InstructionCombining.cpp revision cd151d2f95eabae61b3cf8e675717d5674afbe85
1//===- InstructionCombining.cpp - Combine multiple instructions -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// InstructionCombining - Combine instructions to form fewer, simple
11// instructions.  This pass does not modify the CFG.  This pass is where
12// algebraic simplification happens.
13//
14// This pass combines things like:
15//    %Y = add i32 %X, 1
16//    %Z = add i32 %Y, 1
17// into:
18//    %Z = add i32 %X, 2
19//
20// This is a simple worklist driven algorithm.
21//
22// This pass guarantees that the following canonicalizations are performed on
23// the program:
24//    1. If a binary operator has a constant operand, it is moved to the RHS
25//    2. Bitwise operators with constant operands are always grouped so that
26//       shifts are performed first, then or's, then and's, then xor's.
27//    3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
28//    4. All cmp instructions on boolean values are replaced with logical ops
29//    5. add X, X is represented as (X*2) => (X << 1)
30//    6. Multiplies with a power-of-two constant argument are transformed into
31//       shifts.
32//   ... etc.
33//
34//===----------------------------------------------------------------------===//
35
36#define DEBUG_TYPE "instcombine"
37#include "llvm/Transforms/Scalar.h"
38#include "InstCombine.h"
39#include "llvm/IntrinsicInst.h"
40#include "llvm/Analysis/ConstantFolding.h"
41#include "llvm/Analysis/InstructionSimplify.h"
42#include "llvm/Analysis/MemoryBuiltins.h"
43#include "llvm/Target/TargetData.h"
44#include "llvm/Transforms/Utils/Local.h"
45#include "llvm/Support/CFG.h"
46#include "llvm/Support/Debug.h"
47#include "llvm/Support/GetElementPtrTypeIterator.h"
48#include "llvm/Support/PatternMatch.h"
49#include "llvm/ADT/SmallPtrSet.h"
50#include "llvm/ADT/Statistic.h"
51#include "llvm-c/Initialization.h"
52#include <algorithm>
53#include <climits>
54using namespace llvm;
55using namespace llvm::PatternMatch;
56
57STATISTIC(NumCombined , "Number of insts combined");
58STATISTIC(NumConstProp, "Number of constant folds");
59STATISTIC(NumDeadInst , "Number of dead inst eliminated");
60STATISTIC(NumSunkInst , "Number of instructions sunk");
61STATISTIC(NumExpand,    "Number of expansions");
62STATISTIC(NumFactor   , "Number of factorizations");
63STATISTIC(NumReassoc  , "Number of reassociations");
64
65// Initialization Routines
66void llvm::initializeInstCombine(PassRegistry &Registry) {
67  initializeInstCombinerPass(Registry);
68}
69
70void LLVMInitializeInstCombine(LLVMPassRegistryRef R) {
71  initializeInstCombine(*unwrap(R));
72}
73
74char InstCombiner::ID = 0;
75INITIALIZE_PASS(InstCombiner, "instcombine",
76                "Combine redundant instructions", false, false)
77
78void InstCombiner::getAnalysisUsage(AnalysisUsage &AU) const {
79  AU.addPreservedID(LCSSAID);
80  AU.setPreservesCFG();
81}
82
83
84/// ShouldChangeType - Return true if it is desirable to convert a computation
85/// from 'From' to 'To'.  We don't want to convert from a legal to an illegal
86/// type for example, or from a smaller to a larger illegal type.
87bool InstCombiner::ShouldChangeType(const Type *From, const Type *To) const {
88  assert(From->isIntegerTy() && To->isIntegerTy());
89
90  // If we don't have TD, we don't know if the source/dest are legal.
91  if (!TD) return false;
92
93  unsigned FromWidth = From->getPrimitiveSizeInBits();
94  unsigned ToWidth = To->getPrimitiveSizeInBits();
95  bool FromLegal = TD->isLegalInteger(FromWidth);
96  bool ToLegal = TD->isLegalInteger(ToWidth);
97
98  // If this is a legal integer from type, and the result would be an illegal
99  // type, don't do the transformation.
100  if (FromLegal && !ToLegal)
101    return false;
102
103  // Otherwise, if both are illegal, do not increase the size of the result. We
104  // do allow things like i160 -> i64, but not i64 -> i160.
105  if (!FromLegal && !ToLegal && ToWidth > FromWidth)
106    return false;
107
108  return true;
109}
110
111
112/// SimplifyAssociativeOrCommutative - This performs a few simplifications for
113/// operators which are associative or commutative:
114//
115//  Commutative operators:
116//
117//  1. Order operands such that they are listed from right (least complex) to
118//     left (most complex).  This puts constants before unary operators before
119//     binary operators.
120//
121//  Associative operators:
122//
123//  2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
124//  3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
125//
126//  Associative and commutative operators:
127//
128//  4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
129//  5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
130//  6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
131//     if C1 and C2 are constants.
132//
133bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
134  Instruction::BinaryOps Opcode = I.getOpcode();
135  bool Changed = false;
136
137  do {
138    // Order operands such that they are listed from right (least complex) to
139    // left (most complex).  This puts constants before unary operators before
140    // binary operators.
141    if (I.isCommutative() && getComplexity(I.getOperand(0)) <
142        getComplexity(I.getOperand(1)))
143      Changed = !I.swapOperands();
144
145    BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
146    BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
147
148    if (I.isAssociative()) {
149      // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
150      if (Op0 && Op0->getOpcode() == Opcode) {
151        Value *A = Op0->getOperand(0);
152        Value *B = Op0->getOperand(1);
153        Value *C = I.getOperand(1);
154
155        // Does "B op C" simplify?
156        if (Value *V = SimplifyBinOp(Opcode, B, C, TD)) {
157          // It simplifies to V.  Form "A op V".
158          I.setOperand(0, A);
159          I.setOperand(1, V);
160          Changed = true;
161          ++NumReassoc;
162          continue;
163        }
164      }
165
166      // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
167      if (Op1 && Op1->getOpcode() == Opcode) {
168        Value *A = I.getOperand(0);
169        Value *B = Op1->getOperand(0);
170        Value *C = Op1->getOperand(1);
171
172        // Does "A op B" simplify?
173        if (Value *V = SimplifyBinOp(Opcode, A, B, TD)) {
174          // It simplifies to V.  Form "V op C".
175          I.setOperand(0, V);
176          I.setOperand(1, C);
177          Changed = true;
178          ++NumReassoc;
179          continue;
180        }
181      }
182    }
183
184    if (I.isAssociative() && I.isCommutative()) {
185      // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
186      if (Op0 && Op0->getOpcode() == Opcode) {
187        Value *A = Op0->getOperand(0);
188        Value *B = Op0->getOperand(1);
189        Value *C = I.getOperand(1);
190
191        // Does "C op A" simplify?
192        if (Value *V = SimplifyBinOp(Opcode, C, A, TD)) {
193          // It simplifies to V.  Form "V op B".
194          I.setOperand(0, V);
195          I.setOperand(1, B);
196          Changed = true;
197          ++NumReassoc;
198          continue;
199        }
200      }
201
202      // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
203      if (Op1 && Op1->getOpcode() == Opcode) {
204        Value *A = I.getOperand(0);
205        Value *B = Op1->getOperand(0);
206        Value *C = Op1->getOperand(1);
207
208        // Does "C op A" simplify?
209        if (Value *V = SimplifyBinOp(Opcode, C, A, TD)) {
210          // It simplifies to V.  Form "B op V".
211          I.setOperand(0, B);
212          I.setOperand(1, V);
213          Changed = true;
214          ++NumReassoc;
215          continue;
216        }
217      }
218
219      // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
220      // if C1 and C2 are constants.
221      if (Op0 && Op1 &&
222          Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
223          isa<Constant>(Op0->getOperand(1)) &&
224          isa<Constant>(Op1->getOperand(1)) &&
225          Op0->hasOneUse() && Op1->hasOneUse()) {
226        Value *A = Op0->getOperand(0);
227        Constant *C1 = cast<Constant>(Op0->getOperand(1));
228        Value *B = Op1->getOperand(0);
229        Constant *C2 = cast<Constant>(Op1->getOperand(1));
230
231        Constant *Folded = ConstantExpr::get(Opcode, C1, C2);
232        Instruction *New = BinaryOperator::Create(Opcode, A, B, Op1->getName(),
233                                                  &I);
234        Worklist.Add(New);
235        I.setOperand(0, New);
236        I.setOperand(1, Folded);
237        Changed = true;
238        continue;
239      }
240    }
241
242    // No further simplifications.
