InstructionCombining.cpp revision 0b8c9a80f20772c3793201ab5b251d3520b9cea3
1//===- InstructionCombining.cpp - Combine multiple instructions -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// InstructionCombining - Combine instructions to form fewer, simple
11// instructions.  This pass does not modify the CFG.  This pass is where
12// algebraic simplification happens.
13//
14// This pass combines things like:
15//    %Y = add i32 %X, 1
16//    %Z = add i32 %Y, 1
17// into:
18//    %Z = add i32 %X, 2
19//
20// This is a simple worklist driven algorithm.
21//
22// This pass guarantees that the following canonicalizations are performed on
23// the program:
24//    1. If a binary operator has a constant operand, it is moved to the RHS
25//    2. Bitwise operators with constant operands are always grouped so that
26//       shifts are performed first, then or's, then and's, then xor's.
27//    3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
28//    4. All cmp instructions on boolean values are replaced with logical ops
29//    5. add X, X is represented as (X*2) => (X << 1)
30//    6. Multiplies with a power-of-two constant argument are transformed into
31//       shifts.
32//   ... etc.
33//
34//===----------------------------------------------------------------------===//
35
36#define DEBUG_TYPE "instcombine"
37#include "llvm/Transforms/Scalar.h"
38#include "InstCombine.h"
39#include "llvm-c/Initialization.h"
40#include "llvm/ADT/SmallPtrSet.h"
41#include "llvm/ADT/Statistic.h"
42#include "llvm/ADT/StringSwitch.h"
43#include "llvm/Analysis/ConstantFolding.h"
44#include "llvm/Analysis/InstructionSimplify.h"
45#include "llvm/Analysis/MemoryBuiltins.h"
46#include "llvm/IR/DataLayout.h"
47#include "llvm/IR/IntrinsicInst.h"
48#include "llvm/Support/CFG.h"
49#include "llvm/Support/CommandLine.h"
50#include "llvm/Support/Debug.h"
51#include "llvm/Support/GetElementPtrTypeIterator.h"
52#include "llvm/Support/PatternMatch.h"
53#include "llvm/Support/ValueHandle.h"
54#include "llvm/Target/TargetLibraryInfo.h"
55#include "llvm/Transforms/Utils/Local.h"
56#include <algorithm>
57#include <climits>
58using namespace llvm;
59using namespace llvm::PatternMatch;
60
61STATISTIC(NumCombined , "Number of insts combined");
62STATISTIC(NumConstProp, "Number of constant folds");
63STATISTIC(NumDeadInst , "Number of dead inst eliminated");
64STATISTIC(NumSunkInst , "Number of instructions sunk");
65STATISTIC(NumExpand,    "Number of expansions");
66STATISTIC(NumFactor   , "Number of factorizations");
67STATISTIC(NumReassoc  , "Number of reassociations");
68
69static cl::opt<bool> UnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
70                                   cl::init(false),
71                                   cl::desc("Enable unsafe double to float "
72                                            "shrinking for math lib calls"));
73
74// Initialization Routines
75void llvm::initializeInstCombine(PassRegistry &Registry) {
76  initializeInstCombinerPass(Registry);
77}
78
79void LLVMInitializeInstCombine(LLVMPassRegistryRef R) {
80  initializeInstCombine(*unwrap(R));
81}
82
83char InstCombiner::ID = 0;
84INITIALIZE_PASS_BEGIN(InstCombiner, "instcombine",
85                "Combine redundant instructions", false, false)
86INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
87INITIALIZE_PASS_END(InstCombiner, "instcombine",
88                "Combine redundant instructions", false, false)
89
90void InstCombiner::getAnalysisUsage(AnalysisUsage &AU) const {
91  AU.setPreservesCFG();
92  AU.addRequired<TargetLibraryInfo>();
93}
94
95
96Value *InstCombiner::EmitGEPOffset(User *GEP) {
97  return llvm::EmitGEPOffset(Builder, *getDataLayout(), GEP);
98}
99
100/// ShouldChangeType - Return true if it is desirable to convert a computation
101/// from 'From' to 'To'.  We don't want to convert from a legal to an illegal
102/// type for example, or from a smaller to a larger illegal type.
103bool InstCombiner::ShouldChangeType(Type *From, Type *To) const {
104  assert(From->isIntegerTy() && To->isIntegerTy());
105
106  // If we don't have TD, we don't know if the source/dest are legal.
107  if (!TD) return false;
108
109  unsigned FromWidth = From->getPrimitiveSizeInBits();
110  unsigned ToWidth = To->getPrimitiveSizeInBits();
111  bool FromLegal = TD->isLegalInteger(FromWidth);
112  bool ToLegal = TD->isLegalInteger(ToWidth);
113
114  // If this is a legal integer from type, and the result would be an illegal
115  // type, don't do the transformation.
116  if (FromLegal && !ToLegal)
117    return false;
118
119  // Otherwise, if both are illegal, do not increase the size of the result. We
120  // do allow things like i160 -> i64, but not i64 -> i160.
121  if (!FromLegal && !ToLegal && ToWidth > FromWidth)
122    return false;
123
124  return true;
125}
126
127// Return true, if No Signed Wrap should be maintained for I.
128// The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C",
129// where both B and C should be ConstantInts, results in a constant that does
130// not overflow. This function only handles the Add and Sub opcodes. For
131// all other opcodes, the function conservatively returns false.
132static bool MaintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) {
133  OverflowingBinaryOperator *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
134  if (!OBO || !OBO->hasNoSignedWrap()) {
135    return false;
136  }
137
138  // We reason about Add and Sub Only.
139  Instruction::BinaryOps Opcode = I.getOpcode();
140  if (Opcode != Instruction::Add &&
141      Opcode != Instruction::Sub) {
142    return false;
143  }
144
145  ConstantInt *CB = dyn_cast<ConstantInt>(B);
146  ConstantInt *CC = dyn_cast<ConstantInt>(C);
147
148  if (!CB || !CC) {
149    return false;
150  }
151
152  const APInt &BVal = CB->getValue();
153  const APInt &CVal = CC->getValue();
154  bool Overflow = false;
155
156  if (Opcode == Instruction::Add) {
157    BVal.sadd_ov(CVal, Overflow);
158  } else {
159    BVal.ssub_ov(CVal, Overflow);
160  }
161
162  return !Overflow;
163}
164
165/// SimplifyAssociativeOrCommutative - This performs a few simplifications for
166/// operators which are associative or commutative:
167//
168//  Commutative operators:
169//
170//  1. Order operands such that they are listed from right (least complex) to
171//     left (most complex).  This puts constants before unary operators before
172//     binary operators.
173//
174//  Associative operators:
175//
176//  2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
177//  3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
178//
179//  Associative and commutative operators:
180//
181//  4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
182//  5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
183//  6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
184//     if C1 and C2 are constants.
185//
186bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
187  Instruction::BinaryOps Opcode = I.getOpcode();
188  bool Changed = false;
189
190  do {
191    // Order operands such that they are listed from right (least complex) to
192    // left (most complex).  This puts constants before unary operators before
193    // binary operators.
194    if (I.isCommutative() && getComplexity(I.getOperand(0)) <
195        getComplexity(I.getOperand(1)))
196      Changed = !I.swapOperands();
197
198    BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
199    BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
200
201    if (I.isAssociative()) {
202      // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
203      if (Op0 && Op0->getOpcode() == Opcode) {
204        Value *A = Op0->getOperand(0);
205        Value *B = Op0->getOperand(1);
206        Value *C = I.getOperand(1);
207
208        // Does "B op C" simplify?
209        if (Value *V = SimplifyBinOp(Opcode, B, C, TD)) {
210          // It simplifies to V.  Form "A op V".
211          I.setOperand(0, A);
212          I.setOperand(1, V);
213          // Conservatively clear the optional flags, since they may not be
214          // preserved by the reassociation.
215          if (MaintainNoSignedWrap(I, B, C) &&
216              (!Op0 || (isa<BinaryOperator>(Op0) && Op0->hasNoSignedWrap()))) {
217            // Note: this is only valid because SimplifyBinOp doesn't look at
218            // the operands to Op0.
219            I.clearSubclassOptionalData();
220            I.setHasNoSignedWrap(true);
221          } else {
222            I.clearSubclassOptionalData();
223          }
224
225          Changed = true;
226          ++NumReassoc;
227          continue;
228        }
229      }
230
231      // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
232      if (Op1 && Op1->getOpcode() == Opcode) {
233        Value *A = I.getOperand(0);
234        Value *B = Op1->getOperand(0);
235        Value *C = Op1->getOperand(1);
236
237        // Does "A op B" simplify?
238        if (Value *V = SimplifyBinOp(Opcode, A, B, TD)) {
239          // It simplifies to V.  Form "V op C".
240          I.setOperand(0, V);
241          I.setOperand(1, C);
242          // Conservatively clear the optional flags, since they may not be
243          // preserved by the reassociation.
244          I.clearSubclassOptionalData();
245          Changed = true;
246          ++NumReassoc;
247          continue;
248        }
249      }
250    }
251
252    if (I.isAssociative() && I.isCommutative()) {
253      // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
254      if (Op0 && Op0->getOpcode() == Opcode) {
255        Value *A = Op0->getOperand(0);
256        Value *B = Op0->getOperand(1);
257        Value *C = I.getOperand(1);
258
259        // Does "C op A" simplify?
260        if (Value *V = SimplifyBinOp(Opcode, C, A, TD)) {
261          // It simplifies to V.  Form "V op B".
262          I.setOperand(0, V);
263          I.setOperand(1, B);
264          // Conservatively clear the optional flags, since they may not be
265          // preserved by the reassociation.
266          I.clearSubclassOptionalData();
267          Changed = true;
268          ++NumReassoc;
269          continue;
270        }
271      }
272
273      // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
274      if (Op1 && Op1->getOpcode() == Opcode) {
275        Value *A = I.getOperand(0);
276        Value *B = Op1->getOperand(0);
277        Value *C = Op1->getOperand(1);
278
279        // Does "C op A" simplify?
280        if (Value *V = SimplifyBinOp(Opcode, C, A, TD)) {
281          // It simplifies to V.  Form "B op V".
282          I.setOperand(0, B);
283          I.setOperand(1, V);
284          // Conservatively clear the optional flags, since they may not be
285          // preserved by the reassociation.
286          I.clearSubclassOptionalData();
287          Changed = true;
288          ++NumReassoc;
289          continue;
290        }
291      }
292
293      // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
294      // if C1 and C2 are constants.
295      if (Op0 && Op1 &&
296          Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
297          isa<Constant>(Op0->getOperand(1)) &&
298          isa<Constant>(Op1->getOperand(1)) &&
299          Op0->hasOneUse() && Op1->hasOneUse()) {
300        Value *A = Op0->getOperand(0);
301        Constant *C1 = cast<Constant>(Op0->getOperand(1));
302        Value *B = Op1->getOperand(0);
303        Constant *C2 = cast<Constant>(Op1->getOperand(1));
304
305        Constant *Folded = ConstantExpr::get(Opcode, C1, C2);
306        BinaryOperator *New = BinaryOperator::Create(Opcode, A, B);
307        InsertNewInstWith(New, I);
308        New->takeName(Op1);
309        I.setOperand(0, New);
310        I.setOperand(1, Folded);
311        // Conservatively clear the optional flags, since they may not be
312        // preserved by the reassociation.
313        I.clearSubclassOptionalData();
314
315        Changed = true;
316        continue;
317      }
318    }
319
320    // No further simplifications.
321    return Changed;
322  } while (1);
323}
324
325/// LeftDistributesOverRight - Whether "X LOp (Y ROp Z)" is always equal to
326/// "(X LOp Y) ROp (X LOp Z)".
327static bool LeftDistributesOverRight(Instruction::BinaryOps LOp,
328                                     Instruction::BinaryOps ROp) {
329  switch (LOp) {
330  default:
331    return false;
332
333  case Instruction::And:
334    // And distributes over Or and Xor.
335    switch (ROp) {
336    default:
337      return false;
338    case Instruction::Or:
339    case Instruction::Xor:
340      return true;
341    }
342
343  case Instruction::Mul:
344    // Multiplication distributes over addition and subtraction.
