InstCombineSelect.cpp revision 9affd163611b90113406b8729cc591eaad4778fa
1//===- InstCombineSelect.cpp ----------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visitSelect function.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombine.h"
15#include "llvm/Analysis/ConstantFolding.h"
16#include "llvm/Analysis/InstructionSimplify.h"
17#include "llvm/Support/PatternMatch.h"
18using namespace llvm;
19using namespace PatternMatch;
20
21/// MatchSelectPattern - Pattern match integer [SU]MIN, [SU]MAX, and ABS idioms,
22/// returning the kind and providing the out parameter results if we
23/// successfully match.
24static SelectPatternFlavor
25MatchSelectPattern(Value *V, Value *&LHS, Value *&RHS) {
26  SelectInst *SI = dyn_cast<SelectInst>(V);
27  if (SI == 0) return SPF_UNKNOWN;
28
29  ICmpInst *ICI = dyn_cast<ICmpInst>(SI->getCondition());
30  if (ICI == 0) return SPF_UNKNOWN;
31
32  LHS = ICI->getOperand(0);
33  RHS = ICI->getOperand(1);
34
35  // (icmp X, Y) ? X : Y
36  if (SI->getTrueValue() == ICI->getOperand(0) &&
37      SI->getFalseValue() == ICI->getOperand(1)) {
38    switch (ICI->getPredicate()) {
39    default: return SPF_UNKNOWN; // Equality.
40    case ICmpInst::ICMP_UGT:
41    case ICmpInst::ICMP_UGE: return SPF_UMAX;
42    case ICmpInst::ICMP_SGT:
43    case ICmpInst::ICMP_SGE: return SPF_SMAX;
44    case ICmpInst::ICMP_ULT:
45    case ICmpInst::ICMP_ULE: return SPF_UMIN;
46    case ICmpInst::ICMP_SLT:
47    case ICmpInst::ICMP_SLE: return SPF_SMIN;
48    }
49  }
50
51  // (icmp X, Y) ? Y : X
52  if (SI->getTrueValue() == ICI->getOperand(1) &&
53      SI->getFalseValue() == ICI->getOperand(0)) {
54    switch (ICI->getPredicate()) {
55      default: return SPF_UNKNOWN; // Equality.
56      case ICmpInst::ICMP_UGT:
57      case ICmpInst::ICMP_UGE: return SPF_UMIN;
58      case ICmpInst::ICMP_SGT:
59      case ICmpInst::ICMP_SGE: return SPF_SMIN;
60      case ICmpInst::ICMP_ULT:
61      case ICmpInst::ICMP_ULE: return SPF_UMAX;
62      case ICmpInst::ICMP_SLT:
63      case ICmpInst::ICMP_SLE: return SPF_SMAX;
64    }
65  }
66
67  // TODO: (X > 4) ? X : 5   -->  (X >= 5) ? X : 5  -->  MAX(X, 5)
68
69  return SPF_UNKNOWN;
70}
71
72
73/// GetSelectFoldableOperands - We want to turn code that looks like this:
74///   %C = or %A, %B
75///   %D = select %cond, %C, %A
76/// into:
77///   %C = select %cond, %B, 0
78///   %D = or %A, %C
79///
80/// Assuming that the specified instruction is an operand to the select, return
81/// a bitmask indicating which operands of this instruction are foldable if they
82/// equal the other incoming value of the select.
83///
84static unsigned GetSelectFoldableOperands(Instruction *I) {
85  switch (I->getOpcode()) {
86  case Instruction::Add:
87  case Instruction::Mul:
88  case Instruction::And:
89  case Instruction::Or:
90  case Instruction::Xor:
91    return 3;              // Can fold through either operand.
92  case Instruction::Sub:   // Can only fold on the amount subtracted.
93  case Instruction::Shl:   // Can only fold on the shift amount.
94  case Instruction::LShr:
95  case Instruction::AShr:
96    return 1;
97  default:
98    return 0;              // Cannot fold
99  }
100}
101
102/// GetSelectFoldableConstant - For the same transformation as the previous
103/// function, return the identity constant that goes into the select.
104static Constant *GetSelectFoldableConstant(Instruction *I) {
105  switch (I->getOpcode()) {
106  default: llvm_unreachable("This cannot happen!");
107  case Instruction::Add:
108  case Instruction::Sub:
109  case Instruction::Or:
110  case Instruction::Xor:
111  case Instruction::Shl:
112  case Instruction::LShr:
113  case Instruction::AShr:
114    return Constant::getNullValue(I->getType());
115  case Instruction::And:
116    return Constant::getAllOnesValue(I->getType());
117  case Instruction::Mul:
118    return ConstantInt::get(I->getType(), 1);
119  }
120}
121
122/// FoldSelectOpOp - Here we have (select c, TI, FI), and we know that TI and FI
123/// have the same opcode and only one use each.  Try to simplify this.
124Instruction *InstCombiner::FoldSelectOpOp(SelectInst &SI, Instruction *TI,
125                                          Instruction *FI) {
126  if (TI->getNumOperands() == 1) {
127    // If this is a non-volatile load or a cast from the same type,
128    // merge.
