1//===- InstCombineAndOrXor.cpp --------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visitAnd, visitOr, and visitXor functions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombineInternal.h"
15#include "llvm/Analysis/InstructionSimplify.h"
16#include "llvm/IR/ConstantRange.h"
17#include "llvm/IR/Intrinsics.h"
18#include "llvm/IR/PatternMatch.h"
19#include "llvm/Transforms/Utils/CmpInstAnalysis.h"
20#include "llvm/Transforms/Utils/Local.h"
21using namespace llvm;
22using namespace PatternMatch;
23
24#define DEBUG_TYPE "instcombine"
25
26static inline Value *dyn_castNotVal(Value *V) {
27  // If this is not(not(x)) don't return that this is a not: we want the two
28  // not's to be folded first.
29  if (BinaryOperator::isNot(V)) {
30    Value *Operand = BinaryOperator::getNotArgument(V);
31    if (!IsFreeToInvert(Operand, Operand->hasOneUse()))
32      return Operand;
33  }
34
35  // Constants can be considered to be not'ed values...
36  if (ConstantInt *C = dyn_cast<ConstantInt>(V))
37    return ConstantInt::get(C->getType(), ~C->getValue());
38  return nullptr;
39}
40
41/// Similar to getICmpCode but for FCmpInst. This encodes a fcmp predicate into
42/// a four bit mask.
43static unsigned getFCmpCode(FCmpInst::Predicate CC) {
44  assert(FCmpInst::FCMP_FALSE <= CC && CC <= FCmpInst::FCMP_TRUE &&
45         "Unexpected FCmp predicate!");
46  // Take advantage of the bit pattern of FCmpInst::Predicate here.
47  //                                                 U L G E
48  static_assert(FCmpInst::FCMP_FALSE ==  0, "");  // 0 0 0 0
49  static_assert(FCmpInst::FCMP_OEQ   ==  1, "");  // 0 0 0 1
50  static_assert(FCmpInst::FCMP_OGT   ==  2, "");  // 0 0 1 0
51  static_assert(FCmpInst::FCMP_OGE   ==  3, "");  // 0 0 1 1
52  static_assert(FCmpInst::FCMP_OLT   ==  4, "");  // 0 1 0 0
53  static_assert(FCmpInst::FCMP_OLE   ==  5, "");  // 0 1 0 1
54  static_assert(FCmpInst::FCMP_ONE   ==  6, "");  // 0 1 1 0
55  static_assert(FCmpInst::FCMP_ORD   ==  7, "");  // 0 1 1 1
56  static_assert(FCmpInst::FCMP_UNO   ==  8, "");  // 1 0 0 0
57  static_assert(FCmpInst::FCMP_UEQ   ==  9, "");  // 1 0 0 1
58  static_assert(FCmpInst::FCMP_UGT   == 10, "");  // 1 0 1 0
59  static_assert(FCmpInst::FCMP_UGE   == 11, "");  // 1 0 1 1
60  static_assert(FCmpInst::FCMP_ULT   == 12, "");  // 1 1 0 0
61  static_assert(FCmpInst::FCMP_ULE   == 13, "");  // 1 1 0 1
62  static_assert(FCmpInst::FCMP_UNE   == 14, "");  // 1 1 1 0
63  static_assert(FCmpInst::FCMP_TRUE  == 15, "");  // 1 1 1 1
64  return CC;
65}
66
67/// This is the complement of getICmpCode, which turns an opcode and two
68/// operands into either a constant true or false, or a brand new ICmp
69/// instruction. The sign is passed in to determine which kind of predicate to
70/// use in the new icmp instruction.
71static Value *getNewICmpValue(bool Sign, unsigned Code, Value *LHS, Value *RHS,
72                              InstCombiner::BuilderTy *Builder) {
73  ICmpInst::Predicate NewPred;
74  if (Value *NewConstant = getICmpValue(Sign, Code, LHS, RHS, NewPred))
75    return NewConstant;
76  return Builder->CreateICmp(NewPred, LHS, RHS);
77}
78
79/// This is the complement of getFCmpCode, which turns an opcode and two
80/// operands into either a FCmp instruction, or a true/false constant.
81static Value *getFCmpValue(unsigned Code, Value *LHS, Value *RHS,
82                           InstCombiner::BuilderTy *Builder) {
83  const auto Pred = static_cast<FCmpInst::Predicate>(Code);
84  assert(FCmpInst::FCMP_FALSE <= Pred && Pred <= FCmpInst::FCMP_TRUE &&
85         "Unexpected FCmp predicate!");
86  if (Pred == FCmpInst::FCMP_FALSE)
87    return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
88  if (Pred == FCmpInst::FCMP_TRUE)
89    return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 1);
90  return Builder->CreateFCmp(Pred, LHS, RHS);
91}
92
93/// \brief Transform BITWISE_OP(BSWAP(A),BSWAP(B)) to BSWAP(BITWISE_OP(A, B))
94/// \param I Binary operator to transform.
95/// \return Pointer to node that must replace the original binary operator, or
96///         null pointer if no transformation was made.
97Value *InstCombiner::SimplifyBSwap(BinaryOperator &I) {
98  IntegerType *ITy = dyn_cast<IntegerType>(I.getType());
99
100  // Can't do vectors.
101  if (I.getType()->isVectorTy()) return nullptr;
102
103  // Can only do bitwise ops.
104  unsigned Op = I.getOpcode();
105  if (Op != Instruction::And && Op != Instruction::Or &&
106      Op != Instruction::Xor)
107    return nullptr;
108
109  Value *OldLHS = I.getOperand(0);
110  Value *OldRHS = I.getOperand(1);
111  ConstantInt *ConstLHS = dyn_cast<ConstantInt>(OldLHS);
112  ConstantInt *ConstRHS = dyn_cast<ConstantInt>(OldRHS);
113  IntrinsicInst *IntrLHS = dyn_cast<IntrinsicInst>(OldLHS);
114  IntrinsicInst *IntrRHS = dyn_cast<IntrinsicInst>(OldRHS);
115  bool IsBswapLHS = (IntrLHS && IntrLHS->getIntrinsicID() == Intrinsic::bswap);
116  bool IsBswapRHS = (IntrRHS && IntrRHS->getIntrinsicID() == Intrinsic::bswap);
117
118  if (!IsBswapLHS && !IsBswapRHS)
119    return nullptr;
120
121  if (!IsBswapLHS && !ConstLHS)
122    return nullptr;
123
124  if (!IsBswapRHS && !ConstRHS)
125    return nullptr;
126
127  /// OP( BSWAP(x), BSWAP(y) ) -> BSWAP( OP(x, y) )
128  /// OP( BSWAP(x), CONSTANT ) -> BSWAP( OP(x, BSWAP(CONSTANT) ) )
129  Value *NewLHS = IsBswapLHS ? IntrLHS->getOperand(0) :
130                  Builder->getInt(ConstLHS->getValue().byteSwap());
131
132  Value *NewRHS = IsBswapRHS ? IntrRHS->getOperand(0) :
133                  Builder->getInt(ConstRHS->getValue().byteSwap());
134
135  Value *BinOp = nullptr;
136  if (Op == Instruction::And)
137    BinOp = Builder->CreateAnd(NewLHS, NewRHS);
138  else if (Op == Instruction::Or)
139    BinOp = Builder->CreateOr(NewLHS, NewRHS);
140  else //if (Op == Instruction::Xor)
141    BinOp = Builder->CreateXor(NewLHS, NewRHS);
142
143  Function *F = Intrinsic::getDeclaration(I.getModule(), Intrinsic::bswap, ITy);
144  return Builder->CreateCall(F, BinOp);
145}
146
147/// This handles expressions of the form ((val OP C1) & C2).  Where
148/// the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'.  Op is
149/// guaranteed to be a binary operator.
150Instruction *InstCombiner::OptAndOp(Instruction *Op,
151                                    ConstantInt *OpRHS,
152                                    ConstantInt *AndRHS,
153                                    BinaryOperator &TheAnd) {
154  Value *X = Op->getOperand(0);
155  Constant *Together = nullptr;
156  if (!Op->isShift())
157    Together = ConstantExpr::getAnd(AndRHS, OpRHS);
158
159  switch (Op->getOpcode()) {
160  case Instruction::Xor:
161    if (Op->hasOneUse()) {
162      // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
163      Value *And = Builder->CreateAnd(X, AndRHS);
164      And->takeName(Op);
165      return BinaryOperator::CreateXor(And, Together);
166    }
167    break;
168  case Instruction::Or:
169    if (Op->hasOneUse()){
170      if (Together != OpRHS) {
171        // (X | C1) & C2 --> (X | (C1&C2)) & C2
172        Value *Or = Builder->CreateOr(X, Together);
173        Or->takeName(Op);
174        return BinaryOperator::CreateAnd(Or, AndRHS);
175      }
176
177      ConstantInt *TogetherCI = dyn_cast<ConstantInt>(Together);
178      if (TogetherCI && !TogetherCI->isZero()){
179        // (X | C1) & C2 --> (X & (C2^(C1&C2))) | C1
180        // NOTE: This reduces the number of bits set in the & mask, which
181        // can expose opportunities for store narrowing.
182        Together = ConstantExpr::getXor(AndRHS, Together);
183        Value *And = Builder->CreateAnd(X, Together);
184        And->takeName(Op);
185        return BinaryOperator::CreateOr(And, OpRHS);
186      }
187    }
188
189    break;
190  case Instruction::Add:
191    if (Op->hasOneUse()) {
192      // Adding a one to a single bit bit-field should be turned into an XOR
193      // of the bit.  First thing to check is to see if this AND is with a
194      // single bit constant.
195      const APInt &AndRHSV = AndRHS->getValue();
196
197      // If there is only one bit set.
198      if (AndRHSV.isPowerOf2()) {
199        // Ok, at this point, we know that we are masking the result of the
200        // ADD down to exactly one bit.  If the constant we are adding has
201        // no bits set below this bit, then we can eliminate the ADD.
202        const APInt& AddRHS = OpRHS->getValue();
203
204        // Check to see if any bits below the one bit set in AndRHSV are set.
205        if ((AddRHS & (AndRHSV-1)) == 0) {
206          // If not, the only thing that can effect the output of the AND is
207          // the bit specified by AndRHSV.  If that bit is set, the effect of
208          // the XOR is to toggle the bit.  If it is clear, then the ADD has
209          // no effect.
210          if ((AddRHS & AndRHSV) == 0) { // Bit is not set, noop
211            TheAnd.setOperand(0, X);
212            return &TheAnd;
213          } else {
214            // Pull the XOR out of the AND.
215            Value *NewAnd = Builder->CreateAnd(X, AndRHS);
216            NewAnd->takeName(Op);
217            return BinaryOperator::CreateXor(NewAnd, AndRHS);
218          }
219        }
220      }
221    }
222    break;
223
224  case Instruction::Shl: {
225    // We know that the AND will not produce any of the bits shifted in, so if
226    // the anded constant includes them, clear them now!
227    //
228    uint32_t BitWidth = AndRHS->getType()->getBitWidth();
229    uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
230    APInt ShlMask(APInt::getHighBitsSet(BitWidth, BitWidth-OpRHSVal));
231    ConstantInt *CI = Builder->getInt(AndRHS->getValue() & ShlMask);
232
233    if (CI->getValue() == ShlMask)
234      // Masking out bits that the shift already masks.
235      return replaceInstUsesWith(TheAnd, Op);   // No need for the and.
236
237    if (CI != AndRHS) {                  // Reducing bits set in and.
238      TheAnd.setOperand(1, CI);
239      return &TheAnd;
240    }
241    break;
242  }
243  case Instruction::LShr: {
244    // We know that the AND will not produce any of the bits shifted in, so if
245    // the anded constant includes them, clear them now!  This only applies to
246    // unsigned shifts, because a signed shr may bring in set bits!
247    //
248    uint32_t BitWidth = AndRHS->getType()->getBitWidth();
249    uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
250    APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
251    ConstantInt *CI = Builder->getInt(AndRHS->getValue() & ShrMask);
252
253    if (CI->getValue() == ShrMask)
254      // Masking out bits that the shift already masks.
255      return replaceInstUsesWith(TheAnd, Op);
256
257    if (CI != AndRHS) {
258      TheAnd.setOperand(1, CI);  // Reduce bits set in and cst.
259      return &TheAnd;
260    }
261    break;
262  }
263  case Instruction::AShr:
264    // Signed shr.
265    // See if this is shifting in some sign extension, then masking it out
266    // with an and.
267    if (Op->hasOneUse()) {
268      uint32_t BitWidth = AndRHS->getType()->getBitWidth();
269      uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
270      APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
271      Constant *C = Builder->getInt(AndRHS->getValue() & ShrMask);
272      if (C == AndRHS) {          // Masking out bits shifted in.
273        // (Val ashr C1) & C2 -> (Val lshr C1) & C2
274        // Make the argument unsigned.
275        Value *ShVal = Op->getOperand(0);
276        ShVal = Builder->CreateLShr(ShVal, OpRHS, Op->getName());
277        return BinaryOperator::CreateAnd(ShVal, AndRHS, TheAnd.getName());
278      }
279    }
280    break;
281  }
282  return nullptr;
283}
284
285/// Emit a computation of: (V >= Lo && V < Hi) if Inside is true, otherwise
286/// (V < Lo || V >= Hi).  In practice, we emit the more efficient
287/// (V-Lo) \<u Hi-Lo.  This method expects that Lo <= Hi. isSigned indicates
288/// whether to treat the V, Lo and HI as signed or not. IB is the location to
289/// insert new instructions.
290Value *InstCombiner::InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
291                                     bool isSigned, bool Inside) {
292  assert(cast<ConstantInt>(ConstantExpr::getICmp((isSigned ?
293            ICmpInst::ICMP_SLE:ICmpInst::ICMP_ULE), Lo, Hi))->getZExtValue() &&
294         "Lo is not <= Hi in range emission code!");
295
296  if (Inside) {
297    if (Lo == Hi)  // Trivially false.
298      return Builder->getFalse();
299
300    // V >= Min && V < Hi --> V < Hi
301    if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
302      ICmpInst::Predicate pred = (isSigned ?
303        ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT);
304      return Builder->CreateICmp(pred, V, Hi);
305    }
306
307    // Emit V-Lo <u Hi-Lo
308    Constant *NegLo = ConstantExpr::getNeg(Lo);
309    Value *Add = Builder->CreateAdd(V, NegLo, V->getName()+".off");
310    Constant *UpperBound = ConstantExpr::getAdd(NegLo, Hi);
311    return Builder->CreateICmpULT(Add, UpperBound);
312  }
313
314  if (Lo == Hi)  // Trivially true.
315    return Builder->getTrue();
316
317  // V < Min || V >= Hi -> V > Hi-1
318  Hi = SubOne(cast<ConstantInt>(Hi));
319  if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
320    ICmpInst::Predicate pred = (isSigned ?
321        ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT);
322    return Builder->CreateICmp(pred, V, Hi);
323  }
324
325  // Emit V-Lo >u Hi-1-Lo
326  // Note that Hi has already had one subtracted from it, above.
327  ConstantInt *NegLo = cast<ConstantInt>(ConstantExpr::getNeg(Lo));
328  Value *Add = Builder->CreateAdd(V, NegLo, V->getName()+".off");
329  Constant *LowerBound = ConstantExpr::getAdd(NegLo, Hi);
330  return Builder->CreateICmpUGT(Add, LowerBound);
331}
332
333/// Returns true iff Val consists of one contiguous run of 1s with any number
334/// of 0s on either side.  The 1s are allowed to wrap from LSB to MSB,
335/// so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs.  0x0F0F0000 is
336/// not, since all 1s are not contiguous.
337static bool isRunOfOnes(ConstantInt *Val, uint32_t &MB, uint32_t &ME) {
338  const APInt& V = Val->getValue();
339  uint32_t BitWidth = Val->getType()->getBitWidth();
340  if (!APIntOps::isShiftedMask(BitWidth, V)) return false;
341
342  // look for the first zero bit after the run of ones
343  MB = BitWidth - ((V - 1) ^ V).countLeadingZeros();
344  // look for the first non-zero bit
345  ME = V.getActiveBits();
346  return true;
347}
348
349/// This is part of an expression (LHS +/- RHS) & Mask, where isSub determines
350/// whether the operator is a sub. If we can fold one of the following xforms:
351///
352/// ((A & N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == Mask
353/// ((A | N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
354/// ((A ^ N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
355///
356/// return (A +/- B).
357///
358Value *InstCombiner::FoldLogicalPlusAnd(Value *LHS, Value *RHS,
359                                        ConstantInt *Mask, bool isSub,
360                                        Instruction &I) {
361  Instruction *LHSI = dyn_cast<Instruction>(LHS);
362  if (!LHSI || LHSI->getNumOperands() != 2 ||
363      !isa<ConstantInt>(LHSI->getOperand(1))) return nullptr;
364
365  ConstantInt *N = cast<ConstantInt>(LHSI->getOperand(1));
366
367  switch (LHSI->getOpcode()) {
368  default: return nullptr;
369  case Instruction::And:
370    if (ConstantExpr::getAnd(N, Mask) == Mask) {
371      // If the AndRHS is a power of two minus one (0+1+), this is simple.
372      if ((Mask->getValue().countLeadingZeros() +
373           Mask->getValue().countPopulation()) ==
374          Mask->getValue().getBitWidth())
375        break;
376
377      // Otherwise, if Mask is 0+1+0+, and if B is known to have the low 0+
378      // part, we don't need any explicit masks to take them out of A.  If that
379      // is all N is, ignore it.
