InstCombineSelect.cpp revision e87ca454ba39e57a34acab42e4391045d4c8c6cf
1//===- InstCombineSelect.cpp ----------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visitSelect function.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombine.h"
15#include "llvm/Support/PatternMatch.h"
16#include "llvm/Analysis/InstructionSimplify.h"
17using namespace llvm;
18using namespace PatternMatch;
19
20/// MatchSelectPattern - Pattern match integer [SU]MIN, [SU]MAX, and ABS idioms,
21/// returning the kind and providing the out parameter results if we
22/// successfully match.
23static SelectPatternFlavor
24MatchSelectPattern(Value *V, Value *&LHS, Value *&RHS) {
25  SelectInst *SI = dyn_cast<SelectInst>(V);
26  if (SI == 0) return SPF_UNKNOWN;
27
28  ICmpInst *ICI = dyn_cast<ICmpInst>(SI->getCondition());
29  if (ICI == 0) return SPF_UNKNOWN;
30
31  LHS = ICI->getOperand(0);
32  RHS = ICI->getOperand(1);
33
34  // (icmp X, Y) ? X : Y
35  if (SI->getTrueValue() == ICI->getOperand(0) &&
36      SI->getFalseValue() == ICI->getOperand(1)) {
37    switch (ICI->getPredicate()) {
38    default: return SPF_UNKNOWN; // Equality.
39    case ICmpInst::ICMP_UGT:
40    case ICmpInst::ICMP_UGE: return SPF_UMAX;
41    case ICmpInst::ICMP_SGT:
42    case ICmpInst::ICMP_SGE: return SPF_SMAX;
43    case ICmpInst::ICMP_ULT:
44    case ICmpInst::ICMP_ULE: return SPF_UMIN;
45    case ICmpInst::ICMP_SLT:
46    case ICmpInst::ICMP_SLE: return SPF_SMIN;
47    }
48  }
49
50  // (icmp X, Y) ? Y : X
51  if (SI->getTrueValue() == ICI->getOperand(1) &&
52      SI->getFalseValue() == ICI->getOperand(0)) {
53    switch (ICI->getPredicate()) {
54      default: return SPF_UNKNOWN; // Equality.
55      case ICmpInst::ICMP_UGT:
56      case ICmpInst::ICMP_UGE: return SPF_UMIN;
57      case ICmpInst::ICMP_SGT:
58      case ICmpInst::ICMP_SGE: return SPF_SMIN;
59      case ICmpInst::ICMP_ULT:
60      case ICmpInst::ICMP_ULE: return SPF_UMAX;
61      case ICmpInst::ICMP_SLT:
62      case ICmpInst::ICMP_SLE: return SPF_SMAX;
63    }
64  }
65
66  // TODO: (X > 4) ? X : 5   -->  (X >= 5) ? X : 5  -->  MAX(X, 5)
67
68  return SPF_UNKNOWN;
69}
70
71
72/// GetSelectFoldableOperands - We want to turn code that looks like this:
73///   %C = or %A, %B
74///   %D = select %cond, %C, %A
75/// into:
76///   %C = select %cond, %B, 0
77///   %D = or %A, %C
78///
79/// Assuming that the specified instruction is an operand to the select, return
80/// a bitmask indicating which operands of this instruction are foldable if they
81/// equal the other incoming value of the select.
82///
83static unsigned GetSelectFoldableOperands(Instruction *I) {
84  switch (I->getOpcode()) {
85  case Instruction::Add:
86  case Instruction::Mul:
87  case Instruction::And:
88  case Instruction::Or:
89  case Instruction::Xor:
90    return 3;              // Can fold through either operand.
91  case Instruction::Sub:   // Can only fold on the amount subtracted.
92  case Instruction::Shl:   // Can only fold on the shift amount.
93  case Instruction::LShr:
94  case Instruction::AShr:
95    return 1;
96  default:
97    return 0;              // Cannot fold
98  }
99}
100
101/// GetSelectFoldableConstant - For the same transformation as the previous
102/// function, return the identity constant that goes into the select.
103static Constant *GetSelectFoldableConstant(Instruction *I) {
104  switch (I->getOpcode()) {
105  default: llvm_unreachable("This cannot happen!");
106  case Instruction::Add:
107  case Instruction::Sub:
108  case Instruction::Or:
109  case Instruction::Xor:
110  case Instruction::Shl:
111  case Instruction::LShr:
112  case Instruction::AShr:
113    return Constant::getNullValue(I->getType());
114  case Instruction::And:
115    return Constant::getAllOnesValue(I->getType());
116  case Instruction::Mul:
117    return ConstantInt::get(I->getType(), 1);
118  }
119}
120
121/// FoldSelectOpOp - Here we have (select c, TI, FI), and we know that TI and FI
122/// have the same opcode and only one use each.  Try to simplify this.