243    return Changed;
244  } while (1);
245}
246
247/// LeftDistributesOverRight - Whether "X LOp (Y ROp Z)" is always equal to
248/// "(X LOp Y) ROp (X LOp Z)".
249static bool LeftDistributesOverRight(Instruction::BinaryOps LOp,
250                                     Instruction::BinaryOps ROp) {
251  switch (LOp) {
252  default:
253    return false;
254
255  case Instruction::And:
256    // And distributes over Or and Xor.
257    switch (ROp) {
258    default:
259      return false;
260    case Instruction::Or:
261    case Instruction::Xor:
262      return true;
263    }
264
265  case Instruction::Mul:
266    // Multiplication distributes over addition and subtraction.
267    switch (ROp) {
268    default:
269      return false;
270    case Instruction::Add:
271    case Instruction::Sub:
272      return true;
273    }
274
275  case Instruction::Or:
276    // Or distributes over And.
277    switch (ROp) {
278    default:
279      return false;
280    case Instruction::And:
281      return true;
282    }
283  }
284}
285
286/// RightDistributesOverLeft - Whether "(X LOp Y) ROp Z" is always equal to
287/// "(X ROp Z) LOp (Y ROp Z)".
288static bool RightDistributesOverLeft(Instruction::BinaryOps LOp,
289                                     Instruction::BinaryOps ROp) {
290  if (Instruction::isCommutative(ROp))
291    return LeftDistributesOverRight(ROp, LOp);
292  // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
293  // but this requires knowing that the addition does not overflow and other
294  // such subtleties.
295  return false;
296}
297
298/// SimplifyUsingDistributiveLaws - This tries to simplify binary operations
299/// which some other binary operation distributes over either by factorizing
300/// out common terms (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this
301/// results in simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is
302/// a win).  Returns the simplified value, or null if it didn't simplify.
303Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) {
304  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
305  BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
306  BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
307  Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); // op
308
309  // Factorization.
310  if (Op0 && Op1 && Op0->getOpcode() == Op1->getOpcode()) {
311    // The instruction has the form "(A op' B) op (C op' D)".  Try to factorize
312    // a common term.
313    Value *A = Op0->getOperand(0), *B = Op0->getOperand(1);
314    Value *C = Op1->getOperand(0), *D = Op1->getOperand(1);
315    Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
316
317    // Does "X op' Y" always equal "Y op' X"?
318    bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
319
320    // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
321    if (LeftDistributesOverRight(InnerOpcode, TopLevelOpcode))
322      // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
323      // commutative case, "(A op' B) op (C op' A)"?
324      if (A == C || (InnerCommutative && A == D)) {
325        if (A != C)
326          std::swap(C, D);
327        // Consider forming "A op' (B op D)".
328        // If "B op D" simplifies then it can be formed with no cost.
329        Value *V = SimplifyBinOp(TopLevelOpcode, B, D, TD);
330        // If "B op D" doesn't simplify then only go on if both of the existing
331        // operations "A op' B" and "C op' D" will be zapped as no longer used.
332        if (!V && Op0->hasOneUse() && Op1->hasOneUse())
333          V = Builder->CreateBinOp(TopLevelOpcode, B, D, Op1->getName());
334        if (V) {
335          ++NumFactor;
336          V = Builder->CreateBinOp(InnerOpcode, A, V);
337          V->takeName(&I);
338          return V;
339        }
340      }
341
342    // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
343    if (RightDistributesOverLeft(TopLevelOpcode, InnerOpcode))
344      // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
345      // commutative case, "(A op' B) op (B op' D)"?
346      if (B == D || (InnerCommutative && B == C)) {
347        if (B != D)
348          std::swap(C, D);
349        // Consider forming "(A op C) op' B".
350        // If "A op C" simplifies then it can be formed with no cost.
351        Value *V = SimplifyBinOp(TopLevelOpcode, A, C, TD);
352        // If "A op C" doesn't simplify then only go on if both of the existing
353        // operations "A op' B" and "C op' D" will be zapped as no longer used.
354        if (!V && Op0->hasOneUse() && Op1->hasOneUse())
355          V = Builder->CreateBinOp(TopLevelOpcode, A, C, Op0->getName());
356        if (V) {
357          ++NumFactor;
358          V = Builder->CreateBinOp(InnerOpcode, V, B);
359          V->takeName(&I);
360          return V;
361        }
362      }
363  }
364
365  // Expansion.
366  if (Op0 && RightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
367    // The instruction has the form "(A op' B) op C".  See if expanding it out
368    // to "(A op C) op' (B op C)" results in simplifications.
369    Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
370    Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
371
372    // Do "A op C" and "B op C" both simplify?
373    if (Value *L = SimplifyBinOp(TopLevelOpcode, A, C, TD))
374      if (Value *R = SimplifyBinOp(TopLevelOpcode, B, C, TD)) {
375        // They do! Return "L op' R".
376        ++NumExpand;
377        // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
378        if ((L == A && R == B) ||
379            (Instruction::isCommutative(InnerOpcode) && L == B && R == A))
380          return Op0;
381        // Otherwise return "L op' R" if it simplifies.
382        if (Value *V = SimplifyBinOp(InnerOpcode, L, R, TD))
383          return V;
384        // Otherwise, create a new instruction.
385        C = Builder->CreateBinOp(InnerOpcode, L, R);
386        C->takeName(&I);
387        return C;
388      }
389  }
390
391  if (Op1 && LeftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) {
392    // The instruction has the form "A op (B op' C)".  See if expanding it out
393    // to "(A op B) op' (A op C)" results in simplifications.
394    Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
395    Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op'
396
397    // Do "A op B" and "A op C" both simplify?
398    if (Value *L = SimplifyBinOp(TopLevelOpcode, A, B, TD))
399      if (Value *R = SimplifyBinOp(TopLevelOpcode, A, C, TD)) {
400        // They do! Return "L op' R".
401        ++NumExpand;
402        // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
403        if ((L == B && R == C) ||
404            (Instruction::isCommutative(InnerOpcode) && L == C && R == B))
405          return Op1;
406        // Otherwise return "L op' R" if it simplifies.
407        if (Value *V = SimplifyBinOp(InnerOpcode, L, R, TD))
408          return V;
409        // Otherwise, create a new instruction.
410        A = Builder->CreateBinOp(InnerOpcode, L, R);
411        A->takeName(&I);
412        return A;
413      }
414  }
415
416  return 0;
417}
418
419// dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction
420// if the LHS is a constant zero (which is the 'negate' form).
421//
422Value *InstCombiner::dyn_castNegVal(Value *V) const {
423  if (BinaryOperator::isNeg(V))
424    return BinaryOperator::getNegArgument(V);
425
426  // Constants can be considered to be negated values if they can be folded.
427  if (ConstantInt *C = dyn_cast<ConstantInt>(V))
428    return ConstantExpr::getNeg(C);
429
430  if (ConstantVector *C = dyn_cast<ConstantVector>(V))
431    if (C->getType()->getElementType()->isIntegerTy())
432      return ConstantExpr::getNeg(C);
433
434  return 0;
435}
436
437// dyn_castFNegVal - Given a 'fsub' instruction, return the RHS of the
438// instruction if the LHS is a constant negative zero (which is the 'negate'
439// form).
440//
441Value *InstCombiner::dyn_castFNegVal(Value *V) const {
442  if (BinaryOperator::isFNeg(V))
443    return BinaryOperator::getFNegArgument(V);
444
445  // Constants can be considered to be negated values if they can be folded.
446  if (ConstantFP *C = dyn_cast<ConstantFP>(V))
447    return ConstantExpr::getFNeg(C);
448
449  if (ConstantVector *C = dyn_cast<ConstantVector>(V))
450    if (C->getType()->getElementType()->isFloatingPointTy())
451      return ConstantExpr::getFNeg(C);
452
453  return 0;
454}
455
456static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO,
457                                             InstCombiner *IC) {
458  if (CastInst *CI = dyn_cast<CastInst>(&I)) {
459    return IC->Builder->CreateCast(CI->getOpcode(), SO, I.getType());
460  }
461
462  // Figure out if the constant is the left or the right argument.