345    switch (ROp) {
346    default:
347      return false;
348    case Instruction::Add:
349    case Instruction::Sub:
350      return true;
351    }
352
353  case Instruction::Or:
354    // Or distributes over And.
355    switch (ROp) {
356    default:
357      return false;
358    case Instruction::And:
359      return true;
360    }
361  }
362}
363
364/// RightDistributesOverLeft - Whether "(X LOp Y) ROp Z" is always equal to
365/// "(X ROp Z) LOp (Y ROp Z)".
366static bool RightDistributesOverLeft(Instruction::BinaryOps LOp,
367                                     Instruction::BinaryOps ROp) {
368  if (Instruction::isCommutative(ROp))
369    return LeftDistributesOverRight(ROp, LOp);
370  // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
371  // but this requires knowing that the addition does not overflow and other
372  // such subtleties.
373  return false;
374}
375
376/// SimplifyUsingDistributiveLaws - This tries to simplify binary operations
377/// which some other binary operation distributes over either by factorizing
378/// out common terms (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this
379/// results in simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is
380/// a win).  Returns the simplified value, or null if it didn't simplify.
381Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) {
382  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
383  BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
384  BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
385  Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); // op
386
387  // Factorization.
388  if (Op0 && Op1 && Op0->getOpcode() == Op1->getOpcode()) {
389    // The instruction has the form "(A op' B) op (C op' D)".  Try to factorize
390    // a common term.
391    Value *A = Op0->getOperand(0), *B = Op0->getOperand(1);
392    Value *C = Op1->getOperand(0), *D = Op1->getOperand(1);
393    Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
394
395    // Does "X op' Y" always equal "Y op' X"?
396    bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
397
398    // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
399    if (LeftDistributesOverRight(InnerOpcode, TopLevelOpcode))
400      // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
401      // commutative case, "(A op' B) op (C op' A)"?
402      if (A == C || (InnerCommutative && A == D)) {
403        if (A != C)
404          std::swap(C, D);
405        // Consider forming "A op' (B op D)".
406        // If "B op D" simplifies then it can be formed with no cost.
407        Value *V = SimplifyBinOp(TopLevelOpcode, B, D, TD);
408        // If "B op D" doesn't simplify then only go on if both of the existing
409        // operations "A op' B" and "C op' D" will be zapped as no longer used.
410        if (!V && Op0->hasOneUse() && Op1->hasOneUse())
411          V = Builder->CreateBinOp(TopLevelOpcode, B, D, Op1->getName());
412        if (V) {
413          ++NumFactor;
414          V = Builder->CreateBinOp(InnerOpcode, A, V);
415          V->takeName(&I);
416          return V;
417        }
418      }
419
420    // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
421    if (RightDistributesOverLeft(TopLevelOpcode, InnerOpcode))
422      // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
423      // commutative case, "(A op' B) op (B op' D)"?
424      if (B == D || (InnerCommutative && B == C)) {
425        if (B != D)
426          std::swap(C, D);
427        // Consider forming "(A op C) op' B".
428        // If "A op C" simplifies then it can be formed with no cost.
429        Value *V = SimplifyBinOp(TopLevelOpcode, A, C, TD);
430        // If "A op C" doesn't simplify then only go on if both of the existing
431        // operations "A op' B" and "C op' D" will be zapped as no longer used.
432        if (!V && Op0->hasOneUse() && Op1->hasOneUse())
433          V = Builder->CreateBinOp(TopLevelOpcode, A, C, Op0->getName());
434        if (V) {
435          ++NumFactor;
436          V = Builder->CreateBinOp(InnerOpcode, V, B);
437          V->takeName(&I);
438          return V;
439        }
440      }
441  }
442
443  // Expansion.
444  if (Op0 && RightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
445    // The instruction has the form "(A op' B) op C".  See if expanding it out
446    // to "(A op C) op' (B op C)" results in simplifications.
447    Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
448    Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
449
450    // Do "A op C" and "B op C" both simplify?
451    if (Value *L = SimplifyBinOp(TopLevelOpcode, A, C, TD))
452      if (Value *R = SimplifyBinOp(TopLevelOpcode, B, C, TD)) {
453        // They do! Return "L op' R".
454        ++NumExpand;
455        // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
456        if ((L == A && R == B) ||
457            (Instruction::isCommutative(InnerOpcode) && L == B && R == A))
458          return Op0;
459        // Otherwise return "L op' R" if it simplifies.
460        if (Value *V = SimplifyBinOp(InnerOpcode, L, R, TD))
461          return V;
462        // Otherwise, create a new instruction.
463        C = Builder->CreateBinOp(InnerOpcode, L, R);
464        C->takeName(&I);
465        return C;
466      }
467  }
468
469  if (Op1 && LeftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) {
470    // The instruction has the form "A op (B op' C)".  See if expanding it out
471    // to "(A op B) op' (A op C)" results in simplifications.
472    Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
473    Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op'
474
475    // Do "A op B" and "A op C" both simplify?
476    if (Value *L = SimplifyBinOp(TopLevelOpcode, A, B, TD))
477      if (Value *R = SimplifyBinOp(TopLevelOpcode, A, C, TD)) {
478        // They do! Return "L op' R".
479        ++NumExpand;
480        // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
481        if ((L == B && R == C) ||
482            (Instruction::isCommutative(InnerOpcode) && L == C && R == B))
483          return Op1;
484        // Otherwise return "L op' R" if it simplifies.
485        if (Value *V = SimplifyBinOp(InnerOpcode, L, R, TD))
486          return V;
487        // Otherwise, create a new instruction.
488        A = Builder->CreateBinOp(InnerOpcode, L, R);
489        A->takeName(&I);
490        return A;
491      }
492  }
493
494  return 0;
495}
496
497// dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction
498// if the LHS is a constant zero (which is the 'negate' form).
499//
500Value *InstCombiner::dyn_castNegVal(Value *V) const {
501  if (BinaryOperator::isNeg(V))
502    return BinaryOperator::getNegArgument(V);
503
504  // Constants can be considered to be negated values if they can be folded.
505  if (ConstantInt *C = dyn_cast<ConstantInt>(V))
506    return ConstantExpr::getNeg(C);
507
508  if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
509    if (C->getType()->getElementType()->isIntegerTy())
510      return ConstantExpr::getNeg(C);
511
512  return 0;
513}
514
515// dyn_castFNegVal - Given a 'fsub' instruction, return the RHS of the
516// instruction if the LHS is a constant negative zero (which is the 'negate'
517// form).
518//
519Value *InstCombiner::dyn_castFNegVal(Value *V) const {
520  if (BinaryOperator::isFNeg(V))
521    return BinaryOperator::getFNegArgument(V);
522
523  // Constants can be considered to be negated values if they can be folded.
524  if (ConstantFP *C = dyn_cast<ConstantFP>(V))
525    return ConstantExpr::getFNeg(C);
526
527  if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
528    if (C->getType()->getElementType()->isFloatingPointTy())
529      return ConstantExpr::getFNeg(C);
530
531  return 0;
532}
533
534static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO,
535                                             InstCombiner *IC) {
536  if (CastInst *CI = dyn_cast<CastInst>(&I)) {
537    return IC->Builder->CreateCast(CI->getOpcode(), SO, I.getType());
538  }
539
540  // Figure out if the constant is the left or the right argument.
541  bool ConstIsRHS = isa<Constant>(I.getOperand(1));
542  Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
543
544  if (Constant *SOC = dyn_cast<Constant>(SO)) {
545    if (ConstIsRHS)
546      return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
547    return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
548  }
549
550  Value *Op0 = SO, *Op1 = ConstOperand;
551  if (!ConstIsRHS)
552    std::swap(Op0, Op1);
553
554  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
555    return IC->Builder->CreateBinOp(BO->getOpcode(), Op0, Op1,
556                                    SO->getName()+".op");
557  if (ICmpInst *CI = dyn_cast<ICmpInst>(&I))
558    return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
559                                   SO->getName()+".cmp");
560  if (FCmpInst *CI = dyn_cast<FCmpInst>(&I))
561    return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
562                                   SO->getName()+".cmp");
563  llvm_unreachable("Unknown binary instruction type!");
564}
565
566// FoldOpIntoSelect - Given an instruction with a select as one operand and a
567// constant as the other operand, try to fold the binary operator into the
568// select arguments.  This also works for Cast instructions, which obviously do
569// not have a second operand.
570Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) {
571  // Don't modify shared select instructions
572  if (!SI->hasOneUse()) return 0;
573  Value *TV = SI->getOperand(1);
574  Value *FV = SI->getOperand(2);
575
576  if (isa<Constant>(TV) || isa<Constant>(FV)) {
577    // Bool selects with constant operands can be folded to logical ops.
578    if (SI->getType()->isIntegerTy(1)) return 0;
579
580    // If it's a bitcast involving vectors, make sure it has the same number of
581    // elements on both sides.
582    if (BitCastInst *BC = dyn_cast<BitCastInst>(&Op)) {
583      VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy());
584      VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy());
585
586      // Verify that either both or neither are vectors.
587      if ((SrcTy == NULL) != (DestTy == NULL)) return 0;
588      // If vectors, verify that they have the same number of elements.
589      if (SrcTy && SrcTy->getNumElements() != DestTy->getNumElements())
590        return 0;
591    }
592
593    Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, this);
594    Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, this);
595
596    return SelectInst::Create(SI->getCondition(),
597                              SelectTrueVal, SelectFalseVal);
598  }
599  return 0;
600}
601
602
603/// FoldOpIntoPhi - Given a binary operator, cast instruction, or select which
604/// has a PHI node as operand #0, see if we can fold the instruction into the
605/// PHI (which is only possible if all operands to the PHI are constants).
606///
607Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
608  PHINode *PN = cast<PHINode>(I.getOperand(0));
609  unsigned NumPHIValues = PN->getNumIncomingValues();
610  if (NumPHIValues == 0)
611    return 0;
612
613  // We normally only transform phis with a single use.  However, if a PHI has
614  // multiple uses and they are all the same operation, we can fold *all* of the
615  // uses into the PHI.
616  if (!PN->hasOneUse()) {
617    // Walk the use list for the instruction, comparing them to I.
618    for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end();
619         UI != E; ++UI) {
620      Instruction *User = cast<Instruction>(*UI);
621      if (User != &I && !I.isIdenticalTo(User))
622        return 0;
623    }
624    // Otherwise, we can replace *all* users with the new PHI we form.
625  }
626
627  // Check to see if all of the operands of the PHI are simple constants
628  // (constantint/constantfp/undef).  If there is one non-constant value,
629  // remember the BB it is in.  If there is more than one or if *it* is a PHI,
630  // bail out.  We don't do arbitrary constant expressions here because moving
631  // their computation can be expensive without a cost model.
632  BasicBlock *NonConstBB = 0;
633  for (unsigned i = 0; i != NumPHIValues; ++i) {
634    Value *InVal = PN->getIncomingValue(i);
635    if (isa<Constant>(InVal) && !isa<ConstantExpr>(InVal))
636      continue;
637
638    if (isa<PHINode>(InVal)) return 0;  // Itself a phi.
639    if (NonConstBB) return 0;  // More than one non-const value.
640
641    NonConstBB = PN->getIncomingBlock(i);
642
643    // If the InVal is an invoke at the end of the pred block, then we can't
644    // insert a computation after it without breaking the edge.
645    if (InvokeInst *II = dyn_cast<InvokeInst>(InVal))
646      if (II->getParent() == NonConstBB)
647        return 0;
648
649    // If the incoming non-constant value is in I's block, we will remove one
650    // instruction, but insert another equivalent one, leading to infinite
651    // instcombine.
652    if (NonConstBB == I.getParent())
653      return 0;
654  }
655
656  // If there is exactly one non-constant value, we can insert a copy of the
657  // operation in that block.  However, if this is a critical edge, we would be
658  // inserting the computation one some other paths (e.g. inside a loop).  Only
659  // do this if the pred block is unconditionally branching into the phi block.