123Instruction *InstCombiner::FoldSelectOpOp(SelectInst &SI, Instruction *TI,
124                                          Instruction *FI) {
125  if (TI->getNumOperands() == 1) {
126    // If this is a non-volatile load or a cast from the same type,
127    // merge.
128    if (TI->isCast()) {
129      if (TI->getOperand(0)->getType() != FI->getOperand(0)->getType())
130        return 0;
131    } else {
132      return 0;  // unknown unary op.
133    }
134
135    // Fold this by inserting a select from the input values.
136    SelectInst *NewSI = SelectInst::Create(SI.getCondition(), TI->getOperand(0),
137                                          FI->getOperand(0), SI.getName()+".v");
138    InsertNewInstBefore(NewSI, SI);
139    return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
140                            TI->getType());
141  }
142
143  // Only handle binary operators here.
144  if (!isa<BinaryOperator>(TI))
145    return 0;
146
147  // Figure out if the operations have any operands in common.
148  Value *MatchOp, *OtherOpT, *OtherOpF;
149  bool MatchIsOpZero;
150  if (TI->getOperand(0) == FI->getOperand(0)) {
151    MatchOp  = TI->getOperand(0);
152    OtherOpT = TI->getOperand(1);
153    OtherOpF = FI->getOperand(1);
154    MatchIsOpZero = true;
155  } else if (TI->getOperand(1) == FI->getOperand(1)) {
156    MatchOp  = TI->getOperand(1);
157    OtherOpT = TI->getOperand(0);
158    OtherOpF = FI->getOperand(0);
159    MatchIsOpZero = false;
160  } else if (!TI->isCommutative()) {
161    return 0;
162  } else if (TI->getOperand(0) == FI->getOperand(1)) {
163    MatchOp  = TI->getOperand(0);
164    OtherOpT = TI->getOperand(1);
165    OtherOpF = FI->getOperand(0);
166    MatchIsOpZero = true;
167  } else if (TI->getOperand(1) == FI->getOperand(0)) {
168    MatchOp  = TI->getOperand(1);
169    OtherOpT = TI->getOperand(0);
170    OtherOpF = FI->getOperand(1);
171    MatchIsOpZero = true;
172  } else {
173    return 0;
174  }
175
176  // If we reach here, they do have operations in common.
177  SelectInst *NewSI = SelectInst::Create(SI.getCondition(), OtherOpT,
178                                         OtherOpF, SI.getName()+".v");
179  InsertNewInstBefore(NewSI, SI);
180
181  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TI)) {
182    if (MatchIsOpZero)
183      return BinaryOperator::Create(BO->getOpcode(), MatchOp, NewSI);
184    else
185      return BinaryOperator::Create(BO->getOpcode(), NewSI, MatchOp);
186  }
187  llvm_unreachable("Shouldn't get here");
188  return 0;
189}
190
191static bool isSelect01(Constant *C1, Constant *C2) {
192  ConstantInt *C1I = dyn_cast<ConstantInt>(C1);
193  if (!C1I)
194    return false;
195  ConstantInt *C2I = dyn_cast<ConstantInt>(C2);
196  if (!C2I)
197    return false;
198  if (!C1I->isZero() && !C2I->isZero()) // One side must be zero.
199    return false;
200  return C1I->isOne() || C1I->isAllOnesValue() ||
201         C2I->isOne() || C2I->isAllOnesValue();
202}
203
204/// FoldSelectIntoOp - Try fold the select into one of the operands to
205/// facilitate further optimization.
206Instruction *InstCombiner::FoldSelectIntoOp(SelectInst &SI, Value *TrueVal,
207                                            Value *FalseVal) {
208  // See the comment above GetSelectFoldableOperands for a description of the
209  // transformation we are doing here.
210  if (Instruction *TVI = dyn_cast<Instruction>(TrueVal)) {
211    if (TVI->hasOneUse() && TVI->getNumOperands() == 2 &&
212        !isa<Constant>(FalseVal)) {
213      if (unsigned SFO = GetSelectFoldableOperands(TVI)) {
214        unsigned OpToFold = 0;
215        if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
216          OpToFold = 1;
217        } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
218          OpToFold = 2;
219        }
220
221        if (OpToFold) {
222          Constant *C = GetSelectFoldableConstant(TVI);
223          Value *OOp = TVI->getOperand(2-OpToFold);
224          // Avoid creating select between 2 constants unless it's selecting
225          // between 0, 1 and -1.