129    if (TI->isCast()) {
130      Type *FIOpndTy = FI->getOperand(0)->getType();
131      if (TI->getOperand(0)->getType() != FIOpndTy)
132        return 0;
133      // The select condition may be a vector. We may only change the operand
134      // type if the vector width remains the same (and matches the condition).
135      Type *CondTy = SI.getCondition()->getType();
136      if (CondTy->isVectorTy() && (!FIOpndTy->isVectorTy() ||
137          CondTy->getVectorNumElements() != FIOpndTy->getVectorNumElements()))
138        return 0;
139    } else {
140      return 0;  // unknown unary op.
141    }
142
143    // Fold this by inserting a select from the input values.
144    Value *NewSI = Builder->CreateSelect(SI.getCondition(), TI->getOperand(0),
145                                         FI->getOperand(0), SI.getName()+".v");
146    return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
147                            TI->getType());
148  }
149
150  // Only handle binary operators here.
151  if (!isa<BinaryOperator>(TI))
152    return 0;
153
154  // Figure out if the operations have any operands in common.
155  Value *MatchOp, *OtherOpT, *OtherOpF;
156  bool MatchIsOpZero;
157  if (TI->getOperand(0) == FI->getOperand(0)) {
158    MatchOp  = TI->getOperand(0);
159    OtherOpT = TI->getOperand(1);
160    OtherOpF = FI->getOperand(1);
161    MatchIsOpZero = true;
162  } else if (TI->getOperand(1) == FI->getOperand(1)) {
163    MatchOp  = TI->getOperand(1);
164    OtherOpT = TI->getOperand(0);
165    OtherOpF = FI->getOperand(0);
166    MatchIsOpZero = false;
167  } else if (!TI->isCommutative()) {
168    return 0;
169  } else if (TI->getOperand(0) == FI->getOperand(1)) {
170    MatchOp  = TI->getOperand(0);
171    OtherOpT = TI->getOperand(1);
172    OtherOpF = FI->getOperand(0);
173    MatchIsOpZero = true;
174  } else if (TI->getOperand(1) == FI->getOperand(0)) {
175    MatchOp  = TI->getOperand(1);
176    OtherOpT = TI->getOperand(0);
177    OtherOpF = FI->getOperand(1);
178    MatchIsOpZero = true;
179  } else {
180    return 0;
181  }
182
183  // If we reach here, they do have operations in common.
184  Value *NewSI = Builder->CreateSelect(SI.getCondition(), OtherOpT,
185                                       OtherOpF, SI.getName()+".v");
186
187  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TI)) {
188    if (MatchIsOpZero)
189      return BinaryOperator::Create(BO->getOpcode(), MatchOp, NewSI);
190    else
191      return BinaryOperator::Create(BO->getOpcode(), NewSI, MatchOp);
192  }
193  llvm_unreachable("Shouldn't get here");
194}
195
196static bool isSelect01(Constant *C1, Constant *C2) {
197  ConstantInt *C1I = dyn_cast<ConstantInt>(C1);
198  if (!C1I)
199    return false;
200  ConstantInt *C2I = dyn_cast<ConstantInt>(C2);
201  if (!C2I)
202    return false;
203  if (!C1I->isZero() && !C2I->isZero()) // One side must be zero.
204    return false;
205  return C1I->isOne() || C1I->isAllOnesValue() ||
206         C2I->isOne() || C2I->isAllOnesValue();
207}
208
209/// FoldSelectIntoOp - Try fold the select into one of the operands to
210/// facilitate further optimization.
211Instruction *InstCombiner::FoldSelectIntoOp(SelectInst &SI, Value *TrueVal,
212                                            Value *FalseVal) {
213  // See the comment above GetSelectFoldableOperands for a description of the
214  // transformation we are doing here.
215  if (Instruction *TVI = dyn_cast<Instruction>(TrueVal)) {
216    if (TVI->hasOneUse() && TVI->getNumOperands() == 2 &&
217        !isa<Constant>(FalseVal)) {
218      if (unsigned SFO = GetSelectFoldableOperands(TVI)) {
219        unsigned OpToFold = 0;
220        if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
221          OpToFold = 1;
222        } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
223          OpToFold = 2;
224        }
225
226        if (OpToFold) {
227          Constant *C = GetSelectFoldableConstant(TVI);
228          Value *OOp = TVI->getOperand(2-OpToFold);
229          // Avoid creating select between 2 constants unless it's selecting
230          // between 0, 1 and -1.