380      uint32_t MB = 0, ME = 0;
381      if (isRunOfOnes(Mask, MB, ME)) {  // begin/end bit of run, inclusive
382        uint32_t BitWidth = cast<IntegerType>(RHS->getType())->getBitWidth();
383        APInt Mask(APInt::getLowBitsSet(BitWidth, MB-1));
384        if (MaskedValueIsZero(RHS, Mask, 0, &I))
385          break;
386      }
387    }
388    return nullptr;
389  case Instruction::Or:
390  case Instruction::Xor:
391    // If the AndRHS is a power of two minus one (0+1+), and N&Mask == 0
392    if ((Mask->getValue().countLeadingZeros() +
393         Mask->getValue().countPopulation()) == Mask->getValue().getBitWidth()
394        && ConstantExpr::getAnd(N, Mask)->isNullValue())
395      break;
396    return nullptr;
397  }
398
399  if (isSub)
400    return Builder->CreateSub(LHSI->getOperand(0), RHS, "fold");
401  return Builder->CreateAdd(LHSI->getOperand(0), RHS, "fold");
402}
403
404/// enum for classifying (icmp eq (A & B), C) and (icmp ne (A & B), C)
405/// One of A and B is considered the mask, the other the value. This is
406/// described as the "AMask" or "BMask" part of the enum. If the enum
407/// contains only "Mask", then both A and B can be considered masks.
408/// If A is the mask, then it was proven, that (A & C) == C. This
409/// is trivial if C == A, or C == 0. If both A and C are constants, this
410/// proof is also easy.
411/// For the following explanations we assume that A is the mask.
412/// The part "AllOnes" declares, that the comparison is true only
413/// if (A & B) == A, or all bits of A are set in B.
414///   Example: (icmp eq (A & 3), 3) -> FoldMskICmp_AMask_AllOnes
415/// The part "AllZeroes" declares, that the comparison is true only
416/// if (A & B) == 0, or all bits of A are cleared in B.
417///   Example: (icmp eq (A & 3), 0) -> FoldMskICmp_Mask_AllZeroes
418/// The part "Mixed" declares, that (A & B) == C and C might or might not
419/// contain any number of one bits and zero bits.
420///   Example: (icmp eq (A & 3), 1) -> FoldMskICmp_AMask_Mixed
421/// The Part "Not" means, that in above descriptions "==" should be replaced
422/// by "!=".
423///   Example: (icmp ne (A & 3), 3) -> FoldMskICmp_AMask_NotAllOnes
424/// If the mask A contains a single bit, then the following is equivalent:
425///    (icmp eq (A & B), A) equals (icmp ne (A & B), 0)
426///    (icmp ne (A & B), A) equals (icmp eq (A & B), 0)
427enum MaskedICmpType {
428  FoldMskICmp_AMask_AllOnes           =     1,
429  FoldMskICmp_AMask_NotAllOnes        =     2,
430  FoldMskICmp_BMask_AllOnes           =     4,
431  FoldMskICmp_BMask_NotAllOnes        =     8,
432  FoldMskICmp_Mask_AllZeroes          =    16,
433  FoldMskICmp_Mask_NotAllZeroes       =    32,
434  FoldMskICmp_AMask_Mixed             =    64,
435  FoldMskICmp_AMask_NotMixed          =   128,
436  FoldMskICmp_BMask_Mixed             =   256,
437  FoldMskICmp_BMask_NotMixed          =   512
438};
439
440/// Return the set of pattern classes (from MaskedICmpType)
441/// that (icmp SCC (A & B), C) satisfies.
442static unsigned getTypeOfMaskedICmp(Value* A, Value* B, Value* C,
443                                    ICmpInst::Predicate SCC)
444{
445  ConstantInt *ACst = dyn_cast<ConstantInt>(A);
446  ConstantInt *BCst = dyn_cast<ConstantInt>(B);
447  ConstantInt *CCst = dyn_cast<ConstantInt>(C);
448  bool icmp_eq = (SCC == ICmpInst::ICMP_EQ);
449  bool icmp_abit = (ACst && !ACst->isZero() &&
450                    ACst->getValue().isPowerOf2());
451  bool icmp_bbit = (BCst && !BCst->isZero() &&
452                    BCst->getValue().isPowerOf2());
453  unsigned result = 0;
454  if (CCst && CCst->isZero()) {
455    // if C is zero, then both A and B qualify as mask
456    result |= (icmp_eq ? (FoldMskICmp_Mask_AllZeroes |
457                          FoldMskICmp_AMask_Mixed |
458                          FoldMskICmp_BMask_Mixed)
459                       : (FoldMskICmp_Mask_NotAllZeroes |
460                          FoldMskICmp_AMask_NotMixed |
461                          FoldMskICmp_BMask_NotMixed));
462    if (icmp_abit)
463      result |= (icmp_eq ? (FoldMskICmp_AMask_NotAllOnes |
464                            FoldMskICmp_AMask_NotMixed)
465                         : (FoldMskICmp_AMask_AllOnes |
466                            FoldMskICmp_AMask_Mixed));
467    if (icmp_bbit)
468      result |= (icmp_eq ? (FoldMskICmp_BMask_NotAllOnes |
469                            FoldMskICmp_BMask_NotMixed)
470                         : (FoldMskICmp_BMask_AllOnes |
471                            FoldMskICmp_BMask_Mixed));
472    return result;
473  }
474  if (A == C) {
475    result |= (icmp_eq ? (FoldMskICmp_AMask_AllOnes |
476                          FoldMskICmp_AMask_Mixed)
477                       : (FoldMskICmp_AMask_NotAllOnes |
478                          FoldMskICmp_AMask_NotMixed));
479    if (icmp_abit)
480      result |= (icmp_eq ? (FoldMskICmp_Mask_NotAllZeroes |
481                            FoldMskICmp_AMask_NotMixed)
482                         : (FoldMskICmp_Mask_AllZeroes |
483                            FoldMskICmp_AMask_Mixed));
484  } else if (ACst && CCst &&
485             ConstantExpr::getAnd(ACst, CCst) == CCst) {
486    result |= (icmp_eq ? FoldMskICmp_AMask_Mixed
487                       : FoldMskICmp_AMask_NotMixed);
488  }
489  if (B == C) {
490    result |= (icmp_eq ? (FoldMskICmp_BMask_AllOnes |
491                          FoldMskICmp_BMask_Mixed)
492                       : (FoldMskICmp_BMask_NotAllOnes |
493                          FoldMskICmp_BMask_NotMixed));
494    if (icmp_bbit)
495      result |= (icmp_eq ? (FoldMskICmp_Mask_NotAllZeroes |
496                            FoldMskICmp_BMask_NotMixed)
497                         : (FoldMskICmp_Mask_AllZeroes |
498                            FoldMskICmp_BMask_Mixed));
499  } else if (BCst && CCst &&
500             ConstantExpr::getAnd(BCst, CCst) == CCst) {
501    result |= (icmp_eq ? FoldMskICmp_BMask_Mixed
502                       : FoldMskICmp_BMask_NotMixed);
503  }
504  return result;
505}
506
507/// Convert an analysis of a masked ICmp into its equivalent if all boolean
508/// operations had the opposite sense. Since each "NotXXX" flag (recording !=)
509/// is adjacent to the corresponding normal flag (recording ==), this just
510/// involves swapping those bits over.
511static unsigned conjugateICmpMask(unsigned Mask) {
512  unsigned NewMask;
513  NewMask = (Mask & (FoldMskICmp_AMask_AllOnes | FoldMskICmp_BMask_AllOnes |
514                     FoldMskICmp_Mask_AllZeroes | FoldMskICmp_AMask_Mixed |
515                     FoldMskICmp_BMask_Mixed))
516            << 1;
517
518  NewMask |=
519      (Mask & (FoldMskICmp_AMask_NotAllOnes | FoldMskICmp_BMask_NotAllOnes |
520               FoldMskICmp_Mask_NotAllZeroes | FoldMskICmp_AMask_NotMixed |
521               FoldMskICmp_BMask_NotMixed))
522      >> 1;
523
524  return NewMask;
525}
526
527/// Decompose an icmp into the form ((X & Y) pred Z) if possible.
528/// The returned predicate is either == or !=. Returns false if
529/// decomposition fails.
530static bool decomposeBitTestICmp(const ICmpInst *I, ICmpInst::Predicate &Pred,
531                                 Value *&X, Value *&Y, Value *&Z) {
532  ConstantInt *C = dyn_cast<ConstantInt>(I->getOperand(1));
533  if (!C)
534    return false;
535
536  switch (I->getPredicate()) {
537  default:
538    return false;
539  case ICmpInst::ICMP_SLT:
540    // X < 0 is equivalent to (X & SignBit) != 0.
541    if (!C->isZero())
542      return false;
543    Y = ConstantInt::get(I->getContext(), APInt::getSignBit(C->getBitWidth()));
544    Pred = ICmpInst::ICMP_NE;
545    break;
546  case ICmpInst::ICMP_SGT:
547    // X > -1 is equivalent to (X & SignBit) == 0.
548    if (!C->isAllOnesValue())
549      return false;
550    Y = ConstantInt::get(I->getContext(), APInt::getSignBit(C->getBitWidth()));
551    Pred = ICmpInst::ICMP_EQ;
552    break;
553  case ICmpInst::ICMP_ULT:
554    // X <u 2^n is equivalent to (X & ~(2^n-1)) == 0.
555    if (!C->getValue().isPowerOf2())
556      return false;
557    Y = ConstantInt::get(I->getContext(), -C->getValue());
558    Pred = ICmpInst::ICMP_EQ;
559    break;
560  case ICmpInst::ICMP_UGT:
561    // X >u 2^n-1 is equivalent to (X & ~(2^n-1)) != 0.
562    if (!(C->getValue() + 1).isPowerOf2())
563      return false;
564    Y = ConstantInt::get(I->getContext(), ~C->getValue());
565    Pred = ICmpInst::ICMP_NE;
566    break;
567  }
568
569  X = I->getOperand(0);
570  Z = ConstantInt::getNullValue(C->getType());
571  return true;
572}
573
574/// Handle (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E)
575/// Return the set of pattern classes (from MaskedICmpType)
576/// that both LHS and RHS satisfy.
577static unsigned foldLogOpOfMaskedICmpsHelper(Value*& A,
578                                             Value*& B, Value*& C,
579                                             Value*& D, Value*& E,
580                                             ICmpInst *LHS, ICmpInst *RHS,
581                                             ICmpInst::Predicate &LHSCC,
582                                             ICmpInst::Predicate &RHSCC) {
583  if (LHS->getOperand(0)->getType() != RHS->getOperand(0)->getType()) return 0;
584  // vectors are not (yet?) supported
585  if (LHS->getOperand(0)->getType()->isVectorTy()) return 0;
586
587  // Here comes the tricky part:
588  // LHS might be of the form L11 & L12 == X, X == L21 & L22,
589  // and L11 & L12 == L21 & L22. The same goes for RHS.
590  // Now we must find those components L** and R**, that are equal, so
591  // that we can extract the parameters A, B, C, D, and E for the canonical
592  // above.
593  Value *L1 = LHS->getOperand(0);
594  Value *L2 = LHS->getOperand(1);
595  Value *L11,*L12,*L21,*L22;
596  // Check whether the icmp can be decomposed into a bit test.
597  if (decomposeBitTestICmp(LHS, LHSCC, L11, L12, L2)) {
598    L21 = L22 = L1 = nullptr;
599  } else {
600    // Look for ANDs in the LHS icmp.
601    if (!L1->getType()->isIntegerTy()) {
602      // You can icmp pointers, for example. They really aren't masks.
603      L11 = L12 = nullptr;
604    } else if (!match(L1, m_And(m_Value(L11), m_Value(L12)))) {
605      // Any icmp can be viewed as being trivially masked; if it allows us to
606      // remove one, it's worth it.
607      L11 = L1;
608      L12 = Constant::getAllOnesValue(L1->getType());
609    }
610
611    if (!L2->getType()->isIntegerTy()) {
612      // You can icmp pointers, for example. They really aren't masks.
613      L21 = L22 = nullptr;
614    } else if (!match(L2, m_And(m_Value(L21), m_Value(L22)))) {
615      L21 = L2;
616      L22 = Constant::getAllOnesValue(L2->getType());
617    }
618  }
619
620  // Bail if LHS was a icmp that can't be decomposed into an equality.
621  if (!ICmpInst::isEquality(LHSCC))
622    return 0;
623
624  Value *R1 = RHS->getOperand(0);
625  Value *R2 = RHS->getOperand(1);
626  Value *R11,*R12;
627  bool ok = false;
628  if (decomposeBitTestICmp(RHS, RHSCC, R11, R12, R2)) {
629    if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
630      A = R11; D = R12;
631    } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
632      A = R12; D = R11;
633    } else {
634      return 0;
635    }
636    E = R2; R1 = nullptr; ok = true;
637  } else if (R1->getType()->isIntegerTy()) {
638    if (!match(R1, m_And(m_Value(R11), m_Value(R12)))) {
639      // As before, model no mask as a trivial mask if it'll let us do an
640      // optimization.
641      R11 = R1;
642      R12 = Constant::getAllOnesValue(R1->getType());
643    }
644
645    if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
646      A = R11; D = R12; E = R2; ok = true;
647    } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
648      A = R12; D = R11; E = R2; ok = true;
649    }
650  }
651
652  // Bail if RHS was a icmp that can't be decomposed into an equality.
653  if (!ICmpInst::isEquality(RHSCC))
654    return 0;
655
656  // Look for ANDs on the right side of the RHS icmp.
657  if (!ok && R2->getType()->isIntegerTy()) {
658    if (!match(R2, m_And(m_Value(R11), m_Value(R12)))) {
659      R11 = R2;
660      R12 = Constant::getAllOnesValue(R2->getType());
661    }
662
663    if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
664      A = R11; D = R12; E = R1; ok = true;
665    } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
666      A = R12; D = R11; E = R1; ok = true;
667    } else {
668      return 0;
669    }
670  }
671  if (!ok)
672    return 0;
673
674  if (L11 == A) {
675    B = L12; C = L2;
676  } else if (L12 == A) {
677    B = L11; C = L2;
678  } else if (L21 == A) {
679    B = L22; C = L1;
680  } else if (L22 == A) {
681    B = L21; C = L1;
682  }
683
684  unsigned LeftType = getTypeOfMaskedICmp(A, B, C, LHSCC);
685  unsigned RightType = getTypeOfMaskedICmp(A, D, E, RHSCC);
686  return LeftType & RightType;
687}
688
689/// Try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E)
690/// into a single (icmp(A & X) ==/!= Y).
691static Value *foldLogOpOfMaskedICmps(ICmpInst *LHS, ICmpInst *RHS, bool IsAnd,
692                                     llvm::InstCombiner::BuilderTy *Builder) {
693  Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr, *E = nullptr;
694  ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate();
695  unsigned Mask = foldLogOpOfMaskedICmpsHelper(A, B, C, D, E, LHS, RHS,
696                                               LHSCC, RHSCC);
697  if (Mask == 0) return nullptr;
698  assert(ICmpInst::isEquality(LHSCC) && ICmpInst::isEquality(RHSCC) &&
699         "foldLogOpOfMaskedICmpsHelper must return an equality predicate.");
700
701  // In full generality:
702  //     (icmp (A & B) Op C) | (icmp (A & D) Op E)
703  // ==  ![ (icmp (A & B) !Op C) & (icmp (A & D) !Op E) ]
704  //
705  // If the latter can be converted into (icmp (A & X) Op Y) then the former is
706  // equivalent to (icmp (A & X) !Op Y).
707  //
708  // Therefore, we can pretend for the rest of this function that we're dealing
709  // with the conjunction, provided we flip the sense of any comparisons (both
710  // input and output).
711
712  // In most cases we're going to produce an EQ for the "&&" case.
713  ICmpInst::Predicate NewCC = IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
714  if (!IsAnd) {
715    // Convert the masking analysis into its equivalent with negated
716    // comparisons.
717    Mask = conjugateICmpMask(Mask);
718  }
719
720  if (Mask & FoldMskICmp_Mask_AllZeroes) {
721    // (icmp eq (A & B), 0) & (icmp eq (A & D), 0)
722    // -> (icmp eq (A & (B|D)), 0)
723    Value *NewOr = Builder->CreateOr(B, D);
724    Value *NewAnd = Builder->CreateAnd(A, NewOr);
725    // We can't use C as zero because we might actually handle
726    //   (icmp ne (A & B), B) & (icmp ne (A & D), D)
727    // with B and D, having a single bit set.
728    Value *Zero = Constant::getNullValue(A->getType());
729    return Builder->CreateICmp(NewCC, NewAnd, Zero);
730  }
731  if (Mask & FoldMskICmp_BMask_AllOnes) {
732    // (icmp eq (A & B), B) & (icmp eq (A & D), D)
733    // -> (icmp eq (A & (B|D)), (B|D))
734    Value *NewOr = Builder->CreateOr(B, D);
735    Value *NewAnd = Builder->CreateAnd(A, NewOr);
736    return Builder->CreateICmp(NewCC, NewAnd, NewOr);
737  }
738  if (Mask & FoldMskICmp_AMask_AllOnes) {
739    // (icmp eq (A & B), A) & (icmp eq (A & D), A)
740    // -> (icmp eq (A & (B&D)), A)
741    Value *NewAnd1 = Builder->CreateAnd(B, D);
742    Value *NewAnd2 = Builder->CreateAnd(A, NewAnd1);
743    return Builder->CreateICmp(NewCC, NewAnd2, A);
744  }
745
746  // Remaining cases assume at least that B and D are constant, and depend on
747  // their actual values. This isn't strictly necessary, just a "handle the
748  // easy cases for now" decision.