463  bool ConstIsRHS = isa<Constant>(I.getOperand(1));
464  Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
465
466  if (Constant *SOC = dyn_cast<Constant>(SO)) {
467    if (ConstIsRHS)
468      return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
469    return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
470  }
471
472  Value *Op0 = SO, *Op1 = ConstOperand;
473  if (!ConstIsRHS)
474    std::swap(Op0, Op1);
475
476  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
477    return IC->Builder->CreateBinOp(BO->getOpcode(), Op0, Op1,
478                                    SO->getName()+".op");
479  if (ICmpInst *CI = dyn_cast<ICmpInst>(&I))
480    return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
481                                   SO->getName()+".cmp");
482  if (FCmpInst *CI = dyn_cast<FCmpInst>(&I))
483    return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
484                                   SO->getName()+".cmp");
485  llvm_unreachable("Unknown binary instruction type!");
486}
487
488// FoldOpIntoSelect - Given an instruction with a select as one operand and a
489// constant as the other operand, try to fold the binary operator into the
490// select arguments.  This also works for Cast instructions, which obviously do
491// not have a second operand.
492Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) {
493  // Don't modify shared select instructions
494  if (!SI->hasOneUse()) return 0;
495  Value *TV = SI->getOperand(1);
496  Value *FV = SI->getOperand(2);
497
498  if (isa<Constant>(TV) || isa<Constant>(FV)) {
499    // Bool selects with constant operands can be folded to logical ops.
500    if (SI->getType()->isIntegerTy(1)) return 0;
501
502    // If it's a bitcast involving vectors, make sure it has the same number of
503    // elements on both sides.
504    if (BitCastInst *BC = dyn_cast<BitCastInst>(&Op)) {
505      const VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy());
506      const VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy());
507
508      // Verify that either both or neither are vectors.
509      if ((SrcTy == NULL) != (DestTy == NULL)) return 0;
510      // If vectors, verify that they have the same number of elements.
511      if (SrcTy && SrcTy->getNumElements() != DestTy->getNumElements())
512        return 0;
513    }
514
515    Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, this);
516    Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, this);
517
518    return SelectInst::Create(SI->getCondition(),
519                              SelectTrueVal, SelectFalseVal);
520  }
521  return 0;
522}
523
524
525/// FoldOpIntoPhi - Given a binary operator, cast instruction, or select which
526/// has a PHI node as operand #0, see if we can fold the instruction into the
527/// PHI (which is only possible if all operands to the PHI are constants).
528///
529Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
530  PHINode *PN = cast<PHINode>(I.getOperand(0));
531  unsigned NumPHIValues = PN->getNumIncomingValues();
532  if (NumPHIValues == 0)
533    return 0;
534
535  // We normally only transform phis with a single use.  However, if a PHI has
536  // multiple uses and they are all the same operation, we can fold *all* of the
537  // uses into the PHI.
538  if (!PN->hasOneUse()) {
539    // Walk the use list for the instruction, comparing them to I.
540    for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end();
541         UI != E; ++UI) {
542      Instruction *User = cast<Instruction>(*UI);
543      if (User != &I && !I.isIdenticalTo(User))
544        return 0;
545    }
546    // Otherwise, we can replace *all* users with the new PHI we form.
547  }
548
549  // Check to see if all of the operands of the PHI are simple constants
550  // (constantint/constantfp/undef).  If there is one non-constant value,
551  // remember the BB it is in.  If there is more than one or if *it* is a PHI,
552  // bail out.  We don't do arbitrary constant expressions here because moving
553  // their computation can be expensive without a cost model.
554  BasicBlock *NonConstBB = 0;
555  for (unsigned i = 0; i != NumPHIValues; ++i) {
556    Value *InVal = PN->getIncomingValue(i);
557    if (isa<Constant>(InVal) && !isa<ConstantExpr>(InVal))
558      continue;
559
560    if (isa<PHINode>(InVal)) return 0;  // Itself a phi.
561    if (NonConstBB) return 0;  // More than one non-const value.
562
563    NonConstBB = PN->getIncomingBlock(i);
564
565    // If the InVal is an invoke at the end of the pred block, then we can't
566    // insert a computation after it without breaking the edge.
567    if (InvokeInst *II = dyn_cast<InvokeInst>(InVal))
568      if (II->getParent() == NonConstBB)
569        return 0;
570
571    // If the incoming non-constant value is in I's block, we will remove one
572    // instruction, but insert another equivalent one, leading to infinite
573    // instcombine.
574    if (NonConstBB == I.getParent())
575      return 0;
576  }
577
578  // If there is exactly one non-constant value, we can insert a copy of the
579  // operation in that block.  However, if this is a critical edge, we would be
580  // inserting the computation one some other paths (e.g. inside a loop).  Only
581  // do this if the pred block is unconditionally branching into the phi block.
582  if (NonConstBB != 0) {
583    BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
584    if (!BI || !BI->isUnconditional()) return 0;
585  }
586
587  // Okay, we can do the transformation: create the new PHI node.
588  PHINode *NewPN = PHINode::Create(I.getType(), "");
589  NewPN->reserveOperandSpace(PN->getNumOperands()/2);
590  InsertNewInstBefore(NewPN, *PN);
591  NewPN->takeName(PN);
592
593  // If we are going to have to insert a new computation, do so right before the
594  // predecessors terminator.
595  if (NonConstBB)
596    Builder->SetInsertPoint(NonConstBB->getTerminator());
597
598  // Next, add all of the operands to the PHI.
599  if (SelectInst *SI = dyn_cast<SelectInst>(&I)) {
600    // We only currently try to fold the condition of a select when it is a phi,
601    // not the true/false values.
602    Value *TrueV = SI->getTrueValue();
603    Value *FalseV = SI->getFalseValue();
604    BasicBlock *PhiTransBB = PN->getParent();
605    for (unsigned i = 0; i != NumPHIValues; ++i) {
606      BasicBlock *ThisBB = PN->getIncomingBlock(i);
607      Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB);
608      Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB);
609      Value *InV = 0;
610      if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
611        InV = InC->isNullValue() ? FalseVInPred : TrueVInPred;
612      else
613        InV = Builder->CreateSelect(PN->getIncomingValue(i),
614                                    TrueVInPred, FalseVInPred, "phitmp");
615      NewPN->addIncoming(InV, ThisBB);
616    }
617  } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) {
618    Constant *C = cast<Constant>(I.getOperand(1));
619    for (unsigned i = 0; i != NumPHIValues; ++i) {
620      Value *InV = 0;
621      if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
622        InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
623      else if (isa<ICmpInst>(CI))
624        InV = Builder->CreateICmp(CI->getPredicate(), PN->getIncomingValue(i),
625                                  C, "phitmp");
626      else
627        InV = Builder->CreateFCmp(CI->getPredicate(), PN->getIncomingValue(i),
628                                  C, "phitmp");
629      NewPN->addIncoming(InV, PN->getIncomingBlock(i));
630    }
631  } else if (I.getNumOperands() == 2) {
632    Constant *C = cast<Constant>(I.getOperand(1));
633    for (unsigned i = 0; i != NumPHIValues; ++i) {
634      Value *InV = 0;
635      if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
636        InV = ConstantExpr::get(I.getOpcode(), InC, C);
637      else
638        InV = Builder->CreateBinOp(cast<BinaryOperator>(I).getOpcode(),
639                                   PN->getIncomingValue(i), C, "phitmp");
640      NewPN->addIncoming(InV, PN->getIncomingBlock(i));
641    }
642  } else {
643    CastInst *CI = cast<CastInst>(&I);
644    const Type *RetTy = CI->getType();
645    for (unsigned i = 0; i != NumPHIValues; ++i) {
646      Value *InV;
647      if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
648        InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
649      else
650        InV = Builder->CreateCast(CI->getOpcode(),
651                                PN->getIncomingValue(i), I.getType(), "phitmp");
652      NewPN->addIncoming(InV, PN->getIncomingBlock(i));
653    }
654  }
655
656  for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end();
657       UI != E; ) {
658    Instruction *User = cast<Instruction>(*UI++);
659    if (User == &I) continue;
660    ReplaceInstUsesWith(*User, NewPN);
661    EraseInstFromFunction(*User);
662  }
663  return ReplaceInstUsesWith(I, NewPN);
664}
665
666/// FindElementAtOffset - Given a type and a constant offset, determine whether
667/// or not there is a sequence of GEP indices into the type that will land us at
668/// the specified offset.  If so, fill them into NewIndices and return the
669/// resultant element type, otherwise return null.