231          if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) {
232            Value *NewSel = Builder->CreateSelect(SI.getCondition(), OOp, C);
233            NewSel->takeName(TVI);
234            BinaryOperator *TVI_BO = cast<BinaryOperator>(TVI);
235            BinaryOperator *BO = BinaryOperator::Create(TVI_BO->getOpcode(),
236                                                        FalseVal, NewSel);
237            if (isa<PossiblyExactOperator>(BO))
238              BO->setIsExact(TVI_BO->isExact());
239            if (isa<OverflowingBinaryOperator>(BO)) {
240              BO->setHasNoUnsignedWrap(TVI_BO->hasNoUnsignedWrap());
241              BO->setHasNoSignedWrap(TVI_BO->hasNoSignedWrap());
242            }
243            return BO;
244          }
245        }
246      }
247    }
248  }
249
250  if (Instruction *FVI = dyn_cast<Instruction>(FalseVal)) {
251    if (FVI->hasOneUse() && FVI->getNumOperands() == 2 &&
252        !isa<Constant>(TrueVal)) {
253      if (unsigned SFO = GetSelectFoldableOperands(FVI)) {
254        unsigned OpToFold = 0;
255        if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
256          OpToFold = 1;
257        } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
258          OpToFold = 2;
259        }
260
261        if (OpToFold) {
262          Constant *C = GetSelectFoldableConstant(FVI);
263          Value *OOp = FVI->getOperand(2-OpToFold);
264          // Avoid creating select between 2 constants unless it's selecting
265          // between 0, 1 and -1.
266          if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) {
267            Value *NewSel = Builder->CreateSelect(SI.getCondition(), C, OOp);
268            NewSel->takeName(FVI);
269            BinaryOperator *FVI_BO = cast<BinaryOperator>(FVI);
270            BinaryOperator *BO = BinaryOperator::Create(FVI_BO->getOpcode(),
271                                                        TrueVal, NewSel);
272            if (isa<PossiblyExactOperator>(BO))
273              BO->setIsExact(FVI_BO->isExact());
274            if (isa<OverflowingBinaryOperator>(BO)) {
275              BO->setHasNoUnsignedWrap(FVI_BO->hasNoUnsignedWrap());
276              BO->setHasNoSignedWrap(FVI_BO->hasNoSignedWrap());
277            }
278            return BO;
279          }
280        }
281      }
282    }
283  }
284
285  return 0;
286}
287
288/// SimplifyWithOpReplaced - See if V simplifies when its operand Op is
289/// replaced with RepOp.
290static Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
291                                     const DataLayout *TD,
292                                     const TargetLibraryInfo *TLI) {
293  // Trivial replacement.
294  if (V == Op)
295    return RepOp;
296
297  Instruction *I = dyn_cast<Instruction>(V);
298  if (!I)
299    return 0;
300
301  // If this is a binary operator, try to simplify it with the replaced op.
302  if (BinaryOperator *B = dyn_cast<BinaryOperator>(I)) {
303    if (B->getOperand(0) == Op)
304      return SimplifyBinOp(B->getOpcode(), RepOp, B->getOperand(1), TD, TLI);
305    if (B->getOperand(1) == Op)
306      return SimplifyBinOp(B->getOpcode(), B->getOperand(0), RepOp, TD, TLI);
307  }
308
309  // Same for CmpInsts.
310  if (CmpInst *C = dyn_cast<CmpInst>(I)) {
311    if (C->getOperand(0) == Op)
312      return SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), TD,
313                             TLI);
314    if (C->getOperand(1) == Op)
315      return SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, TD,
316                             TLI);
317  }
318
319  // TODO: We could hand off more cases to instsimplify here.
320
321  // If all operands are constant after substituting Op for RepOp then we can
322  // constant fold the instruction.
323  if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) {
324    // Build a list of all constant operands.
325    SmallVector<Constant*, 8> ConstOps;
326    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
327      if (I->getOperand(i) == Op)
328        ConstOps.push_back(CRepOp);
329      else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i)))
330        ConstOps.push_back(COp);
331      else
332        break;
333    }
334
335    // All operands were constants, fold it.
336    if (ConstOps.size() == I->getNumOperands()) {
337      if (CmpInst *C = dyn_cast<CmpInst>(I))
338        return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0],
339                                               ConstOps[1], TD, TLI);
340
341      if (LoadInst *LI = dyn_cast<LoadInst>(I))
342        if (!LI->isVolatile())
343          return ConstantFoldLoadFromConstPtr(ConstOps[0], TD);
344
345      return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
346                                      ConstOps, TD, TLI);
347    }
348  }
349
350  return 0;
351}
352
353/// visitSelectInstWithICmp - Visit a SelectInst that has an
354/// ICmpInst as its first operand.
355///
356Instruction *InstCombiner::visitSelectInstWithICmp(SelectInst &SI,
357                                                   ICmpInst *ICI) {
358  bool Changed = false;
359  ICmpInst::Predicate Pred = ICI->getPredicate();
360  Value *CmpLHS = ICI->getOperand(0);
361  Value *CmpRHS = ICI->getOperand(1);
362  Value *TrueVal = SI.getTrueValue();
363  Value *FalseVal = SI.getFalseValue();
364
365  // Check cases where the comparison is with a constant that
366  // can be adjusted to fit the min/max idiom. We may move or edit ICI
367  // here, so make sure the select is the only user.