226          if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) {
227            Instruction *NewSel = SelectInst::Create(SI.getCondition(), OOp, C);
228            InsertNewInstBefore(NewSel, SI);
229            NewSel->takeName(TVI);
230            BinaryOperator *TVI_BO = cast<BinaryOperator>(TVI);
231            BinaryOperator *BO = BinaryOperator::Create(TVI_BO->getOpcode(),
232                                                        FalseVal, NewSel);
233            if (isa<PossiblyExactOperator>(BO))
234              BO->setIsExact(TVI_BO->isExact());
235            if (isa<OverflowingBinaryOperator>(BO)) {
236              BO->setHasNoUnsignedWrap(TVI_BO->hasNoUnsignedWrap());
237              BO->setHasNoSignedWrap(TVI_BO->hasNoSignedWrap());
238            }
239            return BO;
240          }
241        }
242      }
243    }
244  }
245
246  if (Instruction *FVI = dyn_cast<Instruction>(FalseVal)) {
247    if (FVI->hasOneUse() && FVI->getNumOperands() == 2 &&
248        !isa<Constant>(TrueVal)) {
249      if (unsigned SFO = GetSelectFoldableOperands(FVI)) {
250        unsigned OpToFold = 0;
251        if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
252          OpToFold = 1;
253        } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
254          OpToFold = 2;
255        }
256
257        if (OpToFold) {
258          Constant *C = GetSelectFoldableConstant(FVI);
259          Value *OOp = FVI->getOperand(2-OpToFold);
260          // Avoid creating select between 2 constants unless it's selecting
261          // between 0, 1 and -1.
262          if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) {
263            Instruction *NewSel = SelectInst::Create(SI.getCondition(), C, OOp);
264            InsertNewInstBefore(NewSel, SI);
265            NewSel->takeName(FVI);
266            BinaryOperator *FVI_BO = cast<BinaryOperator>(FVI);
267            BinaryOperator *BO = BinaryOperator::Create(FVI_BO->getOpcode(),
268                                                        TrueVal, NewSel);
269            if (isa<PossiblyExactOperator>(BO))
270              BO->setIsExact(FVI_BO->isExact());
271            if (isa<OverflowingBinaryOperator>(BO)) {
272              BO->setHasNoUnsignedWrap(FVI_BO->hasNoUnsignedWrap());
273              BO->setHasNoSignedWrap(FVI_BO->hasNoSignedWrap());
274            }
275            return BO;
276          }
277        }
278      }
279    }
280  }
281
282  return 0;
283}
284
285/// visitSelectInstWithICmp - Visit a SelectInst that has an
286/// ICmpInst as its first operand.
287///
288Instruction *InstCombiner::visitSelectInstWithICmp(SelectInst &SI,
289                                                   ICmpInst *ICI) {
290  bool Changed = false;
291  ICmpInst::Predicate Pred = ICI->getPredicate();
292  Value *CmpLHS = ICI->getOperand(0);
293  Value *CmpRHS = ICI->getOperand(1);
294  Value *TrueVal = SI.getTrueValue();
295  Value *FalseVal = SI.getFalseValue();
296
297  // Check cases where the comparison is with a constant that
298  // can be adjusted to fit the min/max idiom. We may move or edit ICI
299  // here, so make sure the select is the only user.
300  if (ICI->hasOneUse())
301    if (ConstantInt *CI = dyn_cast<ConstantInt>(CmpRHS)) {
302      // X < MIN ? T : F  -->  F
303      if ((Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT)
304          && CI->isMinValue(Pred == ICmpInst::ICMP_SLT))
305        return ReplaceInstUsesWith(SI, FalseVal);
306      // X > MAX ? T : F  -->  F
307      else if ((Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_UGT)
308               && CI->isMaxValue(Pred == ICmpInst::ICMP_SGT))
309        return ReplaceInstUsesWith(SI, FalseVal);
310      switch (Pred) {
311      default: break;
312      case ICmpInst::ICMP_ULT:
313      case ICmpInst::ICMP_SLT:
314      case ICmpInst::ICMP_UGT:
315      case ICmpInst::ICMP_SGT: {
316        // These transformations only work for selects over integers.