670const Type *InstCombiner::FindElementAtOffset(const Type *Ty, int64_t Offset,
671                                          SmallVectorImpl<Value*> &NewIndices) {
672  if (!TD) return 0;
673  if (!Ty->isSized()) return 0;
674
675  // Start with the index over the outer type.  Note that the type size
676  // might be zero (even if the offset isn't zero) if the indexed type
677  // is something like [0 x {int, int}]
678  const Type *IntPtrTy = TD->getIntPtrType(Ty->getContext());
679  int64_t FirstIdx = 0;
680  if (int64_t TySize = TD->getTypeAllocSize(Ty)) {
681    FirstIdx = Offset/TySize;
682    Offset -= FirstIdx*TySize;
683
684    // Handle hosts where % returns negative instead of values [0..TySize).
685    if (Offset < 0) {
686      --FirstIdx;
687      Offset += TySize;
688      assert(Offset >= 0);
689    }
690    assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset");
691  }
692
693  NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx));
694
695  // Index into the types.  If we fail, set OrigBase to null.
696  while (Offset) {
697    // Indexing into tail padding between struct/array elements.
698    if (uint64_t(Offset*8) >= TD->getTypeSizeInBits(Ty))
699      return 0;
700
701    if (const StructType *STy = dyn_cast<StructType>(Ty)) {
702      const StructLayout *SL = TD->getStructLayout(STy);
703      assert(Offset < (int64_t)SL->getSizeInBytes() &&
704             "Offset must stay within the indexed type");
705
706      unsigned Elt = SL->getElementContainingOffset(Offset);
707      NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
708                                            Elt));
709
710      Offset -= SL->getElementOffset(Elt);
711      Ty = STy->getElementType(Elt);
712    } else if (const ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
713      uint64_t EltSize = TD->getTypeAllocSize(AT->getElementType());
714      assert(EltSize && "Cannot index into a zero-sized array");
715      NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize));
716      Offset %= EltSize;
717      Ty = AT->getElementType();
718    } else {
719      // Otherwise, we can't index into the middle of this atomic type, bail.
720      return 0;
721    }
722  }
723
724  return Ty;
725}
726
727
728
729Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
730  SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end());
731
732  if (Value *V = SimplifyGEPInst(&Ops[0], Ops.size(), TD))
733    return ReplaceInstUsesWith(GEP, V);
734
735  Value *PtrOp = GEP.getOperand(0);
736
737  // Eliminate unneeded casts for indices, and replace indices which displace
738  // by multiples of a zero size type with zero.
739  if (TD) {
740    bool MadeChange = false;
741    const Type *IntPtrTy = TD->getIntPtrType(GEP.getContext());
742
743    gep_type_iterator GTI = gep_type_begin(GEP);
744    for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end();
745         I != E; ++I, ++GTI) {
746      // Skip indices into struct types.
747      const SequentialType *SeqTy = dyn_cast<SequentialType>(*GTI);
748      if (!SeqTy) continue;
749
750      // If the element type has zero size then any index over it is equivalent
751      // to an index of zero, so replace it with zero if it is not zero already.
752      if (SeqTy->getElementType()->isSized() &&
753          TD->getTypeAllocSize(SeqTy->getElementType()) == 0)
754        if (!isa<Constant>(*I) || !cast<Constant>(*I)->isNullValue()) {
755          *I = Constant::getNullValue(IntPtrTy);
756          MadeChange = true;
757        }
758
759      if ((*I)->getType() != IntPtrTy) {
760        // If we are using a wider index than needed for this platform, shrink
761        // it to what we need.  If narrower, sign-extend it to what we need.
762        // This explicit cast can make subsequent optimizations more obvious.
763        *I = Builder->CreateIntCast(*I, IntPtrTy, true);
764        MadeChange = true;
765      }
766    }
767    if (MadeChange) return &GEP;
768  }
769
770  // Combine Indices - If the source pointer to this getelementptr instruction
771  // is a getelementptr instruction, combine the indices of the two
772  // getelementptr instructions into a single instruction.
773  //
774  if (GEPOperator *Src = dyn_cast<GEPOperator>(PtrOp)) {
775    // Note that if our source is a gep chain itself that we wait for that
776    // chain to be resolved before we perform this transformation.  This
777    // avoids us creating a TON of code in some cases.
778    //
779    if (GetElementPtrInst *SrcGEP =
780          dyn_cast<GetElementPtrInst>(Src->getOperand(0)))
781      if (SrcGEP->getNumOperands() == 2)
782        return 0;   // Wait until our source is folded to completion.
783
784    SmallVector<Value*, 8> Indices;
785
786    // Find out whether the last index in the source GEP is a sequential idx.
787    bool EndsWithSequential = false;
788    for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
789         I != E; ++I)
790      EndsWithSequential = !(*I)->isStructTy();
791
792    // Can we combine the two pointer arithmetics offsets?
793    if (EndsWithSequential) {
794      // Replace: gep (gep %P, long B), long A, ...
795      // With:    T = long A+B; gep %P, T, ...
796      //
797      Value *Sum;
798      Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
799      Value *GO1 = GEP.getOperand(1);
800      if (SO1 == Constant::getNullValue(SO1->getType())) {
801        Sum = GO1;
802      } else if (GO1 == Constant::getNullValue(GO1->getType())) {
803        Sum = SO1;
804      } else {
805        // If they aren't the same type, then the input hasn't been processed
806        // by the loop above yet (which canonicalizes sequential index types to
807        // intptr_t).  Just avoid transforming this until the input has been
808        // normalized.
809        if (SO1->getType() != GO1->getType())
810          return 0;
811        Sum = Builder->CreateAdd(SO1, GO1, PtrOp->getName()+".sum");
812      }
813
814      // Update the GEP in place if possible.
815      if (Src->getNumOperands() == 2) {
816        GEP.setOperand(0, Src->getOperand(0));
817        GEP.setOperand(1, Sum);
818        return &GEP;
819      }
820      Indices.append(Src->op_begin()+1, Src->op_end()-1);
821      Indices.push_back(Sum);
822      Indices.append(GEP.op_begin()+2, GEP.op_end());
823    } else if (isa<Constant>(*GEP.idx_begin()) &&
824               cast<Constant>(*GEP.idx_begin())->isNullValue() &&
825               Src->getNumOperands() != 1) {
826      // Otherwise we can do the fold if the first index of the GEP is a zero
827      Indices.append(Src->op_begin()+1, Src->op_end());
828      Indices.append(GEP.idx_begin()+1, GEP.idx_end());
829    }
830
831    if (!Indices.empty())
832      return (GEP.isInBounds() && Src->isInBounds()) ?
833        GetElementPtrInst::CreateInBounds(Src->getOperand(0), Indices.begin(),
834                                          Indices.end(), GEP.getName()) :
835        GetElementPtrInst::Create(Src->getOperand(0), Indices.begin(),
836                                  Indices.end(), GEP.getName());
837  }
838
839  // Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
840  Value *StrippedPtr = PtrOp->stripPointerCasts();
841  if (StrippedPtr != PtrOp) {
842    const PointerType *StrippedPtrTy =cast<PointerType>(StrippedPtr->getType());
843
844    bool HasZeroPointerIndex = false;
845    if (ConstantInt *C = dyn_cast<ConstantInt>(GEP.getOperand(1)))
846      HasZeroPointerIndex = C->isZero();
847
848    // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
849    // into     : GEP [10 x i8]* X, i32 0, ...
850    //
851    // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
852    //           into     : GEP i8* X, ...
853    //
854    // This occurs when the program declares an array extern like "int X[];"
855    if (HasZeroPointerIndex) {
856      const PointerType *CPTy = cast<PointerType>(PtrOp->getType());
857      if (const ArrayType *CATy =
858          dyn_cast<ArrayType>(CPTy->getElementType())) {
859        // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
860        if (CATy->getElementType() == StrippedPtrTy->getElementType()) {
861          // -> GEP i8* X, ...