368  if (ICI->hasOneUse())
369    if (ConstantInt *CI = dyn_cast<ConstantInt>(CmpRHS)) {
370      // X < MIN ? T : F  -->  F
371      if ((Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT)
372          && CI->isMinValue(Pred == ICmpInst::ICMP_SLT))
373        return ReplaceInstUsesWith(SI, FalseVal);
374      // X > MAX ? T : F  -->  F
375      else if ((Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_UGT)
376               && CI->isMaxValue(Pred == ICmpInst::ICMP_SGT))
377        return ReplaceInstUsesWith(SI, FalseVal);
378      switch (Pred) {
379      default: break;
380      case ICmpInst::ICMP_ULT:
381      case ICmpInst::ICMP_SLT:
382      case ICmpInst::ICMP_UGT:
383      case ICmpInst::ICMP_SGT: {
384        // These transformations only work for selects over integers.
385        IntegerType *SelectTy = dyn_cast<IntegerType>(SI.getType());
386        if (!SelectTy)
387          break;
388
389        Constant *AdjustedRHS;
390        if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT)
391          AdjustedRHS = ConstantInt::get(CI->getContext(), CI->getValue() + 1);
392        else // (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT)
393          AdjustedRHS = ConstantInt::get(CI->getContext(), CI->getValue() - 1);
394
395        // X > C ? X : C+1  -->  X < C+1 ? C+1 : X
396        // X < C ? X : C-1  -->  X > C-1 ? C-1 : X
397        if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
398            (CmpLHS == FalseVal && AdjustedRHS == TrueVal))
399          ; // Nothing to do here. Values match without any sign/zero extension.
400
401        // Types do not match. Instead of calculating this with mixed types
402        // promote all to the larger type. This enables scalar evolution to
403        // analyze this expression.
404        else if (CmpRHS->getType()->getScalarSizeInBits()
405                 < SelectTy->getBitWidth()) {
406          Constant *sextRHS = ConstantExpr::getSExt(AdjustedRHS, SelectTy);
407
408          // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X
409          // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X
410          // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X
411          // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X
412          if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) &&
413                sextRHS == FalseVal) {
414            CmpLHS = TrueVal;
415            AdjustedRHS = sextRHS;
416          } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) &&
417                     sextRHS == TrueVal) {
418            CmpLHS = FalseVal;
419            AdjustedRHS = sextRHS;
420          } else if (ICI->isUnsigned()) {
421            Constant *zextRHS = ConstantExpr::getZExt(AdjustedRHS, SelectTy);
422            // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X
423            // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X
424            // zext + signed compare cannot be changed:
425            //    0xff <s 0x00, but 0x00ff >s 0x0000
426            if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) &&
427                zextRHS == FalseVal) {
428              CmpLHS = TrueVal;
429              AdjustedRHS = zextRHS;
430            } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) &&
431                       zextRHS == TrueVal) {
432              CmpLHS = FalseVal;
433              AdjustedRHS = zextRHS;
434            } else
435              break;
436          } else
437            break;
438        } else
439          break;
440
441        Pred = ICmpInst::getSwappedPredicate(Pred);
442        CmpRHS = AdjustedRHS;
443        std::swap(FalseVal, TrueVal);
444        ICI->setPredicate(Pred);
445        ICI->setOperand(0, CmpLHS);
446        ICI->setOperand(1, CmpRHS);
447        SI.setOperand(1, TrueVal);
448        SI.setOperand(2, FalseVal);
449
450        // Move ICI instruction right before the select instruction. Otherwise
451        // the sext/zext value may be defined after the ICI instruction uses it.
452        ICI->moveBefore(&SI);
453
454        Changed = true;
455        break;
456      }
457      }
458    }
459
460  // Transform (X >s -1) ? C1 : C2 --> ((X >>s 31) & (C2 - C1)) + C1
461  // and       (X <s  0) ? C2 : C1 --> ((X >>s 31) & (C2 - C1)) + C1
462  // FIXME: Type and constness constraints could be lifted, but we have to
463  //        watch code size carefully. We should consider xor instead of
464  //        sub/add when we decide to do that.
465  if (IntegerType *Ty = dyn_cast<IntegerType>(CmpLHS->getType())) {
466    if (TrueVal->getType() == Ty) {
467      if (ConstantInt *Cmp = dyn_cast<ConstantInt>(CmpRHS)) {
468        ConstantInt *C1 = NULL, *C2 = NULL;
469        if (Pred == ICmpInst::ICMP_SGT && Cmp->isAllOnesValue()) {
470          C1 = dyn_cast<ConstantInt>(TrueVal);
471          C2 = dyn_cast<ConstantInt>(FalseVal);
472        } else if (Pred == ICmpInst::ICMP_SLT && Cmp->isNullValue()) {
473          C1 = dyn_cast<ConstantInt>(FalseVal);
474          C2 = dyn_cast<ConstantInt>(TrueVal);
475        }
476        if (C1 && C2) {
477          // This shift results in either -1 or 0.
478          Value *AShr = Builder->CreateAShr(CmpLHS, Ty->getBitWidth()-1);
479
480          // Check if we can express the operation with a single or.