749  ConstantInt *BCst = dyn_cast<ConstantInt>(B);
750  if (!BCst) return nullptr;
751  ConstantInt *DCst = dyn_cast<ConstantInt>(D);
752  if (!DCst) return nullptr;
753
754  if (Mask & (FoldMskICmp_Mask_NotAllZeroes | FoldMskICmp_BMask_NotAllOnes)) {
755    // (icmp ne (A & B), 0) & (icmp ne (A & D), 0) and
756    // (icmp ne (A & B), B) & (icmp ne (A & D), D)
757    //     -> (icmp ne (A & B), 0) or (icmp ne (A & D), 0)
758    // Only valid if one of the masks is a superset of the other (check "B&D" is
759    // the same as either B or D).
760    APInt NewMask = BCst->getValue() & DCst->getValue();
761
762    if (NewMask == BCst->getValue())
763      return LHS;
764    else if (NewMask == DCst->getValue())
765      return RHS;
766  }
767  if (Mask & FoldMskICmp_AMask_NotAllOnes) {
768    // (icmp ne (A & B), B) & (icmp ne (A & D), D)
769    //     -> (icmp ne (A & B), A) or (icmp ne (A & D), A)
770    // Only valid if one of the masks is a superset of the other (check "B|D" is
771    // the same as either B or D).
772    APInt NewMask = BCst->getValue() | DCst->getValue();
773
774    if (NewMask == BCst->getValue())
775      return LHS;
776    else if (NewMask == DCst->getValue())
777      return RHS;
778  }
779  if (Mask & FoldMskICmp_BMask_Mixed) {
780    // (icmp eq (A & B), C) & (icmp eq (A & D), E)
781    // We already know that B & C == C && D & E == E.
782    // If we can prove that (B & D) & (C ^ E) == 0, that is, the bits of
783    // C and E, which are shared by both the mask B and the mask D, don't
784    // contradict, then we can transform to
785    // -> (icmp eq (A & (B|D)), (C|E))
786    // Currently, we only handle the case of B, C, D, and E being constant.
787    // We can't simply use C and E because we might actually handle
788    //   (icmp ne (A & B), B) & (icmp eq (A & D), D)
789    // with B and D, having a single bit set.
790    ConstantInt *CCst = dyn_cast<ConstantInt>(C);
791    if (!CCst) return nullptr;
792    ConstantInt *ECst = dyn_cast<ConstantInt>(E);
793    if (!ECst) return nullptr;
794    if (LHSCC != NewCC)
795      CCst = cast<ConstantInt>(ConstantExpr::getXor(BCst, CCst));
796    if (RHSCC != NewCC)
797      ECst = cast<ConstantInt>(ConstantExpr::getXor(DCst, ECst));
798    // If there is a conflict, we should actually return a false for the
799    // whole construct.
800    if (((BCst->getValue() & DCst->getValue()) &
801         (CCst->getValue() ^ ECst->getValue())) != 0)
802      return ConstantInt::get(LHS->getType(), !IsAnd);
803    Value *NewOr1 = Builder->CreateOr(B, D);
804    Value *NewOr2 = ConstantExpr::getOr(CCst, ECst);
805    Value *NewAnd = Builder->CreateAnd(A, NewOr1);
806    return Builder->CreateICmp(NewCC, NewAnd, NewOr2);
807  }
808  return nullptr;
809}
810
811/// Try to fold a signed range checked with lower bound 0 to an unsigned icmp.
812/// Example: (icmp sge x, 0) & (icmp slt x, n) --> icmp ult x, n
813/// If \p Inverted is true then the check is for the inverted range, e.g.
814/// (icmp slt x, 0) | (icmp sgt x, n) --> icmp ugt x, n
815Value *InstCombiner::simplifyRangeCheck(ICmpInst *Cmp0, ICmpInst *Cmp1,
816                                        bool Inverted) {
817  // Check the lower range comparison, e.g. x >= 0
818  // InstCombine already ensured that if there is a constant it's on the RHS.
819  ConstantInt *RangeStart = dyn_cast<ConstantInt>(Cmp0->getOperand(1));
820  if (!RangeStart)
821    return nullptr;
822
823  ICmpInst::Predicate Pred0 = (Inverted ? Cmp0->getInversePredicate() :
824                               Cmp0->getPredicate());
825
826  // Accept x > -1 or x >= 0 (after potentially inverting the predicate).
827  if (!((Pred0 == ICmpInst::ICMP_SGT && RangeStart->isMinusOne()) ||
828        (Pred0 == ICmpInst::ICMP_SGE && RangeStart->isZero())))
829    return nullptr;
830
831  ICmpInst::Predicate Pred1 = (Inverted ? Cmp1->getInversePredicate() :
832                               Cmp1->getPredicate());
833
834  Value *Input = Cmp0->getOperand(0);
835  Value *RangeEnd;
836  if (Cmp1->getOperand(0) == Input) {
837    // For the upper range compare we have: icmp x, n
838    RangeEnd = Cmp1->getOperand(1);
839  } else if (Cmp1->getOperand(1) == Input) {
840    // For the upper range compare we have: icmp n, x
841    RangeEnd = Cmp1->getOperand(0);
842    Pred1 = ICmpInst::getSwappedPredicate(Pred1);
843  } else {
844    return nullptr;
845  }
846
847  // Check the upper range comparison, e.g. x < n
848  ICmpInst::Predicate NewPred;
849  switch (Pred1) {
850    case ICmpInst::ICMP_SLT: NewPred = ICmpInst::ICMP_ULT; break;
851    case ICmpInst::ICMP_SLE: NewPred = ICmpInst::ICMP_ULE; break;
852    default: return nullptr;
853  }
854
855  // This simplification is only valid if the upper range is not negative.
856  bool IsNegative, IsNotNegative;
857  ComputeSignBit(RangeEnd, IsNotNegative, IsNegative, /*Depth=*/0, Cmp1);
858  if (!IsNotNegative)
859    return nullptr;
860
861  if (Inverted)
862    NewPred = ICmpInst::getInversePredicate(NewPred);
863
864  return Builder->CreateICmp(NewPred, Input, RangeEnd);
865}
866
867/// Fold (icmp)&(icmp) if possible.
868Value *InstCombiner::FoldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
869  ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate();
870
871  // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
872  if (PredicatesFoldable(LHSCC, RHSCC)) {
873    if (LHS->getOperand(0) == RHS->getOperand(1) &&
874        LHS->getOperand(1) == RHS->getOperand(0))
875      LHS->swapOperands();
876    if (LHS->getOperand(0) == RHS->getOperand(0) &&
877        LHS->getOperand(1) == RHS->getOperand(1)) {
878      Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
879      unsigned Code = getICmpCode(LHS) & getICmpCode(RHS);
880      bool isSigned = LHS->isSigned() || RHS->isSigned();
881      return getNewICmpValue(isSigned, Code, Op0, Op1, Builder);
882    }
883  }
884
885  // handle (roughly):  (icmp eq (A & B), C) & (icmp eq (A & D), E)
886  if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, true, Builder))
887    return V;
888
889  // E.g. (icmp sge x, 0) & (icmp slt x, n) --> icmp ult x, n
890  if (Value *V = simplifyRangeCheck(LHS, RHS, /*Inverted=*/false))
891    return V;
892
893  // E.g. (icmp slt x, n) & (icmp sge x, 0) --> icmp ult x, n
894  if (Value *V = simplifyRangeCheck(RHS, LHS, /*Inverted=*/false))
895    return V;
896
897  // This only handles icmp of constants: (icmp1 A, C1) & (icmp2 B, C2).
898  Value *Val = LHS->getOperand(0), *Val2 = RHS->getOperand(0);
899  ConstantInt *LHSCst = dyn_cast<ConstantInt>(LHS->getOperand(1));
900  ConstantInt *RHSCst = dyn_cast<ConstantInt>(RHS->getOperand(1));
901  if (!LHSCst || !RHSCst) return nullptr;
902
903  if (LHSCst == RHSCst && LHSCC == RHSCC) {
904    // (icmp ult A, C) & (icmp ult B, C) --> (icmp ult (A|B), C)
905    // where C is a power of 2 or
906    // (icmp eq A, 0) & (icmp eq B, 0) --> (icmp eq (A|B), 0)
907    if ((LHSCC == ICmpInst::ICMP_ULT && LHSCst->getValue().isPowerOf2()) ||
908        (LHSCC == ICmpInst::ICMP_EQ && LHSCst->isZero())) {
909      Value *NewOr = Builder->CreateOr(Val, Val2);
910      return Builder->CreateICmp(LHSCC, NewOr, LHSCst);
911    }
912  }
913
914  // (trunc x) == C1 & (and x, CA) == C2 -> (and x, CA|CMAX) == C1|C2
915  // where CMAX is the all ones value for the truncated type,
916  // iff the lower bits of C2 and CA are zero.
917  if (LHSCC == ICmpInst::ICMP_EQ && LHSCC == RHSCC &&
918      LHS->hasOneUse() && RHS->hasOneUse()) {
919    Value *V;
920    ConstantInt *AndCst, *SmallCst = nullptr, *BigCst = nullptr;
921
922    // (trunc x) == C1 & (and x, CA) == C2
923    // (and x, CA) == C2 & (trunc x) == C1
924    if (match(Val2, m_Trunc(m_Value(V))) &&
925        match(Val, m_And(m_Specific(V), m_ConstantInt(AndCst)))) {
926      SmallCst = RHSCst;
927      BigCst = LHSCst;
928    } else if (match(Val, m_Trunc(m_Value(V))) &&
929               match(Val2, m_And(m_Specific(V), m_ConstantInt(AndCst)))) {
930      SmallCst = LHSCst;
931      BigCst = RHSCst;
932    }
933
934    if (SmallCst && BigCst) {
935      unsigned BigBitSize = BigCst->getType()->getBitWidth();
936      unsigned SmallBitSize = SmallCst->getType()->getBitWidth();
937
938      // Check that the low bits are zero.
939      APInt Low = APInt::getLowBitsSet(BigBitSize, SmallBitSize);
940      if ((Low & AndCst->getValue()) == 0 && (Low & BigCst->getValue()) == 0) {
941        Value *NewAnd = Builder->CreateAnd(V, Low | AndCst->getValue());
942        APInt N = SmallCst->getValue().zext(BigBitSize) | BigCst->getValue();
943        Value *NewVal = ConstantInt::get(AndCst->getType()->getContext(), N);
944        return Builder->CreateICmp(LHSCC, NewAnd, NewVal);
945      }
946    }
947  }
948
949  // From here on, we only handle:
950  //    (icmp1 A, C1) & (icmp2 A, C2) --> something simpler.
951  if (Val != Val2) return nullptr;
952
953  // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere.
954  if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE ||
955      RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE ||
956      LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE ||
957      RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE)
958    return nullptr;
959
960  // We can't fold (ugt x, C) & (sgt x, C2).
961  if (!PredicatesFoldable(LHSCC, RHSCC))
962    return nullptr;
963
964  // Ensure that the larger constant is on the RHS.
965  bool ShouldSwap;
966  if (CmpInst::isSigned(LHSCC) ||
967      (ICmpInst::isEquality(LHSCC) &&
968       CmpInst::isSigned(RHSCC)))
969    ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue());
970  else
971    ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue());
972
973  if (ShouldSwap) {
974    std::swap(LHS, RHS);
975    std::swap(LHSCst, RHSCst);
976    std::swap(LHSCC, RHSCC);
977  }
978
979  // At this point, we know we have two icmp instructions
980  // comparing a value against two constants and and'ing the result
981  // together.  Because of the above check, we know that we only have
982  // icmp eq, icmp ne, icmp [su]lt, and icmp [SU]gt here. We also know
983  // (from the icmp folding check above), that the two constants
984  // are not equal and that the larger constant is on the RHS
985  assert(LHSCst != RHSCst && "Compares not folded above?");
986
987  switch (LHSCC) {
988  default: llvm_unreachable("Unknown integer condition code!");
989  case ICmpInst::ICMP_EQ:
990    switch (RHSCC) {
991    default: llvm_unreachable("Unknown integer condition code!");
992    case ICmpInst::ICMP_NE:         // (X == 13 & X != 15) -> X == 13
993    case ICmpInst::ICMP_ULT:        // (X == 13 & X <  15) -> X == 13
994    case ICmpInst::ICMP_SLT:        // (X == 13 & X <  15) -> X == 13
995      return LHS;
996    }
997  case ICmpInst::ICMP_NE:
998    switch (RHSCC) {
999    default: llvm_unreachable("Unknown integer condition code!");
1000    case ICmpInst::ICMP_ULT:
1001      if (LHSCst == SubOne(RHSCst)) // (X != 13 & X u< 14) -> X < 13
1002        return Builder->CreateICmpULT(Val, LHSCst);
1003      if (LHSCst->isNullValue())    // (X !=  0 & X u< 14) -> X-1 u< 13
1004        return InsertRangeTest(Val, AddOne(LHSCst), RHSCst, false, true);
1005      break;                        // (X != 13 & X u< 15) -> no change
1006    case ICmpInst::ICMP_SLT:
1007      if (LHSCst == SubOne(RHSCst)) // (X != 13 & X s< 14) -> X < 13
1008        return Builder->CreateICmpSLT(Val, LHSCst);
1009      break;                        // (X != 13 & X s< 15) -> no change
1010    case ICmpInst::ICMP_EQ:         // (X != 13 & X == 15) -> X == 15
1011    case ICmpInst::ICMP_UGT:        // (X != 13 & X u> 15) -> X u> 15
1012    case ICmpInst::ICMP_SGT:        // (X != 13 & X s> 15) -> X s> 15
1013      return RHS;
1014    case ICmpInst::ICMP_NE:
1015      // Special case to get the ordering right when the values wrap around
1016      // zero.
1017      if (LHSCst->getValue() == 0 && RHSCst->getValue().isAllOnesValue())
1018        std::swap(LHSCst, RHSCst);
1019      if (LHSCst == SubOne(RHSCst)){// (X != 13 & X != 14) -> X-13 >u 1
1020        Constant *AddCST = ConstantExpr::getNeg(LHSCst);
1021        Value *Add = Builder->CreateAdd(Val, AddCST, Val->getName()+".off");
1022        return Builder->CreateICmpUGT(Add, ConstantInt::get(Add->getType(), 1),
1023                                      Val->getName()+".cmp");
1024      }
1025      break;                        // (X != 13 & X != 15) -> no change
1026    }
1027    break;
1028  case ICmpInst::ICMP_ULT:
1029    switch (RHSCC) {
1030    default: llvm_unreachable("Unknown integer condition code!");
1031    case ICmpInst::ICMP_EQ:         // (X u< 13 & X == 15) -> false
1032    case ICmpInst::ICMP_UGT:        // (X u< 13 & X u> 15) -> false
1033      return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
1034    case ICmpInst::ICMP_SGT:        // (X u< 13 & X s> 15) -> no change
1035      break;
1036    case ICmpInst::ICMP_NE:         // (X u< 13 & X != 15) -> X u< 13
1037    case ICmpInst::ICMP_ULT:        // (X u< 13 & X u< 15) -> X u< 13
1038      return LHS;
1039    case ICmpInst::ICMP_SLT:        // (X u< 13 & X s< 15) -> no change
1040      break;
1041    }
1042    break;
1043  case ICmpInst::ICMP_SLT:
1044    switch (RHSCC) {
1045    default: llvm_unreachable("Unknown integer condition code!");
1046    case ICmpInst::ICMP_UGT:        // (X s< 13 & X u> 15) -> no change
1047      break;
1048    case ICmpInst::ICMP_NE:         // (X s< 13 & X != 15) -> X < 13
1049    case ICmpInst::ICMP_SLT:        // (X s< 13 & X s< 15) -> X < 13
1050      return LHS;
1051    case ICmpInst::ICMP_ULT:        // (X s< 13 & X u< 15) -> no change
1052      break;
1053    }
1054    break;
1055  case ICmpInst::ICMP_UGT:
1056    switch (RHSCC) {
1057    default: llvm_unreachable("Unknown integer condition code!");
1058    case ICmpInst::ICMP_EQ:         // (X u> 13 & X == 15) -> X == 15
1059    case ICmpInst::ICMP_UGT:        // (X u> 13 & X u> 15) -> X u> 15
1060      return RHS;
1061    case ICmpInst::ICMP_SGT:        // (X u> 13 & X s> 15) -> no change
1062      break;
1063    case ICmpInst::ICMP_NE:
1064      if (RHSCst == AddOne(LHSCst)) // (X u> 13 & X != 14) -> X u> 14
1065        return Builder->CreateICmp(LHSCC, Val, RHSCst);
1066      break;                        // (X u> 13 & X != 15) -> no change
1067    case ICmpInst::ICMP_ULT:        // (X u> 13 & X u< 15) -> (X-14) <u 1
1068      return InsertRangeTest(Val, AddOne(LHSCst), RHSCst, false, true);
1069    case ICmpInst::ICMP_SLT:        // (X u> 13 & X s< 15) -> no change
1070      break;
1071    }
1072    break;
1073  case ICmpInst::ICMP_SGT:
1074    switch (RHSCC) {
1075    default: llvm_unreachable("Unknown integer condition code!");
1076    case ICmpInst::ICMP_EQ:         // (X s> 13 & X == 15) -> X == 15
1077    case ICmpInst::ICMP_SGT:        // (X s> 13 & X s> 15) -> X s> 15
1078      return RHS;
1079    case ICmpInst::ICMP_UGT:        // (X s> 13 & X u> 15) -> no change
1080      break;
1081    case ICmpInst::ICMP_NE:
1082      if (RHSCst == AddOne(LHSCst)) // (X s> 13 & X != 14) -> X s> 14
1083        return Builder->CreateICmp(LHSCC, Val, RHSCst);
1084      break;                        // (X s> 13 & X != 15) -> no change
1085    case ICmpInst::ICMP_SLT:        // (X s> 13 & X s< 15) -> (X-14) s< 1
1086      return InsertRangeTest(Val, AddOne(LHSCst), RHSCst, true, true);
1087    case ICmpInst::ICMP_ULT:        // (X s> 13 & X u< 15) -> no change
1088      break;
1089    }
1090    break;
1091  }
1092
1093  return nullptr;
1094}
1095
1096/// Optimize (fcmp)&(fcmp).  NOTE: Unlike the rest of instcombine, this returns
1097/// a Value which should already be inserted into the function.