862          SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end());
863          GetElementPtrInst *Res =
864            GetElementPtrInst::Create(StrippedPtr, Idx.begin(),
865                                      Idx.end(), GEP.getName());
866          Res->setIsInBounds(GEP.isInBounds());
867          return Res;
868        }
869
870        if (const ArrayType *XATy =
871              dyn_cast<ArrayType>(StrippedPtrTy->getElementType())){
872          // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
873          if (CATy->getElementType() == XATy->getElementType()) {
874            // -> GEP [10 x i8]* X, i32 0, ...
875            // At this point, we know that the cast source type is a pointer
876            // to an array of the same type as the destination pointer
877            // array.  Because the array type is never stepped over (there
878            // is a leading zero) we can fold the cast into this GEP.
879            GEP.setOperand(0, StrippedPtr);
880            return &GEP;
881          }
882        }
883      }
884    } else if (GEP.getNumOperands() == 2) {
885      // Transform things like:
886      // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V
887      // into:  %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
888      const Type *SrcElTy = StrippedPtrTy->getElementType();
889      const Type *ResElTy=cast<PointerType>(PtrOp->getType())->getElementType();
890      if (TD && SrcElTy->isArrayTy() &&
891          TD->getTypeAllocSize(cast<ArrayType>(SrcElTy)->getElementType()) ==
892          TD->getTypeAllocSize(ResElTy)) {
893        Value *Idx[2];
894        Idx[0] = Constant::getNullValue(Type::getInt32Ty(GEP.getContext()));
895        Idx[1] = GEP.getOperand(1);
896        Value *NewGEP = GEP.isInBounds() ?
897          Builder->CreateInBoundsGEP(StrippedPtr, Idx, Idx + 2, GEP.getName()) :
898          Builder->CreateGEP(StrippedPtr, Idx, Idx + 2, GEP.getName());
899        // V and GEP are both pointer types --> BitCast
900        return new BitCastInst(NewGEP, GEP.getType());
901      }
902
903      // Transform things like:
904      // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
905      //   (where tmp = 8*tmp2) into:
906      // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
907
908      if (TD && SrcElTy->isArrayTy() && ResElTy->isIntegerTy(8)) {
909        uint64_t ArrayEltSize =
910            TD->getTypeAllocSize(cast<ArrayType>(SrcElTy)->getElementType());
911
912        // Check to see if "tmp" is a scale by a multiple of ArrayEltSize.  We
913        // allow either a mul, shift, or constant here.
914        Value *NewIdx = 0;
915        ConstantInt *Scale = 0;
916        if (ArrayEltSize == 1) {
917          NewIdx = GEP.getOperand(1);
918          Scale = ConstantInt::get(cast<IntegerType>(NewIdx->getType()), 1);
919        } else if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP.getOperand(1))) {
920          NewIdx = ConstantInt::get(CI->getType(), 1);
921          Scale = CI;
922        } else if (Instruction *Inst =dyn_cast<Instruction>(GEP.getOperand(1))){
923          if (Inst->getOpcode() == Instruction::Shl &&
924              isa<ConstantInt>(Inst->getOperand(1))) {
925            ConstantInt *ShAmt = cast<ConstantInt>(Inst->getOperand(1));
926            uint32_t ShAmtVal = ShAmt->getLimitedValue(64);
927            Scale = ConstantInt::get(cast<IntegerType>(Inst->getType()),
928                                     1ULL << ShAmtVal);
929            NewIdx = Inst->getOperand(0);
930          } else if (Inst->getOpcode() == Instruction::Mul &&
931                     isa<ConstantInt>(Inst->getOperand(1))) {
932            Scale = cast<ConstantInt>(Inst->getOperand(1));
933            NewIdx = Inst->getOperand(0);
934          }
935        }
936
937        // If the index will be to exactly the right offset with the scale taken
938        // out, perform the transformation. Note, we don't know whether Scale is
939        // signed or not. We'll use unsigned version of division/modulo
940        // operation after making sure Scale doesn't have the sign bit set.
941        if (ArrayEltSize && Scale && Scale->getSExtValue() >= 0LL &&
942            Scale->getZExtValue() % ArrayEltSize == 0) {
943          Scale = ConstantInt::get(Scale->getType(),
944                                   Scale->getZExtValue() / ArrayEltSize);
945          if (Scale->getZExtValue() != 1) {
946            Constant *C = ConstantExpr::getIntegerCast(Scale, NewIdx->getType(),
947                                                       false /*ZExt*/);
948            NewIdx = Builder->CreateMul(NewIdx, C, "idxscale");
949          }
950
951          // Insert the new GEP instruction.
952          Value *Idx[2];
953          Idx[0] = Constant::getNullValue(Type::getInt32Ty(GEP.getContext()));
954          Idx[1] = NewIdx;
955          Value *NewGEP = GEP.isInBounds() ?
956            Builder->CreateInBoundsGEP(StrippedPtr, Idx, Idx + 2,GEP.getName()):
957            Builder->CreateGEP(StrippedPtr, Idx, Idx + 2, GEP.getName());
958          // The NewGEP must be pointer typed, so must the old one -> BitCast
959          return new BitCastInst(NewGEP, GEP.getType());
960        }
961      }
962    }
963  }
964
965  /// See if we can simplify:
966  ///   X = bitcast A* to B*
967  ///   Y = gep X, <...constant indices...>
968  /// into a gep of the original struct.  This is important for SROA and alias
969  /// analysis of unions.  If "A" is also a bitcast, wait for A/X to be merged.
970  if (BitCastInst *BCI = dyn_cast<BitCastInst>(PtrOp)) {
971    if (TD &&
972        !isa<BitCastInst>(BCI->getOperand(0)) && GEP.hasAllConstantIndices()) {
973      // Determine how much the GEP moves the pointer.  We are guaranteed to get
974      // a constant back from EmitGEPOffset.
975      ConstantInt *OffsetV = cast<ConstantInt>(EmitGEPOffset(&GEP));
976      int64_t Offset = OffsetV->getSExtValue();
977
978      // If this GEP instruction doesn't move the pointer, just replace the GEP
979      // with a bitcast of the real input to the dest type.
980      if (Offset == 0) {
981        // If the bitcast is of an allocation, and the allocation will be
982        // converted to match the type of the cast, don't touch this.
983        if (isa<AllocaInst>(BCI->getOperand(0)) ||
984            isMalloc(BCI->getOperand(0))) {
985          // See if the bitcast simplifies, if so, don't nuke this GEP yet.
986          if (Instruction *I = visitBitCast(*BCI)) {
987            if (I != BCI) {
988              I->takeName(BCI);
989              BCI->getParent()->getInstList().insert(BCI, I);
990              ReplaceInstUsesWith(*BCI, I);
991            }
992            return &GEP;
993          }
994        }
995        return new BitCastInst(BCI->getOperand(0), GEP.getType());
996      }
997
998      // Otherwise, if the offset is non-zero, we need to find out if there is a
999      // field at Offset in 'A's type.  If so, we can pull the cast through the
1000      // GEP.
1001      SmallVector<Value*, 8> NewIndices;
1002      const Type *InTy =
1003        cast<PointerType>(BCI->getOperand(0)->getType())->getElementType();
1004      if (FindElementAtOffset(InTy, Offset, NewIndices)) {
1005        Value *NGEP = GEP.isInBounds() ?
1006          Builder->CreateInBoundsGEP(BCI->getOperand(0), NewIndices.begin(),
1007                                     NewIndices.end()) :
1008          Builder->CreateGEP(BCI->getOperand(0), NewIndices.begin(),
1009                             NewIndices.end());
1010
1011        if (NGEP->getType() == GEP.getType())
1012          return ReplaceInstUsesWith(GEP, NGEP);
1013        NGEP->takeName(&GEP);
1014        return new BitCastInst(NGEP, GEP.getType());
1015      }
1016    }
1017  }
1018
1019  return 0;
1020}
1021
1022
1023
1024static bool IsOnlyNullComparedAndFreed(const Value &V) {
1025  for (Value::const_use_iterator UI = V.use_begin(), UE = V.use_end();
1026       UI != UE; ++UI) {
1027    const User *U = *UI;
1028    if (isFreeCall(U))
1029      continue;
1030    if (const ICmpInst *ICI = dyn_cast<ICmpInst>(U))
1031      if (ICI->isEquality() && isa<ConstantPointerNull>(ICI->getOperand(1)))
1032        continue;
1033    return false;
1034  }
1035  return true;
1036}
1037
1038Instruction *InstCombiner::visitMalloc(Instruction &MI) {
1039  // If we have a malloc call which is only used in any amount of comparisons
1040  // to null and free calls, delete the calls and replace the comparisons with
1041  // true or false as appropriate.