660  if (NonConstBB != 0) {
661    BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
662    if (!BI || !BI->isUnconditional()) return 0;
663  }
664
665  // Okay, we can do the transformation: create the new PHI node.
666  PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues());
667  InsertNewInstBefore(NewPN, *PN);
668  NewPN->takeName(PN);
669
670  // If we are going to have to insert a new computation, do so right before the
671  // predecessors terminator.
672  if (NonConstBB)
673    Builder->SetInsertPoint(NonConstBB->getTerminator());
674
675  // Next, add all of the operands to the PHI.
676  if (SelectInst *SI = dyn_cast<SelectInst>(&I)) {
677    // We only currently try to fold the condition of a select when it is a phi,
678    // not the true/false values.
679    Value *TrueV = SI->getTrueValue();
680    Value *FalseV = SI->getFalseValue();
681    BasicBlock *PhiTransBB = PN->getParent();
682    for (unsigned i = 0; i != NumPHIValues; ++i) {
683      BasicBlock *ThisBB = PN->getIncomingBlock(i);
684      Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB);
685      Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB);
686      Value *InV = 0;
687      if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
688        InV = InC->isNullValue() ? FalseVInPred : TrueVInPred;
689      else
690        InV = Builder->CreateSelect(PN->getIncomingValue(i),
691                                    TrueVInPred, FalseVInPred, "phitmp");
692      NewPN->addIncoming(InV, ThisBB);
693    }
694  } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) {
695    Constant *C = cast<Constant>(I.getOperand(1));
696    for (unsigned i = 0; i != NumPHIValues; ++i) {
697      Value *InV = 0;
698      if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
699        InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
700      else if (isa<ICmpInst>(CI))
701        InV = Builder->CreateICmp(CI->getPredicate(), PN->getIncomingValue(i),
702                                  C, "phitmp");
703      else
704        InV = Builder->CreateFCmp(CI->getPredicate(), PN->getIncomingValue(i),
705                                  C, "phitmp");
706      NewPN->addIncoming(InV, PN->getIncomingBlock(i));
707    }
708  } else if (I.getNumOperands() == 2) {
709    Constant *C = cast<Constant>(I.getOperand(1));
710    for (unsigned i = 0; i != NumPHIValues; ++i) {
711      Value *InV = 0;
712      if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
713        InV = ConstantExpr::get(I.getOpcode(), InC, C);
714      else
715        InV = Builder->CreateBinOp(cast<BinaryOperator>(I).getOpcode(),
716                                   PN->getIncomingValue(i), C, "phitmp");
717      NewPN->addIncoming(InV, PN->getIncomingBlock(i));
718    }
719  } else {
720    CastInst *CI = cast<CastInst>(&I);
721    Type *RetTy = CI->getType();
722    for (unsigned i = 0; i != NumPHIValues; ++i) {
723      Value *InV;
724      if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
725        InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
726      else
727        InV = Builder->CreateCast(CI->getOpcode(),
728                                PN->getIncomingValue(i), I.getType(), "phitmp");
729      NewPN->addIncoming(InV, PN->getIncomingBlock(i));
730    }
731  }
732
733  for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end();
734       UI != E; ) {
735    Instruction *User = cast<Instruction>(*UI++);
736    if (User == &I) continue;
737    ReplaceInstUsesWith(*User, NewPN);
738    EraseInstFromFunction(*User);
739  }
740  return ReplaceInstUsesWith(I, NewPN);
741}
742
743/// FindElementAtOffset - Given a type and a constant offset, determine whether
744/// or not there is a sequence of GEP indices into the type that will land us at
745/// the specified offset.  If so, fill them into NewIndices and return the
746/// resultant element type, otherwise return null.
747Type *InstCombiner::FindElementAtOffset(Type *Ty, int64_t Offset,
748                                          SmallVectorImpl<Value*> &NewIndices) {
749  if (!TD) return 0;
750  if (!Ty->isSized()) return 0;
751
752  // Start with the index over the outer type.  Note that the type size
753  // might be zero (even if the offset isn't zero) if the indexed type
754  // is something like [0 x {int, int}]
755  Type *IntPtrTy = TD->getIntPtrType(Ty->getContext());
756  int64_t FirstIdx = 0;
757  if (int64_t TySize = TD->getTypeAllocSize(Ty)) {
758    FirstIdx = Offset/TySize;
759    Offset -= FirstIdx*TySize;
760
761    // Handle hosts where % returns negative instead of values [0..TySize).
762    if (Offset < 0) {
763      --FirstIdx;
764      Offset += TySize;
765      assert(Offset >= 0);
766    }
767    assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset");
768  }
769
770  NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx));
771
772  // Index into the types.  If we fail, set OrigBase to null.
773  while (Offset) {
774    // Indexing into tail padding between struct/array elements.
775    if (uint64_t(Offset*8) >= TD->getTypeSizeInBits(Ty))
776      return 0;
777
778    if (StructType *STy = dyn_cast<StructType>(Ty)) {
779      const StructLayout *SL = TD->getStructLayout(STy);
780      assert(Offset < (int64_t)SL->getSizeInBytes() &&
781             "Offset must stay within the indexed type");
782
783      unsigned Elt = SL->getElementContainingOffset(Offset);
784      NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
785                                            Elt));
786
787      Offset -= SL->getElementOffset(Elt);
788      Ty = STy->getElementType(Elt);
789    } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
790      uint64_t EltSize = TD->getTypeAllocSize(AT->getElementType());
791      assert(EltSize && "Cannot index into a zero-sized array");
792      NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize));
793      Offset %= EltSize;
794      Ty = AT->getElementType();
795    } else {
796      // Otherwise, we can't index into the middle of this atomic type, bail.
797      return 0;
798    }
799  }
800
801  return Ty;
802}
803
804static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) {
805  // If this GEP has only 0 indices, it is the same pointer as
806  // Src. If Src is not a trivial GEP too, don't combine
807  // the indices.
808  if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() &&
809      !Src.hasOneUse())
810    return false;
811  return true;
812}
813
814/// Descale - Return a value X such that Val = X * Scale, or null if none.  If
815/// the multiplication is known not to overflow then NoSignedWrap is set.
816Value *InstCombiner::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) {
817  assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!");
818  assert(cast<IntegerType>(Val->getType())->getBitWidth() ==
819         Scale.getBitWidth() && "Scale not compatible with value!");
820
821  // If Val is zero or Scale is one then Val = Val * Scale.
822  if (match(Val, m_Zero()) || Scale == 1) {
823    NoSignedWrap = true;
824    return Val;
825  }
826
827  // If Scale is zero then it does not divide Val.
828  if (Scale.isMinValue())
829    return 0;
830
831  // Look through chains of multiplications, searching for a constant that is
832  // divisible by Scale.  For example, descaling X*(Y*(Z*4)) by a factor of 4
833  // will find the constant factor 4 and produce X*(Y*Z).  Descaling X*(Y*8) by
834  // a factor of 4 will produce X*(Y*2).  The principle of operation is to bore
835  // down from Val:
836  //
837  //     Val = M1 * X          ||   Analysis starts here and works down
838  //      M1 = M2 * Y          ||   Doesn't descend into terms with more
839  //      M2 =  Z * 4          \/   than one use
840  //
841  // Then to modify a term at the bottom:
842  //
843  //     Val = M1 * X
844  //      M1 =  Z * Y          ||   Replaced M2 with Z
845  //
846  // Then to work back up correcting nsw flags.
847
848  // Op - the term we are currently analyzing.  Starts at Val then drills down.
849  // Replaced with its descaled value before exiting from the drill down loop.
850  Value *Op = Val;
851
852  // Parent - initially null, but after drilling down notes where Op came from.
853  // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the
854  // 0'th operand of Val.
855  std::pair<Instruction*, unsigned> Parent;
856
857  // RequireNoSignedWrap - Set if the transform requires a descaling at deeper
858  // levels that doesn't overflow.
859  bool RequireNoSignedWrap = false;
860
861  // logScale - log base 2 of the scale.  Negative if not a power of 2.
862  int32_t logScale = Scale.exactLogBase2();
863
864  for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down
865
866    if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
867      // If Op is a constant divisible by Scale then descale to the quotient.
868      APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth.
869      APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder);
870      if (!Remainder.isMinValue())
871        // Not divisible by Scale.
872        return 0;
873      // Replace with the quotient in the parent.
874      Op = ConstantInt::get(CI->getType(), Quotient);
875      NoSignedWrap = true;
876      break;
877    }
878
879    if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) {
880
881      if (BO->getOpcode() == Instruction::Mul) {
882        // Multiplication.
883        NoSignedWrap = BO->hasNoSignedWrap();
884        if (RequireNoSignedWrap && !NoSignedWrap)
885          return 0;
886
887        // There are three cases for multiplication: multiplication by exactly
888        // the scale, multiplication by a constant different to the scale, and
889        // multiplication by something else.
890        Value *LHS = BO->getOperand(0);
891        Value *RHS = BO->getOperand(1);
892
893        if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
894          // Multiplication by a constant.
895          if (CI->getValue() == Scale) {
896            // Multiplication by exactly the scale, replace the multiplication
897            // by its left-hand side in the parent.
898            Op = LHS;
899            break;
900          }
901
902          // Otherwise drill down into the constant.
903          if (!Op->hasOneUse())
904            return 0;
905
906          Parent = std::make_pair(BO, 1);
907          continue;
908        }
909
910        // Multiplication by something else. Drill down into the left-hand side
911        // since that's where the reassociate pass puts the good stuff.
912        if (!Op->hasOneUse())
913          return 0;
914
915        Parent = std::make_pair(BO, 0);
916        continue;
917      }
918
919      if (logScale > 0 && BO->getOpcode() == Instruction::Shl &&
920          isa<ConstantInt>(BO->getOperand(1))) {
921        // Multiplication by a power of 2.
922        NoSignedWrap = BO->hasNoSignedWrap();
923        if (RequireNoSignedWrap && !NoSignedWrap)
924          return 0;
925
926        Value *LHS = BO->getOperand(0);
927        int32_t Amt = cast<ConstantInt>(BO->getOperand(1))->
928          getLimitedValue(Scale.getBitWidth());
929        // Op = LHS << Amt.
930
931        if (Amt == logScale) {
932          // Multiplication by exactly the scale, replace the multiplication
933          // by its left-hand side in the parent.
934          Op = LHS;
935          break;
936        }
937        if (Amt < logScale || !Op->hasOneUse())
938          return 0;
939
940        // Multiplication by more than the scale.  Reduce the multiplying amount
941        // by the scale in the parent.
942        Parent = std::make_pair(BO, 1);
943        Op = ConstantInt::get(BO->getType(), Amt - logScale);
944        break;
945      }
946    }
947
948    if (!Op->hasOneUse())
949      return 0;
950
951    if (CastInst *Cast = dyn_cast<CastInst>(Op)) {
952      if (Cast->getOpcode() == Instruction::SExt) {
953        // Op is sign-extended from a smaller type, descale in the smaller type.
954        unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
955        APInt SmallScale = Scale.trunc(SmallSize);
956        // Suppose Op = sext X, and we descale X as Y * SmallScale.  We want to
957        // descale Op as (sext Y) * Scale.  In order to have
958        //   sext (Y * SmallScale) = (sext Y) * Scale
959        // some conditions need to hold however: SmallScale must sign-extend to
960        // Scale and the multiplication Y * SmallScale should not overflow.
961        if (SmallScale.sext(Scale.getBitWidth()) != Scale)
962          // SmallScale does not sign-extend to Scale.
963          return 0;
964        assert(SmallScale.exactLogBase2() == logScale);
965        // Require that Y * SmallScale must not overflow.
966        RequireNoSignedWrap = true;
967
968        // Drill down through the cast.
969        Parent = std::make_pair(Cast, 0);
970        Scale = SmallScale;
971        continue;
972      }
973
974      if (Cast->getOpcode() == Instruction::Trunc) {
975        // Op is truncated from a larger type, descale in the larger type.