481          if (C2->isAllOnesValue())
482            return ReplaceInstUsesWith(SI, Builder->CreateOr(AShr, C1));
483
484          Value *And = Builder->CreateAnd(AShr, C2->getValue()-C1->getValue());
485          return ReplaceInstUsesWith(SI, Builder->CreateAdd(And, C1));
486        }
487      }
488    }
489  }
490
491  // If we have an equality comparison then we know the value in one of the
492  // arms of the select. See if substituting this value into the arm and
493  // simplifying the result yields the same value as the other arm.
494  if (Pred == ICmpInst::ICMP_EQ) {
495    if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, TD, TLI) == TrueVal ||
496        SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, TD, TLI) == TrueVal)
497      return ReplaceInstUsesWith(SI, FalseVal);
498    if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, TD, TLI) == FalseVal ||
499        SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, TD, TLI) == FalseVal)
500      return ReplaceInstUsesWith(SI, FalseVal);
501  } else if (Pred == ICmpInst::ICMP_NE) {
502    if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, TD, TLI) == FalseVal ||
503        SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, TD, TLI) == FalseVal)
504      return ReplaceInstUsesWith(SI, TrueVal);
505    if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, TD, TLI) == TrueVal ||
506        SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, TD, TLI) == TrueVal)
507      return ReplaceInstUsesWith(SI, TrueVal);
508  }
509
510  // NOTE: if we wanted to, this is where to detect integer MIN/MAX
511
512  if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) {
513    if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) {
514      // Transform (X == C) ? X : Y -> (X == C) ? C : Y
515      SI.setOperand(1, CmpRHS);
516      Changed = true;
517    } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) {
518      // Transform (X != C) ? Y : X -> (X != C) ? Y : C
519      SI.setOperand(2, CmpRHS);
520      Changed = true;
521    }
522  }
523
524  return Changed ? &SI : 0;
525}
526
527
528/// CanSelectOperandBeMappingIntoPredBlock - SI is a select whose condition is a
529/// PHI node (but the two may be in different blocks).  See if the true/false
530/// values (V) are live in all of the predecessor blocks of the PHI.  For
531/// example, cases like this cannot be mapped:
532///
533///   X = phi [ C1, BB1], [C2, BB2]
534///   Y = add
535///   Z = select X, Y, 0
536///
537/// because Y is not live in BB1/BB2.
538///
539static bool CanSelectOperandBeMappingIntoPredBlock(const Value *V,
540                                                   const SelectInst &SI) {
541  // If the value is a non-instruction value like a constant or argument, it
542  // can always be mapped.
543  const Instruction *I = dyn_cast<Instruction>(V);
544  if (I == 0) return true;
545
546  // If V is a PHI node defined in the same block as the condition PHI, we can
547  // map the arguments.
548  const PHINode *CondPHI = cast<PHINode>(SI.getCondition());
549
550  if (const PHINode *VP = dyn_cast<PHINode>(I))
551    if (VP->getParent() == CondPHI->getParent())
552      return true;
553
554  // Otherwise, if the PHI and select are defined in the same block and if V is
555  // defined in a different block, then we can transform it.
556  if (SI.getParent() == CondPHI->getParent() &&
557      I->getParent() != CondPHI->getParent())
558    return true;
559
560  // Otherwise we have a 'hard' case and we can't tell without doing more
561  // detailed dominator based analysis, punt.
562  return false;
563}
564
565/// FoldSPFofSPF - We have an SPF (e.g. a min or max) of an SPF of the form:
566///   SPF2(SPF1(A, B), C)
567Instruction *InstCombiner::FoldSPFofSPF(Instruction *Inner,
568                                        SelectPatternFlavor SPF1,
569                                        Value *A, Value *B,
570                                        Instruction &Outer,
571                                        SelectPatternFlavor SPF2, Value *C) {
572  if (C == A || C == B) {
573    // MAX(MAX(A, B), B) -> MAX(A, B)
574    // MIN(MIN(a, b), a) -> MIN(a, b)
575    if (SPF1 == SPF2)
576      return ReplaceInstUsesWith(Outer, Inner);
577
578    // MAX(MIN(a, b), a) -> a
579    // MIN(MAX(a, b), a) -> a
580    if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) ||
581        (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) ||
582        (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) ||
583        (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN))
584      return ReplaceInstUsesWith(Outer, C);
585  }
586
587  // TODO: MIN(MIN(A, 23), 97)
588  return 0;
589}
590
591
592/// foldSelectICmpAnd - If one of the constants is zero (we know they can't
593/// both be) and we have an icmp instruction with zero, and we have an 'and'
594/// with the non-constant value and a power of two we can turn the select
595/// into a shift on the result of the 'and'.