1098Value *InstCombiner::FoldAndOfFCmps(FCmpInst *LHS, FCmpInst *RHS) {
1099  Value *Op0LHS = LHS->getOperand(0), *Op0RHS = LHS->getOperand(1);
1100  Value *Op1LHS = RHS->getOperand(0), *Op1RHS = RHS->getOperand(1);
1101  FCmpInst::Predicate Op0CC = LHS->getPredicate(), Op1CC = RHS->getPredicate();
1102
1103  if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
1104    // Swap RHS operands to match LHS.
1105    Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
1106    std::swap(Op1LHS, Op1RHS);
1107  }
1108
1109  // Simplify (fcmp cc0 x, y) & (fcmp cc1 x, y).
1110  // Suppose the relation between x and y is R, where R is one of
1111  // U(1000), L(0100), G(0010) or E(0001), and CC0 and CC1 are the bitmasks for
1112  // testing the desired relations.
1113  //
1114  // Since (R & CC0) and (R & CC1) are either R or 0, we actually have this:
1115  //    bool(R & CC0) && bool(R & CC1)
1116  //  = bool((R & CC0) & (R & CC1))
1117  //  = bool(R & (CC0 & CC1)) <= by re-association, commutation, and idempotency
1118  if (Op0LHS == Op1LHS && Op0RHS == Op1RHS)
1119    return getFCmpValue(getFCmpCode(Op0CC) & getFCmpCode(Op1CC), Op0LHS, Op0RHS,
1120                        Builder);
1121
1122  if (LHS->getPredicate() == FCmpInst::FCMP_ORD &&
1123      RHS->getPredicate() == FCmpInst::FCMP_ORD) {
1124    if (LHS->getOperand(0)->getType() != RHS->getOperand(0)->getType())
1125      return nullptr;
1126
1127    // (fcmp ord x, c) & (fcmp ord y, c)  -> (fcmp ord x, y)
1128    if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
1129      if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
1130        // If either of the constants are nans, then the whole thing returns
1131        // false.
1132        if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
1133          return Builder->getFalse();
1134        return Builder->CreateFCmpORD(LHS->getOperand(0), RHS->getOperand(0));
1135      }
1136
1137    // Handle vector zeros.  This occurs because the canonical form of
1138    // "fcmp ord x,x" is "fcmp ord x, 0".
1139    if (isa<ConstantAggregateZero>(LHS->getOperand(1)) &&
1140        isa<ConstantAggregateZero>(RHS->getOperand(1)))
1141      return Builder->CreateFCmpORD(LHS->getOperand(0), RHS->getOperand(0));
1142    return nullptr;
1143  }
1144
1145  return nullptr;
1146}
1147
1148/// Match De Morgan's Laws:
1149/// (~A & ~B) == (~(A | B))
1150/// (~A | ~B) == (~(A & B))
1151static Instruction *matchDeMorgansLaws(BinaryOperator &I,
1152                                       InstCombiner::BuilderTy *Builder) {
1153  auto Opcode = I.getOpcode();
1154  assert((Opcode == Instruction::And || Opcode == Instruction::Or) &&
1155         "Trying to match De Morgan's Laws with something other than and/or");
1156  // Flip the logic operation.
1157  if (Opcode == Instruction::And)
1158    Opcode = Instruction::Or;
1159  else
1160    Opcode = Instruction::And;
1161
1162  Value *Op0 = I.getOperand(0);
1163  Value *Op1 = I.getOperand(1);
1164  // TODO: Use pattern matchers instead of dyn_cast.
1165  if (Value *Op0NotVal = dyn_castNotVal(Op0))
1166    if (Value *Op1NotVal = dyn_castNotVal(Op1))
1167      if (Op0->hasOneUse() && Op1->hasOneUse()) {
1168        Value *LogicOp = Builder->CreateBinOp(Opcode, Op0NotVal, Op1NotVal,
1169                                              I.getName() + ".demorgan");
1170        return BinaryOperator::CreateNot(LogicOp);
1171      }
1172
1173  // De Morgan's Law in disguise:
1174  // (zext(bool A) ^ 1) & (zext(bool B) ^ 1) -> zext(~(A | B))
1175  // (zext(bool A) ^ 1) | (zext(bool B) ^ 1) -> zext(~(A & B))
1176  Value *A = nullptr;
1177  Value *B = nullptr;
1178  ConstantInt *C1 = nullptr;
1179  if (match(Op0, m_OneUse(m_Xor(m_ZExt(m_Value(A)), m_ConstantInt(C1)))) &&
1180      match(Op1, m_OneUse(m_Xor(m_ZExt(m_Value(B)), m_Specific(C1))))) {
1181    // TODO: This check could be loosened to handle different type sizes.
1182    // Alternatively, we could fix the definition of m_Not to recognize a not
1183    // operation hidden by a zext?
1184    if (A->getType()->isIntegerTy(1) && B->getType()->isIntegerTy(1) &&
1185        C1->isOne()) {
1186      Value *LogicOp = Builder->CreateBinOp(Opcode, A, B,
1187                                            I.getName() + ".demorgan");
1188      Value *Not = Builder->CreateNot(LogicOp);
1189      return CastInst::CreateZExtOrBitCast(Not, I.getType());
1190    }
1191  }
1192
1193  return nullptr;
1194}
1195
1196Instruction *InstCombiner::foldCastedBitwiseLogic(BinaryOperator &I) {
1197  auto LogicOpc = I.getOpcode();
1198  assert((LogicOpc == Instruction::And || LogicOpc == Instruction::Or ||
1199          LogicOpc == Instruction::Xor) &&
1200         "Unexpected opcode for bitwise logic folding");
1201
1202  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1203  CastInst *Cast0 = dyn_cast<CastInst>(Op0);
1204  if (!Cast0)
1205    return nullptr;
1206
1207  // This must be a cast from an integer or integer vector source type to allow
1208  // transformation of the logic operation to the source type.
1209  Type *DestTy = I.getType();
1210  Type *SrcTy = Cast0->getSrcTy();
1211  if (!SrcTy->isIntOrIntVectorTy())
1212    return nullptr;
1213
1214  // If one operand is a bitcast and the other is a constant, move the logic
1215  // operation ahead of the bitcast. That is, do the logic operation in the
1216  // original type. This can eliminate useless bitcasts and allow normal
1217  // combines that would otherwise be impeded by the bitcast. Canonicalization
1218  // ensures that if there is a constant operand, it will be the second operand.
1219  Value *BC = nullptr;
1220  Constant *C = nullptr;
1221  if ((match(Op0, m_BitCast(m_Value(BC))) && match(Op1, m_Constant(C)))) {
1222    Value *NewConstant = ConstantExpr::getBitCast(C, SrcTy);
1223    Value *NewOp = Builder->CreateBinOp(LogicOpc, BC, NewConstant, I.getName());
1224    return CastInst::CreateBitOrPointerCast(NewOp, DestTy);
1225  }
1226
1227  CastInst *Cast1 = dyn_cast<CastInst>(Op1);
1228  if (!Cast1)
1229    return nullptr;
1230
1231  // Both operands of the logic operation are casts. The casts must be of the
1232  // same type for reduction.
1233  auto CastOpcode = Cast0->getOpcode();
1234  if (CastOpcode != Cast1->getOpcode() || SrcTy != Cast1->getSrcTy())
1235    return nullptr;
1236
1237  Value *Cast0Src = Cast0->getOperand(0);
1238  Value *Cast1Src = Cast1->getOperand(0);
1239
1240  // fold (logic (cast A), (cast B)) -> (cast (logic A, B))
1241
1242  // Only do this if the casts both really cause code to be generated.
1243  if ((!isa<ICmpInst>(Cast0Src) || !isa<ICmpInst>(Cast1Src)) &&
1244      ShouldOptimizeCast(CastOpcode, Cast0Src, DestTy) &&
1245      ShouldOptimizeCast(CastOpcode, Cast1Src, DestTy)) {
1246    Value *NewOp = Builder->CreateBinOp(LogicOpc, Cast0Src, Cast1Src,
1247                                        I.getName());
1248    return CastInst::Create(CastOpcode, NewOp, DestTy);
1249  }
1250
1251  // For now, only 'and'/'or' have optimizations after this.
1252  if (LogicOpc == Instruction::Xor)
1253    return nullptr;
1254
1255  // If this is logic(cast(icmp), cast(icmp)), try to fold this even if the
1256  // cast is otherwise not optimizable.  This happens for vector sexts.
1257  ICmpInst *ICmp0 = dyn_cast<ICmpInst>(Cast0Src);
1258  ICmpInst *ICmp1 = dyn_cast<ICmpInst>(Cast1Src);
1259  if (ICmp0 && ICmp1) {
1260    Value *Res = LogicOpc == Instruction::And ? FoldAndOfICmps(ICmp0, ICmp1)
1261                                              : FoldOrOfICmps(ICmp0, ICmp1, &I);
1262    if (Res)
1263      return CastInst::Create(CastOpcode, Res, DestTy);
1264    return nullptr;
1265  }
1266
1267  // If this is logic(cast(fcmp), cast(fcmp)), try to fold this even if the
1268  // cast is otherwise not optimizable.  This happens for vector sexts.
1269  FCmpInst *FCmp0 = dyn_cast<FCmpInst>(Cast0Src);
1270  FCmpInst *FCmp1 = dyn_cast<FCmpInst>(Cast1Src);
1271  if (FCmp0 && FCmp1) {
1272    Value *Res = LogicOpc == Instruction::And ? FoldAndOfFCmps(FCmp0, FCmp1)
1273                                              : FoldOrOfFCmps(FCmp0, FCmp1);
1274    if (Res)
1275      return CastInst::Create(CastOpcode, Res, DestTy);
1276    return nullptr;
1277  }
1278
1279  return nullptr;
1280}
1281
1282static Instruction *foldBoolSextMaskToSelect(BinaryOperator &I) {
1283  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1284
1285  // Canonicalize SExt or Not to the LHS
1286  if (match(Op1, m_SExt(m_Value())) || match(Op1, m_Not(m_Value()))) {
1287    std::swap(Op0, Op1);
1288  }
1289
1290  // Fold (and (sext bool to A), B) --> (select bool, B, 0)
1291  Value *X = nullptr;
1292  if (match(Op0, m_SExt(m_Value(X))) &&
1293      X->getType()->getScalarType()->isIntegerTy(1)) {
1294    Value *Zero = Constant::getNullValue(Op1->getType());
1295    return SelectInst::Create(X, Op1, Zero);
1296  }
1297
1298  // Fold (and ~(sext bool to A), B) --> (select bool, 0, B)
1299  if (match(Op0, m_Not(m_SExt(m_Value(X)))) &&
1300      X->getType()->getScalarType()->isIntegerTy(1)) {
1301    Value *Zero = Constant::getNullValue(Op0->getType());
1302    return SelectInst::Create(X, Zero, Op1);
1303  }
1304
1305  return nullptr;
1306}
1307
1308Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
1309  bool Changed = SimplifyAssociativeOrCommutative(I);
1310  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1311
1312  if (Value *V = SimplifyVectorOp(I))
1313    return replaceInstUsesWith(I, V);
1314
1315  if (Value *V = SimplifyAndInst(Op0, Op1, DL, TLI, DT, AC))
1316    return replaceInstUsesWith(I, V);
1317
1318  // (A|B)&(A|C) -> A|(B&C) etc
1319  if (Value *V = SimplifyUsingDistributiveLaws(I))
1320    return replaceInstUsesWith(I, V);
1321
1322  // See if we can simplify any instructions used by the instruction whose sole
1323  // purpose is to compute bits we don't care about.
1324  if (SimplifyDemandedInstructionBits(I))
1325    return &I;
1326
1327  if (Value *V = SimplifyBSwap(I))
1328    return replaceInstUsesWith(I, V);
1329
1330  if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(Op1)) {
1331    const APInt &AndRHSMask = AndRHS->getValue();
1332
1333    // Optimize a variety of ((val OP C1) & C2) combinations...
1334    if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
1335      Value *Op0LHS = Op0I->getOperand(0);
1336      Value *Op0RHS = Op0I->getOperand(1);
1337      switch (Op0I->getOpcode()) {
1338      default: break;
1339      case Instruction::Xor:
1340      case Instruction::Or: {
1341        // If the mask is only needed on one incoming arm, push it up.
1342        if (!Op0I->hasOneUse()) break;
1343
1344        APInt NotAndRHS(~AndRHSMask);
1345        if (MaskedValueIsZero(Op0LHS, NotAndRHS, 0, &I)) {
1346          // Not masking anything out for the LHS, move to RHS.
1347          Value *NewRHS = Builder->CreateAnd(Op0RHS, AndRHS,
1348                                             Op0RHS->getName()+".masked");
1349          return BinaryOperator::Create(Op0I->getOpcode(), Op0LHS, NewRHS);
1350        }
1351        if (!isa<Constant>(Op0RHS) &&
1352            MaskedValueIsZero(Op0RHS, NotAndRHS, 0, &I)) {
1353          // Not masking anything out for the RHS, move to LHS.
1354          Value *NewLHS = Builder->CreateAnd(Op0LHS, AndRHS,
1355                                             Op0LHS->getName()+".masked");
1356          return BinaryOperator::Create(Op0I->getOpcode(), NewLHS, Op0RHS);
1357        }
1358
1359        break;
1360      }
1361      case Instruction::Add:
1362        // ((A & N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == AndRHS.
1363        // ((A | N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
1364        // ((A ^ N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
1365        if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, false, I))
1366          return BinaryOperator::CreateAnd(V, AndRHS);
1367        if (Value *V = FoldLogicalPlusAnd(Op0RHS, Op0LHS, AndRHS, false, I))
1368          return BinaryOperator::CreateAnd(V, AndRHS);  // Add commutes
1369        break;
1370
1371      case Instruction::Sub:
1372        // ((A & N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == AndRHS.
1373        // ((A | N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
1374        // ((A ^ N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
1375        if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, true, I))
1376          return BinaryOperator::CreateAnd(V, AndRHS);
1377
1378        // -x & 1 -> x & 1
1379        if (AndRHSMask == 1 && match(Op0LHS, m_Zero()))
1380          return BinaryOperator::CreateAnd(Op0RHS, AndRHS);
1381
1382        // (A - N) & AndRHS -> -N & AndRHS iff A&AndRHS==0 and AndRHS
1383        // has 1's for all bits that the subtraction with A might affect.
1384        if (Op0I->hasOneUse() && !match(Op0LHS, m_Zero())) {
1385          uint32_t BitWidth = AndRHSMask.getBitWidth();
1386          uint32_t Zeros = AndRHSMask.countLeadingZeros();
1387          APInt Mask = APInt::getLowBitsSet(BitWidth, BitWidth - Zeros);
1388
1389          if (MaskedValueIsZero(Op0LHS, Mask, 0, &I)) {
1390            Value *NewNeg = Builder->CreateNeg(Op0RHS);
1391            return BinaryOperator::CreateAnd(NewNeg, AndRHS);
1392          }
1393        }
1394        break;
1395
1396      case Instruction::Shl:
1397      case Instruction::LShr:
1398        // (1 << x) & 1 --> zext(x == 0)
1399        // (1 >> x) & 1 --> zext(x == 0)
1400        if (AndRHSMask == 1 && Op0LHS == AndRHS) {
1401          Value *NewICmp =
1402            Builder->CreateICmpEQ(Op0RHS, Constant::getNullValue(I.getType()));
1403          return new ZExtInst(NewICmp, I.getType());
1404        }
1405        break;
1406      }
1407
1408      if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
1409        if (Instruction *Res = OptAndOp(Op0I, Op0CI, AndRHS, I))
1410          return Res;
1411    }
1412
1413    // If this is an integer truncation, and if the source is an 'and' with
1414    // immediate, transform it.  This frequently occurs for bitfield accesses.
1415    {
1416      Value *X = nullptr; ConstantInt *YC = nullptr;
1417      if (match(Op0, m_Trunc(m_And(m_Value(X), m_ConstantInt(YC))))) {
1418        // Change: and (trunc (and X, YC) to T), C2
1419        // into  : and (trunc X to T), trunc(YC) & C2
1420        // This will fold the two constants together, which may allow
1421        // other simplifications.
1422        Value *NewCast = Builder->CreateTrunc(X, I.getType(), "and.shrunk");
1423        Constant *C3 = ConstantExpr::getTrunc(YC, I.getType());
1424        C3 = ConstantExpr::getAnd(C3, AndRHS);
1425        return BinaryOperator::CreateAnd(NewCast, C3);
1426      }
1427    }
1428
1429    // Try to fold constant and into select arguments.