976        // Suppose Op = trunc X, and we descale X as Y * sext Scale.  Then
977        //   trunc (Y * sext Scale) = (trunc Y) * Scale
978        // always holds.  However (trunc Y) * Scale may overflow even if
979        // trunc (Y * sext Scale) does not, so nsw flags need to be cleared
980        // from this point up in the expression (see later).
981        if (RequireNoSignedWrap)
982          return 0;
983
984        // Drill down through the cast.
985        unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
986        Parent = std::make_pair(Cast, 0);
987        Scale = Scale.sext(LargeSize);
988        if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits())
989          logScale = -1;
990        assert(Scale.exactLogBase2() == logScale);
991        continue;
992      }
993    }
994
995    // Unsupported expression, bail out.
996    return 0;
997  }
998
999  // We know that we can successfully descale, so from here on we can safely
1000  // modify the IR.  Op holds the descaled version of the deepest term in the
1001  // expression.  NoSignedWrap is 'true' if multiplying Op by Scale is known
1002  // not to overflow.
1003
1004  if (!Parent.first)
1005    // The expression only had one term.
1006    return Op;
1007
1008  // Rewrite the parent using the descaled version of its operand.
1009  assert(Parent.first->hasOneUse() && "Drilled down when more than one use!");
1010  assert(Op != Parent.first->getOperand(Parent.second) &&
1011         "Descaling was a no-op?");
1012  Parent.first->setOperand(Parent.second, Op);
1013  Worklist.Add(Parent.first);
1014
1015  // Now work back up the expression correcting nsw flags.  The logic is based
1016  // on the following observation: if X * Y is known not to overflow as a signed
1017  // multiplication, and Y is replaced by a value Z with smaller absolute value,
1018  // then X * Z will not overflow as a signed multiplication either.  As we work
1019  // our way up, having NoSignedWrap 'true' means that the descaled value at the
1020  // current level has strictly smaller absolute value than the original.
1021  Instruction *Ancestor = Parent.first;
1022  do {
1023    if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) {
1024      // If the multiplication wasn't nsw then we can't say anything about the
1025      // value of the descaled multiplication, and we have to clear nsw flags
1026      // from this point on up.
1027      bool OpNoSignedWrap = BO->hasNoSignedWrap();
1028      NoSignedWrap &= OpNoSignedWrap;
1029      if (NoSignedWrap != OpNoSignedWrap) {
1030        BO->setHasNoSignedWrap(NoSignedWrap);
1031        Worklist.Add(Ancestor);
1032      }
1033    } else if (Ancestor->getOpcode() == Instruction::Trunc) {
1034      // The fact that the descaled input to the trunc has smaller absolute
1035      // value than the original input doesn't tell us anything useful about
1036      // the absolute values of the truncations.
1037      NoSignedWrap = false;
1038    }
1039    assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) &&
1040           "Failed to keep proper track of nsw flags while drilling down?");
1041
1042    if (Ancestor == Val)
1043      // Got to the top, all done!
1044      return Val;
1045
1046    // Move up one level in the expression.
1047    assert(Ancestor->hasOneUse() && "Drilled down when more than one use!");
1048    Ancestor = Ancestor->use_back();
1049  } while (1);
1050}
1051
1052Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
1053  SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end());
1054
1055  if (Value *V = SimplifyGEPInst(Ops, TD))
1056    return ReplaceInstUsesWith(GEP, V);
1057
1058  Value *PtrOp = GEP.getOperand(0);
1059
1060  // Eliminate unneeded casts for indices, and replace indices which displace
1061  // by multiples of a zero size type with zero.
1062  if (TD) {
1063    bool MadeChange = false;
1064    Type *IntPtrTy = TD->getIntPtrType(GEP.getPointerOperandType());
1065
1066    gep_type_iterator GTI = gep_type_begin(GEP);
1067    for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end();
1068         I != E; ++I, ++GTI) {
1069      // Skip indices into struct types.
1070      SequentialType *SeqTy = dyn_cast<SequentialType>(*GTI);
1071      if (!SeqTy) continue;
1072
1073      // If the element type has zero size then any index over it is equivalent
1074      // to an index of zero, so replace it with zero if it is not zero already.
1075      if (SeqTy->getElementType()->isSized() &&
1076          TD->getTypeAllocSize(SeqTy->getElementType()) == 0)
1077        if (!isa<Constant>(*I) || !cast<Constant>(*I)->isNullValue()) {
1078          *I = Constant::getNullValue(IntPtrTy);
1079          MadeChange = true;
1080        }
1081
1082      Type *IndexTy = (*I)->getType();
1083      if (IndexTy != IntPtrTy) {
1084        // If we are using a wider index than needed for this platform, shrink
1085        // it to what we need.  If narrower, sign-extend it to what we need.
1086        // This explicit cast can make subsequent optimizations more obvious.
1087        *I = Builder->CreateIntCast(*I, IntPtrTy, true);
1088        MadeChange = true;
1089      }
1090    }
1091    if (MadeChange) return &GEP;
1092  }
1093
1094  // Combine Indices - If the source pointer to this getelementptr instruction
1095  // is a getelementptr instruction, combine the indices of the two
1096  // getelementptr instructions into a single instruction.
1097  //
1098  if (GEPOperator *Src = dyn_cast<GEPOperator>(PtrOp)) {
1099    if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src))
1100      return 0;
1101
1102    // Note that if our source is a gep chain itself then we wait for that
1103    // chain to be resolved before we perform this transformation.  This
1104    // avoids us creating a TON of code in some cases.
1105    if (GEPOperator *SrcGEP =
1106          dyn_cast<GEPOperator>(Src->getOperand(0)))
1107      if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP))
1108        return 0;   // Wait until our source is folded to completion.
1109
1110    SmallVector<Value*, 8> Indices;
1111
1112    // Find out whether the last index in the source GEP is a sequential idx.
1113    bool EndsWithSequential = false;
1114    for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
1115         I != E; ++I)
1116      EndsWithSequential = !(*I)->isStructTy();
1117
1118    // Can we combine the two pointer arithmetics offsets?
1119    if (EndsWithSequential) {
1120      // Replace: gep (gep %P, long B), long A, ...
1121      // With:    T = long A+B; gep %P, T, ...
1122      //
1123      Value *Sum;
1124      Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
1125      Value *GO1 = GEP.getOperand(1);
1126      if (SO1 == Constant::getNullValue(SO1->getType())) {
1127        Sum = GO1;
1128      } else if (GO1 == Constant::getNullValue(GO1->getType())) {
1129        Sum = SO1;
1130      } else {
1131        // If they aren't the same type, then the input hasn't been processed
1132        // by the loop above yet (which canonicalizes sequential index types to
1133        // intptr_t).  Just avoid transforming this until the input has been
1134        // normalized.
1135        if (SO1->getType() != GO1->getType())
1136          return 0;
1137        Sum = Builder->CreateAdd(SO1, GO1, PtrOp->getName()+".sum");
1138      }
1139
1140      // Update the GEP in place if possible.
1141      if (Src->getNumOperands() == 2) {
1142        GEP.setOperand(0, Src->getOperand(0));
1143        GEP.setOperand(1, Sum);
1144        return &GEP;
1145      }
1146      Indices.append(Src->op_begin()+1, Src->op_end()-1);
1147      Indices.push_back(Sum);
1148      Indices.append(GEP.op_begin()+2, GEP.op_end());
1149    } else if (isa<Constant>(*GEP.idx_begin()) &&
1150               cast<Constant>(*GEP.idx_begin())->isNullValue() &&
1151               Src->getNumOperands() != 1) {
1152      // Otherwise we can do the fold if the first index of the GEP is a zero
1153      Indices.append(Src->op_begin()+1, Src->op_end());
1154      Indices.append(GEP.idx_begin()+1, GEP.idx_end());
1155    }
1156
1157    if (!Indices.empty())
1158      return (GEP.isInBounds() && Src->isInBounds()) ?
1159        GetElementPtrInst::CreateInBounds(Src->getOperand(0), Indices,
1160                                          GEP.getName()) :
1161        GetElementPtrInst::Create(Src->getOperand(0), Indices, GEP.getName());
1162  }
1163
1164  // Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
1165  Value *StrippedPtr = PtrOp->stripPointerCasts();
1166  PointerType *StrippedPtrTy = dyn_cast<PointerType>(StrippedPtr->getType());
1167
1168  // We do not handle pointer-vector geps here.
1169  if (!StrippedPtrTy)
1170    return 0;
1171
1172  if (StrippedPtr != PtrOp &&
1173    StrippedPtrTy->getAddressSpace() == GEP.getPointerAddressSpace()) {
1174
1175    bool HasZeroPointerIndex = false;
1176    if (ConstantInt *C = dyn_cast<ConstantInt>(GEP.getOperand(1)))
1177      HasZeroPointerIndex = C->isZero();
1178
1179    // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
1180    // into     : GEP [10 x i8]* X, i32 0, ...
1181    //
1182    // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
1183    //           into     : GEP i8* X, ...
1184    //
1185    // This occurs when the program declares an array extern like "int X[];"
1186    if (HasZeroPointerIndex) {
1187      PointerType *CPTy = cast<PointerType>(PtrOp->getType());
1188      if (ArrayType *CATy =
1189          dyn_cast<ArrayType>(CPTy->getElementType())) {
1190        // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
1191        if (CATy->getElementType() == StrippedPtrTy->getElementType()) {
1192          // -> GEP i8* X, ...
1193          SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end());
1194          GetElementPtrInst *Res =
1195            GetElementPtrInst::Create(StrippedPtr, Idx, GEP.getName());
1196          Res->setIsInBounds(GEP.isInBounds());
1197          return Res;
1198        }
1199
1200        if (ArrayType *XATy =
1201              dyn_cast<ArrayType>(StrippedPtrTy->getElementType())){
1202          // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
1203          if (CATy->getElementType() == XATy->getElementType()) {
1204            // -> GEP [10 x i8]* X, i32 0, ...
1205            // At this point, we know that the cast source type is a pointer
1206            // to an array of the same type as the destination pointer
1207            // array.  Because the array type is never stepped over (there
1208            // is a leading zero) we can fold the cast into this GEP.
1209            GEP.setOperand(0, StrippedPtr);
1210            return &GEP;
1211          }
1212        }
1213      }
1214    } else if (GEP.getNumOperands() == 2) {
1215      // Transform things like:
1216      // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V
1217      // into:  %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
1218      Type *SrcElTy = StrippedPtrTy->getElementType();
1219      Type *ResElTy=cast<PointerType>(PtrOp->getType())->getElementType();
1220      if (TD && SrcElTy->isArrayTy() &&
1221          TD->getTypeAllocSize(cast<ArrayType>(SrcElTy)->getElementType()) ==
1222          TD->getTypeAllocSize(ResElTy)) {
1223        Value *Idx[2];
1224        Idx[0] = Constant::getNullValue(Type::getInt32Ty(GEP.getContext()));
1225        Idx[1] = GEP.getOperand(1);
1226        Value *NewGEP = GEP.isInBounds() ?
1227          Builder->CreateInBoundsGEP(StrippedPtr, Idx, GEP.getName()) :
1228          Builder->CreateGEP(StrippedPtr, Idx, GEP.getName());
1229        // V and GEP are both pointer types --> BitCast
1230        return new BitCastInst(NewGEP, GEP.getType());
1231      }
1232
1233      // Transform things like:
1234      // %V = mul i64 %N, 4
1235      // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V
1236      // into:  %t1 = getelementptr i32* %arr, i32 %N; bitcast
1237      if (TD && ResElTy->isSized() && SrcElTy->isSized()) {
1238        // Check that changing the type amounts to dividing the index by a scale
1239        // factor.
1240        uint64_t ResSize = TD->getTypeAllocSize(ResElTy);
1241        uint64_t SrcSize = TD->getTypeAllocSize(SrcElTy);
1242        if (ResSize && SrcSize % ResSize == 0) {
1243          Value *Idx = GEP.getOperand(1);
1244          unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
1245          uint64_t Scale = SrcSize / ResSize;
1246
1247          // Earlier transforms ensure that the index has type IntPtrType, which
1248          // considerably simplifies the logic by eliminating implicit casts.
