::AVX_SET0PI },
3053  { X86::VXORPSrm,   X86::VXORPDrm,   X86::VPXORrm    },
3054  { X86::VXORPSrr,   X86::VXORPDrr,   X86::VPXORrr    },
3055};
3056
3057// FIXME: Some shuffle and unpack instructions have equivalents in different
3058// domains, but they require a bit more work than just switching opcodes.
3059
3060static const unsigned *lookup(unsigned opcode, unsigned domain) {
3061  for (unsigned i = 0, e = array_lengthof(ReplaceableInstrs); i != e; ++i)
3062    if (ReplaceableInstrs[i][domain-1] == opcode)
3063      return ReplaceableInstrs[i];
3064  return 0;
3065}
3066
3067std::pair<uint16_t, uint16_t>
3068X86InstrInfo::GetSSEDomain(const MachineInstr *MI) const {
3069  uint16_t domain = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
3070  return std::make_pair(domain,
3071                        domain && lookup(MI->getOpcode(), domain) ? 0xe : 0);
3072}
3073
3074void X86InstrInfo::SetSSEDomain(MachineInstr *MI, unsigned Domain) const {
3075  assert(Domain>0 && Domain<4 && "Invalid execution domain");
3076  uint16_t dom = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
3077  assert(dom && "Not an SSE instruction");
3078  const unsigned *table = lookup(MI->getOpcode(), dom);
3079  assert(table && "Cannot change domain");
3080  MI->setDesc(get(table[Domain-1]));
3081}
3082
3083/// getNoopForMachoTarget - Return the noop instruction to use for a noop.
3084void X86InstrInfo::getNoopForMachoTarget(MCInst &NopInst) const {
3085  NopInst.setOpcode(X86::NOOP);
3086}
3087
3088bool X86InstrInfo::isHighLatencyDef(int opc) const {
3089  switch (opc) {
3090  default: return false;
3091  case X86::DIVSDrm:
3092  case X86::DIVSDrm_Int:
3093  case X86::DIVSDrr:
3094  case X86::DIVSDrr_Int:
3095  case X86::DIVSSrm:
3096  case X86::DIVSSrm_Int:
3097  case X86::DIVSSrr:
3098  case X86::DIVSSrr_Int:
3099  case X86::SQRTPDm:
3100  case X86::SQRTPDm_Int:
3101  case X86::SQRTPDr:
3102  case X86::SQRTPDr_Int:
3103  case X86::SQRTPSm:
3104  case X86::SQRTPSm_Int:
3105  case X86::SQRTPSr:
3106  case X86::SQRTPSr_Int:
3107  case X86::SQRTSDm:
3108  case X86::SQRTSDm_Int:
3109  case X86::SQRTSDr:
3110  case X86::SQRTSDr_Int:
3111  case X86::SQRTSSm:
3112  case X86::SQRTSSm_Int:
3113  case X86::SQRTSSr:
3114  case X86::SQRTSSr_Int:
3115    return true;
3116  }
3117}
3118
3119bool X86InstrInfo::
3120hasHighOperandLatency(const InstrItineraryData *ItinData,
3121                      const MachineRegisterInfo *MRI,
3122                      const MachineInstr *DefMI, unsigned DefIdx,
3123                      const MachineInstr *UseMI, unsigned UseIdx) const {
3124  return isHighLatencyDef(DefMI->getOpcode());
3125}
3126
3127namespace {
3128  /// CGBR - Create Global Base Reg pass. This initializes the PIC
3129  /// global base register for x86-32.
3130  struct CGBR : public MachineFunctionPass {
3131    static char ID;
3132    CGBR() : MachineFunctionPass(ID) {}
3133
3134    virtual bool runOnMachineFunction(MachineFunction &MF) {
3135      const X86TargetMachine *TM =
3136        static_cast<const X86TargetMachine *>(&MF.getTarget());
3137
3138      assert(!TM->getSubtarget<X86Subtarget>().is64Bit() &&
3139             "X86-64 PIC uses RIP relative addressing");
3140
3141      // Only emit a global base reg in PIC mode.
3142      if (TM->getRelocationModel() != Reloc::PIC_)
3143        return false;
3144
3145      X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
3146      unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
3147
3148      // If we didn't need a GlobalBaseReg, don't insert code.
3149      if (GlobalBaseReg == 0)
3150        return false;
3151
3152      // Insert the set of GlobalBaseReg into the first MBB of the function
3153      MachineBasicBlock &FirstMBB = MF.front();
3154      MachineBasicBlock::iterator MBBI = FirstMBB.begin();
3155      DebugLoc DL = FirstMBB.findDebugLoc(MBBI);
3156      MachineRegisterInfo &RegInfo = MF.getRegInfo();
3157      const X86InstrInfo *TII = TM->getInstrInfo();
3158
3159      unsigned PC;
3160      if (TM->getSubtarget<X86Subtarget>().isPICStyleGOT())
3161        PC = RegInfo.createVirtualRegister(X86::GR32RegisterClass);
3162      else
3163        PC = GlobalBaseReg;
3164
3165      // Operand of MovePCtoStack is completely ignored by asm printer. It's
3166      // only used in JIT code emission as displacement to pc.
3167      BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0);
3168
3169      // If we're using vanilla 'GOT' PIC style, we should use relative addressing
3170      // not to pc, but to _GLOBAL_OFFSET_TABLE_ external.
3171      if (TM->getSubtarget<X86Subtarget>().isPICStyleGOT()) {
3172        // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel], %some_register
3173        BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg)
3174          .addReg(PC).addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
3175                                        X86II::MO_GOT_ABSOLUTE_ADDRESS);
3176      }
3177
3178      return true;
3179    }
3180
3181    virtual const char *getPassName() const {
3182      return "X86 PIC Global Base Reg Initialization";
3183    }
3184
3185    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
3186      AU.setPreservesCFG();
3187      MachineFunctionPass::getAnalysisUsage(AU);
3188    }
3189  };
3190}
3191
3192char CGBR::ID = 0;
3193FunctionPass*
3194llvm::createGlobalBaseRegPass() { return new CGBR(); }
3195