1430    if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
1431      if (Instruction *R = FoldOpIntoSelect(I, SI))
1432        return R;
1433    if (isa<PHINode>(Op0))
1434      if (Instruction *NV = FoldOpIntoPhi(I))
1435        return NV;
1436  }
1437
1438  if (Instruction *DeMorgan = matchDeMorgansLaws(I, Builder))
1439    return DeMorgan;
1440
1441  {
1442    Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
1443    // (A|B) & ~(A&B) -> A^B
1444    if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
1445        match(Op1, m_Not(m_And(m_Value(C), m_Value(D)))) &&
1446        ((A == C && B == D) || (A == D && B == C)))
1447      return BinaryOperator::CreateXor(A, B);
1448
1449    // ~(A&B) & (A|B) -> A^B
1450    if (match(Op1, m_Or(m_Value(A), m_Value(B))) &&
1451        match(Op0, m_Not(m_And(m_Value(C), m_Value(D)))) &&
1452        ((A == C && B == D) || (A == D && B == C)))
1453      return BinaryOperator::CreateXor(A, B);
1454
1455    // A&(A^B) => A & ~B
1456    {
1457      Value *tmpOp0 = Op0;
1458      Value *tmpOp1 = Op1;
1459      if (match(Op0, m_OneUse(m_Xor(m_Value(A), m_Value(B))))) {
1460        if (A == Op1 || B == Op1 ) {
1461          tmpOp1 = Op0;
1462          tmpOp0 = Op1;
1463          // Simplify below
1464        }
1465      }
1466
1467      if (match(tmpOp1, m_OneUse(m_Xor(m_Value(A), m_Value(B))))) {
1468        if (B == tmpOp0) {
1469          std::swap(A, B);
1470        }
1471        // Notice that the pattern (A&(~B)) is actually (A&(-1^B)), so if
1472        // A is originally -1 (or a vector of -1 and undefs), then we enter
1473        // an endless loop. By checking that A is non-constant we ensure that
1474        // we will never get to the loop.
1475        if (A == tmpOp0 && !isa<Constant>(A)) // A&(A^B) -> A & ~B
1476          return BinaryOperator::CreateAnd(A, Builder->CreateNot(B));
1477      }
1478    }
1479
1480    // (A&((~A)|B)) -> A&B
1481    if (match(Op0, m_Or(m_Not(m_Specific(Op1)), m_Value(A))) ||
1482        match(Op0, m_Or(m_Value(A), m_Not(m_Specific(Op1)))))
1483      return BinaryOperator::CreateAnd(A, Op1);
1484    if (match(Op1, m_Or(m_Not(m_Specific(Op0)), m_Value(A))) ||
1485        match(Op1, m_Or(m_Value(A), m_Not(m_Specific(Op0)))))
1486      return BinaryOperator::CreateAnd(A, Op0);
1487
1488    // (A ^ B) & ((B ^ C) ^ A) -> (A ^ B) & ~C
1489    if (match(Op0, m_Xor(m_Value(A), m_Value(B))))
1490      if (match(Op1, m_Xor(m_Xor(m_Specific(B), m_Value(C)), m_Specific(A))))
1491        if (Op1->hasOneUse() || cast<BinaryOperator>(Op1)->hasOneUse())
1492          return BinaryOperator::CreateAnd(Op0, Builder->CreateNot(C));
1493
1494    // ((A ^ C) ^ B) & (B ^ A) -> (B ^ A) & ~C
1495    if (match(Op0, m_Xor(m_Xor(m_Value(A), m_Value(C)), m_Value(B))))
1496      if (match(Op1, m_Xor(m_Specific(B), m_Specific(A))))
1497        if (Op0->hasOneUse() || cast<BinaryOperator>(Op0)->hasOneUse())
1498          return BinaryOperator::CreateAnd(Op1, Builder->CreateNot(C));
1499
1500    // (A | B) & ((~A) ^ B) -> (A & B)
1501    if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
1502        match(Op1, m_Xor(m_Not(m_Specific(A)), m_Specific(B))))
1503      return BinaryOperator::CreateAnd(A, B);
1504
1505    // ((~A) ^ B) & (A | B) -> (A & B)
1506    if (match(Op0, m_Xor(m_Not(m_Value(A)), m_Value(B))) &&
1507        match(Op1, m_Or(m_Specific(A), m_Specific(B))))
1508      return BinaryOperator::CreateAnd(A, B);
1509  }
1510
1511  {
1512    ICmpInst *LHS = dyn_cast<ICmpInst>(Op0);
1513    ICmpInst *RHS = dyn_cast<ICmpInst>(Op1);
1514    if (LHS && RHS)
1515      if (Value *Res = FoldAndOfICmps(LHS, RHS))
1516        return replaceInstUsesWith(I, Res);
1517
1518    // TODO: Make this recursive; it's a little tricky because an arbitrary
1519    // number of 'and' instructions might have to be created.
1520    Value *X, *Y;
1521    if (LHS && match(Op1, m_OneUse(m_And(m_Value(X), m_Value(Y))))) {
1522      if (auto *Cmp = dyn_cast<ICmpInst>(X))
1523        if (Value *Res = FoldAndOfICmps(LHS, Cmp))
1524          return replaceInstUsesWith(I, Builder->CreateAnd(Res, Y));
1525      if (auto *Cmp = dyn_cast<ICmpInst>(Y))
1526        if (Value *Res = FoldAndOfICmps(LHS, Cmp))
1527          return replaceInstUsesWith(I, Builder->CreateAnd(Res, X));
1528    }
1529    if (RHS && match(Op0, m_OneUse(m_And(m_Value(X), m_Value(Y))))) {
1530      if (auto *Cmp = dyn_cast<ICmpInst>(X))
1531        if (Value *Res = FoldAndOfICmps(Cmp, RHS))
1532          return replaceInstUsesWith(I, Builder->CreateAnd(Res, Y));
1533      if (auto *Cmp = dyn_cast<ICmpInst>(Y))
1534        if (Value *Res = FoldAndOfICmps(Cmp, RHS))
1535          return replaceInstUsesWith(I, Builder->CreateAnd(Res, X));
1536    }
1537  }
1538
1539  // If and'ing two fcmp, try combine them into one.
1540  if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0)))
1541    if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
1542      if (Value *Res = FoldAndOfFCmps(LHS, RHS))
1543        return replaceInstUsesWith(I, Res);
1544
1545  if (Instruction *CastedAnd = foldCastedBitwiseLogic(I))
1546    return CastedAnd;
1547
1548  if (Instruction *Select = foldBoolSextMaskToSelect(I))
1549    return Select;
1550
1551  return Changed ? &I : nullptr;
1552}
1553
1554/// Given an OR instruction, check to see if this is a bswap idiom. If so,
1555/// insert the new intrinsic and return it.
1556Instruction *InstCombiner::MatchBSwap(BinaryOperator &I) {
1557  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1558
1559  // Look through zero extends.
1560  if (Instruction *Ext = dyn_cast<ZExtInst>(Op0))
1561    Op0 = Ext->getOperand(0);
1562
1563  if (Instruction *Ext = dyn_cast<ZExtInst>(Op1))
1564    Op1 = Ext->getOperand(0);
1565
1566  // (A | B) | C  and  A | (B | C)                  -> bswap if possible.
1567  bool OrOfOrs = match(Op0, m_Or(m_Value(), m_Value())) ||
1568                 match(Op1, m_Or(m_Value(), m_Value()));
1569
1570  // (A >> B) | (C << D)  and  (A << B) | (B >> C)  -> bswap if possible.
1571  bool OrOfShifts = match(Op0, m_LogicalShift(m_Value(), m_Value())) &&
1572                    match(Op1, m_LogicalShift(m_Value(), m_Value()));
1573
1574  // (A & B) | (C & D)                              -> bswap if possible.
1575  bool OrOfAnds = match(Op0, m_And(m_Value(), m_Value())) &&
1576                  match(Op1, m_And(m_Value(), m_Value()));
1577
1578  if (!OrOfOrs && !OrOfShifts && !OrOfAnds)
1579    return nullptr;
1580
1581  SmallVector<Instruction*, 4> Insts;
1582  if (!recognizeBSwapOrBitReverseIdiom(&I, true, false, Insts))
1583    return nullptr;
1584  Instruction *LastInst = Insts.pop_back_val();
1585  LastInst->removeFromParent();
1586
1587  for (auto *Inst : Insts)
1588    Worklist.Add(Inst);
1589  return LastInst;
1590}
1591
1592/// If all elements of two constant vectors are 0/-1 and inverses, return true.
1593static bool areInverseVectorBitmasks(Constant *C1, Constant *C2) {
1594  unsigned NumElts = C1->getType()->getVectorNumElements();
1595  for (unsigned i = 0; i != NumElts; ++i) {
1596    Constant *EltC1 = C1->getAggregateElement(i);
1597    Constant *EltC2 = C2->getAggregateElement(i);
1598    if (!EltC1 || !EltC2)
1599      return false;
1600
1601    // One element must be all ones, and the other must be all zeros.
1602    // FIXME: Allow undef elements.
1603    if (!((match(EltC1, m_Zero()) && match(EltC2, m_AllOnes())) ||
1604          (match(EltC2, m_Zero()) && match(EltC1, m_AllOnes()))))
1605      return false;
1606  }
1607  return true;
1608}
1609
1610/// We have an expression of the form (A & C) | (B & D). If A is a scalar or
1611/// vector composed of all-zeros or all-ones values and is the bitwise 'not' of
1612/// B, it can be used as the condition operand of a select instruction.
1613static Value *getSelectCondition(Value *A, Value *B,
1614                                 InstCombiner::BuilderTy &Builder) {
1615  // If these are scalars or vectors of i1, A can be used directly.
1616  Type *Ty = A->getType();
1617  if (match(A, m_Not(m_Specific(B))) && Ty->getScalarType()->isIntegerTy(1))
1618    return A;
1619
1620  // If A and B are sign-extended, look through the sexts to find the booleans.
1621  Value *Cond;
1622  if (match(A, m_SExt(m_Value(Cond))) &&
1623      Cond->getType()->getScalarType()->isIntegerTy(1) &&
1624      match(B, m_CombineOr(m_Not(m_SExt(m_Specific(Cond))),
1625                           m_SExt(m_Not(m_Specific(Cond))))))
1626    return Cond;
1627
1628  // All scalar (and most vector) possibilities should be handled now.
1629  // Try more matches that only apply to non-splat constant vectors.
1630  if (!Ty->isVectorTy())
1631    return nullptr;
1632
1633  // If both operands are constants, see if the constants are inverse bitmasks.
1634  Constant *AC, *BC;
1635  if (match(A, m_Constant(AC)) && match(B, m_Constant(BC)) &&
1636      areInverseVectorBitmasks(AC, BC))
1637    return ConstantExpr::getTrunc(AC, CmpInst::makeCmpResultType(Ty));
1638
1639  // If both operands are xor'd with constants using the same sexted boolean
1640  // operand, see if the constants are inverse bitmasks.
1641  if (match(A, (m_Xor(m_SExt(m_Value(Cond)), m_Constant(AC)))) &&
1642      match(B, (m_Xor(m_SExt(m_Specific(Cond)), m_Constant(BC)))) &&
1643      Cond->getType()->getScalarType()->isIntegerTy(1) &&
1644      areInverseVectorBitmasks(AC, BC)) {
1645    AC = ConstantExpr::getTrunc(AC, CmpInst::makeCmpResultType(Ty));
1646    return Builder.CreateXor(Cond, AC);
1647  }
1648  return nullptr;
1649}
1650
1651/// We have an expression of the form (A & C) | (B & D). Try to simplify this
1652/// to "A' ? C : D", where A' is a boolean or vector of booleans.
1653static Value *matchSelectFromAndOr(Value *A, Value *C, Value *B, Value *D,
1654                                   InstCombiner::BuilderTy &Builder) {
1655  // The potential condition of the select may be bitcasted. In that case, look
1656  // through its bitcast and the corresponding bitcast of the 'not' condition.
1657  Type *OrigType = A->getType();
1658  Value *SrcA, *SrcB;
1659  if (match(A, m_OneUse(m_BitCast(m_Value(SrcA)))) &&
1660      match(B, m_OneUse(m_BitCast(m_Value(SrcB))))) {
1661    A = SrcA;
1662    B = SrcB;
1663  }
1664
1665  if (Value *Cond = getSelectCondition(A, B, Builder)) {
1666    // ((bc Cond) & C) | ((bc ~Cond) & D) --> bc (select Cond, (bc C), (bc D))
1667    // The bitcasts will either all exist or all not exist. The builder will
1668    // not create unnecessary casts if the types already match.
1669    Value *BitcastC = Builder.CreateBitCast(C, A->getType());
1670    Value *BitcastD = Builder.CreateBitCast(D, A->getType());
1671    Value *Select = Builder.CreateSelect(Cond, BitcastC, BitcastD);
1672    return Builder.CreateBitCast(Select, OrigType);
1673  }
1674
1675  return nullptr;
1676}
1677
1678/// Fold (icmp)|(icmp) if possible.
1679Value *InstCombiner::FoldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS,
1680                                   Instruction *CxtI) {
1681  ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate();
1682
1683  // Fold (iszero(A & K1) | iszero(A & K2)) ->  (A & (K1 | K2)) != (K1 | K2)
1684  // if K1 and K2 are a one-bit mask.
1685  ConstantInt *LHSCst = dyn_cast<ConstantInt>(LHS->getOperand(1));
1686  ConstantInt *RHSCst = dyn_cast<ConstantInt>(RHS->getOperand(1));
1687
1688  if (LHS->getPredicate() == ICmpInst::ICMP_EQ && LHSCst && LHSCst->isZero() &&
1689      RHS->getPredicate() == ICmpInst::ICMP_EQ && RHSCst && RHSCst->isZero()) {
1690
1691    BinaryOperator *LAnd = dyn_cast<BinaryOperator>(LHS->getOperand(0));
1692    BinaryOperator *RAnd = dyn_cast<BinaryOperator>(RHS->getOperand(0));
1693    if (LAnd && RAnd && LAnd->hasOneUse() && RHS->hasOneUse() &&
1694        LAnd->getOpcode() == Instruction::And &&
1695        RAnd->getOpcode() == Instruction::And) {
1696
1697      Value *Mask = nullptr;
1698      Value *Masked = nullptr;
1699      if (LAnd->getOperand(0) == RAnd->getOperand(0) &&
1700          isKnownToBeAPowerOfTwo(LAnd->getOperand(1), DL, false, 0, AC, CxtI,
1701                                 DT) &&
1702          isKnownToBeAPowerOfTwo(RAnd->getOperand(1), DL, false, 0, AC, CxtI,
1703                                 DT)) {
1704        Mask = Builder->CreateOr(LAnd->getOperand(1), RAnd->getOperand(1));
1705        Masked = Builder->CreateAnd(LAnd->getOperand(0), Mask);
1706      } else if (LAnd->getOperand(1) == RAnd->getOperand(1) &&
1707                 isKnownToBeAPowerOfTwo(LAnd->getOperand(0), DL, false, 0, AC,
1708                                        CxtI, DT) &&
1709                 isKnownToBeAPowerOfTwo(RAnd->getOperand(0), DL, false, 0, AC,
1710                                        CxtI, DT)) {
1711        Mask = Builder->CreateOr(LAnd->getOperand(0), RAnd->getOperand(0));
1712        Masked = Builder->CreateAnd(LAnd->getOperand(1), Mask);
1713      }
1714
1715      if (Masked)
1716        return Builder->CreateICmp(ICmpInst::ICMP_NE, Masked, Mask);
1717    }
1718  }
1719
1720  // Fold (icmp ult/ule (A + C1), C3) | (icmp ult/ule (A + C2), C3)
1721  //                   -->  (icmp ult/ule ((A & ~(C1 ^ C2)) + max(C1, C2)), C3)
1722  // The original condition actually refers to the following two ranges:
1723  // [MAX_UINT-C1+1, MAX_UINT-C1+1+C3] and [MAX_UINT-C2+1, MAX_UINT-C2+1+C3]
1724  // We can fold these two ranges if:
1725  // 1) C1 and C2 is unsigned greater than C3.
1726  // 2) The two ranges are separated.
1727  // 3) C1 ^ C2 is one-bit mask.
1728  // 4) LowRange1 ^ LowRange2 and HighRange1 ^ HighRange2 are one-bit mask.
1729  // This implies all values in the two ranges differ by exactly one bit.