1249          assert(Idx->getType() == TD->getIntPtrType(GEP.getContext()) &&
1250                 "Index not cast to pointer width?");
1251
1252          bool NSW;
1253          if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
1254            // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
1255            // If the multiplication NewIdx * Scale may overflow then the new
1256            // GEP may not be "inbounds".
1257            Value *NewGEP = GEP.isInBounds() && NSW ?
1258              Builder->CreateInBoundsGEP(StrippedPtr, NewIdx, GEP.getName()) :
1259              Builder->CreateGEP(StrippedPtr, NewIdx, GEP.getName());
1260            // The NewGEP must be pointer typed, so must the old one -> BitCast
1261            return new BitCastInst(NewGEP, GEP.getType());
1262          }
1263        }
1264      }
1265
1266      // Similarly, transform things like:
1267      // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
1268      //   (where tmp = 8*tmp2) into:
1269      // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
1270      if (TD && ResElTy->isSized() && SrcElTy->isSized() &&
1271          SrcElTy->isArrayTy()) {
1272        // Check that changing to the array element type amounts to dividing the
1273        // index by a scale factor.
1274        uint64_t ResSize = TD->getTypeAllocSize(ResElTy);
1275        uint64_t ArrayEltSize =
1276          TD->getTypeAllocSize(cast<ArrayType>(SrcElTy)->getElementType());
1277        if (ResSize && ArrayEltSize % ResSize == 0) {
1278          Value *Idx = GEP.getOperand(1);
1279          unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
1280          uint64_t Scale = ArrayEltSize / ResSize;
1281
1282          // Earlier transforms ensure that the index has type IntPtrType, which
1283          // considerably simplifies the logic by eliminating implicit casts.
1284          assert(Idx->getType() == TD->getIntPtrType(GEP.getContext()) &&
1285                 "Index not cast to pointer width?");
1286
1287          bool NSW;
1288          if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
1289            // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
1290            // If the multiplication NewIdx * Scale may overflow then the new
1291            // GEP may not be "inbounds".
1292            Value *Off[2];
1293            Off[0] = Constant::getNullValue(Type::getInt32Ty(GEP.getContext()));
1294            Off[1] = NewIdx;
1295            Value *NewGEP = GEP.isInBounds() && NSW ?
1296              Builder->CreateInBoundsGEP(StrippedPtr, Off, GEP.getName()) :
1297              Builder->CreateGEP(StrippedPtr, Off, GEP.getName());
1298            // The NewGEP must be pointer typed, so must the old one -> BitCast
1299            return new BitCastInst(NewGEP, GEP.getType());
1300          }
1301        }
1302      }
1303    }
1304  }
1305
1306  /// See if we can simplify:
1307  ///   X = bitcast A* to B*
1308  ///   Y = gep X, <...constant indices...>
1309  /// into a gep of the original struct.  This is important for SROA and alias
1310  /// analysis of unions.  If "A" is also a bitcast, wait for A/X to be merged.
1311  if (BitCastInst *BCI = dyn_cast<BitCastInst>(PtrOp)) {
1312    APInt Offset(TD ? TD->getPointerSizeInBits() : 1, 0);
1313    if (TD &&
1314        !isa<BitCastInst>(BCI->getOperand(0)) &&
1315        GEP.accumulateConstantOffset(*TD, Offset) &&
1316        StrippedPtrTy->getAddressSpace() == GEP.getPointerAddressSpace()) {
1317
1318      // If this GEP instruction doesn't move the pointer, just replace the GEP
1319      // with a bitcast of the real input to the dest type.
1320      if (!Offset) {
1321        // If the bitcast is of an allocation, and the allocation will be
1322        // converted to match the type of the cast, don't touch this.
1323        if (isa<AllocaInst>(BCI->getOperand(0)) ||
1324            isAllocationFn(BCI->getOperand(0), TLI)) {
1325          // See if the bitcast simplifies, if so, don't nuke this GEP yet.
1326          if (Instruction *I = visitBitCast(*BCI)) {
1327            if (I != BCI) {
1328              I->takeName(BCI);
1329              BCI->getParent()->getInstList().insert(BCI, I);
1330              ReplaceInstUsesWith(*BCI, I);
1331            }
1332            return &GEP;
1333          }
1334        }
1335        return new BitCastInst(BCI->getOperand(0), GEP.getType());
1336      }
1337
1338      // Otherwise, if the offset is non-zero, we need to find out if there is a
1339      // field at Offset in 'A's type.  If so, we can pull the cast through the
1340      // GEP.
1341      SmallVector<Value*, 8> NewIndices;
1342      Type *InTy =
1343        cast<PointerType>(BCI->getOperand(0)->getType())->getElementType();
1344      if (FindElementAtOffset(InTy, Offset.getSExtValue(), NewIndices)) {
1345        Value *NGEP = GEP.isInBounds() ?
1346          Builder->CreateInBoundsGEP(BCI->getOperand(0), NewIndices) :
1347          Builder->CreateGEP(BCI->getOperand(0), NewIndices);
1348
1349        if (NGEP->getType() == GEP.getType())
1350          return ReplaceInstUsesWith(GEP, NGEP);
1351        NGEP->takeName(&GEP);
1352        return new BitCastInst(NGEP, GEP.getType());
1353      }
1354    }
1355  }
1356
1357  return 0;
1358}
1359
1360
1361
1362static bool
1363isAllocSiteRemovable(Instruction *AI, SmallVectorImpl<WeakVH> &Users,
1364                     const TargetLibraryInfo *TLI) {
1365  SmallVector<Instruction*, 4> Worklist;
1366  Worklist.push_back(AI);
1367
1368  do {
1369    Instruction *PI = Worklist.pop_back_val();
1370    for (Value::use_iterator UI = PI->use_begin(), UE = PI->use_end(); UI != UE;
1371         ++UI) {
1372      Instruction *I = cast<Instruction>(*UI);
1373      switch (I->getOpcode()) {
1374      default:
1375        // Give up the moment we see something we can't handle.
1376        return false;
1377
1378      case Instruction::BitCast:
1379      case Instruction::GetElementPtr:
1380        Users.push_back(I);
1381        Worklist.push_back(I);
1382        continue;
1383
1384      case Instruction::ICmp: {
1385        ICmpInst *ICI = cast<ICmpInst>(I);
1386        // We can fold eq/ne comparisons with null to false/true, respectively.
1387        if (!ICI->isEquality() || !isa<ConstantPointerNull>(ICI->getOperand(1)))
1388          return false;
1389        Users.push_back(I);
1390        continue;
1391      }
1392
1393      case Instruction::Call:
1394        // Ignore no-op and store intrinsics.
1395        if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1396          switch (II->getIntrinsicID()) {
1397          default:
1398            return false;
1399
1400          case Intrinsic::memmove:
1401          case Intrinsic::memcpy:
1402          case Intrinsic::memset: {
1403            MemIntrinsic *MI = cast<MemIntrinsic>(II);
1404            if (MI->isVolatile() || MI->getRawDest() != PI)
1405              return false;
1406          }
1407          // fall through
1408          case Intrinsic::dbg_declare:
1409          case Intrinsic::dbg_value:
1410          case Intrinsic::invariant_start:
1411          case Intrinsic::invariant_end:
1412          case Intrinsic::lifetime_start:
1413          case Intrinsic::lifetime_end:
1414          case Intrinsic::objectsize:
1415            Users.push_back(I);
1416            continue;
1417          }
1418        }
1419
1420        if (isFreeCall(I, TLI)) {
1421          Users.push_back(I);
1422          continue;
1423        }
1424        return false;
1425
1426      case Instruction::Store: {
1427        StoreInst *SI = cast<StoreInst>(I);
1428        if (SI->isVolatile() || SI->getPointerOperand() != PI)
1429          return false;
1430        Users.push_back(I);
1431        continue;
1432      }
1433      }
1434      llvm_unreachable("missing a return?");
1435    }
1436  } while (!Worklist.empty());
1437  return true;
1438}
1439
1440Instruction *InstCombiner::visitAllocSite(Instruction &MI) {
1441  // If we have a malloc call which is only used in any amount of comparisons
1442  // to null and free calls, delete the calls and replace the comparisons with
1443  // true or false as appropriate.
1444  SmallVector<WeakVH, 64> Users;
1445  if (isAllocSiteRemovable(&MI, Users, TLI)) {
1446    for (unsigned i = 0, e = Users.size(); i != e; ++i) {
1447      Instruction *I = cast_or_null<Instruction>(&*Users[i]);
1448      if (!I) continue;
1449
1450      if (ICmpInst *C = dyn_cast<ICmpInst>(I)) {
1451        ReplaceInstUsesWith(*C,
1452                            ConstantInt::get(Type::getInt1Ty(C->getContext()),
1453                                             C->isFalseWhenEqual()));
1454      } else if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I)) {
1455        ReplaceInstUsesWith(*I, UndefValue::get(I->getType()));
1456      } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1457        if (II->getIntrinsicID() == Intrinsic::objectsize) {
1458          ConstantInt *CI = cast<ConstantInt>(II->getArgOperand(1));
1459          uint64_t DontKnow = CI->isZero() ? -1ULL : 0;
1460          ReplaceInstUsesWith(*I, ConstantInt::get(I->getType(), DontKnow));
1461        }
1462      }
1463      EraseInstFromFunction(*I);
1464    }
1465
1466    if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) {
1467      // Replace invoke with a NOP intrinsic to maintain the original CFG
1468      Module *M = II->getParent()->getParent()->getParent();
1469      Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing);
1470      InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(),
1471                         ArrayRef<Value *>(), "", II->getParent());
1472    }
1473    return EraseInstFromFunction(MI);
1474  }
1475  return 0;
1476}
1477
1478
1479
1480Instruction *InstCombiner::visitFree(CallInst &FI) {
1481  Value *Op = FI.getArgOperand(0);
1482
1483  // free undef -> unreachable.
1484  if (isa<UndefValue>(Op)) {
1485    // Insert a new store to null because we cannot modify the CFG here.
1486    Builder->CreateStore(ConstantInt::getTrue(FI.getContext()),
1487                         UndefValue::get(Type::getInt1PtrTy(FI.getContext())));
1488    return EraseInstFromFunction(FI);
1489  }
1490
1491  // If we have 'free null' delete the instruction.  This can happen in stl code
1492  // when lots of inlining happens.
1493  if (isa<ConstantPointerNull>(Op))
1494    return EraseInstFromFunction(FI);
1495
1496  return 0;
1497}
1498
1499
1500
1501Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
1502  // Change br (not X), label True, label False to: br X, label False, True
1503  Value *X = 0;
1504  BasicBlock *TrueDest;
1505  BasicBlock *FalseDest;
1506  if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
1507      !isa<Constant>(X)) {
1508    // Swap Destinations and condition...
1509    BI.setCondition(X);
1510    BI.swapSuccessors();
1511    return &BI;
1512  }
1513
1514  // Cannonicalize fcmp_one -> fcmp_oeq
1515  FCmpInst::Predicate FPred; Value *Y;
1516  if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)),
1517                             TrueDest, FalseDest)) &&
1518      BI.getCondition()->hasOneUse())
1519    if (FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE ||
1520        FPred == FCmpInst::FCMP_OGE) {
1521      FCmpInst *Cond = cast<FCmpInst>(BI.getCondition());
1522      Cond->setPredicate(FCmpInst::getInversePredicate(FPred));
1523
1524      // Swap Destinations and condition.
1525      BI.swapSuccessors();
1526      Worklist.Add(Cond);
1527      return &BI;
1528    }
1529
1530  // Cannonicalize icmp_ne -> icmp_eq
1531  ICmpInst::Predicate IPred;
1532  if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)),
1533                      TrueDest, FalseDest)) &&
1534      BI.getCondition()->hasOneUse())
1535    if (IPred == ICmpInst::ICMP_NE  || IPred == ICmpInst::ICMP_ULE ||
1536        IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE ||
1537        IPred == ICmpInst::ICMP_SGE) {
1538      ICmpInst *Cond = cast<ICmpInst>(BI.getCondition());
1539      Cond->setPredicate(ICmpInst::getInversePredicate(IPred));
1540      // Swap Destinations and condition.