596static Value *foldSelectICmpAnd(const SelectInst &SI, ConstantInt *TrueVal,
597                                ConstantInt *FalseVal,
598                                InstCombiner::BuilderTy *Builder) {
599  const ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition());
600  if (!IC || !IC->isEquality())
601    return 0;
602
603  if (!match(IC->getOperand(1), m_Zero()))
604    return 0;
605
606  ConstantInt *AndRHS;
607  Value *LHS = IC->getOperand(0);
608  if (LHS->getType() != SI.getType() ||
609      !match(LHS, m_And(m_Value(), m_ConstantInt(AndRHS))))
610    return 0;
611
612  // If both select arms are non-zero see if we have a select of the form
613  // 'x ? 2^n + C : C'. Then we can offset both arms by C, use the logic
614  // for 'x ? 2^n : 0' and fix the thing up at the end.
615  ConstantInt *Offset = 0;
616  if (!TrueVal->isZero() && !FalseVal->isZero()) {
617    if ((TrueVal->getValue() - FalseVal->getValue()).isPowerOf2())
618      Offset = FalseVal;
619    else if ((FalseVal->getValue() - TrueVal->getValue()).isPowerOf2())
620      Offset = TrueVal;
621    else
622      return 0;
623
624    // Adjust TrueVal and FalseVal to the offset.
625    TrueVal = ConstantInt::get(Builder->getContext(),
626                               TrueVal->getValue() - Offset->getValue());
627    FalseVal = ConstantInt::get(Builder->getContext(),
628                                FalseVal->getValue() - Offset->getValue());
629  }
630
631  // Make sure the mask in the 'and' and one of the select arms is a power of 2.
632  if (!AndRHS->getValue().isPowerOf2() ||
633      (!TrueVal->getValue().isPowerOf2() &&
634       !FalseVal->getValue().isPowerOf2()))
635    return 0;
636
637  // Determine which shift is needed to transform result of the 'and' into the
638  // desired result.
639  ConstantInt *ValC = !TrueVal->isZero() ? TrueVal : FalseVal;
640  unsigned ValZeros = ValC->getValue().logBase2();
641  unsigned AndZeros = AndRHS->getValue().logBase2();
642
643  Value *V = LHS;
644  if (ValZeros > AndZeros)
645    V = Builder->CreateShl(V, ValZeros - AndZeros);
646  else if (ValZeros < AndZeros)
647    V = Builder->CreateLShr(V, AndZeros - ValZeros);
648
649  // Okay, now we know that everything is set up, we just don't know whether we
650  // have a icmp_ne or icmp_eq and whether the true or false val is the zero.
651  bool ShouldNotVal = !TrueVal->isZero();
652  ShouldNotVal ^= IC->getPredicate() == ICmpInst::ICMP_NE;
653  if (ShouldNotVal)
654    V = Builder->CreateXor(V, ValC);
655
656  // Apply an offset if needed.
657  if (Offset)
658    V = Builder->CreateAdd(V, Offset);
659  return V;
660}
661
662Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
663  Value *CondVal = SI.getCondition();
664  Value *TrueVal = SI.getTrueValue();
665  Value *FalseVal = SI.getFalseValue();
666
667  if (Value *V = SimplifySelectInst(CondVal, TrueVal, FalseVal, TD))
668    return ReplaceInstUsesWith(SI, V);
669
670  if (SI.getType()->isIntegerTy(1)) {
671    if (ConstantInt *C = dyn_cast<ConstantInt>(TrueVal)) {
672      if (C->getZExtValue()) {
673        // Change: A = select B, true, C --> A = or B, C
674        return BinaryOperator::CreateOr(CondVal, FalseVal);
675      }
676      // Change: A = select B, false, C --> A = and !B, C
677      Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName());
678      return BinaryOperator::CreateAnd(NotCond, FalseVal);
679    }
680    if (ConstantInt *C = dyn_cast<ConstantInt>(FalseVal)) {
681      if (C->getZExtValue() == false) {
682        // Change: A = select B, C, false --> A = and B, C
683        return BinaryOperator::CreateAnd(CondVal, TrueVal);
684      }
685      // Change: A = select B, C, true --> A = or !B, C
686      Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName());
687      return BinaryOperator::CreateOr(NotCond, TrueVal);
688    }
689
690    // select a, b, a  -> a&b
691    // select a, a, b  -> a|b
692    if (CondVal == TrueVal)
693      return BinaryOperator::CreateOr(CondVal, FalseVal);
694    if (CondVal == FalseVal)
695      return BinaryOperator::CreateAnd(CondVal, TrueVal);
696
697    // select a, ~a, b -> (~a)&b
698    // select a, b, ~a -> (~a)|b
699    if (match(TrueVal, m_Not(m_Specific(CondVal))))
700      return BinaryOperator::CreateAnd(TrueVal, FalseVal);
701    if (match(FalseVal, m_Not(m_Specific(CondVal))))
702      return BinaryOperator::CreateOr(TrueVal, FalseVal);
703  }
704
705  // Selecting between two integer constants?