317        const IntegerType *SelectTy = dyn_cast<IntegerType>(SI.getType());
318        if (!SelectTy)
319          break;
320
321        Constant *AdjustedRHS;
322        if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT)
323          AdjustedRHS = ConstantInt::get(CI->getContext(), CI->getValue() + 1);
324        else // (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT)
325          AdjustedRHS = ConstantInt::get(CI->getContext(), CI->getValue() - 1);
326
327        // X > C ? X : C+1  -->  X < C+1 ? C+1 : X
328        // X < C ? X : C-1  -->  X > C-1 ? C-1 : X
329        if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
330            (CmpLHS == FalseVal && AdjustedRHS == TrueVal))
331          ; // Nothing to do here. Values match without any sign/zero extension.
332
333        // Types do not match. Instead of calculating this with mixed types
334        // promote all to the larger type. This enables scalar evolution to
335        // analyze this expression.
336        else if (CmpRHS->getType()->getScalarSizeInBits()
337                 < SelectTy->getBitWidth()) {
338          Constant *sextRHS = ConstantExpr::getSExt(AdjustedRHS, SelectTy);
339
340          // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X
341          // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X
342          // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X
343          // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X
344          if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) &&
345                sextRHS == FalseVal) {
346            CmpLHS = TrueVal;
347            AdjustedRHS = sextRHS;
348          } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) &&
349                     sextRHS == TrueVal) {
350            CmpLHS = FalseVal;
351            AdjustedRHS = sextRHS;
352          } else if (ICI->isUnsigned()) {
353            Constant *zextRHS = ConstantExpr::getZExt(AdjustedRHS, SelectTy);
354            // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X
355            // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X
356            // zext + signed compare cannot be changed:
357            //    0xff <s 0x00, but 0x00ff >s 0x0000
358            if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) &&
359                zextRHS == FalseVal) {
360              CmpLHS = TrueVal;
361              AdjustedRHS = zextRHS;
362            } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) &&
363                       zextRHS == TrueVal) {
364              CmpLHS = FalseVal;
365              AdjustedRHS = zextRHS;
366            } else
367              break;
368          } else
369            break;
370        } else
371          break;
372
373        Pred = ICmpInst::getSwappedPredicate(Pred);
374        CmpRHS = AdjustedRHS;
375        std::swap(FalseVal, TrueVal);
376        ICI->setPredicate(Pred);
377        ICI->setOperand(0, CmpLHS);
378        ICI->setOperand(1, CmpRHS);
379        SI.setOperand(1, TrueVal);
380        SI.setOperand(2, FalseVal);
381
382        // Move ICI instruction right before the select instruction. Otherwise
383        // the sext/zext value may be defined after the ICI instruction uses it.
384        ICI->moveBefore(&SI);
385
386        Changed = true;
387        break;
388      }
389      }
390    }
391
392  // Transform (X >s -1) ? C1 : C2 --> ((X >>s 31) & (C2 - C1)) + C1
393  // and       (X <s  0) ? C2 : C1 --> ((X >>s 31) & (C2 - C1)) + C1
394  // FIXME: Type and constness constraints could be lifted, but we have to
395  //        watch code size carefully. We should consider xor instead of
396  //        sub/add when we decide to do that.
397  if (const IntegerType *Ty = dyn_cast<IntegerType>(CmpLHS->getType())) {
398    if (TrueVal->getType() == Ty) {
399      if (ConstantInt *Cmp = dyn_cast<ConstantInt>(CmpRHS)) {
400        ConstantInt *C1 = NULL, *C2 = NULL;
401        if (Pred == ICmpInst::ICMP_SGT && Cmp->isAllOnesValue()) {
402          C1 = dyn_cast<ConstantInt>(TrueVal);
403          C2 = dyn_cast<ConstantInt>(FalseVal);
404        } else if (Pred == ICmpInst::ICMP_SLT && Cmp->isNullValue()) {
405          C1 = dyn_cast<ConstantInt>(FalseVal);
406          C2 = dyn_cast<ConstantInt>(TrueVal);
407        }
408        if (C1 && C2) {
409          // This shift results in either -1 or 0.
410          Value *AShr = Builder->CreateAShr(CmpLHS, Ty->getBitWidth()-1);
411
412          // Check if we can express the operation with a single or.