1541      BI.swapSuccessors();
1542      Worklist.Add(Cond);
1543      return &BI;
1544    }
1545
1546  return 0;
1547}
1548
1549Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
1550  Value *Cond = SI.getCondition();
1551  if (Instruction *I = dyn_cast<Instruction>(Cond)) {
1552    if (I->getOpcode() == Instruction::Add)
1553      if (ConstantInt *AddRHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
1554        // change 'switch (X+4) case 1:' into 'switch (X) case -3'
1555        // Skip the first item since that's the default case.
1556        for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end();
1557             i != e; ++i) {
1558          ConstantInt* CaseVal = i.getCaseValue();
1559          Constant* NewCaseVal = ConstantExpr::getSub(cast<Constant>(CaseVal),
1560                                                      AddRHS);
1561          assert(isa<ConstantInt>(NewCaseVal) &&
1562                 "Result of expression should be constant");
1563          i.setValue(cast<ConstantInt>(NewCaseVal));
1564        }
1565        SI.setCondition(I->getOperand(0));
1566        Worklist.Add(I);
1567        return &SI;
1568      }
1569  }
1570  return 0;
1571}
1572
1573Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
1574  Value *Agg = EV.getAggregateOperand();
1575
1576  if (!EV.hasIndices())
1577    return ReplaceInstUsesWith(EV, Agg);
1578
1579  if (Constant *C = dyn_cast<Constant>(Agg)) {
1580    if (Constant *C2 = C->getAggregateElement(*EV.idx_begin())) {
1581      if (EV.getNumIndices() == 0)
1582        return ReplaceInstUsesWith(EV, C2);
1583      // Extract the remaining indices out of the constant indexed by the
1584      // first index
1585      return ExtractValueInst::Create(C2, EV.getIndices().slice(1));
1586    }
1587    return 0; // Can't handle other constants
1588  }
1589
1590  if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
1591    // We're extracting from an insertvalue instruction, compare the indices
1592    const unsigned *exti, *exte, *insi, *inse;
1593    for (exti = EV.idx_begin(), insi = IV->idx_begin(),
1594         exte = EV.idx_end(), inse = IV->idx_end();
1595         exti != exte && insi != inse;
1596         ++exti, ++insi) {
1597      if (*insi != *exti)
1598        // The insert and extract both reference distinctly different elements.
1599        // This means the extract is not influenced by the insert, and we can
1600        // replace the aggregate operand of the extract with the aggregate
1601        // operand of the insert. i.e., replace
1602        // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
1603        // %E = extractvalue { i32, { i32 } } %I, 0
1604        // with
1605        // %E = extractvalue { i32, { i32 } } %A, 0
1606        return ExtractValueInst::Create(IV->getAggregateOperand(),
1607                                        EV.getIndices());
1608    }
1609    if (exti == exte && insi == inse)
1610      // Both iterators are at the end: Index lists are identical. Replace
1611      // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
1612      // %C = extractvalue { i32, { i32 } } %B, 1, 0
1613      // with "i32 42"
1614      return ReplaceInstUsesWith(EV, IV->getInsertedValueOperand());
1615    if (exti == exte) {
1616      // The extract list is a prefix of the insert list. i.e. replace
1617      // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
1618      // %E = extractvalue { i32, { i32 } } %I, 1
1619      // with
1620      // %X = extractvalue { i32, { i32 } } %A, 1
1621      // %E = insertvalue { i32 } %X, i32 42, 0
1622      // by switching the order of the insert and extract (though the
1623      // insertvalue should be left in, since it may have other uses).
1624      Value *NewEV = Builder->CreateExtractValue(IV->getAggregateOperand(),
1625                                                 EV.getIndices());
1626      return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
1627                                     makeArrayRef(insi, inse));
1628    }
1629    if (insi == inse)
1630      // The insert list is a prefix of the extract list
1631      // We can simply remove the common indices from the extract and make it
1632      // operate on the inserted value instead of the insertvalue result.
1633      // i.e., replace
1634      // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
1635      // %E = extractvalue { i32, { i32 } } %I, 1, 0
1636      // with
1637      // %E extractvalue { i32 } { i32 42 }, 0
1638      return ExtractValueInst::Create(IV->getInsertedValueOperand(),
1639                                      makeArrayRef(exti, exte));
1640  }
1641  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Agg)) {
1642    // We're extracting from an intrinsic, see if we're the only user, which
1643    // allows us to simplify multiple result intrinsics to simpler things that
1644    // just get one value.
1645    if (II->hasOneUse()) {
1646      // Check if we're grabbing the overflow bit or the result of a 'with
1647      // overflow' intrinsic.  If it's the latter we can remove the intrinsic
1648      // and replace it with a traditional binary instruction.
1649      switch (II->getIntrinsicID()) {
1650      case Intrinsic::uadd_with_overflow:
1651      case Intrinsic::sadd_with_overflow:
1652        if (*EV.idx_begin() == 0) {  // Normal result.
1653          Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
1654          ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
1655          EraseInstFromFunction(*II);
1656          return BinaryOperator::CreateAdd(LHS, RHS);
1657        }
1658
1659        // If the normal result of the add is dead, and the RHS is a constant,
1660        // we can transform this into a range comparison.
1661        // overflow = uadd a, -4  -->  overflow = icmp ugt a, 3
1662        if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow)
1663          if (ConstantInt *CI = dyn_cast<ConstantInt>(II->getArgOperand(1)))
1664            return new ICmpInst(ICmpInst::ICMP_UGT, II->getArgOperand(0),
1665                                ConstantExpr::getNot(CI));
1666        break;
1667      case Intrinsic::usub_with_overflow:
1668      case Intrinsic::ssub_with_overflow:
1669        if (*EV.idx_begin() == 0) {  // Normal result.
1670          Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
1671          ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
1672          EraseInstFromFunction(*II);
1673          return BinaryOperator::CreateSub(LHS, RHS);
1674        }
1675        break;
1676      case Intrinsic::umul_with_overflow:
1677      case Intrinsic::smul_with_overflow:
1678        if (*EV.idx_begin() == 0) {  // Normal result.
1679          Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
1680          ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
1681          EraseInstFromFunction(*II);
1682          return BinaryOperator::CreateMul(LHS, RHS);
1683        }
1684        break;
1685      default:
1686        break;
1687      }
1688    }
1689  }
1690  if (LoadInst *L = dyn_cast<LoadInst>(Agg))
1691    // If the (non-volatile) load only has one use, we can rewrite this to a
1692    // load from a GEP. This reduces the size of the load.
1693    // FIXME: If a load is used only by extractvalue instructions then this
1694    //        could be done regardless of having multiple uses.
1695    if (L->isSimple() && L->hasOneUse()) {
1696      // extractvalue has integer indices, getelementptr has Value*s. Convert.
1697      SmallVector<Value*, 4> Indices;
1698      // Prefix an i32 0 since we need the first element.
1699      Indices.push_back(Builder->getInt32(0));
1700      for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end();
1701            I != E; ++I)
1702        Indices.push_back(Builder->getInt32(*I));
1703
1704      // We need to insert these at the location of the old load, not at that of
1705      // the extractvalue.
1706      Builder->SetInsertPoint(L->getParent(), L);
1707      Value *GEP = Builder->CreateInBoundsGEP(L->getPointerOperand(), Indices);
1708      // Returning the load directly will cause the main loop to insert it in
1709      // the wrong spot, so use ReplaceInstUsesWith().
1710      return ReplaceInstUsesWith(EV, Builder->CreateLoad(GEP));
1711    }
1712  // We could simplify extracts from other values. Note that nested extracts may
1713  // already be simplified implicitly by the above: extract (extract (insert) )
1714  // will be translated into extract ( insert ( extract ) ) first and then just
1715  // the value inserted, if appropriate. Similarly for extracts from single-use
1716  // loads: extract (extract (load)) will be translated to extract (load (gep))
1717  // and if again single-use then via load (gep (gep)) to load (gep).
1718  // However, double extracts from e.g. function arguments or return values
1719  // aren't handled yet.
1720  return 0;
1721}
1722
1723enum Personality_Type {
1724  Unknown_Personality,
1725  GNU_Ada_Personality,
1726  GNU_CXX_Personality,
1727  GNU_ObjC_Personality
1728};
1729
1730/// RecognizePersonality - See if the given exception handling personality
1731/// function is one that we understand.  If so, return a description of it;
1732/// otherwise return Unknown_Personality.
1733static Personality_Type RecognizePersonality(Value *Pers) {
1734  Function *F = dyn_cast<Function>(Pers->stripPointerCasts());
1735  if (!F)
1736    return Unknown_Personality;
1737  return StringSwitch<Personality_Type>(F->getName())
1738    .Case("__gnat_eh_personality", GNU_Ada_Personality)
1739    .Case("__gxx_personality_v0",  GNU_CXX_Personality)
1740    .Case("__objc_personality_v0", GNU_ObjC_Personality)
1741    .Default(Unknown_Personality);
1742}
1743
1744/// isCatchAll - Return 'true' if the given typeinfo will match anything.
1745static bool isCatchAll(Personality_Type Personality, Constant *TypeInfo) {
1746  switch (Personality) {
1747  case Unknown_Personality:
1748    return false;
1749  case GNU_Ada_Personality:
1750    // While __gnat_all_others_value will match any Ada exception, it doesn't
1751    // match foreign exceptions (or didn't, before gcc-4.7).
1752    return false;
1753  case GNU_CXX_Personality:
1754  case GNU_ObjC_Personality:
1755    return TypeInfo->isNullValue();
1756  }
1757  llvm_unreachable("Unknown personality!");
1758}
1759
1760static bool shorter_filter(const Value *LHS, const Value *RHS) {
1761  return
1762    cast<ArrayType>(LHS->getType())->getNumElements()
1763  <
1764    cast<ArrayType>(RHS->getType())->getNumElements();
1765}
1766
1767Instruction *InstCombiner::visitLandingPadInst(LandingPadInst &LI) {
1768  // The logic here should be correct for any real-world personality function.
1769  // However if that turns out not to be true, the offending logic can always
1770  // be conditioned on the personality function, like the catch-all logic is.
1771  Personality_Type Personality = RecognizePersonality(LI.getPersonalityFn());
1772
1773  // Simplify the list of clauses, eg by removing repeated catch clauses
1774  // (these are often created by inlining).
1775  bool MakeNewInstruction = false; // If true, recreate using the following:
1776  SmallVector<Value *, 16> NewClauses; // - Clauses for the new instruction;
1777  bool CleanupFlag = LI.isCleanup();   // - The new instruction is a cleanup.
1778
1779  SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already.
1780  for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) {
1781    bool isLastClause = i + 1 == e;
1782    if (LI.isCatch(i)) {
1783      // A catch clause.
1784      Value *CatchClause = LI.getClause(i);
1785      Constant *TypeInfo = cast<Constant>(CatchClause->stripPointerCasts());
1786
1787      // If we already saw this clause, there is no point in having a second
1788      // copy of it.
1789      if (AlreadyCaught.insert(TypeInfo)) {
1790        // This catch clause was not already seen.
1791        NewClauses.push_back(CatchClause);
1792      } else {
1793        // Repeated catch clause - drop the redundant copy.
1794        MakeNewInstruction = true;
1795      }
1796
1797      // If this is a catch-all then there is no point in keeping any following
1798      // clauses or marking the landingpad as having a cleanup.
1799      if (isCatchAll(Personality, TypeInfo)) {
1800        if (!isLastClause)
1801          MakeNewInstruction = true;
1802        CleanupFlag = false;
1803        break;
1804      }
1805    } else {
1806      // A filter clause.  If any of the filter elements were already caught
1807      // then they can be dropped from the filter.  It is tempting to try to
1808      // exploit the filter further by saying that any typeinfo that does not
1809      // occur in the filter can't be caught later (and thus can be dropped).
1810      // However this would be wrong, since typeinfos can match without being
1811      // equal (for example if one represents a C++ class, and the other some
1812      // class derived from it).