706  if (ConstantInt *TrueValC = dyn_cast<ConstantInt>(TrueVal))
707    if (ConstantInt *FalseValC = dyn_cast<ConstantInt>(FalseVal)) {
708      // select C, 1, 0 -> zext C to int
709      if (FalseValC->isZero() && TrueValC->getValue() == 1)
710        return new ZExtInst(CondVal, SI.getType());
711
712      // select C, -1, 0 -> sext C to int
713      if (FalseValC->isZero() && TrueValC->isAllOnesValue())
714        return new SExtInst(CondVal, SI.getType());
715
716      // select C, 0, 1 -> zext !C to int
717      if (TrueValC->isZero() && FalseValC->getValue() == 1) {
718        Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName());
719        return new ZExtInst(NotCond, SI.getType());
720      }
721
722      // select C, 0, -1 -> sext !C to int
723      if (TrueValC->isZero() && FalseValC->isAllOnesValue()) {
724        Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName());
725        return new SExtInst(NotCond, SI.getType());
726      }
727
728      if (Value *V = foldSelectICmpAnd(SI, TrueValC, FalseValC, Builder))
729        return ReplaceInstUsesWith(SI, V);
730    }
731
732  // See if we are selecting two values based on a comparison of the two values.
733  if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) {
734    if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) {
735      // Transform (X == Y) ? X : Y  -> Y
736      if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
737        // This is not safe in general for floating point:
738        // consider X== -0, Y== +0.
739        // It becomes safe if either operand is a nonzero constant.
740        ConstantFP *CFPt, *CFPf;
741        if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
742              !CFPt->getValueAPF().isZero()) ||
743            ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
744             !CFPf->getValueAPF().isZero()))
745        return ReplaceInstUsesWith(SI, FalseVal);
746      }
747      // Transform (X une Y) ? X : Y  -> X
748      if (FCI->getPredicate() == FCmpInst::FCMP_UNE) {
749        // This is not safe in general for floating point:
750        // consider X== -0, Y== +0.
751        // It becomes safe if either operand is a nonzero constant.
752        ConstantFP *CFPt, *CFPf;
753        if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
754              !CFPt->getValueAPF().isZero()) ||
755            ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
756             !CFPf->getValueAPF().isZero()))
757        return ReplaceInstUsesWith(SI, TrueVal);
758      }
759      // NOTE: if we wanted to, this is where to detect MIN/MAX
760
761    } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){
762      // Transform (X == Y) ? Y : X  -> X
763      if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
764        // This is not safe in general for floating point:
765        // consider X== -0, Y== +0.
766        // It becomes safe if either operand is a nonzero constant.
767        ConstantFP *CFPt, *CFPf;
768        if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
769              !CFPt->getValueAPF().isZero()) ||
770            ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
771             !CFPf->getValueAPF().isZero()))
772          return ReplaceInstUsesWith(SI, FalseVal);
773      }
774      // Transform (X une Y) ? Y : X  -> Y
775      if (FCI->getPredicate() == FCmpInst::FCMP_UNE) {
776        // This is not safe in general for floating point:
777        // consider X== -0, Y== +0.
778        // It becomes safe if either operand is a nonzero constant.
779        ConstantFP *CFPt, *CFPf;
780        if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
781              !CFPt->getValueAPF().isZero()) ||
782            ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
783             !CFPf->getValueAPF().isZero()))
784          return ReplaceInstUsesWith(SI, TrueVal);
785      }
786      // NOTE: if we wanted to, this is where to detect MIN/MAX
787    }
788    // NOTE: if we wanted to, this is where to detect ABS
789  }
790
791  // See if we are selecting two values based on a comparison of the two values.
792  if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
793    if (Instruction *Result = visitSelectInstWithICmp(SI, ICI))
794      return Result;
795
796  if (Instruction *TI = dyn_cast<Instruction>(TrueVal))
797    if (Instruction *FI = dyn_cast<Instruction>(FalseVal))
798      if (TI->hasOneUse() && FI->hasOneUse()) {
799        Instruction *AddOp = 0, *SubOp = 0;
800
801        // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
802        if (TI->getOpcode() == FI->getOpcode())
803          if (Instruction *IV = FoldSelectOpOp(SI, TI, FI))
804            return IV;
805
806        // Turn select C, (X+Y), (X-Y) --> (X+(select C, Y, (-Y))).  This is
807        // even legal for FP.
808        if ((TI->getOpcode() == Instruction::Sub &&
809             FI->getOpcode() == Instruction::Add) ||
810            (TI->getOpcode() == Instruction::FSub &&
811             FI->getOpcode() == Instruction::FAdd)) {
812          AddOp = FI; SubOp = TI;
813        } else if ((FI->getOpcode() == Instruction::Sub &&
814                    TI->getOpcode() == Instruction::Add) ||
815                   (FI->getOpcode() == Instruction::FSub &&
816                    TI->getOpcode() == Instruction::FAdd)) {
817          AddOp = TI; SubOp = FI;
818        }
819
820        if (AddOp) {
821          Value *OtherAddOp = 0;
822          if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
823            OtherAddOp = AddOp->getOperand(1);
824          } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
825            OtherAddOp = AddOp->getOperand(0);
826          }
827
828          if (OtherAddOp) {
829            // So at this point we know we have (Y -> OtherAddOp):
830            //        select C, (add X, Y), (sub X, Z)
831            Value *NegVal;  // Compute -Z
832            if (SI.getType()->isFPOrFPVectorTy()) {
833              NegVal = Builder->CreateFNeg(SubOp->getOperand(1));
834            } else {
835              NegVal = Builder->CreateNeg(SubOp->getOperand(1));
836            }
837
838            Value *NewTrueOp = OtherAddOp;
839            Value *NewFalseOp = NegVal;
840            if (AddOp != TI)
841              std::swap(NewTrueOp, NewFalseOp);
842            Value *NewSel =
843              Builder->CreateSelect(CondVal, NewTrueOp,
844                                    NewFalseOp, SI.getName() + ".p");
845
846            if (SI.getType()->isFPOrFPVectorTy())
847              return BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel);
848            else
849              return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
850          }
851        }
852      }
853
854  // See if we can fold the select into one of our operands.