1042  if (IsOnlyNullComparedAndFreed(MI)) {
1043    for (Value::use_iterator UI = MI.use_begin(), UE = MI.use_end();
1044         UI != UE;) {
1045      // We can assume that every remaining use is a free call or an icmp eq/ne
1046      // to null, so the cast is safe.
1047      Instruction *I = cast<Instruction>(*UI);
1048
1049      // Early increment here, as we're about to get rid of the user.
1050      ++UI;
1051
1052      if (isFreeCall(I)) {
1053        EraseInstFromFunction(*cast<CallInst>(I));
1054        continue;
1055      }
1056      // Again, the cast is safe.
1057      ICmpInst *C = cast<ICmpInst>(I);
1058      ReplaceInstUsesWith(*C, ConstantInt::get(Type::getInt1Ty(C->getContext()),
1059                                               C->isFalseWhenEqual()));
1060      EraseInstFromFunction(*C);
1061    }
1062    return EraseInstFromFunction(MI);
1063  }
1064  return 0;
1065}
1066
1067
1068
1069Instruction *InstCombiner::visitFree(CallInst &FI) {
1070  Value *Op = FI.getArgOperand(0);
1071
1072  // free undef -> unreachable.
1073  if (isa<UndefValue>(Op)) {
1074    // Insert a new store to null because we cannot modify the CFG here.
1075    new StoreInst(ConstantInt::getTrue(FI.getContext()),
1076           UndefValue::get(Type::getInt1PtrTy(FI.getContext())), &FI);
1077    return EraseInstFromFunction(FI);
1078  }
1079
1080  // If we have 'free null' delete the instruction.  This can happen in stl code
1081  // when lots of inlining happens.
1082  if (isa<ConstantPointerNull>(Op))
1083    return EraseInstFromFunction(FI);
1084
1085  return 0;
1086}
1087
1088
1089
1090Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
1091  // Change br (not X), label True, label False to: br X, label False, True
1092  Value *X = 0;
1093  BasicBlock *TrueDest;
1094  BasicBlock *FalseDest;
1095  if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
1096      !isa<Constant>(X)) {
1097    // Swap Destinations and condition...
1098    BI.setCondition(X);
1099    BI.setSuccessor(0, FalseDest);
1100    BI.setSuccessor(1, TrueDest);
1101    return &BI;
1102  }
1103
1104  // Cannonicalize fcmp_one -> fcmp_oeq
1105  FCmpInst::Predicate FPred; Value *Y;
1106  if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)),
1107                             TrueDest, FalseDest)) &&
1108      BI.getCondition()->hasOneUse())
1109    if (FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE ||
1110        FPred == FCmpInst::FCMP_OGE) {
1111      FCmpInst *Cond = cast<FCmpInst>(BI.getCondition());
1112      Cond->setPredicate(FCmpInst::getInversePredicate(FPred));
1113
1114      // Swap Destinations and condition.
1115      BI.setSuccessor(0, FalseDest);
1116      BI.setSuccessor(1, TrueDest);
1117      Worklist.Add(Cond);
1118      return &BI;
1119    }
1120
1121  // Cannonicalize icmp_ne -> icmp_eq
1122  ICmpInst::Predicate IPred;
1123  if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)),
1124                      TrueDest, FalseDest)) &&
1125      BI.getCondition()->hasOneUse())
1126    if (IPred == ICmpInst::ICMP_NE  || IPred == ICmpInst::ICMP_ULE ||
1127        IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE ||
1128        IPred == ICmpInst::ICMP_SGE) {
1129      ICmpInst *Cond = cast<ICmpInst>(BI.getCondition());
1130      Cond->setPredicate(ICmpInst::getInversePredicate(IPred));
1131      // Swap Destinations and condition.
1132      BI.setSuccessor(0, FalseDest);
1133      BI.setSuccessor(1, TrueDest);
1134      Worklist.Add(Cond);
1135      return &BI;
1136    }
1137
1138  return 0;
1139}
1140
1141Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
1142  Value *Cond = SI.getCondition();
1143  if (Instruction *I = dyn_cast<Instruction>(Cond)) {
1144    if (I->getOpcode() == Instruction::Add)
1145      if (ConstantInt *AddRHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
1146        // change 'switch (X+4) case 1:' into 'switch (X) case -3'
1147        for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2)
1148          SI.setOperand(i,
1149                   ConstantExpr::getSub(cast<Constant>(SI.getOperand(i)),
1150                                                AddRHS));
1151        SI.setOperand(0, I->getOperand(0));
1152        Worklist.Add(I);
1153        return &SI;
1154      }
1155  }
1156  return 0;
1157}
1158
1159Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
1160  Value *Agg = EV.getAggregateOperand();
1161
1162  if (!EV.hasIndices())
1163    return ReplaceInstUsesWith(EV, Agg);
1164
1165  if (Constant *C = dyn_cast<Constant>(Agg)) {
1166    if (isa<UndefValue>(C))
1167      return ReplaceInstUsesWith(EV, UndefValue::get(EV.getType()));
1168
1169    if (isa<ConstantAggregateZero>(C))
1170      return ReplaceInstUsesWith(EV, Constant::getNullValue(EV.getType()));
1171
1172    if (isa<ConstantArray>(C) || isa<ConstantStruct>(C)) {
1173      // Extract the element indexed by the first index out of the constant
1174      Value *V = C->getOperand(*EV.idx_begin());
1175      if (EV.getNumIndices() > 1)
1176        // Extract the remaining indices out of the constant indexed by the
1177        // first index
1178        return ExtractValueInst::Create(V, EV.idx_begin() + 1, EV.idx_end());
1179      else
1180        return ReplaceInstUsesWith(EV, V);
1181    }
1182    return 0; // Can't handle other constants
1183  }
1184  if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
1185    // We're extracting from an insertvalue instruction, compare the indices
1186    const unsigned *exti, *exte, *insi, *inse;
1187    for (exti = EV.idx_begin(), insi = IV->idx_begin(),
1188         exte = EV.idx_end(), inse = IV->idx_end();
1189         exti != exte && insi != inse;
1190         ++exti, ++insi) {
1191      if (*insi != *exti)
1192        // The insert and extract both reference distinctly different elements.
1193        // This means the extract is not influenced by the insert, and we can
1194        // replace the aggregate operand of the extract with the aggregate
1195        // operand of the insert. i.e., replace
1196        // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
1197        // %E = extractvalue { i32, { i32 } } %I, 0
1198        // with
1199        // %E = extractvalue { i32, { i32 } } %A, 0
1200        return ExtractValueInst::Create(IV->getAggregateOperand(),
1201                                        EV.idx_begin(), EV.idx_end());
1202    }
1203    if (exti == exte && insi == inse)
1204      // Both iterators are at the end: Index lists are identical. Replace
1205      // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
1206      // %C = extractvalue { i32, { i32 } } %B, 1, 0
1207      // with "i32 42"
1208      return ReplaceInstUsesWith(EV, IV->getInsertedValueOperand());
1209    if (exti == exte) {
1210      // The extract list is a prefix of the insert list. i.e. replace
1211      // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
1212      // %E = extractvalue { i32, { i32 } } %I, 1
1213      // with
1214      // %X = extractvalue { i32, { i32 } } %A, 1
1215      // %E = insertvalue { i32 } %X, i32 42, 0
1216      // by switching the order of the insert and extract (though the
1217      // insertvalue should be left in, since it may have other uses).
1218      Value *NewEV = Builder->CreateExtractValue(IV->getAggregateOperand(),
1219                                                 EV.idx_begin(), EV.idx_end());
1220      return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
1221                                     insi, inse);
1222    }
1223    if (insi == inse)
1224      // The insert list is a prefix of the extract list
1225      // We can simply remove the common indices from the extract and make it
1226      // operate on the inserted value instead of the insertvalue result.
1227      // i.e., replace
1228      // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
1229      // %E = extractvalue { i32, { i32 } } %I, 1, 0
1230      // with
1231      // %E extractvalue { i32 } { i32 42 }, 0
1232      return ExtractValueInst::Create(IV->getInsertedValueOperand(),
1233                                      exti, exte);
1234  }
1235  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Agg)) {
1236    // We're extracting from an intrinsic, see if we're the only user, which
1237    // allows us to simplify multiple result intrinsics to simpler things that
1238    // just get one value.