1730
1731  if ((LHSCC == ICmpInst::ICMP_ULT || LHSCC == ICmpInst::ICMP_ULE) &&
1732      LHSCC == RHSCC && LHSCst && RHSCst && LHS->hasOneUse() &&
1733      RHS->hasOneUse() && LHSCst->getType() == RHSCst->getType() &&
1734      LHSCst->getValue() == (RHSCst->getValue())) {
1735
1736    Value *LAdd = LHS->getOperand(0);
1737    Value *RAdd = RHS->getOperand(0);
1738
1739    Value *LAddOpnd, *RAddOpnd;
1740    ConstantInt *LAddCst, *RAddCst;
1741    if (match(LAdd, m_Add(m_Value(LAddOpnd), m_ConstantInt(LAddCst))) &&
1742        match(RAdd, m_Add(m_Value(RAddOpnd), m_ConstantInt(RAddCst))) &&
1743        LAddCst->getValue().ugt(LHSCst->getValue()) &&
1744        RAddCst->getValue().ugt(LHSCst->getValue())) {
1745
1746      APInt DiffCst = LAddCst->getValue() ^ RAddCst->getValue();
1747      if (LAddOpnd == RAddOpnd && DiffCst.isPowerOf2()) {
1748        ConstantInt *MaxAddCst = nullptr;
1749        if (LAddCst->getValue().ult(RAddCst->getValue()))
1750          MaxAddCst = RAddCst;
1751        else
1752          MaxAddCst = LAddCst;
1753
1754        APInt RRangeLow = -RAddCst->getValue();
1755        APInt RRangeHigh = RRangeLow + LHSCst->getValue();
1756        APInt LRangeLow = -LAddCst->getValue();
1757        APInt LRangeHigh = LRangeLow + LHSCst->getValue();
1758        APInt LowRangeDiff = RRangeLow ^ LRangeLow;
1759        APInt HighRangeDiff = RRangeHigh ^ LRangeHigh;
1760        APInt RangeDiff = LRangeLow.sgt(RRangeLow) ? LRangeLow - RRangeLow
1761                                                   : RRangeLow - LRangeLow;
1762
1763        if (LowRangeDiff.isPowerOf2() && LowRangeDiff == HighRangeDiff &&
1764            RangeDiff.ugt(LHSCst->getValue())) {
1765          Value *MaskCst = ConstantInt::get(LAddCst->getType(), ~DiffCst);
1766
1767          Value *NewAnd = Builder->CreateAnd(LAddOpnd, MaskCst);
1768          Value *NewAdd = Builder->CreateAdd(NewAnd, MaxAddCst);
1769          return (Builder->CreateICmp(LHS->getPredicate(), NewAdd, LHSCst));
1770        }
1771      }
1772    }
1773  }
1774
1775  // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B)
1776  if (PredicatesFoldable(LHSCC, RHSCC)) {
1777    if (LHS->getOperand(0) == RHS->getOperand(1) &&
1778        LHS->getOperand(1) == RHS->getOperand(0))
1779      LHS->swapOperands();
1780    if (LHS->getOperand(0) == RHS->getOperand(0) &&
1781        LHS->getOperand(1) == RHS->getOperand(1)) {
1782      Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
1783      unsigned Code = getICmpCode(LHS) | getICmpCode(RHS);
1784      bool isSigned = LHS->isSigned() || RHS->isSigned();
1785      return getNewICmpValue(isSigned, Code, Op0, Op1, Builder);
1786    }
1787  }
1788
1789  // handle (roughly):
1790  // (icmp ne (A & B), C) | (icmp ne (A & D), E)
1791  if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, false, Builder))
1792    return V;
1793
1794  Value *Val = LHS->getOperand(0), *Val2 = RHS->getOperand(0);
1795  if (LHS->hasOneUse() || RHS->hasOneUse()) {
1796    // (icmp eq B, 0) | (icmp ult A, B) -> (icmp ule A, B-1)
1797    // (icmp eq B, 0) | (icmp ugt B, A) -> (icmp ule A, B-1)
1798    Value *A = nullptr, *B = nullptr;
1799    if (LHSCC == ICmpInst::ICMP_EQ && LHSCst && LHSCst->isZero()) {
1800      B = Val;
1801      if (RHSCC == ICmpInst::ICMP_ULT && Val == RHS->getOperand(1))
1802        A = Val2;
1803      else if (RHSCC == ICmpInst::ICMP_UGT && Val == Val2)
1804        A = RHS->getOperand(1);
1805    }
1806    // (icmp ult A, B) | (icmp eq B, 0) -> (icmp ule A, B-1)
1807    // (icmp ugt B, A) | (icmp eq B, 0) -> (icmp ule A, B-1)
1808    else if (RHSCC == ICmpInst::ICMP_EQ && RHSCst && RHSCst->isZero()) {
1809      B = Val2;
1810      if (LHSCC == ICmpInst::ICMP_ULT && Val2 == LHS->getOperand(1))
1811        A = Val;
1812      else if (LHSCC == ICmpInst::ICMP_UGT && Val2 == Val)
1813        A = LHS->getOperand(1);
1814    }
1815    if (A && B)
1816      return Builder->CreateICmp(
1817          ICmpInst::ICMP_UGE,
1818          Builder->CreateAdd(B, ConstantInt::getSigned(B->getType(), -1)), A);
1819  }
1820
1821  // E.g. (icmp slt x, 0) | (icmp sgt x, n) --> icmp ugt x, n
1822  if (Value *V = simplifyRangeCheck(LHS, RHS, /*Inverted=*/true))
1823    return V;
1824
1825  // E.g. (icmp sgt x, n) | (icmp slt x, 0) --> icmp ugt x, n
1826  if (Value *V = simplifyRangeCheck(RHS, LHS, /*Inverted=*/true))
1827    return V;
1828
1829  // This only handles icmp of constants: (icmp1 A, C1) | (icmp2 B, C2).
1830  if (!LHSCst || !RHSCst) return nullptr;
1831
1832  if (LHSCst == RHSCst && LHSCC == RHSCC) {
1833    // (icmp ne A, 0) | (icmp ne B, 0) --> (icmp ne (A|B), 0)
1834    if (LHSCC == ICmpInst::ICMP_NE && LHSCst->isZero()) {
1835      Value *NewOr = Builder->CreateOr(Val, Val2);
1836      return Builder->CreateICmp(LHSCC, NewOr, LHSCst);
1837    }
1838  }
1839
1840  // (icmp ult (X + CA), C1) | (icmp eq X, C2) -> (icmp ule (X + CA), C1)
1841  //   iff C2 + CA == C1.
1842  if (LHSCC == ICmpInst::ICMP_ULT && RHSCC == ICmpInst::ICMP_EQ) {
1843    ConstantInt *AddCst;
1844    if (match(Val, m_Add(m_Specific(Val2), m_ConstantInt(AddCst))))
1845      if (RHSCst->getValue() + AddCst->getValue() == LHSCst->getValue())
1846        return Builder->CreateICmpULE(Val, LHSCst);
1847  }
1848
1849  // From here on, we only handle:
1850  //    (icmp1 A, C1) | (icmp2 A, C2) --> something simpler.
1851  if (Val != Val2) return nullptr;
1852
1853  // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere.
1854  if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE ||
1855      RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE ||
1856      LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE ||
1857      RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE)
1858    return nullptr;
1859
1860  // We can't fold (ugt x, C) | (sgt x, C2).
1861  if (!PredicatesFoldable(LHSCC, RHSCC))
1862    return nullptr;
1863
1864  // Ensure that the larger constant is on the RHS.
1865  bool ShouldSwap;
1866  if (CmpInst::isSigned(LHSCC) ||
1867      (ICmpInst::isEquality(LHSCC) &&
1868       CmpInst::isSigned(RHSCC)))
1869    ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue());
1870  else
1871    ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue());
1872
1873  if (ShouldSwap) {
1874    std::swap(LHS, RHS);
1875    std::swap(LHSCst, RHSCst);
1876    std::swap(LHSCC, RHSCC);
1877  }
1878
1879  // At this point, we know we have two icmp instructions
1880  // comparing a value against two constants and or'ing the result
1881  // together.  Because of the above check, we know that we only have
1882  // ICMP_EQ, ICMP_NE, ICMP_LT, and ICMP_GT here. We also know (from the
1883  // icmp folding check above), that the two constants are not
1884  // equal.
1885  assert(LHSCst != RHSCst && "Compares not folded above?");
1886
1887  switch (LHSCC) {
1888  default: llvm_unreachable("Unknown integer condition code!");
1889  case ICmpInst::ICMP_EQ:
1890    switch (RHSCC) {
1891    default: llvm_unreachable("Unknown integer condition code!");
1892    case ICmpInst::ICMP_EQ:
1893      if (LHS->getOperand(0) == RHS->getOperand(0)) {
1894        // if LHSCst and RHSCst differ only by one bit:
1895        // (A == C1 || A == C2) -> (A | (C1 ^ C2)) == C2
1896        assert(LHSCst->getValue().ule(LHSCst->getValue()));
1897
1898        APInt Xor = LHSCst->getValue() ^ RHSCst->getValue();
1899        if (Xor.isPowerOf2()) {
1900          Value *Cst = Builder->getInt(Xor);
1901          Value *Or = Builder->CreateOr(LHS->getOperand(0), Cst);
1902          return Builder->CreateICmp(ICmpInst::ICMP_EQ, Or, RHSCst);
1903        }
1904      }
1905
1906      if (LHSCst == SubOne(RHSCst)) {
1907        // (X == 13 | X == 14) -> X-13 <u 2
1908        Constant *AddCST = ConstantExpr::getNeg(LHSCst);
1909        Value *Add = Builder->CreateAdd(Val, AddCST, Val->getName()+".off");
1910        AddCST = ConstantExpr::getSub(AddOne(RHSCst), LHSCst);
1911        return Builder->CreateICmpULT(Add, AddCST);
1912      }
1913
1914      break;                         // (X == 13 | X == 15) -> no change
1915    case ICmpInst::ICMP_UGT:         // (X == 13 | X u> 14) -> no change
1916    case ICmpInst::ICMP_SGT:         // (X == 13 | X s> 14) -> no change
1917      break;
1918    case ICmpInst::ICMP_NE:          // (X == 13 | X != 15) -> X != 15
1919    case ICmpInst::ICMP_ULT:         // (X == 13 | X u< 15) -> X u< 15
1920    case ICmpInst::ICMP_SLT:         // (X == 13 | X s< 15) -> X s< 15
1921      return RHS;
1922    }
1923    break;
1924  case ICmpInst::ICMP_NE:
1925    switch (RHSCC) {
1926    default: llvm_unreachable("Unknown integer condition code!");
1927    case ICmpInst::ICMP_EQ:          // (X != 13 | X == 15) -> X != 13
1928    case ICmpInst::ICMP_UGT:         // (X != 13 | X u> 15) -> X != 13
1929    case ICmpInst::ICMP_SGT:         // (X != 13 | X s> 15) -> X != 13
1930      return LHS;
1931    case ICmpInst::ICMP_NE:          // (X != 13 | X != 15) -> true
1932    case ICmpInst::ICMP_ULT:         // (X != 13 | X u< 15) -> true
1933    case ICmpInst::ICMP_SLT:         // (X != 13 | X s< 15) -> true
1934      return Builder->getTrue();
1935    }
1936  case ICmpInst::ICMP_ULT:
1937    switch (RHSCC) {
1938    default: llvm_unreachable("Unknown integer condition code!");
1939    case ICmpInst::ICMP_EQ:         // (X u< 13 | X == 14) -> no change
1940      break;
1941    case ICmpInst::ICMP_UGT:        // (X u< 13 | X u> 15) -> (X-13) u> 2
1942      // If RHSCst is [us]MAXINT, it is always false.  Not handling
1943      // this can cause overflow.
1944      if (RHSCst->isMaxValue(false))
1945        return LHS;
1946      return InsertRangeTest(Val, LHSCst, AddOne(RHSCst), false, false);
1947    case ICmpInst::ICMP_SGT:        // (X u< 13 | X s> 15) -> no change
1948      break;
1949    case ICmpInst::ICMP_NE:         // (X u< 13 | X != 15) -> X != 15
1950    case ICmpInst::ICMP_ULT:        // (X u< 13 | X u< 15) -> X u< 15
1951      return RHS;
1952    case ICmpInst::ICMP_SLT:        // (X u< 13 | X s< 15) -> no change
1953      break;
1954    }
1955    break;
1956  case ICmpInst::ICMP_SLT:
1957    switch (RHSCC) {
1958    default: llvm_unreachable("Unknown integer condition code!");
1959    case ICmpInst::ICMP_EQ:         // (X s< 13 | X == 14) -> no change
1960      break;
1961    case ICmpInst::ICMP_SGT:        // (X s< 13 | X s> 15) -> (X-13) s> 2
1962      // If RHSCst is [us]MAXINT, it is always false.  Not handling
1963      // this can cause overflow.
1964      if (RHSCst->isMaxValue(true))
1965        return LHS;
1966      return InsertRangeTest(Val, LHSCst, AddOne(RHSCst), true, false);
1967    case ICmpInst::ICMP_UGT:        // (X s< 13 | X u> 15) -> no change
1968      break;
1969    case ICmpInst::ICMP_NE:         // (X s< 13 | X != 15) -> X != 15
1970    case ICmpInst::ICMP_SLT:        // (X s< 13 | X s< 15) -> X s< 15
1971      return RHS;
1972    case ICmpInst::ICMP_ULT:        // (X s< 13 | X u< 15) -> no change
1973      break;
1974    }
1975    break;
1976  case ICmpInst::ICMP_UGT:
1977    switch (RHSCC) {
1978    default: llvm_unreachable("Unknown integer condition code!");
1979    case ICmpInst::ICMP_EQ:         // (X u> 13 | X == 15) -> X u> 13
1980    case ICmpInst::ICMP_UGT:        // (X u> 13 | X u> 15) -> X u> 13
1981      return LHS;
1982    case ICmpInst::ICMP_SGT:        // (X u> 13 | X s> 15) -> no change
1983      break;
1984    case ICmpInst::ICMP_NE:         // (X u> 13 | X != 15) -> true
1985    case ICmpInst::ICMP_ULT:        // (X u> 13 | X u< 15) -> true
1986      return Builder->getTrue();
1987    case ICmpInst::ICMP_SLT:        // (X u> 13 | X s< 15) -> no change
1988      break;
1989    }
1990    break;
1991  case ICmpInst::ICMP_SGT:
1992    switch (RHSCC) {
1993    default: llvm_unreachable("Unknown integer condition code!");
1994    case ICmpInst::ICMP_EQ:         // (X s> 13 | X == 15) -> X > 13
1995    case ICmpInst::ICMP_SGT:        // (X s> 13 | X s> 15) -> X > 13
1996      return LHS;
1997    case ICmpInst::ICMP_UGT:        // (X s> 13 | X u> 15) -> no change
1998      break;
1999    case ICmpInst::ICMP_NE:         // (X s> 13 | X != 15) -> true
2000    case ICmpInst::ICMP_SLT:        // (X s> 13 | X s< 15) -> true
2001      return Builder->getTrue();
2002    case ICmpInst::ICMP_ULT:        // (X s> 13 | X u< 15) -> no change
2003      break;
2004    }
2005    break;
2006  }
2007  return nullptr;
2008}
2009
2010/// Optimize (fcmp)|(fcmp).  NOTE: Unlike the rest of instcombine, this returns
2011/// a Value which should already be inserted into the function.
2012Value *InstCombiner::FoldOrOfFCmps(FCmpInst *LHS, FCmpInst *RHS) {
2013  Value *Op0LHS = LHS->getOperand(0), *Op0RHS = LHS->getOperand(1);
2014  Value *Op1LHS = RHS->getOperand(0), *Op1RHS = RHS->getOperand(1);
2015  FCmpInst::Predicate Op0CC = LHS->getPredicate(), Op1CC = RHS->getPredicate();
2016
2017  if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
2018    // Swap RHS operands to match LHS.
2019    Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
2020    std::swap(Op1LHS, Op1RHS);
2021  }
2022
2023  // Simplify (fcmp cc0 x, y) | (fcmp cc1 x, y).
2024  // This is a similar transformation to the one in FoldAndOfFCmps.
2025  //
2026  // Since (R & CC0) and (R & CC1) are either R or 0, we actually have this:
2027  //    bool(R & CC0) || bool(R & CC1)
2028  //  = bool((R & CC0) | (R & CC1))
2029  //  = bool(R & (CC0 | CC1)) <= by reversed distribution (contribution? ;)
2030  if (Op0LHS == Op1LHS && Op0RHS == Op1RHS)
2031    return getFCmpValue(getFCmpCode(Op0CC) | getFCmpCode(Op1CC), Op0LHS, Op0RHS,
2032                        Builder);
2033
2034  if (LHS->getPredicate() == FCmpInst::FCMP_UNO &&
2035      RHS->getPredicate() == FCmpInst::FCMP_UNO &&
2036      LHS->getOperand(0)->getType() == RHS->getOperand(0)->getType()) {
2037    if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
2038      if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
2039        // If either of the constants are nans, then the whole thing returns
2040        // true.
2041        if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
2042          return Builder->getTrue();
2043
2044        // Otherwise, no need to compare the two constants, compare the
2045        // rest.
2046        return Builder->CreateFCmpUNO(LHS->getOperand(0), RHS->getOperand(0));
2047      }
2048
2049    // Handle vector zeros.  This occurs because the canonical form of
2050    // "fcmp uno x,x" is "fcmp uno x, 0".
2051    if (isa<ConstantAggregateZero>(LHS->getOperand(1)) &&
2052        isa<ConstantAggregateZero>(RHS->getOperand(1)))
2053      return Builder->CreateFCmpUNO(LHS->getOperand(0), RHS->getOperand(0));
2054
2055    return nullptr;
2056  }
2057
2058  return nullptr;
2059}
2060
2061/// This helper function folds:
2062///
2063///     ((A | B) & C1) | (B & C2)
2064///
2065/// into:
2066///
2067///     (A & C1) | B
2068///
2069/// when the XOR of the two constants is "all ones" (-1).
2070Instruction *InstCombiner::FoldOrWithConstants(BinaryOperator &I, Value *Op,
2071                                               Value *A, Value *B, Value *C) {
2072  ConstantInt *CI1 = dyn_cast<ConstantInt>(C);
2073  if (!CI1) return nullptr;
2074
2075  Value *V1 = nullptr;
2076  ConstantInt *CI2 = nullptr;
2077  if (!match(Op, m_And(m_Value(V1), m_ConstantInt(CI2)))) return nullptr;
2078
2079  APInt Xor = CI1->getValue() ^ CI2->getValue();
2080  if (!Xor.isAllOnesValue()) return nullptr;
2081
2082  if (V1 == A || V1 == B) {
2083    Value *NewOp = Builder->CreateAnd((V1 == A) ? B : A, CI1);
2084    return BinaryOperator::CreateOr(NewOp, V1);
2085  }
2086
2087  return nullptr;
2088}
2089
2090/// \brief This helper function folds:
2091///
2092///     ((A | B) & C1) ^ (B & C2)
2093///
2094/// into:
2095///
2096///     (A & C1) ^ B
2097///
2098/// when the XOR of the two constants is "all ones" (-1).