413          if (C2->isAllOnesValue())
414            return ReplaceInstUsesWith(SI, Builder->CreateOr(AShr, C1));
415
416          Value *And = Builder->CreateAnd(AShr, C2->getValue()-C1->getValue());
417          return ReplaceInstUsesWith(SI, Builder->CreateAdd(And, C1));
418        }
419      }
420    }
421  }
422
423  if (CmpLHS == TrueVal && CmpRHS == FalseVal) {
424    // Transform (X == Y) ? X : Y  -> Y
425    if (Pred == ICmpInst::ICMP_EQ)
426      return ReplaceInstUsesWith(SI, FalseVal);
427    // Transform (X != Y) ? X : Y  -> X
428    if (Pred == ICmpInst::ICMP_NE)
429      return ReplaceInstUsesWith(SI, TrueVal);
430    /// NOTE: if we wanted to, this is where to detect integer MIN/MAX
431
432  } else if (CmpLHS == FalseVal && CmpRHS == TrueVal) {
433    // Transform (X == Y) ? Y : X  -> X
434    if (Pred == ICmpInst::ICMP_EQ)
435      return ReplaceInstUsesWith(SI, FalseVal);
436    // Transform (X != Y) ? Y : X  -> Y
437    if (Pred == ICmpInst::ICMP_NE)
438      return ReplaceInstUsesWith(SI, TrueVal);
439    /// NOTE: if we wanted to, this is where to detect integer MIN/MAX
440  }
441
442  if (isa<Constant>(CmpRHS)) {
443    if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) {
444      // Transform (X == C) ? X : Y -> (X == C) ? C : Y
445      SI.setOperand(1, CmpRHS);
446      Changed = true;
447    } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) {
448      // Transform (X != C) ? Y : X -> (X != C) ? Y : C
449      SI.setOperand(2, CmpRHS);
450      Changed = true;
451    }
452  }
453
454  return Changed ? &SI : 0;
455}
456
457
458/// CanSelectOperandBeMappingIntoPredBlock - SI is a select whose condition is a
459/// PHI node (but the two may be in different blocks).  See if the true/false
460/// values (V) are live in all of the predecessor blocks of the PHI.  For
461/// example, cases like this cannot be mapped:
462///
463///   X = phi [ C1, BB1], [C2, BB2]
464///   Y = add
465///   Z = select X, Y, 0
466///
467/// because Y is not live in BB1/BB2.
468///
469static bool CanSelectOperandBeMappingIntoPredBlock(const Value *V,
470                                                   const SelectInst &SI) {
471  // If the value is a non-instruction value like a constant or argument, it
472  // can always be mapped.
473  const Instruction *I = dyn_cast<Instruction>(V);
474  if (I == 0) return true;
475
476  // If V is a PHI node defined in the same block as the condition PHI, we can
477  // map the arguments.
478  const PHINode *CondPHI = cast<PHINode>(SI.getCondition());
479
480  if (const PHINode *VP = dyn_cast<PHINode>(I))
481    if (VP->getParent() == CondPHI->getParent())
482      return true;
483
484  // Otherwise, if the PHI and select are defined in the same block and if V is
485  // defined in a different block, then we can transform it.
486  if (SI.getParent() == CondPHI->getParent() &&
487      I->getParent() != CondPHI->getParent())
488    return true;
489
490  // Otherwise we have a 'hard' case and we can't tell without doing more
491  // detailed dominator based analysis, punt.
492  return false;
493}
494
495/// FoldSPFofSPF - We have an SPF (e.g. a min or max) of an SPF of the form:
496///   SPF2(SPF1(A, B), C)
497Instruction *InstCombiner::FoldSPFofSPF(Instruction *Inner,
498                                        SelectPatternFlavor SPF1,
499                                        Value *A, Value *B,
500                                        Instruction &Outer,
501                                        SelectPatternFlavor SPF2, Value *C) {
502  if (C == A || C == B) {
503    // MAX(MAX(A, B), B) -> MAX(A, B)
504    // MIN(MIN(a, b), a) -> MIN(a, b)
505    if (SPF1 == SPF2)
506      return ReplaceInstUsesWith(Outer, Inner);
507
508    // MAX(MIN(a, b), a) -> a
509    // MIN(MAX(a, b), a) -> a
510    if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) ||
511        (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) ||
512        (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) ||
513        (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN))
514      return ReplaceInstUsesWith(Outer, C);
515  }
516
517  // TODO: MIN(MIN(A, 23), 97)
518  return 0;
519}
520
521
522/// foldSelectICmpAnd - If one of the constants is zero (we know they can't
523/// both be) and we have an icmp instruction with zero, and we have an 'and'
524/// with the non-constant value and a power of two we can turn the select
525/// into a shift on the result of the 'and'.