1239    if (II->hasOneUse()) {
1240      // Check if we're grabbing the overflow bit or the result of a 'with
1241      // overflow' intrinsic.  If it's the latter we can remove the intrinsic
1242      // and replace it with a traditional binary instruction.
1243      switch (II->getIntrinsicID()) {
1244      case Intrinsic::uadd_with_overflow:
1245      case Intrinsic::sadd_with_overflow:
1246        if (*EV.idx_begin() == 0) {  // Normal result.
1247          Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
1248          II->replaceAllUsesWith(UndefValue::get(II->getType()));
1249          EraseInstFromFunction(*II);
1250          return BinaryOperator::CreateAdd(LHS, RHS);
1251        }
1252
1253        // If the normal result of the add is dead, and the RHS is a constant,
1254        // we can transform this into a range comparison.
1255        // overflow = uadd a, -4  -->  overflow = icmp ugt a, 3
1256        if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow)
1257          if (ConstantInt *CI = dyn_cast<ConstantInt>(II->getArgOperand(1)))
1258            return new ICmpInst(ICmpInst::ICMP_UGT, II->getArgOperand(0),
1259                                ConstantExpr::getNot(CI));
1260        break;
1261      case Intrinsic::usub_with_overflow:
1262      case Intrinsic::ssub_with_overflow:
1263        if (*EV.idx_begin() == 0) {  // Normal result.
1264          Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
1265          II->replaceAllUsesWith(UndefValue::get(II->getType()));
1266          EraseInstFromFunction(*II);
1267          return BinaryOperator::CreateSub(LHS, RHS);
1268        }
1269        break;
1270      case Intrinsic::umul_with_overflow:
1271      case Intrinsic::smul_with_overflow:
1272        if (*EV.idx_begin() == 0) {  // Normal result.
1273          Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
1274          II->replaceAllUsesWith(UndefValue::get(II->getType()));
1275          EraseInstFromFunction(*II);
1276          return BinaryOperator::CreateMul(LHS, RHS);
1277        }
1278        break;
1279      default:
1280        break;
1281      }
1282    }
1283  }
1284  if (LoadInst *L = dyn_cast<LoadInst>(Agg))
1285    // If the (non-volatile) load only has one use, we can rewrite this to a
1286    // load from a GEP. This reduces the size of the load.
1287    // FIXME: If a load is used only by extractvalue instructions then this
1288    //        could be done regardless of having multiple uses.
1289    if (!L->isVolatile() && L->hasOneUse()) {
1290      // extractvalue has integer indices, getelementptr has Value*s. Convert.
1291      SmallVector<Value*, 4> Indices;
1292      // Prefix an i32 0 since we need the first element.
1293      Indices.push_back(Builder->getInt32(0));
1294      for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end();
1295            I != E; ++I)
1296        Indices.push_back(Builder->getInt32(*I));
1297
1298      // We need to insert these at the location of the old load, not at that of
1299      // the extractvalue.
1300      Builder->SetInsertPoint(L->getParent(), L);
1301      Value *GEP = Builder->CreateInBoundsGEP(L->getPointerOperand(),
1302                                              Indices.begin(), Indices.end());
1303      // Returning the load directly will cause the main loop to insert it in
1304      // the wrong spot, so use ReplaceInstUsesWith().
1305      return ReplaceInstUsesWith(EV, Builder->CreateLoad(GEP));
1306    }
1307  // We could simplify extracts from other values. Note that nested extracts may
1308  // already be simplified implicitly by the above: extract (extract (insert) )
1309  // will be translated into extract ( insert ( extract ) ) first and then just
1310  // the value inserted, if appropriate. Similarly for extracts from single-use
1311  // loads: extract (extract (load)) will be translated to extract (load (gep))
1312  // and if again single-use then via load (gep (gep)) to load (gep).
1313  // However, double extracts from e.g. function arguments or return values
1314  // aren't handled yet.
1315  return 0;
1316}
1317
1318
1319
1320
1321/// TryToSinkInstruction - Try to move the specified instruction from its
1322/// current block into the beginning of DestBlock, which can only happen if it's
1323/// safe to move the instruction past all of the instructions between it and the
1324/// end of its block.
1325static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
1326  assert(I->hasOneUse() && "Invariants didn't hold!");
1327
1328  // Cannot move control-flow-involving, volatile loads, vaarg, etc.
1329  if (isa<PHINode>(I) || I->mayHaveSideEffects() || isa<TerminatorInst>(I))
1330    return false;
1331
1332  // Do not sink alloca instructions out of the entry block.
1333  if (isa<AllocaInst>(I) && I->getParent() ==
1334        &DestBlock->getParent()->getEntryBlock())
1335    return false;
1336
1337  // We can only sink load instructions if there is nothing between the load and
1338  // the end of block that could change the value.
1339  if (I->mayReadFromMemory()) {
1340    for (BasicBlock::iterator Scan = I, E = I->getParent()->end();
1341         Scan != E; ++Scan)
1342      if (Scan->mayWriteToMemory())
1343        return false;
1344  }
1345
1346  BasicBlock::iterator InsertPos = DestBlock->getFirstNonPHI();
1347
1348  I->moveBefore(InsertPos);
1349  ++NumSunkInst;
1350  return true;
1351}
1352
1353
1354/// AddReachableCodeToWorklist - Walk the function in depth-first order, adding
1355/// all reachable code to the worklist.
1356///
1357/// This has a couple of tricks to make the code faster and more powerful.  In
1358/// particular, we constant fold and DCE instructions as we go, to avoid adding
1359/// them to the worklist (this significantly speeds up instcombine on code where
1360/// many instructions are dead or constant).  Additionally, if we find a branch
1361/// whose condition is a known constant, we only visit the reachable successors.
1362///
1363static bool AddReachableCodeToWorklist(BasicBlock *BB,
1364                                       SmallPtrSet<BasicBlock*, 64> &Visited,
1365                                       InstCombiner &IC,
1366                                       const TargetData *TD) {
1367  bool MadeIRChange = false;
1368  SmallVector<BasicBlock*, 256> Worklist;
1369  Worklist.push_back(BB);
1370
1371  SmallVector<Instruction*, 128> InstrsForInstCombineWorklist;
1372  SmallPtrSet<ConstantExpr*, 64> FoldedConstants;
1373
1374  do {
1375    BB = Worklist.pop_back_val();
1376
1377    // We have now visited this block!  If we've already been here, ignore it.
1378    if (!Visited.insert(BB)) continue;
1379
1380    for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
1381      Instruction *Inst = BBI++;
1382
1383      // DCE instruction if trivially dead.
1384      if (isInstructionTriviallyDead(Inst)) {
1385        ++NumDeadInst;
1386        DEBUG(errs() << "IC: DCE: " << *Inst << '\n');
1387        Inst->eraseFromParent();
1388        continue;
1389      }
1390
1391      // ConstantProp instruction if trivially constant.
1392      if (!Inst->use_empty() && isa<Constant>(Inst->getOperand(0)))
1393        if (Constant *C = ConstantFoldInstruction(Inst, TD)) {
1394          DEBUG(errs() << "IC: ConstFold to: " << *C << " from: "
1395                       << *Inst << '\n');
1396          Inst->replaceAllUsesWith(C);
1397          ++NumConstProp;
1398          Inst->eraseFromParent();
1399          continue;
1400        }
1401
1402      if (TD) {
1403        // See if we can constant fold its operands.
1404        for (User::op_iterator i = Inst->op_begin(), e = Inst->op_end();
1405             i != e; ++i) {
1406          ConstantExpr *CE = dyn_cast<ConstantExpr>(i);
1407          if (CE == 0) continue;
1408
1409          // If we already folded this constant, don't try again.
1410          if (!FoldedConstants.insert(CE))
1411            continue;
1412
1413          Constant *NewC = ConstantFoldConstantExpression(CE, TD);
1414          if (NewC && NewC != CE) {
1415            *i = NewC;
1416            MadeIRChange = true;
1417          }
1418        }
1419      }
1420
1421      InstrsForInstCombineWorklist.push_back(Inst);
1422    }
1423
1424    // Recursively visit successors.  If this is a branch or switch on a
1425    // constant, only visit the reachable successor.