1813      assert(LI.isFilter(i) && "Unsupported landingpad clause!");
1814      Value *FilterClause = LI.getClause(i);
1815      ArrayType *FilterType = cast<ArrayType>(FilterClause->getType());
1816      unsigned NumTypeInfos = FilterType->getNumElements();
1817
1818      // An empty filter catches everything, so there is no point in keeping any
1819      // following clauses or marking the landingpad as having a cleanup.  By
1820      // dealing with this case here the following code is made a bit simpler.
1821      if (!NumTypeInfos) {
1822        NewClauses.push_back(FilterClause);
1823        if (!isLastClause)
1824          MakeNewInstruction = true;
1825        CleanupFlag = false;
1826        break;
1827      }
1828
1829      bool MakeNewFilter = false; // If true, make a new filter.
1830      SmallVector<Constant *, 16> NewFilterElts; // New elements.
1831      if (isa<ConstantAggregateZero>(FilterClause)) {
1832        // Not an empty filter - it contains at least one null typeinfo.
1833        assert(NumTypeInfos > 0 && "Should have handled empty filter already!");
1834        Constant *TypeInfo =
1835          Constant::getNullValue(FilterType->getElementType());
1836        // If this typeinfo is a catch-all then the filter can never match.
1837        if (isCatchAll(Personality, TypeInfo)) {
1838          // Throw the filter away.
1839          MakeNewInstruction = true;
1840          continue;
1841        }
1842
1843        // There is no point in having multiple copies of this typeinfo, so
1844        // discard all but the first copy if there is more than one.
1845        NewFilterElts.push_back(TypeInfo);
1846        if (NumTypeInfos > 1)
1847          MakeNewFilter = true;
1848      } else {
1849        ConstantArray *Filter = cast<ConstantArray>(FilterClause);
1850        SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements.
1851        NewFilterElts.reserve(NumTypeInfos);
1852
1853        // Remove any filter elements that were already caught or that already
1854        // occurred in the filter.  While there, see if any of the elements are
1855        // catch-alls.  If so, the filter can be discarded.
1856        bool SawCatchAll = false;
1857        for (unsigned j = 0; j != NumTypeInfos; ++j) {
1858          Value *Elt = Filter->getOperand(j);
1859          Constant *TypeInfo = cast<Constant>(Elt->stripPointerCasts());
1860          if (isCatchAll(Personality, TypeInfo)) {
1861            // This element is a catch-all.  Bail out, noting this fact.
1862            SawCatchAll = true;
1863            break;
1864          }
1865          if (AlreadyCaught.count(TypeInfo))
1866            // Already caught by an earlier clause, so having it in the filter
1867            // is pointless.
1868            continue;
1869          // There is no point in having multiple copies of the same typeinfo in
1870          // a filter, so only add it if we didn't already.
1871          if (SeenInFilter.insert(TypeInfo))
1872            NewFilterElts.push_back(cast<Constant>(Elt));
1873        }
1874        // A filter containing a catch-all cannot match anything by definition.
1875        if (SawCatchAll) {
1876          // Throw the filter away.
1877          MakeNewInstruction = true;
1878          continue;
1879        }
1880
1881        // If we dropped something from the filter, make a new one.
1882        if (NewFilterElts.size() < NumTypeInfos)
1883          MakeNewFilter = true;
1884      }
1885      if (MakeNewFilter) {
1886        FilterType = ArrayType::get(FilterType->getElementType(),
1887                                    NewFilterElts.size());
1888        FilterClause = ConstantArray::get(FilterType, NewFilterElts);
1889        MakeNewInstruction = true;
1890      }
1891
1892      NewClauses.push_back(FilterClause);
1893
1894      // If the new filter is empty then it will catch everything so there is
1895      // no point in keeping any following clauses or marking the landingpad
1896      // as having a cleanup.  The case of the original filter being empty was
1897      // already handled above.
1898      if (MakeNewFilter && !NewFilterElts.size()) {
1899        assert(MakeNewInstruction && "New filter but not a new instruction!");
1900        CleanupFlag = false;
1901        break;
1902      }
1903    }
1904  }
1905
1906  // If several filters occur in a row then reorder them so that the shortest
1907  // filters come first (those with the smallest number of elements).  This is
1908  // advantageous because shorter filters are more likely to match, speeding up
1909  // unwinding, but mostly because it increases the effectiveness of the other
1910  // filter optimizations below.
1911  for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) {
1912    unsigned j;
1913    // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters.
1914    for (j = i; j != e; ++j)
1915      if (!isa<ArrayType>(NewClauses[j]->getType()))
1916        break;
1917
1918    // Check whether the filters are already sorted by length.  We need to know
1919    // if sorting them is actually going to do anything so that we only make a
1920    // new landingpad instruction if it does.
1921    for (unsigned k = i; k + 1 < j; ++k)
1922      if (shorter_filter(NewClauses[k+1], NewClauses[k])) {
1923        // Not sorted, so sort the filters now.  Doing an unstable sort would be
1924        // correct too but reordering filters pointlessly might confuse users.
1925        std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j,
1926                         shorter_filter);
1927        MakeNewInstruction = true;
1928        break;
1929      }
1930
1931    // Look for the next batch of filters.
1932    i = j + 1;
1933  }
1934
1935  // If typeinfos matched if and only if equal, then the elements of a filter L
1936  // that occurs later than a filter F could be replaced by the intersection of
1937  // the elements of F and L.  In reality two typeinfos can match without being
1938  // equal (for example if one represents a C++ class, and the other some class
1939  // derived from it) so it would be wrong to perform this transform in general.
1940  // However the transform is correct and useful if F is a subset of L.  In that
1941  // case L can be replaced by F, and thus removed altogether since repeating a
1942  // filter is pointless.  So here we look at all pairs of filters F and L where
1943  // L follows F in the list of clauses, and remove L if every element of F is
1944  // an element of L.  This can occur when inlining C++ functions with exception
1945  // specifications.
1946  for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) {
1947    // Examine each filter in turn.
1948    Value *Filter = NewClauses[i];
1949    ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType());
1950    if (!FTy)
1951      // Not a filter - skip it.
1952      continue;
1953    unsigned FElts = FTy->getNumElements();
1954    // Examine each filter following this one.  Doing this backwards means that
1955    // we don't have to worry about filters disappearing under us when removed.
1956    for (unsigned j = NewClauses.size() - 1; j != i; --j) {
1957      Value *LFilter = NewClauses[j];
1958      ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType());
1959      if (!LTy)
1960        // Not a filter - skip it.
1961        continue;
1962      // If Filter is a subset of LFilter, i.e. every element of Filter is also
1963      // an element of LFilter, then discard LFilter.
1964      SmallVector<Value *, 16>::iterator J = NewClauses.begin() + j;
1965      // If Filter is empty then it is a subset of LFilter.
1966      if (!FElts) {
1967        // Discard LFilter.
1968        NewClauses.erase(J);
1969        MakeNewInstruction = true;
1970        // Move on to the next filter.
1971        continue;
1972      }
1973      unsigned LElts = LTy->getNumElements();
1974      // If Filter is longer than LFilter then it cannot be a subset of it.
1975      if (FElts > LElts)
1976        // Move on to the next filter.
1977        continue;
1978      // At this point we know that LFilter has at least one element.
1979      if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros.
1980        // Filter is a subset of LFilter iff Filter contains only zeros (as we
1981        // already know that Filter is not longer than LFilter).
1982        if (isa<ConstantAggregateZero>(Filter)) {
1983          assert(FElts <= LElts && "Should have handled this case earlier!");
1984          // Discard LFilter.
1985          NewClauses.erase(J);
1986          MakeNewInstruction = true;
1987        }
1988        // Move on to the next filter.
1989        continue;
1990      }
1991      ConstantArray *LArray = cast<ConstantArray>(LFilter);
1992      if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros.
1993        // Since Filter is non-empty and contains only zeros, it is a subset of
1994        // LFilter iff LFilter contains a zero.
1995        assert(FElts > 0 && "Should have eliminated the empty filter earlier!");
1996        for (unsigned l = 0; l != LElts; ++l)
1997          if (LArray->getOperand(l)->isNullValue()) {
1998            // LFilter contains a zero - discard it.
1999            NewClauses.erase(J);
2000            MakeNewInstruction = true;
2001            break;
2002          }
2003        // Move on to the next filter.
2004        continue;
2005      }
2006      // At this point we know that both filters are ConstantArrays.  Loop over
2007      // operands to see whether every element of Filter is also an element of
2008      // LFilter.  Since filters tend to be short this is probably faster than
2009      // using a method that scales nicely.
2010      ConstantArray *FArray = cast<ConstantArray>(Filter);
2011      bool AllFound = true;
2012      for (unsigned f = 0; f != FElts; ++f) {
2013        Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts();
2014        AllFound = false;
2015        for (unsigned l = 0; l != LElts; ++l) {
2016          Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts();
2017          if (LTypeInfo == FTypeInfo) {
2018            AllFound = true;
2019            break;
2020          }
2021        }
2022        if (!AllFound)
2023          break;
2024      }
2025      if (AllFound) {
2026        // Discard LFilter.
2027        NewClauses.erase(J);
2028        MakeNewInstruction = true;
2029      }
2030      // Move on to the next filter.
2031    }
2032  }
2033
2034  // If we changed any of the clauses, replace the old landingpad instruction
2035  // with a new one.
2036  if (MakeNewInstruction) {
2037    LandingPadInst *NLI = LandingPadInst::Create(LI.getType(),
2038                                                 LI.getPersonalityFn(),
2039                                                 NewClauses.size());
2040    for (unsigned i = 0, e = NewClauses.size(); i != e; ++i)
2041      NLI->addClause(NewClauses[i]);
2042    // A landing pad with no clauses must have the cleanup flag set.  It is
2043    // theoretically possible, though highly unlikely, that we eliminated all
2044    // clauses.  If so, force the cleanup flag to true.
2045    if (NewClauses.empty())
2046      CleanupFlag = true;
2047    NLI->setCleanup(CleanupFlag);
2048    return NLI;
2049  }
2050
2051  // Even if none of the clauses changed, we may nonetheless have understood
2052  // that the cleanup flag is pointless.  Clear it if so.
2053  if (LI.isCleanup() != CleanupFlag) {
2054    assert(!CleanupFlag && "Adding a cleanup, not removing one?!");
2055    LI.setCleanup(CleanupFlag);
2056    return &LI;
2057  }
2058
2059  return 0;
2060}
2061
2062
2063
2064
2065/// TryToSinkInstruction - Try to move the specified instruction from its
2066/// current block into the beginning of DestBlock, which can only happen if it's
2067/// safe to move the instruction past all of the instructions between it and the
2068/// end of its block.
2069static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
2070  assert(I->hasOneUse() && "Invariants didn't hold!");
2071
2072  // Cannot move control-flow-involving, volatile loads, vaarg, etc.
2073  if (isa<PHINode>(I) || isa<LandingPadInst>(I) || I->mayHaveSideEffects() ||
2074      isa<TerminatorInst>(I))
2075    return false;
2076
2077  // Do not sink alloca instructions out of the entry block.
2078  if (isa<AllocaInst>(I) && I->getParent() ==
2079        &DestBlock->getParent()->getEntryBlock())
2080    return false;
2081
2082  // We can only sink load instructions if there is nothing between the load and
2083  // the end of block that could change the value.
2084  if (I->mayReadFromMemory()) {
2085    for (BasicBlock::iterator Scan = I, E = I->getParent()->end();
2086         Scan != E; ++Scan)
2087      if (Scan->mayWriteToMemory())
2088        return false;
2089  }
2090
2091  BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
2092  I->moveBefore(InsertPos);
2093  ++NumSunkInst;
2094  return true;
2095}
2096
2097
2098/// AddReachableCodeToWorklist - Walk the function in depth-first order, adding
2099/// all reachable code to the worklist.
2100///
2101/// This has a couple of tricks to make the code faster and more powerful.  In
2102/// particular, we constant fold and DCE instructions as we go, to avoid adding
2103/// them to the worklist (this significantly speeds up instcombine on code where
2104/// many instructions are dead or constant).  Additionally, if we find a branch
2105/// whose condition is a known constant, we only visit the reachable successors.