855  if (SI.getType()->isIntegerTy()) {
856    if (Instruction *FoldI = FoldSelectIntoOp(SI, TrueVal, FalseVal))
857      return FoldI;
858
859    // MAX(MAX(a, b), a) -> MAX(a, b)
860    // MIN(MIN(a, b), a) -> MIN(a, b)
861    // MAX(MIN(a, b), a) -> a
862    // MIN(MAX(a, b), a) -> a
863    Value *LHS, *RHS, *LHS2, *RHS2;
864    if (SelectPatternFlavor SPF = MatchSelectPattern(&SI, LHS, RHS)) {
865      if (SelectPatternFlavor SPF2 = MatchSelectPattern(LHS, LHS2, RHS2))
866        if (Instruction *R = FoldSPFofSPF(cast<Instruction>(LHS),SPF2,LHS2,RHS2,
867                                          SI, SPF, RHS))
868          return R;
869      if (SelectPatternFlavor SPF2 = MatchSelectPattern(RHS, LHS2, RHS2))
870        if (Instruction *R = FoldSPFofSPF(cast<Instruction>(RHS),SPF2,LHS2,RHS2,
871                                          SI, SPF, LHS))
872          return R;
873    }
874
875    // TODO.
876    // ABS(-X) -> ABS(X)
877    // ABS(ABS(X)) -> ABS(X)
878  }
879
880  // See if we can fold the select into a phi node if the condition is a select.
881  if (isa<PHINode>(SI.getCondition()))
882    // The true/false values have to be live in the PHI predecessor's blocks.
883    if (CanSelectOperandBeMappingIntoPredBlock(TrueVal, SI) &&
884        CanSelectOperandBeMappingIntoPredBlock(FalseVal, SI))
885      if (Instruction *NV = FoldOpIntoPhi(SI))
886        return NV;
887
888  if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) {
889    if (TrueSI->getCondition() == CondVal) {
890      if (SI.getTrueValue() == TrueSI->getTrueValue())
891        return 0;
892      SI.setOperand(1, TrueSI->getTrueValue());
893      return &SI;
894    }
895  }
896  if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) {
897    if (FalseSI->getCondition() == CondVal) {
898      if (SI.getFalseValue() == FalseSI->getFalseValue())
899        return 0;
900      SI.setOperand(2, FalseSI->getFalseValue());
901      return &SI;
902    }
903  }
904
905  if (BinaryOperator::isNot(CondVal)) {
906    SI.setOperand(0, BinaryOperator::getNotArgument(CondVal));
907    SI.setOperand(1, FalseVal);
908    SI.setOperand(2, TrueVal);
909    return &SI;
910  }
911
912  if (VectorType *VecTy = dyn_cast<VectorType>(SI.getType())) {
913    unsigned VWidth = VecTy->getNumElements();
914    APInt UndefElts(VWidth, 0);
915    APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
916    if (Value *V = SimplifyDemandedVectorElts(&SI, AllOnesEltMask, UndefElts)) {
917      if (V != &SI)
918        return ReplaceInstUsesWith(SI, V);
919      return &SI;
920    }
921
922    if (ConstantVector *CV = dyn_cast<ConstantVector>(CondVal)) {
923      // Form a shufflevector instruction.
924      SmallVector<Constant *, 8> Mask(VWidth);
925      Type *Int32Ty = Type::getInt32Ty(CV->getContext());
926      for (unsigned i = 0; i != VWidth; ++i) {
927        Constant *Elem = cast<Constant>(CV->getOperand(i));
928        if (ConstantInt *E = dyn_cast<ConstantInt>(Elem))
929          Mask[i] = ConstantInt::get(Int32Ty, i + (E->isZero() ? VWidth : 0));
930        else if (isa<UndefValue>(Elem))
931          Mask[i] = UndefValue::get(Int32Ty);
932        else
933          return 0;
934      }
935      Constant *MaskVal = ConstantVector::get(Mask);
936      Value *V = Builder->CreateShuffleVector(TrueVal, FalseVal, MaskVal);
937      return ReplaceInstUsesWith(SI, V);
938    }
939
940    if (isa<ConstantAggregateZero>(CondVal)) {
941      return ReplaceInstUsesWith(SI, FalseVal);
942    }
943  }
944
945  return 0;
946}
947