2099Instruction *InstCombiner::FoldXorWithConstants(BinaryOperator &I, Value *Op,
2100                                                Value *A, Value *B, Value *C) {
2101  ConstantInt *CI1 = dyn_cast<ConstantInt>(C);
2102  if (!CI1)
2103    return nullptr;
2104
2105  Value *V1 = nullptr;
2106  ConstantInt *CI2 = nullptr;
2107  if (!match(Op, m_And(m_Value(V1), m_ConstantInt(CI2))))
2108    return nullptr;
2109
2110  APInt Xor = CI1->getValue() ^ CI2->getValue();
2111  if (!Xor.isAllOnesValue())
2112    return nullptr;
2113
2114  if (V1 == A || V1 == B) {
2115    Value *NewOp = Builder->CreateAnd(V1 == A ? B : A, CI1);
2116    return BinaryOperator::CreateXor(NewOp, V1);
2117  }
2118
2119  return nullptr;
2120}
2121
2122Instruction *InstCombiner::visitOr(BinaryOperator &I) {
2123  bool Changed = SimplifyAssociativeOrCommutative(I);
2124  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2125
2126  if (Value *V = SimplifyVectorOp(I))
2127    return replaceInstUsesWith(I, V);
2128
2129  if (Value *V = SimplifyOrInst(Op0, Op1, DL, TLI, DT, AC))
2130    return replaceInstUsesWith(I, V);
2131
2132  // (A&B)|(A&C) -> A&(B|C) etc
2133  if (Value *V = SimplifyUsingDistributiveLaws(I))
2134    return replaceInstUsesWith(I, V);
2135
2136  // See if we can simplify any instructions used by the instruction whose sole
2137  // purpose is to compute bits we don't care about.
2138  if (SimplifyDemandedInstructionBits(I))
2139    return &I;
2140
2141  if (Value *V = SimplifyBSwap(I))
2142    return replaceInstUsesWith(I, V);
2143
2144  if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
2145    ConstantInt *C1 = nullptr; Value *X = nullptr;
2146    // (X & C1) | C2 --> (X | C2) & (C1|C2)
2147    // iff (C1 & C2) == 0.
2148    if (match(Op0, m_And(m_Value(X), m_ConstantInt(C1))) &&
2149        (RHS->getValue() & C1->getValue()) != 0 &&
2150        Op0->hasOneUse()) {
2151      Value *Or = Builder->CreateOr(X, RHS);
2152      Or->takeName(Op0);
2153      return BinaryOperator::CreateAnd(Or,
2154                             Builder->getInt(RHS->getValue() | C1->getValue()));
2155    }
2156
2157    // (X ^ C1) | C2 --> (X | C2) ^ (C1&~C2)
2158    if (match(Op0, m_Xor(m_Value(X), m_ConstantInt(C1))) &&
2159        Op0->hasOneUse()) {
2160      Value *Or = Builder->CreateOr(X, RHS);
2161      Or->takeName(Op0);
2162      return BinaryOperator::CreateXor(Or,
2163                            Builder->getInt(C1->getValue() & ~RHS->getValue()));
2164    }
2165
2166    // Try to fold constant and into select arguments.
2167    if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
2168      if (Instruction *R = FoldOpIntoSelect(I, SI))
2169        return R;
2170
2171    if (isa<PHINode>(Op0))
2172      if (Instruction *NV = FoldOpIntoPhi(I))
2173        return NV;
2174  }
2175
2176  // Given an OR instruction, check to see if this is a bswap.
2177  if (Instruction *BSwap = MatchBSwap(I))
2178    return BSwap;
2179
2180  Value *A = nullptr, *B = nullptr;
2181  ConstantInt *C1 = nullptr, *C2 = nullptr;
2182
2183  // (X^C)|Y -> (X|Y)^C iff Y&C == 0
2184  if (Op0->hasOneUse() &&
2185      match(Op0, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
2186      MaskedValueIsZero(Op1, C1->getValue(), 0, &I)) {
2187    Value *NOr = Builder->CreateOr(A, Op1);
2188    NOr->takeName(Op0);
2189    return BinaryOperator::CreateXor(NOr, C1);
2190  }
2191
2192  // Y|(X^C) -> (X|Y)^C iff Y&C == 0
2193  if (Op1->hasOneUse() &&
2194      match(Op1, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
2195      MaskedValueIsZero(Op0, C1->getValue(), 0, &I)) {
2196    Value *NOr = Builder->CreateOr(A, Op0);
2197    NOr->takeName(Op0);
2198    return BinaryOperator::CreateXor(NOr, C1);
2199  }
2200
2201  // ((~A & B) | A) -> (A | B)
2202  if (match(Op0, m_And(m_Not(m_Value(A)), m_Value(B))) &&
2203      match(Op1, m_Specific(A)))
2204    return BinaryOperator::CreateOr(A, B);
2205
2206  // ((A & B) | ~A) -> (~A | B)
2207  if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
2208      match(Op1, m_Not(m_Specific(A))))
2209    return BinaryOperator::CreateOr(Builder->CreateNot(A), B);
2210
2211  // (A & (~B)) | (A ^ B) -> (A ^ B)
2212  if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) &&
2213      match(Op1, m_Xor(m_Specific(A), m_Specific(B))))
2214    return BinaryOperator::CreateXor(A, B);
2215
2216  // (A ^ B) | ( A & (~B)) -> (A ^ B)
2217  if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
2218      match(Op1, m_And(m_Specific(A), m_Not(m_Specific(B)))))
2219    return BinaryOperator::CreateXor(A, B);
2220
2221  // (A & C)|(B & D)
2222  Value *C = nullptr, *D = nullptr;
2223  if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
2224      match(Op1, m_And(m_Value(B), m_Value(D)))) {
2225    Value *V1 = nullptr, *V2 = nullptr;
2226    C1 = dyn_cast<ConstantInt>(C);
2227    C2 = dyn_cast<ConstantInt>(D);
2228    if (C1 && C2) {  // (A & C1)|(B & C2)
2229      if ((C1->getValue() & C2->getValue()) == 0) {
2230        // ((V | N) & C1) | (V & C2) --> (V|N) & (C1|C2)
2231        // iff (C1&C2) == 0 and (N&~C1) == 0
2232        if (match(A, m_Or(m_Value(V1), m_Value(V2))) &&
2233            ((V1 == B &&
2234              MaskedValueIsZero(V2, ~C1->getValue(), 0, &I)) || // (V|N)
2235             (V2 == B &&
2236              MaskedValueIsZero(V1, ~C1->getValue(), 0, &I))))  // (N|V)
2237          return BinaryOperator::CreateAnd(A,
2238                                Builder->getInt(C1->getValue()|C2->getValue()));
2239        // Or commutes, try both ways.
2240        if (match(B, m_Or(m_Value(V1), m_Value(V2))) &&
2241            ((V1 == A &&
2242              MaskedValueIsZero(V2, ~C2->getValue(), 0, &I)) || // (V|N)
2243             (V2 == A &&
2244              MaskedValueIsZero(V1, ~C2->getValue(), 0, &I))))  // (N|V)
2245          return BinaryOperator::CreateAnd(B,
2246                                Builder->getInt(C1->getValue()|C2->getValue()));
2247
2248        // ((V|C3)&C1) | ((V|C4)&C2) --> (V|C3|C4)&(C1|C2)
2249        // iff (C1&C2) == 0 and (C3&~C1) == 0 and (C4&~C2) == 0.
2250        ConstantInt *C3 = nullptr, *C4 = nullptr;
2251        if (match(A, m_Or(m_Value(V1), m_ConstantInt(C3))) &&
2252            (C3->getValue() & ~C1->getValue()) == 0 &&
2253            match(B, m_Or(m_Specific(V1), m_ConstantInt(C4))) &&
2254            (C4->getValue() & ~C2->getValue()) == 0) {
2255          V2 = Builder->CreateOr(V1, ConstantExpr::getOr(C3, C4), "bitfield");
2256          return BinaryOperator::CreateAnd(V2,
2257                                Builder->getInt(C1->getValue()|C2->getValue()));
2258        }
2259      }
2260    }
2261
2262    // Don't try to form a select if it's unlikely that we'll get rid of at
2263    // least one of the operands. A select is generally more expensive than the
2264    // 'or' that it is replacing.
2265    if (Op0->hasOneUse() || Op1->hasOneUse()) {
2266      // (Cond & C) | (~Cond & D) -> Cond ? C : D, and commuted variants.
2267      if (Value *V = matchSelectFromAndOr(A, C, B, D, *Builder))
2268        return replaceInstUsesWith(I, V);
2269      if (Value *V = matchSelectFromAndOr(A, C, D, B, *Builder))
2270        return replaceInstUsesWith(I, V);
2271      if (Value *V = matchSelectFromAndOr(C, A, B, D, *Builder))
2272        return replaceInstUsesWith(I, V);
2273      if (Value *V = matchSelectFromAndOr(C, A, D, B, *Builder))
2274        return replaceInstUsesWith(I, V);
2275      if (Value *V = matchSelectFromAndOr(B, D, A, C, *Builder))
2276        return replaceInstUsesWith(I, V);
2277      if (Value *V = matchSelectFromAndOr(B, D, C, A, *Builder))
2278        return replaceInstUsesWith(I, V);
2279      if (Value *V = matchSelectFromAndOr(D, B, A, C, *Builder))
2280        return replaceInstUsesWith(I, V);
2281      if (Value *V = matchSelectFromAndOr(D, B, C, A, *Builder))
2282        return replaceInstUsesWith(I, V);
2283    }
2284
2285    // ((A&~B)|(~A&B)) -> A^B
2286    if ((match(C, m_Not(m_Specific(D))) &&
2287         match(B, m_Not(m_Specific(A)))))
2288      return BinaryOperator::CreateXor(A, D);
2289    // ((~B&A)|(~A&B)) -> A^B
2290    if ((match(A, m_Not(m_Specific(D))) &&
2291         match(B, m_Not(m_Specific(C)))))
2292      return BinaryOperator::CreateXor(C, D);
2293    // ((A&~B)|(B&~A)) -> A^B
2294    if ((match(C, m_Not(m_Specific(B))) &&
2295         match(D, m_Not(m_Specific(A)))))
2296      return BinaryOperator::CreateXor(A, B);
2297    // ((~B&A)|(B&~A)) -> A^B
2298    if ((match(A, m_Not(m_Specific(B))) &&
2299         match(D, m_Not(m_Specific(C)))))
2300      return BinaryOperator::CreateXor(C, B);
2301
2302    // ((A|B)&1)|(B&-2) -> (A&1) | B
2303    if (match(A, m_Or(m_Value(V1), m_Specific(B))) ||
2304        match(A, m_Or(m_Specific(B), m_Value(V1)))) {
2305      Instruction *Ret = FoldOrWithConstants(I, Op1, V1, B, C);
2306      if (Ret) return Ret;
2307    }
2308    // (B&-2)|((A|B)&1) -> (A&1) | B
2309    if (match(B, m_Or(m_Specific(A), m_Value(V1))) ||
2310        match(B, m_Or(m_Value(V1), m_Specific(A)))) {
2311      Instruction *Ret = FoldOrWithConstants(I, Op0, A, V1, D);
2312      if (Ret) return Ret;
2313    }
2314    // ((A^B)&1)|(B&-2) -> (A&1) ^ B
2315    if (match(A, m_Xor(m_Value(V1), m_Specific(B))) ||
2316        match(A, m_Xor(m_Specific(B), m_Value(V1)))) {
2317      Instruction *Ret = FoldXorWithConstants(I, Op1, V1, B, C);
2318      if (Ret) return Ret;
2319    }
2320    // (B&-2)|((A^B)&1) -> (A&1) ^ B
2321    if (match(B, m_Xor(m_Specific(A), m_Value(V1))) ||
2322        match(B, m_Xor(m_Value(V1), m_Specific(A)))) {
2323      Instruction *Ret = FoldXorWithConstants(I, Op0, A, V1, D);
2324      if (Ret) return Ret;
2325    }
2326  }
2327
2328  // (A ^ B) | ((B ^ C) ^ A) -> (A ^ B) | C
2329  if (match(Op0, m_Xor(m_Value(A), m_Value(B))))
2330    if (match(Op1, m_Xor(m_Xor(m_Specific(B), m_Value(C)), m_Specific(A))))
2331      if (Op1->hasOneUse() || cast<BinaryOperator>(Op1)->hasOneUse())
2332        return BinaryOperator::CreateOr(Op0, C);
2333
2334  // ((A ^ C) ^ B) | (B ^ A) -> (B ^ A) | C
2335  if (match(Op0, m_Xor(m_Xor(m_Value(A), m_Value(C)), m_Value(B))))
2336    if (match(Op1, m_Xor(m_Specific(B), m_Specific(A))))
2337      if (Op0->hasOneUse() || cast<BinaryOperator>(Op0)->hasOneUse())
2338        return BinaryOperator::CreateOr(Op1, C);
2339
2340  // ((B | C) & A) | B -> B | (A & C)
2341  if (match(Op0, m_And(m_Or(m_Specific(Op1), m_Value(C)), m_Value(A))))
2342    return BinaryOperator::CreateOr(Op1, Builder->CreateAnd(A, C));
2343
2344  if (Instruction *DeMorgan = matchDeMorgansLaws(I, Builder))
2345    return DeMorgan;
2346
2347  // Canonicalize xor to the RHS.
2348  bool SwappedForXor = false;
2349  if (match(Op0, m_Xor(m_Value(), m_Value()))) {
2350    std::swap(Op0, Op1);
2351    SwappedForXor = true;
2352  }
2353
2354  // A | ( A ^ B) -> A |  B
2355  // A | (~A ^ B) -> A | ~B
2356  // (A & B) | (A ^ B)
2357  if (match(Op1, m_Xor(m_Value(A), m_Value(B)))) {
2358    if (Op0 == A || Op0 == B)
2359      return BinaryOperator::CreateOr(A, B);
2360
2361    if (match(Op0, m_And(m_Specific(A), m_Specific(B))) ||
2362        match(Op0, m_And(m_Specific(B), m_Specific(A))))
2363      return BinaryOperator::CreateOr(A, B);
2364
2365    if (Op1->hasOneUse() && match(A, m_Not(m_Specific(Op0)))) {
2366      Value *Not = Builder->CreateNot(B, B->getName()+".not");
2367      return BinaryOperator::CreateOr(Not, Op0);
2368    }
2369    if (Op1->hasOneUse() && match(B, m_Not(m_Specific(Op0)))) {
2370      Value *Not = Builder->CreateNot(A, A->getName()+".not");
2371      return BinaryOperator::CreateOr(Not, Op0);
2372    }
2373  }
2374
2375  // A | ~(A | B) -> A | ~B
2376  // A | ~(A ^ B) -> A | ~B
2377  if (match(Op1, m_Not(m_Value(A))))
2378    if (BinaryOperator *B = dyn_cast<BinaryOperator>(A))
2379      if ((Op0 == B->getOperand(0) || Op0 == B->getOperand(1)) &&
2380          Op1->hasOneUse() && (B->getOpcode() == Instruction::Or ||
2381                               B->getOpcode() == Instruction::Xor)) {
2382        Value *NotOp = Op0 == B->getOperand(0) ? B->getOperand(1) :
2383                                                 B->getOperand(0);
2384        Value *Not = Builder->CreateNot(NotOp, NotOp->getName()+".not");
2385        return BinaryOperator::CreateOr(Not, Op0);
2386      }
2387
2388  // (A & B) | ((~A) ^ B) -> (~A ^ B)
2389  if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
2390      match(Op1, m_Xor(m_Not(m_Specific(A)), m_Specific(B))))
2391    return BinaryOperator::CreateXor(Builder->CreateNot(A), B);
2392
2393  // ((~A) ^ B) | (A & B) -> (~A ^ B)
2394  if (match(Op0, m_Xor(m_Not(m_Value(A)), m_Value(B))) &&
2395      match(Op1, m_And(m_Specific(A), m_Specific(B))))
2396    return BinaryOperator::CreateXor(Builder->CreateNot(A), B);
2397
2398  if (SwappedForXor)
2399    std::swap(Op0, Op1);
2400
2401  {
2402    ICmpInst *LHS = dyn_cast<ICmpInst>(Op0);
2403    ICmpInst *RHS = dyn_cast<ICmpInst>(Op1);
2404    if (LHS && RHS)
2405      if (Value *Res = FoldOrOfICmps(LHS, RHS, &I))
2406        return replaceInstUsesWith(I, Res);
2407
2408    // TODO: Make this recursive; it's a little tricky because an arbitrary
2409    // number of 'or' instructions might have to be created.
2410    Value *X, *Y;
2411    if (LHS && match(Op1, m_OneUse(m_Or(m_Value(X), m_Value(Y))))) {
2412      if (auto *Cmp = dyn_cast<ICmpInst>(X))
2413        if (Value *Res = FoldOrOfICmps(LHS, Cmp, &I))
2414          return replaceInstUsesWith(I, Builder->CreateOr(Res, Y));
2415      if (auto *Cmp = dyn_cast<ICmpInst>(Y))
2416        if (Value *Res = FoldOrOfICmps(LHS, Cmp, &I))
2417          return replaceInstUsesWith(I, Builder->CreateOr(Res, X));
2418    }
2419    if (RHS && match(Op0, m_OneUse(m_Or(m_Value(X), m_Value(Y))))) {
2420      if (auto *Cmp = dyn_cast<ICmpInst>(X))
2421        if (Value *Res = FoldOrOfICmps(Cmp, RHS, &I))
2422          return replaceInstUsesWith(I, Builder->CreateOr(Res, Y));
2423      if (auto *Cmp = dyn_cast<ICmpInst>(Y))
2424        if (Value *Res = FoldOrOfICmps(Cmp, RHS, &I))
2425          return replaceInstUsesWith(I, Builder->CreateOr(Res, X));
2426    }
2427  }
2428
2429  // (fcmp uno x, c) | (fcmp uno y, c)  -> (fcmp uno x, y)
2430  if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0)))
2431    if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
2432      if (Value *Res = FoldOrOfFCmps(LHS, RHS))
2433        return replaceInstUsesWith(I, Res);
2434
2435  if (Instruction *CastedOr = foldCastedBitwiseLogic(I))
2436    return CastedOr;
2437
2438  // or(sext(A), B) / or(B, sext(A)) --> A ? -1 : B, where A is i1 or <N x i1>.