2106///
2107static bool AddReachableCodeToWorklist(BasicBlock *BB,
2108                                       SmallPtrSet<BasicBlock*, 64> &Visited,
2109                                       InstCombiner &IC,
2110                                       const DataLayout *TD,
2111                                       const TargetLibraryInfo *TLI) {
2112  bool MadeIRChange = false;
2113  SmallVector<BasicBlock*, 256> Worklist;
2114  Worklist.push_back(BB);
2115
2116  SmallVector<Instruction*, 128> InstrsForInstCombineWorklist;
2117  DenseMap<ConstantExpr*, Constant*> FoldedConstants;
2118
2119  do {
2120    BB = Worklist.pop_back_val();
2121
2122    // We have now visited this block!  If we've already been here, ignore it.
2123    if (!Visited.insert(BB)) continue;
2124
2125    for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
2126      Instruction *Inst = BBI++;
2127
2128      // DCE instruction if trivially dead.
2129      if (isInstructionTriviallyDead(Inst, TLI)) {
2130        ++NumDeadInst;
2131        DEBUG(errs() << "IC: DCE: " << *Inst << '\n');
2132        Inst->eraseFromParent();
2133        continue;
2134      }
2135
2136      // ConstantProp instruction if trivially constant.
2137      if (!Inst->use_empty() && isa<Constant>(Inst->getOperand(0)))
2138        if (Constant *C = ConstantFoldInstruction(Inst, TD, TLI)) {
2139          DEBUG(errs() << "IC: ConstFold to: " << *C << " from: "
2140                       << *Inst << '\n');
2141          Inst->replaceAllUsesWith(C);
2142          ++NumConstProp;
2143          Inst->eraseFromParent();
2144          continue;
2145        }
2146
2147      if (TD) {
2148        // See if we can constant fold its operands.
2149        for (User::op_iterator i = Inst->op_begin(), e = Inst->op_end();
2150             i != e; ++i) {
2151          ConstantExpr *CE = dyn_cast<ConstantExpr>(i);
2152          if (CE == 0) continue;
2153
2154          Constant*& FoldRes = FoldedConstants[CE];
2155          if (!FoldRes)
2156            FoldRes = ConstantFoldConstantExpression(CE, TD, TLI);
2157          if (!FoldRes)
2158            FoldRes = CE;
2159
2160          if (FoldRes != CE) {
2161            *i = FoldRes;
2162            MadeIRChange = true;
2163          }
2164        }
2165      }
2166
2167      InstrsForInstCombineWorklist.push_back(Inst);
2168    }
2169
2170    // Recursively visit successors.  If this is a branch or switch on a
2171    // constant, only visit the reachable successor.
2172    TerminatorInst *TI = BB->getTerminator();
2173    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
2174      if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
2175        bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
2176        BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
2177        Worklist.push_back(ReachableBB);
2178        continue;
2179      }
2180    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
2181      if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
2182        // See if this is an explicit destination.
2183        for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
2184             i != e; ++i)
2185          if (i.getCaseValue() == Cond) {
2186            BasicBlock *ReachableBB = i.getCaseSuccessor();
2187            Worklist.push_back(ReachableBB);
2188            continue;
2189          }
2190
2191        // Otherwise it is the default destination.
2192        Worklist.push_back(SI->getDefaultDest());
2193        continue;
2194      }
2195    }
2196
2197    for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
2198      Worklist.push_back(TI->getSuccessor(i));
2199  } while (!Worklist.empty());
2200
2201  // Once we've found all of the instructions to add to instcombine's worklist,
2202  // add them in reverse order.  This way instcombine will visit from the top
2203  // of the function down.  This jives well with the way that it adds all uses
2204  // of instructions to the worklist after doing a transformation, thus avoiding
2205  // some N^2 behavior in pathological cases.
2206  IC.Worklist.AddInitialGroup(&InstrsForInstCombineWorklist[0],
2207                              InstrsForInstCombineWorklist.size());
2208
2209  return MadeIRChange;
2210}
2211
2212bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) {
2213  MadeIRChange = false;
2214
2215  DEBUG(errs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
2216               << F.getName() << "\n");
2217
2218  {
2219    // Do a depth-first traversal of the function, populate the worklist with
2220    // the reachable instructions.  Ignore blocks that are not reachable.  Keep
2221    // track of which blocks we visit.
2222    SmallPtrSet<BasicBlock*, 64> Visited;
2223    MadeIRChange |= AddReachableCodeToWorklist(F.begin(), Visited, *this, TD,
2224                                               TLI);
2225
2226    // Do a quick scan over the function.  If we find any blocks that are
2227    // unreachable, remove any instructions inside of them.  This prevents
2228    // the instcombine code from having to deal with some bad special cases.
2229    for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
2230      if (Visited.count(BB)) continue;
2231
2232      // Delete the instructions backwards, as it has a reduced likelihood of
2233      // having to update as many def-use and use-def chains.
2234      Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
2235      while (EndInst != BB->begin()) {
2236        // Delete the next to last instruction.
2237        BasicBlock::iterator I = EndInst;
2238        Instruction *Inst = --I;
2239        if (!Inst->use_empty())
2240          Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
2241        if (isa<LandingPadInst>(Inst)) {
2242          EndInst = Inst;
2243          continue;
2244        }
2245        if (!isa<DbgInfoIntrinsic>(Inst)) {
2246          ++NumDeadInst;
2247          MadeIRChange = true;
2248        }
2249        Inst->eraseFromParent();
2250      }
2251    }
2252  }
2253
2254  while (!Worklist.isEmpty()) {
2255    Instruction *I = Worklist.RemoveOne();
2256    if (I == 0) continue;  // skip null values.
2257
2258    // Check to see if we can DCE the instruction.
2259    if (isInstructionTriviallyDead(I, TLI)) {
2260      DEBUG(errs() << "IC: DCE: " << *I << '\n');
2261      EraseInstFromFunction(*I);
2262      ++NumDeadInst;
2263      MadeIRChange = true;
2264      continue;
2265    }
2266
2267    // Instruction isn't dead, see if we can constant propagate it.
2268    if (!I->use_empty() && isa<Constant>(I->getOperand(0)))
2269      if (Constant *C = ConstantFoldInstruction(I, TD, TLI)) {
2270        DEBUG(errs() << "IC: ConstFold to: " << *C << " from: " << *I << '\n');
2271
2272        // Add operands to the worklist.
2273        ReplaceInstUsesWith(*I, C);
2274        ++NumConstProp;
2275        EraseInstFromFunction(*I);
2276        MadeIRChange = true;
2277        continue;
2278      }
2279
2280    // See if we can trivially sink this instruction to a successor basic block.
2281    if (I->hasOneUse()) {
2282      BasicBlock *BB = I->getParent();
2283      Instruction *UserInst = cast<Instruction>(I->use_back());
2284      BasicBlock *UserParent;
2285
2286      // Get the block the use occurs in.
2287      if (PHINode *PN = dyn_cast<PHINode>(UserInst))
2288        UserParent = PN->getIncomingBlock(I->use_begin().getUse());
2289      else
2290        UserParent = UserInst->getParent();
2291
2292      if (UserParent != BB) {
2293        bool UserIsSuccessor = false;
2294        // See if the user is one of our successors.
2295        for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
2296          if (*SI == UserParent) {
2297            UserIsSuccessor = true;
2298            break;
2299          }
2300
2301        // If the user is one of our immediate successors, and if that successor
2302        // only has us as a predecessors (we'd have to split the critical edge
2303        // otherwise), we can keep going.
2304        if (UserIsSuccessor && UserParent->getSinglePredecessor())
2305          // Okay, the CFG is simple enough, try to sink this instruction.
2306          MadeIRChange |= TryToSinkInstruction(I, UserParent);
2307      }
2308    }
2309
2310    // Now that we have an instruction, try combining it to simplify it.
2311    Builder->SetInsertPoint(I->getParent(), I);
2312    Builder->SetCurrentDebugLocation(I->getDebugLoc());
2313
2314#ifndef NDEBUG
2315    std::string OrigI;
2316#endif
2317    DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
2318    DEBUG(errs() << "IC: Visiting: " << OrigI << '\n');
2319
2320    if (Instruction *Result = visit(*I)) {
2321      ++NumCombined;
2322      // Should we replace the old instruction with a new one?
2323      if (Result != I) {
2324        DEBUG(errs() << "IC: Old = " << *I << '\n'
2325                     << "    New = " << *Result << '\n');
2326
2327        if (!I->getDebugLoc().isUnknown())
2328          Result->setDebugLoc(I->getDebugLoc());
2329        // Everything uses the new instruction now.
2330        I->replaceAllUsesWith(Result);
2331
2332        // Move the name to the new instruction first.
2333        Result->takeName(I);
2334
2335        // Push the new instruction and any users onto the worklist.
2336        Worklist.Add(Result);
2337        Worklist.AddUsersToWorkList(*Result);
2338
2339        // Insert the new instruction into the basic block...
2340        BasicBlock *InstParent = I->getParent();
2341        BasicBlock::iterator InsertPos = I;
2342
2343        // If we replace a PHI with something that isn't a PHI, fix up the
2344        // insertion point.
2345        if (!isa<PHINode>(Result) && isa<PHINode>(InsertPos))
2346          InsertPos = InstParent->getFirstInsertionPt();
2347
2348        InstParent->getInstList().insert(InsertPos, Result);
2349
2350        EraseInstFromFunction(*I);
2351      } else {
2352#ifndef NDEBUG
2353        DEBUG(errs() << "IC: Mod = " << OrigI << '\n'
2354                     << "    New = " << *I << '\n');
2355#endif
2356
2357        // If the instruction was modified, it's possible that it is now dead.
2358        // if so, remove it.
2359        if (isInstructionTriviallyDead(I, TLI)) {
2360          EraseInstFromFunction(*I);
2361        } else {
2362          Worklist.Add(I);
2363          Worklist.AddUsersToWorkList(*I);
2364        }
2365      }
2366      MadeIRChange = true;
2367    }
2368  }
2369
2370  Worklist.Zap();
2371  return MadeIRChange;
2372}
2373
2374namespace {
2375class InstCombinerLibCallSimplifier : public LibCallSimplifier {
2376  InstCombiner *IC;
2377public:
2378  InstCombinerLibCallSimplifier(const DataLayout *TD,
2379                                const TargetLibraryInfo *TLI,
2380                                InstCombiner *IC)
2381    : LibCallSimplifier(TD, TLI, UnsafeFPShrink) {
2382    this->IC = IC;
2383  }
2384
2385  /// replaceAllUsesWith - override so that instruction replacement
2386  /// can be defined in terms of the instruction combiner framework.
2387  virtual void replaceAllUsesWith(Instruction *I, Value *With) const {
2388    IC->ReplaceInstUsesWith(*I, With);
2389  }
2390};
2391}
2392
2393bool InstCombiner::runOnFunction(Function &F) {
2394  TD = getAnalysisIfAvailable<DataLayout>();
2395  TLI = &getAnalysis<TargetLibraryInfo>();
2396
2397  /// Builder - This is an IRBuilder that automatically inserts new
2398  /// instructions into the worklist when they are created.
2399  IRBuilder<true, TargetFolder, InstCombineIRInserter>
2400    TheBuilder(F.getContext(), TargetFolder(TD),
2401               InstCombineIRInserter(Worklist));
2402  Builder = &TheBuilder;
2403
2404  InstCombinerLibCallSimplifier TheSimplifier(TD, TLI, this);
2405  Simplifier = &TheSimplifier;
2406
2407  bool EverMadeChange = false;
2408
2409  // Lower dbg.declare intrinsics otherwise their value may be clobbered
2410  // by instcombiner.
2411  EverMadeChange = LowerDbgDeclare(F);
2412
2413  // Iterate while there is work to do.
2414  unsigned Iteration = 0;
2415  while (DoOneIteration(F, Iteration++))
2416    EverMadeChange = true;
2417
2418  Builder = 0;
2419  return EverMadeChange;
2420}
2421
2422FunctionPass *llvm::createInstructionCombiningPass() {
2423  return new InstCombiner();
2424}
2425