1426    TerminatorInst *TI = BB->getTerminator();
1427    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1428      if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
1429        bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
1430        BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
1431        Worklist.push_back(ReachableBB);
1432        continue;
1433      }
1434    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
1435      if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
1436        // See if this is an explicit destination.
1437        for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i)
1438          if (SI->getCaseValue(i) == Cond) {
1439            BasicBlock *ReachableBB = SI->getSuccessor(i);
1440            Worklist.push_back(ReachableBB);
1441            continue;
1442          }
1443
1444        // Otherwise it is the default destination.
1445        Worklist.push_back(SI->getSuccessor(0));
1446        continue;
1447      }
1448    }
1449
1450    for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
1451      Worklist.push_back(TI->getSuccessor(i));
1452  } while (!Worklist.empty());
1453
1454  // Once we've found all of the instructions to add to instcombine's worklist,
1455  // add them in reverse order.  This way instcombine will visit from the top
1456  // of the function down.  This jives well with the way that it adds all uses
1457  // of instructions to the worklist after doing a transformation, thus avoiding
1458  // some N^2 behavior in pathological cases.
1459  IC.Worklist.AddInitialGroup(&InstrsForInstCombineWorklist[0],
1460                              InstrsForInstCombineWorklist.size());
1461
1462  return MadeIRChange;
1463}
1464
1465bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) {
1466  MadeIRChange = false;
1467
1468  DEBUG(errs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
1469        << F.getNameStr() << "\n");
1470
1471  {
1472    // Do a depth-first traversal of the function, populate the worklist with
1473    // the reachable instructions.  Ignore blocks that are not reachable.  Keep
1474    // track of which blocks we visit.
1475    SmallPtrSet<BasicBlock*, 64> Visited;
1476    MadeIRChange |= AddReachableCodeToWorklist(F.begin(), Visited, *this, TD);
1477
1478    // Do a quick scan over the function.  If we find any blocks that are
1479    // unreachable, remove any instructions inside of them.  This prevents
1480    // the instcombine code from having to deal with some bad special cases.
1481    for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1482      if (!Visited.count(BB)) {
1483        Instruction *Term = BB->getTerminator();
1484        while (Term != BB->begin()) {   // Remove instrs bottom-up
1485          BasicBlock::iterator I = Term; --I;
1486
1487          DEBUG(errs() << "IC: DCE: " << *I << '\n');
1488          // A debug intrinsic shouldn't force another iteration if we weren't
1489          // going to do one without it.
1490          if (!isa<DbgInfoIntrinsic>(I)) {
1491            ++NumDeadInst;
1492            MadeIRChange = true;
1493          }
1494
1495          // If I is not void type then replaceAllUsesWith undef.
1496          // This allows ValueHandlers and custom metadata to adjust itself.
1497          if (!I->getType()->isVoidTy())
1498            I->replaceAllUsesWith(UndefValue::get(I->getType()));
1499          I->eraseFromParent();
1500        }
1501      }
1502  }
1503
1504  while (!Worklist.isEmpty()) {
1505    Instruction *I = Worklist.RemoveOne();
1506    if (I == 0) continue;  // skip null values.
1507
1508    // Check to see if we can DCE the instruction.
1509    if (isInstructionTriviallyDead(I)) {
1510      DEBUG(errs() << "IC: DCE: " << *I << '\n');
1511      EraseInstFromFunction(*I);
1512      ++NumDeadInst;
1513      MadeIRChange = true;
1514      continue;
1515    }
1516
1517    // Instruction isn't dead, see if we can constant propagate it.
1518    if (!I->use_empty() && isa<Constant>(I->getOperand(0)))
1519      if (Constant *C = ConstantFoldInstruction(I, TD)) {
1520        DEBUG(errs() << "IC: ConstFold to: " << *C << " from: " << *I << '\n');
1521
1522        // Add operands to the worklist.
1523        ReplaceInstUsesWith(*I, C);
1524        ++NumConstProp;
1525        EraseInstFromFunction(*I);
1526        MadeIRChange = true;
1527        continue;
1528      }
1529
1530    // See if we can trivially sink this instruction to a successor basic block.
1531    if (I->hasOneUse()) {
1532      BasicBlock *BB = I->getParent();
1533      Instruction *UserInst = cast<Instruction>(I->use_back());
1534      BasicBlock *UserParent;
1535
1536      // Get the block the use occurs in.
1537      if (PHINode *PN = dyn_cast<PHINode>(UserInst))
1538        UserParent = PN->getIncomingBlock(I->use_begin().getUse());
1539      else
1540        UserParent = UserInst->getParent();
1541
1542      if (UserParent != BB) {
1543        bool UserIsSuccessor = false;
1544        // See if the user is one of our successors.
1545        for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
1546          if (*SI == UserParent) {
1547            UserIsSuccessor = true;
1548            break;
1549          }
1550
1551        // If the user is one of our immediate successors, and if that successor
1552        // only has us as a predecessors (we'd have to split the critical edge
1553        // otherwise), we can keep going.
1554        if (UserIsSuccessor && UserParent->getSinglePredecessor())
1555          // Okay, the CFG is simple enough, try to sink this instruction.
1556          MadeIRChange |= TryToSinkInstruction(I, UserParent);
1557      }
1558    }
1559
1560    // Now that we have an instruction, try combining it to simplify it.
1561    Builder->SetInsertPoint(I->getParent(), I);
1562
1563#ifndef NDEBUG
1564    std::string OrigI;
1565#endif
1566    DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
1567    DEBUG(errs() << "IC: Visiting: " << OrigI << '\n');
1568
1569    if (Instruction *Result = visit(*I)) {
1570      ++NumCombined;
1571      // Should we replace the old instruction with a new one?
1572      if (Result != I) {
1573        DEBUG(errs() << "IC: Old = " << *I << '\n'
1574                     << "    New = " << *Result << '\n');
1575
1576        // Everything uses the new instruction now.
1577        I->replaceAllUsesWith(Result);
1578
1579        // Push the new instruction and any users onto the worklist.
1580        Worklist.Add(Result);
1581        Worklist.AddUsersToWorkList(*Result);
1582
1583        // Move the name to the new instruction first.
1584        Result->takeName(I);
1585
1586        // Insert the new instruction into the basic block...
1587        BasicBlock *InstParent = I->getParent();
1588        BasicBlock::iterator InsertPos = I;
1589
1590        if (!isa<PHINode>(Result))        // If combining a PHI, don't insert
1591          while (isa<PHINode>(InsertPos)) // middle of a block of PHIs.
1592            ++InsertPos;
1593
1594        InstParent->getInstList().insert(InsertPos, Result);
1595
1596        EraseInstFromFunction(*I);
1597      } else {
1598#ifndef NDEBUG
1599        DEBUG(errs() << "IC: Mod = " << OrigI << '\n'
1600                     << "    New = " << *I << '\n');
1601#endif
1602
1603        // If the instruction was modified, it's possible that it is now dead.
1604        // if so, remove it.
1605        if (isInstructionTriviallyDead(I)) {
1606          EraseInstFromFunction(*I);
1607        } else {
1608          Worklist.Add(I);
1609          Worklist.AddUsersToWorkList(*I);
1610        }
1611      }
1612      MadeIRChange = true;
1613    }
1614  }
1615
1616  Worklist.Zap();
1617  return MadeIRChange;
1618}
1619
1620
1621bool InstCombiner::runOnFunction(Function &F) {
1622  MustPreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
1623  TD = getAnalysisIfAvailable<TargetData>();
1624
1625
1626  /// Builder - This is an IRBuilder that automatically inserts new
1627  /// instructions into the worklist when they are created.
1628  IRBuilder<true, TargetFolder, InstCombineIRInserter>
1629    TheBuilder(F.getContext(), TargetFolder(TD),
1630               InstCombineIRInserter(Worklist));
1631  Builder = &TheBuilder;
1632
1633  bool EverMadeChange = false;
1634
1635  // Iterate while there is work to do.
1636  unsigned Iteration = 0;
1637  while (DoOneIteration(F, Iteration++))
1638    EverMadeChange = true;
1639
1640  Builder = 0;
1641  return EverMadeChange;
1642}
1643
1644FunctionPass *llvm::createInstructionCombiningPass() {
1645  return new InstCombiner();
1646}
1647