526static Value *foldSelectICmpAnd(const SelectInst &SI, ConstantInt *TrueVal,
527                                ConstantInt *FalseVal,
528                                InstCombiner::BuilderTy *Builder) {
529  const ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition());
530  if (!IC || !IC->isEquality())
531    return 0;
532
533  if (!match(IC->getOperand(1), m_Zero()))
534    return 0;
535
536  ConstantInt *AndRHS;
537  Value *LHS = IC->getOperand(0);
538  if (LHS->getType() != SI.getType() ||
539      !match(LHS, m_And(m_Value(), m_ConstantInt(AndRHS))))
540    return 0;
541
542  // If both select arms are non-zero see if we have a select of the form
543  // 'x ? 2^n + C : C'. Then we can offset both arms by C, use the logic
544  // for 'x ? 2^n : 0' and fix the thing up at the end.
545  ConstantInt *Offset = 0;
546  if (!TrueVal->isZero() && !FalseVal->isZero()) {
547    if ((TrueVal->getValue() - FalseVal->getValue()).isPowerOf2())
548      Offset = FalseVal;
549    else if ((FalseVal->getValue() - TrueVal->getValue()).isPowerOf2())
550      Offset = TrueVal;
551    else
552      return 0;
553
554    // Adjust TrueVal and FalseVal to the offset.
555    TrueVal = ConstantInt::get(Builder->getContext(),
556                               TrueVal->getValue() - Offset->getValue());
557    FalseVal = ConstantInt::get(Builder->getContext(),
558                                FalseVal->getValue() - Offset->getValue());
559  }
560
561  // Make sure the mask in the 'and' and one of the select arms is a power of 2.
562  if (!AndRHS->getValue().isPowerOf2() ||
563      (!TrueVal->getValue().isPowerOf2() &&
564       !FalseVal->getValue().isPowerOf2()))
565    return 0;
566
567  // Determine which shift is needed to transform result of the 'and' into the
568  // desired result.
569  ConstantInt *ValC = !TrueVal->isZero() ? TrueVal : FalseVal;
570  unsigned ValZeros = ValC->getValue().logBase2();
571  unsigned AndZeros = AndRHS->getValue().logBase2();
572
573  Value *V = LHS;
574  if (ValZeros > AndZeros)
575    V = Builder->CreateShl(V, ValZeros - AndZeros);
576  else if (ValZeros < AndZeros)
577    V = Builder->CreateLShr(V, AndZeros - ValZeros);
578
579  // Okay, now we know that everything is set up, we just don't know whether we
580  // have a icmp_ne or icmp_eq and whether the true or false val is the zero.
581  bool ShouldNotVal = !TrueVal->isZero();
582  ShouldNotVal ^= IC->getPredicate() == ICmpInst::ICMP_NE;
583  if (ShouldNotVal)
584    V = Builder->CreateXor(V, ValC);
585
586  // Apply an offset if needed.
587  if (Offset)
588    V = Builder->CreateAdd(V, Offset);
589  return V;
590}
591
592Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
593  Value *CondVal = SI.getCondition();
594  Value *TrueVal = SI.getTrueValue();
595  Value *FalseVal = SI.getFalseValue();
596
597  if (Value *V = SimplifySelectInst(CondVal, TrueVal, FalseVal, TD))
598    return ReplaceInstUsesWith(SI, V);
599
600  if (SI.getType()->isIntegerTy(1)) {
601    if (ConstantInt *C = dyn_cast<ConstantInt>(TrueVal)) {
602      if (C->getZExtValue()) {
603        // Change: A = select B, true, C --> A = or B, C
604        return BinaryOperator::CreateOr(CondVal, FalseVal);
605      }
606      // Change: A = select B, false, C --> A = and !B, C
607      Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName());
608      return BinaryOperator::CreateAnd(NotCond, FalseVal);
609    } else if (ConstantInt *C = dyn_cast<ConstantInt>(FalseVal)) {
610      if (C->getZExtValue() == false) {
611        // Change: A = select B, C, false --> A = and B, C
612        return BinaryOperator::CreateAnd(CondVal, TrueVal);
613      }
614      // Change: A = select B, C, true --> A = or !B, C
615      Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName());
616      return BinaryOperator::CreateOr(NotCond, TrueVal);
617    }
618
619    // select a, b, a  -> a&b
620    // select a, a, b  -> a|b
621    if (CondVal == TrueVal)
622      return BinaryOperator::CreateOr(CondVal, FalseVal);
623    else if (CondVal == FalseVal)
624      return BinaryOperator::CreateAnd(CondVal, TrueVal);
625  }
626
627  // Selecting between two integer constants?