2439  if (match(Op0, m_OneUse(m_SExt(m_Value(A)))) &&
2440      A->getType()->getScalarType()->isIntegerTy(1))
2441    return SelectInst::Create(A, ConstantInt::getSigned(I.getType(), -1), Op1);
2442  if (match(Op1, m_OneUse(m_SExt(m_Value(A)))) &&
2443      A->getType()->getScalarType()->isIntegerTy(1))
2444    return SelectInst::Create(A, ConstantInt::getSigned(I.getType(), -1), Op0);
2445
2446  // Note: If we've gotten to the point of visiting the outer OR, then the
2447  // inner one couldn't be simplified.  If it was a constant, then it won't
2448  // be simplified by a later pass either, so we try swapping the inner/outer
2449  // ORs in the hopes that we'll be able to simplify it this way.
2450  // (X|C) | V --> (X|V) | C
2451  if (Op0->hasOneUse() && !isa<ConstantInt>(Op1) &&
2452      match(Op0, m_Or(m_Value(A), m_ConstantInt(C1)))) {
2453    Value *Inner = Builder->CreateOr(A, Op1);
2454    Inner->takeName(Op0);
2455    return BinaryOperator::CreateOr(Inner, C1);
2456  }
2457
2458  // Change (or (bool?A:B),(bool?C:D)) --> (bool?(or A,C):(or B,D))
2459  // Since this OR statement hasn't been optimized further yet, we hope
2460  // that this transformation will allow the new ORs to be optimized.
2461  {
2462    Value *X = nullptr, *Y = nullptr;
2463    if (Op0->hasOneUse() && Op1->hasOneUse() &&
2464        match(Op0, m_Select(m_Value(X), m_Value(A), m_Value(B))) &&
2465        match(Op1, m_Select(m_Value(Y), m_Value(C), m_Value(D))) && X == Y) {
2466      Value *orTrue = Builder->CreateOr(A, C);
2467      Value *orFalse = Builder->CreateOr(B, D);
2468      return SelectInst::Create(X, orTrue, orFalse);
2469    }
2470  }
2471
2472  return Changed ? &I : nullptr;
2473}
2474
2475Instruction *InstCombiner::visitXor(BinaryOperator &I) {
2476  bool Changed = SimplifyAssociativeOrCommutative(I);
2477  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2478
2479  if (Value *V = SimplifyVectorOp(I))
2480    return replaceInstUsesWith(I, V);
2481
2482  if (Value *V = SimplifyXorInst(Op0, Op1, DL, TLI, DT, AC))
2483    return replaceInstUsesWith(I, V);
2484
2485  // (A&B)^(A&C) -> A&(B^C) etc
2486  if (Value *V = SimplifyUsingDistributiveLaws(I))
2487    return replaceInstUsesWith(I, V);
2488
2489  // See if we can simplify any instructions used by the instruction whose sole
2490  // purpose is to compute bits we don't care about.
2491  if (SimplifyDemandedInstructionBits(I))
2492    return &I;
2493
2494  if (Value *V = SimplifyBSwap(I))
2495    return replaceInstUsesWith(I, V);
2496
2497  // Is this a ~ operation?
2498  if (Value *NotOp = dyn_castNotVal(&I)) {
2499    if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(NotOp)) {
2500      if (Op0I->getOpcode() == Instruction::And ||
2501          Op0I->getOpcode() == Instruction::Or) {
2502        // ~(~X & Y) --> (X | ~Y) - De Morgan's Law
2503        // ~(~X | Y) === (X & ~Y) - De Morgan's Law
2504        if (dyn_castNotVal(Op0I->getOperand(1)))
2505          Op0I->swapOperands();
2506        if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0))) {
2507          Value *NotY =
2508            Builder->CreateNot(Op0I->getOperand(1),
2509                               Op0I->getOperand(1)->getName()+".not");
2510          if (Op0I->getOpcode() == Instruction::And)
2511            return BinaryOperator::CreateOr(Op0NotVal, NotY);
2512          return BinaryOperator::CreateAnd(Op0NotVal, NotY);
2513        }
2514
2515        // ~(X & Y) --> (~X | ~Y) - De Morgan's Law
2516        // ~(X | Y) === (~X & ~Y) - De Morgan's Law
2517        if (IsFreeToInvert(Op0I->getOperand(0),
2518                           Op0I->getOperand(0)->hasOneUse()) &&
2519            IsFreeToInvert(Op0I->getOperand(1),
2520                           Op0I->getOperand(1)->hasOneUse())) {
2521          Value *NotX =
2522            Builder->CreateNot(Op0I->getOperand(0), "notlhs");
2523          Value *NotY =
2524            Builder->CreateNot(Op0I->getOperand(1), "notrhs");
2525          if (Op0I->getOpcode() == Instruction::And)
2526            return BinaryOperator::CreateOr(NotX, NotY);
2527          return BinaryOperator::CreateAnd(NotX, NotY);
2528        }
2529
2530      } else if (Op0I->getOpcode() == Instruction::AShr) {
2531        // ~(~X >>s Y) --> (X >>s Y)
2532        if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0)))
2533          return BinaryOperator::CreateAShr(Op0NotVal, Op0I->getOperand(1));
2534      }
2535    }
2536  }
2537
2538  if (Constant *RHS = dyn_cast<Constant>(Op1)) {
2539    if (RHS->isAllOnesValue() && Op0->hasOneUse())
2540      // xor (cmp A, B), true = not (cmp A, B) = !cmp A, B
2541      if (CmpInst *CI = dyn_cast<CmpInst>(Op0))
2542        return CmpInst::Create(CI->getOpcode(),
2543                               CI->getInversePredicate(),
2544                               CI->getOperand(0), CI->getOperand(1));
2545  }
2546
2547  if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
2548    // fold (xor(zext(cmp)), 1) and (xor(sext(cmp)), -1) to ext(!cmp).
2549    if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
2550      if (CmpInst *CI = dyn_cast<CmpInst>(Op0C->getOperand(0))) {
2551        if (CI->hasOneUse() && Op0C->hasOneUse()) {
2552          Instruction::CastOps Opcode = Op0C->getOpcode();
2553          if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt) &&
2554              (RHS == ConstantExpr::getCast(Opcode, Builder->getTrue(),
2555                                            Op0C->getDestTy()))) {
2556            CI->setPredicate(CI->getInversePredicate());
2557            return CastInst::Create(Opcode, CI, Op0C->getType());
2558          }
2559        }
2560      }
2561    }
2562
2563    if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
2564      // ~(c-X) == X-c-1 == X+(-c-1)
2565      if (Op0I->getOpcode() == Instruction::Sub && RHS->isAllOnesValue())
2566        if (Constant *Op0I0C = dyn_cast<Constant>(Op0I->getOperand(0))) {
2567          Constant *NegOp0I0C = ConstantExpr::getNeg(Op0I0C);
2568          Constant *ConstantRHS = ConstantExpr::getSub(NegOp0I0C,
2569                                      ConstantInt::get(I.getType(), 1));
2570          return BinaryOperator::CreateAdd(Op0I->getOperand(1), ConstantRHS);
2571        }
2572
2573      if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
2574        if (Op0I->getOpcode() == Instruction::Add) {
2575          // ~(X-c) --> (-c-1)-X
2576          if (RHS->isAllOnesValue()) {
2577            Constant *NegOp0CI = ConstantExpr::getNeg(Op0CI);
2578            return BinaryOperator::CreateSub(
2579                           ConstantExpr::getSub(NegOp0CI,
2580                                      ConstantInt::get(I.getType(), 1)),
2581                                      Op0I->getOperand(0));
2582          } else if (RHS->getValue().isSignBit()) {
2583            // (X + C) ^ signbit -> (X + C + signbit)
2584            Constant *C = Builder->getInt(RHS->getValue() + Op0CI->getValue());
2585            return BinaryOperator::CreateAdd(Op0I->getOperand(0), C);
2586
2587          }
2588        } else if (Op0I->getOpcode() == Instruction::Or) {
2589          // (X|C1)^C2 -> X^(C1|C2) iff X&~C1 == 0
2590          if (MaskedValueIsZero(Op0I->getOperand(0), Op0CI->getValue(),
2591                                0, &I)) {
2592            Constant *NewRHS = ConstantExpr::getOr(Op0CI, RHS);
2593            // Anything in both C1 and C2 is known to be zero, remove it from
2594            // NewRHS.
2595            Constant *CommonBits = ConstantExpr::getAnd(Op0CI, RHS);
2596            NewRHS = ConstantExpr::getAnd(NewRHS,
2597                                       ConstantExpr::getNot(CommonBits));
2598            Worklist.Add(Op0I);
2599            I.setOperand(0, Op0I->getOperand(0));
2600            I.setOperand(1, NewRHS);
2601            return &I;
2602          }
2603        } else if (Op0I->getOpcode() == Instruction::LShr) {
2604          // ((X^C1) >> C2) ^ C3 -> (X>>C2) ^ ((C1>>C2)^C3)
2605          // E1 = "X ^ C1"
2606          BinaryOperator *E1;
2607          ConstantInt *C1;
2608          if (Op0I->hasOneUse() &&
2609              (E1 = dyn_cast<BinaryOperator>(Op0I->getOperand(0))) &&
2610              E1->getOpcode() == Instruction::Xor &&
2611              (C1 = dyn_cast<ConstantInt>(E1->getOperand(1)))) {
2612            // fold (C1 >> C2) ^ C3
2613            ConstantInt *C2 = Op0CI, *C3 = RHS;
2614            APInt FoldConst = C1->getValue().lshr(C2->getValue());
2615            FoldConst ^= C3->getValue();
2616            // Prepare the two operands.
2617            Value *Opnd0 = Builder->CreateLShr(E1->getOperand(0), C2);
2618            Opnd0->takeName(Op0I);
2619            cast<Instruction>(Opnd0)->setDebugLoc(I.getDebugLoc());
2620            Value *FoldVal = ConstantInt::get(Opnd0->getType(), FoldConst);
2621
2622            return BinaryOperator::CreateXor(Opnd0, FoldVal);
2623          }
2624        }
2625      }
2626    }
2627
2628    // Try to fold constant and into select arguments.
2629    if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
2630      if (Instruction *R = FoldOpIntoSelect(I, SI))
2631        return R;
2632    if (isa<PHINode>(Op0))
2633      if (Instruction *NV = FoldOpIntoPhi(I))
2634        return NV;
2635  }
2636
2637  BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1);
2638  if (Op1I) {
2639    Value *A, *B;
2640    if (match(Op1I, m_Or(m_Value(A), m_Value(B)))) {
2641      if (A == Op0) {              // B^(B|A) == (A|B)^B
2642        Op1I->swapOperands();
2643        I.swapOperands();
2644        std::swap(Op0, Op1);
2645      } else if (B == Op0) {       // B^(A|B) == (A|B)^B
2646        I.swapOperands();     // Simplified below.
2647        std::swap(Op0, Op1);
2648      }
2649    } else if (match(Op1I, m_And(m_Value(A), m_Value(B))) &&
2650               Op1I->hasOneUse()){
2651      if (A == Op0) {                                      // A^(A&B) -> A^(B&A)
2652        Op1I->swapOperands();
2653        std::swap(A, B);
2654      }
2655      if (B == Op0) {                                      // A^(B&A) -> (B&A)^A
2656        I.swapOperands();     // Simplified below.
2657        std::swap(Op0, Op1);
2658      }
2659    }
2660  }
2661
2662  BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0);
2663  if (Op0I) {
2664    Value *A, *B;
2665    if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
2666        Op0I->hasOneUse()) {
2667      if (A == Op1)                                  // (B|A)^B == (A|B)^B
2668        std::swap(A, B);
2669      if (B == Op1)                                  // (A|B)^B == A & ~B
2670        return BinaryOperator::CreateAnd(A, Builder->CreateNot(Op1));
2671    } else if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
2672               Op0I->hasOneUse()){
2673      if (A == Op1)                                        // (A&B)^A -> (B&A)^A
2674        std::swap(A, B);
2675      if (B == Op1 &&                                      // (B&A)^A == ~B & A
2676          !isa<ConstantInt>(Op1)) {  // Canonical form is (B&C)^C
2677        return BinaryOperator::CreateAnd(Builder->CreateNot(A), Op1);
2678      }
2679    }
2680  }
2681
2682  if (Op0I && Op1I) {
2683    Value *A, *B, *C, *D;
2684    // (A & B)^(A | B) -> A ^ B
2685    if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
2686        match(Op1I, m_Or(m_Value(C), m_Value(D)))) {
2687      if ((A == C && B == D) || (A == D && B == C))
2688        return BinaryOperator::CreateXor(A, B);
2689    }
2690    // (A | B)^(A & B) -> A ^ B
2691    if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
2692        match(Op1I, m_And(m_Value(C), m_Value(D)))) {
2693      if ((A == C && B == D) || (A == D && B == C))
2694        return BinaryOperator::CreateXor(A, B);
2695    }
2696    // (A | ~B) ^ (~A | B) -> A ^ B
2697    if (match(Op0I, m_Or(m_Value(A), m_Not(m_Value(B)))) &&
2698        match(Op1I, m_Or(m_Not(m_Specific(A)), m_Specific(B)))) {
2699      return BinaryOperator::CreateXor(A, B);
2700    }
2701    // (~A | B) ^ (A | ~B) -> A ^ B
2702    if (match(Op0I, m_Or(m_Not(m_Value(A)), m_Value(B))) &&
2703        match(Op1I, m_Or(m_Specific(A), m_Not(m_Specific(B))))) {
2704      return BinaryOperator::CreateXor(A, B);
2705    }
2706    // (A & ~B) ^ (~A & B) -> A ^ B
2707    if (match(Op0I, m_And(m_Value(A), m_Not(m_Value(B)))) &&
2708        match(Op1I, m_And(m_Not(m_Specific(A)), m_Specific(B)))) {
2709      return BinaryOperator::CreateXor(A, B);
2710    }
2711    // (~A & B) ^ (A & ~B) -> A ^ B
2712    if (match(Op0I, m_And(m_Not(m_Value(A)), m_Value(B))) &&
2713        match(Op1I, m_And(m_Specific(A), m_Not(m_Specific(B))))) {
2714      return BinaryOperator::CreateXor(A, B);
2715    }
2716    // (A ^ C)^(A | B) -> ((~A) & B) ^ C
2717    if (match(Op0I, m_Xor(m_Value(D), m_Value(C))) &&
2718        match(Op1I, m_Or(m_Value(A), m_Value(B)))) {
2719      if (D == A)
2720        return BinaryOperator::CreateXor(
2721            Builder->CreateAnd(Builder->CreateNot(A), B), C);
2722      if (D == B)
2723        return BinaryOperator::CreateXor(
2724            Builder->CreateAnd(Builder->CreateNot(B), A), C);
2725    }
2726    // (A | B)^(A ^ C) -> ((~A) & B) ^ C
2727    if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
2728        match(Op1I, m_Xor(m_Value(D), m_Value(C)))) {
2729      if (D == A)
2730        return BinaryOperator::CreateXor(
2731            Builder->CreateAnd(Builder->CreateNot(A), B), C);
2732      if (D == B)
2733        return BinaryOperator::CreateXor(
2734            Builder->CreateAnd(Builder->CreateNot(B), A), C);
2735    }
2736    // (A & B) ^ (A ^ B) -> (A | B)
2737    if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
2738        match(Op1I, m_Xor(m_Specific(A), m_Specific(B))))
2739      return BinaryOperator::CreateOr(A, B);
2740    // (A ^ B) ^ (A & B) -> (A | B)
2741    if (match(Op0I, m_Xor(m_Value(A), m_Value(B))) &&
2742        match(Op1I, m_And(m_Specific(A), m_Specific(B))))
2743      return BinaryOperator::CreateOr(A, B);
2744  }
2745
2746  Value *A = nullptr, *B = nullptr;
2747  // (A & ~B) ^ (~A) -> ~(A & B)
2748  if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) &&
2749      match(Op1, m_Not(m_Specific(A))))
2750    return BinaryOperator::CreateNot(Builder->CreateAnd(A, B));
2751
2752  // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B)
2753  if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
2754    if (ICmpInst *LHS = dyn_cast<ICmpInst>(I.getOperand(0)))
2755      if (PredicatesFoldable(LHS->getPredicate(), RHS->getPredicate())) {
2756        if (LHS->getOperand(0) == RHS->getOperand(1) &&
2757            LHS->getOperand(1) == RHS->getOperand(0))
2758          LHS->swapOperands();
2759        if (LHS->getOperand(0) == RHS->getOperand(0) &&
2760            LHS->getOperand(1) == RHS->getOperand(1)) {
2761          Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
2762          unsigned Code = getICmpCode(LHS) ^ getICmpCode(RHS);
2763          bool isSigned = LHS->isSigned() || RHS->isSigned();
2764          return replaceInstUsesWith(I,
2765                               getNewICmpValue(isSigned, Code, Op0, Op1,
2766                                               Builder));
2767        }
2768      }
2769
2770  if (Instruction *CastedXor = foldCastedBitwiseLogic(I))
2771    return CastedXor;
2772
2773  return Changed ? &I : nullptr;
2774}
2775