628  if (ConstantInt *TrueValC = dyn_cast<ConstantInt>(TrueVal))
629    if (ConstantInt *FalseValC = dyn_cast<ConstantInt>(FalseVal)) {
630      // select C, 1, 0 -> zext C to int
631      if (FalseValC->isZero() && TrueValC->getValue() == 1)
632        return new ZExtInst(CondVal, SI.getType());
633
634      // select C, -1, 0 -> sext C to int
635      if (FalseValC->isZero() && TrueValC->isAllOnesValue())
636        return new SExtInst(CondVal, SI.getType());
637
638      // select C, 0, 1 -> zext !C to int
639      if (TrueValC->isZero() && FalseValC->getValue() == 1) {
640        Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName());
641        return new ZExtInst(NotCond, SI.getType());
642      }
643
644      // select C, 0, -1 -> sext !C to int
645      if (TrueValC->isZero() && FalseValC->isAllOnesValue()) {
646        Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName());
647        return new SExtInst(NotCond, SI.getType());
648      }
649
650      if (Value *V = foldSelectICmpAnd(SI, TrueValC, FalseValC, Builder))
651        return ReplaceInstUsesWith(SI, V);
652    }
653
654  // See if we are selecting two values based on a comparison of the two values.
655  if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) {
656    if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) {
657      // Transform (X == Y) ? X : Y  -> Y
658      if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
659        // This is not safe in general for floating point:
660        // consider X== -0, Y== +0.
661        // It becomes safe if either operand is a nonzero constant.
662        ConstantFP *CFPt, *CFPf;
663        if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
664              !CFPt->getValueAPF().isZero()) ||
665            ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
666             !CFPf->getValueAPF().isZero()))
667        return ReplaceInstUsesWith(SI, FalseVal);
668      }
669      // Transform (X une Y) ? X : Y  -> X
670      if (FCI->getPredicate() == FCmpInst::FCMP_UNE) {
671        // This is not safe in general for floating point:
672        // consider X== -0, Y== +0.
673        // It becomes safe if either operand is a nonzero constant.
674        ConstantFP *CFPt, *CFPf;
675        if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
676              !CFPt->getValueAPF().isZero()) ||
677            ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
678             !CFPf->getValueAPF().isZero()))
679        return ReplaceInstUsesWith(SI, TrueVal);
680      }
681      // NOTE: if we wanted to, this is where to detect MIN/MAX
682
683    } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){
684      // Transform (X == Y) ? Y : X  -> X
685      if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
686        // This is not safe in general for floating point:
687        // consider X== -0, Y== +0.
688        // It becomes safe if either operand is a nonzero constant.
689        ConstantFP *CFPt, *CFPf;
690        if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
691              !CFPt->getValueAPF().isZero()) ||
692            ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
693             !CFPf->getValueAPF().isZero()))
694          return ReplaceInstUsesWith(SI, FalseVal);
695      }
696      // Transform (X une Y) ? Y : X  -> Y
697      if (FCI->getPredicate() == FCmpInst::FCMP_UNE) {
698        // This is not safe in general for floating point:
699        // consider X== -0, Y== +0.
700        // It becomes safe if either operand is a nonzero constant.
701        ConstantFP *CFPt, *CFPf;
702        if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
703              !CFPt->getValueAPF().isZero()) ||
704            ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
705             !CFPf->getValueAPF().isZero()))
706          return ReplaceInstUsesWith(SI, TrueVal);
707      }
708      // NOTE: if we wanted to, this is where to detect MIN/MAX
709    }
710    // NOTE: if we wanted to, this is where to detect ABS
711  }
712
713  // See if we are selecting two values based on a comparison of the two values.
714  if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
715    if (Instruction *Result = visitSelectInstWithICmp(SI, ICI))
716      return Result;
717
718  if (Instruction *TI = dyn_cast<Instruction>(TrueVal))
719    if (Instruction *FI = dyn_cast<Instruction>(FalseVal))
720      if (TI->hasOneUse() && FI->hasOneUse()) {
721        Instruction *AddOp = 0, *SubOp = 0;
722
723        // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
724        if (TI->getOpcode() == FI->getOpcode())
725          if (Instruction *IV = FoldSelectOpOp(SI, TI, FI))
726            return IV;
727
728        // Turn select C, (X+Y), (X-Y) --> (X+(select C, Y, (-Y))).  This is
729        // even legal for FP.
730        if ((TI->getOpcode() == Instruction::Sub &&
731             FI->getOpcode() == Instruction::Add) ||
732            (TI->getOpcode() == Instruction::FSub &&
733             FI->getOpcode() == Instruction::FAdd)) {
734          AddOp = FI; SubOp = TI;
735        } else if ((FI->getOpcode() == Instruction::Sub &&
736                    TI->getOpcode() == Instruction::Add) ||
737                   (FI->getOpcode() == Instruction::FSub &&
738                    TI->getOpcode() == Instruction::FAdd)) {
739          AddOp = TI; SubOp = FI;
740        }
741
742        if (AddOp) {
743          Value *OtherAddOp = 0;
744          if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
745            OtherAddOp = AddOp->getOperand(1);
746          } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
747            OtherAddOp = AddOp->getOperand(0);
748          }
749
750          if (OtherAddOp) {
751            // So at this point we know we have (Y -> OtherAddOp):
752            //        select C, (add X, Y), (sub X, Z)
753            Value *NegVal;  // Compute -Z
754            if (Constant *C = dyn_cast<Constant>(SubOp->getOperand(1))) {
755              NegVal = ConstantExpr::getNeg(C);
756            } else if (SI.getType()->isFloatingPointTy()) {
757              NegVal = InsertNewInstBefore(
758                    BinaryOperator::CreateFNeg(SubOp->getOperand(1),
759                                              "tmp"), SI);
760            } else {
761              NegVal = InsertNewInstBefore(
762                    BinaryOperator::CreateNeg(SubOp->getOperand(1),
763                                              "tmp"), SI);
764            }
765
766            Value *NewTrueOp = OtherAddOp;
767            Value *NewFalseOp = NegVal;
768            if (AddOp != TI)
769              std::swap(NewTrueOp, NewFalseOp);
770            Instruction *NewSel =
771              SelectInst::Create(CondVal, NewTrueOp,
772                                 NewFalseOp, SI.getName() + ".p");
773
774            NewSel = InsertNewInstBefore(NewSel, SI);
775            if (SI.getType()->isFloatingPointTy())
776              return BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel);
777            else
778              return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
779          }
780        }
781      }
782
783  // See if we can fold the select into one of our operands.
784  if (SI.getType()->isIntegerTy()) {
785    if (Instruction *FoldI = FoldSelectIntoOp(SI, TrueVal, FalseVal))
786      return FoldI;
787
788    // MAX(MAX(a, b), a) -> MAX(a, b)
789    // MIN(MIN(a, b), a) -> MIN(a, b)
790    // MAX(MIN(a, b), a) -> a
791    // MIN(MAX(a, b), a) -> a
792    Value *LHS, *RHS, *LHS2, *RHS2;
793    if (SelectPatternFlavor SPF = MatchSelectPattern(&SI, LHS, RHS)) {
794      if (SelectPatternFlavor SPF2 = MatchSelectPattern(LHS, LHS2, RHS2))
795        if (Instruction *R = FoldSPFofSPF(cast<Instruction>(LHS),SPF2,LHS2,RHS2,
796                                          SI, SPF, RHS))
797          return R;
798      if (SelectPatternFlavor SPF2 = MatchSelectPattern(RHS, LHS2, RHS2))
799        if (Instruction *R = FoldSPFofSPF(cast<Instruction>(RHS),SPF2,LHS2,RHS2,
800                                          SI, SPF, LHS))
801          return R;
802    }
803
804    // TODO.
805    // ABS(-X) -> ABS(X)
806    // ABS(ABS(X)) -> ABS(X)
807  }
808
809  // See if we can fold the select into a phi node if the condition is a select.
810  if (isa<PHINode>(SI.getCondition()))
811    // The true/false values have to be live in the PHI predecessor's blocks.
812    if (CanSelectOperandBeMappingIntoPredBlock(TrueVal, SI) &&
813        CanSelectOperandBeMappingIntoPredBlock(FalseVal, SI))
814      if (Instruction *NV = FoldOpIntoPhi(SI))
815        return NV;
816
817  if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) {
818    if (TrueSI->getCondition() == CondVal) {
819      SI.setOperand(1, TrueSI->getTrueValue());
820      return &SI;
821    }
822  }
823  if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) {
824    if (FalseSI->getCondition() == CondVal) {
825      SI.setOperand(2, FalseSI->getFalseValue());
826      return &SI;
827    }
828  }
829
830  if (BinaryOperator::isNot(CondVal)) {
831    SI.setOperand(0, BinaryOperator::getNotArgument(CondVal));
832    SI.setOperand(1, FalseVal);
833    SI.setOperand(2, TrueVal);
834    return &SI;
835  }
836
837  return 0;
838}
839